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In memory of robin.

Dedicated to all the software professionals 
who keep the digital world afloat, working 

to improve security one day at a time. Their 
greatest successes are those rare boring 

days when nothing bad happens.
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F O R E W O R D

The book you have just started to read is unusual in many ways. Small and 
carefully written, it is a very technical book with very little code. It’s a security 
book designed for those other than security experts. And as Loren discusses, 
it is a deeply personal perspective on technology, written by someone who has 
shipped large commercial products, invented important security technology, 
and worked extensively in product security.

In 2006, I joined Microsoft, and was handed responsibility for how we 
threat modeled across all our products and services. The main approach we 
used was based on Loren’s STRIDE work. STRIDE is a mnemonic to help 
us consider the threats of Spoofing, Tampering, Repudiation, Information 
disclosure, Denial of service, and Elevation of privilege. It has become a 
key building block for me. (It’s so central that I regularly need to correct 
people who think I invented STRIDE.) In fact, when I read this book, I was 
delighted to find that Loren calls on my Four Questions Framework much 
the way I call on STRIDE. The Framework is a way of approaching prob-
lems by asking what we are working on, what can go wrong, what we are 
going to do about those things, and whether we did a good job. Many of the 
lessons in this book suggest that Loren and I have collaborated even though 
we never worked directly together.

Today, the world is changing. Security flaws have become front page 
news. Your customers expect better security than ever before, and push those 
demands by including security in their evaluation criteria, drafting contract 
clauses, putting pressure on salespeople and executives, and pressing for new 
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laws. Now is a great time to bring better security design into your software, 
from conception to coding. This book is about that difficult subject: how to 
design software that is secure.

The subject is difficult because of two main challenges. The first chal-
lenge, that security and trust are both natural and nuanced, is the subject 
of Chapter 1, so I won’t say more about it. The second is that software pro-
fessionals often hope that software won’t require design. Software seems 
infinitely malleable, unlike the products of other engineering disciplines. 
In those other disciplines, we build models and prototypes before we bend 
steel, pour concrete, or photo-etch silicon. And in contrast, we build code, 
refine it, and then release it to the world, rather than following the famous 
advice of Fred Brooks: you’re going to throw away the first system you build, 
so you might as well plan to treat it as a prototype. The stories we tell of the 
evolution of software rarely linger on our fruitless meanderings. We like to 
dismiss the many lightbulbs that didn’t work and talk instead about how the 
right design just happened to come to us. Sometimes, we even believe it. 
Even in writing this, I am aware of a risk that you will think me—or worse, 
Loren—to be an advocate of design for its own sake. And that I bother to 
disclaim it brings me to another challenge that this book ably takes on: 
offering practical advice about the design of software.

This is a book for a group of people who are too rarely respectfully 
and compassionately addressed: technical professionals new to security. 
Welcome to this part of the profession. As you’ll discover in these pages, 
the choices you make about the systems you work on can impact security. 
But you don’t need to become a security expert to make better choices. 
This book will take you far. Some of you will want to go further, and there’s 
plenty of material out there for you to read. Others will do well simply by 
applying what you learn here.

ADAM SHOSTACK
President, Shostack + Associates

Author of Threat Modeling: Designing for Security (Wiley, 2014)
Affiliate Professor, University of Washington Paul G. Allen School of 

Computer Science and Engineering



P R E F A C E

If you cannot—in the long run—tell everyone  
what you have been doing, your doing has been worthless.

—Erwin Schrödinger

Join me on a hike through the software security landscape. 
My favorite hike begins in a rainforest, near the top of the island of 

Kauaʻi, which is often shrouded in misty rain. The trail climbs moderately 
at first, then descends along the contour of the sloping terrain, in places 
steep and treacherously slippery after frequent rains. Further down, pass-
ing through valleys choked with invasive ginger or overgrown by thorny 
lantana bushes, it gets seriously muddy, and the less dedicated turn and 
head back. A couple of miles out, the trees thin out as the environment 
gradually warms, becoming arid with the lower elevation. Further on, the 
first long views of the surrounding Pacific begin to open up, providing a 
glimpse of the promise the trail offers.

In my experience, many software professionals find security daunting at 
first: shrouded in mist, even vaguely treacherous. This is not without good 
reason. If the act of programming corresponded to a physical environment, 
this would be it.

The last mile of the trail runs through terrain made perilous by the 
loose volcanic rock that, due to the island’s geologically tender age of five 
million years, hasn’t had time to turn into soil. Code is as hard and unfor-
giving as rock, yet so fragile that one small flaw can lead to a disaster, just 
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as one misstep on the trail could here. Fortunately, the hiking trail’s path 
along the ridge has been well chosen, with natural handholds on the steepest 
section: sturdy basalt outcroppings or the exposed, solid roots of ohia trees.

Approaching the end of the trail, you’ll find yourself walking along the 
rim of a deep gorge, the loose ground underfoot almost like ball bearings. 
To your right, a precipice drops over 2,000 feet. In places, the trail is shoul-
der width. I’ve seen acrophobic hikers turn around at this point, unable to 
summon the confidence to proceed. Yet most people are comfortable here, 
because the trail is slightly inclined away from the dangerous side. To the left, 
the risk is minimal; you face the same challenging footing but on a gentle 
slope, so at worst you might slide a few feet. I thought about this trail often 
as I wrote this book and have endeavored to provide just such a path, using 
stories and analogies like this one to tackle the toughest subjects in a way 
that I hope will help you get to the good stuff.

Security is challenging for a number of reasons: it’s abstract, the subject 
is vast, and software today is both fragile and extremely complex. How can 
one explain the intricacies of security in enough depth to connect with read-
ers, without overwhelming them with too much information? This book con-
fronts those challenges in the spirit of hikers on that trail at the rim of the 
gorge: by leaning away from the danger of trying to cover everything. In the 
interest of not losing readers, I err on the side of simplification, leaving out 
some of the smaller details. By doing so, I hope to prevent readers from met-
aphorically falling into the gorge—that is, getting so confused or frustrated 
that they give up. The book should instead serve as a springboard, sparking 
your interest in continued exploration of software security practices. 

As you approach the end of the trail, the ridge widens out and becomes 
flat, easy walking. Rounding the last curve, you’re treated to a stunning 
panoramic view of the fabled Na Pali coast. To the right is a verdant hanging 
valley, steeply carved from the mountain. A waterfall feeds the meandering 
river visible almost directly below. The intricate coastline extends into the 
distance, flanked by neighboring islands on the horizon to the west. The 
rewards of visiting this place never get old. After drinking in the experience, 
a good workout awaits as you start the climb back up.

Just as I’ll never get to see every inch of this island, I won’t learn everything 
there is to know about software security, and of course, no book will ever 
cover this broad topic completely, either. What I do have, as my guide, is my 
own experience. Each of us charts our own unique path through this topic, 
and I’ve been fortunate to have been doing this work for a long time. I’ve wit-
nessed firsthand some key developments and followed the evolution of both 
the technologies and the culture of software development since its early days. 

The purpose of this book is to show you the lay of the security land, 
with some words of warning about some of the hazards of the trail so you 
can begin confidently exploring further on your own. When it comes to 
security, cut-and-dried guidance that works in all circumstances is rare. 
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Instead, my aim is to show you some simple examples from the landscape 
to kick-start your interest and deepen your understanding of the core con-
cepts. For every topic this book covers, there is always much more to say. 
Solving real-world security challenges always requires more context in order 
to better assess possible solutions; the best decisions are grounded in a solid 
understanding of the specifics of the design, implementation details, and 
more. As you grasp the underlying ideas and begin applying them, the work 
becomes intuitive with practice. Fortunately, even small improvements over 
time make the effort worthwhile. 

When I look back on my work with the security teams at major software 
companies, a lost opportunity always strikes me. Working at a large and 
profitable corporation has many benefits: along with on-site massages 
and sumptuous cafes come on-tap security specialists (like myself) and a 
design review process. Yet few other software development efforts enjoy the 
benefits of this level of security expertise and a process that integrates secu-
rity from the design phase. This book seeks to empower the software com-
munity to make this standard practice.

With myriad concerns to balance, designers have their hands full. The 
good ones are certainly aware of security considerations, but they rarely get 
a security design review. (And none of my industry acquaintances have even 
heard of the service being offered by consultants.) Developers also have vary-
ing degrees of security knowledge, and unless they pursue it as a specialty, 
their knowledge is often at best piecemeal. Some companies do care enough 
about security to hire expert consultants, but this invariably happens late in 
the process, so they’re working after the fact to shore up security ahead of 
release. Bolting on security at the end has become the industry’s standard 
strategy—the opposite of baking in security.

Over the years, I have tried to gently spread the word about security 
among my colleagues. Invariably, one quickly sees that certain people get it; 
others, not so much. Why people respond so differently is a mystery, possibly 
more psychological than technological, but it does raise an interesting ques-
tion. What does it mean to “get” security, and how do you teach it? I don’t 
mean world-class knowledge, or even mastery, but a sufficient grasp of the 
basics to be aware of the challenges and how to make incremental improve-
ments. From that point, software professionals can continue their research 
to fill in any gaps. That’s the objective that this book endeavors to deliver. 

Throughout the process of writing this book, my understanding of 
the challenge this work entails has grown considerably. At first, I was 
surprised that a book like this didn’t already exist; now I think I know why. 
Security concepts are frequently counterintuitive; attacks are often devi-
ous and nonobvious, and software design itself is already highly abstract. 
Software today is so rich and diverse that securing it represents a daunt-
ing challenge. Software security remains an unsolved problem, but we do 
understand large parts of it, and we’re getting better at it—if only it weren’t 
such a fast-moving target! I certainly don’t have perfect answers for every-
thing. All of the easy answers to security challenges are already built into 
our software platforms, so it’s the hard problems that remain. This book  
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strategically emphasizes concepts and the development of a security mindset. 
It invites more people to contribute to security, bringing a greater diversity of 
fresh perspectives and more consistent security focus. 

I hope you will join me on this personal tour of my favorite paths through 
the security landscape, in which I share with you the most interesting insights 
and effective methodologies that I have to offer. If this book convinces you of 
the value of baking security into software from the design phase, of consider-
ing security throughout the process, and of going beyond what I can offer 
here, then it will have succeeded.
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I N T R O D U C T I O N

This book is a guide for software profession-
als who want to better understand concepts 

essential to the discipline of software security 
and learn how to practice the art of secure soft-

ware design and implementation. Several of the topics 
covered here I was fortunate to have innovated myself. 
Others, I witnessed develop and take root. Based on 
my own industry experience, this book is packed with 
actionable ideas you can start using right away to make 
the software you work on more secure. 

Two central themes run through this book: encouraging software pro-
fessionals to focus on security early in the software construction process, 
and involving the entire team in the process of—as well as the responsibility 
for—security. There is certainly plenty of room for improvement in both of 
these areas, and this book shows how to realize these goals. 
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I have had the unique opportunity of working on the front lines of soft-
ware security over the course of my career, and now I would like to share my 
learnings as broadly as possible. Over 20 years ago, I was part of the team at 
Microsoft that first applied threat modeling at scale across a large software 
company. Years later, at Google, I participated in an evolution of the same 
fundamental practice, and experienced a whole new way of approaching 
the challenge. Part II of this book is informed by my having performed well 
over a hundred design reviews. Looking back on how far we have come pro-
vides me with a great perspective with which to explain it all anew.

Designing, building, and operating software systems is an inherently 
risky undertaking. Every choice, every step of the way, nudges the risk of 
introducing a security vulnerability either up or down. This book covers what 
I know best, learned from personal experience. I convey the security mindset  
from first principles and show how to bake in security throughout the devel-
opment process. Along the way I provide examples of design and code, 
largely independent of specific technologies so as to be as broadly applicable as 
possible. The text is peppered with numerous stories, analogies, and examples 
to add spice and communicate abstract ideas as effectively as possible. 

The security mindset comes more easily to some people than others, so 
I have focused on building that intuition, to help you think in new ways that 
will facilitate a software security perspective in your work. And I should add 
that in my own experience, even for those of us to whom it comes easily, 
there are always more insights to gain.

This is a concise book that covers a lot of ground, and in writing it, 
I have come to see its brevity as essential to what success it may achieve. 
Software security is a field of intimidating breadth and depth, so keeping 
the book shorter will, I hope, make it more broadly approachable. My aim is 
to get you thinking about security in new ways, and to make it easy for you 
to apply this new perspective in your own work.

Who Should Read This Book?
This book is for anyone already proficient in some facet of software design 
and development, including architects, UX/UI designers, program man-
agers, software engineers, programmers, testers, and management. Tech 
professionals should have no trouble following the conceptual material 
so long as they understand the basics of how software works and how it’s 
constructed. Software is used so pervasively and is of such great diversity 
that I won’t say all of it needs security; however, most of it likely does, and 
certainly any that connects to the internet or interfaces significantly with 
people.

In writing the book, I found it useful to consider three classes of prospec-
tive readers, and would like to offer a few words here to each of these camps.

Security newbies, especially those intimidated by security, are the primary 
audience I am writing for, because it’s important that everyone working 
in software understands security so they can contribute to improving it. To 
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make more secure software in the future we need everyone involved, and I 
hope this book will help those just starting to learn about security to quickly 
get up to speed.

Security-aware readers are those with interest in but limited knowledge 
of security, seeking to deepen their understanding and learn more practi-
cal ways of applying these skills to their work. I wrote this book to fill in the 
gaps and provide plenty of ways you can immediately put what you learn 
here into practice.

Security experts (you know who you are) round out the field. They may 
be familiar with much of the material, but I believe this book provides 
some new perspectives and still has much to offer them. Namely, the book 
includes discussions of important relevant topics such as secure design, 
security reviews, and “soft skills” that are rarely written about. 

Part III of this book, which covers implementation vulnerabilities and 
mitigations, includes short excerpts of code written in either C or Python. 
Some examples assume familiarity with the concept of memory allocation, 
as well as an understanding of integer and floating-point types, including 
binary arithmetic. In a few places I use mathematical formulae, but nothing 
more than modulo and exponential arithmetic. Readers who find the code 
or math too technical or irrelevant should feel free to skip over these sec-
tions without fear of losing the thread of the overall narrative. References 
such as man(1) are *nix (Unix family of operating systems) commands (1) 
and functions (3).

What Topics Does the Book Cover?
The book consists of 13 chapters organized into three parts, covering con-
cepts, design, and implementation, plus a conclusion.

Part I: Concepts
Chapters 1 through 5 provide a conceptual basis for the rest of book. 
Chapter 1: Foundations, is an overview of information security and privacy 
fundamentals. Chapter 2: Threats, introduces threat modeling, fleshing out 
the core concepts of attack surfaces and trust boundaries in the context of 
protecting assets. The next three chapters introduce valuable tools available 
to readers for building secure software. Chapter 3: Mitigations, discusses 
commonly used strategies for defensively mitigating identified threats. 
Chapter 4: Patterns, presents a number of effective security design patterns 
and flags some anti-patterns to avoid. Chapter 5: Cryptography, takes a tool-
box approach to explaining how to use standard cryptographic libraries to 
mitigate common risks, without going into the underlying math (which is 
rarely needed in practice).

Part II: Design
This part of the book represents perhaps its most unique and impor-
tant contribution to prospective readers. Chapter 6: Secure Design, and 
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Chapter 7: Security Design Reviews, offer guidance on secure software 
design and practical techniques for how to accomplish it, approaching the 
subject from the designer’s and reviewer’s perspectives, respectively. In 
the process, they explain why it’s important to bake security into software 
design from the beginning. 

These chapters draw on the ideas introduced in the first part of the 
book, offering specific methodologies for how to incorporate them to build 
a secure design. The review methodology is directly based on my industry 
experience, including a step-by-step process you can adapt to how you work. 
Consider browsing the sample design document in Appendix A while read-
ing these chapters as an example of how to put these ideas into practice.

Part III: Implementation
Chapters 8 through 13 cover security at the implementation stage and touch 
on deployment, operations, and end-of-life. Once you have a secure design, 
this part of the book explains how to develop software without introducing 
additional vulnerabilities. These chapters include snippets of code, illustrating  
both how vulnerabilities creep into code and how to avoid them. Chapter 8: 
Secure Programming, introduces the security challenge that programmers 
face and what real vulnerabilities actually look like in code. Chapter 9: Low-
Level Coding Flaws, covers the foibles of computer arithmetic and how C-style 
explicit management of dynamic memory allocation can undermine security. 
Chapter 10: Untrusted Input, and Chapter 11: Web Security, cover many of 
the commonplace bugs that have been well known for many years but just 
don’t seem to go away (such as injection, path traversal, XSS, and CSRF vul-
nerabilities). Chapter 12: Security Testing, covers the greatly underutilized 
practice of testing to ensure that your code is secure. Chapter 13: Secure 
Development Best Practices, rounds out the secure implementation guid-
ance, covering some general best practices and providing cautionary warn-
ings about common pitfalls.

The excerpts of code in this part of the book generally demonstrate vul-
nerabilities to be avoided, followed by patched versions that show how to make 
the code secure (labeled “vulnerable code” and “fixed code,” respectively). As 
such, the code herein is not intended to be copied for use in production soft-
ware. Even the fixed code could have vulnerabilities in another context due to 
other issues, so you should not consider any code presented in this book to be 
guaranteed secure for any application.

Conclusion
The Afterword concludes the book and describes some ways that I hope it 
will make a positive impact. Here I summarize the key points made in the 
book, attempt to peer into the future, and offer speculative ideas that could 
help ratchet software security upward, beginning with a vision for how this 
book can contribute to more secure software going forward. 
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Appendices
Appendix A is a sample design document that illustrates what security-
aware design looks like in practice.

Appendix B is a glossary of software security terms that appear 
throughout the book.

Appendix C includes some open-ended exercises and questions that 
ambitious readers might enjoy researching.

Appendix D consists of a collection of cheat sheets that summarize key 
concepts and processes.

In addition, a compilation of references to sources mentioned in the 
book can be found at https://designingsecuresoftware.com/ (and linked from 
https://nostarch.com/designing-secure-software/).

Good, Safe Fun
Before we get started, I’d like to add some important words of warning 
about being responsible with the security knowledge this book presents. 
In order to explain how to make software safe, I have had to describe how 
various vulnerabilities work, and how attackers potentially exploit them. 
Experimentation is a great way to hone skills from both the attack and 
defense perspectives, but it’s important to use this knowledge carefully.

Never play around by investigating security on production systems. 
When you read about cross-site scripting (XSS), for instance, you may be 
tempted to try browsing your favorite website with tricky URLs to see what 
happens. Please don’t. Even when done with the best of intentions, these 
explorations may look like real attacks to site administrators. It’s important 
to respect the possibility that others will interpret your actions as a threat—
and, of course, you may be skirting the law in some countries. Use your com-
mon sense, including considering how your actions might be interpreted 
and the possibility of mistakes and unintended consequences, and err on 
the side of refraining. Instead, if you’d like to experiment with XSS, put up 
your own web server using fake data; you can then play around with this to 
your heart’s content.

Furthermore, while this book presents the best general advice I can 
offer based on many years of experience working on software security, no 
guidance is perfect or applicable in every conceivable context. Solutions men-
tioned herein are never “silver bullets”: they are suggestions, or examples of 
common approaches worth knowing about. Rely on your best judgment when 
assessing security decisions. No book can make these choices for you, but this 
book can help you get them right.

https://designingsecuresoftware.com/
https://nostarch.com/designing-secure-software/
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1
F O U N D A T I O N S

Honesty is a foundation, and it’s usually a solid foundation. Even if I  
do get in trouble for what I said, it’s something that I can stand on.

—Charlamagne tha God

Software security is at once a logical practice 
and an art, one based on intuitive decision 

making. It requires an understanding of mod-
ern digital systems, but also a sensitivity to the 

humans interacting with, and affected by, those systems. 
If that sounds daunting, then you have a good sense 
of the fundamental challenge this book endeavors to 
explain. This perspective also sheds light on why soft-
ware security has continued to challenge the field for so 
long, and why the solid progress made so far has taken  
so much effort, even if it has only chipped away at some of the problems. 
Yet there is very good news in this state of affairs, because it means that all 
of us can make a real difference by increasing our awareness of, and par-
ticipation in, better security at every stage of the process.

We begin by considering what security exactly is. Given security’s sub-
jective nature, it’s critical to think clearly about its foundations. This book  
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represents my understanding of the best thinking out there, based on my 
own experience. Trust undergirds all of security, because nobody works  
in a vacuum, and modern digital systems are far too complicated to be built 
single-handedly from the silicon up; you have to trust others to provide every-
thing (starting with the hardware, firmware, operating system, and compil-
ers) that you don’t create yourself. Building on this base, next I present the 
six classic principles of security: the three components of classic information 
security and the three-part “Gold Standard” used to enforce it. Finally, the 
section on information privacy adds important human and societal factors 
necessary to consider as digital products and services become increasingly 
integrated into the most sensitive realms of modern life.

Though readers doubtlessly have good intuitions about what words 
such as security, trust, or confidentiality mean, in this book these words take 
on specific technical meanings worth teasing out carefully, so I suggest 
reading this chapter closely. As a challenge to more advanced readers, I 
invite you to attempt to write better descriptions yourself—no doubt it 
will be an educational exercise for everyone.

Understanding Security
All organisms have natural instincts to chart a course away from danger, 
defend against attacks, and aim toward whatever sanctuary they can find. 

It is important to appreciate just how remarkable our innate sense of 
physical security is, when it works. By contrast, we have few genuine signals 
to work with in the virtual world—and fake signals are easily fabricated. 
Before we approach security from a technical perspective, let’s consider a 
real-world story as an illustration of what humans are capable of. (As we’ll 
see later, in the digital domain we need a whole new set of skills.)

The following is a true story from an auto salesman. After conducting 
a customer test drive, the salesman and customer returned to the lot. The 
salesman got out of the car and continued to chat with the customer while 
walking around to the front of the car. “When I looked him in the eyes,” the 
salesman recounted, “That’s when I said, ‘Oh no. This guy’s gonna try and 
steal this car.’” Events accelerated: the customer-turned-thief put the car in 
gear and sped away while the salesman hung on for the ride of his life on the 
hood of the car. The perpetrator drove violently in an unsuccessful attempt to 
throw him from the vehicle. (Fortunately, the salesman sustained no major 
injuries and the criminal was soon arrested, convicted, and ordered to pay 
restitution.)

A subtle risk calculation took place when those men locked eyes. Within 
fractions of a second, the salesman had processed complex visual signals, 
derived from the customer’s facial expression and body language, distilling 
into a clear intention of a hostile action. Now imagine that the same sales-
man was the target of a spear phishing attack (a fraudulent email designed to 
fool a specific target, as opposed to a mass audience). In the digital realm, 
without the signals he detected when face-to-face with his attacker, he’d be 
much more easily tricked.
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When it comes to information security, computers, networks, and soft-
ware, we need to think analytically to assess the risks we face if we want to 
have any hope of securing digital systems. And we must do this despite being 
unable to directly see, smell, or hear bits or code. Whenever you’re examining 
data online, you’re using software to display information in human-readable 
fonts, and typically, there’s a lot of code between you and the actual bits; in 
fact, it’s potentially a hall of mirrors. So you must trust your tools and trust 
that you really are examining the data you think you are.

Software security centers on the protection of digital assets against an 
array of threats, an effort largely driven by a basic set of security principles 
that the rest of this chapter will discuss. By analyzing a system from these 
first principles, we can learn how vulnerabilities slip into software, as well as 
how to proactively avoid and mitigate problems. These foundational prin-
ciples, along with other design techniques covered in subsequent chapters, 
apply not only to software but also to designing and operating bicycle locks, 
bank vaults, or prisons. 

The term information security refers specifically to the protection of data 
and how access is granted. Software security is a broader term that focuses 
on the design, implementation, and operation of software systems that are 
trustworthy, including the reliable enforcement of information security.  

Trust
Trust is equally critical in the digital realm, yet too often taken for granted. 
Software security ultimately depends on trust, because you cannot control 
every part of a system, write all of your own software, or vet all suppliers of 
dependencies. Modern digital systems are so complex that not even the major 
tech giants can build a complete technology stack from scratch. From the 
silicon to the operating systems, networking, peripherals, and the numerous 
software layers that make it all work, the systems we rely on routinely are 
remarkable technical accomplishments of immense size and complexity. Since 
nobody can build these systems all by themselves, organizations rely on hard-
ware and software products often chosen based on features or pricing—but 
it’s important to remember that each dependency also involves a trust decision. 

Security demands that we examine these trust relationships closely, 
even though nobody has the time or resources to investigate and verify 
everything. Failing to trust enough means doing a lot of needless work to 
protect a system when no real threat is likely. On the other hand, trust-
ing too freely could mean getting blindsided later. Put bluntly, when you 
fully trust an entity, they are free to fail without consequences. Trust can 
be violated in two fundamentally different ways: by malice (cheating, 
lying, subterfuge) and by incompetence (mistakes, misunderstandings, 
negligence).

The need to make critical decisions in the face of incomplete informa-
tion is precisely what trust is best suited for. But our innate sense of trust 
relies on subtle sensory inputs wholly unsuited to the digital realm. The 
following discussion begins with the concept of trust itself, dissects what 
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trust as we experience it is, and then shifts to trust as it relates to software. 
As you read along, try to find the common threads and connect how you 
think about software to your intuitions about trust. Tapping into your exist-
ing trust skills is a powerful technique that over time gives you a gut feel 
for software security that is more effective than any amount of technical 
analysis. 

Feeling Trust
The best way to understand trust is to pay attention while experiencing what 
relying on trust actually feels like. Here’s a thought experiment—or an exer-
cise to try for real, with someone you really trust—that brings home exactly 
what trust means. Imagine walking along a busy thoroughfare with a friend, 
with traffic streaming by only a few feet away. Sighting a crosswalk up ahead, 
you explain that you would like them to guide you across the road, that you 
are relying on them to cross safely, and that you are closing your eyes and 
will obediently follow them. Holding hands, you and your friend proceed 
to the crosswalk, where they gently turn you to face the road, gesturing by 
touch that you should wait. Listening to the sounds of speeding cars, you 
know well that your friend (and now, guardian) is waiting until it is safe to 
cross, but your heartbeat has most likely also increased noticeably, and you 
may find yourself listening attentively for any sound of impending danger.

Now your friend unmistakably leads you forward, guiding you to step 
down from the curb. If you decide to step into the road with your eyes closed, 
what you are feeling is pure trust—or perhaps some degree of the lack 
thereof. Your mind keenly senses palpable risk, your senses strain to confirm 
safety directly, and something deep down is warning you not to do it. Your 
own internal security monitoring system has insufficient evidence and wants 
you to open your eyes before moving; what if your friend somehow misjudges 
the situation, or worse, is playing a deadly evil trick on you? Ultimately, it’s 
the trust you have invested in your friend that allows you to override those 
instincts and cross the road. 

Raise your own awareness of digital trust decisions, and help others see 
how important their impact is on security. Ideally, when you select a com-
ponent or choose a vendor for a critical service, you’ll be able to tap into 
the very same intuitions that guide trust decisions like in the exercise just 
described. 

You Cannot See Bits
All of this discussion is to emphasize the fact that when you think you are 
“looking directly at the data,” you are actually looking at a distant representa-
tion. In fact, you are looking at pixels on a screen that you believe represent 
the contents of certain bytes whose physical location you don’t know with any 
precision, and many millions of instructions were likely executed in order to 
map the data into the human-legible form on your display. Digital technol-
ogy makes trust especially tricky, because it’s so abstract, lightning fast, and 
hidden from direct view. Whenever you examine data, remember that there 
is a lot of software and hardware between the actual data in memory and the 
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pixels that form characters that we interpret as the data value. If something 
in there were maliciously misrepresenting the actual data, how would you 
possibly know? Ground truth about digital information is extremely difficult 
to observe directly.

Consider the lock icon in the address bar of a web browser indicating a 
secure connection to the website. The appearance or absence of these dis-
tinctive pixels communicates a single bit to the user: safe or unsafe. Behind 
the scenes, there is a lot of data and considerable computation, as will be 
detailed in Chapter 11, all rolling up into a binary yes/no security indica-
tion. Even an expert developer would face a Herculean task attempting to 
manually confirm the validity of just one instance. So all we can do is trust 
the software—and there is every reason that we should trust it. The point 
here is to recognize how deep and pervasive that trust is, not just take it for 
granted. 

Competence and Imperfection
Most attacks begin by exploiting a software flaw or misconfiguration that 
resulted from the honest, good faith efforts of programmers and IT staff, 
who happen to be human, and hence imperfect. Since licenses routinely 
disavow essentially all liability, all software is used on a caveat emptor basis. 
If, as is routinely claimed, “all software has bugs,” then a subset of those 
bugs will be exploitable, and eventually the attackers will find a few of 
those bugs and have an opportunity to use them maliciously. It’s relatively 
rare for software professionals to fall victim to an attack due to misplaced 
trust in malicious software, enabling a direct attack. 

Fortunately, making big trust decisions about operating systems and pro-
gramming languages is usually easy. Many large corporations have extensive 
track records of providing and supporting quality hardware and software 
products, and it’s quite reasonable to trust them. Trusting others with less 
of a track record might be riskier. While they likely have many skilled and 
motivated people working diligently, the industry’s lack of transparency 
makes the security of their products difficult to judge. Open source provides 
transparency, but depends on the degree of supervision the project owners 
provide as a hedge against contributors slipping in code that is buggy or 
even outright malicious. Remarkably, no software company even attempts to 
distinguish itself by promising higher levels of security or indemnification  
in the event of an attack, so as customers we have no such options. Legal, 
regulatory, and business agreements all provide additional ways of mitigat-
ing the uncertainty around trust decisions.

Take trust decisions seriously, but recognize that nobody gets it right 
100 percent of the time. The bad news is that these decisions will always be 
imperfect, because, as the US Securities and Exchange Commission warns 
us, “past performance does not guarantee future results.” The good news 
is that people are highly evolved to gauge trust—though it works best 
face-to-face, decidedly not via digital media—and in the vast majority 
of cases we do make the right trust decisions, provided we have accurate 
information and act with intention.  
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Trust Is a Spectrum
Trust is always granted in degrees, and trust assessments always have some 
uncertainty. At the far end of the spectrum, such as when undergoing major 
surgery, we may literally entrust our lives to medical professionals, willingly 
ceding not just control over our bodies but our very consciousness and abil-
ity to monitor the operation. In the worst case scenario, if they should fail 
us and we do not survive, we literally have no recourse whatsoever (legal 
rights of our estate aside). Everyday trust is much more limited: credit cards 
have limits to cap the bank’s potential loss on nonpayment, while cars have 
valet keys so we can limit access to the trunk. 

Since trust is a spectrum, a “trust but verify” policy is a useful tool 
that bridges the gap between full trust and complete distrust. In software, 
you can achieve this through the combination of authorization and dili-
gent auditing. Typically, this involves a combination of automated auditing 
(to accurately check a large volume of mostly repetitive activity logs) and 
manual auditing (spot checking, handling exceptional cases, and having a 
human in the loop to make final decisions). We’ll cover auditing in more 
detail later in this chapter.

Trust Decisions
In software, you have a binary choice: to trust, or not to trust? While some 
systems do enforce a variety of permissions on applications, you still need 
to either allow or disallow each given permission. When in doubt, you can 
safely err on the side of distrusting, so long as at least one candidate solution 
reasonably gains your trust. If you are too demanding in your assessments, 
and no product can gain your trust, then you are stuck with the prospect of  
building the component yourself.

Think of making trust decisions as cutting branches off a decision tree 
that otherwise would be effectively infinite. When you can trust a service or 
computer to be secure, that saves you the effort of doing deeper analysis. 
On the other hand, if you are reluctant to trust, then you need to build and 
secure more parts of the system, including all subcomponents. Figure 1-1 
illustrates an example of making a trust decision. If there is no available 
cloud storage service you would fully trust to store your data, then you must 
operate the service yourself, and this entails further trust decisions: to use 
a trusted hosting service or do it yourself, and to use existing database 
software that you trust or write it yourself. Note that when you don’t trust 
a provider then more trust decisions are sure to follow since you cannot do 
everything.

For explicitly distrusted inputs—which should include virtually all inputs, 
especially anything from the public internet or any client—treat that data 
with suspicion and the highest levels of care (for more on this, see “Reluctance 
to Trust” on page 68 in Chapter 4). Even for trusted inputs, it can be risky to 
assume they are perfectly reliable. Consider opportunistically adding safety 
checks when it’s easy to do so, if only to reduce the fragility of the overall sys-
tem and to prevent the propagation of errors in the event of an innocent bug.
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Trust Distrust

And so on…

Need data storage

Use a cloud service Operate own server

Need a server
Need

database software

Use a hosting service

Use existing software

Set up my own
web server... 

Write my own
database... 

Trust Distrust

And so on…

Use
existing

database
software?

Use existing
cloud service? 

Use
existing hosting

 service?

Trust Distrust

Figure 1-1: An example of a decision tree with trust decisions

Implicitly Trusted Components
Every software project relies on an extensive stack of technology that is 
implicitly trusted, including hardware, operating systems, development tools, 
libraries, and other dependencies that are impractical to vet, so we trust them 
based on the reputation of the vendor. Nonetheless, you should maintain 
some sense of what is implicitly trusted, and give these decisions due consid-
eration, especially before greatly expanding the scope of implicit trust.
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There are no simple techniques for managing implicit trust, but here 
is an idea that can help: minimize the number of parties you trust. For 
example, if you are already committed to using Microsoft (or Apple, and 
so forth) operating systems, lean toward using their compilers, libraries, 
applications, and other products and services, so as to minimize your expo-
sure. The reasoning is roughly that trusting additional companies increases 
the opportunities for any of these companies to let you down. Additionally, 
there is the practical aspect that one company’s line of products tend to be 
more compatible and better tested when used together.

Being Trustworthy
Finally, don’t forget the flip side of making trust decisions, which is to promote 
trust when you offer products and services. Every software product must con-
vince end users that it’s trustworthy. Often, just presenting a solid professional 
image is all it takes, but if the product is fulfilling critical functions, it’s crucial 
to give customers a solid basis for that trust. 

Here are some suggestions of basic ways to enhance trust in your work:

•	 Transparency engenders trust. Working openly allows customers to 
assess the product.

•	 Involving a third party builds trust through their independence (for 
example, using hired auditors).

•	 Sometimes your product is the third party that integrates with other 
products. Trust grows because it’s difficult for two parties with an arm’s-
length relationship to collude.

•	 When problems do arise, be open to feedback, act decisively, and pub-
licly disclose the results of any investigation and steps taken to prevent 
recurrences. 

•	 Specific features or design elements can make trust visible—for example, 
an archive solution that shows in real time how many backups have been 
saved and verified at distributed locations.

Actions beget trust, while empty claims, if anything, erode trust for 
savvy customers. Provide tangible evidence of being trustworthy, ideally in 
a way that customers can potentially verify for themselves. Even though few 
will actually vet the quality of open source code, knowing that they could 
(and assuming others likely are doing so) is nearly as convincing.

Classic Principles
The guiding principles of information security originated in the early days 
of computing, when computers were emerging from special locked, air-
conditioned, raised-floor rooms and starting to be connected in networks. 
These traditional models are the “Newtonian physics” of modern informa-
tion security: a good and simple guide for many applications, but not the 
be-all and end-all. For example, information privacy is one of the more 
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nuanced considerations for modern data protection and stewardship that 
traditional information security principles do not cover. 

The foundational principles group nicely into two sets of three. The first 
three principles, which I will call C-I-A, define data access requirements; 
the other three, in turn, concern how access is controlled and monitored. 
We call these the Gold Standard. The two sets of principles are interdepen-
dent, and only as a whole do they protect data assets. 

Beyond the prevention of unauthorized data access lies the question of 
who or what components and systems should be entrusted with access. This 
is a harder question of trust, and ultimately beyond the scope of informa-
tion security, even though confronting it is unavoidable in order to secure 
any digital system.

Information Security’s C-I-A
We traditionally build software security on three basic principles of infor-
mation security: confidentiality, integrity, and availability. Formulated around 
the fundamentals of data protection, the individual meanings of the three 
pillars are intuitive:

Confidentiality

Allow only authorized data access—don’t leak information.

Integrity

Maintain data accurately—don’t allow unauthorized modification or 
deletion.

Availability

Preserve the availability of data—don’t allow significant delays or unau-
thorized shutdowns.

Each of these brief definitions describes the goal and defenses against 
its subversion. In reviewing designs, it’s often helpful to think of ways one 
might undermine security, and work back to defensive measures. 

All three components of C-I-A represent ideals, and it’s crucial to avoid 
insisting on perfection. For example, an analysis of even solidly encrypted 
network traffic could allow a determined eavesdropper to deduce some-
thing about the communications between two endpoints, like the volume of 
data exchanged. Technically, this exchange of data weakens the confiden-
tiality of interaction between the endpoints; but for practical purposes, we 
can’t fix it without taking extreme measures, and usually the risk is minor 
enough to be safely ignored. (One way to conceal the fact of communica-
tion is for endpoints to always exchange a constant volume of data, adding 
dummy packets as needed when actual traffic is lower.) What activity corre-
sponds to the traffic, and how might an adversary use that knowledge? The 
next chapter explains similar threat assessments in detail.

Notice that authorization is inherent in each component of C-I-A, 
which mandates only the right disclosures, modifications of data, or controls  
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of availability. What constitutes “right” is an important detail, and an authori-
zation policy needs to specify that, but it isn’t part of these fundamental data 
protection primitive concepts. That part of the story will be discussed in “The 
Gold Standard” starting on page 14.

Confidentiality

Maintaining confidentiality means disclosing private information in only an 
authorized manner. This sounds simple, but in practice it involves a number 
of complexities. 

First, it’s important to carefully identify what information to consider 
private. Design documents should make this distinction clear. While what 
counts as sensitive might sometimes seem obvious, it’s actually surprising 
how people’s opinions vary, and without an explicit specification, we risk 
misunderstanding. The safest assumption is to treat all externally collected 
information as private by default, until declared otherwise by an explicit 
policy that explains how and why the designation can be relaxed. 

Here are some oft-overlooked reasons to treat data as private:

•	 An end user might naturally expect their data to be private, unless 
informed otherwise, even if revealing it isn’t harmful.

•	 People might enter sensitive information into a text field intended for a 
different use.

•	 Information collection, handling, and storage might be subject to laws 
and regulations that many are unaware of. (For example, if Europeans 
browse your website, it may be subject to EU law, such as the General Data 
Protection Regulation.)

When handling private information, determine what constitutes proper 
access. Deciding when and how to disclose information is ultimately a trust 
decision, and it’s worth not only spelling out the rules, but also explaining 
the subjective choices behind those rules.

Compromises of confidentiality happen on a spectrum. In a complete 
disclosure, attackers acquire an entire dataset, including metadata. At the 
lower end of the spectrum might be a minor disclosure of information, 
such as an internal error message or similar leak of no real consequence. 
As an example of a partial disclosure, consider the practice of assigning 
sequential numbers to new customers: a wily competitor can sign up as a 
new customer and get a new customer number from time to time, then 
compute the successive differences to learn the numbers of customers 
acquired during each interval. Any leakage of details about protected data  
is to some degree a confidentiality compromise. 

It’s so easy to underestimate the potential value of minor disclosures. 
Attackers might put data to use in a completely different way than the 
developers originally intended, and combining tiny bits of information can 
provide more powerful insights than any of the individual parts on their 
own. Learning someone’s ZIP code might not tell you much, but if you also 
know their approximate age and that they’re an MD, you could perhaps 
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combine this information to identify the individual in a sparsely populated 
area—a process known as deanonymization or reidentification. By analyzing a 
supposedly anonymized dataset published by Netflix, researchers were able 
to match numerous user accounts to IMDb accounts: it turns out that your 
favorite movies are an effective means of unique personal identification.

Integrity

Integrity, used in an information security context, is simply the authenticity 
and accuracy of data, kept safe from unauthorized tampering or removal. 
In addition to protecting against unauthorized modification, an accurate 
record of the provenance of data—the original source, and any authorized 
changes made—can be an important, and stronger, assurance of integrity.

One classic defense against many tampering attacks is to preserve ver-
sions of critical data and record their provenance. Simply put, keep good 
backups. Incremental backups can be excellent mitigations because they’re 
simple and efficient to put in place and provide a series of snapshots that 
detail exactly what data changed, and when. However, the need for integrity 
goes far beyond the protection of data, and often includes ensuring the 
integrity of components, server logs, software source code and versions, 
and other forensic information necessary to determine the original source 
of tampering when problems occur. In addition to limited administrative 
access controls, secure digests (similar to checksums) and digital signatures 
are also strong integrity checks, as explained in Chapter 5. 

Bear in mind that tampering can happen in many different ways, not 
necessarily by modifying data in storage. For instance, in a web application, 
tampering might happen on the client side, on the wire between the client 
and server, by tricking an authorized party into making a change, by modi-
fying a script on the page, or in many other ways. 

Availability

Attacks on availability are a sad reality of the internet-connected world and 
can be among the most difficult to defend against. In the simplest cases, the 
attacker may just send an exceptionally heavy load of traffic to the server, 
overwhelming it with what looks like valid uses of the service. This principle 
implies that information is temporarily unavailable; while data that is perma-
nently lost is also unavailable, this is generally considered to be fundamentally 
a compromise of integrity.

Anonymous denial-of-service (DoS) attacks, often for ransom, threaten 
any internet service, posing a difficult challenge. To best defend against these 
attacks, host on large-scale services with infrastructure that stands up to 
heavy loads, and maintain the flexibility to move infrastructure quickly in the 
event of problems. Nobody knows how common or costly DoS attacks really 
are, since many victims resolve these incidents privately. But without a doubt, 
you should create detailed plans in advance to prepare for such incidents.

Many other kinds of availability threats are possible as well. For a web 
server, a malformed request that triggers a bug, causing a crash or infi-
nite loop, can devastate its service. Other attacks can also overload the 
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storage, computation, or communication capacity of an application, or per-
haps use patterns that break the effectiveness of caching, all of which pose 
serious issues. Unauthorized destruction of software, configuration, or data 
(even with backup, delays can result) also can adversely impact availability.

The Gold Standard
If C-I-A is the goal of secure systems, the Gold Standard describes the 
means to that end. Aurum is Latin for gold, hence the chemical symbol 
“Au,” and it just so happens that the three important principles of security 
enforcement start with those same two letters:

Authentication

High-assurance determination of the identity of a principal

Authorization

Reliably only allowing an action by an authenticated principal

Auditing

Maintaining a reliable record of actions by principals for inspection

N O T E 	 Jargon alert: because the words are so long and similar, you may encounter the handy 
abbreviations authN (for authentication) and authZ (for authorization) as short 
forms that plainly distinguish them.

A principal is any reliably authenticated entity: a person, business or 
organization, government entity, application, service, device, or any other 
agent with the power to act.

Authentication is the process of reliably establishing the validity of the 
principal’s credentials. Systems commonly allow registered users to authen-
ticate by proving that they know the password associated with their user 
account, but authentication can be much broader. Credentials may be 
something the principal knows (a password) or possesses (a smart card), 
or something they are (biometric data); we’ll talk more about credentials in 
the next section.

Data access for authenticated principals is subject to authorization deci-
sions, either allowing or denying their actions according to prescribed 
rules. For example, filesystems with access control settings may make cer-
tain files read-only for specific users. In a banking system, clerks may record 
transactions up to a certain amount, but might require a manager to approve 
larger transactions.

If a service keeps a secure log that accurately records what principals do, 
including any failed attempts at performing some action, the administrators 
can perform a subsequent audit to inspect how the system performed and 
ensure that all actions are proper. Accurate audit logs are an important com-
ponent of strong security, because they provide a reliable report of actual 
events. Detailed logs provide a record of what happened, shedding light on 
exactly what transpired when an unusual or suspicious event takes place. For 
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example, if you discover that an important file is gone, the log should ideally 
provide details of who deleted it and when, providing a starting point for fur-
ther investigation. 

The Gold Standard acts as the enforcement mechanism that protects 
C-I-A. We defined confidentiality and integrity as protection against unau-
thorized disclosure or tampering, and availability is also subject to control by 
an authorized administrator. The only way to truly enforce authorization 
decisions is if the principals using the system are properly authenticated. 
Auditing completes the picture by providing a reliable log of who did what 
and when, subject to regular review for irregularities, and holding the act-
ing parties responsible.

Secure designs should always explicitly separate authentication from 
authorization, because combining them leads to confusion, and audit trails 
are clearer when these stages are cleanly divided. These two real-world exam-
ples illustrate why the separation is important:

•	 “Why did you let that guy into the vault?” “I have no idea, but he looked 
legit!”

•	 “Why did you let that guy into the vault?” “His ID was valid for ‘Sam 
Smith’ and he had a written note from the branch manager.”

The second response is much more complete than the first, which is of 
no help at all, other than proving that the guard is a nitwit. If the vault was 
compromised, the second response would give clear details to investigate: 
Did the branch manager have authority to grant vault access and write 
the note? If the guard retained a copy of the ID, then that information 
helps identify and find Sam Smith. By contrast, if the branch manager’s 
note had just said, “let the bearer into the vault”—authorization without 
authentication—investigators would have had little idea what happened or 
who the intruder was after security was breached. 

Authentication

An authentication process tests a principal’s claims of identity based on 
credentials that demonstrate they really are who they claim to be. Or the 
service might use a stronger form of credentials, such as a digital signature 
or a challenge, which proves that the principal possesses a private key asso-
ciated with the identity, which is how browsers authenticate web servers via 
HTTPS. The digital signature is a better form of authentication because 
the principal can prove they know the secret without divulging it.

Evidence suitable for authentication falls into the following categories: 

•	 Something you know, like a password

•	 Something you have, like a secure token, or in the analog world some 
kind of certificate, passport, or signed document that is unforgeable

•	 Something you are—that is, biometrics (fingerprint, iris pattern, and such) 

•	 Somewhere you are—your verified location, such as a connection to a pri-
vate network in a secure facility 
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Many of these methods are quite fallible. Something you know can be 
revealed, something you have can be stolen or copied, your location can be 
manipulated in various ways, and even something you are can potentially 
be faked (and if it’s compromised, you can’t later change what you are). On 
top of those concerns, in today’s networked world, authentication almost 
always happens across a network, making the task more difficult than in-
person authentication. On the web, for instance, the browser serves as a 
trust intermediary, locally authenticating and, only if successful, then pass-
ing along cryptographic credentials to the server. Systems commonly use 
multiple authentication factors to mitigate these concerns, and auditing 
these frequently is another important backstop. Two weak authentication 
factors are better than one (but not a lot better).

Before an organization can assign someone credentials, however, it has 
to address the gnarly question of how to determine a person’s true identity 
when they join a company, sign up for an account, or call the helpdesk to 
reinstate access after forgetting their password. 

For example, when I joined Google, all of us new employees gathered 
on a Monday morning opposite several IT admin folks, who checked our 
passports or other ID against a new employee roster. Only then did they 
give us our badges and company-issued laptops and have us establish our 
login passwords. 

By checking whether the credentials we provided (our IDs) correctly 
identified us as the people we purported to be, the IT team confirmed our 
identities. The security of this identification depended on the integrity 
of the government-issued IDs and supporting documents (for example, 
birth certificates) we provided. How accurately were those issued? How 
difficult would they be to forge, or obtain fraudulently? Ideally, a chain of 
association from registration at birth would remain intact throughout our 
lifetimes to uniquely identify each of us authentically. Securely identifying 
people is challenging largely because the most effective techniques reek of 
authoritarianism and are socially unacceptable, so to preserve some privacy 
and freedom, we opt for weaker methods in daily life. The issue of how to 
determine a person’s true identity is out of scope for this book, which will 
focus on the Gold Standard, not this harder problem of identity management.

Whenever feasible, rely on existing trustworthy authentication services, 
and do not reinvent the wheel unnecessarily. Even simple password authen-
tication is quite difficult to do securely, and dealing securely with forgotten 
passwords is even harder. Generally speaking, the authentication process 
should examine credentials and provide either a pass or fail response. Avoid 
indicating partial success, since this could aid an attacker zeroing in on the 
credentials by trial and error. To mitigate the threat of brute-force guessing, 
a common strategy is to make authentication inherently computationally 
heavyweight, or to introduce increasing delay into the process (also see “Avoid 
Predictability” on page 61 in Chapter 4).

After authenticating the user, the system must find a way to securely 
bind the identity to the principal. Typically, an authentication module 
issues a token to the principal that they can use in lieu of full authentica-
tion for subsequent requests. The idea is that the principal, via an agent 
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such as a web browser, presents the authentication token as shorthand 
assurance of who they claim to be, creating a secure context for future 
requests. This context binds the stored token for presentation with future 
requests on behalf of the authenticated principal. Websites often do this 
with a secure cookie associated with the browsing session, but there are 
many different techniques for other kinds of principals and interfaces. 

The secure binding of an authenticated identity can be compromised 
in two fundamentally different ways. The obvious one is where an attacker 
usurps the victim’s identity. Alternatively, the authenticated principal may 
collude and try to give away their identity or even foist it off on someone 
else. An example of the latter case is the sharing of a paid streaming sub-
scription. The web does not afford very good ways of defending against 
this because the binding is loose and depends on the cooperation of the 
principal.

Authorization

A decision to allow or deny critical actions should be based on the identity 
of the principal as established by authentication. Systems implement autho-
rization in business logic, an access control list, or some other formal access 
policy. 

Anonymous authorization (that is, authorization without authentica-
tion) can be useful in rare circumstances; a real-world example might be 
possession of the key to a public locker in a busy station. Access restrictions 
based on time (for example, database access restricted to business hours) 
are another common example. 

A single guard should enforce authorization on a given resource. 
Authorization code scattered throughout a codebase is a nightmare to 
maintain and audit. Instead, authorization should rely on a common 
framework that grants access uniformly. A well-structured design can 
help the developers get it right. Use one of the many standard authorization 
models rather than confusing ad hoc logic wherever possible.

Role-based access control (RBAC) bridges the connection between authen-
tication and authorization. RBAC grants access based on roles assigned to 
authenticated principals, simplifying access control with a uniform frame-
work. For example, roles in a bank might include a clerk, manager, loan 
officer, security guard, financial auditor, and IT administrator. Instead of 
choosing access privileges for each person individually, RBAC designates one 
or more roles based on each person’s responsibilities to automatically and 
uniformly assign them associated privileges. In more advanced models, one 
person might have multiple roles and explicitly select which role they choose 
to apply for a given access.

Authorization mechanisms can be much more granular than the sim-
ple read/write access control that operating systems traditionally provide. 
By designing more robust authorization mechanisms, you can strengthen 
security by limiting access without losing useful functionality. These more 
advanced authorization models include attribute-based access control (ABAC), 
policy-based access control (PBAC), and many more.
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Consider a simple bank teller example to see how fine-grained authori-
zation might tighten up policy: 

Rate-limited

Tellers may do up to 20 transactions per hour, but more would be con-
sidered suspicious.

Time of day

Teller transactions must occur during business hours, when clocked in.

No self-service

Tellers are forbidden to do transactions with their personal accounts.

Multiple principals

Teller transactions over $10,000 require separate manager approval 
(eliminating the risk of one bad actor moving a lot of money at once).

Finally, even read-only access may be too high a level for certain data, 
like passwords. Systems usually check login passwords by comparing 
digests, which avoids any possibility of leaking the actual plaintext password. 
The username and password go to a frontend server that computes the 
digest of the password and passes it to an authentication service, quickly 
destroying any trace of the plaintext password. The authentication service 
cannot read the plaintext password from the credentials database, but it can 
read the digest, which it compares to what the frontend server provided. In 
this way, it checks the credentials, but the authentication service never has 
access to any passwords, so even if compromised, the service cannot leak 
them. Unless the design of interfaces affords these alternatives, they will 
miss these opportunities to mitigate the possibility of data leakage. We’ll 
explore this further when we discuss the pattern of “Least Information” 
on page 57 in Chapter 4.

Auditing

In order for an organization to audit system activity, the system must pro-
duce a reliable log of all events that are critical to maintaining security. 
These include authentication and authorization events, system startup and 
shutdown, software updates, administrative accesses, and so forth. Audit 
logs must also be tamper-resistant, and ideally even difficult for administra-
tors to meddle with, to be considered fully reliable records. Auditing is a 
critical leg of the Gold Standard, because incidents do happen, and authen-
tication and authorization policies can be flawed. Auditing can also provide 
necessary oversight to mitigate the risk of inside jobs in which authorized 
principals betray their trust. 

If done properly, audit logs are essential for routine monitoring, measur-
ing system activity level, detecting errors and suspicious activity, and, after 
an incident, determining when and how an attack actually happened and 
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gauging the extent of the damage. Remember that completely protecting a 
digital system is not simply a matter of correctly enforcing policies; it’s about 
being a responsible steward of information assets. Auditing ensures that 
trusted principals acted properly within the broad range of their authority.

In May 2018, Twitter disclosed an embarrassing bug: they had discov-
ered that a code change had inadvertently caused raw login passwords to 
appear in internal logs. It’s unlikely that this resulted in any abuse, but it 
certainly hurt customer confidence and should never have happened. Logs 
should record operational details but not store any actual private informa-
tion so as to minimize the risk of disclosure, since many members of the 
technical staff may routinely view the logs. For a detailed treatment of this 
requirement, see the sample design document in Appendix A detailing a 
logging tool that addresses just this problem. 

The system must also prevent anyone from tampering with the logs to 
conceal bad acts. If the attacker can modify logs, they’ll just clean out all 
traces of their activity. For especially sensitive logs at high risk, an indepen-
dent system under different administrative and operational controls should 
manage audit logs in order to prevent the perpetrators of inside jobs from 
covering their own tracks. This is difficult to do completely, but the mere 
presence of independent oversight often serves as a powerful disincentive 
to any funny business, just as a modest fence and conspicuous video surveil-
lance camera can be an effective deterrent to trespassing.

Furthermore, any attempt to circumvent the system would seem highly 
suspicious, and any false move would result in serious repercussions for the 
offender. Once caught, they would have a hard time repudiating their guilt. 

Non-repudiability is an important property of audit logs; if the log shows 
that a named administrator ran a certain command at a certain time and 
the system crashed immediately, it’s hard to point fingers at others. By con-
trast, if an organization allowed multiple administrators to share the same 
account (a terrible idea), it would have no way of definitively knowing who 
actually did anything, providing plausible deniability to all.

Ultimately, audit logs are useful only if you monitor them, analyze 
unusual events carefully, and follow up, taking appropriate actions when 
necessary. To this end, it’s important to log the right amount of detail by 
following the Goldilocks principle. Too much logging bloats the volume of 
data to oversee, and excessively noisy or disorganized logs make it diffi-
cult to glean useful information. On the other hand, sparse logging with 
insufficient detail might omit critical information, so finding the right 
balance is an ongoing challenge. 

Privacy
In addition to the foundations of information security—C-I-A and the Gold 
Standard—another fundamental topic I want to introduce is the related 
field of information privacy. The boundaries between security and pri-
vacy are difficult to clearly define, and they are at once closely related and 
quite different. In this book I would like to focus on the common points of 
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intersection, not to attempt to unify them, but to incorporate both security 
and privacy into the process of building software.

To respect people’s digital information privacy, we must extend the 
principle of confidentiality by taking into account additional human fac-
tors, including:

•	 Customer expectations regarding information collection and use

•	 Clear policies regarding appropriate information use and disclosure 

•	 Legal and regulatory issues relating to the collection and use of various 
classes of information

•	 Political, cultural, and psychological aspects of processing personal 
information

As software becomes more pervasive in modern life, people use it 
in more intimate ways involving sensitive areas of their lives, resulting in 
many complex issues. Past accidents and abuses have raised the visibility 
of the risks, and as society grapples with new challenges through politi-
cal and legal means, handling private information properly has become 
challenging. 

In the context of software security, this means:

•	 Considering the customer and stakeholder consequences of all data col-
lection and sharing

•	 Flagging all potential issues, and getting expert advice where necessary

•	 Establishing and following clear policies and guidelines regarding pri-
vate information use

•	 Translating policy and guidance into software-enforced checks and 
balances

•	 Maintaining accurate records of data acquisition, use, sharing, and 
deletion

•	 Auditing data access authorizations and extraordinary access for 
compliance

Privacy work tends to be less well-defined than the relatively cut-and-
dried security work of maintaining proper control of systems and providing 
appropriate access. Also, we’re still working out privacy expectations and 
norms as society ventures deeper into a future with more data collection. 
Given these challenges, you would be wise to consider maximal transpar-
ency about data use, including keeping your policies simple enough to be 
understood by all, and to collect minimal data, especially personally 
identifiable information.

Collect information for a specific purpose only, and retain it only as 
long as it’s useful. Unless the design envisions an authorized use, avoid 
collection in the first place. Frivolously collecting data for use “someday” 
is risky, and almost never a good idea. When the last authorized use of 
some data becomes unnecessary, the best protection is secure deletion. 
For especially sensitive data, or for maximal privacy protection, make that 
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even stronger: delete data when the potential risk of disclosure exceeds 
the potential value of retaining it. Retaining many years’ worth of emails 
might occasionally be handy for something, but probably not for any clear 
business need. Yet internal emails could represent a liability if leaked or dis-
closed, such as by power of subpoena. Rather than hang onto all that data 
indefinitely “ just in case,” the best policy is usually to delete it.

A complete treatment of information privacy is outside the scope of this 
book, but privacy and security are tightly bound facets of the design of any 
system that collects data about people—and people interact with almost all 
digital systems, in one way or another. Strong privacy protection is only pos-
sible when security is solid, so these words are an appeal for awareness to 
consider and incorporate privacy considerations into software by design.

For all its complexity, one best practice for privacy is well known: the 
necessity of clearly communicating privacy expectations. In contrast to secu-
rity, a privacy policy potentially affords a lot of leeway as to how much an 
information service does or does not want to leverage the use of customer 
data. “We will reuse and sell your data” is one extreme of the privacy spec-
trum, but “some days we may not protect your data” is not a viable stance on 
security. Privacy failures arise when user expectations are out of joint with 
actual privacy policy, or when there is a clear policy and it is somehow vio-
lated. The former problem stems from not proactively explaining data han-
dling to the user. The latter happens when the policy is unclear, or ignored 
by responsible staff, or subverted in a security breakdown.

N O T E 	 See Appendix D for a cheat sheet summarizing the C-I-A and Gold Standard 
principles.





2
T H R E A T S

The threat is usually more terrifying than the thing itself.
—Saul Alinsky

Threats are omnipresent, but you can live 
with them if you manage them. Software 

is no different, except that you don’t have 
the benefit of millions of years of evolution 

to prepare yourself. That is why you need to adopt a 
software security mindset, which requires you to flip 
from the builder’s perspective to that of the attackers. 
Understanding the potential threats to a system is  
the essential starting point in order to bake solid defenses and mitigations 
into your software designs. But to perceive these threats in the first place, 
you’ll have to stop thinking about typical use cases and using the software as 
intended. Instead, you must simply see it for what it is: a bunch of code and 
components, with data flowing around and getting stored here and there. 

For example, consider the paperclip: it’s cleverly designed to hold sheets 
of paper together, but if you bend a paperclip just right, it’s easily refash-
ioned into a stiff wire. A security mindset discerns that you could insert 
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this wire into the keyhole of a lock to manipulate the tumblers and open it 
without the key. 

It’s worth emphasizing that threats include all manner of ways in which 
harm occurs. Adversarial attacks conducted with intention are an impor-
tant focus of the discussion, but this does not mean that you should exclude 
other threats due to software bugs, human error, accidents, hardware fail-
ures, and so on.

Threat modeling provides a perspective with which to guide any deci-
sions that impact security throughout the software development process. 
The following treatment focuses on concepts and principles, rather than any 
of the many specific methodologies for doing threat modeling. Early threat 
modeling as first practiced at Microsoft in the early 2000s proved effective, 
but it required extensive training, as well as a considerable investment of 
effort. Fortunately, you can do threat modeling in any number of ways, and 
once you understand the concepts, it’s easy to tailor your process to fit the 
time and effort available while still producing meaningful results.

Setting out to enumerate all the threats and identify all the points of 
vulnerability in a large software system is a daunting task. However, smart 
security work targets incrementally raising the bar, not shooting for perfec-
tion. Your first efforts may only find a fraction of all the potential issues, and 
only mitigate some of those: even so, that’s a substantial improvement. Such 
an effort may just possibly avert a major security incident—a real accom-
plishment. Unfortunately, you almost never know about foiled attacks, and 
that absence of feedback can feel disappointing. The more you flex your 
security mindset muscles, the better you’ll become at seeing threats.

Finally, it’s important to understand that threat modeling can provide 
new levels of understanding of the target system beyond the scope of secu-
rity. Through the process of examining the software in new ways, you may 
gain insights that suggest various improvements, efficiencies, simplifica-
tions, and new features unrelated to security.

The Adversarial Perspective
Exploits are the closest thing to “magic spells” we experience in the real world: 
Construct the right incantation, gain remote control over device. 

—Halvar Flake

Human perpetrators are the ultimate threat; security incidents don’t just 
happen by themselves. Any concerted analysis of software security includes 
considering what hypothetical adversaries might try in order to anticipate and 
defend against potential attacks. Attackers are a motley group, from script 
kiddies (criminals without tech skills using automated malware) to sophisti-
cated nation-state actors, and everything in between. To the extent you can 
think from an adversary’s perspective, that’s great, but don’t fool yourself 
into believing you can accurately predict their every move or spend too 
much time trying to get inside their heads, like a master sleuth outsmart-
ing a wily foe. It’s helpful to understand the attacker’s mindset, but for our 
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purposes of building secure software, the details of actual techniques they 
might use to probe, penetrate, and exfiltrate data are unimportant. 

Consider what the obvious targets within a system might be (sometimes, 
what’s valuable to an adversary is less valuable to you, or vice versa) and 
ensure that those assets are robustly secured, but don’t waste time attempt-
ing to read the minds of hypothetical attackers. Rather than expend 
unnecessary effort, they’ll often focus on the weakest link to accomplish 
their goal (or they might be poking around aimlessly, which can be very 
hard to defend against since their actions will seem undirected and arbi-
trary). Bugs definitely attract attention because they suggest weakness, and 
attackers who stumble onto an apparent bug will try creative variations to 
see if they can really bust something. Errors or side effects that disclose 
details of the insides of the system (for example, detailed stack dumps) are 
prime fodder for attackers to jump on and run with.

Once attackers find a weakness, they’re likely to focus more effort on 
it, because some small flaws have a way of expanding to produce larger 
consequences under concerted attack (as we shall see in Chapter 8 in 
detail). Often, it’s possible to combine two tiny flaws that are of no concern 
individually to produce a major attack, so it’s wise to take all vulnerabilities 
seriously. Skilled attackers definitely know about threat modeling, though 
they are working without inside information (at least until they manage 
some degree of penetration).

Even though we can never really anticipate what our adversaries will 
spend time on, it does make sense to consider the motivation of hypotheti-
cal attackers as a measure of the likelihood of diligent attacks. Basically, 
this amounts to a famous criminal’s explanation of why he robbed banks: 
“Because that’s where the money is.” The point is, the greater the prospec-
tive gain from attacking a system, the higher the level of skill and resources 
you can expect potential attackers to apply. Speculative as this might be, the 
analysis is useful as a relative guide: powerful corporations and government, 
military, and financial institutions are big targets. Your cat photos are not.

In the end, as with all forms of violence, it’s always far easier to attack 
and cause harm than to defend. Attackers get to choose their point of 
entry, and with determination they can try as many exploits as they like, 
because they only need to succeed once. All this amounts to more reasons 
why it’s important to prioritize security work: the defenders need every 
advantage available.

The Four Questions
Adam Shostack, who carried the threat modeling torch at Microsoft for 
years, boils the methodology down to Four Questions: 

•	 What are we working on?

•	 What can go wrong?

•	 What are we going to do about it?

•	 Did we do a good job?
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The first question aims to establish the project’s context and scope. 
Answering it includes describing the project’s requirements and design, 
its components and their interactions, as well as considering operational 
issues and use cases. Next, at the core of the method, the second question 
attempts to anticipate potential problems, while the third question explores 
mitigations to those problems we identify. (We’ll look more closely at miti-
gations in Chapter 3, but first we will examine how they relate to threats.) 
Finally, the last question asks us to reflect on the entire process—what the 
software does, how it can go wrong, and how well we’ve mitigated the 
threats—in order to assess the risk reduction and confirm that the system 
will be sufficiently secure. Should unresolved issues remain, we go through 
the questions again to fill in the remaining gaps.

There is much more to threat modeling than this, but it’s surprising 
how far simply working from the Four Questions can take you. Armed with 
these concepts, in conjunction with the other ideas and techniques in this 
book, you can significantly raise the security bar for the systems you build 
and operate. 

Threat Modeling
“What could possibly go wrong?” 

We often ask this question to make a cynical joke. But when asked 
unironically, it succinctly expresses the point of departure for threat model-
ing. Responding to this question requires us to identify and assess threats; 
we can then prioritize these and work on mitigations that reduce the risk of 
the important threats. 

Let’s unpack that previous sentence. The following steps outline the 
basic threat modeling process: 

1.	 Work from a model of the system to ensure that we consider everything 
in scope.

2.	 Identify assets (valuable data and resources) within the system that need 
protection.

3.	 Scour the system model for potential threats, component by compo-
nent, identifying attack surfaces (places where an attack could originate), 
trust boundaries (interfaces bridging more-trusted parts of the system 
with the less-trusted parts), and different types of threats.

4.	 Analyze these potential threats, from the most concrete to the 
hypothetical.

5.	 Rank the threats, working from the most to least critical.

6.	 Propose mitigations to reduce risk for the most critical threats.

7.	 Add mitigations, starting from the most impactful and easiest, and 
working up to the point of diminishing returns.

8.	 Test the efficacy of the mitigations, starting with those for the most 
critical threats.
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For complex systems, a complete inventory of all potential threats 
will be enormous, and a full analysis is almost certainly infeasible (just as 
enumerating every conceivable way of doing anything would never end if 
you got imaginative, which attackers often do). In practice, the first threat 
modeling pass should focus on the biggest and most likely threats to the 
high-value assets only. Once you’ve understood those threats and put first-
line mitigations in place, you can evaluate the remaining risk by iteratively 
considering the remaining lesser threats that you’ve already identified. 
From that point, you can perform one or more additional threat modeling 
passes as needed, casting a wider net each time to include additional assets, 
deeper analysis, and more of the less likely or minor threats. The process 
stops when you’ve achieved a sufficiently thorough understanding of the 
most important threats, planned the necessary mitigations, and deemed 
the remaining known risk acceptable.

People intuitively do something akin to threat modeling in daily life, 
taking what we call common-sense precautions. To send a private message 
in a public place, most people type it instead of dictating it aloud to their 
phones. Using the language of threat modeling, we’d say the message con-
tent is the information asset, and disclosure is the threat. Speaking within 
earshot of others is the attack surface, and using a silent, alternative input 
method is a good mitigation. If a nosy stranger is watching, you could add 
an additional mitigation, like cupping the phone with your other hand to 
shield the screen from view. But while we do this sort of thing all the time 
quite naturally in the real world, applying these same techniques to com-
plex software systems, where our familiar physical intuitions don’t apply, 
requires much more discipline.

Work from a Model
You’ll need a rigorous approach in order to thoroughly identify threats. 
Traditionally, threat modeling uses data flow diagrams (DFDs) or Unified 
Modeling Language (UML) descriptions of the system, but you can use 
whatever model you like. Whatever high-level description of the system you 
choose, be it a DFD, UML, a design document, or an informal “whiteboard 
session,” the idea is to look at an abstraction of the system, so long as it has 
enough granularity to capture the detail you need for analysis.

More formalized approaches tend to be more rigorous and produce 
more accurate results, but at the cost of additional time and effort. Over the 
years, the security community has invented a number of alternative method-
ologies that offer different trade-offs, in no small part because the full-blown 
threat modeling method (involving formal models like DFDs) is so costly 
and effort-intensive. Today, you can use specialized software to help with the 
process. The best ones automate significant parts of the work, although inter-
preting the results and making risk assessments will always require human 
judgment. This book tells you all you need to know in order to threat model 
on your own, without special diagrams or tools, so long as you understand 
the system well enough to thoroughly answer the Four Questions. You can 
work toward more advanced forms from there as you like.
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Whatever model you work from, thoroughly cover the target system at 
the appropriate resolution. Choose the appropriate level of detail for the 
analysis by the Goldilocks principle: don’t attempt too much detail or the 
work will be endless, and don’t go too high-level or you’ll omit important 
details. Completing the process quickly with little to show for it is a sure 
sign of insufficient granularity, just as making little headway after hours of 
work indicates your model may be too granular.

Let’s consider what the right level of granularity would be for a generic 
web server. You’re handed a model consisting of a block diagram showing 
“the internet” on the left, connected to a “frontend server” in the center, 
with a third component, “database,” on the right. This isn’t helpful, because 
nearly every web application ever devised fits this model. All the assets are 
presumably in the database, but what exactly are they? There must be a 
trust boundary between the system and the internet, but is that the only 
one? Clearly, this model operates at too high a level. At the other extreme 
would be a model showing a detailed breakdown of every library, all the 
dependencies of the framework, and the relationships of components far 
below the level of the application you want to analyze.

The Goldilocks version would fall somewhere between these extremes. 
The data stored in the database (assets) would be clumped into categories, 
each of which you could treat as a whole: say, customer data, inventory data, 
and system logs. The server component would be broken into parts granu-
lar enough to reveal multiple processes, including what privilege each runs 
at, perhaps an internal cache on the host machine, and descriptions of the 
communication channels and network used to talk to the internet and the 
database.  

Identify Assets
Working methodically through the model, identify assets and the potential 
threats to them. Assets are the entities in the system that you must protect. 
Most assets are data, but they could also include hardware, communication 
bandwidth, computational capacity, and physical resources, such as electricity. 

Beginners at threat modeling naturally want to protect everything, 
which would be great in a perfect world. But in practice, you’ll need to pri-
oritize your assets. For example, consider any web application: anyone on 
the internet can access it using browsers or other software that you have 
no control over, so it’s impossible to fully protect the client side. Also, you 
should always keep internal system logs private, but if the logs contain 
harmless details of no value to outsiders, it doesn’t make sense to invest 
much energy in protecting them. This doesn’t mean that you ignore such 
risks completely; just make sure that less important mitigations don’t take 
away effort needed elsewhere. For example, it literally takes a minute to pro-
tect non-sensitive logs by setting permissions so that only administrators can 
read the contents, so that’s effort well spent. 

On the other hand, you could effectively treat data representing financial 
transactions as real money and prioritize it accordingly. Personal information 
is another increasingly sensitive category of asset, because knowledge of a 
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person’s location or other identifying details can compromise their privacy or 
even put them at risk. 

Also, I generally advise against attempting to perform complex risk-
assessment calculations. For example, avoid attempting to assign dollar 
values for the purpose of risk ranking. To do this, you would have to some-
how come up with probabilities for many unknowables. How many attack-
ers will target you, and how hard will they try, and to do what? How often 
will they succeed, and to what degree? How much money is the customer 
database even worth? (Note that its value to the company and the amount 
an attacker could sell it for often differ, as might the value that users would 
assign to their own data.) How many hours of work and other expenses will 
a hypothetical security incident incur? 

Instead, a simple way to prioritize assets that’s surprisingly effective is 
to rank them by “T-shirt sizes”—a simplification that I find useful, though 
it’s not a standard industry practice. Assign “Large” to major assets you defi-
nitely protect, “Medium” to valuable assets that are less critical, and “Small” 
to lesser ones of minor consequence (usually not even listed). High-value 
systems may have “Extra-Large” assets that deserve extraordinary levels of 
protection, such as bank account balances at a financial institution, or private 
encryption keys that anchor the security of communications. In this simple 
scheme, protection and mitigation efforts focus first on Large assets, and then 
opportunistically on Medium ones. Opportunistic protection consists of low-
effort work that has little downside. But even if you can secure Small assets 
very opportunistically, defend all Large assets before spending any time on 
these. Chapter 13 discusses ranking vulnerabilities in detail, and much of that 
is applicable to threat assessment as well.

The assets you choose to prioritize should probably include data such as 
customer resources, personal information, business documents, operational 
logs, and software internals, to name just a few possibilities. Prioritizing 
protection of data assets considers many factors, including information secu-
rity (the C-I-A triad discussed in Chapter 1), because the harms of leaking, 
modification, and destruction of data may differ greatly. Information leaks, 
including partial disclosures of information (for example, the last four digits 
of a credit card number), are tricky to evaluate, because you must consider 
what an attacker could do with the information. Analysis becomes harder still 
when an attacker could join multiple shards of information into an approxi-
mation of the complete dataset. 

If you lump assets together, you can simplify the analysis considerably, 
but beware of losing resolution in the process. For example, if you administer 
several of your databases together, grant access similarly, use them for data 
that originates from similar sources, and store them in the same location, 
treating them as one makes good sense. However, if any of these factors dif-
fers significantly, you would have sufficient reason to handle them separately. 
Make sure to consider these distinctions in your risk analysis, as well as for 
mitigation purposes.

Finally, always consider the value of assets from the perspectives of all 
parties involved. For instance, social media services manage all kinds of 
data: internal company plans, advertising data, and customer data. The 
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value of each of these assets differs depending on if you are the company’s 
CEO, an advertiser, a customer, or perhaps an attacker seeking financial 
gain or pursuing a political agenda. In fact, even among customers you’ll 
likely find great differences in how they perceive the importance of privacy 
in their communications, or the value they place on their data. Good data 
stewardship principles suggest that your protection of customer and partner 
data should arguably exceed that of the company’s own proprietary data 
(and I have heard of company executives actually stating this as policy). 

Not all companies take this approach. Facebook’s Beacon feature auto-
matically posted the details of users’ purchases to their news feeds, then 
quickly shut down following an immediate outpouring of customer outrage 
and some lawsuits. While Beacon never endangered Facebook (except by 
damaging the brand’s reputation), it posed a real danger to customers. 
Threat modeling the consequences of information disclosure for customers 
would have quickly revealed that the unintended disclosure of purchases of 
Christmas or birthday presents, or worse, engagement rings, was likely to 
prove problematic.

Identify Attack Surfaces
Pay special attention to attack surfaces, because these are the attacker’s first 
point of entry. You should consider any opportunity to minimize the attack 
surface a big win, because doing so shuts off a potential source of trouble 
entirely. Many attacks potentially fan out across the system, so stopping 
them early can be a great defense. This is why secure government buildings 
have checkpoints with metal detectors just inside the single public entrance. 

Software design is typically much more complex than the design of a 
physical building, so identifying the entire attack surface is not so simple. 
Unless you can embed a system in a trusted, secure environment, having 
some attack surface is inevitable. The internet always provides a huge point 
of exposure, since literally anyone anywhere can anonymously connect 
through it. While it might be tempting to consider an intranet (a private 
network) as trusted, you probably shouldn’t, unless it has very high stan-
dards of both physical and IT security. At the very least, treat it as an attack 
surface with reduced risk. For devices or kiosk applications, consider the 
outside portion of the box, including screens and user interface buttons, an 
attack surface. 

Note that attack surfaces exist outside the digital realm. Consider the 
kiosk, for example: a display in a public area could leak information via 
“shoulder surfing.” An attacker could also perform even subtler side-channel 
attacks to deduce information about the internal state of a system by moni-
toring its electromagnetic emissions, heat, power consumption, keyboard 
sounds, and so forth.

Identify Trust Boundaries
Next, identify the system’s trust boundaries. Since trust and privilege are 
almost always paired, you can think in terms of privilege boundaries if 
that makes more sense. Human analogs of trust boundaries might be the 
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interface between a manager (who is privy to more internal information) and 
an employee, or the door of your house, where you choose whom to let inside.

Consider a classic example of a trust boundary: an operating system’s 
kernel-userland interface. This architecture became popular in a time 
when mainframe computers were the norm and machines were often 
shared by many users. The system booted up the kernel, which isolated 
applications in different userland process instances (corresponding to dif-
ferent user accounts) from interfering with each other or crashing the whole 
system. Whenever userland code calls into the kernel, execution crosses a 
trust boundary. Trust boundaries are important, because the transition into 
higher-privilege execution is an opportunity for bigger trouble.

T RUS T V ERSUS PR I V IL EGE

In this book I’ll be talking about high and low privilege as well as high and 
low trust, and there is great potential for confusion since they are very closely 
related and difficult to separate cleanly. The inherent character of trust and priv-
ilege is such that they almost invariably correlate: where trust is high, privilege 
is also usually high, and vice versa. Beyond the scope of this book, it’s common 
for people to use these expressions (trust versus privilege) interchangeably, and 
generously interpreting them however makes best sense to you without insisting 
on correcting others is usually the best practice.

The SSH secure shell daemon (sshd(8)) is a great example of secure 
design with trust boundaries. The SSH protocol allows authorized users 
to remotely log in to a host, then run a shell via a secure network channel 
over the internet. But the SSH daemon, which persistently listens for connec-
tions to initiate the protocol, requires very careful design because it crosses 
a trust boundary. The listener process typically needs superuser privileges, 
because when an authorized user presents valid credentials, it must be able 
to create processes for any user. Yet it must also listen to the public internet, 
exposing it to the world for attack. 

To accept SSH login requests, the daemon must generate a secure 
channel for communication that’s impervious to snooping or tampering, 
then handle and validate sensitive credentials. Only then can it instantiate 
a shell process on the host computer with the right privileges. This entire 
process involves a lot of code, running with the highest level of privilege (so 
it can create a process for any user account), that must operate perfectly or 
risk deeply compromising the system. Incoming requests can come from 
anywhere on the internet and are initially indistinguishable from attacks, so 
it’s hard to imagine a more attractive target with higher stakes. 

Given the large attack surface and the severity of any vulnerability, 
extensive efforts to mitigate risk are justified for the daemon process. 
Figure 2-1 shows a simplified view of how it is designed to protect this 
critical trust boundary. 
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Figure 2-1: How the design of the SSH daemon protects critical trust boundaries

Working from the top, each incoming connection forks a low-privilege 
child process, which listens on the socket and communicates with the parent 
(superuser) process. This child process also sets up the protocol’s complex 
secure-channel encryption and accepts login credentials that it passes to the 
privileged parent, which decides whether or not to trust the incoming request 
and grant it a shell. Forking a new child process for each request provides a 
strategic protection on the trust boundary; it isolates as much of the work as 
possible, and also minimizes the risk of unintentional side effects building 
up within the main daemon process. When a user successfully logs in, the 
daemon creates a new shell process with the privileges of the authenticated 
user account. When a login attempt fails to authenticate, the child process 
that handled the request terminates, so it can’t adversely affect the system in 
the future.

As with assets, you’ll decide when to lump together or split trust levels. 
In an operating system, the superuser is, of course, the highest level of 
trust, and some other administrative users may be close enough that you 
should consider them to be just as privileged. Authorized users typically 
rank next on the totem pole of trust. Some users may form a more trusted 
group with special privileges, but usually, there is no need to decide who 
you trust a little or more or less among them. Guest accounts typically rank 
lowest in trust, and you should probably emphasize protecting the system 
from them, rather than protecting their resources.

Web services need to resist malicious client users, so web frontend sys-
tems may validate incoming traffic and only forward well-formed requests for 
service, in effect straddling the trust boundary to the internet. Web servers 
often connect to more trusted databases and microservices behind a firewall. 
If money is involved (say, in a credit card processing service), a dedicated 
high-trust system should handle payments, ideally isolated in a fenced-off 
area of the datacenter. Authenticated users should be trusted to access their 
own account data, but you should treat them as very much untrusted beyond 
that, since anyone can typically create a login. Anonymous public web access 
represents an even lower trust level, and static public content could be served 
by machines unconnected to any private data services.

Always conduct transitions across trust boundaries through well-defined 
interfaces and protocols. You can think of these as analogous to checkpoints 
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staffed by armed guards at international frontiers and ports of entry. Just as 
the border control agents ask for your passport (a form of authentication) 
and inspect your belongings (a form of input validation), you should treat 
the trust boundary as a rich opportunity to mitigate potential attacks. 

The biggest risks usually hide in low-to-high trust transitions, like the SSH 
listener example, for obvious reasons. However, this doesn’t mean you should 
ignore high-to-low trust transitions. Any time your system passes data to a less-
trusted component, it’s worth considering if you’re disclosing information, 
and if doing so might be a problem. For example, even low-privilege processes 
can read the hostname of the computer they are running in, so don’t name 
machines using sensitive information that might give attackers a hint if they 
attain a beachhead and get code running on the system. Additionally, when-
ever high-trust services work on behalf of low-trust requests, you risk a DoS 
attack if the userland requester manages to overtax the kernel. 

Identify Threats
Now we begin the work at the heart of threat modeling: identifying poten-
tial threats. Working from your model, pore over the parts of the system. 
The threats tend to cluster around assets and at trust boundaries, but could 
potentially lurk anywhere. 

I recommend starting with a rough pass (say, from a 10,000-foot view of 
the system), then coming back later for a more thorough examination (at 
1,000 feet) of the more fruitful or interesting parts. Keep an open mind, 
and be sure to include possibilities even if you cannot yet see exactly how to 
exploit them. 

Identifying direct threats to your assets should be easy, as well as threats 
at trust boundaries, where attackers might easily trick trusted components 
into doing their bidding. Many examples of such threats in specific situations 
are given throughout this book. Yet you might also find threats that are indi-
rect, perhaps because there is no asset immediately available to harm, or a 
trust boundary to cross. Don’t immediately disregard these without consider-
ing how such threats might work as part of a chain of events—think of them 
as bank shots in billiards, or stepping stones that form a path. In order to do 
damage, an attacker would have to combine multiple indirect threats; or per-
haps, paired with bugs or poorly designed functionality, the indirect threats 
afford openings that give attackers a foot in the door. Even lesser threats 
might be worth mitigating, depending on how promising they look and how 
critical the asset at risk may be.

A Bank Vault Example

So far, these concepts may still seem rather abstract, so let’s look at them 
in context by threat modeling an imaginary bank vault. While reading this 
walkthrough, focus on the concepts, and if you are paying attention, you 
should be able to expand on the points I raise (which, intentionally, are not 
exhaustive).  

Picture a bank office in your hometown. Say it’s an older building, with 
impressive Roman columns framing the heavy solid oak double doors in front. 
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Built back when labor and materials were inexpensive, the thick, reinforced 
concrete walls appear impenetrable. For the purpose of this example, let’s 
focus solely on the large stock of gold stored in the secure vault at the heart 
of the bank building: this is the major asset we want to protect. We’ll use 
the building’s architectural drawings as the model, working from a floor 
plan with a 10-foot to 1-inch scale that provides an overview of the entire 
building’s layout. 

The major trust boundary is clearly at the vault door, but there’s another 
one at the locked door to the employee-only area behind the counter, and 
a third at the bank’s front door that separates the customer lobby from the 
exterior. For simplicity, we’ll omit the back door from the model because it’s 
very securely locked at all times and only opened rarely, when guards are 
present. This leaves the front door and easily-accessible customer lobby areas 
as the only significant attack surfaces.

All of this sets the stage for the real work of finding potential threats. 
Obviously, having the gold stolen is the top threat, but that’s too vague to 
provide much insight into how to prevent it, so we continue looking for spe-
cifics. The attackers would need to gain unauthorized access to the vault in 
order to steal the gold. In order to do that, they’d need unauthorized access 
to the employee-only area where the vault is located. So far, we don’t know 
how such abstract threats could occur, but we can break them down and get 
more specific. Here are just a few potential threats: 

•	 Observe the vault combination covertly.

•	 Guess the vault combination.

•	 Impersonate the bank’s president with makeup and a wig.

Admittedly, these made-up threats are fairly silly, but notice how we 
developed them from a model, and how we transitioned from abstract 
threats to concrete ones. 

In a more detailed second pass, we now use a model that includes full 
architectural drawings, the electrical and plumbing layout, and vault design 
specifications. Armed with more detail, we can imagine specific attacks 
more easily. Take the first threat we just listed: the attacker observing the 
vault combination. This could happen in several ways. Let’s look at three 
of them:

•	 An eagle-eyed robber loiters in the lobby to observe the opening of the 
vault.

•	 The vault combination is on a sticky note, visible to a customer at the 
counter.

•	 A confederate across the street can watch the vault combination dial 
through a scope.

Naturally, just knowing the vault combination does not get the intrud-
ers any gold. An outsider learning the combination is a major threat, but it’s 
just one part of a complete attack that must include entering the employee-
only area, entering the vault, and then escaping with the gold.
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Now we can prioritize the enumerated threats and propose mitigations. 
Here are some straightforward mitigations to each potential attack we’ve 
identified:

•	 Lobby loiterer: put an opaque screen in front of the vault.

•	 Sticky-note leak: institute a policy prohibiting unsecured written copies.

•	 Scope spy: install opaque, translucent glass windows.

These are just a few of the many possible defensive mitigations. If these 
types of attacks had been considered during the building’s design, perhaps 
the layout could have eliminated some of these threats in the first place 
(for example, by ensuring there was no direct line of sight from any exte-
rior window to the vault area, avoiding the need to retrofit opaque glass).

Real bank security and financial risk management are of course far 
more complex, but this simplified example shows how the threat modeling 
process works, including how it propels analysis forward. Gold in a vault is 
about as simple an asset as it gets, but now you should be wondering, how 
exactly does one examine a model of a complex software system to be able 
to see the threats it faces? 

Categorizing Threats with STRIDE

In the late 1990s, Microsoft Windows dominated the personal computing 
landscape. As PCs became essential tools for both businesses and homes, 
many believed the company’s sales would grow endlessly. But Microsoft had 
only begun to figure out how networking should work. The Internet (back 
then still usually spelled with a capital I) and this new thing called the 
World Wide Web were rapidly gaining popularity, and Microsoft’s Internet 
Explorer web browser had aggressively gained market share from the pio-
neering Netscape Navigator. Now the company faced this new problem of 
security: Who knew what can of worms connecting all the world’s computers 
might open up?

While a team of Microsoft testers worked creatively to find security flaws, 
the rest of the world appeared to be finding these flaws much faster. After a 
couple of years of reactive behavior, issuing patches for vulnerabilities that 
exposed customers over the network, the company formed a task force to get 
ahead of the curve. As part of this effort, I co-authored a paper with Praerit 
Garg that described a simple methodology to help developers see security 
flaws in their own products. Threat modeling based on the STRIDE threat 
taxonomy drove a massive education effort across all the company’s product 
groups. More than 20 years later, researchers across the industry continue to 
use STRIDE and many independent derivatives to enumerate threats.  

STRIDE focuses the process of identifying threats by giving you a check-
list of specific kinds of threats to consider: What can be spoofed (S), tampered 
(T) with, or repudiated (R)? What information (I) can be disclosed? How could 
a denial of service (D) or elevation of privilege (E) happen? These categories are 
specific enough to focus your analysis, yet general enough that you can men-
tally flesh out details relevant to a particular design and dig in from there. 
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Though members of the security community often refer to STRIDE as 
a threat modeling methodology, this is a misuse of the term (to my mind, 
at least, as the one who concocted the acronym). STRIDE is simply a taxon-
omy of threats to software. The acronym provides an easy and memorable 
mnemonic to ensure that you haven’t overlooked any category of threat. It’s 
not a complete threat modeling methodology, which would have to include 
the many other components we’ve already explored in this chapter.

To see how STRIDE works, let’s start with spoofing. Looking through 
the model, component by component, consider how secure operation 
depends on the identity of the user (or machine, or digital signature on 
code, and so on). What advantages might an attacker gain if they could 
spoof identity here? This thinking should give you lots of possible threads 
to pull on. By approaching each component in the context of the model 
from a threat perspective, you can more easily set aside thoughts of how 
it should work, and instead begin to perceive how it might be abused.

Here’s a great technique I’ve used successfully many times: start your 
threat modeling session by writing the six threat names on a whiteboard. 
To get rolling, brainstorm a few of these abstract threats before digging 
into the details. The term “brainstorm” can mean different things, but the 
idea here is to move quickly, covering a lot of area, without overthinking it 
too much or judging ideas yet (you can skip the duds later on). This warm-
up routine primes you for what to look out for, and also helps you switch 
into the necessary mindset. Even if you’re familiar with these categories of 
threat, it’s worth going through them all, and a couple that are less familiar 
and more technical bear careful explanation. 

Table 2-1 lists six security objectives, their corresponding threat catego-
ries, and several examples of threats in each category. The security objec-
tive and threat category are two sides of the same coin, and sometimes it’s 
easier to work from one or the other—on the defense (the objective) or the 
offense (the threat).

Table 2-1: Summary of STRIDE Threat Categories

Objective STRIDE threats Examples

Authenticity Spoofing Phishing, stolen password, imperson-
ation, replay attack, BGP hijacking

Integrity Tampering Unauthorized data modification and 
deletion, Superfish ad injection

Non-repudiability Repudiation Plausible deniability, insufficient log-
ging, destruction of logs

Confidentiality Information disclosure Data leak, side channel attack, weak 
encryption, residual cached data, 
Spectre/Meltdown 

Availability Denial of service Simultaneous requests swamp a web 
server, ransomware, memcrashed

Authorization Elevation of privilege SQL injection, xkcd’s “Exploits of  
a Mom”

https://www.cloudflare.com/learning/security/glossary/bgp-hijacking/
https://us-cert.cisa.gov/ncas/alerts/TA15-051A
https://meltdownattack.com/ 
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/
https://xkcd.com/327/
https://xkcd.com/327/
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Half of the STRIDE menagerie are direct threats to the information 
security fundamentals you learned about in Chapter 1: information disclo-
sure is the enemy of confidentiality, tampering is the enemy of integrity, 
and denial of service compromises availability. The other half of STRIDE 
targets the Gold Standard. Spoofing subverts authenticity by assuming a 
false identity. Elevation of privilege subverts proper authorization. That 
leaves repudiation as the threat to auditing, which may not be immediately 
obvious and so is worth a closer look. 

According to the Gold Standard, we should maintain accurate records 
of critical actions taken within the system and then audit those actions. 
Repudiation occurs when someone credibly denies that they took some 
action. In my years working in software security, I have never seen anyone 
directly repudiate anything (nobody has ever yelled “did so!” and “did not!” 
at each other in front of me). But what does happen is, say, a database sud-
denly disappears, and nobody knows why, because nothing was logged, and 
the lost data is gone without a trace. The organization might suspect that 
an intrusion occurred. Or it could have been a rogue insider, or possibly a 
regrettable blunder by an administrator. But without any evidence, nobody 
knows. That’s a big problem, because if you cannot explain what happened 
after an incident, it’s very hard to prevent it from happening again. In the 
physical world, such perfect crimes are rare because activities such as robbing 
a bank involve physical presence, which inherently leaves all kinds of traces. 
Software is different; unless you provide a means to reliably collect evidence 
and log events, no fingerprints or muddy boot tracks remain as evidence.

Typically, we mitigate the threat of repudiation by running systems in 
which administrators and users understand they are responsible for their 
actions, because they know an accurate audit trail exists. This is also one 
more good reason to avoid having admin passwords written on a sticky note 
that everyone shares. If you do that, when trouble happens, everyone can 
credibly claim someone else must have done it. This applies even if you fully 
trust everyone, because accidents happen, and the more evidence you have 
available when trouble arises, the easier it is to recover and remediate.

STRIDE at the Movies

Just for fun (and to solidify these concepts), consider the STRIDE threats 
applied to the plot of the film Ocean’s Eleven. This classic heist story nicely 
demonstrates threat modeling concepts, including the full complement of 
STRIDE categories, from the perspectives of both attacker and defender. 
Apologies for the simplification of the plot, which I’ve done for brevity and 
focus, as well as for spoilers.

Danny Ocean violates parole (an elevation of privilege), flies out to meet 
his old partner in crime, and heads for Vegas. He pitches an audacious 
heist to a wealthy casino insider, who fills him in on the casino’s operational 
details (information disclosure), then gathers his gang of ex-cons. They plan 
their operation using a full-scale replica vault built for practice. On the fate-
ful night, Danny appears at the casino and is predictably apprehended by 
security, creating the perfect alibi (repudiation of guilt). Soon he slips away 
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through an air duct, and through various intrigues he and his accomplices 
extract half the money from the vault (tampering with its integrity), exfiltrat-
ing their haul with a remote-control van.

Threatening to blow up the remaining millions in the vault (a very 
expensive denial of service), the gang negotiates to keep the money in the 
van. The casino owner refuses and calls in the SWAT team, and in the 
ensuing chaos the gang destroys the vault’s contents and gets away. After 
the smoke clears, the casino owner checks the vault, lamenting his total 
loss, then notices a minor detail that seems amiss. The owner confronts 
Danny—who is back in lockup, as if he had never left—and we learn 
that the SWAT team was, in fact, the gang (spoofing by impersonating the 
police), who walked out with the money hidden in their tactical equipment 
bags after the fake battle. The practice vault mock-up had provided video 
to make it only appear (spoofing of the location) that the real vault had 
been compromised, which didn’t actually happen until the casino granted 
full access to the fake SWAT team (an elevation of privilege for the gang). 
Danny and the gang make a clean getaway with the money—a happy end-
ing for the perpetrators that might have turned out quite differently had 
the casino hired a threat modeling consultant!

Mitigate Threats
At this stage, you should have a collection of potential threats. Now you 
need to assess and prioritize them to best guide an effective defense. Since 
threats are, at best, educated guesses about future events, all of your assess-
ments will contain some degree of subjectivity. 

What exactly does it mean to understand threats? There is no easy 
answer to this question, but it involves refining what we know, and main-
taining a healthy skepticism to avoid falling into the trap of thinking that 
we have it all figured out. In practice, this means quickly scanning to collect 
a bunch of mostly abstract threats, then poking into each one a little fur-
ther to learn more. Perhaps we will see one or two fairly clear-cut attacks, 
or parts of what could constitute an attack. We elaborate until we run up 
against a wall of diminishing returns.

At this point, we can deal with the threats we’ve identified in one of 
four ways:

•	 Mitigate the risk by either redesigning or adding defenses to reduce its 
occurrence or lower the degree of harm to an acceptable level.

•	 Remove a threatened asset if it isn’t necessary, or, if removal isn’t possible, 
seek to reduce its exposure or limit optional features that increase the 
threat.

•	 Transfer the risk by offloading responsibility to a third party, usually 
in exchange for compensation. (Insurance, for example, is a common 
form of risk transfer, or the processing of sensitive data could be out-
sourced to a service with a duty to protect confidentiality.)

•	 Accept the risk, once it is well understood, as reasonable to incur. 
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Always attempt to mitigate any significant threats, but recognize that 
results are often mixed. In practice, the best possible solution isn’t always 
feasible, for many reasons: a major change might be too costly, or you may 
be stuck using an external dependency beyond your control. Other code 
might also depend on vulnerable functionality, such that a fix might break 
things. In these cases, mitigation means doing anything that reduces the 
threat. Any kind of edge for defense helps, even a small one. 

Here are some examples of ways to do partial mitigation:

Make harm less likely to occur 

Make it so the attack only works a fraction of the time.

Make harm less severe 

Make it so only a small part of the data can be destroyed.

Make it possible to undo the harm 

Ensure that you can easily restore any lost data from a backup.

Make it obvious that harm occurred

Use tamper-evident packaging that makes it easy to detect a modified 
product, protecting consumers. (In software, good logging helps here.)

Much of the remainder of the book is about mitigation: how to design 
software to minimize threats, and what strategies and secure software pat-
terns are useful for devising mitigations of various sorts.

Privacy Considerations
Privacy threats are just as real as security threats, and they require separate 
consideration in a full assessment of threats to a system, because they add 
a human element to the risk of information disclosure. In addition to pos-
sible regulatory and legal considerations, personal information handling 
may involve ethical concerns, and it’s important to honor stakeholder 
expectations.

If you’re collecting personal data of any kind, you should take privacy 
seriously as a baseline stance. Think of yourself as a steward of people’s 
private information. Strive to stay mindful of your users’ perspectives, 
including careful consideration of the wide range of privacy concerns they 
might have, and err on the side of care. It’s easy for builders of software to 
discount how sensitive personal data can be when they’re immersed in the 
logic of system building. What in code looks like yet another field in a data-
base schema could be information that, if leaked, has real consequences for 
an actual person. As modern life increasingly goes digital, and mobile com-
puting becomes ubiquitous, privacy will depend more and more on code, 
potentially in new ways that are difficult to imagine. All this is to say that 
you would be smart to stay well ahead of the curve by exercising extreme 
vigilance now. 
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A few very general considerations for minimizing privacy threats 
include the following:

•	 Assess privacy by modeling scenarios of actual use cases, not thinking 
in the abstract.

•	 Learn what privacy policies or legal requirements apply, and follow the 
terms rigorously.

•	 Restrict the collection of data to only what is necessary. 

•	 Be sensitive to the possibility of seeming creepy.

•	 Never collect or store private information without a clear intention for 
its use.

•	 When information already collected is no longer used or useful, proac-
tively delete it.

•	 Minimize information sharing with third parties (which, if it occurs, 
should be well documented).

•	 Minimize disclosure of sensitive information—ideally this should be 
done only on a need-to-know basis.

•	 Be transparent, and help end users understand your data protection 
practices.

Threat Modeling Everywhere
The threat modeling process described here is a formalization of how we 
navigate in the world; we manage risk by balancing it against opportunities. 
In a dangerous environment, all living organisms make decisions based 
on these same basic principles. Once you start looking for it, you can find 
instances of threat modeling everywhere. 

When expecting a visit from friends with a young child, we always take 
a few minutes to make special preparations. Alex, an active three-year-old, 
has an inquisitive mind, so we go through the house “child-proofing.” This 
is pure threat modeling, as we imagine the threats by categories—what 
could hurt Alex, what might get broken, what’s better kept out of view of 
a youngster—then look for assets that fit these patterns. Typical threats 
include a metal letter opener, which he could stick in a wall socket; a fragile 
antique vase that he might easily break; or perhaps a coffee table book of 
photography that contains images inappropriate for children. The attack 
surface is any place reachable by an active toddler. Mitigations generally 
consist of removing, reducing, or eliminating points of exposure or vulner-
ability: we could replace the fragile vase with a plastic one that contains just 
dried flowers, or move it up onto a mantlepiece. People with children know 
how difficult it is to anticipate what they might do. For instance, did we 
anticipate Alex might stack up enough books to climb up and reach a shelf 
that we thought was out of reach? This is what threat modeling looks like 
outside of software, and it illustrates why preemptive mitigation can be well 
worth the effort.
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Here are a few other examples of threat modeling you may have noticed 
in daily life:

•	 Stores design return policies specifically to mitigate abuses such as 
shoplifting and then returning the product for store credit, or wearing 
new apparel once and then returning it for a refund.

•	 Website terms of use agreements attempt to prevent various ways that 
users might maliciously abuse the site.

•	 Traffic safety laws, speed limits, driver licensing, and mandatory auto 
insurance requirements are all mitigation mechanisms to make driving 
safer. 

•	 Libraries design loan policies to mitigate theft, hoarding, and damage 
to the collection.

You can probably think of lots of ways that you apply these techniques, 
too. For most of us, when we can draw on our physical intuitions about the 
world, threat modeling is remarkably easy to do. Once you recognize that 
software threat modeling works the same way as your already well-honed 
skills in other contexts, you can begin to apply your natural capabilities to 
software security analysis, and quickly raise your skills to the next level. 

N O T E 	 See Appendix D for a cheat sheet summarizing the Four Questions and STRIDE as a 
handy reference for threat modeling.
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M I T I G A T I O N

Everything is possible to mitigate through art and diligence.
—Gaius Plinius Caecilius Secundus (Pliny the Younger)

This chapter focuses on the third of the 
Four Questions from Chapter 2: “What 

are we going to do about it?” Anticipating 
threats, then protecting against potential 

vulnerabilities, is how security thinking turns into 
effective action. This proactive response is called 
mitigation—reducing the severity, extent, or impact 
of problems—and as you saw in the previous chapter, 
it’s something we all do all the time. Bibs to catch the  
inevitable spills when feeding an infant, seat belts, speed limits, fire alarms, 
food safety practices, public health measures, and industrial safety regula-
tions are just a few examples of mitigations. The common thread among 
these is that they take proactive measures to avoid, or lessen, anticipated 
harms in the face of risk. This is much of what we do to make software 
more secure. 
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It’s important to bear in mind that mitigations reduce risk but don’t 
eliminate it. To be clear, if you can eliminate a risk somehow—say, by 
removing a legacy feature that is known to be insecure—by all means do 
that, but I would not call it a mitigation. Instead, mitigations focus on mak-
ing attacks less likely, more difficult, or less harmful when they do occur. 
Even measures that make exploits more detectable are mitigations, analo-
gous to tamper-evident packaging, if they lead to a faster response and 
remediation. Every small effort ratchets up the security of the system as a 
whole, and even modest wins can collectively add up to significantly better 
protection.

This chapter begins with a conceptual discussion of mitigation, and 
from there presents a number of general techniques. The focus here is on 
structural mitigations based on the perspective gained through threat mod-
eling that can be useful for securing almost any system design. Subsequent 
chapters will build on these ideas to provide more detailed methods, drill-
ing down into specific technologies and threats. 

 The rest of the chapter provides guidance for recurrent security chal-
lenges encountered in software design: instituting an access policy and 
access controls, designing interfaces, and protecting communications and 
storage. Together, these discussions form a playbook for addressing com-
mon security needs that will be fleshed out over the remainder of the book.

Addressing Threats
Threat modeling reveals what can go wrong, and in doing so, focuses our 
security attention where it counts. But believing we can always eliminate 
vulnerabilities would be naive. Points of risk—critical events or decision 
thresholds—are great opportunities for mitigation. 

As you learned in the previous chapter, you should always address the 
biggest threats first, limiting them as best you can. For systems that process 
sensitive personal information, as one example, the threat of unauthorized 
disclosure inevitably looms large. For this major risk, consider any or all of 
the following: minimizing access to the data, reducing the amount of infor-
mation collected, actively deleting old data when no longer needed, audit-
ing for early detection in the event of compromise, and taking measures to 
reduce an attacker’s ability to exfiltrate data. After securing the highest-
priority risks, opportunistically mitigate lesser risks where it is easy to do so 
without adding much overhead or complexity to the design. 

A good example of a smart mitigation is the best practice of check-
ing the password submitted with each login attempt against a salted hash, 
instead of the actual password in plaintext. Protecting passwords is criti-
cal because disclosure threatens the fundamental authentication mecha-
nism. Comparing hashes only requires slightly more work than comparing 
directly, yet it’s a big win as it eliminates the need to store plaintext pass-
words. This means that even if attackers somehow breach the system, they 
won’t learn actual passwords as easily. 
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This example illustrates the idea of harm reduction but is quite specific 
to password checking. Now let’s consider mitigation strategies that are more 
widely applicable.

Structural Mitigation Strategies
Mitigations often amount to common sense: reducing risk where there are 
opportunities to do so. Threat modeling helps us see potential vulnerabili-
ties in terms of attack surfaces, trust boundaries, and assets (targets need-
ing protection). Structural mitigations generally apply to these very features of 
the model, but their realization depends on the specifics of the design. The 
subsections that follow discuss techniques that should be widely applicable 
because they operate at the model level of abstraction.

Minimize Attack Surfaces
Once you have identified the attack surfaces of a system, you know where 
exploits are most likely to originate, so anything you can do to harden the 
system’s “outer shell” will be a significant win. A good way to think about 
attack surface reduction is in terms of how much code and data are touched 
downstream of each point of entry. Systems that provide multiple interfaces 
to perform the same function may benefit from unifying these interfaces 
because that means less code that might contain vulnerabilities. Here are a 
few examples of this commonly used technique:

•	 In a client/server system, you can reduce the attack surface of the server 
by pushing functionality out to the client. Any operation that requires a 
server request represents an additional attack surface that a malformed 
request or forged credentials might be able to exploit. By contrast, if 
the necessary information and compute power exist on the client side, 
that reduces both the load on and the attack surface of the server.

•	 Moving functionality from a publicly exposed API that anyone can 
invoke anonymously to an authenticated API can effectively reduce 
your attack surface. The added friction of account creation slows down 
attacks, and also helps trace attackers and enforce rate limiting.

•	 Libraries and drivers that use kernel services can reduce the attack 
surface by minimizing interfaces to, and code within, the kernel. Not 
only are there fewer kernel transitions to attack that way, but userland 
code will be incapable of doing as much damage even if an attack is 
successful.

•	 Deployment and operations offer many attack surface reduction 
opportunities. For an enterprise network, moving anything you can 
behind a firewall is an easy win.

•	 A configuration setting that enables remote administration over the 
network is another good example: this feature may be convenient, 
but if it’s rarely used, consider disabling it and use wired access 
instead when necessary.
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These are just some of the most common scenarios where attack surface 
reduction works. For particular systems, you might find much more creative 
customized opportunities. Keep thinking of ways to reduce external access, 
minimize functionality and interfaces, and protect any services that are 
needlessly exposed. The better you understand where and how a feature is 
actually used, the more of these mitigations you’ll be able to find.

Narrow Windows of Vulnerability
This mitigation technique is similar to attack surface reduction, but instead 
of metaphorical surface area, it reduces the effective time interval in which 
a vulnerability can occur. Also based on common sense, this is why hunters 
only disengage the safety just before firing and reengage it soon after.

We usually apply this mitigation to trust boundaries, where low-trust 
data or requests interact with high-trust code. To best isolate the high-trust 
code, minimize the processing that it needs to do. For example, when pos-
sible, perform error checking ahead of invoking the high-trust code so it 
can do its work and exit quickly. 

Code Access Security (CAS), a security model that is rarely used today, is 
a perfect illustration of this mitigation because it provides fine-grained 
control over code’s effective privileges. (Full disclosure: I was the program 
manager for security in .NET Framework version 1.0, which prominently 
featured CAS as a major security feature.) 

The CAS runtime grants different permissions to different units of code 
based on trust. The following pseudocode example illustrates a common 
idiom for a generic permission, which could grant access to certain files, to 
the clipboard, and so on. In effect, CAS ensures that high-trust code inher-
its the lower privileges of the code invoking it, but when necessary, it can 
temporarily assert its higher privileges. Here’s how such an assertion of privi-
lege works:

Worker(parameters) {
  // When invoked from a low-trust caller, privileges are reduced.
  DoSetup();
  permission.Assert();
  // Following assertion, the designated permission can now be used.
  DoWorkRequiringPrivilege();
  CodeAccessPermission.RevertAssert();
  // Reverting the assertion undoes its effect.
  DoCleanup();
}

The code in this example has powerful privileges, but it may be called 
by less-trusted code. When invoked by low-trust code, this code initially 
runs with the reduced privileges of the caller. Technically, the effective 
privileges are the intersection (that is, the minimum) of the privileges 
granted to the code, its caller, and its caller’s caller, and so on all the way up 
the stack. Some of what the Worker method does requires higher privileges 
than its callers may have, so after doing the setup, it asserts the necessary 
permission before invoking DoWorkRequiringPrivilege, which must also have 

https://docs.microsoft.com/en-us/dotnet/framework/misc/code-access-security 
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that permission. Having done that portion of its work, it immediately drops 
the special permission by calling RevertAssert, before doing whatever is left 
that needs no special permissions and returning. In the CAS model, time 
window minimization provides for such assertions of privilege to be used 
when necessary and reverted as soon as they are no longer needed.

Consider this application of narrowing windows of vulnerability in a 
different way. Online banking offers convenience and speed, and mobile 
devices allow us to bank from anywhere. But storing your banking creden-
tials in your phone is risky—you don’t want someone emptying out your 
bank account if you lose it, which is much more likely with a mobile device. 
A great mitigation that I would like to see implemented across the banking 
industry would be the ability to configure the privilege level you are com-
fortable with for each device. A cautious customer might restrict the mobile 
app to checking balances and a modest daily transaction dollar limit. The  
customer would then be able to bank by phone with confidence. Further use-
ful limits might include windows of time, geolocation, domestic currency only, 
and so on. All of these mitigations help because they limit the worst-case sce-
nario in the event of any kind of compromise.

Minimize Data Exposure
Another structural mitigation to data disclosure risk is limiting the lifetime 
of sensitive data in memory. This is much like the preceding technique, but 
here you’re minimizing the duration for which sensitive data is accessible 
and potentially exposed instead of the duration for which code is running 
at high privilege. Recall that intraprocess access is hard to control, so the 
mere presence of data in memory puts it at risk. When the stakes are high, 
such as handling extremely sensitive data, you can think of it as “the meter 
is running.” For the most critical information—data such as private encryp-
tion keys, or authentication credentials such as passwords—it may be worth 
overwriting any in-memory copies as soon as they are no longer needed. 
This reduces the time during which a leak is conceivably possible through 
any means. As we shall see in Chapter 9, the Heartbleed vulnerability 
threatened security for much of the web, exposing all kinds of sensitive data 
lying around in memory. Limiting how long such data was retained probably 
would have been a useful mitigation (“stanching the blood flow,” if you will), 
even without foreknowledge of the exploit.

You can apply this technique to data storage design as well. When a 
user deletes their account in the system, that typically causes their data to 
be destroyed, but the system often offers a provision for a manual restore 
of the account in case of accidental or malicious closure. The easy way to 
implement this is to mark closed accounts as to-be-deleted but keep the 
data in place for, say, 30 days (after the manual restore period has passed) 
before the system finally deletes everything. To make this work, lots of code 
needs to check if the account is scheduled for deletion, lest it accidentally 
access the account data that the user directed to be destroyed. If a bulk 
mail job forgets to check, it could errantly send the user some notice that, 
to the user, would appear to be a violation of their intentions after they 
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closed the account. This mitigation suggests a better option: after the 
user deletes the account, the system should push its contents to an offline 
backup and promptly delete the data. The rare case where a manual restore 
is needed can still be accomplished using the backup data, and now there is 
no way for a bug to possibly result in that kind of error.

Generally speaking, proactively wiping copies of data is an extreme 
measure that’s appropriate only for the most sensitive data, or important 
actions such as account closure. Some languages and libraries help do this 
automatically, and except where performance is a concern, a simple wrap-
per function can wipe the contents of memory clean before it is recycled.

Access Policy and Access Controls
Standard operating system permissions provide very rudimentary file access 
controls. These control read (confidentiality) or write (integrity) access on an 
all-or-nothing basis for individual files based on the user and group owner-
ship of a process. Given this functionality, it’s all too easy to think in the 
same limited terms when designing protections for assets and resources—
but the right access policy might be more granular and depend on many 
other factors.  

First, consider how ill-suited traditional access controls are for many 
modern systems. Web services and microservices are designed to work on 
behalf of principals that usually do not correspond to the process owner. In 
this case, one process services all authenticated requests, requiring permis-
sion to access all client data all the time. This means that in the presence of 
a vulnerability, all client data is potentially at risk. 

Defining an efficacious access policy is an important mitigation, as it 
closes the gap between what accesses should be allowed and what access 
controls the system happens to offer. Rather than start with the available 
operating system access controls, think through the needs of the various 
principals acting through the system and define an ideal access policy 
that expresses an accurate description of what constitutes proper access. 
A granular access policy potentially offers a wealth of options: you can cap 
the number of accesses per minute or hour or day, or enforce a maximum 
data volume, time-based limits corresponding to working hours, or variable 
access limits based on activity by peers or historical rates (to name a few 
obvious mechanisms). 

Determining safe access limitations is hard work but worthwhile because 
it helps you understand the application’s security requirements. Even if the 
policy is not fully implemented in code, it will at least provide guidance for 
effective auditing. Given the right set of controls, you can start with lenient 
restrictions to gauge what real usage looks like and then, over time, narrow 
the policy as you learn how the system is used in practice.

 For example, consider a hypothetical system that serves a team of cus-
tomer service agents. Agents need access to the records of any customer 
who might contact them, but they only interact with a limited number of 
customers on a given day. A reasonable access policy might limit each agent 
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to no more than 100 different customer records in one shift. With access to 
all records all the time, a dishonest agent could leak a copy of all customer 
data, whereas the limited policy greatly limits the worst-case daily damage. 

Once you have a fine-grained access policy, you face the challenge of 
setting the right limits. This can be difficult when you must avoid imped-
ing rightful use in extreme edge cases. In the customer service example, 
for instance, you might restrict agents to accessing the records of up 
to 100 customers per shift as a way of accommodating seasonal peak 
demand, even though, on most days, needing even 50 records would be 
unusual. Why? It would be impractical to adjust the policy configuration 
throughout the year, and you want to allow for leeway so the limit never 
impedes work. Also, defining a more specific and detailed policy based  
on fixed dates might not work well, as there could be unexpected surges  
in activity at any time. 

But is there a way to narrow the gap between normal circumstances and 
the rare highest-demand case that the system should allow? One great tool to 
handle this tricky situation is a policy provision for self-declared exceptions to 
be used in extraordinary circumstances. Such an option allows individual 
agents to bump up their own limits for a short period of time by providing 
a rationale. With this kind of “relief valve” in place, the basic access policy 
can be tightly constrained. When needed, once agents hit the access limit, 
they can file a quick notice—stating, for example, “high call volume today,  
I’m working late to finish up”—and receive additional access authorization. 
Such notices can be audited, and if they become commonplace, management 
could bump the policy up with the knowledge that demand has legitimately 
grown and an understanding of why. Such flexible techniques enable you to 
create access policies with softer limits, rather than hard-and-fast restrictions 
that tend to be arbitrary.

Interfaces
Software designs consist of components that correspond to functional parts 
of the system. You can visualize these designs as block diagrams, with lines 
representing the connections between the parts. These connections denote 
interfaces, which are a major focus of security analysis—not only because they 
reveal data and control flows, but also because they serve as well-defined 
chokepoints where you can add mitigations. In particular, where there is a 
trust boundary, the main security focus is on the flow of data and control 
from the lower- to the higher-trust component, so that is where defensive 
measures are often needed. 

In large systems, there are typically interfaces between networks, between 
processes, and within processes. Network interfaces provide the strongest 
isolation because it’s virtually certain that any interactions between the 
endpoints will occur over the wire, but with the other kinds of interfaces it’s 
more complicated. Operating systems provide strong isolation at process 
boundaries, so interprocess communication interfaces are nearly as trust-
worthy as network interfaces. In both of these cases, it’s generally impossible 
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to go around these channels and interact in some other way. The attack 
surface is cleanly constrained, and hence this is where most of the important 
trust boundaries are. As a consequence, interprocess communication and 
network interfaces are the major focal points of threat modeling. 

Interfaces also exist within processes, where interaction is relatively 
unconstrained. Well-written software can still create meaningful security 
boundaries within a process, but these are only effective if all the code 
plays together well and stays within the lines. From the attacker’s perspec-
tive, intraprocess boundaries are much easier to penetrate. However, since 
attackers may only gain a limited degree of control via a given vulnerability, 
any protection you can provide is better than none. By analogy, think of a 
robber who only has a few seconds to act: even a weak precaution might be 
enough to prevent a loss.

Any large software design faces the delicate task of structuring compo-
nents to minimize regions of highly privileged access, as well as restricting 
sensitive information flow in order to reduce security risk. To the extent 
that the design restricts information access to a minimal set of components 
that are well isolated, attackers will have a much harder time getting access 
to sensitive data. By contrast, in weaker designs, all kinds of data flow all 
over the place, resulting in greater exposure from a vulnerability anywhere 
within the component. The architecture of interfaces is a major factor that 
determines the success systems have at protecting assets.

Communication
Modern networked systems are so common that standalone computers, 
detached from any network, have become rare exceptions. The cloud com-
puting model, combined with mobile connectivity, makes network access 
ubiquitous. As a result, communication is fundamental to almost every 
software system in use today, be it through internet connections, private 
networks, or peripheral connections via Bluetooth, USB, and the like. 

In order to protect these communications, the channel must be physi-
cally secured against wiretapping and snooping, or else the data must be 
encrypted to ensure its integrity and confidentiality. Reliance on physical 
security is typically fragile in the sense that if attackers bypass it, they usu-
ally gain access to the full data flow, and such incursions are difficult to 
detect. Modern processors are fast enough that the computational over-
head of encryption is usually acceptable, so there is rarely a good reason not 
to encrypt communications. I cover basic encryption in Chapter 5, and 
HTTPS for the web specifically in Chapter 11.

Even the best encryption is not a magic bullet, though. One remaining 
threat is that encryption cannot conceal the fact of communication. In other 
words, if attackers can read the raw data in the channel, even if they’re 
unable to decipher its contents, they can still see that data is being sent 
and received on the wire, and roughly estimate the amount of data flow. 
Furthermore, if attackers can tamper with the communication channel, 
they might be able to delay or block the transmission entirely.
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Storage
The security of data storage is much like the security of communications, 
because storing data is analogous to sending it into the future, at which 
point you will retrieve it for some purpose. Viewed in this way, just as data 
that is being communicated is vulnerable on the wire, stored data is vulner-
able at rest on the storage medium. Protecting data at rest from potential 
tampering or disclosure requires either physical security or encryption. 
Likewise, availability depends on the existence of backup copies or success-
ful physical protection.

Storage is so ubiquitous in system designs that it’s easy to defer the details 
of data security for operations to deal with, but doing so misses good oppor-
tunities for proactively mitigating data loss in the design. For instance, data 
backup requirements are an important part of software designs, because the 
demands are by no means obvious, and there are many trade-offs. You could 
plan for redundant storage systems, designed to protect against data loss in 
the event of failure, but these can be expensive and incur performance costs. 
Your backups might be copies of the whole dataset, or they could be incre-
mental, recording transactions that, cumulatively, can be used to rebuild an 
accurate copy. Either way, they should be reliably stored independently and 
with specific frequency, within acceptable limits of latency. Cloud architec-
tures can provide redundant data replication in near real-time for perhaps 
the best continuous backup solution, but at a cost.

All data at rest, including backup copies, is at risk of exposure to unau-
thorized access, so you must physically secure or encrypt it for protection. 
The more backup copies you make, the greater the risk is of a leak due 
to having so many copies. Considering the potential extremes makes this 
point clear.  Photographs are precious memories and irreplaceable pieces 
of every family’s history, so keeping multiple backup copies is wise—if you 
don’t have any copies and the original files are lost, damaged, or corrupted, 
the loss could be devastating. To guard against this, you might send cop-
ies of your family photos to as many relatives as possible for safekeeping. 
But this has a downside too, as it raises the chances that one of them might 
have the data stolen (via malware, or perhaps a stolen laptop). This could 
also be catastrophic, as these are private memories, and it would be a viola-
tion of privacy to see all those photos publicly spread all over the web (and 
potentially a greater threat if it allowed strangers to identify children in a 
way that could lead to exploitation). This is a fundamental trade-off that 
requires you to weigh the risks of data loss against the risk of leaks—you 
cannot minimize both at once, but you can balance these concerns to a 
degree in a few ways. 

As a compromise between these threats, you could send your relatives 
encrypted photos. (This means they would not be able to view them, of 
course.) However, now you are responsible for keeping the key that you 
chose not to entrust them with, and if you lose the key, the encrypted copies 
are worthless.  

Preserving photos also raises an important aspect of backing up data, 
which is the problem of media lifetime and obsolescence. Physical media 
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(such as hard disks or DVDs) inevitably degrade over time, and support for 
legacy media fades away as new hardware evolves (this author recalls long 
ago personally moving data from dozens of floppy disks, which only anti-
quated computers can use, onto one USB memory stick, now copied to the 
cloud). Even if the media and devices still work, new software tends to drop 
support for older data formats. The choice of data format is thus important, 
with widely used open standards highly preferred, because proprietary 
formats must be reverse-engineered once they are officially retired. Over 
longer time spans, it might be necessary to convert file formats, as soft-
ware standards evolve and application support for older formats becomes 
deprecated. 

The examples mentioned throughout this chapter have been simplified 
for explanatory purposes, and while we’ve covered many techniques that can 
be used to mitigate identified threats, these are just the tip of the iceberg 
of possibilities. Adapt specific mitigations to the needs of each application, 
ideally by making them integral to the design. While this sounds simple, 
effective mitigations are challenging in practice because a panoply of threats 
must be considered in the context of each system, and you can only do so 
much. The next chapter presents major patterns with useful security proper-
ties, as well as anti-patterns to watch out for, that are useful in crafting these 
mitigations as part of secure design.
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P A T T E R N S

Art is pattern informed by sensibility.
—Herbert Read

Architects have long used design patterns 
to envision new buildings, an approach just 

as useful for guiding software design. This 
chapter introduces many of the most useful 

patterns promoting secure design. Several of these pat-
terns derive from ancient wisdom; the trick is knowing 
how to apply them to software and how they enhance 
security.

These patterns either mitigate or avoid various security vulnerabili-
ties, forming an important toolbox to address potential threats. Many are 
simple, but others are harder to understand and best explained by example. 
Don’t underestimate the simpler ones, as they can be widely applicable and 
are among the most effective. Still, other concepts may be easier to grasp as 
anti-patterns describing what not to do. I present these patterns in groups 
based on shared characteristics that you can think of as sections of the 
toolbox (Figure 4-1).
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Trust and
Responsibility
Reluctance to Trust
Accept Security Responsibility

 

Anti-Patterns
Confused Deputy
Backflow of Trust
Third-Party Hooks
Unpatchable Components

Exposure
Minimization
Allowlists over Blocklists
Least Privilege
Least Information
Secure by Default
Fail Securely
Avoid Predictability

Redundancy
Separation of Privilege
Defense in Depth

Strong Enforcement
Least Common Mechanism
Complete Mediation

Design Attributes
Transparent Design
Economy of Design

Security
Patterns

Figure 4-1: Groupings of secure software patterns this chapter covers

When and where to apply these patterns requires judgment. Let neces-
sity and simplicity guide your design decisions. As powerful as these pat-
terns are, don’t overdo it; just as you don’t need seven deadbolts and chains 
on your doors, you don’t need to apply every possible design pattern to fix 
a problem. Where several patterns are applicable, choose the best one or 
two, or maybe more for critical security demands. Overuse can be counter-
productive because the diminishing returns of increased complexity and 
overhead quickly outweigh additional security gains.

Design Attributes
The first group of patterns describe at a high level what secure design looks 
like: simple and transparent. These derive from the adages “keep it simple” 
and “you should have nothing to hide.” As basic and perhaps obvious as 
these patterns may be, they can be applied widely and are very powerful.

Economy of Design
Designs should be as simple as possible. 

Economy of Design raises the security bar because simpler designs likely 
have fewer bugs, and thus fewer undetected vulnerabilities. Though develop-
ers claim that “all software has bugs,” we know that simple programs certainly 
can be bug-free. Prefer the simplest of competing designs for security mecha-
nisms, and be wary of complicated designs that perform critical security 
functions.
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 LEGO bricks are a great example of this pattern. Once the design 
and manufacture of the standard building element is perfected, it enables 
building a countless array of creative designs. A similar system composed of 
a number of less universally useful pieces would be more difficult to build 
with; any particular design would require a larger inventory of parts and 
involve other technical challenges.

You can find many examples of Economy of Design in the system 
architecture of large web services built to run in massive datacenters. For 
reliability at scale, these designs decompose functionality into smaller, self-
contained components that collectively perform complicated operations. 
Often, a basic frontend terminates the HTTPS request, parsing and validat-
ing the incoming data into an internal data structure. That data structure 
gets sent on for processing by a number of subservices, which in turn use 
microservices to perform various functions. 

In the case of an application such as web search, different machines 
may independently build different parts of the response in parallel, then yet 
another machine blends them into the complete response. It’s much easier 
to build many small services to do separate parts of the whole task—query 
parsing, spelling correction, text search, image search, results ranking, and 
page layout—than to do everything in one massive program.

Economy of Design is not an absolute mandate that everything must 
always be simple. Rather, it highlights the great advantages of simplicity, 
and says that you should only embrace complexity when it adds significant 
value. Consider the differences between the design of access control lists 
(ACLs) in *nix and Windows. The former is simple, specifying read/write/
execute permissions by user or user group, or for everybody. The latter is 
much more involved, including an arbitrary number of both allow and deny 
access control entries as well as an inheritance feature; notably, evaluation 
is dependent on the ordering of entries within the list. (These simplified 
descriptions are to make a point about design, and are not intended as com-
plete.) This pattern correctly shows that the simpler *nix permissions are 
easier to correctly enforce, and beyond that, it’s easier for users of the system 
to correctly understand how ACLs work and therefore to use them correctly. 
However, if the Windows ACL provides just the right protection for a given 
application and can be accurately configured, then it may be a fine solution.

The Economy of Design pattern does not say that the simpler option 
is unequivocally better, or that the more complex one is necessarily prob-
lematic. In this example, *nix ACLs are not inherently better, and Windows 
ACLs are not necessarily buggy. However, Windows ACLs do represent 
more of a learning curve for developers and users, and using their more 
complicated features can easily confuse people as well as invite unintended 
consequences. The key design choice here, which I will not weigh in on, 
is to what extent the ACL designs best fit the needs of users. Perhaps *nix 
ACLs are too simplistic and fail to meet real demands; on the other hand, 
perhaps Windows ACLs are overly feature-bound and cumbersome in typi-
cal use patterns. These are difficult questions we must each answer for our 
own purposes, but for which this design pattern provides insight.
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Transparent Design
Strong protection should never rely on secrecy. 

Perhaps the most famous example of a design that failed to follow the 
pattern of Transparent Design is the Death Star in Star Wars, whose thermal 
exhaust port afforded a straight shot at the heart of the battle station. Had 
Darth Vader held his architects accountable to this principle as severely 
as he did Admiral Motti, the story would have turned out very differently. 
Revealing the design of a well-built system should have the effect of dissuad-
ing attackers by showing its invincibility. It shouldn’t make the task easier 
for them. The corresponding anti-pattern may be better known: we call it 
Security by Obscurity.

This pattern specifically warns against a reliance on the secrecy of a 
design. It doesn’t mean that publicly disclosing designs is mandatory, or 
that there is anything wrong with secret information. If full transparency 
about a design weakens it, you should fix the design, not rely on keeping 
it secret. This in no way applies to legitimately secret information, such as 
cryptographic keys or user identities, which actually would compromise 
security if leaked. That’s why the name of the pattern is Transparent Design, 
not Absolute Transparency. Full disclosure of the design of an encryption 
method—the key size, message format, cryptographic algorithms, and so 
forth—shouldn’t weaken security at all. The anti-pattern should be a big 
red flag: for instance, distrust any self-anointed “experts” who claim to 
invent amazing encryption algorithms that are so great that they cannot 
publish the details. Without exception, these are bogus.

The problem with Security by Obscurity is that while it may help fore-
stall adversaries temporarily, it’s extremely fragile. For example, imagine 
that a design used an outdated cryptographic algorithm: if the attackers 
ever found out that the software was still using, say, DES (a legacy symmet-
ric encryption algorithm from the 1970s), they could easily crack it within a 
day. Instead, do the work necessary to get to a solid security footing so that 
there is nothing to hide, whether or not the design details are public.

Exposure Minimization
The largest group of patterns call for caution: think “err on the safe side.” 
These are expressions of basic risk/reward strategies where you play it safe 
unless there is an important reason to do otherwise.

Least Privilege
It’s always safest to use just enough privilege for the job.

Never clean a loaded gun. Unplug power saws when changing blades. 
These commonplace safety practices are examples of the Least Privilege 
pattern, which aims to reduce the risk of making mistakes when performing 
a task. This pattern is the reason that administrators of important systems 
should not be randomly browsing the internet while logged in at work; if 
they visit a malicious website and get compromised, the attack could easily 
do serious harm.
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The *nix sudo(1) command performs exactly this purpose. User accounts 
with high privilege (known as sudoers) need to be careful not to inadvertently 
use their extraordinary power by accident or if compromised. To provide this 
protection, the user must prefix superuser commands with sudo, which may 
prompt the user for a password, in order to run them. Under this system, 
most commands (those that do not require sudo) will affect only the user’s 
own account, and cannot impact the entire system. This is akin to the “IN 
CASE OF EMERGENCY BREAK GLASS” cover on a fire alarm switch to pre-
vent accidental activation, in that this forces an explicit step (corresponding 
to the sudo prefix) before activating the switch. With the glass cover, nobody 
can claim to have accidentally pulled the fire alarm, just as a competent 
administrator would never type sudo and a command that breaks the system 
all by accident. 

This pattern is important for the simple reason that when vulnerabili-
ties are exploited, it’s better for the attacker to have minimal privileges to 
use as leverage. Use all-powerful authorizations such as superuser privileges 
only when strictly necessary, and for the minimum possible duration. Even 
Superman practiced Least Privilege by only wearing his uniform when 
there was a job to do, and then, after saving the world, immediately chang-
ing back into his Clark Kent persona.

In practice, it does take more effort to selectively and sparingly use ele-
vated privileges. Just as unplugging power tools to work on them requires 
more effort, discretion when using permissions requires discipline, but 
doing it right is always safer. In the case of an exploit, it means the differ-
ence between a minor incursion and total system compromise. Practicing 
Least Privilege can also mitigate damage done by bugs and human error.

Like all rules of thumb, use this pattern with a sense of balance to avoid 
overcomplication. Least Privilege does not mean the system should always 
grant literally the minimum level of authorization (for instance, creating code 
that, in order to write file X, is given write access to only that one file). You may 
wonder, why not always apply this excellent pattern to the max? In addition to 
maintaining a general sense of balance and recognizing diminishing returns 
for any mitigation, a big factor here is the granularity of the mechanism that 
controls authorization, and the cost incurred while adjusting privileges up and 
down. For instance, in a *nix process, permissions are conferred based on user 
and group ID access control lists. Beyond the flexibility of changing between 
effective and real IDs (which is what sudo does), there is no easy way to tem-
porarily drop unneeded privileges without forking a process. Code should 
operate with lower ambient privileges where it can, using higher privileges in 
the necessary sections and transitioning at natural decision points.

Least Information
It’s always safest to collect and access the minimum amount of private infor-
mation needed for the job.

The Least Information pattern, the data privacy analog of Least Privilege, 
helps to minimize unintended disclosure risks. Avoid providing more private 
information than necessary when calling a subroutine, requesting a service, 
or responding to a request, and at every opportunity curtail unnecessary 
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information flow. Implementing this pattern can be challenging in practice 
because software tends to pass data around in standard containers not opti-
mized for purpose, so extra data often is included that isn’t really needed. 

All too often, software fails this pattern because the design of inter-
faces evolves over time to serve a number of purposes, and it’s convenient 
to reuse the same parameters or data structure for consistency. As a result, 
data that isn’t strictly necessary gets sent along as extra baggage that seems 
harmless enough. The problem arises, of course, when this needless data 
flowing through the system creates additional opportunities for attack.

For example, imagine a large customer relationship management (CRM) 
system used by various workers in an enterprise. Different workers use the 
system for a wide variety of purposes, including sales, production, shipping, 
support, maintenance, R&D, and accounting. Depending on their roles, 
each has a different authorization for access to subsets of this information. 
To practice Least Information, the applications in this enterprise should 
request only the minimum amount of data needed to perform a specific 
task. Consider a customer support representative responding to a phone 
call: if the system uses Caller ID to look up the customer record, the sup-
port person doesn’t need to know their phone number, just their purchase 
history. Contrast this with a more basic design that either allows or disallows 
the lookup of customer records that include all data fields. Ideally, even if the 
representative has more access, they should be able to request the minimum 
needed for a given task and work with that, thereby minimizing the risk of 
disclosure.

At the implementation level, Least Information design includes wiping 
locally cached information when no longer needed, or perhaps displaying 
a subset of available data on the screen until the user explicitly requests 
to see certain details. The common practice of displaying passwords as 
******** uses this pattern to mitigate the risk of shoulder surfing.

It’s particularly important to apply this pattern at design time, as it can 
be extremely difficult to implement later on because both sides of the inter-
face need to change together. If you design independent components suited 
to specific tasks that require different sets of data, you’re more likely to get 
this right. APIs handling sensitive data should provide flexibility to allow 
callers to specify subsets of data they need in order to minimize informa-
tion exposure (Table 4-1).

Table 4-1: How Least Information Changes API Design

Least Information non-compliant API Least Information compliant API

RequestCustomerData(id='12345') RequestCustomerData(id='12345', 
items=['name', 'zip'])

{'id': '12345', 'name': 'Jane Doe', 
'phone': '888-555-1212', 'zip': 
'01010', ...}

{'name': 'Jane Doe', 'zip': '01010'}

The RequestCustomerData API in the left column ignores the Least 
Information pattern because the caller has no option but to request the 
complete data record by ID. They don’t need the phone number, so there is 
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no need to request it, and even ignoring it still expands the attack surface 
for an attacker trying to get it. The right column has a version of the same 
API that allows callers to specify what fields they need and delivers only 
those, which minimizes the flow of private information. 

Considering the Secure by Default pattern as well, the default for the 
items parameter should be a minimal set of fields, provided that callers can 
request exactly what they need to minimize information flow. 

Secure by Default
Software should always be secure “out of the box.” 

Design your software to be Secure by Default, including in its initial state, 
so that inaction by the operator does not represent a risk. This applies to the 
overall system configuration, as well as configuration options for components 
and API parameters. Databases or routers with default passwords notoriously 
violate this pattern, and to this day, this design flaw remains surprisingly 
widespread. 

If you are serious about security, never configure an insecure state with 
the intention of making it secure later, because this creates an interval of 
vulnerability and is too often forgotten. If you must use equipment with a 
default password, for example, first configure it safely on a private network 
behind a firewall before deploying it in the network. A pioneer in this area, 
the state of California has mandated this pattern by law; its Senate Bill  
No. 327 (2018) outlaws default passwords on connected devices.

Secure by Default applies to any setting or configuration that could have 
a detrimental security impact, not just to default passwords. Permissions 
should default to more restrictive settings; users should have to explicitly 
change them to less restrictive ones if needed, and only if it’s safe to do so. 
Disable all potentially dangerous options by default. Conversely, enable 
features that provide security protection by default so they are functioning 
from the start. And of course, keeping the software fully up-to-date is impor-
tant; don’t start out with an old version (possibly one with known vulnerabili-
ties) and hope that, at some point, it gets updated.

Ideally, you shouldn’t ever need to have insecure options. Carefully con-
sider proposed configurable options, because it may be simple to provide 
an insecure option that will become a booby trap for others thereafter. Also 
remember that each new option increases the number of possible combina-
tions, and the task of ensuring that all of those combinations of settings are 
actually useful and safe becomes more difficult as the number of options 
increases. Whenever you must provide unsafe configurations, make a point 
of proactively explaining the risk to the administrator.

Secure by Default applies much more broadly than to configuration 
options, though. Defaults for unspecified API parameters should be secure 
choices. A browser accepting a URL entered into the address bar without 
any protocol specified should assume the site uses HTTPS, and fall back 
to HTTP only if the former fails to connect. Two peers negotiating a new 
HTTPS connection should default to accepting the more secure cipher 
suite choices first.

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB327
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB327
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Allowlists over Blocklists
Prefer allowlists over blocklists when designing a security mechanism. 
Allowlists are enumerations of what’s safe, so they are inherently finite. By 
contrast, blocklists attempt to enumerate all that isn’t safe, and in doing so 
implicitly allow an infinite set of things you hope are safe. It’s clear which 
approach is riskier.

First, here’s a non-software example to make sure you understand what 
the allowlist versus blocklist alternative means, and why allowlists are always the 
way to go. During the early months of the COVID-19 stay-at-home emergency 
order, the governor of my state ordered the beaches closed with the following 
provisos, presented here in simplified form:

No person shall sit, stand, lie down, lounge, sunbathe, or loiter 
on any beach except when “running, jogging, or walking on the 
beach, so long as social distancing requirements are maintained” 
(crossing the beach to surf is also allowed).

The first clause is a blocklist, because it lists what activities are not 
allowed, and the second exception clause is an allowlist, because it grants 
permission to the activities listed. Due to legal issues, there may well be 
good reasons for this language, but from a strictly logical perspective, I 
think it leaves much to be desired. 

First let’s consider the blocklist: I’m confident that there are other risky 
activities people could do at the beach that the first clause fails to prohibit. 
If the intention of the order was to keep people moving, it omitted many—
kneeling, for example, as well as yoga and living statue performances. The 
problem with blocklists is that any omissions become flaws, so unless you 
can completely enumerate every possible bad case, it’s an insecure system. 

Now consider the allowlist of allowable beach activities. While it, too, is 
incomplete—who would contest that skipping is also fine?—this won’t cause 
a big security problem. Perhaps a fraction of a percent of beach skippers 
will be unfairly punished, but the harm is minor, and more importantly, an 
incomplete enumeration doesn’t open up a hole that allows a risky activity. 
Additional safe items initially omitted can easily be added to the allowlist as 
needed.

More generally, think of a continuum, ranging from disallowed on the 
left, then shading to allowed on the right. Somewhere in the middle is a 
dividing line. The goal is to allow the good stuff on the right of the line while 
disallowing the bad on the left. Allowlists draw the line from the right side, 
then gradually move it to the left, including more parts of the continuum as 
the list of what to allow grows. If you omit something good from the allowlist, 
you’re still on the safe side of the elusive line that’s the true divide. You may 
never get to the precise point that allows all safe actions, at which point any 
addition to the list would be too much, but using this technique makes it easy 
to stay on the safe side. Contrast that to the blocklist approach: unless you enu-
merate everything to the left of the true divide, you’re allowing something you 
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shouldn’t. The safest blocklist will be one that includes just about everything, 
and that’s likely to be overly restrictive, so it doesn’t work well either way.

Often, the use of an allowlist is so glaringly obvious we don’t notice it 
as a pattern. For example, a bank would reasonably authorize a small set of 
trusted managers to approve high-value transactions. Nobody would dream 
of maintaining a blocklist of all the employees not authorized, tacitly allow-
ing any other employee such privilege. Yet sloppy coders might attempt to 
do input validation by checking that the value did not contain any of a list 
of invalid characters, and in the process easily forget about characters like 
NUL (ASCII 0) or perhaps DEL (ASCII 127).

Ironically, perhaps the biggest-selling consumer security product, antivi-
rus software, attempts to block all known malware. Modern antivirus products 
are much more sophisticated than the old-school versions, which relied 
on comparing a digest against a database of known malware, but still, they 
all appear to work based on a blocklist to some extent. (A great example of 
Security by Obscurity, most commercial antivirus software is proprietary, so 
we can only speculate.) It makes sense that they’re stuck with blocklist tech-
niques because they know how to collect examples of malware, and the pros-
pect of somehow allowlisting all good software in the world before it’s released 
seems to be a nonstarter. My point isn’t about any particular product or an 
assessment of its worth, but about the design choice of protection by virtue 
of a blocklist, and why that’s inevitably risky.

Avoid Predictability
Any data (or behavior) that is predictable cannot be kept private, since 
attackers can learn it by guessing.

Predictability of data in software design can lead to serious flaws 
because it can result in the leakage of information. For instance, consider 
the simple example of assigning new customer account IDs. When a new 
customer signs up on a website, the system needs a unique ID to designate 
the account. One obvious and easy way to do this is to name the first account 1, 
the second account 2, and so on. This works, but from the point of view of an 
attacker, what does it give away?

New account IDs now provide an attacker an easy way of learning the 
number of user accounts created so far. For example, if the attacker periodi-
cally creates a new, throwaway account, they have an accurate metric for 
how many customer accounts the website has at a given time—information 
that most businesses would be loathe to disclose to a competitor. Many other 
pitfalls are possible, depending on the specifics of the system. Another con-
sequence of this poor design is that attackers can easily guess the account ID 
assigned to the next new account created, and armed with this knowledge, 
they might be able to interfere with the new account setup by claiming 
to be the new account and confusing the registration system.

The problem of predictability takes many guises, and different types 
of leakage can occur with different designs. For example, an account ID 
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that includes several letters of the account holder’s name or ZIP code would 
needlessly leak clues about the account owner’s identity. Of course, this 
same problem applies to IDs for web pages, events, and more. The simplest 
mitigation against these issues is that if the purpose of an ID is to be a 
unique handle, you should make it just that—never a count of users, the 
email of the user, or based on other identifying information. 

The easy way to avoid these problems is to use securely random IDs. Truly 
random values cannot be guessed, so they do not leak information. (Strictly 
speaking, the length of IDs leaks the maximum number of possible IDs, but 
this usually isn’t sensitive information.) A standard system facility, random 
number generators come in two flavors: pseudorandom number generators 
and secure random number generators. You should use the secure option, 
which is slower, unless you’re certain that predictability is harmless. See 
Chapter 5 for more about secure random number generators.

Fail Securely
If a problem occurs, be sure to end up in a secure state.

In the physical world, this pattern is common sense itself. An old-fashioned 
electric fuse is a great example: if too much current flows through it, the heat 
melts the metal, opening the circuit. The laws of physics make it impossible to 
fail in a way that maintains excessive current flow. This pattern perhaps may 
seem like the most obvious one, but software being what it is (we don’t have 
the laws of physics on our side), it’s easily disregarded.

Many software coding tasks that at first seem almost trivial often grow in 
complexity due to error handling. The normal program flow can be simple, 
but when a connection is broken, memory allocation fails, inputs are invalid, 
or any number of other potential problems arise, the code needs to pro-
ceed if possible, or back out gracefully if not. When writing code, you 
might feel as though you spend more time dealing with all these distractions 
than with the task at hand, and it’s easy to quickly dismiss error-handling 
code as unimportant, making this a common source of vulnerabilities. 
Attackers will intentionally trigger these error cases if they can, in hopes 
that there is a vulnerability they can exploit. 

Error cases are often tedious to test thoroughly, especially when combi-
nations of multiple errors can compound into new code paths, so this can 
be fertile ground for attack. Ensure that each error is either safely handled, 
or leads to full rejection of the request. For example, when someone uploads 
an image to a photo sharing service, immediately check that it is well formed 
(because malformed images are often used maliciously), and if not, then 
promptly remove the data from storage to prevent its further use.

Strong Enforcement
These patterns concern how to ensure that code behaves by enforcing the 
rules thoroughly. Loopholes are the bane of any laws and regulations, so these 
patterns show how to avoid creating ways of gaming the system. Rather than 
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write code and reason that you don’t think it will do something, it’s better to 
structurally design it so that forbidden operations cannot possibly occur.

Complete Mediation
Protect all access paths, enforcing the same access, without exception.

An obscure term for an obvious idea, Complete Mediation means 
securely checking all accesses to a protected asset consistently. If there  
are multiple access methods to a resource, they must all be subject to the 
same authorization check, with no shortcuts that afford a free pass or 
looser policy. 

For example, suppose a financial investment firm’s information sys-
tem policy declares that regular employees cannot look up the tax IDs of 
customers without manager approval, so the system provides them with a 
reduced view of customer records omitting that field. Managers can access 
the full record, and in the rare instance that a non-manager has a legiti-
mate need, they can ask a manager to look it up. Employees help customers 
in many ways, one of which is providing replacement tax documents if, for  
some reason, customers did not receive theirs in the mail. After confirm-
ing the customer’s identity, the employee requests a duplicate form (a 
PDF), which they print out and mail to the customer. The problem with 
this system is that the customer’s tax ID, which the employee should 
not have access to, appears on the tax form: that’s a failure of Complete 
Mediation. A dishonest employee could request any customer’s tax form, 
as if for a replacement, just to learn their tax ID, defeating the policy pre-
venting disclosure to employees.

The best way to honor this pattern is, wherever possible, to have a single 
point where a particular security decision occurs. This is often known as a 
guard or, informally, a bottleneck. The idea is that all accesses to a given asset 
must go through one gate. Alternatively, if that is infeasible and multiple 
pathways need guards, then all checks for the same access should be func-
tionally equivalent and ideally implemented as identical code. 

In practice, this pattern can be challenging to accomplish consistently. 
There are different degrees of compliance, depending on the guards in 
place:

High compliance

Resource access only allowed via one common routine (bottleneck 
guard)

Medium compliance

Resource access in various places, each guarded by an identical authori-
zation check (common multiple guards)

Low compliance

Resource access in various places, variously guarded by inconsistent 
authorization checks (incomplete mediation)



64   Chapter 4

A counter-example demonstrates why designs with simple authorization 
policies that concentrate authorization checks in a single bottleneck code 
path for a given resource are the best way to get this pattern right. A Reddit 
user recently reported a case of how easy it is to get it wrong: 

I saw that my 8-year-old sister was on her iPhone 6 on iOS 12.4.6 
using YouTube past her screen time limit. Turns out, she discov-
ered a bug with screen time in messages that allows the user to 
use apps that are available in the iMessage App Store.

Apple designed iMessage to include its own apps, making it possible to 
invoke the YouTube app in multiple ways, but it didn’t implement the 
screen-time check on this alternate path to video watching—a classic fail-
ure of Complete Mediation. 

Avoid having multiple paths for accessing the same resource, each 
with custom code that potentially works slightly differently, because any 
discrepancies could mean weaker guards on some paths than on others. 
Multiple guards would require implementing the same essential check 
multiple times, and would be more difficult to maintain because you’d 
need to make matching changes in several places. The use of multiple 
guards incurs more chances of making an error and more work to thor-
oughly test.

Least Common Mechanism
Maintain isolation between independent processes by minimizing shared 
mechanisms. 

To best appreciate what this means and how it helps, let’s consider 
an example. The kernel of a multiuser operating system manages system 
resources for processes running in different user contexts. The design of 
the kernel fundamentally ensures the isolation of processes unless they 
explicitly share a resource or a communication channel. Under the covers, 
the kernel maintains various data structures necessary to service requests 
from all user processes. This pattern points out that the common mecha-
nism of these structures could inadvertently bridge processes, and therefore 
it’s best to minimize such opportunities. For example, if some functionality 
can be implemented in userland code, where the process boundary neces-
sarily isolates it to the process, the functionality will be less likely to some-
how bridge user processes. Here, the term bridge specifically means either 
leaking information, or allowing one process to influence another without 
authorization.

If that still feels abstract, consider this non-software analogy. You visit 
your accountant to review your tax return the day before the filing deadline. 
Piles of papers and folders cover the accountant’s desk like miniature sky-
scrapers. After shuffling through the chaotic mess, they pull out your paper-
work and start the meeting. While waiting, you can see tax forms and bank 
statements with other people’s names and tax IDs in plain sight. Perhaps 
your accountant accidentally jots a quick note about your taxes in someone 
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else’s file by mistake. This is exactly the kind of bridge between independent 
parties, created because the accountant uses the desktop as a common work-
space, that the Least Common Mechanism strives to avoid. 

Next year, you hire a different accountant, and when you meet with 
them, they pull your file out of a cabinet. They open it on their desk, which 
is neat, with no other clients’ paperwork in sight. That’s how to do Least 
Common Mechanism right, with minimal risk of mix-ups or nosy clients 
seeing other documents.

In the realm of software, apply this pattern by designing services that 
interface to independent processes or different users. Instead of a mono-
lithic database with everyone’s data in it, can you provide each user with 
a separate database or otherwise scope access according to the context? 
There may be good reasons to put all the data in one place, but when you 
choose not to follow this pattern, be alert to the added risk and explicitly 
enforce the necessary separation. Web cookies are a great example of using 
this pattern because each client stores its own cookie data independently.

Redundancy
Redundancy is a core strategy for safety in engineering that’s reflected in 
many common-sense practices, such as spare tires for cars. These patterns 
show how to apply it to make software more secure.

Defense in Depth
Combining independent layers of protection makes for a stronger overall 
defense that is often synergistically far more effective than any single layer.

This powerful technique is one of the most important patterns we have 
for making inevitably bug-ridden software systems more secure than their 
components. Visualize a room that you want to convert to a darkroom by 
putting plywood over the window. You have plenty of plywood, but some-
body has randomly drilled several small holes in every sheet. Nail up just 
one sheet, and numerous pinholes ruin the darkness. Nail a second sheet 
on top of that, and unless two holes just happen to align, you now have 
a completely dark room. A security checkpoint that utilizes both a metal 
detector and a pat-down is another example of this pattern.

In the realm of software design, deploy Defense in Depth by layering two 
or more independent protection mechanisms to enforce a particularly criti-
cal security decision. Like the holey plywood, there might be flaws in each 
of the implementations, but the likelihood that any given attack will pen-
etrate both is minuscule, akin to having two plywood holes just happen to 
line up and let light through. Since two independent checks require double 
the effort and take twice as long, you should use this technique sparingly.

A great example of this technique that balances the effort and over-
head against the benefit is the implementation of a sandbox, a container in 
which untrusted arbitrary code can run safely. (Modern web browsers run 
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WebAssembly in a secure sandbox.) Running untrusted code in your system 
could have disastrous consequences if anything goes wrong, justifying the 
overhead of multiple layers of protection (Figure 4-2). 

Sandbox

Sandbox loader

Code interpreter

Code
validator

Submit code

Valid

Rule
violation

Code

Resources

Execution
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REJECT

Figure 4-2: An example of a sandbox as the Defense in Depth pattern

Code for sandbox execution first gets scanned by an analyzer (defense 
layer one), which examines it against a set of rules. If any violation occurs, 
the system rejects the code completely. For example, one rule might forbid 
the use of calls into the kernel; another rule might forbid the use of specific 
privileged machine instructions. If and only if the code passes the scan-
ner, it then gets loaded into an interpreter that runs the code while also 
enforcing a number of restrictions intended to prevent the same kinds of 
overprivileged operations. For an attacker to break this system, they must 
first get past the scanner’s rule checking and also trick the interpreter into 
executing the forbidden operation. This example is especially effective 
because code scanning and interpretation are fundamentally different, so 
the chances of the same flaw appearing in both layers is low, especially if 
they’re developed independently. Even if there is a one-in-a-million chance 

https://webassembly.org/
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that the scanner misses a particular attack technique, and the same goes for 
the interpreter, once they’re combined, the total system has about a one-in-
a-trillion chance of actually failing. That’s the power of this pattern.

Separation of Privilege
Two parties are more trustworthy than one.

Also known as Separation of Duty, the Separation of Privilege pattern refers 
to the indisputable fact that two locks are stronger than one when those 
locks have different keys entrusted to two different people. While it’s pos-
sible that those two people may be in cahoots, that rarely happens; plus, 
there are good ways to minimize that risk, and in any case it’s way better 
than relying entirely on one individual.

For example, safe deposit boxes are designed such that a bank main-
tains the security of the vault that contains all the boxes, and each box 
holder has a separate key that opens their box. Bankers cannot get into any 
of the boxes without brute-forcing them, such as by drilling the locks, yet 
no customer knows the combination that opens the vault. Only when a cus-
tomer gains access from the bank and then uses their own key can their box 
be opened.

Apply this pattern when there are distinct overlapping responsibilities 
for a protected resource. Securing a datacenter is a classic case: the data-
center has a system administrator (or a team of them for a big operation) 
responsible for operating the machines with superuser access. In addition, 
security guards control physical access to the facility. These separate duties, 
paired with corresponding controls of the respective credentials and access 
keys, should belong to employees who report to different executives in the 
organization, making collusion less likely and preventing one boss from 
ordering an extraordinary action in violation of protocol. Specifically, the 
admins who work remotely shouldn’t have physical access to the machines 
in the datacenter, and the people physically in the datacenter shouldn’t 
know any of the access codes to log in to the machines, or the keys needed 
to decrypt any of the storage units. It would take two people colluding, one 
from each domain of control, to gain both physical and admin access in 
order to fully compromise security. In large organizations, different groups 
might be responsible for various datasets managed within the datacenter as 
an additional degree of separation.

The other use of this pattern, typically reserved for the most critical 
functions, is to split one responsibility into multiple duties to avoid any 
serious consequences as a result of a single actor’s mistake or malicious 
intent. As extra protection against a backup copy of data possibly leaking, 
you could encrypt it twice with different keys entrusted separately, so that 
it can be used only with the help of both parties. An extreme example, 
triggering a nuclear missile launch, requires two keys turned simultane-
ously in locks 10 feet apart, ensuring that no individual acting alone 
could possibly actuate it.

Secure your audit logs by Separation of Privilege, with one team respon-
sible for the recording and reviewing of events and another for initiating the 
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events. This means that the admins can audit user activity, but a separate 
group needs to audit the admins. Otherwise, a bad actor could block the 
recording of their own corrupt activity or tamper with the audit log to cover 
their tracks.

You can’t achieve Separation of Privilege within a single computer 
because an administrator with superuser rights has full control, but there 
are still many ways to approximate it to good effect. Implementing a design 
with multiple independent components can still be valuable as a mitigation, 
even though an administrator can ultimately defeat it, because it makes 
subversion more complicated; any attack will take longer and the attacker 
is more likely to make mistakes in the process, increasing their likelihood 
of being caught. Strong Separation of Privilege for administrators could be 
designed by forcing the admin to work via a special ssh gateway under sepa-
rate control that logged their session in full detail and possibly imposed 
other restrictions.

Insider threats are difficult, or in some cases impossible, to eliminate, 
but that doesn’t mean mitigations are a waste of time. Simply knowing 
that somebody is watching is, in itself, a large deterrent. Such precautions 
are not just about distrust: honest staff should welcome any Separation of 
Privilege that adds accountability and reduces the risk posed by their own 
mistakes. Forcing a rogue insider to work hard to cleanly cover their tracks 
slows them down and raises the odds of their being caught red-handed. 
Fortunately, human beings have well-evolved trust systems for face-to-face 
encounters with coworkers, and as a result, insider duplicity is extremely 
rare in practice.

Trust and Responsibility
Trust and responsibility are the glue that makes cooperation work. Software 
systems are increasingly interconnected and interdependent, so these pat-
terns are important guideposts.

Reluctance to Trust
Trust should be always be an explicit choice, informed by solid evidence.

This pattern acknowledges that trust is precious, and so urges skepticism. 
Before there was software, criminals exploited people’s natural inclina-
tion to trust others, dressing up as workmen to gain access, selling snake 
oil, or perpetrating an endless variety of other scams. Reluctance to Trust 
tells us not to assume that a person in a uniform is necessarily legit, and to 
consider that the caller who says they’re with the FBI may be a trickster. In 
software, this pattern applies to checking the authenticity of code before 
installing it, and requiring strong authentication before authorization.

The use of HTTP cookies is a great example of this pattern, as Chapter 11 
explains in detail. Web servers set cookies in their response to the client, 
expecting clients to send back those cookies with future requests. But since 
clients are under no actual obligation to comply, servers should always take 
cookies with a grain of salt, and it’s a huge risk to absolutely trust that clients 
will always faithfully perform this task. 
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Reluctance to Trust is important even in the absence of malice. For 
example, in a critical system, it’s vital to ensure that all components are 
up to the same high standards of quality and security so as not to compro-
mise the whole. Poor trust decisions, such using code from an anonymous 
developer (which might contain malware, or simply be buggy) for a critical 
function quickly undermines security. This pattern is straightforward and 
rational, yet can be challenging in practice because people are naturally 
trusting and it can feel paranoid to withhold trust.

Accept Security Responsibility
All software professionals have a clear duty to take responsibility for secu-
rity; they should reflect that attitude in the software they produce. 

For example, a designer should include security requirements when 
vetting external components to incorporate into the system. And at the 
interface between two systems, both sides should explicitly take on certain 
responsibilities they will honor, as well as confirm any guarantees they 
depend on the caller to uphold. 

The anti-pattern that you don’t want is to someday encounter a problem 
and have two developers say to each other, “I thought you were handling 
security, so I didn’t have to.” In a large system, both sides can easily find 
themselves pointing the finger at the other. Consider a situation where 
component A accepts untrusted input (for example, a web frontend server 
receiving an anonymous internet request) and passes it through, possibly 
with some processing or reformatting, to business logic in component B. 
Component A could take no security responsibility at all and blindly pass 
through all inputs, assuming B will handle the untrusted input safely with 
suitable validation and error checking. From component B’s perspective, 
it’s easy to assume that the frontend validates all requests and only passes 
safe requests on to B, so there is no need for B to worry about this. The right 
way to handle this situation is by explicit agreement; decide who validates 
requests and what guarantees to provide downstream, if any. For maximum 
safety, use Defense in Depth, where both components independently vali-
date the input.

Consider another all-too-common case, where the responsibility gap 
occurs between the designer and user of the software. Recall the example 
of configuration settings from our discussion of the Secure by Default pat-
tern, specifically when an insecure option is given. If the designer knows a 
configurable option to be less secure, they should carefully consider whether 
providing that option is truly necessary. That is, don’t just give users an 
option because it’s easy to do, or because “someone, someday, might want 
this.” That’s tantamount to setting a trap that someone will eventually fall 
into unwittingly. When valid reasons for a potentially risky configuration 
exist, first consider methods of changing the design to allow a safe way of 
solving the problem. Barring that, if the requirement is inherently unsafe, 
the designer should advise the user and protect them from configuring 
the option when unaware of the consequences. Not only is it important to 
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document the risks and suggest possible mitigations to offset the vulnerabil-
ity, but users should also receive clear feedback—ideally, something better 
than the responsibility-ditching “Are you sure? (Learn more: <link>)” dialog.

W H AT’S W RONG W IT H T HE “A R E YOU SUR E” DI A LOG?

This author personally considers “Are you sure?” dialogs and their ilk to almost 
always be a failure of design, and one that also often compromises security. I 
have yet to come across an example in which such a dialog is the best possible 
solution to the problem. When there are security consequences, this practice 
runs afoul of the Accept Security Responsibility pattern, in that the designer is 
foisting responsibility on to the user, who may well not be “sure” but has run out 
of options. To be clear, in these remarks I would not include normal confirma-
tions, such as rm(1) command interactive prompts or other operations where it’s 
important to avoid accidental operation.

These dialogs can fall victim to the dialog fatigue phenomenon, in which 
people trying to get something done reflexively dismiss dialogs, almost univer-
sally considering them hindrances rather than help. As security conscious as 
I am, when presented with these dialogs I, too, wonder, “How else can I do 
what I want to do?” My choices are to either give up on what I want to do or 
proceed at my own considerable risk—and I can only guess at exactly what 
that risk is, since even if there is a “learn more” text provided, it never seems to 
provide a good solution. At this point, “Are you sure?” only signals to me that 
I’m about to do something I’ll potentially regret, without explaining exactly what 
might happen and implying there likely is no going back. 

I’d like to see a new third option added to these dialogs—“No, I’m not 
sure but proceed anyway”—and have that logged as a severe error because 
the software has failed the user. For any situation where security is critical, 
scrutinize examples of this sort of responsibility offloading and treat them as 
significant bugs to be eventually resolved. Exactly how to eliminate these will 
depend on the particulars, but there are some general approaches to accepting 
responsibility. Be clear as to precisely what is about to happen and why. Keep 
the wording concise, but provide a link or equivalent reference to a complete 
explanation and good documentation. Avoid vague wording (“Are you sure you 
want to do this?”) and show exactly what the target of the action will be (don’t 
let the dialog box obscure important information). Never use double negatives 
or confusing phrasing (“Are you sure you want to go back?” where answering 
“No” selects the action). If possible, provide an undo option; a good pattern, 
seen more these days, is passively offering an undo following any major action. 
If there is no way to undo, then in the linked documentation, offer a work-
around, or suggest backing up data beforehand if unsure. Let’s strive to reduce 
these Hobson’s choices in quantity, and ideally confine them to use by profes-
sional administrators who have the know-how to accept responsibility.
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Anti-Patterns
Learn to see in another’s calamity the ills which you should avoid.

—Publilius Syrus

Some skills are best learned by observing how a master works, but another 
important kind of learning comes from avoiding the past mistakes of oth-
ers. Beginning chemists learn to always dilute acid by adding the acid to a 
container of water—never the reverse, because in the presence of a large 
amount of acid, the first drop of water reacts suddenly, producing a lot of 
heat that could instantly boil the water, expelling water and acid explosively. 
Nobody wants to learn this lesson by imitation, and in that spirit, I present 
here several anti-patterns best avoided in the interests of security. 

The following short sections list a few software security anti-patterns. 
These patterns may generally carry security risks, so they are best avoided, 
but they are not actual vulnerabilities. In contrast to the named patterns 
covered in the previous sections, which are generally recognizable terms, 
some of these don’t have well-established names, so I have chosen descrip-
tive monikers here for convenience.

Confused Deputy
The Confused Deputy problem is a fundamental security challenge that is 
at the core of many software vulnerabilities. One could say that this is the 
mother of all anti-patterns. To explain the name and what it means, a short 
story is a good starting point. Suppose a judge issues a warrant, instruct-
ing their deputy to arrest Norman Bates. The deputy looks up Norman’s 
address, and arrests the man living there. The man insists there is a mis-
take, but the deputy has heard that excuse before. The plot twist of our 
story (which has nothing to do with Psycho) is that Norman anticipated 
getting caught and for years has used a false address. The deputy, confused 
by this subterfuge, used their arrest authority wrongly; you could say that 
Norman played them, managing to direct the deputy’s duly granted author-
ity to his own malevolent purposes. (The despicable crime of swatting—
falsely reporting an emergency to direct police forces against innocent 
victims—is a perfect example of the Confused Deputy problem, but I didn’t 
want to tell one of those sad stories in detail.)

Common examples of confused deputies include the kernel when 
called by userland code, or a web server when invoked from the internet. 
The callee is a deputy because the higher-privilege code is invoked to do 
things on behalf of the lower-privilege caller. This risk derives directly 
from the trust boundary crossing, which is why those are of such acute 
interest in threat modeling. In later chapters, numerous ways of confusing 
a deputy will be covered, including buffer overflows, poor input validation, 
and cross-site request forgery (CSRF) attacks, just to name a few. Unlike 
human deputies, who can rely on instinct, past experience, and other cues 
(including common sense), software is trivially tricked into doing things it 
wasn’t intended to, unless it’s designed and implemented with all necessary 
precautions fully anticipated.
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Intention and Malice

To recap from Chapter 1, for software to be trustworthy, there are two 
requirements: it must be built by people you can trust are both honest and 
competent to deliver a quality product. The difference between the two 
conditions is intention. The problem with arresting Norman Bates wasn’t 
that the deputy was crooked; it was failing to properly ID the arrestee. Of 
course, code doesn’t disobey or get lazy, but poorly-written code can easily 
work in ways other than how it was intended. While many gullible computer 
users and occasionally even technically adept software professionals do get 
tricked into trusting malicious software, many attacks work by exploiting a 
Confused Deputy in software that is duly trusted but happens to be flawed. 

Often, Confused Deputy vulnerabilities arise when the context of the 
original request gets lost earlier in the code—for example, if the requester’s 
identity is no longer available. This sort of confusion is especially likely in 
common code shared by both high- and low-privilege invocations. Figure 4-3 
shows what such an invocation looks like.

Low
… call Deputy() ...

Trust: Low

Deputy
… call Utility() ...

Trust: High 

Utility
… doSafe …

… doDangerous ... 

Trust: High 

High
… call Deputy() ...

Trust: High

Effective
privilege
is Low

Effective
privilege
is High

Figure 4-3: An example of the Confused Deputy anti-pattern

The Deputy code in the center performs work for both low- and high-
privilege code. When invoked from High on the right, it may do potentially 
dangerous operations in service of its trusted caller. Invocation from Low 
represents a trust boundary crossing, so Deputy should only do safe opera-
tions appropriate for low-privilege callers. Within the implementation, Deputy 
uses a subcomponent, Utility, to do its work. Code within Utility has no 
notion of high- and low-privilege callers, and hence is liable to mistakenly do 
potentially dangerous operations on behalf of Deputy that low-privilege call-
ers should not be able to do. 
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Trustworthy Deputy

Let’s break down how to be a trustworthy deputy, beginning with a consid-
eration of where the danger lies. Recall that trust boundaries are where the 
potential for confusion begins, because the goal in attacking a Confused 
Deputy is to leverage its higher privilege. So long as the deputy understands 
the request and who is requesting it, and the appropriate authorization 
checks happen, everything should be fine. 

Recall the previous example involving the Deputy code, where the prob-
lem occurred in the underlying Utility code that did not contend with the 
trust boundary when called from Low. In a sense, Deputy unwittingly made 
Utility a Confused Deputy. If Utility was not intended to defend against low-
privilege callers, then either Deputy needs to thoroughly shield it from being 
tricked, or Utility may require modification to be aware of low-privilege 
invocations.

Another common Confused Deputy failing occurs in the actions taken 
on behalf of the request. Data hiding is a fundamental design pattern where 
the implementation hides the mechanisms it uses behind an abstraction, 
and the deputy works directly on the mechanism though the requester 
cannot. For example, the deputy might log information as a side effect of 
a request, but the requester has no access to the log. By causing the deputy 
to write the log, the requester is leveraging the deputy’s privilege, so it’s 
important to beware of unintended side effects. If the requester can present 
a malformed string to the deputy that flows into the log with the effect of 
damaging the data and making it illegible, that’s a Confused Deputy attack 
that effectively wipes the log. In this case, the defense begins by noting 
that a string from the requester can flow into the log and, considering the 
potential impact that might have, requiring input validation, for example.

The Code Access Security model, mentioned in Chapter 3, is designed 
specifically to prevent Confused Deputy vulnerabilities from arising. When 
low-privilege code calls high-privilege deputy code, the effective permis-
sions are reduced accordingly. When the deputy needs its greater privileges, 
it must assert them explicitly, acknowledging that it is working at the behest 
of lower-privilege code.

In summary, at trust boundaries, handle lower-trust data and lower-
privilege invocations with care so as not to become a Confused Deputy. 
Keep the context associated with requests throughout the process of per-
forming the task so that authorization can be fully checked as needed. 
Beware that side effects do not allow requesters to exceed their authority. 

Backflow of Trust
Backflow of Trust is present whenever a lower-trust component controls a 
higher-trust component. An example of this is when a system administrator 
uses their personal computer to remotely administer an enterprise system. 
While the person is duly authorized and trusted, their home computer isn’t 
within the enterprise regime and shouldn’t be hosting sessions using admin 
rights. In essence, you can think of this as a structural Elevation of Privilege 
just waiting to happen.
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While nobody in their right mind would fall into this anti-pattern in 
real life, it’s surprisingly easy to miss in an information system. Remember 
that what counts here is not the trust you give components, but how much 
trust the components merit. Threat modeling can surface potential prob-
lems of this variety through an explicit look at trust boundaries.

Third-Party Hooks
Another form of the Backflow of Trust anti-pattern is when hooks in a compo-
nent within your system provide a third party undue access. Consider a criti-
cal business system that includes a proprietary component performing some 
specialized process within the system. Perhaps it uses advanced AI to predict 
future business trends, consuming confidential sales metrics and updating 
forecasts daily. The AI component is cutting-edge, and so the company that 
makes it must tend to it daily. To make it work like a turnkey system, it needs a 
direct tunnel through the firewall to access the administrative interface. 

This also is a perverse trust relationship because this third party has 
direct access into the heart of the enterprise system, completely outside the 
purview of the administrators. If the AI provider were dishonest, or compro-
mised, they could easily exfiltrate internal company data, or worse, and there 
would be no way of knowing. Note that a limited type of hook may not have 
this problem and would be acceptable. For example, if the hook implements 
an auto-update mechanism and is only capable of downloading and install-
ing new versions of the software, it may be fine, given a suitable level of trust.

Unpatchable Components
It’s almost invariably a matter of when, not if, someone will discover a 
vulnerability in any given popular component. Once such a vulnerability 
becomes public knowledge, unless it is completely disconnected from any 
attack surface, it needs patching promptly. Any component in a system that 
you cannot patch will eventually become a permanent liability.

Hardware components with preinstalled software are often unpatch-
able, but for all intents and purposes, so is any software whose publisher has 
ceased supporting it or gone out of business. In practice, there are many 
other categories of effectively unpatchable software: unsupported software 
provided in binary form only; code built with an obsolete compiler or other 
dependency; code retired by a management decision; code that becomes 
embroiled in a lawsuit; code lost to ransomware compromise; and, remark-
ably enough, code written in a language such as COBOL that is so old that, 
these days, experienced programmers are in short supply. Major operating 
system providers typically provide support and upgrades for a certain time 
period, after which the software becomes effectively unpatchable. Even 
software that is updatable may effectively be no better if the maker fails to 
provide timely releases. Don’t tempt fate by using anything you are not con-
fident you can update quickly when needed.

N O T E 	 See Appendix D for a cheat sheet listing the secure design patterns and anti-patterns 
presented in this chapter.



5
C R Y P T O G R A P H Y

Cryptography is typically bypassed, not penetrated.
—Adi Shamir

Back in high school, I nearly failed driver’s 
education. This was long ago, when public 

schools had funding to teach driving and 
when gasoline contained lead (nobody had 

threat modeled that brilliant idea). My first attempts 
at driving had not gone well. I specifically recall the 
day I first got behind the wheel of the Volkswagen 
Beetle, a manual transmission car, and the consider-
able trepidation on the stony face of the PE coach  
riding shotgun. I soon learned that pushing in the clutch while going 
downhill caused the car to speed up, not slow down as I’d intended. But 
from that mistake onward, something clicked, and suddenly I could drive. 
The coach expressed unguarded surprise, and relief, at this unlikely turn 
of events. With hindsight, I believe that my breakthrough was due to the 
hands-on feel of driving stick, which gave me a more direct connection to 
the vehicle, enabling me to drive by instinct for the first time.
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Just as driver’s ed teaches students how to drive a car safely, but not how 
to design or do major repairs, this chapter introduces the basic toolset of 
cryptography by discussing how to use it properly, without going into the 
nuts and bolts of how it works. To make crypto comprehensible to the less 
mathematically inclined, this chapter eschews the math, except in one 
instance, whose inclusion I couldn’t resist because it’s so clever. 

This is an unconventional approach to the topic, but also an impor-
tant one. Crypto tools are underutilized precisely because cryptography 
has come to be seen as the domain of experts with a high barrier of entry. 
Modern libraries provide cryptographic functionality, but developers need 
to know how to use these (and how to use them correctly) for them to be 
effective. I hope that this chapter serves as a springboard to provide useful 
intuitions about the potential uses of crypto. You should supplement this 
with further research as needed for your specific uses. 

Crypto Tools
At its core, much of modern crypto derives from pure mathematics, so 
when used properly, it really works. This doesn’t mean the algorithms are 
provably impenetrable, but that it will take major breakthroughs in math-
ematics to crack them.  

Crypto provides a rich array of security tools, but for them to be effec-
tive, you must use them thoughtfully. As this book repeatedly recommends, 
rely on high-quality libraries of code that provide complete solutions. It’s 
important to choose a library that provides an interface at the right level of 
abstraction, so you fully understand what it is doing. 

The history of cryptography and the mathematics behind it are fascinat-
ing, but for the purposes of creating secure software, the modern toolbox 
consists of a modest collection of basic tools. The following list enumerates 
the basic crypto security functions and describes what each does, as well as 
what the security of each depends on:

•	 Random numbers are useful as padding and nonces, but only if they are 
unpredictable.

•	 Message digests (or hash functions) serve as a fingerprint of data, but only 
if impervious to collisions.

•	 Symmetric encryption conceals data based on a secret key the parties share.

•	 Asymmetric encryption conceals data based on a secret the recipient knows.

•	 Digital signatures authenticate data based on a secret only the signer 
knows.

•	 Digital certificates authenticate signers based on trust in a root certificate.

•	 Key exchange allows two parties to establish a shared secret over an open 
channel, despite eavesdropping.

The rest of this chapter will cover these tools and their uses in more 
detail.
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Random Numbers
Human minds struggle to grasp the concept of randomness. For security 
purposes, we can focus on unpredictability as the most important attribute of 
random numbers. As we shall see, these are critical in cases where we must 
prevent attackers from guessing correctly, in the same way that a predict-
able password would be weak. Applications for random numbers include 
authentication, hashing, encryption, and key generation, each of which 
depends on unpredictability. The following subsections describe the two 
classes of random numbers available to software, how they differ in predict-
ability, and when to use which kind.

Pseudo-Random Numbers 
Pseudo-random number generators (PRNGs) use deterministic computations 
to produce what looks like an infinite sequence of random numbers. The 
outputs they generate can easily exceed our human capacity for pattern 
detection, but analysis and adversarial software may easily learn to mimic a 
PRNG, disqualifying these from use in security contexts because they are 
predictable. 

However, since calculating pseudo-random numbers is very fast, they’re 
ideal for a broad range of non-security uses. If you want to run a Monte 
Carlo simulation or randomly assign variant web page designs for A/B  
testing, for example, a PRNG is the way to go, because even in the unlikely 
event that someone predicts the algorithm, there’s no real threat. 

Taking a look at an example of a pseudo-random number may help 
solidify your understanding of why it is not truly random. Consider this 
digit sequence: 

94657640789512694683983525957098258226205224894077267194782684826

Is this sequence random? There happen to be relatively few 1s and 3s, 
and disproportionally many 2s, but it wouldn’t be unreasonable to find 
these deviations from a flat distribution in a truly random number. Yet as 
random as this sequence appears, it’s easy to predict the next digits if you 
know the trick. And as the pattern of Transparent Design cautions us, it’s 
risky to assume we can keep our methods secret. In fact, if you entered this 
string of digits in a simple web search, you would learn that they are the 
digits of pi 200 decimals out, and that the next few digits will be 0147. 

As the decimals of an irrational number, the digits of pi have a statisti-
cally normal distribution and are, in a colloquial sense, entirely random. On 
the other hand, as an easily computed and well-known number, this sequence 
is completely predictable, and hence unsuitable for security purposes.

Cryptographically Secure Pseudo-Random Numbers
Modern operating systems provide cryptographically secure pseudo-random 
number generator (CSPRNG) functions to address the shortcomings of PRNGs 
when you need random bits for security. You may also see this written as 
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CSRNG or CRNG; the important part is the “C,” which means it’s secure for 
crypto. The inclusion of “pseudo” is an admission that these, too, may fall 
short of perfect randomness, but experts have deemed them unpredictable 
enough to be secure for all practical purposes.

Use this kind of random number generator when security is at stake. 
In other words, if the hypothetical ability to predict the value of a suppos-
edly random number weakens your security, use a CSPRNG. This applies to 
every security use of random numbers mentioned in this book.

Truly random data, by definition, isn’t generated by an algorithm, but 
comes from an unpredictable physical process. A Geiger counter could be 
such a hardware random number generator (HRNG), also known as an entropy 
source, because the timing of radioactive decay events is random. HRNGs 
are built into many modern processors, or you can buy a hardware add-on. 
Software can also contribute entropy, usually by deriving it from the timing of 
events such as disk accesses, keyboard and mouse input events, and network 
transmissions that depend on complex interactions with external entities. 

One major internet tech company uses an array of lava lamps to color-
fully generate random inputs. But consider a threat model of this technique: 
because the company chooses to display these lava lamps in its corporate 
office, and in the reception area no less, potential attackers might be able 
to observe the state of this input and make an educated guess about the 
entropy source. In practice, however, the lava lamps merely add entropy to 
a (presumably) more conventional entropy source behind the scenes, miti-
gating the risk that this display will lead to an easy compromise of the com-
pany’s systems.

Entropy sources need time to produce randomness, and a CSPRNG will 
slow down to a crawl if you demand too many bits too fast. This is the cost 
of secure randomness, and why PRNGs have an important purpose as a reli-
ably fast alternative. Use CSPRNGs sparingly unless you have a fast HRNG, 
and where throughput is an issue, test that it won’t become a bottleneck.

Message Authentication Codes
A message digest (also called a hash) is a fixed-length value computed from a 
message using a one-way function. This means that each unique message will 
have a specific digest, and any tampering will result in a different digest value. 
Being one-way is important because it means the digest computation is irre-
versible, so it won’t be possible for an attacker to find a different message that 
happens to have the same digest result. If you know that the digest matches, 
then you know that the message content has not been tampered with.

If two different messages produce the same digest, we call this a collision. 
Since digests map large chunks of data to fixed-length values, collisions are 
inevitable because there are more possible messages than there are digest 
values. The defining feature of a good digest function is that collisions are 
extremely difficult to find. A collision attack succeeds if an attacker finds two 
different inputs that produce the same digest value. The most devastating 
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kind of attack on a digest function is a preimage attack, where, given a specific 
digest value, the attacker can find an input that produces it. 

Cryptographically secure digest algorithms are strong one-way functions 
that make collisions so unlikely that you can assume they never happen. This 
assumption is necessary to leverage the power of digests because it means 
that by comparing two digests for equality, you are essentially comparing 
the full messages. Think of this as comparing two fingerprints (which is 
also an informal term for a digest) to determine if they were made by the 
same finger.

If everyone used the same digest function for everything, then attackers 
could intensively study and analyze it, and they might eventually find a few 
collisions or other weaknesses. One way to guard against this is to use keyed 
hash functions, which take an extra secret key parameter that transforms the 
digest computation. In effect, a keyed hash function that takes a 256-bit 
key is a class of 2256 different functions. These functions are also called 
message authentication codes (MACs), because so long as the hash function 
key is secret, attackers cannot forge them. That is, by using a unique key, 
you get a customized digest function of your very own.

Using MACs to Prevent Tampering
MACs are often used to prevent attackers from tampering with data. Suppose 
Alice wants to send a message to Bob over a public channel. The two of them 
have privately shared a certain secret key; they don’t care about eavesdrop-
ping, so they don’t need to encrypt their data, but fake messages would be 
a problem if undetected. Say the evil Mallory is able to tamper with com-
munications on the wire, but she does not know the key. Alice uses the key 
to compute and send a MAC along with each message. When Bob receives 
a communication, he computes the MAC of the received message and com-
pares it to the accompanying MAC that Alice sent; if they don’t match, he 
ignores it as bogus.

How secure is this arrangement at defending against the clever Mallory? 
First, let’s consider the obvious attacks:

•	 If Mallory tampers with the message, its MAC will not match the mes-
sage digest (and Bob will ignore it).

•	 If Mallory tampers with the MAC, it won’t match the message digest 
(and Bob will ignore it).

•	 If Mallory concocts a brand-new message, she will have no way to com-
pute the MAC (and Bob will ignore it).

However, there is one more case that we need to protect against. Can 
you spot another opening for Mallory, and how you might defend against it?

Replay Attacks
There is a remaining problem with the MAC communication scheme 
described previously, and it should give you an idea of how tricky using 
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crypto tools against a determined attacker is. Suppose that Alice sends daily 
orders to Bob indicating how many widgets she wants delivered the next 
day. Mallory observes this traffic and collects message and MAC pairs that 
Alice sends: she orders three widgets the first day, then five the next. On 
the third day, Alice orders 10 widgets. At this point, Mallory gets an idea of 
how to tamper with Alice’s messages. Mallory intercepts Alice’s message and 
replaces it with a copy of the first day’s message (specifying three widgets), 
complete with the corresponding MAC that Alice has helpfully computed 
already and which Mallory recorded earlier. Of course, this fools Bob.

This is a replay attack, and secure communications protocols need to 
address it. The problem isn’t that the cryptography is weak, it’s that it wasn’t 
used properly. In this case, the root problem is that authentic messages 
ordering three widgets are identical, which is fundamentally a predictability 
problem. 

Secure MAC Communications
There are a number of ways to fix Alice and Bob’s protocol and defeat replay 
attacks, and they all depend on ensuring that messages are always unique 
and unpredictable. A simple fix might be for Alice to include a timestamp in 
the message, with the understanding that Bob should ignore messages with 
old timestamps. Now if Mallory replays Monday’s order of three widgets on 
Wednesday, Bob will notice when he compares the timestamps and detect 
the fraud. However, if the messages are frequent or there’s a lot of network 
latency, then timestamps might not work well.

A more secure solution to the threat of replay attacks would be for Bob  
to send Alice a nonce—a random number for one-time use—before Alice 
sends each message. Then Alice can send back a message along with Bob’s 
nonce and a MAC of the message and nonce combined. This shuts down 
replay attacks because the nonce varies with every exchange. Mallory could 
intercept and change the nonce Bob sends, but Bob would notice if a differ-
ent nonce came back.

Another problem with this simple example is that the messages are short, 
consisting of just a number of widgets. Setting aside the danger of replay 
attacks, very short messages are vulnerable to brute-force attacks. The time 
required to compute a keyed hash function is typically proportional to the 
message data length, and for just a few bits that computation is going to be 
fast. The faster Mallory can try different possible hash function keys, the 
easier it is to guess the right key to match the MAC of an authentic message. 
Knowing the key, Mallory can now impersonate Alice sending messages. 

You can mitigate short message vulnerabilities by padding the messages 
with random bits until they reach a suitable minimum length. Computing 
the MACs for these longer messages takes time, but that’s good as it slows 
down Mallory’s brute-force attack to the point of being infeasible. In fact, 
it’s desirable for hash functions to be expensive computations for just this 
reason. This is a situation where it’s important for the padding to be ran-
dom (as opposed to predictably pseudo-random) to make Mallory work as 
hard as possible.
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Symmetric Encryption
All encryption conceals messages by transforming the plaintext, or origi-
nal message, into an unrecognizable form called the ciphertext. Symmetric 
encryption algorithms use a secret key to customize the message’s transfor-
mation for the private use of the communicants, who must agree on a key 
in advance. The decryption algorithm uses the same secret key to convert 
ciphertext back to plaintext. We call this reversible transformation symmetric 
cryptography because knowledge of the secret key allows you to both encrypt 
and decrypt.

This section introduces a couple of these symmetric encryption algo-
rithms to illustrate their security properties, and explains some of the 
precautions necessary to use them safely.

One-Time Pad
Cryptographers long ago discovered the ideal encryption algorithm, and 
even though, as we shall see, it is almost never actually used, it’s a great 
starting point for discussing encryption due to its utter simplicity. Known 
as the one-time pad, this algorithm requires the communicants to agree on 
a secret, random string of bits as the encryption key in advance. In order to 
encrypt a message, the sender exclusive-ors the message with the key, creating 
the ciphertext. The recipient then exclusive-ors the ciphertext with the same 
corresponding key bits to recover the plaintext message. Recall that in the 
exclusive-or (⊕) operation, if the key bit is a zero, then the corresponding mes-
sage bit is unchanged; if the key bit is a one, then the message bit is inverted. 
Figure 5-1 graphically illustrates a simple example of one-time pad encryption 
and decryption.

Exclusive-or

“Hello”

Alice

Bob

“Hello”

"\xcc\x86\x14\xcf\xe1"

Plaintext:

Secret key:

Exclusive-or

Ciphertext:

Secret key:

Plaintext:

0100100001100101011011000110110001101111

1000010011100011011110001010001110001110

1100110010000110000101001100111111100001

1000010011100011011110001010001110001110

0100100001100101011011000110110001101111

Figure 5-1: Alice and Bob using one-time pad encryption
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Subsequent messages are encrypted using bits further along in the 
secret key bit string. When the key is exhausted, the communicants need to 
somehow agree on a new secret key. There are good reasons it’s a one-time 
key, as I will explain shortly. Assuming that the key is random, the message 
bits either randomly invert or stay the same, so there is no way for attackers 
to discern the original message without knowing the key. Flipping half 
the bits randomly is the perfect disguise for a message, since either showing 
or inverting a large majority of the bits would partially reveal the plain-
text. Impervious to attack by analysis as this may be, it’s easy to see why 
this method is rarely used: the key length limits the message length. 

Let’s consider the prohibition against reusing one-time pad keys. Suppose 
that Alice and Bob use the same secret key K to encrypt two distinct plaintext 
messages, M1 and M2. Mallory intercepts both ciphertexts: M1 ⊕ K and M2 ⊕ K. 
If Mallory exclusive-ors the two encrypted ciphertexts, the key cancels out, 
because when you exclusive-or any number with itself the result is zero (the 
ones invert to zeros, while the zeros are unchanged). The result is a weakly 
encrypted version of the two messages: 

(M1 ⊕ K) ⊕ (M2 ⊕ K) = (M1 ⊕ M2) ⊕ (K ⊕ K) = M1 ⊕ M2

While this doesn’t directly disclose the plaintext, it begins to leak infor-
mation. Having stripped away the key bits, analysis could reveal clues about 
patterns within the messages. For example, if either message contains a 
sequence of zero bits, then the corresponding bits of the other message will 
leak through. 

The one-time key use limitation is a showstopper for most applications: 
Alice and Bob may not know how much data they want to encrypt in advance, 
making it infeasible to decide on how long the key will need to be.

Advanced Encryption Standard 
The Advanced Encryption Standard (AES) is a frequently used modern sym-
metric encryption block cipher algorithm. In a block cipher, long messages 
are broken up into block-sized chunks, and shorter messages are padded 
with random bits to fill out the remainder of the block. AES encrypts 128-
bit blocks of data using a secret key that is typically 256 bits long. Alice uses 
the same agreed-upon secret key to encrypt data that Bob uses to decrypt. 

Let’s consider some possible weaknesses. If Alice sends identical mes-
sage blocks to Bob over time, these will result in identical ciphertext, and 
clever Mallory will notice these repetitions. Even if Mallory can’t decipher 
the meaning of these messages, this represents a significant information 
leak that requires mitigation. The communication is also vulnerable to a 
replay attack because if Alice can resend the same ciphertext to convey the 
same plaintext message, then Mallory could do that, too.

Encrypting the same message in the same way is known as electronic code 
book (ECB) mode. Because of the vulnerability to replay attacks, this is usually 
a poor choice. To avoid this problem, you can use other modes that introduce 
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feedback or other differences into subsequent blocks, so that the resulting 
ciphertext depends on the contents of preceding blocks or the position in 
the sequence. This ensures that even if the plaintext blocks are identical, 
the ciphertext results will be completely different. However, while chained 
encryption of data streams in blocks is advantageous, it does impose obliga-
tions on the communicants to maintain context of the ordering to encrypt 
and decrypt correctly. The choice of encryption modes thus often depends 
on the particular needs of the application.

Using Symmetric Cryptography
Symmetric crypto is the workhorse for modern encryption because it’s fast 
and secure when applied properly. Encryption protects data communicated 
over an insecure channel, as well as data at rest in storage. When using sym-
metric crypto, it’s important to consider some fundamental limitations:

Key establishment

Crypto algorithms depend on the prearrangement of secret keys, but 
do not specify how these keys should be established. 

Key secrecy

The effectiveness of the encryption entirely depends on maintaining the 
secrecy of the keys while still having the keys available when needed.

Key size

Larger secret keys are stronger (with a one-time pad being the ideal in 
theory), but managing large keys becomes costly and unwieldy.

Symmetric encryption inherently depends on shared secret keys, and 
unless Alice and Bob can meet directly for a trusted exchange, it’s chal-
lenging to set up. To address this limitation, asymmetric encryption offers 
some surprisingly useful new capabilities that fit the needs of an internet-
connected world.

Asymmetric Encryption
Asymmetric cryptography is a deeply counterintuitive form of encryption, 
and therein lies its power. With symmetric encryption Alice and Bob can 
both encrypt and decrypt messages using the same key, but with asymmetric 
encryption Bob can send secret messages to Alice that he is unable to decrypt. 
Thus, for Bob encryption is a one-way function, while only Alice knows the 
secret that enables her to invert the function (that is, to decrypt the message). 

Asymmetric cryptography uses a pair of keys: a public key for encryp-
tion and a private key for decryption. I will describe how Bob, or anyone in 
the world for that matter, sends encrypted messages to Alice; for a two-way 
conversation, Alice would reply using the same process with Bob’s entirely 
separate key pair. The transformations made using the two keys are inverse 
functions, yet knowing only one of the keys does not help to figure out the 
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other; so if you keep one key secret, then only you can perform that computa-
tion. As a result of this asymmetry, Alice can create a key pair and then pub-
lish one key for the world to see (her public key), enabling anyone to encrypt 
messages that only she can decrypt using her corresponding private key. This 
is revolutionary, because it grants Alice a unique capability based on knowing 
a secret. We shall see in the following pages all that this makes possible.

There are many asymmetric encryption algorithms, but the mathemati-
cal details of these are unimportant to understanding using them as crypto 
tools—what’s important is that you understand the security implications. 
We’ll focus on RSA, as it’s the least mathematically complicated progenitor.

The RSA Cryptosystem
At MIT, I had the great fortune of working with two of the inventors of the 
RSA cryptosystem, and my bachelor’s thesis explored how asymmetric cryp-
tography could improve security. The following simplified discussion fol-
lows the original RSA paper, though (for various technical reasons that we 
don’t need to go into here) modern implementations are more involved.

The core idea of RSA is that it’s easy to multiply two large prime numbers 
together, but given that product, it’s infeasible to factor it into the constitu-
ent primes. To get started, choose a pair of random large prime numbers, 
which you will keep secret. Next, multiply the pair of primes together. From 
the result, which we’ll call N, you can compute a unique key pair. Each of 
these keys, together with N, allows you compute two functions D and E that 
are inverse functions. That is, for any positive integer x < N, D(E(x)) is x, and 
E(D(x)) is also x. Finally, choose one of the keys of the key pair as your private 
key, and publicize to the world the other as the corresponding public key, along 
with N. So long as you keep the private key and the original two primes secret, 
only you can efficiently compute the function D.  

Here’s how Bob encrypts a message for Alice, and how she decrypts it. 
Here the functions EA and DA are based on Alice’s public and private keys, 
respectively, along with N:

•	 Bob encrypts a ciphertext C from message M for Alice using her public 
key: C = EA(M).

•	 Alice decrypts message M from Bob’s ciphertext C using her private 
key: M = DA(C).

Since the public key is not a secret, we assume that the attacker Mallory 
knows it, and this does raise a new concern particular to public key crypto. 
If an eavesdropper can guess a predictable message, they can encrypt vari-
ous likely messages themselves using the public key and compare the results 
to the ciphertext transmitted on the wire. If they ever see matching cipher-
text transmitted, they know the plaintext that produced it. Such a chosen 
plaintext attack is easily foiled by padding messages with a suitable number of 
random bits to make guessing impractical.

RSA was not the first published asymmetric cryptosystem, but it made a 
big splash because cracking it (that is, deducing someone’s private key from 
their public key) requires solving the well-known hard problem of factoring 

https://people.csail.mit.edu/rivest/Rsapaper.pdf
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the product of large prime numbers. Since I was collaborating in a mod-
est way with the inventors of RSA at the time of its public debut, I can offer 
a historical note that may be of interest about its significance then versus 
now. The algorithm was too compute-intensive for the computers of its day, 
so its use required expensive custom hardware. As a result, we envisioned it 
being used only by large financial institutions or military intelligence agen-
cies. We knew about Moore’s law, which proposed that computational power 
increases exponentially over time—but nobody imagined then that 40 years 
later everyday people would routinely use connected mobile smartphones 
with processors capable of doing the necessary number crunching!

Today, RSA is being replaced by newer methods such as elliptic curve 
algorithms. These algorithms, which rely on different mathematics to achieve 
similar capabilities, offer more “bang for the buck,” producing strong 
encryption with less computation. Since asymmetric crypto is typically more 
computationally expensive than symmetric crypto, encryption is usually 
handled by choosing a random secret key, asymmetrically encrypting that, 
and then symmetrically encrypting the message itself.

Digital Signatures
Public key cryptography can also be used to create digital signatures, giv-
ing the receiving party assurance of authenticity. Independent of message 
encryption, Alice’s signature assures Bob that a message is really from her. 
It also serves as evidence of the communication, should Alice deny having 
sent it. As you’ll recall from Chapter 2, authenticity and non-repudiability 
are two of the most important security properties for communication, after 
confidentiality.

Let’s walk through an example to illustrate exactly how this works. 
Alice creates digital signatures using the same key pair that makes public 
key encryption possible. Because only Alice knows the private key, only she 
can compute the signature function SA. Bob, or anyone with the public key 
(and N), can verify Alice’s signature by checking it using the function VA.  
In other words:

•	 Alice signs message M to produce a signature S = SA(M).

•	 Bob verifies that the message M is from Alice by checking if M = VA(S).

There are a few more details to explain so you fully understand how 
digital signatures work. Since verification only relies on the public key, 
Bob can prove to a third party that Alice signed a message without com-
promising Alice’s private key. Also, signing and encrypting messages are 
independent: you can do one, the other, or both as appropriate for the 
application. We won’t tackle the underlying math of RSA in this book, but 
you should know that the signature and decryption functions (both require 
the private key) are in fact the same computation, as are the verification 
and encryption functions (using the public key). To avoid confusion, it’s 
best to call them by different names according to their purpose.
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Figure 5-2 summarizes the fundamental differences between symmet-
ric encryption on the left, and asymmetric on the right. With symmetric 
encryption, signing isn’t possible because both communicants know the 
secret key. The security of asymmetric encryption depends on a private key 
known only to one communicant, so they alone can use it for signatures. 
Since verification only requires the public key, no secrets are disclosed in 
the process. 

Plaintext

Secret
key 

Ciphertext

Symmetric

Only Alice and Bob know
the secret key.

Bob and the whole world know
the public key.

Only Alice knows the private key. 

Plaintext

Public
key 

Private
key 

Ciphertext

Signature

Asymmetric

Decrypt

Encrypt

Sign

Verify

Encrypt

Decrypt

Figure 5-2: A comparison of symmetric and asymmetric cryptography

Digital signatures are widely used to sign digital certificates (the subject 
of the next section), emails, application code, and legal documents, and to 
secure cryptocurrencies such as Bitcoin. By convention, digests of messages 
are signed as a convenience so that one signing operation covers an entire 
document. Now you can appreciate why a successful preimage attack on a 
digest function is very bad. If Mallory can concoct a payment agreement 
with the same message digest, Bob’s promissory note also serves as a valid 
signature for it. 

Digital Certificates
When I was first learning about the RSA algorithm from the inventors, 
we brainstormed at MIT about possible future applications. The defining 
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advantage of public key crypto was the convenience it offered. It let you use 
one key for all of your correspondence, rather than managing separate keys 
for each correspondent, so long as you could announce your public key to 
the world for anyone to use. But how would one do that?

I came up with an answer in my thesis research and the idea has since 
been widely implemented. To promote the new phenomenon of digital 
public key crypto, we needed a new kind of organization, called a certificate 
authority (CA). To get started, a new CA would widely publish its public key. 
In time, operating systems and browsers would preinstall a trustworthy set 
of CA root certificates, which are self-signed with their respective public keys.

The CAs collect public keys from applicants, usually for a fee, and then 
publish a digital certificate for each that lists their name (such as “Alice”) 
and other details about them, along with their public key. The CA signs 
a digest of the digital certificate to ensure its authenticity. In theory, an 
important part of the CA’s service would involve reviewing the application 
to ensure that it really came from Alice, and people would choose to trust a 
CA only if it performed this reliably. In practice, it’s very hard to verify iden-
tities, especially over the internet, and this has proven problematic. 

Once Alice has a digital certificate, she can send people a copy of it when-
ever she wants to communicate with them. If they trust the CA that issued it, 
then they have its public key and can validate the digital certificate signature 
that provides the public key that belongs to “Alice.” The digital certificate is 
basically a signed message from the CA stating that “Alice’s public key is X.” 
At that point, the recipient can immediately start encrypting messages 
for Alice, typically by first sending their own digital certificate in a signed 
message to assure Alice that her message got to the right person.

This simplified explanation of digital certificates focuses on how trusted 
CAs authenticate the association of a name with a public key. In practice, there 
is more to it; people do not always have unique names, names change, corpora-
tions in different states may have the same name, and so on. (Chapter 11 digs 
into some of these complicating issues in the context of web security.) Today, 
digital certificates are used to bind keys to various identities, including web 
server domain names and email addresses, and for a number of specific pur-
poses, such as code signing.

Key Exchange
Whitfield Diffie and Martin Hellman developed a practical key exchange 
algorithm shortly before the invention of RSA. To understand the miracle 
of key exchange, imagine that Alice and Bob have somehow established 
a communication channel, but they have no prior arrangement of a 
secret key, or even a CA to trust as a source of public keys. Incredibly, key 
exchange allows them to establish a secret over an open channel while 
Mallory observes everything. The fact that this is possible is so counterin-
tuitive that in this case I want to show the math so you can see for yourself 
how it works.
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Fortunately, the math is simple enough and, for small numbers, easy to 
compute. The only notation that might be unfamiliar to some readers is the 
suffix (mod p), which means to divide by the integer p to yield the remainder 
of division. For example, 27 (mod 103) is 25, because 128 – 103 = 25. 

This is the basis of the Diffie–Hellman key exchange algorithm:

1.	 Alice and Bob openly agree on a prime number p and a random num-
ber g (1 < g < p).

2.	 Alice picks a random natural number a (1 < a < p), and sends ga (mod p) 
to Bob.

3.	 Bob picks a random natural number b (1 < b < p), and sends gb (mod p) to 
Alice.

4.	 Alice computes S = (gb)a (mod p) as their shared secret S.

5.	 Bob computes S = (ga)b (mod p), getting the same shared secret S as Alice.

Figure 5-3 illustrates a toy example using small numbers to show that 
this actually works. This example isn’t secure, because an exhaustive search 
of about 60 possibilities is easy to do. However, the same math works for big 
numbers, and at the scale of a few hundred digits, it’s wildly infeasible to do 
such an exhaustive search. 

Alice Bob
p = 61, g = 2, OK?

OK!

Each party chooses a random
number < p.

26 mod 61
= 64 – 61

= 3

(gb)a (mod p)
= 66 mod 61

= 46656 mod 61
= 52

27 mod 61
= 128 – 2x61
= 128 – 122

= 6

(ga)b (mod p)
= 37 mod 61

= 2187 mod 61
= 52

6 7

52= =

ga = 3

gb = 6

Figure 5-3: Alice and Bob securely choosing a shared secret via key exchange

In this example, chosen to keep the numbers small, by coincidence 
Alice chooses 6, which happens to equal Bob’s result (gb). That wouldn’t 
happen in practice, but of course the algorithm still works and only Alice 
would notice the coincidence. 
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It’s important that both parties actually choose secure random numbers 
from a CSPRNG in order to prevent Mallory from possibly guessing their 
choices. For example, if Bob used a formula to compute his choice from p 
and g, Mallory might deduce that by observing many key exchanges and 
eventually mimic it, breaking the secrecy of the key exchange.

Key exchange is basically a magic trick that doesn’t require any decep-
tion. Alice and Bob walk in from the wings of the stage with Mallory standing 
right in the middle. Alice calls out numbers, Bob answers, and after two back-
and-forth exchanges Mallory is still clueless. Alice and Bob write their shared 
secret numbers on large cards, and at a signal hold up their cards to reveal 
identical numbers representing the agreed secret.

Today, key exchange is critical to establishing a secure communication 
channel over the internet between any two endpoints. Most applications use 
elliptic curve key exchange because those algorithms are more performant, 
but the concept is much the same. Key exchange is particularly handy in 
setting up secure communication channels (such as with the TLS protocol) 
on the internet. The two endpoints first use a TCP channel—traffic that 
Mallory may be observing—then do key exchange to negotiate a secret with 
the as-yet-unconfirmed opposite communicant. Once they have a shared 
secret, encrypted communication enables a secure private channel. This is 
how any pair of communicants can bootstrap a secure channel without a 
prearranged secret.

Using Crypto
This chapter explained the tools in the crypto toolbox at the “driver’s ed” 
level. Cryptographically secure random numbers add unpredictability 
to thwart attacks based on guessing. Digests are a secure way of distilling 
the uniqueness of data to a corresponding token for integrity checking. 
Encryption, available in both symmetric and asymmetric forms, protects 
confidentiality. Digital signatures are a way of authenticating messages. 
Digital certificates make it easy to share authentic public keys by leverag-
ing trust in CAs. And key exchange rounds out the crypto toolbox, allow-
ing remote parties to securely agree on a secret key via a public network 
connection. 

The comic in Figure 5-4 illustrates the point made by the epigraph 
that opens this chapter: that well-built cryptography is so strong, the major 
threat is that it will be circumvented. Perhaps the most important takeaway 
from this chapter is that it’s crucial to use crypto correctly so you don’t 
inadvertently provide just such an opening for attack.

Crypto can help with many security challenges that arise in the design 
of your software, or which you identify by threat modeling. If your system 
must send data over the internet to a partner datacenter, encrypt it (for con-
fidentiality) and digitally sign it (for integrity)—or you could do it the easy 
way with a TLS secure channel that authenticates the endpoints. Secure 
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digests provide a nifty way to test for data equality, including as MACs, with-
out you needing to store a complete copy of the data. Typically, you will use 
existing crypto services rather than building your own, and this chapter 
gives you an idea of when and how to use them, as well as some of the chal-
lenges involved in using the technology securely.

Figure 5-4: Security versus the $5 wrench (courtesy of Randall  
Munroe, xkcd.com/538)

Financial account balances and credit card information are clear 
examples of data you absolutely must protect. This kind of sensitive data 
flows through a larger distributed system, and even with limited access to 
the facility, you don’t want someone to be able to physically plug in a net-
work tap and siphon off sensitive data. One powerful mitigation would be 
to encrypt all incoming sensitive data immediately when it first hits the 
frontend web servers. Immediately encrypting credit card numbers with a 
public key enables you to pass around the encrypted data as opaque blobs 
while processing the transaction. Eventually, this data reaches the highly 
protected financial processing machine, which knows the private key and 
can decrypt the data and reconcile the transaction with the banking sys-
tem. This approach allows most application code to safely pass along sensi-
tive data for subsequent processing without risking disclosure itself.

Another common technique is storing symmetrically encrypted data 
and the secret key in separate locations. For example, consider an enter-
prise that wants to outsource long-term data storage for backup to a third 
party. They would hand over encrypted data for safekeeping while keep-
ing the key in their own vault for use, should they need to restore from a 
backup. In terms of threats, the data storage service is being entrusted to 
protect integrity (because they could lose the data), but as long as the key 
is safe and the crypto was done right, there is no risk to confidentiality.

These are just a few common usages, and you will find many more ways 
to use these tools. (Cryptocurrency is one particularly clever application.) 
Modern operating systems and libraries provide mature implementations 
of a number of currently viable algorithms so you never have to even think 
about implementing the actual computations yourself. 

https://xkcd.com/538
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Encryption is not a panacea, however, and if attackers can observe 
the frequency and volume of encrypted data or other metadata, you may 
disclose some information to them. For example, consider a cloud-based 
security camera system that captures images when it detects motion in the 
house. When the family is away, there is no motion, and hence no transmis-
sion from the cameras. Even if the images were encrypted, an attacker able 
to monitor the home network could easily infer the family’s daily patterns 
and confirm when the house was unoccupied by the drop in camera traffic.

The security of cryptography rests on the known limits of mathematics 
and the state of the art of digital hardware technology, and both of these 
are inexorably progressing. Great fame awaits the mathematician who may 
someday find more efficient computational methods that undermine mod-
ern algorithms. Additionally, the prospect of a different kind of computing 
technology, such as quantum physics, is another potential threat. It is even 
possible that some powerful nation-state has already achieved such a break-
through, and is currently using it discreetly, so as not to tip their hand. Like 
all mitigations, crypto inherently includes trade-offs and unknown risks, 
but it’s still a great set of tools well worth using. 
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S E C U R E  D E S I G N

Overload, clutter, and confusion are not attributes of  
information, they are failures of design.

—Edward Tufte

Once you have a solid understanding of 
security principles, patterns, and mitiga-

tions, the practice of integrating security 
into your software designs becomes relatively 

straightforward. As you discern threats to your design, 
you can apply these tools as needed and explore bet-
ter design alternatives that reduce risk organically.

This chapter focuses on secure software design. It serves as a compan-
ion to Chapter 7, which covers security design reviews. These two topics are 
aspects of the same activity, viewed from different perspectives. Software 
designers should be considering the concepts discussed in this chapter 
and applying these methods throughout the design process; they shouldn’t 
leave the system’s security for a reviewer to patch up later. In turn, review-
ers should look at designs through the lens of threats and mitigations as an 
additional layer of security assessment. The secure design process is integra-
tive, and the security design review is analytic—used synergistically, they 
produce better designs with security baked in.
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Software design is an art, and this chapter focuses on just the security 
aspect. Whether you design according to a formal process or do it all in 
your head, you don’t have to change how you work to incorporate the ideas 
presented here. Threat modeling and a security perspective do not need to 
drive design, but they should inform it. 

The secure design practice described here follows a process typical of a 
large enterprise, but you can adapt these techniques to however you work. 
Smaller organizations will operate much more informally, and the designer 
and reviewer may be the same person. The techniques presented approach 
the problem in a general way so as to be easily applicable to however you 
like to do software design. 

A SA MPL E DESIGN DOCUMEN T T H AT IN T EGR AT ES SECUR IT Y

Design is a creative process that’s not reducible to “how to” steps, so I wanted 
to provide a complete example of a design document to demonstrate how to 
apply the concepts presented in this book. The sample in Appendix A illustrates 
how to bake in security right from the start. It’s not intended to be a perfect 
example of masterful design, but rather a first draft of a work in progress with 
enough meat on its bones for you to get a feel for the end result. For brevity, 
parts of the design unimportant to our purposes are omitted and parts are 
presented unpolished, with some warts and rough spots, because most real 
designs are like that.  

The sample design document envisions a logging tool designed to facilitate 
auditing while minimizing disclosure of private information, and the intention is 
that this might be a useful component to actually use. This kind of tool could be 
a practical mitigation in the context of a larger system processing sensitive data, 
and you’re welcome to flesh out the design and build it if you like. Regardless, 
I strongly recommend that you take a look at this example, as seeing how the 
guidance in this chapter actually materializes in a design document will help you 
better understand how secure design works.

Integrating Security in Design
I will contend that conceptual integrity is the most important consideration  
in system design.

—Fred Brooks (from The Mythical Man-Month)

The design stage provides a golden opportunity for building security prin-
ciples and patterns into a software project. During this early phase, you can 
easily explore alternatives before investing in an implementation and get-
ting tied down by past decisions.
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In the design stage, developers should create design documents to capture 
the important high-level characteristics of a software project, analogous to 
architectural blueprint drawings for structures. I highly recommend invest-
ing effort into documenting your designs because it helps ensure rigor and 
also creates a valuable artifact that allows others to understand the decisions 
you’ve made—especially when it comes to balancing threats with mitigations 
and the trade-offs involved. 

Design documents typically consist of a functional description (how the 
software works when viewed from the outside) and a technical specification 
(how it works when viewed from the inside). More formal designs are espe-
cially valuable when there are competing stakeholders, when coordinating 
a larger effort, when the designs must comply with a formal requirements 
specification or strict compatibility demands, when faced with difficult 
trade-offs, and so forth.

When you look at a prospective software design, put on your “security 
hat.” Then, before coding begins, you can threat model, identify attack 
surfaces, map out data flows, and more. If the proposed design makes 
securing the system structurally challenging, now is the perfect time to 
consider alternatives that would be inherently more secure. You should 
also point out important security mitigations in the design document so 
that implementers will see the need for these in advance.

More experienced designers will incorporate security into the design 
from the start. If this seems daunting, it’s fine to start with a “feature-
complete” draft design and make a second pass through it with a focus on 
security, but that’s a lot more work. Major changes are most easily made if 
caught earlier in the process, avoiding the wasted effort of redoing after the 
fact. Explore new architectures and play with basic requirements sooner 
rather than later, when it’s more easily done. As Josh Bloch once quipped: “A 
week of coding can often save an hour of thought.”

Making Design Assumptions Explicit
In the mid-1980s, I worked for a company that designed and built what was 
then a powerful computer from the ground up: both the hardware and the 
software. After years of development, the work of both teams came together 
when the operating system was loaded into the prototype hardware at last. . .  
and immediately tanked. It turned out that the hardware team had largely 
come from IBM, where they use big-endian architecture, and the software 
team mostly came from HP, which traditionally used little-endian, so “bit 0”  
meant the high-order bit on the hardware but the low-order bit on the soft-
ware. Throughout years of planning and meetings and prototyping, everybody 
had just assumed the endianness of the company culture they came from. 
(And of course, it was the software team that had to make the necessary 
changes once they figured this out.)

Unwritten assumptions can undermine the effectiveness of security 
design reviews, so designers should endeavor to document them (and 
reviewers should ask about anything that is unclear). A good place to cap-
ture these explicit assumptions is in a “background” section of the design 
document, preceding the body of the design itself.  
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One way to think about documenting assumptions is to anticipate serious 
misunderstandings, so you never hear anyone say, “But I thought. . .” Here 
is a list of some common assumptions that are important to document, but 
easily omitted in designs:

•	 Budget, resource, and time constraints limiting the design space

•	 Whether the system is likely to be a target of attack 

•	 Non-negotiable requirements, such as compatibility with legacy systems

•	 Expectations about the level of security to which the system must 
perform

•	 Sensitivity of data and the importance of protecting it securely

•	 Anticipated needs for future changes to the system

•	 Specific performance or efficiency benchmarks the system must achieve

Clarification of assumptions is important to security because misunder-
standings are often the root cause of a weak interface design or mismatched 
interaction between components that attackers can exploit. In addition, 
it ensures that the design reviewer has a clear and consistent view of the 
project.

Often within an enterprise, or any set of related projects, many of these 
assumptions will remain the same across a set of designs, in which case 
you can compile a list in a shared document that provides common back-
ground. Individual designs then need only reference this common base and 
detail any exceptions where the applicable assumptions vary. For example,  
a billing system may be subject to higher security standards and need to 
conform with specific financial regulations for a credit card processing 
component than the rest of the enterprise applications.

Defining the Scope
It’s impossible to do a good review of the security of a design if there is 
uncertainty about the scope of the review. Clarifying the scope is also vital 
to answering the first of the Four Questions from Chapter 2: “What are we 
working on?” To see why this is, consider the design for a new customer 
billing system. Does the design include the web app used for collecting 
reports of billable hours, or is that a separate design? What about the exist-
ing databases it relies on—is the security of those systems in scope or not? 
And should the review include the design of the new web-based API you’ll 
be using to report to the corporate accounting system?

Usually, the designer makes a strategic decision about how to define 
the scope, choosing how much to bite off. When it’s defined by others, the 
designer must understand the prescribed scope and the reasons for it. You 
can define the scope of the design as the code running in a process, spe-
cific components of a system represented in a block diagram, the code in 
a library, a division of a source repository, or whatever else makes the most 
sense, so long as it’s clear to everyone involved. The billing system design I 
mentioned in the previous paragraph probably should include the new API, 
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since it’s an extension of the same design. Conversely, the existing data-
bases are probably out of scope, provided they aren’t being used in a funda-
mentally new way and have already received sufficient security attention.

If the scope of a design is vague, the reviewer might assume some impor-
tant aspect of security is out of scope, while the designer might be unaware of 
the issue. By omission, it could fall through the cracks. For example, nearly 
every software design will involve some storage of data. Unless the data is 
expendable, which is rare, maintaining good backups is an obvious mitiga-
tion to the possible loss of integrity due to various threats (both malicious 
and accidental). Designers often omit such self-evident points, but without a 
clear statement of design scope, everyone might assume someone else regu-
larly performs backups for all storage in the production system, resulting in 
this task falling by the wayside—until the first instance of failure, when the 
lesson is learned all too painfully.

Don’t let excluding part of the design’s ecosystem from the scope result 
in it falling between the cracks. When you have inherited a legacy system, 
your first efforts to understand it should focus on its most sensitive parts, 
those most fundamental to security, or perhaps the most obvious target of 
attack. Then judiciously undertake reviews of additional parts of the system 
that constitute independent components until you have covered everything. 

You can handle design iterations, sprints, and major revisions of existing 
systems by defining a narrow scope that corresponds to where redesign hap-
pens. Once you have carved out boundaries for the new design work, there 
are clear preconditions defined by the design that are outside that scope, and 
you are free to redo everything anew on the inside. Existing design docu-
mentation makes this work much easier and more reliable, and the updated 
design should drive tracked changes to the document. 

It’s common, and often a good thing, for redesign to creep outside of its 
intended bounds, and when it does, you should adjust the scope as needed. 
For example, an incremental design change may require the modification 
of existing interfaces or data formats, and if the change involves handling 
more sensitive data, you may need to make changes on the other side of the 
interface due to the new security assumptions.

Few software designs exist in a vacuum; they depend on existing systems, 
processes, and components. Ensuring that the design works well with its 
dependencies is critical. In particular, matching security expectations is key, 
because you cannot build a secure application out of insecure components. 
And it’s important to note that secure/insecure is not a binary choice; it’s a 
continuum, where the assumptions and expectations need to align. Read up 
on security design review reports for peer systems and dependencies to sub-
stantiate your security expectations for them.

Setting Security Requirements
Security requirements largely derive from the second of the Four Questions: 
“What can go wrong?” The C-I-A triad is a useful starting point: describe the 
need to protect private data from unauthorized disclosure (confidentiality), 
the importance of securing and backing up data (integrity), and the extent 
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to which the system needs to be robust and reliable (availability). The secu-
rity requirements of many software systems are straightforward, but it’s still 
well worth detailing them for completeness and to convey priorities. What 
may be entirely obvious to you may not be to others, so it’s a good idea to 
articulate the desired security stance.

One extreme to note is when security doesn’t matter—or at least, when 
someone thinks it doesn’t. That’s an important assumption to call out, 
because someone else on the team might be thinking that it certainly 
does matter (and you can imagine the circumstances under which such 
mismatched expectations will eventually come to light). If you are design-
ing a prototype to process artificial dummy data, you can skip the security 
review, but document it so the code isn’t repurposed and used later with 
personal information. Another example of a low-security application might 
be the collection of weather data shared by several research groups: tem-
peratures and other atmospheric conditions are free for anyone to measure, 
and disclosure is harmless. 

At the other extreme, security-critical software deserves extra attention 
and a careful enumeration of its security-related requirements. These will 
provide a focus for threat modeling, security review, and testing to ensure 
the highest level of quality. See the sample design document (Appendix A) 
for a basic example of how security requirements inform the design. Large 
systems subject to complex regulations may have tightly prescribed security 
requirements to ensure high levels of compliance, but that’s a specialized 
undertaking, out of scope for our purposes.

For software designs with critical or unusual security requirements, 
consider the following general guidelines:

•	 Express security requirements as end goals without dictating “how to.”

•	 Consider all stakeholder needs. In particular, where these may be in 
conflict, it will be necessary to find a good balance.

•	 Acknowledge acceptable costs and trade-offs for critical mitigations.

•	 When there are unusual requirements, explain the motivation for them 
as well as their goals.

•	 Set security goals that are achievable, not mandates for perfection. 

The following extreme examples illustrate what requirements state-
ments for systems with significant security needs might look like:

At the National Security Agency, to protect the nation’s most sensitive secrets

System administrators will have extraordinary access to an enormous 
trove of top-secret documents, and given the threat to national security 
this represents, we must mitigate insider attacks to the highest degree 
possible. Specifically, an administrator capable of impersonating high-
ranking officers with broad access authority could potentially exfil-
trate many files, covering their tracks by making it look like numerous 
independent access events by many different principals. (Unofficial 
accounts of Edward Snowden’s tactics for exfiltrating NSA internal 
documents suggest that he used this sort of technique.)
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The authentication server for a large financial institution

Compromise of the server’s private encryption key would completely 
undermine the security of all our internet-facing systems. While insider 
attacks are unlikely, operations personnel must not have plausible deni-
ability. Requirements might include storing the key in a tamper-evident 
hardware device kept in a physically guarded location, and formal cer-
emonies for the creation and rotation of keys, with all accesses attended 
by at least two trusted persons. (Note: this includes “how to” as the most 
direct way of illustrating distribution of trust and the combination of 
overlapping physical and logical security.)

Data integrity for an expensive scientific experiment

We plan to do this experiment only once, and the funding required 
for it will not likely be available again for years, so we cannot afford to 
lose the information our instruments collect. Streaming data must be 
instantly replicated and stored redundantly on different storage media, 
while simultaneously being communicated over two distinct networks to 
physically separated remote storage systems as additional backup.

Threat Modeling 
One of the best ways to improve the security of your software architecture is 
to incorporate threat modeling into the design process. Designing software 
involves creatively juggling competing requirements and strategies, iteratively 
deciding on some aspects of the system, and, at times, reversing course to 
progress toward a complete vision. Viewing the process through the lens of 
threat modeling can illuminate design trade-offs, so it has great potential 
to lead the designer in the right direction—but figuring out exactly how to 
achieve improved outcomes requires some trial and error. 

First, there is the simplistic method for integrating threat modeling 
into software design. This involves concocting a series of potential designs, 
threat modeling each one in turn, scoring them by some kind of summary 
assessment, and then choosing the best one. In practice, these security-
focused assessments inform other important factors, including usability, 
performance, and development cost. But since the effort involved in pro-
ducing multiple designs and then threat modeling each one individually 
is prohibitive, designers often need to intuit which trade-offs offer promis-
ing possibilities, then compare the design alternatives by analyzing their 
differences rather than reassessing each from scratch.

In the early stages of software system design, pay careful attention to 
trust boundaries and attack surfaces, as these are critical for establishing 
an architecture amenable to security. Data flows of sensitive information 
should, as much as possible, be kept away from the most exposed parts 
of the topology. For example, consider an application for traveling sales 
staff who need offline access to customer contact information in order to 
make sales calls on the road. Putting the entire customer database in each 
mobile device would represent a huge risk of exposure, yet arguably would 
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be necessary if staff travel to remote locations without good connectivity. 
Threat modeling would highlight this risk, spurring you to evaluate alterna-
tives. Perhaps only regional subsets of the database would suffice, dynami-
cally updated as the reps change location or based on travel schedule; or, 
instead of supplying customer phone numbers, each salesperson might get 
a code for each customer that they can use together with a unique PIN to 
place calls via a forwarding service, so there is no need for them to have 
access to the phone numbers at all.

Designers should also consider the essential threat model of the software they 
are building as a kind of baseline from which to gauge alternative designs. By  
this I mean a model of the security risk inherent in the idealized design, no 
matter how it’s built. For example, if a client/server system is collecting per-
sonally identifiable information (PII) from the client, there is an unavoidable 
security risk of that information being exposed by the client, in transit, or on 
the server that processes the data. No design magic will make any of those 
risks disappear, though they often call for suitable mitigations. 

When the inherent security risk is high, designers should consider 
alternatives whenever possible. Continuing with the PII example, is it 
really necessary to collect all (or any) of that information for all use cases? 
If not, then it may well be worth the effort of supporting subcases that 
avoid some of the information collection at the source. 

Another way that an essential threat model guides design is by highlight-
ing sources of additional risk that arise out of design decisions. An example 
of such an effect might be choosing to add a caching layer for sensitive data 
in an attempt to improve response time. The additional storing of data 
(potentially an asset that attackers would target) necessarily adds new risk, 
especially if the cache store is near an attack surface. This illustrates how 
changes to the design always modify the threat model—for better or for 
worse—and with an understanding of the security impact, designers can 
weigh the merits of alternatives wisely. 

Good software design, in the end, depends on subjective judgments. 
These balance the various factors involved to find, if not the best, then at 
least a satisfactory result. As important as security is, it isn’t everything, 
so difficult decisions are inevitable. Over the years I have found that, 
as scary as it may be at times, it’s much more productive to remain open 
to discussions of compromise rather than declare security concerns 
preeminent. 

When the costs of maximizing security are low, it’s easy to push for 
doing so—but this isn’t always the case. When compromise is necessary, 
here are some good strategies to keep in mind:

•	 Design for flexibility so that adding security protections later will be 
easy to do (that is, don’t paint yourself into an insecure corner).

•	 If there are specific attacks that are of special concern, instrument the 
system to facilitate monitoring for instances of attempted abuse.
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•	 When usability conflicts with security, explore user interface alterna-
tives. Also, prototype and measure usability under realistic situations; 
sometimes usability concerns are imaginary and do not manifest in 
practice.

•	 Explain security risks with potential scenarios (derived from threat 
models) that illustrate major possible downsides of certain designs,  
and use these to demonstrate the cost of not implementing mitigations. 

Building in Mitigations
After you’ve defined the software system’s scope and security requirements, 
answering the first two of the Four Questions, it’s time to consider the third: 
“What are we going to do about it?” This question guides the designer to 
incorporate the needed protections and mitigations into the design. In the 
following subsections we will examine how to do this for interfaces and for 
data, two of the most common recurring themes in software design. The 
discussion and examples that follow only scratch the surface of possibilities 
for mitigations in design. All of the ideas in the preceding three chapters 
can be applied according to the needs of a particular design. 

Designing Interfaces
Interfaces define the boundaries of the system, delineating the limits of  
the design or of its constituent components. They may include system calls, 
libraries, networks (client/server or peer-to-peer), inter- and intraprocess 
APIs, shared data structures in common datastores, and more. Complex 
interfaces, such as secure communication protocols, often deserve their 
own design.

Define all interfaces within the scope of the design, making sure you 
have a clear understanding of the security responsibilities of the compo-
nents that share it. Document whether inputs are reliably validated or 
should be treated as untrusted data. If there is a trust boundary, explain 
how to handle authentication and authorization for crossing it.

Interfaces to external components (those scoped outside of the design) 
should conform to the existing design specifications for those components. 
If no such information is available, either document your assumptions or 
consider defensive tactics to compensate for the uncertainty. For example, 
assume untrusted inputs if you cannot ascertain whether the input is being 
validated. 

To design secure interfaces, begin with a solid description of how they 
work, including their necessary security properties (that is, C-I-A, Gold 
Standard, or privacy requirements). Reviewing the security of the interfaces 
amounts to verifying that they will function properly and remain robust 
against potential threats. Unless the designer is clear about the security 
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requirements, the security reviewer (and developers using the interface 
later) will have to guess at the designer’s intentions, and there will be 
confusion if they either under- or overestimate the requirements.

Sometimes, you are stuck using existing components that weren’t 
designed with security in mind or are not sufficiently secure for your 
requirements—or you just don’t know how secure the components are. 
Flag this as an issue if you have no choice in the matter and, if possible,  
do research to find out what you can about the components’ security 
properties (this might include trying to attack a test mock-up). Another 
option in some cases is to wrap the interface to add security protection. 
For example, given a storage component that is vulnerable to data leaks, 
you could design an extra layer of software that provides encryption and 
decryption, ensuring that the component stores only encrypted data, 
which is harmless if disclosed.

Designing Data Handling
Data handling is central to virtually all designs, so securing it is an impor-
tant step. A good starting point for secure data handling is outlining your 
data protection goals. When a particular subset of data requires extra pro-
tection, make that explicit, and ensure it’s handled consistently throughout 
the design. For example, in an online shopping application, apply addi-
tional safeguards to credit card information.

Limit the need to move sensitive data around. This is a key opportunity 
to reduce your risk exposure in a significant way at the design level (see 
the “Least Information” pattern in Chapter 4) that often isn’t possible to do 
later in implementation. One way to reduce the need to pass data around is 
to associate it with an opaque identifier, then use the identifier as a handle 
that, when necessary, you can convert into the actual data. For example, as 
in the sample design in Appendix A, you can log transactions using such an 
identifier to keep customer details out of system logs. In the rare case that a 
log entry needs investigation, an auditor can look up those details.

Identify public information, or data otherwise exempt from any confi-
dentiality requirement. This forms an important exception to data handling 
requirements, allowing you to relax protections where that makes sense. In 
applying such an approach, remember that data is context-sensitive, so pub-
lic data paired with other information might well be sensitive. For example, 
the addresses of most businesses and the names of their chief executives are 
usually public information. However, exactly when named persons are on 
the premises should be kept private. 

Always treat personal information as sensitive in the absence of an 
explicit decision otherwise, and only collect such data in the first place if 
there is a specific use for it. Storing sensitive data indefinitely creates an 
endless obligation to protect it. You can best avoid this by destroying dis-
used information when possible (after a number of years of inactivity, for 
example). Designs should anticipate the need to eventually remove private 
data from the system when no longer needed and specify what conditions 
will trigger deletion, including of backup copies.
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Integrating Privacy into Design
Failures to protect private information make headlines routinely. I believe 
that integrating information privacy considerations into software design 
is an important way companies can do better. Privacy issues concern the 
human implications of data protection, involving not only legal and regu-
latory issues, but also customer expectations and the potential impact of 
unauthorized disclosures. Getting this right requires special expertise and 
subjective judgment. But part of the problem hinges on granting third par-
ties the authorization to use data, which requires allowing access. To that 
extent, good software design can institute controls to minimize missteps.

As a starting point, designers should be familiar with all applicable 
private policies and understand how these relate to the design. Ask ques-
tions and ideally get answers in writing from the privacy policy owner 
so that the requirements are clear. This includes any third-party privacy 
policy obligations that might apply to data acquired via partners. These 
privacy policies govern data collection, use, storage, and sharing, so if these 
activities happen within the design, the policy stipulations imply require-
ments. If the public-facing privacy policy is short on details, consider devel-
oping an internal version that describes necessary details.

Privacy lapses tend to happen when people or processes misinterpret 
the promises in the policy, or simply fail to consider them. Data security 
protections offer opportunities to build limitations into a design to ensure 
compliance. Start by considering clear promises the privacy policy makes, 
then ensure that the design enforces them if possible. For example, if the 
policy says, “We do not share your data,” then be wary of using a cloud stor-
age service that makes sharing easy unless other provisions are in place to 
ensure that misconfigurations won’t expose the data.

Auditing is an important tool for privacy stewardship, if only to reli-
ably document proper access to sensitive data. With careful monitoring of 
accesses, problematic access and use can be detected and remedied early. 
In the aftermath of a leak, if there is no record of who had access to the 
data in question, it’s very difficult to respond effectively.

Design explicit privacy protections wherever possible. In instances 
where you cannot make the judgment about privacy compliance, get the 
officer responsible for the privacy policy to sign off on the design. Some 
common techniques for integrating privacy in software design include:

•	 Identify the collection of new types of data, and ensure its privacy pol-
icy compliance.

•	 Confirm that policy allows you to use the data for the purpose you 
intend.

•	 If the design potentially enables unlimited data use, consider limiting 
access only to staff that are familiar with privacy policy constraints and 
how to audit for compliance.

•	 If the policy limits the term of data retention, design a system that 
ensures timely deletion.
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•	 As the design evolves, if a field in a database becomes disused, consider 
deleting it in order to reduce the risk of disclosure.

•	 Consider building in an approval process for data sharing to ensure the 
receiving parties have management approval.

Planning for the Full Software Life Cycle
Too many software designs implicitly assume that the system will last forever, 
ignoring the reality that the lifetime of all software is finite. Many aspects of 
a system’s eventual lifetime—from its first release and deployment, through 
updates and maintenance, to its eventual decommissioning—have impor-
tant security implications that are easily missed later on. As wonderful as any 
software design might be, whether it takes off or fizzles out, it will undergo 
changes as its environment evolves. The impacts of these changes are best 
anticipated during the design process and addressed then, or at least noted 
for posterity. Within an enterprise, many of these issues are generic, and a 
general treatment of them should cover most systems, with exceptions speci-
fied as needed in individual designs.

The end of a system’s life is difficult to imagine when the new design is 
being created, but most of the implications should be clear, and any design 
should at least consider the long-term disposition of data. Specific legal or 
business reasons may require you to retain data for a certain period of time, 
but you should destroy it when it is no longer needed, including backup  
copies. Some systems need to go through specific stages when approaching 
end of life, and good design can make this easy to get right by having suitable 
structure and configuration options in place from the start. For example, 
a purchasing system might stop accepting orders but need to continue pro-
viding data for payroll and record-keeping purposes for another year, then 
archive transaction records for long-term retention.

Making Trade-offs
Balancing trade-offs when there are no easy choices requires a lot of 
engineering judgment, while weighing many other considerations. 
Implementing more security mitigations reduces risk, but only up to the 
point that complexity leads to more bugs overall—and you should always  
be wary of increased development effort with diminishing returns. This 
book will repeatedly advise designers to compromise between competing 
priorities, but this is easier said than done. This section covers some rules  
of thumb for striking these important balances.

Anticipate the worst-case scenario: How bad would it be if you were to 
fail to protect the confidentiality, integrity, or availability of a particular sys-
tem asset? For each scenario there are degrees of catastrophe to consider: 
How much of the data could potentially be affected? At what point does a 
period of unavailability become a serious issue? Major mitigations usually 
limit the worst case; for example, hourly backups should ensure that at most 
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one hour of transaction data is at risk of loss. Note that a loss of confidenti-
ality in the worst case is particularly difficult to cap, because once data has 
been purloined, there usually is no conceivable way to undo the disclosure 
(the 2017 Equifax breach is a striking example).

Most design work happens within an enterprise or project community 
where the level of security needed is usually consistent across a wide range 
of projects. Where a particular design might deviate—requiring either a 
higher or lower level of security—that assumption is well worth calling out 
in the design preface. Some examples will clarify this important point. An 
online store website should consider setting a higher security bar for the 
software that handles credit card processing, which is an obvious target 
of attack and is subject to special requirements because of the enormous 
financial liability. On the flip side, a web design company might put up an 
entire website that showcases examples of its design; since this would be for 
informational purposes only and never collect actual end user data, secur-
ing it would reasonably be less important. 

The design phase represents the best opportunity to strike the right 
balance between competing demands on software. To be frank, rarely if 
ever is security fully supported as a top priority when there are schedule 
deadlines, constraints of budget and headcount, legacy compatibility issues, 
and the usual lengthy list of features to deal with—which is to say, nearly 
always. Designers are in the best position to consider many alternatives, 
including radical ones, and make foundational changes that would be 
infeasible to attempt later on. 

Striking the right balance between these idealized principles and the 
pragmatic demands of building a real-world system is at the heart of secure 
software design. Perfect security is never the goal, and there is a limit to the 
benefits of additional mitigations. Exactly where the sweet spot lies is never 
easy to determine, but software designs that make these trade-offs explicit 
have better chances of finding a sensible compromise.

Design Simplicity
Simplicity is the ultimate sophistication.

—Leonardo da Vinci

Ironically, as the da Vinci quote suggests, it often takes considerable thought 
and effort to produce a simple design. Early astronomers developed all man-
ner of complicated calculations for celestial mechanics until Copernicus 
simplified the model by making the Sun the central reference point instead 
of the Earth, which in turn allowed Newton to radically simplify the com-
putations by inferring the laws of gravity. My favorite example of brilliant 
software design is the heart of the *nix operating system, much of which 
remains in use to this day. The quest to create a beautifully simple design, 
even if rarely achieved, often directly contributes to better security.

In software design, simplicity appears in many guises, but there are 
no easy formulations of how to discover the simplest, most elegant design. 
Several of the patterns discussed in Chapter 4 embrace simplicity, such 
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as Economy of Design and Least Common Mechanism. Any time security 
depends on getting some complicated decision or mechanism just right, be 
wary: see if there is a simpler way of achieving the same ends.

When intricate functionality interacts with security mechanisms, the 
result often explodes with complexity. One study concluded that the 1979 
failure at the Three Mile Island nuclear facility had no specific cause but 
was due to the immense complexity of the system, including its many redun-
dant safety measures.  Security can get in the way of what you are trying to 
do, and in turn, making it all secure gets trickier. The solution here is often 
to separate security from functionality and create a layered model, usually 
with security on the “outside” as a protective shell and all the functionality 
separately existing “inside.” However, when you design with a hard shell and 
“soft insides,” it becomes critical to enforce that separation. It’s relatively 
easy to design a secure moat around a castle, but in software, it’s easy to 
inadvertently open up a pathway to the inside that circumvents the outer 
protective layer. 



7
S E C U R I T Y  D E S I G N  R E V I E W S

A good, sympathetic review is always a wonderful surprise.
—Joyce Carol Oates

One of the best ways to bake security into 
software is to separately review designs with 

your “security hat” on. This chapter explains 
how to apply the security and privacy design 

concepts discussed in the last chapter in a security design 
review (SDR). Think of this process as akin to when 
an architect designs a building and an engineer then 
reviews the design to ensure that it’s safe and sound.  
Both the designer and the reviewer need to understand structural engi-
neering and building codes, and by working together, they can achieve 
higher levels of quality and trust.

Ideally, the security reviewer is someone not involved in the design work, 
giving them distance and objectivity, and also someone familiar with the 
systems and context within which the software runs and how it will be used. 
However, these are not firm prerequisites; reviewers less familiar with the 
design will tend to ask a lot more questions but can also do a fine job.
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Sharing these methods and encouraging more software professionals 
to perform SDRs themselves was one of my core goals in writing this book. 
You will almost certainly do a better SDR on the software systems that you 
work with and know well than someone with more security experience who 
is unfamiliar with those systems. This book provides guidance to help you 
with this task, and it’s my hope that in doing so it will contribute in some 
small way to raising the bar for software security.

SDR Logistics
Before presenting the methodology for an SDR, it’s important to give a little 
background and discuss some basic logistics. What purpose does an SDR 
serve? If we’re going to perform one, during what stage of the design process 
should this be done? Finally, I’ll give a few tips on preparation and the impor-
tance of documentation in particular.

Why Conduct an SDR?
Having done a few hundred SDRs myself, I can report that it never feels 
like a waste of time. SDRs take only a tiny fraction of the total design time, 
and will either identify important improvements to enhance security or pro-
vide strong assurance that the design properly addresses security. Simple, 
straightforward designs are quick to review, and for larger designs the 
review process provides a useful framework for identifying and validating 
the major hotspots. Even when you review a design that ostensibly covers all 
the bases for security, it’s good due diligence to confirm this. And of course, 
when the SDR does turn up significant issues, the effort proves extremely 
worthwhile, because detecting these issues during implementation would 
be difficult and remedying them after the fact would be costly. 

In addition, SDRs can yield valuable new insights, resulting in design 
changes unrelated to security. An SDR offers a great opportunity to involve 
diverse perspectives (user experience, customer support, marketing, legal, 
and so forth), with everyone pondering easily overlooked topics such as the 
potential for abuse and unintended consequences.  

When to Conduct an SDR
Plan on performing an SDR when the design (or design iteration) is com-
plete and stable, typically following the functional review, but before the 
design is finalized, since there may be changes needed. I strongly recom-
mend against trying to handle security as part of the functional review, 
because the mindset and areas of focus are so different. Also, it’s important 
for everyone—not just the reviewer—to focus on security, and that’s diffi-
cult to do during a combined review when there’s a tendency to concentrate 
more on the workings of the designs.

Designs that are complicated or security-critical often benefit from an 
additional preliminary SDR, when the design is beginning to gel but still 
not fully formed, in order to get early input on major threats and overall 
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strategy. The preliminary SDR can be less formal, previewing points of 
particular security interest (where you would expect to dig further) and 
discussing security trade-offs at a high level. Good software designers 
should always consider and address security and privacy issues throughout 
the design. To be clear, designers should never ignore security and rely on 
the SDR to fix those issues for them. They should always expect to be fully 
responsible for the security of their designs, with security reviewers in a sup-
port role helping to ensure that they do a thorough job. In turn, security 
reviewers shouldn’t pontificate, but instead clearly and persuasively present 
their findings to designers without judgment. 

Documentation Is Essential
Effective SDRs depend on up-to-date documentation so that all parties 
have an accurate and consistent understanding of the design under review. 
Informal word-of-mouth SDRs are better than nothing, but crucial details are 
easily omitted or miscommunicated, and without a written record, valuable 
results are easily lost. Personally, I always prefer having design documents 
to preview ahead of a meeting, so I can start studying the design in advance 
and not take up meeting time with learning what we are working on.

The quality of the design documentation is, in my experience, an 
invaluable aid in delivering a great SDR. Of course, thorough documenta-
tion may not be available in practice, and the case study beginning on 
page 122 talks about handling that situation as well. Any design document 
vaguely specifying to “store customer data securely,” for example, deserves 
a big red flag, unless it goes on to describe what that means and how to do 
that. Blanket statements without specifics almost always betray naivety and 
a lack of a solid understanding of security.

The SDR Process
The following explanation of the SDR process describes how I conducted 
them at a large software company with a formal, mandatory review process. 
That said, software design is practiced in countless different ways, and you 
can adapt the same strategies and analysis to less formal organizations. 

Starting from a clear and complete design in written form, the SDR 
consists of six stages:

1.	 Study the design and supporting documents to gain a basic understand-
ing of the project.

2.	 Inquire about the design and ask clarifying questions about basic threats.

3.	 Identify the most security-critical parts of the design for closer attention.

4.	 Collaborate with the designer(s) to identify risks and discuss mitigations.

5.	 Write a summary report of findings and recommendations.

6.	 Follow up with subsequent design changes to confirm resolution before 
signing off.
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For small designs, you can often run through most of these in one ses-
sion; for larger designs, break up the work by stage, with some stages possibly 
requiring multiple sessions to complete. Sessions dedicated to meeting with 
the design team are ideal, but if necessary the reviewer can work alone and 
then exchange notes and questions with the design team via email or other 
means.

Everyone has a different style. Some reviewers like to dive in and do a 
“marathon.” I prefer (and recommend) working incrementally over several 
days, affording myself an opportunity to “sleep on it,” which is often where 
my best thinking happens. 

The following walkthrough of the SDR process explains each stage, with 
bullet points summarizing useful techniques. When you perform an SDR 
you can refer to the bullets for each stage as you work through the process.

1. Study
Study the design and supporting documents to gain a basic understanding 
of the software as preparation for the review. In addition to security know-
how, reviewers ideally bring domain-specific expertise. Lacking that, try to 
pick up what you can, and stay curious throughout the process. Trade-offs 
are inherent in most security decisions, so a single-minded push for more 
and more security is likely to overdo things, and risk ruining the design in 
the process. To understand how too much security can be bad, think of a 
house designed solely to reduce the risk of fire. Built entirely of concrete, 
with one thick steel door and no windows, it would be costly as well as ugly, 
and nobody would want to live in it.

In this preparatory stage:

•	 First, read the documentation to get a high-level understanding of the 
design.

•	 Next, put on your “security hat” and go through it again with a threat-
aware mindset.

•	 Take notes, capturing your ideas and observations for future reference.

•	 Flag potential issues for later, but at this stage it’s premature to do 
much security analysis.

2. Inquire
Ask the designer clarifying questions to understand the basic threats to 
the system. For simpler designs that are readily understood, or when the 
designer has produced rock-solid documentation, you may be able to skip 
this stage. Consider it an opportunity to confirm your understanding of the 
design and to resolve any ambiguities or open questions before proceeding 
further. Reviewers certainly don’t need to know a design inside and out to 
be effective—that’s the designer’s job—but you do need a solid grasp of the 
broad outlines and how its major components interact. 
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This stage is your opportunity to fill in gaps before digging in. Here are 
some pointers:

•	 Ensure that the design document is clear and complete.

•	 If there are omissions or corrections needed, help get them fixed in the 
document. 

•	 Understand the design enough to be conversant, but not necessarily at 
an expert level.

•	 Ask members of the team what they worry about most; if they have no 
security concerns, ask follow-up questions to learn why not.

There’s no need to limit the questions you ask as a security reviewer 
to strictly what’s in the design document. Understanding peer systems can 
be extremely helpful for gauging their impact on the design’s security. 
Omitted details can be hardest to spot. For example, if the design implicitly 
stores data without providing any details of how this is handled, ask about 
the storage and its security.

3. Identify
Identify the security-critical parts of the design and zero in on them for 
close analysis. Work from basic principles to see through a security lens: 
think in terms of C-I-A, the Gold Standard, assets, attack surfaces, and trust 
boundaries. While these parts of the design deserve special attention, keep 
the security review focused on the whole for now, so as not to completely 
ignore the other parts. That said, it’s fine to skip over aspects of the design 
with little or no relevance to security. 

In this exploratory stage you should:

•	 Examine interfaces, storage, and communications—these will typically 
be central points of focus.

•	 Work inward from the most exposed attack surfaces toward the most 
valuable assets, just as determined attackers would.

•	 Evaluate to what degree the design addresses security explicitly.

•	 If needed, point out key protections and get them called out in the 
design as important features.

4. Collaborate
Collaborate with the designer, conveying findings and discussing alterna-
tives. Ideally, the designer and reviewer meet for discussion and go through 
the issues one by one. This is a learning process for everyone: the designer 
gets a fresh perspective on the design while learning about security, and the 
reviewer gains insights about the design and the designer’s intentions, deep-
ening their understanding of the security challenges and the best mitigation 
alternatives. The joint goal is making the design better overall; security  
is the focus of the review, but not the only consideration. There’s no need to 
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make final decisions on changes on the spot, but it is important to reach an 
agreement eventually about what design changes deserve consideration. 

Here are some guidelines for effective collaboration:

•	 As a reviewer, provide a security perspective on risks and mitigations 
where needed. This can be valuable even when the design is already 
secure, reinforcing good security practice.

•	 Consider sketching a scenario illustrating how a security change could 
pay off down the line to help convince the designer of the need for 
mitigations.

•	 Offer more than a single solution to a problem when you can, and help 
the designer see the strengths and weaknesses of these alternatives.

•	 Accept that the designer gets the last word, because they are ultimately 
responsible for the design.

•	 Document the exchange of ideas, including what will or will not go into 
the design.

Expanding on “the last word”: in practice, this balance will depend on 
the organization and its culture, applicable industry standards, possible 
regulatory requirements, and other factors. In large or highly regimented 
organizations, the last word may involve sign-offs by multiple parties, includ-
ing an architecture board, standards compliance officers, usability assessors, 
and executive stakeholders. When multiple approvals are required, designers 
must balance competing interests, so security reviewers should be especially 
conscientious of this dynamic and be as flexible as possible.

5. Write
Write an assessment report of the review findings and recommendations. The 
findings are the security reviewer’s assessment of the security of a design. 
The report should focus on potential design changes to consider, and an 
analysis of the security of the design as it stands. Any changes the designer 
has already agreed to should be prominently identified as such, and subject 
to later verification. Consider including priority rankings for suggested 
changes, such as this simple three-level scheme:  

•	 Must is the strongest ranking, indicating there should be no choice, and 
often implying urgency.

•	 Ought is intermediate: I use it to say that I, the reviewer, lean “Must” but 
that it’s debatable.

•	 Should is the weakest ranking for optional recommended changes.

More precise rankings are difficult at the design stage, but if you want 
to try, Chapter 13 includes guidance on ways to systematically assign more 
fine-grained rankings for security bugs that can be readily adapted for this 
purpose.

SDRs vary enough that I have never used a standardized template for 
the assessment report, but instead write a narrative describing the findings. 
I like to work from my own rough notes taken over the course of the review, 
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with the final form of the report evolving organically. If you can hold all the 
details in your head reliably, then you may want to write up the report after 
the review meeting. 

The following tips can also be used as a framework for the write-up:

•	 Organize the report around specific design changes that address secu-
rity risks.

•	 Spend most of your effort and ink on the highest-priority issues, and 
proportionally less on lower priorities.

•	 Suggest alternatives and strategies without attempting to do the design-
er’s job for them.

•	 Prioritize findings and recommendations using priority rankings.

•	 Focus on security, but feel free to offer separate remarks for the design-
er’s consideration as well. Be more deferential outside the scope of the 
SDR, don’t nitpick, and avoid diluting the security message.

Separating the designer and reviewer roles is important, but in practice 
how this is done varies greatly depending on the responsibilities of each 
and their ability to collaborate. In your assessment report, avoid doing 
design work, while offering clear direction for needed changes so the 
designer knows what to do. Offer to review and comment on any significant 
redesign that results from the current review. As a rule of thumb, a good 
reviewer helps the designer see security threats and the potential conse-
quences, as well as suggests mitigation strategies without dictating actual 
design changes. Reviewers who are too demanding often find that their 
advice is ineffective, even if it is correct, and they risk forcing designers into 
making changes that they do not fully understand or see the need for.

You can skimp on writing up the report if this level of rigor feels too 
fussy, but the chances are good that you, or someone else working on the 
software, will later wish that the details had been recorded for future refer-
ence. At a bare minimum, I suggest taking the time to send an email sum-
mary to the team for the record. Even a minimal report should not just say 
“Looks good!” but should back that up with a substantive summary. If the 
design covered all the security bases, reference a few of the most important 
design features that security depends on to underscore their importance. 
In the case of a design where security is a non-factor (for example, I once 
reviewed an informational website that collected no private information), 
outline the reasoning behind that conclusion. 

The style, length, and level of detail in these reports varies greatly 
depending on the organizational culture, available time, number of stake-
holders, and many other factors. When, as reviewer, you collaborate closely 
with the software designer, you may be able to incorporate needed provi-
sions directly into the design document, rather than enumerating issues 
in need of change in a report. Even for small, informal projects, assigning 
separate designer and reviewer roles is worthwhile so there are multiple 
sets of eyes on the work, and to ensure that security is duly considered. 
However, even a solo design benefits from the designer going back over 
their own work with their security hat on for fresh perspective.
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6. Follow Up
Follow up on agreed design changes resulting from a security review to con-
firm they were resolved correctly. When the collaboration has gone well, I 
usually just check that documentation updates happened without looking 
at the implementation (and that approach has never backfired in my expe-
rience). In other circumstances, and subject to your judgment, reviewers 
may need to be more vigilant. Sign off on the review when it’s complete, 
including the verification of all necessary changes. Assigning the SDR in 
the project bug tracker is a great way to track progress reliably. Otherwise, 
use a more or less formal process if you prefer. Here are a few pointers for 
this final stage:

•	 For major security design changes, you might want to collaborate with 
the designer to ensure that changes are made correctly.

•	 Where opinions differ, the reviewer should include a statement of both 
positions and the specific recommendations that weren’t followed to 
flag it as an open issue. (“Managing Disagreement” on page 121 talks 
about this topic in more detail.)

In the best case, the designer looks to the reviewer as a security 
resource and will continue engaging as needed over time. 

Assessing Design Security
Now that we’ve covered the SDR process, this section delves into the thought 
processes behind conducting the review. The material in this book up to 
this point has given you the concepts and tools you need to perform an SDR. 
The foundational principles, threat modeling, design techniques, patterns, 
mitigations, crypto tools—it all goes into the making of a secure design.

Using the Four Questions as Guidance
The Four Questions used for threat modeling in Chapter 2 are an excel-
lent guide to help you conduct an effective SDR. Explicit threat modeling 
is great if you have the time and want to invest the effort, but if you don’t, 
using the Four Questions as touchstones is a good way to integrate a threat 
perspective into your review. More detailed explanations will be given in 
the subsections that follow, but at the highest level, here is how these ques-
tions map onto an SDR:

1.	 What are we working on?
The reviewer should understand the high-level goals of the design as 
context for the review. What’s the most secure way of accomplishing the goal?

2.	 What can go wrong?
This is where “security hat” thinking comes in, and where to apply threat 
modeling. Did the design fail to anticipate or underestimate a critical threat?
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3.	 What are we going to do about it?
Review what protections and mitigations you find in the design. Can we 
respond in better ways to the important threats?

4.	 Did we do a good job?
Assess whether the mitigations in the design suffice, if some might need 
more work, or if any are missing. How secure is the design, and if lacking, 
how can we bring it up to snuff?

You can use the Four Questions as a tickler while working on an SDR. If 
you’ve read the design document and noted areas of focus but don’t know 
exactly what you are looking for yet, run through the Four Questions—
especially #2 and #3—and consider how they apply to specific parts of the 
design. From there, your assessment will naturally shift to #4. If the answer 
isn’t “We’re doing just fine,” it likely suggests a good topic of discussion, or 
an entry you should include in the assessment report.

What Are We Working On?

There are a few specific ways this question keeps you on track. First, it’s 
important to know the purpose of the design so you can confidently suggest 
cutting any part that incurs risk but is not actually necessary. Conversely, 
when you do suggest changes, you don’t want to break a feature that’s 
actually needed. Perhaps most importantly, you may be able to suggest an 
alternative to a risky feature that takes a new direction. 

For example, in the privacy space, if you’re reviewing a payroll system 
that collects personal information from all employees, you might identify a 
health question as particularly sensitive. If the data item in question is truly 
superfluous, then cutting it from the design is the right move. However, if 
it’s important to the business function the design serves, instead you can 
propose ways to stringently protect against disclosure of this data (such as 
early encryption, or deletion within a short time frame). 

What Can Go Wrong?

The review should confirm that the designer has anticipated the important 
threats that the system faces. And it’s not enough for the designer to be aware 
of these threats; they must have actually created a design that lives up to the 
task of withstanding them. 

Certain threats may be acceptable and left unmitigated, and in this case, 
the reviewer’s job is to assess that decision. But it’s important to be sure that 
the designer is aware of the threat and chose to omit mitigation. If the design 
doesn’t say explicitly that this is what they are doing, note this in the SDR 
to double-check that it’s intentional. Also note the risk being accepted and 
explain why it’s tolerable. For example, you might write: “Unencrypted data 
on the wire represents a snooping threat. However, we determined that the 
risk is acceptable because the datacenter is physically secured, and there is no 
potential for exposure of PII or business-confidential data.” 
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Try to anticipate future changes that might invalidate this decision to 
accept the risk. Building on the example just mentioned, you might add, “If 
the system moves to a third-party datacenter we should revisit this physical 
network access risk decision.”

What Are We Going to Do About It?

Security protection mechanisms and mitigations should become appar-
ent in the design as the reviewer studies it. Reviewers typically spend 
most of their time on the last two questions: identifying what makes the 
design secure and assessing how secure it is. One way of approaching this 
task is by matching the threats to the mitigations to see if all bases are 
covered. Pointing out issues arising from this question and confirming 
that the design is satisfactory are among the most important contribu-
tions of an SDR.

If the design is not doing enough to mitigate security risks, then you 
should itemize what’s missing. To make this feedback useful, you need to 
explain the specific threats that are unaddressed, as well as why they are 
important, and perhaps provide a rough set of options for addressing each. 
For a number of reasons, I recommend against proposing specific remedies 
in an SDR. However, it’s great to offer help informally, and if asked, to col-
laborate with the designer to consider alternatives or even elaborate on 
design changes. For example, your feedback might say: “The monitoring 
API should not be exposed publicly because it discloses our website’s levels 
of use, which could give competitors an advantage. I recommend requiring 
an access key to authenticate requests to the RESTful API.”

When the design does provide a mitigation for a given threat, evaluate 
its effectiveness and consider whether there might be better alternatives. 
Sometimes, designers “reinvent the wheel” by building security mechanisms 
from scratch: good feedback would be to suggest using a standard library 
instead. If the design is secure but that’s achieved at a great performance 
cost, propose another way if you can. An example of this might be pointing 
out redundant security mechanisms, such as encrypting data that is sent 
over an encrypting HTTPS connection, and describing how to streamline 
the design.

Did We Do a Good Job?

This last question goes to the bottom line: Do you consider the design 
secure? Competent designers should have already addressed security, so 
much of the value of the SDR is in assuring that they saw the whole picture 
and anticipated the major threats. In my experience, SDRs quickly identify 
issues and opportunities, or at minimum suggest interesting trade-off deci-
sions worth considering now (because later you won’t have the luxury of 
making changes so easily). 
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I recommend summarizing your overall appraisal of the whole design 
in one statement at the top of the report. Here are some examples of what 
that might look like:

•	 I found the design to be secure as is, and have no suggested changes.

•	 The design is secure, but I have a few changes to suggest that would 
make it even more so.

•	 I have concerns about the current design, and offer a set of recommen-
dations to make it more secure.

After the summary, if there are multiple subpar areas that require fix-
ing, break those out and explain them one by one. If you can attribute the 
weakness to a specific part of the design, it will be easier for the designer to 
pinpoint the problem, see it clearly, and make the necessary remedies.

Of course, no design is perfect, so in judging a design to be lacking, it’s 
important to be clear about what standard you are holding it to. This is dif-
ficult to express in the abstract, so a good approach is to point out specific 
threats, vulnerabilities, and consequences to make your case. It may be best 
to couch your assessment in terms of the security of a comparable product; 
for example, “Our main competitor claims to be ransomware-resistant as 
a major selling point, but this design is particularly susceptible to such 
attacks due to maintaining the inventory database locally on a computer 
that employees also use to surf the web.” 

Where to Dig
It’s impractical to dig into every corner of a large design, so reviewers need  
to focus as quickly as possible on key areas that are security-critical. I 
encourage security reviewers to follow their instincts when deciding where 
to direct their efforts within the design. Begin by reading through the 
design and noting areas of interest according to your intuition. Next, go 
back to the areas of largest concern, study them more carefully, and collect 
questions to ask, letting potential threats and the Four Questions be your 
guide. Some of these leads will be more productive than others. If you do 
start down an unproductive path, you will usually realize this before long, 
so you can refocus your efforts elsewhere.

It’s fine to skim parts of the design that are extraneous to security and 
privacy, absorbing just enough to have a basic understanding of all the mov-
ing parts. If you locked yourself out of your home, you would know to check 
for an open window or unlocked door: nobody would spend time going 
over the entire exterior inch by inch. In the same way, it’s most effective to 
zero in on places in the design where you detect a hint of weakness, or focus 
closely on how the design protects the most valuable assets. 

Keep an eye out for attack surfaces and give them due attention. The 
more readily available they are—anonymous internet exposure is the clas-
sic worst case—the more likely they are to be a potential source of attacks. 
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Trust boundaries guarding valuable resources, especially when reachable 
from an attack surface, are the major generic feature of a design that 
reviewers should be sure to emphasize in their analysis. Sometimes valuable 
assets can be better isolated from external-facing components, but often 
the exposure is unavoidable. These are the kinds of factors that reviewers 
need to search out and assess throughout the process.

Privacy Reviews
Depending on your skill set and organizational responsibilities, you may 
want to handle information privacy within the scope of an SDR, or sepa-
rately. Privacy feedback within an SDR should center on applicable privacy 
policies and how they relate to data collection, use, storage, and sharing 
within the scope of the design. 

A good technique is to run through the privacy policy and note passages 
that pertain to the design, then look for ways to protect against violations. As 
the previous chapter describes, the technical focus is on ensuring that the 
design is in compliance with policy. Get sign-offs from privacy specialists and 
legal for issues requiring more expertise.

Reviewing Updates
Once released, software seems to take on a life of its own, and over time, 
change is inevitable. This is especially true in Agile or other iterative develop-
ment practices, where design change is a constant process. Design documents 
can easily become neglected along the way and, years later, lost or irrelevant. 
Yet changes to a software design potentially impact its security properties, 
so it’s wise to perform an incremental SDR update to ensure that the design 
stays secure.

Design documents should be living documents that track the evolu-
tion of the architectural form of the software. Versioned documents are 
an important record of how the design has matured, or in some cases 
become convoluted. You can use these same documents as a guide to 
focus an incremental review on the precise set of changes (the design 
delta) since the previous SDR to update it. When there are changes to (or 
near) security-critical areas of the design, it’s often wise for the reviewer 
to follow up to ensure that no small but important details were omitted  
in the design document that might have significant impact. If the incre-
mental review does turn up anything substantial, add that to the existing 
assessment report so it now tells the complete story. If not, just update the 
report to note what design version it covers.

Underestimating the impact of a “simple change” is a common invitation 
to a security disaster, and re-reviewing the design is a great way to proactively 
assess such impacts effectively. If the design change is so minor that a review 
is unnecessary, it’s also true that a reviewer could confirm right away that 
there is no security impact. For anything but a trivial design change, I would 
suggest that there is little to gain from skipping the SDR update, given the 
risk of missing this important safeguard. 
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Managing Disagreement
Whatever you do in life, surround yourself with smart people who’ll argue with you.

—John Wooden

An important lesson from my years of evangelizing security—learned the 
hard way, though obvious in hindsight—is that good interpersonal commu-
nication is critical to conducting successful SDRs. The analysis is technical, 
of course, but critiquing a design requires good communication and collab-
oration, so human factors are also key. Too often, security specialists, be they 
in-house or outsourced, get reputations (deservedly or not) of being hyper-
critical interlopers who are never satisfied. That perception subtly poisons 
interactions, not only making the work difficult, but adversely impacting the 
effectiveness of everybody’s efforts. We have to acknowledge this factor in 
order to do better.

Communicate Tactfully
SDRs are inherently adversarial, in that they largely consist of pointing 
out risks and potential flaws in designs in which people are often heavily 
invested. Once identified, design weaknesses often look painfully obvious in 
hindsight, and it’s easy for reviewers to slip into casting this as carelessness, 
or even incompetence—but it is never productive to communicate that way. 
Instead, treat the issues that do arise as teaching opportunities. Once the 
designer understands the problem, often they will lead the discussion into 
other productive areas the reviewer might have missed. Having someone 
point out a vulnerability in your own design is the best way there is to learn 
security.

An SDR spent ruthlessly tearing apart a weak design with a one-sided 
lecture on the importance of maximizing security over everything else is 
unlikely to be productive (for reasons that should be obvious if you imagine 
yourself on the receiving end). While this does, unfortunately, sometimes 
happen, I don’t think it’s necessarily because the reviewers are mean, but 
rather because in focusing on the technical changes needed, it’s easy to 
forget about keeping the tone respectful. It’s well worth bending over back-
wards to maintain good will and reinforce that everybody is on the same 
team, bringing a diversity of perspectives and working toward the common 
goal of striking the right balance. Sports coaches frequently walk this same 
fine line, pointing out weaknesses they see (that they know opponents will 
exploit) without asking too much, in order to help their teams do the work 
necessary to play their best game. As Mark Cuban says, “Nice goes much 
further than mean.”

Getting along with people while delivering possibly unwelcome messages 
is, of course, desirable, but it is also much easier said than done. This is a 
technical software book, so I offer no self-help advice on how to win friends 
and influence developers. But the human factor is important enough—or 
more precisely, ignoring it potentially undermines the work enough—that 
it merits prominent mention. My fundamental guidance is simple: be aware 
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of how you deliver messages and consider how others will receive them and 
likely respond. To show how this works for an SDR, I offer a true story, and a 
set of tips that I have come to rely on. 

Case Study: A Difficult Review
One of my most memorable SDRs is a great object lesson in the importance 
of soft skills. It began with a painful email exchange I initiated just to get 
documentation and ask a few basic questions. The exchange made it imme-
diately clear that the team lead viewed the SDR as a complete waste of time. 
On top of that, because they had been unaware of this product launch 
requirement, it had suddenly become an unwelcome new obstacle blocking 
the release they were working so hard toward. The first key takeaway from 
this story is the importance of recognizing the other participants’ perspec-
tive on the process, right or wrong, and adapting accordingly.

What documentation I eventually got I found to be sloppy, incomplete, 
and considerably outdated. Directly pointing this out in so many words 
would have been unproductive and further soured the relationship. The 
second key point is that to spur improvement, work around the problem, 
and handle the SDR effectively, it’s more productive to use strategies like 
the following:

•	 Suggest fixes or additions, including the security rationale behind each 
suggestion. 

•	 When feasible, offer to help review documents, suggest edits, or any-
thing else you can do to facilitate the process (but short of doing their 
job for them).

•	 Present preliminary SDR feedback as “my perspective” rather than as 
demands.

•	 Use the “sandwich” method: begin with a positive remark, point out 
needed improvements, then close on a positive (such as how the 
changes will help).

•	 If your feedback is extensive, ask first how best to communicate it. 
(Don’t surprise them with a 97-bullet-point email, or by filing tons of  
bugs out of the blue.)

•	 Explore all the leads that you notice, but limit your feedback to the 
most significant points. (Don’t be a perfectionist.)

•	 A good rule of thumb is that if missing information is going to be gener-
ally useful to many readers it’s worth documenting, but if it’s particular 
to your needs you should just ask the question less formally. (If neces-
sary, you can include the details of the issue in the assessment report.)

Instead of complaining about or judging the quality of the documenta-
tion, find creative alternative ways to learn about the software, such as using 
an internal prototype if available, or perusing the code and code reviews. 
Asking to observe a regular team meeting can be a great way to learn about 
the design without taking up anyone’s time. 
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Over email, it felt like they were being rude, but when we finally met I 
could see that this was just a stressed-out lead developer. Instead of relying 
exclusively on the lead, I found another team member who was less stretched 
and was glad to answer my questions. To save time in preparing for the SDR 
meeting, I pursued only the questions that were important to resolve ahead 
of time, saving others for the meeting when I had a captive audience.

Preparing for an SDR meeting is a balancing act. You shouldn’t go in 
cold with zero preparation, because the team may not appreciate having 
to describe everything, especially after providing you with documentation. 
Ahead of time, try to identify major components and dependencies you 
are unfamiliar with, and at least get up to speed enough to ask questions at 
the meeting. During preparation, a good practice is to jot down issues and 
questions, then to sort these into categories:

•	 Questions to ask in advance so you are ready to dig into security when 
you meet

•	 Questions you can find answers to yourself

•	 Topics best explored at the meeting

•	 Observations you will include in the assessment report that don’t need 
discussion

By the time we finally held a meeting, the lead engineer was overtly 
unhappy that the SDR was now the major obstacle to launching the prod-
uct. The first meeting was a little rocky, but we made good progress, with 
everyone staying focused. After a few more meetings (which gradually 
became easier and shorter each time), I signed off on the design. We agreed 
on a few changes at the first meeting, but confirming the details and meet-
ing to finalize them was an important assurance to all. If you don’t take the 
time to confirm that needed changes to the design get made, it’s easy for a 
miscommunication to slip through the cracks.

It’s never easy to convince busy people that you are helping them by 
taking up their time, and telling them so rarely works. However, flagging 
even small opportunities to improve security and showing how these contrib-
ute to the final product is a great way to reach a mutually satisfactory result.

By the completion of the SDR, the product team had a far better under-
standing of security—and by extension, of their own product. In the end, 
they did see the value of the review, and acknowledged that the product had 
been improved as a result. Better yet, for version two, the team proactively 
reached out to me and we sailed through the update SDR with flying colors.

Escalating Disagreements
When the designer and reviewer fail to reach consensus, they should agree 
to disagree. If the issue is minor, the reviewer can simply note the point 
of disagreement in the assessment report and defer to the designer. In 
such cases, make the disagreement explicit, perhaps in a section called 
“Recommendations Declined,” explaining the suggested design change and 
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why you recommended it, as well as the potential consequences of not mak-
ing the change. However, if there is a serious dispute about a major deci-
sion, the reviewer should escalate the issue. 

In this case both the designer and the reviewer should write up their 
positions, starting with an attempt at identifying some common starting 
ground that they do agree on, and exchange drafts so everyone knows both 
perspectives. Their respective positions combine to form a memo explain-
ing the risk, along with proposed outcomes and their costs. This memo 
supplements the assessment report and serves as the basis for a meeting, 
or as a guide for management to decide how to proceed. The results of the 
final decision, along with the escalation memo, should go into the assess-
ment report.

Over many years of conducting security reviews, I have never had occa-
sion to escalate an issue, but I have come close a few times. Strong disagree-
ment almost always originates from a deep split in basic assumptions that, 
once identified, usually leads to resolution. Such differences often stem 
from implicit assumptions about the software’s use, or what data it will pro-
cess. In actual practice, how software gets used is extremely hard to control, 
and over time use cases usually evolve, so leaning to the safe side is usually 
the best course. 

Another major cause of disconnect happens when the designer fails 
to see that data confidentiality or integrity matters, usually because they 
are missing the necessary end user perspective or not considering the full 
range of possible use cases. One more important factor to consider is this: 
Hypothetically, if we changed our minds after release, how much harder 
would the change be to make at that stage? Nobody wants to say “I told you 
so” after the fact, but putting the opposing conditions in writing is usually 
the best way to make the right choice.

Practice, Practice, Practice
To solidify what you have learned in this chapter and truly make it your 
own, I strongly encourage readers to take the leap, find a software design, 
and perform an SDR for it. If there is no current software design in your 
sphere of interest just now, choose any available existing design and review 
it as an exercise. If the software you chose has no formal written design, 
start by creating a rough representation of the design yourself (it doesn’t 
have to be a complete or polished document, even a block diagram will 
do), and review that. Generally, it’s best to start with a modest-sized design 
so you don’t get in over your head, or carve out a component from a large 
system and review just that part. Having read this far should have prepared 
you to begin. You can start by doing quick reviews for your own use if you 
don’t feel confident enough yet to share your assessment reports.

As you acquire the critical skills of SDR, you can apply them to any soft-
ware you encounter. Studying lots of designs is a great way to learn about 



Security Design Reviews   125

the art of software design—both by seeing how the masters do it and by 
spotting mistakes that others have made—and practicing applying them in 
this way is an excellent exercise to grow your skills. 

An especially easy way to start is to review the sample design document 
in Appendix A. The security provisions are highlighted, to provide a real-
istic example of what to look for in designs. Read the design, noting the 
highlighted portions, and then imagine how you would identify and supply 
those security-related details if they were missing. For a greater challenge, 
look for additional ways to make the design even more secure (by no means 
do I claim or expect it to be a flawless ideal!).

With each SDR, you will improve your proficiency. Even when you don’t 
find any significant vulnerabilities, you will enhance your knowledge of the 
design, as well as your security skills. There certainly is no shortage of soft-
ware in need of security attention, so I invite you to get started. I believe how 
quickly you acquire this valuable skill set will surprise you.

N O T E 	 See Appendix D for a cheat sheet summarizing the SDR process as a handy aid doing 
security design reviews.





PART III
I M P L E M E N T A T I O N





8
S E C U R E  P R O G R A M M I N G

The first principle is that you must not fool yourself, and you are the easiest person to fool.
—Richard P. Feynman

A completed software design, created and 
reviewed with security in mind, is only the 

beginning of a product’s journey: next comes 
the work of implementing, testing, deploying, 

operating, monitoring, maintaining, and, ultimately, 
retiring it at end of life. While the particular details of  
all this will vary greatly in different operating systems and languages, the 
broad security themes are so common as to be nearly universal.

Developers must not only faithfully implement the explicit security pro-
visions of a good design, but in doing so they must also take care to avoid 
inadvertently introducing additional vulnerabilities with flawed code. A 
carpenter building a house based on the architect’s plans is a good meta-
phor: sloppy construction with lousy materials leads to all kinds of prob-
lems in the finished product. If the carpenter misstrikes a nail and bends 
it, the problem is noticeable and easily remedied. By contrast, flawed code 
is easily overlooked, but may nevertheless create a vulnerability that can 
be exploited with dire consequences. The purpose of this chapter is not 
to teach you how to code—I’ll assume you already know about that—but 
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rather how code becomes vulnerable and how to make it more secure. The 
following chapters cover many of the commonplace implementation vulner-
abilities that continue to plague software projects.  

The line between design and implementation is not always clear, nor 
should it be. Thoughtful designers can anticipate programming issues, 
provide advice about areas where security will be critical, and much more. 
The programmers doing the implementation must flesh out the design and 
resolve any ambiguities in order to make functional code with precisely 
defined interfaces. Not only must they securely render the design—in itself 
a daunting task—but they must also avoid introducing additional vulner-
abilities in the course of supplying the necessary code in full detail. 

In an ideal world, the design should specify proactive security measures: 
features of the software built for the purpose of protecting the system, its 
assets, and its users. Conversely, security in development is about avoiding 
pitfalls that software is liable to—rough edges on the components and tools, 
if you will. Where new risks emerge during the process of implementation, 
mitigations specific to these are in order, because there is no reason to 
expect that designers could have anticipated them.

This chapter focuses on how some bugs become vulnerabilities, how 
they occur, and how to avoid the various pitfalls. It approaches these issues 
in general terms as a lead-in to the following chapters, which drill into major 
areas that, historically, have proven to be fraught with security problems. 
We’ll begin by exploring the essence of the challenge of secure coding, 
including how attackers exploit openings and extend their influence deeper 
into code. We’ll also talk about bugs: how vulnerabilities arise from them, 
how minor bugs can form vulnerability chains that potentially create bigger 
problems, and how code appears through the lens of entropy. 

Avoiding vulnerabilities in your code requires vigilance, but that 
requires knowledge of how code undermines security. To make the concept 
of a coding vulnerability concrete, we’ll walk through a simplified version 
of the code for a devastating real vulnerability that shows how a one-line 
editing slip-up broke security across the internet. Then we’ll look at a few 
classes of common vulnerabilities as examples of bugs that are potentially 
exploitable with serious consequences. 

Throughout Part III, most code examples will be in Python and C, 
widely used languages that span the range from high-level to low-level 
abstraction. This is real code using the particulars of the specific language, 
but the concepts in this book apply generally. Even if you are unfamiliar 
with Python or C, the code snippets should be simple enough for readers 
familiar with any modern programming language to follow.

The Challenge
The term “secure programming” was the obvious choice for the title of 
this chapter, though it is potentially misleading. A more accurate expres-
sion of the goal (unsuitable as a chapter title) would be “avoiding coding 
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insecurely.” What I mean by that is that the challenge of secure coding 
largely amounts to not introducing flaws that become exploitable vulner-
abilities. Programmers certainly do build protection mechanisms that 
proactively improve security, but these are typically explicit in the design 
or features of APIs. I want to focus primarily on the inadvertent pitfalls 
because they are nonobvious and constitute the root causes of most security 
failings. Think of secure coding as similar to learning where the potholes 
are in a road, diligently paying attention at the wheel, and navigating them 
consistently.

I believe that many programmers, perhaps quite rightfully, have 
unfavorable attitudes toward software security (and in some cases, more 
viscerally, about “security cops”—or worse names—who they perceive as 
bothering them) because they often hear the message “don’t mess up” 
when it comes to implementation. “Don’t mess up!” is unhelpful advice 
to a jeweler about to cut a rare diamond for the same reasons: they have 
every intention of doing their best, and the added stress only makes it 
harder to concentrate and do the job right. The well-meaning “cops” are 
providing necessary advice, but often they don’t phrase it in the most 
kindly and constructive way. Having made this mistake plenty of times 
myself, I am endeavoring to walk that fine line here, and ask for the reader’s 
understanding.

Caution is indeed necessary, because one slip by a programmer (as we 
shall see when we look at the GotoFail vulnerability later in this chapter) 
can easily result in disastrous consequences. The root of the problem is 
the great fragility and complexity of large modern software systems, which 
are only expected to grow in the future. Professional developers know how 
to test and debug code, but security is another matter, because vulnerable 
code usually works fine absent a diligent attack.

Software designers create idealized conceptions that, by virtue of not 
yet being realized, can even be perfectly secure in theory. But making soft-
ware that actually works introduces new levels of complexity and requires 
fleshing out details beyond the design, all of which inevitably carries the 
risk of security problems. The good news is that perfection isn’t the goal, 
and the coding failure modes that account for most of the common vulner-
abilities are both well understood and not that difficult to get right. The 
trick is constant vigilance and learning how to look out for dangerous flaws 
in code. This chapter presents a few concepts that should help you get a 
good grasp of what secure versus vulnerable code looks like, along with 
some examples.

Malicious Influence
When thinking about secure coding, a key consideration is understanding 
how attackers potentially influence running code. Think of a big, compli-
cated machine purring away smoothly, and then a prankster takes a stick 
and starts poking the mechanism. Some parts, such as the cylinders of a 
gasoline engine, will be completely protected within the block, while other 
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parts, such as a fan belt, are exposed, making it easy to jam something 
in, causing a failure. This is analogous to how attackers prod systems when 
attempting to penetrate them: they start from the attack surface and use 
cleverly crafted, unexpected inputs to try and foul the mechanism, then 
attempt to trick code inside the system into doing their bidding. 

Untrusted inputs potentially influence code in two ways: directly and 
indirectly. Beginning wherever they can inject some untrusted input—say, 
the string “BOO!”—they experiment in hopes that their data will avoid 
rejection and propagate deeper into the system. Working down through 
layers of I/O and various interfaces, the string “BOO!” typically will find 
its way into a number of code paths, and its influence will permeate deeper 
into the system. Occasionally, the untrusted data and code interaction 
triggers a bug, or a feature that may have an unfortunate side effect. A 
web search for “BOO!” may involve hundreds of computers in a datacen-
ter, each contributing a little to the search result. As a result, the string 
must get written to memory in thousands of places. That’s a lot of influ-
ence spread, and if there is even a minuscule chance of harm, it could be 
dangerous. 

The technical term for this kind of influence of data on code is tainting, 
and a few languages have implemented features to track it. The Perl inter-
preter can track tainting for the purpose of mitigating injection attacks 
(covered in Chapter 10). Early versions of JavaScript had taint checking for 
similar reasons, though it has long since been removed due to lack of use. 
Still, the concept of influence on code by data from untrusted sources is 
important to understand to prevent vulnerabilities.

There are other ways that input data can influence code indirectly 
without the data being stored. Suppose that, given an input of the string 
“BOO!”, the code avoids storing any further copies of it: Does that insulate 
the system from its influence? It certainly does not. For example, consider 
this given input = "BOO!":

if "!" in input:
    PlanB()
else:
    PlanA()

The presence of the exclamation point in the input has caused the code 
to now pursue PlanB instead of PlanA, even though the input string itself is 
neither stored nor passed on for subsequent processing.

This simple example illustrates how the influence of an untrusted input 
can propagate deep into code, even though the data (here, “BOO!”) may 
not itself propagate far. In a large system, you can appreciate the potential 
of penetration into lots of code when you consider the transitive closure 
(the aggregate extent of all paths), starting from the attack surface. This 
ability to extend through many layers is important, because it means that 
attackers can reach into more code than you might expect, affording them 
opportunities to control what the code does. We’ll talk more about manag-
ing untrusted input in Chapter 10.
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Vulnerabilities Are Bugs
If debugging is the process of removing bugs, then programming must be the  
process of putting them in.

—Edsger Dijkstra

That all software has bugs is so widely accepted that it is hardly necessary to 
substantiate the claim at this point. Of course, exceptions to this general-
ization do exist: trivial code, provably correct code, and highly engineered 
software that runs aviation, medical, or other critical equipment. But for 
everything else, awareness of the ubiquity of bugs is a good starting point 
from which to approach secure coding, because a subset of those bugs are 
going to be useful to attackers. So, bugs are our focus here.

Vulnerabilities are a subset of software bugs useful to attackers to cause 
harm. It’s nearly impossible to accurately separate vulnerabilities from other 
bugs, so it may be easiest to start by identifying bugs that clearly are not vul-
nerabilities—that is, totally harmless bugs. Let’s consider some examples of 
bugs in an online shopping website. A good example of an innocuous bug 
might be a problem with the web page layout not working as designed: it’s a 
bit of a mess, but all important content is fully visible and functional. While 
this might be important to fix for reasons of brand image or usability, it’s 
clear that there is no security risk associated with this bug. But to empha-
size how tricky vulnerability spotting can be, there could be similar bugs 
that mess up layout and are also harmful, such as if they obscure important 
information the user must see to make an accurate security decision.

At the harmful end of the spectrum, here’s a nightmarish vulnerability 
to contemplate: the administrative interface becomes accidentally exposed, 
unprotected, on the internet. Now, anyone visiting the website can click a 
button to go into the console used by managers to change prices, see confi-
dential business and financial data, and more. It doesn’t take a genius to see 
that this is a complete failure of authorization and a clear security threat. 

Of course, there is a continuum between those extremes, with a large 
murky area in the middle that requires subjective judgments about the 
potential of a bug to cause harm. And as we will see in the next section, the 
often unforeseen cumulative effects of multiple bugs make determining 
their potential for harm particularly challenging. In the interests of secu-
rity, naturally, I would urge you to err on the safe side and lean toward 
remedying more bugs if there is any chance they might be vulnerabilities.

Every project I’ve ever worked on had a tracking database filled with 
tons of bugs, but no concerted effort to reduce even the known bug count 
(which is very different from the actual bug count) to zero. So it’s safe to say 
that, generally, all of us program alongside a trove of known bugs, not to 
mention the unknown bugs. If it isn’t already actively done, consider work-
ing through the known bugs and flagging possible vulnerabilities for fixing. 
It’s important to mention, too, that it’s almost always easier to just fix a bug 
than to investigate and prove that it’s harmless. Chapter 13 offers guidance 
on assessing and ranking security bugs to help you prioritize vulnerabilities.



134   Chapter 8

Vulnerability Chains
The idea behind vulnerability chains is that seemingly harmless bugs can 
combine to create a serious security bug. It’s bug synergy for the attackers. 
Think of taking a walk and coming upon a stream you would like to cross. 
It’s far too wide to leap across, but you notice a few stones sticking up above 
the surface: by hopping from stone to stone, it’s easy to cross without get-
ting your shoes wet. These stones represent minor bugs, not vulnerabilities 
themselves, but together they form a new path right through the stream, 
allowing the attacker to reach deep inside the system. These stepping-stone 
bugs form, in combination, an exploitable vulnerability. 

Here’s a simple example of how such a vulnerability chain could arise in 
an online shopping web app. After a recent code change, the app’s order form 
has a new field prefilled with a code indicating which warehouse will handle 
the shipment. Previously, business logic in the backend assigned a warehouse 
after the customer placed the order. Now a field that’s editable by the cus-
tomer determines the warehouse that will handle the order. Call this Bug #1. 
The developer responsible for this change suggests that nobody will notice 
the addition, and furthermore, even should anyone modify the warehouse 
designation that the system supplies by default, another warehouse won’t have 
the requested items in stock, so it will get flagged and corrected: “No harm, no 
foul.” Based on this analysis, but without any testing, the team schedules Bug 
#1 for the next release cycle. They’re glad to save themselves a fire drill and 
schedule slip, and push the buggy code change into production.

Meanwhile, a certain Bug #2 is languishing in the bug database with a 
Priority-3 ranking (meaning “fix someday,” which is to say, probably never), 
long forgotten. Years ago, a tester filed Bug #2 after discovering that if you 
place an order with the wrong warehouse designation, the system immedi-
ately issues a refund because that warehouse is unable to fulfill it; but then 
another processing stage reassigns the order to the correct warehouse, 
which fulfills and ships it. The tester saw this as a serious problem—the 
company would be giving away merchandise for free—and filed it as 
Priority-1. In the triage meeting, the programmers insisted that the tester 
was “cheating” because the backend handled the warehouse assignment 
(before Bug #1 was introduced) after confirming available inventory. In 
other words, at the time of discovery, Bug #2 was purely hypothetical and 
could never have happened in production. Since the interaction of various 
stages of business logic would be difficult to untangle, the team decided to 
leave it alone and make the bug Priority-3, and it was quickly forgotten. 

If you followed this story of “letting sleeping bugs lie” you probably 
already can see that it has an unhappy ending. With the introduction of 
Bug #1, in combination with Bug #2, a fully fledged vulnerability chain now 
exists, almost certainly unbeknownst to anyone. Now that the warehouse 
designation field is writable by customers, the wrong warehouse case that 
triggers Bug #2 is easy to produce. All it takes is for one devious, or even 
curious, customer to try editing the warehouse field; pleasantly surprised  
to receive free merchandise with a full refund, they might go back for a lot 
more the next time, or share the secret with others. 
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Let’s look at where the bug triage went wrong. Bug #2 (found earlier) 
was a serious fragility that they should have fixed in the first place. The 
reasoning in favor of leaving it alone hinged on the warehouse trusting 
other backend logic to direct it flawlessly, under the assumption (correct, at 
the time) that the warehouse assignment field in an order was completely 
isolated from any attack surface. Still, it’s clearly a worrisome fragility that 
clearly has bad consequences, and the fact that the business logic would be 
difficult to fix suggests that a rewrite might be a good idea.

Bug #1, introduced later on, opened up a new attack surface, exposing 
the warehouse designation field to tampering. The unfortunate decision 
not to fix this depended on the incorrect assumption that tampering was 
harmless. With the benefit of hindsight, had anyone done a little testing 
(in a test environment, of course, never in production), they could have 
easily found the flaw in their reasoning and done the right thing before 
releasing Bug #1. And, ideally, had the tester who found Bug #2, or anyone 
familiar with it, been present, they might have connected the dots and 
slated both bugs for fixing as Priority-1. 

Compared to this artificial example, recognizing when bugs form vul-
nerability chains is, in general, very challenging. Once you understand the 
concept, it’s easy to see the wisdom of fixing bugs proactively whenever pos-
sible. Furthermore, even when you do suspect a vulnerability chain might 
exist, I should warn you that in practice it’s often hard to convince others 
to spend time implementing a fix for what looks like a vague hypothetical, 
especially when fixing the bug in question entails significant work. It’s likely 
that most large systems are full of undetected vulnerability chains, and our 
systems are weaker for it.

This example illustrates how two bugs can align into a causal chain, 
much like a tricky billiards shot with the cue ball hitting another ball, that 
in turn knocks the target ball into the pocket. Believe it or not, vulnerabil-
ity chains can be a good deal more involved: one team in the Pwn2Own 
competitive hacking contest managed to chain together six bugs to achieve  
a difficult exploit.

When you understand vulnerability chains, you can better appreciate the 
relationship of code quality to security. Bugs introducing fragility, especially 
around critical assets, should be fixed aggressively. Punting a bug because “it 
will never happen” (like our Bug #2) is risky, and you should bear in mind 
that one person’s opinion that it will be fine is just that, an opinion, not a 
proof. Such thinking is akin to the Security by Obscurity anti-pattern and at 
best a temporary measure rather than a good final triage decision.

Bugs and Entropy
Having surveyed vulnerabilities and vulnerability chains, next consider that 
software is also liable to less precise sequences of events that can do dam-
age. Some bugs tend to break things in unpredictable ways, which makes an 
analysis of their exploitability (as with a vulnerability chain) difficult. As evi-
dence of this phenomenon, we commonly reboot our phones and computers 
to clear out the entropy that accumulates over time due to the multitude of 
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bugs. (Here I’m using the word entropy loosely, to evoke an image of disorder 
and metaphorical corrosion.) Attackers can sometimes leverage these bugs 
and their aftereffects, so countermeasures can help improve security.

Bugs arising from unexpected interactions between threads of execution 
are one class prone to this kind of trouble, because they typically present in 
a variety of ways, seemingly at random. Memory corruption bugs are another 
such class, because the contents of the stack and heap are in constant flux. 
These sorts of bugs, which perturb the system in unpredictable ways, can 
almost be juicier targets for attack because they offer potentially endless 
possibilities. Attackers can be quite adept at exploiting such messy bugs, and 
automation makes it easy to retry low-yield attempts until they get lucky. On 
the flip side, most programmers dislike taking on these elusive bugs that are 
hard to pin down and frequently deemed too flaky to be of concern, and 
hence they tend to persist unaddressed.

Even if you cannot nail down a clear causal chain, entropy-inducing bugs 
can be dangerous and are well worth fixing. All bugs introduce amounts of 
something like entropy into systems, in the sense that they are slight depar-
tures from the correct behavior, and those small amounts of disturbance 
quickly add up—especially if abetted by a wily attacker. By analogy with the 
Second Law of Thermodynamics, entropy inevitably builds up within a closed 
system, raising the risk of harm due to bugs of this type becoming exploitable 
at some point. 

Vigilance
I love hiking, and the trails in my area are often muddy and slippery, with 
exposed roots and rocks, so slipping and falling is a constant threat. With 
practice and experience, slips have become rare, but what’s uncanny is that 
in particularly treacherous spots, where I focus, I never slip. While occasion-
ally I do still fall, rather than due to any obstacle, it’s usually on an easier 
part of the trail, because I just wasn’t paying attention. The point here is that 
with awareness, difficult challenges can be mastered; and conversely, inat-
tention easily undermines you, even when the going is easy.

Software developers face just such a challenge: without awareness of 
potential security pitfalls and sustained focus, it’s easy to unwittingly fall 
into them. Developers instinctively write code to work for the normal use 
case, but attackers often try the unexpected in hopes of finding a flaw that 
might lead to an exploit. Maintaining vigilance to anticipate the full range 
of possible inputs and combinations of events is critical, as described previ-
ously in terms of vulnerability chains and entropy, to delivering secure code.

The following section and chapters present a broad representative survey 
of the vulnerabilities that plague modern software, with “toy” code examples 
used to show what implementation vulnerabilities look like. As Marvin 
Minsky, one of the artificial intelligence legends at MIT, whom I was fortu-
nate to meet during my time there, points out, “In science one can learn the 
most by studying the least.” In this context, that means that simplified code 
examples aid explanation by making it easy to focus on the critical flaw. In 
practice, vulnerabilities are woven into the fabric of a great profusion of code, 
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along with a lot of other things that are important to the task but irrelevant 
to the security implications, and are not so easily recognized. If you want to 
look at real-world code examples, browse the bug database of any open source 
software project—they are all sure to have security bugs.

Vigilance requires discipline at first, but with practice it becomes sec-
ond nature when you know what to watch out for. Remember that if your 
vigilance pays off and you do manage to fend off a would-be attacker, you 
probably will never know it—so celebrate each small victory, as you avert 
hypothetical future attacks with every fix. 

Case Study: GotoFail
Some vulnerabilities are nasty bugs that don’t follow any pattern, somehow 
slip past testing, and get released. One property of vulnerabilities that makes 
this more likely to happen than you might expect is that the code often works 
for typical usage, and only displays harmful behavior when stressed by an 
intentional attack. In 2014, Apple quietly released a set of critical security 
patches for most of its products, declining to explain the problem for “the 
protection of our customers.” It didn’t take long for the world to learn that 
the vulnerability was due to an apparent editing slip-up that effectively under-
mined a critical security protection. It’s easy to understand what happened by 
examining a short excerpt of the actual code. Let’s take a look.

One-Line Vulnerability
To set the stage, the code in question runs during secure connection estab-
lishment. It checks that everything is working properly in order to secure 
subsequent communications. The security of the Secure Sockets Layer (SSL) 
protocol rests on checking that the server signs the negotiated key, authenti-
cated according to the server’s digital certificate. More precisely, the server 
signs the hash of several pieces of data that the ephemeral key derives from. 
Chapter 11 covers the basics of SSL, but you can follow the code behind this 
vulnerability without knowing any of those details. Here is the C++ code:

vulnerable code /*
 * Copyright (c) 1999-2001,2005-2012 Apple Inc. All Rights Reserved.
 *
 * @APPLE_LICENSE_HEADER_START@
 *
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the ‘License’). You may not use this file except in
 * compliance with the License. Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this
 * file.
 *
 * The Original Code and all software distributed under the License are
 * distributed on an ‘AS IS’ basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
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 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 *
 * @APPLE_LICENSE_HEADER_END@
 */
--snip--
    if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
      goto fail;
    if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
      goto fail;
      goto fail;
    if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
      goto fail;
--snip--

fail:
    SSLFreeBuffer(&signedHashes);
    SSLFreeBuffer(&hashCtx);
    return err;

The three calls to SSLHashSHA1.update feed their respective chunks of data 
into the hash function and check for the nonzero return error case. The 
details of the hash computation are beside the point for our purposes, and not 
shown; just know that this computation is critical to security, since its output 
must match an expected value in order to authenticate the communication. 

At the bottom of the function, the code frees up a couple of buffers, 
and then returns the value of err: zero for success, or a nonzero error code. 

The intended pattern in the code is clear: keep checking for nonzero 
return values indicating error, or sail through with zeros if everything is 
fine, and then return that. You probably already see the error—the dupli-
cated goto fail line. Notwithstanding the suggestive indentation, this 
unconditionally shunts execution down to the fail label, skipping the rest 
of the hash computation and skipping the hash check altogether. Since the 
last assignment to err before the extra jump was a zero value, this function 
suddenly unconditionally approves of everything. Presumably this bug went 
undetected because valid secure connections still worked: the code didn’t 
check the hash, but if it had, they all would have passed anyway.

Beware of Footguns
GotoFail is a great argument for the wisdom of structuring code by inden-
tation, as languages such as Python do. The C language enables a kind of 
footgun (a feature that makes it easy to shoot yourself in the foot) by instead 
determining a program’s structure syntactically. This allows indentation 
that, by standard code style conventions, is potentially misleading because it 
implies different semantics, even though it’s completely ignored by the com-
piler. When looking at this code:

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
  goto fail;
  goto fail;
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programmers might easily see the following (unless they are careful and 
mentally compiling the code):

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0) {
  goto fail;
  goto fail;
}

Meanwhile, the compiler unambiguously sees:

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0) {
  goto fail;
}
goto fail;

A simple editing error happened to be easily missed, and also dramati-
cally changed the code, right at the heart of a critical security check. That’s 
the epitome of a serious vulnerability. 

Beware of other such footguns in languages, APIs, and other program-
ming tools and data formats. You’ll see many examples in the following 
chapters, but another one from C syntax that I’ll mention here is writing 
if (x = 8) instead of if (x == 8). The former assigns 8 to x, unconditionally 
executing the then-clause, since that value is nonzero; the latter compares 
x to 8,  executing the then-clause only if it’s true—quite different, indeed. 
While some would argue against it stylistically, I like to write such C state-
ments as if (8 == x) because if I forget to double the equal sign, it is a syn-
tax error and the compiler will catch it.

Compiler warnings can help flag this sort of slip-up. The GCC com-
piler’s -Wmisleading-indentation warning option is intended for just the sort 
of problem that caused the GotoFail vulnerability. Some warnings indi-
cate potential trouble in subtler ways. An unused variable warning seems 
benign enough, but say there are two variables with similar names and 
you accidentally typed the wrong one in an important access test, result-
ing in the warning and also the use of the wrong data for a crucial test. 
While warnings are by no means reliable indicators of all vulnerabilities, 
they are easy to check and just might save the day.

Lessons from GotoFail
There are several important lessons we can learn from GotoFail:

•	 Small slips in critical code can have a devastating impact on security.

•	 The vulnerable code still works correctly in the expected case. 

•	 It’s arguably more important for security to test that code like this 
rejects invalid cases than that it passes the normal legit uses.

•	 Code reviews are an important check against bugs introduced by over-
sight. It’s hard to imagine how a careful reviewer looking at a code diff 
could miss this.
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This vulnerability suggests a number of countermeasures that could 
have prevented it from occurring. Some of these are specific to this particu-
lar bug, but even those should suggest the sorts of precautions you could 
apply elsewhere to save yourself the pain of creating flawed code. Useful 
countermeasures include: 

•	 Better testing, of course. At a minimum, there should have been a test 
case for each of those ifs to ensure that all necessary checks worked.

•	 Watch out for unreachable code (many compilers have options to flag 
this). In the case of GotoFail, this could have tipped the programmers 
off to the introduction of the vulnerability. 

•	 Make code as explicit as possible, for example by using parentheses and 
curly braces liberally, even where they could be omitted.

•	 Use source code analysis tools such as “linters,” which can improve code 
quality, and in the process may flag some potential vulnerabilities for 
preemptive fixing.

•	 Consider ad hoc source code filters to detect suspect patterns such as, 
in this case, duplicated source code lines, or any other recurrent errors.

•	 Measure and require full test coverage, especially for security-critical code. 

These are just some of the basic techniques you can use to spot bugs 
that could undermine security. As you encounter new classes of bugs, con-
sider how tools might be applied to systemically avoid repeated occurrences 
in the future—doing so should reduce vulnerabilities in the long term.

Coding Vulnerabilities
All happy families are alike; each unhappy family is unhappy in its own way.

—Leo Tolstoy

Sadly, the famous opening line from Leo Tolstoy’s novel Anna Karenina 
applies all too well to software: the prospects for new kinds of bugs are 
endless, and attempting to compile a complete list of all potential software 
vulnerabilities would be a fool’s errand. Categories are useful, and we will 
cover many of them, but do not confuse them with a complete taxonomy 
covering the full range of possibilities. 

This book by no means presents an exhaustive list of all potential flaws, 
but it does cover a representative swath of many of the most common cat-
egories. This basic survey should provide you with a good start, and with 
experience you will begin to intuit additional issues and learn how to safely 
steer clear of them.

Atomicity
Many of the worst coding “war stories” that I have heard involve multi-
threading or distributed processes sporadically interacting in bizarre ways 
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due to an unexpected sequence of events. Vulnerabilities often stem from 
these same conditions, and the only saving grace is that the sensitive timing 
required may make the exploit too unreliable for the perpetrators—though 
you should not expect this to easily dissuade them from trying anyway.

Even if your code is single threaded and well behaved, it’s almost always 
running in a machine with many other active processes, so when you inter-
act with the filesystem, or any common resource, you are potentially dealing 
with race conditions involving code you know nothing about. Atomicity in 
software describes operations that are guaranteed to effectively be com-
pleted as a single step. This is an important defensive weapon in such cases 
in order to prevent surprises that potentially can lead to vulnerabilities. 

To explain what can happen, consider a simple example of copying sensi-
tive data to a temporary file. The deprecated Python tempfile.mktemp function 
returns the name of a temporary file guaranteed not to exist, intended for 
use by applications as the name of a file they create and then use. Don’t use it: 
use the new tempfile.NamedTemporaryFile instead. Here’s why. Between the time 
that tempfile.mktemp returns the temporary file path and the time at which 
your code actually opens the file, another process may have had a chance to 
interfere. If the other process can guess the name generated next, it can cre-
ate the file first and (among many possibilities) inject malicious data into the 
temporary file. The clean solution that the new function provides is to use an 
atomic operation to create and open the temporary file, without the possibility 
of anything intervening in the process.

Timing Attacks
A timing attack is a side-channel attack that infers information from the time 
it takes to do an operation, indirectly learning about some state of the sys-
tem that should be private. Differences in timing can sometimes provide a 
hint—that is, they leak a little bit of protected information—benefiting an 
attacker. As a simple example, consider the task of trying to guess a secret 
number between 1 and 100; if it is known that the time to answer “No” is 
proportional to how far off the guess is, this quirk helps the guesser home 
in on the correct answer much more quickly.

Meltdown and Spectre are timing attacks on modern processors that 
operate below the software level, but the principles are directly applicable. 
These attacks exploit quirks of speculative execution, where the processor 
races forward to precompute results while tentatively relaxing various 
checks in the interest of speed. When this includes operations that are 
normally disallowed, the processor detects this eventually and cancels the 
results before they become final. This complicated speculation all works 
according to the processor design and is essential to achieve the incred-
ible speeds we enjoy. However, during the speculative, rules-are-suspended 
execution, whenever the computation accesses memory, this has the side 
effect of causing it to be cached. When the speculative execution is can-
celed, the cache is unaffected, and that side effect represents a poten-
tial hint, which these attacks utilize to infer what happened during the 
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speculative execution. Specifically, the attack code can deduce what hap-
pened during the canceled speculative execution by checking the state of 
the cache. Memory caching speeds up execution but is not directly exposed 
to software; however, code can tell whether or not the memory location con-
tents were in the cache by measuring memory access time, because cached 
memory is way faster. This is a complicated attack on a complex processor 
architecture, but for our purposes the point is that when timing correlates to 
protected information state, it can be exploitable as a leak. 

For a simpler, purely software-based example of a timing attack, sup-
pose you want to determine whether or not your friend (or frenemy?) 
has an account with a particular online service, but you don’t know their 
account name. The “forgot password” option asks users for their account 
name and phone number in order to send a “reminder.” However, suppose 
that the implementation first looks up the phone number in a database, 
and if found, proceeds to look up the associated account name to see if it 
matches the input. Say that each lookup takes a few seconds, so the time 
delay is noticeable to the user. First, you try a few random account names 
(say, by mashing the keyboard) and phone numbers that likely won’t match 
actual users, and learn that it reliably takes about three seconds to get a “No 
such account” response. Next, you sign up with your own phone number 
and try the “forgot password” feature using your number with one of the 
random unused account names. Now you observe that in this case it takes 
five seconds, or almost twice as long, to get the response. 

Armed with these facts, you can try your friend’s phone number with 
an unused account name: if it takes five seconds to get a reply, then you 
know that their phone number is in the database, and if it takes three 
seconds, then it isn’t. By observing the timing alone, you can infer whether 
a given phone number is in the database. If membership might reveal sensi-
tive private information, such as in a forum for patients with a certain medi-
cal condition, such timing attacks could enable a harmful disclosure.

Timing differences naturally occur due to software when there is a 
sequence of slow operations (think if...if...if...if...), and there is valu-
able information to be inferred from knowing how far down the sequence  
of events the execution proceeded. Precisely how much or little timing dif-
ference is required to leak information depends on many factors. In the 
online account checking example, it takes a few seconds to represent a clear 
signal, given the normal delays the web imposes on access. By contrast, 
when exploiting Meltdown or Spectre using code running on the same 
machine, sub-millisecond time differences may be measurable and also 
significant.

The best mitigation option is to reduce the time differential to an 
acceptable—that is, imperceptible—level. To prevent the presence of a 
phone number in the database from leaking, changing the code to use 
a single database lookup to handle both cases would be sufficient. When 
there is an inherent timing difference and the timing side channel could 
result in a serious disclosure, about all you can do to mitigate the risk is 
introduce an artificial delay to blur the timing signal.
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Serialization
Serialization refers to the common technique of converting data objects to 
a byte stream, a little like a Star Trek transporter does, to then “beam” them 
through time and space. Storing or transmitting the resulting bytes allows 
you to subsequently reconstitute equivalent data objects through deserial-
ization. This ability to “dehydrate” objects and then “rehydrate” them is 
handy for object-oriented programming, but the technique is inherently 
a security risk if there is any possibility of tampering in between. Not only 
can an attacker cause critical data values to morph, but by constructing 
invalid byte sequences, they can even cause the deserialization code to per-
form harmful operations. Since deserialization is only safe when used with 
trusted serialized data, this is an example of the untrusted input problem.

The problem is not that these libraries are poorly built, but that they 
require trust to be able to perform the operations necessary to construct 
arbitrary objects in order to do their job. Deserialization is, in effect, an 
interpreter that does whatever the serialized bytes of its input tell it to do, 
so its use with untrusted data is never a good idea. For example, Python’s 
deserialization operation (called “unpickling”) is easily tricked into execut-
ing arbitrary code by embedding a malicious byte sequence in the data to 
be unpickled. Unless serialized byte data can be securely stored and trans-
mitted without the possibility of tampering, such as with a MAC or digital 
signature (as discussed in Chapter 5), it’s best avoided completely.

The Usual Suspects
The greatest trick the devil ever pulled was convincing the world he didn’t exist.

—Charles Baudelaire

The next several chapters cover many of the “usual suspects” that keep crop-
ping up in code as vulnerabilities. In this chapter we considered GotoFail and 
issues with atomicity, timing attacks, and serialization. Here is a preview of 
the topics we’ll explore next:

•	 Fixed-width integer vulnerabilities

•	 Floating-point precision vulnerabilities

•	 Buffer overflow and other memory management issues

•	 Input validation

•	 Character string mishandling

•	 Injection attacks

•	 Web security

Many of these issues will seem obvious, yet all continue to recur largely 
unabated as root causes of software vulnerabilities, with no end in sight. 
It’s important to learn from past failings, because many of these vulner-
ability classes have existed for decades. Yet, it would be a mistake to take 
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a backward-looking approach as if all possible security bugs were cata-
loged exhaustively. No book can forewarn of all possible pitfalls, but you 
can study these examples to get an idea of the deeper patterns and lessons 
behind them.



9
L O W - L E V E L  C O D I N G  F L A W S

Low-level programming is good for the programmer’s soul.
—John Carmack

The next few chapters will survey a multi-
tude of coding pitfalls programmers need to 

be aware of for security reasons, starting with 
the classics. This chapter covers basic flaws that 

are common to code that works closer to the machine 
level. The issues discussed here arise when data exceeds 
the capacity of either fixed-size numbers or allocated 
memory buffers. Modern languages tend to provide 
higher-level abstractions that insulate code from these  
perils, but programmers working in these safer languages will still benefit 
from understanding these flaws, if only to fully appreciate all that’s being 
done for them, and why it matters.

Languages such as C and C++ that expose these low-level capabilities 
remain dominant in many software niches, so the potential threats they 
pose are by no means theoretical. Modern languages such as Python usually 
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abstract away the hardware enough that the issues described in this chapter 
don’t occur, but the lure of approaching the hardware level for maximum 
efficiency remains powerful. A few popular languages offer programmers 
their choice of both worlds. In addition to type-safe object libraries, the 
Java and C# base types include fixed-width integers, and they have “unsafe” 
modes that remove many of the safeguards normally provided. Python’s 
float type, as explained in “Floating-Point Precision Vulnerabilities” on 
page 149, relies on hardware support and accrues its limitations, which 
must be coped with.

Readers who never use languages exposing low-level functionality may 
be tempted to skip this chapter, and can do so without losing the overall 
narrative of the book. However, I recommend reading through it anyway, as 
it’s best to understand what protections the languages and libraries you use 
do or do not provide, and to fully appreciate all that’s being done for you. 

Programming closer to the hardware level, if done well, is extremely 
powerful, but comes at a cost of increased effort and fragility. In this chap-
ter, we focus on the most common classes of vulnerability specific to coding 
with lower-level abstractions. 

Since this chapter is all about bugs that arise from issues where code is 
near or at the hardware level, you must understand that the exact results 
of many of these operations will vary across platforms and languages. I’ve 
designed the examples to be as specific as possible, but implementation dif-
ferences may cause varying results—and it’s exactly because computations 
can vary unpredictably that these issues are easily overlooked and can have 
an impact on security. The details will vary depending on your hardware, 
compiler, and other factors, but the concepts introduced in this chapter do 
apply generally.

Arithmetic Vulnerabilities
Different programming languages variously define their arithmetic opera-
tors either mathematically or according to the processor’s corresponding 
instructions, which, as we shall see shortly, are not quite the same. By 
low-level, I mean features of programming languages that depend on 
machine instructions, which requires dealing with the hardware’s quirks 
and limitations.

Code is full of integer arithmetic. It’s used not only for computing 
numerical values but also for string comparison, indexed access to data 
structures, and more. Because the hardware instructions are so much faster 
and easier to use than software abstractions that handle a larger range of 
values, they are hard to resist, but with that convenience and speed comes 
the risk of overflow. Overflow happens when the result of a computation 
exceeds the capacity of a fixed-width integer, leading to unexpected results, 
which can create a vulnerability. 

Floating-point arithmetic has more range than integer arithmetic, but 
its limited precision can cause unexpected results, too. Even floating-point 
numbers have limits (for single precision, on the order of 1038), but when 
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the limit is exceeded, they have the nice property of resulting in a specific 
value that denotes infinity. 

Readers interested in an in-depth treatment of the implementation of 
arithmetic instructions down to the hardware level can learn more from 
The Secret Life of Programs by Jonathan E. Steinhart (No Starch Press, 2019).

Fixed-Width Integer Vulnerabilities
At my first full-time job, I wrote device drivers in assembly machine language 
on minicomputers. Though laughably underpowered by modern standards, 
minicomputers provided a great opportunity to learn how hardware works, 
because you could look at the circuit board and see every connection and 
every chip (which had a limited number of logic gates inside). I could see 
the registers connected to the arithmetic logic unit (which could perform 
addition, subtraction, and Boolean operations only) and memory, so I knew 
exactly how the computer worked. By contrast, modern processors are fabu-
lously complicated, containing billions of logic gates, well beyond human 
understanding by casual observation.

Today, most programmers learn and use higher-level languages that 
shield them from machine language and the intricacies of CPU architecture. 
Fixed-width integers are the most basic building blocks of many languages, 
including Java and C/C++, and if any computation exceeds their limited 
range, you get the wrong result silently. 

Modern processors often have either a 32- or 64-bit architecture, but we 
can understand how they work by discussing smaller sizes. Let’s look at an 
example of overflow based on unsigned 16-bit integers. A 16-bit integer can 
represent any value from 0 to 65,535 (216 – 1). For example, multiplying 
300 by 300 should give us 90,000, but that number is beyond the range of 
the fixed-width integer we are using. So, due to overflow, the result we actu-
ally get is 24,464 (65,536 less than the expected result).

Some people think about overflow mathematically as modular arithmetic, 
or the remainder of division (for instance, the previous calculation gave us the 
remainder of dividing 90,000 by 65,536). Others think of it in terms of binary 
or hexadecimal truncation, or in terms of the hardware implementation—but 
if none of these make sense to you, just remember that the results for over-
sized values will not be what you expect. Since mitigations for overflow will 
attempt to avoid it in the first place, the precise resulting value is not usu-
ally important. 

What’s important here is anticipating the foibles of binary arithmetic, 
rather than knowing exactly what value results from a calculation—which, 
depending on the language and compiler, may not be well defined (that is, the 
language specification refuses to guarantee any particular value). Operations 
technically specified as “not defined” in a language may seem predictable, but 
you are on thin ice if the language specification doesn’t offer a guarantee. The 
bottom line for security is that it’s important to know the language specifica-
tion and avoid computations that are potentially undefined. Do not get clever 
and experiment to find a tricky way to detect the undefined result, because 
with different hardware or a new version of the compiler, your code might stop 
working.
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abstract away the hardware enough that the issues described in this chapter 
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the risk of overflow. Overflow happens when the result of a computation 
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its limited precision can cause unexpected results, too. Even floating-point 
numbers have limits (for single precision, on the order of 1038), but when 
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minicomputers provided a great opportunity to learn how hardware works, 
because you could look at the circuit board and see every connection and 
every chip (which had a limited number of logic gates inside). I could see 
the registers connected to the arithmetic logic unit (which could perform 
addition, subtraction, and Boolean operations only) and memory, so I knew 
exactly how the computer worked. By contrast, modern processors are fabu-
lously complicated, containing billions of logic gates, well beyond human 
understanding by casual observation.

Today, most programmers learn and use higher-level languages that 
shield them from machine language and the intricacies of CPU architecture. 
Fixed-width integers are the most basic building blocks of many languages, 
including Java and C/C++, and if any computation exceeds their limited 
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ally important. 

What’s important here is anticipating the foibles of binary arithmetic, 
rather than knowing exactly what value results from a calculation—which, 
depending on the language and compiler, may not be well defined (that is, the 
language specification refuses to guarantee any particular value). Operations 
technically specified as “not defined” in a language may seem predictable, but 
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bottom line for security is that it’s important to know the language specifica-
tion and avoid computations that are potentially undefined. Do not get clever 
and experiment to find a tricky way to detect the undefined result, because 
with different hardware or a new version of the compiler, your code might stop 
working.
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A QUICK BIN A RY M AT H R EF R ESHER  

USING 16 -BIT A RCHIT EC T UR E

For readers less familiar with binary arithmetic, here is a graphical breakdown 
of the 300 × 300 computation mentioned in the preceding text. Just as decimal 
numbers are written with the digits 0 through 9, binary numbers are written with 
the digits 0 and 1. And just as each digit further left in a decimal number repre-
sents another tenfold larger position, in binary, the digits double (1, 2, 4, 8, 16, 
32, 64, and so on) as they extend to the left. Figure 9-1 shows the 16-bit binary 
representation of the decimal number 300, with the power-of-two binary digit 
positions indicated by decimal numbers 0 through 15.  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(28 + 25 + 23 + 22) = 300

0000000100101100 = 300

Figure 9-1: An example of a binary number

The binary representation is the sum of values shown as powers of two that 
have a 1 in the corresponding binary digit position. That is, 300 is 28 + 25 + 23 
+ 22 (256 + 32 + 8 + 4), or binary 100101100.

Now let’s see how to multiply 300 times itself in binary (Figure 9-2).

x

15 1413 121110 9 8 7 6 5 4 3 2 1 0

0000000100101100
0000000100101100
00000100101100
0000100101100
00100101100
00101100
0101111110010000

00
000

00000
00000001

Figure 9-2: An example of multiplication in binary

Just as you do with decimal multiplication on paper, the multiplicand is 
repeatedly added and shifted to the position corresponding to a digit of the multi-
plier. Working from the right, we shift the first instance two digits left because the 
first 1 is two positions from the right, and so on, with each copy aligned on the 
right below one of the 1s in the multiplier. The grayed-out numbers extending on 
the left are beyond the capacity of a 16-bit register and therefore truncated—this 
is where overflow occurs. Then we just add up the parts, in binary of course, to 
get the result. The value 2 is 10 (21) in binary, so position 5 is the first carry (1 + 
1 + 0 = 10): we put down a 0 and carry the 1. That’s how multiplication of fixed-
width integers works, and that’s how values get silently truncated. 
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If you miscompute an arithmetic result your code may break in many 
ways, and the effects often snowball into a cascade of dysfunction, culminat-
ing in a crash or blue screen. Common examples of vulnerabilities due to 
integer overflow include buffer overflows (discussed in “Buffer Overflow” 
on page 157), incorrect comparisons of values, situations in which you give 
a credit instead of charging for a sale, and so on.

It’s best to mitigate these issues before any computation that could go out 
of bounds is performed, while all numbers are still within range. The easy 
way to get it right is to use an integer size that is larger than the largest allow-
able value, preceded by checks ensuring that invalid values never sneak in. 
For example, to compute 300 × 300, as mentioned earlier, use 32-bit arithme-
tic, which is capable of handling the product of any 16-bit values. If you must 
convert the result back to 16-bit, protect it with a 32-bit comparison to ensure 
that it is in range.

Here is what multiplying two 16-bit unsigned integers into a 32-bit 
result looks like in C. I prefer to use an extra set of parentheses around the 
casts for clarity, even though operator precedence binds the casts ahead of 
the multiplication (I’ll provide a more comprehensive example later in this 
chapter for a more realistic look at how these vulnerabilities slip in):

uint32_t simple16(uint16_t a, uint16_t b) {
  return ((uint32_t)a) * ((uint32_t)b);
}

The fact that fixed-width integers are subject to silent overflow is not 
difficult to understand, yet in practice these flaws continue to plague even 
experienced coders. Part of the problem is the ubiquity of integer math in 
programming—including its implicit usages, such as pointer arithmetic 
and array indexing, where the same mitigations must be applied. Another 
challenge is the necessary rigor of always keeping in mind not just what the 
reasonable range of values might be for every variable, but also what pos-
sible ranges of values the code could encounter, given the manipulations of 
a wily attacker.

Many times when programming, it feels like all we are doing is manipulat-
ing numbers, yet we must not lose sight of the fragility of these calculations. 

Floating-Point Precision Vulnerabilities
Floating-point numbers are, in many ways, more robust and less quirky than 
fixed-width integers. For our purposes, you can think of a floating-point 
number as a sign bit (for positive or negative numbers), a fraction of a fixed 
precision, and an exponent of two that the fraction is multiplied by. The 
popular IEEE 754 double-precision specification provides 15 decimal digits 
(53 binary digits) of precision, and if you exceed its extremely large bounds, 
you get a signed infinity—or NaN (not a number)—for a few operations instead 
of truncation to wild values, as you do with fixed-width integers. 

Since 15 digits of precision is enough to tally the federal budget of the 
United States (currently several trillion dollars) in pennies, the risk of loss 
of precision is rarely a problem. Nonetheless, it does happen silently in the 



150   Chapter 9

low-order digits, which can be surprising because the representation of 
floating-point numbers is binary rather than decimal. For example, since 
decimal fractions do not necessarily have exact representations in binary, 
0.1 + 0.2 will yield 0.30000000000000004—a value that is not equal to 0.3. 
These kinds of messy results can happen because just as a fraction such as 
1/7 is a repeating decimal in base 10, 1/10 repeats infinitely in base 2 (it’s 
0.00011001100. . . with 1100 continuing forever), so there will be error in 
the lowest bits. Since these errors are introduced in the low-order bits, this 
is called underflow.

Even though underflow discrepancies are tiny proportionally, they can 
still produce unintuitive results when values are of different magnitudes. 
Consider the following code written in JavaScript, a language where all 
numbers are floating point: 

vulnerable code var a = 10000000000000000
var b = 2
var c = 1
console.log(((a+b)-c)-a)

Mathematically, the result of the expression in the final line should equal 
b-c, since the value a is first added and then subtracted. (The console.log func-
tion is a handy way to output the value of an expression.) But in fact, the value 
of a is large enough that adding or subtracting much smaller values has no 
effect, given the limited precision available, so that when the value a is finally 
subtracted, the result is zero. 

When calculations such as the one in this example are approximate, 
the error is harmless, but when you need full precision, or when values 
of differing orders of magnitude go into the computation, then a good 
coder needs to be cautious. Vulnerabilities arise when such discrepancies 
potentially impact a security-critical decision in the code. Underflow errors 
may be a problem for computations such as checksums or for double-entry 
accounting, where exact results are essential.

For many floating-point computations, even without dramatic underflow 
like in the example we just showed, small amounts of error accumulate in the 
lower bits when the values do not have an exact representation. It’s almost 
always unwise to compare floating-point values for equality (or inequality), 
since this operation cannot tolerate even tiny differences in computed values. 
So, instead of (x == y), compare the values within a small range (x > y - delta 
&& x < y + delta) for a value of delta suitable for the application. Python pro-
vides the math.isclose helper function that does a slightly more sophisticated 
version of this test. 

When you must have high precision, consider using the super-high-
precision floating-point representations (IEEE 754 defines 128- and 256-bit 
formats). Depending on the requirements of the computation, arbitrary-
precision decimal or rational number representations may be the best 
choice. Libraries often provide this functionality for languages that do 
not include native support.
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Example: Floating-Point Underflow
Floating-point underflow is easy to underestimate, but lost precision has 
the potential to be devastating. Here is a simple example in Python of an 
online ordering system’s business logic that uses floating-point values. The 
following code’s job is to check that purchase orders are fully paid, and if 
so, approve shipment of the product: 

vulnerable code from collections import namedtuple
PurchaseOrder = namedtuple('PurchaseOrder', 'id, date, items')
LineItem = namedtuple('LineItem', 'kind, detail, amount, quantity',
                      defaults=(1,))
def validorder(po):
    """Returns an error text if the purchase order (po) is invalid,
    or list of products to ship if valid [(quantity, SKU), ...].
    """
    products = []
    net = 0
    for item in po.items:
        if item.kind == 'payment':
            net += item.amount
        elif item.kind == 'product':
            products.append(item)
            net -= item.amount * item.quantity
        else:
            return "Invalid LineItem type: %s" % item.kind
    if net != 0:
        return "Payment imbalance: $%0.2f." % net
    return products

Purchase orders consist of line items that are either product or pay-
ment details. The total of payments, minus the total cost of products 
ordered, should be zero. The payments are already validated beforehand, 
and let me be explicit about one detail of that process: if the customer 
immediately cancels a charge in full, both the credit and debit appear as 
line items without querying the credit card processor, which incurs a fee. 
Let’s also posit that the prices listed for items are correct.

Focusing on the floating-point math, see how for payment line items 
the amount is added to net, and for products the amount times quantity is 
subtracted (these invocations are written as Python doctests, where the >>> 
lines are code to run followed by the expected values returned):

>>> tv = LineItem(kind='product', detail='BigTV', amount=10000.00)
>>> paid = LineItem(kind='payment', detail='CC#12345', amount=10000.00)
>>> goodPO = PurchaseOrder(id='777', date='6/16/2022', items=[tv, paid])
>>> validorder(goodPO)
[LineItem(kind='product', detail='BigTV', amount=10000.0, quantity=1)]
>>> unpaidPO = PurchaseOrder(id='888', date='6/16/2022', items=[tv])
>>> validorder(unpaidPO)
'Payment imbalance: $-10000.00.'
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The code works as expected, approving the first transaction shown for a 
fully paid TV and rejecting the order that doesn’t note a payment.

Now it’s time to break this code and “steal” some TVs. If you already 
see the vulnerability, it’s a great exercise to try and deceive the function 
yourself. Here is how I got 1,000 TVs for free, with explanation following 
the code:

>>> fake1 = LineItem(kind='payment', detail='FAKE', amount=1e30)
>>> fake2 = LineItem(kind='payment', detail='FAKE', amount=-1e30)
>>> tv = LineItem(kind='product', detail='BigTV', amount=10000.00, \
                  quantity = 1000)
>>> nonpayment = [fake1, tv, fake2]
>>> fraudPO = PurchaseOrder(id='999', date='6/16/2022', items=nonpayment)
>>> validorder(fraudPO)
[LineItem(kind='product', detail='BigTV', amount=10000.0, quantity=1000)]

The trick here is in the fake payment of the outrageous amount 1e30, or 
1030, followed by the immediate reversal of the charge. These bogus num-
bers get past the accounting check because they sum to zero (1030 – 1030). 
Note that between the canceling debit and the credit is a line item that 
orders 1,000 TVs. Because the first number is so huge, when the cost of the 
TVs is subtracted, it underflows completely; then, when the credit (a nega-
tive number) is added in, the result is zero. Had the credit immediately fol-
lowed the payment followed by the line item for the TVs, the result would 
be different and an error would be correctly flagged.

To give you a more accurate feel for underflow—and more importantly, to 
show how to gauge the range of safe values to make the code secure—we can 
drill in a little deeper. The choice of 1030 for this attack was arbitrary, and this 
trick works with numbers as low as about 1024, but not 1023. The cost of 1,000 
TVs at $10,000 each is $10,000,000, or 107. So with a fake charge of 1023, the 
value 107 starts to change the computation a little, corresponding to about 16 
digits of precision (23 – 7). The previously mentioned 15 digits of precision 
was a safe rule-of-thumb approximation (the binary precision corresponds to 
15.95 decimal digits) that’s useful because most of us think naturally in base 
10, but since the floating-point representation is actually binary, it can differ 
by a few bits.

With that reasoning in mind, let’s fix this vulnerability. If we want to 
work in floating point, then we need to constrain the range of numbers. 
Assuming a minimum product cost of $0.01 (10–2) and 15 digits of preci-
sion, we can set a maximum payment amount of $1013 (15 – 2), or $10 tril-
lion. This upper limit avoids underflow, though in practice, a smaller limit 
corresponding to a realistic maximum order amount would be best. 

Using an arbitrary-precision number type avoids underflow: in Python, 
that could be the native integer type, or fractions.Fraction. Higher-precision 
floating-point computation will prevent this particular attack but would 
still be susceptible to underflow with more extreme values. Since Python is 
dynamically typed, when the code is called with values of these types, the 
attack fails. But even if we had written this code with one of these arbitrary 
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precision types and considered it safe, if the attacker managed to sneak in a 
float somehow, the vulnerability would reappear. That’s why doing a range 
check—or, if the caller cannot be trusted to present the expected type, con-
verting incoming values to safe types before computing—is important. 

Example: Integer Overflow
Fixed-width integer overflow vulnerabilities are often utterly obvious in hind-
sight, and this class of bugs has been well known for many years. Yet experi-
enced coders repeatedly fall into the trap, whether because they don’t believe 
the overflow can happen, because they misjudge it as harmless, or because 
they don’t consider it at all. The following example shows the vulnerability 
in a larger computation to give you an idea of how these bugs can easily slip 
in. In practice, vulnerable computations tend to be more involved, and the 
values of variables harder to anticipate, but for explanatory purposes, this 
simple code will make it easy to see what’s going on. 

Consider this straightforward payroll computation formula: the num-
ber of hours worked times the rate of pay gives the total dollars of pay. This 
simple calculation will be done in fractional hours and dollars, which gives 
us full precision. On the flip side, with rounding, the details get a little com-
plicated, and as will be seen, integer overflow easily happens. 

Using 32-bit integers for exact precision, we compute dollar values in 
cents (units of $0.01), and hours in thousandths (units of 0.001 hours), so 
the numbers do get big. But as the highest possible 32-bit integer value, 
UINT32_MAX, is over 4 billion (232 – 1), we assume we’ll be safe by the following 
logic: company policy limits paid work to 100 hours per week (100,000 in 
thousandths), so at an upper limit of $400/hour (40,000 cents), that makes a 
maximum paycheck of 4,000,000,000 (and $40,000 is a nice week’s pay). 

Here is the computation of pay in C, with all variables and constants 
defined as uint32_t values: 

if (millihours > max_millihours       // 100 hours max
    || hourlycents > max_hourlycents) // $400/hour rate max
  return 0;
return (millihours * hourlycents + 500) / 1000; // Round to $.01

The if statement, which returns an error indication for out-of-range 
parameters, is an essential guard for preventing overflow in the computa-
tion that follows.  

The computation in the return statement deserves explanation. Since we 
are representing hours in thousandths, we must divide the result by 1,000 to 
get the actual pay, so we first add 500 (half of the divisor) for rounding. A 
trivial example confirms this: 10 hours (10,000) times $10.00/hour (1,000) 
equals 10,000,000; add 500 for rounding, giving 10,000,500; and divide by 
1,000, giving 10,000 or $100.00, the correct value. Even at this point, you 
should consider this code fragile, to the extent that it flirts with the possibil-
ity of truncation due to fixed-width integer limitations.
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So far the code works fine for all inputs, but suppose management 
has announced a new overtime policy. We need to modify the code to 
add 50 percent to the pay rate for all overtime hours (any hours worked 
after the first 40 hours). Further, the percentage should be a parameter, so 
management can easily change it later.

To add the extra pay for overtime hours, we introduce overtime_percentage.  
The code for this isn’t shown, but its value is 150, meaning 150 percent of 
normal pay for overtime hours. Since the pay will increase, the $400/hour 
limit won’t work anymore, because it won’t be low enough to prevent integer 
overflow. But that pay rate was unrealistic as a practical limit anyhow, so let’s 
halve it, just to be safe, and say $200/hour is the top pay rate:

vulnerable code if (millihours > max_millihours       // 100 hours max
    || hourlycents > max_hourlycents) // $200/hour rate max
  return 0;
if (millihours > overtime_millihours) {
  overage_millihours = millihours - overtime_millihours;
  overtimepay = (overage_millihours * hourlycents * overtime_percentage
                 + 50000) / 100000;
  basepay = (overtime_millihours * hourlycents + 500) / 1000;
  return basepay + overtimepay;
}
else
  return (millihours * hourlycents + 500) / 1000;

Now, we check if the number of hours exceeds the overtime pay threshold 
(40 hours), and if not, the same calculation applies. In the case of overtime, 
we first compute overage_millihours as the hours (in thousandths) over 40.000. 
For those hours, we multiply the computed pay by the overtime_percentage (150). 
Since we have a percentage (two digits of decimal fraction) and thousandths 
of hours (three digits of decimals), we must divide by 100,000 (five zeros) 
after adding half of that for rounding. After computing the base pay on the 
first 40 hours, without the overtime adjustment, the code sums the two to 
calculate the total pay. For efficiency, we could combine these similar com-
putations, but the intention here is for the code to structurally match the 
computation for clarity.

This code works most of the time, but not always. One example of an 
odd result is that 60.000 hours worked at $50.00/hour yields $2,211.51 in 
pay (it should be $3,500.00). The problem is with the multiplication by 
overtime_percentage (150), which easily overflows with a number of overtime 
hours at a good rate of pay. In integer arithmetic, we cannot precompute 
150/100 as a fraction—as an integer that’s just 1—so we have to do the mul-
tiplication first. 

To fix this code, we could replace (X*150)/100 with (X*3)/2, but that ruins 
the parameterization of the overtime percentage and wouldn’t work if the 
rate changed to a less amenable value. One solution that maintains the 
parameterization would be to break up the computation so that the multi-
plication and division use 64-bit arithmetic, downcasting to a 32-bit result:
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fixed code if (millihours > max_millihours      // 100 hours max
   || hourlycents > max_hourlycents) // $200/hour rate max
  return 0;
if (millihours > overtime_millihours) {
  overage_millihours = millihours - overtime_millihours;
  product64 = overage_millihours * hourlycents;
  adjusted64 = (product64 * overtime_percentage + 50000) / 100000;
  overtimepay = ((uint32_t)adjusted64 + 500) / 1000;
  return basepay + overtimepay;
}
else
  return (millihours * hourlycents + 500) / 1000;

For illustrative purposes, the 64-bit variables include that designation 
in their names. We could also write these expressions with a lot of explicit 
casting, but it would get long and be less readable. 

The multiplication of three values was split up to multiply two of them 
into a 64-bit variable before overflow can happen; once upcast, the multipli-
cation with the percentage is 64-bit and will work correctly. The resultant 
code is admittedly messier, and comments to explain the reasoning would 
be helpful. The cleanest solution would be to upgrade all variables in sight 
to 64-bit at a tiny loss of efficiency. Such are the trade-offs involved in using 
fixed-width integers for computation. 

Safe Arithmetic
Integer overflow is more frequently problematic than floating-point under-
flow because it can generate dramatically different results, but we can by 
no means safely ignore floating-point underflow, either. Since by design 
compilers do arithmetic in ways that potentially diverge from mathematical 
correctness, developers are responsible for dealing with the consequences. 
Once aware of these problems, you can adopt several mitigation strategies 
to help avoid vulnerabilities.

Avoid using tricky code to handle potential overflow problems because 
any mistakes will be hard to find by testing and represent potentially exploit-
able vulnerabilities. Additionally, a trick might work on your machine but 
not be portable to other CPU architectures or different compilers. Here is 
a summary of how to do these computations safely:

•	 Be careful using type conversions that can potentially truncate or dis-
tort results, just as calculations can.

•	 Where possible, constrain inputs to the computation to ensure that all 
possible values are representable.

•	 Use a larger fixed-size integer to avoid possible overflow; check that the 
result is within bounds before converting it back to a smaller-sized integer.

•	 Remember that intermediate computed values may overflow, causing a 
problem, even if the final result is always within range.

•	 Use extra care when checking the correctness of arithmetic in and 
around security-sensitive code. 
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If the nuances of fixed-width integer and floating-point computations 
still feel arcane, watch them closely and expect surprises in what might 
seem like elementary calculations. Once you know they can be tricky, a little 
testing with some ad hoc code in your language of choice is a great way to 
get a feel for the limits of the basic building blocks of computer math.

Once you have identified the code at risk of these sort of bugs, make 
test cases that invoke calculations with extreme values for all inputs, then 
check the results. Well-chosen test cases can detect overflow problems, but a 
limited set of tests is not proof that the code is immune to overflow.

Fortunately, more modern languages, such as Python, increasingly use 
arbitrary-precision integers and are not generally subject to these problems. 
Getting arithmetic computation right begins with understanding precisely 
how the language you use works in complete detail. You can find an excel-
lent reference with details for several popular languages at the memorable 
URL floating-point-gui.de, which provides in-depth explanation and best-
practice coding examples.   

Memory Access Vulnerabilities
The other vulnerability class we’ll discuss involves improper memory access. 
Direct management of memory is powerful and potentially highly efficient, 
but it comes with the risk of arbitrarily bad consequences if the code gets 
anything wrong. 

Most programming languages offer fully managed memory allocation 
and constrain access to proper bounds, but for reasons of efficiency or flexibil-
ity, or sometimes because of the inertia of legacy, other languages (predomi-
nantly C and C++) make the job of memory management the responsibility of 
the programmer. When programmers take on this job—even experienced  
programmers—they can easily get it wrong, especially as the code gets com-
plicated, creating serious vulnerabilities. And as with the arithmetic flaws 
described earlier, the great danger is when a violation of memory manage-
ment protocol goes uncaught and continues to happen silently.

In this section, the focus is on the security aspects of code that directly 
manages and accesses memory, absent built-in safeguards. Code examples 
will use the classic dynamic memory functions of the original C standard 
library, but these lessons apply generally to the many variants that provide 
similar functionality.

Memory Management
Pointers allow direct access to memory by its address, and they are perhaps 
the most powerful feature of the C language. But just like when wielding 
any power tool, it’s important to use responsible safety precautions to man-
age the attendant risk. Software allocates memory when needed, works 
within its available bounds, and releases it when no longer needed. Any 
access outside of this agreement of space and time will have unintended 
consequences, and that’s where vulnerabilities arise.

https://floating-point-gui.de
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The C standard library provides dynamic memory allocation for large 
data structures, or when the size of a data structure cannot be determined 
at compile time. This memory is allocated from the heap—a large chunk of 
address space in the process used to provide working memory. C programs 
use malloc(3) to allocation memory, and when it’s no longer needed, they 
release each allocation for reuse by calling free(3). There are many varia-
tions on these allocation and deallocation functions; we will focus on these 
two for simplicity, but the ideas should apply anytime code is managing 
memory directly.

Access after memory release can easily happen when lots of code shares 
a data structure that eventually gets freed, but copies of the pointer remain 
behind and get used in error. After the memory gets recycled, any use of 
those old pointers violates memory access integrity. On the flip side, forget-
ting to release memory after use risks exhausting the heap over time and 
running out of memory. The following code excerpt shows the basic correct 
usage of heap memory:

uint8_t *p;
// Don't use the pointer before allocating memory for it.
p = malloc(100);  // Allocate 100 bytes before first use.
p[0] = 1;
p[99] = 123 + p[0];
free(p);          // Release the memory after last use.
// Don't use the pointer anymore.

This code accesses the memory between the allocation and dealloca-
tion calls, inside the bounds of allotted memory. 

In actual use, the allocation, memory access, and deallocation can be 
scattered around the code, making it tricky to always do this just right.

Buffer Overflow
A buffer overflow (or, alternatively, buffer overrun) occurs when code accesses 
a memory location outside of the intended target buffer. It’s important 
to be very clear about its meaning because the terminology is confusing. 
Buffer is a general term for any region in memory: data structures, character 
strings, arrays, objects, or variables of any type. Access is a catch-all term for 
reading or writing memory. That means a buffer overflow involves reading 
or writing outside of the intended memory region, even though “overflow” 
more naturally describes the act of writing. While the effects of reading and 
writing differ fundamentally, it’s useful to think of them together to under-
stand the problem. 

Buffer overflows are not exclusive to heap memory, but can occur with 
any kind of variable, including static allocations and local variables on the 
stack. All of these potentially modify other data in memory in arbitrary 
ways. Unintended writes out of bounds could change just about anything 
in memory, and clever attackers will refine such an attack to try to cause 
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maximum damage. In addition, buffer overflow bugs may read memory 
unexpectedly, possibly leaking information to attackers or otherwise caus-
ing the code to misbehave. 

Don’t underestimate the difficulty and importance of getting explicit 
memory allocation, access within bounds, and release of unused stor-
age exactly right. Simple patterns of allocation, use, and release are best, 
including exception handling to ensure that the release is never skipped. 
When allocation by one component hands off the reference to other code, 
it’s critical to define responsibility for subsequently releasing the memory to 
one side of the interface or the other. 

Finally, be cognizant that even in a fully range-checked, garbage-
collected language, you can still get in trouble. Any code that directly 
manipulates data structures in memory can make errors equivalent to 
buffer overflow issues. Consider, for example, manipulating a byte string, 
such as a TCP/IP packet in a Python array of bytes. Reading the contents 
and making modifications involves computing offsets into data and can be 
buggy, even if access outside the array does not occur. 

Example: Memory Allocation Vulnerabilities
Let’s look at an example showing the dangers of dynamic memory alloca-
tion gone wrong. I’ll make this example straightforward, but in actual 
applications the key pieces of code are often separated, making these flaws 
much harder to see.

A Simple Data Structure

This example uses a simple C data structure representing a user account. 
The structure consists of a flag that’s set if the user is an admin, a user ID, 
a username, and a collection of settings. The semantics of these fields don’t 
matter to us, except if the isAdmin field is nonzero, as this confers unlimited 
authorization (making this field an attractive target for attack): 

#define MAX_USERNAME_LEN 39
#define SETTINGS_COUNT 10
typedef struct {
  bool isAdmin;
  long userid;
  char username[MAX_USERNAME_LEN + 1];
  long setting[SETTINGS_COUNT];
} user_account;
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Here’s a function that creates these user account records: 

user_account* create_user_account(bool isAdmin, const char* username) {
  user_account* ua;
  if (strlen(username) > MAX_USERNAME_LEN)
    return NULL;
  ua = malloc(sizeof (user_account));
  if (NULL == ua) {
    fprintf(stderr, "malloc failed to allocate memory.");
    return NULL;
  }
  ua->isAdmin = isAdmin;
  ua->userid = userid_next++;
  strcpy(ua->username, username);
  memset(&ua->setting, 0, sizeof ua->setting);
  return ua;
}

The first parameter specifies whether the user is an admin or not. 
The second parameter provides a username, which must not exceed the 
specified maximum length. A global counter (userid_next, declaration not 
shown) provides sequential unique IDs. The values of all the settings are set 
to zero initially, and the code returns a pointer to the new record unless an 
error causes it to return NULL instead. Note that the code checks the length 
of the username string before the allocation, so that allocation happens only 
when the memory will get used.

Writing an Indexed Field

After we’ve created a record, the values of all the settings can be set using 
the following function: 

vulnerable code bool update_setting(user_account* ua,
                    const char *index, const char *value) {
  char *endptr;
  long i, v;
  i = strtol(index, &endptr, 10);
  if (*endptr)
    return false;  // Terminated other than at end of string.
  if (i >= SETTINGS_COUNT)
    return false;
  v = strtol(value, &endptr, 10);
  if (*endptr)
    return false;  // Terminated other than at end of string.
  ua->setting[i] = v;
  return true;
}

This function takes an index into the settings and a value as decimal 
number strings. After converting these to integers, it stores the value as the 
indexed setting in the record. For example, to assign setting 1 the value 14, 
we would invoke the function update_setting(ua, "1", "14"). 
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The function strtol converts the strings to integer values. The pointer that 
strtol sets (endptr) tells the caller how far it parsed; if that isn’t the null termi-
nator, the string wasn’t a valid integer and the code returns an error. After 
ensuring that the index (i) does not exceed the number of settings, it parses 
the value (v) in the same way and stores the setting’s value in the record.

Buffer Overflow Vulnerability

All this setup is simplicity itself, though C tends to be verbose. Now let’s cut 
to the chase. There’s a bug: no check exists for a negative index value. 
If an attacker can manage to get this function called as update_setting(ua, 
"-12", "1") they can become an admin. This is because the assignment into 
settings accesses 48 bytes backward into the record, since each item is of 
type long, which is 4 bytes. Therefore, the assignment writes the value 1 into 
the isAdmin field, granting excess privileges. 

In this case, the fact that we allowed negative indexing within a data 
structure caused an unauthorized write to memory that violated a security 
protection mechanism. You need to watch out for many variations on this 
theme, including indexing errors due to missing limit checks or arithmetic 
errors such as overflow. Sometimes, a bad access out of one data structure 
can modify other data that happens to be in the wrong place.

The fix is to prevent negative index values from being accepted, which 
limits write accesses to the valid range of settings. The following addition to 
the if statement rejects negative values of i, closing the loophole:

  if (i < 0 || i >= SETTINGS_COUNT)

The additional i < 0 condition will now reject any negative index value, 
blocking any unintended modification by this function.

Leaking Memory

Even once we’ve fixed the negative index overwrite flaw, there’s still a vul-
nerability. The documentation for malloc(3) warns, with underlining, “The 
memory is not initialized.” This means that the memory could contain any-
thing, and a little experimentation does show that leftover data appears in 
there, so recycling the uninitialized memory represents a potential leak of 
private data.

Our create_user_account function does write data to all fields of the struc-
ture, but it still leaks bytes that are in the data structure as recycled memory. 
Compilers usually align field offsets that allow efficient writing: on my 32-bit 
computer, field offsets are a multiple of 4 (4 bytes of 8 bits is 32), and other 
architectures perform similar alignments. The alignment is needed because 
writing a field that spans a multiple-of-4 address (for example, writing 4  
bytes to address 0x1000002) requires two memory accesses. So in this 
example, after the single-byte Boolean isAdmin field at offset 0, the userid 
field follows at offset 4, leaving the three intervening bytes (offsets 1–3) 
unused. Figure 9-3 shows the memory layout of the data structure in 
graphical form.
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username

settings[10]

userid
isAdmin (unused)1 byte

4 bytes

40 bytes

40 bytes

Figure 9-3: The memory layout of the user_account record

Additionally, the use of strcpy for the username leaves another chunk 
of memory in its uninitialized state. This string copy function stops copying 
at the null terminator, so, for example, a 5-character string would only 
modify the first 6 bytes, leaving 34 bytes of whatever malloc happened to 
grab for us. The point of all this is that the newly allocated structure con-
tains residual data which may leak unless every byte is overwritten.

Mitigating the risk of these inadvertent memory leaks isn’t hard, but you 
must diligently overwrite all bytes of data structures that could be exposed. 
You shouldn’t attempt to anticipate precisely how the compiler might allo-
cate field offsets, because this could vary over time and across platforms. 
Instead, the easiest way to avoid these issues is to zero out buffers once allo-
cated unless you can otherwise ensure they are fully written, or know they 
won’t be disclosed across a trust boundary. Remember that even if your 
code doesn’t use sensitive data itself, this memory leak path could expose 
other data anywhere in the process.

Generally speaking, you should avoid using strcpy to copy strings 
because there are so many ways to get it wrong. The strncpy function both 
fills unused bytes in the target with zeros and protects against overflow with 
strings that exceed the buffer size. However, strncpy does not guarantee that 
the resultant string will have a null terminator. This is why it’s essential to 
allocate the buffer to be of size MAX_USERNAME_LEN + 1, ensuring that there is 
always room for the null terminator. Another option is to use the strlcpy 
function, which does ensure null termination; however, for efficiency, it 
does not zero-fill unused bytes. As this example shows, when you handle 
memory directly there are many factors you must deal with carefully.
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Now that we’ve covered the mechanics of memory allocation and seen 
what vulnerabilities look like in a constructed example, let’s consider a more 
realistic case. The following example is based on a remarkable security fiasco 
from several years ago that compromised a fair share of the world’s major web 
services.

Case Study: Heartbleed
In early April 2014, headlines warned of a worldwide disaster narrowly 
averted. Major operating system platforms and websites rolled out coor-
dinated fixes, hastily arranged in secret, in an attempt to minimize their 
exposure as details of the newly identified security flaw became public. 
Heartbleed made news not only as “the first security bug with a cool logo,” 
but because it revealed a trivially exploitable hole in the armor of any server 
deploying the popular OpenSSL TLS library. 

What follows is an in-depth look at one of the scariest security vulnera-
bilities of the decade, and it should provide you with context for how serious 
mistakes can be. The purpose of this detailed discussion is to illustrate how 
bugs managing dynamically allocated memory can become devastating  
vulnerabilities. As such, I have simplified the code and some details of the 
complicated TLS communication protocol to show the crux of the vulner-
ability. Conceptually, this corresponds directly with what actually occurred, 
but with fewer moving parts and much simpler code.

Heartbleed is a flaw in the OpenSSL implementation of the TLS 
Heartbeat Extension, proposed in 2012 with RFC 6520. This extension 
provides a low-overhead method for keeping TLS connections alive, saving 
clients from having to re-establish a new connection after a period of inac-
tivity. The so-called heartbeat itself is a round-trip message exchange con-
sisting of a heartbeat request, with a payload of between 16 and 16,384 (214) 
bytes of arbitrary data, echoed back as a heartbeat response containing the 
same payload. Figure 9-4 shows the basic request and response messages 
of the protocol.

Client Server

Heartbeat request
(16 bytes) "Hello!"

Heartbeat response
(16 bytes) "Hello!"

Figure 9-4: The Heartbeat protocol (simplified)

Having downloaded an HTTPS web page, the client may later send a 
heartbeat request on the connection to let the server know that it wants to 
maintain the connection. In an example of normal use, the client might 
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might send the 16-byte message “Hello!” (padded with zeros) comprising 
the request, and the server would respond by sending the same 16 bytes 
back. (That’s how it’s supposed to work, at least.) Now let’s look at the 
Heartbleed bug.  

The critical flaw occurs in malformed heartbeat requests that provide a 
small payload yet claim a larger payload byte count. To see exactly how this 
works, let’s first look at the internal structure of one of the simplified heart-
beat messages that the peers exchange. All of the code in this example is in C:

typedef struct {
  HeartbeatMessageType type;
  uint16_t payload_length;
  char bytes[0];  // Variable-length payload & padding
} hbmessage;

The data structure declaration hbmessage shows the three parts of one 
of these heartbeat messages. The first field is the message type, indicating 
whether it’s a request or response. Next is the length in bytes of the message 
payload, called payload_length. The third field, called bytes, is declared as 
zero-length, but is intended to be used with a dynamic allocation that adds 
the appropriate size needed.

A malicious client might attack a target server by first establishing a 
TLS connection to it, and then sending a 16-byte heartbeat request with a 
byte count of 16,000. Here’s what that looks like as a C declaration:

typedef struct {
  HeartbeatMessageType type = heartbeat_request;
  uint16_t payload_length = 16000;
  char bytes[16] = {"Hello!"};
} hbmessage;

The client sending this is lying: the message says its payload is 16,000 
bytes long but the actual payload is only 16 bytes. To understand how this 
message tricks the server, look at the C code that processes the incoming 
heartbeat request message:

hbmessage *hb(hbmessage *request, int *message_length) {
  int response_length = request->payload_length+sizeof(hbmessage);
  hbmessage* response = malloc(response_length);
  response->type = heartbeat_response;
  response->payload_length = request->payload_length;
  memcpy(&response->bytes, &request->bytes, response->payload_length);
  *message_length = response_length;
  return response;
}

The hb function gets called with two parameters: the incoming heart-
beat request message and a pointer named message_length, which stores the 
length of the response message that the function returns. The first two 
lines compute the byte length of the response as response_length, then a 
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memory block of that size gets allocated as response. The next two lines  
fill in the first two values of the response message: the message type and  
its payload_length.

Next comes the fateful bug. The server needs to send back the message 
bytes received in the request, so it copies the data from the request into the 
response. Because it trusts the request message to have accurately reported 
its length, the function copies 16,000 bytes—but since there are only 16 bytes 
in the request message, the response includes thousands of bytes of internal 
memory contents. The last two lines store the length of the response message 
and then return the pointer to it.

Figure 9-5 illustrates this exchange of messages, detailing how the 
preceding code leaks the contents of process memory. To make the harm 
of the exploit concrete, I’ve depicted a couple of additional buffers, con-
taining secret data, already sitting in memory in the vicinity of the request 
buffer. Copying 16,000 bytes from a buffer that only contained a 16-byte 
payload—illustrated here by the overly large dotted-line region—results in 
the secret data ending up in the response message, which the server sends 
to the client.

Client Server

Heartbeat request
(16000 bytes) "Hello!"

Heartbeat response
(16000 bytes) "Hello! ...
Secret1 ... Secret2 ..."

type=req
size=16000
"Hello!"

"Secret2"

"Secret1"

type=res
size=16000
"Hello! ... Secret1
... Secret2 ..."

Figure 9-5: Attacking with the Heartbleed bug (simplified)

This flaw is tantamount to configuring your server to provide an anony-
mous API that snapshots and sends out thousands of bytes of working memory 
to all callers—a complete breach of memory isolation, exposed to the internet. 
It should come as no surprise that web servers using HTTPS security have any 
number of juicy secrets in working memory. According to the discoverers of the 
Heartbleed bug, they were able to easily steal from themselves “the secret keys 
used for our X.509 certificates, user names and passwords, instant messages, 
emails and business critical documents and communication.” Since exactly 
what data leaked depended on the foibles of memory allocation, the ability of 
attackers exploiting this vulnerability to repeatedly access server memory even-
tually yielded all kinds of sensitive data. For a simpler view of Heartbleed, see 
Figure 9-6.
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Figure 9-6: Heartbleed Explanation (courtesy of Randall Munroe, xkcd.com/1354)

https://xkcd.com/1354
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The fix was straightforward in hindsight: anticipate “lying” heartbeat 
requests that ask for more payload than they provide, and, as the RFC 
explicitly specifies, ignore them. Thanks to Heartbleed, the world learned 
how dependent so many servers were on OpenSSL, and how few volunteers 
were laboring on the critical software that so much of the internet’s infra-
structure depended on. The bug is typical of why many security flaws are 
difficult to detect, because everything works flawlessly in the case of well-
formed requests, and only malformed requests that well-intentioned code 
would be unlikely to ever make cause problems. Furthermore, the leaked 
server memory in heartbeat responses causes no direct harm to the server: 
only by careful analysis of the excessive data disclosure does the extent of 
the potential damage become evident. 

As arguably one of the most severe security vulnerabilities discovered in 
recent years, Heartbleed should serve as a valuable example of the nature of 
security bugs, and how small flaws can result in a massive undermining of 
our systems’ security. From a functional perspective, one could easily argue 
that this is a minor bug: it’s unlikely to happen, and sending back more pay-
load data than the request provided seems, at first glance, utterly harmless. 

Heartbleed is an excellent object lesson in the fragility of low-level lan-
guages. Small errors can have massive impact. A buffer overflow potentially 
exposes high-value secrets if they happen to be lying around in memory at 
just the wrong location. The design (protocol specification) anticipated this 
very error by directing that heartbeat requests with incorrect byte lengths 
should be ignored, but without explicit testing, nobody noticed the vulner-
ability for over two years.

This is just one bug in one library. How many more like it are still out 
there now? 



10
U N T R U S T E D  I N P U T 

I like engineering, but I love the creative input.
—John Dykstra

Untrusted inputs are perhaps the greatest 
source of concern for developers writing 

secure code. The term itself can be confusing, 
and may best be understood as encompassing 

all inputs to a system that are not trusted inputs, mean-
ing inputs from code that you can trust to provide 
well-formed data. Untrusted inputs are those that are 
out of your control and might be manipulated, and 
include any data entering the system that you do not 
fully trust. That is, they’re inputs you should not trust, 
not inputs you mistakenly trust. 

Any data coming from the outside and entering the system is best consid-
ered untrusted. The system’s users may be nice, trustworthy people, but when 
it comes to security they are best considered untrusted, because they could 
do anything—including falling victim to the tricks of others. Untrusted inputs 
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are worrisome because they represent an attack vector, a way to reach into 
the system and cause trouble. Maliciously concocted inputs that cross trust 
boundaries are of special concern because they can penetrate deep into the 
system, causing exploits in privileged code, so it’s essential to have good first 
lines of defense. The world’s greatest source of untrusted inputs has to be the 
internet, and since it’s so rare for software to be fully disconnected, this rep-
resents a serious threat for almost all systems.

Input validation (or input sanitization) is defensive coding that imposes 
restrictions on inputs, forcing conformity to prescribed rules. By validating 
that inputs meet specific constraints and ensuring that code works properly 
for all valid inputs, you can successfully defend against these attacks. This 
chapter centers on managing untrusted inputs using input validation, and 
why doing so is important to security. The topic may seem mundane and 
it isn’t technically difficult, but the need is so commonplace that doing a 
better job at input validation is perhaps the most impactful low-hanging 
fruit available to developers for reducing vulnerabilities. As such, it’s cov-
ered in depth. Character string inputs present specific challenges and the 
security implications of Unicode are too little known, so we’ll also survey 
the basic issues they present. Then we’ll walk through some examples of 
injection attacks perpetrated using untrusted data with various technolo-
gies: SQL, path traversal, regular expressions, and XML external entities 
(XXE). Finally, I’ll summarize the available mitigation techniques for this 
broad set of vulnerabilities.

Input Validation
Before you look for validation in others, try and find it in yourself.

—Greg Behrendt

Now that you understand what untrusted inputs are, consider their poten-
tial effects within a system and how to protect against harm. Untrusted 
inputs routinely flow through systems, often reaching down many layers 
into trusted components—so just because your code is directly invoked 
from trusted code, there is no guarantee that those inputs can be trusted. 
The problem is that components might be passing through data from any-
where. The more ways an attacker can potentially manipulate the data, the 
more untrusted it is. Upcoming examples should make this point clear.

Input validation is a good defense, as it dials untrusted input down to 
a range of values that the application can safely process. The essential job 
of input validation is to ensure that untrusted inputs conform to design 
specifications so that code downstream of the validation only deals with 
well-formed data. Let’s say you are writing a user login authentication ser-
vice that receives a username and password, and issues an authentication 
token if the credentials are correct. By restricting usernames to between 8 
and 40 characters and requiring that they consist of a well-defined subset 
of Unicode code points, you can make the handling of that input much 
simpler, because it’s a known quantity. Subsequent code can use fixed-size 
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buffers to hold a copy of the username, and it need not worry about the 
ramifications of obscure characters. You could likely simplify processing 
based on that assurance in other ways, too.

We have already seen input validation used to fix low-level vulnerabili-
ties in the previous chapter. The paycheck integer computation code had 
input validation consisting of one if statement to guard against overly large 
input values:

if (millihours > max_millihours       // 100 hours max
    || hourlycents > max_hourlycents) // $200/hour rate 
  return 0;

There’s no need to repeat the explanation for this, but it serves as a fine 
example of basic input validation. Almost any code you write will only work 
correctly within certain limitations: it won’t work for extreme values such as 
massive memory sizes, or perhaps text in different languages. Whatever the 
limitations are, we don’t want to expose code to inputs it wasn’t designed 
for, as this risks unintended consequences that could create vulnerabilities. 
One easy method to mitigate this danger is to impose artificial restrictions 
on inputs that screen out all problematic inputs. 

There are some nuances worth pointing out, however. Of course, restric-
tions should never reject inputs that should have been rightfully handled; 
for instance, in the paycheck example, we cannot reject 40-hour work weeks 
as invalid. If the code cannot handle all valid inputs, then we need to fix it 
so it can handle a broader scope of inputs. Also, an input validation strategy 
may need to consider the interaction of multiple inputs. In the paycheck 
example, the product of the pay rate and hours worked could exceed the 
fixed-width integer size, as we saw in Chapter 9, so validation could limit 
the product of these two inputs, or set limits on each separately. The former 
approach is more permissive but may be more difficult for callers to accom-
modate, so the right choice depends on the application. 

Generally, you should validate untrusted inputs as soon as possible, so 
as to minimize the risk of unconstrained input flowing to downstream code 
that may not handle it properly. Once validated, subsequent code benefits 
from only being exposed to well-behaved data; this helps developers write 
secure code, because they know exactly what the range of inputs will be. 
Consistency is key, so a good pattern is to stage input validation in the first 
layer of code that handles incoming data, then hand the valid input off to 
business logic in deeper layers that can confidently assume that all inputs 
are valid.

We primarily think of input validation as a defense against untrusted 
inputs—specifically, what’s on the attack surface—but this does not mean 
that all other inputs can be blithely ignored. No matter how much you trust 
the provider of some data, it may be possible for a mistake to result in unex-
pected inputs, or for an attack to somehow compromise part of the system 
and effectively expand the attack surface. For all of these reasons, defensive 
input validation is your friend. It’s safest to err on the side of redundant 
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input validation rather than risk creating a subtle vulnerability—if you 
don’t know for certain that incoming data is reliably validated, you probably 
need to do it to be sure. 

Determining Validity
Input validation begins with deciding what’s valid. This is not as straightfor-
ward as it sounds, because it amounts to anticipating all future valid input 
values and figuring out how, with good reason, to disallow the rest. This 
decision is usually made by the developer, who must weigh what users may 
want against the extra coding involved in permitting a wider range. Ideally, 
software requirements specify what constitutes valid input, and a good 
design may provide guidance. 

For an integer input, the full range of 32-bit integers may appear to be 
an obvious choice because it’s a standard data type. But thinking ahead, 
if the code will add these values together at some point, that’ll require a 
bigger integer, so the 32-bit restriction becomes arbitrary. Alternatively, if 
you can reasonably set a lower limit for validity, then you can make sure the 
sum of the values will fit into 32 bits. Determining the right answer for what 
constitutes a valid input will require examining the application-specific con-
text—a great example of how domain knowledge is important to security. 
Once the range of values deemed valid is specified, it’s easy to determine 
the appropriate data type to use.

What usually works well is to establish an explicit limit on inputs and 
then leave plenty of headroom in the implementation to be certain of cor-
rectly processing all valid inputs. By headroom, I mean if you are copying 
a text string into a 4,096-byte buffer, use 4,000 bytes as the maximum valid 
length so you have a little room to spare. (In C, the additional null termina-
tor overflowing a buffer by one byte is a classic mistake that’s easy to make.) 
Some programmers like a good challenge, but if you’re too generous (by 
allowing the widest possible range of input), then you are forcing the imple-
mentation to take on a bigger and harder job than is necessary, leading 
to greater code complexity and test burden. Even if your online shopping 
application can manage a cart with a billion items, attempting to process 
such an unrealistic transaction would be counterproductive. It would be 
kindest to reject the input (which may well be due to somebody’s cat sitting 
on their keyboard).

Validation Criteria
Most input validation checks consist of several criteria, including ensur-
ing the input doesn’t exceed a maximum size, that the data arrives in the 
proper format, and that it’s within a range of acceptable values. 

Checking the value’s size is a quick test primarily intended to avoid 
DoS threats to your code, which would cause your application to lumber 
or even crash under the weight of megabytes of untrusted input. The data 
format may be a sequence of digits for a number, strings consisting of cer-
tain allowed characters, or a more involved format, such as XML or JSON. 
Typically, it’s wise to check these in this order: limit size first, so you don’t 
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waste time trying to deal with excessively massive inputs, then make sure 
the input is well formed before parsing it, and then check that the resulting 
value is within the acceptable range.

Deciding on a valid range of values can be the most subjective choice, 
but it’s important to have specific limits. How that range is defined will 
depend on the data type. For integers, the range will be no less than a mini-
mum and no greater than a maximum value. For floating-point numbers, 
there may be limits on precision (decimal places) as well. For strings, it’s 
a maximum length, encoding, and usually an allowable format or syntax, 
as determined by a regular expression or the like. I recommend specifying 
maximum string lengths in characters rather than bytes, if only so that  
non-programmers have some hope of knowing what this constraint means. 

It’s helpful to think about inputs as valid for a purpose, rather than in the 
abstract. For example, a language translation system might accept input that 
is first validated to conform to the supported character set and maximum 
length common to all supported languages. If the next processing stage ana-
lyzes the text to determine what language it is, having chosen the language 
you can then further restrict the text to the appropriate character set. 

Or consider validating an integer input that represents the quantity of 
items ordered on a purchase invoice. The maximum quantity any customer 
might ever actually order is not easy to determine, but it’s a good question 
to consider up front. If you have access to past data, a quick SQL query 
might return an interesting example worth knowing for reference. While 
one could argue that the maximum 32-bit integer value is the least limit-
ing and hence best choice, in practice this rarely makes much sense. Who 
wouldn’t consider an order of 4,294,967,295 of any product as anything but  
some sort of mistake? Since non-programmers are never going to remember 
such strange numbers derived from binary, choosing a more user-friendly 
limit, such as 1,000,000, makes more sense. Should anyone ever legitimately 
run up against such a limit, it probably is worth knowing about, and should 
be easy to adjust. What’s more, the developer will learn about a real use 
case in the process that was previously unimagined. 

The primary purpose of input validation is to ensure that no invalid 
input gets past it. The simplest way to do this is to simply reject invalid 
inputs, as we have been doing implicitly in the discussion so far. A more 
forgiving alternative is to detect any invalid input and modify it into a valid 
form. Let’s look at these different approaches, and when to do which. 

Rejecting Invalid Input
Rejection of input that does not conform to specified rules is the simplest 
and arguably safest approach. Complete acceptance or rejection is clean-
est and clearest, and usually easiest to get right. It’s like the common-sense 
advice for deciding if it’s safe to swim in the ocean: “When in doubt, don’t 
go out.” This can be as simple as refusing to process a web form if any field 
is improperly filled out, or as extreme as rejecting an entire batch of incom-
ing data because of a single violation in some record.
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Whenever people are providing the input directly, such as in the case 
of a web form, it’s kindest to provide informative error messages, making it 
easy for them to correct their mistakes and resubmit. Users presumably sub-
mit invalid input either as a mistake or due to ignorance of the validation 
rules, neither of which is good. Calling a halt and asking the data source 
to provide valid input is the conservative way to do input validation, and it 
affords a good chance for regular providers to learn and adapt.

When input validation rejects bad input from people, best practices 
include:

•	 Explain what constitutes a valid entry as part of the user interface, sav-
ing at least those who read it from having to guess and retry. (How am 
I supposed to know that area codes should be hyphenated rather than 
parenthesized?)

•	 Flag multiple errors at once, so they can be corrected and resubmitted 
in one step.

•	 When people are directly providing the input, keep the rules simple 
and clear.

•	 Break up complicated forms into parts, with a separate form for each 
part, so people can see that they’re making progress.

When inputs come from other computers, not directly from people, 
more rigid input validation may be wise. The best way to implement these 
requirements is by writing documentation precisely describing the expected 
input format and any other constraints. In the case of input from profes-
sionally run systems, fully rejecting an entire batch of inputs, rather than 
attempting to partially process the valid subset of data, may make the most 
sense, as it indicates something is out of spec. This allows the error to be 
corrected and the full dataset submitted again without needing to sort out 
what was or wasn’t processed.

Correcting Invalid Input
Safe and simple as it may be to insist on receiving completely valid inputs 
and rejecting everything else, by no means is this always the best way to go. 
For online merchants seeking customers at all costs, rejecting inputs dur-
ing checkout could lead to more instances of the dreaded “abandoned 
cart,” and lost sales. For interactive user input, rigid rules can be frustrat-
ing, so if the software can help the user provide valid input, it should.

If you don’t want to stop the show for a minor error, then your input 
validation code may attempt to correct the invalid inputs, transforming 
them into valid values instead of rejecting them. Easy examples of this 
include truncating long strings to whatever the maximum length is, or 
removing extraneous leading or trailing spaces. Other examples of correct-
ing invalid inputs are more complicated. Consider the common example of 
entering a mailing address in the exact form allowed by the postal service. 
This is a considerable challenge because of the precise spacing, spelling of 
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street names, and form of abbreviation expected. Just about the only way to 
do this is to offer best-guess matches of similar addresses in the official for-
mat for the respondent to choose from.

The best cure for tricky validation requirements is to design inputs to 
be as simple as possible. For example, many of us have struggled when pro-
viding phone numbers that require area codes in parentheses, or dashes in 
certain positions. Instead, let phone numbers be strings of digits and avoid 
syntax rules in the first place. 

While adjustments may save time, any correction introduces the pos-
sibility that the correction will modify the input in an unintended fashion 
(from the user’s standpoint). Take the example of a telephone number form 
field where the input is expected to be 10 digits long. It should be safe to 
strip out common characters such as hyphens and accept the input if the 
result produces 10 valid digits, but if the input has too many digits, the user 
might have intended to provide an international number, or they might 
have made a typo. Either way, it probably isn’t safe to truncate it. 

Proper input validation requires careful judgment, but it makes soft-
ware systems much more reliable, and hence more secure. It reduces the 
problem space, eliminates needless tricky edge cases, improves testability, 
and results in the entire system being better defined and stable.

Character String Vulnerabilities
If you are a programmer working in 2006 and you don’t know the basics of  
characters, character sets, encodings, and Unicode, and I catch you, I’m going to  
punish you by making you peel onions for six months in a submarine.

—Joel Spolsky

Nearly all software components process character strings, at least as com-
mand line parameters or when displaying output in legible form. Certain 
applications process character strings extensively; these include word proces-
sors, compilers, web servers and browsers, and many more. String processing 
is ubiquitous, so it’s important to be aware of the common security pitfalls 
involved. What follows is a sampling of the many issues to be aware of to 
avoid inadvertently creating vulnerabilities. 

Length Issues
Length is the first challenge because character strings are potentially of 
unbounded length. Extremely long strings invite buffer overflow when copied 
into fixed-length storage areas. Even if handled correctly, massive strings can 
result in performance problems if they consume excessive cycles or memory, 
potentially threatening availability. So, the first line of defense is to limit the 
length of incoming untrusted strings to reasonable sizes. At the risk of stating 
the obvious, don’t confuse character count with byte length when allocating 
buffers.
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Unicode Issues
Modern software usually relies on Unicode, a rich character set that 
spans the world’s written languages, but the cost of this richness is a lot 
of hidden complexity that can be fertile ground for exploits. There are 
numerous character encodings to represent the world’s text as bytes, but 
most often software uses Unicode as a kind of lingua franca. The Unicode 
standard (version 13.0) is just over 1,000 pages long, specifying over 
140,000 characters, canonicalization algorithms, legacy character code 
standard compatibility, and bidirectional language support; it covers nearly 
all the world’s written languages, encoding more than one million code 
points.

Unicode text has several different encodings that you need to be aware 
of. UTF-8 is the most common, but there are also UTF-7, UTF-16, and 
UTF-32 encodings. Accurately translating between bytes and characters is 
important for security, lest the contents of the text inadvertently morph in 
the process. Collation (sorted order) depends on the encoding and the lan-
guage, which can create unintended results if you aren’t aware of it. Some 
operations may work differently in the context of a different locale, such as 
when run on a computer configured for another country or language, so it’s 
important to test for correctness in all these cases. When there is no need 
to support different locales, consider specifying the locale explicitly rather 
than inheriting an arbitrary one from the system configuration.   

Because Unicode has many surprising features, the bottom line for 
security is to use a trustworthy library to handle character strings, rather 
than attempting to work on the bytes directly. You could say that in this 
regard, Unicode is analogous to cryptography in that it’s best to leave the 
heavy lifting to experts. If you don’t know what you are doing, some quirk 
of an obscure character or language you’ve never heard of might intro-
duce a vulnerability. This section details some of the major issues that are 
well worth being aware of, but a comprehensive deep dive into the intri-
cacies of Unicode would deserve a whole book. Detailed guidance about 
security considerations for developers who need to understand the finer 
points is available from the Unicode Consortium. UTR#36: Unicode Security 
Considerations is a good starting point. 

Encodings and Glyphs

Unicode encodes characters, not glyphs (rendered visual forms of characters). 
This simple dictum has many repercussions, but perhaps the easiest way 
to explain it is that the capital letter I (U+0049) and the Roman numeral 
one (U+2160) are separate characters that may appear as identical glyphs 
(called homomorphs). Web URLs support international languages, and the 
use of look-alike characters is a well-known trick that attackers use to fool 
users. Famously, someone got a legitimate server certificate using a Cyrillic 
character (U+0420) that looks just like the P in PayPal, creating a perfect 
phishing setup.
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Unicode includes combining characters that allow different repre-
sentations for the same character. The Latin letter Ç (U+00C7) also has a 
two-character representation, consisting of a capital C (U+0043) followed 
by the “Combining Cedilla” character (U+0327). Both the one- and two-
character forms display as the same glyph, and there is no semantic differ-
ence, so code should generally treat them as equivalent forms. The typical 
coding strategy would be to first normalize input strings to a canonical 
form, but unfortunately, Unicode has several kinds of normalization, so get-
ting the details right requires further study.

Case Change

Converting strings to upper- or lowercase is a common way of canonical-
izing text so that code treats test, TEST, tEsT, and so forth as identical. Yet it 
turns out that there are characters beyond the English alphabet that have 
surprising properties under case transformations. 

For example, the following strings are different yet nearly identical to 
casual observers: 'This ıs a test.' and 'This is a test.' (Note the missing dot 
over the second lowercase i in the first sentence.) Converted to uppercase, 
they both turn into the identical 'THIS IS A TEST.' since the lowercase dotless  
ı (U+0131) and the familiar lowercase i (U+0069) both become uppercase  
I (U+0049). To see how this leads to a vulnerability, consider checking an input 
string for the presence of <script>: the code might convert to lowercase, scan 
for that substring, then convert to uppercase for output. The string <scrıpt> 
would slip through but appear as <SCRIPT> in the output, which could allow 
script injection on a web page—the very thing the code was trying to prevent.

Injection Vulnerabilities
If you ever injected truth into politics you would have no politics.

—Will Rogers

Unsolicited credit card offers comprise a major chunk of the countless 
tons of junk mail that clog up the postal system, but one clever recipient 
managed to turn the tables on the bank. Instead of tossing out a promo-
tional offer to sign up for a card with terms he did not like, Dmitry Agarkov 
scanned the attached contract and carefully modified the text to specify 
terms extremely favorable to him, including 0 percent interest, unlimited 
credit, and a generous payment that he would receive should the bank 
cancel the card. He signed the modified contract and returned it to the 
bank, and soon received his new credit card. Dmitry enjoyed the generous 
terms of his uniquely advantageous contract for a while, but things got 
ugly when the bank finally caught on. After a protracted legal battle that 
included a favorable judgment upholding the validity of the modified con-
tract, he eventually settled out of court.

This is a real-world example of an injection attack: contracts are not the 
same as code, but they do compel the signatories to perform prescribed 
actions in much the same way as a program behaves. By altering the 
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terms of the contract, Dmitry was able to force the bank to act against its 
will, almost as if he had modified the software that manages credit card 
accounts in his favor. Software is also susceptible to this sort of attack: 
untrusted inputs can fool it into doing unexpected things, and this is actu-
ally a fairly common vulnerability.

There is a common software technique that works by constructing a 
string or data structure that encodes an operation to be performed, and 
then executing that to accomplish the specified task. (This is analogous to 
the bank writing a contract that defines how its credit card service oper-
ates, expecting the terms to be accepted unchanged.) When data from an 
untrusted source is involved, it may be able to influence what happens upon 
execution. If the attacker can change the intended effect of the operation, 
that influence may cross a trust boundary and get executed by software at a 
higher privilege. This is the idea of injection attacks in the abstract.

Before explaining the specifics of some common injection attacks, let’s 
consider a simple example of how the influence of untrusted data can be 
deceptive. According to an apocryphal story, just this kind of confusion was 
exploited successfully by an intramural softball team that craftily chose the 
name “No Game Scheduled.” Several times opposing teams saw this name 
on the schedule, assumed it meant that there was no game that day, and lost 
by forfeit as no-shows. This is an example of an injection attack because the 
team name is an input to the scheduling system, but “No Game Scheduled” 
was misinterpreted as being a message from the scheduling system. 

The same injection attack principles apply to many different technolo-
gies (that is, forms of constructed strings that represent an operation), 
including but not limited to: 

•	 SQL statements

•	 Filepath names 

•	 Regular expressions (as a DoS threat)

•	 XML data (specifically, XXE declarations)

•	 Shell commands

•	 Interpreting strings as code (for example, JavaScript’s eval function)

•	 HTML and HTTP headers (covered in Chapter 11) 

The following sections explain the first four kinds of injection attacks 
in detail. Shell command and code injection work similarly to SQL injec-
tion, where sloppy string construction is exploitable by untrusted inputs. 
We’ll cover web injection attacks in the next chapter.

SQL Injection
The classic xkcd comic #327 (Figure 10-1) portrays an audacious SQL injec-
tion attack, wherein parents give their child an unlikely and unpronounceable 
name that includes special characters. When entered into the local school dis-
trict’s database, this name compromises the school’s records.
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Figure 10-1: Exploits of a Mom (courtesy of Randall Munroe, xkcd.com/327)

To understand how this works, assume that the school registration sys-
tem uses a SQL database and adds student records with a SQL statement of 
the form shown here: 

INSERT INTO Students (name) VALUES ('Robert');

In this simplified example, that statement adds the name “Robert” to 
the database. (In practice, more columns than just name would appear in the 
two sets of parenthesized lists; those are omitted here for simplicity.)

Now imagine a student with the ludicrous name of Robert'); DROP TABLE 
students;--. Consider the resultant SQL command, with the parts corre-
sponding to the student’s name highlighted:

INSERT INTO Students (name) VALUES ('Robert'); DROP TABLE Students;--');

According to SQL command syntax rules, this string actually contains 
two statements: 

INSERT INTO Students (name) VALUES ('Robert');
DROP TABLE Students; --');

The first of these two SQL commands inserts a “Robert” record as 
intended. However, since the student’s name contains SQL syntax, it also 
injects a second, unintended command, DROP TABLE, that deletes the entire 
table. The double dashes denote a comment, so the SQL engine ignores 
the following text. This trick allows the exploit to work by consuming the 
trailing syntax (single quote and close parenthesis) in order to avoid a syn-
tax error that would prevent execution. 

Now let’s look at the code a little more closely to see what a SQL injection 
vulnerability looks like and how to prevent it. The hypothetical school registra-
tion system code works by forming SQL commands as text strings, such as in 
the first basic example we covered, and then executing them. The input data 
provides names and other information to fill out student records. In theory, 
we can even suppose that staff verified this input against official records to 
ensure their accuracy (assuming, with a large grain of salt, that legal names 
can include ASCII special characters). 

https://xkcd.com/327
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The programmer’s fatal mistake was in writing a string concatenation 
statement such as the following without considering that an unusual name 
could “break out” of the single quotes:

vulnerable code sql_stmt = "INSERT INTO Students (name) VALUES ('" + student_name + "');";

Mitigating injection attacks is not hard but requires vigilance, lest you 
get sloppy and write code like this. Mixing untrusted inputs and command 
strings is the root cause of the vulnerability, because those inputs can break 
out of the quotes with unintended harmful consequences.

Determining what strings constitute a valid name is an important require-
ments issue, but let’s just focus on the apostrophe character used in this SQL 
statement as a single quote. Since there are names (such as O’Brien) that 
contain the apostrophe, which is key to cracking open the SQL command 
syntax, the application cannot forbid this character as part of input validation. 
This name could be correctly written as the quoted string 'O''Brien', but there 
could be many other special characters requiring special treatment to effec-
tively eliminate the vulnerability in a complete solution. 

As a further defense, you should configure the SQL database such that 
the software registering students does not have the administrative privi-
leges to delete any tables, which it does not need to do its job. (This is an 
example of the “Least Privilege” pattern from Chapter 4.)

Rather than “reinventing the wheel” with custom SQL sanitization code, 
the best practice is to use a library intended to construct SQL commands 
to handle these problems. If a trustworthy library isn’t available, create test 
cases to ensure that attempted injection attacks are either rejected or safely 
processed, and that everything works for students with names like O’Brien. 

Here are a few simple Python code snippets showing the wrong and 
then the right way to do this. First is the wrong way, using a mock-up of the 
Bobby Tables attack: 

vulnerable code import sqlite3
con = sqlite3.connect('school.db')
student_name = "Robert'); DROP TABLE Students;--"
# The WRONG way to query the database follows:
sql_stmt = "INSERT INTO Students (name) VALUES ('" + student_name + "');"
con.executescript(sql_stmt)

After creating a connection (con) to the SQL database, the code assigns 
the student’s name to the variable student_name. Next, the code constructs the 
SQL INSERT statement by plugging the string student_name into the VALUES list 
and assigning that to sql_stmt. Finally, that string is executed as a SQL script.

The right way to handle this is to let the library insert parameters 
involving untrusted data, as shown in the following code snippet: 

fixed code import sqlite3
con = sqlite3.connect('school.db')
student_name = "Robert'); DROP TABLE Students;--"
# The RIGHT way to query the database follows:
con.execute("INSERT INTO Students (name) VALUES (?)", (student_name,))
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In this implementation, the ? placeholder is filled in from the follow-
ing tuple parameter consisting of the student_name string. Note that there 
are no quotes required within the INSERT statement string—that’s all han-
dled for you.  This syntax avoids the injection and safely enters Bobby’s 
strange name into the database.

There is a detail in this example that deserves clarification. Making the 
original exploit work requires the executescript library function, because 
execute only accepts a single statement, which serves as a kind of a defense 
against this particular attack. However, it would be a mistake to think that 
all injection attacks involve additional commands, and that this limitation 
confers much protection. For example, suppose there’s another student 
with a different unpronounceable name at the school, Robert', 'A+');--. He 
and plain old Robert are both failing—but when his grades are recorded in 
another SQL table, his mark gets elevated to an A+. How so? 

When plain old Robert’s grades are submitted using the vulnerable 
code, the command enters the intended grade of an F as follows:

INSERT INTO Grades (name, grade) VALUES ('Robert', 'F');

But with the name Robert', 'A+');-- that command becomes:

INSERT INTO Grades (name, grade) VALUES ('Robert', 'A+');--', 'F');

One final remark is in order about xkcd’s “Little Bobby Tables” example 
that attentive readers may have noticed. Setting aside the absurdity of the 
premise, it is a remarkable coincidence that Bobby’s parents were able to 
foresee the arbitrarily chosen specific name of the database table (Students). 
This is best explained by artistic license.

Path Traversal
Filepath traversals are a common vulnerability closely related to injection 
attacks. Instead of escaping from quotation marks, as we saw in the previ-
ous section’s examples, this attack escapes into parent directories to gain 
unexpected access to other parts of the filesystem. For example, to serve a 
collection of images, an implementation might collect image files in a direc-
tory named /server/data/image_store and then process requests for an image 
named X by fetching image data from the path formed from the (untrusted) 
input name X: /server/data/image_store/X. 

The obvious attack would be requesting the name ../../secret/key, 
which would return the file /server/secret/key that should have been pri-
vate. Recall that . (dot) is a special name for the current directory and .. 
(dot-dot) is the parent directory that allows traversal toward the filesystem 
root, as shown by this sequence of equivalent pathnames:

•	 /server/data/image_store/../../secret/key

•	 /server/data/../secret/key

•	 /server/secret/key
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The best way to secure against this kind of attack is to limit the char-
acter set allowed in the input (X in our example). Often, input validation 
ensuring that the input is an alphanumeric string suffices to completely 
close the door. This works well because it excludes the troublesome file 
separator and parent directory forms needed to escape from the intended 
part of the filesystem.

However, sometimes that approach is too limiting. When it’s necessary 
to handle arbitrary filenames this simple method is too restrictive, so you 
have more work to do (and it can get complicated because filesystems are 
complicated). Furthermore, if your code will run across different platforms, 
you need to be aware of possible filesystem differences (for example, the 
*nix path separator is a slash, but on Microsoft Windows it’s a backslash).

Here is a simple example of a function that inspects input strings 
before using them as subpaths for accessing files in the directory that this 
Python code resides in (denoted by __file__). The idea is to provide access 
only to files in a certain directory or its subdirectories—but absolutely not 
to arbitrary files elsewhere. In the version shown here, the guard function 
safe_path checks the input for a leading slash (which goes to the filesystem 
root) or parent directory dot-dot and rejects inputs that contain these. To 
get this right you should work with paths using standard libraries, such as 
Python’s os.path suite of functionality, rather than ad hoc string manipula-
tion. But this alone isn’t sufficient to ensure against breaking out of the 
intended directory:

vulnerable code def safe_path(path):
    """Checks that argument path is a safe file path. If not, returns None.
    If safe, returns the normalized absolute file path.
    """
    if path.startswith('/') or path.startswith('..'):
        return None
    base_dir = os.path.dirname(os.path.abspath(__file__))
    filepath = os.path.normpath(os.path.join(base_dir, path))
    return filepath

The remaining hole in this protection is that the path can name a valid 
directory, and then go up to the parent directory, and so on to break out. 
For example, since the current directory this sample code runs in is five lev-
els below the root, the path ./../../../../../etc/passwd (with five dot-dots) 
resolves to the /etc/passwd file. 

We could improve the string-based tests for invalid paths by rejecting 
any path containing dot-dot, but such an approach can be risky, since it’s 
hard to be certain that we’ve anticipated all possible tricks and completely 
blocked them. Instead, there’s a straightforward solution that relies on the 
os.path library, rather than constructing path strings with your own code: 
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fixed code def safe_path(path):
    """Checks that argument path is a safe file path. If not, returns None.
    If safe, returns the normalized absolute file path.
    """
    base_dir = os.path.dirname(os.path.abspath(__file__))
    filepath = os.path.normpath(os.path.join(base_dir, path))
    if base_dir != os.path.commonpath([base_dir, filepath]):
        return None
    return filepath

This protection you can take to the bank, and here’s why. The base 
directory is a reliable path because there is no involvement of untrusted 
input: it’s fully derived from values completely under the programmer’s 
control. After joining with the input path string, that path gets normalized, 
which resolves any dot-dot parent references to produce an absolute path 
(filepath). Now we can check that the longest common subpath of these is 
the intended directory to which we want to restrict access. 

Regular Expressions
Efficient, flexible, and easy to use, a regex (regular expression) offers a 
remarkably wide range of functionality and is perhaps the most versatile 
tool we have for parsing text strings. They’re generally faster (both to code 
and execute) than ad hoc code, and more reliable. Regex libraries compile 
state tables that an interpreter (a finite state machine or similar automaton) 
executes to match against a string. 

Even if your regex is correctly constructed it can cause security issues, 
as some regular expressions are prone to excessive execution times, and if 
attackers can trigger these they can cause a serious DoS. Specifically, execu-
tion time can balloon if the regex incurs backtracking—that is, when it scans 
forward a long way, then needs to go back and rescan over and over to find 
a match. The security danger generally results from allowing untrusted 
inputs to specify the regex; or, if the code already contains a backtracking 
regex, from an untrusted input that supplies a long worst-case string that 
maximizes the computational effort. 

A backtracking regex can look innocuous, as an example will demon-
strate. The following Python code takes more than three seconds to run on 
my modest Raspberry Pi Model 4B. Your processor is likely much faster, 
but since each D added to the 24 in the example doubles the running 
time, it isn’t hard to lock up any processor with a slightly longer string:

import re
print(re.match(r'(D+)+$', 'DDDDDDDDDDDDDDDDDDDDDDDD!')) 
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The danger of excessive runtime exists with any kind of parsing of 
untrusted inputs, in cases where backtracking or other nonlinear computa-
tions can blow up. In the next section you’ll see an XML entity example 
along these lines, and there are many more.

The best way to mitigate these issues depends on the specific computa-
tion, but there are several general approaches to countering these attacks. 
Avoid letting untrusted inputs influence computations that have the poten-
tial to blow up. In the case of regular expressions, don’t let untrusted inputs 
define the regex, avoid backtracking if possible, and limit the length of the 
string that the regex matches against. Figure out what the worst-case com-
putation could be, and then test it to ensure that it’s not excessively slow. 

Dangers of XML
XML is one of the most popular ways to represent structured data, as it is 
powerful as well as human-readable. However, you should be aware that 
the power of XML can also be weaponized. There are two major ways that 
untrusted XML can cause harm using XML entities.

XML entity declarations are a relatively obscure feature, and unfortunately, 
attackers have been creative in finding ways of abusing these. In the example 
that follows, a named entity big1 is defined as a four-character string. Another 
named entity, big2, is defined as eight instances of big1 (a total of 32 char-
acters), and big3 is eight more of those, and so on. By the time you get up 
to big7, you’re dealing with a megabyte of data, and it’s easy to go on up 
from there. This example concocts an 8-megabyte chunk of XML. As you can 
see, you would need to add only a few lines to go into the gigabytes:

<!DOCTYPE dtd[
  <!ENTITY big1 "big!">
  <!ENTITY big2 "&big1;&big1;&big1;&big1;&big1;&big1;&big1;&big1;">
  <!ENTITY big3 "&big2;&big2;&big2;&big2;&big2;&big2;&big2;&big2;">
  <!ENTITY big4 "&big3;&big3;&big3;&big3;&big3;&big3;&big3;&big3;">
  <!ENTITY big5 "&big4;&big4;&big4;&big4;&big4;&big4;&big4;&big4;">
  <!ENTITY big6 "&big5;&big5;&big5;&big5;&big5;&big5;&big5;&big5;">
  <!ENTITY big7 "&big6;&big6;&big6;&big6;&big6;&big6;&big6;&big6;">
]>
<mega>&big7;&big7;&big7;&big7;&big7;&big7;&big7;&big7;</mega>

More tricks are possible with external entity declarations. Consider the 
following:

  <!ENTITY snoop SYSTEM "file:///etc/passwd>" >

This does exactly what you would think: reads the password file and 
makes its contents available wherever &snoop; appears in the XML hence-
forth. If the attacker can present this as XML and then see the result of the 
entity expansion, they can disclose the contents of any file they can name. 

Your first line of defense against these sorts of problems will be keeping 
untrusted inputs out of any XML that your code processes. Some modern 
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libraries check for just this kind of attack, but you should check to be sure if 
you need to rely on it. If you don’t need XML external entities, then protect 
against this sort of attack by excluding them from inputs, or by disabling the 
processing of such declarations.

Mitigating Injection Attacks
Just as various kinds of injection attacks rely on the common trick of using 
untrusted inputs to influence statements or commands that execute in the 
context of the application, mitigations for these issues also have common 
threads, though the details do vary. Input validation is always a good first 
line of defense, but depending on what allowable inputs may consist of, that 
alone is not necessarily enough. 

Avoid attempting to insert untrusted data into constructed strings for 
execution, for instance as commands. Modern libraries for SQL and other 
functionality susceptible to injection attacks should provide helper func-
tions that allow you to pass in data separately from the command. These 
functions handle quoting, escaping, or whatever it takes to safely perform 
the intended operation for all inputs. I recommend checking for a specific 
note about security in the library’s documentation, as there do exist slip-
shod implementations that just slap strings together and will be liable to 
injection attacks under the facade of the API. When in doubt, a security test 
case (see Chapter 12) is a good way to sanity-check this.

If you cannot, or will not, use a secure library—although, again, I caution 
against the slippery slope of “what could possibly go wrong?” thinking—first 
consider finding an alternative way to avoid the risk of injection. Instead of 
constructing a *nix ls command to enumerate the contents of a directory, use 
a system call. The reasoning behind this is clear: all that readdir(3) can pos-
sibly do is return directory entry information; by contrast, invoking a shell 
command could potentially do just about anything.

Using the filesystem as a homemade datastore may be the quickest solu-
tion in some cases, but I can hardly recommend it as a secure approach. If 
you insist on doing it the risky way, don’t underestimate the work required 
to anticipate and then block all potential attacks in order to fully secure it. 
Input validation is your friend here; if you can constrain the string to a safe 
character set (for example, names consisting only of ASCII alphanumerics), 
then you may be all right. As an additional layer of defense, study the syntax 
of the command or statement you are forming and be sure to apply all the 
necessary quoting or escaping to ensure nothing goes wrong. It’s worth read-
ing the applicable specifications carefully, as there may be obscure forms 
you are unaware of.

The good news is that the dangerous operations where injections become 
a risk are often easy to scan for in source code. Check that SQL commands 
are safely constructed using parameters, rather than as ad hoc strings. For 
shell command injections, watch for uses of exec(3) and its variants, and be 
sure to properly quote command arguments (Python provides shlex.quote 
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for exactly this purpose). In JavaScript, review uses of eval and either safely 
restrict them or consider not using it when untrusted inputs could possibly 
influence the constructed expression.

This chapter covered a number of injection attacks and related com-
mon vulnerabilities, but injection is a very flexible method that can appear 
in many guises. In the following chapter we will see it again (twice), in the 
context of web vulnerabilities.



11
W E B  S E C U R I T Y

When the words appeared, everyone said they were a miracle.  
But nobody pointed out that the web itself is a miracle.

—E. B. White (from Charlotte’s Web)

The enormous success of the World Wide 
Web is in no small part due to the remark-

able fact (today, completely taken for granted) 
that countless millions of people use it routinely 

without having the slightest understanding of how it 
works. This singular achievement for such a complex 
amalgam of technology is at once a blessing and a 
curse. Undoubtedly, the web’s ease of use has sustained 
widespread growth. On the flip side, securing a global  
network of independent digital services, used by countless millions of 
oblivious humans at the endpoints, is indeed an extremely difficult task. 
Security is perhaps the hardest part of this big hard problem.

One complicating factor that makes security especially challenging is 
that the early web was rather naively designed, without much consideration 
to security. As a result, the modern web is the product of a long evolution 
of standards, muddled by the competitive “browser wars” and backward 
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compatibility restrictions. In short, the web is the most extreme instance of 
after-the-fact, “bolt-on security” in history—though what we have, well over 
a quarter of a century after its invention, is getting respectable. 

Yet while the modern web can be made secure, its tangled history means 
that it’s also quite fragile and filled with many “security and privacy infelici-
ties,” as the authors of RFC 6265, a spec for web cookies, so colorfully put it. 
Software professionals need to understand all of this so as not to run afoul 
of these issues when building for the web. Tiny missteps easily create vulner-
abilities. Given the “Wild West” nature of the internet, bad actors have the 
freedom to easily probe how websites work, as well as anonymously muck 
around looking for openings to attack.

This chapter focuses on the fundamentals of how the web security model 
evolved, and the right and wrong ways to use it. Vulnerabilities arise from 
the details, and there are so many things a secure website must get exactly 
right. We’ll cover all of the basics of web security, beginning with a plea to 
build on top of a secure framework that handles the intricacies for you. From 
there, we will see how secure communication (HTTPS), proper use of the 
HTTP protocol (including cookies), and the Same Origin Policy combine  
to keep websites safe. Finally, we’ll cover two of the major vulnerabilities spe-
cific to the web (XSS and CSRF) and discuss a number of other mitigations 
that, when combined, go a long way toward securing a modern web server. 
Nonetheless, this chapter is by no means a complete compendium of web 
security, the specifics of which are voluminous and evolve rapidly.

The goal here is to convey a broad-brush sense of the major common 
pitfalls so you will recognize and know how to deal with them. Web appli-
cations are also subject to the many other vulnerabilities covered elsewhere 
in this book: the focus in this chapter should not be interpreted to suggest 
that these are the only potential security concerns. 

N O T E 	 The following discussion assumes that you are minimally familiar with the basics of 
the web: the client/server model; the basics of HTTP and HTML, including cookies; 
a little CSS; JavaScript at the “101” level; and the Document Object Model. Readers 
less familiar with the web should still be able to follow along for the most part, perhaps 
with a little supplemental reading to fill in any gaps.

Build on a Framework
Use design as a framework to bring order out of chaos.

—Nita Leland

Thanks to modern web development tools, building a website has become 
nearly as easy as using one. My top recommendations for building a secure 
website are to rely on a high-quality framework, never override the safe-
guards it provides, and let competent experts handle all the messy details.

A reliance on a solid framework should insulate you from the kinds 
of vulnerabilities covered in the following sections, but it’s still valuable 
to understand exactly what frameworks do and don’t do so you can use 
them effectively. It’s also critical that you choose a secure framework from 



Web Security   187

the start, because your code will heavily depend on it, making it painful 
to switch later if it lets you down. How do you know if a web framework is 
really secure? It boils down to trust—both in the good intentions and the 
expertise of its makers. 

Web frameworks rise and fall in popularity and buzz almost as fast as 
Parisian fashion, and your choice will depend on many factors, so I won’t 
attempt to make recommendations. However, I can suggest general guide-
lines to consider for your own evaluation:

•	 Choose a framework produced by a trustworthy organization or team 
that actively develops and maintains it in order to keep up with con-
stantly changing web technologies and practices.

•	 Look for an explicit security declaration in the documentation. If you 
don’t find one, I would disqualify the framework.

•	 Research past performance: the framework doesn’t need a perfect record, 
but slow responses or ongoing patterns of problems are red flags.

•	 Build a small prototype and check the resulting HTML for proper 
escaping and quoting (using inputs like the ones in this chapter’s 
examples).

•	 Build a simple test bed to experiment with basic XSS and CSRF attacks, 
as explained later in this chapter.

The Web Security Model
I’m kind of glad the web is sort of totally anarchic. That’s fine with me.

—Roger Ebert

The web is a client/server technology, and understanding its security model 
requires considering both of those perspectives at once. Doing so gets inter-
esting quickly, since the security interests of the two parties are often in 
contention, especially given the threat of potential attackers intruding via 
the internet. 

Consider the typical online shopping website. The security principles at 
play here apply, more or less, to all kinds of web activity. In order to do busi-
ness, the merchant and customers must trust each other to a certain degree, 
and in the vast majority of cases that does actually happen. Nonetheless, 
there are inevitably a few bad actors out there, so websites cannot fully trust 
every client, and vice versa. The following points highlight some of the 
nuances of the tentative mutual trust between the merchant and customer. 

Here are some the merchant’s basic requirements:

•	 Other websites should be unable to interfere with my customer 
interactions.

•	 I want to minimize my competitors’ ability to scrape my product and 
inventory details while helpfully informing legit customers.

•	 Customers shouldn’t be able to manipulate prices or order products not 
in stock.
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Here are some of the customer’s:

•	 I require assurance that the website I’m accessing is authentic. 

•	 I demand confidence that online payments are secure.

•	 I expect the merchant to keep my shopping activities private.

Clearly, both parties must remain vigilant for the web to work well. 
That said, the customer expects many things from the merchant. Solving 
the hard problem of educating confused or gullible customers is out of 
scope here, if that’s even possible. Instead, in web security, we focus on 
securing a website from the merchant’s perspective. The web only works 
if servers do a good job of providing that security, making it possible for 
the honest end user to even have a chance at a secure web experience. 
Merchants must not only decide how much they can trust customers, but 
also intuit how much customers will likely trust them.

Another odd aspect of the web’s security model is the role of the client 
browser. Designing web services proves challenging because they need to 
interact with browsers that they have absolutely no control over. A malevolent 
client could easily use a modified browser capable of anything. Alternatively, 
a careless client could well be running an ancient browser full of security 
holes. Even if a web server attempts to limit the types of browsers clients use 
to certain versions, remember that the browser could easily misidentify itself 
to get around such restrictions. The saving grace is that honest clients want 
to use secure browsers and update them regularly, because it protects their 
own interests. Most importantly, so long as the server remains secure, one 
malicious client cannot interfere with the service that other clients receive.  

Web servers overtrusting potentially untrustworthy client browsers 
is at the root of many web security vulnerabilities. I stress this point, at 
the risk of repetition, because it is so easily and often forgotten (as I will 
explain throughout the chapter). 

The HTTP Protocol
Anyone who considers protocol unimportant has never dealt with a cat.

—Robert A. Heinlein

The HTTP protocol itself is at the heart of the web, so before we dig into 
web security, it’s worth briefly reviewing how it works. This hyper-simplified 
explanation serves as a conceptual framework for the rest of the security 
discussion, and we’ll focus on the parts where security enters the picture. 
For many, web browsing has become so commonplace in daily life that it’s 
worth stepping back and thinking through all the steps of the process—
many of which we hardly notice, as modern processors and networks rou-
tinely provide blazing-fast responses.

Web browsing always begins with a uniform resource locator (URL). 
The following example shows its parts: 

http://www.example.com/page.html?query=value#fragment
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The scheme precedes the colon, and specifies the protocol (here, http) 
the browser must use to request the desired resource. IP-based protocols 
begin with // followed by the hostname, which for web pages is the domain 
name of the web server (in this case, www.example.com). The rest is all optional: 
the / followed by the path, the ? followed by the query, and the # followed by 
the fragment. The path specifies which web page the browser is requesting. 
The query allows the web page content to be parameterized. For example, 
when searching for something on the web, the URL path for results might 
be /search?q=something. The fragment names a secondary resource within the 
page, often an anchor as the destination of a link. In summary, the URL 
specifies how and where to request the content, the specific page on the site, 
query parameters to customize the page, and a way to name a particular 
part of the page.

Your web browser has a lot of work to do in order to display the web page 
when you give it a URL. First, it queries the Domain Name System (DNS) for 
the IP address of the hostname in order to know where to send the request. 
The request contains the URL path and other parameters encoded as request 
headers (including any cookies, the user’s preferred language, and so on) 
sent to the web server host. The server sends back a response containing 
a status code and response headers (which may set cookies, and many other 
things), followed by the content body that consists of the HTML for the web 
page. For all embedded resources, such as scripts, images, and so forth, this 
same request/response process repeats until the content is fully loaded and 
displayed.

Now let’s look at what web servers must do correctly in order to remain 
secure. One important detail not yet mentioned is that the request specifies 
the HTTP verb. For our purposes here, we will focus on just the two most 
common verbs. GET requests content from the server. By contrast, clients 
use the POST verb to send form submissions or file uploads. GET requests 
are explicitly not state-changing, whereas POST requests intend to change 
the state of the server. Respecting this semantic distinction is important, as 
will be seen when we cover CSRF attacks. For now, keep in mind that even 
though the client specifies the request verb to use, the server is the one that 
decides what to do with it. Additionally, by offering hyperlinks and forms 
on its pages, the server in effect guides the client to make subsequent GET 
or POST requests.

Sticklers will point out that one certainly can run a server that changes 
state in response to GET verb requests and, perversely, refuses to change state 
for form POST submissions. But if you strictly follow the standard rules, it is 
vastly easier to make your server secure. Think of it this way: yes, it is possible 
to climb over fences marked “Keep Out!” at a cliff and walk along the edge 
of the precipice without falling, but doing so needlessly puts your security in 
jeopardy. 

A related security no-no is embedding sensitive data in a URL; instead, 
use form POST requests to send the data to the server. Otherwise, the REFERER 
header may disclose the URL of the web page that led to the request, expos-
ing the data. For example, clicking a link on a web page with the URL https://
example.com?param=SECRET navigates to the link destination using a GET request 
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with a REFERER header containing the URL which includes SECRET, thereby leak-
ing the secret data. In addition, logs or diagnostic messages risk disclosing the 
data contained in URLs. While servers can use the Referrer-Policy header to 
block this, they must depend on the client honoring it—hardly a perfect solu-
tion. (The REFERER header is indeed misspelled in the spec, so we’re stuck with 
that, but the policy name is correctly spelled.)

One easy mistake to make is including usernames in URLs. Even an 
opaque identifier, such as the hash of a username, leaks information, in that 
it potentially allows an eavesdropper to match two separately observed URLs 
and infer that they refer to the same user.

Digital Certificates and HTTPS
If what is communicated is false, it can hardly be called communication.

—Benjamin Mays

The first challenge for secure web browsing is reliably communicating with 
the correct server. To do this, you must know the correct URL and query a 
DNS service that provides the right IP address. If the network routes and 
transmits the request correctly, it should reach the intended server. That’s a 
lot of factors to get right, and a large attack surface: bad actors could inter-
fere with the DNS lookup, the routing, or the data on the wire at any point 
along the route. Should the request be diverted to a malicious server, the 
user might never realize it; it isn’t hard to put up a look-alike website that 
would easily fool just about anyone. 

The HTTPS protocol (also called HTTP over TLS/SSL) is tailor-made 
to mitigate these threats. HTTPS secures the web using many of the tech-
niques covered in Chapter 5. It provides a secure end-to-end tamper-proof 
encrypted channel, as well as assurance to the client that the intended 
server is really at the other end of that channel. Think of the secure chan-
nel as a tamper-evident pipeline for data that confirms the server’s identity. 
An eavesdropping attacker could possibly see encrypted data, but without 
the secret key, it’s indistinguishable from random bits. An attacker may be 
able to tamper with the data on an unprotected network, but if HTTPS is 
used, any tampering will always be detected. Attackers may be able to pre-
vent communication, for example by physically cutting a cable, but you are 
assured that bogus data will never get through. 

Nobody ever disputed the need for HTTPS to secure financial transac-
tions on the web, but major sites delayed going fully HTTPS for far too long. 
(For example, Facebook only did so in 2013.) When first implemented, the 
protocol had subtle flaws, and the necessary computations were too heavy-
weight for the hardware at the time to justify widespread adoption. The good 
news is that, over time, developers fixed the bugs and optimized the protocol. 
Thanks to protocol optimizations, more efficient crypto algorithms, and faster 
processors, HTTPS is fast, robust, and rapidly approaching ubiquity today. 
It’s widely used to protect private data communications, but even for a website 
only serving public information, HTTPS is important to ensure authenticity 
and strong integrity. In other words, it provides assurance that the client is 
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communicating with the bona fide server named in the request URL, and that 
data transmitted between them has not been snooped on or tampered with. 
Today, it’s difficult to think of any good reason not to configure a website to 
use HTTPS exclusively. That said, there are still plenty of non-secure HTTP 
websites out there. If you use them, keep in mind that the nice security prop-
erties of HTTPS do not apply, and take appropriate precautions. 

Understanding precisely what HTTPS does (and does not do) to secure 
the client/server interaction is critical in order to grasp its value, how it helps, 
and what it can and cannot change. In addition to assuring server authentic-
ity and the confidentiality and integrity of web requests and response content, 
the secure channel protects the URL path (in the first line of the request 
headers—for example, GET /path/page.html?query=secret#fragment), prevent-
ing anyone who’s snooping from seeing what page of the website the client 
requested. (HTTPS can optionally also authenticate the client to the server.) 
However, the HTTPS traffic itself is still observable over the network, and 
because the IP addresses of the endpoints are unprotected, eavesdroppers 
can often deduce the identity of the server.  

Table 11-1 compares of the security attributes of HTTP and HTTPS, 
in terms of the capabilities of an attacker lurking between the two end-
points of a client/server communication.

Table 11-1: HTTP vs. HTTPS Security Attributes

Can an attacker. . . HTTP HTTPS

See web traffic between client/server 
endpoints?

Yes Yes

Identify the IP addresses of both client and 
server?

Yes Yes

Deduce the web server’s identity? Yes Sometimes (see note below)

See what page within the site is requested? Yes No (in encrypted headers)

See the web page content and the body of 
POSTs?

Yes No (encrypted)

See the headers (including cookies) and URL 
(including the query portion)?

Yes No

Tamper with the URL, headers, or content? Yes No

N O T E 	 The reverse DNS lookup of a web server’s IP address reveals its domain name. When 
multiple web servers share an IP address, the SNI (Server Name Indication) is visible, 
but the ESNI (Encrypted SNI) is protected.

As HTTPS and the technology environment matured, the last obstacle 
to broad adoption was the overhead of getting server certificates. Whereas 
larger companies could afford the fees that trusted certificate authorities 
charged and had staff to manage the renewal process, the owners of smaller 
websites balked at the extra cost and administrative overhead. By 2015, 
HTTPS was mature and most internet-connected hardware operated fast 
enough to handle it, and with awareness of the importance of web privacy 
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growing quickly, the internet community was approaching a consensus that 
it needed to secure the majority of web traffic. The lack of free and simple 
server certificate availability proved the biggest remaining obstacle. 

Thanks to strong promotion by the wonderful Electronic Frontier 
Foundation and sponsorship from a wide range of industry companies, 
Let’s Encrypt, a product of the nonprofit Internet Security Research Group, 
offers the world a free, automated, and open certificate authority. It provides 
Domain Validation (DV) certificates, free of charge, to any website owner. 
Here’s a simplified explanation of how Let’s Encrypt works. Keep in mind 
that the following process is automated in practice:

1.	 Identify yourself to Let’s Encrypt by generating a key pair and sending 
the public key. 

2.	 Query Let’s Encrypt, asking what you need to do to prove that you con-
trol the domain.

3.	 Let’s Encrypt issues a challenge, such as provisioning a specified DNS 
record for the domain.

4.	 You satisfy the challenge by creating the requested DNS record and ask 
Let’s Encrypt to verify what you did.

5.	 Once verified, the private key belonging to the generated key pair is 
authorized for the domain by Let’s Encrypt.

6.	 Now you can request a new certificate by sending Let’s Encrypt a 
request signed by the authorized private key. 

Let’s Encrypt issues 90-day DV certificates and provides a “certbot” to 
handle automatic renewals. With automatically renewable certificates avail-
able as a free service, secure web serving today has widely become a turnkey 
solution at no additional cost. HTTPS comprised more than 85 percent of 
web traffic in 2020, more than double the 40 percent level of 2016, when 
Let’s Encrypt launched.

A DV certificate is usually all you need to prove the identity of your 
website. DV certificates simply assert the authenticated web server’s domain 
name, and nothing more. That is, the example.com certificate is only ever 
issued to the owner of the example.com web server. By contrast, certificates 
offering higher levels of trust, such as Organization Validation (OV) and 
Extended Validation (EV) certificates, authenticate not only the identity of 
the website but also, to some extent, the owner’s identity and reputation. 
However, with the proliferation of free DV certificates, it’s increasingly 
unclear if the other kinds will remain viable. Few users care about such 
distinctions of trust, and the technical as well as legal nuances of OV and 
EV certificates are subtle. Their precise benefits are challenging to grasp 
unless (and even if) you are a lawyer. 

Once you’ve set up your web server to use the HTTPS protocol with 
a certificate, you must make sure it always uses HTTPS. To ensure this, you 
must reject downgrade attacks, which attempt to force the communication to 
occur with weak encryption or without encryption. These attacks work 
in two ways. In the simplest case, the attacker tries changing an HTTPS 
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request to HTTP (which can be snooped and tampered with), and a poorly 
configured web server might be tricked into complying. The other method 
exploits the HTTPS protocol options that let the two parties negotiate cipher 
suites for the encrypted channel. For example, the server may be able to 
“speak” one set of crypto “dialects,” and the client might “speak” a different 
set, so up front, they need to agree on one that’s in both their repertoires. 
This process opens the door to an attacker, who could trick both parties 
into selecting an insecure choice that compromises security. 

The best defense is to ensure your HTTPS configuration only operates 
with secure modern cryptographic algorithms. Judging exactly which cipher 
suites are secure is highly technical and best left to cryptographers. You must 
also strike a balance to avoid excluding, or degrading the experience of, older 
and less powerful clients. If you don’t have access to reliable expert advice, you 
can look at what major trustworthy websites do and follow that. Simply assum-
ing that the default configuration will be secure forever is a recipe for failure.

Mitigate such attacks by always redirecting HTTP to HTTPS, as well as 
restricting web cookies to HTTPS only. Include the Strict-Transport-Security 
directive in your response HTTP headers so the browser knows that the web-
site always uses HTTPS. For an HTTPS web page to be fully secure, it must 
be pure HTTPS. This means all content on the server should use HTTPS, 
as should all scripts, images, fonts, CSS, and other referenced resources. 
Failing to take all the necessary precautions weakens the security protection.

The Same Origin Policy
Doubt is the origin of wisdom.

—Rene Descartes

Browsers isolate resources—typically windows or tabs—from different 
websites so they can’t interfere with each other. Known as the Same Origin 
Policy (SOP), the rule allows interaction between resources only if their host 
domain names and port numbers match. The Same Origin Policy dates 
back to the early days of the web and became necessary with the advent of 
JavaScript. Web script interacts with web pages via the Document Object Model 
(DOM), a structured tree of objects that correspond to browser windows and 
their contents. It didn’t take a security expert to see that if any web page could 
use script to window.open any other site, and programmatically do anything it 
wanted with the content, countless problems would ensue. The first restric-
tions that were implemented—including fixes for a number of tricky ways 
people found of getting around them over the years—evolved into today’s 
Same Origin Policy.

The Same Origin Policy applies to script and cookies (with a few extra 
twists), which both can potentially leak data between independent websites. 
However, web pages can include images and other content, such as web ads, 
from other websites. This is safely allowed, since these cannot access the 
content of the window they appear in. 

Although the Same Origin Policy prevents script in pages from other 
websites from reaching in, web pages can always choose to reach out to different 
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websites if they wish, pulling their content into the window. It’s quite common 
for a web page to include content from other websites, to display images, to 
load scripts or CSS, and so forth. Including any content from other websites is 
an important trust decision; however, because it makes the web page vulner-
able to malicious content that may originate there. 

Web Cookies
When the going gets tough, the tough make cookies.

—Erma Bombeck

Cookies are small data strings that the server asks the client to store on its 
behalf and then provide back to it with subsequent requests. This clever 
innovation allows developers to easily customize web pages for a particular 
client. The server response may set named cookies to some value. Then, 
until the cookies expire, the client browser sends the cookies applicable to a 
given page in subsequent requests. Since the client retains its own cookies, 
the server doesn’t necessarily need to identify the client to bind cookie val-
ues to it, so the mechanism is potentially privacy-preserving.

Here’s a simple analogy: if I run a store and want to count how many 
times each customer visits, an easy way would be for me to give each cus-
tomer a slip of paper with “1” on it and ask them to bring it back the next 
time they come. Then, each time a customer returns, I take their paper, 
add one to the number on it, and give it back. So long as customers comply, 
I won’t have to do any bookkeeping or even remember their names to keep 
accurate tallies. 

We use cookies for all manner of things on the web, tracking users 
being among the most controversial. Cookies often establish secure sessions 
so the server can reliably tell all of its clients apart. Generating a unique 
session cookie for each new client allows the server to identify the client from 
the cookie appearing in a request. 

While any client could tamper with its own cookies and pretend to be 
a different session, if the session cookie is properly designed, the client 
shouldn’t be able to forge a valid session cookie. Additionally, clients could 
send copies of their cookies to another party, but in doing so they would 
only harm their own privacy. That behavior doesn’t threaten innocent users 
and is tantamount to sharing one’s password.

Consider a hypothetical online shopping website that stores the current 
contents of a customer’s shopping cart in cookies as a list of items and the 
total cost. There is nothing to stop a clever and unethical shopper from 
modifying the local cookie store. For instance, they could change the price 
of a valuable load of merchandise to a paltry sum. This does not mean that 
cookies are useless; cookies could be used to remember the customer’s pref-
erences, favorite items, or other details, and tampering with these wouldn’t 
hurt the merchant. It just means that you should always use client storage 
on a “trust but verify” basis. Go ahead and store item costs and the cart 
total as cookies if that’s useful, but before accepting the transaction, be 
certain to validate the cost of each item on the server side, and reject any 



Web Security   195

data that’s been tampered with. This example makes the problem plain as 
day. However, other forms of the same trust mistake are more subtle, and 
attackers frequently exploit this sort of vulnerability.

Now let’s look at this same example from the client’s perspective. When 
two people use an online shopping website and browse to the same /mycart 
URL, they each see different shopping carts because they have distinct ses-
sions. Usually, unique cookies establish independent anonymous sessions, 
or, for logged-in users, identify specific accounts. 

Servers set session cookies with a time of expiration, but since they can-
not always rely on the client to respect that wish, they must also enforce limits 
on the validity of session cookies that need renewing. (From the user’s per-
spective, this expiration looks like being asked to log in again after a period 
of inactivity.) 

Cookies are subject to the Same Origin Policy, with explicit provisions 
for sharing between subdomains. This means that cookies set by example.com 
are visible to the subdomains cat.example.com and dog.example.com, but cook-
ies set on those respective subdomains are isolated from each other. Also, 
though subdomains can see cookies set by parent domains, they cannot 
modify them. By analogy, state governments rely on national-level creden-
tials such as passports, but may not issue them. Within a domain, cookies 
may be further scoped by path as well (but this is not a strong security 
mechanism). Table 11-2 illustrates these rules in detail. In addition, cookies 
may specify a Domain attribute for explicit control.

Table 11-2: Cookie Sharing Under Same Origin Policy (SOP) with Subdomains

Can the web pages 
served by the hosts 
below. . .

. . .see the cookies set for these hosts?

example.com dog.example.com  cat.example.com example.org 

example.com Yes  
(same domain)

No  
(subdomain)

No  
(subdomain)

No  
(SOP)

dog.example.com Yes  
(parent domain)

Yes  
(same domain)

No  
(sibling domain)

No  
(SOP)

cat.example.com Yes  
(parent domain)

No  
(sibling domain)

Yes  
(same domain)

No  
(SOP)

example.org No  
(SOP)

No  
(SOP)

No  
(SOP)

Yes  
(same domain)

Script nominally has access to cookies via the DOM, but this conve-
nience would give malicious script that manages to run in a web page an 
opening to steal the cookies, so it’s best to block script access by specify-
ing the httponly cookie attribute. HTTPS websites should also apply the 
secure attribute to direct the client to only send cookies over secure chan-
nels. Unfortunately, due to legacy constraints too involved to cover here, 
integrity and availability issues remain even when you use both of these 
attributes (see RFC 6265 for the gory details). I mention this not only as a 
caveat, but also as a great example of a repeated pattern in web security; the 
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tension between backward compatibility and modern secure usage results 
in compromise solutions that illustrate why, if security isn’t baked in from 
the start, it often proves to be elusive.

HTML5 has added numerous extensions to the security model. A 
prime example is Cross-Origin Resource Sharing (CORS), which allows 
selective loosening of Same Origin Policy restrictions to enable data access 
by other trusted websites. Browsers additionally provide the Web Storage 
API, a more modern client-side storage capability for web apps that’s also 
subject to the Same Origin Policy. These newer features are much better 
designed from a security standpoint, but still are not a complete substitute 
for cookies.

Common Web Vulnerabilities
Websites should look good from the inside and out.

—Paul Cookson

Now that we’ve surveyed the major security highlights of website construc-
tion and use, it’s time to talk about specific vulnerabilities that commonly 
arise. Web servers are liable to all kinds of security vulnerabilities, including 
many of those covered elsewhere in this book, but in this chapter we’ll focus 
on security issues specific to the web. The preceding sections explained the 
web security model, including a lot of potential ways to avoid weakening 
security and useful features that help better secure your web presence. Even 
assuming you did all of that right, this section covers still more ways web 
servers can get it wrong and be vulnerable.

The first category of web vulnerability, and likely the most common, is 
cross-site scripting (XSS). The other vulnerability we’ll cover here is prob-
ably my favorite due to its subtlety: cross-site request forgery (CSRF). 

Cross-Site Scripting
I don’t let myself “surf” on the Web, or I would probably drown.

—Aubrey Plaza

The isolation that the Same Origin Policy provides is fundamental to build-
ing secure websites, but this protection breaks easily if we don’t take neces-
sary precautions. Cross-site scripting (XSS) is a web-specific injection attack 
where malicious input alters the behavior of a website, typically resulting in 
running unauthorized script. 

Let’s consider a simple example to see how this works and why it’s essential 
to protect against. The attack usually begins with the innocent user already 
logged in to a trusted website. The user then opens another window or tab 
and goes surfing, or perhaps unwisely clicks a link in an email, browsing to an 
attacking site. The attacker typically aims to commandeer the user’s authenti-
cated state with the target site. They can do so even without a tab open to the 
victim site, so long as the cookies are present (which is why it’s good practice to 
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log out of your banking website when you’re done). Let’s look at what an XSS 
vulnerability in a victim site looks like, exactly how to exploit it, and finally, 
how to fix it. 

Suppose that for some reason a certain page of the victim website 
(www.example.com) wants to render a line of text in several different colors. 
Instead of building separate pages, all identical except for the color of 
that line, the developer chooses to specify the desired color in the URL 
query parameter. For example, the URL for the version of the web page 
with a line of green text would be:

https://www.example.com/page?color=green

The server then inserts the highlighted query parameter into the fol-
lowing HTML fragment:

<h1 style="color:green">This is colorful text.</h1>

This works fine if used properly, which is exactly why these flaws are 
easily overlooked. Seeing the root of the problem requires looking at the 
server-side Python code responsible for handling this task (as well as some 
devious thinking):

vulnerable code query_params = urllib.parse.parse_qs(self.parts.query)
color = query_params.get('color', ['black'])[0]
h = '<h1 style="color:%s">This is colorful text.</h1>' % color

The first line parses the URL query string (the part after the question 
mark). The next line extracts the color parameter, or defaults to black if 
it’s unspecified. The last line constructs the HTML fragment that displays 
text with the corresponding font color, using inline styling for the heading 
level 1 tag (<h1>). The variable h then forms part of the HTML response that 
comprises the web page.

You can find the XSS vulnerability in that last line. There, the pro-
grammer has created a path from the contents of the URL (which, on the 
internet, anyone can send to the server) that leads directly into the HTML 
content served to the client. This is the familiar pattern of injection attacks 
from Chapter 10, and constitutes an unprotected trust boundary crossing, 
because the parameter input string is now inside the web page HTML con-
tents. This condition alone is enough to raise red flags, but to see the full 
dimensions of this XSS vulnerability, let’s try exploiting it.

An attack requires a little imagination. Refer back to the <h1> HTML 
tag and consider other possible substitutions for the highlighted color 
name. Think outside the box, or in this case, outside the double quoted 
string style="color:green". Or can you break out of the <h1> tag entirely? 
Here’s a URL that illustrates what I mean by “break out”:

https://www.example.com/page?color=orange"><SCRIPT>alert("Gotcha!")</SCRIPT><span%20id="dummy

All of that highlighted stuff gets dutifully inserted into the <h1> HTML 
tag as before, producing a vastly different result. 
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In the actual HTML, this code would appear as a single line, but for 
legibility I’ve indented it here to show how it’s parsed:

<h1 style="color:orange">
  <SCRIPT>alert("Gotcha!")</SCRIPT>
  <span id="dummy">This is colorful text.
</h1>

The new <h1> tag is syntactic, specifying an orange color. However, note 
that the attacker’s URL parameter value supplied the closing angle bracket. 
This wasn’t done just to be nice: the attacker needed to close the <h1> tag 
in order to make a well-formed <SCRIPT> tag and inject it into the HTML, 
ensuring that the script would run. In this case, the script opens an alert 
dialog—a harmless but unmistakable proof of the exploit. After the closing 
</SCRIPT> tag, the rest of the injection is just filler to obscure that tamper-
ing occurred. The new <span> tag has an id attribute merely so the following 
double quote and closing angle bracket will appear as part of the <span> tag. 
Browsers routinely supply closing </span> tags if missing, so the exploited 
page is well-formed HTML, making the modifications invisible to the user 
(unless they inspect the HTML source).

To actually attack victims remotely, the attacker has more work to do in 
order to get people to browse to the malicious URL. Attacks like this gener-
ally only work when the user is already authenticated to the target website—
that is, when valid login session cookies exist. Otherwise, the attacker might 
as well type the URL into their own browser. What they’re after is your 
website session, which shows your bank balance or your private documents. 
A serious attacker-defined script would immediately load additional script, 
and then proceed to exfiltrate data, or make unauthorized transactions in 
the user’s context.

XSS vulnerabilities aren’t hard for attackers to discover, since they can 
easily view a web page’s content to see the inner workings of the HTML. 
(To be precise, they can’t see code on the server, but by trying URLs and 
observing the resulting web pages, it isn’t hard to make useful inferences 
about how it works.) Once they notice an injection from the URL into a 
web page, they can then perform a quick test, like the example shown here, 
to check if the server is vulnerable to XSS. Moreover, once they have con-
firmed that HTML metacharacters, such as angle brackets and quotes, flow 
through from the URL query parameter (or perhaps another attack sur-
face) into the resultant web page, they can view the page’s source code and 
tweak their attempts until they hit the jackpot.

There are several kinds of XSS attacks. This chapter’s example is a reflected 
XSS attack, because it is initiated via an HTTP request and expressed in the 
immediate server response. A related form, the stored XSS attack, involves two 
requests. First, the attacker somehow manages to store malicious data, either 
on the server or in client-side storage. Once that’s set up, a following request 
tricks the web server into injecting the stored data into a subsequent request, 
completing the attack. Stored XSS attacks can work across different clients. 
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For example, on a blog, if the attacker can post a comment that causes XSS in 
the rendering of comments, then subsequent users viewing the web page will 
get the malicious script.

A third attack form, called DOM-based XSS, uses the HTML DOM as 
the source of the malicious injection, but otherwise works much the same. 
Categories aside, the bottom line is that all of these vulnerabilities derive 
from injecting untrusted data that the web server allows to flow into the web 
page, introducing malicious script or other harmful content.

A secure web framework should have XSS protection built in, in which 
case you should be safe so long as you stay within the framework. As with any 
injection vulnerability, the defense involves either avoiding any chance for 
untrusted input to flow into a web page and potentially break out, or per-
forming input validation to ensure that inputs will be handled safely. In the 
colored text example, the former technique could be implemented by simply 
serving named web pages (/green-page and /blue-page, for example) without 
the tricky query parameter. Alternatively, with a color parameter in the 
URL, you could constrain the query parameter value to be in an allowlist.

Cross-Site Request Forgery
One cannot separate the spider web’s form from the way in which it originated.

—Neri Oxman

Cross-site request forgery (CSRF, or sometimes XSRF) is an attack on a funda-
mental limitation in the Same Origin Policy. The vulnerability that these 
attacks exploit is conceptually simple but extremely subtle, so exactly where 
the problem lies, and how to fix it, can be hard to see at first. Web frame-
works should provide CSRF protection, but a strong understanding of the 
underlying issue is still valuable so you can confirm that it works and be 
sure not to interfere with the mechanism.

Websites certainly can and often do include content, such as images 
from different websites, obtained via HTTP GET. The Same Origin Policy 
allows these requests while isolating the content, so the image data doesn’t 
leak between different websites from different domains. For example, site X 
can include on its page an image from site Y; the user sees the embedded 
image as part of the page, but site X itself cannot “see” the image, because 
the browser blocks script access to image data via the DOM.

But the Same Origin Policy works the same for POST as it does for 
GET, and POST requests can modify a site’s state. Here’s exactly what hap-
pens: the browser allows site X to submit a form to site Y, and includes the 
Y cookies, too. The browser ensures that the response from site Y is com-
pletely isolated from site X. The threat is that a POST can modify data on 
the Y server, which X shouldn’t be able to do, and by design, any website can 
POST to any other. Since browsers facilitate these unauthorized requests, 
web developers must explicitly defend against these attempts to modify data 
on the server. 

A simple attack scenario will illustrate what CSRF vulnerabilities 
look like, how to exploit them, and in turn, how to defend against attack. 
Consider a social website Y, with many users who each have accounts. Site 
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Y is running a poll, and each user gets one vote. The site drops a unique 
cookie for each authenticated user on the voting page, and then only 
accepts one vote per user.

A comment posted on the voting page says, “Check this out before you 
vote!” and links to a page on another website, X, that offers advice on how 
to vote. Many users click the link and read the page. With the Same Origin 
Policy protecting you, what could go wrong?

If you don’t see the problem yet, here’s a big hint: think about what 
might be going on in the site X window. Suppose site X is run by some das-
tardly and guileful cheaters trying to steal votes. Whenever a user browses to 
X, a script on that page submits the site owner’s preferred vote to the 
social website in that user’s browser context (using their cookies from Y). 

Since site X is allowed to submit forms using each user’s Y cookies, that’s 
enough to steal votes. The attackers just want to effect the state change on 
the server; they don’t need to see the response page confirming the user’s 
vote, which is all the Same Origin Policy blocks. 

To prevent CSRF, ensure that valid state-changing requests are unguess-
able. In other words, treat each valid POST request as a special snowflake 
that only works once in the context of its intended use. An easy way to 
do this is by including a secret token as a hidden field in all forms, then 
checking that each request includes the secret corresponding to the given 
web session. There is a lot of nuanced detail packed into the creation and 
checking of a secret token for CSRF protection, so the details are worth 
digging into. A decent web framework should handle this for you, but let’s 
take a look at the details.

Here’s an example of the voting form with an anti-CSRF secret token 
highlighted: 

<form action="/ballot" method="post">
  <label for="name">Voting for</label>
  <input type="text" id="name" name="name" value=""/>
  <input type="hidden" name="csrf_token"

value="mGEyoi1wE6NBWCyhBN9IZdEmaJLQtrYxi0J23XuXR4o="/>
  <input type="submit" value="Vote"/>
</form>

The hidden csrf_token field doesn’t appear on the screen, but is included 
in the POST request. The field’s value is a base-64 encoding of a SHA-256 
hash of the contents of the session cookie, but any per-client secret works. 
Here’s the Python code creating the anti-CSRF token for the session:

def csrf_token(self):
    digest = hashlib.sha256(self.session_id.encode('utf-8')).digest()
    return base64.b64encode(digest).decode('utf-8')

The code derives the token from the session cookie (the string value 
self.session_id), so it’s unique to each client. Since the Same Origin Policy 
prevents site X from knowing the victim’s site Y cookies, it’s impossible for 
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Y’s creators to concoct an authentic form that satisfies these conditions to 
POST and steal the vote.

The validation code on the Y server simply computes the expected 
token value and checks that the corresponding field in the incoming form 
matches it. The following code prevents CSRF attempts by returning  
an error message if the token doesn’t match, before actually processing  
the form:

    token = fields.get('csrf_token')
    if token != self.csrf_token():
        return 'Invalid request: Cross-site request forgery detected.'

There are many ways to mitigate CSRF attacks, but deriving the token 
from the session cookie is a nice solution because all the necessary informa-
tion to do the check arrives in the POST request. Another possible mitiga-
tion is to use a nonce—an unguessable token for one-time use—but to fend 
off CSRF attacks, you still have to tie it to the intended client session. This 
solution involves generating the random nonce for the form’s CSRF token, 
storing the token in a table indexed by session, and then validating the 
form by looking up the nonce for the session and checking that it matches.

Modern browsers support the SameSite attribute on cookies to mitigate 
CSRF attacks. SameSite=Strict blocks sending cookies for any third-party 
requests (to other domains) on a page, which would stop CSRF but can 
break some useful behavior when navigating to another site that expects 
its cookies. There are other settings available, but support may be incon-
sistent across browser brands and older versions. Since this is a client-side 
CSRF defense it may be risky for the server to completely depend on it, so it 
should be considered at additional mitigation rather than the sole defense.

More Vulnerabilities and Mitigations
The only way you can know where the line is, is if you cross it.

—Dave Chappelle

To recap: to be secure you should build websites in pure HTTPS, using 
a quality framework. Don’t override protection features provided by the 
framework unless you really know what you are doing, which means under-
standing how vulnerabilities such as XSS and CSRF arise. Modern websites 
often incorporate external scripts, images, styling, and the like, and you 
should only depend on resources from sources that you can trust since you 
are letting them inject content into your web page.

Naturally, that isn’t the end of the story, as there are still plenty of ways 
to get in trouble when exposing a server to the web. Websites present a large 
attack surface to the public internet, and those untrusted inputs can easily 
trigger all manner of vulnerabilities in server code, such as SQL injection 
(web servers frequently use databases for storage) and all the rest.
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There are a number of other web-specific pitfalls worth mentioning. 
Here are some of the more common additional issues to watch out for 
(though this list is hardly exhaustive):

•	 Don’t let attackers inject untrusted inputs into HTTP headers (similar 
to XSS).

•	 Specify accurate MIME content types to ensure that browsers process 
responses correctly.

•	 Open redirects can be problematic: don’t allow redirects to arbitrary 
URLs.

•	 Only embed websites you can trust with <IFRAME>. (Many browsers sup-
port the X-Frame-Options header mitigation.)

•	 When working with untrusted XML data, beware of XML external 
entity (XXE) attacks.

•	 The CSS :visited selector potentially discloses whether a given URL is 
in the browser history.

In addition, websites should use a great new feature, the HTTP Content-
Security-Policy response header, to reduce exposure to XSS. It works by speci-
fying authorized sources for script or images (and many other such features), 
allowing the browser to block attempts to inject inline script or other mali-
cious content from other domains. There are a lot of browsers out there, and 
browser compatibility for this feature is still inconsistent, so using this header 
isn’t sufficient to consider the vulnerability completely fixed. Think of this as 
an additional line of defense, but since it is client-side and out of your control, 
don’t consider it a free pass granting perfect immunity to XSS. 

Links to untrusted third-party websites can be risky because the browser 
may send a REFERER header, as mentioned earlier in this chapter, and provide 
a window.opener object in the DOM to the target page. The rel="noreferrer" 
and rel="noopener" attributes, respectively, should be used to block these 
unless they are useful and the target can be trusted.

Adding new security features after the fact may be daunting for large 
existing websites, but there is a relatively easy way of moving in the right 
direction. In a test environment, add restrictive security policies in all web 
pages, and then test the website and track down what gets blocked issue by 
issue. If you prohibit script loading from a site that you know is safe and you 
intended to use, then by incrementally loosening the script policy, you’ll 
quickly arrive at the correct policy exceptions. With automated in-browser 
testing just to make sure the entire site gets tested, you should be able to 
make great strides for security with a modest investment of effort. 

There are a number of HTTP response headers that help you specify 
what the browser should or should not allow, including the Content-Security-
Policy, Referrer-Policy, Strict-Transport-Security, X-Content-Type-Options, and 
X-Frame-Options headers. The specifications are still evolving, and support 
may vary from browser to browser, so this is a tricky, changing landscape. 
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Ideally, make your website secure on the server side, and then use these 
security features as a second layer of defense, bearing in mind that reliance 
only on client side mechanisms would be risky.

It’s amazing how secure the web actually is, considering all the ways 
that things can go wrong, what it evolved from, and the volume of critical 
data it carries. Perhaps, in hindsight, it’s best that security technologies have 
matured slowly over time as the web has seen widespread global adoption. 
Had the early innovators attempted to design a completely secure system 
back in the day, the task would have been extremely daunting, and had they 
failed, the entire endeavor might never have come to anything.
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S E C U R I T Y  T E S T I N G

Testing leads to failure, and failure leads to understanding.
—Burt Rutan

This chapter introduces security testing 
as an essential part of developing reliable, 

secure code. Testing proactively to detect 
security vulnerabilities is both well understood 

and not difficult to do, but it’s vastly underutilized 
in practice and so represents a major opportunity to 
raise security assurance. 

This chapter opens with a quick overview of the uses of security test-
ing, followed by a walkthrough of how security testing could have saved 
the world from a major vulnerability. Next, we look at the basics of writing 
security test cases to detect and catch vulnerabilities or their precursors. 
Fuzz testing is a powerful supplementary technique that can help you fer-
ret out deeper problems. We’ll also cover security regression tests, created 
in response to existing vulnerabilities to ensure that the same mistakes are 
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never made twice. The chapter concludes with a discussion of how testing 
helps to prevent denial-of-service (DoS) and related attacks, followed by a 
summary of security testing best practices (which covers a wide range of 
ideas for security testing, but is by no means comprehensive).

What Is Security Testing?
To begin, it’s important to define what I mean by security testing. Most testing 
consists of exercising code to check that functionality works as intended. 
Security testing simply flips this around, ensuring that operations that 
should not be allowed aren’t (an example with code will shortly make this 
distinction clear). 

Security testing is indispensable because it ensures that mitigations 
are working. Given that coders reasonably focus on getting the intended 
functionality to work with normal use, attacks that do the unexpected can 
be difficult to fully anticipate. The material covered in the preceding chap-
ters should immediately suggest numerous security testing possibilities. 
Here are some basic kinds of security test cases corresponding to the major 
classes of vulnerabilities covered previously:

Integer overflows
Establish permitted ranges of values and ensure that detection and 
rejection of out-of-range values work.

Memory management problems
Test that the code handles extremely large data values correctly, and 
rejects them when they’re too big. 

Untrusted inputs
Test various invalid inputs to ensure they are either rejected or con-
verted to a valid form that is safely processed.

Web security
Ensure that HTTP downgrade attacks, invalid authentication and 
CSRF tokens, and XSS attacks fail (see the previous chapter for details 
on these).

Exception handling flaws
Force the code through its various exception handling paths (using 
dependency injection for rare ones) to check that it recovers reasonably.

What all of these tests have in common is that they are off the beaten 
path of normal usage, which is why they are easily forgotten. And since all 
these areas are ripe for attack, thorough testing makes a big difference. 
Security testing makes code more secure by anticipating such cases and 
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confirming that the necessary protection mechanisms always work. In addi-
tion, for security-critical code, I recommend thorough code coverage to 
ensure the highest possible quality, since bugs in those areas tend to be 
devastating.

Security testing is likely the best way you can start making real improve-
ments to application security, and it isn’t difficult to do. There are no public 
statistics for how much or how little security testing is done in the software 
industry, but the preponderance of recurrent vulnerabilities strongly sug-
gests that it’s an enormous missed opportunity. 

Security Testing the GotoFail Vulnerability
What a testing of character adversity is.

—Harry Emerson Fosdick

Recall the GotoFail vulnerability we examined in Chapter 8, which caused 
secure connection checks to be bypassed. Extending the simplified exam-
ple presented there, let’s look at how security testing would have easily 
detected problems like that. 

The GotoFail vulnerability was caused by a single line of code acciden-
tally being doubled up, as shown by the highlighted line in the following 
code snippet. Since that line was a goto statement, it short-circuited a series 
of important checks and caused the verification function to unconditionally 
produce a passing return code. Earlier we looked only at the critical lines of 
code (in my simplified version), but to security test it, we need to examine 
the entire function:

vulnerable code /*
 * Copyright (c) 1999-2001,2005-2012 Apple Inc. All Rights Reserved.
 *
 * @APPLE_LICENSE_HEADER_START@
 *
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this
 * file.
 *
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 *
 * @APPLE_LICENSE_HEADER_END@
 */
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int VerifyServerKeyExchange(ExchangeParams params,
                            uint8_t *expected_hash, size_t expected_hash_len) 
{
  int err;
  HashCtx ctx = 0;
  uint8_t *hash = 0;
  size_t hash_len;
  if ((err = ReadyHash(&ctx)) != 0)
    goto fail;
1 if ((err = SSLHashSHA1.update(ctx, params.clientRandom, PARAM_LEN)) != 0)
    goto fail;
2 if ((err = SSLHashSHA1.update(ctx, params.serverRandom, PARAM_LEN)) != 0)
    goto fail;
    goto fail;
3 if ((err = SSLHashSHA1.update(ctx, params.signedParams, PARAM_LEN)) != 0) 
    goto fail;
  if ((err = SSLHashSHA1.final(ctx, &hash, &hash_len)) != 0)
    goto fail;
  if (hash_len != expected_hash_len) {
    err = -106;
    goto fail;
  }
4 if ((err = memcmp(hash, expected_hash, hash_len)) != 0) {    
    err = -100;  // Error code for mismatch
  }
  SSLFreeBuffer(hash);
      
fail:
  if (ctx)
    SSLFreeBuffer(ctx);
  }
  return err;
}

N O T E 	 This code is based on the original sslKeyExchange.c with the bug. Code not directly 
involved with the critical vulnerability is simplified and some names are changed for 
brevity. For example, the actual function name is SSLVerifySignedServerKeyExchange.

The VerifyServerKeyExchange function takes a params argument consist-
ing of three fields, computes the message digest hash over its contents, and 
compares the result to the expected_hash value that authenticates the data. 
A zero return value indicates that the hashes match, which is required for a 
valid request. A nonzero return value means there was a problem: the hash 
values did not match (-100), the hash lengths did not match (-106), or some 
nonzero error code was returned from the hash computation library due 
to an unspecified error. Security depends on this: any tampering with the 
hash value or the data causes the hashes to mismatch, signaling that some-
thing is amiss.

Let’s first walk through the correct version of the code, before the 
duplicated goto statement was introduced. After setting up a HashCtx ctx 
context variable, it hashes the three data fields of params in turn (at 1, 2, 
and 3). If any error occurs, it jumps to the fail label to return the error 
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code in the variable err. Otherwise, it continues, copying the hash result 
into a buffer and comparing that (at 4) to the expected hash value. The 
comparison function memcmp returns 0 for equal, or if the hashes are differ-
ent, the code assigns an error code of -100 to err and falls through to return 
that result.

Functional Testing
Before considering security testing, let’s start with a functional test for the 
VerifyServerKeyExchange function. Functional testing checks that the code 
performs as expected, and this simple example is by no means complete. 
This example uses the MinUnit test framework for C. To follow along, all you 
need to know is that mu_assert(condition, message) checks that the expression 
condition is true; if not, the assertion fails, printing the message provided:

mu_assert(0 == VerifyServerKeyExchange(test0, expected_hash, SIG_LEN),
    "Expected correct hash check to succeed.");

 This calls the function with known-good parameters, so we expect a 
return value of 0 to pass the test. In the function itself, the three fields will 
be hashed (at 1, 2, and 3). The hashes compare equal at 4. Not shown 
are the test values for the three fields of data (in the ExchangeParams struct 
named test0) with the precomputed correct hash (expected_hash) that the 
server would sign. 

Functional Testing with the Vulnerability
Now let’s introduce the GotoFail vulnerability (that highlighted line of 
code) and see what impact it has. When we rerun the functional test with 
the extra goto, the test still passes. The code works fine up to the duplicated 
goto, but then jumps over the hashing of the third data field (at 3) and 
the comparison of hashes (at 4). The function will continue to verify cor-
rect inputs, but now it will also verify some bad inputs that it should reject. 
However, we don’t know that yet. This is precisely why security testing is so 
important—and why it’s so easily overlooked.

More thorough functional testing might well include additional test cases, 
such as to check for verification failure (a nonzero return value). However, 
functional testing often stops short of thoroughly covering all the cases where 
we need the verify function to reject inputs in the name of security. This is 
where security testing comes in, as we shall see next.

Security Test Cases
Now let’s write some security test cases. Since there are three chunks of data 
to hash, that suggests writing three corresponding tests; each of these will 
change the data values in some way, resulting in a hash that won’t match 
the expected value. The target verify function should reject these inputs 
because the changed values potentially represent data tampering, which 
the hash comparison is supposed to prevent. The actual values (test1, test2, 
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test3) are copies of the correct test0 with slight variations in one of the 
three data fields; the values themselves are unimportant and not shown. 
Here are the three test cases:

mu_assert(-100 == VerifyServerKeyExchange(test1, expected_hash, SIG_LEN),
    "Expected to fail hash check: wrong client random.");
mu_assert(-100 == VerifyServerKeyExchange(test2, expected_hash, SIG_LEN),
    "Expected to fail hash check: wrong server random.");
mu_assert(-100 == VerifyServerKeyExchange(test3, expected_hash, SIG_LEN),
    "Expected to fail hash check: wrong signed parameters."); 

All three of these will fail due to the bug. The verify function works fine 
up to the troublesome goto, but then unconditionally jumps to the label fail, 
leaving its hashing job incomplete and never comparing hash values 4. 
Since we wrote these tests to expect verification failure as correct, a return 
value of 0 causes the tests to fail. Now we have a testing safety net that would 
have caught this vulnerability before release, avoiding the resulting fiasco.

In the spirit of completeness, another security test case suggests itself. 
What if all three values are correct, as in the test0 case, but with a different 
signed hash (wrong_hash)? Here’s the test case for this: 

mu_assert(-100 == VerifyServerKeyExchange(test0, wrong_hash, SIG_LEN),
    "Expected check against the wrong hash value to fail.");

This test fails as well with the errant goto, as we would expect. While for 
this particular vulnerability just one of these tests would have caught it, the 
purpose of security testing is to cover as broad a range of potential vulner-
abilities as possible.

The Limits of Security Tests
Security testing aims to detect the potential major points of failure in code, 
but it will never cover all of the countless ways for code to go wrong. It’s pos-
sible to introduce a vulnerability that the tests we just wrote won’t detect, but 
it’s unlikely to happen inadvertently. Unless test coverage is extremely thor-
ough, the possibility of crafting a bug that slips through the tests remains; 
however, the major threat here is inadvertent bugs, so a modest set of secu-
rity test cases can be quite effective.

Determining how thorough the security test cases need to be requires 
judgment, but the rules of thumb are clear:

•	 Security testing is more important for code that is crucial to security.

•	 The most important security tests often check for actions such as deny-
ing access, rejecting input, or failing (rather than success).

•	 Security test cases should ensure that each of the key steps (in our 
example, the three hashes and the comparison of hashes) works 
correctly.
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Having closely examined a real security vulnerability with a simple (if 
unexpected) cause, and how to security test for such eventualities, let’s con-
sider the general case and see how we could have anticipated this sort of 
problem and proactively averted it.

Writing Security Test Cases
A good test case is one that has a high probability of detecting an as yet undiscov-
ered error.

—Glenford Myers

A security test case confirms that a specific security failure does not occur. 
These tests are motivated by the second of the Four Questions: What can 
go wrong? This differs from penetration testing, where honest people ethi-
cally pound on software to find vulnerabilities so they can be fixed before 
bad actors find them, in that it does not attempt to scope out all possible 
exploits. Security testing also differs from penetration testing by providing 
protection against future vulnerabilities being introduced.

A security test case checks that protective mechanisms work correctly, 
which often involves the rejection or neutralization of invalid inputs 
and disallowed operations. While nobody would have anticipated the 
GotoFail bug specifically, it’s easy to see that all of the if statements in the 
VerifyServerKeyExchange function are critical to security. In the general case, 
code like this calls for test coverage on each condition that enforces a secu-
rity check. With that level of testing in place, when the extraneous goto  
creates a vulnerability, one of those test cases will fail and call the problem 
to your attention. 

You should create security test cases when you write other unit tests, 
not as a reaction to finding vulnerabilities. Secure systems protect valuable 
resources by blocking improper actions, rejecting malicious inputs, denying 
access, and so forth. Create security test cases wherever such security mech-
anisms exist to ensure that unauthorized operations indeed fail. 

General examples of commonplace security test cases include testing 
that login attempts with the wrong password fail, that unauthorized attempts 
to access kernel resources from user space fail, and that digital certificates 
that are invalid or malformed in various ways are always rejected. Reading 
the code is a great way to get ideas for good security test cases. 

Testing Input Validation
Let’s consider security test cases for input validation. As a simple example, 
we’ll test input validation code that requires a string that is at least 10 char-
acters and at most 20 characters long, consisting only of alphanumeric 
ASCII characters. 

You could create helper functions to perform this sort of standardized 
input validation, ensuring that it happens uniformly and without fail, then 
combine input validation with matching test cases to confirm that the vali-
dation checks work and that the code performs properly, right up to the 
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allowable limits. In fact, since off-by-one errors are legion in programming, 
it’s good practice to check both right at and just beyond the limits. The fol-
lowing unit tests cover the input validation test cases for this example: 

•	 Check that a valid input of length 10 works, but an input of length 9 or 
less fails.

•	 Check that a valid input of length 20 works, but an input of length 21 or 
more fails.

•	 Check that inputs with one or more invalid characters always fail.

Of course, the functional tests should have already checked that sample 
inputs that satisfy all constraints work properly.

For another similar example, suppose the code under test stores a 
byte array parameter in a fixed-length buffer of N bytes. Security test cases 
should ensure that the code works as expected with inputs of sizes up to 
and including N, but that an input of size N+1 gets safely rejected.

Testing for XSS Vulnerabilities
Now let’s look at a more challenging security test case and some of the dif-
ferent test strategies that are available. Recall the XSS vulnerability from 
Chapter 11, where an untrusted input injects itself into HTML generated 
on the web server and breaks out into the page, such as by introducing 
script that runs to launch an attack. The root cause of this vulnerability is 
improper escaping, so that is where our security tests will focus. 

Say the code under test is the following Python function, which com-
poses a fragment of HTML based on strings that describe its contents:

vulnerable code def html_tag(name, attrs):
    """Build and return an HTML fragment with attribute values.
    >>> html_tag('meta', {'name': 'test', 'content': 'example'})
    '<meta name="test" content="example">'
    """
    result = '<%s' % name
    for attr in attrs:
        result += ' %s="%s"' % (attr, html.escape(attrs[attr]))
    return result + ">"

The doctest (marked with the >>> prefix) example in the comments 
(delimited by """) illustrates how to use this function to generate HTML 
text for a <meta> tag. The first line builds the first section of the text string 
result: the angle bracket (<) that opens every HTML tag, followed by the tag 
name. Then the loop iterates through the attributes (attrs), appending a 
space and its declaration (of the form X="Y") for each attribute. 

The code applies the html.escape function to each attribute string 
value correctly, but we still should test it. (For our purposes, we’ll assume 
that attribute values are the only potential source of untrusted input 
that needs escaping. While in practice this is usually sufficient, anything 
is possible, so more escaping or input validation might be necessary in 
some applications.)
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Let’s write the test cases with Python’s unittest library:

class ExampleTestCases(unittest.TestCase):
    def test_basic(self):
        self.assertEqual(html_tag('meta', {'name': 'test', 'content': '123'}),
                         '<meta name="test" content="123">')

    def test_special_char(self):
        self.assertEqual(html_tag('meta', {'name': 'test', 'content': 'x"'}),
                         '<meta name="test" content="x&quot;">')

if __name__ == '__main__':
    unittest.main()

The first test case is a basic functional test that shows how these unit tests 
work. When run from the command line, the module invokes the unit test 
framework main in the last line. This automatically calls each method of all 
subclasses of unittest.TestCase, which contain the unit tests. The assertEqual 
method compares its arguments, which should be equal, or else the test fails.

Now let’s look at the security test case, named test_special_char. Since 
we know XSS can exploit the code by breaking out of the double quotes 
that the untrusted input goes into, we test the escaping with a string con-
taining a double quote. Correct HTML escaping should convert this to the 
HTML entity &quot;, as shown in the expected string of the assertEqual 
statement. If we remove the html.escape function in the target method, 
this test will indeed fail, as we want it to.

So far, so good. But note that in order to write the test we had to know 
in advance what kinds of inputs might be problematic (double quote charac-
ters). Since the HTML specification is fairly involved, how do we know there 
aren’t more important test cases needed? We could try a bunch of other 
special characters, a number of which the escape function would convert to 
various HTML entity values (for example, converting the greater-than sign to 
&gt;). However, adjusting our test cases to cover all the possibilities like this 
would involve a lot of effort. 

Since we are working with HTML, we can use libraries that know all 
about the specification in detail to do the heavy lifting for us. The following 
test case checks the result of forming HTML tags as we did earlier for the 
same two test values, the normal case and the one with a string containing 
a double quote character, assigned to the variable content in turn:

    def test_parsed_html(self):
        for content in ['x', 'x"']:
            result = html_tag('meta', {'name': 'test', 'content': content})
            soup = BeautifulSoup(result, 'html.parser')
            node = soup.find('meta')
            self.assertEqual(node.get('name'), 'test')
            self.assertEqual(node.get('content'), content)

Inside the loop is the common code that tests both cases, beginning 
with a call to the target function to construct a string HTML <meta> tag. 
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Instead of checking for an explicit expected value, we invoke the 
BeautifulSoup parser, which produces a tree of objects that logically repre-
sent the parsed HTML structure (colorfully referred to as a soup of objects). 
The variable soup is the root of the HTML node structure, and we can use it 
to navigate and examine its contents through an object model. 

The find method finds the first <meta> tag in the soup, which we assign 
to the variable node. The node object sports a get method that looks up the 
values of attributes by name. The code tests that both the name and content 
attributes of the <meta> tag have the expected values. The big advantage of 
using the parser is that it takes care of spaces or line breaks in the HTML 
text, handles escaping and unescaping, converts entity expressions, and 
does everything else that HTML parsing entails. 

Because we used the parser library, this security test case works on 
the parsed objects, shielded from the idiosyncrasies of HTML. If the XSS 
injects a malicious input that manages to break out of the double quotes, 
the parsed HTML won’t have the same value in the node object for the <meta> 
tag. So, even if you had no clue that double quote characters were problem-
atic for some XSS attacks, you could easily try a range of special characters 
and rely on the parser to figure out which were working properly (or not). 
The next topic takes this idea of trying a number of test case variations and 
automates it at scale. 

Fuzz Testing
Fuzz testing is a technique that automatically generates test cases in an effort 
to bombard the target code with test inputs. This helps you determine if 
particular inputs might cause the code to fail or crash the process. Here’s 
an analogy that might help: a dishwasher cleans by spraying water at many 
different angles from a rotating arm. Without knowledge of how dishware 
happens to be loaded or at what angle shooting water will be effective, it 
sprays at random and still manages to get everything clean. In contrast 
to how security test cases written with specific intentions, the scattershot 
method of fuzz testing can be quite effective at finding a wider range of 
bugs, some of which will be vulnerabilities.

For security test cases, the typical approach is to “fuzz” untrusted inputs 
(that is, try lots of different values) and look for anomalous results or crashes. 
To actually identify a security vulnerability, you will need to investigate the 
leads that the results of fuzz testing produce. 

You could convert test_parsed_html from the previous section into a fuzz 
test by checking many more characters.

    def test_fuzzy_html(self):
        for fuzz in string.punctuation:
            content = 'q' + fuzz
            result = html_tag('meta', {'name': 'test', 'content': content})
            soup = BeautifulSoup(result, 'html.parser')
            node = soup.find('meta')
            self.assertEqual(node.get('name'), 'test')
            self.assertEqual(node.get('content'), content)
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Rather than trying a chosen list of test cases, this code loops over all 
ASCII punctuation characters, which are defined by a constant in the stan-
dard string library. On each iteration, the variable fuzz takes the value of a 
punctuation character and prepends this with the letter q to construct the 
two-character content value. The rest of the code is identical to the original 
example, only here it runs many more test cases. 

This example is simplistic to the point of stretching the definition of 
fuzz testing a bit, but it illustrates the power of brute-force testing 32 cases 
programmatically instead of carefully choosing and writing a collection of 
test cases by hand. A more elaborate version of this code might construct 
many more cases using longer strings composed of the troublesome HTML 
quoting and escaping characters.

There are many libraries that offer various fuzzing capabilities, from 
random fuzzing to the generation of variations based on the knowledge of 
specific formats such as HTML, XML, and JSON. If you have a particular 
testing strategy in mind, you can certainly write your own test cases and try 
them. The idea is that test cases are cheap, and generating lots of them is 
an easy way of getting good test coverage. 

Security Regression Tests
What regresses, never progresses.

—Umar ibn al-Khattâb

Once identified and fixed, security vulnerabilities are the last bugs we want 
to come back and bite us again. Yet this does happen, more often than it 
should, and when it does it’s a clear indication of insufficient security testing. 
When responding to a newly discovered security vulnerability, an important 
best practice is to create a security regression test that detects the underlying bug 
or bugs. This serves as a handy repro (a test case that reproduces the bug or 
bugs) as well as confirms that the fix actually eliminates the vulnerability.

That’s the idea, anyway, but this practice seems to be less than dili-
gently followed, even by the largest and most sophisticated software mak-
ers. For example, when Apple released iOS 12.4 in 2019, it reintroduced 
a bug identical to one already found and fixed in iOS 12.3, immediately 
re-enabling a vulnerability after that door should have been firmly closed. 
Had the original fix included a security regression test case, this should 
never have happened. 

It’s notable that in some cases security regressions can be far worse 
than new vulnerabilities. That iOS regression was particularly painful 
because the bug was already familiar to the security research community, so 
they quickly adapted the existing jailbreak tool built for iOS 12.3 to work on 
iOS 12.4 (a jailbreak is an escalation of privilege circumventing restrictions 
imposed by the maker limiting what the user can do on their device).

I recommend writing the test case first, before tackling the actual fix. 
In an emergency, you might prioritize the fix if it’s clear-cut, but unless 
you’re working solo, having someone develop the regression test in parallel 
is a good practice. In the process of developing an effective regression test, 
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you may learn more about the issue and even get clues about related poten-
tial vulnerabilities. 

A good security regression test should try more than a single specific 
test case that’s identical to a known attack; it should be more general. For 
example, for the SQL injection attack described in Chapter 10, it wouldn’t 
be sufficient to just test that the one known “Bobby Tables” attack now 
fails. Also try an excessively long name, which might suggest that input 
validation needs to length-check name input strings, too. Try variants on 
the attack, such as using a double quote instead of single quote, or a back-
slash (the SQL string escape character) at the end of the name. Also try 
similar attacks in other columns of the same table, or other tables. Just as 
you wouldn’t fix the SQL injection bug by narrowly rejecting only names 
beginning with Robert');, even though it would stop that specific attack, you 
shouldn’t write regression tests that way either. 

In addition to addressing the newly discovered vulnerability, it’s com-
mon that the investigation will suggest similar vulnerabilities elsewhere 
in the system that might also be exploitable. Use your superior knowledge 
of system internals and familiarity with the source code to stay ahead of 
potential adversaries. If possible, probe for the presence of similar bugs 
immediately, so you can fix them as part of the update that closes the origi-
nal vulnerability. This can be important, since you can bet that attackers 
will also be thinking along these lines, and releasing a fix will be a big clue 
about new ways they might target your system. If there is no time to explore 
all the leads, file away the details for investigation later, when time permits.

As an example, let’s consider how to write a security regression test for 
the Heartbleed vulnerability from Chapter 9. Recall that the exploit worked 
by sending a packet containing a payload of arbitrary bytes with a much 
larger byte count; the server response honored the byte count and sent back 
additional memory contents, often causing a serious internal data leak. 

The correct behavior is to ignore such invalid requests. Some good 
security regression test cases include:

•	 Test that known exploit requests no longer receive a response.

•	 Test with request byte counts greater than 16,384 (the maximum).

•	 Test requests with payloads of 0 bytes and the maximum byte size.

•	 Investigate whether other types of packets in the TLS protocol could 
have similar issues, and if so test those as well.

Availability Testing
Worry about being unavailable; worry about being absent or fraudulent.

—Anne Lamott

DoS attacks represent a unique potential threat because the load limits 
that systems should be able to sustain are difficult to characterize. In par-
ticular, the term load packs a lot of meaning in that statement, including: 
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processing power, memory consumption, operating system resources, 
network bandwidth, disk space, and other potential bottlenecks (recall 
the entropy pool of a CSPRNG from Chapter 5). Operations staff typically 
monitor these factors in response to production use, but there are a few 
cases where security testing can avert attacks that intentionally exploit per-
formance vulnerabilities.

Security testing should include test cases for identifying code that may 
be subject to nonlinear performance degradation. We saw some examples 
of this kind of vulnerability in Chapter 10, when we considered backtrack-
ing regex and XML entity expansion blow-ups. Since these can adversely 
impact performance exponentially, they are particularly potent vulnerabili-
ties. Of course, these are just two instances of a larger phenomenon, and 
the same issue can occur in all kinds of code. 

The next sections explain two basic strategies to test for this kind of 
problem: measuring the performance of specific functionality and monitor-
ing overall performance against various loads. 

Resource Consumption
For functionality that you know may be susceptible to an availability attack, 
add security test cases that measure and determine a sensible limit on the 
input to protect blow-ups from occurring. Then test further to ensure that 
input validation prevents larger inputs from overloading the system. 

For example, in the case of a backtracking regex, you could test with 
strings of length N and N+1 to estimate the geometric rate at which the 
computation time grows. Use that factor to extrapolate the time required 
for the longest valid input, and then check that it’s under the maximum 
threshold to pass the test. 

For the sake of argument, let’s say that N = 20 takes 1 second and  
N = 21 takes 2 seconds, so the additional character doubles the runtime. 
If the maximum input length is 30 characters, you can estimate this will 
take 1,024 (210) seconds to process and decide if this is feasible or not. By 
extrapolating the processing time mathematically instead of actually exe-
cuting the N = 30 case, you can avoid an extremely slow-running test case. 
However, bear in mind that actual performance times may depend on other 
factors, so more than two measurements may be necessary to validate a suit-
able model.

In addition to this kind of targeted testing, measure performance 
metrics for the overall system and set generous upper limits so that if an 
iteration causes a significant degradation, the test will flag it for inspection. 
Often, these measurements can be easily added to existing larger tests, 
including smoke tests, load tests, and compatibility tests. 

One easy technique to guard against a code change causing dramatic 
increases in memory consumption is to run tests under artificially resource-
constrained conditions. Memory here refers to stack and heap space, swap 
space, disk file and database, and so forth. Unit tests should run with little 
available memory; if the test suite ever hits the limit, that’s worth investi-
gating. Larger integration tests will need resources comparable to those 
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available in production, and when run with minimal headroom they can 
serve as a “canary in the coal mine.” For example, if you can test the system 
successfully with 80 percent of the memory available in production, that 
provides some assurance of 20 percent headroom (excess capacity).

Threshold Testing
One important but easily overlooked protection of system availability is to 
establish warning signs before fundamental limits are reached. A classic 
example of exceeding such a limit happened to a well-known software com-
pany not long ago, when the 32-bit counter that assigned unique IDs to the 
objects that the system managed wrapped from 2,147,483,647 to 0, resulting 
in the IDs of low-numbered objects being duplicated. It took hours to remedy 
the problem—a disaster that could easily have been averted by monitoring 
for the counter approaching its limit and issuing a warning when it reached, 
say, 0.99*INT_MAX. Surely, in the early days of the product, it was difficult to 
imagine the counter ever reaching its maximum, but as the company grew 
and the prospect became a potential issue, nobody considered the possibility.

Warnings for such thresholds are often considered the responsibility 
of operational monitoring rather than security tests, but these are so often 
missed, and so easy to fix, that covering these eventualities under both cat-
egories is often worthwhile. Be sure to also watch out for other limits where 
the system will hit a brick wall, not just counters. 

Storage capacity is another area where you’ll want significant advance 
warning, allowing you to respond smoothly. Rather than setting arbitrary 
thresholds, such as 99 percent of the limit, a more useful calculation looks 
at a time series (a set of measurements over time) and extrapolates the time it 
will take to reach the limit.

Don’t forget to stay ahead of time limits, too. The expiration dates of 
digital certificates are easily ignored until suddenly they fail to validate. 
Systems that rely on the certificates of partners that supply data feeds 
should monitor those and provide a heads-up in order to avoid an outage 
that, to your customers, will look like your problem. 

The “Y2K bug” is now a distant memory of a non-event (possibly due 
to the extraordinary efforts made at the time to avoid the chaos that might 
have ensued in computer systems that stored years as two-digit values when 
the year changed from 1999 to 2000). However, we now have the “Y2k38 
bug” to look forward to on January 19, 2038, when 2,147,483,647 seconds 
will have passed since 00:00:00 UTC on January 1, 1970 (the Unix epoch, 
as referenced in Figure 12-1). In less than two decades we will reach a point 
where the number of seconds elapsed since the epoch overflows the range 
of a 32-bit number, and this is almost certain to manifest all manner of 
nasty bugs. If it’s too soon to instrument your codebase for this, when is 
the right time?
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Figure 12-1: Bug (courtesy of  
Randall Munroe, xkcd.com/376)

Distributed Denial-of-Service Attacks 
Denial-of-service (DoS) attacks are single actions that adversely impact 
availability; distributed denial-of-service (DDoS) attacks accomplish this 
through the cumulative effect of a number of concerted actions. For internet- 
connected systems, the open architecture of the internet creates an additional 
risk of DDoS attacks, such as from a coordinated botnet. Brute-force overload-
ing from distributed anonymous sources generally ends up as a contest of 
scale of computing power. Mitigating these attacks typically requires reliance 
on DDoS protection vendors that have networking expertise backed by mas-
sive datacenter capacity.

I point this out as separate from the other categories of availability 
threats because this isn’t something you can easily mitigate on your own 
should your server be unfortunate enough to become a target of a serious 
DDoS attack. 

Best Practices for Security Testing
Writing solid security test cases is an important way to improve the security of 
any codebase. While security test cases can’t guarantee perfect security, they 
confirm that your protections and mitigations are working, and are thus a 
significant step in the right direction. A robust suite of security test cases, 
combined with security regression tests, dramatically lowers the chances of 
a major security lapse.

Test-Driven Development
Security test cases are especially important when you’re writing critical 
code and thinking through its security implications. I strongly endorse test-
driven development (TDD), where you write test cases concurrently with new 
code—rigorous practitioners of this method actually make the tests first, 
only authoring new code in order to fix the initially failing tests. TDD with 

https://xkcd.com/376
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security test cases included from the start ensures that security is built into 
the code, rather than as an afterthought, but whatever methodology you 
use for testing, security test cases need to be part of your test suite. 

If others write the tests, developers should provide guidance that 
describes the security test cases needed, because they can be harder to 
intuit without a solid understanding of the security demands on the code.

Leveraging Integration Testing
Integration testing puts systems through their paces to ensure that all the 
components, already unit-tested individually, work together as they should. 
These are important tests for quality assurance purposes—but once you’ve 
invested the effort, it’s easy to extend them for a little security testing, too.

In 2018, a major social media platform advised its customers to change 
their passwords due to a self-inflicted breach of security: a bug had caused 
account passwords to spew into an internal log in plaintext. By leveraging 
integration tests, they could easily have detected and fixed the code that intro-
duced this vulnerability before it was released to production. Integration tests 
for this service should have included logging in with a fake user account, say, 
USER1, with some password, such as /123!abc$XYZ (even fake accounts should 
have secure passwords). After the test completed, a security test would scan the 
outputs for that distinctive password string and raise an error if it found any 
matches. This testing approach applies not just to log files, but to anywhere 
a potential leak could occur: in other residual files, publicly accessible web 
pages, client caches, and so forth. Tests like this can be as simple as a grep(1) 
command.

Passwords are a convenient example for explanatory purposes, but 
this technique applies to any private data. Test systems require a bunch of 
synthetic data to stand in for actual user data in production, and all of that 
private content could potentially leak in just the same way. A more compre-
hensive leak test would scan all system outputs not explicitly protected as 
confidential for any traces of test input data that are private.

Security Testing Catch-Up
If you are working on a codebase bereft of security test cases, assuming 
that security is a priority, there is some important work that needs doing. If 
there is a design that considers security that has been threat modeled and 
reviewed, use it as a map of what code deserves attention first. It’s usually 
wise to divide the job into pieces with incremental milestones, do an achiev-
able first iteration or two, and then assess the remaining need as you work 
through the tasks.

Target the protection mechanisms and functional areas in order of 
importance, letting the code guide you in determining what needs testing. 
Review existing test cases, as some may already do some security testing or 
be close enough to easily adapt for security. If someone is new to the proj-
ect and needs to learn the code, have them write some of the security test 
cases; this is a great way to educate them and will produce lasting value.
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S E C U R E  D E V E L O P M E N T  

B E S T  P R A C T I C E S

They say that nobody is perfect. Then they tell you  
practice makes perfect. I wish they'd make up their minds.

—Winston Churchill

So far in Part III, we have surveyed a collec-
tion of security vulnerabilities that arise in 

the development phase. In this chapter, we’ll 
focus on how aspects of the development pro-

cess itself relate to security and can go wrong. We’ll 
begin by discussing code quality: the value of good 
code hygiene, thorough error and exception handling, 
documenting security properties, and the role of code  
reviews in promoting security. Second, we’ll look at dealing with dependen-
cies: specifically, how they introduce vulnerabilities into systems. The third 
area we’ll cover is bug triage—a critical skill for balancing security against 
other exigencies. Finally, secure development depends on maintaining a 
secure working environment, so I provide some basic tips on what you need 
to do to avoid being compromised. 

For practical reasons, the guidance that follows is generic. Readers should 
be able to apply it to their own development practices. Many other effective 



222   Chapter 13

techniques are specific to programming languages, operating systems, and 
other particulars of a given system. For this reason, it’s important that you rec-
ognize the big patterns in the following discussion, but also be alert to addi-
tional security-related issues and opportunities that arise in your own work.

Code Quality
Quality is always in style.

—Robert Genn

The earlier chapters in Part III explained many of the ways that vulnerabili-
ties slip into code, but here I want to focus on the relationship of bugs in 
general to security. If you can raise the quality of your code, you’ll make it 
more secure in the long run, whether you recognize this or not. All vulnera-
bilities are bugs, so fewer bugs means fewer vulnerabilities and vulnerability 
chains. But of course, diminishing returns kick in long before you eliminate 
all bugs, so it’s best to take a balanced approach. 

The following discussion covers some of the key areas to focus on in the 
name of security.

Code Hygiene
Programmers usually have a good sense of the quality of the code they’re 
working with, but for various reasons, they often choose to accept known 
flaws instead of making needed improvements. Code smells, spaghetti code, 
and postponed “TODO” comments that mark further work needed all tend 
to be fertile ground for vulnerabilities. At least in areas where security is of 
special concern, identifying and smoothing out these rough edges can be 
one of the best ways to avoid vulnerabilities without needing to do any secu-
rity analysis in order to see how bugs may be exploitable.

In addition to your native sense of the condition of the code, use tools 
to flag these issues. Compile your code with full warnings and then fix the 
code to resolve significant issues. Some of these automated warnings, such 
as misleading indentation or unused code for which there is no execution 
path, would have identified the GotoFail vulnerability we talked about 
in Chapter 8, and security tested in Chapter 12. Lint and other static code 
analysis tools offer even richer scrutiny of the code, providing tips that 
sometimes reveal bugs and vulnerabilities. 

Code analysis doesn’t always identify security bugs as such, so you’ll 
have to cast a broader net. Use these tools frequently during development 
to lower the overall number of potential bugs. This way, if a tool’s output 
changes significantly you’ll have a better chance of noticing it, because the 
new content won’t get lost in a torrent of older messages. 

Fix all warnings if it’s easy to do so, or when you see that an issue could 
be serious. For example, unreachable code suggests that although somebody 
wrote the code for a reason, it’s now out of the picture, and that can’t be 
right. On the other hand, warnings about variable naming conventions, while 
being good suggestions, probably won’t relate to any security vulnerability.
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Finding time to do this kind of cleanup is always challenging. Take an 
incremental approach; even an hour or two a week will make a big differ-
ence over time, and the process is a good way to become familiar with a big 
codebase. If all the warnings are too much to deal with, start with the most 
promising ones (for example, GCC’s -Wmisleading-indentation), then fix what 
gets flagged.

Exception and Error Handling
The 1996 Ariane 5 Flight 501 Failure Report painfully details the conse-
quences of poor exception handling. While the calamitous bug was purely 
self-inflicted, involving no malicious actor, it stands as an example of how 
an attacker might exploit the resulting behavior to compromise a system.

Soon after the Ariane 5 spacecraft’s launch, a floating point to integer 
conversion in a calculation caused an exception. An exception-handling 
mechanism triggered, but as the conversion error was unanticipated, the 
exception handler code had no contingency for the situation. The code shut 
down the engine, resulting in catastrophic failure after 36.7 seconds of flight.

Defending against such problems begins with recognizing the risks of 
slapdash exception handling and then thinking through the right response 
for even the most unlikely exceptions. Generally speaking, it’s best to handle 
exceptions as close to the source as possible, where there is the most context 
for it and the shortest window of time for further complications to arise. 

That said, large systems may need a top-level handler to field any unhan-
dled exceptions that bubble up. One good way to do this is to identify a unit 
of action and fail that in its entirety. For example, a web server might catch 
exceptions during an HTTP request and return a generic 500 (server error) 
response. Typically, web applications should handle state-changing requests 
as transactions so that any error always results in no state change. This avoids 
partial changes that may leave the system in a fragile state.

Much of the reasoning that connects sloppy exception handling to 
potential vulnerabilities also applies to error handling in general. Like 
exceptions, error cases may occur infrequently, so it’s easy for developers to 
forget them, leaving them incomplete or untested. A common trick attack-
ers use to discover exploits is to try causing some kind of error and then 
observe what the code does in hopes of discovering weaknesses. Therefore, 
the best defense is to implement solid error handling from the start. This is 
a classic example of one way that security vulnerabilities are different from 
other bugs: in normal use, some error might be exceedingly rare, but in the 
context of a concerted attack, invoking an error might be an explicit goal.

Solid testing is important in order to get error and exception handling 
right. Ensure that there is test coverage on all code paths, especially the 
less common ones. Monitor logs of exceptions in production and track 
down their causes to make sure that exception recovery works correctly. 
Aggressively investigate and fix intermittent exceptions, because if a smart 
attacker learns how to trigger one, they may be able to fine-tune it into a 
malicious exploit from there.
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Documenting Security
When you’re writing code with important security consequences, how much 
do you need to explain your decisions in comments, so others (or your own 
forgetful self, months or years later) don’t accidentally break it? 

For critical code, or wherever the security implications deserve explana-
tion, commenting is important, as it allows anyone who is contemplating 
changing the code to understand the stakes. When you write comments 
about security, explain the security implications and be specific: simply writ-
ing // Beware: security consequences isn’t an explanation. Be clear and stick 
to the point: include too much verbiage and people will either tune it out 
or give up. Recalling the Heartbleed bug we discussed in Chapter 9, and 
security tested in Chapter 12, a good comment would explain that rejecting 
invalid requests with byte counts exceeding the actual data provided is cru-
cial because it could result in disclosing private data beyond the extent of the 
buffer. If the security analysis becomes too complex to explain in the com-
ments, write up the details in a separate document, then provide a reference 
to that document. 

This does not mean that you should attempt to flag all code that secu-
rity depends on. Instead, aim to warn readers about the less-than-obvious 
issues that might be easily overlooked in the future. Ultimately, comments 
cannot fully substitute for knowledgeable coders who are constantly vigilant 
of security implications, which is why this stuff is not easy. 

Writing a good security test case (as discussed in Chapter 12) is an ideal 
way to back up the documentation with a mechanism to prevent others from 
unwittingly breaking security with future changes. As a working mock-up 
of what an attack looks like, such a test not only guards against accidental 
adverse changes, but also serves to show exactly how the code might go wrong. 

Security Code Reviews
The professional software development process includes peer code reviews 
as standard practice, and I want to make the case for explicitly including 
security in those reviews. Usually this is best done as one step within the 
code review workflow, along with the checklist of potential issues that 
reviewers should be on the lookout for, including code correctness, read-
ability, style, and so forth. 

I recommend that the same code reviewer add an explicit step to consider 
security, typically after a first pass reading the code, going through it again 
with their “security hat” on. If the reviewer doesn’t feel up to covering security, 
they should delegate that part to someone capable. Of course, you can skip 
this step for code changes that are clearly without security implications.

Reviewing code changes for security differs from an SDR (the topic of 
Chapter 7) in that you are looking at a narrow subset of the system without 
the big-picture view you get when reviewing a whole design. Be sure you 
consider how the code handles a range of untrusted inputs, check that any 
input validation is robust, and avoid potential Confused Deputy problems. 
Naturally, code that is crucial to security should get extra attention, and 
usually merits a higher threshold of quality. The opportunity to focus an 
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extra pair of eyes on the security of the code has great potential for improv-
ing the system as a whole.

Code reviews are also an excellent opportunity to ensure that the 
security test cases that have been created (as described in Chapter 12) are 
sufficient. As a reviewer, if you hypothesize that certain inputs might be 
problematic, write a security test case and see what happens, rather than 
guessing. Should your exploratory test case reveal a vulnerability, raise the 
issue and also contribute the test case to ensure it gets fixed.

Dependencies
Dependence leads to subservience.

—Thomas Jefferson

Modern systems tend to build on large stacks of external components. 
These dependencies are problematic in more ways than one. Many plat-
forms, such as npm, automatically pull in numerous dependencies that are 
difficult to track. And using old versions of external code with known vul-
nerabilities is one of the biggest ongoing threats the industry has yet to 
systematically eliminate. In addition, there is risk of picking up malicious 
components in your software supply chain. This can happen in several ways; 
for example, packages created with similar names to well-known ones may 
get selected by mistake, and you can get malware indirectly via other com-
ponents through their dependencies.

Adding components to a system can potentially harm security even if 
those components are intended to strengthen it. You must trust not only the 
component’s source, but everything the source trusts as well. In addition 
to the inevitable risks of extra code that adds bugs and overall complexity, 
components can expand the attack surface in unexpected new ways. Binary 
distributions are virtually opaque, but even with source code and documen-
tation, it’s often infeasible to carefully review and understand everything 
you get inside the package, so it often boils down to blind trust. Antivirus 
software can detect and block malware, but it also uses pervasive hooks that 
go deep into the system, needs superuser access, and potentially increases 
the attack surface, such as when it phones home to get the latest database 
of malware and report findings. The ill-advised choice of a vulnerable com-
ponent can end up degrading security, even if your intention was to add an 
extra layer of defense.

Choosing Secure Components
For the system as a whole to be secure, each of its components must be 
secure. In addition, the interfaces between them must be secure. Here are 
some basic factors to consider when choosing secure components:

•	 What is the security track record of the component in question, and of 
its maker?

•	 Is the component’s interface proprietary, or are there compatible alter-
natives? (More choices may provide more secure alternatives.)
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•	 When (not if) security vulnerabilities are found in the component, are 
you confident its developers will respond quickly and release a fix?

•	 What are the operational costs (in other words, effort, downtime, and 
expenses) of keeping the component up to date?

It’s important to select components with a security perspective in mind. 
A component used to process private data should provide guarantees 
against information disclosure. If, as a side effect of processing data, it will 
be logging the content or storing it in unsecured storage, that constitutes 
a potential leak. Don’t repurpose software written to handle, say, ocean 
temperatures, which have no privacy concerns at all, for use with sensitive 
medical data. Also avoid prototype components, or anything other than 
high-quality production releases. 

Securing Interfaces
A well-documented interface should explicitly specify its security and pri-
vacy properties, but in practice this often doesn’t happen. In the interest 
of efficiency, it’s easy for programmers to omit input validation, especially 
when they assume that validation will have already been handled. On the 
other hand, making every interface perform redundant input validation is 
indeed wasteful. When unsure, test to find out how the interface behaves if 
you can, and if still in doubt, add a layer of input validation in front of the 
interface for good measure.

Avoid using deprecated APIs, because they often mask potential secu-
rity issues. API makers commonly deprecate, rather than entirely remove, 
APIs that include insecure features. This discourages others from using 
the vulnerable code while maintaining backward compatibility for existing 
API consumers. Of course, deprecation happens for other reasons as well, 
but as an API consumer, it’s important to investigate whether the reason for 
the deprecation has security implications. Remember that attackers may be 
tracking API deprecations as well, and may be readying an attack.

Beyond these basic examples, take extra care whenever an interface 
exposes its internals, because these often get used in unintended ways that 
can easily create vulnerabilities. Consider “The Most Dangerous Code in 
the World” (Georgiev et al., 2012), a great case study of a widely used SSL 
library that researchers found was repeatedly used unsafely, completely 
undermining the security properties it was meant to provide. The authors 
found that “the root cause of most of these vulnerabilities is the terrible 
design of the APIs to the underlying SSL libraries.”

Also be wary of APIs with complicated configuration options, par-
ticularly if security depends on them. When designing your own APIs, 
honor the Secure by Default pattern, document how to securely config-
ure your system, and where appropriate provide a helper method that 
ensures proper configuration. When you must expose potentially inse-
cure functionality, do everything possible to ensure that nobody can 
plausibly use it without knowing exactly what they are doing.
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Don’t Reinvent Security Wheels
Use a standard, high-quality library for your basic security functionality 
when possible. Every time someone attempts to mitigate, say, an XSS attack 
in query parameters from scratch, they risk missing an obscure form of 
attack, even if they know HTML syntax inside out.

If a good solution isn’t available, consider creating a library for use 
throughout your codebase to address a particular potential flaw, and be 
sure to test it thoroughly. In some cases, automated tools can help find 
specific flaws in code that often become vulnerabilities. For example, scan 
C code for the older “unsafe” string functions (such as strcpy) and replace 
them with the newer “safe” versions (strlcpy) of the same functionality.

If you are writing a library or framework, look carefully for security 
foibles so they get handled properly, once and for all. Then follow through 
and explicitly document what protections are and aren’t provided. It isn’t 
helpful to just advertise: “Use this library and your security worries will all 
be solved.” If I am relying on your code, how do I know what exactly is or is 
not being handled? For example, a web framework should describe how it 
uses cookies to manage sessions, prevents XSS, provides nonces for CSRF, 
uses HTTPS exclusively, and so forth. 

While it may feel like putting all your eggs in one basket, solving a 
potential security problem once with a library or framework is usually best. 
The consistent use of such a layer provides a natural bottleneck, addressing 
all instances of the potential problem. When you find a new vulnerability 
later, you can make a single change to the common code, which is easy to 
fix and test and should catch all usages. 

Security-aware libraries must sometimes provide raw access to underly-
ing features that cannot be fully protected. For example, an HTML frame-
work template might let applications inject arbitrary HTML. When this is 
necessary, thoroughly document wherever the usual protections cease to 
apply, and explain the responsibilities of the API users. Ideally, name the 
API in a way that provides an unmistakable hint about the risk, such as 
unsafe_raw_html.

The bottom line is that security vulnerabilities can be subtle, possible 
attacks are many, and it only takes one to succeed—so it’s wise to avoid tack-
ling such challenges on your own. For the same reasons, once someone has 
successfully solved a problem, it’s smart to reuse that as a general solution. 
Human error is the attacker’s friend, so using solutions that make it easy to 
do things the secure way is best.

Contending with Legacy Security
Digital technology evolves quickly, but security tools tend to lag behind for 
a number of reasons. This represents an important ongoing challenge. Like 
the proverbial frog in hot water, legacy security methods often remain in use 
for far too long unless someone takes a hard look at them, explicitly points 
out the risk, and proposes a more secure solution and a transition plan. 
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To be clear, I’m not saying that existing security methods are neces-
sarily weak, just that almost everything has a “best before” date. Plus, we 
need to periodically re-evaluate existing systems in the context of the 
evolving threat landscape. Password-based authentication may need shor-
ing up with a second factor if it becomes susceptible to phishing attacks. 
Crypto implementations are based on modern hardware cost and capability 
assessments, and as Moore’s law tells us, this is a moving target; as quantum 
computing matures, high-security systems are already moving on to post-
quantum algorithms thought to be resistant to the new technology.

Weak security often persists well past its expiration date for a few rea-
sons. First, inertia is a powerful force. Since systems typically evolve by 
increments, nobody questions the way authentication or authorization is 
currently done. Second, enterprise security architecture typically requires 
all subsystems to be compatible, so any changes will mean modifying every 
component to interoperate in a new way. That often feels like a huge job 
and thus raises powerful resistance. 

Also, older subcomponents can be problematic, as legacy hardware or 
software may not support more modern security technologies. In addition, 
there is the easy counterargument that the current security has worked so 
far, so there’s no need to fix what isn’t broken. On top of all this, whoever 
designed the legacy security may no longer be around, and nobody else 
may fully understand it. Or, if the original designer is around, they may be 
defensive of their work. 

No simple answer can address all of these concerns, but threat model-
ing may identify specific issues with weak legacy security that should make 
the risk it represents evident. 

Once you’ve identified the need to phase out the legacy code, you 
need to plan the change. Integrating a new component with a compatible 
interface into the codebase makes the job easier, but sometimes this isn’t 
possible. In some cases, a good approach is to implement better security 
incrementally: parts of the system can convert to the new implementation 
piecewise, until you can remove legacy code when it is no longer needed.

Vulnerability Triage
The term “triage” normally means deciding who gets attention first.

—Bill Dedman

Most security issues, once identified, are straightforward to fix, and your 
team will easily reach consensus on how to do so. Occasionally, however, 
differences of opinion about security issues do happen, particularly in the 
middle ground where the exploitability of a bug is unclear or the fix is dif-
ficult. Unless there are significant constraints that compel expediency, it’s 
generally wise to fix any bug if there is any chance that it might be vulner-
able to exploit. Bear in mind how vulnerability chains can arise when several 
minor bugs combine to create major vulnerabilities, as we saw in Chapter 8. 
And always remember that just because you can’t see how to exploit a bug, 
that by no means proves that a determined attacker won’t.
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DREAD Assessments
In the rare case that your team does not quickly reach consensus on fixing 
a bug, make a structured assessment of the risk it represents. The DREAD 
model, originally conceived by Jason Taylor and evangelized by both of us 
at Microsoft, is a simple tool for evaluating the risk of a specific threat. 
DREAD enumerates five aspects of the risk that a vulnerability exposes:

Damage potential
If exploited, how harmful could it be?

Reproducibility
Will attacks succeed every time, some of the time, or only rarely?

Exploitability
How hard, in terms of technical difficulty, effort, and cost, is the vul-
nerability to exploit? How long is the attack path?

Affected users
Will all, some, or only a few users be impacted? Can specific targets be 
easily attacked, or are the victims arbitrary?

Discoverability
How likely is it that attackers will find the vulnerability?

In my experience, it works best to think of DREAD ratings in terms of 
five independent dimensions. Personally, I do not recommend assigning a 
numerical score to each, because severity is not very linear. My preferred 
method is to use T-shirt sizes (S, M, L, XL) to represent subjective magni-
tudes, as the following example illustrates. If you do use numerical scores, 
I would specifically discourage adding up the five scores to get a total to 
use for ranking one threat against another, as this is essentially compar-
ing apples to oranges. Unless several of the factors have fairly low DREAD 
scores, consider the threat a significant one likely worth mitigating. 

If the issue requires a triage meeting to resolve, use DREAD to present 
your case. Discuss the individual factors as needed to get a clear view of the 
consequences of the vulnerability. Often, when one component scores low, 
the debate will focus on what that means to the overall impact.

Let’s see how DREAD works in practice. Pretend we’ve just discov-
ered the Heartbleed bug and want to make a DREAD rating for it. Recall 
that this vulnerability lets anonymous attackers send malicious Heartbeat 
requests and receive back large chunks of the web server’s memory. 

Here is a quick DREAD scoring of the information leakage threat:

Damage potential: XL
Internal memory of the server potentially discloses secret keys.

Reproducibility: M
Leaked memory contents will vary due to many factors and will be 
innocuous in some cases, but unpredictable.
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Exploitability: L
An anonymous attacker needs only send a simple request packet; 
extracting useful secrets takes a little expertise and then some luck.

Affected users: XL
The server and all users are at risk.

Discoverability: L
It depends on whether the idea occurs to an attacker (obvious once 
publicly announced); it’s easily tried and confirmed.

This DREAD rating is subjective because in our scenario, there has not 
been time to investigate the vulnerability much beyond a quick confirma-
tion of the bug. Suppose that we have seen a server key disclosed (hence, 
Damage potential is XL), but that in repeated tests the memory contents 
varied greatly, suggesting the M Reproducibility rating. Discoverability is 
particularly tricky: How do you measure the likelihood of someone think-
ing to even try this? I would argue that if you’ve thought of this, then it’s 
best to assume others will too before long. 

Discussions of DREAD scores are a great way to tease out the nuances 
of these judgments. When you get into a discussion, listen carefully and 
give due consideration to other opinions. Heartbleed is among the worst 
vulnerabilities in history, yet we didn’t rate all of its DREAD factors at the 
maximum, serving as a good demonstration of why ratings must be care-
fully interpreted. Since this flaw occurred in code running on millions 
of web servers and undermined the security of HTTPS, you could say 
that the Damage potential and Affected users scores were actually off the 
charts (say, XXXXXXXL), more than making up for the few moderate rat-
ings. The value of DREAD ratings is in revealing the relative importance 
of different aspects of a vulnerability, providing a clear view of the risk it 
represents.

Crafting Working Exploits
Constructing a working proof-of-concept attack is the strongest way to make 
the case to fix a vulnerability. For some bugs the attack is obvious, and when 
it’s easy to code up the exploit, that seals the deal. However, in my opinion 
this is rarely necessary, for a couple of reasons. For starters, crafting a dem-
onstration exploit usually involves a lot of work. Actual working exploits often 
require a lot of refinement after you’ve identified the underlying vulnerabil-
ity. More importantly, even if you are an experienced penetration tester, just 
because you fail to create a functional exploit, that is by no means proof that 
the vulnerability is not exploitable. 

This is a controversial topic, but my take is that for all these reasons it’s 
difficult to justify the effort of creating a working exploit for the purpose 
of addressing a security vulnerability. That said, by all means write a regres-
sion test (as discussed in Chapter 12) that will trigger the bug directly, even 
if it isn’t a full-fledged working attack.
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Making Triage Decisions
When using DREAD, or doing any vulnerability assessment for that matter, 
bear in mind that it’s far easier to underestimate, rather than overestimate, 
actual threats. Noticing a potential vulnerability and taking no action can 
be a tragic mistake, and one that’s obviously best avoided. I’ve lost a few of 
those battles and can assure you that there is no satisfaction in saying “I 
told you so” after the fact. Failing to fix significant flaws is a Russian rou-
lette game not worth playing: “ just fix it” is a great standing policy.

Here are some general rules of thumb for making better security triage 
decisions:

•	 Bugs in privileged code, or code that accesses valuable assets, should  
be fixed and then carefully tested to guard against the introduction of 
new bugs.

•	 Bugs that are well isolated from any attack surface and seem harmless 
are usually safe to defer.

•	 Carefully confirm claims that a bug is harmless: it may be easier to fix 
the bug than to accurately assess its full potential impact.

•	 Aggressively fix bugs that could be part of vulnerability chains (dis-
cussed in Chapter 8).

•	 Finally, when it’s a toss-up, I always advise fixing the issue: better safe 
than sorry.

When more research is needed, assign someone to investigate the issue 
and report back with a proposal; don’t waste time debating hypotheticals. 
In discussions, focus on understanding other perspectives rather than try-
ing to change minds. Trust your intuition. With practice, when you know 
what to focus on, this will quickly become easier.

Maintaining a Secure Development Environment
The secret of landscapes isn’t creation. . . .It’s maintenance.

—Michael Dolan

Good hygiene is a useful analogy: to produce a safe food product, manufac-
turers need fresh ingredients from trustworthy suppliers, a sanitary working 
environment, sterilized tools, and so forth. Similarly, good security prac-
tices must be observed throughout the entire development process for the 
resulting product to be secure. 

Malicious code can slip into the product due to even a one-time lapse 
during development, a fact which should give you pause. The last thing that 
developers want is for their software to become a vector for malware. 

Separating Development from Production
Strictly separate your development and production environments, if you aren’t 
doing this already. The core idea is to provide a “wall” between the two, typi-
cally consisting of separate subnetworks, or at least mutually exclusive access 
permission regimes. That is, when developing software, the programmer 



232   Chapter 13

should not have access to production data. Nor should production machines 
and operations staff have access to the development environment and source 
code (write access). In smaller shops, where one person handles both produc-
tion and development, you can switch between user accounts. The inconve-
nience of switching is more than compensated for by saving the product from 
even a single mistake. Plus, it provides peace of mind.

Securing Development Tools
Carefully vet development tools and library code before installing and using 
them. Some minor utility downloaded from “somewhere,” even for a one-
time use, could bring more trouble than it’s worth. Consider setting up a 
safely isolated sandbox for experiments or odd jobs not part of the core 
development process. This is easily done with a virtual machine.

All computers involved in development must be secure if the result is to 
be secure. So must all source code repositories and other services, as these 
are all potential openings for vulnerabilities to creep into the final prod-
uct. In fact, it goes deeper: all operating systems, compilers, and libraries 
involved in the process of development must also be secure. It’s a daunting 
challenge, and it may sound almost impossible, but fortunately perfection is 
not the goal. You must recognize these risks first, then find opportunities to 
make incremental improvements. 

The best way to mitigate these risks is by threat modeling the develop-
ment environment and processes. Analyze the attack surface for a range of 
threats, treating the source code as your primary asset. Basic mitigations for 
typical development work include:

•	 Securely configure and regularly update development computers.

•	 Restrict personal use of computers used for development.

•	 Systematically review new components and dependencies.

•	 Securely administer computers used for the build and release processes.

•	 Securely manage secrets (such as code signing keys).

•	 Secure login credential management with strong authentication.

•	 Regularly audit source change commits for anomalous activity.

•	 Keep secure backup copies of source code and the build environment.

Releasing the Product
Use a formal release process to bridge development and production. This can 
happen through a shared repository that only development staff can modify, 
and that operations staff can only read. This Separation of Duty ensures that 
the responsibilities of the respective parties are not only clear but enforced, 
essentially rendering impossible solo “cowboy” efforts to make quick code 
changes and then push the new version into production, where security flaws 
are easily introduced, without going through approved channels.

N O T E 	 See Appendix D for a cheat sheet summarizing the DREAD model for risk assessment 
as a handy aid doing bug triage.



A F T E R W O R D

We are called to be architects of the future, not its victims.
—R. Buckminster Fuller

Having watched computing evolve over the 
last 50 years, I have learned that attempt-

ing to predict the future is folly. However, 
to conclude this book I would like to offer my 

thoughts about future directions in security that I 
think would be valuable, unlikely as some of them 
may be. The following are by no means predictions, 
but rather possibilities that would constitute signifi-
cant progress.

The nascent internet received a wake-up call in 1988 when the Morris 
worm first demonstrated the potential power of online malware and how it 
can spread by exploiting existing vulnerabilities. More than 30 years later, 
though we have made astounding progress on many fronts, I wonder if we 
have fully understood these risks and prioritized our mitigation efforts suffi-
ciently. Reports of attacks and private data disclosures are still commonplace, 
and no end is in sight. Sometimes, it seems that the attackers are having a 
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field day while the defenders are frantically treading water. And it’s important 
to bear in mind that many incidents are kept secret, or may even persist unde-
tected, so the reality is almost certainly worse than we know. In large part, 
we’ve learned to live with vulnerable software. 

What’s remarkable is that, despite our imperfect systems continuing to 
be compromised, everything somehow manages to keep going. Perhaps this is 
why security problems persist: the status quo is good enough. But even though 
I understand the cool logic of returns on investment, deep down I just don’t 
accept that. I believe that when, as an industry, we accept the current state 
of affairs as the best we can do, we block real progress. Justifying additional 
work in the interest of security is always difficult because we rarely learn about 
failed attacks, or even what particular lines of defense were effective.

This concluding chapter sketches out promising future directions to 
raise the level of our collective software security game. The first section 
recapitulates the core themes of the book, summarizing how you can apply 
the methods in this book to good effect. The remainder of this chapter 
envisions further innovations and future best practices, and is more specu-
lative. A discussion of mobile device data protection provides an example 
of how much more needs to be done to actually deliver effective security in 
the “last mile.” I hope the conceptual and practical ideas in this book spark 
your interest in this vital and evolving field, and serve as a springboard for 
your own efforts in making software secure.

Call to Action

The great aim of education is not knowledge but action. 

—Herbert Spencer

This book is built around promoting two simple ideas that I believe will 
result in better software security: involving everyone building the software 
in promoting its security, and integrating a security perspective and strat-
egy from the requirements and design stage. I entreat readers of this book 
to help lead the charge.

In addition, a continuing focus on the quality of the software we create 
will contribute to better security, because fewer bugs mean fewer exploit-
able bugs. High-quality software requires work: competent designs, careful 
coding, comprehensive testing, and complete documentation, all kept up to 
date as the software evolves. Developers, as well as end users, must continue 
to push for higher standards of quality and polish to ensure this focus is 
maintained.

Security Is Everyone’s Job
Security analysis is best done by people who deeply understand the soft-
ware. This book lays out the conceptual basis for good security practice, 
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empowering any software professional to understand the security facets of 
design, learn about secure coding, and more. Instead of asking experts to 
find and fix vulnerabilities because security has been largely neglected, let’s 
all pitch in to ensure at least a modest baseline is met for all the software 
we produce. We can then rely on experts for the more arcane and technical 
security work, where their skills are best applied. Here’s the rationale:

•	 However well expert consultants know security, as outsiders, they cannot 
fully understand the software and its requirements in context, includ-
ing how it must operate within the culture of an enterprise and its 
end users.

•	 Security works best when it’s integral to the entire software lifecycle, 
but it isn’t practical to engage security consultants for the long haul.

•	 Skilled software security professionals are in high demand, difficult to 
find, and hard to schedule on short notice. Hiring them is expensive.

Security thinking is not difficult, but it is abstract and may feel unfamil-
iar at first. Most vulnerabilities tend to be obvious in hindsight; nonetheless, 
we seem to make the same mistakes over and over. The trick, of course, is 
seeing the potential problem before it manifests. This book presents any 
number of methods to help you learn how to do just that. The good news is 
that nobody is perfect at this, so starting out with even a small contribution 
is better than nothing. Over time, you will get better at it.

Broader security participation is best understood as a team effort, where 
every individual does the part that they do best. The idea is not that each indi-
vidual can handle the entire job alone, but rather that the combined input 
of team members with a diverse set of skills synergistically produces the 
best result. Whatever your part is in producing, maintaining, or supporting 
a software product, focus on that as your primary contribution. But it’s also 
valuable to consider the security of related components, and double-check the 
work of your teammates to ensure they haven’t overlooked something. Even if 
your role is a small one, you just might spot a vital flaw, just as a soccer goalie 
occasionally scores a goal.

It’s important to be clear that outside expertise is valuable for per-
forming tasks such as gap analysis or penetration testing, for balancing 
organizational capacity, and as “fresh eyes” with deep experience. However, 
specialist consultants should supplement solid in-house security under-
standing and well-grounded practice, rather than being called in to carry 
the security burden alone. And even if specialists do contribute to the overall 
security stance, they go off to other engagements at the end of the day. As 
such, it’s always best to have as many people as possible on the team respon-
sible for the software be thinking about security regularly.

Baking in Security
Bridges, roads, buildings, factories, ships, dams, harbors, and rockets are 
all designed and meticulously reviewed to ensure quality and safety, and 
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only then built. In any other engineering field, it’s acknowledged that refin-
ing a design on paper is better than retrofitting security measures after the 
fact. Yet most software is built first and then secured later. 

A central premise of this book, which the author has seen proven in 
industry time and again, is that earlier security diligence saves time and 
reaps significant rewards, improving the quality of the result. When designs 
thoroughly consider security, implementers have a much easier job of deliv-
ering a secure solution. Structuring components to facilitate security makes 
it easy to anticipate potential issues. 

The worst-case scenario, and most compelling reason for front-loading 
security into the design phase (“moving left,” in popular industry jargon), 
is to avoid by-design security flaws. Designed-in security flaws—whether in 
componentization, API structure, protocol design, or any other aspect of 
architecture—are potentially devastating, because they are nearly impossi-
ble to fix after the fact without breaking compatibility. Catching and fixing 
these problems early is the best way to avoid painful and time-consuming 
reactive redesigns.

Good security design decisions have greater benefits that often go 
unrecognized. The essence of good design is minimalism without compro-
mising necessary functionality. Applied to security, this means the design 
minimizes the area of the attack surface and critical component interac-
tions, which in turn means there are fewer opportunities for implementers 
to make mistakes.

Security-focused design reviews are important because functional 
reviews of software designs take a different perspective and ask questions 
that don’t consider security. “Does it fulfill all the necessary requirements? 
Will it be easy to operate and maintain? Is there a better way?” In fact, an 
insecure design can easily pass all these tests with flying colors while being 
vulnerable to devastating attacks. Supplementing design review with a secu-
rity assessment vets the security of the design by understanding the threats 
it faces and considering how it might fail or be abused.

The implementation side of software security consists of learning about, 
and vigilantly avoiding, the many potential ways of inadvertently creating 
vulnerabilities, or at least mitigating those common pitfalls. Secure designs 
minimize the opportunities for the implementation to introduce vulner-
abilities, but it can never magically make software bulletproof. Developers 
must be diligent not to undermine security by stepping into any number of 
potential traps.

Security is a process that runs through the entire lifecycle of a software 
system, from conception to its inevitable retirement. Digital systems are com-
plex and fragile, and as software “eats the world,” we become increasingly 
dependent on it. We are imperfect humans using imperfect components to 
build good-enough systems for imperfect people. But just because perfection 
is unattainable does not mean we cannot progress. Instead, it means that 
every bug fixed, every design improved, and every security test case added 
help in ways big and small to make systems more trustworthy.
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Future Security

The future depends on what you do today.

—Mahatma Gandhi

This book is built around the methods of improving security that I have 
practiced and seen work consistently, but there is much more to do beyond 
this. The following subsections sketch a few ideas that I think are promis-
ing. Although these notions require additional development, I believe they 
may lead to significant further advances. 

Artificial intelligence or other advanced technologies offer much 
promise, but my intuition is that a lot of the work needed is of the “chop 
wood, carry water” variety. One way we can all contribute is by working 
to ensure the quality of the software we produce, because it is from bugs 
that vulnerabilities arise. Second, as our systems grow in power and scope, 
complexity necessarily grows, but we must manage it so as not to be over-
whelmed. Third, in researching this book, I was disappointed (but not  
surprised) by the dearth of solid data about the state of the world’s soft-
ware and how secure it is: surely, more transparency will enable a clearer 
view to better guide us forward. Fourth, authenticity, trust, and responsi-
bility are the bedrock of how the software community works together safely, 
yet modern mechanisms that implement these are largely ad hoc and 
unreliable—advances in these areas could be game changers.

Improving Software Quality
“The programmers get paid to put the bugs in, and they get paid to take 
the bugs out.” This was one of the most memorable observations I heard 
as a Microsoft program manager 25 years ago, and this attitude about the 
inevitability of bugs still prevails, with little danger of changing any time 
soon. But bugs are the building blocks of vulnerabilities, so it’s important to 
be aware of the full cost of buggy software.

One way to improve security is to augment the traditional bug triage 
by also considering whether each bug could possibly be part of an attack 
chain, and prioritizing fixing those where this seems more likely and the 
stakes are high. Even if just a fraction of these bug fixes closes an actual vul-
nerability, I would argue that these efforts are entirely worthwhile.

Managing Complexity

An evolving system increases its complexity unless work is done to reduce it.

—Meir Lehman

As software systems grow larger, managing the resultant complexity 
becomes more challenging, and these systems risk becoming more fragile.  
The most reliable systems succeed by compartmentalizing complexity 
within components that present simple interfaces, loosely coupled in 
fault-tolerant configurations. Large web services achieve high resiliency 
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by distributing requests over a number of machines that perform specific 
functions to synthesize the whole response. Designed with built-in redun-
dancy, in the event of a failure or timeout, the system can retry using a  
different machine if necessary. 

Compartmentalizing the respective security models of the many com-
ponents of a large information system is a basic requirement for success. 
Subtle interactions between the assembled components may influence 
security, making the task of securing the system massively harder as inter-
dependencies compound. In addition to excellent testing, well-documented 
security requirements and dependencies are important first lines of defense 
when dealing with a complex system.

From Minimizing to Maximizing Transparency
Perhaps the bleakest assessment of the state of software security derives 
from this (variously attributed) aphorism: “If you can’t measure it, you can’t 
improve it.” Lamentably, there is a dearth of measurements of the quality of 
the world’s software, in particular regarding security. Public knowledge of 
security vulnerabilities is limited to a subset of cases: software that is open 
source, public releases of proprietary software (usually requiring reverse 
engineering of binaries), or instances when a researcher finds flaws and 
goes public with a detailed analysis. Few enterprises would even consider 
making public the full details of their software security track record. As 
an industry, we learn little from security incidents because full details are 
rarely disclosed—which is in no small part due to fear. While this fear  
is not unfounded, it needs to be balanced against the potential value to  
the greater community of more informative disclosure.

Even when we accept the barriers that exist to a full public disclosure 
of all security vulnerabilities, there is much room for improvement. The 
security update disclosures for major operating systems typically lack useful 
detail at the expense of their users, who would likely find additional infor-
mation useful in responding to and assessing risk. In the author’s opinion, 
major software companies often obscure the information they do provide 
to the point of doublespeak. Here are a few examples from a recent operat-
ing system security update: 

•	 “A logic issue was addressed with improved restrictions.” (This applies 
to almost any security bug.) 

•	 “A buffer overflow issue was addressed with improved memory handling.” 
(How is it possible to fix a buffer overflow any other way?) 

•	 “A validation issue was addressed with improved input sanitization.” 
(Again, this can be said of any input validation vulnerability.)

This lack of detail has become reflexive with too many products; it 
harms customers, and the software security community would benefit 
from more informative disclosure. Software publishers can almost always 
provide additional information without compromising future security. 
Realistically, adversaries are going to analyze changes in the updates and 
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glean basic details, so useless release notes only deprive honest customers 
of important details. Responsible software providers of the future would do 
better to begin with full disclosure, then redact it as necessary so as to not 
weaken security. Better yet, after the risk of exploit is past, it should be safe 
to disclose additional details held in abeyance that would be valuable to our 
understanding of the security of major commercial software products, if 
only in the rearview mirror.

Providing detailed reporting of vulnerabilities may be embarrassing, 
because in hindsight the problem is usually blatantly obvious, but I main-
tain that honestly confronting these lapses is healthy and productive. The 
learning potential from a full disclosure is significant enough that if we are 
serious about security for the long term, we need greater transparency. As 
a customer, I would be much more impressed with a software vendor whose 
security fix release notes included:

•	 Dates that the bug was reported, triaged, fixed, tested, and released, 
with an explanation of any untoward delays.

•	 A description of when and how the vulnerability was created (for example, 
a careless edit, ignorance of the security implications, miscommunica-
tion, or a malicious attack).

•	 Information about whether the commit that contained the flawed code 
was reviewed. If so, how was it missed; if not, why not?

•	 An account of whether there was an effort to look for similar flaws of 
the same kind. If so, what was found?

•	 Details of any precautions taken to prevent regression or similar flaws 
in the future.

Shifting the industry toward a culture of sharing more forthcoming dis-
closures of vulnerabilities, their causes, and their mitigations enables us all 
to learn from these incidents. Without much detail or context, these disclo-
sures are just going through the motions and benefit no one. 

A great example of best practice is the National Transportation Safety 
Board, which publishes detailed reports that the aviation industry as well 
as pilots can follow to learn from accidents. For many reasons software can-
not simply follow that process, but it serves as a model to aspire to. Ideally, 
leading software makers should see public disclosure as an opportunity 
to explain exactly what happened behind the scenes, demonstrating their 
competence and professionalism in responding. This would not only aid 
broad learning and prevention of similar problems in other products, but 
help rebuild trust in their products.

Improving Software Authenticity, Trust, and Responsibility
Large modern software systems are built from many components, all of 
which must be authentic and built by trustworthy entities, from secure 
subcomponents, using a secure tool stack. This chain continues on and on, 
literally to the dawn of modern digital computing. The security of our sys-
tems depends on the security of all these iterations that have built up our 
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modern software stack, yet the exact chains of descent have by now faded 
into the mists of computing history, back to a few early self-compiling com-
pilers that began it all. The classic paper “Reflections on Trusting Trust” 
by Ken Thompson elegantly demonstrates how security depends on all of 
this history, as well as how hard it can be to find malware once it’s deeply 
embedded. How do we really know that something untoward isn’t lurking in 
there?

The tools necessary to ensure the integrity of how our software is built 
are by now freely available, and it’s reasonable to assume they work as 
advertised. However, their use tends to be dismayingly ad hoc and manual, 
making the process susceptible to human error, if not potential sabotage. 
Sometimes people understandably skip checking just to save time. Consider, 
for example, validating the legitimacy of a *nix distribution. After down-
loading an image from a trusted website, you would also download the 
separate authoritative keys and checksum files, then use a few commands 
(obtained from a trustworthy source) to verify it all. Only after these checks 
all pass should installation proceed. But in practice, how thoroughly are 
administrators actually performing these extra steps, especially when 
instances of these checks failing for a major distro are unheard of? And 
even if they always are, we have no record of it as assurance.

Today, software publishers sign released code, but the signature only 
assures the integrity of the bits against tampering. There is an implication 
that signed code is trustworthy, yet any subsequent discovery of vulnerabili-
ties in no way invalidates the signature, so that is not a safe interpretation 
at all.

In the future, better tools, including auditable records of the chain of 
authenticity, could provide a higher assurance of integrity, informing the 
trust decisions and dependencies that the security of our systems relies on. 
New computers, for example, should include a software manifest document-
ing that the operating system, drivers, applications, and so on are authentic. 
Documenting and authenticating the software bill of materials of compo-
nents and the build environment require a major effort, but we shouldn’t 
let the difficulty deter us from starting with a subset of the complete solu-
tion and incrementally improving over time. If we start getting serious 
about software provenance and authenticity, we can do a much better job of 
providing assurance that important software releases are built from secure 
components, and the future will thank us.

Delivering the Last Mile

The longest mile is the last mile home.

—Anonymous

If you diligently follow every best practice, apply the techniques described 
in this book, code with attention to avoid footguns, perform reviews, thor-
oughly test, and fully document the complete system, I wish that I could say 
your work will be perfectly secure. But of course, it’s more complicated than 

https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf


Afterword   241

that. Not only is security work never finished, but even well-designed and 
well-engineered systems can still fall short of delivering the intended levels 
of security in the real world.

The “last mile,” a term taken from the telecommunications and trans-
portation industries, refers to the challenge of connecting individual cus-
tomers to the network. This is often the most expensive and hardest part of 
delivering services. For example, an internet service provider might already 
have high-speed fiber infrastructure in your neighborhood, but acquiring 
each new customer requires a service call, possibly running cables, and 
installing a modem. None of this scales well, and the time and expense 
become significant additional upfront investments. In much the same way, 
deploying a well-designed, secure system is often only the beginning of 
actually delivering real security.

To understand these “last mile” challenges for security, let’s take an 
in-depth look at the current state of the art of mobile device data security 
through the lens of a simple question: “If I lose my phone, can someone 
else read its contents?” After years of intensive engineering effort resulting 
in a powerful suite of well-built modern crypto technology, the answer, even 
for today’s high-end phones, seems to be, “Yes, they probably can get most 
of your data.” As this is perhaps the largest single software security effort in 
recent times, it’s important to understand where it falls short and why.

The following discussion is based on the 2021 paper “Data Security on 
Mobile Devices: Current State of the Art, Open Problems, and Proposed 
Solutions,” written by three security researchers at Johns Hopkins University. 
The report describes several important ways that delivering robust software 
security often remains elusive. I will simplify the discussion greatly in the 
interests of highlighting the larger lessons for security that this example 
teaches.

First, let’s talk about levels of data protection. Mobile apps do all kinds 
of useful things—too much for a single encryption regime to work for 
everything—so mobile operating systems provide a range of choices. The 
iOS platform offers three levels of data protection that differ mainly in how 
aggressively they minimize the time window that encryption keys are pres-
ent in memory to facilitate access to protected data. You can think of this 
as analogous to how often a bank vault door is left open. Opening the big, 
heavy door in the morning and shutting it only at closing time provides the 
staff convenient access throughout the day, but it also means the vault is 
more exposed to intrusion when not in use. By contrast, if the staff has to 
find the bank manager to open the vault every time they need to enter, they 
trade that convenience for increased security: the vault is securely locked 
most of the time. For a mobile device, asking the user to unlock the encryp-
tion keys (by password, fingerprint, or facial recognition) in order to access 
protected data roughly corresponds to asking the bank manager to open 
the vault.

Under the highest level of protection, the encryption keys are only 
available while the phone is unlocked and in use. While very secure, this is 
a hindrance for most apps, because they lose access to data when the device 
is locked. For example, consider a calendar app that reminds you when it’s 

https://securephones.io/
https://securephones.io/
https://securephones.io/
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time for a meeting. A locked phone renders the app unable to access calen-
dar data. Background operations, including syncing, will also be blocked  
during the locked state. This means that if an event were added to your 
calendar while the phone was locked, then you would fail to get the noti-
fication unless you happened to unlock the phone beforehand so it could 
sync. Even the least restrictive protection class, known as After First Unlock 
(AFU), which requires user credentials to reconstitute encryption keys 
after booting, presents serious limitations. As the name suggests, a freshly 
rebooted device would not have encryption keys available, so a calendar 
notification would be blocked then, too. 

We can imagine designing apps to work around these restrictions by 
partitioning data into separate stores under different protection classes, 
depending on when it is needed. Perhaps for a calendar, the time would be 
unprotected so as to be available, so the notification would vaguely say, “You 
have a meeting at 4 PM,” requiring the user to unlock the device to get the 
details. Notifications lacking titles would be annoying, but users also expect 
their calendars to be encrypted for privacy, so a trade-off is necessary. The 
sensitivity of this information may vary between users and depend on the 
specifics of the meeting, but making the user explicitly decide in each case 
isn’t workable either, because people expect their apps to work on their 
own. In the end, most apps opt for increased access to the data they man-
age, and end up using lower levels of data protection—or, often, none at all.

When most apps operate under the “no protection” option for con-
venience, all that data is a sitting duck for exfiltration if the attacker can 
inspect the device. It isn’t easy, but as the Johns Hopkins report details, 
sophisticated techniques often find a way into memory. With AFU protec-
tion, all the attacker needs to do is find the encryption key, which, since 
devices spend most of their time in this state, is often sitting in memory.

Confidential messaging apps are the main exception to the rule; they 
use the “complete protection” class. Given their special purpose, users 
are predisposed to put up with the missing functionality when the device 
is locked and the extra effort required to use them. These are a minority 
of apps, comprising a tiny proportion of locally stored user data, yet most 
phone users (those who even think about security at all) probably believe all  
of their data is secure.

As if the picture wasn’t already bleak enough, let’s consider how impor-
tant cloud integration is for many apps, and how it is antithetical to strong 
data protection. The cloud computing model has revolutionized modern 
computing, and we are now accustomed to having ubiquitously connected 
datacenters at our fingertips, with web search, real-time translation, image 
and audio storage, and any number of other services instantly available. 
Functionality such as searching our photo collections for people using facial 
recognition vastly exceeds even the considerable compute power of modern 
devices, so it very much depends on the cloud. The cloud data model also 
makes multi-device access easy (no more syncing), and if we lose a device, 
the data is safely stored in the cloud so all we need to do is buy new hard-
ware. But in order to leverage the power of the cloud, we must entrust it 
with our data instead of locking it down with encryption on our devices. 
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Of course, all of this seamless data access is antithetical to strong data 
protection, particularly in the case of a lost cloud-connected phone. Most 
mobile devices have persistent cloud data access, so whoever recovers the 
device potentially has access to the stored data too. That data most likely 
isn’t encrypted; even if we tried to envision, say, a photo app that stored 
end-to-end encrypted data in the cloud, that would mean only opaque 
blobs of bits could be stored, so we’d lose the power of the cloud to search 
or provide photo sharing. And since the decryption key would have to be 
strictly held on the device, multi-device access scenarios would be difficult. 
Also, if something happened to the key on the device, all the data in the 
cloud would potentially be useless. For all these reasons, apps that rely on 
the cloud almost completely opt out of encrypted data protection.

We’ve only scratched the surface of the full technical details of the 
effectiveness of data protection in mobile devices here, but for our pur-
poses, the outlines of the more general problem should be clear. Mobile 
devices exist in a rich and complicated ecosystem, and unless data protec-
tion works for all components and scenarios, it quickly becomes infeasible 
to use. The best advice remains to only use your phone for anything that 
you wouldn’t greatly mind possibly leaking if you lose it.

The lessons of this story that I want to emphasize go beyond the design 
of mobile device encryption, and in broad outlines apply to any large sys-
tems seeking to deliver security. The point is that despite diligent design, 
with a rich set of features for data protection, it’s all too easy to fall short of 
fully delivering security in the last mile. Having a powerful security model 
is only effective if developers use it, and when users understand its benefits. 
Achieving effective security requires providing a useful balance of features 
that work with, instead of against, apps. All the data that needs protection 
must get it, and interactions with or dependencies on infrastructure (such 
as the cloud in this example) shouldn’t undermine its effectiveness. Finally, 
all of this must integrate with typical work flows so that end users are con-
tributing to, rather than fighting, security mechanisms.

Years ago I witnessed a case of falling short on the last mile with the 
release of the .NET Framework. The security team worked hard getting 
Code Access Security (CAS)—described in Chapter 3—into this new pro-
gramming platform, but failed to evangelize its use enough. Recall that CAS 
requires that managed code be granted permissions to perform privileged 
operations and then assert them when needed—an ideal tool for the Least 
Privilege pattern. Unfortunately, outside of the runtime team, developers 
perceived this as a burden and failed to see the feature’s security benefit. 
As a result, instead of using the fine-grained permissions that the system 
provided only where needed, applications would typically assert full privi-
lege once, at the start of the program, and then operate entirely without 
restrictions. This worked functionally, but meant that applications ran 
under excess permissions—with the bank vault door always open, if you 
will—resulting in any vulnerabilities being far more exposed to risk than 
they would have been if CAS had been used as intended.

These considerations are representative of the challenges that all 
systems face, and are a big reason why security work is never really done. 
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Having built a great solution, we need to ensure that it is understood 
by developers as well as users, that it is actually used, and that it is used 
properly. Software has a way of getting used in novel ways its makers never 
anticipated, and as we learn about these cases, it’s important to consider the 
security ramifications and, if necessary, adapt. All of these factors and more 
are essential to building secure systems that really work.

Conclusion
Software has the unique and auspicious property of consisting entirely of 
bits—it’s just a bunch of 0s and 1s—so we can literally conjure it out of thin 
air. The materials are free and available in unlimited quantities, so our 
imagination and creativity are the only limiting factors. This is equally true 
for the forces of good as it is for those who seek to harm, so both the prom-
ise and the daunting challenge are unbounded.

This chapter provided a call to action and some forward-looking ideas. 
When developing software, consider security implications early in the pro-
cess, and get more people thinking about security to provide more diverse 
perspectives on the topic. An increased awareness of security leads to 
healthy skepticism and vigilance throughout the software lifecycle. Lessen 
your dependence on manual checking, and provide more automated veri-
fication. Keep auditable records of all key decisions and actions along the 
way to realizing a system, so the security properties of the system are well 
defined. Choose components wisely, but also test assumptions and impor-
tant properties of the system. Reduce fragility; manage complexity and 
change. When vulnerabilities arise, investigate their root causes, learn from 
them, and proactively reduce the risk going forward. Critically examine 
realistic scenarios and work toward delivering security to the last mile. 
Publish the details as fully as is responsible so others can learn from the 
issues you encounter and how you respond. Iterate relentlessly in small steps  
to improve security and honor privacy.

Thank you for joining me on this trek through the hills and valleys 
of software security. We certainly did not cover every inch, but you should 
now have a grasp of the lay of the land. I hope you have found useful ideas 
herein and, with a better understanding of the topic, that you will begin to 
put them into practice. This book isn’t the answer, but it offers some answers 
to raising the bar on software security. Most importantly, please don your 
“security hat” from time to time and apply these concepts and techniques in 
your own work, starting today.



A
S A M P L E  D E S I G N  D O C U M E N T

The following document is a hypothetical 
design provided to illustrate the process of 

performing a security design review (SDR) 
on an actual design. Intended as a learning 

tool, it omits many details that would be present in a 
real design, focusing instead on security aspects. As 
such, it is not a complete example of a real software 
design document.

N O T E 	 Bold text highlights security-related content: examples of good security practice in a 
design, what features a good designer adds, or points that security reviewers should be 
raising. Italic text is intended as meta-descriptions about this design document. I use it 
to remark on the document’s pedagogical purpose and explain shortcuts I’ve taken.
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Title – Private Data Logging Component Design Document
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2.4  Requirements
2.5  Non-Goals
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Section 6 – API

6.1  Hello Request
6.2  Schema Definition Request
6.3  Event Log Request
6.4  Goodbye Request

Section 7 – User Interface Design
Section 8 – Technical Design
Section 9 – Configuration
Section 10 – References

Section 1 – Product Description
This document describes a logging component (herein called Logger) that 
provides standard software event logging facilities to support auditing, system 
monitoring, and debugging, designed to mitigate risks of inadvertent informa-
tion disclosure. Logger will explicitly handle private data within logs so 
that non-private data can be freely accessed for routine uses. In rare cases 
when this access level is insufficient, limited access to protected, private 
log data can be provided, subject to explicit approval and with restrictions 
to minimize potential exposure.

The notion of explicitly handling private data separately within the context of a log-
ging system is an example of security-centric design thinking. Adding this feature to 
an existing system would be less efficient and require considerable code churn, com-
pared to designing it in from the start.
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Section 2 – Overview
For baseline project design assumptions, see the documents listed in Section 10.

2.1 Purpose
All applications in the datacenter need to log details of important software 
events, and since these logs potentially contain private data, careful access con-
trol needs to be enforced. Logger provides standard components to generate 
logs, store logs, and enforce appropriate access to authorized staff while main-
taining a reliable and non-repudiable record of what access does occur. Since 
the logging, access, and retention requirements of systems vary, Logger oper-
ates based on a simple policy configuration that specifies an access policy.

2.2 Scope
This document explains the design of the software components of Logger with-
out mandating the choice of implementation language, deployment, or opera-
tional considerations.

2.3 Concepts
The notion of a filtered view of logs is core to the design. The idea is to allow rela-
tively free inspection of the logs with any private details filtered out, an access 
level which should suffice for most uses. Additionally, when needed, sensitive 
data that is logged can be inspected, subject to additional authorization. The 
access event is logged too, making the fact of inspection auditable. This gradu-
ated access lets applications log important private details while still minimizing 
how that data is exposed for legitimate uses by internal staff. Data so sensitive 
that it should never appear in logs simply should not be logged in the first place.

For example, web applications routinely log HTTPS requests as a record 
of system usage and for many other reasons. Often these logs contain pri-
vate information (including IP addresses, cookies, and much more) that must 
be captured but is rarely needed. For example, IP addresses are useful when 
investigating malicious attacks (to identify the origin of an attack), but for other 
uses are immaterial. A filtered view of logs hides, or “wraps,” private data while 
showing nonsensitive data. Designated pseudonyms in a filtered view can show 
that, for instance, the IP addresses of all events labeled “IP7” are identical with-
out disclosing the actual address. Such a filtered view often provides sufficient 
information for the purposes of monitoring, gathering statistics, or debugging. 
When that is the case, it’s advantageous to have avoided exposing any private 
data at all. The logs still contain the full data, and in rare cases when the pro-
tected information is required, the unfiltered view is available in a controlled 
manner with proper authorization.
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Suppose that a web application receives a user login attempt which trig-
gers a bug that causes the process to crash. Here is a simplified example of what 
the log might contain: 

2022/10/19 08:09:10 66.77.88.99 POST login.htm {user: "SAM", password: ">1<}2{]3[\4/"}

The items in this log are: timestamp (not sensitive), IP address (sensitive), 
HTTP verb and URL (not sensitive), username (sensitive), and password (very 
sensitive). An investigation potentially needs to consider all this information in 
order to reproduce the bug, but you don’t want to display this data in plaintext 
unless absolutely necessary, and then only to authorized agents.

To address the security needs of a wide range of systems, the sensitivity 
of various kinds of log data should be configurable, and the logging system 
should only selectively reveal confidential data. For example, as a best practice 
URLs should not contain sensitive information, but a legacy system might be 
known to violate this rule of thumb and require protection not usually neces-
sary—which makes the filtered view less useful for some debugging. In the case 
of a URL, regular expressions could facilitate configuring certain URLs as more 
sensitive than others. 

A filtered view of the previous example log that omits or wraps the sensi-
tive data might look like this:

2022/10/19 08:09:10 US1(v4) POST login.htm {user: USER1(3), password: PW1(12)} 

The IP address, username, and password are all wrapped as identifiers 
to hide the data, but the substituted identifiers could be used in context to 
query other requests with matching values. In this example, US1 designates an 
IP address in the US; USER1 designates the username associated with the event 
without divulging it specifically; and PW1 stands for the password submitted. The 
suffixes in parentheses indicate the format or length of the actual data, adding 
a hint without revealing specific details: we can see that it’s an IPv4 address, the 
username has 3 characters, and the password has 12. For example, if an exces-
sively long password caused a problem, this fact would be apparent from 
its surprising length alone. Knowing the length of the password leaks a 
little information but should not be compromising in practice.

When the filtered view is insufficient for the task at hand, an additional 
request to unwrap an identifier such as US1 can be made. This makes seeing the 
sensitive data an explicit choice, and allows a graduated revealing of data. For 
example, if only the IP address is needed, the username and password values 
remain undisclosed.

2.4 Requirements
Logs are reliably stored, immediately accessible with authorization, and destroyed 
after the required retention period. To support high volumes of use, the log cap-
ture interface must be fast, and once it reports success, the generating application 
is rightly assured that the log is stored.
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Logs can be monitored without knowledge of private details, so a filtered 
log view can be made widely available for most uses, with special authorization 
needed to see the full data (including private data) only when strictly necessary.

An important goal of this design is to allow the logging of very sensitive 
private data that can be made available for investigating possible security 
incidents or, in rare cases, debugging issues that only occur in production. 
Complete mitigation against an insider attack is an impractical goal, but it’s 
important to take all reasonable precautions and preserve a reliable audit 
trail as a deterrent.

Storage for logs is encrypted to protect against leaks if the physical media 
is stolen.

Software generating logs is fully trusted; it must correctly identify private 
data in order for Logger to handle it correctly.

2.5 Non-Goals
As Logger is intended for use by admins, a slick UI is unnecessary.

Insider attacks such as code tampering or abuse of admin root privilege 
are out of scope.

To be effective, Logger requires careful configuration and oversight. 
How this is implemented must be defined by system management but 
should include a review process and auditing with checks and balances.

2.6 Outstanding Issues
Details of log access configuration, user authentication, and grants of unfiltered 
access authorization remain to be specified.

Querying encrypted private data is inherently slow. This design envi-
sions that log data volumes are sufficiently small that a brute-force pass 
(that is, without reliance on an index) decrypting records on demand will 
be performant. A more ambitious future version might tackle indexing 
and fast querying over encrypted data.

Error cases need to be identified and handling specified.
Enhancements for future versions of Logger to consider include: 

•	 Defining levels of filtered views that provide more or less detailed 
information

•	 Providing a facility to capture portions of the log for long-term secure stor-
age that would eventually be routinely deleted

2.7 Alternative Designs
The final design chosen is based on fully trusting Logger to store all sensi-
tive information in logs, putting “all eggs in one basket.” An alternative was 
considered that allowed sensitive information to be compartmentalized by 
source. This was not pursued for a few reasons (briefly explained below) 
that did not appear compatible with important use scenarios, but it is impor-
tant to note that this would arguably be a more secure logging solution.
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Alternative design

Log sources would create an asymmetric cryptographic key pair and use 
it to encrypt the sensitive data portions of log records before sending to 
Logger. If this were done carefully, Logger could (probably) still generate 
pseudonyms for filtered views (for example, US1 for a certain IP address in 
the US). Authorized access to unfiltered views would then require the pri-
vate key in order to decrypt the data. The main advantage of this approach 
is that disclosure of stored log data would not leak sensitive data that was 
encrypted, and Logger would not even have the necessary key(s).

Reasons not chosen

This design puts the burden of encryption and key management on both 
log sources and authorized accessors. The designation of what data is sensi-
tive and how it should be partitioned is determined by the log source and 
fixed at that time. By centralizing trust in Logger, both of these aspects can 
be reconfigured as needed, and fine-grained access can be controlled by 
authenticating the log viewer.

Section 3 – Use Cases
Applications in the datacenter generate logs of important software events using 
Logger. Routine monitoring software and appropriate operational staff are 
allowed filtered access (data views without disclosure of any private data) for 
their routine duties. Operational statistics including traffic levels, active users, 
error rates, and so forth are all generated from filtered log views.

Rarely, when support or debugging requires access to the unfiltered logs, 
authorized staff may get limited access subject to policy. Access requests spec-
ify the subset of logs needed, their time window, and the reason for the access. 
Once approved, a token is issued that permits the access, which is logged for 
audit. Upon completion, the requester adds a note describing the result of the 
investigation, which is reviewed by the approver to ensure propriety.

Reports detailing summaries of requests, approvals, audit reviews, log 
volume trends, and confirmation of expired log data deletion are generated to 
inform management.

Section 4 – System Architecture
Within the datacenter, Logger service instances run on physically separate 
machines operated independently from the applications they serve, via a 
standard publish/subscribe protocol. Logger is constituted from three new 
services organized as the following functions:

Logger Recorder
A log storage service. Applications stream log event data over an encrypted 
channel to the Logger Recorder service, where they are written to persistent 
storage. One instance may be configured to handle logs for more than one 
application.
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Logger Viewer 
A web application that technical staff use to manually inspect filtered logs, 
with the ability to reveal unfiltered views subject to authorization according 
to policy. 

Logger Root Recorder
A special instance of Logger Recorder that logs events of Logger Recorder 
and Viewer. For simplicity we omit the details of filtered and unfiltered views of 
this log.

Section 5 – Data Design
Log data is collected directly from applications that determine what events, with 
what details, should be logged. Logs are append-only records of software 
events and are never modified other than being deleted upon expiration.

Applications define a schema of log event types, with zero or more items of 
preconfigured data, as illustrated by the following example. All log events must 
have a timestamp and at least one other identifying data item.

{LogTypes: [login, logout, ...]}
{LogType: login, timestamp: time, IP: IPaddress, http: string,  
 URL: string, user: string, password: string, cookies: string}
{LogType: logout, timestamp: time, IP: IPaddress, http: string,  
 URL: string, user: string, cookies: string}
{Filters: {timestamp: minute, IP: country, verb: 0, URL: 0,  
 user: private, password: private, cookies: private}}

Many details regarding built-in types, formatting, and so forth are omitted since the 
basic idea of how these would be defined should be clear from this partial example.

Requests and responses must be UTF-8-encoded valid JSON expressions 
less than 1 million characters in length. Individual field values are limited 
to at most 10,000 characters.

The first line (LogTypes) enumerates the types of log events this application 
will produce. For each type, a JSON record with the corresponding LogType entry 
(the second line is for LogType: login) lists the allowable data items that may be 
provided with such a log. 

The fourth line (Filters) declares the disposition of each data item: 0 for 
nonsensitive data, private for private data to be “wrapped,” and other special 
types of data handling, including:

minute

Time value is rounded to the nearest minute (obscuring precise times)

country

IP addresses are mapped to country of origin in the filtered view

Filters should be defined by pluggable components and easily extended to 
support custom data types that various applications will require.
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Note that “nonsensitive” data should be used for limited internal view-
ing only; this designation does not mean that this data should be publicly 
disclosed. The requirement that all data items be declared, including disposi-
tion (private or not), is to ensure that explicit decisions are made about each one 
in the context of the application. It is critical that these definitions and any 
updates have careful scrutiny to ensure the integrity of the log processing.

Here is an example log entry in the unfiltered view for this schema:

2022/10/19 08:09:10 66.77.88.99 POST login.html {user: "SAM", password: ">1<}2{]3[\4/"}

And this is the corresponding filtered view:

2022/10/19 08:09 US1(v4) POST login.html {user: USER1(3), password: PW1(12)}

Data is stored persistently and available until the policy-configured expira-
tion date is reached, measured as time elapsed since the event log timestamp.

Logs are transient data only intended for monitoring and debugging or 
for forensic purposes in the case of a security breach, and as such are only kept 
for a limited time. Potential data loss is mitigated by storing the data on 
a dedicated machine, using a RAID (or similar) disk array for redundant 
persistent storage. Logs are intended as short-term storage for auditing 
and diagnostic purposes. Long-term storage of any of this data should be 
stored separately.

Section 6 – API
The Logger Recorder’s network interface accepts the following remote proce-
dure calls: 

Hello

Must be the first API call of the session; identifies the application and 
version

Schema

Defines the log data schema (see Section 5)

Log

Sends event data (see Section 5) to be recorded to the specified log

Goodbye

Sent when the application terminates, ending the session 

Each application connects to its logging service via a dedicated channel. 
HTTPS secures API invocations between authenticated endpoints; the 
preconfigured server name authenticates (by its digital certificate) that 
clients are connected to valid Logger service instances. The following are 
the request types.
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6.1 Hello Request
Any process that will use the Logger service sends this request to initiate the 
logging:

{"verb": "Hello", "source": "Sample application", "version": "1"}

The following response acknowledges the request with an OK or error message 
and provides a string token for the session:

{"status": "OK", "service": "Logger", "version": "1", "token": "XYZ123"}

The token is used in subsequent requests to identify the context of the initi-
ating application corresponding to the Hello. Tokens are generated randomly 
with sufficient complexity and entropy to preclude guessing: the minimum 
recommended token size is 120 bits, or about 20 characters in base64 
encoding. Shorter tokens are used here for brevity.

6.2 Schema Definition Request
This request defines the data schema for subsequent logging, as described in 
Section 5: 

{"verb": "Schema", "token": "XYZ123", ...}

Details of this request are omitted for brevity.

The schema defines the field names, types, and other attributes that will 
appear in the log contents, as illustrated by the sample event log request 
shown in the following section (which includes the fields timestamp, ipaddr,  
http, url, and error).

6.3 Event Log Request
This request actually logs one record with the Logger service:

{"verb": "Event", "token": "XYZ123", "log": { 
 "timestamp": 1234567890, "ipaddr": "12.34.56.78", 
 "http": "POST", "url": "example", "error": "404"}}

The log JSON presents content to be recorded to the log that must match 
the schema. 

The response acknowledges the request with an OK or error message: 

{"status": "OK"}

Error details are omitted for brevity. Logging errors (for example, insuf-
ficient storage space) are serious and require immediate attention, since 
system operation is not auditable in the absence of logging.
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6.4 Goodbye Request
This request completes a session of logging: 

{"verb": "Goodbye", "token": "XYZ123"}

The response acknowledges the request with an OK or error message: 

{"status": "OK"}

The token thereafter is no longer valid. To resume logging, the client must 
first make a Hello request. 

Section 7 – User Interface Design
The user interface to the Logger is a web interface served by Logger Viewer 
that is used to examine the logs. The web app is only accessible by autho-
rized operations staff and authenticated by enterprise single sign-on. 
Authenticated users see a selection of logs they are allowed to access, with links 
to browse or search the most recent filtered log entries or, when allowed, to 
request access to unfiltered logs subject to approval.

For brevity, only a high-level description of the web interface is provided for this 
example.

Approval requests are queued for processing in a web form that provides 
basic information:

•	 The reason access is requested, including specifics such as customer issue 
ticket numbers

•	 The scope of access requested (typically a specific user account or IP 
address)

Approval requests trigger automated emails sent to approvers with a link 
to the web app page to review these requests. When each decision is taken, an 
email notifies the requester with the following:

•	 An approval or denial
•	 Reason for denial, if applicable
•	 Time window for approved access

Filtered and unfiltered logs are visible on a page corresponding to each log. 
Queries may be entered specifying which log entries to view. An empty query 
shows the most recent entries with Next/Previous links for paging through the 
results. 

Queries specify log entry fields and values, combined with Boolean opera-
tors to select matching log entries. Most recent first is the default order, unless 
an explicit ordering is given in the query. For brevity, the details of query syntax 
are omitted.
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Filtered logs are displayed with symbolic identifiers (see Section 2.3) 
instead of the raw log contents. Queries may use symbolic identifiers present 
in filtered log content; for example, if a filtered log entry shows the IP address 
US1, a query of [IP = US1] would find other logs from that IP address without 
disclosing the address itself.

Queries over filtered logs must disallow searches on filtered fields 
with exact values. For example, even if IP addresses are not shown, if the 
user can guess [IP = 1.1.1.1] (and so forth) they may eventually hit a log 
entry that will show it as something like USA888 and then be able to infer 
the actual value.

Even when unfiltered access is approved, users must select an option to 
begin unfiltered viewing and querying. Best practice maximizes use of fil-
tered logs, only revealing filtered values on an as-needed basis, and it is 
important that the user interface encourage this.

Users can renounce the right to unfiltered log access when the task is 
completed. The user interface should promote this after a period of inactivity  
to minimize risk of unnecessary access.

Web pages displaying log contents should not be locally cached by 
user agents to avoid inadvertent disclosure and to ensure that, on expiry, 
the log data is no longer available.

Section 8 – Technical Design
The Logger Recorder service consists of a write-only interface for applications 
to stream log event data that will be written to persistent storage, and a query 
interface to get views of those logs. Storage is a sequence of write-append 
files consisting of UTF-8 lines of text, with one line per log event. Log data as 
described by the relevant schema (see above) maps to/from a canonical repre-
sentation as text. Details of formatting are omitted for this example.

Log data fields subject to filtering should be stored in the filtered 
representation in addition to the raw data encrypted with an AES key 
generated by the service, using a new key every day. Use a hardware 
key storage or suitable means of securely protecting these keys.

Since exhausting available storage represents a fatal error for a logging ser-
vice, the write rate is measured against free space (free_storage_MB / avg_logging_MB 
_per_hour) and a priority operational alert is raised if space for fewer than 10 hours 
of data, assuming constant write volumes, remains (this number of hours to alert is 
configurable). 

For performance, consider a SQL database recording filtered log event 
information (timestamp, log type, filename, and offset), supplementing the 
actual log files for efficient access.

Filtered logs hide private data with symbolic identifiers (for example, US1 for 
an IP address in the US). To avoid storing unfiltered private data, these maps 
go from a secure digest of the unfiltered data value to the filtered moni-
ker. This mapping is temporary and maintained by Logger Viewer separately for 
each user context per log. Users have the ability to clear mappings for a fresh 
start, or after 24 hours of non-use, they are automatically cleared to prevent 
useless buildup over time.
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Section 9 – Configuration
Log retention is configured as follows. Data is automatically, securely, and 
permanently deleted beyond the retention period (not just moved to 
trash; use the shred(1) command or similar).

Retention: {
  "Log1": {"days": 10},
  "Log2": {"hours": 24},
}

Log access is granted by configuring lists of authorized users:

Access: {
  "Log1": {"filtered": ["u1", "u2", "u3", . . .], 
           "unfiltered": ["x1", "x2", "x3", . . .]}, 
           "approval": ["a1", "a2", "a3", . . .]},
}

Users allowed filtered access to the log denoted Log1 are listed within brack-
ets, as shown above (for example, u1, u2, u3). Users permitted unfiltered access 
are then similarly listed. These users will be granted access only following an 
approved request. Finally, users with the power to grant approval for limited 
unfiltered access are listed in the same manner. 

Section 10 – References 
The following documents are useful for understanding this design document. 

These are fictional.

•	 Enterprise baseline design assumptions document (referenced in Section 2)
•	 Enterprise general data protection policy and guidelines
•	 Publish/subscribe protocol design document (referenced in Section 4)

END OF DOCUMENT
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G L O S S A R Y

Terminology that is specific to software 
security may seem straightforward, but 

nuances are important to get right. I have 
evolved the following security-specific mean-

ings of terms based on my experience across multiple 
companies and many diverse projects, and while these 
definitions are generally accepted, don’t be surprised 
if you find diversity in the terminology used in the  
wild. If you pay close attention, you’ll notice that security specialists define 
and use the same terms in slightly different ways, bringing their own 
unique perspectives to the foundational precepts of the field. Expect to 
hear many variations, because there is no accepted standard vocabulary; 
usually, however, these variations are easy to deduce in context. 



258   Appendix B

Affected users
An assessment of the proportion of users potentially impacted by the 
exploitation of a specific vulnerability. (Component of DREAD)

Allowlist
An enumeration of safe values that should be allowed. (Cf. Blocklist)

Assessment report
The written results of a security design review (SDR), consisting of a 
ranked summary of findings and recommendations, including specific 
design changes and strategies to improve security.

Asset
Valuable data or resources, especially likely targets of attack, to be 
protected.

Asymmetric encryption
Data encryption with separate keys for encryption (public key) and decryp-
tion (private key). (Cf. Symmetric encryption)

Attack
Action taken in an attempt to violate security.

Attacker
A malicious agent working to violate the security of a system. (Also known 
as Threat actor)

Attack surface
The aggregate of all potential points of entry to a system for attack.

Attack vector
A sequence of steps forming a complete attack, starting from the attack sur-
face and culminating in access to an asset.

Auditing
Maintaining a reliable record of actions by principals, for regular 
inspection, to detect suspicious behavior indicative of improper activity. 
(Component of the Gold Standard)

Authentication (authN)
High-assurance determination of the identity of a principal. (Component of 
the Gold Standard)

Authenticity
Assurance that data is genuine, a stronger claim than data integrity.



Glossary   259

Authorization (authZ)
Security policy controls ensuring that privileged access is restricted to cer-
tain authenticated principals. (Component of the Gold Standard)

Availability
Assurance that data access is always available to authorized principals; in 
other words, that the system avoids significant delays or outages hindering 
legitimate access. (Component of C-I-A)

Backtracking
Behavior of algorithms, such as regular expression matching, where prog-
ress may advance and regress, exponentially repeating. Potential security 
issues result when backtracking incurs excessive computation that degrades 
availability. 

Block cipher
A symmetric encryption algorithm that processes fixed-length blocks of 
data, as opposed to a bitstream.

Blocklist
An enumeration of unsafe values that should be disallowed. Not generally 
recommended because, unless exhaustive, there is risk of vulnerability.  
(Cf. Allowlist)

Bottleneck
A single point in the code execution path that guards all access to a specific 
asset. Bottlenecks are important for security because they ensure that uni-
form authorization checks happen for all accesses.

Buffer overflow
A class of vulnerabilities involving invalid access outside the bounds of allo-
cated memory. 

Certificate authority (CA)
An issuer of digital certificates.

Chokepoint
See Bottleneck.

Chosen plaintext attack
Analysis of encryption where the attacker is able to learn the ciphertext 
for a plaintext of their choice, and thereby weaken the encryption. 

C-I-A
The fundamental information security model. (See Confidentiality, Integrity, 
and Availability)
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Ciphertext
The encrypted form of a message that is meaningless without the key.  
(Cf. Plaintext)

Code Access Security (CAS)
A security model that dynamically adjusts authorization according to the 
privileges of all callers to mitigate Confused Deputy vulnerabilities.

Collision
When two different inputs produce the same message digest value.

Collision attack
An attack that uses a known collision to subvert authenticity relying on the 
uniqueness of cryptographic message digest values.

Command injection
A vulnerability allowing malicious inputs to result in running arbitrary 
commands controlled by an attacker.

Confidentiality
The fundamental information security property of enforcing only autho-
rized access to data. (Component of C-I-A)

Confused Deputy
A vulnerable pattern where an unauthorized agent can trick an authorized 
agent or code to perform a harmful action on the former’s behalf. 

Credentials
Evidence of identity, attributes, or authority, as a basis for authentication. 

Cross-site request forgery (CSRF or XSRF)
An attack that modifies web server state, typically using a POST request 
with the victim client’s cookies context.

Cross-site scripting (XSS)
A web-specific injection attack where malicious input alters the behavior of 
a website, typically resulting in running unauthorized script. 

Cryptography
The mathematical art of reversibly transforming data so as to conceal it.

Cryptographically secure pseudo-random number generator (CSPRNG) 
A source of random numbers considered unpredictable enough that guess-
ing is infeasible, which is thus suitable for cryptography. (Cf. Pseudo-random 
number generator)
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Damage potential
An assessment of how much harm can be done by exploiting a specific vul-
nerability. (Component of DREAD)

Deanonymization
Analysis of supposedly anonymous data that infers identifying traits to  
compromise the degree of anonymity.

Decryption
The process of transforming a ciphertext back into the original plaintext 
message.

Denial of service (DoS)
An attack that consumes computing resources in order to degrade availabil-
ity. (Also a component of STRIDE)

Dependency
A software library or other component of a system that software requires in 
order to operate.

Dialog fatigue
The human response to repetitive or uninformative software dialogs, often 
leading to reflexive responses to get past the dialog in order to accomplish 
a goal. The security impact occurs when users fail to understand or con-
sider the security consequences of their actions.

Digest
A unique numerical value of fixed size computed from an arbitrarily large 
data input. Different digest values guarantee the inputs are different, but 
collisions are possible. (Also known as Hash)

Digital certificate
A digitally signed statement asserting a specific claim by the signer. 
Common digital certificate standards include TLS/SSL secure communica-
tions (both for the server and the client side), code signing, email signing, 
and certificate authorities (root, intermediate, leaf). 

Digital signature
A computation demonstrating knowledge of a private key, proving the 
authenticity of the signer.

Discoverability
An assessment of how easily the existence of a specific vulnerability could 
be learned by a would-be attacker. (Component of DREAD)

Distributed denial-of-service attacks (DDoS)
Coordinated denial-of-service attacks, typically orchestrated using a large 
herd of bots.
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DREAD
An acronym for a five-component system used to assess a vulnerability to 
gauge its severity. (See Damage potential, Reproducibility, Exploitability, Affected 
users, and Discoverability)

Electronic code book (ECB) mode
A block cipher encryption mode where each block is encrypted indepen-
dently. Since identical blocks result in identical outputs, ECB is weak and 
usually not recommended. 

Elevation of privilege
Any means by which an agent acquires increased privileges, especially when 
an attacker exploits a vulnerability. (Component of STRIDE)

Encryption
An algorithm transforming plaintext into ciphertext to secretly convey a 
message.

Entropy source
A source of random input that generates an unpredictable bitstream.

Exploit
The recipe for a working attack that violates security, causing harm.

Exploitability
An assessment of how easy it is to exploit a specific vulnerability. Often this 
is a subjective guess due to many unknowns. (Component of DREAD)

Fact of communication
Knowledge of whether or not two communicants exchanged information, such 
as by an eavesdropper observing encrypted messages they cannot decipher.

Flaw
A bug that might or might not be a vulnerability, either in design or 
implementation.

Footgun
A software feature that makes it easy to introduce a bug, especially a 
vulnerability.

Fuzz testing
Automated brute-force testing with arbitrary inputs to discover software flaws.

Gold Standard
A nickname for the three basic security enforcement mechanisms. (See 
Auditing, Authentication, and Authorization)
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Guard
An authorization enforcement mechanism in software that controls access 
to a resource.

Hardware random number generator (HRNG)
A hardware device designed to produce highly random data efficiently. (See 
Cryptographically secure pseudo-random number generator)

Hash
See Digest.

Hash message authentication code (HMAC)
A class of message digest functions where each key value determines a 
unique message digest function.

Incident
A specific instance of a security attack.

Information disclosure
An unauthorized information leak. (Component of STRIDE)

Injection attack
A security attack that uses malicious input to exploit a vulnerability where 
part of the input is interpreted in an unexpected manner. Common forms 
include SQL injection, cross-site scripting, command injection, and path 
traversal. 

Input validation
Defensive checking of input data to ensure that it is of a valid format that 
will be correctly processed downstream.

Integration testing
Software testing of multiple components operating together. (Cf. Unit 
testing) 

Integrity
The fundamental information security property of maintaining data accu-
rately, or only allowing authorized modification and deletion. (Component 
of C-I-A)

Key
A parameter to a cryptographic algorithm that determines how the data is 
transformed. (See Private key, Public key)

Keyed hash function
See Hash message authentication code (HMAC).



264   Appendix B

Key exchange
A protocol for two communicants to establish a secret key that is secure 
even if the content of all messages exchanged is revealed to an attacker.

Message authentication code (MAC)
Data accompanying a message as evidence that it is authentic and has not 
been tampered with. (Cf. Hash message authentication code)

Message digest
See Digest.

Mitigation
A preemptive countermeasure to prevent a potential attack or reduce its 
harm, such as by minimizing damage, making the attack recoverable, or 
making it easily detectable.

Nonce
An arbitrary number used once, such as in a communications protocol to 
prevent replay attacks.

One-time pad
A shared secret key for message encryption that can only be used once 
because reuse weakens its security.

Overflow
The incorrect result of an arithmetic instruction when the value exceeds 
the capacity of the variable. When overflow happens undetected, it often 
results in a vulnerability by introducing unexpected results.

Path traversal
A common vulnerability where malicious input injects unexpected content 
into a filesystem path that allows it to designate files outside the bounds of 
intended access. 

Plaintext
The original message before encryption, or after decryption by the 
intended recipient.

Preimage attack
An attack on a message digest function attempting to find an input value 
that produces a specific message digest value. 

Principal
An authenticated agent: a person, business, organization, application, ser-
vice, or device.

Private key
A parameter needed for decryption, kept secret by the authorized recipient.
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Provenance
A reliable history of the origin and chain of custody, providing confidence 
in the validity of data.

Pseudo-random number generator (PRNG)
A “pretty good” random number generator that is vulnerable to predic-
tion by sophisticated analysis. These random numbers are useful for many 
purposes, such as simulations, but are unsuitable for cryptography because 
they are not sufficiently random. (Cf. Cryptographically secure pseudo-random 
number generator)

Public key
A widely known parameter needed to encrypt a message for a particular 
recipient.

Random number
An arbitrarily chosen number that cannot be reliably predicted.

Rate limiting
A method of slowing down a process, commonly used to mitigate attacks 
that rely on brute-force repetition to succeed.

Replay attack
Attacking an secure communication protocol by resending previous authen-
tic messages. A replay attack succeeds if an attacker resends a copy of a pre-
vious authentic communication that is mistaken as a subsequent identical 
message sent by the original sender. 

Reproducibility
An assessment of how reliably the exploitation of a specific vulnerability will 
work over a number of repeated attempts. (Component of DREAD)

Repudiation
Plausible deniability for actions, specifically allowing an attacker to evade 
responsibility. (Component of STRIDE)

Root certificate
The self-signed digital certificate authorizing trust in a certificate authority.

Same Origin Policy (SOP)
A set of restrictions enforced by web clients to limit access between different 
windows of different websites.

Sandbox
A restricted execution environment designed to limit the maximum privi-
lege available to code executing within it.

Security design review (SDR)
A structured review of the security of a software design.
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Security hat
An expression for intentionally focusing with a security mindset to think 
about how things might go wrong.

Security regression
The recurrence of a known security bug that was previously fixed.

Security test case
A software test case that checks that a security control is properly enforced.

Security testing
Software testing to ensure that security controls work properly.

Side channel attack
An attack that deduces confidential information indirectly, as opposed to 
by directly defeating protection mechanisms. For example, reliably deduc-
ing knowledge of the results of a computation from the time delay to pro-
duce the result. 

Speculative execution
The optimization method used in modern processors whereby future 
instructions are executed early to potentially save time, with backtracking 
logic to discard results later if unneeded. The impact of speculative execu-
tion on the cache state potentially leaks information not otherwise acces-
sible, making it a security threat. 

Spoofing
The subversion of authentication where an attacker pretends to be an 
authorized principal. (Component of STRIDE)

SQL injection
A vulnerability allowing an attacker to craft malicious inputs to run arbi-
trary SQL commands.

STRIDE
An acronym for the six basic kinds of software security threats, useful to 
guide threat modeling. (See Spoofing, Tampering, Repudiation, Information  
disclosure, Denial of service, Elevation of privilege)

Symmetric encryption
An encryption method where the same key is used to encrypt or decrypt. 
The symmetry is that anyone who can encrypt can also decrypt.  
(Cf. Asymmetric encryption)

Tainting
A process of tracing the origin of data through software used to mitigate 
untrusted inputs, or data influenced by those inputs, from being used in 
privileged operations such as for an injection attack. 
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Tampering
The unauthorized modification of data. (Component of STRIDE)

Threat
A potential or hypothetical security problem.

Threat actor
See Attacker.

Threat modeling
Analysis of the model of a system used to identify threats needing 
mitigation. 

Timing attack
A side channel attack where information can be inferred from measuring 
the timing of an operation.

Trust
The choice to rely on a principal or component without recourse in the 
event of a failure to protect.

Underflow
Lost precision in the result of a floating-point computation.

Unit testing
Software testing of individual modules in isolation from other components. 

Untrusted input
Input data originating from untrusted sources, in particular from a poten-
tial attack surface.

Vulnerability
A software flaw that makes a security attack possible.

Vulnerability chain
A collection of vulnerabilities that, when combined, constitute a security 
attack.

Weakness
A bug that causes fragility and hence may be a vulnerability.
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E X E R C I S E S

Exploration is the engine that drives innovation.
—Edith Widder

This appendix contains some ideas for 
further exploration, open questions, and 

challenges for readers who want to go 
beyond the material covered in this book. 

Chapter 1: Foundations

•	 The book focuses on information security in conventional computer 
systems, but appliances and devices also run on software, and these are 
increasingly connected to the internet. How do we extend principles 
such as C-I-A to secure software that interacts with the physical world?

Chapter 2: Threats

•	 Threat model an existing software design, or just one component of a 
large system.

•	 For fun, threat model a favorite movie or scene from a book where 
adversaries battle over a prized asset.
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Chapter 3: Mitigations

•	 Write helper functions to limit the exposure of sensitive data in mem-
ory as described in “Minimize Data Exposure” on page 47.

•	 Intentionally code a Confused Deputy and try to exploit it, or chal-
lenge a colleague to do so. Fix the vulnerability and confirm that the 
code is secure.

•	 Design a library to enforce an extensible access policy for an existing 
data access API. 

Chapter 4: Patterns

•	 Take an existing design, or undertake a new one, and see how many of 
the chapter’s patterns you can use to make it as secure as possible.

•	 What additional security patterns and anti-patterns can you think of? 
Keep a running list, adding to the ones presented in the chapter, and 
share them with colleagues.

•	 Are allowlists always better than blocklists? Think of an exception, or 
explain why none exist.

Chapter 5: Cryptography

•	 An easy way to play around with real crypto tools is with the OpenSSL 
command line (https://wiki.openssl.org/index.php/Main_Page). You can 
use it to experiment with symmetric and asymmetric crypto, as well as 
MACs (called digests in openssl(1)), or even create and check your own 
certificates. 

•	 Find a high-quality crypto library and try using it to implement the 
basic operations described in the chapter. How was the API in terms 
of ease of use, and how confident are you that your implementation is 
secure?

•	 If the previous exercise proved difficult, how could you redesign the 
API to be easier to use, as well as more foolproof?

•	 Code the crypto API improvements you thought of, or wrap the origi-
nal library to provide a better API.

Chapter 6: Secure Design

•	 Explore Google’s design document writing guidance (https://www 
.industrialempathy.com/posts/design-docs-at-google/). 

•	 If you haven’t written a software design document before, try it out the 
next time you get an opportunity to do so (making it as informal and 
high level as you like). 

•	 If you work on a codebase that has no written design document, retro-
actively create one. For large systems, create designs for one component 
at a time, focusing on whatever components are most important to 
security or otherwise of interest. 

https://wiki.openssl.org/index.php/Main_Page
https://www.industrialempathy.com/posts/design-docs-at-google/
https://www.industrialempathy.com/posts/design-docs-at-google/
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Chapter 7: Security Design Reviews

• Find existing designs and review them as a learning exercise. Don’t just
look for vulnerabilities; create a broad assessment of both strengths
and weaknesses, including places where security matters most, ways the
design enhances security, mitigation alternatives, and ways in which
security could be improved or made more usable.

• Share and discuss your findings from the preceding exercise with
colleagues.

Chapter 8: Secure Programming

• To get a feel for realistic examples of security vulnerabilities, look for 
security bugs that have already been found and fixed in your codebase 
or in open source software projects. I suggest focusing on open source 
projects because vulnerabilities are usually described in detail and you 
can see the code. The US Department of Homeland Security sponsors a 
large database of publicly known vulnerabilities (https://cve.mitre.org/). 
The Chromium bug database is another good source of public vul-
nerabilities (https://bugs.chromium.org/p/chromium/issues/list). A good 
starting point is to filter these databases for fixed security bugs so you 
can see the actual code changes.

• Underhanded coding, also known as obfuscated coding, is the fine art of using 
footguns and other trickery to write code that works differently from 
what a casual inspection of the code would indicate. Underhanded 
coding contests challenge programmers to show off their creativity in 
pushing programming languages to their limits. But the same tech-niques 
used to camouflage malicious code as benign can also, if stum-bled upon 
inadvertently, become footguns. Check out these sites for a start, or try 
to craft your own: https://web.archive.org/web/20221205164132/https://
underhandedcrypto.com/

Chapter 9: Low-Level Coding Flaws

• Why don’t languages that provide fixed-width integer types provide
any mechanism to detect overflow? Would it help? If so, how would you
extend the C language to take advantage of it?

• Explore how analysis tools such as Valgrind detect issues with memory
management (https://valgrind.org/docs/manual/mc-manual.html).

• Write a little program that includes a few kinds of memory management
vulnerabilities, such as both read and write buffer overflows. Use a tool
like Valgrind to see if it detects the bugs. Try varying the code to make it
harder for the tool to analyze, and see if you can sneak a bug past it.

Chapter 10: Untrusted Input

• Identify the untrusted inputs on the main attack surface of the system
you work on and see how thoroughly input validation is implemented
and tested.

https://cve.mitre.org/
https://valgrind.org/docs/manual/mc-manual.html
https://bugs.chromium.org/p/chromium/issues/list
https://web.archive.org/web/20221205164132/https://underhandedcrypto.com/
https://web.archive.org/web/20221205164132/https://underhandedcrypto.com/
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•	 If you find that untrusted inputs may represent vulnerabilities, imple-
ment input validation.

•	 Often, input validation for a system is repetitive. Look for opportunities 
to use common code or helper functions to handle it reliably. Consider 
ways of baking input validation into frameworks so it cannot be acci-
dentally forgotten.

Chapter 11: Web Security

•	 Write security requirements for a component that creates and authen-
ticates a web session. Design and threat model it, and find a friend to 
security review it.

•	 Build an implementation of your web session into a simple web app. 
Try to impersonate another session, or steal the necessary session state. 
Better yet, find a friend to “attack” your implementation. 

•	 Add a CSRF protection mechanism to the component and test it in your 
web app.

•	 Explore ways of securing web sessions without the use of cookies as an 
experiment to understand the essence of the security challenge.

•	 Find the source code (and ideally, a written design document) for a web 
framework and learn how it implements sessions, prevents XSS and CSRF 
vulnerabilities, and ensures that HTTPS secures all web interactions. By 
threat modeling or other means, can you find any vulnerabilities? If you 
want to try attacking it, put up your own test server to do that.

Chapter 12: Security Testing

•	 In the codebase of your choice, locate some area where security is impor-
tant and look for additional security test cases that should be added. 
Write and contribute new security test cases.

•	 Consider this alternative example of a vulnerability in GotoFail that the 
security tests we wrote wouldn’t catch—in place of the extra goto fail;, 
instead insert the line: 

if (expected_hash[0] == 0x23) goto fail;

This sort of technique might be used to secretly include a vulnerability 
that requires a specific trigger as a kind of backdoor. Detecting this 
would require a test case with an expected hash whose first byte was 
0x23. Can you write tests to detect this sort of vulnerability without 
knowing the specifics?

•	 Check out an old version of an open source software project with a known 
vulnerability. Run the test suite and ensure that all tests pass. Write a 
security regression test to confirm the vulnerability. Sync up to the next 
version that fixes the vulnerability, merging in your regression test. Your 
security regression test should now pass; if not, fix it. Then, check for addi-
tional, related vulnerabilities in the latest version.
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Chapter 13: Secure Development Best Practices

•	 Explore easy ways to make incremental code quality improvements, 
such as using lint or code scanning tools, as well as checking the test 
coverage of error and exception handling.

•	 See how well the security aspects of your codebase are documented and 
make needed improvements.

•	 Whenever you do code reviews, put on your security hat for another 
pass when appropriate.

•	 Consider security when you do bug triage, or perhaps browse your bug 
database with security in mind to see if bugs that have security implica-
tions are being punted.

Afterword

•	 Look for opportunities to make improvements along the lines men-
tioned in the conclusion, even if this means taking small steps: broader 
security participation, earlier integration of a security perspective and 
strategy, reduction or management of complexity, improvement in 
transparency about security practice, and so on.

•	 Identify a unique security challenge and design and develop a reusable 
component that addresses it.

•	 Pursue other ideas of your own to raise the security bar and spread  
the word.





D
C H E A T  S H E E T S

Your conscious mind should be used as a focusing tool, not a storage place.
—David Allen

Chapter 1

Classic Security Principles
Information Security (C-I-A)

Confidentiality Allow only authorized data access—don’t leak 
information

Integrity Maintain data accurately—don’t allow unauthorized 
modification or deletion

Availability Preserve the availability of data—don’t allow signifi-
cant delays or unauthorized shutdowns

Gold Standard

Authentication High-assurance determination of the identity of a 
principal

Authorization Reliably only allowing an action by an authenticated 
principal

Auditing Maintaining a reliable record of actions by principals 
for inspection
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Chapter 2

The Four Questions

•	 What are we working on?

•	 What can go wrong?

•	 What are we going to do about it?

•	 Did we do a good job?

STRIDE
Table 2-1: Summary of STRIDE Threat Categories

Objective STRIDE threats Examples

Authenticity Spoofing Phishing, stolen password, imperson-
ation, replay attack, BGP hijacking

Integrity Tampering Unauthorized data modification and 
deletion, Superfish ad injection

Non-repudiability Repudiation Plausible deniability, insufficient log-
ging, destruction of logs

Confidentiality Information disclosure Data leak, side channel attack, weak 
encryption, residual cached data, 
Spectre/Meltdown 

Availability Denial of service Simultaneous requests swamp a web 
server, ransomware, memcrashed

Authorization Elevation of privilege SQL injection, xkcd’s “Exploits of  
a Mom”

https://www.cloudflare.com/learning/security/glossary/bgp-hijacking/
https://us-cert.cisa.gov/ncas/alerts/TA15-051A
https://meltdownattack.com/ 
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/
https://xkcd.com/327/
https://xkcd.com/327/
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Chapter 4

Secure Design Patterns

Trust and
Responsibility
Reluctance to Trust
Accept Security Responsibility

 

Anti-Patterns
Confused Deputy
Backflow of Trust
Third-Party Hooks
Unpatchable Components

Exposure
Minimization
Allowlists over Blocklists
Least Privilege
Least Information
Secure by Default
Fail Securely
Avoid Predictability

Redundancy
Separation of Privilege
Defense in Depth

Strong Enforcement
Least Common Mechanism
Complete Mediation

Design Attributes
Transparent Design
Economy of Design

Security
Patterns
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Chapter 7

Security Design Review
The six stages of a security design review:

1.	 Study the design and supporting documents to gain a basic understand-
ing of the project.

•	 First, read the documentation to get a high-level understanding of 
the design.

•	 Next, put on your “security hat” and go through it again with a 
threat-aware mindset.

•	 Take notes, capturing your ideas and observations for future 
reference.

•	 Flag potential issues for later, but at this stage it’s premature to do 
much security analysis.

2.	 Inquire about the design and ask clarifying questions about basic 
threats.

•	 Ensure that the design document is clear and complete.

•	 If there are omissions or corrections needed, help get them fixed in 
the document.

•	 Understand the design enough to be conversant, but not necessar-
ily at an expert level.

•	 Ask members of the team what they worry about most; if they have 
no security concerns, ask follow-up questions to learn why not.

3.	 Identify the most security-critical parts of the design for closer attention.

•	 Examine interfaces, storage, and communications—these will typi-
cally be central points of focus.

•	 Work inward from the most exposed attack surfaces toward the 
most valuable assets, just as determined attackers would.

•	 Evaluate to what degree the design addresses security explicitly.

•	 If needed, point out key protections and get them called out in the 
design as important features.
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4.	 Collaborate with the designer(s) to identify risks and discuss mitigations.

•	 As a reviewer, provide a security perspective on risks and mitiga-
tions where needed.

•	 Consider sketching a scenario illustrating how a security change 
could pay off down the line to help convince the designer of the 
need for mitigations.

•	 Offer more than a single solution to a problem when you can, 
and help the designer see the strengths and weaknesses of these 
alternatives.

•	 Accept that the designer gets the last word, because they are ulti-
mately responsible for the design.

•	 Document the exchange of ideas, including what will or will not go 
into the design.

5.	 Write a summary report of findings and recommendations.

•	 Organize the report around specific design changes that address 
security risks.

•	 Spend most of your effort and ink on the highest-priority issues, 
and proportionally less on lower priorities.

•	 Suggest alternatives and strategies, without attempting to do the 
designer’s job for them.

•	 Prioritize findings and recommendations, using priority rankings. 
(Classify points as Must/Ought/Should.)

•	 Focus on security, but feel free to offer separate remarks for the 
designer’s consideration as well.

6.	 Follow up with subsequent design changes to confirm resolution before 
signing off.

•	 For major security design changes, you might want to collaborate 
with the designer to ensure that changes are made correctly.

•	 Where opinions differ, the reviewer should include a statement of 
both positions and the specific recommendations that weren’t fol-
lowed to flag it as an open issue. 
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Chapter 13

DREAD

Damage potential 

If exploited, how bad would it be? 

Reproducibility 

Will attacks succeed every time, some of the time, or only rarely? 

Exploitability 

How hard, in terms of technical difficulty, effort, and cost, is the vul-
nerability to exploit? 

How long is the attack path?

Affected users 

Will all, some, or only a few users be impacted? 

Can specific targets be easily attacked, or are the victims arbitrary?

Discoverability 

How likely is it that attackers will find the vulnerability? 
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authentication (continued)
separation from authorization, 15
something you are, 15
something you have, 15
something you know, 15
somewhere you are, 15

authN. See authentication
authorization, 14

anonymous, 17
attribute-based access control 

(ABAC), 17
guards, 17
minimal access, 18
multiple principals, 18
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policy-based access control 
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role-based access control  
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time of day, 18
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B
Backflow of Trust anti-pattern, 73
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example, 158
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security
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.NET Framework, 46
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degrees of compliance, 63
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security considerations, 225
selecting, 225
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cookies. See HTTP protocol
C programming language, 130, 138
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Cross-Origin Resource Sharing 
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cross-site request forgery (CSRF or 

XSRF), 201. See also web 
security

example, 199
mitigation, 200

cross-site scripting (XSS). See also web 
security

DOM-based, 199
example, 197
mitigation, 199, 202
reflected, 198
stored, 198
testing, 212–214
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mitigation, 199, 202
reflected, 198
stored, 198
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cryptography. See encryption
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CSRF. See cross-site request forgery 
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provenance, 13
tampering, 13

data flow diagrams (DFD), 27
data hiding, 73
data protection

backups, 51
data at rest, 51
minimizing data exposure, 47
offline backups, 48

DDoS (distributed denial-of-service) 
attacks, 219

deanonymization, 12–13
default password, 59
Defense in Depth pattern, 65
denial of service (DoS). See availability 

testing, STRIDE
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181, 206
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secure design, 99
secure interfaces, 226
software supply chain, 225

deprecation, 226
DES encryption algorithm, 56
deserialization, 143

design. See also secure design
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scope, 98
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looking beyond, 99
security considerations, 97
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digital certificate. See HTTPS protocol
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Domain Name System (DNS), 189
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T-shirt sizes, 229

dynamic memory allocation, 157

E
Economy of Design pattern, 54, 108
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elevation of privilege. See STRIDE
elliptic curve algorithms, 85
email retention, 21
encryption

asymmetric
elliptic curve, 85
private key, 83
public key, 83
RSA, 84

backup data application, 90
ciphertext, 81
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encryption (continued)
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ECB mode, 82
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block cipher, 82
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sources, 78
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integer overflow, 153
LEGO, 55
memory allocation  
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predictable account IDs, 61
Reddit user, 64
safe deposit box, 67
Star Wars, 56
Superman, 57
tax ID privacy, 63
traveling sales staff, 101
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Four Questions, 25, 98–99, 103

as guidance for a security design 
review, 116–119

free function, 157
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H
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hash. See message digest
SHA-256, 200

heap, 157
heartbeat, TLS, 162
Heartbleed vulnerability, 47
Hellman, Martin, 87
homomorphs, 174
HTTP over TLS/SSL. See HTTPS 

protocol
HTTP protocol, 188

cookie attributes
httponly, 195
SameSite, 201
secure, 195

cookies
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sharing, 195
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HTTPS protocol
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information disclosure. See STRIDE
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mitigation, 155
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Avoid Predictability, 61
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degrees of compliance, 63
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exposure minimization, 56–62
Fail Securely, 62
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general use of, 54
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Least Privilege, 56
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Reluctance to Trust, 68
Secure by Default, 59, 226
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Separation of Privilege, 67
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Transparent Design, 56, 77
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human factors, 20
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software security challenges, 20

privacy policy, 120
auditing, 105
explicit protection, 105
owner, 105

privacy reviews, 120
private data, 12
private key, 83
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also random numbers
cryptographically secure, 77
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random numbers
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entropy sources, 78
hardware random number 
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generators, 77
unpredictability, 77
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backtracking, 181, 217
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Reluctance to Trust pattern, 68
replay attacks, 79, 82
repudiation, 37. See also STRIDE
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T-shirt sizes, 29, 229–230
risk transfer, 38
role-based access control (RBAC), 17
root certificate, 87
RSA cryptosystem

algorithm, 84
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S
Same Origin Policy (SOP), 193–196

CSRF vulnerability, 199
sample design document, 19, 96, 245
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SDR. See security design review (SDR)
Secure by Default pattern, 59, 226
secure design, 95–108

balanced approach, 102
cache implications, 102
data handling, 104
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secure design (continued)
dependencies, 99
design assumptions, 97
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importance of making 

explicit, 97
end of life, 106
exploring alternatives, 107
high security requirements, 100
interfaces, 103
minimal security requirements, 100
mitigation, 103
privacy, 105
requirements statements, 100
sample design document, 19,  

96, 245
scope definition

importance, 98
iterative design, 99

software lifecycle, 106
trade-offs, 106

secure development environment, 231
securely random IDs, 62
secure programming, 130
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goals, 36
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mindset, 23
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software, 5
trust but verify, 8
understanding, 4

Security by Obscurity anti-pattern,  
56, 135

security code reviews, 224
security design review (SDR), 109–125
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Recommendations Declined 
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documentation, 111
guidance, 116–119
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incremental updates, 120
independent reviewer, 109
logistics, 110
managing disagreements, 121–124

escalation, 123
meeting preparation, 123
missing mitigations, 118
practicing, 124
problem solving, 122
process, 111
progress tracking, 116
recommendation ranking, 114
relation to secure design, 95
reviewer role, 115
sandwich method feedback, 122
separate from functional  

review, 110
showing versus telling, 123
stages, 111–116
summary statement, 119
tactful communication, 121
threat identification, 117
timing, 110
ways to practice, 124
where to dig, 119

security regression tests
Heartbleed example, 216
how to write, 216
importance, 215

security requirements
data collection, 101
high-value private key, 101
top-secret document, 100

security testing, 205–220
best practices, 219
catching up, 220
cross-site scripting, 212
denial-of-service attacks, 216
exception handling, 206
GotoFail vulnerability, 207, 209
importance of, 207
input validation, 211
integer overflow, 206
limits of, 210
memory management, 206
resource consumption, 217
threshold testing, 218
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untrusted inputs, 206
web security, 206
writing test cases, 211

Separation of Duty pattern, 67, 232
Separation of Privilege pattern, 67
serialization, 143
SHA-256 hash, 200
Shostack, Adam, 25
side-channel attack, 11, 30, 141
Snowden, Edward, 100
software quality, 237
software security, 5
software supply chain, 225
SOP (Same Origin Policy), 193–196
Spectre, 141
speculative execution, 141
spoofing, 36. See also STRIDE
SQL injection, 176–179
stories

auto salesman, 4
driver’s ed, 75
“No Game Scheduled”, 176
street crossing, 6

strcpy function, 161
STRIDE, 35–38

definition, 35
origins, 35
relation to information security 

principles, 37
repudiation, 37

strlcpy function, 161
strtol function, 160
sudo, 57

T
tainting, 132
tampering, 13, 37, 78, 143. See 

also STRIDE
prevention with MAC, 79

Taylor, Jason, 229
test-driven development (TDD), 219
The Most Dangerous Code in the 

World, 226
Third-Party Hooks anti-pattern, 74. See 

also Backflow of Trust anti-
pattern

Thompson, Ken, 240

threat modeling, 78, 101–103
asset prioritization, 29
balancing security needs, 102
definition, 26
early efforts, 24
essential threat model, 102
granularity, 28
incorporating into design, 101
iterative process, 27
methodology varieties, 27
overview, 26
personally identifiable 

information, 102
real-life applications, 41
real world, 40
real world versus digital, 27
working from a model, 27

threats, 23–41 See also attacks
addressing, 44
availability, 13
brute-force guessing, 16
categorizing with STRIDE, 35
fact of communication, 50
identifying, 33
mitigation, 38, 43–52
privacy, 39

threat taxonomy. See STRIDE
timing attack

forgot password example, 142
Meltdown, 141
mitigation, 142
Spectre, 141
speculative execution example, 141

toolbox. See crypto toolbox
transparency, 238
Transparent Design pattern, 56, 77
Transport Layer Security (TLS),  

89, 162
Heartbeat Extension, 162

triage. See vulnerability triage
trust, 5

actions, 10
being trustworthy, 10
decisions, 8
decision tree, 8
features, 10
feeling trust, 6
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independent third-party, 10
spectrum, 8
transparency, 10
trust but verify, 8

trust boundaries, 26, 101, 120
identification, 30
kernel/userland interface, 31

trust level
aggregating or splitting, 32
trust vs. privilege, 31

Trustworthy Deputy. See also Confused 
Deputy anti-pattern

Twitter, 19

U
underflow, 150

mitigation, 152
understanding security, 4–5
Unicode

case, changing, 175
combining characters, 175
homomorphs, 174

Unified Modeling Language (UML), 27
uniform resource locator (URL),  188
Unpatchable Components  

anti-pattern, 74
unpickling, 143
untrusted input, 132, 143, 167–168
userland. See trust boundaries

V
vulnerabilities, 130, 133. 

buffer overflow, 160
character string, 173–175
countermeasures, 140
cross-site request forgery (CSRF  

or XSRF), 199
cross-site scripting, 196
example of a chain, 134
fixed-width integer, 147
floating point, 149
GotoFail, 137
Heartbleed, 162, 216
injection, 175, 199
path traversal, 179

regular expressions, 181
relation to bugs, 133
SQL injection, 176-179
Unicode, 174
XML entities, 182

vulnerability, narrowing windows  
of, 46

vulnerability chains, 134
vulnerability triage, 228–231

crafting working exploits, 230
decision making, 231
DREAD assessments, 229

W
web security, 185–203

client/server model, 187
common vulnerabilities,  

196–201
CSS visited selector, 202
frameworks, 186
HTML5, 196
HTTP header injection, 202
HTTP response headers, 202
model, 187
redirects, 202
rel="noopener" attribute, 202
rel="noreferrer" attribute, 202
session cookies, 194–195, 200
X-Frame-Options header, 202
XML external entity  

attacks, 202
window.open, 193
World Wide Web, 185. See also web 

security

X
xkcd comics

Epoch fail (376), 219
Exploits of a Mom (327), 176
Heartbleed Explanation  

(1354), 165
Security versus the $5 wrench 

(538), 90
XSRF. See cross-site request forgery 

(CSRF or XSRF)
XSS. See cross-site scripting (XSS)
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Y2k38 bug, 218
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