

DESIGNING SECURE SOFTWARE

San Francisco

D E S I G N I N G
S E C U R E

S O F T W A R E

A G u i d e f o r D e v e l o p e r s

Loren Kohnfelder

®

DESIGNING SECURE SOFTWARE. Copyright © 2022 by Loren Kohnfelder.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

First printing

27 26 25 24 23 1 2 3 4 5

ISBN-13: 978-17185-0192-8 (print)
ISBN-13: 978-17185-0193-5 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock
Production Manager: Rachel Monaghan
Production Editor: Katrina Taylor
Developmental Editor: Frances Saux
Technical Reviewer: Cliff Janzen
Cover Illustrator: Rick Reese
Cover and Interior Design: Octopod Studios
Copyeditor: Rachel Head
Compositor: Jeff Lytle, Happenstance-Type-O-Rama
Proofreader: May Huang

Library of Congress Cataloguing-in-Publication Data

Names: Kohnfelder, Loren, author.
Title: Designing secure software : a guide for developers / Loren Kohnfelder.
Description: San Francisco : No Starch Press, 2022. | Includes index. |
Identifiers: LCCN 2021032322 (print) | LCCN 2021032323 (ebook) | ISBN
 9781718501928 (print) | ISBN 9781718501935 (ebook)
Subjects: LCSH: Software engineering. | Software architecture. | Computer
 security. | Application software--Development.
Classification: LCC QA76.758 .K675 2022 (print) | LCC QA76.758 (ebook) |
 DDC 005.1--dc23
LC record available at https://lccn.loc.gov/2021032322
LC ebook record available at https://lccn.loc.gov/2021032323

For customer service inquiries, please contact info@nostarch.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this work:
rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

®

In memory of robin.

Dedicated to all the software professionals
who keep the digital world afloat, working

to improve security one day at a time. Their
greatest successes are those rare boring

days when nothing bad happens.

About the Author
Loren Kohnfelder began programming over fifty years ago. As an undergrad-
uate at MIT, his thesis “Towards a Practical Public-Key Cryptosystem” (1978)
first described digital certificates and the foundations of public key infrastruc-
ture (PKI).

His software career spans a wide variety of programming jobs, from
punched cards, writing disk controller drivers, a linking loader, video games,
two stints in Japan, to equipment control software in a semiconductor research
lab. At Microsoft, he returned to security work on the Internet Explorer team,
and later the .NET platform security team, contributing to the industry’s first
proactive security process methodology.

Most recently, at Google, he worked as a software engineer on the secu-
rity team and later as a founding member of the privacy team, performing
well over one hundred security design reviews of large-scale commercial
systems.

About the Technical Reviewer
Since the early days of Commodore PET and VIC-20, technology has been
a constant companion (and sometimes an obsession!) to Cliff Janzen. Cliff
spends a majority of the work day managing and mentoring a great team
of security professionals, but strives to stay technically relevant by tackling
everything from security policy reviews to penetration testing to incident
response. He feels lucky to have a career that is also his favorite hobby and a
wife who supports him.

B R I E F C O N T E N T S

Foreword . xix

Preface . xxi

Acknowledgments . xxv

Introduction . xxvii

PART I: CONCEPTS . 1

Chapter 1: Foundations . 3

Chapter 2: Threats . 23

Chapter 3: Mitigation . 43

Chapter 4: Patterns . 53

Chapter 5: Cryptography . 75

PART II: DESIGN . 93

Chapter 6: Secure Design . 95

Chapter 7: Security Design Reviews . 109

PART III: IMPLEMENTATION . 127

Chapter 8: Secure Programming . . 129

Chapter 9: Low-Level Coding Flaws . . 145

Chapter 10: Untrusted Input . 167

Chapter 11: Web Security . 185

Chapter 12: Security Testing . . 205

Chapter 13: Secure Development Best Practices . 221

x Brief Contents

Afterword . 233

Appendix A: Sample Design Document . 245

Appendix B: Glossary . 257

Appendix C: Exercises . . 269

Appendix D: Cheat Sheets . 275

Index . . 281

C O N T E N T S I N D E T A I L

FOREWORD	 xix

PREFACE	 xxi

ACKNOWLEDGMENTS	 xxv

INTRODUCTION	 xxvii
Who Should Read This Book? . . xxviii
What Topics Does the Book Cover? . . xxix

Part I: Concepts . xxix
Part II: Design . xxix
Part III: Implementation . xxx
Conclusion . xxx
Appendices . xxxi

Good, Safe Fun . xxxi

PART I: CONCEPTS	 1
1
FOUNDATIONS	 3
Understanding Security . 4
Trust	 . 5

Feeling Trust . 6
You Cannot See Bits . 6
Competence and Imperfection . 7
Trust Is a Spectrum . 8
Trust Decisions . 8
Implicitly Trusted Components . 9
Being Trustworthy . . 10

Classic Principles . 10
Information Security’s C-I-A . 11
The Gold Standard . . 14
Privacy . 19

2
THREATS	 23
The Adversarial Perspective . 24
The Four Questions . 25
Threat Modeling . 26

Work from a Model . 27
Identify Assets . 28
Identify Attack Surfaces . . 30

xii Contents in Detail

Identify Trust Boundaries . 30
Identify Threats . 33
Mitigate Threats . 38

Privacy Considerations . 39
Threat Modeling Everywhere . 40

3
MITIGATION	 43
Addressing Threats . 44
Structural Mitigation Strategies . 45

Minimize Attack Surfaces . 45
Narrow Windows of Vulnerability . 46
Minimize Data Exposure . 47

Access Policy and Access Controls . 48
Interfaces . 49
Communication . . 50
Storage . 51

4
PATTERNS	 53
Design Attributes . . 54

Economy of Design . 54
Transparent Design . . 56

Exposure Minimization . 56
Least Privilege . 56
Least Information . 57
Secure by Default . . 59
Allowlists over Blocklists . 60
Avoid Predictability . 61
Fail Securely . 62

Strong Enforcement . 62
Complete Mediation . . 63
Least Common Mechanism . 64

Redundancy . 65
Defense in Depth . 65
Separation of Privilege . 67

Trust and Responsibility . 68
Reluctance to Trust . 68
Accept Security Responsibility . 69

Anti-Patterns . 71
Confused Deputy . 71
Backflow of Trust . 73
Third-Party Hooks . 74
Unpatchable Components . 74

5
CRYPTOGRAPHY	 75
Crypto Tools . 76
Random Numbers . 77

Pseudo-Random Numbers . . 77
Cryptographically Secure Pseudo-Random Numbers 77

Contents in Detail xiii

Message Authentication Codes . . 78
Using MACs to Prevent Tampering . 79
Replay Attacks . 79
Secure MAC Communications . 80

Symmetric Encryption . 81
One-Time Pad . 81
Advanced Encryption Standard . 82
Using Symmetric Cryptography . 83

Asymmetric Encryption . . 83
The RSA Cryptosystem . 84

Digital Signatures . 85
Digital Certificates . . 86
Key Exchange . 87
Using Crypto . 89

PART II: DESIGN	 93

6
SECURE DESIGN	 95
Integrating Security in Design . 96

Making Design Assumptions Explicit . . 97
Defining the Scope . . 98
Setting Security Requirements . 99
Threat Modeling . 101

Building in Mitigations . 103
Designing Interfaces . 103
Designing Data Handling . 104

Integrating Privacy into Design . 105
Planning for the Full Software Lifecycle . . 106
Making Trade-Offs . 106
Design Simplicity . 107

7
SECURITY DESIGN REVIEWS	 109
SDR Logistics . 110

Why Conduct an SDR? . 110
When to Conduct an SDR . 110
Documentation Is Essential . . 111

The SDR Process . 111
1. Study . 112
2. Inquire . 112
3. Identify . 113
4. Collaborate . 113
5. Write . 114
6. Follow Up . 116

Assessing Design Security . 116
Using the Four Questions as Guidance . 116
Where to Dig . 119
Privacy Reviews . 120
Reviewing Updates . . 120

xiv Contents in Detail

Managing Disagreement . 121
Communicate Tactfully . 121
Case Study: A Difficult Review . 122
Escalating Disagreements . 123

Practice, Practice, Practice . 124

PART III: IMPLEMENTATION	 127

8
SECURE PROGRAMMING	 129
The Challenge . 130

Malicious Influence . . 131
Vulnerabilities Are Bugs . 133
Vulnerability Chains . 134
Bugs and Entropy . . 135
Vigilance . 136

Case Study: GotoFail . 137
One-Line Vulnerability . . 137
Beware of Footguns . 138
Lessons from GotoFail . . 139

Coding Vulnerabilities . 140
Atomicity . . 140
Timing Attacks . 141
Serialization . 142

The Usual Suspects . 143

9
LOW-LEVEL CODING FLAWS	 145
Arithmetic Vulnerabilities . 146

Fixed-Width Integer Vulnerabilities . 147
Floating-Point Precision Vulnerabilities . . 150
Example: Floating-Point Underflow . 151
Example: Integer Overflow . 153
Safe Arithmetic . 155

Memory Access Vulnerabilities . 156
Memory Management . 157
Buffer Overflow . 157
Example: Memory Allocation Vulnerabilities . 158
Case Study: Heartbleed . 162

10
UNTRUSTED INPUT 	 167
Input Validation . . 168

Determining Validity . 170
Validation Criteria . 170
Rejecting Invalid Input . . 171
Correcting Invalid Input . . 172

Contents in Detail xv

Character String Vulnerabilities . . 173
Length Issues . 173
Unicode Issues . . 174

Injection Vulnerabilities . 175
SQL Injection . 176
Path Traversal . 179
Regular Expressions . 181
Dangers of XML . 182

Mitigating Injection Attacks . 182

11
WEB SECURITY	 185
Build on a Framework . 186
The Web Security Model . 187

The HTTP Protocol . 188
Digital Certificates and HTTPS . 190
The Same Origin Policy . 193
Web Cookies . 194

Common Web Vulnerabilities . 196
Cross-Site Scripting . 196
Cross-Site Request Forgery . 199

More Vulnerabilities and Mitigations . 201

12
SECURITY TESTING	 205
What Is Security Testing? . 206
Security Testing the GotoFail Vulnerability . 207

Functional Testing . 209
Functional Testing with the Vulnerability . 209
Security Test Cases . 209
The Limits of Security Tests . 210

Writing Security Test Cases . 211
Testing Input Validation . 211
Testing for XSS Vulnerabilities . 212

Fuzz Testing . 214
Security Regression Tests . 215
Availability Testing . 217

Resource Consumption . 217
Threshold Testing . 218
Distributed Denial-of-Service Attacks . 219

Best Practices for Security Testing . 219
Test-Driven Development . 219
Leveraging Integration Testing . 220
Security Testing Catch-Up . 220

13
SECURE DEVELOPMENT BEST PRACTICES	 221
Code Quality . 222

Code Hygiene . 222
Exception and Error Handling . 223

xvi Contents in Detail

Documenting Security . 224
Security Code Reviews . 224

Dependencies . . 225
Choosing Secure Components . 225
Securing Interfaces . 226
Don’t Reinvent Security Wheels . 227
Contending with Legacy Security . 227

Vulnerability Triage . 228
DREAD Assessments . 229
Crafting Working Exploits . 230
Making Triage Decisions . . 231

Maintaining a Secure Development Environment . 231
Separating Development from Production . 231
Securing Development Tools . 232
Releasing the Product . 232

AFTERWORD	 233
Call to Action . 234

Security Is Everyone’s Job . 234
Baking In Security . 235

Future Security . 237
Improving Software Quality . . 237
Managing Complexity . 237
From Minimizing to Maximizing Transparency . . 238
Improving Software Authenticity, Trust, and Responsibility 239

Delivering the Last Mile . 240
Conclusion . 244

A
SAMPLE DESIGN DOCUMENT	 245
Title – Private Data Logging Component Design Document . 246
Section 1 – Product Description . . 246
Section 2 – Overview . 247

2.1 Purpose . 247
2.2 Scope . . 247
2.3 Concepts . 247
2.4 Requirements . 248
2.5 Non-Goals . 249
2.6 Outstanding Issues . 249
2.7 Alternative Designs . . 249

Section 3 – Use Cases . 250
Section 4 – System Architecture . 250
Section 5 – Data Design . 251
Section 6 – API . 252

6.1 Hello Request . 253
6.2 Schema Definition Request . 253
6.3 Event Log Request . 253
6.4 Goodbye Request . 254

Section 7 – User Interface Design . 254

Contents in Detail xvii

Section 8 – Technical Design . 255
Section 9 – Configuration . 256
Section 10 – References . 256

B
GLOSSARY	 257

C
EXERCISES	 269

D
CHEAT SHEETS	 275

INDEX	 281

F O R E W O R D

The book you have just started to read is unusual in many ways. Small and
carefully written, it is a very technical book with very little code. It’s a security
book designed for those other than security experts. And as Loren discusses,
it is a deeply personal perspective on technology, written by someone who has
shipped large commercial products, invented important security technology,
and worked extensively in product security.

In 2006, I joined Microsoft, and was handed responsibility for how we
threat modeled across all our products and services. The main approach we
used was based on Loren’s STRIDE work. STRIDE is a mnemonic to help
us consider the threats of Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service, and Elevation of privilege. It has become a
key building block for me. (It’s so central that I regularly need to correct
people who think I invented STRIDE.) In fact, when I read this book, I was
delighted to find that Loren calls on my Four Questions Framework much
the way I call on STRIDE. The Framework is a way of approaching prob-
lems by asking what we are working on, what can go wrong, what we are
going to do about those things, and whether we did a good job. Many of the
lessons in this book suggest that Loren and I have collaborated even though
we never worked directly together.

Today, the world is changing. Security flaws have become front page
news. Your customers expect better security than ever before, and push those
demands by including security in their evaluation criteria, drafting contract
clauses, putting pressure on salespeople and executives, and pressing for new

xx Foreword

laws. Now is a great time to bring better security design into your software,
from conception to coding. This book is about that difficult subject: how to
design software that is secure.

The subject is difficult because of two main challenges. The first chal-
lenge, that security and trust are both natural and nuanced, is the subject
of Chapter 1, so I won’t say more about it. The second is that software pro-
fessionals often hope that software won’t require design. Software seems
infinitely malleable, unlike the products of other engineering disciplines.
In those other disciplines, we build models and prototypes before we bend
steel, pour concrete, or photo-etch silicon. And in contrast, we build code,
refine it, and then release it to the world, rather than following the famous
advice of Fred Brooks: you’re going to throw away the first system you build,
so you might as well plan to treat it as a prototype. The stories we tell of the
evolution of software rarely linger on our fruitless meanderings. We like to
dismiss the many lightbulbs that didn’t work and talk instead about how the
right design just happened to come to us. Sometimes, we even believe it.
Even in writing this, I am aware of a risk that you will think me—or worse,
Loren—to be an advocate of design for its own sake. And that I bother to
disclaim it brings me to another challenge that this book ably takes on:
offering practical advice about the design of software.

This is a book for a group of people who are too rarely respectfully
and compassionately addressed: technical professionals new to security.
Welcome to this part of the profession. As you’ll discover in these pages,
the choices you make about the systems you work on can impact security.
But you don’t need to become a security expert to make better choices.
This book will take you far. Some of you will want to go further, and there’s
plenty of material out there for you to read. Others will do well simply by
applying what you learn here.

ADAM SHOSTACK
President, Shostack + Associates

Author of Threat Modeling: Designing for Security (Wiley, 2014)
Affiliate Professor, University of Washington Paul G. Allen School of

Computer Science and Engineering

P R E F A C E

If you cannot—in the long run—tell everyone
what you have been doing, your doing has been worthless.

—Erwin Schrödinger

Join me on a hike through the software security landscape.
My favorite hike begins in a rainforest, near the top of the island of

Kauaʻi, which is often shrouded in misty rain. The trail climbs moderately
at first, then descends along the contour of the sloping terrain, in places
steep and treacherously slippery after frequent rains. Further down, pass-
ing through valleys choked with invasive ginger or overgrown by thorny
lantana bushes, it gets seriously muddy, and the less dedicated turn and
head back. A couple of miles out, the trees thin out as the environment
gradually warms, becoming arid with the lower elevation. Further on, the
first long views of the surrounding Pacific begin to open up, providing a
glimpse of the promise the trail offers.

In my experience, many software professionals find security daunting at
first: shrouded in mist, even vaguely treacherous. This is not without good
reason. If the act of programming corresponded to a physical environment,
this would be it.

The last mile of the trail runs through terrain made perilous by the
loose volcanic rock that, due to the island’s geologically tender age of five
million years, hasn’t had time to turn into soil. Code is as hard and unfor-
giving as rock, yet so fragile that one small flaw can lead to a disaster, just

xxii Preface

as one misstep on the trail could here. Fortunately, the hiking trail’s path
along the ridge has been well chosen, with natural handholds on the steepest
section: sturdy basalt outcroppings or the exposed, solid roots of ohia trees.

Approaching the end of the trail, you’ll find yourself walking along the
rim of a deep gorge, the loose ground underfoot almost like ball bearings.
To your right, a precipice drops over 2,000 feet. In places, the trail is shoul-
der width. I’ve seen acrophobic hikers turn around at this point, unable to
summon the confidence to proceed. Yet most people are comfortable here,
because the trail is slightly inclined away from the dangerous side. To the left,
the risk is minimal; you face the same challenging footing but on a gentle
slope, so at worst you might slide a few feet. I thought about this trail often
as I wrote this book and have endeavored to provide just such a path, using
stories and analogies like this one to tackle the toughest subjects in a way
that I hope will help you get to the good stuff.

Security is challenging for a number of reasons: it’s abstract, the subject
is vast, and software today is both fragile and extremely complex. How can
one explain the intricacies of security in enough depth to connect with read-
ers, without overwhelming them with too much information? This book con-
fronts those challenges in the spirit of hikers on that trail at the rim of the
gorge: by leaning away from the danger of trying to cover everything. In the
interest of not losing readers, I err on the side of simplification, leaving out
some of the smaller details. By doing so, I hope to prevent readers from met-
aphorically falling into the gorge—that is, getting so confused or frustrated
that they give up. The book should instead serve as a springboard, sparking
your interest in continued exploration of software security practices.

As you approach the end of the trail, the ridge widens out and becomes
flat, easy walking. Rounding the last curve, you’re treated to a stunning
panoramic view of the fabled Na Pali coast. To the right is a verdant hanging
valley, steeply carved from the mountain. A waterfall feeds the meandering
river visible almost directly below. The intricate coastline extends into the
distance, flanked by neighboring islands on the horizon to the west. The
rewards of visiting this place never get old. After drinking in the experience,
a good workout awaits as you start the climb back up.

Just as I’ll never get to see every inch of this island, I won’t learn everything
there is to know about software security, and of course, no book will ever
cover this broad topic completely, either. What I do have, as my guide, is my
own experience. Each of us charts our own unique path through this topic,
and I’ve been fortunate to have been doing this work for a long time. I’ve wit-
nessed firsthand some key developments and followed the evolution of both
the technologies and the culture of software development since its early days.

The purpose of this book is to show you the lay of the security land,
with some words of warning about some of the hazards of the trail so you
can begin confidently exploring further on your own. When it comes to
security, cut-and-dried guidance that works in all circumstances is rare.

Preface xxiii

Instead, my aim is to show you some simple examples from the landscape
to kick-start your interest and deepen your understanding of the core con-
cepts. For every topic this book covers, there is always much more to say.
Solving real-world security challenges always requires more context in order
to better assess possible solutions; the best decisions are grounded in a solid
understanding of the specifics of the design, implementation details, and
more. As you grasp the underlying ideas and begin applying them, the work
becomes intuitive with practice. Fortunately, even small improvements over
time make the effort worthwhile.

When I look back on my work with the security teams at major software
companies, a lost opportunity always strikes me. Working at a large and
profitable corporation has many benefits: along with on-site massages
and sumptuous cafes come on-tap security specialists (like myself) and a
design review process. Yet few other software development efforts enjoy the
benefits of this level of security expertise and a process that integrates secu-
rity from the design phase. This book seeks to empower the software com-
munity to make this standard practice.

With myriad concerns to balance, designers have their hands full. The
good ones are certainly aware of security considerations, but they rarely get
a security design review. (And none of my industry acquaintances have even
heard of the service being offered by consultants.) Developers also have vary-
ing degrees of security knowledge, and unless they pursue it as a specialty,
their knowledge is often at best piecemeal. Some companies do care enough
about security to hire expert consultants, but this invariably happens late in
the process, so they’re working after the fact to shore up security ahead of
release. Bolting on security at the end has become the industry’s standard
strategy—the opposite of baking in security.

Over the years, I have tried to gently spread the word about security
among my colleagues. Invariably, one quickly sees that certain people get it;
others, not so much. Why people respond so differently is a mystery, possibly
more psychological than technological, but it does raise an interesting ques-
tion. What does it mean to “get” security, and how do you teach it? I don’t
mean world-class knowledge, or even mastery, but a sufficient grasp of the
basics to be aware of the challenges and how to make incremental improve-
ments. From that point, software professionals can continue their research
to fill in any gaps. That’s the objective that this book endeavors to deliver.

Throughout the process of writing this book, my understanding of
the challenge this work entails has grown considerably. At first, I was
surprised that a book like this didn’t already exist; now I think I know why.
Security concepts are frequently counterintuitive; attacks are often devi-
ous and nonobvious, and software design itself is already highly abstract.
Software today is so rich and diverse that securing it represents a daunt-
ing challenge. Software security remains an unsolved problem, but we do
understand large parts of it, and we’re getting better at it—if only it weren’t
such a fast-moving target! I certainly don’t have perfect answers for every-
thing. All of the easy answers to security challenges are already built into
our software platforms, so it’s the hard problems that remain. This book

xxiv Preface

strategically emphasizes concepts and the development of a security mindset.
It invites more people to contribute to security, bringing a greater diversity of
fresh perspectives and more consistent security focus.

I hope you will join me on this personal tour of my favorite paths through
the security landscape, in which I share with you the most interesting insights
and effective methodologies that I have to offer. If this book convinces you of
the value of baking security into software from the design phase, of consider-
ing security throughout the process, and of going beyond what I can offer
here, then it will have succeeded.

A C K N O W L E D G M E N T S

Knowledge is in the end based on acknowledgement.
—Ludwig Wittgenstein

I wrote this book with appreciation of the many colleagues in academia and
industry from whom I have learned so much. Security work can be remark-
ably thankless—successes are often invisible, while failures get intense scru-
tiny—and it’s extremely heartening that so many great people devote their
considerable talents and effort to the cause.

Publishing with No Starch Press was my best choice to make this book
the best it can be. Without exception, everyone was great to work with and
infinitely patient handling my endless questions and suggestions.

I would like to thank the early readers of the manuscript for their
valuable feedback: Adam Shostack, Elisa Heymann, Joel Scambray, John
Camilleri, John Goben, Jonathan Lundell, and Tony Cargile. Adam’s sup-
port has been above and beyond, leading to a wide range of other discus-
sions, putting in the good word for me with No Starch Press, and capped
off by his generous contribution of the foreword.

It would have been interesting to record all the errors corrected in
the process of writing this book, and it certainly has been a great lesson in
humility. I thank everyone for their sharp eyes, and take responsibility for
what errors may have made it through. Please refer to the online errata at
https://www.nostarch.com/designing-secure-software/ for the latest corrections.

https://www.nostarch.com/designing-secure-software/

xxvi Acknowledgments

I have benefited from great support from others outside the tech sphere
as well, and a few deserve special mention with my appreciation: Rosemary
Brisco, for marketing advice; Lisa Steres, PhD, for unwavering enthusiasm
and enduring interest in this project.

Finally, arigatou to my wife, Keiko, for her boundless support through-
out this project.

I N T R O D U C T I O N

This book is a guide for software profession-
als who want to better understand concepts

essential to the discipline of software security
and learn how to practice the art of secure soft-

ware design and implementation. Several of the topics
covered here I was fortunate to have innovated myself.
Others, I witnessed develop and take root. Based on
my own industry experience, this book is packed with
actionable ideas you can start using right away to make
the software you work on more secure.

Two central themes run through this book: encouraging software pro-
fessionals to focus on security early in the software construction process,
and involving the entire team in the process of—as well as the responsibility
for—security. There is certainly plenty of room for improvement in both of
these areas, and this book shows how to realize these goals.

xxviii Introduction

I have had the unique opportunity of working on the front lines of soft-
ware security over the course of my career, and now I would like to share my
learnings as broadly as possible. Over 20 years ago, I was part of the team at
Microsoft that first applied threat modeling at scale across a large software
company. Years later, at Google, I participated in an evolution of the same
fundamental practice, and experienced a whole new way of approaching
the challenge. Part II of this book is informed by my having performed well
over a hundred design reviews. Looking back on how far we have come pro-
vides me with a great perspective with which to explain it all anew.

Designing, building, and operating software systems is an inherently
risky undertaking. Every choice, every step of the way, nudges the risk of
introducing a security vulnerability either up or down. This book covers what
I know best, learned from personal experience. I convey the security mindset
from first principles and show how to bake in security throughout the devel-
opment process. Along the way I provide examples of design and code,
largely independent of specific technologies so as to be as broadly applicable as
possible. The text is peppered with numerous stories, analogies, and examples
to add spice and communicate abstract ideas as effectively as possible.

The security mindset comes more easily to some people than others, so
I have focused on building that intuition, to help you think in new ways that
will facilitate a software security perspective in your work. And I should add
that in my own experience, even for those of us to whom it comes easily,
there are always more insights to gain.

This is a concise book that covers a lot of ground, and in writing it,
I have come to see its brevity as essential to what success it may achieve.
Software security is a field of intimidating breadth and depth, so keeping
the book shorter will, I hope, make it more broadly approachable. My aim is
to get you thinking about security in new ways, and to make it easy for you
to apply this new perspective in your own work.

Who Should Read This Book?
This book is for anyone already proficient in some facet of software design
and development, including architects, UX/UI designers, program man-
agers, software engineers, programmers, testers, and management. Tech
professionals should have no trouble following the conceptual material
so long as they understand the basics of how software works and how it’s
constructed. Software is used so pervasively and is of such great diversity
that I won’t say all of it needs security; however, most of it likely does, and
certainly any that connects to the internet or interfaces significantly with
people.

In writing the book, I found it useful to consider three classes of prospec-
tive readers, and would like to offer a few words here to each of these camps.

Security newbies, especially those intimidated by security, are the primary
audience I am writing for, because it’s important that everyone working
in software understands security so they can contribute to improving it. To

Introduction xxix

make more secure software in the future we need everyone involved, and I
hope this book will help those just starting to learn about security to quickly
get up to speed.

Security-aware readers are those with interest in but limited knowledge
of security, seeking to deepen their understanding and learn more practi-
cal ways of applying these skills to their work. I wrote this book to fill in the
gaps and provide plenty of ways you can immediately put what you learn
here into practice.

Security experts (you know who you are) round out the field. They may
be familiar with much of the material, but I believe this book provides
some new perspectives and still has much to offer them. Namely, the book
includes discussions of important relevant topics such as secure design,
security reviews, and “soft skills” that are rarely written about.

Part III of this book, which covers implementation vulnerabilities and
mitigations, includes short excerpts of code written in either C or Python.
Some examples assume familiarity with the concept of memory allocation,
as well as an understanding of integer and floating-point types, including
binary arithmetic. In a few places I use mathematical formulae, but nothing
more than modulo and exponential arithmetic. Readers who find the code
or math too technical or irrelevant should feel free to skip over these sec-
tions without fear of losing the thread of the overall narrative. References
such as man(1) are *nix (Unix family of operating systems) commands (1)
and functions (3).

What Topics Does the Book Cover?
The book consists of 13 chapters organized into three parts, covering con-
cepts, design, and implementation, plus a conclusion.

Part I: Concepts
Chapters 1 through 5 provide a conceptual basis for the rest of book.
Chapter 1: Foundations, is an overview of information security and privacy
fundamentals. Chapter 2: Threats, introduces threat modeling, fleshing out
the core concepts of attack surfaces and trust boundaries in the context of
protecting assets. The next three chapters introduce valuable tools available
to readers for building secure software. Chapter 3: Mitigations, discusses
commonly used strategies for defensively mitigating identified threats.
Chapter 4: Patterns, presents a number of effective security design patterns
and flags some anti-patterns to avoid. Chapter 5: Cryptography, takes a tool-
box approach to explaining how to use standard cryptographic libraries to
mitigate common risks, without going into the underlying math (which is
rarely needed in practice).

Part II: Design
This part of the book represents perhaps its most unique and impor-
tant contribution to prospective readers. Chapter 6: Secure Design, and

xxx Introduction

Chapter 7: Security Design Reviews, offer guidance on secure software
design and practical techniques for how to accomplish it, approaching the
subject from the designer’s and reviewer’s perspectives, respectively. In
the process, they explain why it’s important to bake security into software
design from the beginning.

These chapters draw on the ideas introduced in the first part of the
book, offering specific methodologies for how to incorporate them to build
a secure design. The review methodology is directly based on my industry
experience, including a step-by-step process you can adapt to how you work.
Consider browsing the sample design document in Appendix A while read-
ing these chapters as an example of how to put these ideas into practice.

Part III: Implementation
Chapters 8 through 13 cover security at the implementation stage and touch
on deployment, operations, and end-of-life. Once you have a secure design,
this part of the book explains how to develop software without introducing
additional vulnerabilities. These chapters include snippets of code, illustrating
both how vulnerabilities creep into code and how to avoid them. Chapter 8:
Secure Programming, introduces the security challenge that programmers
face and what real vulnerabilities actually look like in code. Chapter 9: Low-
Level Coding Flaws, covers the foibles of computer arithmetic and how C-style
explicit management of dynamic memory allocation can undermine security.
Chapter 10: Untrusted Input, and Chapter 11: Web Security, cover many of
the commonplace bugs that have been well known for many years but just
don’t seem to go away (such as injection, path traversal, XSS, and CSRF vul-
nerabilities). Chapter 12: Security Testing, covers the greatly underutilized
practice of testing to ensure that your code is secure. Chapter 13: Secure
Development Best Practices, rounds out the secure implementation guid-
ance, covering some general best practices and providing cautionary warn-
ings about common pitfalls.

The excerpts of code in this part of the book generally demonstrate vul-
nerabilities to be avoided, followed by patched versions that show how to make
the code secure (labeled “vulnerable code” and “fixed code,” respectively). As
such, the code herein is not intended to be copied for use in production soft-
ware. Even the fixed code could have vulnerabilities in another context due to
other issues, so you should not consider any code presented in this book to be
guaranteed secure for any application.

Conclusion
The Afterword concludes the book and describes some ways that I hope it
will make a positive impact. Here I summarize the key points made in the
book, attempt to peer into the future, and offer speculative ideas that could
help ratchet software security upward, beginning with a vision for how this
book can contribute to more secure software going forward.

Introduction xxxi

Appendices
Appendix A is a sample design document that illustrates what security-
aware design looks like in practice.

Appendix B is a glossary of software security terms that appear
throughout the book.

Appendix C includes some open-ended exercises and questions that
ambitious readers might enjoy researching.

Appendix D consists of a collection of cheat sheets that summarize key
concepts and processes.

In addition, a compilation of references to sources mentioned in the
book can be found at https://designingsecuresoftware.com/ (and linked from
https://nostarch.com/designing-secure-software/).

Good, Safe Fun
Before we get started, I’d like to add some important words of warning
about being responsible with the security knowledge this book presents.
In order to explain how to make software safe, I have had to describe how
various vulnerabilities work, and how attackers potentially exploit them.
Experimentation is a great way to hone skills from both the attack and
defense perspectives, but it’s important to use this knowledge carefully.

Never play around by investigating security on production systems.
When you read about cross-site scripting (XSS), for instance, you may be
tempted to try browsing your favorite website with tricky URLs to see what
happens. Please don’t. Even when done with the best of intentions, these
explorations may look like real attacks to site administrators. It’s important
to respect the possibility that others will interpret your actions as a threat—
and, of course, you may be skirting the law in some countries. Use your com-
mon sense, including considering how your actions might be interpreted
and the possibility of mistakes and unintended consequences, and err on
the side of refraining. Instead, if you’d like to experiment with XSS, put up
your own web server using fake data; you can then play around with this to
your heart’s content.

Furthermore, while this book presents the best general advice I can
offer based on many years of experience working on software security, no
guidance is perfect or applicable in every conceivable context. Solutions men-
tioned herein are never “silver bullets”: they are suggestions, or examples of
common approaches worth knowing about. Rely on your best judgment when
assessing security decisions. No book can make these choices for you, but this
book can help you get them right.

https://designingsecuresoftware.com/
https://nostarch.com/designing-secure-software/

PART I
C O N C E P T S

1
F O U N D A T I O N S

Honesty is a foundation, and it’s usually a solid foundation. Even if I
do get in trouble for what I said, it’s something that I can stand on.

—Charlamagne tha God

Software security is at once a logical practice
and an art, one based on intuitive decision

making. It requires an understanding of mod-
ern digital systems, but also a sensitivity to the

humans interacting with, and affected by, those systems.
If that sounds daunting, then you have a good sense
of the fundamental challenge this book endeavors to
explain. This perspective also sheds light on why soft-
ware security has continued to challenge the field for so
long, and why the solid progress made so far has taken
so much effort, even if it has only chipped away at some of the problems.
Yet there is very good news in this state of affairs, because it means that all
of us can make a real difference by increasing our awareness of, and par-
ticipation in, better security at every stage of the process.

We begin by considering what security exactly is. Given security’s sub-
jective nature, it’s critical to think clearly about its foundations. This book

4 Chapter 1

represents my understanding of the best thinking out there, based on my
own experience. Trust undergirds all of security, because nobody works
in a vacuum, and modern digital systems are far too complicated to be built
single-handedly from the silicon up; you have to trust others to provide every-
thing (starting with the hardware, firmware, operating system, and compil-
ers) that you don’t create yourself. Building on this base, next I present the
six classic principles of security: the three components of classic information
security and the three-part “Gold Standard” used to enforce it. Finally, the
section on information privacy adds important human and societal factors
necessary to consider as digital products and services become increasingly
integrated into the most sensitive realms of modern life.

Though readers doubtlessly have good intuitions about what words
such as security, trust, or confidentiality mean, in this book these words take
on specific technical meanings worth teasing out carefully, so I suggest
reading this chapter closely. As a challenge to more advanced readers, I
invite you to attempt to write better descriptions yourself—no doubt it
will be an educational exercise for everyone.

Understanding Security
All organisms have natural instincts to chart a course away from danger,
defend against attacks, and aim toward whatever sanctuary they can find.

It is important to appreciate just how remarkable our innate sense of
physical security is, when it works. By contrast, we have few genuine signals
to work with in the virtual world—and fake signals are easily fabricated.
Before we approach security from a technical perspective, let’s consider a
real-world story as an illustration of what humans are capable of. (As we’ll
see later, in the digital domain we need a whole new set of skills.)

The following is a true story from an auto salesman. After conducting
a customer test drive, the salesman and customer returned to the lot. The
salesman got out of the car and continued to chat with the customer while
walking around to the front of the car. “When I looked him in the eyes,” the
salesman recounted, “That’s when I said, ‘Oh no. This guy’s gonna try and
steal this car.’” Events accelerated: the customer-turned-thief put the car in
gear and sped away while the salesman hung on for the ride of his life on the
hood of the car. The perpetrator drove violently in an unsuccessful attempt to
throw him from the vehicle. (Fortunately, the salesman sustained no major
injuries and the criminal was soon arrested, convicted, and ordered to pay
restitution.)

A subtle risk calculation took place when those men locked eyes. Within
fractions of a second, the salesman had processed complex visual signals,
derived from the customer’s facial expression and body language, distilling
into a clear intention of a hostile action. Now imagine that the same sales-
man was the target of a spear phishing attack (a fraudulent email designed to
fool a specific target, as opposed to a mass audience). In the digital realm,
without the signals he detected when face-to-face with his attacker, he’d be
much more easily tricked.

Foundations 5

When it comes to information security, computers, networks, and soft-
ware, we need to think analytically to assess the risks we face if we want to
have any hope of securing digital systems. And we must do this despite being
unable to directly see, smell, or hear bits or code. Whenever you’re examining
data online, you’re using software to display information in human-readable
fonts, and typically, there’s a lot of code between you and the actual bits; in
fact, it’s potentially a hall of mirrors. So you must trust your tools and trust
that you really are examining the data you think you are.

Software security centers on the protection of digital assets against an
array of threats, an effort largely driven by a basic set of security principles
that the rest of this chapter will discuss. By analyzing a system from these
first principles, we can learn how vulnerabilities slip into software, as well as
how to proactively avoid and mitigate problems. These foundational prin-
ciples, along with other design techniques covered in subsequent chapters,
apply not only to software but also to designing and operating bicycle locks,
bank vaults, or prisons.

The term information security refers specifically to the protection of data
and how access is granted. Software security is a broader term that focuses
on the design, implementation, and operation of software systems that are
trustworthy, including the reliable enforcement of information security.

Trust
Trust is equally critical in the digital realm, yet too often taken for granted.
Software security ultimately depends on trust, because you cannot control
every part of a system, write all of your own software, or vet all suppliers of
dependencies. Modern digital systems are so complex that not even the major
tech giants can build a complete technology stack from scratch. From the
silicon to the operating systems, networking, peripherals, and the numerous
software layers that make it all work, the systems we rely on routinely are
remarkable technical accomplishments of immense size and complexity. Since
nobody can build these systems all by themselves, organizations rely on hard-
ware and software products often chosen based on features or pricing—but
it’s important to remember that each dependency also involves a trust decision.

Security demands that we examine these trust relationships closely,
even though nobody has the time or resources to investigate and verify
everything. Failing to trust enough means doing a lot of needless work to
protect a system when no real threat is likely. On the other hand, trust-
ing too freely could mean getting blindsided later. Put bluntly, when you
fully trust an entity, they are free to fail without consequences. Trust can
be violated in two fundamentally different ways: by malice (cheating,
lying, subterfuge) and by incompetence (mistakes, misunderstandings,
negligence).

The need to make critical decisions in the face of incomplete informa-
tion is precisely what trust is best suited for. But our innate sense of trust
relies on subtle sensory inputs wholly unsuited to the digital realm. The
following discussion begins with the concept of trust itself, dissects what

6 Chapter 1

trust as we experience it is, and then shifts to trust as it relates to software.
As you read along, try to find the common threads and connect how you
think about software to your intuitions about trust. Tapping into your exist-
ing trust skills is a powerful technique that over time gives you a gut feel
for software security that is more effective than any amount of technical
analysis.

Feeling Trust
The best way to understand trust is to pay attention while experiencing what
relying on trust actually feels like. Here’s a thought experiment—or an exer-
cise to try for real, with someone you really trust—that brings home exactly
what trust means. Imagine walking along a busy thoroughfare with a friend,
with traffic streaming by only a few feet away. Sighting a crosswalk up ahead,
you explain that you would like them to guide you across the road, that you
are relying on them to cross safely, and that you are closing your eyes and
will obediently follow them. Holding hands, you and your friend proceed
to the crosswalk, where they gently turn you to face the road, gesturing by
touch that you should wait. Listening to the sounds of speeding cars, you
know well that your friend (and now, guardian) is waiting until it is safe to
cross, but your heartbeat has most likely also increased noticeably, and you
may find yourself listening attentively for any sound of impending danger.

Now your friend unmistakably leads you forward, guiding you to step
down from the curb. If you decide to step into the road with your eyes closed,
what you are feeling is pure trust—or perhaps some degree of the lack
thereof. Your mind keenly senses palpable risk, your senses strain to confirm
safety directly, and something deep down is warning you not to do it. Your
own internal security monitoring system has insufficient evidence and wants
you to open your eyes before moving; what if your friend somehow misjudges
the situation, or worse, is playing a deadly evil trick on you? Ultimately, it’s
the trust you have invested in your friend that allows you to override those
instincts and cross the road.

Raise your own awareness of digital trust decisions, and help others see
how important their impact is on security. Ideally, when you select a com-
ponent or choose a vendor for a critical service, you’ll be able to tap into
the very same intuitions that guide trust decisions like in the exercise just
described.

You Cannot See Bits
All of this discussion is to emphasize the fact that when you think you are
“looking directly at the data,” you are actually looking at a distant representa-
tion. In fact, you are looking at pixels on a screen that you believe represent
the contents of certain bytes whose physical location you don’t know with any
precision, and many millions of instructions were likely executed in order to
map the data into the human-legible form on your display. Digital technol-
ogy makes trust especially tricky, because it’s so abstract, lightning fast, and
hidden from direct view. Whenever you examine data, remember that there
is a lot of software and hardware between the actual data in memory and the

Foundations 7

pixels that form characters that we interpret as the data value. If something
in there were maliciously misrepresenting the actual data, how would you
possibly know? Ground truth about digital information is extremely difficult
to observe directly.

Consider the lock icon in the address bar of a web browser indicating a
secure connection to the website. The appearance or absence of these dis-
tinctive pixels communicates a single bit to the user: safe or unsafe. Behind
the scenes, there is a lot of data and considerable computation, as will be
detailed in Chapter 11, all rolling up into a binary yes/no security indica-
tion. Even an expert developer would face a Herculean task attempting to
manually confirm the validity of just one instance. So all we can do is trust
the software—and there is every reason that we should trust it. The point
here is to recognize how deep and pervasive that trust is, not just take it for
granted.

Competence and Imperfection
Most attacks begin by exploiting a software flaw or misconfiguration that
resulted from the honest, good faith efforts of programmers and IT staff,
who happen to be human, and hence imperfect. Since licenses routinely
disavow essentially all liability, all software is used on a caveat emptor basis.
If, as is routinely claimed, “all software has bugs,” then a subset of those
bugs will be exploitable, and eventually the attackers will find a few of
those bugs and have an opportunity to use them maliciously. It’s relatively
rare for software professionals to fall victim to an attack due to misplaced
trust in malicious software, enabling a direct attack.

Fortunately, making big trust decisions about operating systems and pro-
gramming languages is usually easy. Many large corporations have extensive
track records of providing and supporting quality hardware and software
products, and it’s quite reasonable to trust them. Trusting others with less
of a track record might be riskier. While they likely have many skilled and
motivated people working diligently, the industry’s lack of transparency
makes the security of their products difficult to judge. Open source provides
transparency, but depends on the degree of supervision the project owners
provide as a hedge against contributors slipping in code that is buggy or
even outright malicious. Remarkably, no software company even attempts to
distinguish itself by promising higher levels of security or indemnification
in the event of an attack, so as customers we have no such options. Legal,
regulatory, and business agreements all provide additional ways of mitigat-
ing the uncertainty around trust decisions.

Take trust decisions seriously, but recognize that nobody gets it right
100 percent of the time. The bad news is that these decisions will always be
imperfect, because, as the US Securities and Exchange Commission warns
us, “past performance does not guarantee future results.” The good news
is that people are highly evolved to gauge trust—though it works best
face-to-face, decidedly not via digital media—and in the vast majority
of cases we do make the right trust decisions, provided we have accurate
information and act with intention.

8 Chapter 1

Trust Is a Spectrum
Trust is always granted in degrees, and trust assessments always have some
uncertainty. At the far end of the spectrum, such as when undergoing major
surgery, we may literally entrust our lives to medical professionals, willingly
ceding not just control over our bodies but our very consciousness and abil-
ity to monitor the operation. In the worst case scenario, if they should fail
us and we do not survive, we literally have no recourse whatsoever (legal
rights of our estate aside). Everyday trust is much more limited: credit cards
have limits to cap the bank’s potential loss on nonpayment, while cars have
valet keys so we can limit access to the trunk.

Since trust is a spectrum, a “trust but verify” policy is a useful tool
that bridges the gap between full trust and complete distrust. In software,
you can achieve this through the combination of authorization and dili-
gent auditing. Typically, this involves a combination of automated auditing
(to accurately check a large volume of mostly repetitive activity logs) and
manual auditing (spot checking, handling exceptional cases, and having a
human in the loop to make final decisions). We’ll cover auditing in more
detail later in this chapter.

Trust Decisions
In software, you have a binary choice: to trust, or not to trust? While some
systems do enforce a variety of permissions on applications, you still need
to either allow or disallow each given permission. When in doubt, you can
safely err on the side of distrusting, so long as at least one candidate solution
reasonably gains your trust. If you are too demanding in your assessments,
and no product can gain your trust, then you are stuck with the prospect of
building the component yourself.

Think of making trust decisions as cutting branches off a decision tree
that otherwise would be effectively infinite. When you can trust a service or
computer to be secure, that saves you the effort of doing deeper analysis.
On the other hand, if you are reluctant to trust, then you need to build and
secure more parts of the system, including all subcomponents. Figure 1-1
illustrates an example of making a trust decision. If there is no available
cloud storage service you would fully trust to store your data, then you must
operate the service yourself, and this entails further trust decisions: to use
a trusted hosting service or do it yourself, and to use existing database
software that you trust or write it yourself. Note that when you don’t trust
a provider then more trust decisions are sure to follow since you cannot do
everything.

For explicitly distrusted inputs—which should include virtually all inputs,
especially anything from the public internet or any client—treat that data
with suspicion and the highest levels of care (for more on this, see “Reluctance
to Trust” on page 68 in Chapter 4). Even for trusted inputs, it can be risky to
assume they are perfectly reliable. Consider opportunistically adding safety
checks when it’s easy to do so, if only to reduce the fragility of the overall sys-
tem and to prevent the propagation of errors in the event of an innocent bug.

Foundations 9

Trust Distrust

And so on…

Need data storage

Use a cloud service Operate own server

Need a server
Need

database software

Use a hosting service

Use existing software

Set up my own
web server...

Write my own
database...

Trust Distrust

And so on…

Use
existing

database
software?

Use existing
cloud service?

Use
existing hosting

 service?

Trust Distrust

Figure 1-1: An example of a decision tree with trust decisions

Implicitly Trusted Components
Every software project relies on an extensive stack of technology that is
implicitly trusted, including hardware, operating systems, development tools,
libraries, and other dependencies that are impractical to vet, so we trust them
based on the reputation of the vendor. Nonetheless, you should maintain
some sense of what is implicitly trusted, and give these decisions due consid-
eration, especially before greatly expanding the scope of implicit trust.

10 Chapter 1

There are no simple techniques for managing implicit trust, but here
is an idea that can help: minimize the number of parties you trust. For
example, if you are already committed to using Microsoft (or Apple, and
so forth) operating systems, lean toward using their compilers, libraries,
applications, and other products and services, so as to minimize your expo-
sure. The reasoning is roughly that trusting additional companies increases
the opportunities for any of these companies to let you down. Additionally,
there is the practical aspect that one company’s line of products tend to be
more compatible and better tested when used together.

Being Trustworthy
Finally, don’t forget the flip side of making trust decisions, which is to promote
trust when you offer products and services. Every software product must con-
vince end users that it’s trustworthy. Often, just presenting a solid professional
image is all it takes, but if the product is fulfilling critical functions, it’s crucial
to give customers a solid basis for that trust.

Here are some suggestions of basic ways to enhance trust in your work:

•	 Transparency engenders trust. Working openly allows customers to
assess the product.

•	 Involving a third party builds trust through their independence (for
example, using hired auditors).

•	 Sometimes your product is the third party that integrates with other
products. Trust grows because it’s difficult for two parties with an arm’s-
length relationship to collude.

•	 When problems do arise, be open to feedback, act decisively, and pub-
licly disclose the results of any investigation and steps taken to prevent
recurrences.

•	 Specific features or design elements can make trust visible—for example,
an archive solution that shows in real time how many backups have been
saved and verified at distributed locations.

Actions beget trust, while empty claims, if anything, erode trust for
savvy customers. Provide tangible evidence of being trustworthy, ideally in
a way that customers can potentially verify for themselves. Even though few
will actually vet the quality of open source code, knowing that they could
(and assuming others likely are doing so) is nearly as convincing.

Classic Principles
The guiding principles of information security originated in the early days
of computing, when computers were emerging from special locked, air-
conditioned, raised-floor rooms and starting to be connected in networks.
These traditional models are the “Newtonian physics” of modern informa-
tion security: a good and simple guide for many applications, but not the
be-all and end-all. For example, information privacy is one of the more

Foundations 11

nuanced considerations for modern data protection and stewardship that
traditional information security principles do not cover.

The foundational principles group nicely into two sets of three. The first
three principles, which I will call C-I-A, define data access requirements;
the other three, in turn, concern how access is controlled and monitored.
We call these the Gold Standard. The two sets of principles are interdepen-
dent, and only as a whole do they protect data assets.

Beyond the prevention of unauthorized data access lies the question of
who or what components and systems should be entrusted with access. This
is a harder question of trust, and ultimately beyond the scope of informa-
tion security, even though confronting it is unavoidable in order to secure
any digital system.

Information Security’s C-I-A
We traditionally build software security on three basic principles of infor-
mation security: confidentiality, integrity, and availability. Formulated around
the fundamentals of data protection, the individual meanings of the three
pillars are intuitive:

Confidentiality

Allow only authorized data access—don’t leak information.

Integrity

Maintain data accurately—don’t allow unauthorized modification or
deletion.

Availability

Preserve the availability of data—don’t allow significant delays or unau-
thorized shutdowns.

Each of these brief definitions describes the goal and defenses against
its subversion. In reviewing designs, it’s often helpful to think of ways one
might undermine security, and work back to defensive measures.

All three components of C-I-A represent ideals, and it’s crucial to avoid
insisting on perfection. For example, an analysis of even solidly encrypted
network traffic could allow a determined eavesdropper to deduce some-
thing about the communications between two endpoints, like the volume of
data exchanged. Technically, this exchange of data weakens the confiden-
tiality of interaction between the endpoints; but for practical purposes, we
can’t fix it without taking extreme measures, and usually the risk is minor
enough to be safely ignored. (One way to conceal the fact of communica-
tion is for endpoints to always exchange a constant volume of data, adding
dummy packets as needed when actual traffic is lower.) What activity corre-
sponds to the traffic, and how might an adversary use that knowledge? The
next chapter explains similar threat assessments in detail.

Notice that authorization is inherent in each component of C-I-A,
which mandates only the right disclosures, modifications of data, or controls

12 Chapter 1

of availability. What constitutes “right” is an important detail, and an authori-
zation policy needs to specify that, but it isn’t part of these fundamental data
protection primitive concepts. That part of the story will be discussed in “The
Gold Standard” starting on page 14.

Confidentiality

Maintaining confidentiality means disclosing private information in only an
authorized manner. This sounds simple, but in practice it involves a number
of complexities.

First, it’s important to carefully identify what information to consider
private. Design documents should make this distinction clear. While what
counts as sensitive might sometimes seem obvious, it’s actually surprising
how people’s opinions vary, and without an explicit specification, we risk
misunderstanding. The safest assumption is to treat all externally collected
information as private by default, until declared otherwise by an explicit
policy that explains how and why the designation can be relaxed.

Here are some oft-overlooked reasons to treat data as private:

•	 An end user might naturally expect their data to be private, unless
informed otherwise, even if revealing it isn’t harmful.

•	 People might enter sensitive information into a text field intended for a
different use.

•	 Information collection, handling, and storage might be subject to laws
and regulations that many are unaware of. (For example, if Europeans
browse your website, it may be subject to EU law, such as the General Data
Protection Regulation.)

When handling private information, determine what constitutes proper
access. Deciding when and how to disclose information is ultimately a trust
decision, and it’s worth not only spelling out the rules, but also explaining
the subjective choices behind those rules.

Compromises of confidentiality happen on a spectrum. In a complete
disclosure, attackers acquire an entire dataset, including metadata. At the
lower end of the spectrum might be a minor disclosure of information,
such as an internal error message or similar leak of no real consequence.
As an example of a partial disclosure, consider the practice of assigning
sequential numbers to new customers: a wily competitor can sign up as a
new customer and get a new customer number from time to time, then
compute the successive differences to learn the numbers of customers
acquired during each interval. Any leakage of details about protected data
is to some degree a confidentiality compromise.

It’s so easy to underestimate the potential value of minor disclosures.
Attackers might put data to use in a completely different way than the
developers originally intended, and combining tiny bits of information can
provide more powerful insights than any of the individual parts on their
own. Learning someone’s ZIP code might not tell you much, but if you also
know their approximate age and that they’re an MD, you could perhaps

Foundations 13

combine this information to identify the individual in a sparsely populated
area—a process known as deanonymization or reidentification. By analyzing a
supposedly anonymized dataset published by Netflix, researchers were able
to match numerous user accounts to IMDb accounts: it turns out that your
favorite movies are an effective means of unique personal identification.

Integrity

Integrity, used in an information security context, is simply the authenticity
and accuracy of data, kept safe from unauthorized tampering or removal.
In addition to protecting against unauthorized modification, an accurate
record of the provenance of data—the original source, and any authorized
changes made—can be an important, and stronger, assurance of integrity.

One classic defense against many tampering attacks is to preserve ver-
sions of critical data and record their provenance. Simply put, keep good
backups. Incremental backups can be excellent mitigations because they’re
simple and efficient to put in place and provide a series of snapshots that
detail exactly what data changed, and when. However, the need for integrity
goes far beyond the protection of data, and often includes ensuring the
integrity of components, server logs, software source code and versions,
and other forensic information necessary to determine the original source
of tampering when problems occur. In addition to limited administrative
access controls, secure digests (similar to checksums) and digital signatures
are also strong integrity checks, as explained in Chapter 5.

Bear in mind that tampering can happen in many different ways, not
necessarily by modifying data in storage. For instance, in a web application,
tampering might happen on the client side, on the wire between the client
and server, by tricking an authorized party into making a change, by modi-
fying a script on the page, or in many other ways.

Availability

Attacks on availability are a sad reality of the internet-connected world and
can be among the most difficult to defend against. In the simplest cases, the
attacker may just send an exceptionally heavy load of traffic to the server,
overwhelming it with what looks like valid uses of the service. This principle
implies that information is temporarily unavailable; while data that is perma-
nently lost is also unavailable, this is generally considered to be fundamentally
a compromise of integrity.

Anonymous denial-of-service (DoS) attacks, often for ransom, threaten
any internet service, posing a difficult challenge. To best defend against these
attacks, host on large-scale services with infrastructure that stands up to
heavy loads, and maintain the flexibility to move infrastructure quickly in the
event of problems. Nobody knows how common or costly DoS attacks really
are, since many victims resolve these incidents privately. But without a doubt,
you should create detailed plans in advance to prepare for such incidents.

Many other kinds of availability threats are possible as well. For a web
server, a malformed request that triggers a bug, causing a crash or infi-
nite loop, can devastate its service. Other attacks can also overload the

14 Chapter 1

storage, computation, or communication capacity of an application, or per-
haps use patterns that break the effectiveness of caching, all of which pose
serious issues. Unauthorized destruction of software, configuration, or data
(even with backup, delays can result) also can adversely impact availability.

The Gold Standard
If C-I-A is the goal of secure systems, the Gold Standard describes the
means to that end. Aurum is Latin for gold, hence the chemical symbol
“Au,” and it just so happens that the three important principles of security
enforcement start with those same two letters:

Authentication

High-assurance determination of the identity of a principal

Authorization

Reliably only allowing an action by an authenticated principal

Auditing

Maintaining a reliable record of actions by principals for inspection

N O T E 	 Jargon alert: because the words are so long and similar, you may encounter the handy
abbreviations authN (for authentication) and authZ (for authorization) as short
forms that plainly distinguish them.

A principal is any reliably authenticated entity: a person, business or
organization, government entity, application, service, device, or any other
agent with the power to act.

Authentication is the process of reliably establishing the validity of the
principal’s credentials. Systems commonly allow registered users to authen-
ticate by proving that they know the password associated with their user
account, but authentication can be much broader. Credentials may be
something the principal knows (a password) or possesses (a smart card),
or something they are (biometric data); we’ll talk more about credentials in
the next section.

Data access for authenticated principals is subject to authorization deci-
sions, either allowing or denying their actions according to prescribed
rules. For example, filesystems with access control settings may make cer-
tain files read-only for specific users. In a banking system, clerks may record
transactions up to a certain amount, but might require a manager to approve
larger transactions.

If a service keeps a secure log that accurately records what principals do,
including any failed attempts at performing some action, the administrators
can perform a subsequent audit to inspect how the system performed and
ensure that all actions are proper. Accurate audit logs are an important com-
ponent of strong security, because they provide a reliable report of actual
events. Detailed logs provide a record of what happened, shedding light on
exactly what transpired when an unusual or suspicious event takes place. For

Foundations 15

example, if you discover that an important file is gone, the log should ideally
provide details of who deleted it and when, providing a starting point for fur-
ther investigation.

The Gold Standard acts as the enforcement mechanism that protects
C-I-A. We defined confidentiality and integrity as protection against unau-
thorized disclosure or tampering, and availability is also subject to control by
an authorized administrator. The only way to truly enforce authorization
decisions is if the principals using the system are properly authenticated.
Auditing completes the picture by providing a reliable log of who did what
and when, subject to regular review for irregularities, and holding the act-
ing parties responsible.

Secure designs should always explicitly separate authentication from
authorization, because combining them leads to confusion, and audit trails
are clearer when these stages are cleanly divided. These two real-world exam-
ples illustrate why the separation is important:

•	 “Why did you let that guy into the vault?” “I have no idea, but he looked
legit!”

•	 “Why did you let that guy into the vault?” “His ID was valid for ‘Sam
Smith’ and he had a written note from the branch manager.”

The second response is much more complete than the first, which is of
no help at all, other than proving that the guard is a nitwit. If the vault was
compromised, the second response would give clear details to investigate:
Did the branch manager have authority to grant vault access and write
the note? If the guard retained a copy of the ID, then that information
helps identify and find Sam Smith. By contrast, if the branch manager’s
note had just said, “let the bearer into the vault”—authorization without
authentication—investigators would have had little idea what happened or
who the intruder was after security was breached.

Authentication

An authentication process tests a principal’s claims of identity based on
credentials that demonstrate they really are who they claim to be. Or the
service might use a stronger form of credentials, such as a digital signature
or a challenge, which proves that the principal possesses a private key asso-
ciated with the identity, which is how browsers authenticate web servers via
HTTPS. The digital signature is a better form of authentication because
the principal can prove they know the secret without divulging it.

Evidence suitable for authentication falls into the following categories:

•	 Something you know, like a password

•	 Something you have, like a secure token, or in the analog world some
kind of certificate, passport, or signed document that is unforgeable

•	 Something you are—that is, biometrics (fingerprint, iris pattern, and such)

•	 Somewhere you are—your verified location, such as a connection to a pri-
vate network in a secure facility

16 Chapter 1

Many of these methods are quite fallible. Something you know can be
revealed, something you have can be stolen or copied, your location can be
manipulated in various ways, and even something you are can potentially
be faked (and if it’s compromised, you can’t later change what you are). On
top of those concerns, in today’s networked world, authentication almost
always happens across a network, making the task more difficult than in-
person authentication. On the web, for instance, the browser serves as a
trust intermediary, locally authenticating and, only if successful, then pass-
ing along cryptographic credentials to the server. Systems commonly use
multiple authentication factors to mitigate these concerns, and auditing
these frequently is another important backstop. Two weak authentication
factors are better than one (but not a lot better).

Before an organization can assign someone credentials, however, it has
to address the gnarly question of how to determine a person’s true identity
when they join a company, sign up for an account, or call the helpdesk to
reinstate access after forgetting their password.

For example, when I joined Google, all of us new employees gathered
on a Monday morning opposite several IT admin folks, who checked our
passports or other ID against a new employee roster. Only then did they
give us our badges and company-issued laptops and have us establish our
login passwords.

By checking whether the credentials we provided (our IDs) correctly
identified us as the people we purported to be, the IT team confirmed our
identities. The security of this identification depended on the integrity
of the government-issued IDs and supporting documents (for example,
birth certificates) we provided. How accurately were those issued? How
difficult would they be to forge, or obtain fraudulently? Ideally, a chain of
association from registration at birth would remain intact throughout our
lifetimes to uniquely identify each of us authentically. Securely identifying
people is challenging largely because the most effective techniques reek of
authoritarianism and are socially unacceptable, so to preserve some privacy
and freedom, we opt for weaker methods in daily life. The issue of how to
determine a person’s true identity is out of scope for this book, which will
focus on the Gold Standard, not this harder problem of identity management.

Whenever feasible, rely on existing trustworthy authentication services,
and do not reinvent the wheel unnecessarily. Even simple password authen-
tication is quite difficult to do securely, and dealing securely with forgotten
passwords is even harder. Generally speaking, the authentication process
should examine credentials and provide either a pass or fail response. Avoid
indicating partial success, since this could aid an attacker zeroing in on the
credentials by trial and error. To mitigate the threat of brute-force guessing,
a common strategy is to make authentication inherently computationally
heavyweight, or to introduce increasing delay into the process (also see “Avoid
Predictability” on page 61 in Chapter 4).

After authenticating the user, the system must find a way to securely
bind the identity to the principal. Typically, an authentication module
issues a token to the principal that they can use in lieu of full authentica-
tion for subsequent requests. The idea is that the principal, via an agent

Foundations 17

such as a web browser, presents the authentication token as shorthand
assurance of who they claim to be, creating a secure context for future
requests. This context binds the stored token for presentation with future
requests on behalf of the authenticated principal. Websites often do this
with a secure cookie associated with the browsing session, but there are
many different techniques for other kinds of principals and interfaces.

The secure binding of an authenticated identity can be compromised
in two fundamentally different ways. The obvious one is where an attacker
usurps the victim’s identity. Alternatively, the authenticated principal may
collude and try to give away their identity or even foist it off on someone
else. An example of the latter case is the sharing of a paid streaming sub-
scription. The web does not afford very good ways of defending against
this because the binding is loose and depends on the cooperation of the
principal.

Authorization

A decision to allow or deny critical actions should be based on the identity
of the principal as established by authentication. Systems implement autho-
rization in business logic, an access control list, or some other formal access
policy.

Anonymous authorization (that is, authorization without authentica-
tion) can be useful in rare circumstances; a real-world example might be
possession of the key to a public locker in a busy station. Access restrictions
based on time (for example, database access restricted to business hours)
are another common example.

A single guard should enforce authorization on a given resource.
Authorization code scattered throughout a codebase is a nightmare to
maintain and audit. Instead, authorization should rely on a common
framework that grants access uniformly. A well-structured design can
help the developers get it right. Use one of the many standard authorization
models rather than confusing ad hoc logic wherever possible.

Role-based access control (RBAC) bridges the connection between authen-
tication and authorization. RBAC grants access based on roles assigned to
authenticated principals, simplifying access control with a uniform frame-
work. For example, roles in a bank might include a clerk, manager, loan
officer, security guard, financial auditor, and IT administrator. Instead of
choosing access privileges for each person individually, RBAC designates one
or more roles based on each person’s responsibilities to automatically and
uniformly assign them associated privileges. In more advanced models, one
person might have multiple roles and explicitly select which role they choose
to apply for a given access.

Authorization mechanisms can be much more granular than the sim-
ple read/write access control that operating systems traditionally provide.
By designing more robust authorization mechanisms, you can strengthen
security by limiting access without losing useful functionality. These more
advanced authorization models include attribute-based access control (ABAC),
policy-based access control (PBAC), and many more.

18 Chapter 1

Consider a simple bank teller example to see how fine-grained authori-
zation might tighten up policy:

Rate-limited

Tellers may do up to 20 transactions per hour, but more would be con-
sidered suspicious.

Time of day

Teller transactions must occur during business hours, when clocked in.

No self-service

Tellers are forbidden to do transactions with their personal accounts.

Multiple principals

Teller transactions over $10,000 require separate manager approval
(eliminating the risk of one bad actor moving a lot of money at once).

Finally, even read-only access may be too high a level for certain data,
like passwords. Systems usually check login passwords by comparing
digests, which avoids any possibility of leaking the actual plaintext password.
The username and password go to a frontend server that computes the
digest of the password and passes it to an authentication service, quickly
destroying any trace of the plaintext password. The authentication service
cannot read the plaintext password from the credentials database, but it can
read the digest, which it compares to what the frontend server provided. In
this way, it checks the credentials, but the authentication service never has
access to any passwords, so even if compromised, the service cannot leak
them. Unless the design of interfaces affords these alternatives, they will
miss these opportunities to mitigate the possibility of data leakage. We’ll
explore this further when we discuss the pattern of “Least Information”
on page 57 in Chapter 4.

Auditing

In order for an organization to audit system activity, the system must pro-
duce a reliable log of all events that are critical to maintaining security.
These include authentication and authorization events, system startup and
shutdown, software updates, administrative accesses, and so forth. Audit
logs must also be tamper-resistant, and ideally even difficult for administra-
tors to meddle with, to be considered fully reliable records. Auditing is a
critical leg of the Gold Standard, because incidents do happen, and authen-
tication and authorization policies can be flawed. Auditing can also provide
necessary oversight to mitigate the risk of inside jobs in which authorized
principals betray their trust.

If done properly, audit logs are essential for routine monitoring, measur-
ing system activity level, detecting errors and suspicious activity, and, after
an incident, determining when and how an attack actually happened and

Foundations 19

gauging the extent of the damage. Remember that completely protecting a
digital system is not simply a matter of correctly enforcing policies; it’s about
being a responsible steward of information assets. Auditing ensures that
trusted principals acted properly within the broad range of their authority.

In May 2018, Twitter disclosed an embarrassing bug: they had discov-
ered that a code change had inadvertently caused raw login passwords to
appear in internal logs. It’s unlikely that this resulted in any abuse, but it
certainly hurt customer confidence and should never have happened. Logs
should record operational details but not store any actual private informa-
tion so as to minimize the risk of disclosure, since many members of the
technical staff may routinely view the logs. For a detailed treatment of this
requirement, see the sample design document in Appendix A detailing a
logging tool that addresses just this problem.

The system must also prevent anyone from tampering with the logs to
conceal bad acts. If the attacker can modify logs, they’ll just clean out all
traces of their activity. For especially sensitive logs at high risk, an indepen-
dent system under different administrative and operational controls should
manage audit logs in order to prevent the perpetrators of inside jobs from
covering their own tracks. This is difficult to do completely, but the mere
presence of independent oversight often serves as a powerful disincentive
to any funny business, just as a modest fence and conspicuous video surveil-
lance camera can be an effective deterrent to trespassing.

Furthermore, any attempt to circumvent the system would seem highly
suspicious, and any false move would result in serious repercussions for the
offender. Once caught, they would have a hard time repudiating their guilt.

Non-repudiability is an important property of audit logs; if the log shows
that a named administrator ran a certain command at a certain time and
the system crashed immediately, it’s hard to point fingers at others. By con-
trast, if an organization allowed multiple administrators to share the same
account (a terrible idea), it would have no way of definitively knowing who
actually did anything, providing plausible deniability to all.

Ultimately, audit logs are useful only if you monitor them, analyze
unusual events carefully, and follow up, taking appropriate actions when
necessary. To this end, it’s important to log the right amount of detail by
following the Goldilocks principle. Too much logging bloats the volume of
data to oversee, and excessively noisy or disorganized logs make it diffi-
cult to glean useful information. On the other hand, sparse logging with
insufficient detail might omit critical information, so finding the right
balance is an ongoing challenge.

Privacy
In addition to the foundations of information security—C-I-A and the Gold
Standard—another fundamental topic I want to introduce is the related
field of information privacy. The boundaries between security and pri-
vacy are difficult to clearly define, and they are at once closely related and
quite different. In this book I would like to focus on the common points of

20 Chapter 1

intersection, not to attempt to unify them, but to incorporate both security
and privacy into the process of building software.

To respect people’s digital information privacy, we must extend the
principle of confidentiality by taking into account additional human fac-
tors, including:

•	 Customer expectations regarding information collection and use

•	 Clear policies regarding appropriate information use and disclosure

•	 Legal and regulatory issues relating to the collection and use of various
classes of information

•	 Political, cultural, and psychological aspects of processing personal
information

As software becomes more pervasive in modern life, people use it
in more intimate ways involving sensitive areas of their lives, resulting in
many complex issues. Past accidents and abuses have raised the visibility
of the risks, and as society grapples with new challenges through politi-
cal and legal means, handling private information properly has become
challenging.

In the context of software security, this means:

•	 Considering the customer and stakeholder consequences of all data col-
lection and sharing

•	 Flagging all potential issues, and getting expert advice where necessary

•	 Establishing and following clear policies and guidelines regarding pri-
vate information use

•	 Translating policy and guidance into software-enforced checks and
balances

•	 Maintaining accurate records of data acquisition, use, sharing, and
deletion

•	 Auditing data access authorizations and extraordinary access for
compliance

Privacy work tends to be less well-defined than the relatively cut-and-
dried security work of maintaining proper control of systems and providing
appropriate access. Also, we’re still working out privacy expectations and
norms as society ventures deeper into a future with more data collection.
Given these challenges, you would be wise to consider maximal transpar-
ency about data use, including keeping your policies simple enough to be
understood by all, and to collect minimal data, especially personally
identifiable information.

Collect information for a specific purpose only, and retain it only as
long as it’s useful. Unless the design envisions an authorized use, avoid
collection in the first place. Frivolously collecting data for use “someday”
is risky, and almost never a good idea. When the last authorized use of
some data becomes unnecessary, the best protection is secure deletion.
For especially sensitive data, or for maximal privacy protection, make that

Foundations 21

even stronger: delete data when the potential risk of disclosure exceeds
the potential value of retaining it. Retaining many years’ worth of emails
might occasionally be handy for something, but probably not for any clear
business need. Yet internal emails could represent a liability if leaked or dis-
closed, such as by power of subpoena. Rather than hang onto all that data
indefinitely “ just in case,” the best policy is usually to delete it.

A complete treatment of information privacy is outside the scope of this
book, but privacy and security are tightly bound facets of the design of any
system that collects data about people—and people interact with almost all
digital systems, in one way or another. Strong privacy protection is only pos-
sible when security is solid, so these words are an appeal for awareness to
consider and incorporate privacy considerations into software by design.

For all its complexity, one best practice for privacy is well known: the
necessity of clearly communicating privacy expectations. In contrast to secu-
rity, a privacy policy potentially affords a lot of leeway as to how much an
information service does or does not want to leverage the use of customer
data. “We will reuse and sell your data” is one extreme of the privacy spec-
trum, but “some days we may not protect your data” is not a viable stance on
security. Privacy failures arise when user expectations are out of joint with
actual privacy policy, or when there is a clear policy and it is somehow vio-
lated. The former problem stems from not proactively explaining data han-
dling to the user. The latter happens when the policy is unclear, or ignored
by responsible staff, or subverted in a security breakdown.

N O T E 	 See Appendix D for a cheat sheet summarizing the C-I-A and Gold Standard
principles.

2
T H R E A T S

The threat is usually more terrifying than the thing itself.
—Saul Alinsky

Threats are omnipresent, but you can live
with them if you manage them. Software

is no different, except that you don’t have
the benefit of millions of years of evolution

to prepare yourself. That is why you need to adopt a
software security mindset, which requires you to flip
from the builder’s perspective to that of the attackers.
Understanding the potential threats to a system is
the essential starting point in order to bake solid defenses and mitigations
into your software designs. But to perceive these threats in the first place,
you’ll have to stop thinking about typical use cases and using the software as
intended. Instead, you must simply see it for what it is: a bunch of code and
components, with data flowing around and getting stored here and there.

For example, consider the paperclip: it’s cleverly designed to hold sheets
of paper together, but if you bend a paperclip just right, it’s easily refash-
ioned into a stiff wire. A security mindset discerns that you could insert

24 Chapter 2

this wire into the keyhole of a lock to manipulate the tumblers and open it
without the key.

It’s worth emphasizing that threats include all manner of ways in which
harm occurs. Adversarial attacks conducted with intention are an impor-
tant focus of the discussion, but this does not mean that you should exclude
other threats due to software bugs, human error, accidents, hardware fail-
ures, and so on.

Threat modeling provides a perspective with which to guide any deci-
sions that impact security throughout the software development process.
The following treatment focuses on concepts and principles, rather than any
of the many specific methodologies for doing threat modeling. Early threat
modeling as first practiced at Microsoft in the early 2000s proved effective,
but it required extensive training, as well as a considerable investment of
effort. Fortunately, you can do threat modeling in any number of ways, and
once you understand the concepts, it’s easy to tailor your process to fit the
time and effort available while still producing meaningful results.

Setting out to enumerate all the threats and identify all the points of
vulnerability in a large software system is a daunting task. However, smart
security work targets incrementally raising the bar, not shooting for perfec-
tion. Your first efforts may only find a fraction of all the potential issues, and
only mitigate some of those: even so, that’s a substantial improvement. Such
an effort may just possibly avert a major security incident—a real accom-
plishment. Unfortunately, you almost never know about foiled attacks, and
that absence of feedback can feel disappointing. The more you flex your
security mindset muscles, the better you’ll become at seeing threats.

Finally, it’s important to understand that threat modeling can provide
new levels of understanding of the target system beyond the scope of secu-
rity. Through the process of examining the software in new ways, you may
gain insights that suggest various improvements, efficiencies, simplifica-
tions, and new features unrelated to security.

The Adversarial Perspective
Exploits are the closest thing to “magic spells” we experience in the real world:
Construct the right incantation, gain remote control over device.

—Halvar Flake

Human perpetrators are the ultimate threat; security incidents don’t just
happen by themselves. Any concerted analysis of software security includes
considering what hypothetical adversaries might try in order to anticipate and
defend against potential attacks. Attackers are a motley group, from script
kiddies (criminals without tech skills using automated malware) to sophisti-
cated nation-state actors, and everything in between. To the extent you can
think from an adversary’s perspective, that’s great, but don’t fool yourself
into believing you can accurately predict their every move or spend too
much time trying to get inside their heads, like a master sleuth outsmart-
ing a wily foe. It’s helpful to understand the attacker’s mindset, but for our

Threats 25

purposes of building secure software, the details of actual techniques they
might use to probe, penetrate, and exfiltrate data are unimportant.

Consider what the obvious targets within a system might be (sometimes,
what’s valuable to an adversary is less valuable to you, or vice versa) and
ensure that those assets are robustly secured, but don’t waste time attempt-
ing to read the minds of hypothetical attackers. Rather than expend
unnecessary effort, they’ll often focus on the weakest link to accomplish
their goal (or they might be poking around aimlessly, which can be very
hard to defend against since their actions will seem undirected and arbi-
trary). Bugs definitely attract attention because they suggest weakness, and
attackers who stumble onto an apparent bug will try creative variations to
see if they can really bust something. Errors or side effects that disclose
details of the insides of the system (for example, detailed stack dumps) are
prime fodder for attackers to jump on and run with.

Once attackers find a weakness, they’re likely to focus more effort on
it, because some small flaws have a way of expanding to produce larger
consequences under concerted attack (as we shall see in Chapter 8 in
detail). Often, it’s possible to combine two tiny flaws that are of no concern
individually to produce a major attack, so it’s wise to take all vulnerabilities
seriously. Skilled attackers definitely know about threat modeling, though
they are working without inside information (at least until they manage
some degree of penetration).

Even though we can never really anticipate what our adversaries will
spend time on, it does make sense to consider the motivation of hypotheti-
cal attackers as a measure of the likelihood of diligent attacks. Basically,
this amounts to a famous criminal’s explanation of why he robbed banks:
“Because that’s where the money is.” The point is, the greater the prospec-
tive gain from attacking a system, the higher the level of skill and resources
you can expect potential attackers to apply. Speculative as this might be, the
analysis is useful as a relative guide: powerful corporations and government,
military, and financial institutions are big targets. Your cat photos are not.

In the end, as with all forms of violence, it’s always far easier to attack
and cause harm than to defend. Attackers get to choose their point of
entry, and with determination they can try as many exploits as they like,
because they only need to succeed once. All this amounts to more reasons
why it’s important to prioritize security work: the defenders need every
advantage available.

The Four Questions
Adam Shostack, who carried the threat modeling torch at Microsoft for
years, boils the methodology down to Four Questions:

•	 What are we working on?

•	 What can go wrong?

•	 What are we going to do about it?

•	 Did we do a good job?

26 Chapter 2

The first question aims to establish the project’s context and scope.
Answering it includes describing the project’s requirements and design,
its components and their interactions, as well as considering operational
issues and use cases. Next, at the core of the method, the second question
attempts to anticipate potential problems, while the third question explores
mitigations to those problems we identify. (We’ll look more closely at miti-
gations in Chapter 3, but first we will examine how they relate to threats.)
Finally, the last question asks us to reflect on the entire process—what the
software does, how it can go wrong, and how well we’ve mitigated the
threats—in order to assess the risk reduction and confirm that the system
will be sufficiently secure. Should unresolved issues remain, we go through
the questions again to fill in the remaining gaps.

There is much more to threat modeling than this, but it’s surprising
how far simply working from the Four Questions can take you. Armed with
these concepts, in conjunction with the other ideas and techniques in this
book, you can significantly raise the security bar for the systems you build
and operate.

Threat Modeling
“What could possibly go wrong?”

We often ask this question to make a cynical joke. But when asked
unironically, it succinctly expresses the point of departure for threat model-
ing. Responding to this question requires us to identify and assess threats;
we can then prioritize these and work on mitigations that reduce the risk of
the important threats.

Let’s unpack that previous sentence. The following steps outline the
basic threat modeling process:

1.	 Work from a model of the system to ensure that we consider everything
in scope.

2.	 Identify assets (valuable data and resources) within the system that need
protection.

3.	 Scour the system model for potential threats, component by compo-
nent, identifying attack surfaces (places where an attack could originate),
trust boundaries (interfaces bridging more-trusted parts of the system
with the less-trusted parts), and different types of threats.

4.	 Analyze these potential threats, from the most concrete to the
hypothetical.

5.	 Rank the threats, working from the most to least critical.

6.	 Propose mitigations to reduce risk for the most critical threats.

7.	 Add mitigations, starting from the most impactful and easiest, and
working up to the point of diminishing returns.

8.	 Test the efficacy of the mitigations, starting with those for the most
critical threats.

Threats 27

For complex systems, a complete inventory of all potential threats
will be enormous, and a full analysis is almost certainly infeasible (just as
enumerating every conceivable way of doing anything would never end if
you got imaginative, which attackers often do). In practice, the first threat
modeling pass should focus on the biggest and most likely threats to the
high-value assets only. Once you’ve understood those threats and put first-
line mitigations in place, you can evaluate the remaining risk by iteratively
considering the remaining lesser threats that you’ve already identified.
From that point, you can perform one or more additional threat modeling
passes as needed, casting a wider net each time to include additional assets,
deeper analysis, and more of the less likely or minor threats. The process
stops when you’ve achieved a sufficiently thorough understanding of the
most important threats, planned the necessary mitigations, and deemed
the remaining known risk acceptable.

People intuitively do something akin to threat modeling in daily life,
taking what we call common-sense precautions. To send a private message
in a public place, most people type it instead of dictating it aloud to their
phones. Using the language of threat modeling, we’d say the message con-
tent is the information asset, and disclosure is the threat. Speaking within
earshot of others is the attack surface, and using a silent, alternative input
method is a good mitigation. If a nosy stranger is watching, you could add
an additional mitigation, like cupping the phone with your other hand to
shield the screen from view. But while we do this sort of thing all the time
quite naturally in the real world, applying these same techniques to com-
plex software systems, where our familiar physical intuitions don’t apply,
requires much more discipline.

Work from a Model
You’ll need a rigorous approach in order to thoroughly identify threats.
Traditionally, threat modeling uses data flow diagrams (DFDs) or Unified
Modeling Language (UML) descriptions of the system, but you can use
whatever model you like. Whatever high-level description of the system you
choose, be it a DFD, UML, a design document, or an informal “whiteboard
session,” the idea is to look at an abstraction of the system, so long as it has
enough granularity to capture the detail you need for analysis.

More formalized approaches tend to be more rigorous and produce
more accurate results, but at the cost of additional time and effort. Over the
years, the security community has invented a number of alternative method-
ologies that offer different trade-offs, in no small part because the full-blown
threat modeling method (involving formal models like DFDs) is so costly
and effort-intensive. Today, you can use specialized software to help with the
process. The best ones automate significant parts of the work, although inter-
preting the results and making risk assessments will always require human
judgment. This book tells you all you need to know in order to threat model
on your own, without special diagrams or tools, so long as you understand
the system well enough to thoroughly answer the Four Questions. You can
work toward more advanced forms from there as you like.

28 Chapter 2

Whatever model you work from, thoroughly cover the target system at
the appropriate resolution. Choose the appropriate level of detail for the
analysis by the Goldilocks principle: don’t attempt too much detail or the
work will be endless, and don’t go too high-level or you’ll omit important
details. Completing the process quickly with little to show for it is a sure
sign of insufficient granularity, just as making little headway after hours of
work indicates your model may be too granular.

Let’s consider what the right level of granularity would be for a generic
web server. You’re handed a model consisting of a block diagram showing
“the internet” on the left, connected to a “frontend server” in the center,
with a third component, “database,” on the right. This isn’t helpful, because
nearly every web application ever devised fits this model. All the assets are
presumably in the database, but what exactly are they? There must be a
trust boundary between the system and the internet, but is that the only
one? Clearly, this model operates at too high a level. At the other extreme
would be a model showing a detailed breakdown of every library, all the
dependencies of the framework, and the relationships of components far
below the level of the application you want to analyze.

The Goldilocks version would fall somewhere between these extremes.
The data stored in the database (assets) would be clumped into categories,
each of which you could treat as a whole: say, customer data, inventory data,
and system logs. The server component would be broken into parts granu-
lar enough to reveal multiple processes, including what privilege each runs
at, perhaps an internal cache on the host machine, and descriptions of the
communication channels and network used to talk to the internet and the
database.

Identify Assets
Working methodically through the model, identify assets and the potential
threats to them. Assets are the entities in the system that you must protect.
Most assets are data, but they could also include hardware, communication
bandwidth, computational capacity, and physical resources, such as electricity.

Beginners at threat modeling naturally want to protect everything,
which would be great in a perfect world. But in practice, you’ll need to pri-
oritize your assets. For example, consider any web application: anyone on
the internet can access it using browsers or other software that you have
no control over, so it’s impossible to fully protect the client side. Also, you
should always keep internal system logs private, but if the logs contain
harmless details of no value to outsiders, it doesn’t make sense to invest
much energy in protecting them. This doesn’t mean that you ignore such
risks completely; just make sure that less important mitigations don’t take
away effort needed elsewhere. For example, it literally takes a minute to pro-
tect non-sensitive logs by setting permissions so that only administrators can
read the contents, so that’s effort well spent.

On the other hand, you could effectively treat data representing financial
transactions as real money and prioritize it accordingly. Personal information
is another increasingly sensitive category of asset, because knowledge of a

Threats 29

person’s location or other identifying details can compromise their privacy or
even put them at risk.

Also, I generally advise against attempting to perform complex risk-
assessment calculations. For example, avoid attempting to assign dollar
values for the purpose of risk ranking. To do this, you would have to some-
how come up with probabilities for many unknowables. How many attack-
ers will target you, and how hard will they try, and to do what? How often
will they succeed, and to what degree? How much money is the customer
database even worth? (Note that its value to the company and the amount
an attacker could sell it for often differ, as might the value that users would
assign to their own data.) How many hours of work and other expenses will
a hypothetical security incident incur?

Instead, a simple way to prioritize assets that’s surprisingly effective is
to rank them by “T-shirt sizes”—a simplification that I find useful, though
it’s not a standard industry practice. Assign “Large” to major assets you defi-
nitely protect, “Medium” to valuable assets that are less critical, and “Small”
to lesser ones of minor consequence (usually not even listed). High-value
systems may have “Extra-Large” assets that deserve extraordinary levels of
protection, such as bank account balances at a financial institution, or private
encryption keys that anchor the security of communications. In this simple
scheme, protection and mitigation efforts focus first on Large assets, and then
opportunistically on Medium ones. Opportunistic protection consists of low-
effort work that has little downside. But even if you can secure Small assets
very opportunistically, defend all Large assets before spending any time on
these. Chapter 13 discusses ranking vulnerabilities in detail, and much of that
is applicable to threat assessment as well.

The assets you choose to prioritize should probably include data such as
customer resources, personal information, business documents, operational
logs, and software internals, to name just a few possibilities. Prioritizing
protection of data assets considers many factors, including information secu-
rity (the C-I-A triad discussed in Chapter 1), because the harms of leaking,
modification, and destruction of data may differ greatly. Information leaks,
including partial disclosures of information (for example, the last four digits
of a credit card number), are tricky to evaluate, because you must consider
what an attacker could do with the information. Analysis becomes harder still
when an attacker could join multiple shards of information into an approxi-
mation of the complete dataset.

If you lump assets together, you can simplify the analysis considerably,
but beware of losing resolution in the process. For example, if you administer
several of your databases together, grant access similarly, use them for data
that originates from similar sources, and store them in the same location,
treating them as one makes good sense. However, if any of these factors dif-
fers significantly, you would have sufficient reason to handle them separately.
Make sure to consider these distinctions in your risk analysis, as well as for
mitigation purposes.

Finally, always consider the value of assets from the perspectives of all
parties involved. For instance, social media services manage all kinds of
data: internal company plans, advertising data, and customer data. The

30 Chapter 2

value of each of these assets differs depending on if you are the company’s
CEO, an advertiser, a customer, or perhaps an attacker seeking financial
gain or pursuing a political agenda. In fact, even among customers you’ll
likely find great differences in how they perceive the importance of privacy
in their communications, or the value they place on their data. Good data
stewardship principles suggest that your protection of customer and partner
data should arguably exceed that of the company’s own proprietary data
(and I have heard of company executives actually stating this as policy).

Not all companies take this approach. Facebook’s Beacon feature auto-
matically posted the details of users’ purchases to their news feeds, then
quickly shut down following an immediate outpouring of customer outrage
and some lawsuits. While Beacon never endangered Facebook (except by
damaging the brand’s reputation), it posed a real danger to customers.
Threat modeling the consequences of information disclosure for customers
would have quickly revealed that the unintended disclosure of purchases of
Christmas or birthday presents, or worse, engagement rings, was likely to
prove problematic.

Identify Attack Surfaces
Pay special attention to attack surfaces, because these are the attacker’s first
point of entry. You should consider any opportunity to minimize the attack
surface a big win, because doing so shuts off a potential source of trouble
entirely. Many attacks potentially fan out across the system, so stopping
them early can be a great defense. This is why secure government buildings
have checkpoints with metal detectors just inside the single public entrance.

Software design is typically much more complex than the design of a
physical building, so identifying the entire attack surface is not so simple.
Unless you can embed a system in a trusted, secure environment, having
some attack surface is inevitable. The internet always provides a huge point
of exposure, since literally anyone anywhere can anonymously connect
through it. While it might be tempting to consider an intranet (a private
network) as trusted, you probably shouldn’t, unless it has very high stan-
dards of both physical and IT security. At the very least, treat it as an attack
surface with reduced risk. For devices or kiosk applications, consider the
outside portion of the box, including screens and user interface buttons, an
attack surface.

Note that attack surfaces exist outside the digital realm. Consider the
kiosk, for example: a display in a public area could leak information via
“shoulder surfing.” An attacker could also perform even subtler side-channel
attacks to deduce information about the internal state of a system by moni-
toring its electromagnetic emissions, heat, power consumption, keyboard
sounds, and so forth.

Identify Trust Boundaries
Next, identify the system’s trust boundaries. Since trust and privilege are
almost always paired, you can think in terms of privilege boundaries if
that makes more sense. Human analogs of trust boundaries might be the

Threats 31

interface between a manager (who is privy to more internal information) and
an employee, or the door of your house, where you choose whom to let inside.

Consider a classic example of a trust boundary: an operating system’s
kernel-userland interface. This architecture became popular in a time
when mainframe computers were the norm and machines were often
shared by many users. The system booted up the kernel, which isolated
applications in different userland process instances (corresponding to dif-
ferent user accounts) from interfering with each other or crashing the whole
system. Whenever userland code calls into the kernel, execution crosses a
trust boundary. Trust boundaries are important, because the transition into
higher-privilege execution is an opportunity for bigger trouble.

T RUS T V ERSUS PR I V IL EGE

In this book I’ll be talking about high and low privilege as well as high and
low trust, and there is great potential for confusion since they are very closely
related and difficult to separate cleanly. The inherent character of trust and priv-
ilege is such that they almost invariably correlate: where trust is high, privilege
is also usually high, and vice versa. Beyond the scope of this book, it’s common
for people to use these expressions (trust versus privilege) interchangeably, and
generously interpreting them however makes best sense to you without insisting
on correcting others is usually the best practice.

The SSH secure shell daemon (sshd(8)) is a great example of secure
design with trust boundaries. The SSH protocol allows authorized users
to remotely log in to a host, then run a shell via a secure network channel
over the internet. But the SSH daemon, which persistently listens for connec-
tions to initiate the protocol, requires very careful design because it crosses
a trust boundary. The listener process typically needs superuser privileges,
because when an authorized user presents valid credentials, it must be able
to create processes for any user. Yet it must also listen to the public internet,
exposing it to the world for attack.

To accept SSH login requests, the daemon must generate a secure
channel for communication that’s impervious to snooping or tampering,
then handle and validate sensitive credentials. Only then can it instantiate
a shell process on the host computer with the right privileges. This entire
process involves a lot of code, running with the highest level of privilege (so
it can create a process for any user account), that must operate perfectly or
risk deeply compromising the system. Incoming requests can come from
anywhere on the internet and are initially indistinguishable from attacks, so
it’s hard to imagine a more attractive target with higher stakes.

Given the large attack surface and the severity of any vulnerability,
extensive efforts to mitigate risk are justified for the daemon process.
Figure 2-1 shows a simplified view of how it is designed to protect this
critical trust boundary.

32 Chapter 2

Port 22 request

Secure channel setup
Login credentials

Fork

Fork

Low-privilege
child process

Secure shell session
for authenticated user

Shell commands
User-privilege
child process

SS
H

 re
m

ot
e

cl
ie

nt

Superuser
listener

Figure 2-1: How the design of the SSH daemon protects critical trust boundaries

Working from the top, each incoming connection forks a low-privilege
child process, which listens on the socket and communicates with the parent
(superuser) process. This child process also sets up the protocol’s complex
secure-channel encryption and accepts login credentials that it passes to the
privileged parent, which decides whether or not to trust the incoming request
and grant it a shell. Forking a new child process for each request provides a
strategic protection on the trust boundary; it isolates as much of the work as
possible, and also minimizes the risk of unintentional side effects building
up within the main daemon process. When a user successfully logs in, the
daemon creates a new shell process with the privileges of the authenticated
user account. When a login attempt fails to authenticate, the child process
that handled the request terminates, so it can’t adversely affect the system in
the future.

As with assets, you’ll decide when to lump together or split trust levels.
In an operating system, the superuser is, of course, the highest level of
trust, and some other administrative users may be close enough that you
should consider them to be just as privileged. Authorized users typically
rank next on the totem pole of trust. Some users may form a more trusted
group with special privileges, but usually, there is no need to decide who
you trust a little or more or less among them. Guest accounts typically rank
lowest in trust, and you should probably emphasize protecting the system
from them, rather than protecting their resources.

Web services need to resist malicious client users, so web frontend sys-
tems may validate incoming traffic and only forward well-formed requests for
service, in effect straddling the trust boundary to the internet. Web servers
often connect to more trusted databases and microservices behind a firewall.
If money is involved (say, in a credit card processing service), a dedicated
high-trust system should handle payments, ideally isolated in a fenced-off
area of the datacenter. Authenticated users should be trusted to access their
own account data, but you should treat them as very much untrusted beyond
that, since anyone can typically create a login. Anonymous public web access
represents an even lower trust level, and static public content could be served
by machines unconnected to any private data services.

Always conduct transitions across trust boundaries through well-defined
interfaces and protocols. You can think of these as analogous to checkpoints

Threats 33

staffed by armed guards at international frontiers and ports of entry. Just as
the border control agents ask for your passport (a form of authentication)
and inspect your belongings (a form of input validation), you should treat
the trust boundary as a rich opportunity to mitigate potential attacks.

The biggest risks usually hide in low-to-high trust transitions, like the SSH
listener example, for obvious reasons. However, this doesn’t mean you should
ignore high-to-low trust transitions. Any time your system passes data to a less-
trusted component, it’s worth considering if you’re disclosing information,
and if doing so might be a problem. For example, even low-privilege processes
can read the hostname of the computer they are running in, so don’t name
machines using sensitive information that might give attackers a hint if they
attain a beachhead and get code running on the system. Additionally, when-
ever high-trust services work on behalf of low-trust requests, you risk a DoS
attack if the userland requester manages to overtax the kernel.

Identify Threats
Now we begin the work at the heart of threat modeling: identifying poten-
tial threats. Working from your model, pore over the parts of the system.
The threats tend to cluster around assets and at trust boundaries, but could
potentially lurk anywhere.

I recommend starting with a rough pass (say, from a 10,000-foot view of
the system), then coming back later for a more thorough examination (at
1,000 feet) of the more fruitful or interesting parts. Keep an open mind,
and be sure to include possibilities even if you cannot yet see exactly how to
exploit them.

Identifying direct threats to your assets should be easy, as well as threats
at trust boundaries, where attackers might easily trick trusted components
into doing their bidding. Many examples of such threats in specific situations
are given throughout this book. Yet you might also find threats that are indi-
rect, perhaps because there is no asset immediately available to harm, or a
trust boundary to cross. Don’t immediately disregard these without consider-
ing how such threats might work as part of a chain of events—think of them
as bank shots in billiards, or stepping stones that form a path. In order to do
damage, an attacker would have to combine multiple indirect threats; or per-
haps, paired with bugs or poorly designed functionality, the indirect threats
afford openings that give attackers a foot in the door. Even lesser threats
might be worth mitigating, depending on how promising they look and how
critical the asset at risk may be.

A Bank Vault Example

So far, these concepts may still seem rather abstract, so let’s look at them
in context by threat modeling an imaginary bank vault. While reading this
walkthrough, focus on the concepts, and if you are paying attention, you
should be able to expand on the points I raise (which, intentionally, are not
exhaustive).

Picture a bank office in your hometown. Say it’s an older building, with
impressive Roman columns framing the heavy solid oak double doors in front.

34 Chapter 2

Built back when labor and materials were inexpensive, the thick, reinforced
concrete walls appear impenetrable. For the purpose of this example, let’s
focus solely on the large stock of gold stored in the secure vault at the heart
of the bank building: this is the major asset we want to protect. We’ll use
the building’s architectural drawings as the model, working from a floor
plan with a 10-foot to 1-inch scale that provides an overview of the entire
building’s layout.

The major trust boundary is clearly at the vault door, but there’s another
one at the locked door to the employee-only area behind the counter, and
a third at the bank’s front door that separates the customer lobby from the
exterior. For simplicity, we’ll omit the back door from the model because it’s
very securely locked at all times and only opened rarely, when guards are
present. This leaves the front door and easily-accessible customer lobby areas
as the only significant attack surfaces.

All of this sets the stage for the real work of finding potential threats.
Obviously, having the gold stolen is the top threat, but that’s too vague to
provide much insight into how to prevent it, so we continue looking for spe-
cifics. The attackers would need to gain unauthorized access to the vault in
order to steal the gold. In order to do that, they’d need unauthorized access
to the employee-only area where the vault is located. So far, we don’t know
how such abstract threats could occur, but we can break them down and get
more specific. Here are just a few potential threats:

•	 Observe the vault combination covertly.

•	 Guess the vault combination.

•	 Impersonate the bank’s president with makeup and a wig.

Admittedly, these made-up threats are fairly silly, but notice how we
developed them from a model, and how we transitioned from abstract
threats to concrete ones.

In a more detailed second pass, we now use a model that includes full
architectural drawings, the electrical and plumbing layout, and vault design
specifications. Armed with more detail, we can imagine specific attacks
more easily. Take the first threat we just listed: the attacker observing the
vault combination. This could happen in several ways. Let’s look at three
of them:

•	 An eagle-eyed robber loiters in the lobby to observe the opening of the
vault.

•	 The vault combination is on a sticky note, visible to a customer at the
counter.

•	 A confederate across the street can watch the vault combination dial
through a scope.

Naturally, just knowing the vault combination does not get the intrud-
ers any gold. An outsider learning the combination is a major threat, but it’s
just one part of a complete attack that must include entering the employee-
only area, entering the vault, and then escaping with the gold.

Threats 35

Now we can prioritize the enumerated threats and propose mitigations.
Here are some straightforward mitigations to each potential attack we’ve
identified:

•	 Lobby loiterer: put an opaque screen in front of the vault.

•	 Sticky-note leak: institute a policy prohibiting unsecured written copies.

•	 Scope spy: install opaque, translucent glass windows.

These are just a few of the many possible defensive mitigations. If these
types of attacks had been considered during the building’s design, perhaps
the layout could have eliminated some of these threats in the first place
(for example, by ensuring there was no direct line of sight from any exte-
rior window to the vault area, avoiding the need to retrofit opaque glass).

Real bank security and financial risk management are of course far
more complex, but this simplified example shows how the threat modeling
process works, including how it propels analysis forward. Gold in a vault is
about as simple an asset as it gets, but now you should be wondering, how
exactly does one examine a model of a complex software system to be able
to see the threats it faces?

Categorizing Threats with STRIDE

In the late 1990s, Microsoft Windows dominated the personal computing
landscape. As PCs became essential tools for both businesses and homes,
many believed the company’s sales would grow endlessly. But Microsoft had
only begun to figure out how networking should work. The Internet (back
then still usually spelled with a capital I) and this new thing called the
World Wide Web were rapidly gaining popularity, and Microsoft’s Internet
Explorer web browser had aggressively gained market share from the pio-
neering Netscape Navigator. Now the company faced this new problem of
security: Who knew what can of worms connecting all the world’s computers
might open up?

While a team of Microsoft testers worked creatively to find security flaws,
the rest of the world appeared to be finding these flaws much faster. After a
couple of years of reactive behavior, issuing patches for vulnerabilities that
exposed customers over the network, the company formed a task force to get
ahead of the curve. As part of this effort, I co-authored a paper with Praerit
Garg that described a simple methodology to help developers see security
flaws in their own products. Threat modeling based on the STRIDE threat
taxonomy drove a massive education effort across all the company’s product
groups. More than 20 years later, researchers across the industry continue to
use STRIDE and many independent derivatives to enumerate threats.

STRIDE focuses the process of identifying threats by giving you a check-
list of specific kinds of threats to consider: What can be spoofed (S), tampered
(T) with, or repudiated (R)? What information (I) can be disclosed? How could
a denial of service (D) or elevation of privilege (E) happen? These categories are
specific enough to focus your analysis, yet general enough that you can men-
tally flesh out details relevant to a particular design and dig in from there.

36 Chapter 2

Though members of the security community often refer to STRIDE as
a threat modeling methodology, this is a misuse of the term (to my mind,
at least, as the one who concocted the acronym). STRIDE is simply a taxon-
omy of threats to software. The acronym provides an easy and memorable
mnemonic to ensure that you haven’t overlooked any category of threat. It’s
not a complete threat modeling methodology, which would have to include
the many other components we’ve already explored in this chapter.

To see how STRIDE works, let’s start with spoofing. Looking through
the model, component by component, consider how secure operation
depends on the identity of the user (or machine, or digital signature on
code, and so on). What advantages might an attacker gain if they could
spoof identity here? This thinking should give you lots of possible threads
to pull on. By approaching each component in the context of the model
from a threat perspective, you can more easily set aside thoughts of how
it should work, and instead begin to perceive how it might be abused.

Here’s a great technique I’ve used successfully many times: start your
threat modeling session by writing the six threat names on a whiteboard.
To get rolling, brainstorm a few of these abstract threats before digging
into the details. The term “brainstorm” can mean different things, but the
idea here is to move quickly, covering a lot of area, without overthinking it
too much or judging ideas yet (you can skip the duds later on). This warm-
up routine primes you for what to look out for, and also helps you switch
into the necessary mindset. Even if you’re familiar with these categories of
threat, it’s worth going through them all, and a couple that are less familiar
and more technical bear careful explanation.

Table 2-1 lists six security objectives, their corresponding threat catego-
ries, and several examples of threats in each category. The security objec-
tive and threat category are two sides of the same coin, and sometimes it’s
easier to work from one or the other—on the defense (the objective) or the
offense (the threat).

Table 2-1: Summary of STRIDE Threat Categories

Objective STRIDE threats Examples

Authenticity Spoofing Phishing, stolen password, imperson-
ation, replay attack, BGP hijacking

Integrity Tampering Unauthorized data modification and
deletion, Superfish ad injection

Non-repudiability Repudiation Plausible deniability, insufficient log-
ging, destruction of logs

Confidentiality Information disclosure Data leak, side channel attack, weak
encryption, residual cached data,
Spectre/Meltdown

Availability Denial of service Simultaneous requests swamp a web
server, ransomware, memcrashed

Authorization Elevation of privilege SQL injection, xkcd’s “Exploits of
a Mom”

https://www.cloudflare.com/learning/security/glossary/bgp-hijacking/
https://us-cert.cisa.gov/ncas/alerts/TA15-051A
https://meltdownattack.com/
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/
https://xkcd.com/327/
https://xkcd.com/327/

Threats 37

Half of the STRIDE menagerie are direct threats to the information
security fundamentals you learned about in Chapter 1: information disclo-
sure is the enemy of confidentiality, tampering is the enemy of integrity,
and denial of service compromises availability. The other half of STRIDE
targets the Gold Standard. Spoofing subverts authenticity by assuming a
false identity. Elevation of privilege subverts proper authorization. That
leaves repudiation as the threat to auditing, which may not be immediately
obvious and so is worth a closer look.

According to the Gold Standard, we should maintain accurate records
of critical actions taken within the system and then audit those actions.
Repudiation occurs when someone credibly denies that they took some
action. In my years working in software security, I have never seen anyone
directly repudiate anything (nobody has ever yelled “did so!” and “did not!”
at each other in front of me). But what does happen is, say, a database sud-
denly disappears, and nobody knows why, because nothing was logged, and
the lost data is gone without a trace. The organization might suspect that
an intrusion occurred. Or it could have been a rogue insider, or possibly a
regrettable blunder by an administrator. But without any evidence, nobody
knows. That’s a big problem, because if you cannot explain what happened
after an incident, it’s very hard to prevent it from happening again. In the
physical world, such perfect crimes are rare because activities such as robbing
a bank involve physical presence, which inherently leaves all kinds of traces.
Software is different; unless you provide a means to reliably collect evidence
and log events, no fingerprints or muddy boot tracks remain as evidence.

Typically, we mitigate the threat of repudiation by running systems in
which administrators and users understand they are responsible for their
actions, because they know an accurate audit trail exists. This is also one
more good reason to avoid having admin passwords written on a sticky note
that everyone shares. If you do that, when trouble happens, everyone can
credibly claim someone else must have done it. This applies even if you fully
trust everyone, because accidents happen, and the more evidence you have
available when trouble arises, the easier it is to recover and remediate.

STRIDE at the Movies

Just for fun (and to solidify these concepts), consider the STRIDE threats
applied to the plot of the film Ocean’s Eleven. This classic heist story nicely
demonstrates threat modeling concepts, including the full complement of
STRIDE categories, from the perspectives of both attacker and defender.
Apologies for the simplification of the plot, which I’ve done for brevity and
focus, as well as for spoilers.

Danny Ocean violates parole (an elevation of privilege), flies out to meet
his old partner in crime, and heads for Vegas. He pitches an audacious
heist to a wealthy casino insider, who fills him in on the casino’s operational
details (information disclosure), then gathers his gang of ex-cons. They plan
their operation using a full-scale replica vault built for practice. On the fate-
ful night, Danny appears at the casino and is predictably apprehended by
security, creating the perfect alibi (repudiation of guilt). Soon he slips away

38 Chapter 2

through an air duct, and through various intrigues he and his accomplices
extract half the money from the vault (tampering with its integrity), exfiltrat-
ing their haul with a remote-control van.

Threatening to blow up the remaining millions in the vault (a very
expensive denial of service), the gang negotiates to keep the money in the
van. The casino owner refuses and calls in the SWAT team, and in the
ensuing chaos the gang destroys the vault’s contents and gets away. After
the smoke clears, the casino owner checks the vault, lamenting his total
loss, then notices a minor detail that seems amiss. The owner confronts
Danny—who is back in lockup, as if he had never left—and we learn
that the SWAT team was, in fact, the gang (spoofing by impersonating the
police), who walked out with the money hidden in their tactical equipment
bags after the fake battle. The practice vault mock-up had provided video
to make it only appear (spoofing of the location) that the real vault had
been compromised, which didn’t actually happen until the casino granted
full access to the fake SWAT team (an elevation of privilege for the gang).
Danny and the gang make a clean getaway with the money—a happy end-
ing for the perpetrators that might have turned out quite differently had
the casino hired a threat modeling consultant!

Mitigate Threats
At this stage, you should have a collection of potential threats. Now you
need to assess and prioritize them to best guide an effective defense. Since
threats are, at best, educated guesses about future events, all of your assess-
ments will contain some degree of subjectivity.

What exactly does it mean to understand threats? There is no easy
answer to this question, but it involves refining what we know, and main-
taining a healthy skepticism to avoid falling into the trap of thinking that
we have it all figured out. In practice, this means quickly scanning to collect
a bunch of mostly abstract threats, then poking into each one a little fur-
ther to learn more. Perhaps we will see one or two fairly clear-cut attacks,
or parts of what could constitute an attack. We elaborate until we run up
against a wall of diminishing returns.

At this point, we can deal with the threats we’ve identified in one of
four ways:

•	 Mitigate the risk by either redesigning or adding defenses to reduce its
occurrence or lower the degree of harm to an acceptable level.

•	 Remove a threatened asset if it isn’t necessary, or, if removal isn’t possible,
seek to reduce its exposure or limit optional features that increase the
threat.

•	 Transfer the risk by offloading responsibility to a third party, usually
in exchange for compensation. (Insurance, for example, is a common
form of risk transfer, or the processing of sensitive data could be out-
sourced to a service with a duty to protect confidentiality.)

•	 Accept the risk, once it is well understood, as reasonable to incur.

Threats 39

Always attempt to mitigate any significant threats, but recognize that
results are often mixed. In practice, the best possible solution isn’t always
feasible, for many reasons: a major change might be too costly, or you may
be stuck using an external dependency beyond your control. Other code
might also depend on vulnerable functionality, such that a fix might break
things. In these cases, mitigation means doing anything that reduces the
threat. Any kind of edge for defense helps, even a small one.

Here are some examples of ways to do partial mitigation:

Make harm less likely to occur

Make it so the attack only works a fraction of the time.

Make harm less severe

Make it so only a small part of the data can be destroyed.

Make it possible to undo the harm

Ensure that you can easily restore any lost data from a backup.

Make it obvious that harm occurred

Use tamper-evident packaging that makes it easy to detect a modified
product, protecting consumers. (In software, good logging helps here.)

Much of the remainder of the book is about mitigation: how to design
software to minimize threats, and what strategies and secure software pat-
terns are useful for devising mitigations of various sorts.

Privacy Considerations
Privacy threats are just as real as security threats, and they require separate
consideration in a full assessment of threats to a system, because they add
a human element to the risk of information disclosure. In addition to pos-
sible regulatory and legal considerations, personal information handling
may involve ethical concerns, and it’s important to honor stakeholder
expectations.

If you’re collecting personal data of any kind, you should take privacy
seriously as a baseline stance. Think of yourself as a steward of people’s
private information. Strive to stay mindful of your users’ perspectives,
including careful consideration of the wide range of privacy concerns they
might have, and err on the side of care. It’s easy for builders of software to
discount how sensitive personal data can be when they’re immersed in the
logic of system building. What in code looks like yet another field in a data-
base schema could be information that, if leaked, has real consequences for
an actual person. As modern life increasingly goes digital, and mobile com-
puting becomes ubiquitous, privacy will depend more and more on code,
potentially in new ways that are difficult to imagine. All this is to say that
you would be smart to stay well ahead of the curve by exercising extreme
vigilance now.

40 Chapter 2

A few very general considerations for minimizing privacy threats
include the following:

•	 Assess privacy by modeling scenarios of actual use cases, not thinking
in the abstract.

•	 Learn what privacy policies or legal requirements apply, and follow the
terms rigorously.

•	 Restrict the collection of data to only what is necessary.

•	 Be sensitive to the possibility of seeming creepy.

•	 Never collect or store private information without a clear intention for
its use.

•	 When information already collected is no longer used or useful, proac-
tively delete it.

•	 Minimize information sharing with third parties (which, if it occurs,
should be well documented).

•	 Minimize disclosure of sensitive information—ideally this should be
done only on a need-to-know basis.

•	 Be transparent, and help end users understand your data protection
practices.

Threat Modeling Everywhere
The threat modeling process described here is a formalization of how we
navigate in the world; we manage risk by balancing it against opportunities.
In a dangerous environment, all living organisms make decisions based
on these same basic principles. Once you start looking for it, you can find
instances of threat modeling everywhere.

When expecting a visit from friends with a young child, we always take
a few minutes to make special preparations. Alex, an active three-year-old,
has an inquisitive mind, so we go through the house “child-proofing.” This
is pure threat modeling, as we imagine the threats by categories—what
could hurt Alex, what might get broken, what’s better kept out of view of
a youngster—then look for assets that fit these patterns. Typical threats
include a metal letter opener, which he could stick in a wall socket; a fragile
antique vase that he might easily break; or perhaps a coffee table book of
photography that contains images inappropriate for children. The attack
surface is any place reachable by an active toddler. Mitigations generally
consist of removing, reducing, or eliminating points of exposure or vulner-
ability: we could replace the fragile vase with a plastic one that contains just
dried flowers, or move it up onto a mantlepiece. People with children know
how difficult it is to anticipate what they might do. For instance, did we
anticipate Alex might stack up enough books to climb up and reach a shelf
that we thought was out of reach? This is what threat modeling looks like
outside of software, and it illustrates why preemptive mitigation can be well
worth the effort.

Threats 41

Here are a few other examples of threat modeling you may have noticed
in daily life:

•	 Stores design return policies specifically to mitigate abuses such as
shoplifting and then returning the product for store credit, or wearing
new apparel once and then returning it for a refund.

•	 Website terms of use agreements attempt to prevent various ways that
users might maliciously abuse the site.

•	 Traffic safety laws, speed limits, driver licensing, and mandatory auto
insurance requirements are all mitigation mechanisms to make driving
safer.

•	 Libraries design loan policies to mitigate theft, hoarding, and damage
to the collection.

You can probably think of lots of ways that you apply these techniques,
too. For most of us, when we can draw on our physical intuitions about the
world, threat modeling is remarkably easy to do. Once you recognize that
software threat modeling works the same way as your already well-honed
skills in other contexts, you can begin to apply your natural capabilities to
software security analysis, and quickly raise your skills to the next level.

N O T E 	 See Appendix D for a cheat sheet summarizing the Four Questions and STRIDE as a
handy reference for threat modeling.

3
M I T I G A T I O N

Everything is possible to mitigate through art and diligence.
—Gaius Plinius Caecilius Secundus (Pliny the Younger)

This chapter focuses on the third of the
Four Questions from Chapter 2: “What

are we going to do about it?” Anticipating
threats, then protecting against potential

vulnerabilities, is how security thinking turns into
effective action. This proactive response is called
mitigation—reducing the severity, extent, or impact
of problems—and as you saw in the previous chapter,
it’s something we all do all the time. Bibs to catch the
inevitable spills when feeding an infant, seat belts, speed limits, fire alarms,
food safety practices, public health measures, and industrial safety regula-
tions are just a few examples of mitigations. The common thread among
these is that they take proactive measures to avoid, or lessen, anticipated
harms in the face of risk. This is much of what we do to make software
more secure.

44 Chapter 3

It’s important to bear in mind that mitigations reduce risk but don’t
eliminate it. To be clear, if you can eliminate a risk somehow—say, by
removing a legacy feature that is known to be insecure—by all means do
that, but I would not call it a mitigation. Instead, mitigations focus on mak-
ing attacks less likely, more difficult, or less harmful when they do occur.
Even measures that make exploits more detectable are mitigations, analo-
gous to tamper-evident packaging, if they lead to a faster response and
remediation. Every small effort ratchets up the security of the system as a
whole, and even modest wins can collectively add up to significantly better
protection.

This chapter begins with a conceptual discussion of mitigation, and
from there presents a number of general techniques. The focus here is on
structural mitigations based on the perspective gained through threat mod-
eling that can be useful for securing almost any system design. Subsequent
chapters will build on these ideas to provide more detailed methods, drill-
ing down into specific technologies and threats.

 The rest of the chapter provides guidance for recurrent security chal-
lenges encountered in software design: instituting an access policy and
access controls, designing interfaces, and protecting communications and
storage. Together, these discussions form a playbook for addressing com-
mon security needs that will be fleshed out over the remainder of the book.

Addressing Threats
Threat modeling reveals what can go wrong, and in doing so, focuses our
security attention where it counts. But believing we can always eliminate
vulnerabilities would be naive. Points of risk—critical events or decision
thresholds—are great opportunities for mitigation.

As you learned in the previous chapter, you should always address the
biggest threats first, limiting them as best you can. For systems that process
sensitive personal information, as one example, the threat of unauthorized
disclosure inevitably looms large. For this major risk, consider any or all of
the following: minimizing access to the data, reducing the amount of infor-
mation collected, actively deleting old data when no longer needed, audit-
ing for early detection in the event of compromise, and taking measures to
reduce an attacker’s ability to exfiltrate data. After securing the highest-
priority risks, opportunistically mitigate lesser risks where it is easy to do so
without adding much overhead or complexity to the design.

A good example of a smart mitigation is the best practice of check-
ing the password submitted with each login attempt against a salted hash,
instead of the actual password in plaintext. Protecting passwords is criti-
cal because disclosure threatens the fundamental authentication mecha-
nism. Comparing hashes only requires slightly more work than comparing
directly, yet it’s a big win as it eliminates the need to store plaintext pass-
words. This means that even if attackers somehow breach the system, they
won’t learn actual passwords as easily.

Mitigation 45

This example illustrates the idea of harm reduction but is quite specific
to password checking. Now let’s consider mitigation strategies that are more
widely applicable.

Structural Mitigation Strategies
Mitigations often amount to common sense: reducing risk where there are
opportunities to do so. Threat modeling helps us see potential vulnerabili-
ties in terms of attack surfaces, trust boundaries, and assets (targets need-
ing protection). Structural mitigations generally apply to these very features of
the model, but their realization depends on the specifics of the design. The
subsections that follow discuss techniques that should be widely applicable
because they operate at the model level of abstraction.

Minimize Attack Surfaces
Once you have identified the attack surfaces of a system, you know where
exploits are most likely to originate, so anything you can do to harden the
system’s “outer shell” will be a significant win. A good way to think about
attack surface reduction is in terms of how much code and data are touched
downstream of each point of entry. Systems that provide multiple interfaces
to perform the same function may benefit from unifying these interfaces
because that means less code that might contain vulnerabilities. Here are a
few examples of this commonly used technique:

•	 In a client/server system, you can reduce the attack surface of the server
by pushing functionality out to the client. Any operation that requires a
server request represents an additional attack surface that a malformed
request or forged credentials might be able to exploit. By contrast, if
the necessary information and compute power exist on the client side,
that reduces both the load on and the attack surface of the server.

•	 Moving functionality from a publicly exposed API that anyone can
invoke anonymously to an authenticated API can effectively reduce
your attack surface. The added friction of account creation slows down
attacks, and also helps trace attackers and enforce rate limiting.

•	 Libraries and drivers that use kernel services can reduce the attack
surface by minimizing interfaces to, and code within, the kernel. Not
only are there fewer kernel transitions to attack that way, but userland
code will be incapable of doing as much damage even if an attack is
successful.

•	 Deployment and operations offer many attack surface reduction
opportunities. For an enterprise network, moving anything you can
behind a firewall is an easy win.

•	 A configuration setting that enables remote administration over the
network is another good example: this feature may be convenient,
but if it’s rarely used, consider disabling it and use wired access
instead when necessary.

46 Chapter 3

These are just some of the most common scenarios where attack surface
reduction works. For particular systems, you might find much more creative
customized opportunities. Keep thinking of ways to reduce external access,
minimize functionality and interfaces, and protect any services that are
needlessly exposed. The better you understand where and how a feature is
actually used, the more of these mitigations you’ll be able to find.

Narrow Windows of Vulnerability
This mitigation technique is similar to attack surface reduction, but instead
of metaphorical surface area, it reduces the effective time interval in which
a vulnerability can occur. Also based on common sense, this is why hunters
only disengage the safety just before firing and reengage it soon after.

We usually apply this mitigation to trust boundaries, where low-trust
data or requests interact with high-trust code. To best isolate the high-trust
code, minimize the processing that it needs to do. For example, when pos-
sible, perform error checking ahead of invoking the high-trust code so it
can do its work and exit quickly.

Code Access Security (CAS), a security model that is rarely used today, is
a perfect illustration of this mitigation because it provides fine-grained
control over code’s effective privileges. (Full disclosure: I was the program
manager for security in .NET Framework version 1.0, which prominently
featured CAS as a major security feature.)

The CAS runtime grants different permissions to different units of code
based on trust. The following pseudocode example illustrates a common
idiom for a generic permission, which could grant access to certain files, to
the clipboard, and so on. In effect, CAS ensures that high-trust code inher-
its the lower privileges of the code invoking it, but when necessary, it can
temporarily assert its higher privileges. Here’s how such an assertion of privi-
lege works:

Worker(parameters) {
 // When invoked from a low-trust caller, privileges are reduced.
 DoSetup();
 permission.Assert();
 // Following assertion, the designated permission can now be used.
 DoWorkRequiringPrivilege();
 CodeAccessPermission.RevertAssert();
 // Reverting the assertion undoes its effect.
 DoCleanup();
}

The code in this example has powerful privileges, but it may be called
by less-trusted code. When invoked by low-trust code, this code initially
runs with the reduced privileges of the caller. Technically, the effective
privileges are the intersection (that is, the minimum) of the privileges
granted to the code, its caller, and its caller’s caller, and so on all the way up
the stack. Some of what the Worker method does requires higher privileges
than its callers may have, so after doing the setup, it asserts the necessary
permission before invoking DoWorkRequiringPrivilege, which must also have

https://docs.microsoft.com/en-us/dotnet/framework/misc/code-access-security

Mitigation 47

that permission. Having done that portion of its work, it immediately drops
the special permission by calling RevertAssert, before doing whatever is left
that needs no special permissions and returning. In the CAS model, time
window minimization provides for such assertions of privilege to be used
when necessary and reverted as soon as they are no longer needed.

Consider this application of narrowing windows of vulnerability in a
different way. Online banking offers convenience and speed, and mobile
devices allow us to bank from anywhere. But storing your banking creden-
tials in your phone is risky—you don’t want someone emptying out your
bank account if you lose it, which is much more likely with a mobile device.
A great mitigation that I would like to see implemented across the banking
industry would be the ability to configure the privilege level you are com-
fortable with for each device. A cautious customer might restrict the mobile
app to checking balances and a modest daily transaction dollar limit. The
customer would then be able to bank by phone with confidence. Further use-
ful limits might include windows of time, geolocation, domestic currency only,
and so on. All of these mitigations help because they limit the worst-case sce-
nario in the event of any kind of compromise.

Minimize Data Exposure
Another structural mitigation to data disclosure risk is limiting the lifetime
of sensitive data in memory. This is much like the preceding technique, but
here you’re minimizing the duration for which sensitive data is accessible
and potentially exposed instead of the duration for which code is running
at high privilege. Recall that intraprocess access is hard to control, so the
mere presence of data in memory puts it at risk. When the stakes are high,
such as handling extremely sensitive data, you can think of it as “the meter
is running.” For the most critical information—data such as private encryp-
tion keys, or authentication credentials such as passwords—it may be worth
overwriting any in-memory copies as soon as they are no longer needed.
This reduces the time during which a leak is conceivably possible through
any means. As we shall see in Chapter 9, the Heartbleed vulnerability
threatened security for much of the web, exposing all kinds of sensitive data
lying around in memory. Limiting how long such data was retained probably
would have been a useful mitigation (“stanching the blood flow,” if you will),
even without foreknowledge of the exploit.

You can apply this technique to data storage design as well. When a
user deletes their account in the system, that typically causes their data to
be destroyed, but the system often offers a provision for a manual restore
of the account in case of accidental or malicious closure. The easy way to
implement this is to mark closed accounts as to-be-deleted but keep the
data in place for, say, 30 days (after the manual restore period has passed)
before the system finally deletes everything. To make this work, lots of code
needs to check if the account is scheduled for deletion, lest it accidentally
access the account data that the user directed to be destroyed. If a bulk
mail job forgets to check, it could errantly send the user some notice that,
to the user, would appear to be a violation of their intentions after they

48 Chapter 3

closed the account. This mitigation suggests a better option: after the
user deletes the account, the system should push its contents to an offline
backup and promptly delete the data. The rare case where a manual restore
is needed can still be accomplished using the backup data, and now there is
no way for a bug to possibly result in that kind of error.

Generally speaking, proactively wiping copies of data is an extreme
measure that’s appropriate only for the most sensitive data, or important
actions such as account closure. Some languages and libraries help do this
automatically, and except where performance is a concern, a simple wrap-
per function can wipe the contents of memory clean before it is recycled.

Access Policy and Access Controls
Standard operating system permissions provide very rudimentary file access
controls. These control read (confidentiality) or write (integrity) access on an
all-or-nothing basis for individual files based on the user and group owner-
ship of a process. Given this functionality, it’s all too easy to think in the
same limited terms when designing protections for assets and resources—
but the right access policy might be more granular and depend on many
other factors.

First, consider how ill-suited traditional access controls are for many
modern systems. Web services and microservices are designed to work on
behalf of principals that usually do not correspond to the process owner. In
this case, one process services all authenticated requests, requiring permis-
sion to access all client data all the time. This means that in the presence of
a vulnerability, all client data is potentially at risk.

Defining an efficacious access policy is an important mitigation, as it
closes the gap between what accesses should be allowed and what access
controls the system happens to offer. Rather than start with the available
operating system access controls, think through the needs of the various
principals acting through the system and define an ideal access policy
that expresses an accurate description of what constitutes proper access.
A granular access policy potentially offers a wealth of options: you can cap
the number of accesses per minute or hour or day, or enforce a maximum
data volume, time-based limits corresponding to working hours, or variable
access limits based on activity by peers or historical rates (to name a few
obvious mechanisms).

Determining safe access limitations is hard work but worthwhile because
it helps you understand the application’s security requirements. Even if the
policy is not fully implemented in code, it will at least provide guidance for
effective auditing. Given the right set of controls, you can start with lenient
restrictions to gauge what real usage looks like and then, over time, narrow
the policy as you learn how the system is used in practice.

 For example, consider a hypothetical system that serves a team of cus-
tomer service agents. Agents need access to the records of any customer
who might contact them, but they only interact with a limited number of
customers on a given day. A reasonable access policy might limit each agent

Mitigation 49

to no more than 100 different customer records in one shift. With access to
all records all the time, a dishonest agent could leak a copy of all customer
data, whereas the limited policy greatly limits the worst-case daily damage.

Once you have a fine-grained access policy, you face the challenge of
setting the right limits. This can be difficult when you must avoid imped-
ing rightful use in extreme edge cases. In the customer service example,
for instance, you might restrict agents to accessing the records of up
to 100 customers per shift as a way of accommodating seasonal peak
demand, even though, on most days, needing even 50 records would be
unusual. Why? It would be impractical to adjust the policy configuration
throughout the year, and you want to allow for leeway so the limit never
impedes work. Also, defining a more specific and detailed policy based
on fixed dates might not work well, as there could be unexpected surges
in activity at any time.

But is there a way to narrow the gap between normal circumstances and
the rare highest-demand case that the system should allow? One great tool to
handle this tricky situation is a policy provision for self-declared exceptions to
be used in extraordinary circumstances. Such an option allows individual
agents to bump up their own limits for a short period of time by providing
a rationale. With this kind of “relief valve” in place, the basic access policy
can be tightly constrained. When needed, once agents hit the access limit,
they can file a quick notice—stating, for example, “high call volume today,
I’m working late to finish up”—and receive additional access authorization.
Such notices can be audited, and if they become commonplace, management
could bump the policy up with the knowledge that demand has legitimately
grown and an understanding of why. Such flexible techniques enable you to
create access policies with softer limits, rather than hard-and-fast restrictions
that tend to be arbitrary.

Interfaces
Software designs consist of components that correspond to functional parts
of the system. You can visualize these designs as block diagrams, with lines
representing the connections between the parts. These connections denote
interfaces, which are a major focus of security analysis—not only because they
reveal data and control flows, but also because they serve as well-defined
chokepoints where you can add mitigations. In particular, where there is a
trust boundary, the main security focus is on the flow of data and control
from the lower- to the higher-trust component, so that is where defensive
measures are often needed.

In large systems, there are typically interfaces between networks, between
processes, and within processes. Network interfaces provide the strongest
isolation because it’s virtually certain that any interactions between the
endpoints will occur over the wire, but with the other kinds of interfaces it’s
more complicated. Operating systems provide strong isolation at process
boundaries, so interprocess communication interfaces are nearly as trust-
worthy as network interfaces. In both of these cases, it’s generally impossible

50 Chapter 3

to go around these channels and interact in some other way. The attack
surface is cleanly constrained, and hence this is where most of the important
trust boundaries are. As a consequence, interprocess communication and
network interfaces are the major focal points of threat modeling.

Interfaces also exist within processes, where interaction is relatively
unconstrained. Well-written software can still create meaningful security
boundaries within a process, but these are only effective if all the code
plays together well and stays within the lines. From the attacker’s perspec-
tive, intraprocess boundaries are much easier to penetrate. However, since
attackers may only gain a limited degree of control via a given vulnerability,
any protection you can provide is better than none. By analogy, think of a
robber who only has a few seconds to act: even a weak precaution might be
enough to prevent a loss.

Any large software design faces the delicate task of structuring compo-
nents to minimize regions of highly privileged access, as well as restricting
sensitive information flow in order to reduce security risk. To the extent
that the design restricts information access to a minimal set of components
that are well isolated, attackers will have a much harder time getting access
to sensitive data. By contrast, in weaker designs, all kinds of data flow all
over the place, resulting in greater exposure from a vulnerability anywhere
within the component. The architecture of interfaces is a major factor that
determines the success systems have at protecting assets.

Communication
Modern networked systems are so common that standalone computers,
detached from any network, have become rare exceptions. The cloud com-
puting model, combined with mobile connectivity, makes network access
ubiquitous. As a result, communication is fundamental to almost every
software system in use today, be it through internet connections, private
networks, or peripheral connections via Bluetooth, USB, and the like.

In order to protect these communications, the channel must be physi-
cally secured against wiretapping and snooping, or else the data must be
encrypted to ensure its integrity and confidentiality. Reliance on physical
security is typically fragile in the sense that if attackers bypass it, they usu-
ally gain access to the full data flow, and such incursions are difficult to
detect. Modern processors are fast enough that the computational over-
head of encryption is usually acceptable, so there is rarely a good reason not
to encrypt communications. I cover basic encryption in Chapter 5, and
HTTPS for the web specifically in Chapter 11.

Even the best encryption is not a magic bullet, though. One remaining
threat is that encryption cannot conceal the fact of communication. In other
words, if attackers can read the raw data in the channel, even if they’re
unable to decipher its contents, they can still see that data is being sent
and received on the wire, and roughly estimate the amount of data flow.
Furthermore, if attackers can tamper with the communication channel,
they might be able to delay or block the transmission entirely.

Mitigation 51

Storage
The security of data storage is much like the security of communications,
because storing data is analogous to sending it into the future, at which
point you will retrieve it for some purpose. Viewed in this way, just as data
that is being communicated is vulnerable on the wire, stored data is vulner-
able at rest on the storage medium. Protecting data at rest from potential
tampering or disclosure requires either physical security or encryption.
Likewise, availability depends on the existence of backup copies or success-
ful physical protection.

Storage is so ubiquitous in system designs that it’s easy to defer the details
of data security for operations to deal with, but doing so misses good oppor-
tunities for proactively mitigating data loss in the design. For instance, data
backup requirements are an important part of software designs, because the
demands are by no means obvious, and there are many trade-offs. You could
plan for redundant storage systems, designed to protect against data loss in
the event of failure, but these can be expensive and incur performance costs.
Your backups might be copies of the whole dataset, or they could be incre-
mental, recording transactions that, cumulatively, can be used to rebuild an
accurate copy. Either way, they should be reliably stored independently and
with specific frequency, within acceptable limits of latency. Cloud architec-
tures can provide redundant data replication in near real-time for perhaps
the best continuous backup solution, but at a cost.

All data at rest, including backup copies, is at risk of exposure to unau-
thorized access, so you must physically secure or encrypt it for protection.
The more backup copies you make, the greater the risk is of a leak due
to having so many copies. Considering the potential extremes makes this
point clear. Photographs are precious memories and irreplaceable pieces
of every family’s history, so keeping multiple backup copies is wise—if you
don’t have any copies and the original files are lost, damaged, or corrupted,
the loss could be devastating. To guard against this, you might send cop-
ies of your family photos to as many relatives as possible for safekeeping.
But this has a downside too, as it raises the chances that one of them might
have the data stolen (via malware, or perhaps a stolen laptop). This could
also be catastrophic, as these are private memories, and it would be a viola-
tion of privacy to see all those photos publicly spread all over the web (and
potentially a greater threat if it allowed strangers to identify children in a
way that could lead to exploitation). This is a fundamental trade-off that
requires you to weigh the risks of data loss against the risk of leaks—you
cannot minimize both at once, but you can balance these concerns to a
degree in a few ways.

As a compromise between these threats, you could send your relatives
encrypted photos. (This means they would not be able to view them, of
course.) However, now you are responsible for keeping the key that you
chose not to entrust them with, and if you lose the key, the encrypted copies
are worthless.

Preserving photos also raises an important aspect of backing up data,
which is the problem of media lifetime and obsolescence. Physical media

52 Chapter 3

(such as hard disks or DVDs) inevitably degrade over time, and support for
legacy media fades away as new hardware evolves (this author recalls long
ago personally moving data from dozens of floppy disks, which only anti-
quated computers can use, onto one USB memory stick, now copied to the
cloud). Even if the media and devices still work, new software tends to drop
support for older data formats. The choice of data format is thus important,
with widely used open standards highly preferred, because proprietary
formats must be reverse-engineered once they are officially retired. Over
longer time spans, it might be necessary to convert file formats, as soft-
ware standards evolve and application support for older formats becomes
deprecated.

The examples mentioned throughout this chapter have been simplified
for explanatory purposes, and while we’ve covered many techniques that can
be used to mitigate identified threats, these are just the tip of the iceberg
of possibilities. Adapt specific mitigations to the needs of each application,
ideally by making them integral to the design. While this sounds simple,
effective mitigations are challenging in practice because a panoply of threats
must be considered in the context of each system, and you can only do so
much. The next chapter presents major patterns with useful security proper-
ties, as well as anti-patterns to watch out for, that are useful in crafting these
mitigations as part of secure design.

4
P A T T E R N S

Art is pattern informed by sensibility.
—Herbert Read

Architects have long used design patterns
to envision new buildings, an approach just

as useful for guiding software design. This
chapter introduces many of the most useful

patterns promoting secure design. Several of these pat-
terns derive from ancient wisdom; the trick is knowing
how to apply them to software and how they enhance
security.

These patterns either mitigate or avoid various security vulnerabili-
ties, forming an important toolbox to address potential threats. Many are
simple, but others are harder to understand and best explained by example.
Don’t underestimate the simpler ones, as they can be widely applicable and
are among the most effective. Still, other concepts may be easier to grasp as
anti-patterns describing what not to do. I present these patterns in groups
based on shared characteristics that you can think of as sections of the
toolbox (Figure 4-1).

54 Chapter 4

Trust and
Responsibility
Reluctance to Trust
Accept Security Responsibility

Anti-Patterns
Confused Deputy
Backflow of Trust
Third-Party Hooks
Unpatchable Components

Exposure
Minimization
Allowlists over Blocklists
Least Privilege
Least Information
Secure by Default
Fail Securely
Avoid Predictability

Redundancy
Separation of Privilege
Defense in Depth

Strong Enforcement
Least Common Mechanism
Complete Mediation

Design Attributes
Transparent Design
Economy of Design

Security
Patterns

Figure 4-1: Groupings of secure software patterns this chapter covers

When and where to apply these patterns requires judgment. Let neces-
sity and simplicity guide your design decisions. As powerful as these pat-
terns are, don’t overdo it; just as you don’t need seven deadbolts and chains
on your doors, you don’t need to apply every possible design pattern to fix
a problem. Where several patterns are applicable, choose the best one or
two, or maybe more for critical security demands. Overuse can be counter-
productive because the diminishing returns of increased complexity and
overhead quickly outweigh additional security gains.

Design Attributes
The first group of patterns describe at a high level what secure design looks
like: simple and transparent. These derive from the adages “keep it simple”
and “you should have nothing to hide.” As basic and perhaps obvious as
these patterns may be, they can be applied widely and are very powerful.

Economy of Design
Designs should be as simple as possible.

Economy of Design raises the security bar because simpler designs likely
have fewer bugs, and thus fewer undetected vulnerabilities. Though develop-
ers claim that “all software has bugs,” we know that simple programs certainly
can be bug-free. Prefer the simplest of competing designs for security mecha-
nisms, and be wary of complicated designs that perform critical security
functions.

Patterns 55

 LEGO bricks are a great example of this pattern. Once the design
and manufacture of the standard building element is perfected, it enables
building a countless array of creative designs. A similar system composed of
a number of less universally useful pieces would be more difficult to build
with; any particular design would require a larger inventory of parts and
involve other technical challenges.

You can find many examples of Economy of Design in the system
architecture of large web services built to run in massive datacenters. For
reliability at scale, these designs decompose functionality into smaller, self-
contained components that collectively perform complicated operations.
Often, a basic frontend terminates the HTTPS request, parsing and validat-
ing the incoming data into an internal data structure. That data structure
gets sent on for processing by a number of subservices, which in turn use
microservices to perform various functions.

In the case of an application such as web search, different machines
may independently build different parts of the response in parallel, then yet
another machine blends them into the complete response. It’s much easier
to build many small services to do separate parts of the whole task—query
parsing, spelling correction, text search, image search, results ranking, and
page layout—than to do everything in one massive program.

Economy of Design is not an absolute mandate that everything must
always be simple. Rather, it highlights the great advantages of simplicity,
and says that you should only embrace complexity when it adds significant
value. Consider the differences between the design of access control lists
(ACLs) in *nix and Windows. The former is simple, specifying read/write/
execute permissions by user or user group, or for everybody. The latter is
much more involved, including an arbitrary number of both allow and deny
access control entries as well as an inheritance feature; notably, evaluation
is dependent on the ordering of entries within the list. (These simplified
descriptions are to make a point about design, and are not intended as com-
plete.) This pattern correctly shows that the simpler *nix permissions are
easier to correctly enforce, and beyond that, it’s easier for users of the system
to correctly understand how ACLs work and therefore to use them correctly.
However, if the Windows ACL provides just the right protection for a given
application and can be accurately configured, then it may be a fine solution.

The Economy of Design pattern does not say that the simpler option
is unequivocally better, or that the more complex one is necessarily prob-
lematic. In this example, *nix ACLs are not inherently better, and Windows
ACLs are not necessarily buggy. However, Windows ACLs do represent
more of a learning curve for developers and users, and using their more
complicated features can easily confuse people as well as invite unintended
consequences. The key design choice here, which I will not weigh in on,
is to what extent the ACL designs best fit the needs of users. Perhaps *nix
ACLs are too simplistic and fail to meet real demands; on the other hand,
perhaps Windows ACLs are overly feature-bound and cumbersome in typi-
cal use patterns. These are difficult questions we must each answer for our
own purposes, but for which this design pattern provides insight.

56 Chapter 4

Transparent Design
Strong protection should never rely on secrecy.

Perhaps the most famous example of a design that failed to follow the
pattern of Transparent Design is the Death Star in Star Wars, whose thermal
exhaust port afforded a straight shot at the heart of the battle station. Had
Darth Vader held his architects accountable to this principle as severely
as he did Admiral Motti, the story would have turned out very differently.
Revealing the design of a well-built system should have the effect of dissuad-
ing attackers by showing its invincibility. It shouldn’t make the task easier
for them. The corresponding anti-pattern may be better known: we call it
Security by Obscurity.

This pattern specifically warns against a reliance on the secrecy of a
design. It doesn’t mean that publicly disclosing designs is mandatory, or
that there is anything wrong with secret information. If full transparency
about a design weakens it, you should fix the design, not rely on keeping
it secret. This in no way applies to legitimately secret information, such as
cryptographic keys or user identities, which actually would compromise
security if leaked. That’s why the name of the pattern is Transparent Design,
not Absolute Transparency. Full disclosure of the design of an encryption
method—the key size, message format, cryptographic algorithms, and so
forth—shouldn’t weaken security at all. The anti-pattern should be a big
red flag: for instance, distrust any self-anointed “experts” who claim to
invent amazing encryption algorithms that are so great that they cannot
publish the details. Without exception, these are bogus.

The problem with Security by Obscurity is that while it may help fore-
stall adversaries temporarily, it’s extremely fragile. For example, imagine
that a design used an outdated cryptographic algorithm: if the attackers
ever found out that the software was still using, say, DES (a legacy symmet-
ric encryption algorithm from the 1970s), they could easily crack it within a
day. Instead, do the work necessary to get to a solid security footing so that
there is nothing to hide, whether or not the design details are public.

Exposure Minimization
The largest group of patterns call for caution: think “err on the safe side.”
These are expressions of basic risk/reward strategies where you play it safe
unless there is an important reason to do otherwise.

Least Privilege
It’s always safest to use just enough privilege for the job.

Never clean a loaded gun. Unplug power saws when changing blades.
These commonplace safety practices are examples of the Least Privilege
pattern, which aims to reduce the risk of making mistakes when performing
a task. This pattern is the reason that administrators of important systems
should not be randomly browsing the internet while logged in at work; if
they visit a malicious website and get compromised, the attack could easily
do serious harm.

Patterns 57

The *nix sudo(1) command performs exactly this purpose. User accounts
with high privilege (known as sudoers) need to be careful not to inadvertently
use their extraordinary power by accident or if compromised. To provide this
protection, the user must prefix superuser commands with sudo, which may
prompt the user for a password, in order to run them. Under this system,
most commands (those that do not require sudo) will affect only the user’s
own account, and cannot impact the entire system. This is akin to the “IN
CASE OF EMERGENCY BREAK GLASS” cover on a fire alarm switch to pre-
vent accidental activation, in that this forces an explicit step (corresponding
to the sudo prefix) before activating the switch. With the glass cover, nobody
can claim to have accidentally pulled the fire alarm, just as a competent
administrator would never type sudo and a command that breaks the system
all by accident.

This pattern is important for the simple reason that when vulnerabili-
ties are exploited, it’s better for the attacker to have minimal privileges to
use as leverage. Use all-powerful authorizations such as superuser privileges
only when strictly necessary, and for the minimum possible duration. Even
Superman practiced Least Privilege by only wearing his uniform when
there was a job to do, and then, after saving the world, immediately chang-
ing back into his Clark Kent persona.

In practice, it does take more effort to selectively and sparingly use ele-
vated privileges. Just as unplugging power tools to work on them requires
more effort, discretion when using permissions requires discipline, but
doing it right is always safer. In the case of an exploit, it means the differ-
ence between a minor incursion and total system compromise. Practicing
Least Privilege can also mitigate damage done by bugs and human error.

Like all rules of thumb, use this pattern with a sense of balance to avoid
overcomplication. Least Privilege does not mean the system should always
grant literally the minimum level of authorization (for instance, creating code
that, in order to write file X, is given write access to only that one file). You may
wonder, why not always apply this excellent pattern to the max? In addition to
maintaining a general sense of balance and recognizing diminishing returns
for any mitigation, a big factor here is the granularity of the mechanism that
controls authorization, and the cost incurred while adjusting privileges up and
down. For instance, in a *nix process, permissions are conferred based on user
and group ID access control lists. Beyond the flexibility of changing between
effective and real IDs (which is what sudo does), there is no easy way to tem-
porarily drop unneeded privileges without forking a process. Code should
operate with lower ambient privileges where it can, using higher privileges in
the necessary sections and transitioning at natural decision points.

Least Information
It’s always safest to collect and access the minimum amount of private infor-
mation needed for the job.

The Least Information pattern, the data privacy analog of Least Privilege,
helps to minimize unintended disclosure risks. Avoid providing more private
information than necessary when calling a subroutine, requesting a service,
or responding to a request, and at every opportunity curtail unnecessary

58 Chapter 4

information flow. Implementing this pattern can be challenging in practice
because software tends to pass data around in standard containers not opti-
mized for purpose, so extra data often is included that isn’t really needed.

All too often, software fails this pattern because the design of inter-
faces evolves over time to serve a number of purposes, and it’s convenient
to reuse the same parameters or data structure for consistency. As a result,
data that isn’t strictly necessary gets sent along as extra baggage that seems
harmless enough. The problem arises, of course, when this needless data
flowing through the system creates additional opportunities for attack.

For example, imagine a large customer relationship management (CRM)
system used by various workers in an enterprise. Different workers use the
system for a wide variety of purposes, including sales, production, shipping,
support, maintenance, R&D, and accounting. Depending on their roles,
each has a different authorization for access to subsets of this information.
To practice Least Information, the applications in this enterprise should
request only the minimum amount of data needed to perform a specific
task. Consider a customer support representative responding to a phone
call: if the system uses Caller ID to look up the customer record, the sup-
port person doesn’t need to know their phone number, just their purchase
history. Contrast this with a more basic design that either allows or disallows
the lookup of customer records that include all data fields. Ideally, even if the
representative has more access, they should be able to request the minimum
needed for a given task and work with that, thereby minimizing the risk of
disclosure.

At the implementation level, Least Information design includes wiping
locally cached information when no longer needed, or perhaps displaying
a subset of available data on the screen until the user explicitly requests
to see certain details. The common practice of displaying passwords as
******** uses this pattern to mitigate the risk of shoulder surfing.

It’s particularly important to apply this pattern at design time, as it can
be extremely difficult to implement later on because both sides of the inter-
face need to change together. If you design independent components suited
to specific tasks that require different sets of data, you’re more likely to get
this right. APIs handling sensitive data should provide flexibility to allow
callers to specify subsets of data they need in order to minimize informa-
tion exposure (Table 4-1).

Table 4-1: How Least Information Changes API Design

Least Information non-compliant API Least Information compliant API

RequestCustomerData(id='12345') RequestCustomerData(id='12345',
items=['name', 'zip'])

{'id': '12345', 'name': 'Jane Doe',
'phone': '888-555-1212', 'zip':
'01010', ...}

{'name': 'Jane Doe', 'zip': '01010'}

The RequestCustomerData API in the left column ignores the Least
Information pattern because the caller has no option but to request the
complete data record by ID. They don’t need the phone number, so there is

Patterns 59

no need to request it, and even ignoring it still expands the attack surface
for an attacker trying to get it. The right column has a version of the same
API that allows callers to specify what fields they need and delivers only
those, which minimizes the flow of private information.

Considering the Secure by Default pattern as well, the default for the
items parameter should be a minimal set of fields, provided that callers can
request exactly what they need to minimize information flow.

Secure by Default
Software should always be secure “out of the box.”

Design your software to be Secure by Default, including in its initial state,
so that inaction by the operator does not represent a risk. This applies to the
overall system configuration, as well as configuration options for components
and API parameters. Databases or routers with default passwords notoriously
violate this pattern, and to this day, this design flaw remains surprisingly
widespread.

If you are serious about security, never configure an insecure state with
the intention of making it secure later, because this creates an interval of
vulnerability and is too often forgotten. If you must use equipment with a
default password, for example, first configure it safely on a private network
behind a firewall before deploying it in the network. A pioneer in this area,
the state of California has mandated this pattern by law; its Senate Bill
No. 327 (2018) outlaws default passwords on connected devices.

Secure by Default applies to any setting or configuration that could have
a detrimental security impact, not just to default passwords. Permissions
should default to more restrictive settings; users should have to explicitly
change them to less restrictive ones if needed, and only if it’s safe to do so.
Disable all potentially dangerous options by default. Conversely, enable
features that provide security protection by default so they are functioning
from the start. And of course, keeping the software fully up-to-date is impor-
tant; don’t start out with an old version (possibly one with known vulnerabili-
ties) and hope that, at some point, it gets updated.

Ideally, you shouldn’t ever need to have insecure options. Carefully con-
sider proposed configurable options, because it may be simple to provide
an insecure option that will become a booby trap for others thereafter. Also
remember that each new option increases the number of possible combina-
tions, and the task of ensuring that all of those combinations of settings are
actually useful and safe becomes more difficult as the number of options
increases. Whenever you must provide unsafe configurations, make a point
of proactively explaining the risk to the administrator.

Secure by Default applies much more broadly than to configuration
options, though. Defaults for unspecified API parameters should be secure
choices. A browser accepting a URL entered into the address bar without
any protocol specified should assume the site uses HTTPS, and fall back
to HTTP only if the former fails to connect. Two peers negotiating a new
HTTPS connection should default to accepting the more secure cipher
suite choices first.

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB327
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB327

60 Chapter 4

Allowlists over Blocklists
Prefer allowlists over blocklists when designing a security mechanism.
Allowlists are enumerations of what’s safe, so they are inherently finite. By
contrast, blocklists attempt to enumerate all that isn’t safe, and in doing so
implicitly allow an infinite set of things you hope are safe. It’s clear which
approach is riskier.

First, here’s a non-software example to make sure you understand what
the allowlist versus blocklist alternative means, and why allowlists are always the
way to go. During the early months of the COVID-19 stay-at-home emergency
order, the governor of my state ordered the beaches closed with the following
provisos, presented here in simplified form:

No person shall sit, stand, lie down, lounge, sunbathe, or loiter
on any beach except when “running, jogging, or walking on the
beach, so long as social distancing requirements are maintained”
(crossing the beach to surf is also allowed).

The first clause is a blocklist, because it lists what activities are not
allowed, and the second exception clause is an allowlist, because it grants
permission to the activities listed. Due to legal issues, there may well be
good reasons for this language, but from a strictly logical perspective, I
think it leaves much to be desired.

First let’s consider the blocklist: I’m confident that there are other risky
activities people could do at the beach that the first clause fails to prohibit.
If the intention of the order was to keep people moving, it omitted many—
kneeling, for example, as well as yoga and living statue performances. The
problem with blocklists is that any omissions become flaws, so unless you
can completely enumerate every possible bad case, it’s an insecure system.

Now consider the allowlist of allowable beach activities. While it, too, is
incomplete—who would contest that skipping is also fine?—this won’t cause
a big security problem. Perhaps a fraction of a percent of beach skippers
will be unfairly punished, but the harm is minor, and more importantly, an
incomplete enumeration doesn’t open up a hole that allows a risky activity.
Additional safe items initially omitted can easily be added to the allowlist as
needed.

More generally, think of a continuum, ranging from disallowed on the
left, then shading to allowed on the right. Somewhere in the middle is a
dividing line. The goal is to allow the good stuff on the right of the line while
disallowing the bad on the left. Allowlists draw the line from the right side,
then gradually move it to the left, including more parts of the continuum as
the list of what to allow grows. If you omit something good from the allowlist,
you’re still on the safe side of the elusive line that’s the true divide. You may
never get to the precise point that allows all safe actions, at which point any
addition to the list would be too much, but using this technique makes it easy
to stay on the safe side. Contrast that to the blocklist approach: unless you enu-
merate everything to the left of the true divide, you’re allowing something you

Patterns 61

shouldn’t. The safest blocklist will be one that includes just about everything,
and that’s likely to be overly restrictive, so it doesn’t work well either way.

Often, the use of an allowlist is so glaringly obvious we don’t notice it
as a pattern. For example, a bank would reasonably authorize a small set of
trusted managers to approve high-value transactions. Nobody would dream
of maintaining a blocklist of all the employees not authorized, tacitly allow-
ing any other employee such privilege. Yet sloppy coders might attempt to
do input validation by checking that the value did not contain any of a list
of invalid characters, and in the process easily forget about characters like
NUL (ASCII 0) or perhaps DEL (ASCII 127).

Ironically, perhaps the biggest-selling consumer security product, antivi-
rus software, attempts to block all known malware. Modern antivirus products
are much more sophisticated than the old-school versions, which relied
on comparing a digest against a database of known malware, but still, they
all appear to work based on a blocklist to some extent. (A great example of
Security by Obscurity, most commercial antivirus software is proprietary, so
we can only speculate.) It makes sense that they’re stuck with blocklist tech-
niques because they know how to collect examples of malware, and the pros-
pect of somehow allowlisting all good software in the world before it’s released
seems to be a nonstarter. My point isn’t about any particular product or an
assessment of its worth, but about the design choice of protection by virtue
of a blocklist, and why that’s inevitably risky.

Avoid Predictability
Any data (or behavior) that is predictable cannot be kept private, since
attackers can learn it by guessing.

Predictability of data in software design can lead to serious flaws
because it can result in the leakage of information. For instance, consider
the simple example of assigning new customer account IDs. When a new
customer signs up on a website, the system needs a unique ID to designate
the account. One obvious and easy way to do this is to name the first account 1,
the second account 2, and so on. This works, but from the point of view of an
attacker, what does it give away?

New account IDs now provide an attacker an easy way of learning the
number of user accounts created so far. For example, if the attacker periodi-
cally creates a new, throwaway account, they have an accurate metric for
how many customer accounts the website has at a given time—information
that most businesses would be loathe to disclose to a competitor. Many other
pitfalls are possible, depending on the specifics of the system. Another con-
sequence of this poor design is that attackers can easily guess the account ID
assigned to the next new account created, and armed with this knowledge,
they might be able to interfere with the new account setup by claiming
to be the new account and confusing the registration system.

The problem of predictability takes many guises, and different types
of leakage can occur with different designs. For example, an account ID

62 Chapter 4

that includes several letters of the account holder’s name or ZIP code would
needlessly leak clues about the account owner’s identity. Of course, this
same problem applies to IDs for web pages, events, and more. The simplest
mitigation against these issues is that if the purpose of an ID is to be a
unique handle, you should make it just that—never a count of users, the
email of the user, or based on other identifying information.

The easy way to avoid these problems is to use securely random IDs. Truly
random values cannot be guessed, so they do not leak information. (Strictly
speaking, the length of IDs leaks the maximum number of possible IDs, but
this usually isn’t sensitive information.) A standard system facility, random
number generators come in two flavors: pseudorandom number generators
and secure random number generators. You should use the secure option,
which is slower, unless you’re certain that predictability is harmless. See
Chapter 5 for more about secure random number generators.

Fail Securely
If a problem occurs, be sure to end up in a secure state.

In the physical world, this pattern is common sense itself. An old-fashioned
electric fuse is a great example: if too much current flows through it, the heat
melts the metal, opening the circuit. The laws of physics make it impossible to
fail in a way that maintains excessive current flow. This pattern perhaps may
seem like the most obvious one, but software being what it is (we don’t have
the laws of physics on our side), it’s easily disregarded.

Many software coding tasks that at first seem almost trivial often grow in
complexity due to error handling. The normal program flow can be simple,
but when a connection is broken, memory allocation fails, inputs are invalid,
or any number of other potential problems arise, the code needs to pro-
ceed if possible, or back out gracefully if not. When writing code, you
might feel as though you spend more time dealing with all these distractions
than with the task at hand, and it’s easy to quickly dismiss error-handling
code as unimportant, making this a common source of vulnerabilities.
Attackers will intentionally trigger these error cases if they can, in hopes
that there is a vulnerability they can exploit.

Error cases are often tedious to test thoroughly, especially when combi-
nations of multiple errors can compound into new code paths, so this can
be fertile ground for attack. Ensure that each error is either safely handled,
or leads to full rejection of the request. For example, when someone uploads
an image to a photo sharing service, immediately check that it is well formed
(because malformed images are often used maliciously), and if not, then
promptly remove the data from storage to prevent its further use.

Strong Enforcement
These patterns concern how to ensure that code behaves by enforcing the
rules thoroughly. Loopholes are the bane of any laws and regulations, so these
patterns show how to avoid creating ways of gaming the system. Rather than

Patterns 63

write code and reason that you don’t think it will do something, it’s better to
structurally design it so that forbidden operations cannot possibly occur.

Complete Mediation
Protect all access paths, enforcing the same access, without exception.

An obscure term for an obvious idea, Complete Mediation means
securely checking all accesses to a protected asset consistently. If there
are multiple access methods to a resource, they must all be subject to the
same authorization check, with no shortcuts that afford a free pass or
looser policy.

For example, suppose a financial investment firm’s information sys-
tem policy declares that regular employees cannot look up the tax IDs of
customers without manager approval, so the system provides them with a
reduced view of customer records omitting that field. Managers can access
the full record, and in the rare instance that a non-manager has a legiti-
mate need, they can ask a manager to look it up. Employees help customers
in many ways, one of which is providing replacement tax documents if, for
some reason, customers did not receive theirs in the mail. After confirm-
ing the customer’s identity, the employee requests a duplicate form (a
PDF), which they print out and mail to the customer. The problem with
this system is that the customer’s tax ID, which the employee should
not have access to, appears on the tax form: that’s a failure of Complete
Mediation. A dishonest employee could request any customer’s tax form,
as if for a replacement, just to learn their tax ID, defeating the policy pre-
venting disclosure to employees.

The best way to honor this pattern is, wherever possible, to have a single
point where a particular security decision occurs. This is often known as a
guard or, informally, a bottleneck. The idea is that all accesses to a given asset
must go through one gate. Alternatively, if that is infeasible and multiple
pathways need guards, then all checks for the same access should be func-
tionally equivalent and ideally implemented as identical code.

In practice, this pattern can be challenging to accomplish consistently.
There are different degrees of compliance, depending on the guards in
place:

High compliance

Resource access only allowed via one common routine (bottleneck
guard)

Medium compliance

Resource access in various places, each guarded by an identical authori-
zation check (common multiple guards)

Low compliance

Resource access in various places, variously guarded by inconsistent
authorization checks (incomplete mediation)

64 Chapter 4

A counter-example demonstrates why designs with simple authorization
policies that concentrate authorization checks in a single bottleneck code
path for a given resource are the best way to get this pattern right. A Reddit
user recently reported a case of how easy it is to get it wrong:

I saw that my 8-year-old sister was on her iPhone 6 on iOS 12.4.6
using YouTube past her screen time limit. Turns out, she discov-
ered a bug with screen time in messages that allows the user to
use apps that are available in the iMessage App Store.

Apple designed iMessage to include its own apps, making it possible to
invoke the YouTube app in multiple ways, but it didn’t implement the
screen-time check on this alternate path to video watching—a classic fail-
ure of Complete Mediation.

Avoid having multiple paths for accessing the same resource, each
with custom code that potentially works slightly differently, because any
discrepancies could mean weaker guards on some paths than on others.
Multiple guards would require implementing the same essential check
multiple times, and would be more difficult to maintain because you’d
need to make matching changes in several places. The use of multiple
guards incurs more chances of making an error and more work to thor-
oughly test.

Least Common Mechanism
Maintain isolation between independent processes by minimizing shared
mechanisms.

To best appreciate what this means and how it helps, let’s consider
an example. The kernel of a multiuser operating system manages system
resources for processes running in different user contexts. The design of
the kernel fundamentally ensures the isolation of processes unless they
explicitly share a resource or a communication channel. Under the covers,
the kernel maintains various data structures necessary to service requests
from all user processes. This pattern points out that the common mecha-
nism of these structures could inadvertently bridge processes, and therefore
it’s best to minimize such opportunities. For example, if some functionality
can be implemented in userland code, where the process boundary neces-
sarily isolates it to the process, the functionality will be less likely to some-
how bridge user processes. Here, the term bridge specifically means either
leaking information, or allowing one process to influence another without
authorization.

If that still feels abstract, consider this non-software analogy. You visit
your accountant to review your tax return the day before the filing deadline.
Piles of papers and folders cover the accountant’s desk like miniature sky-
scrapers. After shuffling through the chaotic mess, they pull out your paper-
work and start the meeting. While waiting, you can see tax forms and bank
statements with other people’s names and tax IDs in plain sight. Perhaps
your accountant accidentally jots a quick note about your taxes in someone

Patterns 65

else’s file by mistake. This is exactly the kind of bridge between independent
parties, created because the accountant uses the desktop as a common work-
space, that the Least Common Mechanism strives to avoid.

Next year, you hire a different accountant, and when you meet with
them, they pull your file out of a cabinet. They open it on their desk, which
is neat, with no other clients’ paperwork in sight. That’s how to do Least
Common Mechanism right, with minimal risk of mix-ups or nosy clients
seeing other documents.

In the realm of software, apply this pattern by designing services that
interface to independent processes or different users. Instead of a mono-
lithic database with everyone’s data in it, can you provide each user with
a separate database or otherwise scope access according to the context?
There may be good reasons to put all the data in one place, but when you
choose not to follow this pattern, be alert to the added risk and explicitly
enforce the necessary separation. Web cookies are a great example of using
this pattern because each client stores its own cookie data independently.

Redundancy
Redundancy is a core strategy for safety in engineering that’s reflected in
many common-sense practices, such as spare tires for cars. These patterns
show how to apply it to make software more secure.

Defense in Depth
Combining independent layers of protection makes for a stronger overall
defense that is often synergistically far more effective than any single layer.

This powerful technique is one of the most important patterns we have
for making inevitably bug-ridden software systems more secure than their
components. Visualize a room that you want to convert to a darkroom by
putting plywood over the window. You have plenty of plywood, but some-
body has randomly drilled several small holes in every sheet. Nail up just
one sheet, and numerous pinholes ruin the darkness. Nail a second sheet
on top of that, and unless two holes just happen to align, you now have
a completely dark room. A security checkpoint that utilizes both a metal
detector and a pat-down is another example of this pattern.

In the realm of software design, deploy Defense in Depth by layering two
or more independent protection mechanisms to enforce a particularly criti-
cal security decision. Like the holey plywood, there might be flaws in each
of the implementations, but the likelihood that any given attack will pen-
etrate both is minuscule, akin to having two plywood holes just happen to
line up and let light through. Since two independent checks require double
the effort and take twice as long, you should use this technique sparingly.

A great example of this technique that balances the effort and over-
head against the benefit is the implementation of a sandbox, a container in
which untrusted arbitrary code can run safely. (Modern web browsers run

66 Chapter 4

WebAssembly in a secure sandbox.) Running untrusted code in your system
could have disastrous consequences if anything goes wrong, justifying the
overhead of multiple layers of protection (Figure 4-2).

Sandbox

Sandbox loader

Code interpreter

Code
validator

Submit code

Valid

Rule
violation

Code

Resources

Execution

Forbidden
operation

Access from
sandbox is
forbidden

This would be
a vulnerability

Protected
resources

REJECT

Figure 4-2: An example of a sandbox as the Defense in Depth pattern

Code for sandbox execution first gets scanned by an analyzer (defense
layer one), which examines it against a set of rules. If any violation occurs,
the system rejects the code completely. For example, one rule might forbid
the use of calls into the kernel; another rule might forbid the use of specific
privileged machine instructions. If and only if the code passes the scan-
ner, it then gets loaded into an interpreter that runs the code while also
enforcing a number of restrictions intended to prevent the same kinds of
overprivileged operations. For an attacker to break this system, they must
first get past the scanner’s rule checking and also trick the interpreter into
executing the forbidden operation. This example is especially effective
because code scanning and interpretation are fundamentally different, so
the chances of the same flaw appearing in both layers is low, especially if
they’re developed independently. Even if there is a one-in-a-million chance

https://webassembly.org/

Patterns 67

that the scanner misses a particular attack technique, and the same goes for
the interpreter, once they’re combined, the total system has about a one-in-
a-trillion chance of actually failing. That’s the power of this pattern.

Separation of Privilege
Two parties are more trustworthy than one.

Also known as Separation of Duty, the Separation of Privilege pattern refers
to the indisputable fact that two locks are stronger than one when those
locks have different keys entrusted to two different people. While it’s pos-
sible that those two people may be in cahoots, that rarely happens; plus,
there are good ways to minimize that risk, and in any case it’s way better
than relying entirely on one individual.

For example, safe deposit boxes are designed such that a bank main-
tains the security of the vault that contains all the boxes, and each box
holder has a separate key that opens their box. Bankers cannot get into any
of the boxes without brute-forcing them, such as by drilling the locks, yet
no customer knows the combination that opens the vault. Only when a cus-
tomer gains access from the bank and then uses their own key can their box
be opened.

Apply this pattern when there are distinct overlapping responsibilities
for a protected resource. Securing a datacenter is a classic case: the data-
center has a system administrator (or a team of them for a big operation)
responsible for operating the machines with superuser access. In addition,
security guards control physical access to the facility. These separate duties,
paired with corresponding controls of the respective credentials and access
keys, should belong to employees who report to different executives in the
organization, making collusion less likely and preventing one boss from
ordering an extraordinary action in violation of protocol. Specifically, the
admins who work remotely shouldn’t have physical access to the machines
in the datacenter, and the people physically in the datacenter shouldn’t
know any of the access codes to log in to the machines, or the keys needed
to decrypt any of the storage units. It would take two people colluding, one
from each domain of control, to gain both physical and admin access in
order to fully compromise security. In large organizations, different groups
might be responsible for various datasets managed within the datacenter as
an additional degree of separation.

The other use of this pattern, typically reserved for the most critical
functions, is to split one responsibility into multiple duties to avoid any
serious consequences as a result of a single actor’s mistake or malicious
intent. As extra protection against a backup copy of data possibly leaking,
you could encrypt it twice with different keys entrusted separately, so that
it can be used only with the help of both parties. An extreme example,
triggering a nuclear missile launch, requires two keys turned simultane-
ously in locks 10 feet apart, ensuring that no individual acting alone
could possibly actuate it.

Secure your audit logs by Separation of Privilege, with one team respon-
sible for the recording and reviewing of events and another for initiating the

68 Chapter 4

events. This means that the admins can audit user activity, but a separate
group needs to audit the admins. Otherwise, a bad actor could block the
recording of their own corrupt activity or tamper with the audit log to cover
their tracks.

You can’t achieve Separation of Privilege within a single computer
because an administrator with superuser rights has full control, but there
are still many ways to approximate it to good effect. Implementing a design
with multiple independent components can still be valuable as a mitigation,
even though an administrator can ultimately defeat it, because it makes
subversion more complicated; any attack will take longer and the attacker
is more likely to make mistakes in the process, increasing their likelihood
of being caught. Strong Separation of Privilege for administrators could be
designed by forcing the admin to work via a special ssh gateway under sepa-
rate control that logged their session in full detail and possibly imposed
other restrictions.

Insider threats are difficult, or in some cases impossible, to eliminate,
but that doesn’t mean mitigations are a waste of time. Simply knowing
that somebody is watching is, in itself, a large deterrent. Such precautions
are not just about distrust: honest staff should welcome any Separation of
Privilege that adds accountability and reduces the risk posed by their own
mistakes. Forcing a rogue insider to work hard to cleanly cover their tracks
slows them down and raises the odds of their being caught red-handed.
Fortunately, human beings have well-evolved trust systems for face-to-face
encounters with coworkers, and as a result, insider duplicity is extremely
rare in practice.

Trust and Responsibility
Trust and responsibility are the glue that makes cooperation work. Software
systems are increasingly interconnected and interdependent, so these pat-
terns are important guideposts.

Reluctance to Trust
Trust should be always be an explicit choice, informed by solid evidence.

This pattern acknowledges that trust is precious, and so urges skepticism.
Before there was software, criminals exploited people’s natural inclina-
tion to trust others, dressing up as workmen to gain access, selling snake
oil, or perpetrating an endless variety of other scams. Reluctance to Trust
tells us not to assume that a person in a uniform is necessarily legit, and to
consider that the caller who says they’re with the FBI may be a trickster. In
software, this pattern applies to checking the authenticity of code before
installing it, and requiring strong authentication before authorization.

The use of HTTP cookies is a great example of this pattern, as Chapter 11
explains in detail. Web servers set cookies in their response to the client,
expecting clients to send back those cookies with future requests. But since
clients are under no actual obligation to comply, servers should always take
cookies with a grain of salt, and it’s a huge risk to absolutely trust that clients
will always faithfully perform this task.

Patterns 69

Reluctance to Trust is important even in the absence of malice. For
example, in a critical system, it’s vital to ensure that all components are
up to the same high standards of quality and security so as not to compro-
mise the whole. Poor trust decisions, such using code from an anonymous
developer (which might contain malware, or simply be buggy) for a critical
function quickly undermines security. This pattern is straightforward and
rational, yet can be challenging in practice because people are naturally
trusting and it can feel paranoid to withhold trust.

Accept Security Responsibility
All software professionals have a clear duty to take responsibility for secu-
rity; they should reflect that attitude in the software they produce.

For example, a designer should include security requirements when
vetting external components to incorporate into the system. And at the
interface between two systems, both sides should explicitly take on certain
responsibilities they will honor, as well as confirm any guarantees they
depend on the caller to uphold.

The anti-pattern that you don’t want is to someday encounter a problem
and have two developers say to each other, “I thought you were handling
security, so I didn’t have to.” In a large system, both sides can easily find
themselves pointing the finger at the other. Consider a situation where
component A accepts untrusted input (for example, a web frontend server
receiving an anonymous internet request) and passes it through, possibly
with some processing or reformatting, to business logic in component B.
Component A could take no security responsibility at all and blindly pass
through all inputs, assuming B will handle the untrusted input safely with
suitable validation and error checking. From component B’s perspective,
it’s easy to assume that the frontend validates all requests and only passes
safe requests on to B, so there is no need for B to worry about this. The right
way to handle this situation is by explicit agreement; decide who validates
requests and what guarantees to provide downstream, if any. For maximum
safety, use Defense in Depth, where both components independently vali-
date the input.

Consider another all-too-common case, where the responsibility gap
occurs between the designer and user of the software. Recall the example
of configuration settings from our discussion of the Secure by Default pat-
tern, specifically when an insecure option is given. If the designer knows a
configurable option to be less secure, they should carefully consider whether
providing that option is truly necessary. That is, don’t just give users an
option because it’s easy to do, or because “someone, someday, might want
this.” That’s tantamount to setting a trap that someone will eventually fall
into unwittingly. When valid reasons for a potentially risky configuration
exist, first consider methods of changing the design to allow a safe way of
solving the problem. Barring that, if the requirement is inherently unsafe,
the designer should advise the user and protect them from configuring
the option when unaware of the consequences. Not only is it important to

70 Chapter 4

document the risks and suggest possible mitigations to offset the vulnerabil-
ity, but users should also receive clear feedback—ideally, something better
than the responsibility-ditching “Are you sure? (Learn more: <link>)” dialog.

W H AT’S W RONG W IT H T HE “A R E YOU SUR E” DI A LOG?

This author personally considers “Are you sure?” dialogs and their ilk to almost
always be a failure of design, and one that also often compromises security. I
have yet to come across an example in which such a dialog is the best possible
solution to the problem. When there are security consequences, this practice
runs afoul of the Accept Security Responsibility pattern, in that the designer is
foisting responsibility on to the user, who may well not be “sure” but has run out
of options. To be clear, in these remarks I would not include normal confirma-
tions, such as rm(1) command interactive prompts or other operations where it’s
important to avoid accidental operation.

These dialogs can fall victim to the dialog fatigue phenomenon, in which
people trying to get something done reflexively dismiss dialogs, almost univer-
sally considering them hindrances rather than help. As security conscious as
I am, when presented with these dialogs I, too, wonder, “How else can I do
what I want to do?” My choices are to either give up on what I want to do or
proceed at my own considerable risk—and I can only guess at exactly what
that risk is, since even if there is a “learn more” text provided, it never seems to
provide a good solution. At this point, “Are you sure?” only signals to me that
I’m about to do something I’ll potentially regret, without explaining exactly what
might happen and implying there likely is no going back.

I’d like to see a new third option added to these dialogs—“No, I’m not
sure but proceed anyway”—and have that logged as a severe error because
the software has failed the user. For any situation where security is critical,
scrutinize examples of this sort of responsibility offloading and treat them as
significant bugs to be eventually resolved. Exactly how to eliminate these will
depend on the particulars, but there are some general approaches to accepting
responsibility. Be clear as to precisely what is about to happen and why. Keep
the wording concise, but provide a link or equivalent reference to a complete
explanation and good documentation. Avoid vague wording (“Are you sure you
want to do this?”) and show exactly what the target of the action will be (don’t
let the dialog box obscure important information). Never use double negatives
or confusing phrasing (“Are you sure you want to go back?” where answering
“No” selects the action). If possible, provide an undo option; a good pattern,
seen more these days, is passively offering an undo following any major action.
If there is no way to undo, then in the linked documentation, offer a work-
around, or suggest backing up data beforehand if unsure. Let’s strive to reduce
these Hobson’s choices in quantity, and ideally confine them to use by profes-
sional administrators who have the know-how to accept responsibility.

Patterns 71

Anti-Patterns
Learn to see in another’s calamity the ills which you should avoid.

—Publilius Syrus

Some skills are best learned by observing how a master works, but another
important kind of learning comes from avoiding the past mistakes of oth-
ers. Beginning chemists learn to always dilute acid by adding the acid to a
container of water—never the reverse, because in the presence of a large
amount of acid, the first drop of water reacts suddenly, producing a lot of
heat that could instantly boil the water, expelling water and acid explosively.
Nobody wants to learn this lesson by imitation, and in that spirit, I present
here several anti-patterns best avoided in the interests of security.

The following short sections list a few software security anti-patterns.
These patterns may generally carry security risks, so they are best avoided,
but they are not actual vulnerabilities. In contrast to the named patterns
covered in the previous sections, which are generally recognizable terms,
some of these don’t have well-established names, so I have chosen descrip-
tive monikers here for convenience.

Confused Deputy
The Confused Deputy problem is a fundamental security challenge that is
at the core of many software vulnerabilities. One could say that this is the
mother of all anti-patterns. To explain the name and what it means, a short
story is a good starting point. Suppose a judge issues a warrant, instruct-
ing their deputy to arrest Norman Bates. The deputy looks up Norman’s
address, and arrests the man living there. The man insists there is a mis-
take, but the deputy has heard that excuse before. The plot twist of our
story (which has nothing to do with Psycho) is that Norman anticipated
getting caught and for years has used a false address. The deputy, confused
by this subterfuge, used their arrest authority wrongly; you could say that
Norman played them, managing to direct the deputy’s duly granted author-
ity to his own malevolent purposes. (The despicable crime of swatting—
falsely reporting an emergency to direct police forces against innocent
victims—is a perfect example of the Confused Deputy problem, but I didn’t
want to tell one of those sad stories in detail.)

Common examples of confused deputies include the kernel when
called by userland code, or a web server when invoked from the internet.
The callee is a deputy because the higher-privilege code is invoked to do
things on behalf of the lower-privilege caller. This risk derives directly
from the trust boundary crossing, which is why those are of such acute
interest in threat modeling. In later chapters, numerous ways of confusing
a deputy will be covered, including buffer overflows, poor input validation,
and cross-site request forgery (CSRF) attacks, just to name a few. Unlike
human deputies, who can rely on instinct, past experience, and other cues
(including common sense), software is trivially tricked into doing things it
wasn’t intended to, unless it’s designed and implemented with all necessary
precautions fully anticipated.

72 Chapter 4

Intention and Malice

To recap from Chapter 1, for software to be trustworthy, there are two
requirements: it must be built by people you can trust are both honest and
competent to deliver a quality product. The difference between the two
conditions is intention. The problem with arresting Norman Bates wasn’t
that the deputy was crooked; it was failing to properly ID the arrestee. Of
course, code doesn’t disobey or get lazy, but poorly-written code can easily
work in ways other than how it was intended. While many gullible computer
users and occasionally even technically adept software professionals do get
tricked into trusting malicious software, many attacks work by exploiting a
Confused Deputy in software that is duly trusted but happens to be flawed.

Often, Confused Deputy vulnerabilities arise when the context of the
original request gets lost earlier in the code—for example, if the requester’s
identity is no longer available. This sort of confusion is especially likely in
common code shared by both high- and low-privilege invocations. Figure 4-3
shows what such an invocation looks like.

Low
… call Deputy() ...

Trust: Low

Deputy
… call Utility() ...

Trust: High

Utility
… doSafe …

… doDangerous ...

Trust: High

High
… call Deputy() ...

Trust: High

Effective
privilege
is Low

Effective
privilege
is High

Figure 4-3: An example of the Confused Deputy anti-pattern

The Deputy code in the center performs work for both low- and high-
privilege code. When invoked from High on the right, it may do potentially
dangerous operations in service of its trusted caller. Invocation from Low
represents a trust boundary crossing, so Deputy should only do safe opera-
tions appropriate for low-privilege callers. Within the implementation, Deputy
uses a subcomponent, Utility, to do its work. Code within Utility has no
notion of high- and low-privilege callers, and hence is liable to mistakenly do
potentially dangerous operations on behalf of Deputy that low-privilege call-
ers should not be able to do.

Patterns 73

Trustworthy Deputy

Let’s break down how to be a trustworthy deputy, beginning with a consid-
eration of where the danger lies. Recall that trust boundaries are where the
potential for confusion begins, because the goal in attacking a Confused
Deputy is to leverage its higher privilege. So long as the deputy understands
the request and who is requesting it, and the appropriate authorization
checks happen, everything should be fine.

Recall the previous example involving the Deputy code, where the prob-
lem occurred in the underlying Utility code that did not contend with the
trust boundary when called from Low. In a sense, Deputy unwittingly made
Utility a Confused Deputy. If Utility was not intended to defend against low-
privilege callers, then either Deputy needs to thoroughly shield it from being
tricked, or Utility may require modification to be aware of low-privilege
invocations.

Another common Confused Deputy failing occurs in the actions taken
on behalf of the request. Data hiding is a fundamental design pattern where
the implementation hides the mechanisms it uses behind an abstraction,
and the deputy works directly on the mechanism though the requester
cannot. For example, the deputy might log information as a side effect of
a request, but the requester has no access to the log. By causing the deputy
to write the log, the requester is leveraging the deputy’s privilege, so it’s
important to beware of unintended side effects. If the requester can present
a malformed string to the deputy that flows into the log with the effect of
damaging the data and making it illegible, that’s a Confused Deputy attack
that effectively wipes the log. In this case, the defense begins by noting
that a string from the requester can flow into the log and, considering the
potential impact that might have, requiring input validation, for example.

The Code Access Security model, mentioned in Chapter 3, is designed
specifically to prevent Confused Deputy vulnerabilities from arising. When
low-privilege code calls high-privilege deputy code, the effective permis-
sions are reduced accordingly. When the deputy needs its greater privileges,
it must assert them explicitly, acknowledging that it is working at the behest
of lower-privilege code.

In summary, at trust boundaries, handle lower-trust data and lower-
privilege invocations with care so as not to become a Confused Deputy.
Keep the context associated with requests throughout the process of per-
forming the task so that authorization can be fully checked as needed.
Beware that side effects do not allow requesters to exceed their authority.

Backflow of Trust
Backflow of Trust is present whenever a lower-trust component controls a
higher-trust component. An example of this is when a system administrator
uses their personal computer to remotely administer an enterprise system.
While the person is duly authorized and trusted, their home computer isn’t
within the enterprise regime and shouldn’t be hosting sessions using admin
rights. In essence, you can think of this as a structural Elevation of Privilege
just waiting to happen.

74 Chapter 4

While nobody in their right mind would fall into this anti-pattern in
real life, it’s surprisingly easy to miss in an information system. Remember
that what counts here is not the trust you give components, but how much
trust the components merit. Threat modeling can surface potential prob-
lems of this variety through an explicit look at trust boundaries.

Third-Party Hooks
Another form of the Backflow of Trust anti-pattern is when hooks in a compo-
nent within your system provide a third party undue access. Consider a criti-
cal business system that includes a proprietary component performing some
specialized process within the system. Perhaps it uses advanced AI to predict
future business trends, consuming confidential sales metrics and updating
forecasts daily. The AI component is cutting-edge, and so the company that
makes it must tend to it daily. To make it work like a turnkey system, it needs a
direct tunnel through the firewall to access the administrative interface.

This also is a perverse trust relationship because this third party has
direct access into the heart of the enterprise system, completely outside the
purview of the administrators. If the AI provider were dishonest, or compro-
mised, they could easily exfiltrate internal company data, or worse, and there
would be no way of knowing. Note that a limited type of hook may not have
this problem and would be acceptable. For example, if the hook implements
an auto-update mechanism and is only capable of downloading and install-
ing new versions of the software, it may be fine, given a suitable level of trust.

Unpatchable Components
It’s almost invariably a matter of when, not if, someone will discover a
vulnerability in any given popular component. Once such a vulnerability
becomes public knowledge, unless it is completely disconnected from any
attack surface, it needs patching promptly. Any component in a system that
you cannot patch will eventually become a permanent liability.

Hardware components with preinstalled software are often unpatch-
able, but for all intents and purposes, so is any software whose publisher has
ceased supporting it or gone out of business. In practice, there are many
other categories of effectively unpatchable software: unsupported software
provided in binary form only; code built with an obsolete compiler or other
dependency; code retired by a management decision; code that becomes
embroiled in a lawsuit; code lost to ransomware compromise; and, remark-
ably enough, code written in a language such as COBOL that is so old that,
these days, experienced programmers are in short supply. Major operating
system providers typically provide support and upgrades for a certain time
period, after which the software becomes effectively unpatchable. Even
software that is updatable may effectively be no better if the maker fails to
provide timely releases. Don’t tempt fate by using anything you are not con-
fident you can update quickly when needed.

N O T E 	 See Appendix D for a cheat sheet listing the secure design patterns and anti-patterns
presented in this chapter.

5
C R Y P T O G R A P H Y

Cryptography is typically bypassed, not penetrated.
—Adi Shamir

Back in high school, I nearly failed driver’s
education. This was long ago, when public

schools had funding to teach driving and
when gasoline contained lead (nobody had

threat modeled that brilliant idea). My first attempts
at driving had not gone well. I specifically recall the
day I first got behind the wheel of the Volkswagen
Beetle, a manual transmission car, and the consider-
able trepidation on the stony face of the PE coach
riding shotgun. I soon learned that pushing in the clutch while going
downhill caused the car to speed up, not slow down as I’d intended. But
from that mistake onward, something clicked, and suddenly I could drive.
The coach expressed unguarded surprise, and relief, at this unlikely turn
of events. With hindsight, I believe that my breakthrough was due to the
hands-on feel of driving stick, which gave me a more direct connection to
the vehicle, enabling me to drive by instinct for the first time.

76 Chapter 5

Just as driver’s ed teaches students how to drive a car safely, but not how
to design or do major repairs, this chapter introduces the basic toolset of
cryptography by discussing how to use it properly, without going into the
nuts and bolts of how it works. To make crypto comprehensible to the less
mathematically inclined, this chapter eschews the math, except in one
instance, whose inclusion I couldn’t resist because it’s so clever.

This is an unconventional approach to the topic, but also an impor-
tant one. Crypto tools are underutilized precisely because cryptography
has come to be seen as the domain of experts with a high barrier of entry.
Modern libraries provide cryptographic functionality, but developers need
to know how to use these (and how to use them correctly) for them to be
effective. I hope that this chapter serves as a springboard to provide useful
intuitions about the potential uses of crypto. You should supplement this
with further research as needed for your specific uses.

Crypto Tools
At its core, much of modern crypto derives from pure mathematics, so
when used properly, it really works. This doesn’t mean the algorithms are
provably impenetrable, but that it will take major breakthroughs in math-
ematics to crack them.

Crypto provides a rich array of security tools, but for them to be effec-
tive, you must use them thoughtfully. As this book repeatedly recommends,
rely on high-quality libraries of code that provide complete solutions. It’s
important to choose a library that provides an interface at the right level of
abstraction, so you fully understand what it is doing.

The history of cryptography and the mathematics behind it are fascinat-
ing, but for the purposes of creating secure software, the modern toolbox
consists of a modest collection of basic tools. The following list enumerates
the basic crypto security functions and describes what each does, as well as
what the security of each depends on:

•	 Random numbers are useful as padding and nonces, but only if they are
unpredictable.

•	 Message digests (or hash functions) serve as a fingerprint of data, but only
if impervious to collisions.

•	 Symmetric encryption conceals data based on a secret key the parties share.

•	 Asymmetric encryption conceals data based on a secret the recipient knows.

•	 Digital signatures authenticate data based on a secret only the signer
knows.

•	 Digital certificates authenticate signers based on trust in a root certificate.

•	 Key exchange allows two parties to establish a shared secret over an open
channel, despite eavesdropping.

The rest of this chapter will cover these tools and their uses in more
detail.

Cryptography 77

Random Numbers
Human minds struggle to grasp the concept of randomness. For security
purposes, we can focus on unpredictability as the most important attribute of
random numbers. As we shall see, these are critical in cases where we must
prevent attackers from guessing correctly, in the same way that a predict-
able password would be weak. Applications for random numbers include
authentication, hashing, encryption, and key generation, each of which
depends on unpredictability. The following subsections describe the two
classes of random numbers available to software, how they differ in predict-
ability, and when to use which kind.

Pseudo-Random Numbers
Pseudo-random number generators (PRNGs) use deterministic computations
to produce what looks like an infinite sequence of random numbers. The
outputs they generate can easily exceed our human capacity for pattern
detection, but analysis and adversarial software may easily learn to mimic a
PRNG, disqualifying these from use in security contexts because they are
predictable.

However, since calculating pseudo-random numbers is very fast, they’re
ideal for a broad range of non-security uses. If you want to run a Monte
Carlo simulation or randomly assign variant web page designs for A/B
testing, for example, a PRNG is the way to go, because even in the unlikely
event that someone predicts the algorithm, there’s no real threat.

Taking a look at an example of a pseudo-random number may help
solidify your understanding of why it is not truly random. Consider this
digit sequence:

94657640789512694683983525957098258226205224894077267194782684826

Is this sequence random? There happen to be relatively few 1s and 3s,
and disproportionally many 2s, but it wouldn’t be unreasonable to find
these deviations from a flat distribution in a truly random number. Yet as
random as this sequence appears, it’s easy to predict the next digits if you
know the trick. And as the pattern of Transparent Design cautions us, it’s
risky to assume we can keep our methods secret. In fact, if you entered this
string of digits in a simple web search, you would learn that they are the
digits of pi 200 decimals out, and that the next few digits will be 0147.

As the decimals of an irrational number, the digits of pi have a statisti-
cally normal distribution and are, in a colloquial sense, entirely random. On
the other hand, as an easily computed and well-known number, this sequence
is completely predictable, and hence unsuitable for security purposes.

Cryptographically Secure Pseudo-Random Numbers
Modern operating systems provide cryptographically secure pseudo-random
number generator (CSPRNG) functions to address the shortcomings of PRNGs
when you need random bits for security. You may also see this written as

78 Chapter 5

CSRNG or CRNG; the important part is the “C,” which means it’s secure for
crypto. The inclusion of “pseudo” is an admission that these, too, may fall
short of perfect randomness, but experts have deemed them unpredictable
enough to be secure for all practical purposes.

Use this kind of random number generator when security is at stake.
In other words, if the hypothetical ability to predict the value of a suppos-
edly random number weakens your security, use a CSPRNG. This applies to
every security use of random numbers mentioned in this book.

Truly random data, by definition, isn’t generated by an algorithm, but
comes from an unpredictable physical process. A Geiger counter could be
such a hardware random number generator (HRNG), also known as an entropy
source, because the timing of radioactive decay events is random. HRNGs
are built into many modern processors, or you can buy a hardware add-on.
Software can also contribute entropy, usually by deriving it from the timing of
events such as disk accesses, keyboard and mouse input events, and network
transmissions that depend on complex interactions with external entities.

One major internet tech company uses an array of lava lamps to color-
fully generate random inputs. But consider a threat model of this technique:
because the company chooses to display these lava lamps in its corporate
office, and in the reception area no less, potential attackers might be able
to observe the state of this input and make an educated guess about the
entropy source. In practice, however, the lava lamps merely add entropy to
a (presumably) more conventional entropy source behind the scenes, miti-
gating the risk that this display will lead to an easy compromise of the com-
pany’s systems.

Entropy sources need time to produce randomness, and a CSPRNG will
slow down to a crawl if you demand too many bits too fast. This is the cost
of secure randomness, and why PRNGs have an important purpose as a reli-
ably fast alternative. Use CSPRNGs sparingly unless you have a fast HRNG,
and where throughput is an issue, test that it won’t become a bottleneck.

Message Authentication Codes
A message digest (also called a hash) is a fixed-length value computed from a
message using a one-way function. This means that each unique message will
have a specific digest, and any tampering will result in a different digest value.
Being one-way is important because it means the digest computation is irre-
versible, so it won’t be possible for an attacker to find a different message that
happens to have the same digest result. If you know that the digest matches,
then you know that the message content has not been tampered with.

If two different messages produce the same digest, we call this a collision.
Since digests map large chunks of data to fixed-length values, collisions are
inevitable because there are more possible messages than there are digest
values. The defining feature of a good digest function is that collisions are
extremely difficult to find. A collision attack succeeds if an attacker finds two
different inputs that produce the same digest value. The most devastating

Cryptography 79

kind of attack on a digest function is a preimage attack, where, given a specific
digest value, the attacker can find an input that produces it.

Cryptographically secure digest algorithms are strong one-way functions
that make collisions so unlikely that you can assume they never happen. This
assumption is necessary to leverage the power of digests because it means
that by comparing two digests for equality, you are essentially comparing
the full messages. Think of this as comparing two fingerprints (which is
also an informal term for a digest) to determine if they were made by the
same finger.

If everyone used the same digest function for everything, then attackers
could intensively study and analyze it, and they might eventually find a few
collisions or other weaknesses. One way to guard against this is to use keyed
hash functions, which take an extra secret key parameter that transforms the
digest computation. In effect, a keyed hash function that takes a 256-bit
key is a class of 2256 different functions. These functions are also called
message authentication codes (MACs), because so long as the hash function
key is secret, attackers cannot forge them. That is, by using a unique key,
you get a customized digest function of your very own.

Using MACs to Prevent Tampering
MACs are often used to prevent attackers from tampering with data. Suppose
Alice wants to send a message to Bob over a public channel. The two of them
have privately shared a certain secret key; they don’t care about eavesdrop-
ping, so they don’t need to encrypt their data, but fake messages would be
a problem if undetected. Say the evil Mallory is able to tamper with com-
munications on the wire, but she does not know the key. Alice uses the key
to compute and send a MAC along with each message. When Bob receives
a communication, he computes the MAC of the received message and com-
pares it to the accompanying MAC that Alice sent; if they don’t match, he
ignores it as bogus.

How secure is this arrangement at defending against the clever Mallory?
First, let’s consider the obvious attacks:

•	 If Mallory tampers with the message, its MAC will not match the mes-
sage digest (and Bob will ignore it).

•	 If Mallory tampers with the MAC, it won’t match the message digest
(and Bob will ignore it).

•	 If Mallory concocts a brand-new message, she will have no way to com-
pute the MAC (and Bob will ignore it).

However, there is one more case that we need to protect against. Can
you spot another opening for Mallory, and how you might defend against it?

Replay Attacks
There is a remaining problem with the MAC communication scheme
described previously, and it should give you an idea of how tricky using

80 Chapter 5

crypto tools against a determined attacker is. Suppose that Alice sends daily
orders to Bob indicating how many widgets she wants delivered the next
day. Mallory observes this traffic and collects message and MAC pairs that
Alice sends: she orders three widgets the first day, then five the next. On
the third day, Alice orders 10 widgets. At this point, Mallory gets an idea of
how to tamper with Alice’s messages. Mallory intercepts Alice’s message and
replaces it with a copy of the first day’s message (specifying three widgets),
complete with the corresponding MAC that Alice has helpfully computed
already and which Mallory recorded earlier. Of course, this fools Bob.

This is a replay attack, and secure communications protocols need to
address it. The problem isn’t that the cryptography is weak, it’s that it wasn’t
used properly. In this case, the root problem is that authentic messages
ordering three widgets are identical, which is fundamentally a predictability
problem.

Secure MAC Communications
There are a number of ways to fix Alice and Bob’s protocol and defeat replay
attacks, and they all depend on ensuring that messages are always unique
and unpredictable. A simple fix might be for Alice to include a timestamp in
the message, with the understanding that Bob should ignore messages with
old timestamps. Now if Mallory replays Monday’s order of three widgets on
Wednesday, Bob will notice when he compares the timestamps and detect
the fraud. However, if the messages are frequent or there’s a lot of network
latency, then timestamps might not work well.

A more secure solution to the threat of replay attacks would be for Bob
to send Alice a nonce—a random number for one-time use—before Alice
sends each message. Then Alice can send back a message along with Bob’s
nonce and a MAC of the message and nonce combined. This shuts down
replay attacks because the nonce varies with every exchange. Mallory could
intercept and change the nonce Bob sends, but Bob would notice if a differ-
ent nonce came back.

Another problem with this simple example is that the messages are short,
consisting of just a number of widgets. Setting aside the danger of replay
attacks, very short messages are vulnerable to brute-force attacks. The time
required to compute a keyed hash function is typically proportional to the
message data length, and for just a few bits that computation is going to be
fast. The faster Mallory can try different possible hash function keys, the
easier it is to guess the right key to match the MAC of an authentic message.
Knowing the key, Mallory can now impersonate Alice sending messages.

You can mitigate short message vulnerabilities by padding the messages
with random bits until they reach a suitable minimum length. Computing
the MACs for these longer messages takes time, but that’s good as it slows
down Mallory’s brute-force attack to the point of being infeasible. In fact,
it’s desirable for hash functions to be expensive computations for just this
reason. This is a situation where it’s important for the padding to be ran-
dom (as opposed to predictably pseudo-random) to make Mallory work as
hard as possible.

Cryptography 81

Symmetric Encryption
All encryption conceals messages by transforming the plaintext, or origi-
nal message, into an unrecognizable form called the ciphertext. Symmetric
encryption algorithms use a secret key to customize the message’s transfor-
mation for the private use of the communicants, who must agree on a key
in advance. The decryption algorithm uses the same secret key to convert
ciphertext back to plaintext. We call this reversible transformation symmetric
cryptography because knowledge of the secret key allows you to both encrypt
and decrypt.

This section introduces a couple of these symmetric encryption algo-
rithms to illustrate their security properties, and explains some of the
precautions necessary to use them safely.

One-Time Pad
Cryptographers long ago discovered the ideal encryption algorithm, and
even though, as we shall see, it is almost never actually used, it’s a great
starting point for discussing encryption due to its utter simplicity. Known
as the one-time pad, this algorithm requires the communicants to agree on
a secret, random string of bits as the encryption key in advance. In order to
encrypt a message, the sender exclusive-ors the message with the key, creating
the ciphertext. The recipient then exclusive-ors the ciphertext with the same
corresponding key bits to recover the plaintext message. Recall that in the
exclusive-or (⊕) operation, if the key bit is a zero, then the corresponding mes-
sage bit is unchanged; if the key bit is a one, then the message bit is inverted.
Figure 5-1 graphically illustrates a simple example of one-time pad encryption
and decryption.

Exclusive-or

“Hello”

Alice

Bob

“Hello”

"\xcc\x86\x14\xcf\xe1"

Plaintext:

Secret key:

Exclusive-or

Ciphertext:

Secret key:

Plaintext:

0100100001100101011011000110110001101111

1000010011100011011110001010001110001110

1100110010000110000101001100111111100001

1000010011100011011110001010001110001110

0100100001100101011011000110110001101111

Figure 5-1: Alice and Bob using one-time pad encryption

82 Chapter 5

Subsequent messages are encrypted using bits further along in the
secret key bit string. When the key is exhausted, the communicants need to
somehow agree on a new secret key. There are good reasons it’s a one-time
key, as I will explain shortly. Assuming that the key is random, the message
bits either randomly invert or stay the same, so there is no way for attackers
to discern the original message without knowing the key. Flipping half
the bits randomly is the perfect disguise for a message, since either showing
or inverting a large majority of the bits would partially reveal the plain-
text. Impervious to attack by analysis as this may be, it’s easy to see why
this method is rarely used: the key length limits the message length.

Let’s consider the prohibition against reusing one-time pad keys. Suppose
that Alice and Bob use the same secret key K to encrypt two distinct plaintext
messages, M1 and M2. Mallory intercepts both ciphertexts: M1 ⊕ K and M2 ⊕ K.
If Mallory exclusive-ors the two encrypted ciphertexts, the key cancels out,
because when you exclusive-or any number with itself the result is zero (the
ones invert to zeros, while the zeros are unchanged). The result is a weakly
encrypted version of the two messages:

(M1 ⊕ K) ⊕ (M2 ⊕ K) = (M1 ⊕ M2) ⊕ (K ⊕ K) = M1 ⊕ M2

While this doesn’t directly disclose the plaintext, it begins to leak infor-
mation. Having stripped away the key bits, analysis could reveal clues about
patterns within the messages. For example, if either message contains a
sequence of zero bits, then the corresponding bits of the other message will
leak through.

The one-time key use limitation is a showstopper for most applications:
Alice and Bob may not know how much data they want to encrypt in advance,
making it infeasible to decide on how long the key will need to be.

Advanced Encryption Standard
The Advanced Encryption Standard (AES) is a frequently used modern sym-
metric encryption block cipher algorithm. In a block cipher, long messages
are broken up into block-sized chunks, and shorter messages are padded
with random bits to fill out the remainder of the block. AES encrypts 128-
bit blocks of data using a secret key that is typically 256 bits long. Alice uses
the same agreed-upon secret key to encrypt data that Bob uses to decrypt.

Let’s consider some possible weaknesses. If Alice sends identical mes-
sage blocks to Bob over time, these will result in identical ciphertext, and
clever Mallory will notice these repetitions. Even if Mallory can’t decipher
the meaning of these messages, this represents a significant information
leak that requires mitigation. The communication is also vulnerable to a
replay attack because if Alice can resend the same ciphertext to convey the
same plaintext message, then Mallory could do that, too.

Encrypting the same message in the same way is known as electronic code
book (ECB) mode. Because of the vulnerability to replay attacks, this is usually
a poor choice. To avoid this problem, you can use other modes that introduce

Cryptography 83

feedback or other differences into subsequent blocks, so that the resulting
ciphertext depends on the contents of preceding blocks or the position in
the sequence. This ensures that even if the plaintext blocks are identical,
the ciphertext results will be completely different. However, while chained
encryption of data streams in blocks is advantageous, it does impose obliga-
tions on the communicants to maintain context of the ordering to encrypt
and decrypt correctly. The choice of encryption modes thus often depends
on the particular needs of the application.

Using Symmetric Cryptography
Symmetric crypto is the workhorse for modern encryption because it’s fast
and secure when applied properly. Encryption protects data communicated
over an insecure channel, as well as data at rest in storage. When using sym-
metric crypto, it’s important to consider some fundamental limitations:

Key establishment

Crypto algorithms depend on the prearrangement of secret keys, but
do not specify how these keys should be established.

Key secrecy

The effectiveness of the encryption entirely depends on maintaining the
secrecy of the keys while still having the keys available when needed.

Key size

Larger secret keys are stronger (with a one-time pad being the ideal in
theory), but managing large keys becomes costly and unwieldy.

Symmetric encryption inherently depends on shared secret keys, and
unless Alice and Bob can meet directly for a trusted exchange, it’s chal-
lenging to set up. To address this limitation, asymmetric encryption offers
some surprisingly useful new capabilities that fit the needs of an internet-
connected world.

Asymmetric Encryption
Asymmetric cryptography is a deeply counterintuitive form of encryption,
and therein lies its power. With symmetric encryption Alice and Bob can
both encrypt and decrypt messages using the same key, but with asymmetric
encryption Bob can send secret messages to Alice that he is unable to decrypt.
Thus, for Bob encryption is a one-way function, while only Alice knows the
secret that enables her to invert the function (that is, to decrypt the message).

Asymmetric cryptography uses a pair of keys: a public key for encryp-
tion and a private key for decryption. I will describe how Bob, or anyone in
the world for that matter, sends encrypted messages to Alice; for a two-way
conversation, Alice would reply using the same process with Bob’s entirely
separate key pair. The transformations made using the two keys are inverse
functions, yet knowing only one of the keys does not help to figure out the

84 Chapter 5

other; so if you keep one key secret, then only you can perform that computa-
tion. As a result of this asymmetry, Alice can create a key pair and then pub-
lish one key for the world to see (her public key), enabling anyone to encrypt
messages that only she can decrypt using her corresponding private key. This
is revolutionary, because it grants Alice a unique capability based on knowing
a secret. We shall see in the following pages all that this makes possible.

There are many asymmetric encryption algorithms, but the mathemati-
cal details of these are unimportant to understanding using them as crypto
tools—what’s important is that you understand the security implications.
We’ll focus on RSA, as it’s the least mathematically complicated progenitor.

The RSA Cryptosystem
At MIT, I had the great fortune of working with two of the inventors of the
RSA cryptosystem, and my bachelor’s thesis explored how asymmetric cryp-
tography could improve security. The following simplified discussion fol-
lows the original RSA paper, though (for various technical reasons that we
don’t need to go into here) modern implementations are more involved.

The core idea of RSA is that it’s easy to multiply two large prime numbers
together, but given that product, it’s infeasible to factor it into the constitu-
ent primes. To get started, choose a pair of random large prime numbers,
which you will keep secret. Next, multiply the pair of primes together. From
the result, which we’ll call N, you can compute a unique key pair. Each of
these keys, together with N, allows you compute two functions D and E that
are inverse functions. That is, for any positive integer x < N, D(E(x)) is x, and
E(D(x)) is also x. Finally, choose one of the keys of the key pair as your private
key, and publicize to the world the other as the corresponding public key, along
with N. So long as you keep the private key and the original two primes secret,
only you can efficiently compute the function D.

Here’s how Bob encrypts a message for Alice, and how she decrypts it.
Here the functions EA and DA are based on Alice’s public and private keys,
respectively, along with N:

•	 Bob encrypts a ciphertext C from message M for Alice using her public
key: C = EA(M).

•	 Alice decrypts message M from Bob’s ciphertext C using her private
key: M = DA(C).

Since the public key is not a secret, we assume that the attacker Mallory
knows it, and this does raise a new concern particular to public key crypto.
If an eavesdropper can guess a predictable message, they can encrypt vari-
ous likely messages themselves using the public key and compare the results
to the ciphertext transmitted on the wire. If they ever see matching cipher-
text transmitted, they know the plaintext that produced it. Such a chosen
plaintext attack is easily foiled by padding messages with a suitable number of
random bits to make guessing impractical.

RSA was not the first published asymmetric cryptosystem, but it made a
big splash because cracking it (that is, deducing someone’s private key from
their public key) requires solving the well-known hard problem of factoring

https://people.csail.mit.edu/rivest/Rsapaper.pdf

Cryptography 85

the product of large prime numbers. Since I was collaborating in a mod-
est way with the inventors of RSA at the time of its public debut, I can offer
a historical note that may be of interest about its significance then versus
now. The algorithm was too compute-intensive for the computers of its day,
so its use required expensive custom hardware. As a result, we envisioned it
being used only by large financial institutions or military intelligence agen-
cies. We knew about Moore’s law, which proposed that computational power
increases exponentially over time—but nobody imagined then that 40 years
later everyday people would routinely use connected mobile smartphones
with processors capable of doing the necessary number crunching!

Today, RSA is being replaced by newer methods such as elliptic curve
algorithms. These algorithms, which rely on different mathematics to achieve
similar capabilities, offer more “bang for the buck,” producing strong
encryption with less computation. Since asymmetric crypto is typically more
computationally expensive than symmetric crypto, encryption is usually
handled by choosing a random secret key, asymmetrically encrypting that,
and then symmetrically encrypting the message itself.

Digital Signatures
Public key cryptography can also be used to create digital signatures, giv-
ing the receiving party assurance of authenticity. Independent of message
encryption, Alice’s signature assures Bob that a message is really from her.
It also serves as evidence of the communication, should Alice deny having
sent it. As you’ll recall from Chapter 2, authenticity and non-repudiability
are two of the most important security properties for communication, after
confidentiality.

Let’s walk through an example to illustrate exactly how this works.
Alice creates digital signatures using the same key pair that makes public
key encryption possible. Because only Alice knows the private key, only she
can compute the signature function SA. Bob, or anyone with the public key
(and N), can verify Alice’s signature by checking it using the function VA.
In other words:

•	 Alice signs message M to produce a signature S = SA(M).

•	 Bob verifies that the message M is from Alice by checking if M = VA(S).

There are a few more details to explain so you fully understand how
digital signatures work. Since verification only relies on the public key,
Bob can prove to a third party that Alice signed a message without com-
promising Alice’s private key. Also, signing and encrypting messages are
independent: you can do one, the other, or both as appropriate for the
application. We won’t tackle the underlying math of RSA in this book, but
you should know that the signature and decryption functions (both require
the private key) are in fact the same computation, as are the verification
and encryption functions (using the public key). To avoid confusion, it’s
best to call them by different names according to their purpose.

86 Chapter 5

Figure 5-2 summarizes the fundamental differences between symmet-
ric encryption on the left, and asymmetric on the right. With symmetric
encryption, signing isn’t possible because both communicants know the
secret key. The security of asymmetric encryption depends on a private key
known only to one communicant, so they alone can use it for signatures.
Since verification only requires the public key, no secrets are disclosed in
the process.

Plaintext

Secret
key

Ciphertext

Symmetric

Only Alice and Bob know
the secret key.

Bob and the whole world know
the public key.

Only Alice knows the private key.

Plaintext

Public
key

Private
key

Ciphertext

Signature

Asymmetric

Decrypt

Encrypt

Sign

Verify

Encrypt

Decrypt

Figure 5-2: A comparison of symmetric and asymmetric cryptography

Digital signatures are widely used to sign digital certificates (the subject
of the next section), emails, application code, and legal documents, and to
secure cryptocurrencies such as Bitcoin. By convention, digests of messages
are signed as a convenience so that one signing operation covers an entire
document. Now you can appreciate why a successful preimage attack on a
digest function is very bad. If Mallory can concoct a payment agreement
with the same message digest, Bob’s promissory note also serves as a valid
signature for it.

Digital Certificates
When I was first learning about the RSA algorithm from the inventors,
we brainstormed at MIT about possible future applications. The defining

Cryptography 87

advantage of public key crypto was the convenience it offered. It let you use
one key for all of your correspondence, rather than managing separate keys
for each correspondent, so long as you could announce your public key to
the world for anyone to use. But how would one do that?

I came up with an answer in my thesis research and the idea has since
been widely implemented. To promote the new phenomenon of digital
public key crypto, we needed a new kind of organization, called a certificate
authority (CA). To get started, a new CA would widely publish its public key.
In time, operating systems and browsers would preinstall a trustworthy set
of CA root certificates, which are self-signed with their respective public keys.

The CAs collect public keys from applicants, usually for a fee, and then
publish a digital certificate for each that lists their name (such as “Alice”)
and other details about them, along with their public key. The CA signs
a digest of the digital certificate to ensure its authenticity. In theory, an
important part of the CA’s service would involve reviewing the application
to ensure that it really came from Alice, and people would choose to trust a
CA only if it performed this reliably. In practice, it’s very hard to verify iden-
tities, especially over the internet, and this has proven problematic.

Once Alice has a digital certificate, she can send people a copy of it when-
ever she wants to communicate with them. If they trust the CA that issued it,
then they have its public key and can validate the digital certificate signature
that provides the public key that belongs to “Alice.” The digital certificate is
basically a signed message from the CA stating that “Alice’s public key is X.”
At that point, the recipient can immediately start encrypting messages
for Alice, typically by first sending their own digital certificate in a signed
message to assure Alice that her message got to the right person.

This simplified explanation of digital certificates focuses on how trusted
CAs authenticate the association of a name with a public key. In practice, there
is more to it; people do not always have unique names, names change, corpora-
tions in different states may have the same name, and so on. (Chapter 11 digs
into some of these complicating issues in the context of web security.) Today,
digital certificates are used to bind keys to various identities, including web
server domain names and email addresses, and for a number of specific pur-
poses, such as code signing.

Key Exchange
Whitfield Diffie and Martin Hellman developed a practical key exchange
algorithm shortly before the invention of RSA. To understand the miracle
of key exchange, imagine that Alice and Bob have somehow established
a communication channel, but they have no prior arrangement of a
secret key, or even a CA to trust as a source of public keys. Incredibly, key
exchange allows them to establish a secret over an open channel while
Mallory observes everything. The fact that this is possible is so counterin-
tuitive that in this case I want to show the math so you can see for yourself
how it works.

88 Chapter 5

Fortunately, the math is simple enough and, for small numbers, easy to
compute. The only notation that might be unfamiliar to some readers is the
suffix (mod p), which means to divide by the integer p to yield the remainder
of division. For example, 27 (mod 103) is 25, because 128 – 103 = 25.

This is the basis of the Diffie–Hellman key exchange algorithm:

1.	 Alice and Bob openly agree on a prime number p and a random num-
ber g (1 < g < p).

2.	 Alice picks a random natural number a (1 < a < p), and sends ga (mod p)
to Bob.

3.	 Bob picks a random natural number b (1 < b < p), and sends gb (mod p) to
Alice.

4.	 Alice computes S = (gb)a (mod p) as their shared secret S.

5.	 Bob computes S = (ga)b (mod p), getting the same shared secret S as Alice.

Figure 5-3 illustrates a toy example using small numbers to show that
this actually works. This example isn’t secure, because an exhaustive search
of about 60 possibilities is easy to do. However, the same math works for big
numbers, and at the scale of a few hundred digits, it’s wildly infeasible to do
such an exhaustive search.

Alice Bob
p = 61, g = 2, OK?

OK!

Each party chooses a random
number < p.

26 mod 61
= 64 – 61

= 3

(gb)a (mod p)
= 66 mod 61

= 46656 mod 61
= 52

27 mod 61
= 128 – 2x61
= 128 – 122

= 6

(ga)b (mod p)
= 37 mod 61

= 2187 mod 61
= 52

6 7

52= =

ga = 3

gb = 6

Figure 5-3: Alice and Bob securely choosing a shared secret via key exchange

In this example, chosen to keep the numbers small, by coincidence
Alice chooses 6, which happens to equal Bob’s result (gb). That wouldn’t
happen in practice, but of course the algorithm still works and only Alice
would notice the coincidence.

Cryptography 89

It’s important that both parties actually choose secure random numbers
from a CSPRNG in order to prevent Mallory from possibly guessing their
choices. For example, if Bob used a formula to compute his choice from p
and g, Mallory might deduce that by observing many key exchanges and
eventually mimic it, breaking the secrecy of the key exchange.

Key exchange is basically a magic trick that doesn’t require any decep-
tion. Alice and Bob walk in from the wings of the stage with Mallory standing
right in the middle. Alice calls out numbers, Bob answers, and after two back-
and-forth exchanges Mallory is still clueless. Alice and Bob write their shared
secret numbers on large cards, and at a signal hold up their cards to reveal
identical numbers representing the agreed secret.

Today, key exchange is critical to establishing a secure communication
channel over the internet between any two endpoints. Most applications use
elliptic curve key exchange because those algorithms are more performant,
but the concept is much the same. Key exchange is particularly handy in
setting up secure communication channels (such as with the TLS protocol)
on the internet. The two endpoints first use a TCP channel—traffic that
Mallory may be observing—then do key exchange to negotiate a secret with
the as-yet-unconfirmed opposite communicant. Once they have a shared
secret, encrypted communication enables a secure private channel. This is
how any pair of communicants can bootstrap a secure channel without a
prearranged secret.

Using Crypto
This chapter explained the tools in the crypto toolbox at the “driver’s ed”
level. Cryptographically secure random numbers add unpredictability
to thwart attacks based on guessing. Digests are a secure way of distilling
the uniqueness of data to a corresponding token for integrity checking.
Encryption, available in both symmetric and asymmetric forms, protects
confidentiality. Digital signatures are a way of authenticating messages.
Digital certificates make it easy to share authentic public keys by leverag-
ing trust in CAs. And key exchange rounds out the crypto toolbox, allow-
ing remote parties to securely agree on a secret key via a public network
connection.

The comic in Figure 5-4 illustrates the point made by the epigraph
that opens this chapter: that well-built cryptography is so strong, the major
threat is that it will be circumvented. Perhaps the most important takeaway
from this chapter is that it’s crucial to use crypto correctly so you don’t
inadvertently provide just such an opening for attack.

Crypto can help with many security challenges that arise in the design
of your software, or which you identify by threat modeling. If your system
must send data over the internet to a partner datacenter, encrypt it (for con-
fidentiality) and digitally sign it (for integrity)—or you could do it the easy
way with a TLS secure channel that authenticates the endpoints. Secure

90 Chapter 5

digests provide a nifty way to test for data equality, including as MACs, with-
out you needing to store a complete copy of the data. Typically, you will use
existing crypto services rather than building your own, and this chapter
gives you an idea of when and how to use them, as well as some of the chal-
lenges involved in using the technology securely.

Figure 5-4: Security versus the $5 wrench (courtesy of Randall
Munroe, xkcd.com/538)

Financial account balances and credit card information are clear
examples of data you absolutely must protect. This kind of sensitive data
flows through a larger distributed system, and even with limited access to
the facility, you don’t want someone to be able to physically plug in a net-
work tap and siphon off sensitive data. One powerful mitigation would be
to encrypt all incoming sensitive data immediately when it first hits the
frontend web servers. Immediately encrypting credit card numbers with a
public key enables you to pass around the encrypted data as opaque blobs
while processing the transaction. Eventually, this data reaches the highly
protected financial processing machine, which knows the private key and
can decrypt the data and reconcile the transaction with the banking sys-
tem. This approach allows most application code to safely pass along sensi-
tive data for subsequent processing without risking disclosure itself.

Another common technique is storing symmetrically encrypted data
and the secret key in separate locations. For example, consider an enter-
prise that wants to outsource long-term data storage for backup to a third
party. They would hand over encrypted data for safekeeping while keep-
ing the key in their own vault for use, should they need to restore from a
backup. In terms of threats, the data storage service is being entrusted to
protect integrity (because they could lose the data), but as long as the key
is safe and the crypto was done right, there is no risk to confidentiality.

These are just a few common usages, and you will find many more ways
to use these tools. (Cryptocurrency is one particularly clever application.)
Modern operating systems and libraries provide mature implementations
of a number of currently viable algorithms so you never have to even think
about implementing the actual computations yourself.

https://xkcd.com/538

Cryptography 91

Encryption is not a panacea, however, and if attackers can observe
the frequency and volume of encrypted data or other metadata, you may
disclose some information to them. For example, consider a cloud-based
security camera system that captures images when it detects motion in the
house. When the family is away, there is no motion, and hence no transmis-
sion from the cameras. Even if the images were encrypted, an attacker able
to monitor the home network could easily infer the family’s daily patterns
and confirm when the house was unoccupied by the drop in camera traffic.

The security of cryptography rests on the known limits of mathematics
and the state of the art of digital hardware technology, and both of these
are inexorably progressing. Great fame awaits the mathematician who may
someday find more efficient computational methods that undermine mod-
ern algorithms. Additionally, the prospect of a different kind of computing
technology, such as quantum physics, is another potential threat. It is even
possible that some powerful nation-state has already achieved such a break-
through, and is currently using it discreetly, so as not to tip their hand. Like
all mitigations, crypto inherently includes trade-offs and unknown risks,
but it’s still a great set of tools well worth using.

PART II
D E S I G N

6
S E C U R E D E S I G N

Overload, clutter, and confusion are not attributes of
information, they are failures of design.

—Edward Tufte

Once you have a solid understanding of
security principles, patterns, and mitiga-

tions, the practice of integrating security
into your software designs becomes relatively

straightforward. As you discern threats to your design,
you can apply these tools as needed and explore bet-
ter design alternatives that reduce risk organically.

This chapter focuses on secure software design. It serves as a compan-
ion to Chapter 7, which covers security design reviews. These two topics are
aspects of the same activity, viewed from different perspectives. Software
designers should be considering the concepts discussed in this chapter
and applying these methods throughout the design process; they shouldn’t
leave the system’s security for a reviewer to patch up later. In turn, review-
ers should look at designs through the lens of threats and mitigations as an
additional layer of security assessment. The secure design process is integra-
tive, and the security design review is analytic—used synergistically, they
produce better designs with security baked in.

96 Chapter 6

Software design is an art, and this chapter focuses on just the security
aspect. Whether you design according to a formal process or do it all in
your head, you don’t have to change how you work to incorporate the ideas
presented here. Threat modeling and a security perspective do not need to
drive design, but they should inform it.

The secure design practice described here follows a process typical of a
large enterprise, but you can adapt these techniques to however you work.
Smaller organizations will operate much more informally, and the designer
and reviewer may be the same person. The techniques presented approach
the problem in a general way so as to be easily applicable to however you
like to do software design.

A SA MPL E DESIGN DOCUMEN T T H AT IN T EGR AT ES SECUR IT Y

Design is a creative process that’s not reducible to “how to” steps, so I wanted
to provide a complete example of a design document to demonstrate how to
apply the concepts presented in this book. The sample in Appendix A illustrates
how to bake in security right from the start. It’s not intended to be a perfect
example of masterful design, but rather a first draft of a work in progress with
enough meat on its bones for you to get a feel for the end result. For brevity,
parts of the design unimportant to our purposes are omitted and parts are
presented unpolished, with some warts and rough spots, because most real
designs are like that.

The sample design document envisions a logging tool designed to facilitate
auditing while minimizing disclosure of private information, and the intention is
that this might be a useful component to actually use. This kind of tool could be
a practical mitigation in the context of a larger system processing sensitive data,
and you’re welcome to flesh out the design and build it if you like. Regardless,
I strongly recommend that you take a look at this example, as seeing how the
guidance in this chapter actually materializes in a design document will help you
better understand how secure design works.

Integrating Security in Design
I will contend that conceptual integrity is the most important consideration
in system design.

—Fred Brooks (from The Mythical Man-Month)

The design stage provides a golden opportunity for building security prin-
ciples and patterns into a software project. During this early phase, you can
easily explore alternatives before investing in an implementation and get-
ting tied down by past decisions.

Secure Design 97

In the design stage, developers should create design documents to capture
the important high-level characteristics of a software project, analogous to
architectural blueprint drawings for structures. I highly recommend invest-
ing effort into documenting your designs because it helps ensure rigor and
also creates a valuable artifact that allows others to understand the decisions
you’ve made—especially when it comes to balancing threats with mitigations
and the trade-offs involved.

Design documents typically consist of a functional description (how the
software works when viewed from the outside) and a technical specification
(how it works when viewed from the inside). More formal designs are espe-
cially valuable when there are competing stakeholders, when coordinating
a larger effort, when the designs must comply with a formal requirements
specification or strict compatibility demands, when faced with difficult
trade-offs, and so forth.

When you look at a prospective software design, put on your “security
hat.” Then, before coding begins, you can threat model, identify attack
surfaces, map out data flows, and more. If the proposed design makes
securing the system structurally challenging, now is the perfect time to
consider alternatives that would be inherently more secure. You should
also point out important security mitigations in the design document so
that implementers will see the need for these in advance.

More experienced designers will incorporate security into the design
from the start. If this seems daunting, it’s fine to start with a “feature-
complete” draft design and make a second pass through it with a focus on
security, but that’s a lot more work. Major changes are most easily made if
caught earlier in the process, avoiding the wasted effort of redoing after the
fact. Explore new architectures and play with basic requirements sooner
rather than later, when it’s more easily done. As Josh Bloch once quipped: “A
week of coding can often save an hour of thought.”

Making Design Assumptions Explicit
In the mid-1980s, I worked for a company that designed and built what was
then a powerful computer from the ground up: both the hardware and the
software. After years of development, the work of both teams came together
when the operating system was loaded into the prototype hardware at last. . .
and immediately tanked. It turned out that the hardware team had largely
come from IBM, where they use big-endian architecture, and the software
team mostly came from HP, which traditionally used little-endian, so “bit 0”
meant the high-order bit on the hardware but the low-order bit on the soft-
ware. Throughout years of planning and meetings and prototyping, everybody
had just assumed the endianness of the company culture they came from.
(And of course, it was the software team that had to make the necessary
changes once they figured this out.)

Unwritten assumptions can undermine the effectiveness of security
design reviews, so designers should endeavor to document them (and
reviewers should ask about anything that is unclear). A good place to cap-
ture these explicit assumptions is in a “background” section of the design
document, preceding the body of the design itself.

98 Chapter 6

One way to think about documenting assumptions is to anticipate serious
misunderstandings, so you never hear anyone say, “But I thought. . .” Here
is a list of some common assumptions that are important to document, but
easily omitted in designs:

•	 Budget, resource, and time constraints limiting the design space

•	 Whether the system is likely to be a target of attack

•	 Non-negotiable requirements, such as compatibility with legacy systems

•	 Expectations about the level of security to which the system must
perform

•	 Sensitivity of data and the importance of protecting it securely

•	 Anticipated needs for future changes to the system

•	 Specific performance or efficiency benchmarks the system must achieve

Clarification of assumptions is important to security because misunder-
standings are often the root cause of a weak interface design or mismatched
interaction between components that attackers can exploit. In addition,
it ensures that the design reviewer has a clear and consistent view of the
project.

Often within an enterprise, or any set of related projects, many of these
assumptions will remain the same across a set of designs, in which case
you can compile a list in a shared document that provides common back-
ground. Individual designs then need only reference this common base and
detail any exceptions where the applicable assumptions vary. For example,
a billing system may be subject to higher security standards and need to
conform with specific financial regulations for a credit card processing
component than the rest of the enterprise applications.

Defining the Scope
It’s impossible to do a good review of the security of a design if there is
uncertainty about the scope of the review. Clarifying the scope is also vital
to answering the first of the Four Questions from Chapter 2: “What are we
working on?” To see why this is, consider the design for a new customer
billing system. Does the design include the web app used for collecting
reports of billable hours, or is that a separate design? What about the exist-
ing databases it relies on—is the security of those systems in scope or not?
And should the review include the design of the new web-based API you’ll
be using to report to the corporate accounting system?

Usually, the designer makes a strategic decision about how to define
the scope, choosing how much to bite off. When it’s defined by others, the
designer must understand the prescribed scope and the reasons for it. You
can define the scope of the design as the code running in a process, spe-
cific components of a system represented in a block diagram, the code in
a library, a division of a source repository, or whatever else makes the most
sense, so long as it’s clear to everyone involved. The billing system design I
mentioned in the previous paragraph probably should include the new API,

Secure Design 99

since it’s an extension of the same design. Conversely, the existing data-
bases are probably out of scope, provided they aren’t being used in a funda-
mentally new way and have already received sufficient security attention.

If the scope of a design is vague, the reviewer might assume some impor-
tant aspect of security is out of scope, while the designer might be unaware of
the issue. By omission, it could fall through the cracks. For example, nearly
every software design will involve some storage of data. Unless the data is
expendable, which is rare, maintaining good backups is an obvious mitiga-
tion to the possible loss of integrity due to various threats (both malicious
and accidental). Designers often omit such self-evident points, but without a
clear statement of design scope, everyone might assume someone else regu-
larly performs backups for all storage in the production system, resulting in
this task falling by the wayside—until the first instance of failure, when the
lesson is learned all too painfully.

Don’t let excluding part of the design’s ecosystem from the scope result
in it falling between the cracks. When you have inherited a legacy system,
your first efforts to understand it should focus on its most sensitive parts,
those most fundamental to security, or perhaps the most obvious target of
attack. Then judiciously undertake reviews of additional parts of the system
that constitute independent components until you have covered everything.

You can handle design iterations, sprints, and major revisions of existing
systems by defining a narrow scope that corresponds to where redesign hap-
pens. Once you have carved out boundaries for the new design work, there
are clear preconditions defined by the design that are outside that scope, and
you are free to redo everything anew on the inside. Existing design docu-
mentation makes this work much easier and more reliable, and the updated
design should drive tracked changes to the document.

It’s common, and often a good thing, for redesign to creep outside of its
intended bounds, and when it does, you should adjust the scope as needed.
For example, an incremental design change may require the modification
of existing interfaces or data formats, and if the change involves handling
more sensitive data, you may need to make changes on the other side of the
interface due to the new security assumptions.

Few software designs exist in a vacuum; they depend on existing systems,
processes, and components. Ensuring that the design works well with its
dependencies is critical. In particular, matching security expectations is key,
because you cannot build a secure application out of insecure components.
And it’s important to note that secure/insecure is not a binary choice; it’s a
continuum, where the assumptions and expectations need to align. Read up
on security design review reports for peer systems and dependencies to sub-
stantiate your security expectations for them.

Setting Security Requirements
Security requirements largely derive from the second of the Four Questions:
“What can go wrong?” The C-I-A triad is a useful starting point: describe the
need to protect private data from unauthorized disclosure (confidentiality),
the importance of securing and backing up data (integrity), and the extent

100 Chapter 6

to which the system needs to be robust and reliable (availability). The secu-
rity requirements of many software systems are straightforward, but it’s still
well worth detailing them for completeness and to convey priorities. What
may be entirely obvious to you may not be to others, so it’s a good idea to
articulate the desired security stance.

One extreme to note is when security doesn’t matter—or at least, when
someone thinks it doesn’t. That’s an important assumption to call out,
because someone else on the team might be thinking that it certainly
does matter (and you can imagine the circumstances under which such
mismatched expectations will eventually come to light). If you are design-
ing a prototype to process artificial dummy data, you can skip the security
review, but document it so the code isn’t repurposed and used later with
personal information. Another example of a low-security application might
be the collection of weather data shared by several research groups: tem-
peratures and other atmospheric conditions are free for anyone to measure,
and disclosure is harmless.

At the other extreme, security-critical software deserves extra attention
and a careful enumeration of its security-related requirements. These will
provide a focus for threat modeling, security review, and testing to ensure
the highest level of quality. See the sample design document (Appendix A)
for a basic example of how security requirements inform the design. Large
systems subject to complex regulations may have tightly prescribed security
requirements to ensure high levels of compliance, but that’s a specialized
undertaking, out of scope for our purposes.

For software designs with critical or unusual security requirements,
consider the following general guidelines:

•	 Express security requirements as end goals without dictating “how to.”

•	 Consider all stakeholder needs. In particular, where these may be in
conflict, it will be necessary to find a good balance.

•	 Acknowledge acceptable costs and trade-offs for critical mitigations.

•	 When there are unusual requirements, explain the motivation for them
as well as their goals.

•	 Set security goals that are achievable, not mandates for perfection.

The following extreme examples illustrate what requirements state-
ments for systems with significant security needs might look like:

At the National Security Agency, to protect the nation’s most sensitive secrets

System administrators will have extraordinary access to an enormous
trove of top-secret documents, and given the threat to national security
this represents, we must mitigate insider attacks to the highest degree
possible. Specifically, an administrator capable of impersonating high-
ranking officers with broad access authority could potentially exfil-
trate many files, covering their tracks by making it look like numerous
independent access events by many different principals. (Unofficial
accounts of Edward Snowden’s tactics for exfiltrating NSA internal
documents suggest that he used this sort of technique.)

Secure Design 101

The authentication server for a large financial institution

Compromise of the server’s private encryption key would completely
undermine the security of all our internet-facing systems. While insider
attacks are unlikely, operations personnel must not have plausible deni-
ability. Requirements might include storing the key in a tamper-evident
hardware device kept in a physically guarded location, and formal cer-
emonies for the creation and rotation of keys, with all accesses attended
by at least two trusted persons. (Note: this includes “how to” as the most
direct way of illustrating distribution of trust and the combination of
overlapping physical and logical security.)

Data integrity for an expensive scientific experiment

We plan to do this experiment only once, and the funding required
for it will not likely be available again for years, so we cannot afford to
lose the information our instruments collect. Streaming data must be
instantly replicated and stored redundantly on different storage media,
while simultaneously being communicated over two distinct networks to
physically separated remote storage systems as additional backup.

Threat Modeling
One of the best ways to improve the security of your software architecture is
to incorporate threat modeling into the design process. Designing software
involves creatively juggling competing requirements and strategies, iteratively
deciding on some aspects of the system, and, at times, reversing course to
progress toward a complete vision. Viewing the process through the lens of
threat modeling can illuminate design trade-offs, so it has great potential
to lead the designer in the right direction—but figuring out exactly how to
achieve improved outcomes requires some trial and error.

First, there is the simplistic method for integrating threat modeling
into software design. This involves concocting a series of potential designs,
threat modeling each one in turn, scoring them by some kind of summary
assessment, and then choosing the best one. In practice, these security-
focused assessments inform other important factors, including usability,
performance, and development cost. But since the effort involved in pro-
ducing multiple designs and then threat modeling each one individually
is prohibitive, designers often need to intuit which trade-offs offer promis-
ing possibilities, then compare the design alternatives by analyzing their
differences rather than reassessing each from scratch.

In the early stages of software system design, pay careful attention to
trust boundaries and attack surfaces, as these are critical for establishing
an architecture amenable to security. Data flows of sensitive information
should, as much as possible, be kept away from the most exposed parts
of the topology. For example, consider an application for traveling sales
staff who need offline access to customer contact information in order to
make sales calls on the road. Putting the entire customer database in each
mobile device would represent a huge risk of exposure, yet arguably would

102 Chapter 6

be necessary if staff travel to remote locations without good connectivity.
Threat modeling would highlight this risk, spurring you to evaluate alterna-
tives. Perhaps only regional subsets of the database would suffice, dynami-
cally updated as the reps change location or based on travel schedule; or,
instead of supplying customer phone numbers, each salesperson might get
a code for each customer that they can use together with a unique PIN to
place calls via a forwarding service, so there is no need for them to have
access to the phone numbers at all.

Designers should also consider the essential threat model of the software they
are building as a kind of baseline from which to gauge alternative designs. By
this I mean a model of the security risk inherent in the idealized design, no
matter how it’s built. For example, if a client/server system is collecting per-
sonally identifiable information (PII) from the client, there is an unavoidable
security risk of that information being exposed by the client, in transit, or on
the server that processes the data. No design magic will make any of those
risks disappear, though they often call for suitable mitigations.

When the inherent security risk is high, designers should consider
alternatives whenever possible. Continuing with the PII example, is it
really necessary to collect all (or any) of that information for all use cases?
If not, then it may well be worth the effort of supporting subcases that
avoid some of the information collection at the source.

Another way that an essential threat model guides design is by highlight-
ing sources of additional risk that arise out of design decisions. An example
of such an effect might be choosing to add a caching layer for sensitive data
in an attempt to improve response time. The additional storing of data
(potentially an asset that attackers would target) necessarily adds new risk,
especially if the cache store is near an attack surface. This illustrates how
changes to the design always modify the threat model—for better or for
worse—and with an understanding of the security impact, designers can
weigh the merits of alternatives wisely.

Good software design, in the end, depends on subjective judgments.
These balance the various factors involved to find, if not the best, then at
least a satisfactory result. As important as security is, it isn’t everything,
so difficult decisions are inevitable. Over the years I have found that,
as scary as it may be at times, it’s much more productive to remain open
to discussions of compromise rather than declare security concerns
preeminent.

When the costs of maximizing security are low, it’s easy to push for
doing so—but this isn’t always the case. When compromise is necessary,
here are some good strategies to keep in mind:

•	 Design for flexibility so that adding security protections later will be
easy to do (that is, don’t paint yourself into an insecure corner).

•	 If there are specific attacks that are of special concern, instrument the
system to facilitate monitoring for instances of attempted abuse.

Secure Design 103

•	 When usability conflicts with security, explore user interface alterna-
tives. Also, prototype and measure usability under realistic situations;
sometimes usability concerns are imaginary and do not manifest in
practice.

•	 Explain security risks with potential scenarios (derived from threat
models) that illustrate major possible downsides of certain designs,
and use these to demonstrate the cost of not implementing mitigations.

Building in Mitigations
After you’ve defined the software system’s scope and security requirements,
answering the first two of the Four Questions, it’s time to consider the third:
“What are we going to do about it?” This question guides the designer to
incorporate the needed protections and mitigations into the design. In the
following subsections we will examine how to do this for interfaces and for
data, two of the most common recurring themes in software design. The
discussion and examples that follow only scratch the surface of possibilities
for mitigations in design. All of the ideas in the preceding three chapters
can be applied according to the needs of a particular design.

Designing Interfaces
Interfaces define the boundaries of the system, delineating the limits of
the design or of its constituent components. They may include system calls,
libraries, networks (client/server or peer-to-peer), inter- and intraprocess
APIs, shared data structures in common datastores, and more. Complex
interfaces, such as secure communication protocols, often deserve their
own design.

Define all interfaces within the scope of the design, making sure you
have a clear understanding of the security responsibilities of the compo-
nents that share it. Document whether inputs are reliably validated or
should be treated as untrusted data. If there is a trust boundary, explain
how to handle authentication and authorization for crossing it.

Interfaces to external components (those scoped outside of the design)
should conform to the existing design specifications for those components.
If no such information is available, either document your assumptions or
consider defensive tactics to compensate for the uncertainty. For example,
assume untrusted inputs if you cannot ascertain whether the input is being
validated.

To design secure interfaces, begin with a solid description of how they
work, including their necessary security properties (that is, C-I-A, Gold
Standard, or privacy requirements). Reviewing the security of the interfaces
amounts to verifying that they will function properly and remain robust
against potential threats. Unless the designer is clear about the security

104 Chapter 6

requirements, the security reviewer (and developers using the interface
later) will have to guess at the designer’s intentions, and there will be
confusion if they either under- or overestimate the requirements.

Sometimes, you are stuck using existing components that weren’t
designed with security in mind or are not sufficiently secure for your
requirements—or you just don’t know how secure the components are.
Flag this as an issue if you have no choice in the matter and, if possible,
do research to find out what you can about the components’ security
properties (this might include trying to attack a test mock-up). Another
option in some cases is to wrap the interface to add security protection.
For example, given a storage component that is vulnerable to data leaks,
you could design an extra layer of software that provides encryption and
decryption, ensuring that the component stores only encrypted data,
which is harmless if disclosed.

Designing Data Handling
Data handling is central to virtually all designs, so securing it is an impor-
tant step. A good starting point for secure data handling is outlining your
data protection goals. When a particular subset of data requires extra pro-
tection, make that explicit, and ensure it’s handled consistently throughout
the design. For example, in an online shopping application, apply addi-
tional safeguards to credit card information.

Limit the need to move sensitive data around. This is a key opportunity
to reduce your risk exposure in a significant way at the design level (see
the “Least Information” pattern in Chapter 4) that often isn’t possible to do
later in implementation. One way to reduce the need to pass data around is
to associate it with an opaque identifier, then use the identifier as a handle
that, when necessary, you can convert into the actual data. For example, as
in the sample design in Appendix A, you can log transactions using such an
identifier to keep customer details out of system logs. In the rare case that a
log entry needs investigation, an auditor can look up those details.

Identify public information, or data otherwise exempt from any confi-
dentiality requirement. This forms an important exception to data handling
requirements, allowing you to relax protections where that makes sense. In
applying such an approach, remember that data is context-sensitive, so pub-
lic data paired with other information might well be sensitive. For example,
the addresses of most businesses and the names of their chief executives are
usually public information. However, exactly when named persons are on
the premises should be kept private.

Always treat personal information as sensitive in the absence of an
explicit decision otherwise, and only collect such data in the first place if
there is a specific use for it. Storing sensitive data indefinitely creates an
endless obligation to protect it. You can best avoid this by destroying dis-
used information when possible (after a number of years of inactivity, for
example). Designs should anticipate the need to eventually remove private
data from the system when no longer needed and specify what conditions
will trigger deletion, including of backup copies.

Secure Design 105

Integrating Privacy into Design
Failures to protect private information make headlines routinely. I believe
that integrating information privacy considerations into software design
is an important way companies can do better. Privacy issues concern the
human implications of data protection, involving not only legal and regu-
latory issues, but also customer expectations and the potential impact of
unauthorized disclosures. Getting this right requires special expertise and
subjective judgment. But part of the problem hinges on granting third par-
ties the authorization to use data, which requires allowing access. To that
extent, good software design can institute controls to minimize missteps.

As a starting point, designers should be familiar with all applicable
private policies and understand how these relate to the design. Ask ques-
tions and ideally get answers in writing from the privacy policy owner
so that the requirements are clear. This includes any third-party privacy
policy obligations that might apply to data acquired via partners. These
privacy policies govern data collection, use, storage, and sharing, so if these
activities happen within the design, the policy stipulations imply require-
ments. If the public-facing privacy policy is short on details, consider devel-
oping an internal version that describes necessary details.

Privacy lapses tend to happen when people or processes misinterpret
the promises in the policy, or simply fail to consider them. Data security
protections offer opportunities to build limitations into a design to ensure
compliance. Start by considering clear promises the privacy policy makes,
then ensure that the design enforces them if possible. For example, if the
policy says, “We do not share your data,” then be wary of using a cloud stor-
age service that makes sharing easy unless other provisions are in place to
ensure that misconfigurations won’t expose the data.

Auditing is an important tool for privacy stewardship, if only to reli-
ably document proper access to sensitive data. With careful monitoring of
accesses, problematic access and use can be detected and remedied early.
In the aftermath of a leak, if there is no record of who had access to the
data in question, it’s very difficult to respond effectively.

Design explicit privacy protections wherever possible. In instances
where you cannot make the judgment about privacy compliance, get the
officer responsible for the privacy policy to sign off on the design. Some
common techniques for integrating privacy in software design include:

•	 Identify the collection of new types of data, and ensure its privacy pol-
icy compliance.

•	 Confirm that policy allows you to use the data for the purpose you
intend.

•	 If the design potentially enables unlimited data use, consider limiting
access only to staff that are familiar with privacy policy constraints and
how to audit for compliance.

•	 If the policy limits the term of data retention, design a system that
ensures timely deletion.

106 Chapter 6

•	 As the design evolves, if a field in a database becomes disused, consider
deleting it in order to reduce the risk of disclosure.

•	 Consider building in an approval process for data sharing to ensure the
receiving parties have management approval.

Planning for the Full Software Life Cycle
Too many software designs implicitly assume that the system will last forever,
ignoring the reality that the lifetime of all software is finite. Many aspects of
a system’s eventual lifetime—from its first release and deployment, through
updates and maintenance, to its eventual decommissioning—have impor-
tant security implications that are easily missed later on. As wonderful as any
software design might be, whether it takes off or fizzles out, it will undergo
changes as its environment evolves. The impacts of these changes are best
anticipated during the design process and addressed then, or at least noted
for posterity. Within an enterprise, many of these issues are generic, and a
general treatment of them should cover most systems, with exceptions speci-
fied as needed in individual designs.

The end of a system’s life is difficult to imagine when the new design is
being created, but most of the implications should be clear, and any design
should at least consider the long-term disposition of data. Specific legal or
business reasons may require you to retain data for a certain period of time,
but you should destroy it when it is no longer needed, including backup
copies. Some systems need to go through specific stages when approaching
end of life, and good design can make this easy to get right by having suitable
structure and configuration options in place from the start. For example,
a purchasing system might stop accepting orders but need to continue pro-
viding data for payroll and record-keeping purposes for another year, then
archive transaction records for long-term retention.

Making Trade-offs
Balancing trade-offs when there are no easy choices requires a lot of
engineering judgment, while weighing many other considerations.
Implementing more security mitigations reduces risk, but only up to the
point that complexity leads to more bugs overall—and you should always
be wary of increased development effort with diminishing returns. This
book will repeatedly advise designers to compromise between competing
priorities, but this is easier said than done. This section covers some rules
of thumb for striking these important balances.

Anticipate the worst-case scenario: How bad would it be if you were to
fail to protect the confidentiality, integrity, or availability of a particular sys-
tem asset? For each scenario there are degrees of catastrophe to consider:
How much of the data could potentially be affected? At what point does a
period of unavailability become a serious issue? Major mitigations usually
limit the worst case; for example, hourly backups should ensure that at most

Secure Design 107

one hour of transaction data is at risk of loss. Note that a loss of confidenti-
ality in the worst case is particularly difficult to cap, because once data has
been purloined, there usually is no conceivable way to undo the disclosure
(the 2017 Equifax breach is a striking example).

Most design work happens within an enterprise or project community
where the level of security needed is usually consistent across a wide range
of projects. Where a particular design might deviate—requiring either a
higher or lower level of security—that assumption is well worth calling out
in the design preface. Some examples will clarify this important point. An
online store website should consider setting a higher security bar for the
software that handles credit card processing, which is an obvious target
of attack and is subject to special requirements because of the enormous
financial liability. On the flip side, a web design company might put up an
entire website that showcases examples of its design; since this would be for
informational purposes only and never collect actual end user data, secur-
ing it would reasonably be less important.

The design phase represents the best opportunity to strike the right
balance between competing demands on software. To be frank, rarely if
ever is security fully supported as a top priority when there are schedule
deadlines, constraints of budget and headcount, legacy compatibility issues,
and the usual lengthy list of features to deal with—which is to say, nearly
always. Designers are in the best position to consider many alternatives,
including radical ones, and make foundational changes that would be
infeasible to attempt later on.

Striking the right balance between these idealized principles and the
pragmatic demands of building a real-world system is at the heart of secure
software design. Perfect security is never the goal, and there is a limit to the
benefits of additional mitigations. Exactly where the sweet spot lies is never
easy to determine, but software designs that make these trade-offs explicit
have better chances of finding a sensible compromise.

Design Simplicity
Simplicity is the ultimate sophistication.

—Leonardo da Vinci

Ironically, as the da Vinci quote suggests, it often takes considerable thought
and effort to produce a simple design. Early astronomers developed all man-
ner of complicated calculations for celestial mechanics until Copernicus
simplified the model by making the Sun the central reference point instead
of the Earth, which in turn allowed Newton to radically simplify the com-
putations by inferring the laws of gravity. My favorite example of brilliant
software design is the heart of the *nix operating system, much of which
remains in use to this day. The quest to create a beautifully simple design,
even if rarely achieved, often directly contributes to better security.

In software design, simplicity appears in many guises, but there are
no easy formulations of how to discover the simplest, most elegant design.
Several of the patterns discussed in Chapter 4 embrace simplicity, such

108 Chapter 6

as Economy of Design and Least Common Mechanism. Any time security
depends on getting some complicated decision or mechanism just right, be
wary: see if there is a simpler way of achieving the same ends.

When intricate functionality interacts with security mechanisms, the
result often explodes with complexity. One study concluded that the 1979
failure at the Three Mile Island nuclear facility had no specific cause but
was due to the immense complexity of the system, including its many redun-
dant safety measures. Security can get in the way of what you are trying to
do, and in turn, making it all secure gets trickier. The solution here is often
to separate security from functionality and create a layered model, usually
with security on the “outside” as a protective shell and all the functionality
separately existing “inside.” However, when you design with a hard shell and
“soft insides,” it becomes critical to enforce that separation. It’s relatively
easy to design a secure moat around a castle, but in software, it’s easy to
inadvertently open up a pathway to the inside that circumvents the outer
protective layer.

7
S E C U R I T Y D E S I G N R E V I E W S

A good, sympathetic review is always a wonderful surprise.
—Joyce Carol Oates

One of the best ways to bake security into
software is to separately review designs with

your “security hat” on. This chapter explains
how to apply the security and privacy design

concepts discussed in the last chapter in a security design
review (SDR). Think of this process as akin to when
an architect designs a building and an engineer then
reviews the design to ensure that it’s safe and sound.
Both the designer and the reviewer need to understand structural engi-
neering and building codes, and by working together, they can achieve
higher levels of quality and trust.

Ideally, the security reviewer is someone not involved in the design work,
giving them distance and objectivity, and also someone familiar with the
systems and context within which the software runs and how it will be used.
However, these are not firm prerequisites; reviewers less familiar with the
design will tend to ask a lot more questions but can also do a fine job.

110 Chapter 7

Sharing these methods and encouraging more software professionals
to perform SDRs themselves was one of my core goals in writing this book.
You will almost certainly do a better SDR on the software systems that you
work with and know well than someone with more security experience who
is unfamiliar with those systems. This book provides guidance to help you
with this task, and it’s my hope that in doing so it will contribute in some
small way to raising the bar for software security.

SDR Logistics
Before presenting the methodology for an SDR, it’s important to give a little
background and discuss some basic logistics. What purpose does an SDR
serve? If we’re going to perform one, during what stage of the design process
should this be done? Finally, I’ll give a few tips on preparation and the impor-
tance of documentation in particular.

Why Conduct an SDR?
Having done a few hundred SDRs myself, I can report that it never feels
like a waste of time. SDRs take only a tiny fraction of the total design time,
and will either identify important improvements to enhance security or pro-
vide strong assurance that the design properly addresses security. Simple,
straightforward designs are quick to review, and for larger designs the
review process provides a useful framework for identifying and validating
the major hotspots. Even when you review a design that ostensibly covers all
the bases for security, it’s good due diligence to confirm this. And of course,
when the SDR does turn up significant issues, the effort proves extremely
worthwhile, because detecting these issues during implementation would
be difficult and remedying them after the fact would be costly.

In addition, SDRs can yield valuable new insights, resulting in design
changes unrelated to security. An SDR offers a great opportunity to involve
diverse perspectives (user experience, customer support, marketing, legal,
and so forth), with everyone pondering easily overlooked topics such as the
potential for abuse and unintended consequences.

When to Conduct an SDR
Plan on performing an SDR when the design (or design iteration) is com-
plete and stable, typically following the functional review, but before the
design is finalized, since there may be changes needed. I strongly recom-
mend against trying to handle security as part of the functional review,
because the mindset and areas of focus are so different. Also, it’s important
for everyone—not just the reviewer—to focus on security, and that’s diffi-
cult to do during a combined review when there’s a tendency to concentrate
more on the workings of the designs.

Designs that are complicated or security-critical often benefit from an
additional preliminary SDR, when the design is beginning to gel but still
not fully formed, in order to get early input on major threats and overall

Security Design Reviews 111

strategy. The preliminary SDR can be less formal, previewing points of
particular security interest (where you would expect to dig further) and
discussing security trade-offs at a high level. Good software designers
should always consider and address security and privacy issues throughout
the design. To be clear, designers should never ignore security and rely on
the SDR to fix those issues for them. They should always expect to be fully
responsible for the security of their designs, with security reviewers in a sup-
port role helping to ensure that they do a thorough job. In turn, security
reviewers shouldn’t pontificate, but instead clearly and persuasively present
their findings to designers without judgment.

Documentation Is Essential
Effective SDRs depend on up-to-date documentation so that all parties
have an accurate and consistent understanding of the design under review.
Informal word-of-mouth SDRs are better than nothing, but crucial details are
easily omitted or miscommunicated, and without a written record, valuable
results are easily lost. Personally, I always prefer having design documents
to preview ahead of a meeting, so I can start studying the design in advance
and not take up meeting time with learning what we are working on.

The quality of the design documentation is, in my experience, an
invaluable aid in delivering a great SDR. Of course, thorough documenta-
tion may not be available in practice, and the case study beginning on
page 122 talks about handling that situation as well. Any design document
vaguely specifying to “store customer data securely,” for example, deserves
a big red flag, unless it goes on to describe what that means and how to do
that. Blanket statements without specifics almost always betray naivety and
a lack of a solid understanding of security.

The SDR Process
The following explanation of the SDR process describes how I conducted
them at a large software company with a formal, mandatory review process.
That said, software design is practiced in countless different ways, and you
can adapt the same strategies and analysis to less formal organizations.

Starting from a clear and complete design in written form, the SDR
consists of six stages:

1.	 Study the design and supporting documents to gain a basic understand-
ing of the project.

2.	 Inquire about the design and ask clarifying questions about basic threats.

3.	 Identify the most security-critical parts of the design for closer attention.

4.	 Collaborate with the designer(s) to identify risks and discuss mitigations.

5.	 Write a summary report of findings and recommendations.

6.	 Follow up with subsequent design changes to confirm resolution before
signing off.

112 Chapter 7

For small designs, you can often run through most of these in one ses-
sion; for larger designs, break up the work by stage, with some stages possibly
requiring multiple sessions to complete. Sessions dedicated to meeting with
the design team are ideal, but if necessary the reviewer can work alone and
then exchange notes and questions with the design team via email or other
means.

Everyone has a different style. Some reviewers like to dive in and do a
“marathon.” I prefer (and recommend) working incrementally over several
days, affording myself an opportunity to “sleep on it,” which is often where
my best thinking happens.

The following walkthrough of the SDR process explains each stage, with
bullet points summarizing useful techniques. When you perform an SDR
you can refer to the bullets for each stage as you work through the process.

1. Study
Study the design and supporting documents to gain a basic understanding
of the software as preparation for the review. In addition to security know-
how, reviewers ideally bring domain-specific expertise. Lacking that, try to
pick up what you can, and stay curious throughout the process. Trade-offs
are inherent in most security decisions, so a single-minded push for more
and more security is likely to overdo things, and risk ruining the design in
the process. To understand how too much security can be bad, think of a
house designed solely to reduce the risk of fire. Built entirely of concrete,
with one thick steel door and no windows, it would be costly as well as ugly,
and nobody would want to live in it.

In this preparatory stage:

•	 First, read the documentation to get a high-level understanding of the
design.

•	 Next, put on your “security hat” and go through it again with a threat-
aware mindset.

•	 Take notes, capturing your ideas and observations for future reference.

•	 Flag potential issues for later, but at this stage it’s premature to do
much security analysis.

2. Inquire
Ask the designer clarifying questions to understand the basic threats to
the system. For simpler designs that are readily understood, or when the
designer has produced rock-solid documentation, you may be able to skip
this stage. Consider it an opportunity to confirm your understanding of the
design and to resolve any ambiguities or open questions before proceeding
further. Reviewers certainly don’t need to know a design inside and out to
be effective—that’s the designer’s job—but you do need a solid grasp of the
broad outlines and how its major components interact.

Security Design Reviews 113

This stage is your opportunity to fill in gaps before digging in. Here are
some pointers:

•	 Ensure that the design document is clear and complete.

•	 If there are omissions or corrections needed, help get them fixed in the
document.

•	 Understand the design enough to be conversant, but not necessarily at
an expert level.

•	 Ask members of the team what they worry about most; if they have no
security concerns, ask follow-up questions to learn why not.

There’s no need to limit the questions you ask as a security reviewer
to strictly what’s in the design document. Understanding peer systems can
be extremely helpful for gauging their impact on the design’s security.
Omitted details can be hardest to spot. For example, if the design implicitly
stores data without providing any details of how this is handled, ask about
the storage and its security.

3. Identify
Identify the security-critical parts of the design and zero in on them for
close analysis. Work from basic principles to see through a security lens:
think in terms of C-I-A, the Gold Standard, assets, attack surfaces, and trust
boundaries. While these parts of the design deserve special attention, keep
the security review focused on the whole for now, so as not to completely
ignore the other parts. That said, it’s fine to skip over aspects of the design
with little or no relevance to security.

In this exploratory stage you should:

•	 Examine interfaces, storage, and communications—these will typically
be central points of focus.

•	 Work inward from the most exposed attack surfaces toward the most
valuable assets, just as determined attackers would.

•	 Evaluate to what degree the design addresses security explicitly.

•	 If needed, point out key protections and get them called out in the
design as important features.

4. Collaborate
Collaborate with the designer, conveying findings and discussing alterna-
tives. Ideally, the designer and reviewer meet for discussion and go through
the issues one by one. This is a learning process for everyone: the designer
gets a fresh perspective on the design while learning about security, and the
reviewer gains insights about the design and the designer’s intentions, deep-
ening their understanding of the security challenges and the best mitigation
alternatives. The joint goal is making the design better overall; security
is the focus of the review, but not the only consideration. There’s no need to

114 Chapter 7

make final decisions on changes on the spot, but it is important to reach an
agreement eventually about what design changes deserve consideration.

Here are some guidelines for effective collaboration:

•	 As a reviewer, provide a security perspective on risks and mitigations
where needed. This can be valuable even when the design is already
secure, reinforcing good security practice.

•	 Consider sketching a scenario illustrating how a security change could
pay off down the line to help convince the designer of the need for
mitigations.

•	 Offer more than a single solution to a problem when you can, and help
the designer see the strengths and weaknesses of these alternatives.

•	 Accept that the designer gets the last word, because they are ultimately
responsible for the design.

•	 Document the exchange of ideas, including what will or will not go into
the design.

Expanding on “the last word”: in practice, this balance will depend on
the organization and its culture, applicable industry standards, possible
regulatory requirements, and other factors. In large or highly regimented
organizations, the last word may involve sign-offs by multiple parties, includ-
ing an architecture board, standards compliance officers, usability assessors,
and executive stakeholders. When multiple approvals are required, designers
must balance competing interests, so security reviewers should be especially
conscientious of this dynamic and be as flexible as possible.

5. Write
Write an assessment report of the review findings and recommendations. The
findings are the security reviewer’s assessment of the security of a design.
The report should focus on potential design changes to consider, and an
analysis of the security of the design as it stands. Any changes the designer
has already agreed to should be prominently identified as such, and subject
to later verification. Consider including priority rankings for suggested
changes, such as this simple three-level scheme:

•	 Must is the strongest ranking, indicating there should be no choice, and
often implying urgency.

•	 Ought is intermediate: I use it to say that I, the reviewer, lean “Must” but
that it’s debatable.

•	 Should is the weakest ranking for optional recommended changes.

More precise rankings are difficult at the design stage, but if you want
to try, Chapter 13 includes guidance on ways to systematically assign more
fine-grained rankings for security bugs that can be readily adapted for this
purpose.

SDRs vary enough that I have never used a standardized template for
the assessment report, but instead write a narrative describing the findings.
I like to work from my own rough notes taken over the course of the review,

Security Design Reviews 115

with the final form of the report evolving organically. If you can hold all the
details in your head reliably, then you may want to write up the report after
the review meeting.

The following tips can also be used as a framework for the write-up:

•	 Organize the report around specific design changes that address secu-
rity risks.

•	 Spend most of your effort and ink on the highest-priority issues, and
proportionally less on lower priorities.

•	 Suggest alternatives and strategies without attempting to do the design-
er’s job for them.

•	 Prioritize findings and recommendations using priority rankings.

•	 Focus on security, but feel free to offer separate remarks for the design-
er’s consideration as well. Be more deferential outside the scope of the
SDR, don’t nitpick, and avoid diluting the security message.

Separating the designer and reviewer roles is important, but in practice
how this is done varies greatly depending on the responsibilities of each
and their ability to collaborate. In your assessment report, avoid doing
design work, while offering clear direction for needed changes so the
designer knows what to do. Offer to review and comment on any significant
redesign that results from the current review. As a rule of thumb, a good
reviewer helps the designer see security threats and the potential conse-
quences, as well as suggests mitigation strategies without dictating actual
design changes. Reviewers who are too demanding often find that their
advice is ineffective, even if it is correct, and they risk forcing designers into
making changes that they do not fully understand or see the need for.

You can skimp on writing up the report if this level of rigor feels too
fussy, but the chances are good that you, or someone else working on the
software, will later wish that the details had been recorded for future refer-
ence. At a bare minimum, I suggest taking the time to send an email sum-
mary to the team for the record. Even a minimal report should not just say
“Looks good!” but should back that up with a substantive summary. If the
design covered all the security bases, reference a few of the most important
design features that security depends on to underscore their importance.
In the case of a design where security is a non-factor (for example, I once
reviewed an informational website that collected no private information),
outline the reasoning behind that conclusion.

The style, length, and level of detail in these reports varies greatly
depending on the organizational culture, available time, number of stake-
holders, and many other factors. When, as reviewer, you collaborate closely
with the software designer, you may be able to incorporate needed provi-
sions directly into the design document, rather than enumerating issues
in need of change in a report. Even for small, informal projects, assigning
separate designer and reviewer roles is worthwhile so there are multiple
sets of eyes on the work, and to ensure that security is duly considered.
However, even a solo design benefits from the designer going back over
their own work with their security hat on for fresh perspective.

116 Chapter 7

6. Follow Up
Follow up on agreed design changes resulting from a security review to con-
firm they were resolved correctly. When the collaboration has gone well, I
usually just check that documentation updates happened without looking
at the implementation (and that approach has never backfired in my expe-
rience). In other circumstances, and subject to your judgment, reviewers
may need to be more vigilant. Sign off on the review when it’s complete,
including the verification of all necessary changes. Assigning the SDR in
the project bug tracker is a great way to track progress reliably. Otherwise,
use a more or less formal process if you prefer. Here are a few pointers for
this final stage:

•	 For major security design changes, you might want to collaborate with
the designer to ensure that changes are made correctly.

•	 Where opinions differ, the reviewer should include a statement of both
positions and the specific recommendations that weren’t followed to
flag it as an open issue. (“Managing Disagreement” on page 121 talks
about this topic in more detail.)

In the best case, the designer looks to the reviewer as a security
resource and will continue engaging as needed over time.

Assessing Design Security
Now that we’ve covered the SDR process, this section delves into the thought
processes behind conducting the review. The material in this book up to
this point has given you the concepts and tools you need to perform an SDR.
The foundational principles, threat modeling, design techniques, patterns,
mitigations, crypto tools—it all goes into the making of a secure design.

Using the Four Questions as Guidance
The Four Questions used for threat modeling in Chapter 2 are an excel-
lent guide to help you conduct an effective SDR. Explicit threat modeling
is great if you have the time and want to invest the effort, but if you don’t,
using the Four Questions as touchstones is a good way to integrate a threat
perspective into your review. More detailed explanations will be given in
the subsections that follow, but at the highest level, here is how these ques-
tions map onto an SDR:

1.	 What are we working on?
The reviewer should understand the high-level goals of the design as
context for the review. What’s the most secure way of accomplishing the goal?

2.	 What can go wrong?
This is where “security hat” thinking comes in, and where to apply threat
modeling. Did the design fail to anticipate or underestimate a critical threat?

Security Design Reviews 117

3.	 What are we going to do about it?
Review what protections and mitigations you find in the design. Can we
respond in better ways to the important threats?

4.	 Did we do a good job?
Assess whether the mitigations in the design suffice, if some might need
more work, or if any are missing. How secure is the design, and if lacking,
how can we bring it up to snuff?

You can use the Four Questions as a tickler while working on an SDR. If
you’ve read the design document and noted areas of focus but don’t know
exactly what you are looking for yet, run through the Four Questions—
especially #2 and #3—and consider how they apply to specific parts of the
design. From there, your assessment will naturally shift to #4. If the answer
isn’t “We’re doing just fine,” it likely suggests a good topic of discussion, or
an entry you should include in the assessment report.

What Are We Working On?

There are a few specific ways this question keeps you on track. First, it’s
important to know the purpose of the design so you can confidently suggest
cutting any part that incurs risk but is not actually necessary. Conversely,
when you do suggest changes, you don’t want to break a feature that’s
actually needed. Perhaps most importantly, you may be able to suggest an
alternative to a risky feature that takes a new direction.

For example, in the privacy space, if you’re reviewing a payroll system
that collects personal information from all employees, you might identify a
health question as particularly sensitive. If the data item in question is truly
superfluous, then cutting it from the design is the right move. However, if
it’s important to the business function the design serves, instead you can
propose ways to stringently protect against disclosure of this data (such as
early encryption, or deletion within a short time frame).

What Can Go Wrong?

The review should confirm that the designer has anticipated the important
threats that the system faces. And it’s not enough for the designer to be aware
of these threats; they must have actually created a design that lives up to the
task of withstanding them.

Certain threats may be acceptable and left unmitigated, and in this case,
the reviewer’s job is to assess that decision. But it’s important to be sure that
the designer is aware of the threat and chose to omit mitigation. If the design
doesn’t say explicitly that this is what they are doing, note this in the SDR
to double-check that it’s intentional. Also note the risk being accepted and
explain why it’s tolerable. For example, you might write: “Unencrypted data
on the wire represents a snooping threat. However, we determined that the
risk is acceptable because the datacenter is physically secured, and there is no
potential for exposure of PII or business-confidential data.”

118 Chapter 7

Try to anticipate future changes that might invalidate this decision to
accept the risk. Building on the example just mentioned, you might add, “If
the system moves to a third-party datacenter we should revisit this physical
network access risk decision.”

What Are We Going to Do About It?

Security protection mechanisms and mitigations should become appar-
ent in the design as the reviewer studies it. Reviewers typically spend
most of their time on the last two questions: identifying what makes the
design secure and assessing how secure it is. One way of approaching this
task is by matching the threats to the mitigations to see if all bases are
covered. Pointing out issues arising from this question and confirming
that the design is satisfactory are among the most important contribu-
tions of an SDR.

If the design is not doing enough to mitigate security risks, then you
should itemize what’s missing. To make this feedback useful, you need to
explain the specific threats that are unaddressed, as well as why they are
important, and perhaps provide a rough set of options for addressing each.
For a number of reasons, I recommend against proposing specific remedies
in an SDR. However, it’s great to offer help informally, and if asked, to col-
laborate with the designer to consider alternatives or even elaborate on
design changes. For example, your feedback might say: “The monitoring
API should not be exposed publicly because it discloses our website’s levels
of use, which could give competitors an advantage. I recommend requiring
an access key to authenticate requests to the RESTful API.”

When the design does provide a mitigation for a given threat, evaluate
its effectiveness and consider whether there might be better alternatives.
Sometimes, designers “reinvent the wheel” by building security mechanisms
from scratch: good feedback would be to suggest using a standard library
instead. If the design is secure but that’s achieved at a great performance
cost, propose another way if you can. An example of this might be pointing
out redundant security mechanisms, such as encrypting data that is sent
over an encrypting HTTPS connection, and describing how to streamline
the design.

Did We Do a Good Job?

This last question goes to the bottom line: Do you consider the design
secure? Competent designers should have already addressed security, so
much of the value of the SDR is in assuring that they saw the whole picture
and anticipated the major threats. In my experience, SDRs quickly identify
issues and opportunities, or at minimum suggest interesting trade-off deci-
sions worth considering now (because later you won’t have the luxury of
making changes so easily).

Security Design Reviews 119

I recommend summarizing your overall appraisal of the whole design
in one statement at the top of the report. Here are some examples of what
that might look like:

•	 I found the design to be secure as is, and have no suggested changes.

•	 The design is secure, but I have a few changes to suggest that would
make it even more so.

•	 I have concerns about the current design, and offer a set of recommen-
dations to make it more secure.

After the summary, if there are multiple subpar areas that require fix-
ing, break those out and explain them one by one. If you can attribute the
weakness to a specific part of the design, it will be easier for the designer to
pinpoint the problem, see it clearly, and make the necessary remedies.

Of course, no design is perfect, so in judging a design to be lacking, it’s
important to be clear about what standard you are holding it to. This is dif-
ficult to express in the abstract, so a good approach is to point out specific
threats, vulnerabilities, and consequences to make your case. It may be best
to couch your assessment in terms of the security of a comparable product;
for example, “Our main competitor claims to be ransomware-resistant as
a major selling point, but this design is particularly susceptible to such
attacks due to maintaining the inventory database locally on a computer
that employees also use to surf the web.”

Where to Dig
It’s impractical to dig into every corner of a large design, so reviewers need
to focus as quickly as possible on key areas that are security-critical. I
encourage security reviewers to follow their instincts when deciding where
to direct their efforts within the design. Begin by reading through the
design and noting areas of interest according to your intuition. Next, go
back to the areas of largest concern, study them more carefully, and collect
questions to ask, letting potential threats and the Four Questions be your
guide. Some of these leads will be more productive than others. If you do
start down an unproductive path, you will usually realize this before long,
so you can refocus your efforts elsewhere.

It’s fine to skim parts of the design that are extraneous to security and
privacy, absorbing just enough to have a basic understanding of all the mov-
ing parts. If you locked yourself out of your home, you would know to check
for an open window or unlocked door: nobody would spend time going
over the entire exterior inch by inch. In the same way, it’s most effective to
zero in on places in the design where you detect a hint of weakness, or focus
closely on how the design protects the most valuable assets.

Keep an eye out for attack surfaces and give them due attention. The
more readily available they are—anonymous internet exposure is the clas-
sic worst case—the more likely they are to be a potential source of attacks.

120 Chapter 7

Trust boundaries guarding valuable resources, especially when reachable
from an attack surface, are the major generic feature of a design that
reviewers should be sure to emphasize in their analysis. Sometimes valuable
assets can be better isolated from external-facing components, but often
the exposure is unavoidable. These are the kinds of factors that reviewers
need to search out and assess throughout the process.

Privacy Reviews
Depending on your skill set and organizational responsibilities, you may
want to handle information privacy within the scope of an SDR, or sepa-
rately. Privacy feedback within an SDR should center on applicable privacy
policies and how they relate to data collection, use, storage, and sharing
within the scope of the design.

A good technique is to run through the privacy policy and note passages
that pertain to the design, then look for ways to protect against violations. As
the previous chapter describes, the technical focus is on ensuring that the
design is in compliance with policy. Get sign-offs from privacy specialists and
legal for issues requiring more expertise.

Reviewing Updates
Once released, software seems to take on a life of its own, and over time,
change is inevitable. This is especially true in Agile or other iterative develop-
ment practices, where design change is a constant process. Design documents
can easily become neglected along the way and, years later, lost or irrelevant.
Yet changes to a software design potentially impact its security properties,
so it’s wise to perform an incremental SDR update to ensure that the design
stays secure.

Design documents should be living documents that track the evolu-
tion of the architectural form of the software. Versioned documents are
an important record of how the design has matured, or in some cases
become convoluted. You can use these same documents as a guide to
focus an incremental review on the precise set of changes (the design
delta) since the previous SDR to update it. When there are changes to (or
near) security-critical areas of the design, it’s often wise for the reviewer
to follow up to ensure that no small but important details were omitted
in the design document that might have significant impact. If the incre-
mental review does turn up anything substantial, add that to the existing
assessment report so it now tells the complete story. If not, just update the
report to note what design version it covers.

Underestimating the impact of a “simple change” is a common invitation
to a security disaster, and re-reviewing the design is a great way to proactively
assess such impacts effectively. If the design change is so minor that a review
is unnecessary, it’s also true that a reviewer could confirm right away that
there is no security impact. For anything but a trivial design change, I would
suggest that there is little to gain from skipping the SDR update, given the
risk of missing this important safeguard.

Security Design Reviews 121

Managing Disagreement
Whatever you do in life, surround yourself with smart people who’ll argue with you.

—John Wooden

An important lesson from my years of evangelizing security—learned the
hard way, though obvious in hindsight—is that good interpersonal commu-
nication is critical to conducting successful SDRs. The analysis is technical,
of course, but critiquing a design requires good communication and collab-
oration, so human factors are also key. Too often, security specialists, be they
in-house or outsourced, get reputations (deservedly or not) of being hyper-
critical interlopers who are never satisfied. That perception subtly poisons
interactions, not only making the work difficult, but adversely impacting the
effectiveness of everybody’s efforts. We have to acknowledge this factor in
order to do better.

Communicate Tactfully
SDRs are inherently adversarial, in that they largely consist of pointing
out risks and potential flaws in designs in which people are often heavily
invested. Once identified, design weaknesses often look painfully obvious in
hindsight, and it’s easy for reviewers to slip into casting this as carelessness,
or even incompetence—but it is never productive to communicate that way.
Instead, treat the issues that do arise as teaching opportunities. Once the
designer understands the problem, often they will lead the discussion into
other productive areas the reviewer might have missed. Having someone
point out a vulnerability in your own design is the best way there is to learn
security.

An SDR spent ruthlessly tearing apart a weak design with a one-sided
lecture on the importance of maximizing security over everything else is
unlikely to be productive (for reasons that should be obvious if you imagine
yourself on the receiving end). While this does, unfortunately, sometimes
happen, I don’t think it’s necessarily because the reviewers are mean, but
rather because in focusing on the technical changes needed, it’s easy to
forget about keeping the tone respectful. It’s well worth bending over back-
wards to maintain good will and reinforce that everybody is on the same
team, bringing a diversity of perspectives and working toward the common
goal of striking the right balance. Sports coaches frequently walk this same
fine line, pointing out weaknesses they see (that they know opponents will
exploit) without asking too much, in order to help their teams do the work
necessary to play their best game. As Mark Cuban says, “Nice goes much
further than mean.”

Getting along with people while delivering possibly unwelcome messages
is, of course, desirable, but it is also much easier said than done. This is a
technical software book, so I offer no self-help advice on how to win friends
and influence developers. But the human factor is important enough—or
more precisely, ignoring it potentially undermines the work enough—that
it merits prominent mention. My fundamental guidance is simple: be aware

122 Chapter 7

of how you deliver messages and consider how others will receive them and
likely respond. To show how this works for an SDR, I offer a true story, and a
set of tips that I have come to rely on.

Case Study: A Difficult Review
One of my most memorable SDRs is a great object lesson in the importance
of soft skills. It began with a painful email exchange I initiated just to get
documentation and ask a few basic questions. The exchange made it imme-
diately clear that the team lead viewed the SDR as a complete waste of time.
On top of that, because they had been unaware of this product launch
requirement, it had suddenly become an unwelcome new obstacle blocking
the release they were working so hard toward. The first key takeaway from
this story is the importance of recognizing the other participants’ perspec-
tive on the process, right or wrong, and adapting accordingly.

What documentation I eventually got I found to be sloppy, incomplete,
and considerably outdated. Directly pointing this out in so many words
would have been unproductive and further soured the relationship. The
second key point is that to spur improvement, work around the problem,
and handle the SDR effectively, it’s more productive to use strategies like
the following:

•	 Suggest fixes or additions, including the security rationale behind each
suggestion.

•	 When feasible, offer to help review documents, suggest edits, or any-
thing else you can do to facilitate the process (but short of doing their
job for them).

•	 Present preliminary SDR feedback as “my perspective” rather than as
demands.

•	 Use the “sandwich” method: begin with a positive remark, point out
needed improvements, then close on a positive (such as how the
changes will help).

•	 If your feedback is extensive, ask first how best to communicate it.
(Don’t surprise them with a 97-bullet-point email, or by filing tons of
bugs out of the blue.)

•	 Explore all the leads that you notice, but limit your feedback to the
most significant points. (Don’t be a perfectionist.)

•	 A good rule of thumb is that if missing information is going to be gener-
ally useful to many readers it’s worth documenting, but if it’s particular
to your needs you should just ask the question less formally. (If neces-
sary, you can include the details of the issue in the assessment report.)

Instead of complaining about or judging the quality of the documenta-
tion, find creative alternative ways to learn about the software, such as using
an internal prototype if available, or perusing the code and code reviews.
Asking to observe a regular team meeting can be a great way to learn about
the design without taking up anyone’s time.

Security Design Reviews 123

Over email, it felt like they were being rude, but when we finally met I
could see that this was just a stressed-out lead developer. Instead of relying
exclusively on the lead, I found another team member who was less stretched
and was glad to answer my questions. To save time in preparing for the SDR
meeting, I pursued only the questions that were important to resolve ahead
of time, saving others for the meeting when I had a captive audience.

Preparing for an SDR meeting is a balancing act. You shouldn’t go in
cold with zero preparation, because the team may not appreciate having
to describe everything, especially after providing you with documentation.
Ahead of time, try to identify major components and dependencies you
are unfamiliar with, and at least get up to speed enough to ask questions at
the meeting. During preparation, a good practice is to jot down issues and
questions, then to sort these into categories:

•	 Questions to ask in advance so you are ready to dig into security when
you meet

•	 Questions you can find answers to yourself

•	 Topics best explored at the meeting

•	 Observations you will include in the assessment report that don’t need
discussion

By the time we finally held a meeting, the lead engineer was overtly
unhappy that the SDR was now the major obstacle to launching the prod-
uct. The first meeting was a little rocky, but we made good progress, with
everyone staying focused. After a few more meetings (which gradually
became easier and shorter each time), I signed off on the design. We agreed
on a few changes at the first meeting, but confirming the details and meet-
ing to finalize them was an important assurance to all. If you don’t take the
time to confirm that needed changes to the design get made, it’s easy for a
miscommunication to slip through the cracks.

It’s never easy to convince busy people that you are helping them by
taking up their time, and telling them so rarely works. However, flagging
even small opportunities to improve security and showing how these contrib-
ute to the final product is a great way to reach a mutually satisfactory result.

By the completion of the SDR, the product team had a far better under-
standing of security—and by extension, of their own product. In the end,
they did see the value of the review, and acknowledged that the product had
been improved as a result. Better yet, for version two, the team proactively
reached out to me and we sailed through the update SDR with flying colors.

Escalating Disagreements
When the designer and reviewer fail to reach consensus, they should agree
to disagree. If the issue is minor, the reviewer can simply note the point
of disagreement in the assessment report and defer to the designer. In
such cases, make the disagreement explicit, perhaps in a section called
“Recommendations Declined,” explaining the suggested design change and

124 Chapter 7

why you recommended it, as well as the potential consequences of not mak-
ing the change. However, if there is a serious dispute about a major deci-
sion, the reviewer should escalate the issue.

In this case both the designer and the reviewer should write up their
positions, starting with an attempt at identifying some common starting
ground that they do agree on, and exchange drafts so everyone knows both
perspectives. Their respective positions combine to form a memo explain-
ing the risk, along with proposed outcomes and their costs. This memo
supplements the assessment report and serves as the basis for a meeting,
or as a guide for management to decide how to proceed. The results of the
final decision, along with the escalation memo, should go into the assess-
ment report.

Over many years of conducting security reviews, I have never had occa-
sion to escalate an issue, but I have come close a few times. Strong disagree-
ment almost always originates from a deep split in basic assumptions that,
once identified, usually leads to resolution. Such differences often stem
from implicit assumptions about the software’s use, or what data it will pro-
cess. In actual practice, how software gets used is extremely hard to control,
and over time use cases usually evolve, so leaning to the safe side is usually
the best course.

Another major cause of disconnect happens when the designer fails
to see that data confidentiality or integrity matters, usually because they
are missing the necessary end user perspective or not considering the full
range of possible use cases. One more important factor to consider is this:
Hypothetically, if we changed our minds after release, how much harder
would the change be to make at that stage? Nobody wants to say “I told you
so” after the fact, but putting the opposing conditions in writing is usually
the best way to make the right choice.

Practice, Practice, Practice
To solidify what you have learned in this chapter and truly make it your
own, I strongly encourage readers to take the leap, find a software design,
and perform an SDR for it. If there is no current software design in your
sphere of interest just now, choose any available existing design and review
it as an exercise. If the software you chose has no formal written design,
start by creating a rough representation of the design yourself (it doesn’t
have to be a complete or polished document, even a block diagram will
do), and review that. Generally, it’s best to start with a modest-sized design
so you don’t get in over your head, or carve out a component from a large
system and review just that part. Having read this far should have prepared
you to begin. You can start by doing quick reviews for your own use if you
don’t feel confident enough yet to share your assessment reports.

As you acquire the critical skills of SDR, you can apply them to any soft-
ware you encounter. Studying lots of designs is a great way to learn about

Security Design Reviews 125

the art of software design—both by seeing how the masters do it and by
spotting mistakes that others have made—and practicing applying them in
this way is an excellent exercise to grow your skills.

An especially easy way to start is to review the sample design document
in Appendix A. The security provisions are highlighted, to provide a real-
istic example of what to look for in designs. Read the design, noting the
highlighted portions, and then imagine how you would identify and supply
those security-related details if they were missing. For a greater challenge,
look for additional ways to make the design even more secure (by no means
do I claim or expect it to be a flawless ideal!).

With each SDR, you will improve your proficiency. Even when you don’t
find any significant vulnerabilities, you will enhance your knowledge of the
design, as well as your security skills. There certainly is no shortage of soft-
ware in need of security attention, so I invite you to get started. I believe how
quickly you acquire this valuable skill set will surprise you.

N O T E 	 See Appendix D for a cheat sheet summarizing the SDR process as a handy aid doing
security design reviews.

PART III
I M P L E M E N T A T I O N

8
S E C U R E P R O G R A M M I N G

The first principle is that you must not fool yourself, and you are the easiest person to fool.
—Richard P. Feynman

A completed software design, created and
reviewed with security in mind, is only the

beginning of a product’s journey: next comes
the work of implementing, testing, deploying,

operating, monitoring, maintaining, and, ultimately,
retiring it at end of life. While the particular details of
all this will vary greatly in different operating systems and languages, the
broad security themes are so common as to be nearly universal.

Developers must not only faithfully implement the explicit security pro-
visions of a good design, but in doing so they must also take care to avoid
inadvertently introducing additional vulnerabilities with flawed code. A
carpenter building a house based on the architect’s plans is a good meta-
phor: sloppy construction with lousy materials leads to all kinds of prob-
lems in the finished product. If the carpenter misstrikes a nail and bends
it, the problem is noticeable and easily remedied. By contrast, flawed code
is easily overlooked, but may nevertheless create a vulnerability that can
be exploited with dire consequences. The purpose of this chapter is not
to teach you how to code—I’ll assume you already know about that—but

130 Chapter 8

rather how code becomes vulnerable and how to make it more secure. The
following chapters cover many of the commonplace implementation vulner-
abilities that continue to plague software projects.

The line between design and implementation is not always clear, nor
should it be. Thoughtful designers can anticipate programming issues,
provide advice about areas where security will be critical, and much more.
The programmers doing the implementation must flesh out the design and
resolve any ambiguities in order to make functional code with precisely
defined interfaces. Not only must they securely render the design—in itself
a daunting task—but they must also avoid introducing additional vulner-
abilities in the course of supplying the necessary code in full detail.

In an ideal world, the design should specify proactive security measures:
features of the software built for the purpose of protecting the system, its
assets, and its users. Conversely, security in development is about avoiding
pitfalls that software is liable to—rough edges on the components and tools,
if you will. Where new risks emerge during the process of implementation,
mitigations specific to these are in order, because there is no reason to
expect that designers could have anticipated them.

This chapter focuses on how some bugs become vulnerabilities, how
they occur, and how to avoid the various pitfalls. It approaches these issues
in general terms as a lead-in to the following chapters, which drill into major
areas that, historically, have proven to be fraught with security problems.
We’ll begin by exploring the essence of the challenge of secure coding,
including how attackers exploit openings and extend their influence deeper
into code. We’ll also talk about bugs: how vulnerabilities arise from them,
how minor bugs can form vulnerability chains that potentially create bigger
problems, and how code appears through the lens of entropy.

Avoiding vulnerabilities in your code requires vigilance, but that
requires knowledge of how code undermines security. To make the concept
of a coding vulnerability concrete, we’ll walk through a simplified version
of the code for a devastating real vulnerability that shows how a one-line
editing slip-up broke security across the internet. Then we’ll look at a few
classes of common vulnerabilities as examples of bugs that are potentially
exploitable with serious consequences.

Throughout Part III, most code examples will be in Python and C,
widely used languages that span the range from high-level to low-level
abstraction. This is real code using the particulars of the specific language,
but the concepts in this book apply generally. Even if you are unfamiliar
with Python or C, the code snippets should be simple enough for readers
familiar with any modern programming language to follow.

The Challenge
The term “secure programming” was the obvious choice for the title of
this chapter, though it is potentially misleading. A more accurate expres-
sion of the goal (unsuitable as a chapter title) would be “avoiding coding

Secure Programming 131

insecurely.” What I mean by that is that the challenge of secure coding
largely amounts to not introducing flaws that become exploitable vulner-
abilities. Programmers certainly do build protection mechanisms that
proactively improve security, but these are typically explicit in the design
or features of APIs. I want to focus primarily on the inadvertent pitfalls
because they are nonobvious and constitute the root causes of most security
failings. Think of secure coding as similar to learning where the potholes
are in a road, diligently paying attention at the wheel, and navigating them
consistently.

I believe that many programmers, perhaps quite rightfully, have
unfavorable attitudes toward software security (and in some cases, more
viscerally, about “security cops”—or worse names—who they perceive as
bothering them) because they often hear the message “don’t mess up”
when it comes to implementation. “Don’t mess up!” is unhelpful advice
to a jeweler about to cut a rare diamond for the same reasons: they have
every intention of doing their best, and the added stress only makes it
harder to concentrate and do the job right. The well-meaning “cops” are
providing necessary advice, but often they don’t phrase it in the most
kindly and constructive way. Having made this mistake plenty of times
myself, I am endeavoring to walk that fine line here, and ask for the reader’s
understanding.

Caution is indeed necessary, because one slip by a programmer (as we
shall see when we look at the GotoFail vulnerability later in this chapter)
can easily result in disastrous consequences. The root of the problem is
the great fragility and complexity of large modern software systems, which
are only expected to grow in the future. Professional developers know how
to test and debug code, but security is another matter, because vulnerable
code usually works fine absent a diligent attack.

Software designers create idealized conceptions that, by virtue of not
yet being realized, can even be perfectly secure in theory. But making soft-
ware that actually works introduces new levels of complexity and requires
fleshing out details beyond the design, all of which inevitably carries the
risk of security problems. The good news is that perfection isn’t the goal,
and the coding failure modes that account for most of the common vulner-
abilities are both well understood and not that difficult to get right. The
trick is constant vigilance and learning how to look out for dangerous flaws
in code. This chapter presents a few concepts that should help you get a
good grasp of what secure versus vulnerable code looks like, along with
some examples.

Malicious Influence
When thinking about secure coding, a key consideration is understanding
how attackers potentially influence running code. Think of a big, compli-
cated machine purring away smoothly, and then a prankster takes a stick
and starts poking the mechanism. Some parts, such as the cylinders of a
gasoline engine, will be completely protected within the block, while other

132 Chapter 8

parts, such as a fan belt, are exposed, making it easy to jam something
in, causing a failure. This is analogous to how attackers prod systems when
attempting to penetrate them: they start from the attack surface and use
cleverly crafted, unexpected inputs to try and foul the mechanism, then
attempt to trick code inside the system into doing their bidding.

Untrusted inputs potentially influence code in two ways: directly and
indirectly. Beginning wherever they can inject some untrusted input—say,
the string “BOO!”—they experiment in hopes that their data will avoid
rejection and propagate deeper into the system. Working down through
layers of I/O and various interfaces, the string “BOO!” typically will find
its way into a number of code paths, and its influence will permeate deeper
into the system. Occasionally, the untrusted data and code interaction
triggers a bug, or a feature that may have an unfortunate side effect. A
web search for “BOO!” may involve hundreds of computers in a datacen-
ter, each contributing a little to the search result. As a result, the string
must get written to memory in thousands of places. That’s a lot of influ-
ence spread, and if there is even a minuscule chance of harm, it could be
dangerous.

The technical term for this kind of influence of data on code is tainting,
and a few languages have implemented features to track it. The Perl inter-
preter can track tainting for the purpose of mitigating injection attacks
(covered in Chapter 10). Early versions of JavaScript had taint checking for
similar reasons, though it has long since been removed due to lack of use.
Still, the concept of influence on code by data from untrusted sources is
important to understand to prevent vulnerabilities.

There are other ways that input data can influence code indirectly
without the data being stored. Suppose that, given an input of the string
“BOO!”, the code avoids storing any further copies of it: Does that insulate
the system from its influence? It certainly does not. For example, consider
this given input = "BOO!":

if "!" in input:
 PlanB()
else:
 PlanA()

The presence of the exclamation point in the input has caused the code
to now pursue PlanB instead of PlanA, even though the input string itself is
neither stored nor passed on for subsequent processing.

This simple example illustrates how the influence of an untrusted input
can propagate deep into code, even though the data (here, “BOO!”) may
not itself propagate far. In a large system, you can appreciate the potential
of penetration into lots of code when you consider the transitive closure
(the aggregate extent of all paths), starting from the attack surface. This
ability to extend through many layers is important, because it means that
attackers can reach into more code than you might expect, affording them
opportunities to control what the code does. We’ll talk more about manag-
ing untrusted input in Chapter 10.

Secure Programming 133

Vulnerabilities Are Bugs
If debugging is the process of removing bugs, then programming must be the
process of putting them in.

—Edsger Dijkstra

That all software has bugs is so widely accepted that it is hardly necessary to
substantiate the claim at this point. Of course, exceptions to this general-
ization do exist: trivial code, provably correct code, and highly engineered
software that runs aviation, medical, or other critical equipment. But for
everything else, awareness of the ubiquity of bugs is a good starting point
from which to approach secure coding, because a subset of those bugs are
going to be useful to attackers. So, bugs are our focus here.

Vulnerabilities are a subset of software bugs useful to attackers to cause
harm. It’s nearly impossible to accurately separate vulnerabilities from other
bugs, so it may be easiest to start by identifying bugs that clearly are not vul-
nerabilities—that is, totally harmless bugs. Let’s consider some examples of
bugs in an online shopping website. A good example of an innocuous bug
might be a problem with the web page layout not working as designed: it’s a
bit of a mess, but all important content is fully visible and functional. While
this might be important to fix for reasons of brand image or usability, it’s
clear that there is no security risk associated with this bug. But to empha-
size how tricky vulnerability spotting can be, there could be similar bugs
that mess up layout and are also harmful, such as if they obscure important
information the user must see to make an accurate security decision.

At the harmful end of the spectrum, here’s a nightmarish vulnerability
to contemplate: the administrative interface becomes accidentally exposed,
unprotected, on the internet. Now, anyone visiting the website can click a
button to go into the console used by managers to change prices, see confi-
dential business and financial data, and more. It doesn’t take a genius to see
that this is a complete failure of authorization and a clear security threat.

Of course, there is a continuum between those extremes, with a large
murky area in the middle that requires subjective judgments about the
potential of a bug to cause harm. And as we will see in the next section, the
often unforeseen cumulative effects of multiple bugs make determining
their potential for harm particularly challenging. In the interests of secu-
rity, naturally, I would urge you to err on the safe side and lean toward
remedying more bugs if there is any chance they might be vulnerabilities.

Every project I’ve ever worked on had a tracking database filled with
tons of bugs, but no concerted effort to reduce even the known bug count
(which is very different from the actual bug count) to zero. So it’s safe to say
that, generally, all of us program alongside a trove of known bugs, not to
mention the unknown bugs. If it isn’t already actively done, consider work-
ing through the known bugs and flagging possible vulnerabilities for fixing.
It’s important to mention, too, that it’s almost always easier to just fix a bug
than to investigate and prove that it’s harmless. Chapter 13 offers guidance
on assessing and ranking security bugs to help you prioritize vulnerabilities.

134 Chapter 8

Vulnerability Chains
The idea behind vulnerability chains is that seemingly harmless bugs can
combine to create a serious security bug. It’s bug synergy for the attackers.
Think of taking a walk and coming upon a stream you would like to cross.
It’s far too wide to leap across, but you notice a few stones sticking up above
the surface: by hopping from stone to stone, it’s easy to cross without get-
ting your shoes wet. These stones represent minor bugs, not vulnerabilities
themselves, but together they form a new path right through the stream,
allowing the attacker to reach deep inside the system. These stepping-stone
bugs form, in combination, an exploitable vulnerability.

Here’s a simple example of how such a vulnerability chain could arise in
an online shopping web app. After a recent code change, the app’s order form
has a new field prefilled with a code indicating which warehouse will handle
the shipment. Previously, business logic in the backend assigned a warehouse
after the customer placed the order. Now a field that’s editable by the cus-
tomer determines the warehouse that will handle the order. Call this Bug #1.
The developer responsible for this change suggests that nobody will notice
the addition, and furthermore, even should anyone modify the warehouse
designation that the system supplies by default, another warehouse won’t have
the requested items in stock, so it will get flagged and corrected: “No harm, no
foul.” Based on this analysis, but without any testing, the team schedules Bug
#1 for the next release cycle. They’re glad to save themselves a fire drill and
schedule slip, and push the buggy code change into production.

Meanwhile, a certain Bug #2 is languishing in the bug database with a
Priority-3 ranking (meaning “fix someday,” which is to say, probably never),
long forgotten. Years ago, a tester filed Bug #2 after discovering that if you
place an order with the wrong warehouse designation, the system immedi-
ately issues a refund because that warehouse is unable to fulfill it; but then
another processing stage reassigns the order to the correct warehouse,
which fulfills and ships it. The tester saw this as a serious problem—the
company would be giving away merchandise for free—and filed it as
Priority-1. In the triage meeting, the programmers insisted that the tester
was “cheating” because the backend handled the warehouse assignment
(before Bug #1 was introduced) after confirming available inventory. In
other words, at the time of discovery, Bug #2 was purely hypothetical and
could never have happened in production. Since the interaction of various
stages of business logic would be difficult to untangle, the team decided to
leave it alone and make the bug Priority-3, and it was quickly forgotten.

If you followed this story of “letting sleeping bugs lie” you probably
already can see that it has an unhappy ending. With the introduction of
Bug #1, in combination with Bug #2, a fully fledged vulnerability chain now
exists, almost certainly unbeknownst to anyone. Now that the warehouse
designation field is writable by customers, the wrong warehouse case that
triggers Bug #2 is easy to produce. All it takes is for one devious, or even
curious, customer to try editing the warehouse field; pleasantly surprised
to receive free merchandise with a full refund, they might go back for a lot
more the next time, or share the secret with others.

Secure Programming 135

Let’s look at where the bug triage went wrong. Bug #2 (found earlier)
was a serious fragility that they should have fixed in the first place. The
reasoning in favor of leaving it alone hinged on the warehouse trusting
other backend logic to direct it flawlessly, under the assumption (correct, at
the time) that the warehouse assignment field in an order was completely
isolated from any attack surface. Still, it’s clearly a worrisome fragility that
clearly has bad consequences, and the fact that the business logic would be
difficult to fix suggests that a rewrite might be a good idea.

Bug #1, introduced later on, opened up a new attack surface, exposing
the warehouse designation field to tampering. The unfortunate decision
not to fix this depended on the incorrect assumption that tampering was
harmless. With the benefit of hindsight, had anyone done a little testing
(in a test environment, of course, never in production), they could have
easily found the flaw in their reasoning and done the right thing before
releasing Bug #1. And, ideally, had the tester who found Bug #2, or anyone
familiar with it, been present, they might have connected the dots and
slated both bugs for fixing as Priority-1.

Compared to this artificial example, recognizing when bugs form vul-
nerability chains is, in general, very challenging. Once you understand the
concept, it’s easy to see the wisdom of fixing bugs proactively whenever pos-
sible. Furthermore, even when you do suspect a vulnerability chain might
exist, I should warn you that in practice it’s often hard to convince others
to spend time implementing a fix for what looks like a vague hypothetical,
especially when fixing the bug in question entails significant work. It’s likely
that most large systems are full of undetected vulnerability chains, and our
systems are weaker for it.

This example illustrates how two bugs can align into a causal chain,
much like a tricky billiards shot with the cue ball hitting another ball, that
in turn knocks the target ball into the pocket. Believe it or not, vulnerabil-
ity chains can be a good deal more involved: one team in the Pwn2Own
competitive hacking contest managed to chain together six bugs to achieve
a difficult exploit.

When you understand vulnerability chains, you can better appreciate the
relationship of code quality to security. Bugs introducing fragility, especially
around critical assets, should be fixed aggressively. Punting a bug because “it
will never happen” (like our Bug #2) is risky, and you should bear in mind
that one person’s opinion that it will be fine is just that, an opinion, not a
proof. Such thinking is akin to the Security by Obscurity anti-pattern and at
best a temporary measure rather than a good final triage decision.

Bugs and Entropy
Having surveyed vulnerabilities and vulnerability chains, next consider that
software is also liable to less precise sequences of events that can do dam-
age. Some bugs tend to break things in unpredictable ways, which makes an
analysis of their exploitability (as with a vulnerability chain) difficult. As evi-
dence of this phenomenon, we commonly reboot our phones and computers
to clear out the entropy that accumulates over time due to the multitude of

136 Chapter 8

bugs. (Here I’m using the word entropy loosely, to evoke an image of disorder
and metaphorical corrosion.) Attackers can sometimes leverage these bugs
and their aftereffects, so countermeasures can help improve security.

Bugs arising from unexpected interactions between threads of execution
are one class prone to this kind of trouble, because they typically present in
a variety of ways, seemingly at random. Memory corruption bugs are another
such class, because the contents of the stack and heap are in constant flux.
These sorts of bugs, which perturb the system in unpredictable ways, can
almost be juicier targets for attack because they offer potentially endless
possibilities. Attackers can be quite adept at exploiting such messy bugs, and
automation makes it easy to retry low-yield attempts until they get lucky. On
the flip side, most programmers dislike taking on these elusive bugs that are
hard to pin down and frequently deemed too flaky to be of concern, and
hence they tend to persist unaddressed.

Even if you cannot nail down a clear causal chain, entropy-inducing bugs
can be dangerous and are well worth fixing. All bugs introduce amounts of
something like entropy into systems, in the sense that they are slight depar-
tures from the correct behavior, and those small amounts of disturbance
quickly add up—especially if abetted by a wily attacker. By analogy with the
Second Law of Thermodynamics, entropy inevitably builds up within a closed
system, raising the risk of harm due to bugs of this type becoming exploitable
at some point.

Vigilance
I love hiking, and the trails in my area are often muddy and slippery, with
exposed roots and rocks, so slipping and falling is a constant threat. With
practice and experience, slips have become rare, but what’s uncanny is that
in particularly treacherous spots, where I focus, I never slip. While occasion-
ally I do still fall, rather than due to any obstacle, it’s usually on an easier
part of the trail, because I just wasn’t paying attention. The point here is that
with awareness, difficult challenges can be mastered; and conversely, inat-
tention easily undermines you, even when the going is easy.

Software developers face just such a challenge: without awareness of
potential security pitfalls and sustained focus, it’s easy to unwittingly fall
into them. Developers instinctively write code to work for the normal use
case, but attackers often try the unexpected in hopes of finding a flaw that
might lead to an exploit. Maintaining vigilance to anticipate the full range
of possible inputs and combinations of events is critical, as described previ-
ously in terms of vulnerability chains and entropy, to delivering secure code.

The following section and chapters present a broad representative survey
of the vulnerabilities that plague modern software, with “toy” code examples
used to show what implementation vulnerabilities look like. As Marvin
Minsky, one of the artificial intelligence legends at MIT, whom I was fortu-
nate to meet during my time there, points out, “In science one can learn the
most by studying the least.” In this context, that means that simplified code
examples aid explanation by making it easy to focus on the critical flaw. In
practice, vulnerabilities are woven into the fabric of a great profusion of code,

Secure Programming 137

along with a lot of other things that are important to the task but irrelevant
to the security implications, and are not so easily recognized. If you want to
look at real-world code examples, browse the bug database of any open source
software project—they are all sure to have security bugs.

Vigilance requires discipline at first, but with practice it becomes sec-
ond nature when you know what to watch out for. Remember that if your
vigilance pays off and you do manage to fend off a would-be attacker, you
probably will never know it—so celebrate each small victory, as you avert
hypothetical future attacks with every fix.

Case Study: GotoFail
Some vulnerabilities are nasty bugs that don’t follow any pattern, somehow
slip past testing, and get released. One property of vulnerabilities that makes
this more likely to happen than you might expect is that the code often works
for typical usage, and only displays harmful behavior when stressed by an
intentional attack. In 2014, Apple quietly released a set of critical security
patches for most of its products, declining to explain the problem for “the
protection of our customers.” It didn’t take long for the world to learn that
the vulnerability was due to an apparent editing slip-up that effectively under-
mined a critical security protection. It’s easy to understand what happened by
examining a short excerpt of the actual code. Let’s take a look.

One-Line Vulnerability
To set the stage, the code in question runs during secure connection estab-
lishment. It checks that everything is working properly in order to secure
subsequent communications. The security of the Secure Sockets Layer (SSL)
protocol rests on checking that the server signs the negotiated key, authenti-
cated according to the server’s digital certificate. More precisely, the server
signs the hash of several pieces of data that the ephemeral key derives from.
Chapter 11 covers the basics of SSL, but you can follow the code behind this
vulnerability without knowing any of those details. Here is the C++ code:

vulnerable code /*
 * Copyright (c) 1999-2001,2005-2012 Apple Inc. All Rights Reserved.
 *
 * @APPLE_LICENSE_HEADER_START@
 *
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the ‘License’). You may not use this file except in
 * compliance with the License. Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this
 * file.
 *
 * The Original Code and all software distributed under the License are
 * distributed on an ‘AS IS’ basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,

138 Chapter 8

 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 *
 * @APPLE_LICENSE_HEADER_END@
 */
--snip--
 if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
--snip--

fail:
 SSLFreeBuffer(&signedHashes);
 SSLFreeBuffer(&hashCtx);
 return err;

The three calls to SSLHashSHA1.update feed their respective chunks of data
into the hash function and check for the nonzero return error case. The
details of the hash computation are beside the point for our purposes, and not
shown; just know that this computation is critical to security, since its output
must match an expected value in order to authenticate the communication.

At the bottom of the function, the code frees up a couple of buffers,
and then returns the value of err: zero for success, or a nonzero error code.

The intended pattern in the code is clear: keep checking for nonzero
return values indicating error, or sail through with zeros if everything is
fine, and then return that. You probably already see the error—the dupli-
cated goto fail line. Notwithstanding the suggestive indentation, this
unconditionally shunts execution down to the fail label, skipping the rest
of the hash computation and skipping the hash check altogether. Since the
last assignment to err before the extra jump was a zero value, this function
suddenly unconditionally approves of everything. Presumably this bug went
undetected because valid secure connections still worked: the code didn’t
check the hash, but if it had, they all would have passed anyway.

Beware of Footguns
GotoFail is a great argument for the wisdom of structuring code by inden-
tation, as languages such as Python do. The C language enables a kind of
footgun (a feature that makes it easy to shoot yourself in the foot) by instead
determining a program’s structure syntactically. This allows indentation
that, by standard code style conventions, is potentially misleading because it
implies different semantics, even though it’s completely ignored by the com-
piler. When looking at this code:

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
 goto fail;

Secure Programming 139

programmers might easily see the following (unless they are careful and
mentally compiling the code):

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0) {
 goto fail;
 goto fail;
}

Meanwhile, the compiler unambiguously sees:

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0) {
 goto fail;
}
goto fail;

A simple editing error happened to be easily missed, and also dramati-
cally changed the code, right at the heart of a critical security check. That’s
the epitome of a serious vulnerability.

Beware of other such footguns in languages, APIs, and other program-
ming tools and data formats. You’ll see many examples in the following
chapters, but another one from C syntax that I’ll mention here is writing
if (x = 8) instead of if (x == 8). The former assigns 8 to x, unconditionally
executing the then-clause, since that value is nonzero; the latter compares
x to 8, executing the then-clause only if it’s true—quite different, indeed.
While some would argue against it stylistically, I like to write such C state-
ments as if (8 == x) because if I forget to double the equal sign, it is a syn-
tax error and the compiler will catch it.

Compiler warnings can help flag this sort of slip-up. The GCC com-
piler’s -Wmisleading-indentation warning option is intended for just the sort
of problem that caused the GotoFail vulnerability. Some warnings indi-
cate potential trouble in subtler ways. An unused variable warning seems
benign enough, but say there are two variables with similar names and
you accidentally typed the wrong one in an important access test, result-
ing in the warning and also the use of the wrong data for a crucial test.
While warnings are by no means reliable indicators of all vulnerabilities,
they are easy to check and just might save the day.

Lessons from GotoFail
There are several important lessons we can learn from GotoFail:

•	 Small slips in critical code can have a devastating impact on security.

•	 The vulnerable code still works correctly in the expected case.

•	 It’s arguably more important for security to test that code like this
rejects invalid cases than that it passes the normal legit uses.

•	 Code reviews are an important check against bugs introduced by over-
sight. It’s hard to imagine how a careful reviewer looking at a code diff
could miss this.

140 Chapter 8

This vulnerability suggests a number of countermeasures that could
have prevented it from occurring. Some of these are specific to this particu-
lar bug, but even those should suggest the sorts of precautions you could
apply elsewhere to save yourself the pain of creating flawed code. Useful
countermeasures include:

•	 Better testing, of course. At a minimum, there should have been a test
case for each of those ifs to ensure that all necessary checks worked.

•	 Watch out for unreachable code (many compilers have options to flag
this). In the case of GotoFail, this could have tipped the programmers
off to the introduction of the vulnerability.

•	 Make code as explicit as possible, for example by using parentheses and
curly braces liberally, even where they could be omitted.

•	 Use source code analysis tools such as “linters,” which can improve code
quality, and in the process may flag some potential vulnerabilities for
preemptive fixing.

•	 Consider ad hoc source code filters to detect suspect patterns such as,
in this case, duplicated source code lines, or any other recurrent errors.

•	 Measure and require full test coverage, especially for security-critical code.

These are just some of the basic techniques you can use to spot bugs
that could undermine security. As you encounter new classes of bugs, con-
sider how tools might be applied to systemically avoid repeated occurrences
in the future—doing so should reduce vulnerabilities in the long term.

Coding Vulnerabilities
All happy families are alike; each unhappy family is unhappy in its own way.

—Leo Tolstoy

Sadly, the famous opening line from Leo Tolstoy’s novel Anna Karenina
applies all too well to software: the prospects for new kinds of bugs are
endless, and attempting to compile a complete list of all potential software
vulnerabilities would be a fool’s errand. Categories are useful, and we will
cover many of them, but do not confuse them with a complete taxonomy
covering the full range of possibilities.

This book by no means presents an exhaustive list of all potential flaws,
but it does cover a representative swath of many of the most common cat-
egories. This basic survey should provide you with a good start, and with
experience you will begin to intuit additional issues and learn how to safely
steer clear of them.

Atomicity
Many of the worst coding “war stories” that I have heard involve multi-
threading or distributed processes sporadically interacting in bizarre ways

Secure Programming 141

due to an unexpected sequence of events. Vulnerabilities often stem from
these same conditions, and the only saving grace is that the sensitive timing
required may make the exploit too unreliable for the perpetrators—though
you should not expect this to easily dissuade them from trying anyway.

Even if your code is single threaded and well behaved, it’s almost always
running in a machine with many other active processes, so when you inter-
act with the filesystem, or any common resource, you are potentially dealing
with race conditions involving code you know nothing about. Atomicity in
software describes operations that are guaranteed to effectively be com-
pleted as a single step. This is an important defensive weapon in such cases
in order to prevent surprises that potentially can lead to vulnerabilities.

To explain what can happen, consider a simple example of copying sensi-
tive data to a temporary file. The deprecated Python tempfile.mktemp function
returns the name of a temporary file guaranteed not to exist, intended for
use by applications as the name of a file they create and then use. Don’t use it:
use the new tempfile.NamedTemporaryFile instead. Here’s why. Between the time
that tempfile.mktemp returns the temporary file path and the time at which
your code actually opens the file, another process may have had a chance to
interfere. If the other process can guess the name generated next, it can cre-
ate the file first and (among many possibilities) inject malicious data into the
temporary file. The clean solution that the new function provides is to use an
atomic operation to create and open the temporary file, without the possibility
of anything intervening in the process.

Timing Attacks
A timing attack is a side-channel attack that infers information from the time
it takes to do an operation, indirectly learning about some state of the sys-
tem that should be private. Differences in timing can sometimes provide a
hint—that is, they leak a little bit of protected information—benefiting an
attacker. As a simple example, consider the task of trying to guess a secret
number between 1 and 100; if it is known that the time to answer “No” is
proportional to how far off the guess is, this quirk helps the guesser home
in on the correct answer much more quickly.

Meltdown and Spectre are timing attacks on modern processors that
operate below the software level, but the principles are directly applicable.
These attacks exploit quirks of speculative execution, where the processor
races forward to precompute results while tentatively relaxing various
checks in the interest of speed. When this includes operations that are
normally disallowed, the processor detects this eventually and cancels the
results before they become final. This complicated speculation all works
according to the processor design and is essential to achieve the incred-
ible speeds we enjoy. However, during the speculative, rules-are-suspended
execution, whenever the computation accesses memory, this has the side
effect of causing it to be cached. When the speculative execution is can-
celed, the cache is unaffected, and that side effect represents a poten-
tial hint, which these attacks utilize to infer what happened during the

142 Chapter 8

speculative execution. Specifically, the attack code can deduce what hap-
pened during the canceled speculative execution by checking the state of
the cache. Memory caching speeds up execution but is not directly exposed
to software; however, code can tell whether or not the memory location con-
tents were in the cache by measuring memory access time, because cached
memory is way faster. This is a complicated attack on a complex processor
architecture, but for our purposes the point is that when timing correlates to
protected information state, it can be exploitable as a leak.

For a simpler, purely software-based example of a timing attack, sup-
pose you want to determine whether or not your friend (or frenemy?)
has an account with a particular online service, but you don’t know their
account name. The “forgot password” option asks users for their account
name and phone number in order to send a “reminder.” However, suppose
that the implementation first looks up the phone number in a database,
and if found, proceeds to look up the associated account name to see if it
matches the input. Say that each lookup takes a few seconds, so the time
delay is noticeable to the user. First, you try a few random account names
(say, by mashing the keyboard) and phone numbers that likely won’t match
actual users, and learn that it reliably takes about three seconds to get a “No
such account” response. Next, you sign up with your own phone number
and try the “forgot password” feature using your number with one of the
random unused account names. Now you observe that in this case it takes
five seconds, or almost twice as long, to get the response.

Armed with these facts, you can try your friend’s phone number with
an unused account name: if it takes five seconds to get a reply, then you
know that their phone number is in the database, and if it takes three
seconds, then it isn’t. By observing the timing alone, you can infer whether
a given phone number is in the database. If membership might reveal sensi-
tive private information, such as in a forum for patients with a certain medi-
cal condition, such timing attacks could enable a harmful disclosure.

Timing differences naturally occur due to software when there is a
sequence of slow operations (think if...if...if...if...), and there is valu-
able information to be inferred from knowing how far down the sequence
of events the execution proceeded. Precisely how much or little timing dif-
ference is required to leak information depends on many factors. In the
online account checking example, it takes a few seconds to represent a clear
signal, given the normal delays the web imposes on access. By contrast,
when exploiting Meltdown or Spectre using code running on the same
machine, sub-millisecond time differences may be measurable and also
significant.

The best mitigation option is to reduce the time differential to an
acceptable—that is, imperceptible—level. To prevent the presence of a
phone number in the database from leaking, changing the code to use
a single database lookup to handle both cases would be sufficient. When
there is an inherent timing difference and the timing side channel could
result in a serious disclosure, about all you can do to mitigate the risk is
introduce an artificial delay to blur the timing signal.

Secure Programming 143

Serialization
Serialization refers to the common technique of converting data objects to
a byte stream, a little like a Star Trek transporter does, to then “beam” them
through time and space. Storing or transmitting the resulting bytes allows
you to subsequently reconstitute equivalent data objects through deserial-
ization. This ability to “dehydrate” objects and then “rehydrate” them is
handy for object-oriented programming, but the technique is inherently
a security risk if there is any possibility of tampering in between. Not only
can an attacker cause critical data values to morph, but by constructing
invalid byte sequences, they can even cause the deserialization code to per-
form harmful operations. Since deserialization is only safe when used with
trusted serialized data, this is an example of the untrusted input problem.

The problem is not that these libraries are poorly built, but that they
require trust to be able to perform the operations necessary to construct
arbitrary objects in order to do their job. Deserialization is, in effect, an
interpreter that does whatever the serialized bytes of its input tell it to do,
so its use with untrusted data is never a good idea. For example, Python’s
deserialization operation (called “unpickling”) is easily tricked into execut-
ing arbitrary code by embedding a malicious byte sequence in the data to
be unpickled. Unless serialized byte data can be securely stored and trans-
mitted without the possibility of tampering, such as with a MAC or digital
signature (as discussed in Chapter 5), it’s best avoided completely.

The Usual Suspects
The greatest trick the devil ever pulled was convincing the world he didn’t exist.

—Charles Baudelaire

The next several chapters cover many of the “usual suspects” that keep crop-
ping up in code as vulnerabilities. In this chapter we considered GotoFail and
issues with atomicity, timing attacks, and serialization. Here is a preview of
the topics we’ll explore next:

•	 Fixed-width integer vulnerabilities

•	 Floating-point precision vulnerabilities

•	 Buffer overflow and other memory management issues

•	 Input validation

•	 Character string mishandling

•	 Injection attacks

•	 Web security

Many of these issues will seem obvious, yet all continue to recur largely
unabated as root causes of software vulnerabilities, with no end in sight.
It’s important to learn from past failings, because many of these vulner-
ability classes have existed for decades. Yet, it would be a mistake to take

144 Chapter 8

a backward-looking approach as if all possible security bugs were cata-
loged exhaustively. No book can forewarn of all possible pitfalls, but you
can study these examples to get an idea of the deeper patterns and lessons
behind them.

9
L O W - L E V E L C O D I N G F L A W S

Low-level programming is good for the programmer’s soul.
—John Carmack

The next few chapters will survey a multi-
tude of coding pitfalls programmers need to

be aware of for security reasons, starting with
the classics. This chapter covers basic flaws that

are common to code that works closer to the machine
level. The issues discussed here arise when data exceeds
the capacity of either fixed-size numbers or allocated
memory buffers. Modern languages tend to provide
higher-level abstractions that insulate code from these
perils, but programmers working in these safer languages will still benefit
from understanding these flaws, if only to fully appreciate all that’s being
done for them, and why it matters.

Languages such as C and C++ that expose these low-level capabilities
remain dominant in many software niches, so the potential threats they
pose are by no means theoretical. Modern languages such as Python usually

146 Chapter 9

abstract away the hardware enough that the issues described in this chapter
don’t occur, but the lure of approaching the hardware level for maximum
efficiency remains powerful. A few popular languages offer programmers
their choice of both worlds. In addition to type-safe object libraries, the
Java and C# base types include fixed-width integers, and they have “unsafe”
modes that remove many of the safeguards normally provided. Python’s
float type, as explained in “Floating-Point Precision Vulnerabilities” on
page 149, relies on hardware support and accrues its limitations, which
must be coped with.

Readers who never use languages exposing low-level functionality may
be tempted to skip this chapter, and can do so without losing the overall
narrative of the book. However, I recommend reading through it anyway, as
it’s best to understand what protections the languages and libraries you use
do or do not provide, and to fully appreciate all that’s being done for you.

Programming closer to the hardware level, if done well, is extremely
powerful, but comes at a cost of increased effort and fragility. In this chap-
ter, we focus on the most common classes of vulnerability specific to coding
with lower-level abstractions.

Since this chapter is all about bugs that arise from issues where code is
near or at the hardware level, you must understand that the exact results
of many of these operations will vary across platforms and languages. I’ve
designed the examples to be as specific as possible, but implementation dif-
ferences may cause varying results—and it’s exactly because computations
can vary unpredictably that these issues are easily overlooked and can have
an impact on security. The details will vary depending on your hardware,
compiler, and other factors, but the concepts introduced in this chapter do
apply generally.

Arithmetic Vulnerabilities
Different programming languages variously define their arithmetic opera-
tors either mathematically or according to the processor’s corresponding
instructions, which, as we shall see shortly, are not quite the same. By
low-level, I mean features of programming languages that depend on
machine instructions, which requires dealing with the hardware’s quirks
and limitations.

Code is full of integer arithmetic. It’s used not only for computing
numerical values but also for string comparison, indexed access to data
structures, and more. Because the hardware instructions are so much faster
and easier to use than software abstractions that handle a larger range of
values, they are hard to resist, but with that convenience and speed comes
the risk of overflow. Overflow happens when the result of a computation
exceeds the capacity of a fixed-width integer, leading to unexpected results,
which can create a vulnerability.

Floating-point arithmetic has more range than integer arithmetic, but
its limited precision can cause unexpected results, too. Even floating-point
numbers have limits (for single precision, on the order of 1038), but when

Low-Level Coding Flaws 147

the limit is exceeded, they have the nice property of resulting in a specific
value that denotes infinity.

Readers interested in an in-depth treatment of the implementation of
arithmetic instructions down to the hardware level can learn more from
The Secret Life of Programs by Jonathan E. Steinhart (No Starch Press, 2019).

Fixed-Width Integer Vulnerabilities
At my first full-time job, I wrote device drivers in assembly machine language
on minicomputers. Though laughably underpowered by modern standards,
minicomputers provided a great opportunity to learn how hardware works,
because you could look at the circuit board and see every connection and
every chip (which had a limited number of logic gates inside). I could see
the registers connected to the arithmetic logic unit (which could perform
addition, subtraction, and Boolean operations only) and memory, so I knew
exactly how the computer worked. By contrast, modern processors are fabu-
lously complicated, containing billions of logic gates, well beyond human
understanding by casual observation.

Today, most programmers learn and use higher-level languages that
shield them from machine language and the intricacies of CPU architecture.
Fixed-width integers are the most basic building blocks of many languages,
including Java and C/C++, and if any computation exceeds their limited
range, you get the wrong result silently.

Modern processors often have either a 32- or 64-bit architecture, but we
can understand how they work by discussing smaller sizes. Let’s look at an
example of overflow based on unsigned 16-bit integers. A 16-bit integer can
represent any value from 0 to 65,535 (216 – 1). For example, multiplying
300 by 300 should give us 90,000, but that number is beyond the range of
the fixed-width integer we are using. So, due to overflow, the result we actu-
ally get is 24,464 (65,536 less than the expected result).

Some people think about overflow mathematically as modular arithmetic,
or the remainder of division (for instance, the previous calculation gave us the
remainder of dividing 90,000 by 65,536). Others think of it in terms of binary
or hexadecimal truncation, or in terms of the hardware implementation—but
if none of these make sense to you, just remember that the results for over-
sized values will not be what you expect. Since mitigations for overflow will
attempt to avoid it in the first place, the precise resulting value is not usu-
ally important.

What’s important here is anticipating the foibles of binary arithmetic,
rather than knowing exactly what value results from a calculation—which,
depending on the language and compiler, may not be well defined (that is, the
language specification refuses to guarantee any particular value). Operations
technically specified as “not defined” in a language may seem predictable, but
you are on thin ice if the language specification doesn’t offer a guarantee. The
bottom line for security is that it’s important to know the language specifica-
tion and avoid computations that are potentially undefined. Do not get clever
and experiment to find a tricky way to detect the undefined result, because
with different hardware or a new version of the compiler, your code might stop
working.

146 Chapter 9

abstract away the hardware enough that the issues described in this chapter
don’t occur, but the lure of approaching the hardware level for maximum
efficiency remains powerful. A few popular languages offer programmers
their choice of both worlds. In addition to type-safe object libraries, the
Java and C# base types include fixed-width integers, and they have “unsafe”
modes that remove many of the safeguards normally provided. Python’s
float type, as explained in “Floating-Point Precision Vulnerabilities” on
page 149, relies on hardware support and accrues its limitations, which
must be coped with.

Readers who never use languages exposing low-level functionality may
be tempted to skip this chapter, and can do so without losing the overall
narrative of the book. However, I recommend reading through it anyway, as
it’s best to understand what protections the languages and libraries you use
do or do not provide, and to fully appreciate all that’s being done for you.

Programming closer to the hardware level, if done well, is extremely
powerful, but comes at a cost of increased effort and fragility. In this chap-
ter, we focus on the most common classes of vulnerability specific to coding
with lower-level abstractions.

Since this chapter is all about bugs that arise from issues where code is
near or at the hardware level, you must understand that the exact results
of many of these operations will vary across platforms and languages. I’ve
designed the examples to be as specific as possible, but implementation dif-
ferences may cause varying results—and it’s exactly because computations
can vary unpredictably that these issues are easily overlooked and can have
an impact on security. The details will vary depending on your hardware,
compiler, and other factors, but the concepts introduced in this chapter do
apply generally.

Arithmetic Vulnerabilities
Different programming languages variously define their arithmetic opera-
tors either mathematically or according to the processor’s corresponding
instructions, which, as we shall see shortly, are not quite the same. By
low-level, I mean features of programming languages that depend on
machine instructions, which requires dealing with the hardware’s quirks
and limitations.

Code is full of integer arithmetic. It’s used not only for computing
numerical values but also for string comparison, indexed access to data
structures, and more. Because the hardware instructions are so much faster
and easier to use than software abstractions that handle a larger range of
values, they are hard to resist, but with that convenience and speed comes
the risk of overflow. Overflow happens when the result of a computation
exceeds the capacity of a fixed-width integer, leading to unexpected results,
which can create a vulnerability.

Floating-point arithmetic has more range than integer arithmetic, but
its limited precision can cause unexpected results, too. Even floating-point
numbers have limits (for single precision, on the order of 1038), but when

Low-Level Coding Flaws 147

the limit is exceeded, they have the nice property of resulting in a specific
value that denotes infinity.

Readers interested in an in-depth treatment of the implementation of
arithmetic instructions down to the hardware level can learn more from
The Secret Life of Programs by Jonathan E. Steinhart (No Starch Press, 2019).

Fixed-Width Integer Vulnerabilities
At my first full-time job, I wrote device drivers in assembly machine language
on minicomputers. Though laughably underpowered by modern standards,
minicomputers provided a great opportunity to learn how hardware works,
because you could look at the circuit board and see every connection and
every chip (which had a limited number of logic gates inside). I could see
the registers connected to the arithmetic logic unit (which could perform
addition, subtraction, and Boolean operations only) and memory, so I knew
exactly how the computer worked. By contrast, modern processors are fabu-
lously complicated, containing billions of logic gates, well beyond human
understanding by casual observation.

Today, most programmers learn and use higher-level languages that
shield them from machine language and the intricacies of CPU architecture.
Fixed-width integers are the most basic building blocks of many languages,
including Java and C/C++, and if any computation exceeds their limited
range, you get the wrong result silently.

Modern processors often have either a 32- or 64-bit architecture, but we
can understand how they work by discussing smaller sizes. Let’s look at an
example of overflow based on unsigned 16-bit integers. A 16-bit integer can
represent any value from 0 to 65,535 (216 – 1). For example, multiplying
300 by 300 should dgive us 90,000, but that number is beyond the range of
the fixed-width integer we are using. So, due to overflow, the result we actu-
ally get is 24,464 (65,536 less than the expected result).

Some people think about overflow mathematically as modular arithmetic,
or the remainder of division (for instance, the previous calculation gave us the
remainder of dividing 90,000 by 65,536). Others think of it in terms of binary
or hexadecimal truncation, or in terms of the hardware implementation—but
if none of these make sense to you, just remember that the results for over-
sized values will not be what you expect. Since mitigations for overflow will
attempt to avoid it in the first place, the precise resulting value is not usu-
ally important.

What’s important here is anticipating the foibles of binary arithmetic,
rather than knowing exactly what value results from a calculation—which,
depending on the language and compiler, may not be well defined (that is, the
language specification refuses to guarantee any particular value). Operations
technically specified as “not defined” in a language may seem predictable, but
you are on thin ice if the language specification doesn’t offer a guarantee. The
bottom line for security is that it’s important to know the language specifica-
tion and avoid computations that are potentially undefined. Do not get clever
and experiment to find a tricky way to detect the undefined result, because
with different hardware or a new version of the compiler, your code might stop
working.

148 Chapter 9

A QUICK BIN A RY M AT H R EF R ESHER

USING 16 -BIT A RCHIT EC T UR E

For readers less familiar with binary arithmetic, here is a graphical breakdown
of the 300 × 300 computation mentioned in the preceding text. Just as decimal
numbers are written with the digits 0 through 9, binary numbers are written with
the digits 0 and 1. And just as each digit further left in a decimal number repre-
sents another tenfold larger position, in binary, the digits double (1, 2, 4, 8, 16,
32, 64, and so on) as they extend to the left. Figure 9-1 shows the 16-bit binary
representation of the decimal number 300, with the power-of-two binary digit
positions indicated by decimal numbers 0 through 15.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(28 + 25 + 23 + 22) = 300

0000000100101100 = 300

Figure 9-1: An example of a binary number

The binary representation is the sum of values shown as powers of two that
have a 1 in the corresponding binary digit position. That is, 300 is 28 + 25 + 23
+ 22 (256 + 32 + 8 + 4), or binary 100101100.

Now let’s see how to multiply 300 times itself in binary (Figure 9-2).

x

15 1413 121110 9 8 7 6 5 4 3 2 1 0

0000000100101100
0000000100101100
00000100101100
0000100101100
00100101100
00101100
0101111110010000

00
000

00000
00000001

Figure 9-2: An example of multiplication in binary

Just as you do with decimal multiplication on paper, the multiplicand is
repeatedly added and shifted to the position corresponding to a digit of the multi-
plier. Working from the right, we shift the first instance two digits left because the
first 1 is two positions from the right, and so on, with each copy aligned on the
right below one of the 1s in the multiplier. The grayed-out numbers extending on
the left are beyond the capacity of a 16-bit register and therefore truncated—this
is where overflow occurs. Then we just add up the parts, in binary of course, to
get the result. The value 2 is 10 (21) in binary, so position 5 is the first carry (1 +
1 + 0 = 10): we put down a 0 and carry the 1. That’s how multiplication of fixed-
width integers works, and that’s how values get silently truncated.

Low-Level Coding Flaws 149

If you miscompute an arithmetic result your code may break in many
ways, and the effects often snowball into a cascade of dysfunction, culminat-
ing in a crash or blue screen. Common examples of vulnerabilities due to
integer overflow include buffer overflows (discussed in “Buffer Overflow”
on page 157), incorrect comparisons of values, situations in which you give
a credit instead of charging for a sale, and so on.

It’s best to mitigate these issues before any computation that could go out
of bounds is performed, while all numbers are still within range. The easy
way to get it right is to use an integer size that is larger than the largest allow-
able value, preceded by checks ensuring that invalid values never sneak in.
For example, to compute 300 × 300, as mentioned earlier, use 32-bit arithme-
tic, which is capable of handling the product of any 16-bit values. If you must
convert the result back to 16-bit, protect it with a 32-bit comparison to ensure
that it is in range.

Here is what multiplying two 16-bit unsigned integers into a 32-bit
result looks like in C. I prefer to use an extra set of parentheses around the
casts for clarity, even though operator precedence binds the casts ahead of
the multiplication (I’ll provide a more comprehensive example later in this
chapter for a more realistic look at how these vulnerabilities slip in):

uint32_t simple16(uint16_t a, uint16_t b) {
 return ((uint32_t)a) * ((uint32_t)b);
}

The fact that fixed-width integers are subject to silent overflow is not
difficult to understand, yet in practice these flaws continue to plague even
experienced coders. Part of the problem is the ubiquity of integer math in
programming—including its implicit usages, such as pointer arithmetic
and array indexing, where the same mitigations must be applied. Another
challenge is the necessary rigor of always keeping in mind not just what the
reasonable range of values might be for every variable, but also what pos-
sible ranges of values the code could encounter, given the manipulations of
a wily attacker.

Many times when programming, it feels like all we are doing is manipulat-
ing numbers, yet we must not lose sight of the fragility of these calculations.

Floating-Point Precision Vulnerabilities
Floating-point numbers are, in many ways, more robust and less quirky than
fixed-width integers. For our purposes, you can think of a floating-point
number as a sign bit (for positive or negative numbers), a fraction of a fixed
precision, and an exponent of two that the fraction is multiplied by. The
popular IEEE 754 double-precision specification provides 15 decimal digits
(53 binary digits) of precision, and if you exceed its extremely large bounds,
you get a signed infinity—or NaN (not a number)—for a few operations instead
of truncation to wild values, as you do with fixed-width integers.

Since 15 digits of precision is enough to tally the federal budget of the
United States (currently several trillion dollars) in pennies, the risk of loss
of precision is rarely a problem. Nonetheless, it does happen silently in the

150 Chapter 9

low-order digits, which can be surprising because the representation of
floating-point numbers is binary rather than decimal. For example, since
decimal fractions do not necessarily have exact representations in binary,
0.1 + 0.2 will yield 0.30000000000000004—a value that is not equal to 0.3.
These kinds of messy results can happen because just as a fraction such as
1/7 is a repeating decimal in base 10, 1/10 repeats infinitely in base 2 (it’s
0.00011001100. . . with 1100 continuing forever), so there will be error in
the lowest bits. Since these errors are introduced in the low-order bits, this
is called underflow.

Even though underflow discrepancies are tiny proportionally, they can
still produce unintuitive results when values are of different magnitudes.
Consider the following code written in JavaScript, a language where all
numbers are floating point:

vulnerable code var a = 10000000000000000
var b = 2
var c = 1
console.log(((a+b)-c)-a)

Mathematically, the result of the expression in the final line should equal
b-c, since the value a is first added and then subtracted. (The console.log func-
tion is a handy way to output the value of an expression.) But in fact, the value
of a is large enough that adding or subtracting much smaller values has no
effect, given the limited precision available, so that when the value a is finally
subtracted, the result is zero.

When calculations such as the one in this example are approximate,
the error is harmless, but when you need full precision, or when values
of differing orders of magnitude go into the computation, then a good
coder needs to be cautious. Vulnerabilities arise when such discrepancies
potentially impact a security-critical decision in the code. Underflow errors
may be a problem for computations such as checksums or for double-entry
accounting, where exact results are essential.

For many floating-point computations, even without dramatic underflow
like in the example we just showed, small amounts of error accumulate in the
lower bits when the values do not have an exact representation. It’s almost
always unwise to compare floating-point values for equality (or inequality),
since this operation cannot tolerate even tiny differences in computed values.
So, instead of (x == y), compare the values within a small range (x > y - delta
&& x < y + delta) for a value of delta suitable for the application. Python pro-
vides the math.isclose helper function that does a slightly more sophisticated
version of this test.

When you must have high precision, consider using the super-high-
precision floating-point representations (IEEE 754 defines 128- and 256-bit
formats). Depending on the requirements of the computation, arbitrary-
precision decimal or rational number representations may be the best
choice. Libraries often provide this functionality for languages that do
not include native support.

Low-Level Coding Flaws 151

Example: Floating-Point Underflow
Floating-point underflow is easy to underestimate, but lost precision has
the potential to be devastating. Here is a simple example in Python of an
online ordering system’s business logic that uses floating-point values. The
following code’s job is to check that purchase orders are fully paid, and if
so, approve shipment of the product:

vulnerable code from collections import namedtuple
PurchaseOrder = namedtuple('PurchaseOrder', 'id, date, items')
LineItem = namedtuple('LineItem', 'kind, detail, amount, quantity',
 defaults=(1,))
def validorder(po):
 """Returns an error text if the purchase order (po) is invalid,
 or list of products to ship if valid [(quantity, SKU), ...].
 """
 products = []
 net = 0
 for item in po.items:
 if item.kind == 'payment':
 net += item.amount
 elif item.kind == 'product':
 products.append(item)
 net -= item.amount * item.quantity
 else:
 return "Invalid LineItem type: %s" % item.kind
 if net != 0:
 return "Payment imbalance: $%0.2f." % net
 return products

Purchase orders consist of line items that are either product or pay-
ment details. The total of payments, minus the total cost of products
ordered, should be zero. The payments are already validated beforehand,
and let me be explicit about one detail of that process: if the customer
immediately cancels a charge in full, both the credit and debit appear as
line items without querying the credit card processor, which incurs a fee.
Let’s also posit that the prices listed for items are correct.

Focusing on the floating-point math, see how for payment line items
the amount is added to net, and for products the amount times quantity is
subtracted (these invocations are written as Python doctests, where the >>>
lines are code to run followed by the expected values returned):

>>> tv = LineItem(kind='product', detail='BigTV', amount=10000.00)
>>> paid = LineItem(kind='payment', detail='CC#12345', amount=10000.00)
>>> goodPO = PurchaseOrder(id='777', date='6/16/2022', items=[tv, paid])
>>> validorder(goodPO)
[LineItem(kind='product', detail='BigTV', amount=10000.0, quantity=1)]
>>> unpaidPO = PurchaseOrder(id='888', date='6/16/2022', items=[tv])
>>> validorder(unpaidPO)
'Payment imbalance: $-10000.00.'

152 Chapter 9

The code works as expected, approving the first transaction shown for a
fully paid TV and rejecting the order that doesn’t note a payment.

Now it’s time to break this code and “steal” some TVs. If you already
see the vulnerability, it’s a great exercise to try and deceive the function
yourself. Here is how I got 1,000 TVs for free, with explanation following
the code:

>>> fake1 = LineItem(kind='payment', detail='FAKE', amount=1e30)
>>> fake2 = LineItem(kind='payment', detail='FAKE', amount=-1e30)
>>> tv = LineItem(kind='product', detail='BigTV', amount=10000.00, \
 quantity = 1000)
>>> nonpayment = [fake1, tv, fake2]
>>> fraudPO = PurchaseOrder(id='999', date='6/16/2022', items=nonpayment)
>>> validorder(fraudPO)
[LineItem(kind='product', detail='BigTV', amount=10000.0, quantity=1000)]

The trick here is in the fake payment of the outrageous amount 1e30, or
1030, followed by the immediate reversal of the charge. These bogus num-
bers get past the accounting check because they sum to zero (1030 – 1030).
Note that between the canceling debit and the credit is a line item that
orders 1,000 TVs. Because the first number is so huge, when the cost of the
TVs is subtracted, it underflows completely; then, when the credit (a nega-
tive number) is added in, the result is zero. Had the credit immediately fol-
lowed the payment followed by the line item for the TVs, the result would
be different and an error would be correctly flagged.

To give you a more accurate feel for underflow—and more importantly, to
show how to gauge the range of safe values to make the code secure—we can
drill in a little deeper. The choice of 1030 for this attack was arbitrary, and this
trick works with numbers as low as about 1024, but not 1023. The cost of 1,000
TVs at $10,000 each is $10,000,000, or 107. So with a fake charge of 1023, the
value 107 starts to change the computation a little, corresponding to about 16
digits of precision (23 – 7). The previously mentioned 15 digits of precision
was a safe rule-of-thumb approximation (the binary precision corresponds to
15.95 decimal digits) that’s useful because most of us think naturally in base
10, but since the floating-point representation is actually binary, it can differ
by a few bits.

With that reasoning in mind, let’s fix this vulnerability. If we want to
work in floating point, then we need to constrain the range of numbers.
Assuming a minimum product cost of $0.01 (10–2) and 15 digits of preci-
sion, we can set a maximum payment amount of $1013 (15 – 2), or $10 tril-
lion. This upper limit avoids underflow, though in practice, a smaller limit
corresponding to a realistic maximum order amount would be best.

Using an arbitrary-precision number type avoids underflow: in Python,
that could be the native integer type, or fractions.Fraction. Higher-precision
floating-point computation will prevent this particular attack but would
still be susceptible to underflow with more extreme values. Since Python is
dynamically typed, when the code is called with values of these types, the
attack fails. But even if we had written this code with one of these arbitrary

Low-Level Coding Flaws 153

precision types and considered it safe, if the attacker managed to sneak in a
float somehow, the vulnerability would reappear. That’s why doing a range
check—or, if the caller cannot be trusted to present the expected type, con-
verting incoming values to safe types before computing—is important.

Example: Integer Overflow
Fixed-width integer overflow vulnerabilities are often utterly obvious in hind-
sight, and this class of bugs has been well known for many years. Yet experi-
enced coders repeatedly fall into the trap, whether because they don’t believe
the overflow can happen, because they misjudge it as harmless, or because
they don’t consider it at all. The following example shows the vulnerability
in a larger computation to give you an idea of how these bugs can easily slip
in. In practice, vulnerable computations tend to be more involved, and the
values of variables harder to anticipate, but for explanatory purposes, this
simple code will make it easy to see what’s going on.

Consider this straightforward payroll computation formula: the num-
ber of hours worked times the rate of pay gives the total dollars of pay. This
simple calculation will be done in fractional hours and dollars, which gives
us full precision. On the flip side, with rounding, the details get a little com-
plicated, and as will be seen, integer overflow easily happens.

Using 32-bit integers for exact precision, we compute dollar values in
cents (units of $0.01), and hours in thousandths (units of 0.001 hours), so
the numbers do get big. But as the highest possible 32-bit integer value,
UINT32_MAX, is over 4 billion (232 – 1), we assume we’ll be safe by the following
logic: company policy limits paid work to 100 hours per week (100,000 in
thousandths), so at an upper limit of $400/hour (40,000 cents), that makes a
maximum paycheck of 4,000,000,000 (and $40,000 is a nice week’s pay).

Here is the computation of pay in C, with all variables and constants
defined as uint32_t values:

if (millihours > max_millihours // 100 hours max
 || hourlycents > max_hourlycents) // $400/hour rate max
 return 0;
return (millihours * hourlycents + 500) / 1000; // Round to $.01

The if statement, which returns an error indication for out-of-range
parameters, is an essential guard for preventing overflow in the computa-
tion that follows.

The computation in the return statement deserves explanation. Since we
are representing hours in thousandths, we must divide the result by 1,000 to
get the actual pay, so we first add 500 (half of the divisor) for rounding. A
trivial example confirms this: 10 hours (10,000) times $10.00/hour (1,000)
equals 10,000,000; add 500 for rounding, giving 10,000,500; and divide by
1,000, giving 10,000 or $100.00, the correct value. Even at this point, you
should consider this code fragile, to the extent that it flirts with the possibil-
ity of truncation due to fixed-width integer limitations.

154 Chapter 9

So far the code works fine for all inputs, but suppose management
has announced a new overtime policy. We need to modify the code to
add 50 percent to the pay rate for all overtime hours (any hours worked
after the first 40 hours). Further, the percentage should be a parameter, so
management can easily change it later.

To add the extra pay for overtime hours, we introduce overtime_percentage.
The code for this isn’t shown, but its value is 150, meaning 150 percent of
normal pay for overtime hours. Since the pay will increase, the $400/hour
limit won’t work anymore, because it won’t be low enough to prevent integer
overflow. But that pay rate was unrealistic as a practical limit anyhow, so let’s
halve it, just to be safe, and say $200/hour is the top pay rate:

vulnerable code if (millihours > max_millihours // 100 hours max
 || hourlycents > max_hourlycents) // $200/hour rate max
 return 0;
if (millihours > overtime_millihours) {
 overage_millihours = millihours - overtime_millihours;
 overtimepay = (overage_millihours * hourlycents * overtime_percentage
 + 50000) / 100000;
 basepay = (overtime_millihours * hourlycents + 500) / 1000;
 return basepay + overtimepay;
}
else
 return (millihours * hourlycents + 500) / 1000;

Now, we check if the number of hours exceeds the overtime pay threshold
(40 hours), and if not, the same calculation applies. In the case of overtime,
we first compute overage_millihours as the hours (in thousandths) over 40.000.
For those hours, we multiply the computed pay by the overtime_percentage (150).
Since we have a percentage (two digits of decimal fraction) and thousandths
of hours (three digits of decimals), we must divide by 100,000 (five zeros)
after adding half of that for rounding. After computing the base pay on the
first 40 hours, without the overtime adjustment, the code sums the two to
calculate the total pay. For efficiency, we could combine these similar com-
putations, but the intention here is for the code to structurally match the
computation for clarity.

This code works most of the time, but not always. One example of an
odd result is that 60.000 hours worked at $50.00/hour yields $2,211.51 in
pay (it should be $3,500.00). The problem is with the multiplication by
overtime_percentage (150), which easily overflows with a number of overtime
hours at a good rate of pay. In integer arithmetic, we cannot precompute
150/100 as a fraction—as an integer that’s just 1—so we have to do the mul-
tiplication first.

To fix this code, we could replace (X*150)/100 with (X*3)/2, but that ruins
the parameterization of the overtime percentage and wouldn’t work if the
rate changed to a less amenable value. One solution that maintains the
parameterization would be to break up the computation so that the multi-
plication and division use 64-bit arithmetic, downcasting to a 32-bit result:

Low-Level Coding Flaws 155

fixed code if (millihours > max_millihours // 100 hours max
 || hourlycents > max_hourlycents) // $200/hour rate max
 return 0;
if (millihours > overtime_millihours) {
 overage_millihours = millihours - overtime_millihours;
 product64 = overage_millihours * hourlycents;
 adjusted64 = (product64 * overtime_percentage + 50000) / 100000;
 overtimepay = ((uint32_t)adjusted64 + 500) / 1000;
 return basepay + overtimepay;
}
else
 return (millihours * hourlycents + 500) / 1000;

For illustrative purposes, the 64-bit variables include that designation
in their names. We could also write these expressions with a lot of explicit
casting, but it would get long and be less readable.

The multiplication of three values was split up to multiply two of them
into a 64-bit variable before overflow can happen; once upcast, the multipli-
cation with the percentage is 64-bit and will work correctly. The resultant
code is admittedly messier, and comments to explain the reasoning would
be helpful. The cleanest solution would be to upgrade all variables in sight
to 64-bit at a tiny loss of efficiency. Such are the trade-offs involved in using
fixed-width integers for computation.

Safe Arithmetic
Integer overflow is more frequently problematic than floating-point under-
flow because it can generate dramatically different results, but we can by
no means safely ignore floating-point underflow, either. Since by design
compilers do arithmetic in ways that potentially diverge from mathematical
correctness, developers are responsible for dealing with the consequences.
Once aware of these problems, you can adopt several mitigation strategies
to help avoid vulnerabilities.

Avoid using tricky code to handle potential overflow problems because
any mistakes will be hard to find by testing and represent potentially exploit-
able vulnerabilities. Additionally, a trick might work on your machine but
not be portable to other CPU architectures or different compilers. Here is
a summary of how to do these computations safely:

•	 Be careful using type conversions that can potentially truncate or dis-
tort results, just as calculations can.

•	 Where possible, constrain inputs to the computation to ensure that all
possible values are representable.

•	 Use a larger fixed-size integer to avoid possible overflow; check that the
result is within bounds before converting it back to a smaller-sized integer.

•	 Remember that intermediate computed values may overflow, causing a
problem, even if the final result is always within range.

•	 Use extra care when checking the correctness of arithmetic in and
around security-sensitive code.

156 Chapter 9

If the nuances of fixed-width integer and floating-point computations
still feel arcane, watch them closely and expect surprises in what might
seem like elementary calculations. Once you know they can be tricky, a little
testing with some ad hoc code in your language of choice is a great way to
get a feel for the limits of the basic building blocks of computer math.

Once you have identified the code at risk of these sort of bugs, make
test cases that invoke calculations with extreme values for all inputs, then
check the results. Well-chosen test cases can detect overflow problems, but a
limited set of tests is not proof that the code is immune to overflow.

Fortunately, more modern languages, such as Python, increasingly use
arbitrary-precision integers and are not generally subject to these problems.
Getting arithmetic computation right begins with understanding precisely
how the language you use works in complete detail. You can find an excel-
lent reference with details for several popular languages at the memorable
URL floating-point-gui.de, which provides in-depth explanation and best-
practice coding examples.

Memory Access Vulnerabilities
The other vulnerability class we’ll discuss involves improper memory access.
Direct management of memory is powerful and potentially highly efficient,
but it comes with the risk of arbitrarily bad consequences if the code gets
anything wrong.

Most programming languages offer fully managed memory allocation
and constrain access to proper bounds, but for reasons of efficiency or flexibil-
ity, or sometimes because of the inertia of legacy, other languages (predomi-
nantly C and C++) make the job of memory management the responsibility of
the programmer. When programmers take on this job—even experienced
programmers—they can easily get it wrong, especially as the code gets com-
plicated, creating serious vulnerabilities. And as with the arithmetic flaws
described earlier, the great danger is when a violation of memory manage-
ment protocol goes uncaught and continues to happen silently.

In this section, the focus is on the security aspects of code that directly
manages and accesses memory, absent built-in safeguards. Code examples
will use the classic dynamic memory functions of the original C standard
library, but these lessons apply generally to the many variants that provide
similar functionality.

Memory Management
Pointers allow direct access to memory by its address, and they are perhaps
the most powerful feature of the C language. But just like when wielding
any power tool, it’s important to use responsible safety precautions to man-
age the attendant risk. Software allocates memory when needed, works
within its available bounds, and releases it when no longer needed. Any
access outside of this agreement of space and time will have unintended
consequences, and that’s where vulnerabilities arise.

https://floating-point-gui.de

Low-Level Coding Flaws 157

The C standard library provides dynamic memory allocation for large
data structures, or when the size of a data structure cannot be determined
at compile time. This memory is allocated from the heap—a large chunk of
address space in the process used to provide working memory. C programs
use malloc(3) to allocation memory, and when it’s no longer needed, they
release each allocation for reuse by calling free(3). There are many varia-
tions on these allocation and deallocation functions; we will focus on these
two for simplicity, but the ideas should apply anytime code is managing
memory directly.

Access after memory release can easily happen when lots of code shares
a data structure that eventually gets freed, but copies of the pointer remain
behind and get used in error. After the memory gets recycled, any use of
those old pointers violates memory access integrity. On the flip side, forget-
ting to release memory after use risks exhausting the heap over time and
running out of memory. The following code excerpt shows the basic correct
usage of heap memory:

uint8_t *p;
// Don't use the pointer before allocating memory for it.
p = malloc(100); // Allocate 100 bytes before first use.
p[0] = 1;
p[99] = 123 + p[0];
free(p); // Release the memory after last use.
// Don't use the pointer anymore.

This code accesses the memory between the allocation and dealloca-
tion calls, inside the bounds of allotted memory.

In actual use, the allocation, memory access, and deallocation can be
scattered around the code, making it tricky to always do this just right.

Buffer Overflow
A buffer overflow (or, alternatively, buffer overrun) occurs when code accesses
a memory location outside of the intended target buffer. It’s important
to be very clear about its meaning because the terminology is confusing.
Buffer is a general term for any region in memory: data structures, character
strings, arrays, objects, or variables of any type. Access is a catch-all term for
reading or writing memory. That means a buffer overflow involves reading
or writing outside of the intended memory region, even though “overflow”
more naturally describes the act of writing. While the effects of reading and
writing differ fundamentally, it’s useful to think of them together to under-
stand the problem.

Buffer overflows are not exclusive to heap memory, but can occur with
any kind of variable, including static allocations and local variables on the
stack. All of these potentially modify other data in memory in arbitrary
ways. Unintended writes out of bounds could change just about anything
in memory, and clever attackers will refine such an attack to try to cause

158 Chapter 9

maximum damage. In addition, buffer overflow bugs may read memory
unexpectedly, possibly leaking information to attackers or otherwise caus-
ing the code to misbehave.

Don’t underestimate the difficulty and importance of getting explicit
memory allocation, access within bounds, and release of unused stor-
age exactly right. Simple patterns of allocation, use, and release are best,
including exception handling to ensure that the release is never skipped.
When allocation by one component hands off the reference to other code,
it’s critical to define responsibility for subsequently releasing the memory to
one side of the interface or the other.

Finally, be cognizant that even in a fully range-checked, garbage-
collected language, you can still get in trouble. Any code that directly
manipulates data structures in memory can make errors equivalent to
buffer overflow issues. Consider, for example, manipulating a byte string,
such as a TCP/IP packet in a Python array of bytes. Reading the contents
and making modifications involves computing offsets into data and can be
buggy, even if access outside the array does not occur.

Example: Memory Allocation Vulnerabilities
Let’s look at an example showing the dangers of dynamic memory alloca-
tion gone wrong. I’ll make this example straightforward, but in actual
applications the key pieces of code are often separated, making these flaws
much harder to see.

A Simple Data Structure

This example uses a simple C data structure representing a user account.
The structure consists of a flag that’s set if the user is an admin, a user ID,
a username, and a collection of settings. The semantics of these fields don’t
matter to us, except if the isAdmin field is nonzero, as this confers unlimited
authorization (making this field an attractive target for attack):

#define MAX_USERNAME_LEN 39
#define SETTINGS_COUNT 10
typedef struct {
 bool isAdmin;
 long userid;
 char username[MAX_USERNAME_LEN + 1];
 long setting[SETTINGS_COUNT];
} user_account;

Low-Level Coding Flaws 159

Here’s a function that creates these user account records:

user_account* create_user_account(bool isAdmin, const char* username) {
 user_account* ua;
 if (strlen(username) > MAX_USERNAME_LEN)
 return NULL;
 ua = malloc(sizeof (user_account));
 if (NULL == ua) {
 fprintf(stderr, "malloc failed to allocate memory.");
 return NULL;
 }
 ua->isAdmin = isAdmin;
 ua->userid = userid_next++;
 strcpy(ua->username, username);
 memset(&ua->setting, 0, sizeof ua->setting);
 return ua;
}

The first parameter specifies whether the user is an admin or not.
The second parameter provides a username, which must not exceed the
specified maximum length. A global counter (userid_next, declaration not
shown) provides sequential unique IDs. The values of all the settings are set
to zero initially, and the code returns a pointer to the new record unless an
error causes it to return NULL instead. Note that the code checks the length
of the username string before the allocation, so that allocation happens only
when the memory will get used.

Writing an Indexed Field

After we’ve created a record, the values of all the settings can be set using
the following function:

vulnerable code bool update_setting(user_account* ua,
 const char *index, const char *value) {
 char *endptr;
 long i, v;
 i = strtol(index, &endptr, 10);
 if (*endptr)
 return false; // Terminated other than at end of string.
 if (i >= SETTINGS_COUNT)
 return false;
 v = strtol(value, &endptr, 10);
 if (*endptr)
 return false; // Terminated other than at end of string.
 ua->setting[i] = v;
 return true;
}

This function takes an index into the settings and a value as decimal
number strings. After converting these to integers, it stores the value as the
indexed setting in the record. For example, to assign setting 1 the value 14,
we would invoke the function update_setting(ua, "1", "14").

160 Chapter 9

The function strtol converts the strings to integer values. The pointer that
strtol sets (endptr) tells the caller how far it parsed; if that isn’t the null termi-
nator, the string wasn’t a valid integer and the code returns an error. After
ensuring that the index (i) does not exceed the number of settings, it parses
the value (v) in the same way and stores the setting’s value in the record.

Buffer Overflow Vulnerability

All this setup is simplicity itself, though C tends to be verbose. Now let’s cut
to the chase. There’s a bug: no check exists for a negative index value.
If an attacker can manage to get this function called as update_setting(ua,
"-12", "1") they can become an admin. This is because the assignment into
settings accesses 48 bytes backward into the record, since each item is of
type long, which is 4 bytes. Therefore, the assignment writes the value 1 into
the isAdmin field, granting excess privileges.

In this case, the fact that we allowed negative indexing within a data
structure caused an unauthorized write to memory that violated a security
protection mechanism. You need to watch out for many variations on this
theme, including indexing errors due to missing limit checks or arithmetic
errors such as overflow. Sometimes, a bad access out of one data structure
can modify other data that happens to be in the wrong place.

The fix is to prevent negative index values from being accepted, which
limits write accesses to the valid range of settings. The following addition to
the if statement rejects negative values of i, closing the loophole:

 if (i < 0 || i >= SETTINGS_COUNT)

The additional i < 0 condition will now reject any negative index value,
blocking any unintended modification by this function.

Leaking Memory

Even once we’ve fixed the negative index overwrite flaw, there’s still a vul-
nerability. The documentation for malloc(3) warns, with underlining, “The
memory is not initialized.” This means that the memory could contain any-
thing, and a little experimentation does show that leftover data appears in
there, so recycling the uninitialized memory represents a potential leak of
private data.

Our create_user_account function does write data to all fields of the struc-
ture, but it still leaks bytes that are in the data structure as recycled memory.
Compilers usually align field offsets that allow efficient writing: on my 32-bit
computer, field offsets are a multiple of 4 (4 bytes of 8 bits is 32), and other
architectures perform similar alignments. The alignment is needed because
writing a field that spans a multiple-of-4 address (for example, writing 4
bytes to address 0x1000002) requires two memory accesses. So in this
example, after the single-byte Boolean isAdmin field at offset 0, the userid
field follows at offset 4, leaving the three intervening bytes (offsets 1–3)
unused. Figure 9-3 shows the memory layout of the data structure in
graphical form.

Low-Level Coding Flaws 161

username

settings[10]

userid
isAdmin (unused)1 byte

4 bytes

40 bytes

40 bytes

Figure 9-3: The memory layout of the user_account record

Additionally, the use of strcpy for the username leaves another chunk
of memory in its uninitialized state. This string copy function stops copying
at the null terminator, so, for example, a 5-character string would only
modify the first 6 bytes, leaving 34 bytes of whatever malloc happened to
grab for us. The point of all this is that the newly allocated structure con-
tains residual data which may leak unless every byte is overwritten.

Mitigating the risk of these inadvertent memory leaks isn’t hard, but you
must diligently overwrite all bytes of data structures that could be exposed.
You shouldn’t attempt to anticipate precisely how the compiler might allo-
cate field offsets, because this could vary over time and across platforms.
Instead, the easiest way to avoid these issues is to zero out buffers once allo-
cated unless you can otherwise ensure they are fully written, or know they
won’t be disclosed across a trust boundary. Remember that even if your
code doesn’t use sensitive data itself, this memory leak path could expose
other data anywhere in the process.

Generally speaking, you should avoid using strcpy to copy strings
because there are so many ways to get it wrong. The strncpy function both
fills unused bytes in the target with zeros and protects against overflow with
strings that exceed the buffer size. However, strncpy does not guarantee that
the resultant string will have a null terminator. This is why it’s essential to
allocate the buffer to be of size MAX_USERNAME_LEN + 1, ensuring that there is
always room for the null terminator. Another option is to use the strlcpy
function, which does ensure null termination; however, for efficiency, it
does not zero-fill unused bytes. As this example shows, when you handle
memory directly there are many factors you must deal with carefully.

162 Chapter 9

Now that we’ve covered the mechanics of memory allocation and seen
what vulnerabilities look like in a constructed example, let’s consider a more
realistic case. The following example is based on a remarkable security fiasco
from several years ago that compromised a fair share of the world’s major web
services.

Case Study: Heartbleed
In early April 2014, headlines warned of a worldwide disaster narrowly
averted. Major operating system platforms and websites rolled out coor-
dinated fixes, hastily arranged in secret, in an attempt to minimize their
exposure as details of the newly identified security flaw became public.
Heartbleed made news not only as “the first security bug with a cool logo,”
but because it revealed a trivially exploitable hole in the armor of any server
deploying the popular OpenSSL TLS library.

What follows is an in-depth look at one of the scariest security vulnera-
bilities of the decade, and it should provide you with context for how serious
mistakes can be. The purpose of this detailed discussion is to illustrate how
bugs managing dynamically allocated memory can become devastating
vulnerabilities. As such, I have simplified the code and some details of the
complicated TLS communication protocol to show the crux of the vulner-
ability. Conceptually, this corresponds directly with what actually occurred,
but with fewer moving parts and much simpler code.

Heartbleed is a flaw in the OpenSSL implementation of the TLS
Heartbeat Extension, proposed in 2012 with RFC 6520. This extension
provides a low-overhead method for keeping TLS connections alive, saving
clients from having to re-establish a new connection after a period of inac-
tivity. The so-called heartbeat itself is a round-trip message exchange con-
sisting of a heartbeat request, with a payload of between 16 and 16,384 (214)
bytes of arbitrary data, echoed back as a heartbeat response containing the
same payload. Figure 9-4 shows the basic request and response messages
of the protocol.

Client Server

Heartbeat request
(16 bytes) "Hello!"

Heartbeat response
(16 bytes) "Hello!"

Figure 9-4: The Heartbeat protocol (simplified)

Having downloaded an HTTPS web page, the client may later send a
heartbeat request on the connection to let the server know that it wants to
maintain the connection. In an example of normal use, the client might

Low-Level Coding Flaws 163

might send the 16-byte message “Hello!” (padded with zeros) comprising
the request, and the server would respond by sending the same 16 bytes
back. (That’s how it’s supposed to work, at least.) Now let’s look at the
Heartbleed bug.

The critical flaw occurs in malformed heartbeat requests that provide a
small payload yet claim a larger payload byte count. To see exactly how this
works, let’s first look at the internal structure of one of the simplified heart-
beat messages that the peers exchange. All of the code in this example is in C:

typedef struct {
 HeartbeatMessageType type;
 uint16_t payload_length;
 char bytes[0]; // Variable-length payload & padding
} hbmessage;

The data structure declaration hbmessage shows the three parts of one
of these heartbeat messages. The first field is the message type, indicating
whether it’s a request or response. Next is the length in bytes of the message
payload, called payload_length. The third field, called bytes, is declared as
zero-length, but is intended to be used with a dynamic allocation that adds
the appropriate size needed.

A malicious client might attack a target server by first establishing a
TLS connection to it, and then sending a 16-byte heartbeat request with a
byte count of 16,000. Here’s what that looks like as a C declaration:

typedef struct {
 HeartbeatMessageType type = heartbeat_request;
 uint16_t payload_length = 16000;
 char bytes[16] = {"Hello!"};
} hbmessage;

The client sending this is lying: the message says its payload is 16,000
bytes long but the actual payload is only 16 bytes. To understand how this
message tricks the server, look at the C code that processes the incoming
heartbeat request message:

hbmessage *hb(hbmessage *request, int *message_length) {
 int response_length = request->payload_length+sizeof(hbmessage);
 hbmessage* response = malloc(response_length);
 response->type = heartbeat_response;
 response->payload_length = request->payload_length;
 memcpy(&response->bytes, &request->bytes, response->payload_length);
 *message_length = response_length;
 return response;
}

The hb function gets called with two parameters: the incoming heart-
beat request message and a pointer named message_length, which stores the
length of the response message that the function returns. The first two
lines compute the byte length of the response as response_length, then a

164 Chapter 9

memory block of that size gets allocated as response. The next two lines
fill in the first two values of the response message: the message type and
its payload_length.

Next comes the fateful bug. The server needs to send back the message
bytes received in the request, so it copies the data from the request into the
response. Because it trusts the request message to have accurately reported
its length, the function copies 16,000 bytes—but since there are only 16 bytes
in the request message, the response includes thousands of bytes of internal
memory contents. The last two lines store the length of the response message
and then return the pointer to it.

Figure 9-5 illustrates this exchange of messages, detailing how the
preceding code leaks the contents of process memory. To make the harm
of the exploit concrete, I’ve depicted a couple of additional buffers, con-
taining secret data, already sitting in memory in the vicinity of the request
buffer. Copying 16,000 bytes from a buffer that only contained a 16-byte
payload—illustrated here by the overly large dotted-line region—results in
the secret data ending up in the response message, which the server sends
to the client.

Client Server

Heartbeat request
(16000 bytes) "Hello!"

Heartbeat response
(16000 bytes) "Hello! ...
Secret1 ... Secret2 ..."

type=req
size=16000
"Hello!"

"Secret2"

"Secret1"

type=res
size=16000
"Hello! ... Secret1
... Secret2 ..."

Figure 9-5: Attacking with the Heartbleed bug (simplified)

This flaw is tantamount to configuring your server to provide an anony-
mous API that snapshots and sends out thousands of bytes of working memory
to all callers—a complete breach of memory isolation, exposed to the internet.
It should come as no surprise that web servers using HTTPS security have any
number of juicy secrets in working memory. According to the discoverers of the
Heartbleed bug, they were able to easily steal from themselves “the secret keys
used for our X.509 certificates, user names and passwords, instant messages,
emails and business critical documents and communication.” Since exactly
what data leaked depended on the foibles of memory allocation, the ability of
attackers exploiting this vulnerability to repeatedly access server memory even-
tually yielded all kinds of sensitive data. For a simpler view of Heartbleed, see
Figure 9-6.

Low-Level Coding Flaws 165

Figure 9-6: Heartbleed Explanation (courtesy of Randall Munroe, xkcd.com/1354)

https://xkcd.com/1354

166 Chapter 9

The fix was straightforward in hindsight: anticipate “lying” heartbeat
requests that ask for more payload than they provide, and, as the RFC
explicitly specifies, ignore them. Thanks to Heartbleed, the world learned
how dependent so many servers were on OpenSSL, and how few volunteers
were laboring on the critical software that so much of the internet’s infra-
structure depended on. The bug is typical of why many security flaws are
difficult to detect, because everything works flawlessly in the case of well-
formed requests, and only malformed requests that well-intentioned code
would be unlikely to ever make cause problems. Furthermore, the leaked
server memory in heartbeat responses causes no direct harm to the server:
only by careful analysis of the excessive data disclosure does the extent of
the potential damage become evident.

As arguably one of the most severe security vulnerabilities discovered in
recent years, Heartbleed should serve as a valuable example of the nature of
security bugs, and how small flaws can result in a massive undermining of
our systems’ security. From a functional perspective, one could easily argue
that this is a minor bug: it’s unlikely to happen, and sending back more pay-
load data than the request provided seems, at first glance, utterly harmless.

Heartbleed is an excellent object lesson in the fragility of low-level lan-
guages. Small errors can have massive impact. A buffer overflow potentially
exposes high-value secrets if they happen to be lying around in memory at
just the wrong location. The design (protocol specification) anticipated this
very error by directing that heartbeat requests with incorrect byte lengths
should be ignored, but without explicit testing, nobody noticed the vulner-
ability for over two years.

This is just one bug in one library. How many more like it are still out
there now?

10
U N T R U S T E D I N P U T

I like engineering, but I love the creative input.
—John Dykstra

Untrusted inputs are perhaps the greatest
source of concern for developers writing

secure code. The term itself can be confusing,
and may best be understood as encompassing

all inputs to a system that are not trusted inputs, mean-
ing inputs from code that you can trust to provide
well-formed data. Untrusted inputs are those that are
out of your control and might be manipulated, and
include any data entering the system that you do not
fully trust. That is, they’re inputs you should not trust,
not inputs you mistakenly trust.

Any data coming from the outside and entering the system is best consid-
ered untrusted. The system’s users may be nice, trustworthy people, but when
it comes to security they are best considered untrusted, because they could
do anything—including falling victim to the tricks of others. Untrusted inputs

168 Chapter 10

are worrisome because they represent an attack vector, a way to reach into
the system and cause trouble. Maliciously concocted inputs that cross trust
boundaries are of special concern because they can penetrate deep into the
system, causing exploits in privileged code, so it’s essential to have good first
lines of defense. The world’s greatest source of untrusted inputs has to be the
internet, and since it’s so rare for software to be fully disconnected, this rep-
resents a serious threat for almost all systems.

Input validation (or input sanitization) is defensive coding that imposes
restrictions on inputs, forcing conformity to prescribed rules. By validating
that inputs meet specific constraints and ensuring that code works properly
for all valid inputs, you can successfully defend against these attacks. This
chapter centers on managing untrusted inputs using input validation, and
why doing so is important to security. The topic may seem mundane and
it isn’t technically difficult, but the need is so commonplace that doing a
better job at input validation is perhaps the most impactful low-hanging
fruit available to developers for reducing vulnerabilities. As such, it’s cov-
ered in depth. Character string inputs present specific challenges and the
security implications of Unicode are too little known, so we’ll also survey
the basic issues they present. Then we’ll walk through some examples of
injection attacks perpetrated using untrusted data with various technolo-
gies: SQL, path traversal, regular expressions, and XML external entities
(XXE). Finally, I’ll summarize the available mitigation techniques for this
broad set of vulnerabilities.

Input Validation
Before you look for validation in others, try and find it in yourself.

—Greg Behrendt

Now that you understand what untrusted inputs are, consider their poten-
tial effects within a system and how to protect against harm. Untrusted
inputs routinely flow through systems, often reaching down many layers
into trusted components—so just because your code is directly invoked
from trusted code, there is no guarantee that those inputs can be trusted.
The problem is that components might be passing through data from any-
where. The more ways an attacker can potentially manipulate the data, the
more untrusted it is. Upcoming examples should make this point clear.

Input validation is a good defense, as it dials untrusted input down to
a range of values that the application can safely process. The essential job
of input validation is to ensure that untrusted inputs conform to design
specifications so that code downstream of the validation only deals with
well-formed data. Let’s say you are writing a user login authentication ser-
vice that receives a username and password, and issues an authentication
token if the credentials are correct. By restricting usernames to between 8
and 40 characters and requiring that they consist of a well-defined subset
of Unicode code points, you can make the handling of that input much
simpler, because it’s a known quantity. Subsequent code can use fixed-size

Untrusted Input 169

buffers to hold a copy of the username, and it need not worry about the
ramifications of obscure characters. You could likely simplify processing
based on that assurance in other ways, too.

We have already seen input validation used to fix low-level vulnerabili-
ties in the previous chapter. The paycheck integer computation code had
input validation consisting of one if statement to guard against overly large
input values:

if (millihours > max_millihours // 100 hours max
 || hourlycents > max_hourlycents) // $200/hour rate
 return 0;

There’s no need to repeat the explanation for this, but it serves as a fine
example of basic input validation. Almost any code you write will only work
correctly within certain limitations: it won’t work for extreme values such as
massive memory sizes, or perhaps text in different languages. Whatever the
limitations are, we don’t want to expose code to inputs it wasn’t designed
for, as this risks unintended consequences that could create vulnerabilities.
One easy method to mitigate this danger is to impose artificial restrictions
on inputs that screen out all problematic inputs.

There are some nuances worth pointing out, however. Of course, restric-
tions should never reject inputs that should have been rightfully handled;
for instance, in the paycheck example, we cannot reject 40-hour work weeks
as invalid. If the code cannot handle all valid inputs, then we need to fix it
so it can handle a broader scope of inputs. Also, an input validation strategy
may need to consider the interaction of multiple inputs. In the paycheck
example, the product of the pay rate and hours worked could exceed the
fixed-width integer size, as we saw in Chapter 9, so validation could limit
the product of these two inputs, or set limits on each separately. The former
approach is more permissive but may be more difficult for callers to accom-
modate, so the right choice depends on the application.

Generally, you should validate untrusted inputs as soon as possible, so
as to minimize the risk of unconstrained input flowing to downstream code
that may not handle it properly. Once validated, subsequent code benefits
from only being exposed to well-behaved data; this helps developers write
secure code, because they know exactly what the range of inputs will be.
Consistency is key, so a good pattern is to stage input validation in the first
layer of code that handles incoming data, then hand the valid input off to
business logic in deeper layers that can confidently assume that all inputs
are valid.

We primarily think of input validation as a defense against untrusted
inputs—specifically, what’s on the attack surface—but this does not mean
that all other inputs can be blithely ignored. No matter how much you trust
the provider of some data, it may be possible for a mistake to result in unex-
pected inputs, or for an attack to somehow compromise part of the system
and effectively expand the attack surface. For all of these reasons, defensive
input validation is your friend. It’s safest to err on the side of redundant

170 Chapter 10

input validation rather than risk creating a subtle vulnerability—if you
don’t know for certain that incoming data is reliably validated, you probably
need to do it to be sure.

Determining Validity
Input validation begins with deciding what’s valid. This is not as straightfor-
ward as it sounds, because it amounts to anticipating all future valid input
values and figuring out how, with good reason, to disallow the rest. This
decision is usually made by the developer, who must weigh what users may
want against the extra coding involved in permitting a wider range. Ideally,
software requirements specify what constitutes valid input, and a good
design may provide guidance.

For an integer input, the full range of 32-bit integers may appear to be
an obvious choice because it’s a standard data type. But thinking ahead,
if the code will add these values together at some point, that’ll require a
bigger integer, so the 32-bit restriction becomes arbitrary. Alternatively, if
you can reasonably set a lower limit for validity, then you can make sure the
sum of the values will fit into 32 bits. Determining the right answer for what
constitutes a valid input will require examining the application-specific con-
text—a great example of how domain knowledge is important to security.
Once the range of values deemed valid is specified, it’s easy to determine
the appropriate data type to use.

What usually works well is to establish an explicit limit on inputs and
then leave plenty of headroom in the implementation to be certain of cor-
rectly processing all valid inputs. By headroom, I mean if you are copying
a text string into a 4,096-byte buffer, use 4,000 bytes as the maximum valid
length so you have a little room to spare. (In C, the additional null termina-
tor overflowing a buffer by one byte is a classic mistake that’s easy to make.)
Some programmers like a good challenge, but if you’re too generous (by
allowing the widest possible range of input), then you are forcing the imple-
mentation to take on a bigger and harder job than is necessary, leading
to greater code complexity and test burden. Even if your online shopping
application can manage a cart with a billion items, attempting to process
such an unrealistic transaction would be counterproductive. It would be
kindest to reject the input (which may well be due to somebody’s cat sitting
on their keyboard).

Validation Criteria
Most input validation checks consist of several criteria, including ensur-
ing the input doesn’t exceed a maximum size, that the data arrives in the
proper format, and that it’s within a range of acceptable values.

Checking the value’s size is a quick test primarily intended to avoid
DoS threats to your code, which would cause your application to lumber
or even crash under the weight of megabytes of untrusted input. The data
format may be a sequence of digits for a number, strings consisting of cer-
tain allowed characters, or a more involved format, such as XML or JSON.
Typically, it’s wise to check these in this order: limit size first, so you don’t

Untrusted Input 171

waste time trying to deal with excessively massive inputs, then make sure
the input is well formed before parsing it, and then check that the resulting
value is within the acceptable range.

Deciding on a valid range of values can be the most subjective choice,
but it’s important to have specific limits. How that range is defined will
depend on the data type. For integers, the range will be no less than a mini-
mum and no greater than a maximum value. For floating-point numbers,
there may be limits on precision (decimal places) as well. For strings, it’s
a maximum length, encoding, and usually an allowable format or syntax,
as determined by a regular expression or the like. I recommend specifying
maximum string lengths in characters rather than bytes, if only so that
non-programmers have some hope of knowing what this constraint means.

It’s helpful to think about inputs as valid for a purpose, rather than in the
abstract. For example, a language translation system might accept input that
is first validated to conform to the supported character set and maximum
length common to all supported languages. If the next processing stage ana-
lyzes the text to determine what language it is, having chosen the language
you can then further restrict the text to the appropriate character set.

Or consider validating an integer input that represents the quantity of
items ordered on a purchase invoice. The maximum quantity any customer
might ever actually order is not easy to determine, but it’s a good question
to consider up front. If you have access to past data, a quick SQL query
might return an interesting example worth knowing for reference. While
one could argue that the maximum 32-bit integer value is the least limit-
ing and hence best choice, in practice this rarely makes much sense. Who
wouldn’t consider an order of 4,294,967,295 of any product as anything but
some sort of mistake? Since non-programmers are never going to remember
such strange numbers derived from binary, choosing a more user-friendly
limit, such as 1,000,000, makes more sense. Should anyone ever legitimately
run up against such a limit, it probably is worth knowing about, and should
be easy to adjust. What’s more, the developer will learn about a real use
case in the process that was previously unimagined.

The primary purpose of input validation is to ensure that no invalid
input gets past it. The simplest way to do this is to simply reject invalid
inputs, as we have been doing implicitly in the discussion so far. A more
forgiving alternative is to detect any invalid input and modify it into a valid
form. Let’s look at these different approaches, and when to do which.

Rejecting Invalid Input
Rejection of input that does not conform to specified rules is the simplest
and arguably safest approach. Complete acceptance or rejection is clean-
est and clearest, and usually easiest to get right. It’s like the common-sense
advice for deciding if it’s safe to swim in the ocean: “When in doubt, don’t
go out.” This can be as simple as refusing to process a web form if any field
is improperly filled out, or as extreme as rejecting an entire batch of incom-
ing data because of a single violation in some record.

172 Chapter 10

Whenever people are providing the input directly, such as in the case
of a web form, it’s kindest to provide informative error messages, making it
easy for them to correct their mistakes and resubmit. Users presumably sub-
mit invalid input either as a mistake or due to ignorance of the validation
rules, neither of which is good. Calling a halt and asking the data source
to provide valid input is the conservative way to do input validation, and it
affords a good chance for regular providers to learn and adapt.

When input validation rejects bad input from people, best practices
include:

•	 Explain what constitutes a valid entry as part of the user interface, sav-
ing at least those who read it from having to guess and retry. (How am
I supposed to know that area codes should be hyphenated rather than
parenthesized?)

•	 Flag multiple errors at once, so they can be corrected and resubmitted
in one step.

•	 When people are directly providing the input, keep the rules simple
and clear.

•	 Break up complicated forms into parts, with a separate form for each
part, so people can see that they’re making progress.

When inputs come from other computers, not directly from people,
more rigid input validation may be wise. The best way to implement these
requirements is by writing documentation precisely describing the expected
input format and any other constraints. In the case of input from profes-
sionally run systems, fully rejecting an entire batch of inputs, rather than
attempting to partially process the valid subset of data, may make the most
sense, as it indicates something is out of spec. This allows the error to be
corrected and the full dataset submitted again without needing to sort out
what was or wasn’t processed.

Correcting Invalid Input
Safe and simple as it may be to insist on receiving completely valid inputs
and rejecting everything else, by no means is this always the best way to go.
For online merchants seeking customers at all costs, rejecting inputs dur-
ing checkout could lead to more instances of the dreaded “abandoned
cart,” and lost sales. For interactive user input, rigid rules can be frustrat-
ing, so if the software can help the user provide valid input, it should.

If you don’t want to stop the show for a minor error, then your input
validation code may attempt to correct the invalid inputs, transforming
them into valid values instead of rejecting them. Easy examples of this
include truncating long strings to whatever the maximum length is, or
removing extraneous leading or trailing spaces. Other examples of correct-
ing invalid inputs are more complicated. Consider the common example of
entering a mailing address in the exact form allowed by the postal service.
This is a considerable challenge because of the precise spacing, spelling of

Untrusted Input 173

street names, and form of abbreviation expected. Just about the only way to
do this is to offer best-guess matches of similar addresses in the official for-
mat for the respondent to choose from.

The best cure for tricky validation requirements is to design inputs to
be as simple as possible. For example, many of us have struggled when pro-
viding phone numbers that require area codes in parentheses, or dashes in
certain positions. Instead, let phone numbers be strings of digits and avoid
syntax rules in the first place.

While adjustments may save time, any correction introduces the pos-
sibility that the correction will modify the input in an unintended fashion
(from the user’s standpoint). Take the example of a telephone number form
field where the input is expected to be 10 digits long. It should be safe to
strip out common characters such as hyphens and accept the input if the
result produces 10 valid digits, but if the input has too many digits, the user
might have intended to provide an international number, or they might
have made a typo. Either way, it probably isn’t safe to truncate it.

Proper input validation requires careful judgment, but it makes soft-
ware systems much more reliable, and hence more secure. It reduces the
problem space, eliminates needless tricky edge cases, improves testability,
and results in the entire system being better defined and stable.

Character String Vulnerabilities
If you are a programmer working in 2006 and you don’t know the basics of
characters, character sets, encodings, and Unicode, and I catch you, I’m going to
punish you by making you peel onions for six months in a submarine.

—Joel Spolsky

Nearly all software components process character strings, at least as com-
mand line parameters or when displaying output in legible form. Certain
applications process character strings extensively; these include word proces-
sors, compilers, web servers and browsers, and many more. String processing
is ubiquitous, so it’s important to be aware of the common security pitfalls
involved. What follows is a sampling of the many issues to be aware of to
avoid inadvertently creating vulnerabilities.

Length Issues
Length is the first challenge because character strings are potentially of
unbounded length. Extremely long strings invite buffer overflow when copied
into fixed-length storage areas. Even if handled correctly, massive strings can
result in performance problems if they consume excessive cycles or memory,
potentially threatening availability. So, the first line of defense is to limit the
length of incoming untrusted strings to reasonable sizes. At the risk of stating
the obvious, don’t confuse character count with byte length when allocating
buffers.

174 Chapter 10

Unicode Issues
Modern software usually relies on Unicode, a rich character set that
spans the world’s written languages, but the cost of this richness is a lot
of hidden complexity that can be fertile ground for exploits. There are
numerous character encodings to represent the world’s text as bytes, but
most often software uses Unicode as a kind of lingua franca. The Unicode
standard (version 13.0) is just over 1,000 pages long, specifying over
140,000 characters, canonicalization algorithms, legacy character code
standard compatibility, and bidirectional language support; it covers nearly
all the world’s written languages, encoding more than one million code
points.

Unicode text has several different encodings that you need to be aware
of. UTF-8 is the most common, but there are also UTF-7, UTF-16, and
UTF-32 encodings. Accurately translating between bytes and characters is
important for security, lest the contents of the text inadvertently morph in
the process. Collation (sorted order) depends on the encoding and the lan-
guage, which can create unintended results if you aren’t aware of it. Some
operations may work differently in the context of a different locale, such as
when run on a computer configured for another country or language, so it’s
important to test for correctness in all these cases. When there is no need
to support different locales, consider specifying the locale explicitly rather
than inheriting an arbitrary one from the system configuration.

Because Unicode has many surprising features, the bottom line for
security is to use a trustworthy library to handle character strings, rather
than attempting to work on the bytes directly. You could say that in this
regard, Unicode is analogous to cryptography in that it’s best to leave the
heavy lifting to experts. If you don’t know what you are doing, some quirk
of an obscure character or language you’ve never heard of might intro-
duce a vulnerability. This section details some of the major issues that are
well worth being aware of, but a comprehensive deep dive into the intri-
cacies of Unicode would deserve a whole book. Detailed guidance about
security considerations for developers who need to understand the finer
points is available from the Unicode Consortium. UTR#36: Unicode Security
Considerations is a good starting point.

Encodings and Glyphs

Unicode encodes characters, not glyphs (rendered visual forms of characters).
This simple dictum has many repercussions, but perhaps the easiest way
to explain it is that the capital letter I (U+0049) and the Roman numeral
one (U+2160) are separate characters that may appear as identical glyphs
(called homomorphs). Web URLs support international languages, and the
use of look-alike characters is a well-known trick that attackers use to fool
users. Famously, someone got a legitimate server certificate using a Cyrillic
character (U+0420) that looks just like the P in PayPal, creating a perfect
phishing setup.

Untrusted Input 175

Unicode includes combining characters that allow different repre-
sentations for the same character. The Latin letter Ç (U+00C7) also has a
two-character representation, consisting of a capital C (U+0043) followed
by the “Combining Cedilla” character (U+0327). Both the one- and two-
character forms display as the same glyph, and there is no semantic differ-
ence, so code should generally treat them as equivalent forms. The typical
coding strategy would be to first normalize input strings to a canonical
form, but unfortunately, Unicode has several kinds of normalization, so get-
ting the details right requires further study.

Case Change

Converting strings to upper- or lowercase is a common way of canonical-
izing text so that code treats test, TEST, tEsT, and so forth as identical. Yet it
turns out that there are characters beyond the English alphabet that have
surprising properties under case transformations.

For example, the following strings are different yet nearly identical to
casual observers: 'This ıs a test.' and 'This is a test.' (Note the missing dot
over the second lowercase i in the first sentence.) Converted to uppercase,
they both turn into the identical 'THIS IS A TEST.' since the lowercase dotless
ı (U+0131) and the familiar lowercase i (U+0069) both become uppercase
I (U+0049). To see how this leads to a vulnerability, consider checking an input
string for the presence of <script>: the code might convert to lowercase, scan
for that substring, then convert to uppercase for output. The string <scrıpt>
would slip through but appear as <SCRIPT> in the output, which could allow
script injection on a web page—the very thing the code was trying to prevent.

Injection Vulnerabilities
If you ever injected truth into politics you would have no politics.

—Will Rogers

Unsolicited credit card offers comprise a major chunk of the countless
tons of junk mail that clog up the postal system, but one clever recipient
managed to turn the tables on the bank. Instead of tossing out a promo-
tional offer to sign up for a card with terms he did not like, Dmitry Agarkov
scanned the attached contract and carefully modified the text to specify
terms extremely favorable to him, including 0 percent interest, unlimited
credit, and a generous payment that he would receive should the bank
cancel the card. He signed the modified contract and returned it to the
bank, and soon received his new credit card. Dmitry enjoyed the generous
terms of his uniquely advantageous contract for a while, but things got
ugly when the bank finally caught on. After a protracted legal battle that
included a favorable judgment upholding the validity of the modified con-
tract, he eventually settled out of court.

This is a real-world example of an injection attack: contracts are not the
same as code, but they do compel the signatories to perform prescribed
actions in much the same way as a program behaves. By altering the

176 Chapter 10

terms of the contract, Dmitry was able to force the bank to act against its
will, almost as if he had modified the software that manages credit card
accounts in his favor. Software is also susceptible to this sort of attack:
untrusted inputs can fool it into doing unexpected things, and this is actu-
ally a fairly common vulnerability.

There is a common software technique that works by constructing a
string or data structure that encodes an operation to be performed, and
then executing that to accomplish the specified task. (This is analogous to
the bank writing a contract that defines how its credit card service oper-
ates, expecting the terms to be accepted unchanged.) When data from an
untrusted source is involved, it may be able to influence what happens upon
execution. If the attacker can change the intended effect of the operation,
that influence may cross a trust boundary and get executed by software at a
higher privilege. This is the idea of injection attacks in the abstract.

Before explaining the specifics of some common injection attacks, let’s
consider a simple example of how the influence of untrusted data can be
deceptive. According to an apocryphal story, just this kind of confusion was
exploited successfully by an intramural softball team that craftily chose the
name “No Game Scheduled.” Several times opposing teams saw this name
on the schedule, assumed it meant that there was no game that day, and lost
by forfeit as no-shows. This is an example of an injection attack because the
team name is an input to the scheduling system, but “No Game Scheduled”
was misinterpreted as being a message from the scheduling system.

The same injection attack principles apply to many different technolo-
gies (that is, forms of constructed strings that represent an operation),
including but not limited to:

•	 SQL statements

•	 Filepath names

•	 Regular expressions (as a DoS threat)

•	 XML data (specifically, XXE declarations)

•	 Shell commands

•	 Interpreting strings as code (for example, JavaScript’s eval function)

•	 HTML and HTTP headers (covered in Chapter 11)

The following sections explain the first four kinds of injection attacks
in detail. Shell command and code injection work similarly to SQL injec-
tion, where sloppy string construction is exploitable by untrusted inputs.
We’ll cover web injection attacks in the next chapter.

SQL Injection
The classic xkcd comic #327 (Figure 10-1) portrays an audacious SQL injec-
tion attack, wherein parents give their child an unlikely and unpronounceable
name that includes special characters. When entered into the local school dis-
trict’s database, this name compromises the school’s records.

Untrusted Input 177

Figure 10-1: Exploits of a Mom (courtesy of Randall Munroe, xkcd.com/327)

To understand how this works, assume that the school registration sys-
tem uses a SQL database and adds student records with a SQL statement of
the form shown here:

INSERT INTO Students (name) VALUES ('Robert');

In this simplified example, that statement adds the name “Robert” to
the database. (In practice, more columns than just name would appear in the
two sets of parenthesized lists; those are omitted here for simplicity.)

Now imagine a student with the ludicrous name of Robert'); DROP TABLE
students;--. Consider the resultant SQL command, with the parts corre-
sponding to the student’s name highlighted:

INSERT INTO Students (name) VALUES ('Robert'); DROP TABLE Students;--');

According to SQL command syntax rules, this string actually contains
two statements:

INSERT INTO Students (name) VALUES ('Robert');
DROP TABLE Students; --');

The first of these two SQL commands inserts a “Robert” record as
intended. However, since the student’s name contains SQL syntax, it also
injects a second, unintended command, DROP TABLE, that deletes the entire
table. The double dashes denote a comment, so the SQL engine ignores
the following text. This trick allows the exploit to work by consuming the
trailing syntax (single quote and close parenthesis) in order to avoid a syn-
tax error that would prevent execution.

Now let’s look at the code a little more closely to see what a SQL injection
vulnerability looks like and how to prevent it. The hypothetical school registra-
tion system code works by forming SQL commands as text strings, such as in
the first basic example we covered, and then executing them. The input data
provides names and other information to fill out student records. In theory,
we can even suppose that staff verified this input against official records to
ensure their accuracy (assuming, with a large grain of salt, that legal names
can include ASCII special characters).

https://xkcd.com/327

178 Chapter 10

The programmer’s fatal mistake was in writing a string concatenation
statement such as the following without considering that an unusual name
could “break out” of the single quotes:

vulnerable code sql_stmt = "INSERT INTO Students (name) VALUES ('" + student_name + "');";

Mitigating injection attacks is not hard but requires vigilance, lest you
get sloppy and write code like this. Mixing untrusted inputs and command
strings is the root cause of the vulnerability, because those inputs can break
out of the quotes with unintended harmful consequences.

Determining what strings constitute a valid name is an important require-
ments issue, but let’s just focus on the apostrophe character used in this SQL
statement as a single quote. Since there are names (such as O’Brien) that
contain the apostrophe, which is key to cracking open the SQL command
syntax, the application cannot forbid this character as part of input validation.
This name could be correctly written as the quoted string 'O''Brien', but there
could be many other special characters requiring special treatment to effec-
tively eliminate the vulnerability in a complete solution.

As a further defense, you should configure the SQL database such that
the software registering students does not have the administrative privi-
leges to delete any tables, which it does not need to do its job. (This is an
example of the “Least Privilege” pattern from Chapter 4.)

Rather than “reinventing the wheel” with custom SQL sanitization code,
the best practice is to use a library intended to construct SQL commands
to handle these problems. If a trustworthy library isn’t available, create test
cases to ensure that attempted injection attacks are either rejected or safely
processed, and that everything works for students with names like O’Brien.

Here are a few simple Python code snippets showing the wrong and
then the right way to do this. First is the wrong way, using a mock-up of the
Bobby Tables attack:

vulnerable code import sqlite3
con = sqlite3.connect('school.db')
student_name = "Robert'); DROP TABLE Students;--"
The WRONG way to query the database follows:
sql_stmt = "INSERT INTO Students (name) VALUES ('" + student_name + "');"
con.executescript(sql_stmt)

After creating a connection (con) to the SQL database, the code assigns
the student’s name to the variable student_name. Next, the code constructs the
SQL INSERT statement by plugging the string student_name into the VALUES list
and assigning that to sql_stmt. Finally, that string is executed as a SQL script.

The right way to handle this is to let the library insert parameters
involving untrusted data, as shown in the following code snippet:

fixed code import sqlite3
con = sqlite3.connect('school.db')
student_name = "Robert'); DROP TABLE Students;--"
The RIGHT way to query the database follows:
con.execute("INSERT INTO Students (name) VALUES (?)", (student_name,))

Untrusted Input 179

In this implementation, the ? placeholder is filled in from the follow-
ing tuple parameter consisting of the student_name string. Note that there
are no quotes required within the INSERT statement string—that’s all han-
dled for you. This syntax avoids the injection and safely enters Bobby’s
strange name into the database.

There is a detail in this example that deserves clarification. Making the
original exploit work requires the executescript library function, because
execute only accepts a single statement, which serves as a kind of a defense
against this particular attack. However, it would be a mistake to think that
all injection attacks involve additional commands, and that this limitation
confers much protection. For example, suppose there’s another student
with a different unpronounceable name at the school, Robert', 'A+');--. He
and plain old Robert are both failing—but when his grades are recorded in
another SQL table, his mark gets elevated to an A+. How so?

When plain old Robert’s grades are submitted using the vulnerable
code, the command enters the intended grade of an F as follows:

INSERT INTO Grades (name, grade) VALUES ('Robert', 'F');

But with the name Robert', 'A+');-- that command becomes:

INSERT INTO Grades (name, grade) VALUES ('Robert', 'A+');--', 'F');

One final remark is in order about xkcd’s “Little Bobby Tables” example
that attentive readers may have noticed. Setting aside the absurdity of the
premise, it is a remarkable coincidence that Bobby’s parents were able to
foresee the arbitrarily chosen specific name of the database table (Students).
This is best explained by artistic license.

Path Traversal
Filepath traversals are a common vulnerability closely related to injection
attacks. Instead of escaping from quotation marks, as we saw in the previ-
ous section’s examples, this attack escapes into parent directories to gain
unexpected access to other parts of the filesystem. For example, to serve a
collection of images, an implementation might collect image files in a direc-
tory named /server/data/image_store and then process requests for an image
named X by fetching image data from the path formed from the (untrusted)
input name X: /server/data/image_store/X.

The obvious attack would be requesting the name ../../secret/key,
which would return the file /server/secret/key that should have been pri-
vate. Recall that . (dot) is a special name for the current directory and ..
(dot-dot) is the parent directory that allows traversal toward the filesystem
root, as shown by this sequence of equivalent pathnames:

•	 /server/data/image_store/../../secret/key

•	 /server/data/../secret/key

•	 /server/secret/key

180 Chapter 10

The best way to secure against this kind of attack is to limit the char-
acter set allowed in the input (X in our example). Often, input validation
ensuring that the input is an alphanumeric string suffices to completely
close the door. This works well because it excludes the troublesome file
separator and parent directory forms needed to escape from the intended
part of the filesystem.

However, sometimes that approach is too limiting. When it’s necessary
to handle arbitrary filenames this simple method is too restrictive, so you
have more work to do (and it can get complicated because filesystems are
complicated). Furthermore, if your code will run across different platforms,
you need to be aware of possible filesystem differences (for example, the
*nix path separator is a slash, but on Microsoft Windows it’s a backslash).

Here is a simple example of a function that inspects input strings
before using them as subpaths for accessing files in the directory that this
Python code resides in (denoted by __file__). The idea is to provide access
only to files in a certain directory or its subdirectories—but absolutely not
to arbitrary files elsewhere. In the version shown here, the guard function
safe_path checks the input for a leading slash (which goes to the filesystem
root) or parent directory dot-dot and rejects inputs that contain these. To
get this right you should work with paths using standard libraries, such as
Python’s os.path suite of functionality, rather than ad hoc string manipula-
tion. But this alone isn’t sufficient to ensure against breaking out of the
intended directory:

vulnerable code def safe_path(path):
 """Checks that argument path is a safe file path. If not, returns None.
 If safe, returns the normalized absolute file path.
 """
 if path.startswith('/') or path.startswith('..'):
 return None
 base_dir = os.path.dirname(os.path.abspath(__file__))
 filepath = os.path.normpath(os.path.join(base_dir, path))
 return filepath

The remaining hole in this protection is that the path can name a valid
directory, and then go up to the parent directory, and so on to break out.
For example, since the current directory this sample code runs in is five lev-
els below the root, the path ./../../../../../etc/passwd (with five dot-dots)
resolves to the /etc/passwd file.

We could improve the string-based tests for invalid paths by rejecting
any path containing dot-dot, but such an approach can be risky, since it’s
hard to be certain that we’ve anticipated all possible tricks and completely
blocked them. Instead, there’s a straightforward solution that relies on the
os.path library, rather than constructing path strings with your own code:

Untrusted Input 181

fixed code def safe_path(path):
 """Checks that argument path is a safe file path. If not, returns None.
 If safe, returns the normalized absolute file path.
 """
 base_dir = os.path.dirname(os.path.abspath(__file__))
 filepath = os.path.normpath(os.path.join(base_dir, path))
 if base_dir != os.path.commonpath([base_dir, filepath]):
 return None
 return filepath

This protection you can take to the bank, and here’s why. The base
directory is a reliable path because there is no involvement of untrusted
input: it’s fully derived from values completely under the programmer’s
control. After joining with the input path string, that path gets normalized,
which resolves any dot-dot parent references to produce an absolute path
(filepath). Now we can check that the longest common subpath of these is
the intended directory to which we want to restrict access.

Regular Expressions
Efficient, flexible, and easy to use, a regex (regular expression) offers a
remarkably wide range of functionality and is perhaps the most versatile
tool we have for parsing text strings. They’re generally faster (both to code
and execute) than ad hoc code, and more reliable. Regex libraries compile
state tables that an interpreter (a finite state machine or similar automaton)
executes to match against a string.

Even if your regex is correctly constructed it can cause security issues,
as some regular expressions are prone to excessive execution times, and if
attackers can trigger these they can cause a serious DoS. Specifically, execu-
tion time can balloon if the regex incurs backtracking—that is, when it scans
forward a long way, then needs to go back and rescan over and over to find
a match. The security danger generally results from allowing untrusted
inputs to specify the regex; or, if the code already contains a backtracking
regex, from an untrusted input that supplies a long worst-case string that
maximizes the computational effort.

A backtracking regex can look innocuous, as an example will demon-
strate. The following Python code takes more than three seconds to run on
my modest Raspberry Pi Model 4B. Your processor is likely much faster,
but since each D added to the 24 in the example doubles the running
time, it isn’t hard to lock up any processor with a slightly longer string:

import re
print(re.match(r'(D+)+$', 'DDDDDDDDDDDDDDDDDDDDDDDD!'))

182 Chapter 10

The danger of excessive runtime exists with any kind of parsing of
untrusted inputs, in cases where backtracking or other nonlinear computa-
tions can blow up. In the next section you’ll see an XML entity example
along these lines, and there are many more.

The best way to mitigate these issues depends on the specific computa-
tion, but there are several general approaches to countering these attacks.
Avoid letting untrusted inputs influence computations that have the poten-
tial to blow up. In the case of regular expressions, don’t let untrusted inputs
define the regex, avoid backtracking if possible, and limit the length of the
string that the regex matches against. Figure out what the worst-case com-
putation could be, and then test it to ensure that it’s not excessively slow.

Dangers of XML
XML is one of the most popular ways to represent structured data, as it is
powerful as well as human-readable. However, you should be aware that
the power of XML can also be weaponized. There are two major ways that
untrusted XML can cause harm using XML entities.

XML entity declarations are a relatively obscure feature, and unfortunately,
attackers have been creative in finding ways of abusing these. In the example
that follows, a named entity big1 is defined as a four-character string. Another
named entity, big2, is defined as eight instances of big1 (a total of 32 char-
acters), and big3 is eight more of those, and so on. By the time you get up
to big7, you’re dealing with a megabyte of data, and it’s easy to go on up
from there. This example concocts an 8-megabyte chunk of XML. As you can
see, you would need to add only a few lines to go into the gigabytes:

<!DOCTYPE dtd[
 <!ENTITY big1 "big!">
 <!ENTITY big2 "&big1;&big1;&big1;&big1;&big1;&big1;&big1;&big1;">
 <!ENTITY big3 "&big2;&big2;&big2;&big2;&big2;&big2;&big2;&big2;">
 <!ENTITY big4 "&big3;&big3;&big3;&big3;&big3;&big3;&big3;&big3;">
 <!ENTITY big5 "&big4;&big4;&big4;&big4;&big4;&big4;&big4;&big4;">
 <!ENTITY big6 "&big5;&big5;&big5;&big5;&big5;&big5;&big5;&big5;">
 <!ENTITY big7 "&big6;&big6;&big6;&big6;&big6;&big6;&big6;&big6;">
]>
<mega>&big7;&big7;&big7;&big7;&big7;&big7;&big7;&big7;</mega>

More tricks are possible with external entity declarations. Consider the
following:

 <!ENTITY snoop SYSTEM "file:///etc/passwd>" >

This does exactly what you would think: reads the password file and
makes its contents available wherever &snoop; appears in the XML hence-
forth. If the attacker can present this as XML and then see the result of the
entity expansion, they can disclose the contents of any file they can name.

Your first line of defense against these sorts of problems will be keeping
untrusted inputs out of any XML that your code processes. Some modern

Untrusted Input 183

libraries check for just this kind of attack, but you should check to be sure if
you need to rely on it. If you don’t need XML external entities, then protect
against this sort of attack by excluding them from inputs, or by disabling the
processing of such declarations.

Mitigating Injection Attacks
Just as various kinds of injection attacks rely on the common trick of using
untrusted inputs to influence statements or commands that execute in the
context of the application, mitigations for these issues also have common
threads, though the details do vary. Input validation is always a good first
line of defense, but depending on what allowable inputs may consist of, that
alone is not necessarily enough.

Avoid attempting to insert untrusted data into constructed strings for
execution, for instance as commands. Modern libraries for SQL and other
functionality susceptible to injection attacks should provide helper func-
tions that allow you to pass in data separately from the command. These
functions handle quoting, escaping, or whatever it takes to safely perform
the intended operation for all inputs. I recommend checking for a specific
note about security in the library’s documentation, as there do exist slip-
shod implementations that just slap strings together and will be liable to
injection attacks under the facade of the API. When in doubt, a security test
case (see Chapter 12) is a good way to sanity-check this.

If you cannot, or will not, use a secure library—although, again, I caution
against the slippery slope of “what could possibly go wrong?” thinking—first
consider finding an alternative way to avoid the risk of injection. Instead of
constructing a *nix ls command to enumerate the contents of a directory, use
a system call. The reasoning behind this is clear: all that readdir(3) can pos-
sibly do is return directory entry information; by contrast, invoking a shell
command could potentially do just about anything.

Using the filesystem as a homemade datastore may be the quickest solu-
tion in some cases, but I can hardly recommend it as a secure approach. If
you insist on doing it the risky way, don’t underestimate the work required
to anticipate and then block all potential attacks in order to fully secure it.
Input validation is your friend here; if you can constrain the string to a safe
character set (for example, names consisting only of ASCII alphanumerics),
then you may be all right. As an additional layer of defense, study the syntax
of the command or statement you are forming and be sure to apply all the
necessary quoting or escaping to ensure nothing goes wrong. It’s worth read-
ing the applicable specifications carefully, as there may be obscure forms
you are unaware of.

The good news is that the dangerous operations where injections become
a risk are often easy to scan for in source code. Check that SQL commands
are safely constructed using parameters, rather than as ad hoc strings. For
shell command injections, watch for uses of exec(3) and its variants, and be
sure to properly quote command arguments (Python provides shlex.quote

184 Chapter 10

for exactly this purpose). In JavaScript, review uses of eval and either safely
restrict them or consider not using it when untrusted inputs could possibly
influence the constructed expression.

This chapter covered a number of injection attacks and related com-
mon vulnerabilities, but injection is a very flexible method that can appear
in many guises. In the following chapter we will see it again (twice), in the
context of web vulnerabilities.

11
W E B S E C U R I T Y

When the words appeared, everyone said they were a miracle.
But nobody pointed out that the web itself is a miracle.

—E. B. White (from Charlotte’s Web)

The enormous success of the World Wide
Web is in no small part due to the remark-

able fact (today, completely taken for granted)
that countless millions of people use it routinely

without having the slightest understanding of how it
works. This singular achievement for such a complex
amalgam of technology is at once a blessing and a
curse. Undoubtedly, the web’s ease of use has sustained
widespread growth. On the flip side, securing a global
network of independent digital services, used by countless millions of
oblivious humans at the endpoints, is indeed an extremely difficult task.
Security is perhaps the hardest part of this big hard problem.

One complicating factor that makes security especially challenging is
that the early web was rather naively designed, without much consideration
to security. As a result, the modern web is the product of a long evolution
of standards, muddled by the competitive “browser wars” and backward

186 Chapter 11

compatibility restrictions. In short, the web is the most extreme instance of
after-the-fact, “bolt-on security” in history—though what we have, well over
a quarter of a century after its invention, is getting respectable.

Yet while the modern web can be made secure, its tangled history means
that it’s also quite fragile and filled with many “security and privacy infelici-
ties,” as the authors of RFC 6265, a spec for web cookies, so colorfully put it.
Software professionals need to understand all of this so as not to run afoul
of these issues when building for the web. Tiny missteps easily create vulner-
abilities. Given the “Wild West” nature of the internet, bad actors have the
freedom to easily probe how websites work, as well as anonymously muck
around looking for openings to attack.

This chapter focuses on the fundamentals of how the web security model
evolved, and the right and wrong ways to use it. Vulnerabilities arise from
the details, and there are so many things a secure website must get exactly
right. We’ll cover all of the basics of web security, beginning with a plea to
build on top of a secure framework that handles the intricacies for you. From
there, we will see how secure communication (HTTPS), proper use of the
HTTP protocol (including cookies), and the Same Origin Policy combine
to keep websites safe. Finally, we’ll cover two of the major vulnerabilities spe-
cific to the web (XSS and CSRF) and discuss a number of other mitigations
that, when combined, go a long way toward securing a modern web server.
Nonetheless, this chapter is by no means a complete compendium of web
security, the specifics of which are voluminous and evolve rapidly.

The goal here is to convey a broad-brush sense of the major common
pitfalls so you will recognize and know how to deal with them. Web appli-
cations are also subject to the many other vulnerabilities covered elsewhere
in this book: the focus in this chapter should not be interpreted to suggest
that these are the only potential security concerns.

N O T E 	 The following discussion assumes that you are minimally familiar with the basics of
the web: the client/server model; the basics of HTTP and HTML, including cookies;
a little CSS; JavaScript at the “101” level; and the Document Object Model. Readers
less familiar with the web should still be able to follow along for the most part, perhaps
with a little supplemental reading to fill in any gaps.

Build on a Framework
Use design as a framework to bring order out of chaos.

—Nita Leland

Thanks to modern web development tools, building a website has become
nearly as easy as using one. My top recommendations for building a secure
website are to rely on a high-quality framework, never override the safe-
guards it provides, and let competent experts handle all the messy details.

A reliance on a solid framework should insulate you from the kinds
of vulnerabilities covered in the following sections, but it’s still valuable
to understand exactly what frameworks do and don’t do so you can use
them effectively. It’s also critical that you choose a secure framework from

Web Security 187

the start, because your code will heavily depend on it, making it painful
to switch later if it lets you down. How do you know if a web framework is
really secure? It boils down to trust—both in the good intentions and the
expertise of its makers.

Web frameworks rise and fall in popularity and buzz almost as fast as
Parisian fashion, and your choice will depend on many factors, so I won’t
attempt to make recommendations. However, I can suggest general guide-
lines to consider for your own evaluation:

•	 Choose a framework produced by a trustworthy organization or team
that actively develops and maintains it in order to keep up with con-
stantly changing web technologies and practices.

•	 Look for an explicit security declaration in the documentation. If you
don’t find one, I would disqualify the framework.

•	 Research past performance: the framework doesn’t need a perfect record,
but slow responses or ongoing patterns of problems are red flags.

•	 Build a small prototype and check the resulting HTML for proper
escaping and quoting (using inputs like the ones in this chapter’s
examples).

•	 Build a simple test bed to experiment with basic XSS and CSRF attacks,
as explained later in this chapter.

The Web Security Model
I’m kind of glad the web is sort of totally anarchic. That’s fine with me.

—Roger Ebert

The web is a client/server technology, and understanding its security model
requires considering both of those perspectives at once. Doing so gets inter-
esting quickly, since the security interests of the two parties are often in
contention, especially given the threat of potential attackers intruding via
the internet.

Consider the typical online shopping website. The security principles at
play here apply, more or less, to all kinds of web activity. In order to do busi-
ness, the merchant and customers must trust each other to a certain degree,
and in the vast majority of cases that does actually happen. Nonetheless,
there are inevitably a few bad actors out there, so websites cannot fully trust
every client, and vice versa. The following points highlight some of the
nuances of the tentative mutual trust between the merchant and customer.

Here are some the merchant’s basic requirements:

•	 Other websites should be unable to interfere with my customer
interactions.

•	 I want to minimize my competitors’ ability to scrape my product and
inventory details while helpfully informing legit customers.

•	 Customers shouldn’t be able to manipulate prices or order products not
in stock.

188 Chapter 11

Here are some of the customer’s:

•	 I require assurance that the website I’m accessing is authentic.

•	 I demand confidence that online payments are secure.

•	 I expect the merchant to keep my shopping activities private.

Clearly, both parties must remain vigilant for the web to work well.
That said, the customer expects many things from the merchant. Solving
the hard problem of educating confused or gullible customers is out of
scope here, if that’s even possible. Instead, in web security, we focus on
securing a website from the merchant’s perspective. The web only works
if servers do a good job of providing that security, making it possible for
the honest end user to even have a chance at a secure web experience.
Merchants must not only decide how much they can trust customers, but
also intuit how much customers will likely trust them.

Another odd aspect of the web’s security model is the role of the client
browser. Designing web services proves challenging because they need to
interact with browsers that they have absolutely no control over. A malevolent
client could easily use a modified browser capable of anything. Alternatively,
a careless client could well be running an ancient browser full of security
holes. Even if a web server attempts to limit the types of browsers clients use
to certain versions, remember that the browser could easily misidentify itself
to get around such restrictions. The saving grace is that honest clients want
to use secure browsers and update them regularly, because it protects their
own interests. Most importantly, so long as the server remains secure, one
malicious client cannot interfere with the service that other clients receive.

Web servers overtrusting potentially untrustworthy client browsers
is at the root of many web security vulnerabilities. I stress this point, at
the risk of repetition, because it is so easily and often forgotten (as I will
explain throughout the chapter).

The HTTP Protocol
Anyone who considers protocol unimportant has never dealt with a cat.

—Robert A. Heinlein

The HTTP protocol itself is at the heart of the web, so before we dig into
web security, it’s worth briefly reviewing how it works. This hyper-simplified
explanation serves as a conceptual framework for the rest of the security
discussion, and we’ll focus on the parts where security enters the picture.
For many, web browsing has become so commonplace in daily life that it’s
worth stepping back and thinking through all the steps of the process—
many of which we hardly notice, as modern processors and networks rou-
tinely provide blazing-fast responses.

Web browsing always begins with a uniform resource locator (URL).
The following example shows its parts:

http://www.example.com/page.html?query=value#fragment

Web Security 189

The scheme precedes the colon, and specifies the protocol (here, http)
the browser must use to request the desired resource. IP-based protocols
begin with // followed by the hostname, which for web pages is the domain
name of the web server (in this case, www.example.com). The rest is all optional:
the / followed by the path, the ? followed by the query, and the # followed by
the fragment. The path specifies which web page the browser is requesting.
The query allows the web page content to be parameterized. For example,
when searching for something on the web, the URL path for results might
be /search?q=something. The fragment names a secondary resource within the
page, often an anchor as the destination of a link. In summary, the URL
specifies how and where to request the content, the specific page on the site,
query parameters to customize the page, and a way to name a particular
part of the page.

Your web browser has a lot of work to do in order to display the web page
when you give it a URL. First, it queries the Domain Name System (DNS) for
the IP address of the hostname in order to know where to send the request.
The request contains the URL path and other parameters encoded as request
headers (including any cookies, the user’s preferred language, and so on)
sent to the web server host. The server sends back a response containing
a status code and response headers (which may set cookies, and many other
things), followed by the content body that consists of the HTML for the web
page. For all embedded resources, such as scripts, images, and so forth, this
same request/response process repeats until the content is fully loaded and
displayed.

Now let’s look at what web servers must do correctly in order to remain
secure. One important detail not yet mentioned is that the request specifies
the HTTP verb. For our purposes here, we will focus on just the two most
common verbs. GET requests content from the server. By contrast, clients
use the POST verb to send form submissions or file uploads. GET requests
are explicitly not state-changing, whereas POST requests intend to change
the state of the server. Respecting this semantic distinction is important, as
will be seen when we cover CSRF attacks. For now, keep in mind that even
though the client specifies the request verb to use, the server is the one that
decides what to do with it. Additionally, by offering hyperlinks and forms
on its pages, the server in effect guides the client to make subsequent GET
or POST requests.

Sticklers will point out that one certainly can run a server that changes
state in response to GET verb requests and, perversely, refuses to change state
for form POST submissions. But if you strictly follow the standard rules, it is
vastly easier to make your server secure. Think of it this way: yes, it is possible
to climb over fences marked “Keep Out!” at a cliff and walk along the edge
of the precipice without falling, but doing so needlessly puts your security in
jeopardy.

A related security no-no is embedding sensitive data in a URL; instead,
use form POST requests to send the data to the server. Otherwise, the REFERER
header may disclose the URL of the web page that led to the request, expos-
ing the data. For example, clicking a link on a web page with the URL https://
example.com?param=SECRET navigates to the link destination using a GET request

190 Chapter 11

with a REFERER header containing the URL which includes SECRET, thereby leak-
ing the secret data. In addition, logs or diagnostic messages risk disclosing the
data contained in URLs. While servers can use the Referrer-Policy header to
block this, they must depend on the client honoring it—hardly a perfect solu-
tion. (The REFERER header is indeed misspelled in the spec, so we’re stuck with
that, but the policy name is correctly spelled.)

One easy mistake to make is including usernames in URLs. Even an
opaque identifier, such as the hash of a username, leaks information, in that
it potentially allows an eavesdropper to match two separately observed URLs
and infer that they refer to the same user.

Digital Certificates and HTTPS
If what is communicated is false, it can hardly be called communication.

—Benjamin Mays

The first challenge for secure web browsing is reliably communicating with
the correct server. To do this, you must know the correct URL and query a
DNS service that provides the right IP address. If the network routes and
transmits the request correctly, it should reach the intended server. That’s a
lot of factors to get right, and a large attack surface: bad actors could inter-
fere with the DNS lookup, the routing, or the data on the wire at any point
along the route. Should the request be diverted to a malicious server, the
user might never realize it; it isn’t hard to put up a look-alike website that
would easily fool just about anyone.

The HTTPS protocol (also called HTTP over TLS/SSL) is tailor-made
to mitigate these threats. HTTPS secures the web using many of the tech-
niques covered in Chapter 5. It provides a secure end-to-end tamper-proof
encrypted channel, as well as assurance to the client that the intended
server is really at the other end of that channel. Think of the secure chan-
nel as a tamper-evident pipeline for data that confirms the server’s identity.
An eavesdropping attacker could possibly see encrypted data, but without
the secret key, it’s indistinguishable from random bits. An attacker may be
able to tamper with the data on an unprotected network, but if HTTPS is
used, any tampering will always be detected. Attackers may be able to pre-
vent communication, for example by physically cutting a cable, but you are
assured that bogus data will never get through.

Nobody ever disputed the need for HTTPS to secure financial transac-
tions on the web, but major sites delayed going fully HTTPS for far too long.
(For example, Facebook only did so in 2013.) When first implemented, the
protocol had subtle flaws, and the necessary computations were too heavy-
weight for the hardware at the time to justify widespread adoption. The good
news is that, over time, developers fixed the bugs and optimized the protocol.
Thanks to protocol optimizations, more efficient crypto algorithms, and faster
processors, HTTPS is fast, robust, and rapidly approaching ubiquity today.
It’s widely used to protect private data communications, but even for a website
only serving public information, HTTPS is important to ensure authenticity
and strong integrity. In other words, it provides assurance that the client is

Web Security 191

communicating with the bona fide server named in the request URL, and that
data transmitted between them has not been snooped on or tampered with.
Today, it’s difficult to think of any good reason not to configure a website to
use HTTPS exclusively. That said, there are still plenty of non-secure HTTP
websites out there. If you use them, keep in mind that the nice security prop-
erties of HTTPS do not apply, and take appropriate precautions.

Understanding precisely what HTTPS does (and does not do) to secure
the client/server interaction is critical in order to grasp its value, how it helps,
and what it can and cannot change. In addition to assuring server authentic-
ity and the confidentiality and integrity of web requests and response content,
the secure channel protects the URL path (in the first line of the request
headers—for example, GET /path/page.html?query=secret#fragment), prevent-
ing anyone who’s snooping from seeing what page of the website the client
requested. (HTTPS can optionally also authenticate the client to the server.)
However, the HTTPS traffic itself is still observable over the network, and
because the IP addresses of the endpoints are unprotected, eavesdroppers
can often deduce the identity of the server.

Table 11-1 compares of the security attributes of HTTP and HTTPS,
in terms of the capabilities of an attacker lurking between the two end-
points of a client/server communication.

Table 11-1: HTTP vs. HTTPS Security Attributes

Can an attacker. . . HTTP HTTPS

See web traffic between client/server
endpoints?

Yes Yes

Identify the IP addresses of both client and
server?

Yes Yes

Deduce the web server’s identity? Yes Sometimes (see note below)

See what page within the site is requested? Yes No (in encrypted headers)

See the web page content and the body of
POSTs?

Yes No (encrypted)

See the headers (including cookies) and URL
(including the query portion)?

Yes No

Tamper with the URL, headers, or content? Yes No

N O T E 	 The reverse DNS lookup of a web server’s IP address reveals its domain name. When
multiple web servers share an IP address, the SNI (Server Name Indication) is visible,
but the ESNI (Encrypted SNI) is protected.

As HTTPS and the technology environment matured, the last obstacle
to broad adoption was the overhead of getting server certificates. Whereas
larger companies could afford the fees that trusted certificate authorities
charged and had staff to manage the renewal process, the owners of smaller
websites balked at the extra cost and administrative overhead. By 2015,
HTTPS was mature and most internet-connected hardware operated fast
enough to handle it, and with awareness of the importance of web privacy

192 Chapter 11

growing quickly, the internet community was approaching a consensus that
it needed to secure the majority of web traffic. The lack of free and simple
server certificate availability proved the biggest remaining obstacle.

Thanks to strong promotion by the wonderful Electronic Frontier
Foundation and sponsorship from a wide range of industry companies,
Let’s Encrypt, a product of the nonprofit Internet Security Research Group,
offers the world a free, automated, and open certificate authority. It provides
Domain Validation (DV) certificates, free of charge, to any website owner.
Here’s a simplified explanation of how Let’s Encrypt works. Keep in mind
that the following process is automated in practice:

1.	 Identify yourself to Let’s Encrypt by generating a key pair and sending
the public key.

2.	 Query Let’s Encrypt, asking what you need to do to prove that you con-
trol the domain.

3.	 Let’s Encrypt issues a challenge, such as provisioning a specified DNS
record for the domain.

4.	 You satisfy the challenge by creating the requested DNS record and ask
Let’s Encrypt to verify what you did.

5.	 Once verified, the private key belonging to the generated key pair is
authorized for the domain by Let’s Encrypt.

6.	 Now you can request a new certificate by sending Let’s Encrypt a
request signed by the authorized private key.

Let’s Encrypt issues 90-day DV certificates and provides a “certbot” to
handle automatic renewals. With automatically renewable certificates avail-
able as a free service, secure web serving today has widely become a turnkey
solution at no additional cost. HTTPS comprised more than 85 percent of
web traffic in 2020, more than double the 40 percent level of 2016, when
Let’s Encrypt launched.

A DV certificate is usually all you need to prove the identity of your
website. DV certificates simply assert the authenticated web server’s domain
name, and nothing more. That is, the example.com certificate is only ever
issued to the owner of the example.com web server. By contrast, certificates
offering higher levels of trust, such as Organization Validation (OV) and
Extended Validation (EV) certificates, authenticate not only the identity of
the website but also, to some extent, the owner’s identity and reputation.
However, with the proliferation of free DV certificates, it’s increasingly
unclear if the other kinds will remain viable. Few users care about such
distinctions of trust, and the technical as well as legal nuances of OV and
EV certificates are subtle. Their precise benefits are challenging to grasp
unless (and even if) you are a lawyer.

Once you’ve set up your web server to use the HTTPS protocol with
a certificate, you must make sure it always uses HTTPS. To ensure this, you
must reject downgrade attacks, which attempt to force the communication to
occur with weak encryption or without encryption. These attacks work
in two ways. In the simplest case, the attacker tries changing an HTTPS

Web Security 193

request to HTTP (which can be snooped and tampered with), and a poorly
configured web server might be tricked into complying. The other method
exploits the HTTPS protocol options that let the two parties negotiate cipher
suites for the encrypted channel. For example, the server may be able to
“speak” one set of crypto “dialects,” and the client might “speak” a different
set, so up front, they need to agree on one that’s in both their repertoires.
This process opens the door to an attacker, who could trick both parties
into selecting an insecure choice that compromises security.

The best defense is to ensure your HTTPS configuration only operates
with secure modern cryptographic algorithms. Judging exactly which cipher
suites are secure is highly technical and best left to cryptographers. You must
also strike a balance to avoid excluding, or degrading the experience of, older
and less powerful clients. If you don’t have access to reliable expert advice, you
can look at what major trustworthy websites do and follow that. Simply assum-
ing that the default configuration will be secure forever is a recipe for failure.

Mitigate such attacks by always redirecting HTTP to HTTPS, as well as
restricting web cookies to HTTPS only. Include the Strict-Transport-Security
directive in your response HTTP headers so the browser knows that the web-
site always uses HTTPS. For an HTTPS web page to be fully secure, it must
be pure HTTPS. This means all content on the server should use HTTPS,
as should all scripts, images, fonts, CSS, and other referenced resources.
Failing to take all the necessary precautions weakens the security protection.

The Same Origin Policy
Doubt is the origin of wisdom.

—Rene Descartes

Browsers isolate resources—typically windows or tabs—from different
websites so they can’t interfere with each other. Known as the Same Origin
Policy (SOP), the rule allows interaction between resources only if their host
domain names and port numbers match. The Same Origin Policy dates
back to the early days of the web and became necessary with the advent of
JavaScript. Web script interacts with web pages via the Document Object Model
(DOM), a structured tree of objects that correspond to browser windows and
their contents. It didn’t take a security expert to see that if any web page could
use script to window.open any other site, and programmatically do anything it
wanted with the content, countless problems would ensue. The first restric-
tions that were implemented—including fixes for a number of tricky ways
people found of getting around them over the years—evolved into today’s
Same Origin Policy.

The Same Origin Policy applies to script and cookies (with a few extra
twists), which both can potentially leak data between independent websites.
However, web pages can include images and other content, such as web ads,
from other websites. This is safely allowed, since these cannot access the
content of the window they appear in.

Although the Same Origin Policy prevents script in pages from other
websites from reaching in, web pages can always choose to reach out to different

194 Chapter 11

websites if they wish, pulling their content into the window. It’s quite common
for a web page to include content from other websites, to display images, to
load scripts or CSS, and so forth. Including any content from other websites is
an important trust decision; however, because it makes the web page vulner-
able to malicious content that may originate there.

Web Cookies
When the going gets tough, the tough make cookies.

—Erma Bombeck

Cookies are small data strings that the server asks the client to store on its
behalf and then provide back to it with subsequent requests. This clever
innovation allows developers to easily customize web pages for a particular
client. The server response may set named cookies to some value. Then,
until the cookies expire, the client browser sends the cookies applicable to a
given page in subsequent requests. Since the client retains its own cookies,
the server doesn’t necessarily need to identify the client to bind cookie val-
ues to it, so the mechanism is potentially privacy-preserving.

Here’s a simple analogy: if I run a store and want to count how many
times each customer visits, an easy way would be for me to give each cus-
tomer a slip of paper with “1” on it and ask them to bring it back the next
time they come. Then, each time a customer returns, I take their paper,
add one to the number on it, and give it back. So long as customers comply,
I won’t have to do any bookkeeping or even remember their names to keep
accurate tallies.

We use cookies for all manner of things on the web, tracking users
being among the most controversial. Cookies often establish secure sessions
so the server can reliably tell all of its clients apart. Generating a unique
session cookie for each new client allows the server to identify the client from
the cookie appearing in a request.

While any client could tamper with its own cookies and pretend to be
a different session, if the session cookie is properly designed, the client
shouldn’t be able to forge a valid session cookie. Additionally, clients could
send copies of their cookies to another party, but in doing so they would
only harm their own privacy. That behavior doesn’t threaten innocent users
and is tantamount to sharing one’s password.

Consider a hypothetical online shopping website that stores the current
contents of a customer’s shopping cart in cookies as a list of items and the
total cost. There is nothing to stop a clever and unethical shopper from
modifying the local cookie store. For instance, they could change the price
of a valuable load of merchandise to a paltry sum. This does not mean that
cookies are useless; cookies could be used to remember the customer’s pref-
erences, favorite items, or other details, and tampering with these wouldn’t
hurt the merchant. It just means that you should always use client storage
on a “trust but verify” basis. Go ahead and store item costs and the cart
total as cookies if that’s useful, but before accepting the transaction, be
certain to validate the cost of each item on the server side, and reject any

Web Security 195

data that’s been tampered with. This example makes the problem plain as
day. However, other forms of the same trust mistake are more subtle, and
attackers frequently exploit this sort of vulnerability.

Now let’s look at this same example from the client’s perspective. When
two people use an online shopping website and browse to the same /mycart
URL, they each see different shopping carts because they have distinct ses-
sions. Usually, unique cookies establish independent anonymous sessions,
or, for logged-in users, identify specific accounts.

Servers set session cookies with a time of expiration, but since they can-
not always rely on the client to respect that wish, they must also enforce limits
on the validity of session cookies that need renewing. (From the user’s per-
spective, this expiration looks like being asked to log in again after a period
of inactivity.)

Cookies are subject to the Same Origin Policy, with explicit provisions
for sharing between subdomains. This means that cookies set by example.com
are visible to the subdomains cat.example.com and dog.example.com, but cook-
ies set on those respective subdomains are isolated from each other. Also,
though subdomains can see cookies set by parent domains, they cannot
modify them. By analogy, state governments rely on national-level creden-
tials such as passports, but may not issue them. Within a domain, cookies
may be further scoped by path as well (but this is not a strong security
mechanism). Table 11-2 illustrates these rules in detail. In addition, cookies
may specify a Domain attribute for explicit control.

Table 11-2: Cookie Sharing Under Same Origin Policy (SOP) with Subdomains

Can the web pages
served by the hosts
below. . .

. . .see the cookies set for these hosts?

example.com dog.example.com cat.example.com example.org

example.com Yes
(same domain)

No
(subdomain)

No
(subdomain)

No
(SOP)

dog.example.com Yes
(parent domain)

Yes
(same domain)

No
(sibling domain)

No
(SOP)

cat.example.com Yes
(parent domain)

No
(sibling domain)

Yes
(same domain)

No
(SOP)

example.org No
(SOP)

No
(SOP)

No
(SOP)

Yes
(same domain)

Script nominally has access to cookies via the DOM, but this conve-
nience would give malicious script that manages to run in a web page an
opening to steal the cookies, so it’s best to block script access by specify-
ing the httponly cookie attribute. HTTPS websites should also apply the
secure attribute to direct the client to only send cookies over secure chan-
nels. Unfortunately, due to legacy constraints too involved to cover here,
integrity and availability issues remain even when you use both of these
attributes (see RFC 6265 for the gory details). I mention this not only as a
caveat, but also as a great example of a repeated pattern in web security; the

196 Chapter 11

tension between backward compatibility and modern secure usage results
in compromise solutions that illustrate why, if security isn’t baked in from
the start, it often proves to be elusive.

HTML5 has added numerous extensions to the security model. A
prime example is Cross-Origin Resource Sharing (CORS), which allows
selective loosening of Same Origin Policy restrictions to enable data access
by other trusted websites. Browsers additionally provide the Web Storage
API, a more modern client-side storage capability for web apps that’s also
subject to the Same Origin Policy. These newer features are much better
designed from a security standpoint, but still are not a complete substitute
for cookies.

Common Web Vulnerabilities
Websites should look good from the inside and out.

—Paul Cookson

Now that we’ve surveyed the major security highlights of website construc-
tion and use, it’s time to talk about specific vulnerabilities that commonly
arise. Web servers are liable to all kinds of security vulnerabilities, including
many of those covered elsewhere in this book, but in this chapter we’ll focus
on security issues specific to the web. The preceding sections explained the
web security model, including a lot of potential ways to avoid weakening
security and useful features that help better secure your web presence. Even
assuming you did all of that right, this section covers still more ways web
servers can get it wrong and be vulnerable.

The first category of web vulnerability, and likely the most common, is
cross-site scripting (XSS). The other vulnerability we’ll cover here is prob-
ably my favorite due to its subtlety: cross-site request forgery (CSRF).

Cross-Site Scripting
I don’t let myself “surf” on the Web, or I would probably drown.

—Aubrey Plaza

The isolation that the Same Origin Policy provides is fundamental to build-
ing secure websites, but this protection breaks easily if we don’t take neces-
sary precautions. Cross-site scripting (XSS) is a web-specific injection attack
where malicious input alters the behavior of a website, typically resulting in
running unauthorized script.

Let’s consider a simple example to see how this works and why it’s essential
to protect against. The attack usually begins with the innocent user already
logged in to a trusted website. The user then opens another window or tab
and goes surfing, or perhaps unwisely clicks a link in an email, browsing to an
attacking site. The attacker typically aims to commandeer the user’s authenti-
cated state with the target site. They can do so even without a tab open to the
victim site, so long as the cookies are present (which is why it’s good practice to

Web Security 197

log out of your banking website when you’re done). Let’s look at what an XSS
vulnerability in a victim site looks like, exactly how to exploit it, and finally,
how to fix it.

Suppose that for some reason a certain page of the victim website
(www.example.com) wants to render a line of text in several different colors.
Instead of building separate pages, all identical except for the color of
that line, the developer chooses to specify the desired color in the URL
query parameter. For example, the URL for the version of the web page
with a line of green text would be:

https://www.example.com/page?color=green

The server then inserts the highlighted query parameter into the fol-
lowing HTML fragment:

<h1 style="color:green">This is colorful text.</h1>

This works fine if used properly, which is exactly why these flaws are
easily overlooked. Seeing the root of the problem requires looking at the
server-side Python code responsible for handling this task (as well as some
devious thinking):

vulnerable code query_params = urllib.parse.parse_qs(self.parts.query)
color = query_params.get('color', ['black'])[0]
h = '<h1 style="color:%s">This is colorful text.</h1>' % color

The first line parses the URL query string (the part after the question
mark). The next line extracts the color parameter, or defaults to black if
it’s unspecified. The last line constructs the HTML fragment that displays
text with the corresponding font color, using inline styling for the heading
level 1 tag (<h1>). The variable h then forms part of the HTML response that
comprises the web page.

You can find the XSS vulnerability in that last line. There, the pro-
grammer has created a path from the contents of the URL (which, on the
internet, anyone can send to the server) that leads directly into the HTML
content served to the client. This is the familiar pattern of injection attacks
from Chapter 10, and constitutes an unprotected trust boundary crossing,
because the parameter input string is now inside the web page HTML con-
tents. This condition alone is enough to raise red flags, but to see the full
dimensions of this XSS vulnerability, let’s try exploiting it.

An attack requires a little imagination. Refer back to the <h1> HTML
tag and consider other possible substitutions for the highlighted color
name. Think outside the box, or in this case, outside the double quoted
string style="color:green". Or can you break out of the <h1> tag entirely?
Here’s a URL that illustrates what I mean by “break out”:

https://www.example.com/page?color=orange"><SCRIPT>alert("Gotcha!")</SCRIPT><span%20id="dummy

All of that highlighted stuff gets dutifully inserted into the <h1> HTML
tag as before, producing a vastly different result.

198 Chapter 11

In the actual HTML, this code would appear as a single line, but for
legibility I’ve indented it here to show how it’s parsed:

<h1 style="color:orange">
 <SCRIPT>alert("Gotcha!")</SCRIPT>
 This is colorful text.
</h1>

The new <h1> tag is syntactic, specifying an orange color. However, note
that the attacker’s URL parameter value supplied the closing angle bracket.
This wasn’t done just to be nice: the attacker needed to close the <h1> tag
in order to make a well-formed <SCRIPT> tag and inject it into the HTML,
ensuring that the script would run. In this case, the script opens an alert
dialog—a harmless but unmistakable proof of the exploit. After the closing
</SCRIPT> tag, the rest of the injection is just filler to obscure that tamper-
ing occurred. The new tag has an id attribute merely so the following
double quote and closing angle bracket will appear as part of the tag.
Browsers routinely supply closing tags if missing, so the exploited
page is well-formed HTML, making the modifications invisible to the user
(unless they inspect the HTML source).

To actually attack victims remotely, the attacker has more work to do in
order to get people to browse to the malicious URL. Attacks like this gener-
ally only work when the user is already authenticated to the target website—
that is, when valid login session cookies exist. Otherwise, the attacker might
as well type the URL into their own browser. What they’re after is your
website session, which shows your bank balance or your private documents.
A serious attacker-defined script would immediately load additional script,
and then proceed to exfiltrate data, or make unauthorized transactions in
the user’s context.

XSS vulnerabilities aren’t hard for attackers to discover, since they can
easily view a web page’s content to see the inner workings of the HTML.
(To be precise, they can’t see code on the server, but by trying URLs and
observing the resulting web pages, it isn’t hard to make useful inferences
about how it works.) Once they notice an injection from the URL into a
web page, they can then perform a quick test, like the example shown here,
to check if the server is vulnerable to XSS. Moreover, once they have con-
firmed that HTML metacharacters, such as angle brackets and quotes, flow
through from the URL query parameter (or perhaps another attack sur-
face) into the resultant web page, they can view the page’s source code and
tweak their attempts until they hit the jackpot.

There are several kinds of XSS attacks. This chapter’s example is a reflected
XSS attack, because it is initiated via an HTTP request and expressed in the
immediate server response. A related form, the stored XSS attack, involves two
requests. First, the attacker somehow manages to store malicious data, either
on the server or in client-side storage. Once that’s set up, a following request
tricks the web server into injecting the stored data into a subsequent request,
completing the attack. Stored XSS attacks can work across different clients.

Web Security 199

For example, on a blog, if the attacker can post a comment that causes XSS in
the rendering of comments, then subsequent users viewing the web page will
get the malicious script.

A third attack form, called DOM-based XSS, uses the HTML DOM as
the source of the malicious injection, but otherwise works much the same.
Categories aside, the bottom line is that all of these vulnerabilities derive
from injecting untrusted data that the web server allows to flow into the web
page, introducing malicious script or other harmful content.

A secure web framework should have XSS protection built in, in which
case you should be safe so long as you stay within the framework. As with any
injection vulnerability, the defense involves either avoiding any chance for
untrusted input to flow into a web page and potentially break out, or per-
forming input validation to ensure that inputs will be handled safely. In the
colored text example, the former technique could be implemented by simply
serving named web pages (/green-page and /blue-page, for example) without
the tricky query parameter. Alternatively, with a color parameter in the
URL, you could constrain the query parameter value to be in an allowlist.

Cross-Site Request Forgery
One cannot separate the spider web’s form from the way in which it originated.

—Neri Oxman

Cross-site request forgery (CSRF, or sometimes XSRF) is an attack on a funda-
mental limitation in the Same Origin Policy. The vulnerability that these
attacks exploit is conceptually simple but extremely subtle, so exactly where
the problem lies, and how to fix it, can be hard to see at first. Web frame-
works should provide CSRF protection, but a strong understanding of the
underlying issue is still valuable so you can confirm that it works and be
sure not to interfere with the mechanism.

Websites certainly can and often do include content, such as images
from different websites, obtained via HTTP GET. The Same Origin Policy
allows these requests while isolating the content, so the image data doesn’t
leak between different websites from different domains. For example, site X
can include on its page an image from site Y; the user sees the embedded
image as part of the page, but site X itself cannot “see” the image, because
the browser blocks script access to image data via the DOM.

But the Same Origin Policy works the same for POST as it does for
GET, and POST requests can modify a site’s state. Here’s exactly what hap-
pens: the browser allows site X to submit a form to site Y, and includes the
Y cookies, too. The browser ensures that the response from site Y is com-
pletely isolated from site X. The threat is that a POST can modify data on
the Y server, which X shouldn’t be able to do, and by design, any website can
POST to any other. Since browsers facilitate these unauthorized requests,
web developers must explicitly defend against these attempts to modify data
on the server.

A simple attack scenario will illustrate what CSRF vulnerabilities
look like, how to exploit them, and in turn, how to defend against attack.
Consider a social website Y, with many users who each have accounts. Site

200 Chapter 11

Y is running a poll, and each user gets one vote. The site drops a unique
cookie for each authenticated user on the voting page, and then only
accepts one vote per user.

A comment posted on the voting page says, “Check this out before you
vote!” and links to a page on another website, X, that offers advice on how
to vote. Many users click the link and read the page. With the Same Origin
Policy protecting you, what could go wrong?

If you don’t see the problem yet, here’s a big hint: think about what
might be going on in the site X window. Suppose site X is run by some das-
tardly and guileful cheaters trying to steal votes. Whenever a user browses to
X, a script on that page submits the site owner’s preferred vote to the
social website in that user’s browser context (using their cookies from Y).

Since site X is allowed to submit forms using each user’s Y cookies, that’s
enough to steal votes. The attackers just want to effect the state change on
the server; they don’t need to see the response page confirming the user’s
vote, which is all the Same Origin Policy blocks.

To prevent CSRF, ensure that valid state-changing requests are unguess-
able. In other words, treat each valid POST request as a special snowflake
that only works once in the context of its intended use. An easy way to
do this is by including a secret token as a hidden field in all forms, then
checking that each request includes the secret corresponding to the given
web session. There is a lot of nuanced detail packed into the creation and
checking of a secret token for CSRF protection, so the details are worth
digging into. A decent web framework should handle this for you, but let’s
take a look at the details.

Here’s an example of the voting form with an anti-CSRF secret token
highlighted:

<form action="/ballot" method="post">
 <label for="name">Voting for</label>
 <input type="text" id="name" name="name" value=""/>
 <input type="hidden" name="csrf_token"

value="mGEyoi1wE6NBWCyhBN9IZdEmaJLQtrYxi0J23XuXR4o="/>
 <input type="submit" value="Vote"/>
</form>

The hidden csrf_token field doesn’t appear on the screen, but is included
in the POST request. The field’s value is a base-64 encoding of a SHA-256
hash of the contents of the session cookie, but any per-client secret works.
Here’s the Python code creating the anti-CSRF token for the session:

def csrf_token(self):
 digest = hashlib.sha256(self.session_id.encode('utf-8')).digest()
 return base64.b64encode(digest).decode('utf-8')

The code derives the token from the session cookie (the string value
self.session_id), so it’s unique to each client. Since the Same Origin Policy
prevents site X from knowing the victim’s site Y cookies, it’s impossible for

Web Security 201

Y’s creators to concoct an authentic form that satisfies these conditions to
POST and steal the vote.

The validation code on the Y server simply computes the expected
token value and checks that the corresponding field in the incoming form
matches it. The following code prevents CSRF attempts by returning
an error message if the token doesn’t match, before actually processing
the form:

 token = fields.get('csrf_token')
 if token != self.csrf_token():
 return 'Invalid request: Cross-site request forgery detected.'

There are many ways to mitigate CSRF attacks, but deriving the token
from the session cookie is a nice solution because all the necessary informa-
tion to do the check arrives in the POST request. Another possible mitiga-
tion is to use a nonce—an unguessable token for one-time use—but to fend
off CSRF attacks, you still have to tie it to the intended client session. This
solution involves generating the random nonce for the form’s CSRF token,
storing the token in a table indexed by session, and then validating the
form by looking up the nonce for the session and checking that it matches.

Modern browsers support the SameSite attribute on cookies to mitigate
CSRF attacks. SameSite=Strict blocks sending cookies for any third-party
requests (to other domains) on a page, which would stop CSRF but can
break some useful behavior when navigating to another site that expects
its cookies. There are other settings available, but support may be incon-
sistent across browser brands and older versions. Since this is a client-side
CSRF defense it may be risky for the server to completely depend on it, so it
should be considered at additional mitigation rather than the sole defense.

More Vulnerabilities and Mitigations
The only way you can know where the line is, is if you cross it.

—Dave Chappelle

To recap: to be secure you should build websites in pure HTTPS, using
a quality framework. Don’t override protection features provided by the
framework unless you really know what you are doing, which means under-
standing how vulnerabilities such as XSS and CSRF arise. Modern websites
often incorporate external scripts, images, styling, and the like, and you
should only depend on resources from sources that you can trust since you
are letting them inject content into your web page.

Naturally, that isn’t the end of the story, as there are still plenty of ways
to get in trouble when exposing a server to the web. Websites present a large
attack surface to the public internet, and those untrusted inputs can easily
trigger all manner of vulnerabilities in server code, such as SQL injection
(web servers frequently use databases for storage) and all the rest.

202 Chapter 11

There are a number of other web-specific pitfalls worth mentioning.
Here are some of the more common additional issues to watch out for
(though this list is hardly exhaustive):

•	 Don’t let attackers inject untrusted inputs into HTTP headers (similar
to XSS).

•	 Specify accurate MIME content types to ensure that browsers process
responses correctly.

•	 Open redirects can be problematic: don’t allow redirects to arbitrary
URLs.

•	 Only embed websites you can trust with <IFRAME>. (Many browsers sup-
port the X-Frame-Options header mitigation.)

•	 When working with untrusted XML data, beware of XML external
entity (XXE) attacks.

•	 The CSS :visited selector potentially discloses whether a given URL is
in the browser history.

In addition, websites should use a great new feature, the HTTP Content-
Security-Policy response header, to reduce exposure to XSS. It works by speci-
fying authorized sources for script or images (and many other such features),
allowing the browser to block attempts to inject inline script or other mali-
cious content from other domains. There are a lot of browsers out there, and
browser compatibility for this feature is still inconsistent, so using this header
isn’t sufficient to consider the vulnerability completely fixed. Think of this as
an additional line of defense, but since it is client-side and out of your control,
don’t consider it a free pass granting perfect immunity to XSS.

Links to untrusted third-party websites can be risky because the browser
may send a REFERER header, as mentioned earlier in this chapter, and provide
a window.opener object in the DOM to the target page. The rel="noreferrer"
and rel="noopener" attributes, respectively, should be used to block these
unless they are useful and the target can be trusted.

Adding new security features after the fact may be daunting for large
existing websites, but there is a relatively easy way of moving in the right
direction. In a test environment, add restrictive security policies in all web
pages, and then test the website and track down what gets blocked issue by
issue. If you prohibit script loading from a site that you know is safe and you
intended to use, then by incrementally loosening the script policy, you’ll
quickly arrive at the correct policy exceptions. With automated in-browser
testing just to make sure the entire site gets tested, you should be able to
make great strides for security with a modest investment of effort.

There are a number of HTTP response headers that help you specify
what the browser should or should not allow, including the Content-Security-
Policy, Referrer-Policy, Strict-Transport-Security, X-Content-Type-Options, and
X-Frame-Options headers. The specifications are still evolving, and support
may vary from browser to browser, so this is a tricky, changing landscape.

Web Security 203

Ideally, make your website secure on the server side, and then use these
security features as a second layer of defense, bearing in mind that reliance
only on client side mechanisms would be risky.

It’s amazing how secure the web actually is, considering all the ways
that things can go wrong, what it evolved from, and the volume of critical
data it carries. Perhaps, in hindsight, it’s best that security technologies have
matured slowly over time as the web has seen widespread global adoption.
Had the early innovators attempted to design a completely secure system
back in the day, the task would have been extremely daunting, and had they
failed, the entire endeavor might never have come to anything.

12
S E C U R I T Y T E S T I N G

Testing leads to failure, and failure leads to understanding.
—Burt Rutan

This chapter introduces security testing
as an essential part of developing reliable,

secure code. Testing proactively to detect
security vulnerabilities is both well understood

and not difficult to do, but it’s vastly underutilized
in practice and so represents a major opportunity to
raise security assurance.

This chapter opens with a quick overview of the uses of security test-
ing, followed by a walkthrough of how security testing could have saved
the world from a major vulnerability. Next, we look at the basics of writing
security test cases to detect and catch vulnerabilities or their precursors.
Fuzz testing is a powerful supplementary technique that can help you fer-
ret out deeper problems. We’ll also cover security regression tests, created
in response to existing vulnerabilities to ensure that the same mistakes are

206 Chapter 12

never made twice. The chapter concludes with a discussion of how testing
helps to prevent denial-of-service (DoS) and related attacks, followed by a
summary of security testing best practices (which covers a wide range of
ideas for security testing, but is by no means comprehensive).

What Is Security Testing?
To begin, it’s important to define what I mean by security testing. Most testing
consists of exercising code to check that functionality works as intended.
Security testing simply flips this around, ensuring that operations that
should not be allowed aren’t (an example with code will shortly make this
distinction clear).

Security testing is indispensable because it ensures that mitigations
are working. Given that coders reasonably focus on getting the intended
functionality to work with normal use, attacks that do the unexpected can
be difficult to fully anticipate. The material covered in the preceding chap-
ters should immediately suggest numerous security testing possibilities.
Here are some basic kinds of security test cases corresponding to the major
classes of vulnerabilities covered previously:

Integer overflows
Establish permitted ranges of values and ensure that detection and
rejection of out-of-range values work.

Memory management problems
Test that the code handles extremely large data values correctly, and
rejects them when they’re too big.

Untrusted inputs
Test various invalid inputs to ensure they are either rejected or con-
verted to a valid form that is safely processed.

Web security
Ensure that HTTP downgrade attacks, invalid authentication and
CSRF tokens, and XSS attacks fail (see the previous chapter for details
on these).

Exception handling flaws
Force the code through its various exception handling paths (using
dependency injection for rare ones) to check that it recovers reasonably.

What all of these tests have in common is that they are off the beaten
path of normal usage, which is why they are easily forgotten. And since all
these areas are ripe for attack, thorough testing makes a big difference.
Security testing makes code more secure by anticipating such cases and

Security Testing 207

confirming that the necessary protection mechanisms always work. In addi-
tion, for security-critical code, I recommend thorough code coverage to
ensure the highest possible quality, since bugs in those areas tend to be
devastating.

Security testing is likely the best way you can start making real improve-
ments to application security, and it isn’t difficult to do. There are no public
statistics for how much or how little security testing is done in the software
industry, but the preponderance of recurrent vulnerabilities strongly sug-
gests that it’s an enormous missed opportunity.

Security Testing the GotoFail Vulnerability
What a testing of character adversity is.

—Harry Emerson Fosdick

Recall the GotoFail vulnerability we examined in Chapter 8, which caused
secure connection checks to be bypassed. Extending the simplified exam-
ple presented there, let’s look at how security testing would have easily
detected problems like that.

The GotoFail vulnerability was caused by a single line of code acciden-
tally being doubled up, as shown by the highlighted line in the following
code snippet. Since that line was a goto statement, it short-circuited a series
of important checks and caused the verification function to unconditionally
produce a passing return code. Earlier we looked only at the critical lines of
code (in my simplified version), but to security test it, we need to examine
the entire function:

vulnerable code /*
 * Copyright (c) 1999-2001,2005-2012 Apple Inc. All Rights Reserved.
 *
 * @APPLE_LICENSE_HEADER_START@
 *
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this
 * file.
 *
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 *
 * @APPLE_LICENSE_HEADER_END@
 */

208 Chapter 12

int VerifyServerKeyExchange(ExchangeParams params,
 uint8_t *expected_hash, size_t expected_hash_len)
{
 int err;
 HashCtx ctx = 0;
 uint8_t *hash = 0;
 size_t hash_len;
 if ((err = ReadyHash(&ctx)) != 0)
 goto fail;
1 if ((err = SSLHashSHA1.update(ctx, params.clientRandom, PARAM_LEN)) != 0)
 goto fail;
2 if ((err = SSLHashSHA1.update(ctx, params.serverRandom, PARAM_LEN)) != 0)
 goto fail;
 goto fail;
3 if ((err = SSLHashSHA1.update(ctx, params.signedParams, PARAM_LEN)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.final(ctx, &hash, &hash_len)) != 0)
 goto fail;
 if (hash_len != expected_hash_len) {
 err = -106;
 goto fail;
 }
4 if ((err = memcmp(hash, expected_hash, hash_len)) != 0) {
 err = -100; // Error code for mismatch
 }
 SSLFreeBuffer(hash);

fail:
 if (ctx)
 SSLFreeBuffer(ctx);
 }
 return err;
}

N O T E 	 This code is based on the original sslKeyExchange.c with the bug. Code not directly
involved with the critical vulnerability is simplified and some names are changed for
brevity. For example, the actual function name is SSLVerifySignedServerKeyExchange.

The VerifyServerKeyExchange function takes a params argument consist-
ing of three fields, computes the message digest hash over its contents, and
compares the result to the expected_hash value that authenticates the data.
A zero return value indicates that the hashes match, which is required for a
valid request. A nonzero return value means there was a problem: the hash
values did not match (-100), the hash lengths did not match (-106), or some
nonzero error code was returned from the hash computation library due
to an unspecified error. Security depends on this: any tampering with the
hash value or the data causes the hashes to mismatch, signaling that some-
thing is amiss.

Let’s first walk through the correct version of the code, before the
duplicated goto statement was introduced. After setting up a HashCtx ctx
context variable, it hashes the three data fields of params in turn (at 1, 2,
and 3). If any error occurs, it jumps to the fail label to return the error

Security Testing 209

code in the variable err. Otherwise, it continues, copying the hash result
into a buffer and comparing that (at 4) to the expected hash value. The
comparison function memcmp returns 0 for equal, or if the hashes are differ-
ent, the code assigns an error code of -100 to err and falls through to return
that result.

Functional Testing
Before considering security testing, let’s start with a functional test for the
VerifyServerKeyExchange function. Functional testing checks that the code
performs as expected, and this simple example is by no means complete.
This example uses the MinUnit test framework for C. To follow along, all you
need to know is that mu_assert(condition, message) checks that the expression
condition is true; if not, the assertion fails, printing the message provided:

mu_assert(0 == VerifyServerKeyExchange(test0, expected_hash, SIG_LEN),
 "Expected correct hash check to succeed.");

 This calls the function with known-good parameters, so we expect a
return value of 0 to pass the test. In the function itself, the three fields will
be hashed (at 1, 2, and 3). The hashes compare equal at 4. Not shown
are the test values for the three fields of data (in the ExchangeParams struct
named test0) with the precomputed correct hash (expected_hash) that the
server would sign.

Functional Testing with the Vulnerability
Now let’s introduce the GotoFail vulnerability (that highlighted line of
code) and see what impact it has. When we rerun the functional test with
the extra goto, the test still passes. The code works fine up to the duplicated
goto, but then jumps over the hashing of the third data field (at 3) and
the comparison of hashes (at 4). The function will continue to verify cor-
rect inputs, but now it will also verify some bad inputs that it should reject.
However, we don’t know that yet. This is precisely why security testing is so
important—and why it’s so easily overlooked.

More thorough functional testing might well include additional test cases,
such as to check for verification failure (a nonzero return value). However,
functional testing often stops short of thoroughly covering all the cases where
we need the verify function to reject inputs in the name of security. This is
where security testing comes in, as we shall see next.

Security Test Cases
Now let’s write some security test cases. Since there are three chunks of data
to hash, that suggests writing three corresponding tests; each of these will
change the data values in some way, resulting in a hash that won’t match
the expected value. The target verify function should reject these inputs
because the changed values potentially represent data tampering, which
the hash comparison is supposed to prevent. The actual values (test1, test2,

210 Chapter 12

test3) are copies of the correct test0 with slight variations in one of the
three data fields; the values themselves are unimportant and not shown.
Here are the three test cases:

mu_assert(-100 == VerifyServerKeyExchange(test1, expected_hash, SIG_LEN),
 "Expected to fail hash check: wrong client random.");
mu_assert(-100 == VerifyServerKeyExchange(test2, expected_hash, SIG_LEN),
 "Expected to fail hash check: wrong server random.");
mu_assert(-100 == VerifyServerKeyExchange(test3, expected_hash, SIG_LEN),
 "Expected to fail hash check: wrong signed parameters.");

All three of these will fail due to the bug. The verify function works fine
up to the troublesome goto, but then unconditionally jumps to the label fail,
leaving its hashing job incomplete and never comparing hash values 4.
Since we wrote these tests to expect verification failure as correct, a return
value of 0 causes the tests to fail. Now we have a testing safety net that would
have caught this vulnerability before release, avoiding the resulting fiasco.

In the spirit of completeness, another security test case suggests itself.
What if all three values are correct, as in the test0 case, but with a different
signed hash (wrong_hash)? Here’s the test case for this:

mu_assert(-100 == VerifyServerKeyExchange(test0, wrong_hash, SIG_LEN),
 "Expected check against the wrong hash value to fail.");

This test fails as well with the errant goto, as we would expect. While for
this particular vulnerability just one of these tests would have caught it, the
purpose of security testing is to cover as broad a range of potential vulner-
abilities as possible.

The Limits of Security Tests
Security testing aims to detect the potential major points of failure in code,
but it will never cover all of the countless ways for code to go wrong. It’s pos-
sible to introduce a vulnerability that the tests we just wrote won’t detect, but
it’s unlikely to happen inadvertently. Unless test coverage is extremely thor-
ough, the possibility of crafting a bug that slips through the tests remains;
however, the major threat here is inadvertent bugs, so a modest set of secu-
rity test cases can be quite effective.

Determining how thorough the security test cases need to be requires
judgment, but the rules of thumb are clear:

•	 Security testing is more important for code that is crucial to security.

•	 The most important security tests often check for actions such as deny-
ing access, rejecting input, or failing (rather than success).

•	 Security test cases should ensure that each of the key steps (in our
example, the three hashes and the comparison of hashes) works
correctly.

Security Testing 211

Having closely examined a real security vulnerability with a simple (if
unexpected) cause, and how to security test for such eventualities, let’s con-
sider the general case and see how we could have anticipated this sort of
problem and proactively averted it.

Writing Security Test Cases
A good test case is one that has a high probability of detecting an as yet undiscov-
ered error.

—Glenford Myers

A security test case confirms that a specific security failure does not occur.
These tests are motivated by the second of the Four Questions: What can
go wrong? This differs from penetration testing, where honest people ethi-
cally pound on software to find vulnerabilities so they can be fixed before
bad actors find them, in that it does not attempt to scope out all possible
exploits. Security testing also differs from penetration testing by providing
protection against future vulnerabilities being introduced.

A security test case checks that protective mechanisms work correctly,
which often involves the rejection or neutralization of invalid inputs
and disallowed operations. While nobody would have anticipated the
GotoFail bug specifically, it’s easy to see that all of the if statements in the
VerifyServerKeyExchange function are critical to security. In the general case,
code like this calls for test coverage on each condition that enforces a secu-
rity check. With that level of testing in place, when the extraneous goto
creates a vulnerability, one of those test cases will fail and call the problem
to your attention.

You should create security test cases when you write other unit tests,
not as a reaction to finding vulnerabilities. Secure systems protect valuable
resources by blocking improper actions, rejecting malicious inputs, denying
access, and so forth. Create security test cases wherever such security mech-
anisms exist to ensure that unauthorized operations indeed fail.

General examples of commonplace security test cases include testing
that login attempts with the wrong password fail, that unauthorized attempts
to access kernel resources from user space fail, and that digital certificates
that are invalid or malformed in various ways are always rejected. Reading
the code is a great way to get ideas for good security test cases.

Testing Input Validation
Let’s consider security test cases for input validation. As a simple example,
we’ll test input validation code that requires a string that is at least 10 char-
acters and at most 20 characters long, consisting only of alphanumeric
ASCII characters.

You could create helper functions to perform this sort of standardized
input validation, ensuring that it happens uniformly and without fail, then
combine input validation with matching test cases to confirm that the vali-
dation checks work and that the code performs properly, right up to the

212 Chapter 12

allowable limits. In fact, since off-by-one errors are legion in programming,
it’s good practice to check both right at and just beyond the limits. The fol-
lowing unit tests cover the input validation test cases for this example:

•	 Check that a valid input of length 10 works, but an input of length 9 or
less fails.

•	 Check that a valid input of length 20 works, but an input of length 21 or
more fails.

•	 Check that inputs with one or more invalid characters always fail.

Of course, the functional tests should have already checked that sample
inputs that satisfy all constraints work properly.

For another similar example, suppose the code under test stores a
byte array parameter in a fixed-length buffer of N bytes. Security test cases
should ensure that the code works as expected with inputs of sizes up to
and including N, but that an input of size N+1 gets safely rejected.

Testing for XSS Vulnerabilities
Now let’s look at a more challenging security test case and some of the dif-
ferent test strategies that are available. Recall the XSS vulnerability from
Chapter 11, where an untrusted input injects itself into HTML generated
on the web server and breaks out into the page, such as by introducing
script that runs to launch an attack. The root cause of this vulnerability is
improper escaping, so that is where our security tests will focus.

Say the code under test is the following Python function, which com-
poses a fragment of HTML based on strings that describe its contents:

vulnerable code def html_tag(name, attrs):
 """Build and return an HTML fragment with attribute values.
 >>> html_tag('meta', {'name': 'test', 'content': 'example'})
 '<meta name="test" content="example">'
 """
 result = '<%s' % name
 for attr in attrs:
 result += ' %s="%s"' % (attr, html.escape(attrs[attr]))
 return result + ">"

The doctest (marked with the >>> prefix) example in the comments
(delimited by """) illustrates how to use this function to generate HTML
text for a <meta> tag. The first line builds the first section of the text string
result: the angle bracket (<) that opens every HTML tag, followed by the tag
name. Then the loop iterates through the attributes (attrs), appending a
space and its declaration (of the form X="Y") for each attribute.

The code applies the html.escape function to each attribute string
value correctly, but we still should test it. (For our purposes, we’ll assume
that attribute values are the only potential source of untrusted input
that needs escaping. While in practice this is usually sufficient, anything
is possible, so more escaping or input validation might be necessary in
some applications.)

Security Testing 213

Let’s write the test cases with Python’s unittest library:

class ExampleTestCases(unittest.TestCase):
 def test_basic(self):
 self.assertEqual(html_tag('meta', {'name': 'test', 'content': '123'}),
 '<meta name="test" content="123">')

 def test_special_char(self):
 self.assertEqual(html_tag('meta', {'name': 'test', 'content': 'x"'}),
 '<meta name="test" content="x"">')

if __name__ == '__main__':
 unittest.main()

The first test case is a basic functional test that shows how these unit tests
work. When run from the command line, the module invokes the unit test
framework main in the last line. This automatically calls each method of all
subclasses of unittest.TestCase, which contain the unit tests. The assertEqual
method compares its arguments, which should be equal, or else the test fails.

Now let’s look at the security test case, named test_special_char. Since
we know XSS can exploit the code by breaking out of the double quotes
that the untrusted input goes into, we test the escaping with a string con-
taining a double quote. Correct HTML escaping should convert this to the
HTML entity ", as shown in the expected string of the assertEqual
statement. If we remove the html.escape function in the target method,
this test will indeed fail, as we want it to.

So far, so good. But note that in order to write the test we had to know
in advance what kinds of inputs might be problematic (double quote charac-
ters). Since the HTML specification is fairly involved, how do we know there
aren’t more important test cases needed? We could try a bunch of other
special characters, a number of which the escape function would convert to
various HTML entity values (for example, converting the greater-than sign to
>). However, adjusting our test cases to cover all the possibilities like this
would involve a lot of effort.

Since we are working with HTML, we can use libraries that know all
about the specification in detail to do the heavy lifting for us. The following
test case checks the result of forming HTML tags as we did earlier for the
same two test values, the normal case and the one with a string containing
a double quote character, assigned to the variable content in turn:

 def test_parsed_html(self):
 for content in ['x', 'x"']:
 result = html_tag('meta', {'name': 'test', 'content': content})
 soup = BeautifulSoup(result, 'html.parser')
 node = soup.find('meta')
 self.assertEqual(node.get('name'), 'test')
 self.assertEqual(node.get('content'), content)

Inside the loop is the common code that tests both cases, beginning
with a call to the target function to construct a string HTML <meta> tag.

214 Chapter 12

Instead of checking for an explicit expected value, we invoke the
BeautifulSoup parser, which produces a tree of objects that logically repre-
sent the parsed HTML structure (colorfully referred to as a soup of objects).
The variable soup is the root of the HTML node structure, and we can use it
to navigate and examine its contents through an object model.

The find method finds the first <meta> tag in the soup, which we assign
to the variable node. The node object sports a get method that looks up the
values of attributes by name. The code tests that both the name and content
attributes of the <meta> tag have the expected values. The big advantage of
using the parser is that it takes care of spaces or line breaks in the HTML
text, handles escaping and unescaping, converts entity expressions, and
does everything else that HTML parsing entails.

Because we used the parser library, this security test case works on
the parsed objects, shielded from the idiosyncrasies of HTML. If the XSS
injects a malicious input that manages to break out of the double quotes,
the parsed HTML won’t have the same value in the node object for the <meta>
tag. So, even if you had no clue that double quote characters were problem-
atic for some XSS attacks, you could easily try a range of special characters
and rely on the parser to figure out which were working properly (or not).
The next topic takes this idea of trying a number of test case variations and
automates it at scale.

Fuzz Testing
Fuzz testing is a technique that automatically generates test cases in an effort
to bombard the target code with test inputs. This helps you determine if
particular inputs might cause the code to fail or crash the process. Here’s
an analogy that might help: a dishwasher cleans by spraying water at many
different angles from a rotating arm. Without knowledge of how dishware
happens to be loaded or at what angle shooting water will be effective, it
sprays at random and still manages to get everything clean. In contrast
to how security test cases written with specific intentions, the scattershot
method of fuzz testing can be quite effective at finding a wider range of
bugs, some of which will be vulnerabilities.

For security test cases, the typical approach is to “fuzz” untrusted inputs
(that is, try lots of different values) and look for anomalous results or crashes.
To actually identify a security vulnerability, you will need to investigate the
leads that the results of fuzz testing produce.

You could convert test_parsed_html from the previous section into a fuzz
test by checking many more characters.

 def test_fuzzy_html(self):
 for fuzz in string.punctuation:
 content = 'q' + fuzz
 result = html_tag('meta', {'name': 'test', 'content': content})
 soup = BeautifulSoup(result, 'html.parser')
 node = soup.find('meta')
 self.assertEqual(node.get('name'), 'test')
 self.assertEqual(node.get('content'), content)

Security Testing 215

Rather than trying a chosen list of test cases, this code loops over all
ASCII punctuation characters, which are defined by a constant in the stan-
dard string library. On each iteration, the variable fuzz takes the value of a
punctuation character and prepends this with the letter q to construct the
two-character content value. The rest of the code is identical to the original
example, only here it runs many more test cases.

This example is simplistic to the point of stretching the definition of
fuzz testing a bit, but it illustrates the power of brute-force testing 32 cases
programmatically instead of carefully choosing and writing a collection of
test cases by hand. A more elaborate version of this code might construct
many more cases using longer strings composed of the troublesome HTML
quoting and escaping characters.

There are many libraries that offer various fuzzing capabilities, from
random fuzzing to the generation of variations based on the knowledge of
specific formats such as HTML, XML, and JSON. If you have a particular
testing strategy in mind, you can certainly write your own test cases and try
them. The idea is that test cases are cheap, and generating lots of them is
an easy way of getting good test coverage.

Security Regression Tests
What regresses, never progresses.

—Umar ibn al-Khattâb

Once identified and fixed, security vulnerabilities are the last bugs we want
to come back and bite us again. Yet this does happen, more often than it
should, and when it does it’s a clear indication of insufficient security testing.
When responding to a newly discovered security vulnerability, an important
best practice is to create a security regression test that detects the underlying bug
or bugs. This serves as a handy repro (a test case that reproduces the bug or
bugs) as well as confirms that the fix actually eliminates the vulnerability.

That’s the idea, anyway, but this practice seems to be less than dili-
gently followed, even by the largest and most sophisticated software mak-
ers. For example, when Apple released iOS 12.4 in 2019, it reintroduced
a bug identical to one already found and fixed in iOS 12.3, immediately
re-enabling a vulnerability after that door should have been firmly closed.
Had the original fix included a security regression test case, this should
never have happened.

It’s notable that in some cases security regressions can be far worse
than new vulnerabilities. That iOS regression was particularly painful
because the bug was already familiar to the security research community, so
they quickly adapted the existing jailbreak tool built for iOS 12.3 to work on
iOS 12.4 (a jailbreak is an escalation of privilege circumventing restrictions
imposed by the maker limiting what the user can do on their device).

I recommend writing the test case first, before tackling the actual fix.
In an emergency, you might prioritize the fix if it’s clear-cut, but unless
you’re working solo, having someone develop the regression test in parallel
is a good practice. In the process of developing an effective regression test,

216 Chapter 12

you may learn more about the issue and even get clues about related poten-
tial vulnerabilities.

A good security regression test should try more than a single specific
test case that’s identical to a known attack; it should be more general. For
example, for the SQL injection attack described in Chapter 10, it wouldn’t
be sufficient to just test that the one known “Bobby Tables” attack now
fails. Also try an excessively long name, which might suggest that input
validation needs to length-check name input strings, too. Try variants on
the attack, such as using a double quote instead of single quote, or a back-
slash (the SQL string escape character) at the end of the name. Also try
similar attacks in other columns of the same table, or other tables. Just as
you wouldn’t fix the SQL injection bug by narrowly rejecting only names
beginning with Robert');, even though it would stop that specific attack, you
shouldn’t write regression tests that way either.

In addition to addressing the newly discovered vulnerability, it’s com-
mon that the investigation will suggest similar vulnerabilities elsewhere
in the system that might also be exploitable. Use your superior knowledge
of system internals and familiarity with the source code to stay ahead of
potential adversaries. If possible, probe for the presence of similar bugs
immediately, so you can fix them as part of the update that closes the origi-
nal vulnerability. This can be important, since you can bet that attackers
will also be thinking along these lines, and releasing a fix will be a big clue
about new ways they might target your system. If there is no time to explore
all the leads, file away the details for investigation later, when time permits.

As an example, let’s consider how to write a security regression test for
the Heartbleed vulnerability from Chapter 9. Recall that the exploit worked
by sending a packet containing a payload of arbitrary bytes with a much
larger byte count; the server response honored the byte count and sent back
additional memory contents, often causing a serious internal data leak.

The correct behavior is to ignore such invalid requests. Some good
security regression test cases include:

•	 Test that known exploit requests no longer receive a response.

•	 Test with request byte counts greater than 16,384 (the maximum).

•	 Test requests with payloads of 0 bytes and the maximum byte size.

•	 Investigate whether other types of packets in the TLS protocol could
have similar issues, and if so test those as well.

Availability Testing
Worry about being unavailable; worry about being absent or fraudulent.

—Anne Lamott

DoS attacks represent a unique potential threat because the load limits
that systems should be able to sustain are difficult to characterize. In par-
ticular, the term load packs a lot of meaning in that statement, including:

Security Testing 217

processing power, memory consumption, operating system resources,
network bandwidth, disk space, and other potential bottlenecks (recall
the entropy pool of a CSPRNG from Chapter 5). Operations staff typically
monitor these factors in response to production use, but there are a few
cases where security testing can avert attacks that intentionally exploit per-
formance vulnerabilities.

Security testing should include test cases for identifying code that may
be subject to nonlinear performance degradation. We saw some examples
of this kind of vulnerability in Chapter 10, when we considered backtrack-
ing regex and XML entity expansion blow-ups. Since these can adversely
impact performance exponentially, they are particularly potent vulnerabili-
ties. Of course, these are just two instances of a larger phenomenon, and
the same issue can occur in all kinds of code.

The next sections explain two basic strategies to test for this kind of
problem: measuring the performance of specific functionality and monitor-
ing overall performance against various loads.

Resource Consumption
For functionality that you know may be susceptible to an availability attack,
add security test cases that measure and determine a sensible limit on the
input to protect blow-ups from occurring. Then test further to ensure that
input validation prevents larger inputs from overloading the system.

For example, in the case of a backtracking regex, you could test with
strings of length N and N+1 to estimate the geometric rate at which the
computation time grows. Use that factor to extrapolate the time required
for the longest valid input, and then check that it’s under the maximum
threshold to pass the test.

For the sake of argument, let’s say that N = 20 takes 1 second and
N = 21 takes 2 seconds, so the additional character doubles the runtime.
If the maximum input length is 30 characters, you can estimate this will
take 1,024 (210) seconds to process and decide if this is feasible or not. By
extrapolating the processing time mathematically instead of actually exe-
cuting the N = 30 case, you can avoid an extremely slow-running test case.
However, bear in mind that actual performance times may depend on other
factors, so more than two measurements may be necessary to validate a suit-
able model.

In addition to this kind of targeted testing, measure performance
metrics for the overall system and set generous upper limits so that if an
iteration causes a significant degradation, the test will flag it for inspection.
Often, these measurements can be easily added to existing larger tests,
including smoke tests, load tests, and compatibility tests.

One easy technique to guard against a code change causing dramatic
increases in memory consumption is to run tests under artificially resource-
constrained conditions. Memory here refers to stack and heap space, swap
space, disk file and database, and so forth. Unit tests should run with little
available memory; if the test suite ever hits the limit, that’s worth investi-
gating. Larger integration tests will need resources comparable to those

218 Chapter 12

available in production, and when run with minimal headroom they can
serve as a “canary in the coal mine.” For example, if you can test the system
successfully with 80 percent of the memory available in production, that
provides some assurance of 20 percent headroom (excess capacity).

Threshold Testing
One important but easily overlooked protection of system availability is to
establish warning signs before fundamental limits are reached. A classic
example of exceeding such a limit happened to a well-known software com-
pany not long ago, when the 32-bit counter that assigned unique IDs to the
objects that the system managed wrapped from 2,147,483,647 to 0, resulting
in the IDs of low-numbered objects being duplicated. It took hours to remedy
the problem—a disaster that could easily have been averted by monitoring
for the counter approaching its limit and issuing a warning when it reached,
say, 0.99*INT_MAX. Surely, in the early days of the product, it was difficult to
imagine the counter ever reaching its maximum, but as the company grew
and the prospect became a potential issue, nobody considered the possibility.

Warnings for such thresholds are often considered the responsibility
of operational monitoring rather than security tests, but these are so often
missed, and so easy to fix, that covering these eventualities under both cat-
egories is often worthwhile. Be sure to also watch out for other limits where
the system will hit a brick wall, not just counters.

Storage capacity is another area where you’ll want significant advance
warning, allowing you to respond smoothly. Rather than setting arbitrary
thresholds, such as 99 percent of the limit, a more useful calculation looks
at a time series (a set of measurements over time) and extrapolates the time it
will take to reach the limit.

Don’t forget to stay ahead of time limits, too. The expiration dates of
digital certificates are easily ignored until suddenly they fail to validate.
Systems that rely on the certificates of partners that supply data feeds
should monitor those and provide a heads-up in order to avoid an outage
that, to your customers, will look like your problem.

The “Y2K bug” is now a distant memory of a non-event (possibly due
to the extraordinary efforts made at the time to avoid the chaos that might
have ensued in computer systems that stored years as two-digit values when
the year changed from 1999 to 2000). However, we now have the “Y2k38
bug” to look forward to on January 19, 2038, when 2,147,483,647 seconds
will have passed since 00:00:00 UTC on January 1, 1970 (the Unix epoch,
as referenced in Figure 12-1). In less than two decades we will reach a point
where the number of seconds elapsed since the epoch overflows the range
of a 32-bit number, and this is almost certain to manifest all manner of
nasty bugs. If it’s too soon to instrument your codebase for this, when is
the right time?

Security Testing 219

Figure 12-1: Bug (courtesy of
Randall Munroe, xkcd.com/376)

Distributed Denial-of-Service Attacks
Denial-of-service (DoS) attacks are single actions that adversely impact
availability; distributed denial-of-service (DDoS) attacks accomplish this
through the cumulative effect of a number of concerted actions. For internet-
connected systems, the open architecture of the internet creates an additional
risk of DDoS attacks, such as from a coordinated botnet. Brute-force overload-
ing from distributed anonymous sources generally ends up as a contest of
scale of computing power. Mitigating these attacks typically requires reliance
on DDoS protection vendors that have networking expertise backed by mas-
sive datacenter capacity.

I point this out as separate from the other categories of availability
threats because this isn’t something you can easily mitigate on your own
should your server be unfortunate enough to become a target of a serious
DDoS attack.

Best Practices for Security Testing
Writing solid security test cases is an important way to improve the security of
any codebase. While security test cases can’t guarantee perfect security, they
confirm that your protections and mitigations are working, and are thus a
significant step in the right direction. A robust suite of security test cases,
combined with security regression tests, dramatically lowers the chances of
a major security lapse.

Test-Driven Development
Security test cases are especially important when you’re writing critical
code and thinking through its security implications. I strongly endorse test-
driven development (TDD), where you write test cases concurrently with new
code—rigorous practitioners of this method actually make the tests first,
only authoring new code in order to fix the initially failing tests. TDD with

https://xkcd.com/376

220 Chapter 12

security test cases included from the start ensures that security is built into
the code, rather than as an afterthought, but whatever methodology you
use for testing, security test cases need to be part of your test suite.

If others write the tests, developers should provide guidance that
describes the security test cases needed, because they can be harder to
intuit without a solid understanding of the security demands on the code.

Leveraging Integration Testing
Integration testing puts systems through their paces to ensure that all the
components, already unit-tested individually, work together as they should.
These are important tests for quality assurance purposes—but once you’ve
invested the effort, it’s easy to extend them for a little security testing, too.

In 2018, a major social media platform advised its customers to change
their passwords due to a self-inflicted breach of security: a bug had caused
account passwords to spew into an internal log in plaintext. By leveraging
integration tests, they could easily have detected and fixed the code that intro-
duced this vulnerability before it was released to production. Integration tests
for this service should have included logging in with a fake user account, say,
USER1, with some password, such as /123!abc$XYZ (even fake accounts should
have secure passwords). After the test completed, a security test would scan the
outputs for that distinctive password string and raise an error if it found any
matches. This testing approach applies not just to log files, but to anywhere
a potential leak could occur: in other residual files, publicly accessible web
pages, client caches, and so forth. Tests like this can be as simple as a grep(1)
command.

Passwords are a convenient example for explanatory purposes, but
this technique applies to any private data. Test systems require a bunch of
synthetic data to stand in for actual user data in production, and all of that
private content could potentially leak in just the same way. A more compre-
hensive leak test would scan all system outputs not explicitly protected as
confidential for any traces of test input data that are private.

Security Testing Catch-Up
If you are working on a codebase bereft of security test cases, assuming
that security is a priority, there is some important work that needs doing. If
there is a design that considers security that has been threat modeled and
reviewed, use it as a map of what code deserves attention first. It’s usually
wise to divide the job into pieces with incremental milestones, do an achiev-
able first iteration or two, and then assess the remaining need as you work
through the tasks.

Target the protection mechanisms and functional areas in order of
importance, letting the code guide you in determining what needs testing.
Review existing test cases, as some may already do some security testing or
be close enough to easily adapt for security. If someone is new to the proj-
ect and needs to learn the code, have them write some of the security test
cases; this is a great way to educate them and will produce lasting value.

13
S E C U R E D E V E L O P M E N T

B E S T P R A C T I C E S

They say that nobody is perfect. Then they tell you
practice makes perfect. I wish they'd make up their minds.

—Winston Churchill

So far in Part III, we have surveyed a collec-
tion of security vulnerabilities that arise in

the development phase. In this chapter, we’ll
focus on how aspects of the development pro-

cess itself relate to security and can go wrong. We’ll
begin by discussing code quality: the value of good
code hygiene, thorough error and exception handling,
documenting security properties, and the role of code
reviews in promoting security. Second, we’ll look at dealing with dependen-
cies: specifically, how they introduce vulnerabilities into systems. The third
area we’ll cover is bug triage—a critical skill for balancing security against
other exigencies. Finally, secure development depends on maintaining a
secure working environment, so I provide some basic tips on what you need
to do to avoid being compromised.

For practical reasons, the guidance that follows is generic. Readers should
be able to apply it to their own development practices. Many other effective

222 Chapter 13

techniques are specific to programming languages, operating systems, and
other particulars of a given system. For this reason, it’s important that you rec-
ognize the big patterns in the following discussion, but also be alert to addi-
tional security-related issues and opportunities that arise in your own work.

Code Quality
Quality is always in style.

—Robert Genn

The earlier chapters in Part III explained many of the ways that vulnerabili-
ties slip into code, but here I want to focus on the relationship of bugs in
general to security. If you can raise the quality of your code, you’ll make it
more secure in the long run, whether you recognize this or not. All vulnera-
bilities are bugs, so fewer bugs means fewer vulnerabilities and vulnerability
chains. But of course, diminishing returns kick in long before you eliminate
all bugs, so it’s best to take a balanced approach.

The following discussion covers some of the key areas to focus on in the
name of security.

Code Hygiene
Programmers usually have a good sense of the quality of the code they’re
working with, but for various reasons, they often choose to accept known
flaws instead of making needed improvements. Code smells, spaghetti code,
and postponed “TODO” comments that mark further work needed all tend
to be fertile ground for vulnerabilities. At least in areas where security is of
special concern, identifying and smoothing out these rough edges can be
one of the best ways to avoid vulnerabilities without needing to do any secu-
rity analysis in order to see how bugs may be exploitable.

In addition to your native sense of the condition of the code, use tools
to flag these issues. Compile your code with full warnings and then fix the
code to resolve significant issues. Some of these automated warnings, such
as misleading indentation or unused code for which there is no execution
path, would have identified the GotoFail vulnerability we talked about
in Chapter 8, and security tested in Chapter 12. Lint and other static code
analysis tools offer even richer scrutiny of the code, providing tips that
sometimes reveal bugs and vulnerabilities.

Code analysis doesn’t always identify security bugs as such, so you’ll
have to cast a broader net. Use these tools frequently during development
to lower the overall number of potential bugs. This way, if a tool’s output
changes significantly you’ll have a better chance of noticing it, because the
new content won’t get lost in a torrent of older messages.

Fix all warnings if it’s easy to do so, or when you see that an issue could
be serious. For example, unreachable code suggests that although somebody
wrote the code for a reason, it’s now out of the picture, and that can’t be
right. On the other hand, warnings about variable naming conventions, while
being good suggestions, probably won’t relate to any security vulnerability.

Secure Development Best Practices 223

Finding time to do this kind of cleanup is always challenging. Take an
incremental approach; even an hour or two a week will make a big differ-
ence over time, and the process is a good way to become familiar with a big
codebase. If all the warnings are too much to deal with, start with the most
promising ones (for example, GCC’s -Wmisleading-indentation), then fix what
gets flagged.

Exception and Error Handling
The 1996 Ariane 5 Flight 501 Failure Report painfully details the conse-
quences of poor exception handling. While the calamitous bug was purely
self-inflicted, involving no malicious actor, it stands as an example of how
an attacker might exploit the resulting behavior to compromise a system.

Soon after the Ariane 5 spacecraft’s launch, a floating point to integer
conversion in a calculation caused an exception. An exception-handling
mechanism triggered, but as the conversion error was unanticipated, the
exception handler code had no contingency for the situation. The code shut
down the engine, resulting in catastrophic failure after 36.7 seconds of flight.

Defending against such problems begins with recognizing the risks of
slapdash exception handling and then thinking through the right response
for even the most unlikely exceptions. Generally speaking, it’s best to handle
exceptions as close to the source as possible, where there is the most context
for it and the shortest window of time for further complications to arise.

That said, large systems may need a top-level handler to field any unhan-
dled exceptions that bubble up. One good way to do this is to identify a unit
of action and fail that in its entirety. For example, a web server might catch
exceptions during an HTTP request and return a generic 500 (server error)
response. Typically, web applications should handle state-changing requests
as transactions so that any error always results in no state change. This avoids
partial changes that may leave the system in a fragile state.

Much of the reasoning that connects sloppy exception handling to
potential vulnerabilities also applies to error handling in general. Like
exceptions, error cases may occur infrequently, so it’s easy for developers to
forget them, leaving them incomplete or untested. A common trick attack-
ers use to discover exploits is to try causing some kind of error and then
observe what the code does in hopes of discovering weaknesses. Therefore,
the best defense is to implement solid error handling from the start. This is
a classic example of one way that security vulnerabilities are different from
other bugs: in normal use, some error might be exceedingly rare, but in the
context of a concerted attack, invoking an error might be an explicit goal.

Solid testing is important in order to get error and exception handling
right. Ensure that there is test coverage on all code paths, especially the
less common ones. Monitor logs of exceptions in production and track
down their causes to make sure that exception recovery works correctly.
Aggressively investigate and fix intermittent exceptions, because if a smart
attacker learns how to trigger one, they may be able to fine-tune it into a
malicious exploit from there.

224 Chapter 13

Documenting Security
When you’re writing code with important security consequences, how much
do you need to explain your decisions in comments, so others (or your own
forgetful self, months or years later) don’t accidentally break it?

For critical code, or wherever the security implications deserve explana-
tion, commenting is important, as it allows anyone who is contemplating
changing the code to understand the stakes. When you write comments
about security, explain the security implications and be specific: simply writ-
ing // Beware: security consequences isn’t an explanation. Be clear and stick
to the point: include too much verbiage and people will either tune it out
or give up. Recalling the Heartbleed bug we discussed in Chapter 9, and
security tested in Chapter 12, a good comment would explain that rejecting
invalid requests with byte counts exceeding the actual data provided is cru-
cial because it could result in disclosing private data beyond the extent of the
buffer. If the security analysis becomes too complex to explain in the com-
ments, write up the details in a separate document, then provide a reference
to that document.

This does not mean that you should attempt to flag all code that secu-
rity depends on. Instead, aim to warn readers about the less-than-obvious
issues that might be easily overlooked in the future. Ultimately, comments
cannot fully substitute for knowledgeable coders who are constantly vigilant
of security implications, which is why this stuff is not easy.

Writing a good security test case (as discussed in Chapter 12) is an ideal
way to back up the documentation with a mechanism to prevent others from
unwittingly breaking security with future changes. As a working mock-up
of what an attack looks like, such a test not only guards against accidental
adverse changes, but also serves to show exactly how the code might go wrong.

Security Code Reviews
The professional software development process includes peer code reviews
as standard practice, and I want to make the case for explicitly including
security in those reviews. Usually this is best done as one step within the
code review workflow, along with the checklist of potential issues that
reviewers should be on the lookout for, including code correctness, read-
ability, style, and so forth.

I recommend that the same code reviewer add an explicit step to consider
security, typically after a first pass reading the code, going through it again
with their “security hat” on. If the reviewer doesn’t feel up to covering security,
they should delegate that part to someone capable. Of course, you can skip
this step for code changes that are clearly without security implications.

Reviewing code changes for security differs from an SDR (the topic of
Chapter 7) in that you are looking at a narrow subset of the system without
the big-picture view you get when reviewing a whole design. Be sure you
consider how the code handles a range of untrusted inputs, check that any
input validation is robust, and avoid potential Confused Deputy problems.
Naturally, code that is crucial to security should get extra attention, and
usually merits a higher threshold of quality. The opportunity to focus an

Secure Development Best Practices 225

extra pair of eyes on the security of the code has great potential for improv-
ing the system as a whole.

Code reviews are also an excellent opportunity to ensure that the
security test cases that have been created (as described in Chapter 12) are
sufficient. As a reviewer, if you hypothesize that certain inputs might be
problematic, write a security test case and see what happens, rather than
guessing. Should your exploratory test case reveal a vulnerability, raise the
issue and also contribute the test case to ensure it gets fixed.

Dependencies
Dependence leads to subservience.

—Thomas Jefferson

Modern systems tend to build on large stacks of external components.
These dependencies are problematic in more ways than one. Many plat-
forms, such as npm, automatically pull in numerous dependencies that are
difficult to track. And using old versions of external code with known vul-
nerabilities is one of the biggest ongoing threats the industry has yet to
systematically eliminate. In addition, there is risk of picking up malicious
components in your software supply chain. This can happen in several ways;
for example, packages created with similar names to well-known ones may
get selected by mistake, and you can get malware indirectly via other com-
ponents through their dependencies.

Adding components to a system can potentially harm security even if
those components are intended to strengthen it. You must trust not only the
component’s source, but everything the source trusts as well. In addition
to the inevitable risks of extra code that adds bugs and overall complexity,
components can expand the attack surface in unexpected new ways. Binary
distributions are virtually opaque, but even with source code and documen-
tation, it’s often infeasible to carefully review and understand everything
you get inside the package, so it often boils down to blind trust. Antivirus
software can detect and block malware, but it also uses pervasive hooks that
go deep into the system, needs superuser access, and potentially increases
the attack surface, such as when it phones home to get the latest database
of malware and report findings. The ill-advised choice of a vulnerable com-
ponent can end up degrading security, even if your intention was to add an
extra layer of defense.

Choosing Secure Components
For the system as a whole to be secure, each of its components must be
secure. In addition, the interfaces between them must be secure. Here are
some basic factors to consider when choosing secure components:

•	 What is the security track record of the component in question, and of
its maker?

•	 Is the component’s interface proprietary, or are there compatible alter-
natives? (More choices may provide more secure alternatives.)

226 Chapter 13

•	 When (not if) security vulnerabilities are found in the component, are
you confident its developers will respond quickly and release a fix?

•	 What are the operational costs (in other words, effort, downtime, and
expenses) of keeping the component up to date?

It’s important to select components with a security perspective in mind.
A component used to process private data should provide guarantees
against information disclosure. If, as a side effect of processing data, it will
be logging the content or storing it in unsecured storage, that constitutes
a potential leak. Don’t repurpose software written to handle, say, ocean
temperatures, which have no privacy concerns at all, for use with sensitive
medical data. Also avoid prototype components, or anything other than
high-quality production releases.

Securing Interfaces
A well-documented interface should explicitly specify its security and pri-
vacy properties, but in practice this often doesn’t happen. In the interest
of efficiency, it’s easy for programmers to omit input validation, especially
when they assume that validation will have already been handled. On the
other hand, making every interface perform redundant input validation is
indeed wasteful. When unsure, test to find out how the interface behaves if
you can, and if still in doubt, add a layer of input validation in front of the
interface for good measure.

Avoid using deprecated APIs, because they often mask potential secu-
rity issues. API makers commonly deprecate, rather than entirely remove,
APIs that include insecure features. This discourages others from using
the vulnerable code while maintaining backward compatibility for existing
API consumers. Of course, deprecation happens for other reasons as well,
but as an API consumer, it’s important to investigate whether the reason for
the deprecation has security implications. Remember that attackers may be
tracking API deprecations as well, and may be readying an attack.

Beyond these basic examples, take extra care whenever an interface
exposes its internals, because these often get used in unintended ways that
can easily create vulnerabilities. Consider “The Most Dangerous Code in
the World” (Georgiev et al., 2012), a great case study of a widely used SSL
library that researchers found was repeatedly used unsafely, completely
undermining the security properties it was meant to provide. The authors
found that “the root cause of most of these vulnerabilities is the terrible
design of the APIs to the underlying SSL libraries.”

Also be wary of APIs with complicated configuration options, par-
ticularly if security depends on them. When designing your own APIs,
honor the Secure by Default pattern, document how to securely config-
ure your system, and where appropriate provide a helper method that
ensures proper configuration. When you must expose potentially inse-
cure functionality, do everything possible to ensure that nobody can
plausibly use it without knowing exactly what they are doing.

Secure Development Best Practices 227

Don’t Reinvent Security Wheels
Use a standard, high-quality library for your basic security functionality
when possible. Every time someone attempts to mitigate, say, an XSS attack
in query parameters from scratch, they risk missing an obscure form of
attack, even if they know HTML syntax inside out.

If a good solution isn’t available, consider creating a library for use
throughout your codebase to address a particular potential flaw, and be
sure to test it thoroughly. In some cases, automated tools can help find
specific flaws in code that often become vulnerabilities. For example, scan
C code for the older “unsafe” string functions (such as strcpy) and replace
them with the newer “safe” versions (strlcpy) of the same functionality.

If you are writing a library or framework, look carefully for security
foibles so they get handled properly, once and for all. Then follow through
and explicitly document what protections are and aren’t provided. It isn’t
helpful to just advertise: “Use this library and your security worries will all
be solved.” If I am relying on your code, how do I know what exactly is or is
not being handled? For example, a web framework should describe how it
uses cookies to manage sessions, prevents XSS, provides nonces for CSRF,
uses HTTPS exclusively, and so forth.

While it may feel like putting all your eggs in one basket, solving a
potential security problem once with a library or framework is usually best.
The consistent use of such a layer provides a natural bottleneck, addressing
all instances of the potential problem. When you find a new vulnerability
later, you can make a single change to the common code, which is easy to
fix and test and should catch all usages.

Security-aware libraries must sometimes provide raw access to underly-
ing features that cannot be fully protected. For example, an HTML frame-
work template might let applications inject arbitrary HTML. When this is
necessary, thoroughly document wherever the usual protections cease to
apply, and explain the responsibilities of the API users. Ideally, name the
API in a way that provides an unmistakable hint about the risk, such as
unsafe_raw_html.

The bottom line is that security vulnerabilities can be subtle, possible
attacks are many, and it only takes one to succeed—so it’s wise to avoid tack-
ling such challenges on your own. For the same reasons, once someone has
successfully solved a problem, it’s smart to reuse that as a general solution.
Human error is the attacker’s friend, so using solutions that make it easy to
do things the secure way is best.

Contending with Legacy Security
Digital technology evolves quickly, but security tools tend to lag behind for
a number of reasons. This represents an important ongoing challenge. Like
the proverbial frog in hot water, legacy security methods often remain in use
for far too long unless someone takes a hard look at them, explicitly points
out the risk, and proposes a more secure solution and a transition plan.

228 Chapter 13

To be clear, I’m not saying that existing security methods are neces-
sarily weak, just that almost everything has a “best before” date. Plus, we
need to periodically re-evaluate existing systems in the context of the
evolving threat landscape. Password-based authentication may need shor-
ing up with a second factor if it becomes susceptible to phishing attacks.
Crypto implementations are based on modern hardware cost and capability
assessments, and as Moore’s law tells us, this is a moving target; as quantum
computing matures, high-security systems are already moving on to post-
quantum algorithms thought to be resistant to the new technology.

Weak security often persists well past its expiration date for a few rea-
sons. First, inertia is a powerful force. Since systems typically evolve by
increments, nobody questions the way authentication or authorization is
currently done. Second, enterprise security architecture typically requires
all subsystems to be compatible, so any changes will mean modifying every
component to interoperate in a new way. That often feels like a huge job
and thus raises powerful resistance.

Also, older subcomponents can be problematic, as legacy hardware or
software may not support more modern security technologies. In addition,
there is the easy counterargument that the current security has worked so
far, so there’s no need to fix what isn’t broken. On top of all this, whoever
designed the legacy security may no longer be around, and nobody else
may fully understand it. Or, if the original designer is around, they may be
defensive of their work.

No simple answer can address all of these concerns, but threat model-
ing may identify specific issues with weak legacy security that should make
the risk it represents evident.

Once you’ve identified the need to phase out the legacy code, you
need to plan the change. Integrating a new component with a compatible
interface into the codebase makes the job easier, but sometimes this isn’t
possible. In some cases, a good approach is to implement better security
incrementally: parts of the system can convert to the new implementation
piecewise, until you can remove legacy code when it is no longer needed.

Vulnerability Triage
The term “triage” normally means deciding who gets attention first.

—Bill Dedman

Most security issues, once identified, are straightforward to fix, and your
team will easily reach consensus on how to do so. Occasionally, however,
differences of opinion about security issues do happen, particularly in the
middle ground where the exploitability of a bug is unclear or the fix is dif-
ficult. Unless there are significant constraints that compel expediency, it’s
generally wise to fix any bug if there is any chance that it might be vulner-
able to exploit. Bear in mind how vulnerability chains can arise when several
minor bugs combine to create major vulnerabilities, as we saw in Chapter 8.
And always remember that just because you can’t see how to exploit a bug,
that by no means proves that a determined attacker won’t.

Secure Development Best Practices 229

DREAD Assessments
In the rare case that your team does not quickly reach consensus on fixing
a bug, make a structured assessment of the risk it represents. The DREAD
model, originally conceived by Jason Taylor and evangelized by both of us
at Microsoft, is a simple tool for evaluating the risk of a specific threat.
DREAD enumerates five aspects of the risk that a vulnerability exposes:

Damage potential
If exploited, how harmful could it be?

Reproducibility
Will attacks succeed every time, some of the time, or only rarely?

Exploitability
How hard, in terms of technical difficulty, effort, and cost, is the vul-
nerability to exploit? How long is the attack path?

Affected users
Will all, some, or only a few users be impacted? Can specific targets be
easily attacked, or are the victims arbitrary?

Discoverability
How likely is it that attackers will find the vulnerability?

In my experience, it works best to think of DREAD ratings in terms of
five independent dimensions. Personally, I do not recommend assigning a
numerical score to each, because severity is not very linear. My preferred
method is to use T-shirt sizes (S, M, L, XL) to represent subjective magni-
tudes, as the following example illustrates. If you do use numerical scores,
I would specifically discourage adding up the five scores to get a total to
use for ranking one threat against another, as this is essentially compar-
ing apples to oranges. Unless several of the factors have fairly low DREAD
scores, consider the threat a significant one likely worth mitigating.

If the issue requires a triage meeting to resolve, use DREAD to present
your case. Discuss the individual factors as needed to get a clear view of the
consequences of the vulnerability. Often, when one component scores low,
the debate will focus on what that means to the overall impact.

Let’s see how DREAD works in practice. Pretend we’ve just discov-
ered the Heartbleed bug and want to make a DREAD rating for it. Recall
that this vulnerability lets anonymous attackers send malicious Heartbeat
requests and receive back large chunks of the web server’s memory.

Here is a quick DREAD scoring of the information leakage threat:

Damage potential: XL
Internal memory of the server potentially discloses secret keys.

Reproducibility: M
Leaked memory contents will vary due to many factors and will be
innocuous in some cases, but unpredictable.

230 Chapter 13

Exploitability: L
An anonymous attacker needs only send a simple request packet;
extracting useful secrets takes a little expertise and then some luck.

Affected users: XL
The server and all users are at risk.

Discoverability: L
It depends on whether the idea occurs to an attacker (obvious once
publicly announced); it’s easily tried and confirmed.

This DREAD rating is subjective because in our scenario, there has not
been time to investigate the vulnerability much beyond a quick confirma-
tion of the bug. Suppose that we have seen a server key disclosed (hence,
Damage potential is XL), but that in repeated tests the memory contents
varied greatly, suggesting the M Reproducibility rating. Discoverability is
particularly tricky: How do you measure the likelihood of someone think-
ing to even try this? I would argue that if you’ve thought of this, then it’s
best to assume others will too before long.

Discussions of DREAD scores are a great way to tease out the nuances
of these judgments. When you get into a discussion, listen carefully and
give due consideration to other opinions. Heartbleed is among the worst
vulnerabilities in history, yet we didn’t rate all of its DREAD factors at the
maximum, serving as a good demonstration of why ratings must be care-
fully interpreted. Since this flaw occurred in code running on millions
of web servers and undermined the security of HTTPS, you could say
that the Damage potential and Affected users scores were actually off the
charts (say, XXXXXXXL), more than making up for the few moderate rat-
ings. The value of DREAD ratings is in revealing the relative importance
of different aspects of a vulnerability, providing a clear view of the risk it
represents.

Crafting Working Exploits
Constructing a working proof-of-concept attack is the strongest way to make
the case to fix a vulnerability. For some bugs the attack is obvious, and when
it’s easy to code up the exploit, that seals the deal. However, in my opinion
this is rarely necessary, for a couple of reasons. For starters, crafting a dem-
onstration exploit usually involves a lot of work. Actual working exploits often
require a lot of refinement after you’ve identified the underlying vulnerabil-
ity. More importantly, even if you are an experienced penetration tester, just
because you fail to create a functional exploit, that is by no means proof that
the vulnerability is not exploitable.

This is a controversial topic, but my take is that for all these reasons it’s
difficult to justify the effort of creating a working exploit for the purpose
of addressing a security vulnerability. That said, by all means write a regres-
sion test (as discussed in Chapter 12) that will trigger the bug directly, even
if it isn’t a full-fledged working attack.

Secure Development Best Practices 231

Making Triage Decisions
When using DREAD, or doing any vulnerability assessment for that matter,
bear in mind that it’s far easier to underestimate, rather than overestimate,
actual threats. Noticing a potential vulnerability and taking no action can
be a tragic mistake, and one that’s obviously best avoided. I’ve lost a few of
those battles and can assure you that there is no satisfaction in saying “I
told you so” after the fact. Failing to fix significant flaws is a Russian rou-
lette game not worth playing: “ just fix it” is a great standing policy.

Here are some general rules of thumb for making better security triage
decisions:

•	 Bugs in privileged code, or code that accesses valuable assets, should
be fixed and then carefully tested to guard against the introduction of
new bugs.

•	 Bugs that are well isolated from any attack surface and seem harmless
are usually safe to defer.

•	 Carefully confirm claims that a bug is harmless: it may be easier to fix
the bug than to accurately assess its full potential impact.

•	 Aggressively fix bugs that could be part of vulnerability chains (dis-
cussed in Chapter 8).

•	 Finally, when it’s a toss-up, I always advise fixing the issue: better safe
than sorry.

When more research is needed, assign someone to investigate the issue
and report back with a proposal; don’t waste time debating hypotheticals.
In discussions, focus on understanding other perspectives rather than try-
ing to change minds. Trust your intuition. With practice, when you know
what to focus on, this will quickly become easier.

Maintaining a Secure Development Environment
The secret of landscapes isn’t creation. . . .It’s maintenance.

—Michael Dolan

Good hygiene is a useful analogy: to produce a safe food product, manufac-
turers need fresh ingredients from trustworthy suppliers, a sanitary working
environment, sterilized tools, and so forth. Similarly, good security prac-
tices must be observed throughout the entire development process for the
resulting product to be secure.

Malicious code can slip into the product due to even a one-time lapse
during development, a fact which should give you pause. The last thing that
developers want is for their software to become a vector for malware.

Separating Development from Production
Strictly separate your development and production environments, if you aren’t
doing this already. The core idea is to provide a “wall” between the two, typi-
cally consisting of separate subnetworks, or at least mutually exclusive access
permission regimes. That is, when developing software, the programmer

232 Chapter 13

should not have access to production data. Nor should production machines
and operations staff have access to the development environment and source
code (write access). In smaller shops, where one person handles both produc-
tion and development, you can switch between user accounts. The inconve-
nience of switching is more than compensated for by saving the product from
even a single mistake. Plus, it provides peace of mind.

Securing Development Tools
Carefully vet development tools and library code before installing and using
them. Some minor utility downloaded from “somewhere,” even for a one-
time use, could bring more trouble than it’s worth. Consider setting up a
safely isolated sandbox for experiments or odd jobs not part of the core
development process. This is easily done with a virtual machine.

All computers involved in development must be secure if the result is to
be secure. So must all source code repositories and other services, as these
are all potential openings for vulnerabilities to creep into the final prod-
uct. In fact, it goes deeper: all operating systems, compilers, and libraries
involved in the process of development must also be secure. It’s a daunting
challenge, and it may sound almost impossible, but fortunately perfection is
not the goal. You must recognize these risks first, then find opportunities to
make incremental improvements.

The best way to mitigate these risks is by threat modeling the develop-
ment environment and processes. Analyze the attack surface for a range of
threats, treating the source code as your primary asset. Basic mitigations for
typical development work include:

•	 Securely configure and regularly update development computers.

•	 Restrict personal use of computers used for development.

•	 Systematically review new components and dependencies.

•	 Securely administer computers used for the build and release processes.

•	 Securely manage secrets (such as code signing keys).

•	 Secure login credential management with strong authentication.

•	 Regularly audit source change commits for anomalous activity.

•	 Keep secure backup copies of source code and the build environment.

Releasing the Product
Use a formal release process to bridge development and production. This can
happen through a shared repository that only development staff can modify,
and that operations staff can only read. This Separation of Duty ensures that
the responsibilities of the respective parties are not only clear but enforced,
essentially rendering impossible solo “cowboy” efforts to make quick code
changes and then push the new version into production, where security flaws
are easily introduced, without going through approved channels.

N O T E 	 See Appendix D for a cheat sheet summarizing the DREAD model for risk assessment
as a handy aid doing bug triage.

A F T E R W O R D

We are called to be architects of the future, not its victims.
—R. Buckminster Fuller

Having watched computing evolve over the
last 50 years, I have learned that attempt-

ing to predict the future is folly. However,
to conclude this book I would like to offer my

thoughts about future directions in security that I
think would be valuable, unlikely as some of them
may be. The following are by no means predictions,
but rather possibilities that would constitute signifi-
cant progress.

The nascent internet received a wake-up call in 1988 when the Morris
worm first demonstrated the potential power of online malware and how it
can spread by exploiting existing vulnerabilities. More than 30 years later,
though we have made astounding progress on many fronts, I wonder if we
have fully understood these risks and prioritized our mitigation efforts suffi-
ciently. Reports of attacks and private data disclosures are still commonplace,
and no end is in sight. Sometimes, it seems that the attackers are having a

234 Afterword

field day while the defenders are frantically treading water. And it’s important
to bear in mind that many incidents are kept secret, or may even persist unde-
tected, so the reality is almost certainly worse than we know. In large part,
we’ve learned to live with vulnerable software.

What’s remarkable is that, despite our imperfect systems continuing to
be compromised, everything somehow manages to keep going. Perhaps this is
why security problems persist: the status quo is good enough. But even though
I understand the cool logic of returns on investment, deep down I just don’t
accept that. I believe that when, as an industry, we accept the current state
of affairs as the best we can do, we block real progress. Justifying additional
work in the interest of security is always difficult because we rarely learn about
failed attacks, or even what particular lines of defense were effective.

This concluding chapter sketches out promising future directions to
raise the level of our collective software security game. The first section
recapitulates the core themes of the book, summarizing how you can apply
the methods in this book to good effect. The remainder of this chapter
envisions further innovations and future best practices, and is more specu-
lative. A discussion of mobile device data protection provides an example
of how much more needs to be done to actually deliver effective security in
the “last mile.” I hope the conceptual and practical ideas in this book spark
your interest in this vital and evolving field, and serve as a springboard for
your own efforts in making software secure.

Call to Action

The great aim of education is not knowledge but action.

—Herbert Spencer

This book is built around promoting two simple ideas that I believe will
result in better software security: involving everyone building the software
in promoting its security, and integrating a security perspective and strat-
egy from the requirements and design stage. I entreat readers of this book
to help lead the charge.

In addition, a continuing focus on the quality of the software we create
will contribute to better security, because fewer bugs mean fewer exploit-
able bugs. High-quality software requires work: competent designs, careful
coding, comprehensive testing, and complete documentation, all kept up to
date as the software evolves. Developers, as well as end users, must continue
to push for higher standards of quality and polish to ensure this focus is
maintained.

Security Is Everyone’s Job
Security analysis is best done by people who deeply understand the soft-
ware. This book lays out the conceptual basis for good security practice,

Afterword 235

empowering any software professional to understand the security facets of
design, learn about secure coding, and more. Instead of asking experts to
find and fix vulnerabilities because security has been largely neglected, let’s
all pitch in to ensure at least a modest baseline is met for all the software
we produce. We can then rely on experts for the more arcane and technical
security work, where their skills are best applied. Here’s the rationale:

•	 However well expert consultants know security, as outsiders, they cannot
fully understand the software and its requirements in context, includ-
ing how it must operate within the culture of an enterprise and its
end users.

•	 Security works best when it’s integral to the entire software lifecycle,
but it isn’t practical to engage security consultants for the long haul.

•	 Skilled software security professionals are in high demand, difficult to
find, and hard to schedule on short notice. Hiring them is expensive.

Security thinking is not difficult, but it is abstract and may feel unfamil-
iar at first. Most vulnerabilities tend to be obvious in hindsight; nonetheless,
we seem to make the same mistakes over and over. The trick, of course, is
seeing the potential problem before it manifests. This book presents any
number of methods to help you learn how to do just that. The good news is
that nobody is perfect at this, so starting out with even a small contribution
is better than nothing. Over time, you will get better at it.

Broader security participation is best understood as a team effort, where
every individual does the part that they do best. The idea is not that each indi-
vidual can handle the entire job alone, but rather that the combined input
of team members with a diverse set of skills synergistically produces the
best result. Whatever your part is in producing, maintaining, or supporting
a software product, focus on that as your primary contribution. But it’s also
valuable to consider the security of related components, and double-check the
work of your teammates to ensure they haven’t overlooked something. Even if
your role is a small one, you just might spot a vital flaw, just as a soccer goalie
occasionally scores a goal.

It’s important to be clear that outside expertise is valuable for per-
forming tasks such as gap analysis or penetration testing, for balancing
organizational capacity, and as “fresh eyes” with deep experience. However,
specialist consultants should supplement solid in-house security under-
standing and well-grounded practice, rather than being called in to carry
the security burden alone. And even if specialists do contribute to the overall
security stance, they go off to other engagements at the end of the day. As
such, it’s always best to have as many people as possible on the team respon-
sible for the software be thinking about security regularly.

Baking in Security
Bridges, roads, buildings, factories, ships, dams, harbors, and rockets are
all designed and meticulously reviewed to ensure quality and safety, and

236 Afterword

only then built. In any other engineering field, it’s acknowledged that refin-
ing a design on paper is better than retrofitting security measures after the
fact. Yet most software is built first and then secured later.

A central premise of this book, which the author has seen proven in
industry time and again, is that earlier security diligence saves time and
reaps significant rewards, improving the quality of the result. When designs
thoroughly consider security, implementers have a much easier job of deliv-
ering a secure solution. Structuring components to facilitate security makes
it easy to anticipate potential issues.

The worst-case scenario, and most compelling reason for front-loading
security into the design phase (“moving left,” in popular industry jargon),
is to avoid by-design security flaws. Designed-in security flaws—whether in
componentization, API structure, protocol design, or any other aspect of
architecture—are potentially devastating, because they are nearly impossi-
ble to fix after the fact without breaking compatibility. Catching and fixing
these problems early is the best way to avoid painful and time-consuming
reactive redesigns.

Good security design decisions have greater benefits that often go
unrecognized. The essence of good design is minimalism without compro-
mising necessary functionality. Applied to security, this means the design
minimizes the area of the attack surface and critical component interac-
tions, which in turn means there are fewer opportunities for implementers
to make mistakes.

Security-focused design reviews are important because functional
reviews of software designs take a different perspective and ask questions
that don’t consider security. “Does it fulfill all the necessary requirements?
Will it be easy to operate and maintain? Is there a better way?” In fact, an
insecure design can easily pass all these tests with flying colors while being
vulnerable to devastating attacks. Supplementing design review with a secu-
rity assessment vets the security of the design by understanding the threats
it faces and considering how it might fail or be abused.

The implementation side of software security consists of learning about,
and vigilantly avoiding, the many potential ways of inadvertently creating
vulnerabilities, or at least mitigating those common pitfalls. Secure designs
minimize the opportunities for the implementation to introduce vulner-
abilities, but it can never magically make software bulletproof. Developers
must be diligent not to undermine security by stepping into any number of
potential traps.

Security is a process that runs through the entire lifecycle of a software
system, from conception to its inevitable retirement. Digital systems are com-
plex and fragile, and as software “eats the world,” we become increasingly
dependent on it. We are imperfect humans using imperfect components to
build good-enough systems for imperfect people. But just because perfection
is unattainable does not mean we cannot progress. Instead, it means that
every bug fixed, every design improved, and every security test case added
help in ways big and small to make systems more trustworthy.

Afterword 237

Future Security

The future depends on what you do today.

—Mahatma Gandhi

This book is built around the methods of improving security that I have
practiced and seen work consistently, but there is much more to do beyond
this. The following subsections sketch a few ideas that I think are promis-
ing. Although these notions require additional development, I believe they
may lead to significant further advances.

Artificial intelligence or other advanced technologies offer much
promise, but my intuition is that a lot of the work needed is of the “chop
wood, carry water” variety. One way we can all contribute is by working
to ensure the quality of the software we produce, because it is from bugs
that vulnerabilities arise. Second, as our systems grow in power and scope,
complexity necessarily grows, but we must manage it so as not to be over-
whelmed. Third, in researching this book, I was disappointed (but not
surprised) by the dearth of solid data about the state of the world’s soft-
ware and how secure it is: surely, more transparency will enable a clearer
view to better guide us forward. Fourth, authenticity, trust, and responsi-
bility are the bedrock of how the software community works together safely,
yet modern mechanisms that implement these are largely ad hoc and
unreliable—advances in these areas could be game changers.

Improving Software Quality
“The programmers get paid to put the bugs in, and they get paid to take
the bugs out.” This was one of the most memorable observations I heard
as a Microsoft program manager 25 years ago, and this attitude about the
inevitability of bugs still prevails, with little danger of changing any time
soon. But bugs are the building blocks of vulnerabilities, so it’s important to
be aware of the full cost of buggy software.

One way to improve security is to augment the traditional bug triage
by also considering whether each bug could possibly be part of an attack
chain, and prioritizing fixing those where this seems more likely and the
stakes are high. Even if just a fraction of these bug fixes closes an actual vul-
nerability, I would argue that these efforts are entirely worthwhile.

Managing Complexity

An evolving system increases its complexity unless work is done to reduce it.

—Meir Lehman

As software systems grow larger, managing the resultant complexity
becomes more challenging, and these systems risk becoming more fragile.
The most reliable systems succeed by compartmentalizing complexity
within components that present simple interfaces, loosely coupled in
fault-tolerant configurations. Large web services achieve high resiliency

238 Afterword

by distributing requests over a number of machines that perform specific
functions to synthesize the whole response. Designed with built-in redun-
dancy, in the event of a failure or timeout, the system can retry using a
different machine if necessary.

Compartmentalizing the respective security models of the many com-
ponents of a large information system is a basic requirement for success.
Subtle interactions between the assembled components may influence
security, making the task of securing the system massively harder as inter-
dependencies compound. In addition to excellent testing, well-documented
security requirements and dependencies are important first lines of defense
when dealing with a complex system.

From Minimizing to Maximizing Transparency
Perhaps the bleakest assessment of the state of software security derives
from this (variously attributed) aphorism: “If you can’t measure it, you can’t
improve it.” Lamentably, there is a dearth of measurements of the quality of
the world’s software, in particular regarding security. Public knowledge of
security vulnerabilities is limited to a subset of cases: software that is open
source, public releases of proprietary software (usually requiring reverse
engineering of binaries), or instances when a researcher finds flaws and
goes public with a detailed analysis. Few enterprises would even consider
making public the full details of their software security track record. As
an industry, we learn little from security incidents because full details are
rarely disclosed—which is in no small part due to fear. While this fear
is not unfounded, it needs to be balanced against the potential value to
the greater community of more informative disclosure.

Even when we accept the barriers that exist to a full public disclosure
of all security vulnerabilities, there is much room for improvement. The
security update disclosures for major operating systems typically lack useful
detail at the expense of their users, who would likely find additional infor-
mation useful in responding to and assessing risk. In the author’s opinion,
major software companies often obscure the information they do provide
to the point of doublespeak. Here are a few examples from a recent operat-
ing system security update:

•	 “A logic issue was addressed with improved restrictions.” (This applies
to almost any security bug.)

•	 “A buffer overflow issue was addressed with improved memory handling.”
(How is it possible to fix a buffer overflow any other way?)

•	 “A validation issue was addressed with improved input sanitization.”
(Again, this can be said of any input validation vulnerability.)

This lack of detail has become reflexive with too many products; it
harms customers, and the software security community would benefit
from more informative disclosure. Software publishers can almost always
provide additional information without compromising future security.
Realistically, adversaries are going to analyze changes in the updates and

Afterword 239

glean basic details, so useless release notes only deprive honest customers
of important details. Responsible software providers of the future would do
better to begin with full disclosure, then redact it as necessary so as to not
weaken security. Better yet, after the risk of exploit is past, it should be safe
to disclose additional details held in abeyance that would be valuable to our
understanding of the security of major commercial software products, if
only in the rearview mirror.

Providing detailed reporting of vulnerabilities may be embarrassing,
because in hindsight the problem is usually blatantly obvious, but I main-
tain that honestly confronting these lapses is healthy and productive. The
learning potential from a full disclosure is significant enough that if we are
serious about security for the long term, we need greater transparency. As
a customer, I would be much more impressed with a software vendor whose
security fix release notes included:

•	 Dates that the bug was reported, triaged, fixed, tested, and released,
with an explanation of any untoward delays.

•	 A description of when and how the vulnerability was created (for example,
a careless edit, ignorance of the security implications, miscommunica-
tion, or a malicious attack).

•	 Information about whether the commit that contained the flawed code
was reviewed. If so, how was it missed; if not, why not?

•	 An account of whether there was an effort to look for similar flaws of
the same kind. If so, what was found?

•	 Details of any precautions taken to prevent regression or similar flaws
in the future.

Shifting the industry toward a culture of sharing more forthcoming dis-
closures of vulnerabilities, their causes, and their mitigations enables us all
to learn from these incidents. Without much detail or context, these disclo-
sures are just going through the motions and benefit no one.

A great example of best practice is the National Transportation Safety
Board, which publishes detailed reports that the aviation industry as well
as pilots can follow to learn from accidents. For many reasons software can-
not simply follow that process, but it serves as a model to aspire to. Ideally,
leading software makers should see public disclosure as an opportunity
to explain exactly what happened behind the scenes, demonstrating their
competence and professionalism in responding. This would not only aid
broad learning and prevention of similar problems in other products, but
help rebuild trust in their products.

Improving Software Authenticity, Trust, and Responsibility
Large modern software systems are built from many components, all of
which must be authentic and built by trustworthy entities, from secure
subcomponents, using a secure tool stack. This chain continues on and on,
literally to the dawn of modern digital computing. The security of our sys-
tems depends on the security of all these iterations that have built up our

240 Afterword

modern software stack, yet the exact chains of descent have by now faded
into the mists of computing history, back to a few early self-compiling com-
pilers that began it all. The classic paper “Reflections on Trusting Trust”
by Ken Thompson elegantly demonstrates how security depends on all of
this history, as well as how hard it can be to find malware once it’s deeply
embedded. How do we really know that something untoward isn’t lurking in
there?

The tools necessary to ensure the integrity of how our software is built
are by now freely available, and it’s reasonable to assume they work as
advertised. However, their use tends to be dismayingly ad hoc and manual,
making the process susceptible to human error, if not potential sabotage.
Sometimes people understandably skip checking just to save time. Consider,
for example, validating the legitimacy of a *nix distribution. After down-
loading an image from a trusted website, you would also download the
separate authoritative keys and checksum files, then use a few commands
(obtained from a trustworthy source) to verify it all. Only after these checks
all pass should installation proceed. But in practice, how thoroughly are
administrators actually performing these extra steps, especially when
instances of these checks failing for a major distro are unheard of? And
even if they always are, we have no record of it as assurance.

Today, software publishers sign released code, but the signature only
assures the integrity of the bits against tampering. There is an implication
that signed code is trustworthy, yet any subsequent discovery of vulnerabili-
ties in no way invalidates the signature, so that is not a safe interpretation
at all.

In the future, better tools, including auditable records of the chain of
authenticity, could provide a higher assurance of integrity, informing the
trust decisions and dependencies that the security of our systems relies on.
New computers, for example, should include a software manifest document-
ing that the operating system, drivers, applications, and so on are authentic.
Documenting and authenticating the software bill of materials of compo-
nents and the build environment require a major effort, but we shouldn’t
let the difficulty deter us from starting with a subset of the complete solu-
tion and incrementally improving over time. If we start getting serious
about software provenance and authenticity, we can do a much better job of
providing assurance that important software releases are built from secure
components, and the future will thank us.

Delivering the Last Mile

The longest mile is the last mile home.

—Anonymous

If you diligently follow every best practice, apply the techniques described
in this book, code with attention to avoid footguns, perform reviews, thor-
oughly test, and fully document the complete system, I wish that I could say
your work will be perfectly secure. But of course, it’s more complicated than

https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf

Afterword 241

that. Not only is security work never finished, but even well-designed and
well-engineered systems can still fall short of delivering the intended levels
of security in the real world.

The “last mile,” a term taken from the telecommunications and trans-
portation industries, refers to the challenge of connecting individual cus-
tomers to the network. This is often the most expensive and hardest part of
delivering services. For example, an internet service provider might already
have high-speed fiber infrastructure in your neighborhood, but acquiring
each new customer requires a service call, possibly running cables, and
installing a modem. None of this scales well, and the time and expense
become significant additional upfront investments. In much the same way,
deploying a well-designed, secure system is often only the beginning of
actually delivering real security.

To understand these “last mile” challenges for security, let’s take an
in-depth look at the current state of the art of mobile device data security
through the lens of a simple question: “If I lose my phone, can someone
else read its contents?” After years of intensive engineering effort resulting
in a powerful suite of well-built modern crypto technology, the answer, even
for today’s high-end phones, seems to be, “Yes, they probably can get most
of your data.” As this is perhaps the largest single software security effort in
recent times, it’s important to understand where it falls short and why.

The following discussion is based on the 2021 paper “Data Security on
Mobile Devices: Current State of the Art, Open Problems, and Proposed
Solutions,” written by three security researchers at Johns Hopkins University.
The report describes several important ways that delivering robust software
security often remains elusive. I will simplify the discussion greatly in the
interests of highlighting the larger lessons for security that this example
teaches.

First, let’s talk about levels of data protection. Mobile apps do all kinds
of useful things—too much for a single encryption regime to work for
everything—so mobile operating systems provide a range of choices. The
iOS platform offers three levels of data protection that differ mainly in how
aggressively they minimize the time window that encryption keys are pres-
ent in memory to facilitate access to protected data. You can think of this
as analogous to how often a bank vault door is left open. Opening the big,
heavy door in the morning and shutting it only at closing time provides the
staff convenient access throughout the day, but it also means the vault is
more exposed to intrusion when not in use. By contrast, if the staff has to
find the bank manager to open the vault every time they need to enter, they
trade that convenience for increased security: the vault is securely locked
most of the time. For a mobile device, asking the user to unlock the encryp-
tion keys (by password, fingerprint, or facial recognition) in order to access
protected data roughly corresponds to asking the bank manager to open
the vault.

Under the highest level of protection, the encryption keys are only
available while the phone is unlocked and in use. While very secure, this is
a hindrance for most apps, because they lose access to data when the device
is locked. For example, consider a calendar app that reminds you when it’s

https://securephones.io/
https://securephones.io/
https://securephones.io/

242 Afterword

time for a meeting. A locked phone renders the app unable to access calen-
dar data. Background operations, including syncing, will also be blocked
during the locked state. This means that if an event were added to your
calendar while the phone was locked, then you would fail to get the noti-
fication unless you happened to unlock the phone beforehand so it could
sync. Even the least restrictive protection class, known as After First Unlock
(AFU), which requires user credentials to reconstitute encryption keys
after booting, presents serious limitations. As the name suggests, a freshly
rebooted device would not have encryption keys available, so a calendar
notification would be blocked then, too.

We can imagine designing apps to work around these restrictions by
partitioning data into separate stores under different protection classes,
depending on when it is needed. Perhaps for a calendar, the time would be
unprotected so as to be available, so the notification would vaguely say, “You
have a meeting at 4 PM,” requiring the user to unlock the device to get the
details. Notifications lacking titles would be annoying, but users also expect
their calendars to be encrypted for privacy, so a trade-off is necessary. The
sensitivity of this information may vary between users and depend on the
specifics of the meeting, but making the user explicitly decide in each case
isn’t workable either, because people expect their apps to work on their
own. In the end, most apps opt for increased access to the data they man-
age, and end up using lower levels of data protection—or, often, none at all.

When most apps operate under the “no protection” option for con-
venience, all that data is a sitting duck for exfiltration if the attacker can
inspect the device. It isn’t easy, but as the Johns Hopkins report details,
sophisticated techniques often find a way into memory. With AFU protec-
tion, all the attacker needs to do is find the encryption key, which, since
devices spend most of their time in this state, is often sitting in memory.

Confidential messaging apps are the main exception to the rule; they
use the “complete protection” class. Given their special purpose, users
are predisposed to put up with the missing functionality when the device
is locked and the extra effort required to use them. These are a minority
of apps, comprising a tiny proportion of locally stored user data, yet most
phone users (those who even think about security at all) probably believe all
of their data is secure.

As if the picture wasn’t already bleak enough, let’s consider how impor-
tant cloud integration is for many apps, and how it is antithetical to strong
data protection. The cloud computing model has revolutionized modern
computing, and we are now accustomed to having ubiquitously connected
datacenters at our fingertips, with web search, real-time translation, image
and audio storage, and any number of other services instantly available.
Functionality such as searching our photo collections for people using facial
recognition vastly exceeds even the considerable compute power of modern
devices, so it very much depends on the cloud. The cloud data model also
makes multi-device access easy (no more syncing), and if we lose a device,
the data is safely stored in the cloud so all we need to do is buy new hard-
ware. But in order to leverage the power of the cloud, we must entrust it
with our data instead of locking it down with encryption on our devices.

Afterword 243

Of course, all of this seamless data access is antithetical to strong data
protection, particularly in the case of a lost cloud-connected phone. Most
mobile devices have persistent cloud data access, so whoever recovers the
device potentially has access to the stored data too. That data most likely
isn’t encrypted; even if we tried to envision, say, a photo app that stored
end-to-end encrypted data in the cloud, that would mean only opaque
blobs of bits could be stored, so we’d lose the power of the cloud to search
or provide photo sharing. And since the decryption key would have to be
strictly held on the device, multi-device access scenarios would be difficult.
Also, if something happened to the key on the device, all the data in the
cloud would potentially be useless. For all these reasons, apps that rely on
the cloud almost completely opt out of encrypted data protection.

We’ve only scratched the surface of the full technical details of the
effectiveness of data protection in mobile devices here, but for our pur-
poses, the outlines of the more general problem should be clear. Mobile
devices exist in a rich and complicated ecosystem, and unless data protec-
tion works for all components and scenarios, it quickly becomes infeasible
to use. The best advice remains to only use your phone for anything that
you wouldn’t greatly mind possibly leaking if you lose it.

The lessons of this story that I want to emphasize go beyond the design
of mobile device encryption, and in broad outlines apply to any large sys-
tems seeking to deliver security. The point is that despite diligent design,
with a rich set of features for data protection, it’s all too easy to fall short of
fully delivering security in the last mile. Having a powerful security model
is only effective if developers use it, and when users understand its benefits.
Achieving effective security requires providing a useful balance of features
that work with, instead of against, apps. All the data that needs protection
must get it, and interactions with or dependencies on infrastructure (such
as the cloud in this example) shouldn’t undermine its effectiveness. Finally,
all of this must integrate with typical work flows so that end users are con-
tributing to, rather than fighting, security mechanisms.

Years ago I witnessed a case of falling short on the last mile with the
release of the .NET Framework. The security team worked hard getting
Code Access Security (CAS)—described in Chapter 3—into this new pro-
gramming platform, but failed to evangelize its use enough. Recall that CAS
requires that managed code be granted permissions to perform privileged
operations and then assert them when needed—an ideal tool for the Least
Privilege pattern. Unfortunately, outside of the runtime team, developers
perceived this as a burden and failed to see the feature’s security benefit.
As a result, instead of using the fine-grained permissions that the system
provided only where needed, applications would typically assert full privi-
lege once, at the start of the program, and then operate entirely without
restrictions. This worked functionally, but meant that applications ran
under excess permissions—with the bank vault door always open, if you
will—resulting in any vulnerabilities being far more exposed to risk than
they would have been if CAS had been used as intended.

These considerations are representative of the challenges that all
systems face, and are a big reason why security work is never really done.

244 Afterword

Having built a great solution, we need to ensure that it is understood
by developers as well as users, that it is actually used, and that it is used
properly. Software has a way of getting used in novel ways its makers never
anticipated, and as we learn about these cases, it’s important to consider the
security ramifications and, if necessary, adapt. All of these factors and more
are essential to building secure systems that really work.

Conclusion
Software has the unique and auspicious property of consisting entirely of
bits—it’s just a bunch of 0s and 1s—so we can literally conjure it out of thin
air. The materials are free and available in unlimited quantities, so our
imagination and creativity are the only limiting factors. This is equally true
for the forces of good as it is for those who seek to harm, so both the prom-
ise and the daunting challenge are unbounded.

This chapter provided a call to action and some forward-looking ideas.
When developing software, consider security implications early in the pro-
cess, and get more people thinking about security to provide more diverse
perspectives on the topic. An increased awareness of security leads to
healthy skepticism and vigilance throughout the software lifecycle. Lessen
your dependence on manual checking, and provide more automated veri-
fication. Keep auditable records of all key decisions and actions along the
way to realizing a system, so the security properties of the system are well
defined. Choose components wisely, but also test assumptions and impor-
tant properties of the system. Reduce fragility; manage complexity and
change. When vulnerabilities arise, investigate their root causes, learn from
them, and proactively reduce the risk going forward. Critically examine
realistic scenarios and work toward delivering security to the last mile.
Publish the details as fully as is responsible so others can learn from the
issues you encounter and how you respond. Iterate relentlessly in small steps
to improve security and honor privacy.

Thank you for joining me on this trek through the hills and valleys
of software security. We certainly did not cover every inch, but you should
now have a grasp of the lay of the land. I hope you have found useful ideas
herein and, with a better understanding of the topic, that you will begin to
put them into practice. This book isn’t the answer, but it offers some answers
to raising the bar on software security. Most importantly, please don your
“security hat” from time to time and apply these concepts and techniques in
your own work, starting today.

A
S A M P L E D E S I G N D O C U M E N T

The following document is a hypothetical
design provided to illustrate the process of

performing a security design review (SDR)
on an actual design. Intended as a learning

tool, it omits many details that would be present in a
real design, focusing instead on security aspects. As
such, it is not a complete example of a real software
design document.

N O T E 	 Bold text highlights security-related content: examples of good security practice in a
design, what features a good designer adds, or points that security reviewers should be
raising. Italic text is intended as meta-descriptions about this design document. I use it
to remark on the document’s pedagogical purpose and explain shortcuts I’ve taken.

246 Appendix A

Title – Private Data Logging Component Design Document

Table of Contents

Section 1 – Product Description
Section 2 – Overview

2.1  Purpose
2.2  Scope
2.3  Concepts
2.4  Requirements
2.5  Non-Goals
2.6  Outstanding Issues
2.7  Alternative Designs

Section 3 – Use Cases
Section 4 – System Architecture
Section 5 – Data Design
Section 6 – API

6.1  Hello Request
6.2  Schema Definition Request
6.3  Event Log Request
6.4  Goodbye Request

Section 7 – User Interface Design
Section 8 – Technical Design
Section 9 – Configuration
Section 10 – References

Section 1 – Product Description
This document describes a logging component (herein called Logger) that
provides standard software event logging facilities to support auditing, system
monitoring, and debugging, designed to mitigate risks of inadvertent informa-
tion disclosure. Logger will explicitly handle private data within logs so
that non-private data can be freely accessed for routine uses. In rare cases
when this access level is insufficient, limited access to protected, private
log data can be provided, subject to explicit approval and with restrictions
to minimize potential exposure.

The notion of explicitly handling private data separately within the context of a log-
ging system is an example of security-centric design thinking. Adding this feature to
an existing system would be less efficient and require considerable code churn, com-
pared to designing it in from the start.

Sample Design Document 247

Section 2 – Overview
For baseline project design assumptions, see the documents listed in Section 10.

2.1 Purpose
All applications in the datacenter need to log details of important software
events, and since these logs potentially contain private data, careful access con-
trol needs to be enforced. Logger provides standard components to generate
logs, store logs, and enforce appropriate access to authorized staff while main-
taining a reliable and non-repudiable record of what access does occur. Since
the logging, access, and retention requirements of systems vary, Logger oper-
ates based on a simple policy configuration that specifies an access policy.

2.2 Scope
This document explains the design of the software components of Logger with-
out mandating the choice of implementation language, deployment, or opera-
tional considerations.

2.3 Concepts
The notion of a filtered view of logs is core to the design. The idea is to allow rela-
tively free inspection of the logs with any private details filtered out, an access
level which should suffice for most uses. Additionally, when needed, sensitive
data that is logged can be inspected, subject to additional authorization. The
access event is logged too, making the fact of inspection auditable. This gradu-
ated access lets applications log important private details while still minimizing
how that data is exposed for legitimate uses by internal staff. Data so sensitive
that it should never appear in logs simply should not be logged in the first place.

For example, web applications routinely log HTTPS requests as a record
of system usage and for many other reasons. Often these logs contain pri-
vate information (including IP addresses, cookies, and much more) that must
be captured but is rarely needed. For example, IP addresses are useful when
investigating malicious attacks (to identify the origin of an attack), but for other
uses are immaterial. A filtered view of logs hides, or “wraps,” private data while
showing nonsensitive data. Designated pseudonyms in a filtered view can show
that, for instance, the IP addresses of all events labeled “IP7” are identical with-
out disclosing the actual address. Such a filtered view often provides sufficient
information for the purposes of monitoring, gathering statistics, or debugging.
When that is the case, it’s advantageous to have avoided exposing any private
data at all. The logs still contain the full data, and in rare cases when the pro-
tected information is required, the unfiltered view is available in a controlled
manner with proper authorization.

248 Appendix A

Suppose that a web application receives a user login attempt which trig-
gers a bug that causes the process to crash. Here is a simplified example of what
the log might contain:

2022/10/19 08:09:10 66.77.88.99 POST login.htm {user: "SAM", password: ">1<}2{]3[\4/"}

The items in this log are: timestamp (not sensitive), IP address (sensitive),
HTTP verb and URL (not sensitive), username (sensitive), and password (very
sensitive). An investigation potentially needs to consider all this information in
order to reproduce the bug, but you don’t want to display this data in plaintext
unless absolutely necessary, and then only to authorized agents.

To address the security needs of a wide range of systems, the sensitivity
of various kinds of log data should be configurable, and the logging system
should only selectively reveal confidential data. For example, as a best practice
URLs should not contain sensitive information, but a legacy system might be
known to violate this rule of thumb and require protection not usually neces-
sary—which makes the filtered view less useful for some debugging. In the case
of a URL, regular expressions could facilitate configuring certain URLs as more
sensitive than others.

A filtered view of the previous example log that omits or wraps the sensi-
tive data might look like this:

2022/10/19 08:09:10 US1(v4) POST login.htm {user: USER1(3), password: PW1(12)}

The IP address, username, and password are all wrapped as identifiers
to hide the data, but the substituted identifiers could be used in context to
query other requests with matching values. In this example, US1 designates an
IP address in the US; USER1 designates the username associated with the event
without divulging it specifically; and PW1 stands for the password submitted. The
suffixes in parentheses indicate the format or length of the actual data, adding
a hint without revealing specific details: we can see that it’s an IPv4 address, the
username has 3 characters, and the password has 12. For example, if an exces-
sively long password caused a problem, this fact would be apparent from
its surprising length alone. Knowing the length of the password leaks a
little information but should not be compromising in practice.

When the filtered view is insufficient for the task at hand, an additional
request to unwrap an identifier such as US1 can be made. This makes seeing the
sensitive data an explicit choice, and allows a graduated revealing of data. For
example, if only the IP address is needed, the username and password values
remain undisclosed.

2.4 Requirements
Logs are reliably stored, immediately accessible with authorization, and destroyed
after the required retention period. To support high volumes of use, the log cap-
ture interface must be fast, and once it reports success, the generating application
is rightly assured that the log is stored.

Sample Design Document 249

Logs can be monitored without knowledge of private details, so a filtered
log view can be made widely available for most uses, with special authorization
needed to see the full data (including private data) only when strictly necessary.

An important goal of this design is to allow the logging of very sensitive
private data that can be made available for investigating possible security
incidents or, in rare cases, debugging issues that only occur in production.
Complete mitigation against an insider attack is an impractical goal, but it’s
important to take all reasonable precautions and preserve a reliable audit
trail as a deterrent.

Storage for logs is encrypted to protect against leaks if the physical media
is stolen.

Software generating logs is fully trusted; it must correctly identify private
data in order for Logger to handle it correctly.

2.5 Non-Goals
As Logger is intended for use by admins, a slick UI is unnecessary.

Insider attacks such as code tampering or abuse of admin root privilege
are out of scope.

To be effective, Logger requires careful configuration and oversight.
How this is implemented must be defined by system management but
should include a review process and auditing with checks and balances.

2.6 Outstanding Issues
Details of log access configuration, user authentication, and grants of unfiltered
access authorization remain to be specified.

Querying encrypted private data is inherently slow. This design envi-
sions that log data volumes are sufficiently small that a brute-force pass
(that is, without reliance on an index) decrypting records on demand will
be performant. A more ambitious future version might tackle indexing
and fast querying over encrypted data.

Error cases need to be identified and handling specified.
Enhancements for future versions of Logger to consider include:

•	 Defining levels of filtered views that provide more or less detailed
information

•	 Providing a facility to capture portions of the log for long-term secure stor-
age that would eventually be routinely deleted

2.7 Alternative Designs
The final design chosen is based on fully trusting Logger to store all sensi-
tive information in logs, putting “all eggs in one basket.” An alternative was
considered that allowed sensitive information to be compartmentalized by
source. This was not pursued for a few reasons (briefly explained below)
that did not appear compatible with important use scenarios, but it is impor-
tant to note that this would arguably be a more secure logging solution.

250 Appendix A

Alternative design

Log sources would create an asymmetric cryptographic key pair and use
it to encrypt the sensitive data portions of log records before sending to
Logger. If this were done carefully, Logger could (probably) still generate
pseudonyms for filtered views (for example, US1 for a certain IP address in
the US). Authorized access to unfiltered views would then require the pri-
vate key in order to decrypt the data. The main advantage of this approach
is that disclosure of stored log data would not leak sensitive data that was
encrypted, and Logger would not even have the necessary key(s).

Reasons not chosen

This design puts the burden of encryption and key management on both
log sources and authorized accessors. The designation of what data is sensi-
tive and how it should be partitioned is determined by the log source and
fixed at that time. By centralizing trust in Logger, both of these aspects can
be reconfigured as needed, and fine-grained access can be controlled by
authenticating the log viewer.

Section 3 – Use Cases
Applications in the datacenter generate logs of important software events using
Logger. Routine monitoring software and appropriate operational staff are
allowed filtered access (data views without disclosure of any private data) for
their routine duties. Operational statistics including traffic levels, active users,
error rates, and so forth are all generated from filtered log views.

Rarely, when support or debugging requires access to the unfiltered logs,
authorized staff may get limited access subject to policy. Access requests spec-
ify the subset of logs needed, their time window, and the reason for the access.
Once approved, a token is issued that permits the access, which is logged for
audit. Upon completion, the requester adds a note describing the result of the
investigation, which is reviewed by the approver to ensure propriety.

Reports detailing summaries of requests, approvals, audit reviews, log
volume trends, and confirmation of expired log data deletion are generated to
inform management.

Section 4 – System Architecture
Within the datacenter, Logger service instances run on physically separate
machines operated independently from the applications they serve, via a
standard publish/subscribe protocol. Logger is constituted from three new
services organized as the following functions:

Logger Recorder
A log storage service. Applications stream log event data over an encrypted
channel to the Logger Recorder service, where they are written to persistent
storage. One instance may be configured to handle logs for more than one
application.

Sample Design Document 251

Logger Viewer
A web application that technical staff use to manually inspect filtered logs,
with the ability to reveal unfiltered views subject to authorization according
to policy.

Logger Root Recorder
A special instance of Logger Recorder that logs events of Logger Recorder
and Viewer. For simplicity we omit the details of filtered and unfiltered views of
this log.

Section 5 – Data Design
Log data is collected directly from applications that determine what events, with
what details, should be logged. Logs are append-only records of software
events and are never modified other than being deleted upon expiration.

Applications define a schema of log event types, with zero or more items of
preconfigured data, as illustrated by the following example. All log events must
have a timestamp and at least one other identifying data item.

{LogTypes: [login, logout, ...]}
{LogType: login, timestamp: time, IP: IPaddress, http: string,
 URL: string, user: string, password: string, cookies: string}
{LogType: logout, timestamp: time, IP: IPaddress, http: string,
 URL: string, user: string, cookies: string}
{Filters: {timestamp: minute, IP: country, verb: 0, URL: 0,
 user: private, password: private, cookies: private}}

Many details regarding built-in types, formatting, and so forth are omitted since the
basic idea of how these would be defined should be clear from this partial example.

Requests and responses must be UTF-8-encoded valid JSON expressions
less than 1 million characters in length. Individual field values are limited
to at most 10,000 characters.

The first line (LogTypes) enumerates the types of log events this application
will produce. For each type, a JSON record with the corresponding LogType entry
(the second line is for LogType: login) lists the allowable data items that may be
provided with such a log.

The fourth line (Filters) declares the disposition of each data item: 0 for
nonsensitive data, private for private data to be “wrapped,” and other special
types of data handling, including:

minute

Time value is rounded to the nearest minute (obscuring precise times)

country

IP addresses are mapped to country of origin in the filtered view

Filters should be defined by pluggable components and easily extended to
support custom data types that various applications will require.

252 Appendix A

Note that “nonsensitive” data should be used for limited internal view-
ing only; this designation does not mean that this data should be publicly
disclosed. The requirement that all data items be declared, including disposi-
tion (private or not), is to ensure that explicit decisions are made about each one
in the context of the application. It is critical that these definitions and any
updates have careful scrutiny to ensure the integrity of the log processing.

Here is an example log entry in the unfiltered view for this schema:

2022/10/19 08:09:10 66.77.88.99 POST login.html {user: "SAM", password: ">1<}2{]3[\4/"}

And this is the corresponding filtered view:

2022/10/19 08:09 US1(v4) POST login.html {user: USER1(3), password: PW1(12)}

Data is stored persistently and available until the policy-configured expira-
tion date is reached, measured as time elapsed since the event log timestamp.

Logs are transient data only intended for monitoring and debugging or
for forensic purposes in the case of a security breach, and as such are only kept
for a limited time. Potential data loss is mitigated by storing the data on
a dedicated machine, using a RAID (or similar) disk array for redundant
persistent storage. Logs are intended as short-term storage for auditing
and diagnostic purposes. Long-term storage of any of this data should be
stored separately.

Section 6 – API
The Logger Recorder’s network interface accepts the following remote proce-
dure calls:

Hello

Must be the first API call of the session; identifies the application and
version

Schema

Defines the log data schema (see Section 5)

Log

Sends event data (see Section 5) to be recorded to the specified log

Goodbye

Sent when the application terminates, ending the session

Each application connects to its logging service via a dedicated channel.
HTTPS secures API invocations between authenticated endpoints; the
preconfigured server name authenticates (by its digital certificate) that
clients are connected to valid Logger service instances. The following are
the request types.

Sample Design Document 253

6.1 Hello Request
Any process that will use the Logger service sends this request to initiate the
logging:

{"verb": "Hello", "source": "Sample application", "version": "1"}

The following response acknowledges the request with an OK or error message
and provides a string token for the session:

{"status": "OK", "service": "Logger", "version": "1", "token": "XYZ123"}

The token is used in subsequent requests to identify the context of the initi-
ating application corresponding to the Hello. Tokens are generated randomly
with sufficient complexity and entropy to preclude guessing: the minimum
recommended token size is 120 bits, or about 20 characters in base64
encoding. Shorter tokens are used here for brevity.

6.2 Schema Definition Request
This request defines the data schema for subsequent logging, as described in
Section 5:

{"verb": "Schema", "token": "XYZ123", ...}

Details of this request are omitted for brevity.

The schema defines the field names, types, and other attributes that will
appear in the log contents, as illustrated by the sample event log request
shown in the following section (which includes the fields timestamp, ipaddr,
http, url, and error).

6.3 Event Log Request
This request actually logs one record with the Logger service:

{"verb": "Event", "token": "XYZ123", "log": {
 "timestamp": 1234567890, "ipaddr": "12.34.56.78",
 "http": "POST", "url": "example", "error": "404"}}

The log JSON presents content to be recorded to the log that must match
the schema.

The response acknowledges the request with an OK or error message:

{"status": "OK"}

Error details are omitted for brevity. Logging errors (for example, insuf-
ficient storage space) are serious and require immediate attention, since
system operation is not auditable in the absence of logging.

254 Appendix A

6.4 Goodbye Request
This request completes a session of logging:

{"verb": "Goodbye", "token": "XYZ123"}

The response acknowledges the request with an OK or error message:

{"status": "OK"}

The token thereafter is no longer valid. To resume logging, the client must
first make a Hello request.

Section 7 – User Interface Design
The user interface to the Logger is a web interface served by Logger Viewer
that is used to examine the logs. The web app is only accessible by autho-
rized operations staff and authenticated by enterprise single sign-on.
Authenticated users see a selection of logs they are allowed to access, with links
to browse or search the most recent filtered log entries or, when allowed, to
request access to unfiltered logs subject to approval.

For brevity, only a high-level description of the web interface is provided for this
example.

Approval requests are queued for processing in a web form that provides
basic information:

•	 The reason access is requested, including specifics such as customer issue
ticket numbers

•	 The scope of access requested (typically a specific user account or IP
address)

Approval requests trigger automated emails sent to approvers with a link
to the web app page to review these requests. When each decision is taken, an
email notifies the requester with the following:

•	 An approval or denial
•	 Reason for denial, if applicable
•	 Time window for approved access

Filtered and unfiltered logs are visible on a page corresponding to each log.
Queries may be entered specifying which log entries to view. An empty query
shows the most recent entries with Next/Previous links for paging through the
results.

Queries specify log entry fields and values, combined with Boolean opera-
tors to select matching log entries. Most recent first is the default order, unless
an explicit ordering is given in the query. For brevity, the details of query syntax
are omitted.

Sample Design Document 255

Filtered logs are displayed with symbolic identifiers (see Section 2.3)
instead of the raw log contents. Queries may use symbolic identifiers present
in filtered log content; for example, if a filtered log entry shows the IP address
US1, a query of [IP = US1] would find other logs from that IP address without
disclosing the address itself.

Queries over filtered logs must disallow searches on filtered fields
with exact values. For example, even if IP addresses are not shown, if the
user can guess [IP = 1.1.1.1] (and so forth) they may eventually hit a log
entry that will show it as something like USA888 and then be able to infer
the actual value.

Even when unfiltered access is approved, users must select an option to
begin unfiltered viewing and querying. Best practice maximizes use of fil-
tered logs, only revealing filtered values on an as-needed basis, and it is
important that the user interface encourage this.

Users can renounce the right to unfiltered log access when the task is
completed. The user interface should promote this after a period of inactivity
to minimize risk of unnecessary access.

Web pages displaying log contents should not be locally cached by
user agents to avoid inadvertent disclosure and to ensure that, on expiry,
the log data is no longer available.

Section 8 – Technical Design
The Logger Recorder service consists of a write-only interface for applications
to stream log event data that will be written to persistent storage, and a query
interface to get views of those logs. Storage is a sequence of write-append
files consisting of UTF-8 lines of text, with one line per log event. Log data as
described by the relevant schema (see above) maps to/from a canonical repre-
sentation as text. Details of formatting are omitted for this example.

Log data fields subject to filtering should be stored in the filtered
representation in addition to the raw data encrypted with an AES key
generated by the service, using a new key every day. Use a hardware
key storage or suitable means of securely protecting these keys.

Since exhausting available storage represents a fatal error for a logging ser-
vice, the write rate is measured against free space (free_storage_MB / avg_logging_MB
_per_hour) and a priority operational alert is raised if space for fewer than 10 hours
of data, assuming constant write volumes, remains (this number of hours to alert is
configurable).

For performance, consider a SQL database recording filtered log event
information (timestamp, log type, filename, and offset), supplementing the
actual log files for efficient access.

Filtered logs hide private data with symbolic identifiers (for example, US1 for
an IP address in the US). To avoid storing unfiltered private data, these maps
go from a secure digest of the unfiltered data value to the filtered moni-
ker. This mapping is temporary and maintained by Logger Viewer separately for
each user context per log. Users have the ability to clear mappings for a fresh
start, or after 24 hours of non-use, they are automatically cleared to prevent
useless buildup over time.

256 Appendix A

Section 9 – Configuration
Log retention is configured as follows. Data is automatically, securely, and
permanently deleted beyond the retention period (not just moved to
trash; use the shred(1) command or similar).

Retention: {
 "Log1": {"days": 10},
 "Log2": {"hours": 24},
}

Log access is granted by configuring lists of authorized users:

Access: {
 "Log1": {"filtered": ["u1", "u2", "u3", . . .],
 "unfiltered": ["x1", "x2", "x3", . . .]},
 "approval": ["a1", "a2", "a3", . . .]},
}

Users allowed filtered access to the log denoted Log1 are listed within brack-
ets, as shown above (for example, u1, u2, u3). Users permitted unfiltered access
are then similarly listed. These users will be granted access only following an
approved request. Finally, users with the power to grant approval for limited
unfiltered access are listed in the same manner.

Section 10 – References
The following documents are useful for understanding this design document.

These are fictional.

•	 Enterprise baseline design assumptions document (referenced in Section 2)
•	 Enterprise general data protection policy and guidelines
•	 Publish/subscribe protocol design document (referenced in Section 4)

END OF DOCUMENT

B
G L O S S A R Y

Terminology that is specific to software
security may seem straightforward, but

nuances are important to get right. I have
evolved the following security-specific mean-

ings of terms based on my experience across multiple
companies and many diverse projects, and while these
definitions are generally accepted, don’t be surprised
if you find diversity in the terminology used in the
wild. If you pay close attention, you’ll notice that security specialists define
and use the same terms in slightly different ways, bringing their own
unique perspectives to the foundational precepts of the field. Expect to
hear many variations, because there is no accepted standard vocabulary;
usually, however, these variations are easy to deduce in context.

258 Appendix B

Affected users
An assessment of the proportion of users potentially impacted by the
exploitation of a specific vulnerability. (Component of DREAD)

Allowlist
An enumeration of safe values that should be allowed. (Cf. Blocklist)

Assessment report
The written results of a security design review (SDR), consisting of a
ranked summary of findings and recommendations, including specific
design changes and strategies to improve security.

Asset
Valuable data or resources, especially likely targets of attack, to be
protected.

Asymmetric encryption
Data encryption with separate keys for encryption (public key) and decryp-
tion (private key). (Cf. Symmetric encryption)

Attack
Action taken in an attempt to violate security.

Attacker
A malicious agent working to violate the security of a system. (Also known
as Threat actor)

Attack surface
The aggregate of all potential points of entry to a system for attack.

Attack vector
A sequence of steps forming a complete attack, starting from the attack sur-
face and culminating in access to an asset.

Auditing
Maintaining a reliable record of actions by principals, for regular
inspection, to detect suspicious behavior indicative of improper activity.
(Component of the Gold Standard)

Authentication (authN)
High-assurance determination of the identity of a principal. (Component of
the Gold Standard)

Authenticity
Assurance that data is genuine, a stronger claim than data integrity.

Glossary 259

Authorization (authZ)
Security policy controls ensuring that privileged access is restricted to cer-
tain authenticated principals. (Component of the Gold Standard)

Availability
Assurance that data access is always available to authorized principals; in
other words, that the system avoids significant delays or outages hindering
legitimate access. (Component of C-I-A)

Backtracking
Behavior of algorithms, such as regular expression matching, where prog-
ress may advance and regress, exponentially repeating. Potential security
issues result when backtracking incurs excessive computation that degrades
availability.

Block cipher
A symmetric encryption algorithm that processes fixed-length blocks of
data, as opposed to a bitstream.

Blocklist
An enumeration of unsafe values that should be disallowed. Not generally
recommended because, unless exhaustive, there is risk of vulnerability.
(Cf. Allowlist)

Bottleneck
A single point in the code execution path that guards all access to a specific
asset. Bottlenecks are important for security because they ensure that uni-
form authorization checks happen for all accesses.

Buffer overflow
A class of vulnerabilities involving invalid access outside the bounds of allo-
cated memory.

Certificate authority (CA)
An issuer of digital certificates.

Chokepoint
See Bottleneck.

Chosen plaintext attack
Analysis of encryption where the attacker is able to learn the ciphertext
for a plaintext of their choice, and thereby weaken the encryption.

C-I-A
The fundamental information security model. (See Confidentiality, Integrity,
and Availability)

260 Appendix B

Ciphertext
The encrypted form of a message that is meaningless without the key.
(Cf. Plaintext)

Code Access Security (CAS)
A security model that dynamically adjusts authorization according to the
privileges of all callers to mitigate Confused Deputy vulnerabilities.

Collision
When two different inputs produce the same message digest value.

Collision attack
An attack that uses a known collision to subvert authenticity relying on the
uniqueness of cryptographic message digest values.

Command injection
A vulnerability allowing malicious inputs to result in running arbitrary
commands controlled by an attacker.

Confidentiality
The fundamental information security property of enforcing only autho-
rized access to data. (Component of C-I-A)

Confused Deputy
A vulnerable pattern where an unauthorized agent can trick an authorized
agent or code to perform a harmful action on the former’s behalf.

Credentials
Evidence of identity, attributes, or authority, as a basis for authentication.

Cross-site request forgery (CSRF or XSRF)
An attack that modifies web server state, typically using a POST request
with the victim client’s cookies context.

Cross-site scripting (XSS)
A web-specific injection attack where malicious input alters the behavior of
a website, typically resulting in running unauthorized script.

Cryptography
The mathematical art of reversibly transforming data so as to conceal it.

Cryptographically secure pseudo-random number generator (CSPRNG)
A source of random numbers considered unpredictable enough that guess-
ing is infeasible, which is thus suitable for cryptography. (Cf. Pseudo-random
number generator)

Glossary 261

Damage potential
An assessment of how much harm can be done by exploiting a specific vul-
nerability. (Component of DREAD)

Deanonymization
Analysis of supposedly anonymous data that infers identifying traits to
compromise the degree of anonymity.

Decryption
The process of transforming a ciphertext back into the original plaintext
message.

Denial of service (DoS)
An attack that consumes computing resources in order to degrade availabil-
ity. (Also a component of STRIDE)

Dependency
A software library or other component of a system that software requires in
order to operate.

Dialog fatigue
The human response to repetitive or uninformative software dialogs, often
leading to reflexive responses to get past the dialog in order to accomplish
a goal. The security impact occurs when users fail to understand or con-
sider the security consequences of their actions.

Digest
A unique numerical value of fixed size computed from an arbitrarily large
data input. Different digest values guarantee the inputs are different, but
collisions are possible. (Also known as Hash)

Digital certificate
A digitally signed statement asserting a specific claim by the signer.
Common digital certificate standards include TLS/SSL secure communica-
tions (both for the server and the client side), code signing, email signing,
and certificate authorities (root, intermediate, leaf).

Digital signature
A computation demonstrating knowledge of a private key, proving the
authenticity of the signer.

Discoverability
An assessment of how easily the existence of a specific vulnerability could
be learned by a would-be attacker. (Component of DREAD)

Distributed denial-of-service attacks (DDoS)
Coordinated denial-of-service attacks, typically orchestrated using a large
herd of bots.

262 Appendix B

DREAD
An acronym for a five-component system used to assess a vulnerability to
gauge its severity. (See Damage potential, Reproducibility, Exploitability, Affected
users, and Discoverability)

Electronic code book (ECB) mode
A block cipher encryption mode where each block is encrypted indepen-
dently. Since identical blocks result in identical outputs, ECB is weak and
usually not recommended.

Elevation of privilege
Any means by which an agent acquires increased privileges, especially when
an attacker exploits a vulnerability. (Component of STRIDE)

Encryption
An algorithm transforming plaintext into ciphertext to secretly convey a
message.

Entropy source
A source of random input that generates an unpredictable bitstream.

Exploit
The recipe for a working attack that violates security, causing harm.

Exploitability
An assessment of how easy it is to exploit a specific vulnerability. Often this
is a subjective guess due to many unknowns. (Component of DREAD)

Fact of communication
Knowledge of whether or not two communicants exchanged information, such
as by an eavesdropper observing encrypted messages they cannot decipher.

Flaw
A bug that might or might not be a vulnerability, either in design or
implementation.

Footgun
A software feature that makes it easy to introduce a bug, especially a
vulnerability.

Fuzz testing
Automated brute-force testing with arbitrary inputs to discover software flaws.

Gold Standard
A nickname for the three basic security enforcement mechanisms. (See
Auditing, Authentication, and Authorization)

Glossary 263

Guard
An authorization enforcement mechanism in software that controls access
to a resource.

Hardware random number generator (HRNG)
A hardware device designed to produce highly random data efficiently. (See
Cryptographically secure pseudo-random number generator)

Hash
See Digest.

Hash message authentication code (HMAC)
A class of message digest functions where each key value determines a
unique message digest function.

Incident
A specific instance of a security attack.

Information disclosure
An unauthorized information leak. (Component of STRIDE)

Injection attack
A security attack that uses malicious input to exploit a vulnerability where
part of the input is interpreted in an unexpected manner. Common forms
include SQL injection, cross-site scripting, command injection, and path
traversal.

Input validation
Defensive checking of input data to ensure that it is of a valid format that
will be correctly processed downstream.

Integration testing
Software testing of multiple components operating together. (Cf. Unit
testing)

Integrity
The fundamental information security property of maintaining data accu-
rately, or only allowing authorized modification and deletion. (Component
of C-I-A)

Key
A parameter to a cryptographic algorithm that determines how the data is
transformed. (See Private key, Public key)

Keyed hash function
See Hash message authentication code (HMAC).

264 Appendix B

Key exchange
A protocol for two communicants to establish a secret key that is secure
even if the content of all messages exchanged is revealed to an attacker.

Message authentication code (MAC)
Data accompanying a message as evidence that it is authentic and has not
been tampered with. (Cf. Hash message authentication code)

Message digest
See Digest.

Mitigation
A preemptive countermeasure to prevent a potential attack or reduce its
harm, such as by minimizing damage, making the attack recoverable, or
making it easily detectable.

Nonce
An arbitrary number used once, such as in a communications protocol to
prevent replay attacks.

One-time pad
A shared secret key for message encryption that can only be used once
because reuse weakens its security.

Overflow
The incorrect result of an arithmetic instruction when the value exceeds
the capacity of the variable. When overflow happens undetected, it often
results in a vulnerability by introducing unexpected results.

Path traversal
A common vulnerability where malicious input injects unexpected content
into a filesystem path that allows it to designate files outside the bounds of
intended access.

Plaintext
The original message before encryption, or after decryption by the
intended recipient.

Preimage attack
An attack on a message digest function attempting to find an input value
that produces a specific message digest value.

Principal
An authenticated agent: a person, business, organization, application, ser-
vice, or device.

Private key
A parameter needed for decryption, kept secret by the authorized recipient.

Glossary 265

Provenance
A reliable history of the origin and chain of custody, providing confidence
in the validity of data.

Pseudo-random number generator (PRNG)
A “pretty good” random number generator that is vulnerable to predic-
tion by sophisticated analysis. These random numbers are useful for many
purposes, such as simulations, but are unsuitable for cryptography because
they are not sufficiently random. (Cf. Cryptographically secure pseudo-random
number generator)

Public key
A widely known parameter needed to encrypt a message for a particular
recipient.

Random number
An arbitrarily chosen number that cannot be reliably predicted.

Rate limiting
A method of slowing down a process, commonly used to mitigate attacks
that rely on brute-force repetition to succeed.

Replay attack
Attacking an secure communication protocol by resending previous authen-
tic messages. A replay attack succeeds if an attacker resends a copy of a pre-
vious authentic communication that is mistaken as a subsequent identical
message sent by the original sender.

Reproducibility
An assessment of how reliably the exploitation of a specific vulnerability will
work over a number of repeated attempts. (Component of DREAD)

Repudiation
Plausible deniability for actions, specifically allowing an attacker to evade
responsibility. (Component of STRIDE)

Root certificate
The self-signed digital certificate authorizing trust in a certificate authority.

Same Origin Policy (SOP)
A set of restrictions enforced by web clients to limit access between different
windows of different websites.

Sandbox
A restricted execution environment designed to limit the maximum privi-
lege available to code executing within it.

Security design review (SDR)
A structured review of the security of a software design.

266 Appendix B

Security hat
An expression for intentionally focusing with a security mindset to think
about how things might go wrong.

Security regression
The recurrence of a known security bug that was previously fixed.

Security test case
A software test case that checks that a security control is properly enforced.

Security testing
Software testing to ensure that security controls work properly.

Side channel attack
An attack that deduces confidential information indirectly, as opposed to
by directly defeating protection mechanisms. For example, reliably deduc-
ing knowledge of the results of a computation from the time delay to pro-
duce the result.

Speculative execution
The optimization method used in modern processors whereby future
instructions are executed early to potentially save time, with backtracking
logic to discard results later if unneeded. The impact of speculative execu-
tion on the cache state potentially leaks information not otherwise acces-
sible, making it a security threat.

Spoofing
The subversion of authentication where an attacker pretends to be an
authorized principal. (Component of STRIDE)

SQL injection
A vulnerability allowing an attacker to craft malicious inputs to run arbi-
trary SQL commands.

STRIDE
An acronym for the six basic kinds of software security threats, useful to
guide threat modeling. (See Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service, Elevation of privilege)

Symmetric encryption
An encryption method where the same key is used to encrypt or decrypt.
The symmetry is that anyone who can encrypt can also decrypt.
(Cf. Asymmetric encryption)

Tainting
A process of tracing the origin of data through software used to mitigate
untrusted inputs, or data influenced by those inputs, from being used in
privileged operations such as for an injection attack.

Glossary 267

Tampering
The unauthorized modification of data. (Component of STRIDE)

Threat
A potential or hypothetical security problem.

Threat actor
See Attacker.

Threat modeling
Analysis of the model of a system used to identify threats needing
mitigation.

Timing attack
A side channel attack where information can be inferred from measuring
the timing of an operation.

Trust
The choice to rely on a principal or component without recourse in the
event of a failure to protect.

Underflow
Lost precision in the result of a floating-point computation.

Unit testing
Software testing of individual modules in isolation from other components.

Untrusted input
Input data originating from untrusted sources, in particular from a poten-
tial attack surface.

Vulnerability
A software flaw that makes a security attack possible.

Vulnerability chain
A collection of vulnerabilities that, when combined, constitute a security
attack.

Weakness
A bug that causes fragility and hence may be a vulnerability.

C
E X E R C I S E S

Exploration is the engine that drives innovation.
—Edith Widder

This appendix contains some ideas for
further exploration, open questions, and

challenges for readers who want to go
beyond the material covered in this book.

Chapter 1: Foundations

•	 The book focuses on information security in conventional computer
systems, but appliances and devices also run on software, and these are
increasingly connected to the internet. How do we extend principles
such as C-I-A to secure software that interacts with the physical world?

Chapter 2: Threats

•	 Threat model an existing software design, or just one component of a
large system.

•	 For fun, threat model a favorite movie or scene from a book where
adversaries battle over a prized asset.

270 Appendix C

Chapter 3: Mitigations

•	 Write helper functions to limit the exposure of sensitive data in mem-
ory as described in “Minimize Data Exposure” on page 47.

•	 Intentionally code a Confused Deputy and try to exploit it, or chal-
lenge a colleague to do so. Fix the vulnerability and confirm that the
code is secure.

•	 Design a library to enforce an extensible access policy for an existing
data access API.

Chapter 4: Patterns

•	 Take an existing design, or undertake a new one, and see how many of
the chapter’s patterns you can use to make it as secure as possible.

•	 What additional security patterns and anti-patterns can you think of?
Keep a running list, adding to the ones presented in the chapter, and
share them with colleagues.

•	 Are allowlists always better than blocklists? Think of an exception, or
explain why none exist.

Chapter 5: Cryptography

•	 An easy way to play around with real crypto tools is with the OpenSSL
command line (https://wiki.openssl.org/index.php/Main_Page). You can
use it to experiment with symmetric and asymmetric crypto, as well as
MACs (called digests in openssl(1)), or even create and check your own
certificates.

•	 Find a high-quality crypto library and try using it to implement the
basic operations described in the chapter. How was the API in terms
of ease of use, and how confident are you that your implementation is
secure?

•	 If the previous exercise proved difficult, how could you redesign the
API to be easier to use, as well as more foolproof?

•	 Code the crypto API improvements you thought of, or wrap the origi-
nal library to provide a better API.

Chapter 6: Secure Design

•	 Explore Google’s design document writing guidance (https://www
.industrialempathy.com/posts/design-docs-at-google/).

•	 If you haven’t written a software design document before, try it out the
next time you get an opportunity to do so (making it as informal and
high level as you like).

•	 If you work on a codebase that has no written design document, retro-
actively create one. For large systems, create designs for one component
at a time, focusing on whatever components are most important to
security or otherwise of interest.

https://wiki.openssl.org/index.php/Main_Page
https://www.industrialempathy.com/posts/design-docs-at-google/
https://www.industrialempathy.com/posts/design-docs-at-google/

Exercises 271

Chapter 7: Security Design Reviews

• Find existing designs and review them as a learning exercise. Don’t just
look for vulnerabilities; create a broad assessment of both strengths
and weaknesses, including places where security matters most, ways the
design enhances security, mitigation alternatives, and ways in which
security could be improved or made more usable.

• Share and discuss your findings from the preceding exercise with
colleagues.

Chapter 8: Secure Programming

• To get a feel for realistic examples of security vulnerabilities, look for
security bugs that have already been found and fixed in your codebase
or in open source software projects. I suggest focusing on open source
projects because vulnerabilities are usually described in detail and you
can see the code. The US Department of Homeland Security sponsors a
large database of publicly known vulnerabilities (https://cve.mitre.org/).
The Chromium bug database is another good source of public vul-
nerabilities (https://bugs.chromium.org/p/chromium/issues/list). A good
starting point is to filter these databases for fixed security bugs so you
can see the actual code changes.

• Underhanded coding, also known as obfuscated coding, is the fine art of using
footguns and other trickery to write code that works differently from
what a casual inspection of the code would indicate. Underhanded
coding contests challenge programmers to show off their creativity in
pushing programming languages to their limits. But the same tech-niques
used to camouflage malicious code as benign can also, if stum-bled upon
inadvertently, become footguns. Check out these sites for a start, or try
to craft your own: https://web.archive.org/web/20221205164132/https://
underhandedcrypto.com/

Chapter 9: Low-Level Coding Flaws

• Why don’t languages that provide fixed-width integer types provide
any mechanism to detect overflow? Would it help? If so, how would you
extend the C language to take advantage of it?

• Explore how analysis tools such as Valgrind detect issues with memory
management (https://valgrind.org/docs/manual/mc-manual.html).

• Write a little program that includes a few kinds of memory management
vulnerabilities, such as both read and write buffer overflows. Use a tool
like Valgrind to see if it detects the bugs. Try varying the code to make it
harder for the tool to analyze, and see if you can sneak a bug past it.

Chapter 10: Untrusted Input

• Identify the untrusted inputs on the main attack surface of the system
you work on and see how thoroughly input validation is implemented
and tested.

https://cve.mitre.org/
https://valgrind.org/docs/manual/mc-manual.html
https://bugs.chromium.org/p/chromium/issues/list
https://web.archive.org/web/20221205164132/https://underhandedcrypto.com/
https://web.archive.org/web/20221205164132/https://underhandedcrypto.com/

272 Appendix C

•	 If you find that untrusted inputs may represent vulnerabilities, imple-
ment input validation.

•	 Often, input validation for a system is repetitive. Look for opportunities
to use common code or helper functions to handle it reliably. Consider
ways of baking input validation into frameworks so it cannot be acci-
dentally forgotten.

Chapter 11: Web Security

•	 Write security requirements for a component that creates and authen-
ticates a web session. Design and threat model it, and find a friend to
security review it.

•	 Build an implementation of your web session into a simple web app.
Try to impersonate another session, or steal the necessary session state.
Better yet, find a friend to “attack” your implementation.

•	 Add a CSRF protection mechanism to the component and test it in your
web app.

•	 Explore ways of securing web sessions without the use of cookies as an
experiment to understand the essence of the security challenge.

•	 Find the source code (and ideally, a written design document) for a web
framework and learn how it implements sessions, prevents XSS and CSRF
vulnerabilities, and ensures that HTTPS secures all web interactions. By
threat modeling or other means, can you find any vulnerabilities? If you
want to try attacking it, put up your own test server to do that.

Chapter 12: Security Testing

•	 In the codebase of your choice, locate some area where security is impor-
tant and look for additional security test cases that should be added.
Write and contribute new security test cases.

•	 Consider this alternative example of a vulnerability in GotoFail that the
security tests we wrote wouldn’t catch—in place of the extra goto fail;,
instead insert the line:

if (expected_hash[0] == 0x23) goto fail;

This sort of technique might be used to secretly include a vulnerability
that requires a specific trigger as a kind of backdoor. Detecting this
would require a test case with an expected hash whose first byte was
0x23. Can you write tests to detect this sort of vulnerability without
knowing the specifics?

•	 Check out an old version of an open source software project with a known
vulnerability. Run the test suite and ensure that all tests pass. Write a
security regression test to confirm the vulnerability. Sync up to the next
version that fixes the vulnerability, merging in your regression test. Your
security regression test should now pass; if not, fix it. Then, check for addi-
tional, related vulnerabilities in the latest version.

Exercises 273

Chapter 13: Secure Development Best Practices

•	 Explore easy ways to make incremental code quality improvements,
such as using lint or code scanning tools, as well as checking the test
coverage of error and exception handling.

•	 See how well the security aspects of your codebase are documented and
make needed improvements.

•	 Whenever you do code reviews, put on your security hat for another
pass when appropriate.

•	 Consider security when you do bug triage, or perhaps browse your bug
database with security in mind to see if bugs that have security implica-
tions are being punted.

Afterword

•	 Look for opportunities to make improvements along the lines men-
tioned in the conclusion, even if this means taking small steps: broader
security participation, earlier integration of a security perspective and
strategy, reduction or management of complexity, improvement in
transparency about security practice, and so on.

•	 Identify a unique security challenge and design and develop a reusable
component that addresses it.

•	 Pursue other ideas of your own to raise the security bar and spread
the word.

D
C H E A T S H E E T S

Your conscious mind should be used as a focusing tool, not a storage place.
—David Allen

Chapter 1

Classic Security Principles
Information Security (C-I-A)

Confidentiality Allow only authorized data access—don’t leak
information

Integrity Maintain data accurately—don’t allow unauthorized
modification or deletion

Availability Preserve the availability of data—don’t allow signifi-
cant delays or unauthorized shutdowns

Gold Standard

Authentication High-assurance determination of the identity of a
principal

Authorization Reliably only allowing an action by an authenticated
principal

Auditing Maintaining a reliable record of actions by principals
for inspection

276 Appendix D

Chapter 2

The Four Questions

•	 What are we working on?

•	 What can go wrong?

•	 What are we going to do about it?

•	 Did we do a good job?

STRIDE
Table 2-1: Summary of STRIDE Threat Categories

Objective STRIDE threats Examples

Authenticity Spoofing Phishing, stolen password, imperson-
ation, replay attack, BGP hijacking

Integrity Tampering Unauthorized data modification and
deletion, Superfish ad injection

Non-repudiability Repudiation Plausible deniability, insufficient log-
ging, destruction of logs

Confidentiality Information disclosure Data leak, side channel attack, weak
encryption, residual cached data,
Spectre/Meltdown

Availability Denial of service Simultaneous requests swamp a web
server, ransomware, memcrashed

Authorization Elevation of privilege SQL injection, xkcd’s “Exploits of
a Mom”

https://www.cloudflare.com/learning/security/glossary/bgp-hijacking/
https://us-cert.cisa.gov/ncas/alerts/TA15-051A
https://meltdownattack.com/
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/
https://xkcd.com/327/
https://xkcd.com/327/

Cheat Sheets 277

Chapter 4

Secure Design Patterns

Trust and
Responsibility
Reluctance to Trust
Accept Security Responsibility

Anti-Patterns
Confused Deputy
Backflow of Trust
Third-Party Hooks
Unpatchable Components

Exposure
Minimization
Allowlists over Blocklists
Least Privilege
Least Information
Secure by Default
Fail Securely
Avoid Predictability

Redundancy
Separation of Privilege
Defense in Depth

Strong Enforcement
Least Common Mechanism
Complete Mediation

Design Attributes
Transparent Design
Economy of Design

Security
Patterns

278 Appendix D

Chapter 7

Security Design Review
The six stages of a security design review:

1.	 Study the design and supporting documents to gain a basic understand-
ing of the project.

•	 First, read the documentation to get a high-level understanding of
the design.

•	 Next, put on your “security hat” and go through it again with a
threat-aware mindset.

•	 Take notes, capturing your ideas and observations for future
reference.

•	 Flag potential issues for later, but at this stage it’s premature to do
much security analysis.

2.	 Inquire about the design and ask clarifying questions about basic
threats.

•	 Ensure that the design document is clear and complete.

•	 If there are omissions or corrections needed, help get them fixed in
the document.

•	 Understand the design enough to be conversant, but not necessar-
ily at an expert level.

•	 Ask members of the team what they worry about most; if they have
no security concerns, ask follow-up questions to learn why not.

3.	 Identify the most security-critical parts of the design for closer attention.

•	 Examine interfaces, storage, and communications—these will typi-
cally be central points of focus.

•	 Work inward from the most exposed attack surfaces toward the
most valuable assets, just as determined attackers would.

•	 Evaluate to what degree the design addresses security explicitly.

•	 If needed, point out key protections and get them called out in the
design as important features.

Cheat Sheets 279

4.	 Collaborate with the designer(s) to identify risks and discuss mitigations.

•	 As a reviewer, provide a security perspective on risks and mitiga-
tions where needed.

•	 Consider sketching a scenario illustrating how a security change
could pay off down the line to help convince the designer of the
need for mitigations.

•	 Offer more than a single solution to a problem when you can,
and help the designer see the strengths and weaknesses of these
alternatives.

•	 Accept that the designer gets the last word, because they are ulti-
mately responsible for the design.

•	 Document the exchange of ideas, including what will or will not go
into the design.

5.	 Write a summary report of findings and recommendations.

•	 Organize the report around specific design changes that address
security risks.

•	 Spend most of your effort and ink on the highest-priority issues,
and proportionally less on lower priorities.

•	 Suggest alternatives and strategies, without attempting to do the
designer’s job for them.

•	 Prioritize findings and recommendations, using priority rankings.
(Classify points as Must/Ought/Should.)

•	 Focus on security, but feel free to offer separate remarks for the
designer’s consideration as well.

6.	 Follow up with subsequent design changes to confirm resolution before
signing off.

•	 For major security design changes, you might want to collaborate
with the designer to ensure that changes are made correctly.

•	 Where opinions differ, the reviewer should include a statement of
both positions and the specific recommendations that weren’t fol-
lowed to flag it as an open issue.

280 Appendix D

Chapter 13

DREAD

Damage potential

If exploited, how bad would it be?

Reproducibility

Will attacks succeed every time, some of the time, or only rarely?

Exploitability

How hard, in terms of technical difficulty, effort, and cost, is the vul-
nerability to exploit?

How long is the attack path?

Affected users

Will all, some, or only a few users be impacted?

Can specific targets be easily attacked, or are the victims arbitrary?

Discoverability

How likely is it that attackers will find the vulnerability?

I N D E X

A
ABAC (attribute-based access

control), 17
Accept Security Responsibility

pattern, 69
access control list (ACL), 55
access controls, 48
access policy

custom, 48
fine-grained, 49
“relief valve”, 49

Advanced Encryption Standard
(AES), 82

adversaries, 24
attacker’s advantage, 25
targets, 25

Agarkov, Dmitry, 175
allowlists, 60. See also blocklists
Allowlists over Blocklists pattern, 60
anti-patterns

Backflow of Trust, 73
Confused Deputy, 71, 224

Intention and Malice, 72
Trustworthy Deputy, 73

Security by Obscurity, 135
Third-Party Hooks, 74
Unpatchable Components, 74

antivirus, 61, 225
“Are you sure?” dialog, 70
Ariane 5, 223
arithmetic

32-bit, 149
64-bit, 154
binary, 148
floating-point vs. integer, 146
modular, 147
safe, 155
vulnerabilities, 146–156

assessment report. See security design
review (SDR)

assets, 26
aggregation, 29
differing valuation, 29
identification, 28
isolation of, 120
removal, 38
valuation, 25

atomicity, 140
attacks

denial-of-service (DoS), 13, 216
distributed denial-of-service

(DDoS), 219
injection, 175
preimage, 79
replay, 79, 82
side-channel, 11, 30, 141
timing, 141–142

attack surfaces, 26, 101, 113, 119
hardening, 45
identification, 30
internet, 30
minimization, 45

attribute-based access control
(ABAC), 17

auditing, 14
inside jobs, 18
shared account problem, 19

audit logs, 14
Goldilocks principle, 19
need for monitoring, 19
non-repudiability, 19
private information problem, 19
tamper-resistant, 18

authentication, 14
binding attacks, 17
binding the principal, 16

282 Index

authentication (continued)
separation from authorization, 15
something you are, 15
something you have, 15
something you know, 15
somewhere you are, 15

authN. See authentication
authorization, 14

anonymous, 17
attribute-based access control

(ABAC), 17
guards, 17
minimal access, 18
multiple principals, 18
no self-service, 18
policy-based access control

(PBAC), 17
rate-limited, 18
role-based access control

(RBAC), 17
time of day, 18

authZ. See authorization
availability, 11, 13
availability testing, 216–218
Avoid Predictability pattern, 61

B
Backflow of Trust anti-pattern, 73
backups, 13
BeautifulSoup parser, 214
binary math refresher, 148
Bloch, Josh, 97
blocklists, 60. See also allowlists
bottleneck. 63
bridge (between user processes), 64
brute-force guessing, 16
buffer overflow, 157

example, 158
buffer overrun, 157, 158

C
California Senate Bill No. 327

(2018), 59
CAS. See Code Access Security (CAS)
case study

difficult SDR, 122
GotoFail vulnerability, 137
Heartbleed vulnerability , 162

The Most Dangerous Code in the
World, 226

certificate authority (CA), 87
chosen plaintext attack, 84
C-I-A, 11–14, 99

principles. See also information
security

ciphertext, 81, 84
Code Access Security (CAS), 73, 243

.NET Framework, 46
permission, 46

code examples, 130
code quality

code hygiene, 222
documentation, 224
exception handling, 223
security reviews, 224

collision attack, 78
competence and imperfection, 7
compiler warnings, 139, 222
Complete Mediation pattern, 63

degrees of compliance, 63
components

security considerations, 225
selecting, 225

confidentiality, 11–13
compromise of, 12

Confused Deputy anti-pattern, 71, 224
Intention and Malice, 72
Trustworthy Deputy, 73

cookies. See HTTP protocol
C programming language, 130, 138
credentials, 14. See also authentication
Cross-Origin Resource Sharing

(CORS), 196
cross-site request forgery (CSRF or

XSRF), 201. See also web
security

example, 199
mitigation, 200

cross-site scripting (XSS). See also web
security

DOM-based, 199
example, 197
mitigation, 199, 202
reflected, 198
stored, 198
testing, 212–214

Index 283

mitigation, 199, 202
reflected, 198
stored, 198
testing, 212–214

cryptocurrency, 86
cryptographically secure pseudo-

random number generators
(CSPRNG), 77

cryptography. See encryption
crypto toolbox, 76, 89
CSRF. See cross-site request forgery

(CSRF or XSRF)
Cuban, Mark, 121

D
data

backups, 13
invisibility of, 6
private, 12
provenance, 13
tampering, 13

data flow diagrams (DFD), 27
data hiding, 73
data protection

backups, 51
data at rest, 51
minimizing data exposure, 47
offline backups, 48

DDoS (distributed denial-of-service)
attacks, 219

deanonymization, 12–13
default password, 59
Defense in Depth pattern, 65
denial of service (DoS). See availability

testing, STRIDE
denial-of-service (DoS) attacks, 13,

181, 206
dependencies, 228

choosing components, 225
legacy code, 227
libraries and frameworks,

use of, 227
secure design, 99
secure interfaces, 226
software supply chain, 225

deprecation, 226
DES encryption algorithm, 56
deserialization, 143

design. See also secure design
common assumptions, 98
documents, 97
importance of assumptions, 98
integrating security, 96
scope, 98

consequences of not
defining, 99

looking beyond, 99
security considerations, 97

design pattern groupings, 54
DFD (data flow diagrams), 27
dialog fatigue, 70
Diffie–Hellman key exchange

algorithm, 88
Diffie, Whitfield, 87
digest for integrity, 13
digital certificate. See HTTPS protocol
digital signature

algorithm, 85
for integrity, 13
signature verification, 85

distributed denial-of-service (DDoS)
attacks, 219

documentation for security, 224
Document Object Model (DOM), 193
Domain Name System (DNS), 189
DoS (denial-of-service), 13
downgrade attack, 192
DREAD model

example, 229
T-shirt sizes, 229

dynamic memory allocation, 157

E
Economy of Design pattern, 54, 108
electronic code book (ECB) mode, 82
elevation of privilege. See STRIDE
elliptic curve algorithms, 85
email retention, 21
encryption

asymmetric
elliptic curve, 85
private key, 83
public key, 83
RSA, 84

backup data application, 90
ciphertext, 81

284 Index

encryption (continued)
communication, 50
cryptocurrency application, 90
digital signatures, 85
ECB mode, 82
exclusive-or, 81
financial data application, 90
foundations, 91
limitations of, 91
plaintext, 81
symmetric, 81

AES, 82
block cipher, 82
key establishment, 83
key secrecy, 83
key size, 83
limitations of, 83

entropy, 136
sources, 78

Equifax breach, 107
error handling, 223
eval function, 184
examples

accountant, 64
Ariane 5, 223
backing up photos, 51
bank vault, 33–35
child-proofing, 40
COVID-19 stay-at-home emergency

order, 60
credit card contract, 175
customer relationship

management (CRM), 58
endianness mix-up, 97
floating-point underflow, 151
generating random numbers using

lava lamps, 78
HTTP cookies, 68
iMessage, 64
integer overflow, 153
LEGO, 55
memory allocation

vulnerabilities, 158
Norman Bates, 71
Ocean’s Eleven, 37
online shopping app with

bugs, 134

plywood, 65
predictable account IDs, 61
Reddit user, 64
safe deposit box, 67
Star Wars, 56
Superman, 57
tax ID privacy, 63
traveling sales staff, 101

exception handling, 223

F
Facebook Beacon, 30
Fail Securely pattern, 62
floating point

equality test problematic, 150
precision, 149
Python example, 151

footguns, 138-139
Four Questions, 25, 98–99, 103

as guidance for a security design
review, 116–119

free function, 157
functional testing, 209

with GotoFail vulnerability, 209
fuzz testing, 215

example, 214

G
Garg, Praerit, 35
GCC compiler, 139
General Data Protection Regulation

(GDPR), 12
Goldilocks principle, 28
Gold Standard, 11, 16–19, 37

auditing, 14
authentication, 14
authorization, 14
meaning of name, 14
relation to C-I-A, 15

GotoFail vulnerability, 137, 140
lessons, 139
source code, 138

guard, 63

H
hardware random number generators

(HRNG), 78

Index 285

hash. See message digest
SHA-256, 200

heap, 157
heartbeat, TLS, 162
Heartbleed vulnerability, 47
Hellman, Martin, 87
homomorphs, 174
HTTP over TLS/SSL. See HTTPS

protocol
HTTP protocol, 188

cookie attributes
httponly, 195
SameSite, 201
secure, 195

cookies
session, 194–195, 198, 200
sharing, 195

Cross-Origin Resource Sharing
(CORS), 196

GET, 189, 199
POST, 189, 199–200
request headers, 189

REFERER, 189, 202
response headers, 189

Content-Security-Policy, 202
Referrer-Policy, 190, 202
security-related, 202

verbs, 189
HTTPS protocol

adoption of, 190
cipher suites, 193
digital certificates

Let’s Encrypt, 192
types of, 192

downgrade attacks, 192
security properties, 191
Strict-Transport-Security

directive, 193

I
identity management, 16
IEEE 754. See floating point
IMDb, 13
implementation from design, 129
influencing code, 131
information collection, 20
information disclosure. See STRIDE

information security, 5
principles (C-I-A), 11–14
relation to authorization, 11

injection attacks, 175
avoiding, 183
backtracking regex, 181, 217
cross-site scripting, 196–199
mitigation, 183
“No Game Scheduled”, 176
path traversal, 179
shell command, 183
SQL, 176–179
XML entities, 182

input validation, 168
character string length, 173
correcting invalid input, 172
range check, 169
rejecting invalid input, 171
requirements, 170
size check, 170
Unicode issues, 174
valid for a purpose, 171

inside jobs, 18
insurance, 38
integer overflow, 146

mitigation, 155
security testing, 206

integration testing
data leak detection, 220

integrity, 11, 13
Intention and Malice. See Confused

Deputy anti-pattern
interfaces

between components, 225
intraprocess, 50
kinds of, 49
secure design, 103
securing, 226

Internet Explorer, 35

K
keyed hash function, 79
key exchange, 87

Diffie–Hellman algorithm, 88
randomness requirement, 89
secure communication

establishment, 89

286 Index

L
last mile, 240
leaks, memory, 160
Least Common Mechanism pattern,

64, 108
Least Information pattern, 57, 104
Least Privilege pattern, 56, 178
legacy security, 227
Let’s Encrypt, 192
loopholes, 62
low-level programming, 146

M
malloc function, 157, 160
managing complexity, 237
math.isclose function, 150
Meltdown, 141
memory

access vulnerabilities, 156–162
buffer overflow, 157
heap, 157
leaks, 160
management, 156

message authentication code
(MAC), 78

nonce, 80
replay attacks, 79
secure communications use, 80
tamper prevention, 79

message digest, 78-80
collision, 78
replay attacks, 79

Microsoft Windows, 35
Minsky, Marvin, 136
misleading indentation warning, 139
mitigation, 38, 43–52

definition of, 44
minimizing attack surfaces, 45
minimizing data exposure, 47
narrowing windows of

vulnerability, 46
partial, 39
protecting communications, 50
protecting interfaces, 49
protecting storage, 51
real-world examples of, 43
structural, 45–48

mobile data security, 241
models

Code Access Security (CAS), 46, 73
data flow diagrams (DFD), 27
Unified Modeling Language

(UML), 27
Morris worm, 233

N
National Security Agency (NSA), 100
National Transportation Safety Board

(NTSB), 239
Netflix, 13
.NET Framework, 46, 243
Netscape Navigator, 35
nonce, 80, 201

O
obsolescence

software support, 52
storage media, 51

one-time pad, 81
reuse problem, 82
use restrictions, 82

OpenSSL, 162
opportunistic protection, 29
overflow

buffer, 157
integer, 146

common vulnerabilities, 149
example, 153
mitigation, 155

P
padding, 80
path traversal, 179
patterns

Accept Security Responsibility, 69
Allowlists over Blocklists, 60
Avoid Predictability, 61
Complete Mediation

degrees of compliance, 63
Defense in Depth, 65
design attributes, 54–56
Economy of Design, 54, 108
exposure minimization, 56–62
Fail Securely, 62

Index 287

general use of, 54
Least Common Mechanism,

64, 108
Least Information, 57, 104
Least Privilege, 56
redundancy, 65–68
Reluctance to Trust, 68
Secure by Default, 59, 226
Separation of Duty, 232
Separation of Privilege, 67
strong enforcement, 62–65
Transparent Design, 56, 77
trust and responsibility, 68–70

personal data
collection, 39
disclosure mitigation, 40

personally identifiable information
(PII), 102

plaintext, 81, 84
policy-based access control

(PBAC), 17
preimage attack, 79
principal, 14
principles of information security

availability, 11, 13
confidentiality, 11
integrity, 11, 13

privacy, 39
email retention, 21
human factors, 20
information collection, 20
policy, 21
relation to security, 19
software security challenges, 20

privacy policy, 120
auditing, 105
explicit protection, 105
owner, 105

privacy reviews, 120
private data, 12
private key, 83
provenance, 13, 240
pseudo-random number generators

(PRNG), 77
pseudo-random numbers, 77. See

also random numbers
cryptographically secure, 77

public key, 83
Pwn2Own competitive hacking

contest, 135
Python programming language, 130

structuring by indentation, 138

R
random numbers

applications, 77
classes, 77
cryptographically secure pseudo-

random number generators, 77
entropy sources, 78
hardware random number

generators, 78
pseudo-random number

generators, 77
unpredictability, 77

RBAC (role-based access control), 17
regular expressions (regex)

backtracking, 181, 217
reidentification, 13
Reluctance to Trust pattern, 68
replay attacks, 79, 82
repudiation, 37. See also STRIDE
risk acceptance, 38
risk assessment, 29

T-shirt sizes, 29, 229–230
risk transfer, 38
role-based access control (RBAC), 17
root certificate, 87
RSA cryptosystem

algorithm, 84
history, 84
mathematical basis, 84

S
Same Origin Policy (SOP), 193–196

CSRF vulnerability, 199
sample design document, 19, 96, 245
sandbox, 65
SDR. See security design review (SDR)
Secure by Default pattern, 59, 226
secure design, 95–108

balanced approach, 102
cache implications, 102
data handling, 104

288 Index

secure design (continued)
dependencies, 99
design assumptions, 97

examples, 98
importance of making

explicit, 97
end of life, 106
exploring alternatives, 107
high security requirements, 100
interfaces, 103
minimal security requirements, 100
mitigation, 103
privacy, 105
requirements statements, 100
sample design document, 19,

96, 245
scope definition

importance, 98
iterative design, 99

software lifecycle, 106
trade-offs, 106

secure development environment, 231
securely random IDs, 62
secure programming, 130
security

goals, 36
information, 5
mindset, 23
physical, 4
software, 5
trust but verify, 8
understanding, 4

Security by Obscurity anti-pattern,
56, 135

security code reviews, 224
security design review (SDR), 109–125

assessment report, 114
minimal, 115
organization, 115
Recommendations Declined

section, 123
benefits of, 110
collaboration with designer, 113
design updates, 120
documentation, 111
guidance, 116–119
importance of context, 117

incremental updates, 120
independent reviewer, 109
logistics, 110
managing disagreements, 121–124

escalation, 123
meeting preparation, 123
missing mitigations, 118
practicing, 124
problem solving, 122
process, 111
progress tracking, 116
recommendation ranking, 114
relation to secure design, 95
reviewer role, 115
sandwich method feedback, 122
separate from functional

review, 110
showing versus telling, 123
stages, 111–116
summary statement, 119
tactful communication, 121
threat identification, 117
timing, 110
ways to practice, 124
where to dig, 119

security regression tests
Heartbleed example, 216
how to write, 216
importance, 215

security requirements
data collection, 101
high-value private key, 101
top-secret document, 100

security testing, 205–220
best practices, 219
catching up, 220
cross-site scripting, 212
denial-of-service attacks, 216
exception handling, 206
GotoFail vulnerability, 207, 209
importance of, 207
input validation, 211
integer overflow, 206
limits of, 210
memory management, 206
resource consumption, 217
threshold testing, 218

Index 289

untrusted inputs, 206
web security, 206
writing test cases, 211

Separation of Duty pattern, 67, 232
Separation of Privilege pattern, 67
serialization, 143
SHA-256 hash, 200
Shostack, Adam, 25
side-channel attack, 11, 30, 141
Snowden, Edward, 100
software quality, 237
software security, 5
software supply chain, 225
SOP (Same Origin Policy), 193–196
Spectre, 141
speculative execution, 141
spoofing, 36. See also STRIDE
SQL injection, 176–179
stories

auto salesman, 4
driver’s ed, 75
“No Game Scheduled”, 176
street crossing, 6

strcpy function, 161
STRIDE, 35–38

definition, 35
origins, 35
relation to information security

principles, 37
repudiation, 37

strlcpy function, 161
strtol function, 160
sudo, 57

T
tainting, 132
tampering, 13, 37, 78, 143. See

also STRIDE
prevention with MAC, 79

Taylor, Jason, 229
test-driven development (TDD), 219
The Most Dangerous Code in the

World, 226
Third-Party Hooks anti-pattern, 74. See

also Backflow of Trust anti-
pattern

Thompson, Ken, 240

threat modeling, 78, 101–103
asset prioritization, 29
balancing security needs, 102
definition, 26
early efforts, 24
essential threat model, 102
granularity, 28
incorporating into design, 101
iterative process, 27
methodology varieties, 27
overview, 26
personally identifiable

information, 102
real-life applications, 41
real world, 40
real world versus digital, 27
working from a model, 27

threats, 23–41 See also attacks
addressing, 44
availability, 13
brute-force guessing, 16
categorizing with STRIDE, 35
fact of communication, 50
identifying, 33
mitigation, 38, 43–52
privacy, 39

threat taxonomy. See STRIDE
timing attack

forgot password example, 142
Meltdown, 141
mitigation, 142
Spectre, 141
speculative execution example, 141

toolbox. See crypto toolbox
transparency, 238
Transparent Design pattern, 56, 77
Transport Layer Security (TLS),

89, 162
Heartbeat Extension, 162

triage. See vulnerability triage
trust, 5

actions, 10
being trustworthy, 10
decisions, 8
decision tree, 8
features, 10
feeling trust, 6

290 Index

trust (continued)
independent third-party, 10
spectrum, 8
transparency, 10
trust but verify, 8

trust boundaries, 26, 101, 120
identification, 30
kernel/userland interface, 31

trust level
aggregating or splitting, 32
trust vs. privilege, 31

Trustworthy Deputy. See also Confused
Deputy anti-pattern

Twitter, 19

U
underflow, 150

mitigation, 152
understanding security, 4–5
Unicode

case, changing, 175
combining characters, 175
homomorphs, 174

Unified Modeling Language (UML), 27
uniform resource locator (URL), 188
Unpatchable Components

anti-pattern, 74
unpickling, 143
untrusted input, 132, 143, 167–168
userland. See trust boundaries

V
vulnerabilities, 130, 133.

buffer overflow, 160
character string, 173–175
countermeasures, 140
cross-site request forgery (CSRF

or XSRF), 199
cross-site scripting, 196
example of a chain, 134
fixed-width integer, 147
floating point, 149
GotoFail, 137
Heartbleed, 162, 216
injection, 175, 199
path traversal, 179

regular expressions, 181
relation to bugs, 133
SQL injection, 176-179
Unicode, 174
XML entities, 182

vulnerability, narrowing windows
of, 46

vulnerability chains, 134
vulnerability triage, 228–231

crafting working exploits, 230
decision making, 231
DREAD assessments, 229

W
web security, 185–203

client/server model, 187
common vulnerabilities,

196–201
CSS visited selector, 202
frameworks, 186
HTML5, 196
HTTP header injection, 202
HTTP response headers, 202
model, 187
redirects, 202
rel="noopener" attribute, 202
rel="noreferrer" attribute, 202
session cookies, 194–195, 200
X-Frame-Options header, 202
XML external entity

attacks, 202
window.open, 193
World Wide Web, 185. See also web

security

X
xkcd comics

Epoch fail (376), 219
Exploits of a Mom (327), 176
Heartbleed Explanation

(1354), 165
Security versus the $5 wrench

(538), 90
XSRF. See cross-site request forgery

(CSRF or XSRF)
XSS. See cross-site scripting (XSS)

Index 291

Y
Y2k38 bug, 218
Y2K bug, 218

Z
ZIP code, 12

Designing Secure Software is set in New Baskerville, Futura, Dogma, and
TheSansMono Condensed.

Never before has the world relied so heavily on the Internet
to stay connected and informed. That makes the Electronic
Frontier Foundation’s mission—to ensure that technology
supports freedom, justice, and innovation for all people—
more urgent than ever.

For over 30 years, EFF has fought for tech users through
activism, in the courts, and by developing software to over-
come obstacles to your privacy, security, and free expression.
This dedication empowers all of us through darkness. With
your help we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

Never before has the world relied so heavily on the Internet
to stay connected and informed. That makes the Electronic
Frontier Foundation’s mission—to ensure that technology
supports freedom, justice, and innovation for all people—
more urgent than ever.

For over 30 years, EFF has fought for tech users through
activism, in the courts, and by developing software to over-
come obstacles to your privacy, security, and free expression.
This dedication empowers all of us through darkness. With
your help we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

NO STARCH PRESS

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

HOW TO HACK LIKE A GHOST
Breaching the Cloud
by sparc flow
264 pp., $34.99
isbn 978-1-71850-126-3

ETHICAL HACKING
A Hands-on Introduction to Breaking In
by daniel g. graham
376 pp., $49.99
isbn 978-1-71850-187-4

BUG BOUNTY BOOTCAMP
The Guide to Finding and Reporting
Web Vulnerabilities
by vickie li
416 pp., $49.99
isbn 978-1-71850-154-6

PRACTICAL IOT HACKING
The Definitive Guide to Attacking
the Internet of Things
by fotios chantzis et al.
464 pp., $49.99
isbn 978-1-71850-090-7

BLACK HAT PYTHON,
2ND EDITION
Python Programming for Hackers
and Pentesters
by justin seitz and tim arnold
216 pp., $44.99
isbn 978-1-71850-112-6

THE MISSING README
A Guide for the New Software Engineer
by chris riccomini and
dmitry ryaboy
288 pp., $24.99
isbn 978-1-71850-183-6

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/designing-secure-software/ for errata and more information.

	Brief Contents
	Contents in Detail
	Foreword
	Preface
	Acknowledgments
	Introduction
	Who Should Read This Book?
	What Topics Does the Book Cover?
	Part I: Concepts
	Part II: Design
	Part III: Implementation
	Conclusion
	Appendices

	Good, Safe Fun

	Part I: Concepts
	Chapter 1: Foundations
	Understanding Security
	Trust
	Feeling Trust
	You Cannot See Bits
	Competence and Imperfection
	Trust Is a Spectrum
	Trust Decisions
	Implicitly Trusted Components
	Being Trustworthy

	Classic Principles
	Information Security’s C-I-A
	The Gold Standard
	Privacy

	Chapter 2: Threats
	The Adversarial Perspective
	The Four Questions
	Threat Modeling
	Work from a Model
	Identify Assets
	Identify Attack Surfaces
	Identify Trust Boundaries
	Identify Threats
	Mitigate Threats

	Privacy Considerations
	Threat Modeling Everywhere

	Chapter 3: Mitigation
	Addressing Threats
	Structural Mitigation Strategies
	Minimize Attack Surfaces
	Narrow Windows of Vulnerability
	Minimize Data Exposure

	Access Policy and Access Controls
	Interfaces
	Communication
	Storage

	Chapter 4: Patterns
	Design Attributes
	Economy of Design
	Transparent Design

	Exposure Minimization
	Least Privilege
	Least Information
	Secure by Default
	Allowlists over Blocklists
	Avoid Predictability
	Fail Securely

	Strong Enforcement
	Complete Mediation
	Least Common Mechanism

	Redundancy
	Defense in Depth
	Separation of Privilege

	Trust and Responsibility
	Reluctance to Trust
	Accept Security Responsibility

	Anti-Patterns
	Confused Deputy
	Backflow of Trust
	Third-Party Hooks
	Unpatchable Components

	Chapter 5: Cryptography
	Crypto Tools
	Random Numbers
	Pseudo-Random Numbers
	Cryptographically Secure Pseudo-Random Numbers

	Message Authentication Codes
	Using MACs to Prevent Tampering
	Replay Attacks
	Secure MAC Communications

	Symmetric Encryption
	One-Time Pad
	Advanced Encryption Standard
	Using Symmetric Cryptography

	Asymmetric Encryption
	The RSA Cryptosystem

	Digital Signatures
	Digital Certificates
	Key Exchange
	Using Crypto

	Part II: Design
	Chapter 6: Secure Design
	Integrating Security in Design
	Making Design Assumptions Explicit
	Defining the Scope
	Setting Security Requirements
	Threat Modeling

	Building in Mitigations
	Designing Interfaces
	Designing Data Handling

	Integrating Privacy into Design
	Planning for the Full Software Life Cycle
	Making Trade-offs
	Design Simplicity

	Chapter 7: Security Design Reviews
	SDR Logistics
	Why Conduct an SDR?
	When to Conduct an SDR
	Documentation Is Essential

	The SDR Process
	1. Study
	2. Inquire
	3. Identify
	4. Collaborate
	5. Write
	6. Follow Up

	Assessing Design Security
	Using the Four Questions as Guidance
	Where to Dig
	Privacy Reviews
	Reviewing Updates

	Managing Disagreement
	Communicate Tactfully
	Case Study: A Difficult Review
	Escalating Disagreements

	Practice, Practice, Practice

	Part III: Implementation
	Chapter 8: Secure Programming
	The Challenge
	Malicious Influence
	Vulnerabilities Are Bugs
	Vulnerability Chains
	Bugs and Entropy
	Vigilance

	Case Study: GotoFail
	One-Line Vulnerability
	Beware of Footguns
	Lessons from GotoFail

	Coding Vulnerabilities
	Atomicity
	Timing Attacks
	Serialization

	The Usual Suspects

	Chapter 9: Low-Level Coding Flaws
	Arithmetic Vulnerabilities
	Fixed-Width Integer Vulnerabilities
	Floating-Point Precision Vulnerabilities
	Example: Floating-Point Underflow
	Example: Integer Overflow
	Safe Arithmetic

	Memory Access Vulnerabilities
	Memory Management
	Buffer Overflow
	Example: Memory Allocation Vulnerabilities
	Case Study: Heartbleed

	Chapter 10: Untrusted Input
	Input Validation
	Determining Validity
	Validation Criteria
	Rejecting Invalid Input
	Correcting Invalid Input

	Character String Vulnerabilities
	Length Issues
	Unicode Issues

	Injection Vulnerabilities
	SQL Injection
	Path Traversal
	Regular Expressions
	Dangers of XML

	Mitigating Injection Attacks

	Chapter 11: Web Security
	Build on a Framework
	The Web Security Model
	The HTTP Protocol
	Digital Certificates and HTTPS
	The Same Origin Policy
	Web Cookies

	Common Web Vulnerabilities
	Cross-Site Scripting
	Cross-Site Request Forgery

	More Vulnerabilities and Mitigations

	Chapter 12: Security Testing
	What Is Security Testing?
	Security Testing the GotoFail Vulnerability
	Functional Testing
	Functional Testing with the Vulnerability
	Security Test Cases
	The Limits of Security Tests

	Writing Security Test Cases
	Testing Input Validation
	Testing for XSS Vulnerabilities

	Fuzz Testing
	Security Regression Tests
	Availability Testing
	Resource Consumption
	Threshold Testing
	Distributed Denial-of-Service Attacks

	Best Practices for Security Testing
	Test-Driven Development
	Leveraging Integration Testing
	Security Testing Catch-Up

	Chapter 13: Secure Development Best Practices
	Code Quality
	Code Hygiene
	Exception and Error Handling
	Documenting Security
	Security Code Reviews

	Dependencies
	Choosing Secure Components
	Securing Interfaces
	Don’t Reinvent Security Wheels
	Contending with Legacy Security

	Vulnerability Triage
	DREAD Assessments
	Crafting Working Exploits
	Making Triage Decisions

	Maintaining a Secure Development Environment
	Separating Development from Production
	Securing Development Tools
	Releasing the Product

	Afterword
	Call to Action
	Security Is Everyone’s Job
	Baking in Security

	Future Security
	Improving Software Quality
	Managing Complexity
	From Minimizing to Maximizing Transparency
	Improving Software Authenticity, Trust, and Responsibility

	Delivering the Last Mile
	Conclusion

	Appendix A: Sample Design Document
	Title – Private Data Logging Component Design Document
	Section 1 – Product Description
	Section 2 – Overview
	2.1 Purpose
	2.2 Scope
	2.3 Concepts
	2.4 Requirements
	2.5 Non-Goals
	2.6 Outstanding Issues
	2.7 Alternative Designs

	Section 3 – Use Cases
	Section 4 – System Architecture
	Section 5 – Data Design
	Section 6 – API
	6.1 Hello Request
	6.2 Schema Definition Request
	6.3 Event Log Request
	6.4 Goodbye Request

	Section 7 – User Interface Design
	Section 8 – Technical Design
	Section 9 – Configuration
	Section 10 – References

	Appendix B: Glossary
	Appendix C: Exercises
	Appendix D: Cheat Sheets
	Index

