
 M A L C O L M M C D O N A L D

W E B SECU R I T Y
FOR DE VELOPERS
W E B SECU R I T Y
FOR DE VELOPERS

2 N D E D I T I O N

I T ’ S N O T T O O L A T E .
U N T I L I T I S .

I T ’ S N O T T O O L A T E .
U N T I L I T I S .

I T ’ S N O T T O O L A T E .
U N T I L I T I S .

I T ’ S N O T T O O L A T E .
U N T I L I T I S .

SHELVE IN:
COM

PUTERS/PRO
GRAM

M
ING

$34.95 ($45.95 CDN)

The world has changed. Today, every time you make a
site live, you’re opening it up to attack.

A first-time developer can easily be discouraged by the
difficulties involved with properly securing a website.
But have hope: an army of security researchers is out
there discovering, documenting, and fixing security
flaws. Thankfully, the tools you’ll need to secure your
site are freely available and generally easy to use.

Web Security for Developers will teach you how your
websites are vulnerable to attack and how to protect
them. Each chapter breaks down a major security
vulnerability and explores a real-world attack, coupled
with plenty of code to show you both the vulnerability
and the fix.

You’ll learn how to:

• Protect against SQL injection attacks, malicious
JavaScript, and cross-site request forgery

• Add authentication and shape access control to
protect accounts

• Lock down user accounts to prevent attacks that
rely on guessing passwords, stealing sessions, or
escalating privileges

• Implement encryption

• Manage vulnerabilities in legacy code

• Prevent information leaks that disclose vulnerabilities

• Mitigate advanced attacks like malvertising and
denial-of-service

As you get stronger at identifying and fixing vulnerabili-
ties, you’ll learn to deploy disciplined, secure code
and become a better programmer along the way.

A B O U T T H E A U T H O R

Malcolm McDonald has been programming for
over 20 years. McDonald is the creator of www
.hacksplaining.com, an online training program for
web developers.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

®

W
E

B
 S

E
C

U
R

IT
Y

 F
O

R
 D

E
V

E
L

O
P

E
R

S
W

E
B

 S
E

C
U

R
IT

Y
 F

O
R

 D
E

V
E

L
O

P
E

R
S

M
C

D
O

N
A

L
D

R E A L T H R E A T S , P R A C T I C A L D E F E N S E

®

®

WEB SECURITY FOR DEVELOPERS

by Malcolm McDonald

San Francisco

W E B S E C U R I T Y
F O R D E V E L O P E R S
R e a l T h r e a t s , P r a c t i c a l D e f e n s e

®

WEB SECURITY FOR DEVELOPERS. Copyright © 2020 by Malcolm McDonald.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Third printing

26 25 24 23 22 3 4 5 6 7

ISBN-13: 978-1-59327-9943 (print)
ISBN-13: 978-1-59327-9950 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Manager: Laurel Chun
Production Editors: Katrina Taylor and Meg Sneeringer
Cover Illustration: Gina Redman
Interior Design: Octopod Studios
Project Editor: Dapinder Dosanjh
Developmental Editor: Athabasca Witschi
Technical Reviewer: Cliff Janzen
Copyeditor: Sharon Wilkey
Compositor: Danielle Foster
Proofreader: James Fraleigh
Indexer: BIM Creatives, LLC

Library of Congress Cataloging-in-Publication Data

Names: McDonald, Malcolm, au
thor.
Title: Web security for developers / Malcolm McDonald.
Description: San Francisco : No Starch Press, Inc., [2020] | Includes
 index.
Identifiers: LCCN 2020006695 (print) | LCCN 2020006696 (ebook) | ISBN
 9781593279943 (paperback) | ISBN 1593279949 (paperback) | ISBN
 9781593279950 (ebook)
Subjects: LCSH: Hacking. | Computer networks--Security measures.
Classification: LCC TK5105.59 .M4833 2020 (print) | LCC TK5105.59 (ebook)
 | DDC 005.8/7--dc23
LC record available at https://lccn.loc.gov/2020006695
LC ebook record available at https://lccn.loc.gov/2020006696

For customer service inquiries, please contact info@nostarch.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this work:
rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

[E]

www.nostarch.com

To my wife Monica, who put up with being
ignored on weekends while I wrote this book,
and my cat Haggis, who contributed content

by walking over my keyboard periodically

About the Author
Malcolm McDonald is the creator of hacksplaining.com, one of the
most popular security training resources for web development on
the internet. He has spent two decades writing code for financial
firms and start-ups, and drew on his experience as a team lead
to produce straightforward, easy-to-grasp tutorials about secu-
rity vulnerabilities and how to protect against them. He lives in
Oakland, CA with his wife and cat.

About the Technical Reviewer
Since the early days of Commodore PET and VIC-20, technology
has been a constant companion (and sometimes an obsession!)
to Cliff Janzen. Cliff is grateful to have had the opportunity to
work with and learn from some of the best people in the industry,
including Malcolm and the fine people at No Starch. Cliff spends
a majority of the work day managing and mentoring a great team
of security professionals, but strives to stay technically relevant by
tackling everything from security policy reviews to penetration
testing. He feels lucky to have a career that is also his favorite
hobby and a wife who supports him.

B R I E F C O N T E N T S

Acknowledgments . xvii

Introduction . xix

Chapter 1: Let’s Hack a Website . 1

PART I: THE BASICS . 5

Chapter 2: How the Internet Works . 7

Chapter 3: How Browsers Work . 15

Chapter 4: How Web Servers Work . 23

Chapter 5: How Programmers Work . 35

PART II: THE THREATS . 47

Chapter 6: Injection Attacks . 49

Chapter 7: Cross-Site Scripting Attacks . 65

Chapter 8: Cross-Site Request Forgery Attacks . 75

Chapter 9: Compromising Authentication . . 81

Chapter 10: Session Hijacking . 93

Chapter 11: Permissions . 103

Chapter 12: Information Leaks . 113

Chapter 13: Encryption . 117

Chapter 14: Third-Party Code . . 131

Chapter 15: XML Attacks . 145

Chapter 16: Don’t Be an Accessory . 153

Chapter 17: Denial-of-Service Attacks . 163

Chapter 18: Summing Up . 169

Index . . 173

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS	 xvii

INTRODUCTION	 xix
About This Book . . xx
Who Should Read This Book . xx
A Brief History of the Internet . xx

Scripting in the Browser . xxi
A New Challenger Enters the Arena . . xxi
Machines for Writing HTML . xxii
A Series of Tubes . xxii
What to Worry About First . xxiii

What’s in This Book . xxiii

1
LET’S HACK A WEBSITE	 1
Software Exploits and the Dark Web . 1
How to Hack a Website . 3

PART I: THE BASICS	 5

2
HOW THE INTERNET WORKS	 7
The Internet Protocol Suite . 7

Internet Protocol Addresses . 8
The Domain Name System . 9

Application Layer Protocols . 9
HyperText Transfer Protocol . 10

Stateful Connections . 13
Encryption . 14
Summary . 14

3
HOW BROWSERS WORK	 15
Web Page Rendering . 15

The Rendering Pipeline: An Overview . . 16
The Document Object Model . 17
Styling Information . 17

xii Contents In Detail

JavaScript . 18
Before and After Rendering: Everything Else the Browser Does 20
Summary . 20

4
HOW WEB SERVERS WORK	 23
Static and Dynamic Resources . 24
Static Resources . 24

URL Resolution . 24
Content Delivery Networks . 26
Content Management Systems . 26

Dynamic Resources . 27
Templates . 28
Databases . . 28
Distributed Caches . 30
Web Programming Languages . 31

Summary . 34

5
HOW PROGRAMMERS WORK	 35
Phase 1: Design and Analysis . . 36
Phase 2: Writing Code . 37

Distributed vs. Centralized Version Control . 37
Branching and Merging Code . 38

Phase 3: Pre-Release Testing . . 38
Coverage and Continuous Integration . . 39
Test Environments . 39

Phase 4: The Release Process . 40
Options for Standardized Deployment During Releases 41
The Build Process . 42
Database Migration Scripts . 43

Phase 5: Post-Release Testing and Observation . 43
Penetration Testing . 44
Monitoring, Logging, and Error Reporting . 44

Dependency Management . 45
Summary . 45

PART II:THE THREATS	 47

6
INJECTION ATTACKS	 49
SQL Injection . 50

What Is SQL? . 50
Anatomy of a SQL Injection Attack . 51
Mitigation 1: Use Parameterized Statements . 52
Mitigation 2: Use Object-Relational Mapping . 54
Bonus Mitigation: Use Defense in Depth . 55

Contents In Detail xiii

Command Injection . 56
Anatomy of a Command Injection Attack . 56
Mitigation: Escape Control Characters . 57

Remote Code Execution . 59
Anatomy of a Remote Code Execution Attack . 59
Mitigation: Disable Code Execution During Deserialization 59

File Upload Vulnerabilities . 60
Anatomy of a File Upload Attack . 60
Mitigations . 61

Summary . 63

7
CROSS-SITE SCRIPTING ATTACKS	 65
Stored Cross-Site Scripting Attacks . 66

Mitigation 1: Escape HTML Characters . 67
Mitigation 2: Implement a Content Security Policy . 69

Reflected Cross-Site Scripting Attacks . . 70
Mitigation: Escape Dynamic Content from HTTP Requests 71

DOM-Based Cross-Site Scripting Attacks . 71
Mitigation: Escaping Dynamic Content from URI Fragments 73

Summary . 73

8
CROSS-SITE REQUEST FORGERY ATTACKS	 75
Anatomy of a CSRF Attack . 76
Mitigation 1: Follow REST Principles . 76
Mitigation 2: Implement Anti-CSRF Cookies . 77
Mitigation 3: Use the SameSite Cookie Attribute . 78
Bonus Mitigation: Require Reauthentication for Sensitive Actions 79
Summary . 79

9
COMPROMISING AUTHENTICATION	 81
Implementing Authentication . . 82

HTTP-Native Authentication . 82
Non-Native Authentication . 83
Brute-Force Attacks . 83

Mitigation 1: Use Third-Party Authentication . 84
Mitigation 2: Integrate with Single Sign-On . 84
Mitigation 3: Secure Your Own Authentication System . 85

Requiring Usernames, Email Address, or Both . 85
Requiring Complex Passwords . 87
Securely Storing Passwords . 88
Requiring Multifactor Authentication . 89
Implementing and Securing the Logout Function . 90
Preventing User Enumeration . 91

Summary . 92

xiv Contents In Detail

10
SESSION HIJACKING	 93
How Sessions Work . 94

Server-Side Sessions . 94
Client-Side Sessions . 96

How Attackers Hijack Sessions . 97
Cookie Theft . 97
Session Fixation . 99
Taking Advantage of Weak Session IDs . 100

Summary . 100

11
PERMISSIONS	 103
Privilege Escalation . 104
Access Control . 104

Designing an Authorization Model . 105
Implementing Access Control . 106
Testing Access Control . 107
Adding Audit Trails . 107
Avoiding Common Oversights . 108

Directory Traversal . 108
Filepaths and Relative Filepaths . 108
Anatomy of a Directory Traversal Attack . 109
Mitigation 1: Trust Your Web Server . 110
Mitigation 2: Use a Hosting Service . 110
Mitigation 3: Use Indirect File References . 111
Mitigation 4: Sanitize File References . 111

Summary . 112

12
INFORMATION LEAKS	 113
Mitigation 1: Disable Telltale Server Headers . 114
Mitigation 2: Use Clean URLs . 114
Mitigation 3: Use Generic Cookie Parameters . 114
Mitigation 4: Disable Client-Side Error Reporting . 115
Mitigation 5: Minify or Obfuscate Your JavaScript Files . 115
Mitigation 6: Sanitize Your Client-Side Files . 116
Stay on Top of Security Advisories . 116
Summary . 116

13
ENCRYPTION	 117
Encryption in the Internet Protocol . 118

Encryption Algorithms, Hashing, and Message Authentication Codes 118
The TLS Handshake . 120

Enabling HTTPS . 122
Digital Certificates . 122
Obtaining a Digital Certificate . . 123
Installing a Digital Certificate . . 125

Contents In Detail xv

Attacking HTTP (and HTTPS) . 127
Wireless Routers . 128
Wi-Fi Hotspots . 128
Internet Service Providers . 128
Government Agencies . 129

Summary . 129

14
THIRD-PARTY CODE	 131
Securing Dependencies . 132

Know What Code You Are Running . 132
Be Able to Deploy New Versions Quickly . 134
Stay Alert to Security Issues . 135
Know When to Upgrade . . 136

Securing Configuration . 136
Disable Default Credentials . 137
Disable Open Directory Listings . 137
Protect Your Configuration Information . 137
Harden Test Environments . 138
Secure Administrative Frontends . . 138

Securing the Services That You Use . 138
Protect Your API Keys . 139
Secure Your Webhooks . 139
Secure Content Served by Third Parties . . 140

Services as an Attack Vector . . 140
Be Wary of Malvertising . 141
Avoid Malware Delivery . 141
Use a Reputable Ad Platform . 142
Use SafeFrame . 142
Tailor Your Ad Preferences . 143
Review and Report Suspicious Ads . 143

Summary . 143

15
XML ATTACKS	 145
The Uses of XML . 146
Validating XML . 147

Document Type Definitions . 147
XML Bombs . 148
XML External Entity Attacks . . 149

How Hackers Exploit External Entities . 150
Securing Your XML Parser . 150

Python . 151
Ruby . 151
Node.js . 151
Java . 151
.NET . . 151

Other Considerations . 152
Summary . 152

xvi Contents In Detail

16
DON’T BE AN ACCESSORY	 153
Email Fraud . 154

Implement a Sender Policy Framework . 155
Implement DomainKeys Identified Mail . 155
Securing Your Email: Practical Steps . . 156

Disguising Malicious Links in Email . 156
Open Redirects . 157
Preventing Open Redirects . 157
Other Considerations . 158

Clickjacking . 158
Preventing Clickjacking . . 158

Server-Side Request Forgery . 159
Protecting Against Server-Side Forgery . 160

Botnets . . 160
Protecting Against Malware Infection . 160

Summary . 161

17
DENIAL-OF-SERVICE ATTACKS	 163
Denial-of-Service Attack Types . 164

Internet Control Message Protocol Attacks . 164
Transmission Control Protocol Attacks . 164
Application Layer Attacks . 165
Reflected and Amplified Attacks . . 165
Distributed Denial-of-Service Attacks . 165
Unintentional Denial-of-Service Attacks . 166

Denial-of-Service Attack Mitigation . 166
Firewalls and Intrusion Prevention Systems . . 166
Distributed Denial-of-Service Protection Services . 167
Building for Scale . . 167

Summary . 168

18
SUMMING UP	 169

INDEX	 173

A C K N O W L E D G M E N T S

I would like to thank all the folks at No Starch Press who massaged my
words into some sort of readable form: Katrina, Laurel, Barbara, Dapinder,
Meg, Liz, Matthew, Annie, Jan, Tyler, and Bill. Thanks to my colleagues
Dmitri, Adrian, Dan, JJ, Pallavi, Mariam, Rachel, Meredith, Zo, and Charlotte
for constantly asking “is it done yet?” Thanks to Hilary for proofreading
the first chapter! Thanks to Robert Abela at NetSparker for setting up the
website sponsorship. I’m grateful to all those who pointed out typos on the
website, you are the real heroes: Vinney, Jeremy, Cornel, Johannes, Devui,
Connor, Ronans, Heath, Trung, Derek, Stuart, Tim, Jason, Scott, Daniel,
Lanhowe, Bojan, Cody, Pravin, Gaurang, Adrik, Roman, Markus, Tommy,
Daria, David, T, Alli, Cry0genic, Omar, Zeb, Sergey, Evans, and Marc. Thanks
to my Mum and Dad for finally recognizing that, yes, I have a real job now
that I have written a book, and I don’t just “do stuff with computers.” And
thanks to my brothers Scott and Ali, who are sadly not published authors,
despite all their fancy PhDs and such. Finally, one last thanks to my wife
Monica, who has been extraordinarily patient and supportive throughout
the writing of the book. And thanks to Haggis for mostly staying away from
the keyboard and only occasionally puking on the couch.

The web is a wild place. It’s easy to get the
impression that the internet was designed

very deliberately by experts and that every-
thing works as it does for a good reason. In fact,

the evolution of the internet has been rapid and hap-
hazard, and the things we do on the network today go
well beyond what the original inventors imagined.

As a result, securing your website can seem like a daunting proposition.
Websites are a unique type of software that is available to millions of users
immediately upon release, including an active and motivated community
of hackers. Big companies routinely suffer security failures, and new data
breaches are announced every week. How is a lone web developer supposed
to protect themselves in the face of this?

I N T R O D U C T I O N

xx Introduction

About This Book
The big secret of web security is that the number of web vulnerabilities is
actually rather small—coincidentally, about the size to fit in a single book—
and these vulnerabilities don’t change much from year to year. This book
you will teach you every key threat you need to know about, and I will break
down the practical steps you should take to defend your website.

Who Should Read This Book
If you are a web developer who is just starting out in their career, this book
is an ideal hitchhiker’s guide to security on the internet. Whether you have
just finished a computer science qualification, are fresh out of bootcamp, or
are self-taught, I recommend you read this book cover to cover. Everything
in this book is essential knowledge, and it is explained in the most straight-
forward manner with clear examples. Preparing fully now for the threats
you will face will save you a lot of trouble down the line.

If you are a more experienced programmer, this book will prove useful
too. You can always benefit from brushing up on your security knowledge,
so use this book to fill in any gaps you may have. Treat it like a reference
book and dip into the chapters that seem interesting. You don’t always know
what you don’t know! Seasoned programmers like yourself have a respon-
sibility to lead their team by example, and for web developers, that means
following security best practices.

You will notice that this book isn’t specific to any particular program-
ming language (though I make various security recommendations for the
major languages as needed). A sound understanding of web security will
benefit you, no matter which language you choose to program in. Many
programmers will use a variety of languages across the course of their
careers, so it’s better to learn the principles of web security than to focus
too much on individual libraries.

A Brief History of the Internet
Before I lay out the contents of the book, it will be useful to recap how the
internet arrived at its current state. A lot of clever engineers contributed
to the explosive growth of the internet, but as with most software projects,
security considerations often took a back seat while features were added.
Understanding how security vulnerabilities crept in will give you the con-
text you’ll need when learning how to fix them.

The World Wide Web was invented by Tim Berners-Lee while working
at the European Organization for Nuclear Research (CERN). The research
conducted at CERN consists of smashing subatomic particles together in
the hope they will split into smaller subatomic particles, thus revealing the
essential fabric of the universe, with the understanding that such research
has the potential to create black holes right here on Earth.

Introduction xxi

Berners-Lee, apparently less interested than his peers in bringing about
an end to the universe, spent his time at CERN inventing the internet as
we know it today, as a means of sharing data between universities about
their findings. He created the first web browser and the first web server,
and invented HyperText Markup Language (HTML) and the HyperText
Transfer Protocol (HTTP). The world’s first website went online in 1993.

Early web pages were text-only. The first browser capable of displaying
inline images was Mosaic, created at the National Center for Supercomputing
Applications. The creators of Mosaic eventually went on to join Netscape
Communications, where they helped to create Netscape Navigator, the first
widely used web browser. In the early web, most pages were static, and traf-
fic was transmitted without encryption. A simpler time!

Scripting in the Browser
Fast-forward to 1995, and a recent hire of Netscape Communications named
Brendan Eich took 10 days to invent JavaScript, the first language capable
of being embedded in web pages. During development, the language was
called Mocha, then renamed LiveScript, then renamed again to JavaScript,
before being eventually formalized as ECMAScript. Nobody liked the name
ECMAScript, least of all Eich, who claimed it sounded like a skin disease; so
everyone continued to call it JavaScript except in the most formal settings.

JavaScript’s original incarnation combined the clumsy naming conven-
tions of the (otherwise unrelated) Java programming language, the struc-
tured programming syntax of C, the obscure prototype-based inheritance
of Self, and a nightmarish type-conversion logic of Eich’s own devising. For
better or worse, JavaScript became the de facto language of web browsers.
Suddenly, web pages were interactive things, and a whole class of security
vulnerabilities emerged. Hackers found ways to inject JavaScript code into
pages by using cross-site scripting attacks, and the internet became a much
more dangerous place.

A New Challenger Enters the Arena
The first real competitor to Netscape Navigator was Microsoft’s Internet
Explorer. Internet Explorer had a couple of competitive advantages—it was
free and came preinstalled on Microsoft Windows. Explorer rapidly became
the world’s most popular browser, and the Explorer icon became “the inter-
net button” for a generation of users learning how to navigate the web.

Microsoft’s attempts to “own” the web led it to introduce propri-
etary technology like ActiveX into the browser. Unfortunately, this led to
an uptick in malware—malicious software that infects users’ machines.
Windows was (and remains) the primary target for computer viruses, and
the internet proved an effective delivery mechanism.

Internet Explorer’s dominance wouldn’t be challenged for many
years, until the launch of Mozilla’s Firefox, and then by Chrome, a snazzy
new browser created by the plucky young search startup Google. These
newer browsers accelerated the growth and innovation in internet stan-
dards. However, by now, hacking was becoming a profitable business, and

xxii Introduction

any security flaws were being exploited as soon as they were discovered.
Securing their browsers became a huge priority for vendors, and website
owners had to keep on top of the latest security news if they wanted to pro-
tect their users.

Machines for Writing HTML
Web servers evolved at the same rapid clip as browser technology. In the
first days of the internet, hosting websites was a niche hobby practiced by
academics. Most universities ran the open source operating system Linux.
In 1993, the Linux community implemented the Common Gateway Interface
(CGI), which allowed webmasters to easily create websites consisting of inter-
linked, static HTML pages.

More interestingly, CGI allowed HTML to be generated by scripting
languages like Perl or PHP—so a site owner could dynamically create pages
from content stored in a database. PHP originally stood for Personal Home
Page, back when the dream was that everyone would run their own web
server, rather than uploading all their personal information to a social
media behemoth with a questionable data-privacy policy.

PHP popularized the notion of the template file: HTML with embed-
ded processing tags, which could be fed through the PHP runtime engine.
Dynamic PHP websites (like the earliest incarnations of Facebook) flour-
ished across the internet. However, dynamic server code introduced a whole
new category of security vulnerabilities. Hackers found novel ways to run
their own malicious code on the server by using injection attacks, or to
explore the server’s filesystem by using directory traversal.

A Series of Tubes
The constant reinvention of web technology means that much of today’s
internet is powered by what we would consider “old” technology. Software
tends to reach a point where it works enough to be useful, then falls into
“maintenance” mode, where changes are made only if absolutely neces-
sary. This is particularly true of web servers, which need to be online 24/7.
Hackers scan the web for vulnerable sites running on older technology,
since they frequently exhibit security holes. We are still fixing security issues
first discovered a decade ago, which is why in this book I describe every
major security flaw that can affect websites.

At the same time, the internet continues to grow faster than ever! The
trend for internet-enabling everyday devices like cars, doorbells, refrigera-
tors, light bulbs, and cat-litter trays has opened a new vector for attacks. The
simpler the appliance connecting to the Internet of Things, the less likely it
is to have auto-updating security features. This has introduced huge num-
bers of unsecured internet nodes that provide a rich hosting environment
for botnets, malicious software agents that can be installed and controlled
remotely by hackers. This gives an attacker a lot of potential firepower if
they target your site.

Introduction xxiii

What to Worry About First
A web developer can easily be discouraged by the difficulties involved with
properly securing a website. You should have hope, though: an army of secu-
rity researchers are out there bravely discovering, documenting, and fixing
security flaws. The tools you need to secure your site are freely available and
generally easy to use.

Learning about the most common security vulnerabilities, and knowing
how to plug them, will protect your systems against 99 percent of attacks.
There will always be ways for a very technical adversary to compromise your
system, but unless you are running an Iranian nuclear reactor or a US polit-
ical campaign, this thought shouldn’t keep you up at night.

What’s in This Book
The book is divided into two parts. Part I covers the nuts and bolts of how
the internet works. Part II delves into specific vulnerabilities you need to
protect against. The content is as follows:

Chapter 1: Let’s Hack a Website
In this introductory chapter, you will learn how easy it is to hack a web-
site. Hint: it’s really easy, so you did well to buy this book.

Chapter 2: How the Internet Works
The “tubes” of the internet run on the Internet Protocol, a series of net-
work technologies that allow computers across the world to communi-
cate seamlessly. You will review TCP, IP addresses, domain names, and
HTTP, and see how data can be passed securely on the network.

Chapter 3: How Browsers Work
Users interact with your website via the browser, and many security vul-
nerabilities manifest there. You will learn how a browser renders a web
page, and how JavaScript code is executed in the browser security model.

Chapter 4: How Web Servers Work
Most of the code you will write for your website will run in a web server
environment. Web servers are a primary target for hackers. This chapter
describes how they serve static content, and how they use dynamic con-
tent like templates to incorporate data from databases and other systems.
You will also dip into some of the major programming languages used
for web programming, and review the security considerations of each.

Chapter 5: How Programmers Work
This chapter explains how you should go about the process of writing
website code, and the good habits you can develop to reduce the risk
of bugs and security vulnerabilities.

xxiv Introduction

Chapter 6: Injection Attacks
We will begin our survey of website vulnerabilities by looking at one
of the nastiest threats you will encounter: a hacker injecting code and
executing it on your server. This often happens when your code inter-
faces with a SQL database or the operating system; or the attack might
consist of remote code injected into the web server process itself. You
will also see how file upload functions can allow a hacker to inject mali-
cious scripts.

Chapter 7: Cross-Site Scripting Attacks
This chapter reviews attacks used to smuggle malicious JavaScript code
into the browser environment, and how to protect against them. There
are three distinct methods of cross-site scripting (stored, reflected, and
DOM-based), and you will learn how to protect against each.

Chapter 8: Cross-Site Request Forgery Attacks
You will see how hackers use forgery attacks to trick your users into per-
forming undesirable actions. This is a common nuisance on the inter-
net, and you need to protect your users accordingly.

Chapter 9: Compromising Authentication
If users sign up to your website, it’s essential that you treat their accounts
securely. You will review various methods used by hackers to circumvent
the login screen, from brute-force guessing of passwords to user enu-
meration. You will also review how to securely store user credentials in
your database.

Chapter 10: Session Hijacking
You will see how your users can have their accounts hijacked after they
have logged in. You will learn how to build your website and treat your
cookies securely to mitigate this risk.

Chapter 11: Permissions
Learn how you can prevent malicious actors from using privilege escala-
tion to access forbidden areas of your site. In particular, if you reference
files in your URLs, hackers will try to use directory traversal to explore
your filesystem.

Chapter 12: Information Leaks
You might well be advertising vulnerabilities in your website by leaking
information. This chapter tells you how to stop that immediately.

Chapter 13: Encryption
This chapter shows how to properly use encryption and explains why it
is important on the internet. Be prepared for some light mathematics.

Introduction xxv

Chapter 14: Third-Party Code
You will learn how to manage vulnerabilities in other people’s code.
Most of the code you run will be written by someone else, and you
should know how to secure it!

Chapter 15: XML Attacks
Your web server probably parses XML, and could be vulnerable to the
attacks described in this chapter. XML attacks have been a consistently
popular attack vector among hackers for the past couple of decades,
so beware!

Chapter 16: Don’t Be an Accessory
You might unwittingly be acting as an accessory to hacking attempts
on others, as you will see in this chapter. Be a good internet citizen by
making sure you close these security loopholes.

Chapter 17: Denial-of-Service Attacks
In this chapter, I will show you how massive amounts of network traffic
can take your website offline as part of a denial-of-service attack.

Chapter 18: Summing Up
The last chapter is a cheat sheet that reviews the key elements of secu-
rity you learned throughout the book, and recaps the high-level prin-
ciples you should apply when being security-minded. Learn it by heart
and recite the lessons before you go to sleep each night.

This book will teach you the essential
security knowledge you need to be an

effective web developer. Before getting
started on that, it’s a useful exercise to see how

you would go about attacking a website. Let’s put our-
selves in the shoes of our adversary to see what we are
up against. This chapter will show you how hackers
operate and how easy it is to get started hacking.

Software Exploits and the Dark Web
Hackers take advantage of security holes in software such as websites. In
the hacking community, a piece of code that illustrates how to take advan-
tage of a security flaw is called an exploit. Some hackers—the good guys,

1
L E T ’ S H A C K A W E B S I T E

2 Chapter 1

commonly called white hat hackers—try to discover security holes for fun,
and will advise software vendors and website owners of the exploits before
making them public. Such hackers often collect a financial reward for
doing so.

Responsible software vendors try to produce patches for zero-day exploits
(exploits that have been publicized for less than a day, or not publicized at
all) as soon as possible. However, even when a software vendor releases a
patch to fix a software vulnerability, many instances of the vulnerable soft-
ware will remain unpatched for some time.

Less ethically minded hackers—black hats—hoard exploits to maxi-
mize the time windows during which they can use vulnerabilities, or will
even sell the exploit code on black markets for bitcoin. On today’s internet,
exploits get rapidly weaponized and incorporated into command line tools
widely used by the hacking community.

Solid financial incentives exist for black-hat hackers who use these
exploitation tools. Black markets for stolen credit card details, hacked user
accounts, and zero-day exploits exist on the dark web, websites available only
via special network nodes that anonymize incoming IP addresses. Dark web-
sites, like the one pictured in Figure 1-1, do a brisk business in stolen infor-
mation and compromised servers.

Figure 1-1: Hi, yes, I would like to buy some stolen credit card numbers since you are
clearly a high-level Russian hacker and not an FBI agent hanging around the dark web
as part of a sting operation.

Hacking tools that can take advantage of the latest exploits are freely
available and easy to set up. You don’t even have to visit the dark web, because
everything you need is a quick Google search away. Let’s see how.

Let’s Hack a Website 3

How to Hack a Website
It’s remarkably easy to get started hacking. Here’s how to do it:

1.	 Do a Google search for kali linux download. Kali Linux is a version
of the Linux operating system specifically built for hackers. It comes
preinstalled with more than 600 security and hacking tools. It’s com-
pletely free and is maintained by a small team of professional security
researchers at Offensive Security.

2.	 Install a virtual container on your computer. Virtual containers are host
environments that allow you to install other operating systems on your
computer, without overwriting your current operating system. Oracle’s
VirtualBox is free to use and can be installed on Windows, macOS, or
Linux. This should allow you to run Kali Linux on your computer with-
out too much configuration.

3.	 Install Kali Linux in the container. Download and double-click the
installer to get started.

4.	 Start up Kali Linux and open the Metasploit framework. Metasploit, as
shown in Figure 1-2, is the most popular command line tool for testing
the security of websites and checking for vulnerabilities.

Figure 1-2: Hacking can be achieved only with sufficient ASCII-art cows.

5.	 Run the wmap utility from the Metasploit command line on a target web-
site and see what vulnerabilities you can find. The output should look
something like Figure 1-3. The wmap utility will scan a list of URLs to test
whether the web server exhibits security flaws. Make sure you run the
utility only on a website you own!

4 Chapter 1

Figure 1-3: Hacking engaged—expect a visit from law enforcement imminently.

6.	 Pick an exploit in the Metasploit database that will permit you to take
advantage of the vulnerability.

At this point, we will stop our hacking tutorial, because the next step
would likely constitute a felony. However, the main point should be appar-
ent: it’s really easy to start hacking websites! Metasploit and Kali Linux are
used by real-world hackers and can be set up in a few minutes. They don’t
require any particular expertise to use, yet they are phenomenally good at
identifying vulnerabilities in websites and exploiting them.

This is the reality we are dealing with as web developers today. The
websites we build are available to anyone with an internet connection, as
are the hacking tools that can be used to target them. Don’t panic, though!
By the end of the book, you will (hopefully) know as much about security
as the hackers themselves, and be fully prepared for when they attack your
site. So, let’s get started by discussing the building blocks of the internet
protocol suite.

PART I
T H E B A S I C S

2
H O W T H E I N T E R N E T W O R K S

To become an expert on web security, you
need a firm grasp of the internet’s under-

lying web technologies and protocols. This
chapter examines the Internet Protocol Suite,

which dictates how computers exchange data over the
web. You’ll also learn about stateful connections and
encryption, which are key elements of the modern web. I’ll highlight where
security holes tend to appear along the way.

The Internet Protocol Suite
In the early days of the internet, data exchange wasn’t reliable. The first
message sent over the Advanced Research Projects Agency Network (ARPANET),
the predecessor to the internet, was a LOGIN command destined for a remote
computer at Stanford University. The network sent the first two letters,
LO, and then crashed. This was a problem for the US military, which was

8 Chapter 2

looking for a way to connect remote computers so that they could continue
to exchange information even if a Soviet nuclear strike took various parts of
the network offline.

To address this problem, the network engineers developed the Transmission
Control Protocol (TCP) to ensure a reliable exchange of information between
computers. TCP is one of about 20 network protocols that are collectively
referred to as the internet protocol suite. When a computer sends a message
to another machine via TCP, the message is split into data packets that are
sent toward their eventual destination with a destination address. The com-
puters that make up the internet push each packet toward the destination
without having to process the whole message.

Once the recipient computer receives the packets, it assembles them
back into a usable order according to the sequence number on each packet.
Every time the recipient receives a packet, it sends a receipt. If the recipient
fails to acknowledge receipt of a packet, the sender resends that packet, pos-
sibly along a different network path. In this way, TCP allows computers to
deliver data across a network that is expected to be unreliable.

TCP has undergone significant improvements as the internet has grown.
Packets are now sent with a checksum that allows recipients to detect data
corruption and determine whether packets need to be resent. Senders also
preemptively adjust the rate at which they send data according to how fast
it’s being consumed. (Internet servers are usually magnitudes more power-
ful than the clients that receive their messages, so they need to be careful
not to overwhelm the client’s capacity.)

N O T E 	 TCP remains the most common protocol because of its delivery guarantees, but
nowadays, several other protocols are also used over the internet. The User Datagram
Protocol (UDP), for instance, is a newer protocol that deliberately allows packets to
be dropped so that data can be streamed at a constant rate. UDP is commonly used for
streaming live video, since consumers prefer a few dropped frames over having their
feed delayed when the network gets congested.

Internet Protocol Addresses
Data packets on the internet are sent to Internet Protocol (IP) addresses, num-
bers assigned to individual internet-connected computers. Each IP address
must be unique, so new IP addresses are issued in a structured fashion.

At the highest level, the Internet Corporation for Assigned Names and
Numbers (ICANN) allots blocks of IP addresses to regional authorities. These
regional authorities then grant the blocks of addresses to internet service pro-
viders (ISPs) and hosting companies within their region. When you connect
your browser to the internet, your ISP assigns your computer an IP address
that stays fixed for a few months. (ISPs tend to rotate IP addresses for clients
periodically.) Similarly, companies that host content on the internet are
assigned an IP address for each server they connect to the network.

How the Internet Works 9

IP addresses are binary numbers, generally written in IP version 4
(IPv4) syntax, which allows for 232 (4,294,967,296) addresses. Google’s
domain name server, for instance, has the address 8.8.8.8. Because IPv4
addresses are getting used up at a rate that isn’t sustainable, the internet is
shifting to IP version 6 (IPv6) addresses to allow for more connected devices,
represented as eight groups of four hexadecimal digits separated by colons
(for example: 2001:0db8:0000:0042:0000:8a2e:0370:7334).

The Domain Name System
Browsers and other internet-connected software can recognize and route
traffic to IP addresses, but IP addresses aren’t particularly memorable for
humans. To make website addresses friendlier to users, we use a global
directory called the Domain Name System (DNS) to translate human-readable
domains like example.com to IP addresses like 93.184.216.119. Domain names
are simply placeholders for IP addresses. Domain names, like IP addresses,
are unique, and have to be registered before use with private organizations
called domain registrars.

When browsers encounter a domain name for the first time, they use a
local domain name server (typically hosted by an ISP) to look it up, and then
cache the result to prevent time-consuming lookups in the future. This
caching behavior means that new domains or changes to existing domains
take a while to propagate on the internet. Exactly how long this propaga-
tion takes is controlled by the time-to-live (TTL) variable, which is set on the
DNS record and instructs DNS caches when to expire the record. DNS cach-
ing enables a type of attack called DNS poisoning, whereby a local DNS cache
is deliberately corrupted so that data is routed to a server controlled by an
attacker.

In addition to returning IP addresses for particular domains, domain
name servers host records that can describe domain aliases via canonical name
(CNAME) records that allow multiple domain names to point to the same IP
address. DNS can also help route email by using mail exchange (MX) records.
We’ll examine how DNS records can help combat unsolicited email (spam)
in Chapter 16.

Application Layer Protocols
TCP allows two computers to reliably exchange data on the internet, but it
doesn’t dictate how the data being sent should be interpreted. For that to
happen, both computers need to agree to exchange information through
another, higher-level protocol in the suite. Protocols that build on top of
TCP (or UDP) are called application layer protocols. Figure 2-1 illustrates how
application layer protocols sit above TCP in the internet protocol suite.

The lower-level protocols of the internet protocol suite provide basic
data routing over a network, while the higher-level protocols in the applica-
tion layer provide more structure for applications exchanging data. Many
types of applications use TCP as a transport mechanism on the internet.

10 Chapter 2

For example, emails are sent using the Simple Mail Transport Protocol
(SMTP), instant messaging software often uses the Extensible Messaging
and Presence Protocol (XMPP), file servers make downloads available
via the File Transfer Protocol (FTP), and web servers use the HyperText
Transfer Protocol (HTTP). Because the web is our chief focus, let’s look
at HTTP in more detail.

Application layer DNS FTP HTTP IMAP POP SMTP SSH XMPP

Transport layer TCP UDP

Internet layer IPv4 IPv6

Network layer ARP MAC NDP OSPF PPP

Figure 2-1: The various layers that make up the internet protocol suite

HyperText Transfer Protocol
Web servers use the HyperText Transfer Protocol (HTTP) to transport web
pages and their resources to user agents such as web browsers. In an HTTP
conversation, the user agent generates requests for particular resources. Web
servers, expecting these requests, return responses containing either the
requested resource, or an error code if the request can’t be fulfilled. Both
HTTP requests and responses are plaintext messages, though they’re often
sent in compressed and encrypted form. All of the exploits described in this
book use HTTP in some fashion, so it’s worth knowing how the requests
and responses that make up HTTP conversations work in detail.

HTTP Requests

An HTTP request sent by a browser consists of the following elements:

Method  Also known as a verb, this describes the action that the user
agent wants the server to perform.

Universal resource locator (URL)  This describes the resource being
manipulated or fetched.

Headers  These supply metadata such as the type of content the user
agent is expecting or whether it accepts compressed responses.

Body  This optional component contains any extra data that needs to
be sent to the server.

Listing 2-1 shows an HTTP request.

GETu http://example.com/v
w User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36
x Accept: text/html,application/xhtml+xml,application/xml; */*

How the Internet Works 11

Accept-Encoding: gzip, deflate
Accept-Language: en-GB,en-US;q=0.9,en;q=0.8

Listing 2-1: A simple HTTP request

The method u and the URL v appear on the first line. These are fol-
lowed by HTTP headers on separate lines. The User-Agent header w tells the
website the type of browser that is making the request. The Accept header x
tells the website the type of content the browser is expecting.

Requests that use the GET method—called GET requests for short—are the
most common type of request on the internet. GET requests fetch a particular
resource on the web server, identified by a specific URL. The response to a
GET request will contain a resource: perhaps a web page, an image, or even the
results of a search request. The example request in Listing 2-1 represents an
attempt to load the home page of example.com, and would be generated when
a user types example.com in the browser’s navigation bar.

If the browser needs to send information to the server, rather than just
fetch data, it typically uses a POST request. When you fill out a form on a web
page and submit it, the browser sends a POST request. Because POST requests
contain information sent to the server, the browser sends that information
in a request body, after the HTTP headers.

In Chapter 8, you’ll see why it’s important to use POST rather than GET
requests when sending data to your server. Websites that erroneously use
GET requests for doing anything other than retrieving resources are vul-
nerable to cross-site request forgery attacks.

When writing a website, you may also encounter PUT, PATCH, and DELETE
requests. These are used to upload, edit, or delete resources on the server,
respectively, and are typically triggered by JavaScript embedded in a web
page. Table 2-1 documents a handful of other methods that are worth
knowing about.

Table 2-1: The Lesser-Known HTTP Methods

HTTP method Function and implementation

HEAD A HEAD request retrieves the same information as a GET request, but
instructs the server to return the response without a body (in other
words, the useful part). If you implement a GET method on your web
server, the server will generally respond to HEAD requests automatically.

CONNECT CONNECT initiates two-way communications. You’ll use it in your HTTP
client code if you ever have to connect through a proxy.

OPTIONS Sending an OPTIONS request lets a user agent ask what other methods
are supported by a resource. Your web server will generally respond
to OPTIONS requests by inferring which other methods you have
implemented.

TRACE A response to a TRACE request will contain an exact copy of the origi-
nal HTTP request, so the client can see what (if any) alterations were
made by intermediate servers. This sounds useful, but it’s generally
recommended that you turn off TRACE requests in your web server,
because they can act as a security hole. For instance, they can allow
malicious JavaScript injected into a page to access cookies that have
been deliberately made inaccessible to JavaScript.

12 Chapter 2

Once a web server receives an HTTP request, it replies to the user agent
with an HTTP response. Let’s break down how responses are structured.

HTTP Responses

HTTP responses sent back by a web server begin with a protocol descrip-
tion, a three-digit status code, and, typically, a status message that indicates
whether the request can be fulfilled. The response also contains headers
providing metadata that instructs the browser how to treat the content.
Finally, most responses contain a body that itself contains the requested
resource. Listing 2-2 shows the contents of a simple HTTP response.

HTTP/1.1u 200v OKw
x Content-Encoding: gzip

Accept-Ranges: bytes
Cache-Control: max-age=604800
Content-Type: text/html
Content-Length: 606

y <!doctype html>
<html>
 <head>
 <title>Example Domain</title>

 z <style type="text/css">
 body {
 background-color: #f0f0f2;
 font-family: "Open Sans", "Helvetica Neue", Helvetica, sans-serif;
 }
 div {
 width: 600px;
 padding: 50px;
 background-color: #fff;
 border-radius: 1em;
 }
 </style>
 </head>

 { <body>
 <div>
 <h1>Example Domain</h1>
 <p>This domain is established to be used for illustrative examples.</p>
 <p>
 More information...
 </p>
 </div>
 </body>
</html>

Listing 2-2: An HTTP response from example.com, the world’s least interesting website

The response begins with the protocol description u, the status code v,
and the status message w. Status codes formatted as 2xx indicate that the
request was understood, accepted, and responded to. Codes formatted as

How the Internet Works 13

3xx redirect the client to a different URL. Codes formatted as 4xx indicate
a client error: the browser generated an apparently invalid request. (The
most common error of this type is HTTP 404 Not Found). Codes formatted as
5xx indicate a server error: the request was valid, but the server was unable
to fulfill the request.

Next are the HTTP headers x. Almost all HTTP responses include a
Content-Type header that indicates the kind of data being returned. Responses
to GET requests also often contain a Cache-Control header to indicate that the
client should cache large resources (for example, images) locally.

If the HTTP response is successful, the body contains the resource the
client was trying to access—often HyperText Markup Language (HTML) y
describing the structure of the requested web page. In this case, the response
contains styling information z as well as the page content itself {. Other
types of responses may return JavaScript code, Cascading Style Sheets
(CSS) used for styling HTML, or binary data in the body.

Stateful Connections
Web servers typically deal with many user agents at once, but HTTP does
nothing to distinguish which requests are coming from which user agent.
This wasn’t an important consideration in the early days of the internet,
because web pages were largely read-only. Modern websites, however, often
allow users to log in and will track their activity as they visit and interact
with different pages. To allow for this, HTTP conversations need to be
made stateful. A connection or conversation between a client and a server
is stateful when they perform a “handshake” and continue to send packets
back and forth until one of the communicating parties decides to terminate
the connection.

When a web server wants to keep track of which user it’s responding to
with each request, and thus achieve a stateful HTTP conversation, it needs
to establish a mechanism to track the user agent as it makes the subsequent
requests. The entire conversation between a particular user agent and a
web server is called an HTTP session. The most common way of tracking ses-
sions is for the server to send back a Set-Cookie header in the initial HTTP
response. This asks the user agent receiving the response to store a cookie,
a small snippet of text data pertaining to that particular web domain. The
user agent then returns the same data in the Cookie header of any subse-
quent HTTP request to the web server. If implemented correctly, the con-
tents of the cookie being passed back and forth uniquely identify the user
agent and hence establish the HTTP session.

Session information contained in cookies is a juicy target for hackers.
If an attacker steals another user’s cookie, they can pretend to be that user
on the website. Similarly, if an attacker successfully persuades a website to
accept a forged cookie, they can impersonate any user they please. We’ll
look at various methods of stealing and forging cookies in Chapter 10.

14 Chapter 2

Encryption
When the web was first invented, HTTP requests and responses were sent in
plaintext form, which meant they could be read by anyone intercepting the
data packets; this kind of interception is known as a man-in-the-middle attack.
Because private communication and online transactions are common on
the modern web, web servers and browsers protect their users from such
attacks by using encryption, a method of disguising the contents of messages
from prying eyes by encoding them during transmission.

To secure their communications, web servers and browsers send requests
and responses by using Transport Layer Security (TLS), a method of encryp-
tion that provides both privacy and data integrity. TLS ensures that packets
intercepted by a third party can’t be decrypted without the appropriate
encryption keys. It also ensures that any attempt to tamper with the packets
will be detectable, which ensures data integrity.

HTTP conversations conducted using TLS are called HTTP Secure
(HTTPS). HTTPS requires the client and server to perform a TLS hand-
shake in which both parties agree on an encryption method (a cipher) and
exchange encryption keys. Once the handshake is complete, any further
messages (both requests and responses) will be opaque to outsiders.

Encryption is a complex topic but is key to securing your website. We’ll
examine how to enable encryption for your website in Chapter 13.

Summary
In this chapter, you learned about the plumbing of the internet. TCP
enables reliable communication between internet-connected computers
that each have an IP address. The Domain Name System provides human-
readable aliases for IP addresses. HTTP builds on top of TCP to send
HTTP requests from user agents (such as web browsers) to web servers,
which in turn reply with HTTP responses. Each request is sent to a specific
URL, and you learned about various types of HTTP methods. Web servers
respond with status codes, and send back cookies to initiate stateful con-
nections. Finally, encryption (in the form of HTTPS) can be used to secure
communication between a user agent and a web server.

In the next chapter, you’ll take a look at what happens when a web
browser receives an HTTP response—how a web page is rendered, and how
user actions can generate more HTTP requests.

Most internet users interact with websites
through a browser. To build secure web-

sites, you need to understand how browsers
transform the HyperText Markup Language

(HTML) used to describe web pages into the interac-
tive, visual representations you see onscreen. This
chapter covers how a modern browser renders a web page, highlighting the
security measures it puts in place to protect the user—the browser security
model. We’ll also look at the various ways hackers try to overcome these
security measures.

Web Page Rendering
The software component within a web browser that’s responsible for
transforming a web page’s HTML into the visual representation you
see onscreen is called the rendering pipeline. The rendering pipeline is

3
H O W B R O W S E R S W O R K

16 Chapter 3

responsible for parsing the page’s HTML, understanding the structure and
content of the document, and converting it to a series of drawing opera-
tions that the operating system can understand.

For websites in the early days of the internet, this process was relatively
simple. Web page HTML contained very little styling information (such as
color, font, and font size), so rendering was mostly a matter of loading text
and images and drawing them onscreen in the order they appeared in the
HTML document. HTML was envisioned as a markup language, meaning it
described the web page by breaking it into semantic elements and annotat-
ing how the information was structured. The early web looked pretty crude,
but was very efficient for relaying textual content.

Nowadays, web design is more elaborate and visually appealing. Web
developers encode styling information into separate Cascading Style Sheets
(CSS) files, which instruct the browser precisely how each page element is
to be displayed. A modern, hyperoptimized browser like Google Chrome
contains several million lines of code to correctly interpret and render
HTML and deal with conflicting styling rules in a fast, uniform manner.
Understanding the various stages that make up the rendering pipeline will
help you appreciate this complexity.

The Rendering Pipeline: An Overview
We’ll get into the details of each stage of the rendering pipeline in a
moment, but first let’s look at the high-level process.

When the browser receives an HTTP response, it parses the HTML in
the body of the response into a Document Object Model (DOM): an in-memory
data structure that represents the browser’s understanding of the way the
page is structured. Generating the DOM is an interim step between parsing
the HTML and drawing it onscreen. In modern HTML, the layout of the
page can’t be determined until the whole of the HTML is parsed, because
the order of the tags in the HTML doesn’t necessarily determine the loca-
tion of their content.

Once the browser generates the DOM, but before anything can be drawn
onscreen, styling rules must be applied to each DOM element. These styling
rules declare how each page element is to be drawn—the foreground and
background color, the font style and size, the position and alignment, and
so on. Last, after the browser finalizes the structure of the page and breaks
down how to apply styling information, it draws the web page onscreen. All
of this happens in a fraction of a second, and repeats on a loop as the user
interacts with the page.

The browser also loads and executes any JavaScript it comes across as it
constructs the DOM. JavaScript code can dynamically make changes to the
DOM and styling rules, either before the page is rendered or in response to
user actions.

Now let’s look at each step in more detail.

How Browsers Work 17

The Document Object Model
When a browser first receives an HTTP response containing HTML, it
parses the HTML document into a DOM, a data structure describing the
HTML document as a series of nested elements called DOM nodes. Some
nodes in the DOM correspond to elements to be rendered onscreen, such
as input boxes and paragraphs of text; other nodes, such as script and styl-
ing elements, control the page’s behavior and layout.

Each DOM node is roughly equivalent to a tag in the original HTML
document. DOM nodes can contain text content, or contain other DOM
nodes, similar to the way HTML tags can be nested within each other.
Because each node can contain other nodes in a branching fashion, web
developers talk about the DOM tree.

Some HTML tags, like the <script>, <style>, <image>, , and <video>
tags, can reference an external URL in an attribute. When they’re parsed
into the DOM, these tags cause the browser to import the external resources,
meaning that the browser must initiate a further HTTP request. Modern
browsers perform these requests in parallel to the page rendering, in order
to speed up the page-load time.

The construction of the DOM from HTML is designed to be as robust
as possible. Browsers are forgiving about malformed HTML; they close
unclosed tags, insert missing tags, and ignore corrupted tags as needed.
Browser vendors don’t punish the web user for the website’s errors.

Styling Information
Once the browser has constructed the DOM tree, it needs to determine
which DOM nodes correspond to onscreen elements, how to lay out those
elements relative to each other, and what styling information to apply to
them. Though these styling rules can be defined inline in the HTML docu-
ment, web developers prefer to encode styling information in separate CSS
files. Separating the styling information from the HTML content makes
restyling existing content easier and keeps HTML content as clean and
semantic as possible. It also makes HTML easier to parse for alternative
browsing technologies such as screen readers.

When using CSS, a web developer will create one or more stylesheets to
declare how elements on the page should be rendered. The HTML docu-
ment will import these stylesheets by using a <style> tag referencing the
external URL that hosts the stylesheet. Each stylesheet contains selectors
that pick out tags in the HTML document and assign styling information,
such as font size, colors, and position, to each. Selectors may be simple: they
might state, for example, that heading text in an <h1> tag should be rendered
in blue. For more complex web pages, selectors get more convoluted: a
selector may describe how quickly a hyperlink changes color when the user
moves their mouse over it.

18 Chapter 3

The rendering pipeline implements a lot of logic to decipher final styl-
ing, because strict rules of precedence need to be followed about how styles
are applied. Each selector can apply to multiple page elements, and each
page element will often have styling information supplied by several selec-
tors. One of the growing pains of the early internet was figuring out how to
create a website that looked the same when rendered by different types of
browsers. Modern browsers are generally consistent in the way they render
a web page, but they still vary. The industry’s benchmark for compliance to
web standards is the Acid3 test, as shown in Figure 3-1. Only a few browsers
score 100. You can visit http://acid3.acidtests.org/ to try out the Acid3 test.

Figure 3-1: Acid3, making sure browsers can render colored rectangles correctly since 2008

The construction of the DOM tree and the application of styling rules
occur in parallel to the processing of any JavaScript code contained in the
web page. This JavaScript code can change the structure and layout of the
page even before it’s rendered, so let’s take a quick look at how the execu-
tion of JavaScript dovetails with the rendering pipeline.

JavaScript
Modern web pages use JavaScript to respond to user actions. JavaScript is
a fully fledged programming language that is executed by the browser’s
JavaScript engine when web pages are rendered. JavaScript can be incor-
porated into an HTML document by using a <script> tag; the code may be
included inline within the HTML document, or, more typically, the <script>
tag will reference a JavaScript file that is to be loaded from an external URL.

How Browsers Work 19

By default, any JavaScript code is executed by the browser as soon as the
relevant <script> tag is parsed into a DOM node. For JavaScript code loaded
from an external URL, this means the code is executed as soon as it is loaded.

This default behavior causes problems if the rendering pipeline hasn’t
finished parsing the HTML document; the JavaScript code will attempt to
interact with page elements that may not yet exist in the DOM. To allow for
this, <script> tags are often marked with a defer attribute. This causes the
JavaScript to execute only when the entire DOM has been constructed.

As you would imagine, the fact that browsers eagerly execute any
JavaScript code they come across has security implications. A hacker’s end
goal is often the remote execution of code on another user’s machine, and
the internet makes this goal much easier, as it’s rare to find a computer that
isn’t connected to the network in some way. For this reason, modern brows-
ers heavily restrict JavaScript with the browser security model. This dictates
that JavaScript code must be executed within a sandbox, where it’s not per-
mitted to perform any of the following actions:

•	 Start new processes or access other existing processes.

•	 Read arbitrary chunks of system memory. As a managed memory lan-
guage, JavaScript can’t read memory outside its sandbox.

•	 Access the local disk. Modern browsers allow websites to store small
amounts of data locally, but this storage is abstracted from the file
system itself.

•	 Access the operating system’s network layer.

•	 Call operating system functions.

JavaScript executing in the browser sandbox is permitted to do the
following actions:

•	 Read and manipulate the DOM of the current web page.

•	 Listen to and respond to user actions on the current page by register-
ing event listeners.

•	 Make HTTP calls on behalf of the user.

•	 Open new web pages or refresh the URL of the current page, but only
in response to a user action.

•	 Write new entries to the browser history and go backward and forward
in history.

•	 Ask for the user’s location. For example, “Google Maps would like to
use your location.”

•	 Ask permission to send desktop notifications.

Even with these restrictions, an attacker who can inject malicious Java​
Script into your web page can still do a lot of harm by using cross-site script-
ing to read credit card details or credentials as a user enters them. Even tiny
amounts of injected JavaScript pose a threat, because injected code can add
<script> tags in the DOM to load a malicious payload. We’ll look at how to
protect against this type of cross-site scripting attack in Chapter 7.

20 Chapter 3

Before and After Rendering: Everything Else the Browser Does
A browser is much more than a rendering pipeline and a JavaScript engine.
In addition to rendering HTML and executing JavaScript, modern brows-
ers contain logic for many other responsibilities. Browsers connect with the
operating system to resolve and cache DNS addresses, interpret and verify
security certificates, encode requests in HTTPS if needed, and store and
transmit cookies according to the web server’s instructions. To understand
how these responsibilities fit together, let’s take a behind-the-scenes look at
a user logging into Amazon:

1.	 The user visits www.amazon.com in their favorite browser.

2.	 The browser attempts to resolve the domain (amazon.com) to an IP
address. First, the browser consults the operating system’s DNS cache.
If it finds no results, it asks the internet service provider to look in the
provider’s DNS cache. In the unlikely event that nobody on the ISP has
visited the Amazon website before, the ISP will resolve the domain at an
authoritative DNS server.

3.	 Now that it has resolved the IP address, the browser attempts to initiate
a TCP handshake with the server corresponding to the IP address in
order to establish a secure connection.

4.	 Once the TCP session has been established, the browser constructs an
HTTP GET request to www.amazon.com. TCP splits the HTTP request
into packets and sends them to the server to be reassembled.

5.	 At this point, the HTTP conversation upgrades to HTTPS to ensure
secure communication. The browser and server undertake a TLS hand-
shake, agree on an encryption cypher, and exchange encryption keys.

6.	 The server uses the secure channel to send back an HTTP response
containing HTML of the Amazon front page. The browser parses and
displays the page, typically triggering many other HTTP GET requests.

7.	 The user navigates to the login page, enters their login credentials, and
submits the login form, which generates a POST request to the server.

8.	 The server validates the login credentials and establishes a session
by returning a Set-Cookie header in the response. The browser stores
the cookie for the prescribed time, and sends it back with subsequent
requests to Amazon.

After all of this happens, the user can access their Amazon account.

Summary
This chapter reviewed how browsers transform the HTML used to describe
web pages into the interactive, visual representations you see onscreen. The
browser’s rendering pipeline parses HTML documents into a Document
Object Model (DOM), applies styling information from Cascading Style
Sheets (CSS) files, and then lays out the DOM nodes onscreen.

How Browsers Work 21

You also learned about the browser security model. The browser exe-
cutes JavaScript included in <script> tags under strict security rules. You
also reviewed a simple HTTP conversation illustrating the browser’s many
other responsibilities beyond rendering pages: reconstructing HTTP from
TCP packets, verifying security certificates and securing communication
using HTTPS, and storing and transmitting cookies.

In the next chapter, you’ll look at the other end of the HTTP conversa-
tion: the web server.

4
H O W W E B S E R V E R S W O R K

In the previous chapter, you learned how
browsers communicate over the internet

and render the HTML pages and other
resources that make up a website. In this chap-

ter, you’ll learn about how those same HTML pages
are constructed by web servers.

By its simplest definition, a web server is a computer program that sends
back HTML pages in response to HTTP requests. Modern web servers
encompass a much broader range of functionality than this suggests, how-
ever. When a browser makes an HTTP request, modern web servers allow
code to be executed in order to generate the web page HTML dynamically,
and often incorporate content from a database. As a web developer, you’ll
spend most of your time writing and testing this type of code.

This chapter covers how developers organize code and resources within
a web server. I’ll also pinpoint common weaknesses in web servers that allow
security vulnerabilities to occur, and talk about how to avoid these pitfalls.

24 Chapter 4

Static and Dynamic Resources
Web servers serve two types of content in response to HTTP requests: static
resources and dynamic resources. A static resource is an HTML file, image
file, or other type of file that the web server returns unaltered in HTTP
responses. A dynamic resource is code, a script, or a template that the web server
executes or interprets in response to an HTTP request. Modern web servers
are capable of hosting both static and dynamic resources. Which resource
the server executes or returns depends on the URL in the HTTP request.
Your web server will resolve URLs according to a configuration file that
maps URL patterns to particular resources.

Let’s look at how web servers handle static and dynamic resources.

Static Resources
In the early days of the internet, websites consisted mostly of static resources.
Developers coded HTML files by hand, and websites consisted of individual
HTML files that were deployed to the web server. The “deployment” of a web-
site required the developer to copy all the HTML files to the web server and
restart the server process. When a user wished to visit the website, they would
type the website’s URL in their browser. The browser would make an HTTP
request to the web server hosting the website, which would interpret the
incoming URL as a request for a file on disk. Finally, the web server would
return the HTML file as is in the HTTP response.

An example of this is the website for the 1996 movie Space Jam. It con-
sists entirely of static resources, and it’s still online at spacejam.com. Clicking
through the site takes us back to a simpler and aesthetically less sophisti-
cated time in web development. If you visit the website, you will notice that
each of the URLs like https://www.spacejam.com/cmp/sitemap.html end with a
.html suffix, indicating that each web page corresponds to an HTML file on
the server.

Tim Berners-Lee’s original vision of the web looked much like the Space
Jam website: a network of static files hosted on web servers that would con-
tain all the world’s information.

URL Resolution
Modern web servers handle static resources in much the same way as
their older counterparts. To access a resource in a browser, you include
the resource name in the URL, and the web server returns the resource file
from disk as it’s requested. To display the picture shown in Figure 4-1, the
URL includes the resource name /images/hedgehog_in_spaghetti.png, and the
web server returns the appropriate file from disk.

How Web Servers Work 25

Figure 4-1: An example of a static resource

Modern web servers have a few additional tricks up their sleeves. A
modern web server allows any URL to be mapped to a particular static
resource. We would expect the hedgehog_in_spaghetti.png resource to be a
file living in the /images directory on the web server, but in fact, the devel-
oper can call it anything they choose. By unlinking the URL from the
filepath, web servers give developers more freedom to organize their code.
This might allow each user to have a different profile image, but use the
same path, for instance.

When returning a static resource, modern web servers often add data
to the HTTP response or process the static resource before returning it.
For example, web servers often dynamically compress large resource files
by using the gzip algorithm to reduce the bandwidth used in the response,
or add caching headers in HTTP responses to instruct the browser to cache
and use a local copy of a static resource if a user views it again within a
defined window of time. This makes the website more responsive for the
user and reduces the load the server has to handle.

Because static resources are simply files of one form or another, they
don’t, by themselves, exhibit much in the way of security vulnerabilities.
The process of resolving a URL to a file can introduce vulnerabilities, how-
ever. If a user designates certain types of files to be private (for example,
the images they upload), you will need to have access control rules defined
on the web server. We’ll look at various ways hackers attempt to circumvent
access control rules in Chapter 11.

26 Chapter 4

Content Delivery Networks
A modern innovation designed to improve the delivery speeds of static
files is the content delivery network (CDN), which will store duplicated copies
of static resources in data centers around the world, and quickly deliver
those resources to browsers from the nearest physical location. CDNs like
Cloudflare, Akamai, or Amazon CloudFront offload the burden of serving
large resource files, such as images, to a third party. As such, they allow
even small companies to produce responsive websites without a massive
server expenditure. Integrating a CDN into your site is usually straight-
forward, and the CDN service charges a monthly fee depending on the
amount of resources you deploy.

Using a CDN also introduces security complications. Integrating with
a CDN effectively allows a third party to serve content under your secu-
rity certificate, so you need to set up your CDN integration securely. We’ll
investigate how to securely integrate third-party services such as CDNs in
Chapter 14.

Content Management Systems
Plenty of websites still consist of mostly static content. Rather than being
coded by hand, these sites are generally built using content management systems
(CMSs) that provide authoring tools requiring little to no technical knowl-
edge to write the content. CMSs generally impose a uniform style on the
pages and allow administrators to update content directly in the browser.

CMS plug-ins can also provide analytics to track visitors, add appoint-
ment management or customer support functions, and even create online
stores. This plug-in approach is part of a larger trend of websites using
specialized services from third-party companies to build custom features.
For example, sites commonly use Google Analytics for customer tracking,
Facebook Login for authentication, and Zendesk for customer support. You
can add each of these features with a few lines of code and an API key, mak-
ing it significantly easier to build feature-rich sites from scratch.

Using other people’s code to build your site, either by integrating
a CMS or using plug-in services, theoretically makes you more secure
because these third parties employ security professionals and have an
incentive to secure their services. However, the ubiquity of these services
and plug-ins also makes them a target for hackers. For example, many self-
hosted instances of WordPress, the most popular CMS, are infrequently
patched. You can easily discover WordPress vulnerabilities through a
simple Google search, as shown in Figure 4-2.

When you use third-party code, you need to stay on top of security advi-
sories and deploy security patches as soon as they become available. We’ll
investigate some of risks around third-party code and services in Chapter 14.

How Web Servers Work 27

Figure 4-2: Come get your unsecured WordPress instances.

Dynamic Resources
Though it’s simpler to use static resources, authoring individual HTML files
by hand is time-consuming. Imagine if retail websites had to code up a new
web page every time they added a new item to their inventory. It would inef-
ficiently use up everyone’s time (though it would provide a guarantee of job
security for web developers).

Most modern websites instead use dynamic resources. Often the dynamic
resource’s code loads data from a database in order to populate the HTTP
response. Typically, the dynamic resource outputs HTML, though other con-
tent types can be returned depending on the expectations of the browser.

Dynamic resources allow retail websites to implement a single product
web page capable of displaying many types of products. Each time a user
views a particular product on the site, the web page extracts the product
code from a URL, loads the product price, image, and description from the
database, and interpolates this data into the HTML. Adding new products
to the retailer’s inventory then becomes a matter of simply entering new
rows in the database.

There are many other uses for dynamic resources. If you access your
banking website, it looks up your account details and incorporates them
in the HTML. A search engine like Google returns matches pulled from
Google’s massive search index and returns them in a dynamic page. Many
sites, including social media and web-mail sites, look different to each user,
because they dynamically construct the HTML after the user logs in.

28 Chapter 4

As useful as dynamic resources are, they create novel security vulner-
abilities. The dynamic interpolation of content into the HTML can be
vulnerable to attack. We’ll look at how to protect ourselves from maliciously
injected JavaScript in Chapter 7, and see how HTTP requests generated
from other websites can cause harm in Chapter 8.

Templates
The first dynamic resources were simple script files, often written in the
Perl language, that the web server executed when a user visited a particular
URL. These script files would write out the HTML that made up a particu-
lar web page.

Code that makes up a dynamic resource in this fashion often isn’t
intuitive to read. If a web page consists of static resources, you can look at
a static HTML file to get a sense of how it’s organized, but it’s harder to do
the same with dynamic resources that have a thousand lines of Perl code.
Essentially, you have one language (Perl) writing out content in another
language (HTML) that, downstream, a browser will render onscreen.
Making changes to Perl code while keeping in mind what the eventual ren-
dered output will look like is a difficult task.

To address this, web developers often use template files to build
dynamic web pages. Templates are mostly HTML, but have programmatic
logic interspersed within them that contains instructions to the web server.
This logic is generally simple and usually does one of three things: pull
data from a database or the HTTP request and interpolate it into the
HTML, conditionally render sections of the HTML template, or loop over
a data structure (for example, lists of items) to repeatedly render a block
of HTML. All modern web frameworks use template files (with variations
in syntax) because inserting code snippets into HTML typically makes code
cleaner and more readable.

Databases
When a web server executes the code in a dynamic resource, it often loads
data from a database. If you visit a retail website, the web server looks up the
product ID in a database, and uses the product information stored in the
database to construct the page. If you log into a social media site, the web
server loads your timeline and notifications from an underlying database
in order to write the HTML. In fact, most modern websites use databases
to store user information, and the interface between the web server and a
database is a frequent target for hackers.

Database technology predates the invention of the web. As computers
became more widespread back in the 1960s, companies started to see the
value of digitizing and centralizing their record keeping to make searching
and maintenance easier. With the birth of the web, sticking a web frontend
on top of a product inventory database was a natural progression for com-
panies looking to branch out into online retail.

How Web Servers Work 29

Databases are key for authentication too. If a website wants to identify
returning users, it needs to keep a record of who has signed up to the site
and verify, or authenticate, their login information against stored credentials
when they return.

The two most commonly used types of databases are SQL and NoSQL.
Let’s take a look at both.

SQL Databases

The most common databases used today are relational databases that
implement Structured Query Language (SQL), a declarative programming
language that maintains and fetches data.

N O T E 	 SQL can be pronounced either “ess-qew-ell” or “sequel,” although you can try
pronouncing it “squeal” if you want to see your database administrator squirm
uncomfortably.

SQL databases are relational, which means they store data in one or
more tables that relate to each other in formally prescribed ways. You can
think of a table as akin to a Microsoft Excel spreadsheet with rows and col-
umns, with each row representing a data item, and each column represent-
ing a data point for each item. Columns in a SQL database have predefined
data types, typically strings of text (often of fixed length), numbers, or dates.

Database tables in a relational database relate to each other via keys.
Usually, each row in a table has a unique numeric primary key, and tables
can refer to each other’s rows via foreign keys. For example, if you were stor-
ing user orders as database records, the orders table would have a foreign
key column called user_id that represents the user who placed the order.
Instead of storing user information directly in the orders table, this user_id
column would contain foreign-key values that refer to a specific row’s pri-
mary key (the id column) in the users table. This type of relation ensures
that you cannot store orders in the database without storing the user, and
ensures that only a single source of truth exists for each user.

Relational databases also feature data integrity constraints that prevent
data corruption and make uniform queries to the database possible. Like
foreign keys, other types of data integrity constraints can be defined in
SQL. For example, you could require the email_address column in a users
table to contain only unique values, to force each user in the database to
have a different email address. You could also require non-null values in
tables so that the database must specify an email address for each user.

SQL databases also exhibit transactional and consistent behavior. A
database transaction is a group of SQL statements executed in a batch. A data-
base is said to be transactional if each transaction is “all or nothing”: that is,
if any SQL statement fails to execute within the batch, the entire transaction
fails and leaves the database state unchanged. SQL databases are consistent
because any successful transaction brings the database from one valid state
to another. Any attempt to insert invalid data in a SQL database causes the
whole transaction to fail and the database to remain unaltered.

30 Chapter 4

Because data stored in SQL databases is often highly sensitive, hackers
target databases to sell their contents on the black market. Hackers also often
take advantage of insecurely constructed SQL statements. We’ll examine
how in Chapter 6.

NoSQL Databases

SQL databases are often the bottleneck of a web application’s performance.
If most HTTP requests hitting a website generate a database call, the data-
base server will experience a tremendous load and slow the performance of
the website for all users.

These performance concerns have led to the increasing popularity of
NoSQL databases—databases that sacrifice the strict data integrity require-
ments of traditional SQL databases to achieve greater scalability. NoSQL
encompasses a variety of approaches to storing and accessing data, but a few
trends among them have emerged.

NoSQL databases are often schemaless, allowing you to add fields to new
records without having to upgrade any data structures. To achieve this flexibil-
ity, data is often stored in key-value form, or in JavaScript Object Notation (JSON).

NoSQL database technology also tends to prioritize widescale replication
of data over absolute consistency. SQL databases guarantee that simultane-
ous queries by different client programs will see the same results; NoSQL
databases often loosen this constraint and guarantee only eventual consistency.

NoSQL databases make storing unstructured or semistructured data
very easy. Extracting and querying data tends to be a little more complex—
some databases offer a programmatic interface, while others implement
their own query languages that adapt SQL-like syntax to their data struc-
tures. NoSQL databases are vulnerable to injection attacks in much the
same way as SQL databases are, though an attacker has to correctly guess
the database type to successfully mount an attack.

Distributed Caches
Dynamic resources can also load data from in-memory distributed caches,
another popular approach to achieving the massive scalability required by
large websites. Caching refers to the process of storing a copy of data kept
elsewhere in an easily retrievable form, to speed up retrieval of that data.
Distributed caches like Redis or Memcached make caching data straightfor-
ward and allow software to share data structures across different servers
and processes in a language-agnostic way. Distributed caches can be shared
among web servers, making them ideal for storing frequently accessed data
that would otherwise have to be retrieved from a database.

Large web companies typically implement their tech stacks as a range
of microservices—simple, modular services that perform one action on
demand—and use distributed caches to communicate between them.
Services often communicate via queues stored in a distributed cache:
data structures that can put tasks in a waiting state so they can be com-
pleted one at a time by numerous worker processes. Services can also use

How Web Servers Work 31

publish-subscribe channels that allow many processes to register interest in a
type of event, and have them notified en masse when it occurs.

Distributed caches are vulnerable to hacks in the same way that data-
bases are. Thankfully, Redis and Memcached were developed in an age
when these kinds of threats were well-known, so best practices are generally
baked into software development kits (SDKs), the code libraries you use to con-
nect with the caches.

Web Programming Languages
Web servers will execute code in the process of evaluating dynamic resources.
A huge number of programming languages can be used to write web server
code, and each has different security considerations.

Let’s look at some of the more commonly used languages. We’ll use
these languages in code samples in later chapters.

Ruby (on Rails)

The Ruby programming language, like Dragon Ball Z and the Tom Selleck
film Mr. Baseball, was invented in Japan in the mid ’90s. Unlike either
Dragon Ball Z or Tom Selleck, it didn’t become popular for another decade
until the Ruby on Rails platform was released.

Ruby on Rails incorporates many best practices for building large-scale
web applications and makes them easy to implement with minimal con-
figuration. The Rails community also takes security seriously. Rails was one
of the first web server stacks to incorporate protections against cross-site
request forgery attacks. Nevertheless, Rail’s ubiquity makes it a common tar-
get for hackers. Several major security vulnerabilities have been discovered
(and hastily patched) in recent years.

Simpler Ruby web servers often described as microframeworks (for example,
Sinatra) have become popular alternatives to Rails in recent years. Micro
frameworks allow you to combine individual code libraries that perform
one particular function, so your web server is deliberately minimal in size.
This contrasts with Rails’s “everything including the kitchen sink” model of
deployment. Developers who use a microframework generally find the extra
capabilities they need by using the RubyGems package manager.

Python

The Python language was invented in the late 1980s. Its clean syntax, flex-
ible programming paradigm, and wide variety of modules have made the
language phenomenally popular. Newcomers to Python are often surprised
that whitespace and indenting have semantic meaning, which is unusual
among programming languages. Whitespace is so important in the Python
community that they fight holy wars over whether indentation should be
done with tabs or spaces.

Python is used for a variety of applications, and is often the go-to lan-
guage for data science and scientific computing projects. Web developers

32 Chapter 4

have a wide choice of actively maintained web servers to choose from (such
as the popular Django and Flask). The diversity of web servers also acts as a
security feature because hackers are less likely to target a particular platform.

JavaScript and Node.js

JavaScript started out as a simple language for executing small scripts within
the browser, but became popular for writing web server code and rapidly
evolved with the Node.js runtime. Node.js runs on top of the V8 JavaScript
engine, the same software component that Google Chrome uses to interpret
JavaScript within the browser. JavaScript still contains many quirks, but the
prospect of using the same language on the client side and server side has
made Node the fastest-growing web development platform.

The largest security risks in Node are due to its rapid growth—hundreds
of modules are added every day. You’ll need to take extra caution when you
use third-party code in your Node application.

PHP

The PHP language was developed from a set of C binaries used to build
dynamic sites on Linux. PHP later developed into a fully fledged program-
ming language, though the unplanned evolution of the language is evident
in its disorganized nature. PHP inconsistently implements many built-in
functions. For example, variable names are case-sensitive, but function
names are not. Despite these quirks, PHP remains popular and, at one
point, it powered 10 percent of sites on the web.

If you’re writing PHP, you’re often maintaining a legacy system. Because
older PHP frameworks exhibit some of the nastiest security vulnerabilities you
can imagine, you should update legacy PHP systems to use modern libraries.
Every type of vulnerability, whether it’s command execution, directory tra-
versal, or a buffer overflow, has given PHP programmers sleepless nights.

Java

Java and the Java Virtual Machine (JVM) have been widely used and imple-
mented in the enterprise space, allowing you to run Java’s compiled byte-
code across multiple operating systems. It’s generally a good workhorse
language when performance is a concern.

Developers have used Java for everything, whether for robotics, mobile
app development, big-data applications, or embedded devices. Its popular-
ity as a web development language has waned, but many millions of lines
of Java code still power the internet. From a security perspective, Java is
haunted by its past popularity; legacy applications contain a lot of Java code
that run older versions of the language and frameworks. Java developers
need to update to secure versions in a timely fashion lest they become easy
pickings for hackers.

If you’re a more adventurous developer, you’ll find other popular lan-
guages that run on the JVM and offer compatibility with Java’s huge eco-
system of third-party libraries. Clojure is a popular Lisp dialect; Scala is a

How Web Servers Work 33

functional language with static typing; Kotlin is a newer object-oriented
language designed to be backward compatible with Java, while making
scripting easier.

C#

C# was designed by Microsoft as part of the .NET initiative. C# (and other
.NET languages, such as VB.NET) use a virtual machine called the Common
Language Runtime (CLR). C# is less abstracted from the operating system
than Java, and you can happily intermingle C++ code with C#.

Microsoft has had a conversion late in life to open source evangelism,
and the reference implementation of C# is now, thankfully, open source. The
Mono project allows .NET applications to run on Linux and other operating
systems. Nevertheless, most companies using C# deploy to Windows servers
and the typical Microsoft stack. Windows has had a troubling history security-
wise—being, for instance, the most common target platform for viruses—so
anyone looking to adopt .NET as a platform needs to be aware of the risks.

Client-Side JavaScript

As a web developer, you have a choice of languages for writing web server
code. But when your code needs to be executed in the browser, you have
exactly one choice: JavaScript. As I mentioned previously, the popularity of
JavaScript as a server-side language can in part be credited to web develop-
ers’ familiarity with it from writing for the client side.

JavaScript in the browser has moved a long way beyond the simple form-
validation logic and animated widgets it was used for in the early days of the
web. A complex site such as Facebook uses JavaScript to redraw areas of the
page as the user interacts with it—for example, rendering a menu when the
user clicks an icon, or opening a dialog when they click a photo. Sites often
update the user interface when background events occur, too, by adding noti-
fication markers when others leave comments or write new posts.

Achieving this kind of dynamic user interface without refreshing
the whole page and interrupting the user experience requires client-side
JavaScript to manage a lot of state in memory. Several frameworks have
been developed to organize memory state and render pages efficiently.
They also allow for modular reuse of JavaScript code over various pages
on the site, a key design consideration when you have millions of lines of
JavaScript to manage.

One such JavaScript framework is Angular, originally released by
Google under an open source license. Angular borrows from server-side
paradigms and uses client-side templates to render web pages. The Angular
template engine—which executes in the browser as the page loads—parses
the template HTML supplied by the server, and processes any directives as
they appear. Because the template engine is simply JavaScript executing in
the browser, it can write directly to the DOM and short-circuit some of the
browser-rendering pipeline. As the memory state changes, Angular auto-
matically re-renders the DOM. This separation makes for cleaner code and
more-maintainable web applications.

34 Chapter 4

The open source React framework, which was released by the Facebook
development team, takes a slightly different approach from Angular. Instead
of interspersing code in HTML templates, React encourages the developer
to write HTML-like tags directly into JavaScript. React developers typically
create JavaScript XML (JSX) files that they run through a preprocessor and
compile into JavaScript before sending them to the browser.

Writing JavaScript code like return <h1>Hello, {format(user)}</h1> for the
first time can seem strange to developers used to separating JavaScript and
HTML files, but by making HTML a first-class element of the JavaScript
syntax, React enables useful features (for example, syntax highlighting and
code completion) that would otherwise be difficult to support.

Rich, client-side JavaScript frameworks like Angular and React are great
for building and maintaining complex sites. JavaScript code that manipulates
the DOM directly is partial to a new type of security vulnerability, however:
DOM-based cross-site scripting attacks, which we’ll look at in more detail in
Chapter 7.

Note that although JavaScript is the only language a browser typically
executes, that doesn’t mean you have to write all your client-side code in
JavaScript. Many developers use languages like CoffeeScript or TypeScript
that are transpiled into JavaScript during the build process before being sent
to the browser. These languages are subject to the same security vulner-
abilities as JavaScript at execution time, so in this book I’ll mostly limit our
discussions to plain old JavaScript.

Summary
Web servers serve two types of content in response to HTTP requests: static
resources, such as images, and dynamic resources, which execute custom code.

Static resources are resources that we can serve directly from a file-
system or a content delivery network to increase the responsiveness of the
site. Website owners usually author websites that consist wholly of static
resources in a content-management system, which allows nontechnical
administrators to edit them directly in the browser.

Dynamic resources, on the other hand, are resources that we often
define in the form of templates, HTML that’s interspersed with program-
matic instructions to be interpreted by the server. They’ll typically read
data from a database or a cache that informs how the page is rendered.
The most common form of database is a SQL database, which stores data in
tabular form, with strictly defined rules on the structure of the data. Larger
websites often use a NoSQL database, a newer variety of database that relaxes
some of the constraints of the traditional SQL database in order to achieve
greater scalability. We write dynamic resources in a web programming lan-
guage, of which there are many.

In the next chapter, you’ll look at the process of writing code itself. The
key to writing secure, bug-free code is a disciplined development process;
I’ll show you how you should write, test, build, and deploy your code.

Building and maintaining a website is an
iterative process, not an end goal. Rarely

does a web developer build a site and get
every feature right the first time. (Unless you’re

my friend Dave; stop making the rest of us look bad,
Dave.) In web development, the product evolves and
the codebase grows more complex, requiring devel-
opers to add features, fix bugs, and restructure code.
Redesigns happen as a matter of course.

As a web developer, you need to make and roll out changes to your
codebase in an orderly and disciplined fashion. It’s common for security
vulnerabilities and bugs to creep in over time because of shortcuts taken
in the face of deadlines. Most security vulnerabilities are introduced not
through a lack of development knowledge, but because of a lack of atten-
tion to detail.

5
H O W P R O G R A M M E R S W O R K

36 Chapter 5

This chapter focuses on how you should be writing secure code, by
adhering to the Software Development Life Cycle (SDLC), a fancy phrase for the
process a development team follows when designing new website features,
writing code, testing it, and pushing out changes. A chaotic and messy
SDLC makes it impossible to track the code you’re running and its vulner-
abilities, which inevitably leads to a buggy, insecure website. However, a
well-structured SDLC allows you to root out bugs and vulnerabilities early
in the process to protect your end-product site from attacks.

We’ll go through five phases of a good SDLC: design and analysis, writ-
ing code, pre-release testing, the release process, and post-release testing
and observation. We’ll also briefly talk about securing dependencies, the
third-party software that we use in our websites.

Phase 1: Design and Analysis
The SDLC doesn’t begin with writing code; it begins with thinking about
what code you should be writing. We call this first phase the design and
analysis phase: you analyze the features you need to add and design their
implementation. At the start of a project, this might consist of sketching
out brief design aims. But by the time your site is up and running, you
need to give changes a little more deliberation, because you don’t want
to break functionality for existing users.

The most important objective of this phase is identifying the require-
ments the code is trying to address. Once the development team completes
the code, everyone should be able to judge whether the new code changes
properly address those requirements. If you’re writing code for a client,
this phase means meeting with stakeholders and getting them to agree to
a list of goals. For in-house development at a company or organization, it
mostly means developing and documenting a shared vision of whatever
you’re building.

Issue-tracking software helps immensely with design and analysis, especially
when you’re diagnosing and fixing bugs in an existing site. (Issue trackers are
also known as bug trackers for this reason.) Issue trackers describe individual
development goals as issues—such as “build a customer checkout page” or
“fix the spelling mistake on the home page.” Issues are then assigned to indi-
vidual developers, who can rank their issue by priority, write code to fix them,
and mark them as complete. Developers can link specific sets of code changes
for the purpose of fixing a bug or adding a feature described in an issue. For
large teams, managers can schedule issues with project management software
for reporting purposes.

The amount of time you should spend working things out on paper
before writing code can vary. Teams that write software for firmware devices
or critical systems like nuclear reactors unsurprisingly spend a lot of time in
the design phase, because they rarely get a chance to fix code after deploying
it. Web developers tend to move more quickly.

How Programmers Work 37

Phase 2: Writing Code
Once you have completed design and analysis, you can move on to the
second phase of the SDLC: writing code. You can write code with a lot
of tools, but you should always keep any code that’s not a one-off script
in source control software (also known as version control), which allows you
to store a backup copy of your codebase, browse previous versions of the
codebase, track changes, and annotate the code changes you’re making.
You can share changes with the rest of your team by pushing code changes
to the source repository, usually via command line tools or plug-ins to other
development tools, before releasing them to the world. Pushing your code
changes to the centralized repository makes them available to other team
members for review. Releasing your changes means deploying them to your
production website—the website that your real users will see.

Using source control also allows you to browse the version of the code-
base currently running on the production site, which is key to diagnosing
vulnerabilities and investigating and resolving security issues found post-
release. When a development team identifies and resolves a security issue,
they should look over the code changes that introduced the vulnerability
and check whether the changes affected any other parts of the site.

Source control is the number one tool all development teams need to
use. (Even a development team of one!) Large companies usually run their
own source control servers, while smaller companies and open source devel-
opers typically use a third-party hosted service.

Distributed vs. Centralized Version Control
A variety of source control software exists, each with different syntax and
features. Of the tools currently available, the most popular is Git, a tool
originally created by Linus Torvalds, the founder of Linux, to help orga-
nize the development of the Linux kernel. Git is a distributed version control
system, which means that every copy of the code kept under Git is a fully
fledged repository. When a new developer pulls (downloads) a local copy of
the code from the team repository for the first time, they get not only the
latest version of the codebase, but also a complete history of changes to the
codebase.

Distributed source control tools track the changes the developer makes,
and transmit only those changes when the developer pushes the code. This
model of source control differs from older software, which implements a
centralized server from which developers download and to which they upload
whole files.

Git has become popular in no small part because of GitHub, a website
that makes it straightforward to set up an online Git repository and invite
team members. Users can view code stored in GitHub in the browser and
can easily document it in the Markdown language. GitHub also includes its
own issue tracker and tools to manage competing code changes.

38 Chapter 5

Branching and Merging Code
Source control software allows you to be precise about which code changes
get pushed out with each update to your website. Typically, code releases are
managed using branches. A branch is a logical copy of the codebase, stored
either within the source control server or a developer’s local repository.
Developers can make local changes to their own branch without affecting the
master codebase, and then merge the branch back into the master codebase
when they’ve completed whatever feature or bug fix they were working on.

N O T E 	 Larger development teams may have more-elaborate branching schemes. Source con-
trol software allows you to create branches off of branches off of branches ad infini-
tum, since branching is a cheap operation. A large team may have several developers
contribute to the same feature branch for complex code updates.

Before a release takes place, several developers might merge different
branches into the master codebase. If they’ve been making different edits
to the same files, the source control software automatically attempts to
merge those changes. If the differing changes can’t be merged automati-
cally, a merge conflict occurs, which requires the development team to manu-
ally complete the merge process, choosing line by line how competing code
changes should be applied. Resolving merge conflicts is the bane of a devel-
oper’s life: it’s extra work that needs doing after you think you’ve already
finished an issue. And usually it’s because Dave decided to change the for-
matting in several thousand Python files. (Thanks, Dave.)

Merge time is an excellent opportunity to do code reviews, in which one
or more team members look over the code changes and give feedback.
A great way to catch potential security vulnerabilities is to follow the four
eyes principle, which requires two separate people to see every code change
before a release. Often, a fresh set of eyes looking over the code can see
problems not anticipated by the original author. (Cyclopes are terrible cod-
ers, so it’s recommended that you double up on their reviews.)

Git-based tools can formalize code reviews by using pull requests. A
pull request is a developer’s request to merge code into the master codebase,
which allows tools like GitHub to ensure that another developer approves
changes before the merge occurs. (Source control software often makes
the approval of pull requests contingent on all tests passing in a continuous
integration system, which we’ll discuss in the following section.)

Phase 3: Pre-Release Testing
The third stage of the SDLC is testing. You should release code only after
you’ve tested it thoroughly to catch any potential bugs and ensure that it
works correctly. A good testing strategy is key to catching software defects,
especially security vulnerabilities, before users experience them or hackers
can exploit them. Anyone making code changes should manually test the
site’s functionality before merging or releasing code. This is a basic level of
diligence you should expect from all members of your team.

How Programmers Work 39

Catching software defects earlier in the development life cycle saves a
lot of time and effort, so you should complement your manual testing with
unit testing. Unit tests are small scripts within the codebase that make basic
assertions about how the code operates by executing various parts of the
codebase and testing the output. You should run unit tests as part of your
build process, and write unit tests for particularly sensitive or frequently
changing areas of your code.

Keep unit tests simple, so that they test isolated functions of the code.
Overly complex unit tests that test multiple pieces of functionality at once
are brittle, prone to breaking as code changes are made. A good unit test,
for instance, might assert that only authenticated users can view certain
areas of the website, or that passwords have to meet a minimum complexity
requirement. Good unit tests additionally act as a form of documentation,
illustrating how the code should operate if implemented correctly.

Coverage and Continuous Integration
When you run a unit test, it calls functions in your main codebase. When
you run all your unit tests, the percentage of your codebase that they exe-
cute is called your coverage. Although aiming for 100 percent test coverage is
laudable, it’s often impractical, so be careful in choosing which parts of the
codebase you write unit tests for. (Besides, complete test coverage doesn’t
guarantee correct code; just because every code path is executed doesn’t
mean all scenarios are covered.) Writing good unit tests is a matter of judg-
ment and should be part of a larger risk-assessment strategy. Here’s a good
rule of thumb: when you discover a bug, write a unit test asserting the cor-
rect behavior, and then fix the bug. This prevents the issue from reoccurring.

Once you have sufficient test coverage, you should set up a continuous
integration server. A continuous integration server connects to your source
control repository and, whenever code changes are made, checks out a
fresh version of the code and runs the build process while executing your
unit tests. If the build process fails—perhaps because the unit tests start
failing—your development team receives an alert. Continuous integration
ensures that you spot software defects early and address them promptly.

Test Environments
Once you’ve completed all code changes for a release, you should deploy
them to a test environment for final testing. A test environment (often called
a staging, pre-production, or quality assurance environment) should be a fully
operational copy of the website, run on dedicated servers. A test environ-
ment is essential for detecting software defects such as security vulner-
abilities before a release happens. Large development teams often employ
quality assurance (QA) staff dedicated to testing software in such environ-
ments. If you’re integrating different sets of code changes together, this is
sometimes called integration testing.

A good test environment should resemble the production environment
as closely as possible, to ensure that the tests are meaningful. You should
run your test environment on the same server and database technologies,

40 Chapter 5

differing only in the configuration and the version of the code running on
it. (You should still apply common sense. Your test environment shouldn’t
be able to send email to real users, for instance, so impose deliberate limita-
tions to your test environments as needed.)

This process is analogous to a cast and crew of a theatrical play under-
taking a dress rehearsal before performing in front of a live audience for
the first time. They put on the play in full costume before a small test audi-
ence. This allows them to work out the final kinks in their performance in
a low-stakes environment, where every detail resembles the real opening-
night performance as closely as possible.

Test environments are a key part of secure releases, but they also pose
security risks of their own if not properly managed. Test and production
environments need to be properly segregated at the network layer, meaning
that communication between the two environments is impossible. You can’t
give attackers the chance to compromise your website by allowing them to
hop across the network from an unsecured test environment into your pro-
duction environment.

Test environments usually have their own database, which requires
realistic-looking test data in order to allow thorough testing of the site’s
functionality. A common approach to generating good test data is copying
over data from production systems. If you do this, take special care to scrub
this kind of data-copy of sensitive information, including names, payment
details, and passwords. Numerous high-profile data leaks in recent years
have been caused by attackers stumbling across improperly scrubbed data
in a test environment.

Phase 4: The Release Process
Writing code for a website isn’t much use if you don’t ever push it out, so
let’s talk about the fourth phase of the SDLC: the release process. A release
process for websites involves taking code from source control, copying it
onto a web server, and (typically) restarting the web server process. How
you achieve this varies according to where you host your site and what
technology you use. Whatever your approach, your release process needs
to be reliable, reproducible, and revertible.

A reliable release process means that you can guarantee what code,
dependencies, resources, and configuration files get deployed during the
release. If your release process is unreliable, you may not be running the
version of the code you think you’re running, which is a serious security
risk. To ensure that your website deploys files reliably, release scripts typi-
cally use checksums—digital “fingerprints” that ensure that the files copied
onto the server are identical to those held in source control.

A reproducible release process is one that you can rerun with the same
results, in different environments, or with different versions of the code.
Reproducibility means less room for manual error during a release. If your
release process requires an administrator to perfectly perform 24 steps in

How Programmers Work 41

the correct order, you can expect them to make mistakes. Write scripts and
automate your release process as much as possible! A reproducible process
is also essential for setting up good test environments.

A revertible release process allows you to roll back releases. Sometimes
unexpected contingencies make you want to “undo” a recent release and
revert to a prior version of the code. This process should be as seamless as
possible. Partially rolled-back code is a disaster waiting to happen, because
you may be leaving an insecure configuration in place, or software depen-
dencies with known vulnerabilities. Whatever release process you choose,
you need to be able to reliably revert to a previous version of the codebase
with minimal fuss.

Options for Standardized Deployment During Releases
Hosting companies have invented Platform as a Service (PaaS) solutions that
make releasing code easy and reliable. If “in the cloud” refers to running
code on other people’s servers, using an “as a service” offering refers to run-
ning code on other people’s servers, with some helpful automation and an
administrative website. (Hosting companies have a track record of invent-
ing horrible marketing acronyms.)

Microsoft Azure, Amazon Web Services Elastic Beanstalk, Google App
Engine, and Heroku are all PaaS providers that allow developers to release
code with a single command line call. The platform takes care of almost
everything else required during the release process: setting up virtualized
servers, installing the operating system and virtual machines, running your
build process (more on this later), loading dependencies, deploying the
code to disk, and restarting the web server process. You can monitor and
roll back releases in a web console or from the command line, and the plat-
form performs various safety checks to ensure your code deploys cleanly.
Using a PaaS-based release process minimizes downtime for your site,
ensures a clean deployment of code, and produces a full audit trail.

PaaS solutions impose limitations. In exchange for this convenience
and reliability, they support only certain programming languages and oper-
ating systems. They allow a limited amount of server configuration, and
they don’t support complex network layouts. As a result, it can sometimes
be difficult to retrofit legacy applications for deployment on this kind of
platform.

Infrastructure as a Service and DevOps

If you’re not using PaaS, because your application is too complex, too old,
or the cost is too prohibitive, you’ll typically deploy your code to individual
servers. These might be self-hosted, hosted in a data center, or hosted on
virtualized servers in an Infrastructure as a Service (IaaS) solution such as
Amazon Elastic Compute Cloud (EC2). In such a scenario, you’re respon-
sible for authoring your own release process.

Historically, companies have employed dedicated systems administra-
tor staff to design and run the release process. However, the rise of DevOps

42 Chapter 5

(short for developer operations) tools has blurred these responsibilities and
allowed developers more control in the way their code gets deployed.
DevOps tools (which have a variety of evocative names like Puppet, Chef,
and Ansible) make it easy to describe standard deployment scenarios and
modularize release scripts, giving development teams the power to design
their own deployment strategies. This approach tends to be far more reli-
able than writing custom release scripts to download and copy files onto
servers. DevOps tools make it easy to follow best practices because most
deployment scenarios are covered by existing “recipes” or scripts.

Containerization

Another approach to standardizing deployment is using containerization.
Containerization technologies such as Docker allow you to create configu-
ration scripts known as images that describe which operating system, disk
layout, and third-party software a server should use, and which web appli-
cation you should deploy on top of the software stack. You deploy images
to a container that abstracts various functions of the underlying operating
system to allow consistent deployment; everything required specifically for
the release is described in the image, and the container is a completely
generic component.

You can deploy Docker images to real or virtualized servers in a repro-
ducible manner, making for a reliable release process. Developers testing
their code locally can use the same exact Docker image as the production
site, resulting in fewer surprises when the code is released for real.

Containerization is a relatively new technology, but it promises to
make deployment of complex applications more reliable and standard-
ized. A host of associated technologies (for example, Docker Swarm and
Kubernetes) allow complex, multiserver network configurations to be
described in machine-readable configuration files. This makes rebuild-
ing whole environments much more straightforward. A team could, for
instance, easily start up a whole new test environment with multiple web
servers and a database, since these individual services and the way they
communicate with each other would be described in a configuration file
that the hosting service can understand.

The Build Process
Most codebases have a build process, invoked from the command line or
development tools, that takes the static code and prepares it for deploy-
ment. Languages such as Java and C# compile source code into a deploy-
able binary format during the build process, while languages that use
package managers download and validate third-party code, also known
as dependencies, when they run the build process.

Build processes for websites often preprocess client-side assets ready
for deployment. Many developers use languages such as TypeScript and
CoffeeScript that they need to compile into JavaScript by the build process.
Whether JavaScript is coded by hand or generated, build processes usually

How Programmers Work 43

minify, or obfuscate, JavaScript files in order to generate a compressed, less
readable, but functionally equivalent version of each JavaScript file that will
load more quickly in the browser.

Styling information for websites is typically held in CSS files, as dis-
cussed in Chapter 3. Managing CSS files for large websites can be a chore
(because styling information is often duplicated in different places and
needs to be updated in sync). Web developers often use CSS pre-processors
such as Sass and SCSS—languages designed to make stylesheets more man-
ageable, which need to be preprocessed into CSS files at build time.

Each programming language has a preferred build tool that your
development team should be proficient with. You should run the build
process locally before checking any code into source control, so you can
be sure the process works before rerunning it during the release process.
Use a continuous integration server, as mentioned previously, to make
sure this happens.

Database Migration Scripts
Adding new features to a website often requires new database tables
or updates to existing tables. Databases store data that needs to persist
between releases, so you can’t simply wipe down and install a new data-
base with each release. You need to create and then run database migra-
tion scripts against the database as part of your release process to update
your database structures before deploying your code; and undo the scripts
if you roll back the code.

Some technologies (for example, Ruby on Rails) allow you to run migra-
tion scripts as part of the build process. If you can’t run them as part of the
build process, you should keep the scripts under source control, and then
run them with temporarily elevated permissions on the database during
the release window. In some companies, especially large and complex data-
bases often have dedicated database administrators (DBAs) who manage this
process and grumpily act as gatekeepers to their beloved datastores.

If staff members are able to change database structures outside a
release, that’s a security risk. We’ll discuss various ways to lock down per-
missions in Chapter 11.

Phase 5: Post-Release Testing and Observation
Once you’ve deployed your code, you should perform post-release testing to
ensure that you’ve deployed it correctly, and that your assumptions about
the way the code would execute in production are correct. Theoretically,
this post-release testing (often called smoke testing) can be pretty cursory if
you have a good test environment and a reliable release process. Nevertheless,
it’s a good idea to pay attention to your gut instincts and be risk-averse when
deciding how much testing to perform at each stage of the SDLC. There’s
a saying that goes, “Continue testing until fear turns into boredom.” It cap-
tures the appropriate sentiment.

44 Chapter 5

Penetration Testing
Security professionals and ethical hackers often perform penetration testing,
which tests for security vulnerabilities by externally probing a website.
Penetration testing can be useful for both pre-release and post-release
testing. Additionally, the development team can employ sophisticated
automated penetration testing tools that test websites for common security
vulnerabilities by analyzing various URLs and attempting to craft malicious
HTTP requests. Penetration testing can be expensive and time-consuming,
but it’s much, much cheaper than getting hacked, so strongly consider add-
ing it your testing procedures.

Monitoring, Logging, and Error Reporting
Once you’ve released your code, your production environment needs to
be observable at runtime. This helps administrators spot unusual and
potentially malicious behavior and diagnose issues as they occur. Post-
release observation should happen in the form of three activities: logging,
monitoring, and error reporting.

Logging, the practice of having code write to a log file as the software
application performs actions, helps administrators see what a web server
is doing at any given time. Your code should log every HTTP request (with
a timestamp, URL, and the HTTP response code), as well as significant
actions performed by users (for example, authentication and password-reset
requests) and the site itself (for example, sending email and calling APIs).

You should make logs available to administrators at runtime (either on
the command line or through a web console) and archive them for later
reading (in case postmortems are needed). Adding log statements to your
code helps diagnose problems that occur on your site, but be careful not to
write sensitive details like passwords and credit card information on your
logs in case an attacker ever manages to get access to them.

Monitoring is the practice of measuring response times and other met-
rics on your website at runtime. Monitoring your web server and database
helps administrators spot high-load scenarios or degraded performance by
firing alerts when network speeds slow or database queries take a long time.
You should pass HTTP and database response times into monitoring soft-
ware, which should, in turn, raise alerts when server and database response
times pass certain thresholds. Many cloud platforms have monitoring soft-
ware built in, so take the time to configure your error conditions and your
chosen alerting system appropriately.

You should use error reporting to capture and record unexpected errors
in the code. You can establish error conditions by either picking them out
of logs or capturing and recording them in the code itself. You can then
collate those error conditions in a datastore you make available to adminis-
trators. Many security intrusions exploit badly handled error conditions, so
be sure to pay attention to unexpected errors as they occur.

Third-party services such as Rollbar and Airbrake supply plug-ins that
allow you to collect errors with a few lines of code, so if you don’t have the

How Programmers Work 45

time or inclination to set up your own error-reporting system, consider
using these types of services. Alternatively, log-scraping tools such as Splunk
allow you to pick out errors from log files and make sense of them.

Dependency Management
One thing you need to consider alongside the regular SDLC is depen-
dency management. A curious fact about modern web development is that
you’ll likely write only a small minority of the code that runs your website.
Your site will typically depend on operating system code, a programming
language runtime and associated libraries, possibly a virtual machine,
and a web server process running third-party code libraries. All of these
third-party tools that you’ll have to rely on to support your website’s code
are known as dependencies. (In other words, the software that your software
depends on to run.)

Experts in their field write each of these dependencies, saving you the
burden of having to write your own memory management or low-level TCP
semantics. These experts also have a strong incentive to stay on top of secu-
rity vulnerabilities and issue patches as they arise, so you should take advan-
tage of the resources they provide!

Using other people’s code requires diligence on your part. A secure
SDLC should include a process for reviewing third-party libraries and
determining when patches need to be applied. This often needs to happen
outside the regular development cycle, since hackers won’t wait until your
next scheduled release date to begin trying to exploit a security vulner-
ability. Staying ahead of security advisories and deploying patches for other
people’s code is just as key as securing the code your team writes. We’ll look
at how to do this in Chapter 14.

Summary
In this chapter, you learned that a well-structured software development life
cycle allows you to avoid bugs and software vulnerabilities.

•	 You should document design goals by using issue-tracking software.

•	 You should keep code in source control to make older versions of the code
available for inspection, and to make it easy to organize code reviews.

•	 Before a release, you should test code in a dedicated and isolated test
environment that resembles your production environment and that
treats your data with utmost care.

•	 You should have a reliable, reproducible, and revertible release pro-
cess. If you have a scripted build process that generates assets ready for
deployment, you should run it regularly and with unit tests in a continu-
ous integration environment to highlight potential problems early in
the development life cycle.

46 Chapter 5

•	 After a release, you should use penetration testing to detect website vul-
nerabilities before a hacker can make use of them. You should also use
monitoring, logging, and error reporting to detect and diagnose prob-
lems with your running site.

•	 You should stay ahead of security advisories for any third-party code
you use, because you may need to deploy patches outside your regular
release cycle.

In the next chapter, you’ll (finally!) begin to look at specific software
vulnerabilities and how to protect against them. You’ll begin by looking at
one of the biggest threats websites face: malicious input designed to inject
code into your web server.

PART II
T H E T H R E A T S

Now that you have a solid grasp of how the
internet works, let’s focus on specific vul-

nerabilities and the methods hackers use to
exploit them. This chapter covers injection attacks,

which occur when the attacker injects external code
into an application in an effort to take control of the
application or read sensitive data.

Recall that the internet is an example of a client-server architecture, mean-
ing that a web server handles connections from many clients at once. Most
clients are web browsers, responsible for generating HTTP requests to the
web server as a user navigates the website. The web server returns HTTP
responses containing the HTML that makes up the content of the web-
site’s pages.

Because the web server controls the website’s content, server-side code
naturally expects specific types of user interactions to occur, and there-
fore expects the browser to generate specific types of HTTP requests. For
instance, the server expects to see a GET request to a new URL each time the

6
I N J E C T I O N A T T A C K S

50 Chapter 6

user clicks a link, or a POST request if they enter their login credentials and
click Submit.

However, it’s perfectly possible for a browser to generate unexpected
HTTP requests to a server. In addition, web servers happily accept HTTP
requests from any type of client, not just browsers. A programmer equipped
with an HTTP client library can write scripts that send requests to arbi-
trary URLs on the internet. The hacking tools we reviewed in Chapter 1
do exactly that.

Server-side code has no reliable way of telling whether a script or a
browser generated an HTTP request, because the contents of the HTTP
request are indistinguishable regardless of the client. The best a server can
do is to check the User-Agent header, which is supposed to describe the type
of agent that generated the request, but scripts and hacking tools typically
spoof the contents of this header, so it matches what a browser would send.

Knowing all of this, hackers attacking a website frequently pass mali-
cious code in an HTTP request so that it tricks the server into executing the
code. This is the basis of an injection attack on a website.

Injection attacks are astonishingly common on the internet and, if suc-
cessful, can be devastating in their impact. As a web developer, you’ll need
to know all the ways they can occur and how to defend against them. When
writing website code, it’s important to consider what could come through in
the HTTP requests being handled by the site, not just what you expect to
come through. In this chapter, you’ll look at four types of injection attacks:
SQL injection attacks, command injection attacks, remote code execution
attacks, and attacks that exploit file upload vulnerabilities.

SQL Injection
SQL injection attacks target websites that use an underlying SQL database
and construct data queries to the database in an insecure fashion. SQL injec-
tion attacks pose one of the greatest risks to websites because SQL databases
are so common. This was evident in 2008, when hackers stole 130 million
credit card numbers from Heartland Payment Systems, a payment proces-
sor that stores credit card details and handles payments for merchants. The
hackers used a SQL injection attack to access the web servers that handled
payment data, which was a disaster for a company that relies on the assur-
ance of their information’s security to do business.

Let’s begin by reviewing how SQL databases work, so that we can get to
the heart of how SQL injection works and how we can stop it.

What Is SQL?
Structured Query Language, or SQL, extracts data and data structures in rela-
tional databases. Relational databases store data in tables; each row in a
table is a data item (for example, a user, or a product being sold). SQL syn-
tax allows applications such as web servers to add rows to the database by
using INSERT statements, read rows by using SELECT statements, update rows
by using UPDATE statements, and remove rows by using DELETE statements.

Injection Attacks 51

Consider the SQL statements that a web server might run behind the
scenes when you sign up on a website, as shown in Listing 6-1.

u INSERT INTO users (email, encrypted_password)
VALUES ('billy@gmail.com', '10WMT9Y')

v SELECT * FROM users WHERE email = 'billy@gmail.com'
AND encrypted_password = '10WMT9Y'

w UPDATE USERS users encrypted_password ='3DMW10Z'
WHERE email='billy@gmail.com'

x DELETE FROM users WHERE email = 'billy@gmail.com'

Listing 6-1: Typical SQL statements that a web server might run when a user interacts with
a website

SQL databases typically store information about the website’s users in
a users table. When a user first signs up and chooses a username and pass-
word, the web server runs an INSERT statement on the database to create a
new row in the users table u. The next time a user logs in to the website, the
web server runs a SELECT statement to attempt to find the corresponding row
in the users table v. If the user changes their password, the web server runs
an UPDATE statement to update the corresponding row in the users table w.
Finally, if the user closes their account, the website might run a DELETE state-
ment to remove their row from the users table x.

For each interaction, the web server is responsible for taking parts of
the HTTP request (for example, the username and password entered into a
login form) and constructing a SQL statement to run against the database.
The actual execution of the statement happens through the database driver,
a dedicated code library used to communicate with the database.

Anatomy of a SQL Injection Attack
SQL injection attacks occur when the web server insecurely constructs
the SQL statement it passes to the database driver. This allows the attacker
to pass arguments via the HTTP request that cause the driver to perform
actions other than those the developer intends.

Let’s look at an insecurely constructed SQL statement that reads user
data from the database when a user attempts to log in to a website, as shown
in the Java code in Listing 6-2.

Connection connection = DriverManager.getConnection(DB_URL, DB_USER, DB_PASSWORD);
Statement statement = connection.createStatement();
String sql = "SELECT * FROM users WHERE email='" + email +
 "' AND encrypted_password='" + password + "'";
statement.executeQuery(sql);

Listing 6-2: An insecure method of reading user data from the database during a login attempt

The construction of this SQL statement isn’t secure! This snippet uses
the email and password parameters taken from the HTTP request, and inserts
them directly into the SQL statement. Because the parameters aren’t checked
for SQL control characters (such as ') that change the meaning of the SQL

52 Chapter 6

statement, a hacker can craft input that bypasses the website’s authentica-
tion system.

An example of this is shown in Listing 6-3. In this example, the attacker
passes the user email parameter as billy@gmail.com'--, which terminates the
SQL statement early and causes the password-checking logic to not execute:

statement.executeQuery(
 "SELECT * FROM users WHERE email='billy@gmail.com'u--' AND encrypted_password='Z$DSA92H0'v");

Listing 6-3: Using SQL injection to bypass authentication

The database driver executes only the SQL statement u, and ignores
everything that comes after it v. In this type of SQL injection attack, the
single quote character (') closes the email argument early, and the SQL
comment syntax (--) tricks the database driver into ignoring the end of the
statement that does password checking. This SQL statement allows the attacker
to log in as any user without having to know their password! All the attacker
has to do is add the ' and -- characters to the user’s email address in the
login form.

This is a relatively simple example of a SQL injection attack. A more
advanced attack might cause the database driver to run additional com-
mands on the database. Listing 6-4 shows a SQL injection attack that runs
a DROP command to remove the users table entirely, in order to corrupt
the database.

statement.executeQuery("SELECT * FROM users WHERE email='billy@gmail.com';u
DROP TABLE users;v--' AND encrypted_password='Z$DSA92H0'");

Listing 6-4: A SQL injection attack in progress

In this scenario, the attacker passes the email parameter as billy@gmail​
.com'; DROP TABLE users;--. The semicolon character (;) terminates the first
SQL statement u, after which the attacker inserts an additional, destructive
statement v. The database driver will run both statements, leaving your
database in a corrupt state!

If your website is vulnerable to SQL injection, an attacker can often run
arbitrary SQL statements against your database, allowing them to bypass
authentication; read, download, and delete data at will; or even inject mali-
cious JavaScript into the pages rendered to your users. To scan websites for
SQL injection vulnerabilities, hacking tools like Metasploit can be used to
crawl websites and test HTTP parameters with potential exploits. If your site
is vulnerable to SQL injection attacks, you can be sure that somebody will
eventually take advantage of it.

Mitigation 1: Use Parameterized Statements
To protect against SQL injection attacks, your code needs to construct SQL
strings using bind parameters. Bind parameters are placeholder characters
that the database driver will safely replace with some supplied inputs—like

mailto:billy@gmail.com'--

Injection Attacks 53

the email or password values shown in Listing 6-1. A SQL statement con-
taining bind parameters is called a parameterized statement.

SQL injection attacks use “control characters” that have special mean-
ing in SQL statements to “ jump out” of the context and change the whole
semantics of the SQL statement. When you use bind parameters, these con-
trol characters are prefixed with “escape characters” that tell the database
not to treat the following character as a control character. This escaping of
control characters defuses potential injection attacks.

A securely constructed SQL statement using bind parameters should
look like Listing 6-5.

Connection connection = DriverManager.getConnection(DB_URL, DB_USER, DB_PASSWORD);
Statement statement = connection.createStatement();

u String sql = "SELECT * FROM users WHERE email = ? and encrypted_password = ?";
v statement.executeQuery(sql, email, password);

Listing 6-5: Using bind parameters to protect against SQL injection

This code constructs the SQL query in parameterized form using ? as the
bind parameter u. The code then binds the input values for each parameter
to the statement v, asking the database driver to insert the parameter values
into the SQL statement while securely handling any control characters. If an
attacker attempts to hack this code using the method outlined in Listing 6-4
by passing in a username of billy@email.com'--, your securely constructed SQL
statement will defuse the attack, as shown in Listing 6-6.

statement.executeQuery(
 "SELECT * FROM users WHERE email = ? AND encrypted_password = ?",
 "billy@email.com'--,",
 "Z$DSA92H0");

Listing 6-6: The SQL injection attack is defused.

Because the database driver makes sure not to terminate the SQL state-
ment early, this SELECT statement will safely return no users, and the attack
should fail. Parameterized statements ensure that the database driver treats
all control characters (such as ', --, and ;) as an input to the SQL statement,
rather than as part of the SQL statement. If you’re not sure whether your
website is using parameterized statements, go check immediately! SQL
injection is probably the biggest risk your website will face.

Similar types of injection attacks may be possible whenever a web server
communicates with a separate backend by constructing a statement in the
backend’s native language. This includes NoSQL databases like MongoDB
and Apache Cassandra, distributed caches like Redis and Memcached, and
directories that implement the Lightweight Directory Access Protocol
(LDAP). Libraries that communicate with these platforms have their own
implementation of bind parameters, so be sure to understand how they
work and to use them in your code.

54 Chapter 6

Mitigation 2: Use Object-Relational Mapping
Many web server libraries and frameworks abstract away the explicit con-
struction of SQL statements in code and allow you to access data objects by
using object-relational mapping. Object-relational mapping (ORM) libraries
map rows in database tables to code objects in memory, meaning the devel-
oper generally doesn’t have to write their own SQL statements in order to
read from and update the database. This architecture protects against SQL
injection attacks under most circumstances, but can still be vulnerable if
custom SQL statements are used—so it’s important to understand how your
ORM works behind the scenes.

The ORM that people are probably most familiar with is the Ruby on
Rails ActiveRecord framework. Listing 6-7 shows a simple line of Rails code
that finds a user in a secure fashion.

User.find_by(email: "billy@gmail.com")

Listing 6-7: Ruby on Rails code that looks up a user by email in a way that is protected
against injection attacks

Because ORMs use bind parameters under the hood, they protect
against injection attacks in most cases. However, most ORMs also have
backdoors that allow the developer to write raw SQL if needed. If you use
these types of functions, you need to be careful about how you construct
the SQL statements. For instance, Listing 6-8 shows Rails code that is vul-
nerable to injection.

def find_user(email, password)
 User.where("email = '" + email + "' and encrypted_password = '" + password + "'")
end

Listing 6-8: Ruby on Rails code that is vulnerable to injection

Because this code passes part of the SQL statements as a raw string, an
attacker can pass in special characters to manipulate the SQL statement
that Rails generates. If the attacker can set the password variable to ' OR 1=1,
they can run a SQL statement that disables the password check, as shown in
Listing 6-9.

SELECT * FROM users WHERE email='billy@gmail.com' AND encrypted_password ='' OR 1=1

Listing 6-9: The 1=1 statement, which is trivially true, disables the password check.

The final clause of this SQL statement disables the password check,
allowing the attacker to log in as that user. You can securely call the
where function in Rails by using bind parameters, as shown in Listing 6-10.

def find_user(email, encrypted_password)
 User.where(["email = ? and encrypted_password = ?", email, encrypted_password])
end

Listing 6-10: Secure use of the where function

Injection Attacks 55

In this scenario, the ActiveRecord framework will securely handle any
SQL control characters an attacker adds to the email or password parameter.

Bonus Mitigation: Use Defense in Depth
As a rule of thumb, you should always secure your website with redundan-
cies. It’s not enough to check your code line by line for vulnerabilities. You
need to consider and enforce security at every level of the stack, allowing
failures at one level to be mitigated by other strategies. This is an approach
called defense in depth.

Consider how you secure your home. The most important defense is
installing locks on all doors and windows, but it also helps to have a burglar
alarm, security cameras, household insurance, and maybe a large bad-
tempered dog, in order to cover all eventualities.

When it comes to preventing SQL injection, defense in depth means
using bind parameters, but also taking additional steps to minimize the harm
in case an attacker still finds a way to successfully execute injection attacks.
Let’s look at a couple of other ways to mitigate the risk of injection attacks.

Principle of Least Privilege

An additional way to mitigate injection attacks is to follow the principle of least
privilege, which demands that every process and application run only with the
permissions it needs to perform its permitted functions, and no more. This
means that if an attacker injects code into your web server and compromises
a particular software component, the damage they can do is limited to the
actions permissible by that particular software component.

If your web server talks to a database, make sure the account it uses to
log into the database has limited permissions on the data. Most websites
need to run only SQL statements that fall under the subset of SQL called
the data manipulation language (DML), which includes the SELECT, INSERT,
UPDATE, and DELETE statements we discussed earlier.

A subset of the SQL language called data definition language (DDL) uses
CREATE, DROP, and MODIFY statements to create, drop, and modify the table
structures in the database itself. Web servers generally don’t require per-
missions to execute DDL statements, so don’t grant them the DDL set of
permissions at runtime! Narrowing the web server privileges to the mini-
mal DML set reduces the harm an attacker can do if they discover a code
vulnerability.

Blind and Nonblind SQL Injection

Hackers distinguish between blind and nonblind SQL injection attacks. If
your website’s error message leaks sensitive information to the client, like
the message Unique constraint violated: this email address already exists in
users table, this is a nonblind SQL attack. In this scenario, the attacker gets
immediate feedback on their attempts to compromise your system.

56 Chapter 6

If you keep your error messages to the client more generic, like the
messages Could not find this username and password or An unexpected error
occurred, this is a blind SQL attack. This scenario means the attacker is effec-
tively operating in the dark and has less to work with. Websites vulnerable
to nonblind injection attacks are much easier to compromise, so avoid leak-
ing information in error messages.

Command Injection
Another type of injection attack is command injection, which attackers can
use to exploit a website that makes insecure command line calls to the
underlying operating system. If your web application makes command line
calls, make sure to construct your command strings securely. Otherwise,
attackers can craft HTTP requests that execute arbitrary operating system
commands, and seize control of your application.

For many programming languages, constructing command strings to
invoke operating systems is actually pretty unusual. Java, for example, runs in
a virtual machine, so although you could call out to the operating system by
using the java.lang.Runtime class, Java applications are generally designed to
be portable between different operating systems, so relying on the availability
of specific operating systems functions would go against its philosophy.

Command line calls are more common for interpreted languages. PHP
is designed to follow the Unix philosophy—programs should do one thing
and communicate with each other via text streams—so it’s common for
PHP applications to call other programs via the command line. Similarly,
Python and Ruby are popular for scripting tasks, so they make it easy to
execute commands at the operating system level.

Anatomy of a Command Injection Attack
If your website makes use of command line calls, make sure an attacker
can’t trick the web server into injecting extra commands into the execution
call. Imagine, for instance, that you have a simple website that does nslookup
to resolve domains and IP addresses. The PHP code takes the domain or IP
address from the HTTP request and constructs an operating system call as
shown in Listing 6-11.

<?php
 if (isset($_GET['domain'])) {
 echo '<pre>';
 $domain = $_GET['domain']u;
 $lookup = system("nslookup {$domainv}");
 echo($lookup);
 echo '</pre>';
 }
?>

Listing 6-11: PHP code receiving an HTTP request and constructing an operating system call

Injection Attacks 57

The domain parameter is extracted from the HTTP request at u. Because
the code does not escape the domain argument when constructing the com-
mand string v, an attacker can craft a malicious URL and tag an extra
command on the end, as shown in Figure 6-1.

Figure 6-1: Using the URL to inject a malicious command

Here the attacker sends a domain parameter with the value google.com
&& echo "HAXXED", and the browser URL-encodes the whitespace and non-
alphanumeric characters. The && syntax in Unix concatenates separate
commands. Because our PHP code doesn’t strip such control characters,
the attacker carefully constructs the HTTP request to append an extra
command. Two separate commands will get executed in this scenario:
the expected nslookup command that looks up google.com, followed by the
injected command echo "HAXXED".

In this case, the injected command is a harmless echo command, which
simply prints out "HAXXED" in the HTTP response. However, an attacker can
use this vulnerability to inject and execute any command they choose on
your server. With a bit of effort, they can explore the filesystem, read sensi-
tive information, and compromise the entire application. Command line
access on a web server gives the attacker complete freedom to take control
of the system unless you take deliberate steps to lessen the impact.

Mitigation: Escape Control Characters
As with SQL injection, you can defend against command injection by
properly escaping inputs from the HTTP request. This means replacing
sensitive control characters (like the & character in our example) with a

58 Chapter 6

safe alternative. How you do this depends on the operating system and
programing language you’re using. To make the PHP code in Listing 6-11
more secure, we simply need to use a call to escapeshellarg, as shown in
Listing 6-12.

<?php
 if (isset($_GET['domain'])) {
 echo '<pre>';
 $domain = escapeshellargu($_GET['domain']);
 $lookup = system("nslookup {$domain}");
 echo($lookup);
 echo '</pre>';
 }
?>

Listing 6-12: PHP code escaping inputs from the HTTP request

The call to escapeshellarg u ensures that attackers can’t inject extra
commands via the domain parameter.

Python and Ruby can prevent potential command injection attacks too.
In Python, the call() function should be invoked with an array, rather

than a string, to prevent attackers from tagging extra commands onto the
end, as shown in Listing 6-13.

 from subprocess import call
 call(["nslookup", domain])

Listing 6-13: The call function in Python’s subprocess module

In Ruby, the system() function makes a command line call. Supply it
with an array of arguments, rather than a string, to ensure that attackers
can’t sneak in extra commands, as shown in Listing 6-14.

 system("nslookup", domain)

Listing 6-14: The system() function in Ruby

As with SQL injection, following the principle of least privilege also
helps limit the impact of successful command injection attacks. Your
web server process should run with only the permissions it requires. For
instance, you should limit the directories the web server process can read
from and write to. On Linux, you can use the chroot command to prevent
the process from exploring outside a designated root directory. You should
try to limit the network access your web server has, too, by configuring fire-
walls and access control lists on the network. These steps will make it much
harder for a hacker to exploit a command injection vulnerability, because
even if they can execute commands, they can’t do anything besides read
files in the web server’s running directory.

Injection Attacks 59

Remote Code Execution
So far, you’ve seen how vulnerabilities can creep in when web code con-
structs a call to databases, as with SQL injection, or to the operating sys-
tem it’s running on, as with command injection. In other circumstances,
attackers can inject malicious code to be executed in the language of the
web server itself, a tactic called remote code execution. Remote code execution
attacks on websites are rarer than the injection attacks we discussed earlier,
but every bit as dangerous.

Anatomy of a Remote Code Execution Attack
An attacker can achieve remote code execution by discovering a vulnerability
in a particular type of web server, and then creating exploit scripts to target
websites running on that web server technology. The exploit script incorpo-
rates malicious code in the body of the HTTP request, encoded in such a way
that the server will read and execute that code when the request is handled.
The techniques used to perform remote execution attacks vary significantly.
Security researchers will analyze codebases for common web servers, looking
for vulnerabilities that permit malicious code to be injected.

In early 2013, researchers discovered a vulnerability in Ruby on Rails
that permitted attackers to inject their own Ruby code into the server pro-
cess. Because the Rails framework automatically parses requests according
to their Content-Type header, security researchers noticed that if they created
an XML request with an embedded YAML object (a markup language com-
monly used in the Rails community for storing configuration data), they
could trick the parsing process into executing arbitrary code.

Mitigation: Disable Code Execution During Deserialization
Remote code execution vulnerabilities usually occur when web server soft-
ware uses insecure serialization. Serialization is the process of converting
an in-memory data structure into a stream of binary data, usually for the
purpose of passing the data structure across a network. Deserialization refers
to the reverse process that occurs at the other end, when the binary data is
converted back into a data structure.

Serialization libraries exist in every major programming language and
are widely used. Some serialization libraries, such as the YAML parser used
by Rails, allow data structures to execute code as they reinitialize themselves
in memory. This is a useful feature if you trust the source of the serialized
data, but can be very dangerous if you don’t, because it can permit arbitrary
code execution.

If a web server uses deserialization to handle data coming in from
HTTP requests, it needs to defuse any serialization libraries it uses by dis-
abling any code-execution capabilities; otherwise, an attacker may be able
to find a way to inject code directly into the web server process. We can typi-
cally disable code execution via a relevant configuration setting that will
allow your web server software to deserialize data without executing code.

60 Chapter 6

As a developer who uses a web server to build sites, rather than one who
writes the web server code itself, protecting against remote code execution
in your web stack usually amounts to staying aware of security advisories.
You’re unlikely to be writing your own serialization libraries, so be aware of
where your codebase uses third-party serialization libraries. Make sure to
turn off active code execution features in your own code, and keep an eye
out for vulnerability announcements issued by your web server vendor.

File Upload Vulnerabilities
The final type of injection attack we’ll look at in this chapter takes advan-
tage of vulnerabilities in file upload functions. Websites use file upload func-
tions for a variety of purposes: letting users add images to their profile or
posts, adding attachments to messages, submitting paperwork, sharing doc-
uments with other users, and so on. Browsers make it easy to upload files via
built-in file-upload widgets and JavaScript APIs that allow you to drag files
onto a web page and send them asynchronously to the server.

However, browsers aren’t exactly careful about checking the contents
of a file. Attackers can easily abuse file upload functions by injecting mali-
cious code into an uploaded file. Web servers typically treat uploaded files
like large blobs of binary data, so it’s pretty easy for an attacker to upload a
malicious payload without the web server detecting it. Even if your site has
JavaScript code that checks a file’s content before uploading it, an attacker
can write scripts to post file data to the server-side endpoint directly, cir-
cumventing any security measures you put in place on the client side.

Let’s see how attackers typically exploit file upload functions so that
we identify the various security weaknesses that we need to plug.

Anatomy of a File Upload Attack
As an example of a file upload vulnerability, let’s look at how an attacker
could potentially abuse the profile image upload function of your site. The
attacker first writes a small web shell, a simple executable script that will take
an argument from an HTTP request, execute it on the command line, and
output the result. Web shells are a common tool used by hackers attempting
to compromise a web server. Listing 6-15 shows an example of a web shell
written in PHP.

<?php
 if(isset($_REQUEST['cmd'])) {
 $cmd = ($_REQUEST['cmd']);
 system($cmd);
 } else {
 echo "What is your bidding?";
 }
?>

Listing 6-15: A web shell written in the PHP language

Injection Attacks 61

The attacker saves this script as hack.php on their computer and uploads it
as their profile “image” on your site. PHP files are typically treated by operat-
ing systems as executable files, which is key to making this attack work. Clearly
a file ending with .php isn’t a valid image file, but the attacker can fairly easily
disable any JavaScript file-type checking done during the upload process.

Once the attacker has uploaded their “image” file, their website profile
page will show a missing image icon, because their profile image is corrupted
and not actually an image. However, at this point they have achieved their real
aim: smuggling the web shell file onto your server, which means their malicious
code is now deployed to your site, waiting to be executed in some fashion.

Because the web shell is available on a public URL, the attacker has
potentially created a backdoor for executing the malicious code. If your
server’s operating system has a PHP runtime installed, and the file was
written to disk with executable privileges during the upload process, the
attacker can pass commands to run the web shell simply by invoking the
URL that corresponds to their profile image.

To perform a command injection attack, the hacker can pass a cmd argu-
ment to the web shell to execute arbitrary operating system commands on
your server, as shown in Figure 6-2.

Figure 6-2: If your file upload function is vulnerable, a hacker could
use a web shell to access your database credentials.

In this scenario, the attacker can explore your filesystem. The attacker
has taken advantage of your file upload function to gain the same access to
your operating system as they would with a command injection attack.

Mitigations
You can use several mitigations to protect yourself against vulnerabilities in
file upload code. The most important mitigations ensure that any uploaded
files can’t be executed as code. Following the principle of defense in depth,
you should also analyze uploaded files and reject any that appear to be cor-
rupt or malicious.

62 Chapter 6

Mitigation 1: Host Files on a Secure System

The first, most important approach to securing file upload functions is
to ensure that your web server treats uploaded files as inert rather than
executable objects. You can do this by hosting your uploaded files in a con-
tent delivery network (CDN) such as Cloudflare or Akamai, as described in
Chapter 4, which offloads the security burden to a third party who stores
your files securely.

CDNs have other nonsecurity-related benefits too. CDNs serve files
extremely fast to the browser, and can put them through processing pipe-
lines as you upload them. Many CDNs offer sophisticated JavaScript upload
widgets that you can add with a few lines of code, and that provide bonus
features like image cropping.

If for some reason a CDN isn’t an option, you can get many of the same
benefits by storing uploaded files in cloud-based storage (for example, Amazon
Simple Storage Service, or S3) or a dedicated content management system.
Both approaches provide secure storage that defuses all web shells as they’re
uploaded. (Although, if you’re hosting your own content management sys-
tem, you’ll have to make sure to configure it correctly.)

Mitigation 2: Ensure Uploaded Files Cannot Be Executed

If using a CDN or content management system isn’t an option, you need
to take the same steps to secure your files that a CDN or content manage-
ment does behind the scenes. This means ensuring that all files are written
to disk without executable permissions, separating uploaded files into a
particular directory or partition (so they aren’t intermingled with code),
and hardening your servers so that only the minimally required software is
installed. (Uninstall the PHP engine if you aren’t using it!) It’s a good idea
to rename files as you upload them too, so you don’t write files with danger-
ous file extensions to disk.

The ways to achieve these ends vary depending on your hosting tech-
nology, operating system, and the programming language you use. If you’re
running a Python web server on Linux, for instance, you can set file permis-
sions when creating a file by using the os module, as shown in Listing 6-16.

import os
file_descriptor = os.open("/path/to/file", os.O_WRONLY | os.O_CREAT, 0o600)
with os.fdopen(open(file_descriptor, "wb")) as file_handle:
 file_handle.write(...)

Listing 6-16: Writing a file with read-write (but not execute) permissions in Python on Linux

Removing unneeded software from your operating system is always a
good idea, because it gives a hacker fewer tools to play with. The Center
for Internet Security (CIS) provides prehardened operating system images
that make a good starting point. They’re available as Docker images or as
Amazon Machine Images (AMIs) in the Amazon Web Services Marketplace.

Injection Attacks 63

Mitigation 3: Validate the Content of Uploaded Files

If you’re uploading files with a known file type, consider adding some file-
type checking in your code. Make sure the Content-Type header in the HTTP
request of the upload matches the expected file type, but be aware that an
attacker can easily spoof the header.

It’s possible to validate the file type after the file has been uploaded,
particularly with image files, so it’s a good idea to implement this feature
in your server-side code, as shown in Listing 6-17. Your mileage should vary,
though; clever hackers in the past have infiltrated various systems by design-
ing payloads that are valid for more than one type of file format.

>>> import imghdr
>>> imghdr.what('/tmp/what_is_this.dat')
'gif'

Listing 6-17: Reading the file headers to validate a file format in Python

Mitigation 4: Run Antivirus Software

Finally, if you’re running on a server platform that’s prone to viruses (hello,
Microsoft Windows!) make sure you’re running up-to-date antivirus soft-
ware. File upload functions are an open door to virus payloads.

Summary
In this chapter, you learned about various injection attacks, whereby an
attacker crafts malicious HTTP requests to take control of backend systems.

SQL injection attacks take advantage of web code that doesn’t securely
construct SQL strings when communicating with a SQL database. You can
mitigate SQL injection by using bind parameters when communicating with
the database driver.

Command injection attacks take advantage of code that makes insecure
calls to operating system functions. You can similarly defuse command
injection through correct use of binding.

Remote code execution vulnerabilities allow hackers to run exploits
inside the web server process itself, and typically stem from insecure serial-
ization libraries. Make sure to stay on top of any security advisories for the
serialization libraries you use, and for your web server software.

File upload functions often enable command injection attacks if your
file upload functionality writes uploaded files to disk with executable privi-
leges. Make sure to write uploads to a third-party system or to disk with
appropriate permissions, and do whatever you can to validate the file type
as you upload them.

64 Chapter 6

You can mitigate the risks around all types of injection attacks by fol-
lowing the principle of least privilege: processes and software components
should run with only the permissions they require to perform their assigned
tasks, and no more. This approach reduces the harm an attack can do if they
inject harmful code. Examples of following the principle of least privilege
include limiting file and network access for your web server process, and con-
necting to your database under an account with limited permissions.

In the next chapter, you’ll look at how hackers can use JavaScript vul-
nerabilities to attack your website.

In the previous chapter, you saw how
attackers can inject code into web servers

to compromise websites. If your web server
is secure, a hacker’s next best injection target

is the web browser. Browsers obediently execute any
JavaScript code that appears in a web page, so if an
attacker can find a way to inject malicious JavaScript into a user’s browser
while the user views your website, that user is in for a bad time. We call this
type of code injection a cross-site scripting (XSS) attack.

JavaScript can read or modify any part of a web page, so there’s a lot an
attacker can do with cross-site scripting vulnerabilities. They can steal login
credentials or other sensitive information like credit card numbers as the
user types them in. If JavaScript can read the HTTP session information,
they can hijack a user’s session entirely, allowing them to log in as that user
remotely. (You’ll learn more about session hijacking in Chapter 10).

Cross-site scripting is a remarkably common type of attack, and the dan-
gers it poses are clear. This chapter presents the three most common types of
cross-site scripting attacks and explains how to protect against them.

7
C R O S S - S I T E S C R I P T I N G A T T A C K S

66 Chapter 7

Stored Cross-Site Scripting Attacks
Websites routinely generate and render HTML using information stored in
a database. Retail websites will store product information in a database, and
social media sites will store user conversations. Websites will take content
from the database according to the URL the user has navigated to, and
interpolate it into the page to produce the finished HTML.

Any page content coming from the database is a potential attack vec-
tor for hackers. Attackers will attempt to inject JavaScript code into the
database so that the web server will write out the JavaScript when it ren-
ders HTML. We call this type of attack a stored cross-site scripting attack: the
JavaScript is written to the database, but executed in the browser when an
unsuspecting victim views a particular page on the site.

Malicious JavaScript can be planted in a database by using the SQL
injection method described in Chapter 6, but attackers will more com-
monly insert malicious code through legitimate avenues. For instance, if a
website allows users to post comments, the site will store the comment text
in a database and display it back to other users who view the same com-
ment thread. In this scenario, an easy way for a hacker to perform a cross-
site scripting attack is to write a comment containing a <script> tag to the
database. If the website fails to construct HTML securely, the <script> tag
will get written out whenever the page is rendered to other users, and the
JavaScript will be executed in the victim’s browser.

Let’s look at a concrete example. Imagine you run a popular website
for people who like to bake, https://breddit.com. Your site encourages users
to participate in discussion threads about bread-related topics. While using
the online forum for discussion, the users themselves contribute most of the
site’s content. When a user adds a post, your website records it to the data-
base and shows it to other users participating in the same thread. This is a
perfect opportunity for an attacker to inject some JavaScript through a com-
ment, as shown in Figure 7-1.

Figure 7-1: An attacker injects JavaScript through a comment.

Cross-Site Scripting Attacks 67

If your website doesn’t escape the injected script when it renders the
HTML (as we’ll discuss in the following section), the next user to view the
thread will have the attacker’s <script> tag written out to their browser and
executed, as shown in Figure 7-2.

Figure 7-2: An attacker’s <script> tag is written out to the victim’s
browser and executed.

A rogue alert() dialog is more of an annoyance than a genuine threat,
but attackers typically start with this approach to check whether cross-site
scripting attacks are possible. If an attacker can call the alert() function,
they can escalate to more dangerous attacks, like stealing other users’ ses-
sions, or redirecting victims to harmful sites. The baking community would
never feel safe online again!

Comment threads aren’t the only place that can exhibit this type of vul-
nerability. Any user-controlled content is a potential avenue of attack that
you need to secure. Attackers have performed cross-site scripting attacks
by injecting malicious script tags into usernames, profile pages, and online
reviews, for example. Let’s look at a couple of straightforward protections
you should implement.

Mitigation 1: Escape HTML Characters
To prevent stored cross-site scripting attacks, you need to escape all dynamic
content coming from a datastore so that the browser knows to treat it as the
content of HTML tags, as opposed to raw HTML. Escaping content in the
browser means replacing control characters in the HTML with their corre-
sponding entity encoding, as illustrated in Table 7-1.

68 Chapter 7

Table 7-1: Entity Encodings of HTML Control Characters

Character Entity encoding

" "

& &

' '

< <

> >

Any character that has special meaning in HTML, like the < and >
characters that denote the start and end of tags, has a corresponding
safe entity encoding. Browsers that encounter entity encodings recognize
them as escaped characters, and render them visually as the appropriate
character, but, crucially, won’t treat them as HTML tags. Listing 7-1 shows
how a secure website will write out the comment entered by the attack in
Figure 7-1. The bolded text represents characters that could be used to
construct HTML tags.

<div class="comment">
 <script>alert("HAXXED")</script>
</div>

Listing 7-1: This attempted XSS attack has been defused.

The conversion of escaped characters to unescaped characters hap-
pens after the browser has constructed the DOM for the page, so the
browser will not execute the <script> tag. Escaping HTML control charac-
ters in this fashion closes the door on most cross-site scripting attacks.

Since cross-site scripting is such a common vulnerability, modern web
frameworks tend to escape dynamic content by default. Templates, in particular,
typically escape interpolated values without being asked. The syntax for inter-
polating a variable in an Embedded Ruby (ERB) template looks like Listing 7-2.

<div class="comment">
 <%= comment %>
</div>

Listing 7-2: Implicit escaping of dynamic content in an Embedded Ruby template

The ERB templating engine will automatically escape sensitive charac-
ters via the <%= comment %> syntax when dynamic content is evaluated.

In order to write raw, unescaped HTML (and hence be vulnerable to
XSS attacks), ERB templates require an explicit call to the raw function,
as shown in Listing 7-3.

<div class="comment">
 <%= raw comment %>
</div>

Listing 7-3: The syntax to allow raw injection of HTML in Embedded Ruby templates

Cross-Site Scripting Attacks 69

All secure templating languages follow the same design principle: the
templating engine implicitly escapes dynamic content unless the developer
explicitly chooses to construct raw HTML. Make sure you understand
how escaping works in your templates, and check that dynamic content
is securely escaped during code reviews! In particular, if you have helper
functions or methods that construct raw HTML for injection into tem-
plates, check to see that an attacker can’t abuse their inputs to commit
cross-site scripting attacks.

Mitigation 2: Implement a Content Security Policy
Modern browsers allow websites to set a content security policy, which you
can use to lock down JavaScript execution on your site. Cross-site scripting
attacks rely on an attacker being able to run malicious scripts on a victim’s
web page, usually by injecting <script> tags somewhere within the <html> tag
of a page, also known as inline JavaScript. The example hack illustrated in
Figure 7-2 uses inline JavaScript, written out as the text of a comment.

By setting a content security policy in your HTTP response headers,
you can tell the browser to never execute inline JavaScript. The browser
will execute JavaScript on your page only if it is imported via a src attribute
in the <script> tag. A typical content security policy header will look like
Listing 7-4. This policy specifies that scripts can be imported from the same
domain ('self'), or the apis.google​.com domain, but inline JavaScript should
not be executed.

Content-Security-Policy: script-src 'self' https://apis.google.com

Listing 7-4: A content security policy set in an HTTP response header

You can also set your site’s content security policy in a <meta> tag in the
<head> element of the HTML of your web pages, as shown in Listing 7-5.

<meta http-equiv="Content-Security-Policy" content="script-src 'self' https://apis.google.com">

Listing 7-5: The equivalent content security policy set in a <head> element of the HTML document

By whitelisting the domains from which your browser loads scripts, you
implicitly state that inline JavaScript isn’t allowed. In this example content
security policy, the browser will load JavaScript only from the domains apis​
.google.com and whatever the domain of the site is—for example, breddit.com.
To permit inline JavaScript, the policy would have to include the keyword
unsafe-inline.

Preventing the execution of inline JavaScript is a great security mea-
sure, but it means you’ll have to move any inline JavaScript your site cur-
rently implements into separate imports. In other words, <script> tags on a
page have to reference JavaScript in a separate file via a src attribute, rather
than writing the JavaScript between the start and end tags.

This separation of JavaScript into external files is the preferred approach
in web development, since it makes for a more organized codebase. Inline

70 Chapter 7

script tags are considered bad practice in modern web development, so
banning inline JavaScript actually forces your development team into good
habits. Nevertheless, inline script tags are common in older, legacy sites.
Indeed, it may take some time to refactor your templates to remove all inline
JavaScript tags.

To help with this refactoring, consider using content security policy vio-
lation reports. If you add a report-uri directive to your content security policy
header, as shown in Listing 7-6, the browser will notify you of any policy vio-
lations, rather than preventing JavaScript from executing.

Content-Security-Policy-Report-Only: script-src 'self'; report-uri https://example.com/csr-reports

Listing 7-6: A content security policy that instructs the browser to report any content security violations to
https://example.com/csr-reports

If you collect all these violation reports in a log file, your development
team should be able to see all the pages they need to rewrite in order to
meet the restrictions imposed by the proposed content security policy.

You should set a content security policy in addition to escaping HTML,
since it’ll protect your users effectively! It’s difficult for an attacker to find
an instance of unescaped content and to smuggle a malicious script onto
your whitelisted domains. We call using multiple layers of defense for the
same vulnerability defense in depth, as you learned in Chapter 6; this will
be a theme throughout this book.

Reflected Cross-Site Scripting Attacks
Rogue JavaScript in the database isn’t the only vector for cross-site scripting
attacks. If your site takes part of an HTTP request and displays it back in a
rendered web page, your rendering code needs to protect against attacks
that inject malicious JavaScript via the HTTP request. We call this type of
attack a reflected cross-site scripting attack.

Virtually all websites display some part of HTTP requests in rendered
HTML. Consider the Google search page: if you perform a search for
“cats,” Google passes the search term as part of the HTTP in the URL:
https://www.google.com/search?q=cats. The search term cats displays in the
search box above the search results.

Now, if Google were a less secure company, it’d be possible to replace the
cats parameter in the URL with malicious JavaScript, and have that JavaScript
code execute whenever anybody opens that URL in their browser. An attacker
could email the URL as a link to a victim, or trick a user into visiting the URL
by adding it to a comment. This is the essence of a reflected cross-site scripting
attack: an attacker sends the malicious code in the HTML request, and then
the server reflects it back.

Thankfully, Google employs more than a few security experts, so
if you attempt to insert <script> tags into its search results, the server
won’t execute the JavaScript. In the past, hackers have discovered reflected

Cross-Site Scripting Attacks 71

cross-site scripting vulnerabilities in the Google Apps admin interface
found at https://admin.google.com, so it goes to show that even big compa-
nies get caught out. If you want any chance of keeping your users safe, you
need to protect against this attack vector.

Mitigation: Escape Dynamic Content from HTTP Requests
You mitigate reflected cross-site scripting vulnerabilities the same way you
mitigate stored cross-site scripting vulnerabilities: by escaping control char-
acters in dynamic content that the website interpolates into HTML pages.
Whether dynamic content comes from the backend database or the HTTP
request, you need to escape it in the same way.

Thankfully, template languages typically apply escaping to all interpo-
lated variables, whether the templates load them from the database or pull
them from the HTTP request. However, your development team still needs to
be aware of the risk of injection via HTTP requests when auditing code. Code
reviews often overlook reflected cross-site scripting vulnerabilities because
developers are too busy looking for stored cross-site scripting vulnerabilities.

Common target areas for reflected cross-site scripting attacks are
search pages and error pages, since they usually display parts of the query
string back to the user. Make sure your team understands the risks and
knows how to spot the vulnerability when reviewing code changes. Stored
cross-site scripting attacks tend to be more harmful, because a single mali-
cious piece of JavaScript injected into your database table can attack your
users over and over again. But reflected attacks are more common, since
they’re easier to implement.

Before we close this chapter, let’s look at one more type of cross-site
scripting attack.

DOM-Based Cross-Site Scripting Attacks
Defusing most cross-site scripting attacks means inspecting and securing
server-side code; however, the increasing popularity of rich frameworks
for client-side code has led to the rise of DOM-based cross-site scripting,
whereby attackers smuggle malicious JavaScript into a user’s web page via
the URI fragment.

To understand these attacks, you first need to understand how URI
fragments operate. Let’s start with a reminder of how URLs (universal
resource locators), the addresses shown in the browser bar, are structured.
A typical URL looks like Figure 7-3.

Protocol Domain Path Query string

https://hacksplaining.com/glossary/urls?ref=google&top=Y#details

URI fragment

Figure 7-3: The sections of a typical URL

https://admin.google.com/

72 Chapter 7

The URI fragment is the optional part of the URL after the # sign.
Browsers use URI fragments for intra-page navigation—if an HTML tag
on the page has an id attribute matching the URI fragment, the browser
scrolls to that tag after opening the page. For instance, if you load the URL
https://en.wikipedia.org/wiki/Cat#Grooming in a browser, the browser opens
the web page and then scrolls to the Grooming section of the Wikipedia
page about cats. It behaves this way because the heading tag for that section
looks something like Listing 7-7.

<h3 id="Grooming">Grooming</h3>

Listing 7-7: An HTML tag corresponding to the URI fragment #Grooming

With this helpful built-in browser behavior, Wikipedia lets users link
directly to sections within a page, so that you and your roommate can
finally settle that contentious argument about cat grooming.

Single-page apps also often use URI fragments to record and reload state
in an intuitive fashion. These types of apps, written in JavaScript frame-
works like Angular, Vue.js, and React, are actually JavaScript-heavy web
pages that seek to avoid the rendering blink that occurs when the browser
reloads a web page.

One potential way to avoid this rendering blink is designing the whole
app to load under a static URL that never changes, because changing
the URL in the browser bar is typically what causes a web page to reload.
However, if a user refreshes a browser for an unchanging URL, the browser
resets the web page to its initial state, losing any information about what the
user was doing previously.

Many single-page apps overcome this by using the URI fragment to keep
state over browser refreshes. You’ll commonly see web pages implement infi-
nite scrolling: a list of images dynamically loads in as the user scrolls down the
page. The URI fragment updates with an indication of how far the user has
scrolled down. Then, even if the browser refreshes, the JavaScript code can
interpret the content of the URI fragment, and load in the relevant number
of images as the page refreshes.

By design, browsers don’t send URI fragments to the server when the
browser renders the page. When a browser receives a URL with a URI frag-
ment, it makes a note of the fragment, strips it from the URL, and sends
the stripped URL to the web server. Any JavaScript executed on the page
can read the URI fragment, and the browser will write the full URL to the
browser history, or to a bookmark, if the user bookmarks the page.

Unfortunately, this means that URI fragments aren’t available to any
server-side code—securing server-side code can’t mitigate DOM-based XSS
attacks. Client-side JavaScript code that interprets and uses URI fragments
needs to be careful about how it interprets the content of those fragments.
If the content is unescaped and written directly into the DOM of the web
page, an attacker can smuggle malicious JavaScript through this channel.
An attacker can craft a URL with some malicious JavaScript in the URI
fragment, and then trick a user into visiting that URL to launch the cross-
site scripting attack.

Cross-Site Scripting Attacks 73

DOM-based cross-site scripting is a relatively new form of attack, but is
particularly dangerous because the injection of code happens completely
on the client side, and can’t be detected by examining web server logs! This
means you need to be keenly aware of the vulnerability when doing code
reviews, and know how to mitigate it.

Mitigation: Escaping Dynamic Content from URI Fragments
Any JavaScript code executing in the browser that takes part of the URI
fragment and constructs HTML is prone to DOM-based cross-site scripting
attacks. This means you need to take care to escape anything taken from a
URI fragment before interpolating that value in HTML with the client-side
code, just as you would with server-side code.

The authors of modern JavaScript templating frameworks are fully aware
of the risks posed by URI fragments and discourage the construction of
raw HTML in code. For instance, the syntax to write unescaped HTML in
the React framework requires the developer to call the function dangerously​
SetInnerHTML, as shown in Listing 7-8.

function writeSomeHTML () {
 return {__html: 'First · Second'};
}
function MyComponent() {
 return <div dangerouslySetInnerHTML={writeSomeHTML()} />;
}

Listing 7-8: Dangerously setting raw HTML from text in the React framework

Consider switching to a modern JavaScript framework if your client-side
JavaScript code is complex. It should make the codebase more manageable
and security considerations much more apparent. And as always, be sure to
set an appropriate content security policy.

Summary
In this chapter, you learned about cross-site scripting attacks, whereby an
attacker injects JavaScript into the pages of your site when users view them.
Attackers usually inject malicious JavaScript into dynamic content that
comes from a database, from the HTTP request, or from the URI fragment.
You can defeat cross-site scripting attacks by escaping any HTML control
characters in dynamic content, and by setting a content security policy that
prevents the execution of inline JavaScript.

In the next chapter, you’ll look at another method that attackers can
use to prey on the users of your website: cross-site request forgery.

In the previous chapter, you saw how
attackers use cross-site scripting attacks to

inject JavaScript into a user’s web browser
through page elements like comment sections,

search results, and URLs. Now you’ll look at how
attackers use malicious links to hack your users.

No website is an island. Because your website has a public URL, other
sites will frequently link to it, which you should generally encourage as a
site owner. More inbound links to your site means more traffic and better
search engine rankings.

However, not everybody linking to your site has good intentions. An
attacker can trick a user into clicking a malicious link that triggers undesir-
able or unexpected side effects. This is called cross-site request forgery (CSRF or
XSRF). Security researchers sometimes pronounce CSRF as “sea-surf.”

CSRF is a remarkably common vulnerability that most major websites
have exhibited at one time or another. Attackers have used CSRF to steal

8
C R O S S - S I T E R E Q U E S T

F O R G E R Y A T T A C K S

76 Chapter 8

Gmail contact lists, trigger one-click purchases on Amazon, and change
router configuration. This chapter examines how CSRF attacks typically
work and shows some coding practices that protect against them.

Anatomy of a CSRF Attack
Attackers usually launch CSRF attacks by exploiting websites that imple-
ment GET requests that change the state of a web server. A GET request is trig-
gered when a victim clicks a link, allowing the attacker to craft misleading
links into the target site that perform unexpected actions. GET requests are
the only type of HTTP request that contain the entirety of the request’s
contents in a URL, so they’re uniquely vulnerable to CSRF attacks.

In an early iteration of Twitter, you could create tweets via GET requests
rather than the POST requests the site currently uses. This oversight made
Twitter vulnerable to CSRF attacks: it made it possible to create URL links
that, when clicked, would post on a user’s timeline. Listing 8-1 shows one of
these URL links.

https://twitter.com/share/update?status=in%20ur%20twitter%20CSRF-ing%20ur%20tweets

Listing 8-1: A link that, at one point, would have tweeted the text in ur twitter CSRF-ing ur tweets to a victim’s
timeline when clicked

One canny hacker used this loophole to create a viral worm on Twitter.
Because they could use a single GET request to write a tweet, they constructed
a malicious link that, when clicked, would post a tweet containing an obscene
message and the same malicious link. When readers of the tweet clicked the
link that the first victim tweeted, they too were tricked into tweeting the
same thing.

The hacker tricked a handful of victims into clicking the malicious
link, and those victims tweeted unexpected posts on the timelines. As more
and more users read the original tweets and clicked the embedded link out
of curiosity, they too tweeted the same thing. Soon, tens of thousands of
Twitter users were being tricked into expressing their desire to molest goats
(the content of the initial tweet). The first Twitter worm was born, and
the Twitter development team scrambled to close the security hole before
things got out of hand.

Mitigation 1: Follow REST Principles
To protect your users against CSRF attacks, make sure that your GET requests
don’t change the state of the server. Your website should use GET requests
only to fetch web pages or other resources. You should perform actions that
change server state—for example, logging the user in or out, resetting pass-
words, writing posts, or closing an account—only through PUT, POST, or DELETE
requests. This design philosophy, called Representational State Transfer (REST),
comes with a host of other benefits besides CSRF protection.

Cross-Site Request Forgery Attacks 77

REST states that you should map website operations to the appropriate
HTTP method according to their intention. You should fetch data or pages
with GET requests, create new objects on the server (such as comments,
uploads, or messages) with PUT requests, modify objects on the server with
POST requests, and delete objects with DELETE requests.

Not all actions have an obvious corresponding HTTP method. For
instance, when a user logs in, it’s a philosophical discussion as to whether
the user is creating a new session or modifying their status. In terms of
protecting against CSRF attacks, though, the key thing is to avoid assigning
actions that change the server state to GET requests.

Protecting your GET requests doesn’t mean that there aren’t vulnerabili-
ties in other types of requests, as you’ll see with our second mitigation.

Mitigation 2: Implement Anti-CSRF Cookies
Defusing your GET requests shuts the door on most CSRF attacks, but you
still need to protect against requests using the other HTTP verbs. Attacks
using those verbs are much less common than GET-based CSRF attacks, and
require much more work, but an attacker might try them if they think the
payoff is sufficient.

For instance, they can trick a user into initiating a POST request to your
site by having the victim submit a malicious form or script hosted on a
third-party site under the attacker’s control. If your site performs sensi-
tive actions in response to POST requests, you need to use anti-CSRF cook-
ies to ensure that these requests are initiated only from within your site.
Sensitive actions should be triggered only from your own login forms and
JavaScript, rather than malicious pages that may trick the user into per-
forming unexpected actions.

An anti-CSRF cookie is a randomized string token that the web server
writes out to a named cookie parameter. Recall that cookies are small
pieces of text passed back and forth between the browser and web server
in HTTP headers. If the web server returns an HTTP response containing
a header value like Set-Cookie: _xsrf=5978e29d4ef434a1, the browser will send
back the same information in the next HTTP request in a header with form
Cookie: _xsrf=5978e29d4ef434a1.

Secure websites use anti-CSRF cookies to verify that POST requests
originate from pages hosted on the same web domain. HTML pages on
the site add this same string token as an <input type="hidden" name="_xsrf"
value="5978e29d4ef434a1"> element in any HTML form used to generate POST
requests. When a user submits the form to the server, and the _xsrf value in
the returned cookie doesn’t match the _xsrf value in the request body, the
server rejects the request entirely. This way, the server validates and ensures
that the request originated from within the site rather than from a mali-
cious third-party site; the browser will send the required cookie only when
the web page is loaded from the same domain.

Most modern web servers support anti-CSRF cookies. Make sure to con-
sult the security documentation of your chosen web server to understand

78 Chapter 8

how they implement these cookies, since the syntax varies slightly among
web servers. Listing 8-2 shows a template file for the Tornado web server
that includes anti-CSRF protection.

<form action="/new_message" method="post">
 u {% module xsrf_form_html() %}

 <input type="text" name="message"/>
 <input type="submit" value="Post"/>
</form>

Listing 8-2: A template file for the Tornado web server in Python that includes
anti-CSRF protection

In this example, the xsrf_form_html() function u generates a random-
ized token and writes it out in the HTML form as an input element like so:
<input type="hidden" name="_xsrf" value="5978e29d4ef434a1">. The Tornado
web server then writes out this same token in the HTTP response headers
as Set-Cookie: _xsrf=5978e29d4ef434a1. When the user submits the form, the
web server validates that the token from the form and the token in the
return Cookie header match. The browser security model will return cookies
according to the same-origin policy, so the cookie values can only have been
set by the web server. Hence the server can be sure that the POST request
originated from the host website.

You should use anti-CSRF cookies to validate HTTP requests made from
JavaScript, too, which allows you to also protect PUT and DELETE requests. The
JavaScript needs to query out the anti-CSRF token from the HTML, and pass
it back to the server in the HTTP request.

After you’ve implemented anti-CSRF cookies, your website should be
much safer. Now you need to close one final loophole, to make sure attack-
ers can’t steal your anti-CSRF tokens and embed them in malicious code.

Mitigation 3: Use the SameSite Cookie Attribute
The final protection against CSRF attacks you must implement is to specify a
SameSite attribute when you set cookies. By default, when a browser generates
a request to your website, it will attach to the request the last known cook-
ies that the site set, regardless of the source of the request. This means that
malicious cross-site requests will arrive at your web server with any security
cookies you previously set. This doesn’t defeat anti-CSRF measures in and of
itself, but if an attacker steals the security token from your HTML forms, and
installs it in their own malicious forms, they can still launch a CSRF attack.

Specifying a SameSite attribute when you set a cookie tells the browser to
strip cookies on a request to your site when the request is generated from an
external domain—like a malicious website set up by an attacker. Setting a
cookie with the SameSite=Strict syntax in Listing 8-3 ensures that the browser
will send the cookie only with requests initiated from within your own site.

Cross-Site Request Forgery Attacks 79

Set-Cookie: _xsrf=5978e29d4ef434a1; SameSite=Strict;

Listing 8-3: Setting the SameSite attribute to our anti-CSRF cookie ensures that the cookie
attaches to only requests from our site.

It’s a good idea to set a SameSite attribute on all your cookies, not just
those used for CSRF protection. There’s a caveat to this, however: if you
use cookies for session management, setting the SameSite attribute to your
session cookie strips the cookie of any requests to your site generated from
other websites. This means that any inbound links to your site will force the
user to log in again.

This behavior can be a little annoying for users who already have a ses-
sion open on your site. Imagine if you had to log back into Facebook every
time somebody shared a video. Frustrating, right? To prevent this behavior,
Listing 8-4 shows a more useful value of the SameSite attribute, Lax, that
allows only GET requests from other sites to send cookies.

Set-Cookie: session_id=82938d911e13f3; SameSite=Lax;

Listing 8-4: Setting the SameSite attribute on an HTTP cookie allows cookies on GET requests.

This allows seamless linking into your site, but strips the ability of an
attacker to forge malicious actions such as POST requests. Provided your GET
requests are side-effect free, this setting is no less safe.

Bonus Mitigation: Require Reauthentication for
Sensitive Actions

You might notice that some websites force you to reconfirm your login
details when you perform sensitive actions, such as when you change your
password or initiate a payment. This is known as reauthentication, and it’s a
common way to secure sites against CSRF attacks, because it gives the user
a clear indication that you’re about to do something significant and poten-
tially dangerous.

Reauthentication also has the positive side effect of protecting your
users if they accidentally leave themselves logged in on shared or stolen
devices. If your website handles financial transactions or confidential data,
you should strongly consider forcing your users to reenter their credentials
when they perform sensitive actions.

Summary
Attackers can use web requests from other sites to trick your users into per-
forming undesired actions. The solution to such cross-site request forgery
attacks is threefold.

80 Chapter 8

First, make sure your GET requests are side-effect free, so the server state
is not changed when a user clicks malicious links. Second, use anti-CSRF
cookies to protect other types of requests. Third, set these cookies with a
SameSite attribute to strip cookies from requests generated by other sites.

For very sensitive actions on your site, it’s a good idea to require the
user to reauthenticate themselves when they request to perform these
actions. This adds an additional layer of protection against CSRF attacks,
and protects your users if they accidentally leave themselves logged in on
shared or stolen devices.

In the next chapter, you’ll look at how hackers try to exploit vulnerabili-
ties during the authentication process.

Most websites provide some sort of login
functionality. This is a form of authentica-

tion, the process of identifying users when
they return to your website. Authenticating your

users allows them to have an identity in an online com-
munity where they can contribute content, send mes-
sages to others, make purchases, and so on.

Nowadays, internet users are comfortable with signing up to a site with
a username and password, and logging back in when they next want to use
it. This is especially true since browsers and plug-ins help with caching or
choosing passwords, and third-party authentication services have become
ubiquitous.

There’s a downside to this, however. Getting access to a user’s account
is a tantalizing prospect for hackers. In the age of the internet, it has never
been easier for hackers to sell hacked credentials on the dark web, hijack
social media accounts to spread clickbait, and commit financial fraud.

9
C O M P R O M I S I N G A U T H E N T I C A T I O N

82 Chapter 9

In this chapter, you’ll investigate some of the ways that hackers can
compromise a user’s account on your site during the login and authentica-
tion process. (The next chapter covers the vulnerabilities your users face
after they’ve logged in and established a session.) Here, you’ll first see the
most common ways websites implement authentication and look at how
attackers use brute-force attacks to exploit them. Then you’ll learn how
to protect users against these attacks through third-party authentication,
single sign-on, and securing your own authentication system.

Implementing Authentication
Authentication is part of the HyperText Transfer Protocol. To present an
authentication challenge, a web server needs to return a 401 status code
in the HTTP response and add a WWW-Authenticate header describing the
preferred authentication method. (There are two commonly supported
authentication methods: basic authentication and digest authentication.)
To fulfill this requirement, the user agent—usually a web browser—needs
to request a username and password from the user, thus creating the
login functionality.

In the basic authentication scheme, the browser concatenates the
username and password supplied by the user with a colon (:) character
between them, generating the string username:password. It then uses the
Base64 algorithm to encode this string and send it back to the server in
the Authorization header of an HTTP request.

The digest authentication scheme is a little more complex, and requires
the browser to generate a hash consisting of the username, password, and
URL. A hash is the output of a one-way encryption algorithm that makes it
easy to generate a unique “fingerprint” for a set of input data, but makes it
difficult to guess the input values if you have only the algorithm’s output.
You’ll look at hashing in more depth later in this chapter, when we discuss
how to securely store passwords.

HTTP-Native Authentication
Even though authentication is built into the HyperText Transfer Protocol,
popular websites rarely use basic or digest authentication—mostly because
of usability considerations. The native web browser authentication prompt
is not a thing of beauty. It looks similar to a JavaScript alert dialog, grabbing
focus from the browser, and interrupting the experience of using the site,
as shown in Figure 9-1.

Because browsers implement the authentication prompt outside
HTML, we can’t style the native authentication prompt to match the web-
site. As a native browser window that doesn’t appear in the web page, the
browser also can’t autocomplete the user’s credentials. Finally, because
HTTP authentication specifies no method of resetting a password if a user
forgets it, we’d have to implement a reset feature separately from the login
prompt, leading to a confusing user experience.

Compromising Authentication 83

Figure 9-1: The native Google Chrome login prompt rudely
interrupts your browsing session.

Non-Native Authentication
Because of this user-hostile design, the built-in HTTP authentication meth-
ods tend to be reserved mostly for applications where the user experience
simply doesn’t matter that much. Modern websites usually implement their
own login forms in HTML, like the one shown in Listing 9-1.

<form action="/login" method="post">
 u <input type="email" name="username" placeholder="Type your email">
 v <input type="password" name="password" placeholder="Type your password">

 <input type="submit" name="login" value="Log in">
</form>

Listing 9-1: A typical login form in HTML

A typical login form contains an <input type="text"> element u requir-
ing the user to supply a username, and an <input type="password"> element v
that replaces typed characters with a • character to obscure the password.
The supplied username and password are sent to the server as a POST request
when the user submits the form. If the login is unsuccessful because the
user couldn’t be authenticated, the server replies with a 401 status code in
the HTTP response. If the login is successful, the server redirects the user
to their homepage.

Brute-Force Attacks
Attackers often attempt to compromise your site at the point of authentica-
tion by guessing passwords. Movies usually depict hackers using personal
insights about a target to guess their password. While this might be a con-
cern for high-profile targets, hackers usually have more success using brute-
force attacks, which use scripts to try thousands of commonly used passwords
against a login page. Because previous data breaches have already leaked
millions of commonly used passwords, including the ones in Listing 9-2, it’s
easy for an attacker to determine which passwords they should try first.

84 Chapter 9

1. 123456
2. password
3. 12345678
4. qwerty
5. 12345
6. 123456789
7. letmein
8. 1234567
9. football
10. iloveyou

Listing 9-2: Security researchers publish a list of the most commonly used passwords each
year; they change very little year to year. (This list is provided by the internet security firm
SplashData.)

Let’s look at a few ways you can implement and secure your authentica-
tion against this type of threat.

Mitigation 1: Use Third-Party Authentication
The most secure authentication system is the one you don’t have to write
yourself. Instead of implementing your own authentication system, con-
sider using a third-party service like Facebook Login, which allows users
to authenticate to your website with their social media credentials. This is
convenient for them, and relieves you of the burden of ever having to store
user passwords.

Large tech companies provide other similar authentication services.
Most of them are based on the open authentication (OAuth) or OpenID stan-
dards—commonly implemented protocols for delegating authentication
to a third party. You can always mix and match authentication systems.
They’re typically straightforward to integrate with, so pick one or more that
make sense with your userbase. If you’re providing email-related services,
you can integrate with Google OAuth to ask your users for access to their
Gmail accounts. If you’re providing technical services, use something like
GitHub OAuth. Twitter, Microsoft, LinkedIn, Reddit, and Tumblr all offer
authentication options, as do hundreds of other websites.

Mitigation 2: Integrate with Single Sign-On
If you integrate with an OAuth or OpenID identity provider, your users
will usually use their personal email addresses as usernames. However, if
your website’s target audience is business users, consider integrating with
a single sign-on (SSO) identity provider like Okta, OneLogin, or Centrify,
which centralizes authentication across enterprise systems so employees can
log in seamlessly to third-party applications under their business email.
Company administrators retain ultimate control over which employees
can access what sites, and user credentials are stored securely on the com-
pany’s servers.

Compromising Authentication 85

To integrate with a single sign-on provider, you’ll usually have to use
Security Assertion Markup Language (SAML), which is an older (and less
friendly) standard than OAuth or OpenID, though most programming
languages have mature SAML libraries you can use.

Mitigation 3: Secure Your Own Authentication System
Although third-party authentication will usually be more secure than your
own system, having only third-party authentication could somewhat limit
your userbase because not everyone has a social media presence or Gmail
account. For everyone else, you’ll need to create a way for them to sign up
and manually choose a username and password. This means creating sepa-
rate pages on your website where users can sign up, log in, and log out; plus
writing code to store and update credentials in your database, and to check
that the credentials are correct when a user reenters them. More than likely,
you will need to have a mechanism for a user to change their password too.

That’s a lot of functionality to implement! Before you start writing code,
you’ll need to make a few design decisions. Let’s look at the key things you
need to get right in order to have a secure authentication system.

Requiring Usernames, Email Address, or Both
Your users will need to choose a username and password when they sign up.
Most websites will also require a user to submit a valid email address when
they sign up, which allows them to send password-reset emails when users
forget their credentials.

For many sites, a user’s email address is their username. By necessity,
each email address has to be unique to an account, so choosing a separate
username would generally be redundant. The exception to this is when users
have a visible presence on the site; for example, when a user has a public pro-
file, or interacts with other users in comment sections. These types of sites
require users to choose a separate display name. Using email addresses as dis-
play names is bad practice, since it invites harassment and spam.

Validating Email Addresses

If you intend to send email from your site—for instance, to allow users to
reset their password—you need to validate that every user’s email address
corresponds to a working email account. Emails that a website generates
are called transactional emails, because the website sends them in response
to a user action. Sending transactional emails to unverified addresses will
quickly get you blacklisted by your email service provider, since they’re wary
of enabling spammers.

First, verify that the user’s email address appears valid on its face. This
means validating that the email contains only valid characters: letters, num-
bers, or any of the special characters (!#$%&'*+-/=?^_`{|}~;.).

86 Chapter 9

The address must contain an @ sign, and to the right of that, a valid
internet domain. Usually, but not always, this domain should correspond to
a website, like @gmail.com addresses that correspond to www.gmail.com. At a
minimum, the internet’s Domain Name System (DNS), which we discussed in
Chapter 2, must contain a mail exchange (MX) record for that domain that
tells software where to route emails. It’s possible to look up the MX record
as part of your verification process, as shown in Listing 9-3.

import dns.resolver
def email_domain_is_valid(domain):
 for _ in dns.resolver.query(domain, 'MX'):
 return True
 return False

Listing 9-3: Validating that a domain is capable of receiving email in Python by using the
dnsresolver library

However, the only 100 percent reliable way to validate that an address
corresponds to a working email account is to send an email message and
check that it’s received. This means you’ll have to send each user an email
that contains an email verification link that links back to your website and
contains a validation token—a large, randomly generated string you store in
your database against their email address. When the user clicks the link to
verify ownership of their email address, you can check that the validation
token is the one you sent out, and confirm that they do indeed have access
to the email account.

Many sites force users to validate their email before they can complete
the sign-up process. Other sites allow the user to use a limited number of
features on the site while they’re in an unvalidated state, in order to make
the sign-up process less onerous. You should never assume a user has access
to an email account until you’ve validated them. Until then, don’t send any
other types of transactional email or sign the user up to mailing lists!

Banning Disposable Email Accounts

Some users are reluctant to sign up with an email address they commonly
use, and will sign up to your site using a temporary email account gener-
ated by services like 10 Minute Mail or Mailinator or the one shown in
Figure 9-2. These types of services generate a disposable email account
that’s good for receiving a handful of messages before shutting down. If a
user uses this type of service, it usually means they’re wary of being signed
up to mailing lists (quite a reasonable consideration, given the relentless
approach of email marketers).

You may need to ban users from signing up with disposable email
addresses if, for instance, some of your users are generating temporary
accounts to harass others. If so, you can use well-maintained blacklists
of disposable email providers to detect, reject, and ban disposable email
domains during the sign-up process.

Compromising Authentication 87

Figure 9-2: Want a temporary email address? Come get it at https://www.sharklasers.com/.
(Yes, this is a real website. Pew pew pew.)

Securing Password Resets

Having a validated email address for each of your users allows you to handle
the (inevitable) scenario when a user forgets their password. Simply send
them an email with a password-reset link, containing a fresh validation token.
When the forgetful user opens the email and clicks the link, you can vali-
date the incoming token, and allow the user to choose a new password for
their account.

Password-reset links should be short-lived, and should expire after
the user uses them. A good rule of thumb is to expire reset tokens after
30 minutes to prevent an attacker from abusing stale reset links. If an
attacker hacks a user’s email account, you can’t let them search for emails
containing reset links and then use those links to access your site under
the victim’s account.

Requiring Complex Passwords
Complex passwords are generally harder to guess, so you should require
users to meet certain password complexity standards when they choose a
password, for their own protection. Complex passwords include numbers
and symbols as well as letters, have a mix of uppercase and lowercase char-
acters, and are long rather than short. At the very least, you should enforce
a minimum length of eight characters for passwords, but the longer the bet-
ter. (Studies have shown that password length is more important than mix-
ing in unusual characters.)

88 Chapter 9

However, users often have trouble remembering complex passwords,
so if you enforce overly strict password complexity requirements, a user will
usually reuse a password they previously entered on another website. Some
secure sites prevent a user from reusing a password they previously used
to force them to choose a new, unique password each time, pushing them
away from lazy habits. Unfortunately, most users will simply cycle passwords
by adding a number at the end of a password they commonly use, which
doesn’t make for a significantly less guessable password.

Ultimately, each user is responsible for their own security online, so it’s
generally better to nudge your users toward strong password choices rather
than forcing them to jump through hoops. Some JavaScript libraries, like
the password-strength-calculator library, can be used to rate a user’s pass-
word’s complexity as they type it and to call out commonly used passwords,
which you can use on sign-up and password-reset screens to push users
toward a more secure password.

Securely Storing Passwords
After a user chooses a password, you need to record it in some form in your
database against their username, so you can revalidate their credentials
when they log in again. Do not simply store the password as is—we call this
cleartext storage, and it’s a big security no-no. If an attacker accesses a data-
base that stores passwords in cleartext form, they can compromise every
user account, as well as accounts those users have on other websites under
the same credentials. Luckily, there is a way of storing passwords in a secure
fashion that makes them unreadable in the database, but allows you to
check they have been reentered correctly by a user at a later date.

Hashing Passwords

Passwords should be processed with a cryptographic hash algorithm before
being stored in your database. This will convert the raw string of input text
into a bit string of fixed length in such a way that makes it computationally
unfeasible to reverse the process. You should then store the output values of
that algorithm—the hashed values—alongside each username.

Hashing algorithms are a type of one-way mathematical function. The
only practical way to guess the input string that generated a given hashed
output (or hash, for short) is to try every possible input string one after the
other. By storing a hash of a user’s password, you can recalculate the hash
when a user reenters their password and compare the new and old hash
values to see if they’ve entered the correct password.

Numerous cryptographic hash algorithms exist, each with varying
implementations and strengths. A good hashing algorithm should be quick
to calculate, but not too quick. Otherwise, as computation speeds increase,
brute-force attempts to crack the password by enumerating all possible inputs
become feasible. For this reason, a good algorithm to use is bcrypt, shown in
Listing 9-4, which allows you to add extra iterations to the hashing function
as the years go by to make it stronger and more time-consuming as computa-
tion power gets cheaper.

Compromising Authentication 89

import bcrypt
password = "super secret password"

Hash a password for the first time, with a randomly-generated salt
hashed = bcrypt.hashpw(password, bcrypt.gensalt(rounds=14u))

Check that an unhashed password matches one that has previously been hashed
if bcrypt.checkpw(password, hashed):
 print("It matches!")
else:
 print("It does not match :(")

Listing 9-4: Hashing and then testing a password using the bcrypt algorithm in Python

The rounds parameter at u can be incremented to make the password
hashes even stronger. Storing hashed passwords rather than cleartext pass-
words is much more secure. No one who accesses the database, including
you, can directly decipher the passwords, but your website can still deter-
mine whether a user has correctly reentered their password. This relieves
you of a security burden—even if an attacker hacks your database, they
can’t do much with the hashed passwords.

Salting Hashes

Hashing passwords makes your site more secure, but users are frequently
unimaginative in their password choice. When cracking password lists—
reverse engineering passwords for a list of leaked password hashes—hackers
frequently use rainbow tables, which are lists of commonly used passwords
that have been put through a known hashing algorithm. Matching hashes
against precalculated values yield a very good return for an attacker, allow-
ing them to determine the password for many, if not most, of the hashes.

To protect against rainbow table attacks, you need to salt your password
hashes, which means adding an element of randomness to the hashing algo-
rithm so the input password doesn’t solely determine the generated hash. You
can store the salt input value in your configuration, or better yet, generate a
salt input value separately for each user and store it alongside their password
hash. This makes rainbow table attacks unfeasible, since an attacker has to
regenerate the entire rainbow table for each salt value you use, which is com-
putationally prohibitive and thus takes too long.

Requiring Multifactor Authentication
No matter how securely you store passwords, password-based authentica-
tion systems are always vulnerable to brute-force password-guessing attacks.
To really secure your website, consider adding an extra layer of security by
requiring multifactor authentication (MFA), which requires a returning user
to identify themselves with at least two of the following three categories of
information: something they know, something they have, and something
they are. One example of multifactor authentication is a bank ATM, which
requires the account holder’s PIN (the thing they know) and their bank

90 Chapter 9

card (the thing they have). Another example would be devices that use bio-
metrics to identify individuals, like fingerprint scanning on smartphones
(the thing they are).

For websites, multifactor authentication generally boils down to requir-
ing a username and password (the thing the user knows), and confirming
that the user has an authenticator installed on their smartphone (the thing
they have). Each user will need to sync the authenticator app with the website
during sign up (usually by taking a photograph of a QR code onscreen.)
Thereafter, the app generates a six-digit random number that they need to
supply at login time for the user to log in successfully, like the one shown in
Figure 9-3.

Figure 9-3: Your users will come to
love typing in six-digit numbers.

This forces an attacker to have knowledge of a victim’s credentials and
access to the victim’s smartphone in order to compromise their account,
which is a highly unlikely combination. Support for multifactor authentica-
tion is increasingly becoming the norm, given the ubiquity of smartphones.
If your website does any type of financial processing, you should definitely
implement multifactor authentication. Thankfully, many code libraries
make integrating it relatively easy.

Implementing and Securing the Logout Function
If you authenticate users on your site, don’t forget to add a function that lets
them log out of your site too. This might seem like an anachronism, given
that users seem to stay perpetually logged in to social media, but having a
logout function is a key security consideration for users who log in on shared
devices. Plenty of families share a laptop or iPad, and companies often reuse
computers and portable devices, so make sure to let your users log out!

Your logout function should clear the session cookie in the browser, and
invalidate the session identifier if you are storing it on the server side. This

Compromising Authentication 91

protects against attackers who manage to intercept session cookies after the
fact and attempt to reestablish a session using a stolen cookie. Clearing the
session cookie is as simple as sending back an HTTP response containing a
Set-Cookie header with a blank value for your session parameter.

Preventing User Enumeration
You can cut down the risk of an attacker compromising your authentication
system if they can’t enumerate users, which means testing each username
from a list to see whether it exists on your website. Attackers frequently use
leaked credentials from prior hacks and attempt to verify whether any of
these usernames exist on a target website. After they narrow down the list,
they then proceed to guess passwords for usernames that matched.

Preventing Potential Enumeration Vulnerabilities

Login pages often allow an attacker to determine whether a username is
taken on a site. If the page shows an error message for an incorrect pass-
word that differs from the error message for an unknown user, then an
attacker can infer from the responses whether certain usernames corre-
spond to accounts that exist on your site. It’s important to keep the error
messages generic to avoid leaking this type of information. For example,
simply use the error message an incorrect username or password was entered
whenever the username is unrecognized or the password is incorrect.

Attackers may also use timing attacks to enumerate users by measuring
HTTP response times. Hashing a password is a time-consuming operation;
though it typically takes less than a second, it’s still a measurable amount
of time. If your site calculates password hashes only when a user enters a
valid username, an attacker can measure the slightly slower response time
to infer which accounts exist on the site. Make sure your site calculates pass-
word hashes during authentication even for invalid usernames.

You should prevent your password-reset screen from revealing that a user-
name exists, too. If an attacker clicks a “Forgotten password” link and types
in an email address to request a password-reset link, the response message
on the page shouldn’t reveal whether a reset email was sent. This prevents the
attacker from knowing whether that email address is tied to an account on
your site. Keep the message neutral: something like Check your inbox.

Implementing CAPTCHA

You can also defuse user enumeration attacks by implementing a CAPTCHA
(Completely Automated Public Turing test to tell Computers and Humans Apart),
which asks web users to perform various image recognition tasks that are
trivial for humans but tricky for computers. CAPTCHAs, like the one shown
in Figure 9-4, make it impractical for attackers to abuse a web page via
hacking scripts.

CAPTCHAs aren’t perfect. Attackers can defeat them by using sophis-
ticated machine learning techniques, or by paying human users to com-
plete a task in their stead. However, they are generally reliable enough to

92 Chapter 9

deter most hacking attempts, and you can easily add them to a website. For
example, Google implements a CAPTCHA widget called reCAPTCHA that
you can install on your site with a few lines of code.

Figure 9-4: Some tasks are simply too hard for a computer to complete successfully.

Summary
Hackers often attempt to attack your authentication system in an effort to
steal your users’ credentials. To secure your website, you can use a third-
party authentication system like Facebook Login or a single sign-on iden-
tity provider.

If you’re implementing your own authentication system, you’ll need to
have users choose a username and password upon sign-up. You should also
store and validate an email address for each user. It makes sense to use this
email as a username, unless you need users to have a visible display name.

The only reliable way to validate an email address is to send it an email
containing a link with a unique, temporary validation token that your site
can check when the user clicks it. Your password-reset mechanism for users
who have forgotten their password should work in the same way. Password-
reset emails and the initial validation email should time out after a period
of time, and after they’re used for the first time.

You should process passwords with a cryptographic hash algorithm
before storing them. You should also salt your password hashes to prevent
rainbow table attacks.

Consider adding multifactor authentication if your site hosts sensitive
data. Make sure to include a logout function somewhere on your site. Keep
login failure messages generic, to prevent hackers from enumerating user-
names on your site.

In the next chapter, you will investigate ways that users on your site can
have their account compromised after they log in, by having their session
stolen by an attacker.

When a website successfully authenticates
a user, the browser and the server open a

session. A session is an HTTP conversation
in which the browser sends a series of HTTP

requests corresponding to user actions, and the web
server recognizes them as coming from the same
authenticated user without requiring the user to
log back in for each request.

If a hacker can access or forge session information that the browser
sends, they can access any user’s account on your site. Thankfully, modern
web servers contain secure session-management code, which makes it prac-
tically impossible for an attacker to manipulate or forge a session. However,
even if there are no vulnerabilities in a server’s session-management capa-
bilities, a hacker can still steal someone else’s valid session while it’s in pro
gress; this is called session hijacking.

10
S E S S I O N H I J A C K I N G

94 Chapter 10

Session hijacking vulnerabilities are generally a bigger risk than the
authentication vulnerabilities discussed in the previous chapter, because again,
they allow an attacker to access any of your users’ accounts. This is such a
tantalizing prospect that hackers have found many ways to hijack sessions.

In this chapter, you’ll first look at how websites implement session man-
agement. Then you’ll learn about the three ways hackers hijack sessions:
cookie theft, session fixation, and taking advantage of weak session IDs.

How Sessions Work
To understand how an attacker hijacks a session, you first need to under-
stand what happens when a user and a web server open a session.

When a user authenticates themselves under HTTP, the web server
assigns them a session identifier during the login process. The session identifier
(session ID)—typically a large, randomly generated number—is the minimal
information the browser needs to transmit with each subsequent HTTP
request so the server can continue the HTTP conversation with the authen-
ticated user. The web server recognizes the session ID supplied with each
request, maps it to the appropriate user, and performs actions on their behalf.

Note that the session ID must be a temporarily assigned value that’s
different from the username. If the browser used a session ID that was sim-
ply the username, hackers could pretend to be any user they pleased. By
design, only a very small minority of possible session IDs should correspond
to a valid session on the server at any given time. (If this is not the case, the
web server exhibits a weak session vulnerability, which we will discuss later
in this chapter.)

Besides the username, the web server typically stores other session state
alongside the session ID, containing relevant information about the user’s
recent activity. The session state might, for example, contain a list of pages
the user has visited, or the items currently sitting in their shopping basket.

Now that we understand what happens when users and web servers
open a session, let’s look at how websites implement these sessions. There
are two common implementations, typically described as server-side ses-
sions and client-side sessions. Let’s review how these methods work, so you
can see where the vulnerabilities occur.

Server-Side Sessions
In a traditional model of session management, the web server keeps the
session state in memory, and both the web server and browser pass the ses-
sion identifier back and forth. This is called a server-side session. Listing 10-1
shows the Ruby on Rails implementation of server-side sessions.

Get a session from the cache.
def find_session(env, sid)
 unless sid && (session = @cache.read(cache_key(sid))w)

Session Hijacking 95

 sid, session = generate_sidu, {}
 end
 [sid, session]
end

Set a session in the cache.
def write_session(env, sid, session, options)
 key = cache_key(sid)
 if session

 v @cache.write(key, session, expires_in: options[:expire_after])
 else
 @cache.delete(key)
 end
 sid
end

Listing 10-1: Ruby on Rails implements server-side sessions using the session ID (sid).

The session object is created at u, written to the server’s memory at v,
and then reloaded from memory at w.

Historically, web servers have experimented with transferring session
IDs in multiple ways: either in the URL, as an HTTP header, or in the body
of HTTP requests. By far, the most common (and reliable) mechanism the
web development community has decided upon is to send session IDs as a
session cookie. When using session cookies, the web server returns the ses-
sion ID in the Set-Cookie header of the HTTP response, and the browser
attaches the same information to subsequent HTTP requests using the
Cookie header.

Cookies have been part of the HyperText Transfer Protocol since they
were first introduced by Netscape in 1995. Unlike HTTP-native authentica-
tion, they’re used by pretty much every website under the sun. (Because of
European Union legislation, you’ll be well aware of this fact: websites are
required by European law to inform you that they’re using cookies.)

Server-side sessions have been widely implemented and are generally
very secure. They do have scalability limitations, however, because the web
server has to store the session state in memory.

That means that at authentication time, only one of the web servers will
know about the established session. If subsequent web requests for the same
user gets directed to a different web server, the new web server needs to be
able to recognize the returning user, so web servers need a way of sharing
session information.

Typically, this requires writing session state to a shared cache or to a
database with every request, and having each web server read that cached
session state when a new HTTP request comes through. Both of these are
time- and resource-consuming operations that can limit the responsiveness
of sites with large userbases, since each user added to the website adds a sig-
nificant load to the session store.

96 Chapter 10

Client-Side Sessions
Because server-side sessions have proven difficult to scale for large sites,
web server developers invented client-side sessions. A web server imple-
menting client-side sessions passes all session state in the cookie, instead of
passing back just the session ID in the Set-Cookie header. The server serial-
izes session state to text before the session state is set in the HTTP header.
Often, web servers encode the session state as JavaScript Object Notation
(JSON)—and deserialize it when returning it to the server. Listing 10-2
shows an example of Ruby on Rails implementing a client-side session.

def set_cookie(request, session_id, cookie)
 cookie_jar(request)[@key] = cookie
end

def get_cookie(req)
 cookie_jar(req)[@key]
end

def cookie_jar(request)
 request.cookie_jar.signed_or_encrypted
end

Listing 10-2: Ruby on Rails code that stores session data as a client-side cookie

By using client-side sessions, a site’s web servers no longer have to share
state. Each web server has everything it needs to reestablish the session with
an incoming HTTP request. This is a great bonus when you’re trying to
scale to thousands of simultaneous users!

Client-side sessions do create an obvious security problem, however.
With a naive implementation of client-side sessions, a malicious user can
easily manipulate the contents of a session cookie or even forge them
entirely. This means the web server has to encode the session state in a way
that prevents meddling.

One popular way to secure client-side session cookies is to encrypt
the serialized cookie before sending it to the client. The web server then
decrypts the cookie when the browser returns it. This approach makes the
session state entirely opaque on the client side. Any attempt to manipulate
or forge the cookie will corrupt the encoded session and make the cookie
unreadable. The server will simply log out the malicious user and redirect
them to an error page.

Another, slightly more lightweight approach to securing session cook-
ies is to add a digital signature to the cookie as it’s sent. A digital signature
acts as a unique “fingerprint” for some input data—in this case, the serial-
ized session state—that anyone can easily recalculate as long as they have
the signing key originally used to generate the signature. Digitally signing
cookies allows the web server to detect attempts to manipulate the session
state, since it’ll calculate a different signature value and reject the session if
there has been any tampering.

Session Hijacking 97

Signing cookies rather than encrypting them still allows a nosy user to
read the session data in a browser debugger. Bear this in mind if you’re stor-
ing data about a user—like tracking information—that you might not want
them to see!

How Attackers Hijack Sessions
Now that we’ve discussed sessions and how websites implement them, let’s
look at how attackers hijack sessions. Attackers use three main methods to
hijack sessions: cookie theft, session fixation, and taking advantage of weak
session IDs.

Cookie Theft
With the use of cookies being so widespread nowadays, attackers normally
achieve session hijacking by stealing the value of a Cookie header from an
authenticated user. Attackers usually steal cookies by using one of three tech-
niques: injecting malicious JavaScript into a site as the user interacts with it
(cross-site scripting), sniffing network traffic in order to intercept HTTP head-
ers (a man-in-the-middle attack), or triggering unintended HTTP requests to
the site when they’ve already authenticated (cross-site request forgery).

Fortunately, modern browsers implement simple security measures that
allow you to protect your session cookies against all three of these techniques.
You can enable these security measures simply by adding keywords to the
Set-Cookie header returned by the server, as shown in Listing 10-3.

Set-Cookie: session_id=278283910977381992837; HttpOnly; Secure; SameSite=Lax

Listing 10-3: A session cookie appearing in an HTTP response that is protected from
session hijacking by a combination of keyword instructions

Let’s review the three techniques of cookie theft, as well as the key-
words that can mitigate them.

Cross-Site Scripting

Attackers often use cross-site scripting (which we discussed in detail in
Chapter 7) to steal session cookies. An attacker will try to use JavaScript
injected into a user’s browser to read the user’s cookies and send them to an
external web server that the attacker controls. The attacker will then harvest
these cookies as they appear in the web server’s log file, and then cut and
paste the cookie values into a browser session—or more likely, add them to
a script—to perform actions under the hacked user’s session.

To defuse session hijacking via cross-site scripting, mark all cookies as
HttpOnly in the Set-Cookie header. This tells the browser not to make cookies
available to JavaScript code. Append the HttpOnly keyword to the Set-Cookie
response header, as shown in Listing 10-4.

98 Chapter 10

Set-Cookie: session_id=278283910977381992837; HttpOnly

Listing 10-4: Mark your cookies as HttpOnly to stop JavaScript from accessing them.

There’s rarely a good reason to allow client-side JavaScript access to
cookies, so there are very few downsides to this approach.

Man-in-the-Middle Attacks

An attacker can also steal cookies by using a man-in-the-middle attack: the
attacker finds a way to sit between the browser and the web server and read
network traffic as it passes back and forth. To protect against cookie theft
via man-in-the-middle attacks, your website should use HTTPS. You’ll learn
how to enable HTTPS in Chapter 13.

After you’ve enabled HTTPS on the web server, you should mark your
cookies as Secure, as shown in Listing 10-5, so the browser knows to never
send unencrypted cookies over HTTP.

Set-Cookie: session_id=278283910977381992837; Secure

Listing 10-5: Marking your cookies as secure means adding the Secure keyword to the
Set-Cookie response header.

Most web servers are configured to respond to both HTTP and HTTPS,
but will redirect HTTP URLs to the HTTPS equivalent. Marking your cook-
ies as Secure will keep the browser from transmitting the cookie data until
the redirect has occurred.

Cross-Site Request Forgery

The final way an attacker can hijack sessions is via cross-site request forgery
(detailed in Chapter 8). An attacker using CSRF doesn’t need to get access
to a user’s session cookie. Instead, they simply need to trick the victim into
clicking a link to your site. If the user already has a session open on your
site, the browser will send their session cookie along with the HTTP request
triggered by the link, which might result in the user inadvertently perform-
ing a sensitive action (such as Liking an item the hacker is attempting
to promote).

To defuse CSRF attacks, mark your cookies with the SameSite attribute,
which instructs the browser to send only session cookies with HTTP requests
generated from your site. The browser will strip session cookies from other
HTTP requests, like those generated by clicking a link in an email.

The SameSite attribute has two settings: Strict and Lax. The Strict set-
ting, shown in Listing 10-6, has the advantage of stripping cookies from all
HTTP requests triggered from external sites.

Set-Cookie: session_id=278283910977381992837; SameSite=Strict

Listing 10-6: The Strict setting will strip cookies from requests generated to your site
from external sites.

Session Hijacking 99

The Strict setting can prove annoying if a user shares your content via
social media, because the setting forces anyone clicking their link to log in
again to view the content. To solve this annoyance for your users, configure
the browser to allow cookies only on GET requests by using the SameSite=Lax
setting, as shown in Listing 10-7.

Set-Cookie: session_id=278283910977381992837; SameSite=Lax

Listing 10-7: The Lax setting allows for painless sharing of links on social media, while still
defusing session-hijacking attacks via CSRF.

This SameSite=Lax setting instructs the browser to attach cookies to
inbound GET requests, while stripping them from other request types.
Because websites usually perform sensitive actions (such as writing content
or sending messages) through POST, PUT, or DELETE requests, an attacker can’t
trick a victim into performing these types of sensitive actions.

Session Fixation
In the early history of the internet, many browsers didn’t implement cook-
ies, so web servers found other ways to pass session IDs. The most popular
way of doing this was by URL rewriting—appending the session ID to each
URL the user visited. To this day, the Java Servlet Specification describes how
developers can add session IDs to the end of the URL when cookies aren’t
available. Listing 10-8 shows an example of a URL rewritten to include a
session ID.

http://www.example.com/catalog/index.html;jsessionid=1234

Listing 10-8: An example of a URL passing the session ID 1234

All browsers have cookie support nowadays, so URL rewriting is an
anachronism. However, legacy web stacks may be configured to still accept
session IDs in this way, which introduces a couple of major security issues.

First, writing session IDs in the URL allows them to be leaked in log
files. An attacker who gets access to your logs can hijack your users’ sessions
simply by dropping these types of URLs in the browser.

The second issue is a vulnerability called session fixation. When web serv-
ers vulnerable to session fixation encounter an unknown session ID in a
URL, they’ll ask the user to authenticate themselves, and then establish a
session under the supplied session ID.

This allows a hacker to fixate the session ID ahead of time, sending
victims tempting links (usually in unsolicited email or spam in a site’s com-
ment sections) with the fixated session ID. Any user who clicks the link can
have their session hijacked, because the attacker can simply use that same
URL in their own browser, having fixed the session ID ahead of time. The
act of clicking the link and logging it transforms the dummy session ID into
a real session ID—one that the hacker knows.

100 Chapter 10

If your web server supports URL rewriting as a means of session track-
ing, you should disable it with the relevant configuration options. It serves
no purpose and exposes you to session fixation attacks. Listing 10-9 shows
how to disable URL rewriting in version 7.0 of the popular Java web server
Apache Tomcat by editing the web.xml config file.

<session-config>
 <tracking-mode>COOKIE</tracking-mode>
</session-config>

Listing 10-9: Specifying the session tracking to use the COOKIE mode in Apache Tomcat 7.0
will disable URL rewriting.

Taking Advantage of Weak Session IDs
As we’ve already discussed, if an attacker gets access to a session ID, they
can hijack a user’s session. They can do this by stealing a session cookie
or by fixating a session ahead of time for servers that support URL rewrit-
ing. However, a more brute-force method is to simply guess the session ID.
Because session IDs are typically just numbers, if these numbers are suf-
ficiently small or predictable, an attacker can write a script to enumerate
potential session IDs and test them against the web server until they find
a valid session.

Genuinely random numbers are hard to generate in software. Most
random number generation algorithms use environmental factors (such
as the system’s clock time) as seeds to generate their random numbers. If
an attacker can determine enough of the seed values (or reduce them to
a reasonable number of potential values), they can enumerate potentially
valid session IDs and test them against your server.

Early versions of the standard Apache Tomcat server were found to be
vulnerable to this type of attack. Security researchers discovered that the
seeds of the random session ID generation algorithm were the system time
and the hashcode of an in-memory object. The researchers were able to
use these seeds to narrow the potential input values in such a way that they
could reliably guess session IDs.

Consult your web server’s documentation and ensure that it uses large
session IDs that can’t be guessed, generated by a strong random number
generation algorithm. Because security researchers frequently discover
weak session ID algorithms before attackers can exploit them, make sure
to also stay on top of security advisories, which will tell you when you
need to patch vulnerabilities in your web stack.

Summary
When a website successfully authenticates a user, the browser and the server
open a session between them. Session state can be stored on the server side,
or stored on the client side as an encrypted or digitally signed cookie.

Session Hijacking 101

Hackers will attempt to steal your session cookies, so you should ensure
they’re protected. To protect against session hijacking via cross-site script-
ing, make sure your cookies aren’t accessible to JavaScript code. To protect
against session hijacking via man-in-the-middle attacks, make sure your
cookies are passed only over HTTPS connections. To protect against session
hijacking via cross-site request forgery, make sure to strip sensitive cross-site
requests of cookies. You can add these protections by using the keywords
HttpOnly, SecureOnly, and SameSite, respectively, when you write out your Set​
-Cookie header in the HTTP response.

Older web servers may be vulnerable to session-fixation attacks, so be
sure to disable URL rewriting as a way of passing session IDs. Occasionally,
web servers are found to use guessable session IDs, so stay aware of security
advisories for your software stack and patch it as required.

In the next chapter, you will look at how to correctly implement access
control, so malicious users can’t access your content or perform actions they
aren’t supposed to.

Users on your website will usually have
different levels of permissions. In a con-

tent management system, for instance, some
users are administrators who have the ability

to edit the site’s content, while most users can only
view and interact with the content. Social media sites
have a more complex web of permissions: users may opt to share only cer-
tain content with friends or to keep their profile locked. For webmail sites,
each user should be able to access only their own email! It’s important that
you correctly and uniformly enforce these types of permissions across your
site, or your users will lose trust in you.

Facebook suffered a disastrous failure in user permissions in September
2018, when hackers exploited a bug in its video uploading tool to gener-
ate access tokens for the site. Up to 50 million user accounts on the site
were compromised. Hackers stole private profile details like users’ names,
emails, and phone numbers. Facebook patched the bug, issued a security
advisory, and did an apology tour via the press. However, this came at the

11
P E R M I S S I O N S

104 Chapter 11

end of a year that contained a lot of unfavorable stories about Facebook’s
business practices, and the company’s share price took a battering.

The Facebook hack was an example of privilege escalation, whereby a
malicious user usurps the permissions of another user. The process of
securing your site so the correct privileges are applied to each user is called
implementing access control. This chapter covers both concepts and presents
one common method hackers use to exploit insufficient access control, called
directory traversal.

Privilege Escalation
Security experts divide privilege escalation attacks into two categories:
vertical and horizontal escalation.

In vertical escalation, an attacker gets access to an account with broader
permissions than their own. If an attacker can deploy a web shell on your
server—an executable script that takes elements of the HTTP request and
runs them on the command line—one of their first aims will be to escalate
their way to root privilege, so they can perform any actions they wish on the
server. Ordinarily, commands sent to the web shell will be executed under
the same operating system account that the web server is running, which
generally has limited network and disk access. Hackers have found a lot
of ways to perform vertical escalation attacks on operating systems in an
attempt to get root access—which allows them to infect the whole server
from a web shell.

In horizontal escalation, an attacker accesses another account with similar
privileges as their own. In the last couple of chapters, we’ve discussed com-
mon ways of performing this type of attack: guessing passwords, hijacking
sessions, or maliciously crafting HTTP request data. The September 2018
Facebook hack was an example of horizontal escalation, caused by an API
that issued access tokens without correctly verifying the user’s permissions.

To secure your site from escalation attacks, you need to securely imple-
ment access control for all sensitive resources. Let’s discuss how.

Access Control
Your access control strategy should cover three key aspects:

Authentication  Correctly identifying a user when they return to the site

Authorization  Deciding which actions a user should and shouldn’t be
able to perform after they’ve identified themselves

Permission checking  Evaluating authorization at the point in time
when a user attempts to perform an action

Chapters 9 and 10 covered authentication in detail; you saw how secur-
ing login functionality and session management allows you to reliably deter-
mine which user is making HTTP requests. However, from there, you still
need to determine which actions each user can perform, and this is a more
open-ended problem.

Permissions 105

A good access control strategy consists of three stages: designing an
authorization model, implementing the access control, and testing the
access control. After you’ve done that, you can also add audit trails and
make sure you haven’t missed common oversights. Let’s go through each
of these in detail.

Designing an Authorization Model
There are several common ways to model authorization rules in a software
application. When you design your authorization model, it’s important to
document how you’ll apply your chosen model to your users. Without an
agreed-upon set of rules, it’s hard to define what a “correct” implementa-
tion looks like.

With that in mind, let’s look at some common ways to model authoriza-
tion rules.

Access Control Lists

Access control lists (ACLs) are a simple way of modeling authorization that
attach against each object in your system a list of permissions, specifying
the actions that each user or account can perform on that object. The
canonical example of an ACL-based model is the Linux filesystem, which
can individually grant each user read, write, or execute permissions on
each file and directory. Most SQL databases also implement ACL-based
authorization—the account you use to connect to the database deter-
mines which tables you can read or update, or whether you can change
table structures.

Whitelists and Blacklists

A simpler way to model authorization is to use a whitelist or blacklist. A whitelist
describes the users or accounts that can access a particular resource, and
bans all other users. A blacklist explicitly describes the users or accounts that
are banned from accessing a resource, implying that the resource should
be made accessible to any other user or account. Spam filters frequently use
whitelists and blacklists to distinguish email addresses that the email appli-
cation should send directly to the spam folder or that it should never junk.

Role-Based Access Control

Probably the most comprehensive authorization model is role-based access
control (RBAC), which grants users roles, or adds users to groups that it has
granted specific roles. Policies in the system define how each role can inter-
act with specific subjects—resources within the computing system.

A simple RBAC-system might designate certain users as administrators
by adding a user to the Administrators group, which in turn grants them
the Administrator role. A policy would then permit users or groups with the
Administrator role to edit particular pieces of content of your site.

The Amazon Web Services identity and access management (IAM) system
is an example of a comprehensive role-based system, as is Microsoft’s Active

106 Chapter 11

Directory. Role-based access control is powerful but often prone to complex-
ity. Policies can contradict each other, creating conflicts that developers
need to resolve, and users can belong to many groups with overlapping con-
cerns. In such cases, it can sometimes be hard to see why a system is making
certain access control decisions, or prioritizing certain rules in a particular
set of circumstances.

Ownership-Based Access Control

In the age of social media, it has become common to organize access control
rules around the idea of ownership, whereby each user has full control over
the photos they upload or the posts they create. Social media users are, in
essence, administrators of their own content: they can create, upload, delete,
and control visibility on their own posts, comments, photos, and stories.
They can tag other users in content such as photos, though those other users
may have to approve those tags before the tags are made public. On a social
media site, each type of content has an implied privacy level: commenting on
each other’s posts is usually done in public, but direct messages are private
(though someone should try explaining that to my grandmother).

Implementing Access Control
After you’ve chosen your authorization model and defined the access rules
for your site, you’ll need to implement them in code. You should attempt to
centralize access control decisions in your codebase, which makes it easier
to validate them against your design documents during code reviews. You
don’t necessarily need to have all access decisions flow through one code
path, but it’s important to have a standard method of evaluating access con-
trol decisions.

There are many ways of implementing authorization rules: using func-
tion or method decorators (which tag functions with certain permission
levels), URL checking (for example, prefixing sensitive paths with /admin),
or inserting inline assertions in the code. Some implementations will defer
to access control decisions from a dedicated permission component or in-
house API. Listing 11-1 shows an example of adding permission checking to
Python functions.

from django.contrib.auth.decorators import login_required, permission_required

u @login_required
v @permission_required('content.can_publish')

def publish_post(request):
 # Publish a post to the front page.

Listing 11-1: Checking permissions using the django web server in Python

The web server requires that the user is logged in u and has permis-
sions to publish content v before permitting them to publish a post.

Listing 11-2 shows how to check permissions inline in Ruby, using the
pundit library.

Permissions 107

def publish
 @post = Post.find(params[:id])

 u authorize @post, :update?
 @post.publish!
 redirect_to @post
end

Listing 11-2: Checking permissions by using the pundit library in Ruby

The method call u asks the library whether the currently logged-in user
has permission to update the social media post described by the @post object.

Whatever method you use to implement permission checking, be sure
to make access control decisions based on properly vetted identity data.
Don’t rely on anything in the HTTP request besides the session cookie to
infer which user is accessing a resource and what permissions they have!
A malicious user can tamper with anything else in the request in order to
commit privilege escalation attacks.

Testing Access Control
It’s important to test your access control system critically. Make sure your
testing procedures genuinely attempt to find holes in your access control
scheme; if you treat it like an attacker would, you’ll be better prepared
when your first real attack occurs.

Write unit tests that make assertions about who can access certain
resources and, more importantly, who shouldn’t be able to access them. Get
in the habit of writing new unit tests describing access control rules as you
add features to your site. This is especially important if your site has admin-
istrative interfaces, since they’re a common backdoor that attackers exploit
when hacking websites. Listing 11-3 shows a simple unit test in Ruby that
asserts that users must be logged in before performing a sensitive action.

class PostsTest < ApplicationSystemTestCase
 test "users should be redirected to the login page if they are not logged in" do
 visit publish_post_url
 assert_response :redirect
 assert_selector "h1", text: "Login"
 end
end

Listing 11-3: A Ruby unit test that checks if an unauthorized user is redirected to the login
page if they attempt to publish a post

Finally, if you have the time and budget, consider employing an exter-
nal team to perform penetration testing. The team can probe for missing
or erroneous access control rules that an attacker can abuse.

Adding Audit Trails
Because your code will be identifying users and testing their authoriza-
tion levels as they access resources, you should add audit trails to help with

108 Chapter 11

troubleshooting and forensic analysis. Audit trails are log files or database
entries that are recorded whenever a user performs an action. Simply adding
logging statements as users navigate your site (14:32:06 2019-02-05: User example​
@gmail.com logged in) can help you diagnose any problems as they occur at
runtime, and provide vital evidence in the event that you do get hacked.

Avoiding Common Oversights
A common oversight you see on many websites is that that they omit access con-
trol for resources that aren’t designed to be discoverable. It’s easy to assume
that pages on your site that aren’t linked to from elsewhere will be hidden
from hackers, because those pages won’t be highlighted as hackers crawl
your site. This isn’t true.

Hacking tools can quickly enumerate private URLs that feature opaque
IDs, like http://example.com/item?id=423242, and it’s even easier to access pri-
vate URLs with a guessable structure like http://example.com/profiles/user/bob.
Relying on an attacker being unable to guess a URL is called security through
obscurity and is considered a risk.

Securing sensitive resources is particularly important for sites designed to
embargo resources, making them accessible at a certain point in time. Financial
reporting sites often operate under this constraint. Publicly traded companies
are required to make quarterly or semiannual financial reports available to all
investors simultaneously, from previously agreed-upon reporting channels.

Some websites upload these reports early (say, to URLs with the form
/reports/<company-name>/<month-year>), and cheating investors have been
known to check these URLs ahead of time in order to access reports before
the rest of the market. Financial watchdogs have charged companies large
fines for improper disclosure due to broken access logic! Make sure your
access control rules account for any timing requirements.

Every sensitive resource on your site requires access control. If your
site allows users to download files, hackers may try to access files that they
should not be permitted to download, using a hacking method called direc-
tory traversal. Let’s see how.

Directory Traversal
If any of your website’s URLs contain parameters describing paths to files,
attackers can use directory traversal to bypass your access control rules.
In a directory traversal attack, an attacker manipulates the URL parameters
in order to access sensitive files that you never intended to be accessible.
Directory traversal attacks usually involve replacing a URL parameter with
a relative filepath that uses the ../ syntax to “climb out” of the hosting direc-
tory. Let’s break down how this works.

Filepaths and Relative Filepaths
In most filesystems, the location of each file can be described by a filepath.
For instance, the filepath /tmp/logs/web.log on Linux describes the location

Permissions 109

of the file web.log by enumerating the directories (in this case, the logs direc-
tory within the top-level tmp directory) that contain the file, joined by a path
separator character (/).

A relative filepath is a filepath that begins with the period (.) character,
denoting it as being in the current directory; the relative path ./web.log
describes the location of the file web.log as being in the current directory.
What’s considered the “current” directory depends on the context under
which the path is being evaluated. From a command line prompt, for
instance, the current directory is the one the user most recently navigated to.

Relative paths also use the .. syntax to reference the containing or par-
ent directory. Using the .. syntax twice would reference the parent directory
of the parent directory of the current directory. For instance, the filesystem
interprets the path ../../etc/passwd as a request to go up two directories, find
a directory called etc, and then return the passwd file within that directory.
Using a relative path is similar to describing a relative: your uncle is your
grandparent’s son, so to find him, go back two generations in your family
tree and then look for a male child.

If your server-side code allows an attacker to pass and evaluate relative
filepaths in place of filenames, they can probe your filesystem for interesting-
looking files, breaking access control. The relative path syntax lets the
attacker read files outside the web server’s home directory, letting them
probe for directories that commonly hold password or configuration infor-
mation and read the data contained within them. Let’s look at an example
of such an attack.

Anatomy of a Directory Traversal Attack
Imagine you have a website that hosts restaurant menus stored as PDFs on
your server’s filesystem. Your site invites users to download each PDF by
clicking a link that references a filename, as shown in Figure 11-1.

Figure 11-1: A website that allows files to be downloaded

110 Chapter 11

If the filename parameter isn’t securely interpreted, an attacker can
swap in a relative path in place of the menu filename in the URL, and get
access to user account information on your server, as shown in Figure 11-2.

Figure 11-2: Using a directory traversal attack to access
a Unix file holding account information

In this instance, the hacker has replaced the name of the menu in
the menu parameter with a relative path (../../../../etc/passwd) in order to
download a sensitive file. Reading the passwd file tells the attacker which
user accounts exist on the underlying Linux operating system, revealing
sensitive system information that will help the attacker hack the server. You
certainly don’t want an attacker to be able to read this kind of information!
Let’s look at ways to defuse directory traversal.

Mitigation 1: Trust Your Web Server
To protect yourself against directory traversal attacks, first familiarize your-
self with how your web server resolves static content URLs. Almost all web-
sites will transform URLs into filepaths in some fashion—often when the
server answers requests for static content such as JavaScript files, images, or
stylesheets. If you find yourself serving more-exotic types of static files (for
example, restaurant menus), try to use the web server’s built-in URL resolu-
tion logic rather than writing your own. Your web server’s URL static host-
ing capabilities are generally battle-tested and secured against directory
traversal attacks.

Mitigation 2: Use a Hosting Service
If you serve files that aren’t part of your codebase, perhaps because users or
site administrators upload them, you should strongly consider hosting them
in a content delivery network, in cloud storage, or in a content management
system. These software types not only mitigate file upload vulnerabilities, as

Permissions 111

discussed in Chapter 6, but also defuse directory traversal attacks by allow-
ing you to refer to files either by secure URLs or opaque file identifiers. Of
these alternatives, CDNs typically allow for less fine-grained permissions
(say, if certain files need to be available to only certain users) but are also
typically easiest to integrate with.

Mitigation 3: Use Indirect File References
If you write your own code to serve files from a local disk, the most secure
way of defusing directory traversal attacks is via indirection: you assign each
file an opaque ID that corresponds to a filepath, and then have all URLs ref-
erence each file by that ID. This requires you to keep some sort of registry
that pairs each file ID to a path, say, within a database.

Mitigation 4: Sanitize File References
Finally, if you do end up using direct file references in your URLs—perhaps
because you inherit a legacy codebase and lack the time or resources neces-
sary to refactor the way files are stored—you need to secure your site code
to ensure that arbitrary paths can’t be passed in place of filenames. The
most secure approach is simply banning any file reference that includes
path separator characters, including encoded separator characters. (Note
that Windows- and Unix-based operating systems use different path separa-
tors: \ and /, respectively.)

Another approach is to validate filenames against a regular expression
(regex) to filter out anything that looks like path syntax. All modern web
programming languages contain some sort of regex implementation, so
it’s easy to test an incoming filename parameter against a “safe” expression.
Be careful with this technique, though: hackers continuously research new
and obscure ways to encode pathnames, because directory traversal attacks
are so common. If possible, try to use a third-party library to sanitize file-
names. Listing 11-4 shows some logic in the Ruby Sinatra gem that sanitizes
path parameters.

def cleanup(path)
 parts = []

 u unescaped = path.gsub(/%2e/i, dot).gsub(/%2f/i, slash).gsub(/%5c/i, backslash)
 unescaped = unescaped.gsub(backslash, slash)

 v unescaped.split(slash).each do |part|
 next if part.empty? or part == dot
 part == '..' ? parts.pop : parts << part
 end

 w cleaned = slash + parts.join(slash)
 cleaned << slash if parts.any? and unescaped =~ %r{/\.{0,2}$}
 cleaned
end

Listing 11-4: Logic for sanitizing path parameters in the Sinatra Ruby gem

112 Chapter 11

First the code standardizes any obscure character encodings it identi-
fies u. Then it splits the path into separate components v. Finally, it recon-
stitutes the path by using a standard separator w, ensuring that the leading
character is a slash.

The complexity illustrated in Listing 11-4 is necessary because relative
paths can be encoded in various ways during a directory traversal attack.
Listing 11-5 shows eight ways the parent directory syntax can be encoded on
different operating systems.

../

..\

..\/
%2e%2e%2f
%252e%252e%252f
%c0%ae%c0%ae%c0%af
%uff0e%uff0e%u2215
%uff0e%uff0e%u2216

Listing 11-5: Relative paths can be encoded in many ways for different operating
systems. Gulp.

Summary
Users on your website will usually have different levels of permissions, so
you need to implement access control rules that are evaluated when a user
attempts to access a resource. Access control rules need to be clearly docu-
mented, comprehensively implemented, and aggressively tested. Development
timelines should include sufficient padding to allow the team to evaluate the
security implications of all new code changes.

Static resources that are referred to by filename are vulnerable to direc-
tory traversal attacks, a common method of overcoming access control rules.
Directory traversal attacks can be thwarted by using your web server’s existing
method of serving static files, serving static files from a secure third-party
system, or referencing static files via indirection. If you’re forced to use file-
names, make sure to sanitize any HTTP parameters that are used to con-
struct filepaths.

In the next chapter, you’ll look at some ways your website may be adver-
tising the technology stack you are using, which will give hackers an idea of
how to attack it.

Hackers frequently use publicized secu-
rity vulnerabilities, especially zero-day vul-

nerabilities—security flaws that have been
made public in the last 24 hours. When someone

publishes a zero-day vulnerability for a software com-
ponent, hackers will immediately scan for web
servers running the vulnerable software in order to exploit the security
hole. To protect yourself from such threats, you should ensure that your
web server doesn’t leak information about the type of software stack you’re
running on. If you inadvertently advertise your server technology, you’re
making yourself a target.

In this chapter, you’ll learn some common ways web servers leak informa-
tion about your technology choices and how to mitigate each of these risks.

12
I N F O R M A T I O N L E A K S

114 Chapter 12

Mitigation 1: Disable Telltale Server Headers
Make sure to disable any HTTP response headers in your web server con-
figuration that reveal the server technology, language, and version you’re
running. By default, web servers usually send a Server header back with each
response, describing which software is running on the server side. This is
great advertising for the web server vendor, but the browser doesn’t use it. It
simply tells an attacker which vulnerabilities they can probe for. Make sure
your web server configuration disables this Server header. (Or if you’re feel-
ing mischievous, have it report the wrong web server technology!)

Mitigation 2: Use Clean URLs
When you design your website, avoid telltale file suffixes in URLs, such
as .php, .asp, and .jsp. Implement clean URLs instead—URLs that do not
give away implementation details. URLs with file extensions are common
in older web servers, which explicitly reference template filenames. Make
sure to avoid such extensions.

Mitigation 3: Use Generic Cookie Parameters
The name of the cookie your web server uses to store session state fre-
quently reveals your server-side technology. For instance, Java web servers
usually store the session ID under a cookie named JSESSIONID. Attackers can
check these kinds of session cookie names to identify servers, as shown in
Listing 12-1.

u if response.get_cookies.match(/JSESSIONID=(.*);(.*)/i)
 jsessionid = $1
 post_data = "j_username=#{username}&j_password=#{password}"

 response = send_request_cgi({
 'uri' => '/admin/j_security_check',
 'method' => 'POST',
 'content-type' => 'application/x-www-form-urlencoded',
 'cookie' => "JSESSIONID=#{jsessionid}",
 'data' => post_data,
 })

Listing 12-1: The hacking tool Metasploit attempting to detect and compromise an Apache
Tomcat server

Note that the Metasploit code checks the name of the session cookie u.
Make sure that your web server sends nothing back in cookies that

give clues about your technology stack. Change your configuration to use
generic names for the session cookie (for example, session).

Information Leaks 115

Mitigation 4: Disable Client-Side Error Reporting
Most web servers support client-side error reporting, which allows the server to
print stack traces and routing information in the HTML of the error page.
Client-side error reporting is really useful when debugging errors in test
environments. However, stack traces and error logs also tell an attacker
which modules or libraries you’re using, helping them pick out security
vulnerabilities to target. Errors occurring in your data access layer can
even reveal details about the structure of your database, which is a major
security hazard!

You must disable error reporting on the client side in your production
environment. You should keep the error page your users see completely
generic. At most, users should know that an unexpected error occurred and
that someone is looking into the problem. Detailed error reports should be
kept in production logs and error reporting tools, which only administra-
tors can access.

Consult your web server’s documentation on how to disable client-side
error reporting. Listing 12-2 illustrates how you would disable this function-
ality in a Rails config file.

 # Full error reports are disabled.
 config.consider_all_requests_local = false

Listing 12-2: Make sure your production configuration file (typically stored at config​
/environments/production.rb in Ruby on Rails) disables client-side error reporting.

Mitigation 5: Minify or Obfuscate Your JavaScript Files
Many web developers preprocess their JavaScript code before deploying it
by using a minifier, which takes JavaScript code and outputs a functionally
equivalent but highly compressed JavaScript file. Minifiers remove all extra-
neous characters (such as whitespace) and replace some code statements
with shorter, semantically identical statements. A related tool is an obfusca-
tor, which replaces method and function names with short, meaningless
tokens without changing any behavior in the code, deliberately making the
code less readable. The popular UglifyJS utility has both capabilities, and
can be invoked directly from the command line with the syntax uglifyjs
[input files], which makes it straightforward to plug into your build process.

Developers usually minify or obfuscate JavaScript code for performance,
because smaller JavaScript files load faster in the browser. This preprocess-
ing also has the positive side effect of making it harder for an attacker to
detect which JavaScript libraries you’re using. Researchers or attackers
periodically discover security vulnerabilities in popular JavaScript librar-
ies that permit cross-site scripting attacks. Making it harder to detect the
libraries you’re using will give you more breathing room when exploits
are discovered.

116 Chapter 12

Mitigation 6: Sanitize Your Client-Side Files
It’s important that you conduct code reviews and use static analysis tools
to make sure sensitive data doesn’t end up in comments or that dead code
doesn’t get passed to the client. It’s easy for developers to leave comments
in HTML files, template files, or JavaScript files that share a little too much
information, since we forget that these files get shipped to the browser.
Minifying JavaScript might strip comments, but you need to spot sensi-
tive comments in template files and hand-coded HTML files during code
reviews and remove them.

Hacking tools make it easy for an attacker to crawl your site and extract
any comments that you’ve accidentally left behind—hackers often use this
technique to scan for private IP addresses accidentally left in comments.
This is often a first port of call when a hacker is attempting to compromise
your website.

Stay on Top of Security Advisories
Even with all your security settings locked down, a sophisticated hacker can
still make a good guess about the technology you’re running. Web servers
have telltale behaviors in the way they respond to specific edge cases: delib-
erately corrupted HTTP requests or requests with unusual HTTP verbs, for
example. Hackers can use these unique server-technology fingerprints to
identify the server-side technology stack. Even when you follow best practices
regarding information leakage, it’s important to stay on top of security advi-
sories for the technology you use and deploy patches in a prompt manner.

Summary
You should ensure that your web server doesn’t leak information about
the type of software stack you’re running on, because hackers will use this
information against you when trying to figure out how to compromise your
website. Make sure your configuration disables telltale headers and uses a
generic session cookie name in the HTTP response. Use clean URLs that
don’t contain filename extensions. Minify or obfuscate your JavaScript so
it’s harder to tell which third-party libraries you’re using. Turn off verbose
client-side error reporting in your production site. Make sure to sanitize
your template files and HTML for comments that give out too much infor-
mation. Finally, stay on top of security advisories so you can deploy patches
in a timely manner.

In the next chapter, you will take a look at how to secure traffic to your
website by using encryption.

13
E N C R Y P T I O N

Encryption powers the modern internet.
Without the ability to exchange data pack-

ets privately and securely, e-commerce would
not exist, and users wouldn’t be able to safely

authenticate themselves to internet sites.
The HyperText Transfer Protocol Secure is the most widely used form

of encryption on the web. Web servers and web browsers universally support
HTTPS, so the developer can divert all traffic to that protocol and guaran-
tee secure communication for their users. A web developer who wants to
use HTTPS on their site needs only to obtain a certificate from a certificate
authority and install it with their hosting provider.

The ease with which you can get started using encryption belies the
complexity of what is happening when a website and user agent interact
over HTTPS. Modern cryptography—the study of methods of encrypting
and decrypting data—depends on techniques developed and actively
researched by mathematicians and security professionals. Thankfully, the
abstracted layers of the Internet Protocol mean you don’t need to know
linear algebra or number theory to use their discoveries. But the more you

118 Chapter 13

understand about the underlying algorithms, the more you will be able to
preempt potential risks.

This chapter first gives a general overview of how encryption is used in
the Internet Protocol and the mathematics that underpin it. Once you have
a good grasp of how encryption works, you will review the practical steps a
developer needs to undertake to get started using HTTPS. Finally, you will
look at how hackers take advantage of unencrypted or weakly encrypted
traffic, and how some attacks can circumvent encryption entirely.

Encryption in the Internet Protocol
Recall that messages sent over the internet are split into data packets and
directed toward their eventual destination via the Transmission Control
Protocol (TCP). The recipient computer assembles these TCP packets back
into the original message. TCP doesn’t dictate how the data being sent is
meant to be interpreted. For that to happen, both computers need to agree
on how to interpret the data being sent, using a higher-level protocol such
as HTTP. TCP also does nothing to disguise the content of the packets
being sent. Unsecured TCP conversations are vulnerable to man-in-the-
middle attacks, whereby malicious third parties intercept and read the
packets as they are transmitted.

To avoid this, HTTP conversations between a browser and a web server
are secured by Transport Layer Security (TLS), a method of encryption that
provides both privacy (by ensuring data packets can’t be deciphered by a
third party) and data integrity (by ensuring that any attempt to tamper with
the packets in transit will be detectable). HTTP conversations conducted
using TLS are called HTTP Secure (HTTPS) conversations.

When your web browser connects to an HTTPS website, the browser
and web server negotiate which encryption algorithms to use as part of the
TLS handshake—the exchange of data packets that occurs when a TLS con-
versation is initiated. To make sense of what happens during the TLS hand-
shake, we need to take a brief detour into the various types of encryption
algorithms. Time for some light mathematics!

Encryption Algorithms, Hashing, and Message Authentication Codes
An encryption algorithm takes input data and scrambles it by using an encryp-
tion key—a secret shared between two parties wishing to initiate secure com-
munication. The scrambled output is indecipherable to anyone without a
decryption key—the corresponding key required to unscramble the data. The
input data and keys are typically encoded as binary data, though the keys
may be expressed as strings of text for readability.

Many encryption algorithms exist, and more continue to be invented
by mathematicians and security researchers. They can be classified into
a few categories: symmetric and asymmetric encryption algorithms (for
ciphering data), hash functions (for fingerprinting data and building other
cryptographic algorithms), and message authentication codes (for ensuring
data integrity).

Encryption 119

Symmetric Encryption Algorithms

A symmetric encryption algorithm uses the same key to encrypt and decrypt
data. Symmetric encryption algorithms usually operate as block ciphers:
they break the input data into fixed-size blocks that can be individually
encrypted. (If the last block of input data is undersized, it will be padded to
fill out the block size.) This makes them suitable for processing streams of
data, including TCP data packets.

Symmetric algorithms are designed for speed but have one major secu-
rity flaw: the decryption key must be given to the receiving party before
they decrypt the data stream. If the decryption key is shared over the inter-
net, potential attackers will have an opportunity to steal the key, which
allows them to decrypt any further messages. Not good.

Asymmetric Encryption Algorithms

In response to the threat of decryption keys being stolen, asymmetric encryp-
tion algorithms were developed. Asymmetric algorithms use different keys to
encrypt and decrypt data.

An asymmetric algorithm allows a piece of software such as a web server
to publish its encryption key freely, while keeping its decryption key a secret.
Any user agent looking to send secure messages to the server can encrypt
those messages by using the server’s encryption key, secure in the knowledge
that nobody (not even themselves!) will be able to decipher the data being
sent, because the decryption key is kept secret. This is sometimes described
as public-key cryptography: the encryption key (the public key) can be published;
only the decryption key (the private key) needs to be kept secret.

Asymmetric algorithms are significantly more complex and hence slower
than symmetric algorithms. Encryption in the Internet Protocol uses a com-
bination of both types, as you will see later in the chapter.

Hash Functions

Related to encryption algorithms are cryptographic hash functions, which can
be thought of as encryption algorithms whose output cannot be decrypted.
Hash functions also have a couple of other interesting properties: the out-
put of the algorithm (the hashed value) is always a fixed size, regardless of
the size of input data; and the chances of getting the same output value,
given different input values, is astronomically small.

Why on earth would you want to encrypt data you couldn’t subse-
quently decrypt? Well, it’s a neat way to generate a “fingerprint” for input
data. If you need to check that two separate inputs are the same but don’t
want to store the raw input values for security reasons, you can verify that
both inputs produce the same hashed value.

This is how website passwords are typically stored, as we saw in Chapter 9.
When a password is first set by a user, the web server will store the hashed
value of the password in the database but will deliberately forget the actual
password value. When the user later reenters their password on the site,
the server will recalculate the hashed value and compare it with the stored

120 Chapter 13

hashed value. If the two hashed values differ, it indicates the user entered a
different password, which means the credentials should be rejected. In this
way, a site can check the correctness of passwords without explicitly knowing
each user’s password. (Storing passwords in plaintext form is a security haz-
ard: if an attacker compromises the database, they get every user’s password.)

Message Authentication Codes

Message authentication code (MAC) algorithms are similar to (and generally
built on top of) cryptographic hash functions, in that they map input data
of an arbitrary length to a unique, fixed-sized output. This output is itself
called a message authentication code. MAC algorithms are more specialized
than hash functions, however, because recalculating a MAC requires a
secret key. This means that only the parties in possession of the secret key
can generate or check the validity of message authentication codes.

MAC algorithms are used to ensure that the data packets transmitted
on the internet cannot be forged or tampered with by an attacker. To use a
MAC algorithm, the sending and receiving computers exchange a shared,
secret key—usually as part of the TLS handshake. (The secret key will itself
be encrypted before it is sent, to avoid the risk of it being stolen.) From that
point onward, the sender will generate a MAC for each data packet being
sent and attach the MAC to the packet. Because the recipient computer has
the same key, it can recalculate the MAC from the message. If the calculated
MAC differs from the value attached to the packet, this is evidence that the
packet has been tampered with or corrupted in some form, or it was not sent
by the original computer. Hence, the recipient rejects the data packet.

If you’ve gotten to this point and are still paying attention, congratula-
tions! Cryptography is a large, complex subject that has its own particular
jargon. Understanding how it fits into the Internet Protocol requires balanc-
ing multiple concepts in your head at once, so thank you for your patience.
Let’s see how the various types of cryptographic algorithms we have dis-
cussed are used by TLS.

The TLS Handshake
TLS uses a combination of cryptographic algorithms to efficiently and
safely pass information. For speed, most data packets passed over TLS will
be encrypted using a symmetric encryption algorithm commonly referred
to as the block cipher, since it encrypts “blocks” of streaming information.
Recall that symmetric encryption algorithms are vulnerable to having their
encryption keys stolen by malicious users eavesdropping on the conversa-
tion. To safely pass the encryption/decryption key for the block cipher, TLS
will encrypt the key by using an asymmetric algorithm before passing it to
the recipient. Finally, data packets passed using TLS will be tagged using a
message authentication code, to detect if any data has been tampered with.

At the start of a TLS conversation, the browser and website perform
a TLS handshake to determine how they should communicate. In the first
stage of the handshake, the browser will list multiple cipher suites that it
supports. Let’s drill down on what this means.

Encryption 121

Cipher Suites

A cipher suite is a set of algorithms used to secure communication. Under
the TLS standard, a cipher suite consists of three separate algorithms. The
first algorithm, the key-exchange algorithm, is an asymmetric encryption
algorithm. This is used by communicating computers to exchange secret
keys for the second encryption algorithm: the symmetric block cipher
designed for encrypting the content of TCP packets. Finally, the cipher suite
specifies a MAC algorithm for authenticating the encrypted messages.

Let’s make this more concrete. A modern web browser such as Google
Chrome that supports TLS 1.3 offers numerous cipher suites. At the time
of writing, one of these suites goes by the catchy name of ECDHE-ECDSA-
AES128-GCM-SHA256. This particular cipher suite includes ECDHE-RSA
as the key-exchange algorithm, AES-128-GCM as the block cipher, and
SHA-256 as the message authentication algorithm.

Want some more, entirely unnecessary, detail? Well, ECDHE stands for
Elliptic Curve Diffie–Hellman Exchange (a modern method of establishing a
shared secret over an insecure channel). RSA stands for the Rivest–Shamir–
Adleman algorithm (the first practical asymmetric encryption algorithm,
invented by three mathematicians in the 1970s after drinking a lot of
Passover wine). AES stands for the Advanced Encryption Standard (an algo-
rithm invented by two Belgian cryptographers and selected by the National
Institute of Standards and Technology through a three-year review pro-
cess). This particular variant uses a 128-bit key in Galois/Counter Mode,
which is specified by GCM in the name. Finally, SHA-256 stands for the
Secure Hash Algorithm (a hash function with a 256-bit word size).

See what I mean about the complexity of modern encryption stan-
dards? Modern browsers and web servers support a fair number of cipher
suites, and more get added to the TLS standard all the time. As weaknesses
are discovered in existing algorithms, and computing power gets cheaper,
security researchers update the TLS standard to keep the internet secure.
As a web developer, it’s not particularly important to understand how these
algorithms work, but it is important to keep your web server software up-to-
date so you can support the most modern, secure algorithms.

Session Initiation

Let’s continue where we left off. In the second stage of the TLS handshake,
the web server selects the most secure cipher suite it can support and then
instructs the browser to use those algorithms for communication. At the
same time, the server passes back a digital certificate, containing the server
name, the trusted certificate authority that will vouch for the authenticity
of the certificate, and the web server’s encryption key to be used in the key-
exchange algorithm. (We will discuss what certificates are and why they are
necessary for secure communication in the next section.)

Once the browser verifies the authenticity of the certificate, the two
computers generate a session key that will be used to encrypt the TLS con-
versation with the chosen block cipher. (Note that this session key is dif-
ferent from the HTTP session identifier discussed in previous chapters. TLS

122 Chapter 13

handshakes occur at a lower level of the Internet Protocol than the HTTP
conversation, which has not begun yet.) The session key is a large random
number generated by the browser, encrypted with the (public) encryption
key attached to the digital certificate using the key-exchange algorithm,
and transmitted to the server.

Now, finally, the TLS conversation can begin. Everything past this point
will be securely encrypted using the block cipher and the shared session iden-
tifier, so the data packets will be indecipherable to anyone snooping on the
conversation. The browser and server use the agreed-upon encryption algo-
rithm and session key to encrypt packets in both directions. Data packets are
also authenticated and tamper-proof, using message authentication codes.

As you can see, a lot of complex mathematics underpin secure commun
ication on the internet. Thankfully, the steps involved for enabling HTTPS
as a web developer are much simpler. Now we have the theory out of the way,
let’s take a look at the practical steps needed to secure your users.

Enabling HTTPS
Securing traffic for your website is a lot easier than understanding the
underlying encryption algorithms. Most modern web browsers are self-
updating; the development teams for each major browser will be on the
cutting edge of supporting modern TLS standards. The latest version of
your web server software will support similarly modern TLS algorithms.
That means that the only responsibility left to you as a developer is to
obtain a digital certificate and install it on your web server. Let’s discuss
how to do that and illuminate why certificates are necessary.

Digital Certificates
A digital certificate (also known as a public-key certificate) is an electronic docu-
ment used to prove ownership of a public encryption key. Digital certifi-
cates are used in TLS to associate encryption keys with internet domains
(such as example.com). They are issued by certificate authorities, which act as a
trusted third party between a browser and a website, vouching that a given
encryption key should be used to encrypt data being sent to the website’s
domain. Browser software will trust a few hundred certificate authorities—
for example, Comodo, DigiCert, and, more recently, the nonprofit Let’s
Encrypt. When a trusted certificate authority vouches for a key and domain,
it assures your browser that it’s communicating with the right website using
the right encryption key, thereby blocking an attacker from presenting a
malicious website or certificate.

You might ask: why is a third party required to exchange encryption
keys on the internet? After all, isn’t the whole point of asymmetric encryp-
tion that the public key can be made available freely by the server itself?
While this statement is true, the actual process of fetching an encryption
key on the internet depends on the reliability of the internet’s Domain
Name System (DNS) that maps domain names to IP addresses. Under some

Encryption 123

circumstances, DNS is vulnerable to spoofing attacks that can be used to
direct internet traffic away from a legitimate server to an IP address con-
trolled by an attacker. If an attacker can spoof an internet domain, they can
issue their own encryption key, and victims would be none the wiser.

Certificate authorities exist to prevent encrypted traffic from being
spoofed. Should an attacker find a way to divert traffic from a legitimate
(secure) website to a malicious server under their control, that attacker will
typically not possess the decryption key corresponding to the website’s certifi-
cate. This means they will be unable to decrypt intercepted traffic that was
encrypted using the encryption key attached to the site’s digital certificate.

On the other hand, if the attacker presents an alternative digital certifi-
cate corresponding to a decryption key that they do possess, that certificate
will not have been verified by a trusted certificate authority. Any browser
visiting the spoofed website will show a security warning to the user,
strongly dissuading them from continuing.

In this way, certificate authorities allow users to trust the websites they
are visiting. You can view the certificate a website is using by clicking the
padlock icon in the browser bar. The information described there won’t be
particularly interesting, but browsers do a good job of warning you when a
certificate is invalid.

Obtaining a Digital Certificate
Obtaining a digital certificate for your website from a certificate author-
ity requires a few steps, by which the authority verifies that you own your
domain. The precise way you perform these steps differs depending on
which certificate authority you choose.

The first step is to generate a key pair, a small digital file containing ran-
domly generated public and private encryption keys. Next, you use this key
pair to generate a certificate signing request (CSR) that contains the public key
and domain name of your website, and upload the request to a certificate
authority. Before honoring the signing request and issuing the certificate,
the certificate authority will require you to demonstrate to them that you
have control of the internet domain contained in the CSR. Once domain
ownership has been verified, you can download the certificate and install it
on your web server along with the key pair.

Generating a Key Pair and Certificate Signing Request

The key pair and CSR are typically generated using the command line tool,
openssl. CSRs often contain other information about the applicant besides
the domain name and public key, such as the organization’s legal name and
physical location. These get included in the signed certificate, but are not
mandatory unless the certificate authority chooses to validate them. During
the generation of the signing request, the domain name is often referred to
as the distinguished name (DN) or the fully qualified domain name (FQDN), for
historical reasons. Listing 13-1 shows how to generate a certificate signing
request by using openssl.

124 Chapter 13

openssl req -new -key ./private.key -out ./request.csr

Listing 13-1: Generating a certificate signing request by using openssl on the command line

The file private.key should contain a newly generated private key (which
can also be generated with openssl). The tool openssl will ask for details to
incorporate into the signing request, including the domain name.

Domain Verification

Domain verification is the process by which a certificate authority verifies that
someone applying for a certificate for an internet domain does indeed have
control of that domain. When applying for a digital certificate, you are stat-
ing that you need to be able to decrypt traffic sent to a particular internet
domain. The certificate authority will insist on checking that you own that
domain as part of its due diligence.

Domain verification generally requires you to make a temporary edit
to the DNS entries for your domain, thus demonstrating that you have edit
rights in the DNS. Domain verification is what protects against DNS spoof-
ing attacks: an attacker cannot apply for a certificate unless they also have
edit rights.

Extended Validation Certificates

Some certificate authorities issue extended validation (EV) certificates. These
require the certificate authority to collect and verify information about
the legal entity applying for a certificate. That information will then be
included in the digital certificate, and made available in the web browser to
users visiting the website. EV certificates are popular with large organiza-
tions, because the name of the company is usually displayed alongside the
padlock icon in the browser URL bar, encouraging a sense of trust in users.

Expiring and Revoking Certificates

Digital certificates have a finite lifespan (typically in years or months) after
which they must be reissued by the certificate authority. Certificate authori-
ties also keep track of certificates that have been voluntarily revoked by cer-
tificate holders. If the private key corresponding to your digital certificate
gets compromised, it’s important that you as a site owner apply for a new
certificate and then revoke the prior certificate. Browsers will warn a user
when visiting a website with an expired or revoked certificate.

Self-Signed Certificates

For some environments, particularly testing environments, acquiring a cer-
tificate from a certificate authority is unnecessary or impractical. Testing
environments that are available on only an internal network, for example,
can’t be verified by a certificate authority. You may still want to support

Encryption 125

HTTPS on these environments, however, so the solution is to generate your
own certificate—a self-signed certificate.

Command line tools like openssl can easily produce self-signed certifi-
cates. Browsers encountering a site with a self-signed certificate will usually
issue a strident security warning to the user (This site's security certificate
is not trusted!) but will still allow the user to accept the risks and continue
anyway. Just make sure anyone using your test environment is aware of this
limitation and knows why the warning occurs.

Should You Pay for Certificates?

Certificate authorities were traditionally commercial entities. Even today,
many of them charge a fixed fee for each certificate being issued. Since 2015,
the California nonprofit Let’s Encrypt has offered free certificates. Let’s
Encrypt was founded by (among others) the Mozilla Foundation (which
coordinates releases of the Firefox browser) and the Electronic Frontier
Foundation (a digital rights nonprofit based in San Francisco). As a result,
there is little reason to pay for a certificate, unless you require extended
validation capabilities offered by commercial certificate authorities.

Installing a Digital Certificate
Once you have a certificate and a key pair, the next step is to get your web
server to switch to using HTTPS and serve the certificate as part of the
TLS handshake. This process varies depending on your hosting provider
and server technology, though it’s normally pretty straightforward and well-
documented. Let’s review a typical deployment process—which will require
a short digression.

Web Servers vs. Application Servers

Up to this point in the book, I have described web servers as machines for
intercepting and answering HTTP requests, and talked about how they
either send back static content or execute code in response to each request.
While this is an accurate description, it elides the fact that websites are usu-
ally deployed as a pair of running applications.

The first of the applications that runs a typical website is a web server
that serves static content and performs low-level TCP functions. This will
typically be something like Nginx or the Apache HTTP Server. Web servers
are written in C and optimized to quickly perform low-level TCP functions.

The second application of the pair is an application server, which sits
downstream from the web server and hosts the code and templates that
make up that dynamic content of the site. Many application servers are
available for each programming language. A typical application server
might be Tomcat or Jetty for websites written in the Java languages; Puma
or Unicorn for Ruby on Rails websites; Django, Flask, or Tornado for
Python websites; and so on.

126 Chapter 13

Rather confusingly, web developers will often casually refer to the appli-
cation server they use as “the web server,” since that is the environment they
spent most of the time writing code for. In actual fact, it’s perfectly possible to
deploy an application server on its own, because an application server can do
everything a web server can, albeit less efficiently. This is a fairly typical setup
when a web developer is writing and testing code on their own machine.

Configuring Your Web Server to Use HTTPS

Digital certificates and encryption keys are almost always deployed to web
servers, since they are much faster than application servers. Switching over
a web server to use HTTPS is a matter of updating the web server’s config
uration so that it accepts traffic on the standard HTTPS port (443), and
telling it the location of the digital certificate and key pair to be used when
establishing the TLS session. Listing 13-2 shows how to add the certificate
into the configuration file for the Nginx web server.

server {
 listen 443 ssl;
 server_name www.example.com;
 ssl_certificate www.example.com.crt;
 ssl_certificate_key www.example.com.key;
 ssl_protocols TLSv1.2 TLSv1.3;
 ssl_ciphers HIGH:!aNULL:!MD5;
}

Listing 13-2: Describing the location of the digital certificate (www.example.com.crt) and
encryption key (www.example.com.key) when configuring Nginx

Web servers that handle TLS functionality in this way will decrypt
incoming HTTPS requests, and pass any requests that need to be handled
by the application server downstream as unencrypted HTTP requests. This
is called terminating HTTPS at the web server: traffic between the web and
application server is not secure (because the encryption has been stripped),
but this isn’t usually a security risk because traffic is not leaving the physical
machine (or at least, will only be passed over a private network).

What About HTTP?

Configuring your web server to listen for HTTPS requests on port 443
requires a handful of edits to a configuration file. You then need to decide
how your web server will treat unencrypted traffic on the standard HTTP
port (80). The usual method is to instruct the web server to redirect inse-
cure traffic to the corresponding secure URL. For instance: if a user agent
visits http://www.example.com/page/123, the web server will respond with
an HTTP 301 response, directing the user agent to visit https://www.example​
.com/page/123 instead. The browser will understand this as an instruction
to send the same request on port 443, after negotiating a TLS handshake.
Listing 13-3 shows an example of how to redirect all traffic on port 80 to
port 443 on the Nginx web server.

Encryption 127

server {
 listen 80 default_server;
 server_name _;
 return 301 https://$host$request_uri;
}

Listing 13-3: Redirecting all HTTP to HTTPS on the Nginx web server

HTTP Strict Transport Security

At this point, your site is set up to securely communicate with the browser,
and any browsers using HTTP will get redirected to HTTPS. You have one
final loophole to take care of: you need to ensure that sensitive data will not
be sent during any initial connection over HTTP.

When a browser visits a site it has seen previously, the browser sends
back any cookies the website previously supplied in the Cookie header
of a request. If the initial connection to the website is done over HTTP,
that cookie information will be passed insecurely, even if the subsequent
requests and responses get upgraded to HTTPS.

Your website should instruct browsers to send cookies only over an HTTPS
connection by implementing an HTTP Strict Transport Security (HSTS) policy.
You do this by setting the header Strict-Transport-Security in your responses.
A modern browser encountering this header will remember to connect to
your site only using HTTPS. Even if the user explicitly types in an HTTP
address like http://www.example.com, the browser will switch to using HTTPS
without being prompted. This protects cookies from being stolen during
the initial connection to your site. Listing 13-4 shows how to add a Strict​
-Transport-Security header when using Nginx.

server {
 add_header Strict-Transport-Security "max-age=31536000" always;
}

Listing 13-4: Setting up HTTP Strict Transport Security in Nginx

The browser will remember not to send any cookies over HTTP for the
number of seconds supplied in max-age, whereupon it will check again if the
site has changed its policy.

Attacking HTTP (and HTTPS)
At this point in the chapter, you might well ask: what’s the worst that can
happen if I choose not to use HTTPS? I haven’t really described how unen-
crypted HTTP can be exploited, so let’s remedy that. Weakly encrypted or
unencrypted communication on the internet allows an attack to launch a
man-in-the-middle attack, whereby they tamper with or snoop on the HTTP
conversation. Let’s look at some recent examples from hackers, internet ser-
vice providers, and governments.

128 Chapter 13

Wireless Routers
Wireless routers are a common target for man-in-the-middle attacks. Most
routers contain a bare-bones installation of the Linux operating system,
which enables them to route traffic to a local internet service provider (ISP)
and host a simple configuration interface. This is a perfect target for a
hacker, because the Linux installation will typically never be updated with
security patches—and the same operating system version will be installed
in many thousands of homes.

In May 2018, Cisco security researchers discovered that over half a
million Linksys and Netgear routers had been infected with a piece of mal-
ware called VPNFilter, which snooped on HTTP traffic passing through the
router, stealing website passwords and other sensitive user data on behalf
of an unknown attacker thought to be linked to the Russian government.
VPNFilter even attempted to perform downgrade attacks, interfering with
the initial TLS handshake to popular sites so that the browser opted to use
weaker encryption or no encryption at all.

Sites using HTTPS would have been immune to this attack, because
HTTPS traffic is indecipherable to anyone but the recipient site. Traffic to
other websites was likely stolen by hackers and mined for sensitive data.

Wi-Fi Hotspots
A lower-tech way for a hacker to launch a man-in-the-middle attack is to
simply set up their own Wi-Fi hotspot in a public place. Few of us pay much
attention to the name of the Wi-Fi hotspots our devices use, so it’s easy for
an attacker to set up a hotspot in a public space like a café or hotel lobby
and wait for unwary users to connect to it. Because TCP traffic will flow
through the hacker’s device on its way to the ISP, the hacker will be able to
record the traffic to disk and comb through it to extract sensitive details
like credit card numbers and passwords. The only indication to the victim
that anything untoward has happened occurs when the attacker leaves the
physical location and shuts down the hotspot, disconnecting their victims
from the internet. Encrypting traffic defeats this attack, since the hacker
will not be able to read any traffic they captured.

Internet Service Providers
Internet service providers connect individual users and businesses to the
internet backbone, which is a position of enormous trust given the poten-
tially sensitive nature of the data being passed. You would think that would
deter them from snooping or interfering with HTTP requests, but that isn’t
the case for companies like Comcast, one of the largest ISPs in the United
States, which injected JavaScript advertisements into HTTP traffic flowing
through its servers for many years. Comcast claimed to be doing this as a
service (many of the advertisements informed the user of how much of the
monthly data plan had already been used), but digital rights campaigners
saw this approach as analogous to a mail carrier slipping advertising mate-
rial into sealed letters.

Encryption 129

Websites that use HTTPS are immune to this type of tampering,
because the contents of each request and response are opaque to the ISP.

Government Agencies
Government agencies snooping on your internet traffic might seem like
the stuff of conspiracy theories, but plenty of evidence indicates this
does indeed happen. The US National Security Agency (NSA) has success-
fully implemented man-in-middle-attacks to conduct surveillance. An
internal presentation leaked by former NSA contractor Edward Snowden
described how Brazil’s state-run oil producer Petrobras was spied on: the
NSA obtained digital certificates for Google websites and then hosted its
own look-alike sites that harvested user credentials while proxying traffic to
Google. We don’t really know how widespread this type of program is, but
it’s pretty unnerving to think about. (In case anyone from the government
is reading this: actually, this type of program is good and keeps us safe, and
the author of this book supports it wholeheartedly.)

Summary
You should use HTTPS to ensure that communication from web browsers
to your site is kept private and cannot be tampered with. HTTPS is HTTP
sent over Transport Layer Security (TLS). A TLS conversation is initiated
when a web server and user agent partake in a TLS handshake. During the
TLS handshake, the browser offers a list of supported cipher suites it is able
to support. Each cipher suite contains a key-exchange algorithm, a block
cipher, and a message authentication code algorithm. The web server picks
a cipher it supports and returns its digital certificate.

The browser then uses the public key attached to the digital certificate
to encrypt a (randomly generated) TLS session identifier with the key-
exchange algorithm, and sends it to the web server. Finally, when both par-
ties possess the session identifier, they use it as the encryption/decryption
key for subsequent messages sent back and forth, encrypted with the chosen
block cipher. The authenticity of each data packet will be validated using
the message authentication code algorithm.

Digital certificates are issued by a handful of certificate authorities,
which will require you to demonstrate ownership of your chosen domain in
the Domain Name System before issuing a certificate. By acting as a trusted
third party between the browser and the website, certificate authorities pre-
vent spoofed websites from presenting a fake certificate.

Once you have obtained a certificate for your website, you need to serve
content over HTTPS. This means configuring your web server to accept
traffic over port 443, telling it where to find the certificate and correspond-
ing decryption key, and redirecting HTTP traffic on port 80 to HTTPS
traffic on port 443. Finally, you should instruct the browser not to send any
sensitive data—for example, session cookies—in HTTP requests before the
upgrade to HTTPS, by setting an HTTP Strict Transport Security policy.

130 Chapter 13

Be sure to upgrade your web server technology fairly frequently, so you
are certain you are using the most modern (and hence secure) cipher suites.
Encryption standards are constantly being researched and enhanced, as
older algorithms are compromised or discovered to be vulnerable.

While we are discussing the need to keep your web server up-to-date,
you should take a broader look at how to test, secure, and manage any
third-party applications you use to serve your website. That’s exactly what
you will be doing in the next chapter!

14
T H I R D - P A R T Y C O D E

Nobody builds software from scratch now­
adays, least of all web developers. Most of

the code powering your website—from the
operating system, to the web server, to the pro­

gramming language libraries you use—will be written
by others. So how do you manage vulnerabilities in
other people’s code?

Hackers often target known vulnerabilities in popular software compo­
nents, so it is important to secure third-party code. It is far more efficient
for a hacker to scan the web for insecure WordPress instances, for example,
than to pick a particular website and try to figure out how it might be vul­
nerable. So, it’s important that you stay up-to-date with the latest security
patches in order to avoid being picked up by a malicious scan.

This chapter discusses three approaches to securing third-party code.
You’ll learn how to stay ahead of security advisories for your dependencies,
the software components you use. Next, you’ll delve into the importance of
configuring these dependencies correctly, so they do not accidentally leave

132 Chapter 14

open backdoors that hackers can take advantage of. Finally, you’ll see the
security risks associated with third-party services—code running on other
people’s servers that is either called by your web server or loaded into
your web pages via JavaScript imports. In particular, you will look at the
alarmingly popular strategy of deploying malware through ad networks—
so-called malvertising—and examine ways to protect your users if your site
includes advertising.

Securing Dependencies
In April 2014, the authors of OpenSSL, the open source C library that
implements TLS for most versions of Linux (and other operating systems),
disclosed the existence of the Heartbleed bug: using a buffer over-read,
an attacker could read arbitrary chunks of memory from a server using
the vulnerable library, and thereby steal encryption keys, usernames, pass­
words, and other sensitive data. The two most popular web servers on the
internet—Apache and Nginx—use OpenSSL to secure communication,
and researchers working for the security firm AVG estimated that more
than half a million websites were revealed to be vulnerable to attack over­
night. Because of the sheer number of websites affected, the Heartbleed
vulnerability has been called the most dangerous bug of all time.

A new version of OpenSSL that patched the bug was released the same
day that the vulnerability was disclosed, but unpatched web servers were
still common on the internet for months afterward. This was a dangerous
time to run an unpatched web server: hackers had time to find the best
methods of exploiting the vulnerability, and the dwindling pool of vulner­
able sites made the remaining web servers a more likely target.

All websites use third-party code, and all third-party libraries—even
those written by security experts, like OpenSSL—are liable to have secu­
rity issues. If you want to stay ahead of these vulnerabilities, you need to
be aware of security issues as soon as they are made public and to patch
software promptly. There are three aspects to this: knowing precisely what
dependencies you are running, being able to update your dependencies
quickly, and staying alert to security issues for your dependencies. Let’s dis­
cuss each in turn.

Know What Code You Are Running
The first step to securing your dependencies is knowing what they are. This
might sound obvious, but modern software stacks are intricate and multilay­
ered, making it easy to add new libraries during the development phase of
the software development life cycle that you may forget about later. There are
numerous tools you really ought to be using to organize your dependencies.

Dependency Management Tools

Most programming languages come with a dependency manager that allows
a development team to specify third-party dependencies in a configuration

Third-Party Code 133

file. The described software libraries will be downloaded on demand as
part of the build process. Dependency managers make it easy to grab new
dependencies and to rebuild the software stack in a new environment—for
instance, when you deploy to a server.

To be absolutely sure you know which versions of each dependency
you are running, you should get in the habit of specifying explicit version
numbers for each dependency in your dependency list. Packages available in
a dependency management system are hosted in a remote repository on the
internet. As package authors release new versions of a package, they will be
added to the repository with a new version number. By default, most depen­
dency managers grab the latest version of each dependency when you first
run a build in a new environment. This is a sensible default behavior during
initial development, but by the time you are releasing code, your dependency
configuration file should explicitly list version numbers. Security advisories
will disclose which versions of a dependency are vulnerable, so pinning
down the versions you are running in each environment will tell you what
needs to be patched.

 Be aware, too, that the dependencies you declare likely have dependen­
cies themselves—and your dependency manager will helpfully fetch those
libraries too. For this reason, we talk about the dependency tree, since each
dependency has branches that are other dependencies. Be sure to consider
the whole dependency tree when assessing security risks. Your dependency
manager will be able to output the whole tree (including dependencies of
dependencies) on the command line. Listing 14-1 shows the dependency
tree for a Node.js project, illustrating how the @blueprintjs/core library has
the popper.js library as a subdependency.

my_project@0.0.0 /usr/code/my_project
├─┬ @blueprintjs/core@3.10.0
│ ├─┬ @blueprintjs/icons@3.4.0
│ │ ├── classnames@2.2.6 deduped
│ │ └── tslib@1.9.3 deduped
│ ├── @types/dom4@2.0.1
│ ├── classnames@2.2.6 deduped
│ ├── dom4@2.1.4
│ ├── normalize.css@8.0.1
│ ├── popper.js@1.14.6
│ ├── react-popper@1.3.3 deduped

Listing 14-1: The command npm list shows the whole dependency tree in the Node
Package Manager.

Operating System Patches

In addition to tracking your programming language dependencies, you
also need to keep track of software packages deployed at the operating sys­
tem level. Operating system vendors (for example, Red Hat and Microsoft)
frequently issue security patches, so you should track the version of each
operating system library you are using in any given environment, and have
a strategy for upgrading servers in a timely fashion. If you have physical

134 Chapter 14

servers running in a data center, your company likely has dedicated system
administrators to take care of this. If you run your software on virtualized
servers in the cloud (for instance, on Amazon EC2), you should update
the version of the operating system regularly as part of deployment. Using
Docker for containerization is a great way of tracking operating system
dependencies, too, since the Docker configuration file will explicitly list
what software is to be installed when the container is instantiated.

Integrity Checks

One final consideration: you need to ensure that the code you think you
are running is the code you are actually running. Dependency managers
and patching tools will help here. They ensure that software components
are delivered uncorrupted by using checksums—digital fingerprints that are
calculated when the dependency is uploaded to the repository, and that can
be recalculated and verified when the dependency is downloaded for use.
You should strive to provide the same guarantees when deploying JavaScript
code and other resources to the browser.

Modern browsers allow you to do this by adding subresource integrity checks
to <script> and <style> tags in your HTML. Your build process should generate
a checksum for each resource file you intend to import on the client side, and
assign that checksum to the integrity attribute of each import tag. Listing 14-2
shows how to use the openssl utility to generate a checksum.

cat FILENAME.js | openssl dgst -sha384 -binary | openssl base64 -A

Listing 14-2: To generate a checksum in Unix, pipe the JavaScript file FILENAME.js to
openssl to generate a digest and encode it in Base64.

The browser will compare the script to the expected checksum and
verify that there’s a match before executing the imported code. This makes it
much harder for hackers who gain access to your server to replace JavaScript
files with malicious code, because they would also have to gain access to
and change the code that generates the <script> tags, like the one shown in
Listing 14-3.

<script src="https://example.com/example-framework.js"
 integrity="sha384-oqVuAfXRKap7fdgcCY5uykM6+R9GqQ8K/uxy9rx7HNQlG"
 crossorigin="anonymous"></script>

Listing 14-3: Ensure the integrity of an imported JavaScript file by calculating a checksum
of the file and adding it to the integrity attribute of the HTML tag that imports the script.

Be Able to Deploy New Versions Quickly
Responding to security issues requires you to be able to deploy patches
quickly, which means, in turn, having an orderly and scripted release
process. Chapter 5 covered much of this: your release process should be
reliable, reproducible, and revertible, and releases should be tied to code
branches in a source control system. The configuration file used by your

Third-Party Code 135

dependency manager should be kept under source control, so you can track
which versions of each dependency were deployed with each release.

You will often deploy security patches for third-party components in
isolation—upgrading dependency versions without releasing any changes to
your own code. A release that contains only third-party code changes still
requires you to regression test your website: in other words, to ensure that the
upgraded dependencies do not break any existing functionality on the site.
Regression testing becomes much more of a formality if you have good cov­
erage in your unit tests. The more lines of your codebase that are executed
during unit test runs, the less manual testing you will need to do. Investing
some time in writing good unit tests will make deploying security patches
quicker and easier.

Stay Alert to Security Issues
With carefully managed dependencies and a reliable release process, you
are in a good position to secure the third-party code you use. The final
piece of the puzzle is staying in the loop when security issues are disclosed.
Thanks to the internet, you have a lot of ways to keep track.

Social Media

Security advisories spread quickly through social media and news sites like
Twitter, Reddit, and Hacker News (https://news.ycombinator.com/), so these
sites are a great way to get security news quickly. Big software vulnerabilities
will be discussed in subreddits like https://www.reddit.com/r/programming/
and /r/technology, and will usually hit the front page of Hacker News.

If you make time to follow technology pundits and software authors on
Twitter, security issues will often be the topic of the day. It’s also a great way
to keep abreast of new developments in the software world.

Mailing Lists and Blogs

Programming languages often have mailing lists and channels that publish
big news. The Python Software Foundation publishes a weekly newsletter
and has its own Slack channel, for instance. Make sure to subscribe to any­
thing relevant to your technology stack.

A huge number of blogs exist on the topic of information security.
Check out Brian Krebs (https://krebsonsecurity.com/) and Bruce Schneier
(https://www.schneier.com/) for insightful commentary on the security
issues of the day.

Official Advisories

Pay attention to security alerts from your hosting provider and software
vendors. When major security issues on the scale of Heartbleed occur,
hosting companies will engage with their customers and guide them
through the patching process. Microsoft famously issues new patches
every Tuesday (patch Tuesday) so make sure to sign up to its newsletter
if you use Microsoft technology.

https://schneier.com/

136 Chapter 14

Software Tools

In addition to keeping your ear to the ground, automated tools can check
your dependencies for known vulnerabilities. Node.js leads the way here,
as the Node Package Manager (NPM) now incorporates the npm audit com­
mand that can be used to cross-check your dependency versions against an
open source database of vulnerabilities. The equivalent tool for Ruby is the
bundler-audit gem; for Java and .NET, the Open Web Application Security
Project (OWASP) publishes a command line tool called dependency-check.
Incorporating these tools into your build process will alert you of any poten­
tial vulnerabilities whenever your code is built and will allow you to assess
the risks around each vulnerability.

Your source code repository can also help. GitHub automatically scans
code hosted on their site, and will issue security alerts whenever vulnerable
dependencies are found.

Know When to Upgrade
It’s important to note that not all security issues merit equal priority! Constantly
upgrading your dependencies can be time-consuming, especially since many
of the security concerns in a particular advisory may be mitigated in your sys­
tem by other factors. Large organizations have formal processes for reviewing
security alerts, prioritizing them, and then choosing the appropriate action.
It’s perfectly acceptable to fold in minor security upgrades at the next sched­
uled release, as long as your team has assessed the risks involved.

Securing Configuration
Software is only as secure as it is configured to be. This is particularly true
of third-party software: if you install a new database and start running with
the default user account and password, you will quickly run into trouble.
Hackers frequently scan the internet for software components running with
their default settings, since they know that many site owners will neglect to
customize their configurations when installing software.

If you are running software with an unsecured configuration, you
are probably advertising this fact to the world. The information security
consulting group Offensive Security hosts the Google Hacking Database,
a listing of insecure software you can find via a simple Google search.
The Google search spider does a thorough job of indexing pages on the
web and offers a powerful set of tools for refining searches based on this
information. For example, googling index of /etc/certs will list millions of
web servers that expose their digital certificate directories to the world—
a major security flaw!

Deploying your dependencies with a secure configuration is absolutely
key to not getting hacked. A secure configuration requires setting up your
services with strong credentials, storing your configuration information
securely, and limiting the damage an attacker can do if they gain access
to one part of your environment. Let’s see how.

Third-Party Code 137

Disable Default Credentials
Many software packages come with default login credentials to make them
easy for a first-time user to get up and running. Make sure you disable these
credentials before deploying the software to test or production environments.
If your database, web server, or content management system is deployed with,
for example, an admin account, it will be quickly detected by bots scanning
the internet for vulnerable software.

Disable Open Directory Listings
Web servers tend to overshare. Older versions of the Apache web server, for
instance, map URL paths to files, and will helpfully list the files a directory
contains if the filename was omitted in the URL. Open directory listings invite
hackers to explore your filesystem, allowing them to search for sensitive data
files and security keys. Make sure to disable directory listings in your web server
configuration. Listing 14-4 shows how this is done in the Apache web server.

<Directory /var/www/>
 Options Indexes FollowSymLinks
 AllowOverride None
 Require all granted
</Directory>

Listing 14-4: Remove the keyword Indexes to prevent this Apache configuration file from
generating open directory listings.

Protect Your Configuration Information
Your web server configuration will likely contain sensitive information, such
as database credentials and API keys. Many development teams store configu­
ration files in source control, to make deployment easier. However, consider
what a hacker could do with access to your source control system: this type
of sensitive information is the first thing hackers will search for. Database
credentials, API keys, private encryption keys, certificates, and other sensitive
configuration details need to be kept externally from source control.

One common approach is to record sensitive configuration in environ­
mental variables at the operating system level, and have your configuration
code initialize itself from these environmental variables when it starts up.
These environmental variables can be initialized by configuration files
stored locally on the server.

Another approach is to use a dedicated configuration store. Amazon
Web Services (AWS) allows you to store configuration securely in its Systems
Manager Parameter Store. Microsoft servers frequently store credentials in
Active Directory, which allows for fine-grained permissions. Storing config­
uration in a database table is another option, though you should consider
how an attacker may be able to escalate an attack if they gain access to your
database. (Your web server will also have to access your database credentials
before it can load the rest of the configuration!)

138 Chapter 14

One surefire way to secure configuration information is to store it
in encrypted form, encrypted with an algorithm such as AES-128. This
approach means that a hacker will have to compromise your configuration
data and your decryption key before they can steal your credentials. Just
remember to store the decryption key in a different location from the con­
figuration files, or the security benefit is neglible.

Harden Test Environments
Preproduction environments typically have the same software installed
as their production counterparts but are frequently less secure. If your
test environment contains sensitive data—for instance, if you ever copy
data from the production environment to help with testing—you need to
configure your test environments to be just as secure as your production
environment. Crucially, production and nonproduction should not share
credentials or API keys; it’s important that you limit the damage a hacker
can do if they manage to compromise your test server.

Secure Administrative Frontends
Some software components come with administrative tools that are available
over the internet. Administrative interfaces are a favorite target for hackers.
You will often encounter malicious bots probing for unsecured WordPress
instances by testing for the presence of a /wp-login.php page, for instance.

If you don’t intend to use these administrative frontends, disable them
in your configuration. If you do intend to use them, make sure to remove
any default login credentials, and, if possible, restrict the IP range that can
access them. Consult the documentation for your software stack or do a
quick search on Stack Overflow (https://stackoverflow.com/) to find out how.

Now that you have learned how to secure third-party code running on
your servers, let’s look at how to securely integrate with code running on
other people’s servers.

Securing the Services That You Use
Third-party services are widely used in modern web development. You might
be using Facebook Login for authentication, Google AdSense to place adver­
tisements on your site, Akamai for hosting static content, SendGrid for send­
ing transactional email, and Stripe for processing payments.

Integrating these kinds of services into your website generally means
creating an account with the service provider, being supplied secret access
credentials, and altering your website code to make use of the service. Two
security considerations arise here. First, hackers will often attempt to steal
your access credentials in order to access your account with these services.
This will allow them to mine information about your users, for instance,
or even to initiate financial transactions in the case of payment processors.
Second, every third-party service is a potential attack vector to your site,

Third-Party Code 139

because hackers try to compromise service providers in order to get access
to a broad range of targets.

Let’s start with the first consideration: learning how to safely store your
access credentials.

Protect Your API Keys
Many third-party services issue you an application programming inter­
face (API) key when you sign up, and your code must present the key as
an access token when it interacts with the API. API keys need to be stored
safely. Generally, this means storing the API key securely in the configura­
tion on the server, as discussed in the previous section.

Some APIs issue two API keys: a public key that can be safely passed to
the browser, used to make API calls from JavaScript; and a private key that
must be kept securely on the server, used to make private API calls from the
server side for more-sensitive actions. The public key has fewer privileges
associated with it. Audit your code to make sure these keys don’t get mixed
up! You don’t want to accidentally send the higher-privilege private key to
the client. Even something as simple as naming your configuration vari­
ables SECRET_KEY will remind your development team of the risks.

Other services allow you to generate a temporary access token that can
be passed to the client. Typically, these tokens can be used only once, or
within a limited time window, to prevent abuse by a malicious user. These
access tokens protect against replay attacks, whereby an attacker resends
HTTP requests in an attempt to repeat an action (for instance, to duplicate
a payment). Make sure your code generates access tokens only when a user
has already authenticated themselves, or an attacker may be able generate
new access tokens on demand.

Secure Your Webhooks
Most API integrations involve making HTTPS calls from your web server or
the browser, to the service provider’s API. When a service provider needs to
make calls in the opposite direction (for instance, to send you notifications),
it may ask you to implement a webhook. This is a simple “reverse API” on your
website that the service provider will send HTTPS requests to when an event
happens. You might, for instance, get webhook calls when a user opens an
email you sent or when your payment processor initiates a payment.

Since they are public URLs, webhooks can be called by anyone on the
internet, not just the service provider. If the service provider supports send­
ing credentials with a webhook invocation, you should verify that these cre­
dentials are correct before processing the webhook call.

If a webhook invocation is purely informational and contains no sensi­
tive data, it may be sent with no credentials attached whatsoever. In this
scenario, an attacker can easily spoof such webhook calls. Be prepared to
verify the notification with a further callback to the service provider’s API
before doing any further processing.

140 Chapter 14

Secure Content Served by Third Parties
Finding a way to serve malicious content under someone else’s domain is a
favorite trick of hackers; victims can be lulled into a false sense of security
by the sites they trust. Users have been conditioned to trust the padlock
icon in the browser, so if a hacker can find a way to deploy malware under
the security certificate of a large company, they will be able to trick more
victims into downloading it.

Many websites use content delivery networks (CDNs) or cloud-based
storage—such as Amazon S3—to serve frequently accessed content. When
web developers integrate with this type of service, they often route traffic
from their domain to the service by making DNS changes—for instance, by
redirecting traffic on a subdomain such as subdomain.example.com to the ser­
vice. This allows content served by the third party to be encrypted with the
site’s security certificate.

Hackers frequently attempt subdomain takeovers by scanning the inter­
net for DNS entries describing subdomains that point to IP addresses for
uninitialized or deactivated services. They will then register with the service
provider and squat on one of the listed IP addresses. This will allow them to
create links to their malicious content by using the domain of the victim.

If your website serves content hosted by a CDN or cloud-based storage,
you need to be careful that your DNS entries point to only live IP addresses.
Make DNS changes only after you have verified that the service is up and
running under your control, and revoke DNS changes promptly if you
change service providers.

Now that you know how to protect your integrations with service provid­
ers, let’s look at threats in the other direction.

Services as an Attack Vector
Third-party services are potentially a vector for malicious attacks against
your website. This is particularly true of services you integrate on the client
side, because any JavaScript you import from a third-party domain comes
with security risks.

Let’s use Google Analytics as an example. When you add the Google
Analytics tool to your site, you register for an account with Google to get a
tracking ID and then import external JavaScript on pages where you wish
to track user activity, as shown in Listing 14-5.

<script src="https://www.googletagmanager.com/gtag/js?id=GA_TRACKING_ID"></script>

Listing 14-5: The recipe for adding Google Analytics to your web pages

The imported code can read anything in the page’s DOM, including
sensitive data the user types in. It will also be able to make changes to the
DOM in potentially misleading ways; for example, in order to trick the user
into entering their credentials. It’s important to consider these risks as you
add client-side services. Malicious code can be served by the third-party
service itself or by an attacker that has compromised the service. (In case

Third-Party Code 141

you are wondering: Google Analytics has never been compromised by an
attacker. I am simply using it as an example here!)

Unfortunately, the browser security model is not currently very sophis­
ticated when considering how to run client-side code imported from third
parties. JavaScript code within a browser runs in a sandbox, meaning it is
isolated from the underlying operating system and can’t access files on disk,
but JavaScript files imported from different sources on a web page all play in
the same sandbox.

The upcoming web components specification (https://www.webcomponents​
.org/), currently being developed by the HTML standards committee,
defines more-granular permissions for code and page elements. While
these details are being finalized and implemented, however, you should
implement sensible security precautions on your site. Let’s discuss how to
secure your client-side integrations, by looking at what is (by far) the most
common vector for attacks via a third-party channel: malvertising.

Be Wary of Malvertising
Advertising is a major part of the modern web: much of the content on the
internet is funded by advertising revenue, and companies spend more than
$100 billion annually on online advertisements. Advertisements are usually
placed on websites by third-party ad platforms. A site owner (referred to as
a publisher in the online advertising world) will subscribe to the ad platform
and then demarcate various areas of their site as places advertisements
should appear. The ad platform will populate these spaces as the site loads,
using JavaScript imported directly on each page.

Major ad platforms such as Google AdSense use analytics to identify the
type of content a publisher is hosting, and the type of people who visit the
site, in order to determine the types of advertising to place. Publishers
sometimes deal with advertisers directly, or have their ad spaces placed on
an exchange, whereby ad buyers purchase blocks of ads. (An ad buyer might
purchase 1,000 ad impressions for a particular demographic such as men
aged 18–25 who visit sneaker sites.)

As a publisher, you have some control over the advertisements you
carry, but generally do not get to approve each one beforehand. Google
AdSense, for example, allows publishers to block categories of ads or spe­
cific web domains, or to reject specific ads after they have already begun to
be shown to users.

This is a security risk because hackers frequently use ad platforms as an
attack vector. Malicious ads—malvertising—allow an attacker to target many
sites at once with malware. Malvertising is an increasingly common threat
on the internet that can embarrass publishers and ad networks, and make
victims out of their users.

Avoid Malware Delivery
Malware in advertising is typically delivered via exploit kits, which determine
whether a particular browser and operating system is vulnerable before
delivering the actual malicious code: the payload. Payloads can include

142 Chapter 14

scripts that redirect or lock the browser, viruses or ransomware delivered
via vulnerabilities in plug-ins, or even JavaScript code that mines crypto­
currency in the user’s browser.

Exploit kit authors are in an arms race with security researchers. To avoid
detection, exploit kits are hosted at dynamically generated URLs and avoid
automated scans by triggering only sporadically. Exploit kits have even been
observed trying to prevent malware analysis by detecting when they are run­
ning in a virtual machine (malware researchers often use virtual machines
to quarantine harmful code as they analyze it).

If your users are being hit by malware delivered through ads on your site,
you are putting them in danger. You can protect them by making sure you
partner with only trustworthy ad platforms, deploying ads in secure frames
in your web pages, and continually being on the lookout for malicious ads.

Use a Reputable Ad Platform
For the most part, defending against malvertising is the responsibility of
the ad platform. They are the ones who have the relationship with the ad
buyers, and only they have enough visibility across those advertisers to spot
malicious actors.

Google is (by far) the biggest player in the advertising space. Google
permits smaller publishers to monetize their sites by using the self-service
AdSense platform. Larger publishers are granted access to AdX, a platform
that allows a publisher to specify their advertising partners and set their
own prices. Both platforms take ads from third-party advertising networks.

Google is remarkably on the ball about defending against malicious
ads, since so much of their revenue depends on their advertising platform.
To take advantage of this, you should make AdSense or AdX your first
choice when choosing an ad platform.

Google chooses not to work with some types of sites, however, for repu­
tational reasons. You will have a hard time getting approved for AdSense if
you host adult-themed or violent content, for instance. In this scenario, you
may have to work with a smaller advertising platform that will likely have
fewer resources and less inclination to secure you against malware. Do your
research before picking a platform.

Use SafeFrame
The most effective way of isolating third-party content in a web page is to host
that content inside an <iframe> tag. JavaScript code loaded inside an iframe
(inline frame) cannot access the DOM of the containing page. HTML5 adds
even more granular controls by adding the sandbox attribute to the <iframe>
tag. This attribute allows the frame to specify whether the contained content
can, for example, submit POST requests or open new windows.

The advertising industry has adopted a standard called SafeFrame,
which allows publishers to specify that ads must be run in an iframe. The
SafeFrame standard uses <iframe> tags, and adds a JavaScript API that allows
the advertiser to overcome some of the native limitations of iframes. The

Third-Party Code 143

API permits advertising scripts to know when the frame is visible and to
respond to size changes, for instance.

Your advertising platform will have an option to show only SafeFrame-
compliant ads, and you should choose that option. This will stop any mali­
cious ad scripts that attempt to interfere with the web page as it is rendered.

Tailor Your Ad Preferences
Most advertising platforms allow you to customize the type of ad content
you show to users. If you use Google AdSense, make sure you show con­
tent from only Google certified ad networks. Hackers have been known to
buy expired domains for smaller, defunct ad networks in order to deliver
malware.

Take stock of what categories of ads you are showing too. You prob­
ably want to block advertisements for get-rich-quick schemes and multi­
level marketing campaigns, as well as anything that describes itself as a
downloadable utility.

Review and Report Suspicious Ads
Periodically review the ads being shown on your site from within your ad
platform dashboard. (Remember: ads are tailored to the visitor, so simply
visiting your site in a browser won’t show you the full range of ads being
shown.) Report and block anything that looks suspicious. It is also a good
idea to log outgoing URLs as users leave your site, so you can track whether
any ads you are hosting are taking users to suspicious sites.

Summary
Vulnerabilities in third-party code are a threat to your website. Use a depen­
dency manager to keep track of what third-party dependencies you use,
keep your dependency inventory under source control, and name explicit
dependency versions. Make sure your build and deployment processes are
scripted, so it is easy to upgrade your dependencies when security advisories
are issued. (This should include operating system patches.) Stay engaged
with social media and news sites so you know when security advisories are
issued. Use auditing tools to detect vulnerable software components in your
dependency tree. Use the integrity attribute when importing JavaScript on
your web pages so these files can be validated by the browser.

Make sure you are not running with an insecure configuration; hackers
will discover insecure software components by using simple Google searches.
Disable any default credentials for your system, and disable open directory
listings in your web server configuration. Keep sensitive configuration details
(for example, database access credentials or API keys) out of source control;
instead, keep them in a dedicated configuration store and load them at
startup. Take care to secure configuration for test environments and adminis­
trative frontends, since they are common targets for hackers.

144 Chapter 14

Be careful not to pass sensitive API keys or access tokens to the client.
Secure any webhooks against spoofing attacks. If you serve content hosted
from other locations under your domain—say, by hosting it on a content
delivery network or in cloud storage—make sure an attacker is not able to
put malware on those systems and serve it under your security certificate.

Know the risks around malware delivered by any ads you host on your
site. Use a reputable ad network and take advantage of all the SafeFrame-
based security settings it permits. Periodically review the ads being placed
on your site. Report any ads you find suspicious and blacklist them.

In the next chapter, you will look at vulnerabilities related to XML pars­
ing. XML is a ubiquitous part of the modern internet and a common target
for hackers looking to compromise your system.

15
X M L A T T A C K S

With the explosive growth of the internet
in the ’90s, organizations began sharing

data with each other over the web. Sharing
data between computers meant agreeing on

a shared data format. Human-readable documents
on the web were being marked up with HyperText
Markup Language (HTML). Machine-readable files
were often stored in an analogous data format called
Extensible Markup Language (XML).

XML can be thought of as a more general implementation of HTML:
in this form of markup, the tag and attribute names can be chosen by the
document author rather than being fixed, as they are in the HTML speci-
fication. In Listing 15-1, you can see an XML file describing a catalog of
books, using tags like <catalog>, <book>, and <author>.

146 Chapter 15

<?xml version="1.0"?>
<catalog>
 <book id="7991728882998">
 <author>Sponden, Phillis</author>
 <title>The Evil Horse That Knew Karate</title>
 <genre>Young Adult Fiction</genre>
 <description>Three teenagers with very different personalities
team up to defeat a surprising villain.</description>
 </book>
 <book id="28299171927772">
 <author>Chenoworth, Dr. Sebastian</author>
 <title>Medical Encyclopedia of Elbows, 12th Edition</title>
 <genre>Medical</genre>
 <description>The world's foremost forearm expert gives detailed diagnostic
and clinical advice on maintaining everyone's favorite joint.</description>
 </book>
</catalog>

Listing 15-1: An XML document describing a catalog of books

The popularity of this data format, especially in the early days of the
web, means that XML parsing—the process of turning an XML file into
in-memory code objects—has been implemented in every browser and web
server of the past few decades. Unfortunately, XML parsers are a common
target for hackers. Even if your site doesn’t handle XML by design, your web
server may parse the data format by default. This chapter shows how XML
parsers can be attacked and how to defuse these attacks.

The Uses of XML
Much like HTML, XML encloses data items between tags and allows tags
to be embedded within one another. The author of an XML document can
choose semantically meaningful tag names so that the XML document is
self-describing. Because XML is very readable, the data format was widely
adopted to encode data for consumption by other applications.

The uses of XML are many. Application programming interfaces (APIs)
that allow client software to call functions over the internet frequently
accept and respond using XML. JavaScript code in web pages that commu-
nicates asynchronously back to the server often uses XML. Many types of
applications—web servers included—use XML-based configuration files.

In the past decade, some of these applications have started using better-
suited, less verbose data formats than XML. For example, JSON is a more
natural method of encoding data in JavaScript and other scripting languages.
The YAML language uses meaningful indentation, making it a simpler format
for configuration files. Nevertheless, every web server implements XML parsing
in some fashion and needs to be secured against XML attacks.

XML vulnerabilities generally occur during the validation process.
Let’s take a minute to discuss what validation means in the context of pars-
ing an XML document.

XML Attacks 147

Validating XML
Since the author of an XML file is able to choose which tag names are used
in the document, any application reading the data needs to know which
tags to expect and in what order they will appear. The expected structure of
an XML document is often described by a formal grammar against which
the document can be validated.

A grammar file dictates to a parser which sequences of characters are
valid expressions within the language. A programming language grammar
might specify, for instance, that variable names can contain only alphanu-
meric characters, and that certain operators like + require two inputs.

XML has two major ways of describing the expected structure of an XML
document. A document type definition (DTD) file resembles the Bachus–Naur
Form (BNF) notation often used to describe programming language gram-
mars. An XML Schema Definition (XSD) file is a more modern, more expressive
alternative, capable of describing a wider set of XML documents; in this case,
the grammar itself is described in an XML file. Both methods of XML valida-
tion are widely supported by XML parsers. However, DTDs contain a couple
of features that can expose the parser to attack, so that’s what we’ll focus on.

Document Type Definitions
A DTD file describes the structure of an XML file by specifying the tags,
subtags, and types of data expected in a document. Listing 15-2 shows a
DTD file describing the expected structure of the <catalog> and <book> tags
in Listing 15-1.

<!DOCTYPE catalog [
 <!ELEMENT catalog (book+)>
 <!ELEMENT book (author,title,genre,description)>
 <!ENTITY author (#PCDATA)>
 <!ENTITY title (#PCDATA)>
 <!ENTITY genre (#PCDATA)>
 <!ENTITY description (#PCDATA)>
 <!ATTLIST book id CDATA>
]>

Listing 15-2: A DTD file describing the format of the XML in Listing 15-1

This DTD describes that the top-level <catalog> tag is expected to
contain zero or more <book> tags (the quantity is denoted by the + sign),
and that each <book> tag is expected to contain tags describing the author,
title, genre, and description, plus an id attribute. The tags and attribute
are expected to contain parsed character data (#PCDATA) or character data
(CDATA)—that is, text rather than tags.

DTDs can be included within an XML document to make the docu-
ment self-validating. However, a parser that supports such inline DTDs is
vulnerable to attack—because a malicious user uploading such an XML
document has control over the contents of the DTD, rather than it being

148 Chapter 15

supplied by the parser itself. Hackers have used inline DTDs to exponen-
tially increase the amount of server memory a document consumes during
parsing (an XML bomb), and access to other files on the server (an XML
external entity attack). Let’s see how these attacks work.

XML Bombs
An XML bomb uses an inline DTD to explode the memory usage of an XML
parser. This will take a web server offline by exhausting all the memory
available to the server and causing it to crash.

XML bombs take advantage of the fact that DTDs can specify simple
string substitution macros that are expanded at parse time, called internal
entity declarations. If a snippet of text is frequently used in an XML file, you can
declare it in the DTD as an internal entity. That way, you don’t have to type it
out every time you need it in the document—you just type the entity name as a
shorthand. In Listing 15-3, an XML file containing employee records specifies
the company name in the DTD by using an internal entity declaration.

<?xml version="1.0"?>
<!DOCTYPE employees [
 <!ELEMENT employees (employee)*>
 <!ELEMENT employee (#PCDATA)>
 <!ENTITY company "Rock and Gravel Company"u>
]>
<employees>
 <employee>
 Fred Flintstone, &company;v
 </employee>
 <employee>
 Barney Rubble, &company;w
 </employee>
</employees>

Listing 15-3: An internal entity declaration

The string &company; vw acts as a placeholder for the value Rock and
Gravel Company u. When the document is parsed, the parser replaces all
instances of &company; with Rock and Gravel Company and produces the final
document shown in Listing 15-4.

<?xml version="1.0"?>
<employees>
 <employee>
 Fred Flintstone, Rock and Gravel Company
 </employee>
 <employee>
 Barney Rubble, Rock and Gravel Company
 </employee>
</employees>

Listing 15-4: The XML document after the parser processes the DTD

XML Attacks 149

Internal entity declarations are useful, if seldom used. Problems occur
when internal entity declarations refer to other internal entity declarations.
Listing 15-5 shows a nested series of entity declarations that constitute an
XML bomb.

<?xml version="1.0"?>
<!DOCTYPE lolz [
 <!ENTITY lol "lol">
 <!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz>

Listing 15-5: A type of XML bomb known as the billion laughs attack

When this XML file is parsed, the &lol9; string is replaced with 10 occur-
rences of the string &lol8;. Then each occurrence of &lol8; is replaced with
10 occurrences of the string &lol7;. The final form of the XML file consists
of a <lolz> tag containing over a billion occurrences of the string lol. This
simple XML file will take up over 3GB of memory when the DTD is fully
expanded, enough to crash the XML parser!

Exhausting the memory available to the XML parser will take your
web server offline, which makes XML bombs an effective way for a hacker
to launch a denial-of-service attack. All an attacker needs to do is to find a
URL on your site that accepts XML uploads, and they can take you offline
with a click of a button.

XML parsers that accept inline DTDs are also vulnerable to a sneakier
type of attack that takes advantage of entity definitions in a different manner.

XML External Entity Attacks
DTDs can include content from external files. If an XML parser is config-
ured to process inline DTDs, an attacker can use these external entity declara-
tions to explore the local filesystem or to trigger network requests from the
web server itself.

A typical external entity looks like Listing 15-6.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE copyright [
 <!ELEMENT copyright (#PCDATA)>
 <!ENTITY copy PUBLIC "http://www.w3.org/xmlspec/copyright.xml"u>
]>
<copyright>©v </copyright>

Listing 15-6: Using an external entity to include boilerplate copyright text in an XML file

150 Chapter 15

According to the XML 1.0 specification, a parser is expected to read
the contents of the file specified in the external entity and insert that data
into the XML document wherever the entity is referenced. In this example,
the data hosted at http://www.w3.org/xmlspec/copyright.xml u would be inserted
into the XML document wherever the text © v appears.

The URL referenced by the external entity declaration can use vari-
ous network protocols, depending on the prefix. Our example DTD uses
the http:// prefix, which will cause the parser to make an HTTP request.
The XML specification also supports reading local files on disk, using the
file:// prefix. For this reason, external entity definitions are a security disaster.

How Hackers Exploit External Entities
When an XML parser throws an error, the error message will often include
the contents of the XML document being parsed. Knowing this, hackers use
external entity declarations to read files on a server. A maliciously crafted
XML file might include a reference to a file such as file://etc/passwd on a
Linux system, for instance. When this external file is inserted into the
XML document by the parser, the XML becomes malformed—so parsing
fails. The parser then dutifully includes the contents of the file in the error
response, allowing the hacker to view the sensitive data within the refer-
enced file. Using this technique, hackers can read sensitive files on a vulner-
able web server that contain passwords and other confidential information.

External entities can also be used to commit server-side request forgery
(SSRF) attacks, whereby an attacker triggers malicious HTTP requests from
your server. A naïvely configured XML parser will make a network request
whenever it encounters an external entity URL with a network protocol pre-
fix. Being able to trick your web server into making a network request on a
URL of their choosing is a boon for an attacker! Hackers have used this fea-
ture to probe internal networks, to launch denial-of-service attacks on third
parties, and to disguise malicious URL calls. You will learn more about the
risks around SSRF attacks in the next chapter.

Securing Your XML Parser
This is a simple fix to protect your parser from XML attacks: disable the
processing of inline DTDs in your configuration. DTDs are a legacy tech-
nology, and inline DTDs are a bad idea, period. In fact, many modern
XML parsers are hardened by default, meaning out of the box they disable
features that allow the parser to be attacked, so you might be protected
already. If you are unsure, you should check what (if any) XML parsing
technology you are using.

The following sections describe how to secure your XML parser in
some of the major web programming languages. Even if you think your
code doesn’t parse XML, the third-party dependencies you use likely use
XML in some form. Make sure you analyze your entire dependency tree to
see what libraries are loaded into memory when your web server starts up.

XML Attacks 151

Python
The defusedxml library explicitly rejects inline DTDs and is a drop-in replace-
ment for Python’s standard XML parsing library. Use this module in place of
Python’s standard library.

Ruby
The de facto standard for parsing XML in Ruby is the Nokogiri library. This
library has been hardened to XML attacks since version 1.5.4, so make sure
your code uses that version or higher for parsing.

Node.js
Node.js has a variety of modules for parsing XML, including xml2js, parse-xml,
and node-xml. Most of them omit processing of DTDs by design, so make
sure to consult the documentation for the parser you use.

Java
Java has a variety of methods of parsing XML. Parsers that adhere to Java
specifications typically initiate parsing via the class javax.xml.parsers.Document​
BuilderFactory. Listing 15-7 illustrates how to configure secure XML parsing
in this class wherever it is instantiated, using the XMLConstants.FEATURE_SECURE​
_PROCESSING feature.

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);

Listing 15-7: Securing a Java XML parsing library

.NET

.NET has a variety of methods of parsing XML, all contained in the System​

.Xml namespace. XmlDictionaryReader, XmlNodeReader, and XmlReader are safe by
default, as are System.Xml.Linq.XElement and System.Xml.Linq.XDocument. System​
.Xml.XmlDocument, System.Xml.XmlTextReader, and System.Xml.XPath.XPathNavigator
have been secured since .NET version 4.5.2. If you are using an earlier ver-
sion of .NET, you should switch to a secure parser, or disable the processing
of inline DTDs. Listing 15-8 shows how to do this by setting the ProhibitDtd
attribute flag.

XmlTextReader reader = new XmlTextReader(stream);
reader.ProhibitDtd = true;

Listing 15-8: Disabling processing of inline DTDs in .NET

152 Chapter 15

Other Considerations
The threat of external entity attacks illustrates the importance of following
the principle of least privilege, which states that software components and pro-
cesses should be granted the minimal set of permissions required to per-
form their tasks. There is rarely a good reason for an XML parser to make
outbound network requests: consider locking down outbound network
requests for your web server as a whole. If you do need outbound network
access—for example, if your server code calls third-party APIs—you should
whitelist the domains of those APIs in your firewall rules.

Similarly, it’s important to restrict the directories on disk that your web
server can access. On the Linux operating system, this can be achieved by
running your web server process in a chroot jail that ignores any attempts by
the running process to change its root directory. On the Windows operat-
ing system, you should manually whitelist the directories that the web server
can access.

Summary
Extensible Markup Language (XML) is a flexible data format widely used
to exchange machine-readable data on the internet. Your XML parser may
be vulnerable to attack if it is configured to accept and process inline docu-
ment type definitions (DTDs). XML bombs use inline DTDs to explode the
parser’s memory use, potentially crashing your web server. XML external
entity attacks reference local files or network addresses, and can be used
to trick the parser into revealing sensitive information or make malicious
network requests. Make sure you use a hardened XML parser that disables
inline DTD parsing.

The next chapter expands on a concept touched on in this chapter:
how security flaws in your web server can be leveraged by hackers to launch
attacks on third parties. Even when you aren’t the victim directly, it’s impor-
tant to be a good internet citizen and stop attacks that use your system.

16
D O N ’ T B E A N A C C E S S O R Y

Malicious actors have a lot of places to
hide on the internet. Hackers routinely

impersonate other people and use compro-
mised servers to evade detection. This chapter

explores various ways that your web presence may be
helping attackers get away with malicious acts, even
when you aren’t the target of their attacks.

Making sure you aren’t being an accessory will win you good internet
citizen points. More practically, if hackers are using your system as a jumping-
off point for attacking others, you will quickly find your domain and IP
addresses getting blacklisted from key services, and you may even end up
being cut off by your hosting provider.

This chapter covers several vulnerabilities that can make you an acces-
sory to malicious acts on the internet. The first couple of vulnerabilities
are used by hackers to send harmful emails: scammers frequently use email
address spoofing to disguise who is sending an email, and use open redirects on
websites to disguise malicious links in email.

154 Chapter 16

Next, you’ll see how your site can be hosted within a frame on someone
else’s page and be used as part of a clickjacking attack. In this type of attack,
your site is used in a bait-and-switch scheme to trick users into clicking
something harmful.

You saw in the preceding chapter how hackers can use vulnerabilities in
XML parsers in order to trigger network requests. If an attacker can craft
malicious HTTP requests that trigger outbound network access from your
server, you are enabling server-side request forgery attacks. You will learn com-
mon ways this type of attack can be launched and how to protect against it.

Finally, you will look at the risk of malware being installed on your serv-
ers for use in a botnet. You may unknowingly be hosting zombie code that
can be controlled remotely by an attacker!

Email Fraud
Email is sent using the Simple Mail Transfer Protocol (SMTP). One major over-
sight in the original design of SMTP is that it does not have a mechanism for
authentication: the sender of an email is able to attach any email address they
want in the From header, and until relatively recently, there was no way for the
receiving agent to verify that the sender is who they claim to be.

As a result, of course, we all receive massive amounts of spam email.
Experts estimate that around half of all email sent is spam—nearly 15 billion
spam emails are sent every day. Spam email generally contains unwanted
(and often misleading) marketing material that is a nuisance to the recipient.

Related to spam email is phishing email: the sender attempts to trick the
recipient into revealing sensitive personal information such as passwords
or credit card details. A common trick is to email a victim with what looks
like a password reset email for a website they use, but have the reset link to
a doppelganger domain—a domain whose name looks superficially similar to
the real domain name that hosts a fake version of the site. The fake site will
harvest the user’s credentials on behalf of the attacker, and then redirect
the user to the real site so the victim is none the wiser.

An even more vicious form of this type of attack is spearphishing,
whereby the content of a malicious email is tailored to a small audience.
Fraudsters sending this type of email often conduct detailed research on
their victims in order to be able to name-drop or impersonate colleagues.
CEO fraud—through which a scammer pretends to be a C-level officer and
emails another employee to request a wire transfer—netted hackers over
$26 billion between 2016 and 2019 according to the FBI. And that’s just
counting the victims who reported the loss to law enforcement.

Thankfully, mail service providers have developed sophisticated algo-
rithms for detecting spam and phishing email. Gmail, for instance, will
scan each incoming email and quickly decide whenever it is legitimate,
sending anything that looks suspicious to the junk folder. Spam filters use
many inputs when classifying email: keywords in the email and the subject
line, the email domain, and the presence of any suspicious outgoing links
in the body of the mail.

Don’t Be an Accessory 155

Your website and organization likely send email from a custom domain,
so the onus is on you to prevent your email from being marked as spam
and to protect your users from malicious email that pretends to be from
your domain. You have a couple of ways to do this: by implementing a
Sender Policy Framework and by using DomainKeys Identified Mail when
you generate email.

Implement a Sender Policy Framework
Implementing a Sender Policy Framework (SPF) entails whitelisting the IP
addresses that are authorized to send email from your web domain in the
DNS. Because SMTP sits on top of the TCP, the IP address that an email is
sent from cannot be spoofed in the same way as the From header. By explic-
itly whitelisting IP addresses in your domain name records, mail receiving
agents will be able to verify that incoming mail originated from a permit-
ted source.

Listing 16-1 shows how to specify a Sender Policy Framework in your
DNS records.

v=spf1u ip4:192.0.2.0/24 ip4:198.51.100.123v aw -allx

Listing 16-1: A DNS record to whitelist a range of IP addresses authorized to send email
from a given domain as part of your SPF

This record would be added as a .txt record in your domain name
records. In this syntax, the v= argument u defines the version of SPF used.
The ip4 v and a w flags specify the systems permitted to send messages for
the given domain: in this case, a range of IP addresses, and the IP address
corresponding to the domain (indicated by the a flag) itself. The -all flag x
at the end of the record tells mail providers that if the preceding mecha-
nisms did not match, the message should be rejected.

Implement DomainKeys Identified Mail
DomainKeys can be used to generate a digital signature for outgoing mail,
to prove an email was legitimately sent from your domain and that it wasn’t
modified in transit. DomainKeys Identified Mail (DKIM) uses public-key cryp-
tography, signing outgoing messages from a domain with a private key and
allowing recipients to validate the signature by using a public key hosted in
DNS. Only the sender knows the private signing key, so only they can gener-
ate legitimate signatures. A mail receiving agent will recalculate the signa-
ture by combining the email’s content and the public signing key hosted on
your domain. If the recalculated signature does not match the signature
attached to the mail, the email will be rejected.

To implement DKIM, you need to add a DomainKey in a .txt record to
your domain. Listing 16-2 shows an example.

156 Chapter 16

k=rsa;u p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDDmzRmJRQxLEuyYiyMg4suAv

Listing 16-2: A (public) domain key is hosted in the DNS system, and the corresponding
private key needs to be shared with the application generating email for the domain.

In this example, k indicates the key type u, and p is the public key used
to recalculate the signature v.

Securing Your Email: Practical Steps
Your organization likely generates email from multiple locations. Email sent
to a user in response to their actions on your website—called transactional
email—will be triggered by your web server software, and often is generated
via email services such as SendGrid or Mailgun. Email written by hand will
be sent either by a webmail service (for example, Gmail) or from email
server software hosted on your network (for example, Microsoft Exchange
or Postfix). Your team may also be using email marketing or newsletter ser-
vices such as Mailchimp or TinyLetter to send email.

Consult the documentation of your service providers or email server to
see how to generate and add the DNS entries needed to implement SPF and
DKIM. In fact, you may already be using DKIM, because many transactional
email and marketing services require you to add the relevant DNS entries
when you sign up to the service. As you lock down IP ranges and domains
as part of your SPF implementation, remember to consider all the software
that is sending email from your domain!

Disguising Malicious Links in Email
Spam algorithms look for malicious links in email, and to support this, web-
mail providers keep up-to-date blacklists of domains that are known to be
harmful. Scanning for links to such domains is a common and effective way
to block dangerous email.

As such, scammers have had to come up with new tricks to disguise
harmful links, to prevent their email from being flagged and sent directly
to the junk folder. One way to do this is to use a URL-shortening service
like Bitly, which will encode a URL in a shorter form and redirect the user
when they visit the link. However, in the ever-escalating spam wars, email
scanning algorithms now unroll links to known URL-shortening services
and check whether the final destination is harmful.

Hackers have found a subtler way to disguise malicious links in email.
If your website can be used to disguise a link to an arbitrary URL on the
internet—if you implement an open redirect anywhere on your site—you
may be helping hackers disguise malicious links in the same way as a URL-​
shortening service. Not only are you making your users vulnerable to
phishing scams, but the genuine email you send is liable to be blacklisted
by spam-detection algorithms.

Don’t Be an Accessory 157

Open Redirects
In HTTP, a redirect occurs when a web server responds with a 301 (temporary
redirect) or 302 (permanent redirect) response code, and supplies a URL
that the browser should navigate to instead. One of the most common uses of
redirects is to send an unauthenticated user to the login page if they attempt
to visit a site. In this scenario, the site typically issues a second redirect back to
the original URL after the user has authenticated themselves.

To enable this second redirect, the web server has to remember the
original destination as the user logs in. Frequently, this is done by encoding
the final destination URL within a query parameter in the login URL. If
a hacker can encode an arbitrary URL in this query parameter—in other
words, if the second redirect can send the user to a whole different website
on the internet—you have what is known as an open redirect.

Preventing Open Redirects
Most sites won’t ever need to redirect to an external URL. If any part
of your website encodes a URL within another URL for the purpose of
redirecting the user to that destination, you should make sure that these
encoded URLs are relative URLs rather than absolute URLs: encoded links
should point within your site, rather than externally.

Relative URLs begin with a forward slash (/), which is easy to check for.
Hackers have found a few ways to disguise absolute URLs to look like rela-
tive URLs, so your code needs to account for that. Listing 16-3 shows how to
check that a URL is a relative URL via simple pattern-matching logic.

import re
def is_relative(url):
 return re.match(r"^\/[^\/\\]"u, url)

Listing 16-3: A function to check that a link is relative (internal to a website), using a
regular expression in Python

This pattern u states that the URL must begin with a forward slash,
and the following character must not be another forward slash or a back-
slash (\). The second character is checked to protect against URLs such
as //:www.google.com, which are interpreted by browsers as absolute URLs;
they will be automatically prefixed by http or https depending on what pro-
tocol the page is currently using.

Another approach to preventing open redirects is to avoid encoding
URLs within query parameters altogether. If you are encoding a URL for an
eventual redirect following login, consider dropping the URL in a tempo-
rary cookie instead of a query parameter. An attacker is unable to forge a
cookie in a victim’s browser quite as easily, so you will close the door to abu-
sive linking.

158 Chapter 16

Other Considerations
Some types of websites do require external links to be posted by users. For
instance, if you run a social news site, your users will often post links to
external URLs. If this applies to your site, use the Google Safe Browsing API
to check each URL against a blacklist of harmful sites.

After you have secured your email and redirect code, it’s important to
make sure your web pages can’t be wrapped in other people’s malicious
websites. Let’s look at how to protect your users against clickjacking attacks.

Clickjacking
HTML permits a web page to contain another web page, by using an
<iframe> tag. This allows content from different web domains to be mixed
in a controlled fashion, because JavaScript running on the page within the
frame cannot access the containing page. The <iframe> tags are commonly
used to embed third-party content in a web page—OAuth and CAPTCHA
widgets often use them to secure cookies.

As with anything useful on the internet, hackers have found ways to
abuse <iframe> tags. Modern CSS allows page elements to be layered on top
of each other using the z-index attribute; elements with a higher z-index will
hide elements with a lower z-index and receive click events first. Page elements
can also be made transparent using the opacity attribute. By combining
these techniques, a hacker can position a transparent <div> over an <iframe>
element, and then trick a victim into clicking whatever content is stored in
the <div> rather than the underlying content they believe they are clicking.

This click-hijacking—clickjacking—has been used in a variety of ways.
In some cases, victims have been tricked into switching on their webcam so
the attacker can watch them remotely. Another variation of this technique
is likejacking, whereby a victim is tricked into liking something on Facebook
without their knowledge. Selling likes on the dark web for promotional pur-
poses is a big money-spinner for a hacker.

Preventing Clickjacking
If you run a website, you should make sure your site isn’t used as bait in a
clickjacking attack. Most sites never need to be hosted in <iframe> tags, so you
should tell the browser that directly. Modern browsers support the Content​
-Security-Policy header that allows the response from the server to specify
that the page should have no frame-ancestors, as shown in Listing 16-4.

Content-Security-Policy: frame-ancestors 'none'

Listing 16-4: A header that tells the browser never to host your website in a frame

Implementing this policy tells the browser to never put your website
in a frame.

If for some reason your site does need to be contained within an
<iframe>, you should tell the browsers which sites are permitted to host such

Don’t Be an Accessory 159

a frame. You can do this by using the same Content-Security-Policy header
to specify that the website can be its own frame ancestor. Listing 16-5 shows
how to use the keyword self to permit your site to host iframes pointing to
other parts of the same site.

Content-Security-Policy: frame-ancestors 'self'

Listing 16-5: A header that permits a site to host iframes of itself

Finally, if you need third-party websites to be able to host your site in a
frame, you can whitelist individual web domains, as shown in Listing 16-6.

Content-Security-Policy: frame-ancestors example.com google.com

Listing 16-6: A header that permits a site to be hosted in an iframe by example.com and
google.com

Now that you’ve looked at how to protect against clickjacking, let’s see
how attackers will try to launch malicious network requests from your server.

Server-Side Request Forgery
Hackers making malicious HTTP requests often seek to disguise where
those requests are launched from. For instance, denial-of-service attacks—
covered in the next chapter—are more effective when coming from many
different IP addresses. If your web server makes outgoing HTTP requests,
and a hacker can control which URLs those requests are sent to, you are
vulnerable to a server-side request forgery (SSRF) attack, and a hacker can
use your server to send malicious requests.

There are some legitimate reasons to make outbound network requests
from your server. If you use any kind of third-party API, these are typically
made available as web services over HTTPS. You might, for example, use
server-side APIs to send transactional email, index content for searching,
record unexpected errors in an error-reporting system, or process pay-
ments. Problems occur, however, when an attacker is able to manipulate
the server into calling a URL of their choosing.

Typically, SSRF vulnerabilities occur when the outbound URL of an
HTTP request sent from the web server is insecurely constructed from a part
of an HTTP request sent to the server. A hacker will check a site for SSRF
vulnerabilities by spidering through it, navigating to every page, and using
hacking tools to replace every HTTP parameter they encounter with a URL
under their control. If they detect any HTTP requests to their trap URL,
they know the requests must have been triggered from your server, and that
you are vulnerable to SSRF.

Hackers will also check to see if any part of your site accepts XML con-
tent, and use XML external entity attacks in an attempt to commit SSRF.
Chapter 15 discussed this attack vector.

160 Chapter 16

Protecting Against Server-Side Forgery
You can protect yourself against server-side forgery at several levels. The
first, and most important step, is to audit any parts of your code that make
outbound HTTP requests. You will almost always know ahead of time which
domains need to be invoked as part of API calls, so the construction of
URLs for API calls should use web domains recorded in your configuration
or code rather than coming from the client. One way of ensuring this is to
use the software development kit (SDK) that is usually made freely available
with most APIs.

Because you should be following the practice of defense in depth—pro-
tecting yourself from vulnerabilities in multiple, overlapping ways—it makes
sense to install safeguards against SSRF at the network level too. Whitelisting
the individual domains that you need access to in your firewall, and banning
all others, is a good way to catch any security issues you may have overlooked
during code review.

Finally, consider employing penetration testing to detect SSRF vulnera-
bilities in your code. This can be done by employing an external team to find
vulnerabilities in your website or by using an automated online tool to do the
same. Effectively, you will be using the same tools that hackers use to detect
vulnerabilities, before they get the chance to do so themselves.

Botnets
Hackers are always looking for spare computing power to power their attacks.
If a hacker manages to compromise your server, they will frequently install a
bot—a piece of malware that they can control using remote commands. Most
bots operate as part of a peer-to-peer network of individual bots—a botnet—
that communicate with each other by using an encrypted protocol.

Bots are often used to infect regular consumer devices like laptops.
Managing to install a bot on a server is big prize, however, because signifi-
cantly more computing power will be available to the bot. Scammers will
pay a good price on the dark web for access keys that allow them to control
botnets. They commonly use this spare computing power to mine bitcoin
or commit click fraud—that is, artificially inflate page-view numbers of web-
sites. Botnets are also used to generate spam email or to commit denial-of-
service attacks (covered in the next chapter).

Protecting Against Malware Infection
Clearly, you want to avoid having any bot malware installed on the server.
Chapter 6 discussed command injection and file upload vulnerabilities that
could allow a hacker to install a bot on your server. Make sure you follow
that chapter’s advice to secure such vulnerabilities.

Additionally, you should also proactively protect your servers from
infections. Running up-to-date antivirus software will help you quickly
spot any kind of malware. Monitoring your outgoing network access will
highlight suspicious activity: installed bots will periodically poll other IPs

Don’t Be an Accessory 161

looking for other bots. You should also consider running an integrity checker
on your web servers—a piece of software that checks for unexpected file
changes on sensitive directories.

If you are using virtualized services or containers, you have an advan-
tage here: any rebuild of the system will typically wipe away malicious soft-
ware that was installed. Rebuilding from an image periodically will do a lot
to keep your system safe from bot infestations.

Summary
Avoid being an accessory to attacks on others on the internet by doing the
following:

•	 Protect the email you send by implementing SPF and DKIM headers in
your domain name records.

•	 Make sure you have no open redirects on your site.

•	 Prevent your site from being hosted in an <iframe> tag by setting a con-
tent security policy.

•	 Audit your code to ensure that the server cannot be tricked into send-
ing HTTP requests to an external URL of an attacker’s choosing, and
whitelist outbound network access to avoid being used in server-side
request forgery attacks.

•	 Use virtualized servers, virus scanners, or vulnerability scanning tools
to check for and remove bots.

In the next chapter, you will look at a brute-force technique that hack-
ers can use to take your web server offline: the denial-of-service attack.

On October 21, 2016, internet users woke
up and found that many of their favorite

websites were inaccessible: Twitter, Spotify,
Netflix, GitHub, Amazon, and many others all

appeared to be offline. The root cause was an attack
against a DNS provider. A massive wave of DNS lookup
requests had brought the popular DNS provider Dyn to its knees. It took
most of the day—during which two more huge waves of DNS lookups
occurred—before services were fully restored.

The scale and impact of the outage were unprecedented. (The only
incident of comparable impact occurred when a shark chomped through an
undersea internet cable and the whole of Vietnam went offline for a while.)
It was, however, just the latest incarnation of the common and increasingly
dangerous denial-of-service (DoS) attack.

A denial-of-service attack is different from most types of vulnerabilities
discussed in this book, as the intent of the attack isn’t to compromise a
system or website: the intent is to simply make it unavailable to other users.
Generally, this is achieved by flooding the site with inbound traffic, so all

17
D E N I A L - O F - S E R V I C E A T T A C K S

164 Chapter 17

server resources are exhausted. This chapter breaks down some of the more
common techniques used in denial-of-service attacks and presents various
ways to defend against them.

Denial-of-Service Attack Types
Responding to a network request generally requires more processing power
than sending one. When a web server handles an HTTP request, for example,
it has to parse the request, run database queries, write data to the logs, and
construct the HTML to be returned. The user agent simply has to gener-
ate the request containing three pieces of information: the HTTP verb, the
IP address it is being sent to, and the URL. Hackers use this asymmetry to
overwhelm servers with network requests so they are unable to respond to
legitimate users.

Hackers have discovered ways to launch denial-of-service attacks at
every level of the network stack, not just over HTTP. Given how successful
they have been in the past, many more methods will likely be discovered in
the future. Let’s look at some of the tools in an attacker’s toolkit.

Internet Control Message Protocol Attacks
The Internet Control Message Protocol (ICMP) is used by servers, routers, and
command line tools to check whether a network address is online. The pro-
tocol is simple: a request is transmitted to an IP address, and if the respond-
ing server is online, it will send back a confirmation that it is online. If you
have ever used the ping utility to check whether a server is accessible, you have
used ICMP under the hood.

ICMP is the simplest of the internet protocols, so inevitably, it was the first
to be used in malicious ways. A ping flood attempts to overwhelm a server by
sending an endless stream of ICMP requests, and can be initiated simply by
a few lines of code. A slightly more sophisticated attack is the ping of death
attack, which sends corrupt ICMP packets in an attempt to crash a server.
This type of attack takes advantage of older software that does not correctly
do bounds checking in incoming ICMP packets.

Transmission Control Protocol Attacks
Most ICMP-based attacks can be defused by modern network interfaces, so
attackers have moved higher up the network stack to the TCP, which under-
pins most internet communication.

A TCP conversation begins with the TCP client sending a SYN (synchro-
nize) message to the server, which is then expected to reply with a SYN-ACK
(synchronize acknowledgement) response. The client should then complete
the handshake by sending a final ACK message to the server. By flooding a
server with SYN messages—a SYN flood—without completing the TCP hand-
shake, hacking tools leave a server with a large number of “half-open” con-
nections, exhausting the connection pool for legitimate clients. Then, when
a legitimate client attempts to connect, the server rejects the connection.

Denial-of-Service Attacks 165

Application Layer Attacks
Application layer attacks against a web server abuse the HTTP protocol.
The Slowloris attack opens many HTTP connections to a server, and keeps
those connections open by periodically sending partial HTTP requests, thus
exhausting the server’s connection pool. The R-U-Dead-Yet? (RUDY) attack
sends never-ending POST requests to a server, with arbitrarily long Content-Length
header values, to keep the server busy reading meaningless data.

Hackers have also found ways to take web servers offline by exploiting
particular HTTP endpoints. Uploading zip bombs—corrupt archive files
that grow exponentially in size when expanded—to a file upload function
can exhaust the server’s available disk space. Any URL that performs dese-
rialization—converting the contents of HTTP requests to in-memory code
objects—is potentially vulnerable too. One example of this type of attack is
an XML bomb, which you looked at in Chapter 15.

Reflected and Amplified Attacks
One difficulty in launching an effective denial-of-service attack is finding
enough computing power to generate malicious traffic. Hackers overcome
this limitation by using a third-party service to generate the traffic for them.
By sending malicious requests to a third party, with a spoofed return address
belonging to their intended victim, hackers reflect the responses to their
target, potentially overwhelming the server responding to traffic at that
address. Reflected attacks also disguise the original source of the attack,
making them harder to pin down. If the third-party service replies with
larger or more numerous responses than the initial request, the larger
responses amplify the attack power.

One of the largest denial-of-service attacks to date was committed using
reflection. A single attacker was able to generate 1.3 terabytes of data per second
and point it at the GitHub website in 2018. The hacker achieved this by locat-
ing a large number of insecure Memcached servers and sending them User
Datagram Protocol (UDP) requests signed with the IP address of the GitHub
servers. Each response was around 50 times larger than the original request,
effectively multiplying the attacker’s computing power by the same factor.

Distributed Denial-of-Service Attacks
If a denial-of-service attack is launched from a single IP address, it is rela-
tively easy to blacklist traffic from that IP and stop the attack. Modern
denial-of-service attacks, such as the 2018 attack on GitHub, come from
a multitude of cooperating sources—a distributed denial-of-service (DDoS)
attack. In addition to using reflection, these attacks are usually launched
from a botnet, a network of malware bots that have infected various com-
puters and internet-connected devices, and that can be controlled by an
attacker. Because many types of devices connect to the internet these
days—thermostats, refrigerators, cars, doorbells, hairbrushes—and are
prone to having security vulnerabilities, there are a lot of places for these
bots to hide.

166 Chapter 17

Unintentional Denial-of-Service Attacks
Not all surges in internet traffic are malicious. It is common to see a web-
site go viral and experience an unexpectedly large number of visitors in
a short time, effectively taking it offline for a while because it wasn’t built
to handle such a high volume of traffic. The Reddit hug of death frequently
takes smaller websites offline when they manage to reach the front page of
the social news site.

Denial-of-Service Attack Mitigation
Defending yourself against a major denial-of-service attack is expensive and
time-consuming. Fortunately, you are unlikely to be the target of an attack
the size of the one that took Dyn offline in 2016. Such attacks require exten-
sive planning, and only a handful of adversaries would be able to pull them
off. You are unlikely to see terabytes of data a second hitting your recipe blog!

However, smaller denial-of-service attacks combined with extortion
requests do happen, so it pays to put in some safeguards. The following
sections describe some of the countermeasures you should consider using:
firewalls and intrusion prevention systems, DDoS prevention services, and
highly scalable website technologies.

Firewalls and Intrusion Prevention Systems
All modern server operating systems come with a firewall—software that
monitors and controls incoming and outgoing network traffic based on
predetermined security rules. Firewalls allow you to determine which
ports should be open to incoming traffic, and to filter out traffic from IP
addresses via access control rules. Firewalls are placed at the perimeter of an
organization’s network, to filter out bad traffic before it hits internal serv-
ers. Modern firewalls block most ICMP-based attacks and can be used to
blacklist individual IP addresses, an effective way of shutting down traffic
from a single source.

Application firewalls operate at a higher level of the network stack, act-
ing as proxies that scan HTTP and other internet traffic before it passes to
the rest of the network. An application firewall scans incoming traffic for
corrupted or malicious requests, and rejects anything that matches a mali-
cious signature. Because signatures are kept up-to-date by vendors, this
approach can block many types of hacking attempts (for example, attempts
to perform SQL injection), as well as mitigating denial-of-service attacks.
In addition to open source implementations such as ModSecurity, commer-
cial application firewall vendors exist (for example, Norton and Barracuda
Networks), some of which sell hardware-based solutions.

Intrusion prevention systems (IPSs) take a more holistic approach to pro-
tecting a network: in addition to implementing firewalls and matching sig-
natures, they look for statistical anomalies in network traffic and scan files
on disk for unusual changes. An IPS is usually a serious investment but can
protect you very effectively.

Denial-of-Service Attacks 167

Distributed Denial-of-Service Protection Services
Network packets in a sophisticated denial-of-service attack will usually be
indistinguishable from regular packets. The traffic is valid; only the intent
and volume of traffic is malicious. This means firewalls cannot filter out
the packets.

Numerous companies offer protection against distributed denial-of-
service attacks, usually at a significant cost. When you integrate with a
DDoS solutions provider, you route all incoming traffic through its data
centers, where it scans and blocks anything that looks malicious. Because
the solutions provider has a global view of malicious internet activity and a
massive amount of available bandwidth, it can use heuristics to prevent any
harmful traffic from reaching you.

DDoS protection is often offered by CDNs, because they have geographi-
cally dispersed data centers and often already host static content for their
clients. If the bulk of your requests are already being served by content
hosted on a CDN, it doesn’t take too much extra effort to route the remain-
der of your traffic through its data centers.

Building for Scale
In many ways, being the target of a denial-of-service attack is indistinguish-
able from having many visitors on your website at once. You can protect
yourself against many attempted denial-of-service attacks by being ready
to handle large surges in traffic. Building for scale is a big subject—whole
books have been written on the topic, and it’s an active area of research.
Some of the most impactful approaches you should look into are offloading
static content, caching database queries, using asynchronous processing for
long-running tasks, and deploying to multiple web servers.

CDNs offload the burden of serving static content—such as images and
font files—to a third party. Using a CDN significantly improves the respon-
siveness of your site and reduces the load on your server. CDNs are easy to
integrate, cost-efficient for most websites, and will significantly reduce the
amount of network requests your web servers have to handle.

Once you offload static content, database access calls typically become
the next bottleneck. Effective caching can prevent your database from becom-
ing overloaded in the event of a traffic surge. Cached data can be stored on
disk, in memory, or in a shared memory cache like Redis or Memcached.
Even the browser can help with caching: setting a Cache-Control header on a
resource (for example, an image) tells the browser to store a local copy of
the resource and not request it again until a configurable future date.

Offloading long-running tasks to a job queue will help your web server
respond quickly when traffic ramps up. This is an approach to web archi-
tecture that moves long-running jobs (such as generating large download
files or sending email) to background worker processes. These workers are
deployed separately from the web server, which creates the jobs and puts
them on the queue. The workers take jobs off the queue and handle them
one at a time, notifying the web server when the job is completed. Have a

168 Chapter 17

look at the Netflix technology blog (https://medium.com/@NetflixTechBlog/)
for an example of a massively scalable system built on this type of principle.

Finally, you should have a deployment strategy that allows you to scale
out the number of web servers relatively quickly, so you can ramp up your
computing power during busy periods. An Infrastructure as a Service (IaaS)
provider like Amazon Web Services (AWS) makes it easy to deploy the same
server image multiple times behind a load balancer. Platforms like Heroku
make it as simple as moving a slider on their web dashboard! Your hosting
provider will have some method of monitoring traffic volume, and tools
like Google Analytics can be used to track when and how many sessions are
open on your site. Then you need only to increase the number of servers
when monitoring thresholds are hit.

Summary
Attackers use denial-of-service attacks to make a site unavailable to legiti-
mate users by flooding it with a large volume of traffic. Denial-of-service
attacks can happen at any layer of the network stack, and can be reflected
or amplified by third-party services. Frequently, they are launched as a dis-
tributed attack from a botnet controlled by the attacker.

Simple denial-of-service attacks can be defused by sensible firewall set-
tings. Application firewalls and intrusion prevention systems help protect
you against more-sophisticated attacks. The most comprehensive (and
hence most expensive) protection comes from distributed denial-of-service
attack solution providers, which will filter out all bad traffic before it hits
your network.

All types of denial-of-service attacks—including inadvertent ones, when
you suddenly see a surge of new visitors—can be mitigated by building your
site to scale well. Content delivery networks alleviate the burden of serving
static content from your site, and effective caching prevents your database
from being a bottleneck. Moving long-running processes to a job queue
will keep your web servers running efficiently at full capacity. Active traffic
monitoring, and the ability to easily scale up the number of web servers,
will prepare you well for busy periods.

That concludes all the individual vulnerabilities you will be looking at
in this book! The final chapter summarizes the major security principles
covered over the course of the book and recaps the individual vulnerabili-
ties and how to protect against them.

So, we reach the end of the book! We cov-
ered a lot of material, but you should now

feel like you are ready to go out in the world
and build websites in a safe, secure manner.

Let’s finish with a brief recap. This chapter presents 21 commandments
of web security that will help you remember the key lessons from each chap-
ter. Follow these simple steps, and the likelihood of you being hacked will
be close to zero.

Automate Your Release Process
Be able to build your code from a single command line call. Keep your code
in source control and decide on a branching strategy. Separate configura-
tion from code, so it is easy to build testing environments. Use a testing
environment to validate functionality before each release. Automate the
deployment of code to each environment. Make sure your release process
is reliable, reproducible, and revertible. Always know which version of the
code is running on each environment, and be able to roll back to a prior
version in a simple fashion.

18
S U M M I N G U P

170 Chapter 18

Do (Thorough) Code Reviews
Make sure every code change is reviewed by at least one team member who
is not the original author before it is approved for release. Ensure that team
members have time to critically assess code changes, and understand that
reviewing code is just as important as writing it.

Test Your Code (to the Point of Boredom)
Write unit tests to make assertions about critical sections of your codebase,
and run them as part of your build process. Run your unit tests on a contin-
uous integration server with each change. Measure the percentage of your
codebase that is executed when unit tests are run, and always try to increase
this coverage number. Write tests to reproduce software bugs before fixing
the bug. Test until fear turns into boredom!

Anticipate Malicious Input
All parts of the HTTP request will be manipulated by hackers, so be ready.
Construct queries to databases and the operating system by using param-
eterized statements so you are protected against injection attacks.

Neutralize File Uploads
If your users can upload files to your website, make sure those files cannot
be executed. Ideally, upload files to a content delivery network (CDN). If
you need more fine-grained permissions for files, host them in a content
management system (CMS). As a last resort, save uploaded files in a sepa-
rate disk partition and make sure they are not written to disk with execut-
able permissions.

Escape Content While Writing HTML
Attackers will attempt to inject malicious JavaScript in your web pages by
smuggling JavaScript into your database or hiding it in HTTP parameters.
Make sure any dynamic content written to your web pages is escaped—
replace HTML control characters with safe entity encodings. This applies
on the client side as well as the server side! If possible, disable the execu-
tion of inline JavaScript altogether by using the Content-Security-Policy
response header.

Be Suspicious of HTTP Requests from Other Sites
HTTP requests originating from other domains may be malicious—for
instance, an attacker may have tricked one of your users into clicking a
disguised link. Make sure GET requests to your site are side-effect free:
they should be used only to retrieve resources. Ensure that other types of
requests (such as POST requests used to initiate login) originate from your
site by incorporating anti-forgery cookies in your HTML forms and any
HTTP requests initiated by JavaScript. Strip cookies from requests initiated
outside your web domain by adding the SameSite attribute to your Set-Cookie
HTTP response header.

Hash and Salt Your Passwords
If you store passwords in your database, encrypt them with a strong, one-
way hash function such as bcrypt before saving them. Add an element of
randomness to each hash by adding a salt.

Summing Up 171

Don’t Admit Who Your Users Are
The only person who should know whether a user has signed up to your
site is the user themselves. Make sure login forms and password reset pages
do not permit a hacker to mine your site for a list of users: keep error and
information messages generic, whether a username exists or not.

Protect Your Cookies
If an attacker can steal your cookies, they can hijack your users’ identities.
Add the HttpOnly keyword to your Set-Cookie response headers so cookies
cannot be read by malicious JavaScript. Add the Secure keyword so that
cookies are sent only over HTTPS.

Protect Sensitive Resources (Even If You Don’t Link to Them)
Check that a user has permissions to access any sensitive resource on your
site before returning it in an HTTP request—even if that resource isn’t
listed in search pages or linked to from elsewhere.

Avoid Using Direct File References
Avoid passing and evaluating file paths in HTTP requests. Use your web
server’s built-in URL resolution for evaluating paths to resources, or refer
to files by opaque identifiers.

Don’t Leak Information
Minimize the amount of information an attacker can learn about your tech
stack. Turn off any Server header in your HTTP responses and make sure
your session parameter name is generic in your Set-Cookie header. Avoid
telltale file suffixes in URLs. Make sure to turn off detailed client-side error
reporting in your production environment. Obfuscate the JavaScript librar-
ies you used during your build process.

Use Encryption (Correctly)
Purchase a security certificate for your domain and install it on your web
server along with your private encryption key. Divert all traffic to HTTPS,
and add the Secure keyword to your Set-Cookie response header to ensure
that cookies are never sent over unencrypted HTTP. Update your web
server regularly to keep on top of encryption standards.

Secure Your Dependencies (and Services)
Use a package manager to import third-party code during the build process
and fix each package to a specific version number. Keep on top of security
advisories for the packages you use and update them regularly. Store your
configuration securely—outside source control! Use the SafeFrame stan-
dard for any advertisements you host.

Defuse Your XML Parser
Turn off processing of inline document type declarations in your XML parser.

Send Email Securely
Whitelist which servers are permitted to send email from your domain by
using a Sender Policy Framework (SPF) record in your domain records.

172 Chapter 18

Allow mail recipients to verify the From address of any email you send and
to detect attempts to tamper with an email by using DomainKeys Identified
Mail (DKIM).

Check Your Redirects (If You Have Any)
If you redirect to a URL stored in part of the HTTP request—for example,
after a user logs in—check that the URL is local to your domain rather
than an external website. Otherwise, these open redirects will be used to
disguise malicious links in emails.

Don’t Allow Your Site to Be Framed
Don’t allow your website to be enclosed in an <iframe> unless you have a
specific need to do so. Disable framing by adding Content-Security-Policy:
frame-ancestors 'none' to your HTTP responses.

Lock Down Your Permissions
Follow the principle of least privilege—ensure that each process and soft-
ware component runs with the minimum number of permissions required.
Think through what an attacker might try to do if they compromise any
part of your system, and mitigate the harm. Ensure that your web server
process is not running as a root operating system account. Limit the direc-
tories on disk that your web server can access. Prevent unnecessary network
calls from your web server. Have your web server connect to your database
under an account with limited permissions.

Detect and Be Ready for Surges in Traffic
Use real-time monitoring to detect high traffic volumes to your website.
Build for scale by using a CDN, client-side cookies, caching, and asynchro-
nous processing. Be able to easily scale up the number of servers hosting
your site. If malicious traffic becomes a problem, deploy a firewall or intru-
sion prevention system, or consider signing up for distributed-denial-of-
service protection.

I N D E X

Page numbers followed by an italicized
f or t refer to figures and tables
respectively.

Symbols and Numbers
: (colon character), 82
/ (path separator character), 109
; (semicolon character), 52
' (single quote character), 51–53
10 Minute Mail, 86
401 status code (in HTTP), 82

A
Accept header, 10–11
access control, 25, 166

aspects of, 104
audit trails, 107–108
common oversights, 108
defined, 104
implementing, 106–107
models for

access control lists, 105
ownership-based access

control, 106
role-based access control,

105–106
whitelists and blacklists, 105

testing, 107
access control lists (ACLs), 105
access tokens, 139
Acid3 test, 18, 18f
Active Directory, 137
ActiveRecord framework, 54–55
ActiveX, xxi
administrative frontends, securing, 138
ad platforms, 142
Advanced Encryption Standard (AES),

121, 138
Advanced Research Projects Agency

Network (ARPANET), 7

Airbrake, 44
Akamai, 26, 62, 138
Amazon

denial-of-service attacks, 163
one-click purchases, 76

Amazon CloudFront, 26
Amazon Elastic Compute Cloud

(EC2), 41
Amazon Machine Images (AMIs), 62
Amazon Simple Storage Service (S3),

62, 140
Amazon Web Services (AWS), 105,

137, 168
Elastic Beanstalk, 41
Marketplace, 62

AMIs (Amazon Machine Images), 62
amplified attacks, 165
Angular framework, 33–34, 72
Ansible, 42
anti-CSRF cookies, 77–78
antivirus software

mitigating file upload vulnerability
attacks, 63

protection against botnets, 160
Apache web servers, 53, 114, 125

disabling open directory
listings, 137

disabling URL rewriting, 100
injection attacks, 132

application firewalls, 166
application layer attacks, 165
application programming interface

(API) keys, 139
application servers, 125–126
ARPANET (Advanced Research

Projects Agency Network), 7
asymmetric encryption algorithms, 119
audit trails, 107–108
authentication

brute-force attacks, 83–84
databases and, 29
defined, 81

174 Index

authentication (continued)
implementing

basic authentication
scheme, 82

digest authentication
scheme, 82

HTTP-native authentication,
82–83, 83f

non-native authentication, 83
mitigation options

secure authentication system,
85–92

single sign-on, 84–85
third-party authentication, 84

authenticator apps, 90, 90f
Authorization header, 82
AVG, 132
AWS. See Amazon Web Services (AWS)

B
Bachus-Naur Form (BNF), 147
Base64 algorithm, 82
bcrypt algorithm, 88–89
Berners-Lee, Tim, xx–xxi, 24
bind parameters

object-relational mapping, 54
parameterized statements, 52–53

Bitly, 156
black hat hackers, 2
blacklists, 105
blind SQL injection attacks, 56
block ciphers, 119–120
BNF (Bachus-Naur Form), 147
botnets, xxii, 154, 160, 165
branching code, 38
brittleness, 39
browsers

cookies, 20
Document Object Model, 16–17
Domain Name System, 20
HTTP Secure, 20
JavaScript, 16, 18–19
security certificates, 20
styling rules, 16–18
web page rendering pipeline, 15–19

brute-force attacks, 100
bug trackers (issue-tracking

software), 36
building for scale, 167, 173
bundler-audit tool, 136

C
C#

build process, 42
overview of, 33
vulnerabilities, 33

C++, 33
Cache-Control header, 13
canonical name (CNAME) records, 9
CAPTCHA (Completely Automated

Public Turing test to tell
Computers and Humans
Apart), 91–92, 92f, 158

Cascading Style Sheets (CSS)
build process, 43
in HTTP responses, 13
pre-processors, 43
selectors, 17
stylesheets, 17
styling rules, 17
use in clickjacking attacks, 158

CDNs. See content delivery
networks (CDNs)

Center for Internet Security (CIS), 62
centralized version control systems, 37
Centrify, 84
CEO fraud, 154
CERN (European Organization for

Nuclear Research), xx–xxi
certificate authorities, 117, 122–125
certificate signing requests (CSRs),

123–124
CGI (Common Gateway Interface), xxii
checksums, 8, 40, 134
Chef, 42
chroot command, 58
CIS (Center for Internet Security), 62
Cisco, 128
cleartext storage, 88
click fraud, 160
clickjacking, 154, 158–159
client-server architecture, 49
client-side error reporting, 115
client-side sessions, 96–97
Clojure, 32
cloud-based storage

hosting services, 110–111
subdomain takeovers, 140
use in mitigating file upload

vulnerability attacks, 62
Cloudflare, 26, 62
CLR (Common Language Runtime), 33

Index 175

CMSs. See content management
systems (CMSs)

CNAME (canonical name) records, 9
code reviews, 38, 170
code writing phase (in the software

development lifecycle)
branching and merging code, 38
pushing changes to repository, 37
source control (version control), 37

CoffeeScript, 34, 42
colon character (:), 82
Comcast, 128
command injection attacks

anatomy of, 56–57, 57f
defined, 56
escaping control characters, 57–58
file upload vulnerability and, 61

Common Gateway Interface (CGI), xxii
Common Language Runtime (CLR), 33
Comodo, 122
Completely Automated Public Turing

test to tell Computers and
Humans Apart (CAPTCHA),
91–92, 92f, 158

CONNECT requests (in TCP), 11t
consistent behavior

eventual consistency of NoSQL
databases, 30

SQL databases, 29
containerization, 42
content delivery networks (CDNs), 26

distributed denial-of-service protect
systems, 167

mitigating file upload vulnerability
attacks, 62, 170

subdomain takeovers, 140
content management systems (CMSs)

defined, 26
mitigating file upload vulnerability

attacks, 62, 170
plug-ins, 26
vulnerabilities of, 26, 27f

content security policies, 69–70,
110–111

Content-Security-Policy header, 69,
158–159, 172

Content-Type header, 13, 59, 63
continuous integration servers, 39
control characters

in PHP, 56–58
in SQL, 51–53, 55

Cookie header, 13, 77–78, 97
cookies, 171

anti-CSRF cookies, 77–78
defined, 13
digital signing of, 96–97
generic cookie parameters, 114
implementing and securing a

logout function, 90–91
SameSite cookie attribute, 78–79
session cookies, 95–97, 114
session hijacking, 97–99
vulnerabilities of, 13

cookie theft
cross-site request forgery (CSRF)

attacks, 98–99
cross-site scripting (XSS) attacks,

97–98
man-in-the-middle attacks, 98

cracking password lists, 89
CREATE statements (in SQL), 55
cross-site request forgery (CSRF;

XSRF) attacks
anatomy of, 76
cookie theft, 98–99
defined, 75
mitigation options

anti-CSRF cookies, 77–78
requiring reauthentication for

sensitive actions, 78–79
REST principles, 76–77
SameSite cookie attribute,

78–79
cross-site scripting (XSS) attacks,

xxi, 19
cookie theft, 97–98
defined, 65
DOM-based

defined, 71
escaping dynamic content, 73
URI fragments, 71–73

reflected, 70–71
defined, 70
escaping dynamic content, 71

stored
content security policies, 69–70
escaping control characters,

67–69
example of, 66–67, 66f–67f

cryptographic hash algorithms and
functions, 88–89, 119

cryptography, 117

176 Index

CSRF attacks. See cross-site request
forgery (CSRF) attacks

CSRs (certificate signing requests),
123–124

CSS. See Cascading Style Sheets (CSS)

D
database administrators (DBAs), 43
database drivers, 51
database migration scripts, 43
databases

authentication and, 29
for building dynamic web pages,

28–30
NoSQL, 30
origin of, 28
SQL, 29–30, 105
stored cross-site scripting attacks, 66

data definition language (DDL), 55
data integrity, 29, 118
data manipulation language (DML), 55
data packets, 8
DBAs (database administrators), 43
DDL (data definition language), 55
DDoS (distributed denial-of-service)

attacks, 165, 167
decryption keys, 118–119
dedicated configuration stores, 137
default credentials, disabling, 137
defense in depth approach, 61

blind and nonblind SQL injection,
55–56

defined, 55
principle of least privilege, 55

defer attribute, 19
DELETE requests (in SQL), 11, 76–77
DELETE statements (in SQL), 50–51, 55
denial-of-service (DoS) attacks

defined, 163–164
mitigation options

building for scale, 167–168
firewalls, 166
intrusion prevention systems, 166
protection services, 167

types of
application layer attacks, 165
distributed denial-of-service

attacks, 165
Internet Control Message

Protocol (ICMP) attacks, 164

reflected and amplified
attacks, 165

Transmission Control Protocol
(TCP) attacks, 164

unintentional denial-of-service
attacks, 166

dependencies, 171
build process, 42
defined, 45
deploying new versions quickly, 134
organizing dependencies

dependency management tools,
132–133

operating system patches,
133–134

subresource integrity checks, 134
security advisories

blogs, 135
mailing lists, 135
official advisories, 135
social media, 135
software tools, 136

timely upgrades, 136
vulnerability of, 45

dependency-check tool, 136
dependency management, 45, 132–133
dependency trees, 133
deserialization

defined, 59
disabling code-execution during,

59–60
design and analysis phase, 36
DevOps (developer operations) tools,

41–42
DigiCert, 122
digital certificates (public-key

certificates)
certificate authorities, 122–123
defined, 122
installing

configuring web server to use
HTTPS, 126

HTTP Strict Transport Security
policies, 127

redirecting HTTP traffic to
HTTPS, 126–127

web servers vs. application
servers, 125–126

obtaining
certificate signing requests,

123–124
domain verification, 124

Index 177

expiring certificates, 124
extended validation

certificates, 124
key pairs, 123–124
paying for certificates, 125
revoking certificates, 124
self-signed certificates, 124–125

TLS handshakes, 121
digital signatures, 96–97
directories, 109
directory traversal attacks, xxii,

108–112
anatomy of, 109–110, 109f–110f
defined, 108
filepaths and relative filepaths,

108–109
mitigation options, 171

hosting services, 110–111
indirect file references, 111
sanitizing file references, 111–112
web servers, 110

display names, 85
distinguished names (DNs), 123
distributed caches

defined, 30
injection attacks, 53
microservices, 30
publish-subscribe channels, 31
queues, 30
vulnerabilities of, 31

distributed denial-of-service (DDoS)
attacks, 165, 167

distributed version control systems, 37
Django, 125
DKIM (DomainKeys Identified Mail),

155–156, 172
DML (data manipulation language), 55
DNS. See Domain Name System (DNS)
DNs (distinguished names), 123
DNS poisoning, 9
Docker, 42, 62, 134
Docker Swarm, 42
Document Object Model (DOM)

defined, 16
DOM-based cross-site scripting

attacks, 71–73
DOM nodes, 17
DOM tree, 17
HTML tags and, 17
rendering pipeline, 16–17

document type definition (DTD) files,
147–150

DomainKeys Identified Mail (DKIM),
155–156, 172

domain name servers, 9
Domain Name System (DNS)

caching behavior, 9
canonical name records, 9
DNS poisoning, 9
domain verification, 124
encryption, 122–123
Internet Protocol suite layers, 10f
mail exchange records, 9
purpose of, 9
registration of, 9
rendering pipeline, 20
subdomain takeovers, 140
validating email addresses, 86

domain registrars, 9
domain verification, 124
DOM-based cross-site scripting attacks

defined, 71
escaping dynamic content, 73
URI fragments, 71–73

doppelganger domains, 154
DoS attacks. See denial-of-service

(DoS) attacks
downgrade attacks, 128
DROP command and statements

(in SQL), 52, 55
DTD (document type definition) files,

147–150
Dyn, 163, 166
dynamic resources

databases, 28–30
defined, 24
distributed caches, 30–31
templates, 28
web programming languages, 31–34

E
EC2 (Amazon Elastic Compute

Cloud), 41
Eich, Brendan, xxi
Electronic Frontier Foundation, 125
Elliptic Curve Diffie-Hellman

Exchange (ECDHE), 121
email addresses

banning disposable, 86, 87f
requiring for authentication, 85
spoofing, 153
validating, 85–86

178 Index

email fraud
avoiding

DomainKeys Identified Mail,
155–156, 172

Sender Policy Framework,
155–156, 171

email address spoofing, 153
open redirects, 156–157, 172
phishing, 154
spam, 154
spearphishing, 154

email verification links, 86
embargoing resources, 108
Embedded Ruby (ERB) templates, 68
encoded separator characters, 111
encryption, 171

algorithms
asymmetric, 119
decryption keys, 118–119
defined, 118
symmetric, 119

encrypting session cookies, 96
exploiting unencrypted

communication
government agencies, 129
Internet service providers,

128–129
Wi-Fi hotspots, 128
wireless routers, 128

of configuration information, 138
handshakes, 14
HTTPS, 14

defined, 118
digital certificates, 117, 122–123
installing certificates, 125–127
obtaining certificates, 123–125

in the Internet Protocol
encryption algorithms, 118–119
hash functions, 119–120
message authentication

codes, 120
TLS handshakes, 120–122

Transport Layer Security (TLS), 14
entity encodings (in HTML), 67–68, 68t
enumeration of users

CAPTCHA, 91–92, 92f
error messages, 91
password-reset screen, 91
timing attacks, 91

environmental variables, 137
ERB (Embedded Ruby) templates, 68

error reporting
client-side, 115, 171
defined, 44
third-party services, 44–45

escapeshellarg function (in PHP), 58
escaping control characters

in dynamic content from HTTP
requests, 70

in dynamic content from URI
fragments, 73

in HTML, 67–69, 170
in PHP, 57–58
in SQL, 53

European Organization for Nuclear
Research (CERN), xx–xxi

EV (extended validation)
certificates, 124

executable files, 60–61
exploit kits, 141–142
exploits

defined, 1
white hat vs. black hat hackers, 2
zero-day exploits, 2

exploit scripts, 59
extended validation (EV)

certificates, 124
Extensible Markup Language (XML)

defined, 145
document type definition files,

147–148
external entity attacks, 149–150
parsing, 146–150, 171
securing XML parsers, 150–151
server-side request forgery

attacks, 159
uses for, 146
validating, 147–148
XML bombs, 148–149

Extensible Messaging and Presence
Protocol (XMPP)

defined, 10
Internet Protocol suite layers, 10f

external entity declarations, 149–150

F
Facebook, xxii

likejacking, 158
React framework, 34
user permissions failure, 103–104

Facebook Login, 26, 84, 138
filepaths, 108–109

Index 179

File Transfer Protocol (FTP)
defined, 10
Internet Protocol suite layers, 10f

file upload vulnerability attacks
anatomy of, 60–61, 61f
defined, 60
file upload functions, defined, 60
mitigation options, 61–63, 170

ensuring uploaded files cannot
be executed, 62

hosting files on secure system, 62
running antivirus software, 63
validating content of uploaded

files, 63
firewalls, 166
Flask, 125
foreign keys (in SQL), 29
four eyes principle, 38
FTP. See File Transfer Protocol (FTP)
fully qualified domain names

(FQDNs), 123

G
Galois/Counter Mode (GCM), 121
GET requests (in HTTP), 11, 49–50

cross-site request forgery attacks,
76–77

rendering pipeline, 20
SameSite attribute settings for

cookies, 99
Git, 37–38
GitHub, 37–38, 136, 163, 165
GitHub OAuth, 84
Google

Angular framework, 33–34
government snooping, 129
HTTP requests, 70
reCAPTCHA widget, 92
returning dynamic resources, 27

Google AdSense, 138, 141–143
Google AdX, 142
Google Analytics, 26, 140–141, 168
Google App Engine, 41
Google Apps, 70
Google Chrome, xxi, 83f

cipher suites, 121
V8 JavaScript engine, 32

Google Hacking Database, 136
Google OAuth, 84
Google Safe Browsing API, 158

government agencies, snooping by, 129
gzip algorithm, 25

H
Hacker News, 135
hacking

black hat hackers, 2
dark web, 2, 2f
exploits, defined, 1
process for, 3–4
white hat hackers, 2
zero-day exploits, 2

hardening servers, 62
hashed values, 88, 119–120
hashes, 171

digest authentication scheme, 82
hashing passwords, 88, 119–120
salting hashes, 89, 171

headers
in HTTP requests, 10–11
in HTTP responses, 12–13, 25

HEAD requests (in HTTP), 11t
Heartbleed bug, 132
Heartland Payment Systems, 50
Heroku, 41, 168
horizontal escalation, 104
hosting services, 110–111
HSTS (HTTP Strict Transport

Security) policies, 126–127
HTML. See HyperText Markup

Language (HTML)
HTTP. See HyperText Transfer Protocol

(HTTP)
HTTP 404 Not Found error, 13
HttpOnly keyword, 97–98, 171
HTTP requests, 170–171

authentication, 82
command injection attacks, 56–58
CONNECT requests, 11t
cross-site request forgery attacks, 76
defined, 10
DELETE requests, 11
elements of

body, 10
headers, 10–11
methods (verbs), 10–11
universal resource locators,

10–11
example of, 10–11
exploit scripts, 59

180 Index

HTTP requests (continued)
file upload vulnerability attacks,

60, 63
GET requests, 11
HEAD requests, 11t
logging, 44
OPTIONS requests, 11t
PATCH requests, 11
POST requests, 11
privilege escalation, 104
PUT requests, 11
reflected cross-site scripting

attacks, 70–71
server-side request forgery attacks,

159–160
static resources, 24
TRACE requests, 11t
use in SQL injection attacks, 51–52

HTTP responses
authentication, 82
defined, 10
disabling telltale headers, 114
elements of

body, 12–13
headers, 12–13
status codes, 12–13
status messages, 12

example of, 12
HTML, 13
monitoring, 44
returning dynamic resources, 27
returning static resources, 25
static resources, 24

HTTP Secure (HTTPS), 14
cookie theft, 98
defined, 118
digital certificates

defined, 122
installing, 125–127
obtaining, 123–125

redirecting HTTP traffic to, 126–127
rendering pipeline, 20
terminating, 126
vulnerabilities avoided by using,

128–129
HTTP sessions

cross-site scripting attacks, 65
defined, 13
implementing

client-side sessions, 96–97
server-side sessions, 94–95

opening, 94
session cookies, 95–96
session hijacking, 93–101
session IDs, 94–95
session state, 94–95
tracking, 13
vulnerability of, 13

HTTP Strict Transport Security
(HSTS) policies, 126–127

hug of death, 166
HyperText Markup Language (HTML)

dynamic page creation, xxii
in HTTP responses, 12–13
origin of, xxi
rendering pipeline, 15–17
tags, 17, 67–68, 68t
web servers, 23–24, 27–28

HyperText Transfer Protocol (HTTP)
authentication, 82–83
defined, 10
encryption, 14
HTTP requests

CONNECT requests, 11t
defined, 10
DELETE requests, 11
elements of, 10
example of, 10–11
GET requests, 11
HEAD requests, 11t
OPTIONS requests, 11t
PATCH requests, 11
POST requests, 11
PUT requests, 11
TRACE requests, 11t

HTTP responses
defined, 10
elements of, 12
example of, 12
HTML, 13
HTTP headers, 12–13
status codes, 12–13
status messages, 12

Internet Protocol suite layers, 10f
origin of, xxi
purpose of, 10
redirecting traffic to HTTPS,

126–127
rendering pipeline, 20
stateful connections, 13
user agents, 10

Index 181

vulnerabilities of
government agencies, 129
Internet service providers,

128–129
Wi-Fi hotspots, 128
wireless routers, 128

web servers, 23–25, 27

I
IaaS (Infrastructure as a Service), 41, 168
ICANN (Internet Corporation for

Assigned Names and
Numbers), 8

ICMP (Internet Control Message
Protocol) attacks, 164

identity and access management (IAM)
system, 105

<iframe> tags, 142, 158, 172
images (configuration scripts), 42
indirection, 111
infinite scrolling, 72
information leaks, 171

mitigation options, 113–116
disabling client-side error

reporting, 115
disabling telltale Server

headers, 114
minifying or obfuscating

JavaScript files, 115
sanitizing client-side files, 116
use generic cookie

parameters, 114
using clean URLs, 114

security advisories, 116
zero-day vulnerabilities, 112

Infrastructure as a Service (IaaS), 41, 168
injection attacks, xxii

anticipating, 170
client-server vulnerabilities, 49–50
command injection attacks

anatomy of, 56–57, 57f
defined, 56
escaping control characters,

57–58
defined, 49
file upload vulnerability attacks

anatomy of, 60–61, 61f
defined, 60
ensuring uploaded files cannot

be executed, 62
hosting files on secure system, 62

running antivirus software, 63
validating content of uploaded

files, 63
remote code execution attacks

anatomy of, 59
defined, 59
disabling code-execution

during deserialization,
59–60

SQL injection attacks
anatomy of, 51–52
defense in depth, 55–56
object-relational mapping,

54–55
parameterized statements,

52–53
SQL, defined, 50–51

INSERT statements (in SQL), 50–51, 55
integration testing, 39
integrity checkers, 134, 160
internal entity declarations, 148
internet, history of, xx–xxiii
Internet Control Message Protocol

(ICMP) attacks, 164
Internet Corporation for Assigned

Names and Numbers
(ICANN), 8

Internet Protocol (IP)
encryption algorithms, 118–119
hash functions, 119–120
message authentication codes, 120
TLS handshakes, 120–122

Internet Protocol (IP) addresses
allotment of, 8
defined, 8
IP version 4 (IPv4) syntax, 8–9
IP version 6 (IPv6) syntax, 9
rendering pipeline, 20

Internet Protocol suite
defined, 8–9
Domain Name System, 9
HyperText Transfer Protocol, 10–13

encryption, 14
stateful connections, 13

Internet Protocol addresses, 8–9
layers of, 9–10, 10f
Transmission Control Protocol, 8
User Datagram Protocol, 8

Internet service providers (ISPs), 8,
128–129

Intrusion prevention systems (IPSs), 166

182 Index

IP. See Internet Protocol (IP); Internet
Protocol (IP) addresses

IP version 4 (IPv4) syntax, 8–9, 10f
IP version 6 (IPv6) syntax, 9, 10f
ISPs (Internet service providers), 8,

128–129
issue-tracking software (bug

trackers), 36

J
Java

application servers, 125
build process, 42
command injection attacks, 56
dependency checker, 136
overview of, 32
securing XML parsers, 151

JavaScript
build process, 42–43
client-side, 33–34
Comcast advertisements in HTTP

traffic, 128
cookie theft, 97
cross-site request forgery attacks,

77–78
cross-site scripting attacks, 65–73
defined, 18
file upload functions, 60–62
in HTTP responses, 13
<iframe> tags, 142
inline, preventing execution of, 69
minifying files, 42–43, 115
Node.js, 32
obfuscating files, 115
origin of, xxi
password complexity ratings, 88
rendering pipeline, 16, 18–19
sandboxing, 19, 141
V8 JavaScript engine, 32
vulnerability of, 19

JavaScript Object Notation (JSON)
NoSQL databases, 30
session state, 96
XML vs., 146

JavaScript XML (JSX) files, 34
Java Servlet Specification, 99
Java Virtual Machine (JVM), 32–33
job queues, 167
JSESSIONID cookie, 114
JSON. See JavaScript Object

Notation (JSON)

JSX (JavaScript XML) files, 34
JVM (Java Virtual Machine), 32–33

K
Kali Linux, 3–4
key-exchange algorithm, 121
key pairs, 123–124
key-value storage, 30
Kotlin, 33
Krebs, Brian, 135
Kubernetes, 42

L
Let’s Encrypt, 122, 125
Lightweight Directory Access Protocol

(LDAP), 53
likejacking, 158
LinkedIn, 84
Linksys, 128
Linux, xiv

chroot command, 58
filepaths, 108
file permissions, 62
filesystem, 105
Kali Linux, 3–4
restricting web server-accessible

directories, 152
wireless routers, 128

Lisp, 32
logging, 44–45

M
MACs (message authentication

codes), 120
Mailchimp, 156
mail exchange (MX) records, 9, 86
Mailgun, 156
Mailinator, 86
malvertising, 141
malware, xiii, 141–142
man-in-the-middle attacks, 14

cookie theft, 98
by government agencies, 129
unsecured TCP conversations, 118
Wi-Fi hotspots, 128
wireless routers, 128

Memcached, 30–31, 53, 165
merge conflicts, 38
merging code, 38

Index 183

message authentication codes
(MACs), 120

Metasploit framework, 3–4, 3f, 52, 114
<meta> tags, 69
methods (verbs) in HTTP, 10–11
MFA. See multifactor

authentication (MFA)
microframeworks, 31
microservices

defined, 30
distributed caches, 30
publish-subscribe channels, 31
queues, 30

Microsoft
dedicated configuration store, 137
operating system patches, 135
third-party authentication, 84

Microsoft Active Directory, 105–106
Microsoft Azure, 41
Microsoft Internet Explorer, xiii
Microsoft Windows, xiii
minifying JavaScript files, 42–43, 115
MODIFY statements (in SQL), 55
MongoDB, 53
monitoring, 44
Mono project, 33
Mosaic, xiii
Mozilla Firefox, xiii
Mozilla Foundation, 125
multifactor authentication (MFA)

requiring, 89–90, 90f
third-party authentication, 84

MX (mail exchange) records, 9, 86

N
National Center for Supercomputing

Applications, xiii
National Security Agency (NSA), 129
.NET, 33

dependency checker, 136
securing XML parsers, 151

Netflix
denial-of-service attacks, 163
technology blog, 168

Netgear, 128
Netscape, xiii, 95
Nginx, 125–126, 132
Node.js, 32, 133, 136, 151
Node Package Manager (NPM), 136
nonblind SQL injection attacks, 55
NoSQL databases, 30, 53

npm audit command, 136
NSA (National Security Agency), 129
nslookup command, 56–57

O
OAuth (open authentication) standard,

84, 158
obfuscating JavaScript files, 115
object-relational mapping (ORM),

54–55
Offensive Security, 3, 136
offloading static content, 167
Okta, 84
OneLogin, 84
opaque IDs, 108, 111, 171
open authentication (OAuth) standard,

84, 158
open directory listings, disabling, 137
OpenID standard, 84
open redirects, 153, 156–157, 172
OpenSSL, 132
openssl tool, 124–125
Open Web Application Security Project

(OWASP), 136
operating system patches, 133–134
OPTIONS requests (in HTTP), 11t
Oracle VirtualBox, 3
ORM (object-relational mapping),

54–55
os module (in Python), 62
OWASP (Open Web Application

Security Project), 136
ownership-based access control, 106

P
PaaS (Platform as a Service), 41
padding input data, 119
parameterized statements, 52–53
parent directories, 109, 112
password-reset links, 87
password-reset screens, 91
passwords. See also authentication

commonly used, 84
cracking password lists, 89
hashing, 88–89, 119–120
requiring complex, 87–88
securely storing

hashes, 88–89
salting hashes, 89

securing resets, 87, 171

184 Index

password-strength-calculator library, 88
PATCH requests (in HTTP), 11
path separator character (/), 109
payloads, 141–142
penetration testing, 44, 160
Perl, 28
permissions, 171, 173

access control
access control lists, 105
aspects of, 104
audit trails, 107–108
common oversights, 108
defined, 104
implementing, 106–107
ownership-based access

control, 106
role-based access control,

105–106
testing, 107
whitelists and blacklists, 105

directory traversal
absolute filepaths vs. relative

filepaths, 108–109
anatomy of, 109–110
defined, 108
mitigation options, 110–112

privilege escalation, 104
Petrobras, 129
phishing, 154
PHP, xiv

command injection attacks, 56–58
file upload vulnerability attacks,

60–61
overview of, 32
vulnerability of, 32

ping floods, 164
ping of death attacks, 164
Platform as a Service (PaaS), 41
post-release activities

error reporting, 44–45
logging, 44–45
monitoring, 44
penetration testing, 44

POST requests (in HTTP), 11, 50
authentication, 83
cross-site request forgery attacks,

76–77
rendering pipeline, 20
R-U-Dead-Yet? attack, 165

pre-production environments. See test
environments

primary keys (in SQL), 29

principle of least privilege, 55, 58,
152, 173

privilege escalation, 104
public-key certificates. See digital

certificates
public-key cryptography, 119, 139
pull requests, 38
Puma, 125
Puppet, 42
PUT requests (in HTTP), 11, 76–77
Python

application servers, 125
command injection attacks, 56, 58
mitigating file upload vulnerability

attacks, 62
overview of, 31–32
permissions, 106
securing XML parsers, 151

Python Software Foundation, 135

Q
quality assurance (QA), 39
quality assurance environments. See test

environments

R
rainbow tables, 89
random number generation, 100
raw function (in Ruby), 68
RBAC (role-based access control),

105–106
React framework, 34, 72
reauthentication, requiring for

sensitive actions, 79
reCAPTCHA widget, 92
Reddit, 84, 135, 166
Redis, 30–31, 53
reflected attacks, 165
reflected cross-site scripting attacks

defined, 70
escaping dynamic content, 71

regression testing, 135
regular expression (regex), 111
relational databases

consistent behavior, 29
data integrity constraints, 29
defined, 29
foreign keys, 29
primary keys, 29
SQL, 29–30, 50–51

Index 185

transactional behavior, 29
vulnerability of, 30

relative filepaths, 109–110
release process

automating, 41, 169
build process, 42–43
database migration scripts, 43
defined, 40
DevOps tools, 41–42
Infrastructure as a Service, 41
Platform as a Service, 41–42
pushing changes vs. releasing

changes, 37
reliability of, 40
reproducibility of, 40–41
revertibility of, 41

remote code execution attacks
anatomy of, 59
defined, 59
disabling code-execution during

deserialization, 59–60
rendering blink, 72
rendering pipeline

Acid3 test, 18
defined, 15–16
Document Object Model, 16–17
styling rules, 16–18

replay attacks, 139
Representational State Transfer

(REST), 76–77
Rivest-Shamir-Adleman (RSA)

algorithm, 121
role-based access control (RBAC),

105–106
Rollbar, 44
rolling back releases, 41
root privilege, 104
RSA (Rivest-Shamir-Adleman)

algorithm, 121
Ruby and Ruby on Rails, 111, 125

ActiveRecord framework, 54–55
client-side error reporting, 115
client-side sessions, 96
command injection attacks, 56, 58
database migration scripts, 43
dependency checker, 136
overview of, 31
permissions, 106–107
securing XML parsers, 151
server-side sessions, 96–97
vulnerability of, 31, 59

RubyGems package manager, 31
R-U-Dead-Yet? (RUDY) attack, 165

S
S3 (Amazon Simple Storage Service),

62, 140
SafeFrame standard, 142–143
salting hashes, 171
same-origin policy, 78
SameSite cookie attribute, 78–79, 98–99
SAML (Security Assertion Markup

Language), 85
sandboxing, 19, 141
sanitizing client-side files, 116
sanitizing file references, 111
Sass, 43
Scala, 32–33
schemaless databases, 30
Schneier, Bruce, 135
<script> tags, 18–19

reflected cross-site scripting
attacks, 70

stored cross-site scripting attacks,
66–67, 69

subresource integrity checks, 134
SCSS, 43
SDKs. See software development

kits (SDKs)
SDLC. See Software Development

Life Cycle (SDLC)
secure authentication system

banning disposable email accounts,
86, 87f

implementing and securing logout
function, 90–91

preventing user enumeration
CAPTCHA, 91–92, 92f
error messages, 91
password-reset screen, 91
timing attacks, 91

requiring complex passwords,
87–88

requiring multifactor
authentication, 89–90, 90f

requiring usernames, email
addresses, or both, 85

securely storing passwords
hashes, 88–89
salting hashes, 89

securing password resets, 87
validating email addresses, 85–86

186 Index

Secure Hash Algorithm (SHA-256), 121
Secure keyword, 98
Security Assertion Markup Language

(SAML), 85
security certificates, 20
security through obscurity, 108
seeds, 100
segregation of test and production

environments, 39
SELECT statements (in SQL), 50–51,

53, 55
self-signed certificates, 124–125
semicolon character (;), 52
Sender Policy Framework (SPF),

155–156, 172
SendGrid, 138, 156
sequence numbers, 8
serialization, 59
serialization libraries, 59–60
Server header (in HTTP responses),

114, 171
server-side request forgery (SSRF)

attacks, 150, 154, 159–160
server-side sessions, 94–95
session cookies, 95–97

cookie theft, 97–99
generic cookie parameters, 114

session fixation, 99–100
session hijacking

client-side sessions, 96–97
cookie theft, 97–99
defined, 93
opening sessions, 94
server-side sessions, 94–95
session fixation, 99–100
weak session IDs, 100

session identifiers (session IDs)
session cookies, 95–99
taking advantage of weak, 100
TLS handshakes, 121
URL rewriting, 99–100

session keys, 121–122
session state, 94–96
Set-Cookie header, 13, 20, 77–78,

90–91, 95–98, 171
SHA-256 (Secure Hash Algorithm), 121
SharkLasers, 87f
Simple Mail Transport Protocol

(SMTP), 154–155
defined, 10
Internet Protocol suite layers, 10f

single-page apps, 72
single quote character ('), 51–53
single sign-on (SSO), 84–85
Slowloris attack, 165
smoke testing. See post-release testing
SMTP. See Simple Mail Transfer

Protocol (SMTP)
Snowden, Edward, 129
social media

database storage, 28, 66
likejacking, 158
logout function, 90
ownership-based access control, 106
permissions, 103–104, 106–107
posting links to external URLs, 158
SameSite attribute settings for

cookies, 99
security advisories, 135
third-party authentication, 84

software development kits (SDKs)
avoiding server-side request forgery

attacks, 160
defined, 31

Software Development Life
Cycle (SDLC)

code writing
branching and merging code, 38
pushing changes to repository, 37
source control, 37

defined, 36
design and analysis, 36
post-release testing and

observation, 43–45
error reporting, 44–45
logging, 44–45
monitoring, 44
penetration testing, 44

pre-release testing
continuous integration

servers, 39
coverage, 39
manual testing, 38
test environments, 39–40
unit testing, 39

release process, 40–43
build process, 42–43
database migration scripts, 43
DevOps tools, 41–42
Infrastructure as a Service, 41
Platform as a Service, 41

Index 187

source control (version control)
defined, 37
distributed vs. centralized, 37
pull requests, 38

Space Jam website, 24
spam email and filters, 105, 154, 160
spearphishing, 154
SPF (Sender Policy Framework),

155–156, 172
Splunk, 45
spoofing, 50, 123, 153
Spotify, 163
SQL. See Structured Query

Language (SQL)
SQL injection attacks

anatomy of, 51–52
defined, 50
mitigation options

defense in depth, 55–56
object-relational mapping, 54–55
parameterized statements, 52–53

SQL, defined, 50–51
SSO (single sign-on), 84–85
SSRF (server-side request forgery)

attacks, 150, 154, 159–160
Stack Overflow, 138
staging environments. See test

environments
Stanford University, 7
stateful connections, 13
static resources

content delivery networks, 26
content management systems, 26, 27f
defined, 24
URL resolution, 24–25

status codes, 12–13
status messages, 12
stored cross-site scripting attacks

content security policies, 69–70
escaping control characters, 67–69
example of, 66–67, 66f–67f

Stripe, 138
Structured Query Language (SQL)

databases, 29–30, 105
defined, 29, 50
typical statements, 50–51

<style> tags, 17, 134
styling rules and information (in CSS)

build process, 43
defined, 16
rendering pipeline, 16–18

subresource integrity checks, 134
symmetric encryption algorithms, 119
SYN floods, 164
system() function (in PHP), 58

T
TCP. See Transmission Control

Protocol (TCP)
templates, xiv

dynamic resources, 28
stored cross-site scripting attacks,

68–69
test coverage, 39
test environments (staging, pre-

production, or quality
assurance environments)

close resemblance to production
environment, 39–40

defined, 39
hardening, 138
scrubbed data for, 40
segregation production

environment and, 40
testing

integration testing, 39
penetration testing, 44, 160
post-release, 43–45
pre-release, 38–40
regression testing, 135
unit testing, 39, 107, 170

third-party authentication, 84
third-party code

securing configuration, 136–138
disabling default credentials, 137
disabling open directory

listings, 137
hardening test

environments, 138
protecting configuration

information, 137–138
securing administrative

frontends, 138
securing dependencies, 132–136, 171

deploying new versions
quickly, 134

organizing dependencies,
132–134

staying alert to security issues,
135–136

timely upgrades, 136

188 Index

third-party code (continued)
securing services, 138–140

protecting API keys, 139
securing third-party

content, 140
securing webhooks, 139

third-party services risks,
140–143, 171

avoiding malware delivery,
141–142

malvertising, 141
reputable ad platforms, 142
reviewing and reporting

suspicious ads, 143
SafeFrame standard, 142–143
tailoring ad preferences, 143

time-to-live (TTL) variable, 9
timing attacks, 91
TinyLetter, 156
TLS. See Transport Layer Security (TLS)
Tornado, 125
Tornado web server, 78
Torvalds, Linus, 37
TRACE requests (in HTTP), 11t
traffic surges, 167, 173
transactional behavior, 29
transactional emails, 85, 156
Transmission Control Protocol (TCP)

application layer protocols and,
9, 10f

checksums, 8
data packets, 8
denial-of-service attacks, 164
man-in-the-middle attacks, 118
origin of, 8
purpose of, 8
receipts, 8
rendering pipeline, 20
sequence numbers, 8

transpiling, 34
Transport Layer Security (TLS)

defined, 14, 118
handshakes, 14, 118, 120–122

cipher suites, 121
session initiation, 121–122

HTTP Secure, 14
message authentication codes, 120

TTL (time-to-live) variable, 9
Tumblr, 84
Twitter, 76, 84, 135, 163
TypeScript, 34, 42

U
UDP. See User Datagram Protocol
UglifyJS utility, 115
Unicorn, 125
unintentional denial-of-service

attacks, 166
unit testing, 170

access control, 107
brittleness, 39
continuous integration servers, 39
defined, 39
test coverage, 39

universal resource locators (URLs)
clean, 114
in HTTP requests, 10–11
open redirects, 157
relative vs. absolute, 157
static resources, 24–25, 25f
URI fragments, 71–72, 71f
URL rewriting, 99–100
URL-shortening services, 156

UPDATE statements (in SQL), 50–51, 55
URI fragments, 71–73, 71f
URLs. See universal resource locators
User-Agent header (in HTTP requests),

10–11, 50
User Datagram Protocol (UDP), 8

denial-of-service attacks, 165
Internet Protocol suite layers, 10f

users tables, 50–51

V
V8 JavaScript engine, 32
validation tokens, 86–87
verbs (methods) in HTTP, 10–11
version control. See source control
version numbers, 133
vertical escalation, 104
violation reports, 70
VirtualBox, 3
virtual containers, 3
VPNFilter, 128
Vue.js, 72

W
web components specification, 141
webhooks, 139
webmasters, xiv

Index 189

web page rendering
Acid3 test, 18
Document Object Model, 16–17
JavaScript, 16, 18–19
rendering pipeline, 15–19
styling rules, 16–18

web programming languages
C#, 33
Java, 32–33
JavaScript, 32–34
Node.js, 32
PHP, 32
Python, 31–32
Ruby on Rails, 31

web servers, xiv
defined, 23
directory traversal, 110
dynamic resources, 27–34

databases, 28–30
defined, 24
distributed caches, 30–31
templates, 28
web programming languages,

31–34
installing certificates

application servers vs., 125–126
configuring web server to use

HTTPS, 126
remote code execution attacks,

59–60
static resources

content delivery networks, 26
content management systems,

26, 27f
defined, 24
URL resolution, 24–25

web shells
file upload vulnerability attacks,

60–61
privilege escalation, 104

where function (in ActiveRecord), 54
whitelists, 105
Wi-Fi hotspots, 128
Wikipedia, 71–72
wireless routers, 128
wmap utility, 3, 4f
WordPress, 26, 27f, 131, 138
worms, 76
WWW-Authenticate header, 82

X
XML. See Extensible Markup

Language (XML)
XML bombs, 148–149
XML requests, 59
XML Schema Definition (XSD) files, 147
XMPP. See Extensible Messaging and

Presence Protocol (XMPP)
XSRF attacks. See cross-site request

forgery (XSRF) attacks
XSS attacks. See cross-site scripting

(XSS) attacks

Y
YAML, 59, 146

Z
Zendesk, 26
zero-day exploits, 2, 112
zip bombs, 165

 M A L C O L M M C D O N A L D

W E B SECU R I T Y
FOR DE VELOPERS
W E B SECU R I T Y
FOR DE VELOPERS

2 N D E D I T I O N

I T ’ S N O T T O O L A T E .
U N T I L I T I S .

I T ’ S N O T T O O L A T E .
U N T I L I T I S .

I T ’ S N O T T O O L A T E .
U N T I L I T I S .

I T ’ S N O T T O O L A T E .
U N T I L I T I S .

SHELVE IN:
COM

PUTERS/PRO
GRAM

M
ING

$34.95 ($45.95 CDN)

The world has changed. Today, every time you make a
site live, you’re opening it up to attack.

A first-time developer can easily be discouraged by the
difficulties involved with properly securing a website.
But have hope: an army of security researchers is out
there discovering, documenting, and fixing security
flaws. Thankfully, the tools you’ll need to secure your
site are freely available and generally easy to use.

Web Security for Developers will teach you how your
websites are vulnerable to attack and how to protect
them. Each chapter breaks down a major security
vulnerability and explores a real-world attack, coupled
with plenty of code to show you both the vulnerability
and the fix.

You’ll learn how to:

• Protect against SQL injection attacks, malicious
JavaScript, and cross-site request forgery

• Add authentication and shape access control to
protect accounts

• Lock down user accounts to prevent attacks that
rely on guessing passwords, stealing sessions, or
escalating privileges

• Implement encryption

• Manage vulnerabilities in legacy code

• Prevent information leaks that disclose vulnerabilities

• Mitigate advanced attacks like malvertising and
denial-of-service

As you get stronger at identifying and fixing vulnerabili-
ties, you’ll learn to deploy disciplined, secure code
and become a better programmer along the way.

A B O U T T H E A U T H O R

Malcolm McDonald has been programming for
over 20 years. McDonald is the creator of www
.hacksplaining.com, an online training program for
web developers.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

®

W
E

B
 S

E
C

U
R

IT
Y

 F
O

R
 D

E
V

E
L

O
P

E
R

S
W

E
B

 S
E

C
U

R
IT

Y
 F

O
R

 D
E

V
E

L
O

P
E

R
S

M
C

D
O

N
A

L
D

R E A L T H R E A T S , P R A C T I C A L D E F E N S E

®

®

	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	About This Book
	Who Should Read This Book
	A Brief History of the Internet
	Scripting in the Browser
	A New Challenger Enters the Arena
	Machines for Writing HTML
	A Series of Tubes
	What to Worry About First

	What’s in This Book

	Chapter 1: Let’s Hack a Website
	Software Exploits and the Dark Web
	How to Hack a Website

	Part 1: The Basics
	Chapter 2: How the Internet Works
	The Internet Protocol Suite
	Internet Protocol Addresses
	The Domain Name System

	Application Layer Protocols
	HyperText Transfer Protocol

	Stateful Connections
	Encryption
	Summary

	Chapter 3: How Browsers Work
	Web Page Rendering
	The Rendering Pipeline: An Overview
	The Document Object Model
	Styling Information

	JavaScript
	Before and After Rendering: Everything Else the Browser Does
	Summary

	Chapter 4: How Web Servers Work
	Static and Dynamic Resources
	Static Resources
	URL Resolution
	Content Delivery Networks
	Content Management Systems

	Dynamic Resources
	Templates
	Databases
	Distributed Caches
	Web Programming Languages

	Summary

	Chapter 5: How Programmers Work
	Phase 1: Design and Analysis
	Phase 2: Writing Code
	Distributed vs. Centralized Version Control
	Branching and Merging Code

	Phase 3: Pre-Release Testing
	Coverage and Continuous Integration
	Test Environments

	Phase 4: The Release Process
	Options for Standardized Deployment During Releases
	The Build Process
	Database Migration Scripts

	Phase 5: Post-Release Testing and Observation
	Penetration Testing
	Monitoring, Logging, and Error Reporting

	Dependency Management
	Summary

	Part 2: The Threats
	Chapter 6: Injection Attacks
	SQL Injection
	What Is SQL?
	Anatomy of a SQL Injection Attack
	Mitigation 1: Use Parameterized Statements
	Mitigation 2: Use Object-Relational Mapping
	Bonus Mitigation: Use Defense in Depth

	Command Injection
	Anatomy of a Command Injection Attack
	Mitigation: Escape Control Characters

	Remote Code Execution
	Anatomy of a Remote Code Execution Attack
	Mitigation: Disable Code Execution During Deserialization

	File Upload Vulnerabilities
	Anatomy of a File Upload Attack
	Mitigations

	Summary

	Chapter 7: Cross-Site Scripting Attacks
	Stored Cross-Site Scripting Attacks
	Mitigation 1: Escape HTML Characters
	Mitigation 2: Implement a Content Security Policy

	Reflected Cross-Site Scripting Attacks
	Mitigation: Escape Dynamic Content from HTTP Requests

	DOM-Based Cross-Site Scripting Attacks
	Mitigation: Escaping Dynamic Content from URI Fragments

	Summary

	Chapter 8: Cross-Site Request Forgery Attacks
	Anatomy of a CSRF Attack
	Mitigation 1: Follow REST Principles
	Mitigation 2: Implement Anti-CSRF Cookies
	Mitigation 3: Use the SameSite Cookie Attribute
	Bonus Mitigation: Require Reauthentication for Sensitive Actions
	Summary

	Chapter 9: Compromising Authentication
	Implementing Authentication
	HTTP-Native Authentication
	Non-Native Authentication
	Brute-Force Attacks

	Mitigation 1: Use Third-Party Authentication
	Mitigation 2: Integrate with Single Sign-On
	Mitigation 3: Secure Your Own Authentication System
	Requiring Usernames, Email Address, or Both
	Requiring Complex Passwords
	Securely Storing Passwords
	Requiring Multifactor Authentication
	Implementing and Securing the Logout Function
	Preventing User Enumeration

	Summary

	Chapter 10: Session Hijacking
	How Sessions Work
	Server-Side Sessions
	Client-Side Sessions

	How Attackers Hijack Sessions
	Cookie Theft
	Session Fixation
	Taking Advantage of Weak Session IDs

	Summary

	Chapter 11: Permissions
	Privilege Escalation
	Access Control
	Designing an Authorization Model
	Implementing Access Control
	Testing Access Control
	Adding Audit Trails
	Avoiding Common Oversights

	Directory Traversal
	Filepaths and Relative Filepaths
	Anatomy of a Directory Traversal Attack
	Mitigation 1: Trust Your Web Server
	Mitigation 2: Use a Hosting Service
	Mitigation 3: Use Indirect File References
	Mitigation 4: Sanitize File References

	Summary

	Chapter 12: Information Leaks
	Mitigation 1: Disable Telltale Server Headers
	Mitigation 2: Use Clean URLs
	Mitigation 3: Use Generic Cookie Parameters
	Mitigation 4: Disable Client-Side Error Reporting
	Mitigation 5: Minify or Obfuscate Your JavaScript Files
	Mitigation 6: Sanitize Your Client-Side Files
	Stay on Top of Security Advisories
	Summary

	Chapter 13: Encryption
	Encryption in the Internet Protocol
	Encryption Algorithms, Hashing, and Message Authentication Codes
	The TLS Handshake

	Enabling HTTPS
	Digital Certificates
	Obtaining a Digital Certificate
	Installing a Digital Certificate

	Attacking HTTP (and HTTPS)
	Wireless Routers
	Wi-Fi Hotspots
	Internet Service Providers
	Government Agencies

	Summary

	Chapter 14: Third-Party Code
	Securing Dependencies
	Know What Code You Are Running
	Be Able to Deploy New Versions Quickly
	Stay Alert to Security Issues
	Know When to Upgrade

	Securing Configuration
	Disable Default Credentials
	Disable Open Directory Listings
	Protect Your Configuration Information
	Harden Test Environments
	Secure Administrative Frontends

	Securing the Services That You Use
	Protect Your API Keys
	Secure Your Webhooks
	Secure Content Served by Third Parties

	Services as an Attack Vector
	Be Wary of Malvertising
	Avoid Malware Delivery
	Use a Reputable Ad Platform
	Use SafeFrame
	Tailor Your Ad Preferences
	Review and Report Suspicious Ads

	Summary

	Chapter 15: XML Attacks
	The Uses of XML
	Validating XML
	Document Type Definitions

	XML Bombs
	XML External Entity Attacks
	How Hackers Exploit External Entities

	Securing Your XML Parser
	Python
	Ruby
	Node.js
	Java
	.NET

	Other Considerations
	Summary

	Chapter 16: Don’t Be an Accessory
	Email Fraud
	Implement a Sender Policy Framework
	Implement DomainKeys Identified Mail
	Securing Your Email: Practical Steps

	Disguising Malicious Links in Email
	Open Redirects
	Preventing Open Redirects
	Other Considerations

	Clickjacking
	Preventing Clickjacking

	Server-Side Request Forgery
	Protecting Against Server-Side Forgery

	Botnets
	Protecting Against Malware Infection

	Summary

	Chapter 17: Denial-of-Service Attacks
	Denial-of-Service Attack Types
	Internet Control Message Protocol Attacks
	Transmission Control Protocol Attacks
	Application Layer Attacks
	Reflected and Amplified Attacks
	Distributed Denial-of-Service Attacks
	Unintentional Denial-of-Service Attacks

	Denial-of-Service Attack Mitigation
	Firewalls and Intrusion Prevention Systems
	Distributed Denial-of-Service Protection Services
	Building for Scale

	Summary

	Chapter 18: Summing Up

	Index

