CoMPUTER GRAPHICS
PROGRAMMING

IN OPENGL WITH JAVA

V. Scott GorRDON | JOHN CLEVENGER

COMPUTER GRAPHICS
PROGRAMMING IN OPENGL
WITH JAVA

THIRD EDITION

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and its companion files (the “Work™), you agree
that this license grants permission to use the contents contained herein, but does
not give you the right of ownership to any of the textual content in the book or
ownership to any of the information or products contained in it. This license does
not permit uploading of the Work onto the Internet or on a network (of any kind)
without the written consent of the Publisher. Duplication or dissemination of any
text, code, simulations, images, etc. contained herein is limited to and subject to
licensing terms for the respective products, and permission must be obtained from
the Publisher or the owner of the content, etc., in order to reproduce or network any
portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” OrR “THE PUBLISHER”) and
anyone involved in the creation, writing, or production of the companion disc,
accompanying algorithms, code, or computer programs (“the software”), and any
accompanying Web site or software of the Work, cannot and do not warrant the
performance or results that might be obtained by using the contents of the Work.
The author, developers, and the Publisher have used their best efforts to ensure
the accuracy and functionality of the textual material and/or programs contained
in this package; we, however, make no warranty of any kind, express or implied,
regarding the performance of these contents or programs. The Work is sold “as is”
without warranty (except for defective materials used in manufacturing the book
or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not
be liable for damages of any kind arising out of the use of (or the inability to use)
the algorithms, source code, computer programs, or textual material contained
in this publication. This includes, but is not limited to, loss of revenue or profit,
or other incidental, physical, or consequential damages arising out of the use of
this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and disc and only at the discretion of the Publisher. The
use of “implied warranty” and certain “exclusions” vary from state to state, and
might not apply to the purchaser of this product.

Companion files are available for download from the publisher by writing to
info@merclearning.com.

COMPUTER GRAPHICS
PROGRAMMING IN OPENGL
WITH JAVA

THIRD EDITION

V. Scott Gordon, PhD

California State University, Sacramento

John Clevenger, PhD

California State University, Sacramento

»

MERCURY LEARNING AND INFORMATION
Dulles, Virginia
Boston, Massachusetts
New Delhi

Copyright ©2021 by MERCURY LEARNING AND INFORMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying sofiware may not be reproduced in any way,
stored in a retrieval system of any type, or transmitted by any means, media, electronic display

or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or
scanning, without prior permission in writing from the publisher:

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive

Dulles, VA 20166
info@merclearning.com
www.merclearning.com

(800) 232-0223

V. Scott Gordon & John Clevenger.
Computer Graphics Programming in OpenGL with Java, Third Edition
ISBN: 978-1-68392-736-5

The publisher recognizes and respects all marks used by companies, manufacturers, and

developers as a means to distinguish their products. All brand names and product names mentioned
in this book are trademarks or service marks of their respective companies. Any omission or misuse
(of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property

of others.

Library of Congress Control Number: 2021942460
212223 321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223 (toll free).
Digital versions of our titles are available at: www.academiccourseware.com and other e-vendors.
All companion files are available by writing to the publisher at info@merclearning.com.

The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace
the book and/or disc, based on defective materials or faulty workmanship, but not based on the
operation or functionality of the product.

Contents

Preface xi
What’s New in This Edition xiil
Intended Audience Xiv
How to Use This Book XV
Acknowledgments Xvii
About the Authors XiX

Chapter 1 Getting Started 1

1.1 Languages and Libraries 1
I.I.1 Java 2

1.1.2 OpenGL / GLSL 2

1.1.3 JOGL 3

1.14 JOML 3

1.2 Installation and Configuration 4
Chapter 2 The OpenGL Graphics Pipeline 5
2.1 The OpenGL Pipeline 6
2.1.1 Java/JOGL Application 7

2.1.2 Vertex and Fragment Shaders 10

2.1.3 Tessellation 15

2.1.4 Geometry Shader 16

2.1.5 Rasterization 17

2.1.6 Fragment Shader 19

2.1.7 Pixel Operations 20

vi Bl Contents

2.2
23
24
2.5
2.6

Detecting OpenGL and GLSL Errors
Reading GLSL Source Code from Files
Building Objects from Vertices
Animating a Scene

Organizing the Java Code Files

Chapter 3 Mathematical Foundations

3.1
32
33
34

3.5

3.6
3.7
3.8

3.9
3.10

3D Coordinate Systems
Points
Matrices
Transformation Matrices
3.4.1 Translation
3.4.2 Scaling
3.43 Rotation
Vectors
3.5.1 Uses for Dot Product
3.5.2 Uses for Cross Product
Local and World Space
Eye Space and the Synthetic Camera
Projection Matrices
3.8.1 The Perspective Projection Matrix
3.8.2 The Orthographic Projection Matrix
Look-At Matrix
GLSL Functions for Building Matrix Transforms

Chapter 4 Managing 3D Graphics Data

4.1
4.2
43
44
4.5
4.6

4.7
4.8
49
4.10
4.11

Buffers and Vertex Attributes

Uniform Variables

Interpolation of Vertex Attributes

Model-View and Perspective Matrices

Our First 3D Program—A 3D Cube

Rendering Multiple Copies of an Object
4.6.1 Instancing

Rendering Multiple Different Models in a Scene

Matrix Stacks

Combating “Z-Fighting” Artifacts

Other Options for Primitives

Coding for Performance

21
26
27
28
32

37

38
38
39
4
4
43
44
45
47
48
49
50
53
53
56
57
58

63

64
67
68
69
71
80
81
84
87
94
95
97

Contents W vii

4.11.1 Minimizing Dynamic Memory Allocation
4.11.2 Pre-Computing the Perspective Matrix
4.11.3 Back-Face Culling

Chapter 5 Texture Mapping

5.1
52
5.3
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12

Loading Texture Image Files

Texture Coordinates

Creating a Texture Object

Constructing Texture Coordinates

Loading Texture Coordinates into Buffers

Using the Texture in a Shader: Sampler Variables and Texture Units
Texture Mapping: Example Program

Mipmapping

Anisotropic Filtering

Wrapping and Tiling

Perspective Distortion

Loading Texture Image Files using Java AWT Classes

Chapter 6 3D Models

6.1
6.2

6.3

Procedural Models—Building a Sphere
OpenGL Indexing—Building a Torus
6.2.1 The Torus
6.2.2 Indexing in OpenGL
Loading Externally Produced Models

Chapter 7 Lighting

7.1
7.2
7.3
7.4
1.5

7.6

Lighting Models
Lights
Materials
ADS Lighting Computations
Implementing ADS Lighting

7.5.1 Gouraud Shading

7.5.2 Phong Shading
Combining Lighting and Textures

Chapter 8 Shadows

8.1
8.2

The Importance of Shadows
Projective Shadows

97
99
100

107

108
110
112
112
114
114
115
118
123
124
126
128

133

134
142
142
143
148

161

161
163
166
168
171
172
180
185

191

191
192

vii @ Contents

8.3
8.4

8.5
8.6
8.7

Shadow Volumes
Shadow Mapping
8.4.1 Shadow Mapping (Pass One)—“Draw” Objects from
Light Position
8.4.2 Shadow Mapping (Intermediate Step)—Copying the
Z-Buffer to a Texture
8.4.3 Shadow Mapping (Pass Two)—Rendering the Scene with
Shadows
A Shadow Mapping Example
Shadow Mapping Artifacts
Soft Shadows
8.7.1 Soft Shadows in the Real World
8.7.2 Generating Soft Shadows—Percentage Closer Filtering (PCF)
8.7.3 A Soft Shadow/PCF Program

Chapter 9 Sky and Backgrounds

9.1
9.2
9.3

9.4

Chapter

10.1
10.2
10.3

Chapter

11.1
11.2
11.3
11.4

Chapter

12.1
12.2
12.3
124

Skyboxes
Skydomes
Implementing a Skybox
9.3.1 Building a Skybox from Scratch
9.3.2 Using OpenGL Cube Maps
Environment Mapping

10 Enhancing Surface Detail
Bump Mapping

Normal Mapping

Height Mapping

11 Parametric Surfaces

Quadratic Bézier Curves
Cubic Bézier Curves
Quadratic Bézier Surfaces
Cubic Bézier Surfaces

12 Tessellation

Tessellation in OpenGL

Tessellation for Bézier Surfaces
Tessellation for Terrain/Height Maps
Controlling Level of Detail (LOD)

193
194

195

196

197
201
208
210
211
212
216

221

221
224
226
226
229
234

243

243
245
254

261

261
263
266
268

273

273
279
286
293

Chapter 13 Geometry Shaders

13.1 Per-Primitive Processing in OpenGL
13.2 Altering Primitives

13.3 Deleting Primitives

13.4 Adding Primitives

13.5 Changing Primitive Types

Chapter 14 Other Techniques

14.1 Fog

14.2 Compositing/Blending/Transparency
14.3 User-Defined Clipping Planes

14.4 3D Textures

14.5 Noise

14.6 Noise Application - Marble

14.7 Noise Application - Wood

14.8 Noise Application - Clouds

14.9 Noise Application - Special Effects

Chapter 15 Simulating Water

15.1 Pool Surface and Floor Geometry Setup
15.2 Adding Surface Reflection and Refraction
15.3 Adding Surface Waves

15.4 Additional Corrections

15.5 Animating the Water Movement

15.6 Underwater Caustics

Chapter 16 Ray Tracing and Compute Shaders

16.1 Compute Shaders

16.1.1 Compiling and Using Compute Shaders
16.1.2 Parallel Computing in Compute Shaders

16.1.3 Work Groups
16.1.4 Work Group Details
16.1.5 Work Group Limitations
16.2 Ray Casting
16.2.1 Defining the 2D Texture Image

16.2.2 Building and Displaying the Ray Cast Image

16.2.3 Ray-Sphere Intersection
16.2.4 Axis-Aligned Ray-Box Intersection

Contents M ix

299

299
301
305
306
309

313

313
316
322
324
330
335
340
344
349

355

355
360
371
374
379
381

387

389
389
390
394
395
398
399
399
400
408
409

x l Contents

16.2.5
16.2.6
16.2.7
16.2.8
16.2.9
16.2.10

Output of Simple Ray Casting Without Lighting
Adding ADS Lighting

Adding Shadows

Non-Axis-Aligned Ray-Box Intersection
Determining Texture Coordinates

Plane Intersection and Procedural Textures

16.3 Ray Tracing

16.3.1
16.3.2
16.3.3
16.34
16.3.5
16.3.6
16.3.7

Reflection

Refraction

Combining Reflection, Refraction, and Textures
Increasing the Number of Rays

Generalizing the Solution

Additional Examples

Blending Colors for Transparent Objects

Chapter 17 Stereoscopy for 3D Glasses and VR Headsets

17.1 View and Projection Matrices for Two Eyes
172 Anaglyph Rendering

17.3 Side-by-Side Rendering

17.4 Correcting Lens Distortion in Headsets
17.5 A Simple Testing Hardware Configuration

Appendix A Installation and Setup for PC (Windows)
Appendix B Installation and Setup for Macintosh
Appendix C Using the Nsight Graphics Debugger

Index

411
411
413
415
418
426
430
430
434
437
439
446
450
455

467

469
471
474
475
483

487
491
497

505

Preface

This book is designed primarily as a textbook for a typical computer science undergraduate
course in modern shader-based, OpenGL 3D graphics programming. However, we have
also endeavored to create a text that could be used to teach oneself, without an accom-
panying course. With both of those aims in mind, we have tried to explain things as
clearly and as simply as we can. All of the programming examples are stripped down and
simplified as much as possible, but they are still complete, so the reader may run them all
as presented.

One of the things we hope is unique about this book is that we have strived to make it
accessible to a beginner — that is, someone new to 3D graphics programming. While there
is by no means a lack of information available on the topic—quite the contrary—many
students are initially overwhelmed. This text is our attempt to write the book we wish we
had had when we were starting out, with step-by-step explanations of the basics, progress-
ing in an organized manner up through advanced topics. We considered titling the book
“shader programming made easy’’; however, we don’t think that there really is any way of
making shader programming “easy.” We hope that we have come close.

This book teaches OpenGL programming in Java, using JOGL—a Java “wrapper”
for OpenGL’s native C calls [JO21]. There are several advantages to learning graphics
programming in Java rather than in C:

e Itis more convenient for students at schools that conduct most of their curriculum
in Java
* Installation and setup is easier in Java than for C or C++

* Java’s I/O, window, and event handling are arguably cleaner than in C

xii @ Preface

» Java’s excellent support for object-oriented design patterns can foster good design

* JOGL includes some very nice tools, such as for loading textures, animation
loops, etc.

It is worth mentioning that there do exist other Java bindings for OpenGL. One that
has become very popular is Lightweight Java Game Library, or LWJGL [LW21]. Like
JOGL, LWJGL also offers bindings for OpenAL and OpenCL. This textbook focuses
only on JOGL.

Another thing that makes this book unique is that it has a “sister” textbook: Computer
Graphics Programming in OpenGL with C++, Second Edition. The two books are orga-
nized in lockstep, with the same chapter and section numbers and topics, figures, exer-
cises, and theoretical descriptions. Wherever possible, the code is organized similarly.
Of course, the use of Java versus C++ leads to considerable programming differences
(although all of the shader code is identical). Still, we believe that we have provided vir-
tually identical learning paths, even allowing a student to choose either option within a
single classroom.

An important point of clarification is that there exist both different versions of
OpenGL (briefly discussed later) and different variants of OpenGL. For example, in
addition to “standard OpenGL” (sometimes called “desktop OpenGL”), there exists a
variant called “OpenGL ES,” which is tailored for development of embedded systems
(hence the “ES”). “Embedded systems” include devices such as mobile phones, game
consoles, automobiles, and industrial control systems. OpenGL ES is mostly a subset of
standard OpenGL, eliminating a large number of operations that are typically not needed
for embedded systems. OpenGL ES also adds some additional functionality, typically
application-specific operations for particular target environments. The JOGL suite of Java
bindings includes interfaces for different versions of OpenGL ES, although we do not use
them in this book.

Yet another variant of OpenGL is called “WebGL.” Based on OpenGL ES, WebGL is
designed to support the use of OpenGL in web browsers. WebGL allows an application to
use JavaScript! to invoke OpenGL ES operations, which makes it easy to embed OpenGL
graphics into standard HTML (web) documents. Most modern web browsers support
WebGL, including Apple Safari, Google Chrome, Microsoft Edge, Microsoft Internet
Explorer, Mozilla Firefox, and Opera. Since web programming is outside the scope of
this book, we will not cover any WebGL specifics. Note however, that because WebGL

I JavaScript is a scripting language that can be used to embed code in web pages. It has strong
similarities to Java, but also many important differences.

Preface B xiii

is based on OpenGL ES, which in turn is based on standard OpenGL, much of what is
covered in this book can be transferred directly to learning about these OpenGL variants.

The very topic of 3D graphics lends itself to impressive, even beautiful images.
Indeed, many popular textbooks on the topic are filled with breathtaking scenes, and it is
enticing to leaf through their galleries. While we acknowledge the motivational utility of
such examples, our aim is to teach, not to impress. The images in this book are simply the
outputs of the example programs, and because this is an introductory text, the resulting
scenes are unlikely to impress an expert. However, the techniques presented do constitute
the foundational elements for producing today’s stunning 3D effects.

We also haven’t tried to create an OpenGL or JOGL “reference.” Our coverage of
OpenGL and JOGL represents only a tiny fraction of their capabilities. Rather, our aim is
to use OpenGL and JOGL as vehicles for teaching the fundamentals of modern shader-
based 3D graphics programming, and provide the reader with a sufficiently deep under-
standing for further study. If along the way this text helps to expand awareness of JOGL
and other JogAmp technologies, that would be nice, too.

What’s New in This Edition

We have added three new chapters in this 3" edition of Computer Graphics Programming
in OpenGL with Java:

o Chapter 15 — Simulating Water
* Chapter 16 — Ray Tracing
e Chapter 17 — Stereoscopy

Ray tracing in particular has become “hot” recently, so we are especially excited that
it is now included in our book. It is also a huge topic, so even though our coverage is just
a basic introduction, Chapter 16 is now the longest chapter in the book. Chapter 16 also
includes an introduction to compute shaders, which were introduced in OpenGL 4.3, and
an introduction to additive and subtractive color blending, which expands on a topic that
was introduced in Section 14.2.

For years our own students have repeatedly expressed an interest in simulating water.
However, water takes so many forms that writing an introductory section on the topic is
challenging. Ultimately, we decided to present water in a way that would complement
related topics in the book such as terrain, sky, etc., and so in Chapter 15 we focus on utiliz-
ing our noise maps from Chapter 14 to generate water surfaces such as are seen in lakes
and oceans.

xiv l Preface

The new chapter on stereoscopy is motivated by the increased popularity of virtual
reality. However, it is also applicable to the development of animation for “3D movies,”
and we have tried to provide introductory coverage of both uses equally.

As aresult of these additions, this 3™ edition is larger than the previous edition.

Besides the new material, there are important revisions throughout the book. For
example, we fixed bugs in our Torus class in Chapter 6, and made significant improve-
ments to our noise map functions in Chapter 14. Another small, but important, modifica-
tion was to change all of our lighting computations so that they are done in world space
rather than in camera space — this makes it easier to develop applications that require
being able to move the camera around. We also expanded our Utils.java utility class to
handle the loading of compute shaders.

There are dozens of small changes in every chapter that the reader might not even
notice: fixing typos, cleaning up code inconsistencies, updating the installation instruc-
tions, making slight wording changes, sprucing up figures, updating references, etc.
Completely eliminating typos is virtually impossible in a book that covers an ever-chang-
ing technology-rich topic, but we have attempted it.

Intended Audience

This book is targeted at students of computer science. This could mean undergraduates
pursuing a BS degree, but it could also mean anyone who studies computer science. As
such, we are assuming that the reader has at least a solid background in object-oriented
programming, at the level of someone who is, say, a computer science major at the junior
or senior level.

There are also some specific things that we use in this book, but that we don’t cover,
because we assume the reader already has sufficient background. In particular:

e Java and its Abstract Window Toolkit (AWT) or Swing library, especially for
GUI-building

» Java configuration details, such as manipulating the CLASSPATH

* basic data structures and algorithms, such as linked lists, stacks and queues, etc.

e recursion

* event-driven programming concepts

* basic matrix algebra and trigonometry

* basic analytic geometry, such as for defining points, lines, vectors, planes, and circles

Preface W xv

e awareness of color models, such as RGB, RGBA, etc.

e basic familiarity with C or C++ (some shader syntax is based on C)

The audience for this new 3™ edition is also hoped to be expanded by the similar
updates made for the 2" edition of its “sister” textbook, Computer Graphics Programming
in OpenGL with C++. In particular, we envision a learning environment where students
are free to utilize either Java or C++ in the same classroom, selecting one or the other
book. The two texts cover the material sufficiently in lockstep that we have been conduct-
ing our graphics programming course successfully in this manner.

How to Use This Book

This book is designed to be read from front to back. That is, material in later chapters
frequently relies on information learned in earlier chapters. So, it probably won’t work to
jump back and forth in the chapters; rather, work your way forward through the material.

This is also intended mostly as a practical, hands-on guide. While there is plenty of
theoretical material included, the reader should treat this text as a sort of “workbook,” in
which you learn basic concepts by actually programming them yourself. We have pro-
vided code for all of the examples, but to really learn the concepts you will want to “play”
with those examples—extend them to build your own 3D scenes.

At the end of each chapter are a few exercises to solve. Some are very simple, involv-
ing merely making simple modifications to the provided code. The problems that are
marked “(PROJECT),” however, are expected to take some time to solve, and require writ-
ing a significant amount of code, or combining techniques from various examples. There
are also a few marked “(RESEARCH)”—those are problems that encourage independent
study because this textbook doesn’t provide sufficient detail to solve them.

OpenGL calls, whether made in C or in Java through JOGL, often involve long lists of
parameters. While writing this book, the authors debated whether or not to, in each case,
describe all of the parameters. We decided that in the early chapters we would describe
every detail. But as the topics progress, we decided to avoid getting bogged down in every
piece of minutiae in the OpenGL calls (and there are many), for fear of the reader losing
sight of the big picture. For this reason, it is essential when working through the examples
to have ready access to reference material for Java, OpenGL, and JOGL.

For this, there are a number of excellent reference sources that we recommend using
in conjunction with this book. The javadocs for Java and JOGL are absolutely essential,
and can be accessed online or downloaded. The reader should bookmark them for easy

xvi @ Preface

access in a browser, and expect to access them continuously for looking up items such as
parameter and constructor details. The URLSs for the Java and JOGL javadocs are:

https://docs.oracle.com/en/javaljavase/11/docs/api
https://jogamp.org/deployment/jogamp-next/javadoc/jogl/javadoc

Many of the entries in the JOGL javadoc are simply pointers to the corresponding
entry in the OpenGL documentation, available here:

https://www.khronos.org/registry/OpenGL-Refpages/gl4/

Our examples utilize a mathematics library called JOML. This is a Java library that
also has its own set of javadocs. After installing JOML (described in the appendices), the
reader should locate the accompanying javadoc link and bookmark it. At press time, the
current link is:

https://joml-ci.github.io/JOML/apidocs

There are many other books on 3D graphics programming that we recommend read-
ing in parallel with this book (such as for solving the “research” problems). Here are five
that we often refer to:

o (Sellers et al.) OpenGL SuperBible [SW15]

* (Kessenich et al.) OpenGL Programming Guide [KS16] (the “red book™)

e (Wolff) OpenGL 4 Shading Language Cookbook [WO18]

* (Angel and Shreiner) Interactive Computer Graphics [AS20]

* (Luna) Introduction to 3D Game Programming with DirectX 12 [LU16]

Companion Files
This book is accompanied by a companion disc that contains the following items:
* All of the Java/OpenGL programs and related utility class files and GLSL shader
code presented in the book
* The models and texture files used in the various programs and examples
e The cubemap and skydome image files used to make the skies and horizons
* Normal maps and height maps for lighting and surface detail effects
* All of the figures in the book, as image files

Readers who have purchased the electronic version of this book may obtain these files
by contacting the publisher at info@merclearning.com.

Preface W xvii

Instructor Ancillaries

Instructors in a college or university setting are encouraged to obtain the instructor
ancillary package that is available for this book, which contains the following additional
items:

e A complete set of PowerPoint slides covering all topics in the book

* Solutions to most of the exercises at the ends of the chapters, including code
where applicable

* Sample syllabus for a course based on the book
* Additional hints for presenting the material, chapter-by-chapter

This instructor ancillary package is available by contacting the publisher at info@
merclearning.com.

Acknowledgments

Early drafts of this book (prior to the 1% edition) were developed in 2016 for the CSc-155
(Advanced Computer Graphics Programming) course at CSU Sacramento. Many CSc-155
students actively contributed suggestions and bug fixes during that year, including Mitchell
Brannan, Tiffany Chiapuzio-Wong, Samson Chua, Anthony Doan, Kian Faroughi, Cody
Jackson, John Johnston, Zeeshan Khalig, Raymond Rivera, Oscar Solorzano, Darren
Takemoto, Jon Tinney, James Womack, and Victor Zepeda. The following year our col-
league Dr. Pinar Muyan-Ozcelik used the book while teaching CSc-155 for her first time,
and kept a running log of questions and corrections for each chapter, which led to many
improvements for subsequent editions.

In Spring 2020 we tested our idea of allowing students (in our CSc-155 course) to
select either Java or C++, using the respective edition of this textbook. It was a sort of acid
test of our “sister” textbook idea, and we were pleased with how things went. We have
been teaching the course in this manner ever since.

Much of the code in Chapters 15 and 16 was developed by two of our best students,
Chris Swenson and Luis Gutierrez, respectively. Both did an excellent job of distilling
these complex topics into nicely coherent solutions, and their contributions helped to
make these two new chapters possible.

We continue to receive a steady stream of great feedback from instructors around the
world who adopt our books for their courses, and from professionals and enthusiasts — Dr.
Mauricio Papa (University of Tulsa), Dan Asimov (NASA Ames), Sean McCrory, Michael
Hiatt, Scott Anderson, Reydalto Hernandez, and Bill Crupi, just to name a few.

xviii I Preface

Dr. Alan Mills, over the course of several months starting in early 2020, sent us over
two hundred suggestions and corrections from his notes as he worked through our 2" edi-
tion. Among his many finds was a significant correction to the texture coordinates in the
torus model. Alan’s attention to detail is amazing and we greatly appreciate the positive
impact of his efforts on our books (many of his suggestions were also applicable to the
C++ edition).

Jay Turberville of Studio 522 Productions in Scottsdale (Arizona) built the dolphin
model shown on the cover and used throughout all of our books. Our students love it.
Studio 522 Productions does incredibly high-quality 3D animation and video production,
as well as custom 3D modeling. We are thrilled that Mr. Turberville kindly offered to
build such a wonderful model just for these books.

We are extremely grateful for the ongoing assistance provided to us by Julien Gouesse,
engine support maintainer at Jogamp. Mr. Gouesse has provided technical information on
JOGL textures, cube maps, buffer handling, animation, proper loading of shader source
files, and a variety of other topics. His help has led to significant improvements in each
edition.

Kai Burjack, lead developer of the JOML math library, has been extraordinarily gen-
erous with his time and assistance since we migrated to using JOML in our 2" edition. He
reviewed key segments of our book and has helped guide us to (hopefully!) using JOML
correctly.

We wish to thank a few other artists and researchers who were gracious enough
to allow us to utilize their models and textures. James Hastings-Trew of Planet Pixel
Emporium provided many of the planetary surface textures. We thank Jochum Skoglund
of Crackshell for permitting us to use his beautiful “MIRAMAR” skybox, and for allow-
ing us to include it in the accompanying ancillary files. Paul Bourke allowed us to use his
wonderful star field. Dr. Marc Levoy of Stanford University granted us permission to use
the famous “Stanford Dragon” model. Paul Baker’s bump-mapping tutorial formed the
basis of the “torus” model we used in many examples. We also thank Mercury Learning
for allowing us to use some of the textures from [LU16].

The late Dr. Danny Kopec connected us with Mercury Learning and introduced us to
its publisher, David Pallai. Being a chess enthusiast, Dr. Gordon (one of the authors) was
originally familiar with Dr. Kopec as a well-known international chess master and prolific
chess book author. He was also a computer science professor, and his textbook, Artificial
Intelligence in the 21st Century, inspired us to consider Mercury Learning for our book
project. We had several telephone conversations with Dr. Kopec which were extremely
informative. We were deeply saddened by Dr. Kopec’s untimely passing in 2016, and

Preface M xix

regret that he didn’t have the chance to see our books, which he had helped jump start,
come to fruition.

Finally, we wish to thank David Pallai and Jennifer Blaney of Mercury Learning for
their continued enthusiasm and support for this project and for guiding us through the
textbook publishing process.

Errata

If you find any errors in our book, please let us know! Despite our best efforts, this book
almost certainly contains mistakes. We will do our best to post corrections as soon as
errors are reported to us. We have established a webpage for collecting errata and posting
corrections:

http://ecs.csus.edu/~gordonvs/textJ3E.html

The publisher, Mercury Learning, also maintains a link to our errata page. So, if the
URL for our errata page should ever change, check the Mercury Learning website for the
latest link.

About the Authors

Dr. V. Scott Gordon has been a professor in the California State University system for
over twenty-five years, and currently teaches advanced graphics and game engineering
courses at CSU Sacramento. He has authored or coauthored over thirty publications in
a variety of areas including artificial intelligence, neural networks, evolutionary com-
putation, computer graphics, software engineering, video and strategy game program-
ming, and computer science education. Dr. Gordon obtained his PhD at Colorado State
University. He is also a jazz drummer and a competitive table tennis player.

Dr. John Clevenger has over forty years of experience teaching a wide variety of courses
including advanced graphics, game architecture, operating systems, VLSI chip design,
system simulation, and other topics. He is the developer of several software frameworks
and tools for teaching graphics and game architecture, including the graphicslib3D library
used in the first edition of our Java-based textbook. He is the technical director of the
International Collegiate Programming Contest (ICPC), and oversees the ongoing develop-
ment of PC"2, the most widely used programming contest support system in the world.
Dr. Clevenger obtained his PhD at the University of California, Davis. He is also a per-
forming jazz musician, and spends summer vacations in his mountain cabin.

xx B Preface

References

[AS20] E.AngelandD. Shreiner, Interactive Computer Graphics: A Top-Down Approach
with WebGL, 8th ed. (Pearson, 2020).

[JO21] JogAmp, accessed March 2021, http:/jogamp.org

[KS16] J. Kessenich, G. Sellers, and D. Shreiner, OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Version 4.5 with SPIR-V, 9th ed. (Addison-
Wesley, 2016).

[LU16] F. Luna, Introduction to 3D Game Programming with DirectX 12, 2nd ed.
(Mercury Learning, 2016).

[LW21] Lightweight Java Game Library (LWJGL), accessed March 2021, https:/www.
Iwjgl.org

[SW15] G. Sellers, R. Wright Jr., and N. Haemel, OpenGL SuperBible: Comprehensive
Tutorial and Reference, 7th ed. (Addison-Wesley, 2015).

[WO18] D. Wolff, OpenGL 4 Shading Language Cookbook, 3rd ed. (Packt Publishing, 2018).

CHAPTER 1

GETTING STARTED

1.1 Languages and Libraries., 1
1.2 Installation and Configuration i, 4

Graphics programming has a reputation for being among the most challeng-
ing computer science topics to learn. These days, graphics programming is shader
based—that is, some of the program is written in a standard language such as Java
or C++ for running on the CPU and some is written in a special-purpose shader
language for running directly on the graphics card (GPU). Shader programming has
a steep learning curve, so that even drawing something simple requires a convoluted
set of steps to pass graphics data down a “pipeline.” Modern graphics cards are able
to process this data in parallel, and so the graphics programmer must understand the
parallel architecture of the GPU, even when drawing simple shapes.

The payoff, however, is extraordinary power. The blossoming of stunning virtual
reality in videogames and increasingly realistic effects in Hollywood movies can be
greatly attributed to advances in shader programming. If reading this book is your
entrée into 3D graphics, you are taking on a personal challenge that will reward you
not only with pretty pictures but with a level of control over your machine that you
never imagined was possible. Welcome to the exciting world of computer graphics
programming!

LANGUAGES AND LIBRARIES

Modern graphics programming is done using a graphics library. That is, the
programmer writes code which invokes functions in a predefined library (or set
of libraries) that provide support for lower-level graphical operations. There are
many graphics libraries in use today, but the most common library for platform-
independent graphics programming is called OpenGL (Open Graphics Library). This
book describes how to use OpenGL for 3D graphics programming in Java.

2 B Computer Graphics Programming in OpenGL with Java, Third Edition

Using OpenGL with Java requires configuring several libraries. In this sec-
tion, we describe which libraries are needed, some common options for each, and
the option(s) that we will use throughout the book. Details on how to install and
configure these libraries for your specific platform can be found in the appendices.

Running the programs in this book requires the following languages and
libraries:

e Java

* OpenGL / GLSL
« JOGL

« JOML

It is likely that the reader will need to do a few preparatory steps to ensure
that each of these are installed and properly accessible on his or her system. In the
following subsections we briefly describe each of them; see the appendices for
details on how to install and/or configure them for use.

NNl Java

Java was developed at Sun Microsystems in the early 1990s, and the first stable
release of a development kit (JDK) occurred in 1995. In 2010, Oracle Corporation
acquired Sun and has maintained Java since that time [OR21]. This book assumes
Java version 11, which was released in 2018.

ES®E OpenGL / GLSL

Version 1.0 of OpenGL appeared in 1992 as an “open” alternative to vendor-
specific application programming interfaces (APIs) for computer graphics.
Its specification and development was managed and controlled by the OpenGL
Architecture Review Board (ARB), a then newly formed group of industry par-
ticipants. In 2006 the ARB transferred control of the OpenGL specification to
the Khronos Group, a nonprofit consortium which manages not only the OpenGL
specification but a wide variety of other open industry standards.

Since its beginning OpenGL has been revised and extended regularly. In 2004,
version 2.0 introduced the OpenGL Shading Language (GLSL), allowing “shader
programs” to be installed and run directly in graphics pipeline stages.

Chapter 1 - Getting Started 3

In 2009, version 3.1 removed a large number of features that had been depre-
cated, to enforce the use of shader programming as opposed to earlier approaches
(referred to as “immediate mode”).! Among the more recent features, version 4.0
(in 2010) added a tessellation stage to the programmable pipeline.

This textbook assumes that the user is using a machine with a graphics card
that supports at least version 4.3 of OpenGL. If you are not sure which version of
OpenGL your GPU supports, there are free applications available on the web that
can be used to find out. One such application is GLView, by a company named
“realtech VR [GV21].

ENEN JOGL

JOGL (and the associated tool GlueGen) is a set of OpenGL bindings (some-
times called a “wrapper”) which provides a mechanism for invoking C-based
OpenGL functions from Java code. JOGL first appeared in 2003, published on the
website Java.net. Since 2010 it has been an independent open source project, part
of a suite of Java bindings maintained by JogAmp [JO21], an online community
of developers. As new versions of OpenGL and/or Java are released, new versions
of JOGL are developed to support continued compatibility. This book assumes at
least version 2.4 of JOGL.

SN JOML

3D graphics programming makes heavy use of vector and matrix algebra. For
this reason, use of OpenGL is greatly facilitated by an accompanying function
library or class package to support common mathematical tasks. For example, the
popular OpenGL SuperBible [SW15] utilizes a C library called “vmath”; in this
book, we use a Java library called Java OpenGL Math Library, or JOML.

JOML provides classes and basic math functions related to graphics concepts,
such as vector, matrix, and quaternion. It also contains a variety of utility classes
for creating and using common 3D graphics structures, such as a stack for building
hierarchical structures, perspective and look-at matrices, and a few basic shapes
such as a rectangle and a sphere.

I Despite this, many graphics card manufacturers (notably NVIDIA) continue to support
deprecated functionality.

4 B Computer Graphics Programming in OpenGL with Java, Third Edition

JOML was conceived in mid-2015 by Richard Greenlees and is an open source
project currently being developed and maintained by Kai Burjack, who took over
the project shortly after its inception. JOML has enjoyed widespread adoption
because of its high-performance characteristics. JOML is specifically designed to
maximize performance in an OpenGL render loop (animation).

The first edition of this book utilized our own in-house Java mathematics
library called graphicslib3D. We hope that users of our first edition appreciate the
better support and performance of JOML.

INSTALLATION AND CONFIGURATION

We opted to separate installation and configuration information into individ-
ual platform-specific appendices. We hope that this will provide each reader with
a single relevant place to look for information regarding his or her specific system,
while at the same time avoiding bogging down the rest of the text with platform-
specific details which may not be relevant to every reader. In this edition, we
provide detailed configuration instructions for Microsoft Windows in Appendix
A and for the Macintosh in Appendix B.

Continually updated library installation instructions will be maintained on
this textbook’s website, available at: http://ecs.csus.edu/~gordonvs/textJ3E.html.

References

[GV21] GLView, accessed March 2021, https://www.realtech-vr.com/home/glview
[JO21] JogAmp, accessed March 2021, http://jogamp.org/

[OR21] Java Software, Oracle Corp., accessed March 2021, https://www.oracle.
com/java/

[SW15] G. Sellers, R. Wright Jr.,and N. Haemel, OpenGL SuperBible: Comprehensive
Tutorial and Reference, 7th ed. (Addison-Wesley, 2015).

CHAPTER 2

THE OPENGL GRAPHICS PIPELINE

21 TheOpenGL Pipeline i 6
2.2 Detecting OpenGL and GLSL Errors 21
2.3 Reading GLSL Source Code from Files 26
2.4 Building Objects from Vertices i, 27
2.5 Animating a SCene 28
2.6 Organizing the Java Code Files i, 32

Supplemental Notes 33

OpenGL (Open Graphics Library) is a multiplatform 2D and 3D graphics API
that incorporates both hardware and software. Using OpenGL requires a graphics
card (GPU) that supports a sufficiently up-to-date version of OpenGL (as described
in Chapter 1).

On the hardware side, OpenGL provides a multistage graphics pipeline that is
partially programmable using a language called GLSL (OpenGL Shading Language).

On the software side, OpenGL’s API is written in C, and thus the calls are directly
compatible with C and C++ However, stable language bindings (or “wrappers”) are
available for more than a dozen other popular languages (Java, Perl, Python, Visual
Basic, Delphi, Haskell, Lisp, Ruby, etc.) with virtually equivalent performance. This
textbook uses the popular Java wrapper JOGL (Java OpenGL). When using JOGL,
the programmer writes a Java program that runs on the CPU (more specifically, on
the Java Virtual Machine, or JVM) and includes JOGL (and thus, OpenGL) calls. We
will refer to a Java program that contains JOGL calls as a Java/JOGL application.
One important task of a Java/JOGL application is to install the programmer’s GLSL
code onto the GPU.

An overview of a JOGL-based graphics application is shown in Figure 2.1, with
the software components highlighted in pink.

6 M Computer Graphics Programming in OpenGL with Java, Third Edition

end user Some of the code we will write
display will be in Java, with JOGL calls, and
% \ g monitor some will be written in GLSL. Our
-% 3 Java/JOGL application will work
% g’ L [v together with our GLSL modules and
o< the hardware to create our 3D graph-
programmer 8% \ ics output. Once our application is
installs complete, the end user will interact
pepeprawn LN R GPU with the Java application.
code GLSL is an example of a
shader language. Shader languages
Figure 2.1 are intended to run on a GPU in

Overview of a JOGL-based graphics application.)] .
the context of a graphics pipeline.

There are other shader languages,
such as HLSL, which works with Microsoft’s 3D framework DirectX. GLSL is the
specific shader language that is compatible with OpenGL, and thus we will write
shader code in GLSL, in addition to our Java/JOGL application code.

For the rest of this chapter, we will take a brief “tour” of the OpenGL pipeline.
The reader is not expected to understand every detail thoroughly, but just to get a
feel for how the stages work together.

THE OPENGL PIPELINE

Modern 3D graphics programming utilizes a pipeline, in which the process
of converting a 3D scene to a 2D image is broken down into a series of steps.
OpenGL and DirectX both utilize similar pipelines.

A simplified overview of the OpenGL graphics pipeline is shown in Figure 2.2
(not every stage is shown, just the major ones we will study). The Java/JOGL appli-
cation sends graphics data into the vertex shader, processing proceeds through the
pipeline, and pixels emerge for display on the monitor.

The stages shaded in blue (vertex, tessellation, geometry, and fragment) are
programmable in GLSL. It is one of the responsibilities of the Java/JOGL applica-
tion to load GLSL programs into these shader stages, as follows:

1. It uses Java to obtain the GLSL shader code, either from text files or
hardcoded as strings.

Chapter 2 - The OpenGL Graphics Pipeline 7

2. It then creates OpenGL shader from JOGL application
objects, and loads the GLSL ~ _____~» "7 C J7 T
shader code into them vertex processing
3. Finally, it uses OpenGL com- I Tessellation Shaders I .)
. . primitive (triangle)
mands to compile and link v processing

objects and install them on the | Geometry Shader_|

GPU. ﬁ — v

fragment (pixel)
In practice, it is usually necessary v processing

to provide GLSL code for at least the

vertex and fragment stages, whereas hrig%eonv (slyr(jf‘cticce

the tessellation and geometry stages T

are optional. Let’s walk through the Figure 2.2

entire process and see what takes place Overview of e OpenGi. ppelne

at each step.

I Fragment Shader I \l/

Java/JOGL Application

The bulk of our graphics application is written in Java. Depending on the purpose
of the program, it may interact with the end user using standard Java libraries such
as AWT or Swing. For tasks related to 3D rendering, it uses the JOGL library. Other
windowing libraries exist that interface with JOGL, such as SWT and NEWT, that
have some performance advantages; in this book, however, we use AWT and Swing
because of the likelihood the reader already has familiarity with them.

JOGL includes a class called GLCanvas that is compatible with the standard
Java JFrame, and on which we can draw 3D scenes. As already mentioned, JOGL
also gives us commands for installing GLSL programs onto the programmable
shader stages and compiling them. Finally, JOGL uses buffers for sending 3D
models and other related graphics data down the pipeline.

Before we try writing shaders, let’s write a simple Java/JOGL application that
instantiates a GLCanvas and sets its background color. Doing that won’t require any
shaders at all! The code is shown in Program 2.1. It extends JFrame and instantiates
a GLCanvas, adding it to the JFrame. It also implements GLEventListener, required
to utilize OpenGL—this necessitates implementing some methods, specifically
display(), init(), reshape(), and dispose(). The display() method is where we place code
that draws to the GLCanvas. In this example, we use the glClearColor() command to
specify the color value to be applied when clearing the background—in this case

8 M Computer Graphics Programming in OpenGL with Java, Third Edition

(1,0,0,1), corresponding to the RGB values of the color red, plus a “1” for the opac-
ity component. We then use the OpenGL call gIClear(GL_COLOR_BUFFER_BIT) to
actually fill the color buffer with that color.

Program 2.1 First Java/JOGL Application

import javax.swing.*;

import static com.jogamp.opengl.GL4.%;
import com.jogamp.opengl.;

import com.jogamp.opengl.awt.GLCanvas;

public class Code extends JFrame implements GLEventListener
{ private GLCanvas myCanvas;

public Code()

{ setTitle("Chapter2 - program1");
setSize(600, 400);
setLocation(200, 200);
myCanvas = new GLCanvas();
myCanvas.addGLEventListener(this);
this.add(myCanvas);
this.setVisible(true);

}

public void display(GLAutoDrawable drawable)

{ GL4 gl =(GL4) GLContext.getCurrentGL();
gl.glClearColor(1.0f, 0.0f, 0.0f, 1.0f);
gl.glClear(GL_COLOR_BUFFER_BIT);

public static void main(String[] args)
{ new Code();

}
public void init(GLAutoDrawable drawable) {}

public void reshape(GLAutoDrawable drawable, int x, inty, int width, int height) {}
public void dispose(GLAutoDrawable drawable) {}

When running a Java/JOGL application (such as Program 2.1) on a Microsoft
Windows machine, it is advisable to add command-line options to disable the use
of Direct3D acceleration and to disable UI scaling, as follows:

java -Dsun.java2d.d3d=false -Dsun.java2d.uiScale=1 Code

Chapter 2 - The OpenGL Graphics Pipeline Il 9

The mechanism by which these
functions are deployed is as follows:
When a GLCanvas is made “visible”
(by our calling “setVisible(true)” on
the JFrame that contains it), it initial-
izes OpenGL, which in turn creates a
“GL4” object that our application can
use for making OpenGL function calls.
OpenGL then does a “callback,” calling Figure 2.3
. . . Output of Program 2.1.
init(), and passes it a “drawable” object
(in this case the drawable object is the
GLCanvas, although that isn’t obvious from the code). In this particular example,
init() doesn’t do anything—in most applications it is where we would read in GLSL
code, load 3D models, and so on. OpenGL (actually, JOGL) next calls display(), also
sending it the drawable object. It is typical to immediately obtain the GL4 object and
put it in a variable called “gl” (actually, GL4 is an interface—in practice we don’t
need to know the actual GL object class).

ﬁj Chapter 2 - program 1 - O X

Later we will see that if we want our scene to be animated, our Java/JOGL
application will need to tell JOGL to make additional calls to display().

Now is an appropriate time to take a closer look at JOGL calls in Program 2.1.
Consider this one:

gl.giClear(GL_COLOR_BUFFER_BIT);

Since JOGL is a Java binding for OpenGL, that means that calls to JOGL in
turn generate calls to OpenGL’s library of C functions. In this case, the C function
being called, as described in the OpenGL reference documentation (available on
the web at https://www.khronos.org/registry/OpenGL-Refpages/gl4/) is:

void glClear(GLbitfield mask);

The first thing to notice is that the name of the JOGL function is the same as
that of the original OpenGL C function, except it is preceded by “gl.”—which is
the name of the GL4 object. The period “.” after the “gl” is significant because “gl”
is the object on which we are invoking the OpenGL function.

To reiterate, GL4 is a Java interface to the OpenGL functions. We can obtain it
in one of two ways: (a) by calling drawable.getGL(), utilizing the “GLAutoDrawable”

10 M Computer Graphics Programming in OpenGL with Java, Third Edition

object provided automatically when the various GLEventListener functions are
invoked (called back) by OpenGL, or (b) by calling GLContext.getCurrentGL() as
done in Program 2.1. Obtaining the current GL4 object is important because, in
general, any OpenGL function described in the OpenGL documentation can be
called from JOGL by preceding it with the name of the appropriate GL4 object
(such as “gl.” here).

The parameter references a “GLbitfield” called “GL_COLOR_BUFFER_BIT”;
OpenGL has many predefined constants (some of them are called enums), and
this one references the color buffer that contains the pixels as they are rendered.
OpenGL has several color buffers, and this command clears all of them—that is,
it fills them with a predefined color called the “clear color.” Note that “clear” in
this context doesn’t mean “a color that is clear”; rather, it refers to the color that is
applied when a color buffer is reset (cleared).

Immediately before the call to glClear() is the call to glClearColor(). Again, this
specifies the value placed in the elements of a color buffer when it is cleared. Here
we have specified (1,0,0,1), which corresponds to the RGBA color red. If a “clear
color” isn’t specified, the default value is black.

Finally, besides display() and init(), we also must implement reshape() and
dispose(). The reshape() function is called when a GLCanvas is resized, and
dispose() is called when the application exits. In Program 2.1 we left them both
empty.

FEFE Vertex and Fragment Shaders

Our first JOGL program didn’t actually draw anything—it simply filled the
color buffer with a single color. To actually draw something, we need to include a
vertex shader and a fragment shader.

You may be surprised to learn that OpenGL is capable of drawing only a few
kinds of very simple things, such as points, lines, or triangles. These simple things
are called primitives, and for this reason, most 3D models are made up of lots and
lots of primitives, usually triangles.

Primitives are made up of vertices—for example, a triangle consists of three
vertices. The vertices can come from a variety of sources—they can be read from
files and then loaded into buffers by the Java/JOGL application, or they can be
hardcoded in the Java code or even in the GLSL code.

Chapter 2 - The OpenGL Graphics Pipeline Il 11

Before any of this can happen, the Java/JOGL application must compile and
link appropriate GLSL vertex and fragment shader programs, and then load them
into the pipeline. We will see the commands for doing this shortly.

The application also is responsible for telling OpenGL to construct triangles.
We do this by using JOGL to call the following OpenGL function:

glDrawArrays(GLenum mode, GLint first, GLsizei count);

The mode is the type of primitive—for triangles we use GL_TRIANGLES. The
parameter “first” indicates which vertex to start with (generally vertex number 0,
the first one), and count specifies the total number of vertices to be drawn.

When glDrawArrays() is called, the GLSL code in the pipeline starts executing.
Let’s now add some GLSL code to that pipeline.

Regardless of where they originate, all of the vertices pass through the vertex
shader. They do so one-by-one; that is, the shader is executed once per vertex. For
a large and complex model with a lot of vertices, the vertex shader may execute
hundreds, thousands, or even millions of times, often in parallel.

Let’s write a simple program with only one vertex, hardcoded in the vertex
shader. That’s not enough to draw a triangle, but it is enough to draw a point. For
it to display, we also need to provide a fragment shader. For simplicity we will
declare the two shader programs as arrays of strings.

Program 2.2 Shaders, Drawing a POINT

(....imports as before)
public class Code extends JFrame implements GLEventListener
{ private int renderingProgram;

private int vao[| = new int[1]; } new declarations

public Code() { (.....constructor as before) }

public void display(GLAutoDrawable drawable)

{ GL4 gl = (GL4) GLContext.getCurrentGL();
gl.glUseProgram(renderingProgram);
gl.giDrawArrays(GL_POINTS, 0, 1);

public void init(GLAutoDrawable drawable)
{ GL4 gl = (GL4) GLContext.getCurrentGL();
renderingProgram = createShaderProgram();

12 B Computer Graphics Programming in OpenGL with Java, Third Edition

gl.glGenVertexArrays(vao.length, vao, 0);
gl.gIBindVertexArray(vao[0]);

private int createShaderProgram)

GL4 gl = (GL4) GLContext.getCurrentGL();

String vshaderSource[] =
{ "#version430 \n",
"void main(void) \n",
"{" gl_Position = vec4(0.0, 0.0, 0.0, 1.0); } \n",
8
String fshaderSource[| =
{ "#version 430 \n",
"out vec4 color; \n",
"void main(void) \n",
"{ color =vec4(0.0, 0.0, 1.0, 1.0); } \n",
b
int vShader = gl.glCreateShader(GL_VERTEX_SHADER);
gl.glShaderSource(vShader, 3, vshaderSource, null, 0); /3 is the count of lines of source code
gl.giCompileShader(vShader);

int fShader=gl.glCreateShader(GL_FRAGMENT_SHADER);
gl.glShaderSource(fShader, 4, fshaderSource, null, 0); /4 is the count of lines of source code
gl.glCompileShader(fShader);

int vfProgram = gl.glCreateProgram();
gl.glAttachShader(vfProgram, vShader);
gl.glAttachShader(vfProgram, fShader);
gl.glLinkProgram(vfProgram);

gl.glDeleteShader(vShader);
gl.glDeleteShader(fShader);
return vfProgram;

... main(), reshape(), and dispose() as before

£ Chapter 2 - program 2 - 0 X The program appears to have output

Figure 2.4 .
Output of Program 2.2. Program 2.2 (color-coded in the program,

a blank canvas. But close examination
reveals a tiny blue dot in the center of the
window (assuming that this printed page is
of sufficient resolution). The default size of
a point in OpenGL is one pixel.

There are many important details in

Chapter 2 - The OpenGL Graphics Pipeline Il 13

for convenience) for us to discuss. First, note that init() is no longer empty—it
now calls another function named “createShaderProgram()” (that we wrote). This
function starts by declaring two shaders as arrays of strings called vshaderSource
and fshaderSource. Tt then calls glCreateShader(), which generates the desired type
of shader (note the predefined value GL_VERTEX_SHADER, and then later GL_
FRAGMENT_SHADER). OpenGL creates the shader object (initially empty), and
returns an integer ID that is an index for referencing it later—the code stores this
ID in the variable vShader (and fShader). It then calls glShaderSource(), which loads
the GLSL code from the string array into the empty shader object. glShaderSource()
has five parameters: (a) the shader object in which to store the shader, (b) the
number of strings in the shader source code, (c) the array of strings containing the
source code, and two additional parameters we aren’t using (they will be explained
later, in the supplementary chapter notes). Note also that the two commented lines
of code in the blue section, highlighting the parameter values 3 and 4, refer to the
number of lines of code in each shader (the \n’s delineate each line in the shader
source code). The shaders are then each compiled using glCompileShader().

The application then creates a program object named vfprogram and saves
the integer ID that points to it. An OpenGL “program” object contains a series
of compiled shaders, and here we see the commands glCreateProgram() to cre-
ate the program object, glAttachShader() to attach each of the shaders to it, and
then glLinkProgram() to request that the GLSL compiler ensure that they are
compatible.

After init() finishes, display() is called automatically (recall this is also a JOGL
callback). One of the first things that display() does is call glUseProgram(), which
loads the program containing the two compiled shaders into the OpenGL pipeline
stages (onto the GPU!). Note that glUseProgram() doesn’t run the shaders; it just
loads them onto the hardware.

As we will see later in Chapter 4, ordinarily at this point the Java/JOGL
program would prepare the vertices of the model being drawn for sending down
the pipeline. But not in this case, because for our first shader program we
simply hardcoded a single vertex in the vertex shader. Therefore in this example
the display() function next proceeds to the glDrawArrays() call, which initiates pipe-
line processing. The primitive type is GL_POINTS, and there is just one point to
display.

Now let’s look at the shaders themselves, shown in green earlier (and dupli-
cated ahead). As we saw, they have been declared in the Java/JOGL program as

14 B Computer Graphics Programming in OpenGL with Java, Third Edition

arrays of strings. This is a clumsy way to code, but it is sufficient in this very
simple case. The vertex shader is:

#version 430
void main(void)
{ gl_Position = vec4(0.0, 0.0, 0.0, 1.0); }

The first line indicates the OpenGL version, in this case 4.30. There follows
a “main” function (as we will see, GLSL is somewhat Java-like in syntax). The pri-
mary purpose of any vertex shader is to send a vertex down the pipeline (which, as
mentioned before, it does for every vertex). The built-in variable gl_Position is used
to set a vertex’s coordinate position in 3D space and is sent to the next stage in the
pipeline. The GLSL datatype vec4 is used to hold a 4-tuple, suitable for such coor-
dinates, with the associated four values representing X, Y, Z, and a fourth value set
here to 1.0 (we will learn the purpose of this fourth value in Chapter 3). In this case,
the vertex is hardcoded to the origin location (0,0,0).

The vertices move through the pipeline to the rasterizer, where they are trans-
formed into pixel locations (or more accurately, fragments—described later).
Eventually, these pixels (fragments) reach the fragment shader:

#version 430

out vec4 color;

void main(void)

{ color=vec4(0.0, 0.0, 1.0, 1.0); }

The purpose of any fragment shader is to set the RGB color of a pixel to be
displayed. In this case the specified output color (0, 0, 1) is blue (the fourth value 1.0
specifies the level of opacity). Note the “out” tag indicating that the variable color is
an output. (It wasn’t necessary to specify an “out” tag for gl_Position in the vertex
shader, because gl_Position is a predefined output variable.)

There is one detail in the code that we haven’t discussed, in the last two lines
in the init() function (shown in red). They probably appear a bit cryptic. As we will
see in Chapter 4, when sets of data are prepared for sending down the pipeline,
they are organized into buffers. Those buffers are in turn organized into Vertex
Array Objects (VAOs). In our example, we hardcoded a single point in the vertex
shader, so we didn’t need any buffers. However, OpenGL still requires at least one
VAO to be created whenever shaders are being used, even if the application isn’t
using any buffers. So the two lines create the required VAO.

Chapter 2 - The OpenGL Graphics Pipeline Il 15

Finally, there is the issue of
how the vertex that came out of
the vertex shader became a pixe/ in
the fragment shader. Recall from
Figure 2.2 that between vertex
processing and pixel processing is
the rasterization stage. It is there
that primitives (such as points or
triangles) are converted into sets
of pixels. The default size of an
OpenGL “point” is one pixel, so Figure 2.5
that is why our single point was Chanaing girontsize
rendered as a single pixel.

i# Chapter 2 - program 2 - O K

Let’s add the following command in display(), right before the glDrawArrays()
call:

gl.glPointSize(30.0f);

Now, when the rasterizer receives the vertex from the vertex shader, it will set
pixel color values that form a point having a size of 30 pixels. The resulting output
is shown in Figure 2.5.

Let’s now continue examining the remainder of the OpenGL pipeline.

PAEH Tessellation

We cover tessellation in Chapter 12. The programmable tessellation stage is
one of the most recent additions to OpenGL (in version 4.0). It provides a fes-
sellator that can generate a large number of triangles, typically as a grid, and
also some tools to manipulate those triangles in a variety of ways. For example,
the programmer might manipulate a tessellated grid of triangles as shown in
Figure 2.6.

Tessellation is useful when a lot of vertices are needed on what is otherwise a
simple shape, such as on a square area or curved surface. It is also very useful for
generating complex terrain, as we will see later. In such instances, it is sometimes
much more efficient to have the tessellator in the GPU generate the triangle mesh
in hardware, rather than doing it in Java.

16 M Computer Graphics Programming in OpenGL with Java, Third Edition

VAVAVAYA

NNVAVATAY L VAV
APZAVAVA! (WAVA
S muﬂ',é"'y“um

1
7
7

NS

VW
AV

VAVAVAVAAYiYLY
47:
944
W

7w

Ny
N

7
%
wak
N7
V77,
144!
1
i

NAAVIAVA
A4V
/A
AY;
\/

7
7
V]

NRN
RN
NN
NN
KRN
AVAYAY;
N\
AVAW%

[>

[>>

ErAnis 5

ﬂaﬁ;“'gﬂ e
A

\/
AV,
YN%VAV

Y,
A
AN

7N

Figure 2.6
Grid produced by tessellator.

EXENE Geometry Shader

We cover the geometry shader stage in Chapter 13. Whereas the vertex shader
gives the programmer the ability to manipulate one verfex at a time (i.e., “per-
vertex” processing), and the fragment shader (as we will see) allows manipulating
one pixel at a time (“per-fragment” processing), the geometry shader provides the
capability to manipulate one primitive at a time—"‘per-primitive” processing.

Recalling that the most common primitive is the triangle, by the time we have
reached the geometry stage, the pipeline must have completed grouping the vertices
into triangles (a process called primitive assembly). The geometry shader then makes
all three vertices in each triangle accessible to the programmer simultaneously.

There are a number of uses for per-primitive processing. The primitives could
be altered, such as by stretching or shrinking them. Some of the primitives could
be deleted, thus putting “holes” in the object being rendered—this is one way of
turning a simple model into a more complex one.

The geometry shader also provides a mechanism for generating additional
primitives. Here, too, this opens the door to many possibilities for turning simple
models into more complex ones.

An interesting use for the geometry shader is adding surface texture such as
bumps or scales—even “hair” or “fur”—to an object. Consider for example, the
simple torus shown in Figure 2.7 (we will see how to generate this later in the
book). The surface of this torus is built out of many hundreds of triangles. If at each
triangle, we use a geometry shader to add additional triangles that face outward,
we get the result shown in Figure 2.8. This “scaly torus” would be computationally
expensive to try and model from scratch in the Java/JOGL application side.

Chapter 2 - The OpenGL Graphics Pipeline Il 17

Figure 2.7 Figure 2.8
Torus model. Torus modified in geometry shader.

It might seem redundant to provide a per-primitive shader stage, when the
tessellation stage(s) give the programmer access to all of the vertices in an entire
model simultaneously. The difference is that tessellation only offers this capability
in very limited circumstances—specifically when the model is a grid of triangles
generated by the tessellator. It does not provide such simultaneous access to all the
vertices of, say, an arbitrary model being sent in from Java through a buffer.

A Rasterization

Ultimately, our 3D world of vertices, triangles, colors, and so on needs to be
displayed on a 2D monitor. That 2D monitor screen is made up of a raster—a
rectangular array of pixels.

When a 3D object is rasterized, OpenGL converts the primitives in the object
(usually triangles) into fragments. A fragment holds the information associated with
a pixel. Rasterization determines the
locations of pixels that need to be
drawn in order to produce the tri-
angle specified by its three vertices. |

Rasterization starts by interpo-
lating, pairwise, between the three
vertices of the triangle. There are
some options for doing this inter-
polation; for now it is sufficient to
consider simple linear interpolation
as shown in Figure 2.9. The original _

Figure 2.9
three vertices are shown in red. Rasterization (step 1).

18 M Computer Graphics Programming in OpenGL with Java, Third Edition

If rasterization were to stop here, the resulting image would appear as wire-
frame. This is an option in OpenGL, by adding the following command in the
display() function, before the call to glDrawArrays():

gl.glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

If the torus shown previously in Section 2.1.4 is rendered with the addition of
this line of code, it appears as shown in Figure 2.10.

If we didn’t insert the pre-
ceding line of code (or if GL_FILL
had been specified instead of GL_
LINE), interpolation would con-
tinue along raster lines and fill the
interior of the triangle, as shown
in Figure 2.11. When applied to
the torus, this results in the fully
rasterized or “solid” torus shown
in Figure 2.12 (on the left). Note
Figure 2.10 that in this case the overall shape
Torus with wireframe rendering. and curvature of the torus is

not evident—that is because we
haven’t included any texturing or lighting techniques, so it appears “flat.” At
the right, the same “flat” torus is shown with the wireframe rendering super-
imposed. The torus shown earlier in Figure 2.7 included lighting effects, and
thus revealed the shape of the torus much more clearly. We will study lighting
in Chapter 7.

g
AQA(

L]
5

“AV
\VAVA

v,

N/
N
N

As we will see in later chap-
ters, the rasterizer can interpolate
more than just pixels. Any vari-
able that is output by the vertex
shader and input by the fragment
shader will be interpolated based
on the corresponding pixel posi-
tion. We will use this capability
to generate smooth color grada-
Figure 2.11 tions, realistic lighting, and many
Fully rasterized triangle. more effects.

Chapter 2 - The OpenGL Graphics Pipeline Il 19

Figure 2.12
Torus with fully rasterized primitives (left) and with wireframe grid superimposed (right).

EXXA Fragment Shader

As mentioned earlier, the purpose of the fragment shader is to assign colors
to the rasterized pixels. We have already seen an example of a fragment shader in
Program 2.2. There the fragment shader simply hardcoded its output to a specific
value, so every generated pixel had the same color. However, GLSL affords us
virtually limitless creativity to calculate colors in other ways.

One simple example would be to base the output color of a pixel on its location.
Recall that in the vertex shader, the outgoing coordinates of a vertex are specified
using the predefined variable gl_Position. In the fragment shader, there is a similar
variable available to the programmer for accessing the coordinates of an incoming
fragment, called gl_FragCoord. We can modify the fragment shader from Program 2.2
so that it uses gl_FragCoord (in this case referencing its X component using the GLSL
field selector notation) to set each pixel’s color based on its location, as shown here:

#version 430

out vec4 color;

void main(void)

{ if(gl_FragCoord.x < 295) color = vec4(1.0, 0.0, 0.0, 1.0); else color = vec4(0.0, 0.0, 1.0, 1.0);
}

Assuming that we increase the GL_PointSize as we did at the end of Section 2.1.2,
the pixel colors will now vary across the rendered point—red where the x coordi-
nates are less than 200, and blue otherwise, as seen in Figure 2.13.

20 M Computer Graphics Programming in OpenGL with Java, Third Edition

| Chapter 2 - program 2 — O B Pixel Opel'atiOIlS

As objects in our scene are drawn
in the display() function using the
glDrawArrays() command, we usually
expect objects in front to block our
view of objects behind them. This
also extends to the objects them-
selves, wherein we expect to see the
front of an object, but generally not
the back.

Figure 2.13
Fragment shader color variation.

To achieve this, we need hid-
den surface removal, or HSR. OpenGL can perform a variety of HSR operations,
depending on the effect we want in our scene. And even though this phase is not
programmable, it is extremely important that we understand how it works. Not
only will we need to configure it properly; we will later need to carefully manipu-
late it when we add shadows to our scene.

Hidden surface removal is accomplished by OpenGL through the cleverly
coordinated use of two buffers: the color buffer (which we have discussed previ-
ously) and the depth buffer (sometimes called the Z-buffer). Both of these buffers
are the same size as the raster—that is, there is an entry in each buffer for every
pixel on the screen.

As various objects are drawn in a scene, pixel colors are generated by the
fragment shader. The pixel colors are placed in the color buffer—it is the color buf-
fer that is ultimately written to the screen. When multiple objects occupy some of
the same pixels in the color buffer, a determination must be made as to which pixel
color(s) are retained, based on which object is nearest the viewer.

Hidden surface removal is done as follows:

* Before a scene is rendered, the depth buffer is filled with values
representing maximum depth.

* As apixel color is output by the fragment shader, its distance from the
viewer is calculated.

e If the computed distance is /ess than the distance stored in the depth
buffer (for that pixel), then (a) the pixel color replaces the color in the

Chapter 2 - The OpenGL Graphics Pipeline Il 21

color buffer, and (b) the distance replaces the value in the depth buffer.
Otherwise, the pixel is discarded.

This procedure is called the Z-buffer algorithm, as expressed in Figure 2.14.

Color [][] colorBuf = new Color [pixelRows][pixelCols];
double [][] depthBuf = new double [pixelRows][pixelCols];
for (each row and column) /7 initialize color and depth buffers
{ colorBuf [row][col] = backgroundColor;

depthBuf [row][col] = far away;
}

for (each shape) / update buffers when new pixel is closer
{ for (each pixel in the shape)
{ if (depth at pixel < depthBuf value)
{ depthBuf [pixel.row][pixel.col] = depth at pixel;
colorBuf [pixel.row][pixel.col] = color at pixel;
}or o

return colorBuf;

Figure 2.14
Z-buffer algorithm.

B*E DETECTING OPENGL AND GLSL ERRORS

The workflow for compiling and running GLSL code differs from standard
coding, in that GLSL compilation happens at Java runtime. Another complication
is that GLSL code doesn’t run on the CPU (it runs on the GPU), so the operat-
ing system cannot always catch OpenGL runtime errors. This makes debugging
difficult, because it is often hard to detect if a shader failed, and why.

Program 2.3 (which follows) presents some modules for catching and
displaying GLSL errors. They make use of the error string lookup tool
gluErrorString() from the “GLU” library [GL21], as well as OpenGL functions
glGetShaderiv() and glGetProgramiv(), which are used to provide information
about compiled GLSL shaders and programs. Accompanying them is the cre-
ateShaderProgram() function from the previous Program 2.2, but with the error-
detecting calls added.

22 B Computer Graphics Programming in OpenGL with Java, Third Edition

Program 2.3 contains the following three utilities:

+ checkOpenGLError—checks the OpenGL error flag for the occurrence
of an OpenGL error

« printShaderLog—displays the contents of OpenGL’s log when GLSL
compilation has failed

» printProgramLog—displays the contents of OpenGL’s log when GLSL
linking has failed

The first, checkOpenGLError(), is useful for detecting both GLSL compi-
lation errors and OpenGL runtime errors, so it is highly recommended for use
throughout a Java/JOGL application during development. For example, in the
prior example (Program 2.2), the calls to glCompileShader() and glLinkProgram()
could easily be augmented with the code shown in Program 2.3 to ensure that any
typos or other compile errors would be caught and their cause reported. Calls to
checkOpenGLError() could be added after runtime OpenGL calls, such as immedi-
ately after the call to glDrawArrays().

Another reason that it is important to use these tools is that « GLSL error does
not cause the JOGL program to stop. So unless the programmer takes steps to
catch errors at the point that they happen, debugging will be very difficult.

Program 2.3 Modules to Catch GLSL Errors
|mport com.jogamp.opengl.glu.GLU;

private void printShaderLog(int shader)

{ GL4 gl = (GL4) GLContext.getCurrentGL();
int[] len = new int[1];
int[] chWrittn = new int[1];
byte[] log = null;

// determine the length of the shader compilation log
gl.glGetShaderiv(shader, GL_INFO_LOG_LENGTH, len, 0);
if (len[0] > 0)
{ log = new byte[len[O0]];
gl.glGetShaderInfoLog(shader, len[0], chWrittn, 0, log, 0);
System.out.printin("Shader Info Log: ");
for (inti = 0; i <log.length; i++)
{ System.out.print((char) log[i]);
o)

Chapter 2 - The OpenGL Graphics Pipeline H 23

void printProgramLog(int prog)

{ GL4 gl =(GL4) GLContext.getCurrentGL();
int[] len = new int[1];
int[] chWrittn = new int[1];
byte[] log = null;

// determine the length of the program linking log
gl.glGetProgramiv(prog,GL_INFO_LOG_LENGTH,len, 0);
if (len[0] > 0)
{ log = new byte[len[O0]];
gl.glGetPrograminfoLog(prog, len[0], chWrittn, 0,log, 0);
System.out.printin("Program Info Log: ");
for (inti = 0; i <log.length; i++)
{ System.out.print((char) log[i]);
I

boolean checkOpenGLError()
{ GL4 gl =(GL4) GLContext.getCurrentGL();
boolean foundError = false;
GLU glu = new GLU();
int glErr = gl.glGetError();
while (glErr I= GL_NO_ERROR)
{ System.err.printin("glError: " + glu.gluErrorString(gIErr));
foundError = true;
glErr = gl.glGetError();

return foundError;

Example of checking for OpenGL errors:

private int createShaderProgram()
{ GL4 gl = (GL4) GLContext.getCurrentGL();
// arrays to collect GLSL compilation status values.
// note: one-element arrays are used because the associated JOGL calls require arrays.
int[] vertCompiled = new int[1];
int[] fragCompiled = new int[1];
int[] linked = new int[1];

// catch errors while compiling shaders

gl.glCompileShader(vShader);
checkOpenGLError();
gl.glGetShaderiv(vShader, GL_COMPILE_STATUS, vertCompiled, 0);

24 B Computer Graphics Programming in OpenGL with Java, Third Edition

if (vertCompiled[0] != 1)

{ System.out.printin("vertex compilation failed.");
printShaderLog(vShader);

}

gl.glCompileShader(fShader);

checkOpenGLError();

gl.glGetShaderiv(fShader, GL_COMPILE_STATUS, fragCompiled, 0);

if (fragCompiled[0] != 1)

{ System.out.printin("fragment compilation failed.");
printShaderLog(fShader);

}

if ((vertCompiled[0] != 1) || (fragCompiled[0] != 1))

{ System.out.printin("\nCompilation error; return-flags:");
System.out.printin(" vertCompiled =" + vertCompiled[0] + " ; fragCompiled =" + fragCompiled[0));

}

// catch errors while linking shaders

gl.glLinkProgram(vfprogram);

checkOpenGLError();

gl.glGetProgramiv(vfprogram, GL_LINK_STATUS, linked,0);

if (linked[0] = 1)

{ System.out.printin("linking failed.");
printProgramLog(vfprogram);

}

Another set of tools that can help in tracking down the source of OpenGL
and GLSL errors is JOGL’s composable pipeline mechanism. There is a rich
set of capabilities available in the DebugGL and TraceGL JOGL classes, which
provide debugging and tracing support, respectively. One way of utilizing these
capabilities in simple cases is to add one or both of the following command line
options:

-Djogl.debug.DebugGL
-Djogl.debug.TraceGL

For example, the application can be run with both capabilities enabled as
follows:

java -Dsun.java2d.d3d=false -Dsun.java2d.uiScale=1 -Djogl.debug.DebugGL -Djogl.debug.TraceGL Code

Chapter 2 - The OpenGL Graphics Pipeline Wl 25

Enabling debugging causes glGetError() to be invoked at each OpenGL call.
Although any error messages generated tend to not be as informative as is the case
when retrieving the error codes as shown in Program 2.3, it can be a quick way of
narrowing down the likely location where an error has occurred.

Enabling tracing causes a line of output on the command window to be dis-
played for each OpenGL call executed—including those called directly by the
application, and others invoked by JOGL. For example, a trace for Program 2.2
produces the following output, which reflects the order of calls in a typical run:

glFinish()

glCreateShader(<int> 0x8B31) = 1

glShaderSource(<int> 0x1, <int> 0x3, <[Ljava.lang.String;>, <java.nio.IntBuffer> null)
glCompileShader(<int> 0x1)

glCreateShader(<int> 0x8B30) = 2

glShaderSource(<int> 0x2, <int> 0x4, <[Ljava.lang.String;>, <java.nio.IntBuffer> null)
glCompileShader(<int> 0x2)

glCreateProgram() = 3

glAttachShader(<int> 0x3, <int> 0x1)

glAttachShader(<int> 0x3, <int> 0x2)

glLinkProgram(<int> 0x3)

glDeleteShader(<int> 0x1)

glDeleteShader(<int> 0x2)

glGenVertexArrays(<int> 0x1, <[I>, <int> 0x0)

glBindVertexArray(<int> 0x1)

glGetError() = 0

glViewport(<int> 0x0, <int> 0x0, <int> 0x180, <int> 0xA2)

glUseProgram(<int> 0x3)

glDrawArrays(<int> 0x0, <int> 0x0, <int> 0x1)

Although extremely useful during debugging, as with most debugging tools
the composable pipeline incurs considerable overhead, and should not be enabled
in production code.

There are other tricks for deducing the causes of runtime errors in shader code.
A common result of shader runtime errors is for the output screen to be completely
blank, essentially with no output at all. This can happen even if the error is a very
small typo in a shader, yet it can be difficult to tell at which stage of the pipeline
the error occurred. With no output at all, it’s like looking for a needle in a haystack.

One useful trick in such cases is to temporarily replace the fragment shader
with the one shown in Program 2.2. Recall that in that example, the fragment

26 B Computer Graphics Programming in OpenGL with Java, Third Edition

shader simply output a particular color—solid blue, for example. If the subsequent
output is of the correct geometric form (but solid blue), the vertex shader is prob-
ably correct, and there is an error in the original fragment shader. If the output is
still a blank screen, the error is more likely earlier in the pipeline, such as in the
vertex shader.

In Appendix C we show how to use yet another useful debugging tool called
Nsight, which is available for machines equipped with certain Nvidia graphics cards.

READING GLSL SOURCE CODE FROM FILES

So far, our GLSL shader code has been stored inline in strings. As our pro-
grams grow in complexity, this will become impractical. We should instead store
our shader code in files and read them in.

Reading text files is a basic Java skill, and won’t be covered here. However,
for practicality, code to read shaders is provided in readShaderSource(), shown in
Program 2.4. It reads the shader text file and returns an array of strings, where
each string is one line of text from the file. It then determines the size of that
array based on how many lines were read in. Note that here, createShaderProgram()
replaces the version from Program 2.2.

In this example, the vertex and fragment shader code is now placed in the text
files “vertShader.glsl” and “fragShader.glsl,” respectively.

Program 2.4 Reading GLSL Source from Files

(....imports as before, plus the following...)
import java.io.File;

import java.io.|OException;

import java.util.Scanner;

public class Code extends JFrame implements GLEventListener
{ {(..... declarations same as before, display() as before)

private int createShaderProgram()

{ (... as before plus....)
vshaderSource = readShaderSource("vertShader.glsl");
fshaderSource = readShaderSource("fragShader.glsl");

gl.glShaderSource(vertexShader, vshaderSource.length, vshaderSource, null, 0);
gl.glShaderSource(fragmentShader, fshaderSource.length, fshaderSource, null, 0);

Chapter 2 - The OpenGL Graphics Pipeline W 27

(....etc., building rendering program as before)

(..... main, constructor, reshape, init, dispose as before)

private String[] readShaderSource(String filename)
{ Vector<String> lines = new Vector<String>();
Scanner sc;
String[] program;

try

{ sc=new Scanner(new File(filename));
while (sc.hasNext())
{ lines.addElement(sc.nextLine());

}

program = new String[lines.size()];
for (inti = 0; i < lines.size(); i++)
{ program(i] = (String) lines.elementAt(i) + "\n";

}
catch (IOException e)

{ System.err.printin("IOException reading file: " + e);
return null;

}

return program;

EXE BUILDING OBJECTS FROM VERTICES

Ultimately we want to draw more than just a single point. We’d like to draw
objects that are constructed of many vertices. Large sections of this book will be
devoted to this topic. For now we just start with a simple example—we will define
three vertices and use them to draw a triangle.

We can do this by making two small changes to Program 2.2 (actually, the ver-
sion in Program 2.4 which reads the shaders from files): (a) modify the vertex shader
so that three different vertices are output to the subsequent stages of the pipeline,
and (b) modify the glDrawArrays() call to specify that we are using three vertices.

In the Java/JOGL application (specifically in the glDrawArrays() call) we spec-
ify GL_TRIANGLES (rather than GL_POINTS), and also specify that there are three
vertices sent through the pipeline. This causes the vertex shader to run three times,
and at each iteration, the built-in variable gl_VertexID is automatically incremented

28 M Computer Graphics Programming in OpenGL with Java, Third Edition

(it is initially set to 0). By testing the
value of gl_VertexID, the shader is
designed to output a different point
each of the three times it is exe-
cuted. Recall that the three points
then pass through the rasterization
stage, producing a filled-in trian-
gle. The modifications are shown
in Program 2.5 (the remainder of)
. . Figure 2.15

the code is the same as previously Drawing a simple triangle.
shown in Program 2.4).

& Chapter 2 - program 5 — O x

Program 2.5 Drawing a Triangle

Vertex Shader

#version 430

void main(void)

{ if(gl_VertexID == 0) gl_Position = vec4(0.25, -0.25, 0.0, 1.0);
else if (gl_VertexID == 1) gl_Position = vec4(-0.25, -0.25, 0.0, 1.0);
else gl_Position = vec4(0.25, 0.25, 0.0, 1.0);

}

Java/JOGL application — in display()

gl.glDrawArrays(GL_TRIANGLES, 0, 3);

BEE ANIMATING A SCENE

Many of the techniques in this book can be animated. This is when things in
the scene are moving or changing, and the scene is rendered repeatedly to reflect
these changes in real time.

Recall from Section 2.1.1 that OpenGL makes a single call to init(), and then
to display(), when it is initialized. After that, if there are changes to our scene, it
becomes the programmer’s responsibility to tell OpenGL to call display() again.
This is done by invoking the display() function in the GLCanvas from the Java/JOGL
application, as follows:

myCanvas.display();

Chapter 2 - The OpenGL Graphics Pipeline Il 29

That is, the GLCanvas has its own display() function. If we call it, the GLCanvas will
then in turn call back the display() function in our Java/JOGL application. Technically,
the two display()s are completely different functions, but they are intertwined.

One approach is to call display() whenever a change in the scene occurs. In a
complex scene, this can become unwieldy. A better approach is to make this call
repeatedly, without regard to whether or not anything in the scene has changed,
and have our display() function alter what it draws over time. While this may at
first seem inefficient, it actually leads to a more efficient and responsive program.
Each rendering of our scene is then called a frame, and the frequency of calls to
display() is the frame rate.

There are many ways to organize the code for animating a scene. One way is
to create an “animator” class in Java, using either Timer, or Thread.sleep(), or better
yet, a ScheduledThreadPoolExecutor.

An even simpler way to build the animator is to use one of the JOGL-specific
animator classes:

e Animator
e FPSAnimator

These classes are designed specifically for animating 3D scenes. An
FPSAnimator (“FPS” stands for “frames per second”), when instantiated, calls
the display() function on a drawable object repeatedly, at a specified frame rate.
An Animator (without the “FPS”), when instantiated, calls the display() function
repeatedly, but not at any particular frame rate. The developers of JOGL recom-
mend using Animator (instead of FPSAnimator), and handling the rate of movement
within the application logic based on the elapsed time since the previous frame.
Hence, that is how we will write our programs that are animated.

An example is shown in Program 2.6. We have taken the triangle from
Program 2.5 and animated it so that it moves to the right, then moves to the left,
back and forth. The Animator is instantiated by the Java/JOGL application in its
constructor; the parameter on the Animator constructor call specifies the draw-
able object. After that, the application is free to make changes to the scene within
the display() function. In this example, we don’t consider the elapsed time, so the
triangle may move more or less quickly depending on the speed of the computer
(in future examples, we will use the elapsed time to ensure that they run at the
same speed regardless of the computer).

30 M Computer Graphics Programming in OpenGL with Java, Third Edition

In Program 2.6, the application’s display() method maintains a variable “X” used
to offset the triangle’s X coordinate position. Its value changes each time display()
is called (and thus is different for each frame), and it reverses direction each time
it reaches 1.0 or -1.0. The value in X is copied to a corresponding variable called
“offset” in the vertex shader. The mechanism that performs this copy uses some-
thing called a uniform variable, which we will study later in Chapter 4. It isn’t
necessary to understand the details of uniform variables yet. For now, just note
that the Java/JOGL application first calls glGetUniformLocation() to get a pointer to
the “offset” variable, and then calls glProgramUniform1f() to copy the value of x into
offset. The vertex shader then adds the offset to the X coordinate of the triangle
being drawn. Note also that the background is cleared at each call to display(), to
avoid the triangle leaving a trail as it moves. Figure 2.16 illustrates the display at
three time instances (of course, the movement can’t be shown in a still figure).

Program 2.6 Simple Animation Example

Java/JOGL application:

/| same imports and declarations as before, plus the following:
import com.jogamp.opengl.util.*;

public class Code extends JFrame implements GLEventListener
{ // same declarations as before, plus:

private float x = 0.0f; // location of triangle

private float inc = 0.01f; // offset for moving the triangle

public Code()

{ // same constructor as before, plus this at the end, after the call to setVisible(true).
Animator animtr = new Animator(myCanvas);
animtr.start();

}

public void display(GLAutoDrawable drawable)

{ GL4 gl = (GL4) GLContext.getCurrentGL();
gl.glClear(GL_DEPTH_BUFFER_BIT);
gl.glClear(GL_COLOR_BUFFER_BIT); / clear the background to black, each time
gl.glUseProgram(renderingProgram);

X +=inc; // move the triangle along x axis

if (x > 1.0f) inc = -0.01f; // switch to moving the triangle to the left

if (x < -1.0f) inc = 0.01f; // switch to moving the triangle to the right

int offsetLoc = gl.giGetUniformLocation(renderingProgram, "offset"); / retrieve pointer to "offset"

Chapter 2 - The OpenGL Graphics Pipeline I 31

n,n

gl.glProgramUniform1f(renderingProgram, offsetLoc, x); / send value in "x" to "offset"

gl.glDrawArrays(GL_TRIANGLES,0,3);
}

... //remaining functions, same as before

}

Vertex shader:

#version 430
uniform float offset;
void main(void)

{ if(gl_VertexID == 0) gl_Position = vec4(0.25 + offset, -0.25, 0.0, 1.0);
else if (gl_VertexID == 1) gl_Position = vec4(-0.25 + offset, -0.25, 0.0, 1.0);
else gl_Position = vec4(0.25 + offset, 0.25, 0.0, 1.0);

}

Note that in addition to adding code
to animate the triangle, we have also
added the following line at the begin-
ning of the display() function:

gl.giClear(GL_DEPTH_BUFFER_BIT);

While not strictly necessary in this
particular example, we have added it
here and it will continue to appear in
most of our applications. Recall from the
discussion in Section 2.1.7 that hidden
surface removal requires both a color
buffer and a depth buffer. As we proceed
to drawing progressively more complex
3D scenes, it will be necessary to initial-
ize (clear) the depth buffer each frame,
especially for scenes that are animated,
to ensure that depth comparisons aren’t
affected by old depth data. It should be
apparent from the example above that
the command for clearing the depth buf-
fer is essentially the same as for clearing
the color buffer.

#{ Chapter 2 - program 6 — O X

4 Chapter 2 - program 6 - [m X

{4 Chapter 2 - program 6 - [m] X

Figure 2.16
An animated, moving triangle.

32 B Computer Graphics Programming in OpenGL with Java, Third Edition

IXE ORGANIZING THE JAVA CODE FILES

So far, we have been placing all of the Java/JOGL application code in a single
class file called “Code.java” and the GLSL shaders into files called “vertShader.
glsl” and “fragShader.glsl.” While we freely admit that naming any code module
“Code” is almost laughably bad practice, we have adopted this naming conven-
tion in this book so that it is absolutely clear in every example which file con-
tains the main block of Java/JOGL code relevant to the example being discussed.
Throughout this textbook, it will always be called “Code.java.” In practice, a name
should of course be chosen that appropriately describes the task performed by the
application.

However, as we proceed, there will be circumstances in which we create
modules that will be useful in many different applications. Wherever appropriate,
we will move those modules into separate files to facilitate reuse. For example,
later we will define a Sphere class that will be useful in many different examples,
and so it will be separated into its own file.

Similarly, as we encounter functions that we wish to reuse, we will place them
in a class file called “Utils.java.” We have already seen several functions that are
appropriate to move into “Utils.java”: the error-detecting modules described in
Section 2.2 and the functions for reading in GLSL shader programs described
in Section 2.3. The latter is particularly well suited to overloading, such that a
“createShaderProgram()” function can be defined for each possible combination of
pipeline shaders assembled in a given application:

e public int createShaderProgram(String vS, String fS)

+ public int createShaderProgram(String vS, String gS, String fS)

* public int createShaderProgram(String vS, String tCS, String tES, String fS)

e public int createShaderProgram(String vS, String tCS, String tES, String gS,

String fS)

The first case (above) supports shader programs which utilize only a vertex
and fragment shader. The second supports those utilizing vertex, geometry, and
fragment shaders. The third supports those using vertex, tessellation, and frag-
ment shaders. And the fourth supports those using vertex, tessellation, geometry,
and fragment shaders. The parameters accepted in each case are pathnames for
the GLSL files containing the shader code. For example, the following call uses
one of the overloaded functions to compile and link a shader pipeline program that

Chapter 2 - The OpenGL Graphics Pipeline I 33

includes a vertex and fragment shader. The completed program is placed in the
variable “renderingProgram”:

renderingProgram = Utils.createShaderProgram("vertShader.glsl", "fragShader.gls!");

These createShaderProgram() implementations can all be found on the accom-
panying CD (in the “Utils.java” file), and all of them incorporate the error-detecting
modules from Section 2.2 as well. There is nothing new about them; they are
simply organized in this way for convenience. As we move forward in the book,
other similar functions will be added to Utils.java as we go along. The reader is
strongly encouraged to examine the Utils.java file on the accompanying CD, and
even add to it as desired. The programs found there are built from the methods
as we learn them in the book, and studying their organization should serve to
strengthen one’s own understanding.

Regarding the functions in the “Utils.java” file, we have implemented them as
static methods so that it isn’t necessary to instantiate the Utils class. Readers may
prefer to implement them as instance methods rather than static methods, depend-
ing on the architecture of the particular system being developed.

All of our shader files will be named with a “.glsl”” extension.

SUPPLEMENTAL NOTES

There are many details of the OpenGL pipeline that we have not discussed
in this introductory chapter. We have skipped a number of internal stages and
have completely omitted how textures are processed. Our goal was to map out, as
simply as possible, the framework in which we will be writing our code. As we
proceed we will continue to learn additional details.

We have also deferred presenting code examples for tessellation and geom-
etry. In later chapters we will build complete systems that show how to write
practical shaders for each of the stages.

There are more sophisticated ways to organize the code for animating a scene,
especially with respect to managing threads. Readers interested in designing a
render loop (or “game loop™) appropriate for a particular application are encour-
aged to consult some of the more specialized books on game engine design (e.g.,
[NY14]), and to peruse the related discussions on gamedev.net [GD21].

\4

P
©‘

34 B Computer Graphics Programming in OpenGL with Java, Third Edition

We glossed over one detail on the glShaderSource() command. The fourth
parameter is used to specify a “lengths array” that contains the integer string
lengths of each line of code in the given shader program. If this parameter is
set to null, as we have done, OpenGL will build this array automatically if the
strings are null-terminated. JOGL ensures that strings sent to glShaderSource() are
null-terminated. However, it is not uncommon to encounter applications that build
these arrays manually rather than sending null.

Throughout this book, the reader may at times wish to know one or more
of OpenGL’s upper limits. For example, the programmer might need to know
the maximum number of outputs that can be produced by the geometry shader,
or the maximum size that can be specified for rendering a point. Many such val-
ues are implementation-dependent, meaning that they can vary between different
machines. OpenGL provides a mechanism for retrieving such limits using the
glGet() command, which takes various forms depending on the type of the param-
eter being queried. For example, to find the maximum allowable point size, the
following call will place the minimum and maximum values (for your machine’s
OpenGL implementation) into the first two elements of the float array named
“size™

gl.giGetFloatv(GL_POINT_SIZE_RANGE, size, 0)

Many such queries are possible. Consult the OpenGL reference [OP21] docu-
mentation for examples.

In some cases, the reader may notice that an OpenGL call is defined as requir-
ing a C pointer as one of its parameters. For example, this occurs in Program 2.2,
in the following JOGL call:

gl.glGenVertexArrays(vao.length, vao, 0);

Looking up the corresponding OpenGL call to glGenVertexArrays() in the
OpenGL documentation reveals the following definition:

glGenVertexArrays(GLsizei n, GLuint *arrays)

Here, notice that the second parameter (*arrays) is defined in OpenGL as a
C pointer. While JOGL makes every effort to match the original OpenGL C calls,
Java does not have pointers. Any parameter in OpenGL that is a pointer is changed

Chapter 2 - The OpenGL Graphics Pipeline H 35

in JOGL. In this case, the JOGL version utilizes an array instead, followed by an
integer offset into the array. Whenever there is a discrepancy between a JOGL
call and the original C call, consult the JOGL Javadoc for details on the revised
parameter(s).

In this chapter, we have tried to describe each parameter on each OpenGL
call. However, as the book proceeds, this will become unwieldy and we will some-
times not bother describing a parameter when we believe that doing so would
complicate matters unnecessarily. This is because many OpenGL functions have
a large number of parameters that are irrelevant to our examples. The reader
should get used to using the JOGL/OpenGL documentation to fill in such details
when necessary.

Exercises

2.1 Modify Program 2.2 to add animation that causes the drawn point to grow and
shrink, in a cycle. Hint: use the glPointSize() function, with a variable as the
parameter.

2.2 Modify Program 2.5 so that it draws an isosceles triangle (rather than the right
triangle shown in Figure 2.15).

2.3 (PROJECT) Modify Program 2.5 to include the error-checking modules shown
in Program 2.3. After you have that working, try inserting various errors into
the shaders and observing both the resulting behavior and the error messages
generated.

2.4 Modify Program 2.6 so that it calculates the amount of movement for the
triangle based on elapsed time, rather than a constant amount as it is currently
implemented. One approach for this is to get the current time from Java,
and use it to calculate the elapsed time since the previous call to display().
Computing animations in this manner will ensure that they move at the same
speed regardless of the speed of the particular computer.

References

[GD21] Game Development Network, accessed March 2021, https:/www
.gamedev.net/

36 M Computer Graphics Programming in OpenGL with Java, Third Edition

[GL21] GLUT and OpenGL Utility Libraries, accessed March 2021, https:/www
.opengl.org/resources/libraries/

[NY14] R. Nystrom, Game Programming Patterns—Game Loop (Genever
Benning, 2014), accessed March 2021, http:/gameprogrammingpatterns
.com/game-loop.html

[OP21] OpenGL 4.5 Reference Pages, accessed March 2021, https://www.khronos.
org/registry/OpenGL-Refpages/gl4/

CHAPTER 3

MATHEMATICAL FOUNDATIONS

3.1 3D Coordinate Systems 38
32 POINIS. .. oo 38
33 Matriceso 39
34 Transformation Matrices. i 42
35 VeCIOFS. . ..o 45
3.6 Localand World Space i 49
3.7 Eye Space and the Synthetic Camera., 50
3.8 Projection Matrices 53
3.9 Look-At Matrix 57
3.10 GLSL Functions for Building Matrix Transforms 58

Supplemental Notes 60

Computer graphics makes heavy use of mathematics, particularly matri-
ces and matrix algebra. Although we tend to consider 3D graphics programming
to be among the most contemporary of technical fields (and in many respects
it is), many of the techniques that are used actually date back hundreds of years.
Some of them were first understood and codified by the great philosophers of the
Renaissance era.

Virtually every facet of 3D graphics, every effect—movement, scale, perspec-
tive, texturing, lighting, shadows, and so on—will be accomplished largely math-
ematically. Therefore this chapter lays the groundwork upon which every subsequent
chapter relies.

It is assumed the reader has a basic knowledge of matrix operations; a full
coverage of basic matrix algebra is beyond the scope of this text. Therefore, if at any
point a particular matrix operation is unfamiliar, it may be necessary to do some
supplementary background reading to ensure full understanding before proceeding.

38 M Computer Graphics Programming in OpenGL with Java, Third Edition

3D COORDINATE SYSTEMS

3D space is generally represented with three axes: X, Y, and Z. The three axes
can be arranged into two configurations, right-handed or left-handed. (The name
derives from the orientation of the axes as if constructed by pointing the thumb
and first two fingers of the right versus the left hand, at right angles.)

Left-handed Right-handed
Coordinate System Coordinate System
Figure 3.1

3D coordinate systems.

It is important to know which coordinate system your graphics program-
ming environment uses. For example, the majority of coordinate systems in
OpenGL are right-handed, whereas in Direct3D the majority are left-handed.
Throughout this book, we will assume a right-handed configuration unless
otherwise stated.

EEFE POINTS

Points in 3D space can be specified by listing the X, Y, Z values, using a notation
such as (2, 8, -3). However, it turns out to be much more useful to specify points
using homogeneous notation, a representation first described in the early 1800s.
Points in homogeneous notation contain four values, the first three corresponding
to X, Y, and Z, and the fourth, W, is always a fixed nonzero value, usually 1. Thus,
we represent this point as (2, 8, -3, 1). As we will see shortly, homogeneous notation
will make many of our graphics computations more efficient.

The appropriate GLSL data type for storing points in homogeneous 3D nota-
tion is vecd (“vec” refers to vector, but it can also be used for a point). The JOML
library includes classes appropriate for creating and storing three-element and
four-element (homogeneous) points in the Java application, called Vector3f and

Chapter 3 - Mathematical Foundations Il 39

Vectordf, respectively. In some cases (as we will see), JOML adds the fourth ele-
ment (set to 1.0) to a Vector3f when needed to carry out a homogeneous operation.

MATRICES

A matrix is a rectangular array of values, and its elements are typically
accessed by means of subscripts. The first subscript refers to the row number, and
the second subscript refers to the column number, with the subscripts starting at 0.
Most of the matrices that we will use for 3D graphics computations are of size 4x4,
as shown in Figure 3.2.

AOO AOl AOZ A03
AlO All A12 A13
AZO A21 A22 A23
A30 A31 A32 A33

Figure 3.2
4x4 matrix.

The GLSL language includes a data type called mat4 that can be used for stor-
ing 4x4 matrices. Similarly, JOML includes a class called Matrix4f for instantiating
and storing 4x4 matrices.

The identity matrix contains all zeros, with ones along the diagonal:

0
0
1
0

_ 0 O O

0
1
0
0

OO O

Any point or matrix multiplied by the identity matrix is unchanged. In JOML,
the identity matrix is available through the function Matrix4f.identity().

The transpose of a matrix is computed by interchanging its rows and columns.
For example:

40 M Computer Graphics Programming in OpenGL with Java, Third Edition

The JOML library and GLSL both have transpose functions: Matrix4f.transpose()
and transpose(mat4), respectively.

Matrix addition is straightforward:

A+a B+b C+cD+d ABCD abcd
Ete F+fG+gH+h| _|EFGH| |efgh
I+i J+j K+k L+1 I JKL i jkl
M+mN+nO+o0oP+p MNOP mnop

In GLSL the + operator is overloaded on mat4 to support matrix addition.

There are various multiplication operations possible with matrices that are useful
in 3D graphics. Matrix multiplication in general can be done either lefi-fo-right or
right-to-left (note that since these operations are different, it follows that matrix multi-
plication is not commutative). Most of the time we will use right-to-left multiplication.

In 3D graphics, multiplying a point by a matrix is in most cases done right-
to-left, as follows:

AX+BY+CZ+D ABCD X
EX+FY+GZ+H _|E F G H|x[Y
IX+JY+KZ+L | |1 J KL A
MX + NY +0Z +P MNOFP 1

Note that we represent the point (X,Y,Z) in homogeneous notation as a one-
column matrix.

GLSL and JOML support multiplying a point by a matrix. In JOML, when
the point and the matrix are of compatible dimensions (such as a Vectordf and a
Matrix4f) then Vectordf.mul(Matrix4f) is used. In cases where a point is stored in a
Vector3f, the function Vector3f.mulPosition(Matrix4f) can be used, which will assume
a fourth element (set to 1.0) in the vector before carrying out the multiplication. In
GLSL vectors and matrices can be multiplied with the * operator.

Multiplying a 4x4 Matrix by another 4x4 matrix is done as follows:

A
E *
I

el e siw)

b
f
J
n

O xQ 0
N o~ S
|

a
e
[

m

=T w
OxXQAO

M

Chapter 3 - Mathematical Foundations [41

Aa+Be+Ci+Dm Ab+Bf+Cj+Dn Ac+Bg+Ck+Do Ad+Bh+Cl+Dp]
Ea+Fe+Gi+Hm Eb+Ff+Gj+Hn Ec+Fg+Gk+Ho Ed+Fh+Gl+Hp
la+Je+Ki+Lm Ib+]f+Kj+Ln Ic+]g+Kk+Lo Id+Jh+Kl+Lp
Ma+Ne+0i+Pm Mb+Nf+0j+Pn Mc+Ng+0Ok+Po Md+Nh+OIl+Pp

Matrix multiplication is frequently referred to as comncatenation, because
as will be seen, it is used to combine a set of matrix transforms into a single
matrix. This ability to combine matrix transforms is made possible because of the
associative property of matrix multiplication. Consider the following sequence of
operations:

New Point = Matrix, * (Matrix, * (Matrix; * Point))

Here, we multiply a point by Matrix;, then multiply that result by Matrix,, and
that result finally by Matrix,. The result is a new point. The associative property
ensures that the above computation is equivalent to

New Point = (Matrix, * Matrix, * Matrixs) * Point

Here we first multiply the three matrices together, forming the concatenation
of Matrix,, Matrix,, and Matrix; (which itself is also a 4x4 matrix). If we refer to this
concatenation as Matrixe, we can rewrite the above operation as

New Point = Matrix * Point

The advantage here, as we will see in Chapter 4, is that we will frequently
need to apply the same sequence of matrix transformations to every point in our
scene. By pre-computing the concatenation of all of those matrices once, we can
reduce the total number of matrix operations needed manyfold.

GLSL and JOML both support matrix multiplication, in GLSL with the
overloaded * operator, and in JOML with the function Matrix4f. mul(Matrix4f).

The inverse of a 4x4 matrix M is another 4x4 matrix, denoted M-, that has the
following property under matrix multiplication:

M*(M-1) = (M)*M = identity matrix

We won’t present the details of computing the inverse here. However, it is
worth knowing that determining the inverse of a matrix can be computationally

42 B Computer Graphics Programming in OpenGL with Java, Third Edition

expensive; fortunately, we will rarely need it. In the rare instances when we do, it
is available in JOML through the function Matrix4f.invert() and in GLSL through the
mat4.inverse() function.

TRANSFORMATION MATRICES

In graphics, matrices are typically used for performing transformations on
objects. For example, a matrix can be used to move a point from one location to
another. In this chapter we will learn several useful transformation matrices:

o Translation
* Rotation

e Scale

* Projection
e Look-At

An important property of our transformation matrices is that they are all of
size 4x4. This is made possible by our decision to use the homogeneous notation.
Otherwise, some of the transforms would be of diverse and incompatible dimen-
sions. As we have seen, ensuring they are the same size is not just for convenience;
it also makes it possible to combine them arbitrarily and pre-compute groups of
transforms for improved performance.

Translation

A translation matrix is used to move items from one location to another. It
consists of an identity matrix, with the X, Y, and Z movement(s) given in locations
Ay, A3, Ays. Figure 3.3 shows the form of a translation matrix, and its effect when
multiplied by a homogeneous point; the result is a new point “moved” by the trans-
late values.

X+ Ty 10 0 Tyl /X
Y+Ty |_|0 1 0 Ty| [V
Z+T, 001 T, \z

1 0 0 0 1 1
Figure 3.3

Translation matrix transform.

Chapter 3 - Mathematical Foundations [l 43

Note that point (X,Y,Z) is translated (or moved) to location (X+T,, Y+T,, Z+T)) as a
result of being multiplied by the translation matrix. Also note that multiplication
is specified right-to-left.

For example, if we wish to move a group of points upward 5 units along the
positive Y direction, we could build a translation matrix by taking an identity
matrix and placing the value 5 in the Ty position shown above. Then we simply
multiply each of the points we wish to move by the matrix.

There are several functions in JOML for building translation matrices and for
multiplying points by matrices, including the following relevant functions:

» Matrix4f.setTranslation(Tx, Ty, Tz)
» Vectordf.mul(Matrix4f) or Vector3f.mulPosition(Matrix4f)

EE¥A Scaling

A scale matrix is used to change the size of objects, or to move points toward
or away from the origin. Although it may initially seem strange to scale a point,
objects in OpenGL are defined by groups of points. So scaling an object involves
expanding or contracting its set of points.

The scale matrix transform consists of an identity matrix, with the X, Y, and
Z scale factors given in locations Ay, Ay, A,y. Figure 3.4 shows the form of a scale
matrix, and its effect when multiplied by a homogeneous point; the result is a new
point modified by the scale values.

X Sy Sy 0 0 0] /X
Y«Sy_|0 S 0 o] (Y
Z*S, 0o 0o S, ol \z

1 0 0 0 1 1
Figure 3.4

Scale matrix transform.

There are several functions in JOML for building scale matrices and multiply-
ing points by scale matrix transforms, including the following relevant functions:

» Matrix4f.scaling(Sx,Sy,Sz)
» Vectordf.mul(Matrix4f)

44 B Computer Graphics Programming in OpenGL with Java, Third Edition

Scaling can be used to switch coordinate systems. For example, we can use
scale to determine what the left-hand coordinates would be, given a set of right-
hand coordinates. From Figure 3.1 we see that negating the Z coordinate would
toggle between right-hand and left-hand systems, so the scale matrix transform to
accomplish this is

10 0 O
01 0 O
0 0 -1 0
00 0 1

Rotation

Rotation is a bit more complex, because rotating an item in 3D space requires
specifying (a) an axis of rotation and (b) a rotation amount in degrees or radians.

In the mid-1700s, the mathematician Leonhard Euler showed that a rotation
around any desired axis could be specified instead as a combination of rotations
around the X, Y, and Z axes [EU76]. These three rotation angles, around the respec-
tive axes, have come to be known as Euler angles. The discovery, known as Euler’s
Theorem, is very useful to us, because rotations around each of the three axes can
be specified using matrix transforms.

The three rotation transforms, around the X, Y, and Z axes, respectively, are
shown in Figure 3.5. There are several functions in JOML for building and using
rotation matrices as well:

» Matrix4f.rotateX(radians)

» Matrix4f.rotateY(radians)

» Matrix4f.rotateZ(radians)

» Matrix4f.rotateXYZ(6x,6y,6z)

» Vectordf. mul(Matrix4f) or Vector3f mulPosition(Matrix4f)

In practice, using Euler angles to rotate an item around an arbitrary line in 3D

space takes a couple of additional steps if the line doesn’t pass through the origin.
In general:

1. Translate the axis of rotation so that it goes through the origin.
2. Rotate by appropriate Euler angles around X, Y, and Z.
3. Undo the translation of Step 1.

Chapter 3 - Mathematical Foundations I 45

Rotation around X by 6:
X 1 0 0 0] X
Y’ _ |0 cos® —sinf 0 Y
z' 0 sinf cos@ O Z
1 [0 0 0 1] 1
Rotation around Y by 6:
X' [cos@ 0 sing 0] X
Y _ 0 1 0 0 N Y
VA —sinf 0 cosf O VA
1 0 0 0 1] 1
Rotation avound Z by 0:
X' [cos§ —sinf@ 0 0] /X
Y'|_|[sin cos8 0 0O Y
VA 0 0 1 0 VA
1 [0 0 0 1] 1
Figure 3.5

Rotation transform matrices.

The three rotation transforms shown in Figure 3.5 each have the interesting
property that the inverse rotation happens to equal the transpose of the matrix.
This can be verified by examining the above matrices, recalling that cos(-8) =
cos(B) and sin(-6) = -sin(B). This property will become useful later.

Euler angles can cause certain artifacts in some 3D graphic applications. For
that reason it is often advisable to use quaternions for computing rotations. Many
resources exist for those readers interested in exploring quaternions (e.g., [KU98]).
Euler angles will suffice for most of our needs.

VECTORS

Vectors specify a magnitude and direction. They are not bound to a specific
location; a vector can be “moved” without changing what it represents.

There are various ways to notate a vector, such as a line segment with an
arrowhead at one end, or as a pair (magnitude, direction), or as the difference
between two points. In 3D graphics, vectors are frequently represented as a single

46 M Computer Graphics Programming in OpenGL with Java, Third Edition

point in space, where the vector is the distance and direction from the origin to
that point. In Figure 3.6, vector V (shown in red) can be specified either as the dif-
ference between points P1 and P2 or as an equivalent distance from the origin to
P3. In all of our applications, we specify V as simply (X,y,2), the same notation used
to specify the point P3.

P3 (x.y.2) ° P2
o

Figure 3.6
Two representations for a vector V.

It is convenient to represent a vector the same way as a point, because we can
use our matrix transforms on points or vectors interchangeably. However, it also
can be confusing. For this reason we sometimes will notate a vector with a small
arrow above it (such as 17). Many graphics systems do not distinguish between a
point and a vector at all, such as in GLSL and JOML, which provide data types
vec3/vecd and classes Vector3f/Vectordf (respectively) that can hold either points or
vectors. Some systems (such as the graphicslib3D library used in a previous edi-
tion of this book) have separate point and vector classes, and enforce appropriate
use of one or the other depending on the operation being done. It is an open debate
as to whether it is clearer to use one data type for both or separate data types.

There are several vector operations that are used frequently in 3D graphics, for
which there are functions available in JOML and GLSL. For example, assuming
vectors A(u,v,w) and B(x,y,2):

Addition and Subtraction:

AxB=(uxx,vty,wtz)
JOML: Vector3f.add(Vector3f) and Vector3f.sub(Vector3f)
GLSL: vec3 vec3

Chapter 3 - Mathematical Foundations [47

Normalize (change to length=1; note the "\" notation above the "A"):

A = A|A| = Alsqrt(uz+v2+w2), where |A| = length of vector A
JOML: Vector3f.normalize()
GLSL: normalize(vec3) or normalize(vec4)

Dot Product:

AeB=ux+vy+wz
JOML: Vector3f.dot(Vector3f)
GLSL: dot(vec3,vec3) or dot(vecé,vecd)

Cross Product:

Ax B = (vz-wy, wx-uz, uy-vx)
JOML: Vector3f.cross(Vector3f)
GLSL: cross(vec3,vec3)

Other useful vector functions are magnitude (which is available in both JOML
and GLSL as length()) as well as reflection and refraction (both are available in
GLSL; JOML includes reflection only).

We shall now take a closer look at the functions dot product and cross
product.

Uses for Dot Product

Throughout this book, our programs make heavy use of the dot product.
The most important and fundamental use is for finding the angle between two
vectors. Consider two vectors ¥ and W, and say we wish to find the angle 6
separating them.

48 B Computer Graphics Programming in OpenGL with Java, Third Edition

Therefore, if ¥ and W are normalized (i.e., of unit length—we use the “*”
notation for normalization as shown earlier), then:

cos()=VeW
6 = arccos(V e W)

Interestingly, we will later see that often it is cos(6) that we need, rather than
0 itself. So both of the above derivations will be directly useful.

The dot product also has a variety of other uses:

* Finding a vector’s magnitude: W

+ Finding whether two vectors are perpendicular if VeW =0

+ Finding whether two vectors are parallel if Vel = |I7| * |W|

* Finding whether two vectors are parallel but pointing in opposite
directions: VoW = —|V| » |W|

* Finding whether an angle between vectors lies in the range [-90°..+90°]:
Vel >0

* Finding the minimum signed distance from point P = (x,),z) to plane
S = (a,b,c,d) (first, find unit vector normal to S,

a b

(\/aerszrcz,\/aZerercz,\/aerb2+ =), and shortest distance

d I - .
D=m=—= from the origin to the plane; then the minimum signed

distance from P to S is (7 ® P) + D and the sign of this distance
determines on which side of the plane S point P lies)

EX®A Uses for Cross Product

An important property of the cross product of two vectors, which we will
use extensively throughout this book, is that it produces a vector that is normal
(perpendicular) to the plane defined by the original two vectors.

Any two non-collinear vectors define a plane. For example, consider two
arbitrary vectors ¥V and W. Since vectors can be moved without changing their
meaning, they can be moved so that their origins coincide. Figure 3.7 shows a
plane defined by ¥ and W, and the normal vector resulting from their cross prod-
uct. The direction of the resulting normal obeys the right-hand rule, wherein

Chapter 3 - Mathematical Foundations [l 49

curling the fingers of one’s right hand from V to W causes the thumb to point in
the direction of the normal vector R.

R=VxW

Figure 3.7
Cross product produces normal vector.

Note that the order is significant; ¥ x V would produce a vector in the oppo-
site direction from R.

The ability to find normal vectors by using the cross product will become
extremely useful later when we study lighting. In order to determine lighting
effects, we will need to know outward normals associated with the model we
are rendering. Figure 3.8 shows an example of a simple model made up of six
points (vertices), and the computation employing cross product that determines the
outward normal of one of its faces.

P=Vv,-V,
Q=V;-V
N=Px@Q

Figure 3.8
Computing outward normals.

LOCAL AND WORLD SPACE

The most common use for 3D graphics (with OpenGL or any other frame-
work) is to simulate a three-dimensional world, place objects in it, and then view
that simulated world on a monitor. The objects placed in the 3D world are usually
modeled as collections of triangles. Later, in Chapter 6, we will dive into model-
ing. But we can start looking at the overall process now.

50 M Computer Graphics Programming in OpenGL with Java, Third Edition

When building a 3D model of an object, we generally orient the model in the
most convenient manner for describing it. For example, when modeling a sphere,
we might orient the model with the sphere’s center at the origin (0,0,0) and give it
a convenient radius, such as 1. The space in which a model is defined is called its
local space, or model space. OpenGL documentation uses the term object space.

The sphere might then be used as a piece of a larger model, such as becoming
the head on a robot. The robot would, of course, be defined in its own local/model
space. Positioning the sphere model into the robot model space can be done using the
matrix transforms for scale, rotation, and translation, as illustrated in Figure 3.9. In
this manner, complex models can be built hierarchically (this is developed further
in Section 4.8 of Chapter 4, using a stack of matrices).

Ylk

Figure 3.9
Model spaces for a sphere and a robot.

In the same manner, modeled objects are placed in a simulated world by
deciding on the orientation and dimensions of that world, called world space.
The matrix that positions and orients an object into world space is called a model
matrix, or M.

EYE SPACE AND THE SYNTHETIC CAMERA

So far, the transform matrices we have seen all operate in 3D space.
Ultimately, however, we will want to display our 3D space—or a portion of it—
on a 2D monitor. In order to do this, we need to decide on a vantage point. Just
as we see our real world through our eyes from a particular point, in a particu-
lar direction, so too must we establish a position and orientation as the window
into our virtual world. This vantage point is called “view” or “eye” space, or the
“synthetic camera.”

Chapter 3 - Mathematical Foundations [l 51

view volume
eye (camera)

. — objects outside of view

>
>

projection plane

objects in world space

Figure 3.10
Positioning a camera in the 3D world.

As shown in Figures 3.10 and 3.12, viewing involves (a) placing the camera at
some world location; (b) orienting the camera, which usually requires maintaining
its own set of orthogonal axes U/V/N’; (c) defining a view volume; and (d) project-
ing objects within the volume onto a projection plane.

OpenGL includes a camera that is permanently fixed at the origin (0,0,0) and
faces down the negative Z-axis, as shown in Figure 3.11.

Figure 3.11
OpenGL fixed camera.

In order to use the OpenGL camera, one of the things we need to do is simulate
moving it to some desired location and orientation. This is done by figuring out
where our objects in the world are located relative to the desired camera position
(i.e., where they are located in “camera space,” as defined by the U, V, and N axes of
the camera as illustrated in Figure 3.12). Given a point at world space location Py,
we need a transform to convert it to the equivalent point in camera space, making
it appear as though we are viewing it from the desired camera location C,,. We do
this by computing its camera space position P;. Knowing that the OpenGL camera
location is always at the fixed position (0,0,0), what transform would achieve this?

52 B Computer Graphics Programming in OpenGL with Java, Third Edition

Y A
w V U
Pv = R RF) N
w X Y’Z,, - Cw= (CXC Cz)
yrad -
L4
X,
2y
Figure 3.12

Camera orientation.

The necessary transforms are determined as follows:

1. Translate Py, by the negative of the desired camera location.

2. Rotate Py by the negative of the desired camera orientation Euler
angles.

We can build a single transform that does both the rotation and the translation
in one matrix, called the viewing transform matrix, or V. The matrix V is produced
by concatenating the two matrices T (a translation matrix containing the negative
of the desired camera location) and R (a rotation matrix containing the negative of
the desired camera orientation). In this case, working from right to left, we first
translate world point P, then rotate it:

Pe=R*(T*Py)
As we saw earlier, the associative rule allows us to group the operations
instead thusly:
Pc=(R*T)* Py
If we save the concatenation R*T in the matrix V, the operation now looks like
Pe=V*Py,
The complete computation and the exact contents of matrices T and R are

shown in Figure 3.13 (we omit the derivation of matrix R—a derivation is avail-
able in [FV95]).

Chapter 3 - Mathematical Foundations [l 53

negative of camera negative of
rotation angles camera location
X Oc Oy U; 0] [1 0 0 —Cy Py
Yel_| W ¥ of |01 0 —Cf, [P
Z; —Ny -Ny, =N, o |0 0 1 —(P,

1 0 0 o 11 L0 0 0 1 1
point Pc in \ R (rotation) T (translation) world
eye space ~N point Pw

V (viewing transform)
Figure 3.13

Deriving a view matrix.

More commonly, the V matrix is concatenated with the model matrix M to
form a single model-view (MV) matrix:

MV=V*M

Then, a point Py, in its own model space is transformed directly to camera
space in one step as follows:

Pe=MV*P,

The advantage of this approach becomes clear when one considers that, in a
complex scene, we will need to perform this transformation not on just one point,
but on every vertex in the scene. By pre-computing MV, transforming each point
into view space will require us to do just one matrix multiplication per vertex,
rather than two. Later, we will see that we can extend this process to pre-computing
several matrix concatenations, reducing the per-vertex computations considerably.

PROJECTION MATRICES

Now that we have established the camera, we can examine projection matrices.
Two important projection matrices that we will now examine are (a) perspective
and (b) orthographic.

The Perspective Projection Matrix

Perspective projection attempts to make a 2D picture appear 3D, by utilizing
the concept of perspective to mimic what we see when we look at the real world.
Objects that are close appear larger than objects that are far away, and in some

54 B Computer Graphics Programming in OpenGL with Java, Third Edition

cases, lines that are parallel in 3D space are no longer parallel when drawn with
perspective.

Perspective was one of the great discoveries of the Renaissance era in the
1400-1500s, when artists started painting with more realism than did their
predecessors.

An excellent example can be seen in Figure 3.14, the Annunciation, with
St. Emidius by Carlo Crivelli, painted in 1486 (currently held at the National
Gallery in London [CR86]). The intense use of perspective is clear—the receding
lines of the left-facing wall of the building on the right are slanted toward each
other dramatically. This creates the illusion of depth and 3D space, and in the pro-
cess lines that are parallel in reality are not parallel in the picture. Also, the people
in the foreground are larger than the people in the background. While today we
take these devices for granted, finding a transformation matrix to accomplish this
requires some mathematical analysis.

We achieve this effect by using a matrix transform that converts parallel lines
into appropriate non-parallel lines. Such a matrix is called a perspective matrix or
perspective transform, and is built by defining the four parameters of a view vol-
ume. Those parameters are (a) aspect
ratio, (b) field of view, (c) projection
plane or near clipping plane, and (d)
far clipping plane.

Only objects between the near
and far clipping planes are rendered.
The near clipping plane also serves as
the plane on which objects are pro-
Jjected, and is generally positioned
close to the eye or camera (shown on
the left in Figure 3.15). Selection of
an appropriate value for the far clip-
ping plane is discussed in Chapter 4.
The field of view is the vertical angle
of viewable space. The aspect ratio
is the ratio width/height of the near
and far clipping planes. The shape
formed by these elements and shown

Figure 3.14 X K)
Crivelli's Annunciation, with Saint Emidius (1486). in Figure 3.15 is called a frustum.

Chapter 3 - Mathematical Foundations [l 55

object in
Field of View field of view
(FOV) angle in Y

near clipping
Z plane

»

A

>

Far clipping plane

Figure 3.15
Perspective view volume or frustum.

The perspective matrix is used to transform points in 3D space to their appro-
priate position on the near clipping plane, and is built by first computing values
g, A, B, and C, and then using those values to construct the matrix, as shown in
Figure 3.16 (and derived in [WB15]).

1
q I e
tan(fzeldt;ﬂ/zew)
A= #
aspectRatio
VA +7Z
B = near far

Tz

near — Zfar

C= 2% (Znear * Zfar)

Znear - Zfar
A 0 0 O
0 g 0 0
0 0 B C
0 0 -1 O

Figure 3.16
Building a perspective matrix.

56 M Computer Graphics Programming in OpenGL with Java, Third Edition

Generating a perspective transform matrix is a simple matter, by simply insert-
ing the described formulas into the cells of a 4x4 matrix. JOML also includes a
function Matrix4f.setPerspective() for building a perspective matrix.

EXFE The Orthographic Projection Matrix

In orthographic projection, parallel lines remain parallel; that is, perspec-
tive isn’t employed. Instead, objects that are within the view volume are projected
directly, without any adjustment of their sizes due to their distances from the camera.

K .

far clipping plane
projection plane

Figure 3.17
Orthographic projection.

An orthographic projection is a parallel projection in which all projections are
at right angles with the projection plane. An orthographic matrix is built by defin-
ing the following parameters: (a) the distance Z,,, from the camera to the projection
plane, (b) the distance Z,, from the camera to the far clipping plane, and (c) values
for L, R, T, and B, with L and R corresponding to the X coordinates of the left and right
boundaries of the projection plane, respectively, and T and B corresponding to the Y
coordinates of the top and bottom boundaries of the projection plane, respectively.
The orthographic projection matrix, as derived in [FV95], is shown in Figure 3.18.

2 0 0 R+1L
R—L R—-1L
0 2 0 T+B
T—-B T-B
0 0 -2 _Zfar +Znear
Zfar - Znear Zfar - Znear
0 0 0 1
Figure 3.18

Orthographic projection matrix.

Chapter 3 - Mathematical Foundations Il 57

Not all parallel projections are orthographic, but others are out of the scope of
this textbook.

Parallel projections don’t match what the eye sees when looking at the real
world. But they are useful in a variety of situations, such as in casting shadows,
performing 3D clipping, and in CAD (computer aided design)—the latter because
they preserve measurement regardless of the placement of the objects. Regardless,
the great majority of examples in this book use perspective projection.

LOOK-AT MATRIX

The final transformation we will examine is the look-at matrix. This is handy
when you wish to place the camera at one location and look toward a particular
other location, as illustrated in Figure 3.19. Of course, it would be possible to
achieve this using the methods we have already seen, but it is such a common
operation that building one matrix transform to do it is often useful.

Yu

: _ camera location
, E ey

.....

Figure 3.19
Elements of look-at.

A look-at transform still requires deciding on a camera orientation. We do this
by specifying a vector approximating the general orientation desired (such as the
world ¥ axis). Typically, a sequence of cross products can be used to then generate
a suitable set of forward, side, and up vectors for the desired camera orientation.
Figure 3.20 shows the computations, starting with the camera location (eye), target
location, and initial up vector ¥, to build the look-at matrix, as derived in [FV95].

58 M Computer Graphics Programming in OpenGL with Java, Third Edition

fwd = normalize(eye — target)
stde = normalize(—fwd X 17)
up = normalize(side X —fwd)

The look-at matrix then equals:

sidey sidey, side; —(side eeyé)
upy upy upy —(up e eyé)
—fwdy —fwdy —fwd; —(—fwdeeyé)
0 0 0 1
Figure 3.20

Look-at matrix.

We could encode this as a simple Java/JOGL utility function that builds a
look-at matrix, given specified values for camera location, target location, and
the initial “up” vector Y. Since JOML includes the function Matrix4f.setLookAt()
for building a look-at matrix, we will simply use that. This function will be useful
later in this textbook, particularly in Chapter 8 when we generate shadows.

GLSL FUNCTIONS FOR BUILDING
MATRIX TRANSFORMS

Although JOML includes predefined functions for performing many of the 3D
transformations covered in this chapter, such as translation, rotation, and scale, GLSL
only includes basic matrix operations such as addition, concatenation, and so on. It is
therefore sometimes necessary to write our own GLSL utility functions for building
3D transformation matrices when we need them to perform certain 3D computations
in a shader. The appropriate datatype to hold such a matrix in GLSL is mat4.

The syntax for initializing mat4 matrices in GLSL loads values by columns.
The first four values are put into the first column, the next four into the next column,
and so forth, as illustrated in the following example:

mat4 translationMatrix =
mat4(1.0,0.0,0.0,0.0, // note this is the leftmost column, not the top row
0.0,1.0,0.0, 0.0,
0.0,0.0,1.0, 0.0,
tx, ty, 1z, 1.0);

which builds the translation matrix described previously in Figure 3.3.

Chapter 3 - Mathematical Foundations [l 59

Program 3.1 includes five GLSL functions for building 4x4 translation, rotation,
and scale matrices, each corresponding to formulas given earlier in this chapter. We
will use some of these functions later in the book.

Program 3.1 Building Transformation Matrices in GLSL

// builds and returns a translation matrix
mat4 buildTranslate(float x, float y, float z)
{ mat4 trans = mat4(1.0, 0.0, 0.0, 0.0,
0.0,1.0, 0.0, 0.0,
0.0,0.0,1.0, 0.0,
XY,z 1.0);
return trans;

}

// builds and returns a matrix that performs a rotation around the X axis
mat4 buildRotateX(float rad)
{ mat4 xrot = mat4(1.0, 0.0, 0.0, 0.0,
0.0, cos(rad), -sin(rad), 0.0,
0.0, sin(rad), cos(rad), 0.0,
0.0,0.0,0.0,1.0);
return xrot;

}

// builds and returns a matrix that performs a rotation around the Y axis
mat4 buildRotateY (float rad)
{ mat4 yrot = mat4(cos(rad), 0.0, sin(rad), 0.0,
0.0, 1.0, 0.0, 0.0,
-sin(rad), 0.0, cos(rad), 0.0,
0.0,0.0,0.0,1.0);
return yrot;

}

// builds and returns a matrix that performs a rotation around the Z axis
mat4 buildRotateZ(float rad)
{ mat4 zrot = mat4(cos(rad), -sin(rad), 0.0, 0.0,
sin(rad), cos(rad), 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0,0.0,0.0,1.0);
return zrot;

}

60 M Computer Graphics Programming in OpenGL with Java, Third Edition

// builds and returns a scale matrix
mat4 buildScale(float x, float y, float z)
{ mat4 scale = maté(x, 0.0, 0.0, 0.0,

0.0,y,0.0,0.0,
0.0,0.0, z, 0.0,
0.0,0.0,0.0,1.0);
return scale;
}
SUPPLEMENTAL NOTES

In this chapter we have seen examples of applying matrix transformations
to points. Later, we will also want to apply these same transforms to vectors.
In order to accomplish a transform on a vector V equivalent to applying some
matrix transform M to a point, it is necessary in the general case to compute the
inverse transpose of M, denoted (M")T, and multiply V by that matrix. In some
cases, M=(M")T, and in those cases it is possible to simply use M. For example, the
basic rotation matrices we have seen in this chapter are equal to their own inverse
transpose and can be applied directly to vectors (and therefore also to points).
Thus, the examples in this book sometimes use (M-')T when applying a transform
to a vector, and sometimes simply use M.

Many of the JOML functions described in this section modify a specified
matrix and (somewhat counterintuitively) return a reference to the same matrix,
rather than building and returning a new matrix. This is for performance reasons,
and will be discussed in greater detail in Chapter 4.

One of the things we haven’t discussed in this chapter is techniques for
moving the camera smoothly through space. This is very useful, especially
for games and CGI movies, but also for visualization, virtual reality, and 3D
modeling. Code that does this is called a camera controller, and there are many
resources available online for this topic [TR15].

We didn’t include complete derivations for all of the matrix transforms that
were presented (they can be found in other sources, such as [FV95]). We strove
instead for a concise summary of the point, vector, and matrix operations necessary
for doing basic 3D graphics programming. As this book proceeds, we will encounter
many practical uses for the methods presented.

Chapter 3 - Mathematical Foundations [l 61

Exercises

3.1 Modify Program 2.5 so that the vertex shader includes one of the buildRotate()
functions from Program 3.1 and applies it to the points comprising the triangle.
This should cause the triangle to be rotated from its original orientation. You
don’t need to animate the rotation.

3.2 (RESEARCH) At the end of Section 3.4 we indicated that Euler angles can in
some cases lead to undesirable artifacts. The most common is called “gimbal
lock.” Describe gimbal lock, give an example, and explain why gimbal lock
can cause problems.

3.3 (RESEARCH) One way of avoiding the artifacts that can manifest when using
Euler angles is to use quaternions. We didn’t study quaternions; however,
JOML includes a Quaternionf class. Do some independent study on quaternions,
and familiarize yourself with the related JOML Quaternionf class.

References

[CR86] C. Crivelli, The Annunciation, with Saint Emidius (1486), in the National
Gallery, London, England, accessed July 2020, https://www.nationalgallery
.org.uk/paintings/carlo-crivelli-the-annunciation-with-saint-emidius

[EU76| L. Euler, Formulae generals pro translatione quacunque coporum
rigidorum (General formulas for the translation of arbitrary rigid bodies),
Novi Commentarii academiae scientiarum Petropolitanae 20, 1776.

[FV95] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics—
Principles and Practice, 2nd ed. (Addison-Wesley, 1995).

[KU98] J. B. Kuipers, Quaternions and Rotation Sequences (Princeton University
Press, 1998).

[TR15] T. Reed, OpenGL Part 3B: Camera Control (blog). Accessed March 2021,
https:/www.trentreed.net/blog/qt5-opengl-part-3b-camera-control

[WBI15] W. Brown, LearnWebGL (2015), chapter 8.2 (Orthographic Projections),
Accessed March 2021, http:/learnwebgl.brown37.net/08 projections/
projections_ortho.html

CHAPTER 4

MANAGING 3D GRAPHICS DATA

4.1 Buffers and Vertex Attributes i i 64
4.2 Uniform Variables 67
4.3 Interpolation of Vertex Attributes i 68
4.4 Model-View and Perspective Matrices.ccoiiiiiinnn... 69
4.5 Our First 3D Program—A 3D Cube, 71
4.6 Rendering Multiple Copies of an Object 80
4.7 Rendering Multiple Different Models ina Scene 84
4.8 Matrix Stacks 87
4.9 Combating “Z-Fighting” Artifacts i, 94
4.10 Other Options for Primitives.o, 95
411 Coding for Performanceu i, 97

Supplemental Notes oo 102

Using OpenGL to render 3D images generally involves sending several datasets
through the OpenGL shader pipeline. For example, to draw a simple 3D object such
as a cube, you will need to at least send the following items:

» the vertices for the cube model
* some transformation matrices to control the appearance of the cube’s orien-
tation in 3D space

To complicate matters a bit, there are two ways of sending data through the
OpenGL pipeline:

e through a buffer to a vertex attribute, or

e directly to a uniform variable

64 M Computer Graphics Programming in OpenGL with Java, Third Edition

It is important to understand exactly how these two mechanisms work, so as to
use the appropriate method for each item we are sending through.

Let’s start by rendering a simple cube.

BUFFERS AND VERTEX ATTRIBUTES

For an object to be drawn, its vertices must be sent to the vertex shader.
Vertices are usually sent by putting them in a buffer on the Java side and associ-
ating that buffer with a vertex attribute declared in the shader. There are several
steps to accomplish this, some of which only need to be done once, and some of
which—if the scene is animated—must be done at every frame:

Done once—typically in init():

1. create a buffer

2. copy the vertices into the buffer
Done at each frame—typically in display():

enable the buffer containing the vertices
associate the buffer with a vertex attribute
enable the vertex attribute

H v

use glDrawArrays(...) to draw the object

Buffers are typically created all at once at the start of the program, either in
init() or in a function called by init(). In OpenGL, a buffer is contained in a Vertex
Buffer Object, or VBO, which is declared and instantiated in the Java/JOGL appli-
cation. A scene may require many VBOs, so it is customary to generate and then
fill several of them in init(), so that they are available whenever your program needs
to draw one or more of them.

A buffer interacts with a vertex attribute in a specific way. When glDrawArrays()
is executed, the data in the buffer starts flowing, sequentially from the beginning
of the buffer, through the vertex shader. As described in Chapter 2, the vertex
shader executes once per vertex. A vertex in 3D space requires three values, so an
appropriate vertex attribute in the shader to receive these three values would be
of type vec3. Then, for each three values in the buffer, the shader is invoked, as
illustrated in Figure 4.1.

Chapter 4 - Managing 3D Graphics Data Il 65

A related structure in OpenGL is float buffer vertex shader invocation #1
called a Vertex Array Object, or VAO. il i VB0 In vee3 position
VAOs were introduced in version 3.0 2.0
. 3.8 — 7 position = (2.0, 3.8, -1.0)
of OpenGL and are provided as a L5
way of organizing buffers and mak- e vertex shader invocation #2
ing them easier to manipulate in 55 . o
| 0 GL . ’ 1 _in vec3 position
complex scenes. OpenGL requires at -1.7 vosition = (7.6, -2.5, -1.7)
least one VAO to be created, and for 4.0
our purposes one will be sufficient. 0.0 } vertex shader invocation #3
1.2
For example, suppose that we o in vec3 position
wish to display two objects. On the position = (4.0, 0.0, 1.2)

Java/JOGL side, we could do this v
by declaring a single VAO and an Figure 4.1
associated set Of two VBOs (one per Data transmission between a VBO and a vertex attribute.

object), as follows:

private int vao[] = new int[1]; // OpenGL requires these values be specified in arrays
private int vbo[] = new int[2];

gl.glGenVertexArrays(1, vao, 0);
gl.glBindVertexArray(vao[0]);
gl.glGenBuffers(2, vbo, 0);

The two OpenGL commands glGenVertexArrays() and glGenBuffers() create
VAOs and VBOs, respectively, and produce integer IDs for these items that are
stored in the arrays vao and vbo. The purpose of glBindVertexArrays() is to make
the specified VAO “active” so that the generated buffers' will be associated with
that VAO.

A buffer needs to have a corresponding vertex attribute variable declared in
the vertex shader. Vertex attributes are generally the first variables declared in a

' Throughout this example, two buffers are declared, to emphasize that usually we will use several
buffers. Later we will use the additional buffer(s) to store other information associated with the
vertex, such as color. In the current case we are using only one of the declared buffers, so it would
have been sufficient to declare just one VBO.

66 M Computer Graphics Programming in OpenGL with Java, Third Edition

shader. In our cube example, a vertex attribute to receive the cube vertices could
be declared in the vertex shader as follows:

layout (location = 0) in vec3 position;

The keyword in means “input” and indicates that this vertex attribute will be
receiving values from a buffer (as we will see later, vertex attributes can also be
used for “output™). As seen before, the “vec3” means that each invocation of the
shader will grab three float values (presumably x, y, z, comprising a single vertex).
The variable name is “position”; the “layout (location=0)" portion of the command is
called a “layout qualifier” and is how we will associate the vertex attribute with
a particular buffer. Thus this vertex attribute has an identifier 0 that we will use
later for this purpose.

The manner in which we load the vertices of a model into a buffer (VBO)
depends on where the model’s vertex values are stored. In Chapter 6 we will see
how models are commonly built in a modeling tool (such as Blender [BL21] or
Maya [MA21]), exported to a standard file format (such as .obj—also described in
Chapter 6), and imported into the Java/JOGL application. We will also see how a
model’s vertices can be calculated on the fly, or generated inside the pipeline, such
as in the tessellation shader.

For now, let’s say that we wish to draw a cube, and let’s presume that the
vertices of our cube are hardcoded in an array in the Java/JOGL application. In
that case, we need to copy those values into one of our two buffers that we gen-
erated above. To do that, we need to (a) make that buffer (say, the Oth buffer)
“active” with the OpenGL gIBindBuffer() command, (b) copy the vertices into a
Java FloatBuffer, and (¢) use the gIBufferData() command to copy the FloatBuffer into
the active buffer (the Oth VBO in this case). Presuming that the vertices are stored
in a float array named VvPositions, the following JOGL code? would copy those
values into the Oth VBO:

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
FloatBuffer vBuf = Buffers.newDirectFloatBuffer(vPositions);
gl.glBufferData(GL_ARRAY_BUFFER, vBuf.limit()*4, vBuf, GL_STATIC_DRAW);

2 Note that here, for the first time, we are refraining from describing every parameter in one or
more JOGL calls. As mentioned in Chapter 2, the reader is encouraged to utilize the OpenGL
documentation for such details as needed.

Chapter 4 - Managing 3D Graphics Data Il 67

Java has two types of buffers: direct and non-direct. For performance reasons,
direct buffers should be used in JOGL applications. JOGL (GlueGen) provides
tools in the class com.jogamp.common.nio.Buffers that facilitate the use of direct buf-
fers. In the example above, the JOGL function newDirectFloatBuffer() copies values
from an array to a FloatBuffer, in this case the vertices of the cube to be drawn.

Next, we add code to display() that will cause the values in the buffer to be sent
to the vertex attribute in the shader. We do this with the following three steps:
(a) make that buffer “active” with the glBindBuffer() command as we did above,
(b) associate the active buffer with a vertex attribute in the shader, and (c) enable
the vertex attribute. The following three lines of code will accomplish these steps:

gl.gBindBuffer(GL_ARRAY_BUFFER, vbo[0]); I/ make the 0™ buffer "active"
gl.glVertexAttrioPointer(0, 3, GL_FLOAT, false, 0, 0); // associate 0" vertex attribute with active buffer
gl.glEnableVertexAttribArray(0); I/ enable the 0" vertex attribute

Now when we execute glDrawArrays(), data in the Oth VBO will be transmitted
to the vertex attribute that has a layout qualifier with location 0. This sends the
cube vertices to the shader.

E®HE UNIFORM VARIABLES

Rendering a scene so that it appears 3D requires building appropriate transfor-
mation matrices, such as those described in Chapter 3, and applying them to each
of the models’ vertices. It is most efficient to apply the required matrix operations
in the vertex shader, and it is customary to send these matrices from the Java/
JOGL application to the shader in a uniform variable.

Uniform variables are declared in a shader by using the “uniform” keyword.
The following example, declaring variables to hold model-view and projection
matrices, will be suitable for our cube program:

uniform mat4 mv_matrix;
uniform mat4 p_matrix;

The keyword “mat4d” indicates that these are 4x4 matrices. Here we have
named the variables mv_matrix to hold the model-view matrix and p_matrix to hold
the projection matrix. Since 3D transformations are 4x4, mat4 is a commonly used
datatype in GLSL shader uniforms.

68 M Computer Graphics Programming in OpenGL with Java, Third Edition

Sending data from a Java/JOGL application to a uniform variable requires
the following steps: (a) acquire a pointer to the uniform variable, and (b) associate
a Java float buffer containing the desired values with the acquired uniform
pointer. Assuming that the linked rendering program is saved in a variable called
“renderingProgram” the following lines of code would specify that we will be
sending model-view and projection matrices to the two uniforms mv_matrix and
p_matrix in our cube example:

mvLoc = gl.glGetUniformLocation(renderingProgram,"mv_matrix"); // get the locations of uniforms
pLoc = gl.glGetUniformLocation(renderingProgram,"p_matrix"); Il in the shader program
gl.glUniformMatrix4fv(mvLoc, 1, false, mvMat.get(vals)); Il send matrix data to the
gl.glUniformMatrix4fv(pLoc, 1, false, pMat.get(vals)); Il uniform variables

The above example assumes that we have utilized the JOML utilities to build
model-view and projection matrix transforms mvMat and pMat, as will be discussed
in greater detail shortly. They are of type Matrix4f (a JOML class). The JOML func-
tion call get() copies those matrix values into the float buffer specified in the param-
eter (in this case, “vals”), and returns a reference to that float buffer, which is needed
by glUniformMatrix4fv() to transfer those matrix values to the uniform variable.

INTERPOLATION OF VERTEX ATTRIBUTES

It is important to understand how vertex attributes are processed in the OpenGL
pipeline versus how uniform variables are processed. Recall that immediately before
the fragment shader is rasterization, where primitives (e.g., triangles) defined by
vertices are converted to fragments. Rasterization linearly interpolates vertex attri-
bute values so that the displayed pixels seamlessly connect the modeled surfaces.

By contrast, uniform variables behave like initialized constants and remain
unchanged across each vertex shader invocation (i.e., for each vertex sent from the
buffer). A uniform variable is not interpolated; it always contains the same value
regardless of the number of vertices.

The interpolation done on vertex attributes by the rasterizer is useful in many
ways. Later, we will use rasterization to interpolate colors, texture coordinates,
and surface normals. It is important to understand that all values sent through a
buffer to a vertex attribute will be interpolated turther down the pipeline.

We have seen vertex attributes in a vertex shader declared as “in” to indicate
that they receive values from a buffer. Vertex attributes may instead be declared

Chapter 4 - Managing 3D Graphics Data Il 69

as “out”; this means that they send their values forward toward the next stage in
the pipeline. For example, the following declaration in a vertex shader specifies a
vertex attribute named “color” that outputs a vecé:

out vec4 color;

It is not necessary to declare an “out” variable for the vertex positions, because
OpenGL has a built-in out vec4 variable named gl_Position for that purpose. In
the vertex shader, we apply the matrix transformations to the incoming vertex
(declared earlier as position), assigning the result to gl_Position:

gl_Position = p_matrix * mv_matrix * position;

The transformed vertices will then be automatically output to the rasterizer,
with corresponding pixel locations ultimately sent to the fragment shader.

The rasterization process is
illustrated in Figure 4.2. When
specifying GL_TRIANGLES in
the glDrawArrays() function, ras-
terization is done per triangle. , =
Interpolation starts along the vertices f‘*- - am
lines connecting the vertices, at a -
level of precision corresponding
to the pixel display density. The
pixels in the interior space of the
triangle are then filled by inter-
polating along the horizontal Figure 4.2
lines connecting the edge piXGlS. Rasterization of vertices.

XS MODEL-VIEW AND PERSPECTIVE MATRICES

A fundamental step in rendering an object in 3D is to create appropriate trans-
formation matrices and send them to uniform variables like we did in Section 4.2.
We start by defining three matrices:

1. a Model matrix
2. a View matrix

3. a Perspective (Projection) matrix

70 M Computer Graphics Programming in OpenGL with Java, Third Edition

The Model matrix positions and orients the object in the world coordinate
space. Each model has its own model matrix, and that matrix would need to be
continuously rebuilt if the model moves.

The View matrix moves and rotates the models in the world to simulate the
effect of a camera at a desired location. Recall from Chapter 2 that the OpenGL
camera exists at location (0,0,0) and faces down the negative Z axis. To simu-
late the appearance of that camera being moved a certain way, we will need to
move the objects themselves in the opposite way. For example, moving a camera
to the right would cause the objects in the scene to appear to move to the left;
although the OpenGL camera is fixed, we can make it appear as though we have
moved it to the right by moving the objects to the left.

The Perspective matrix is a transform that provides the 3D effect according to
the desired frustum, as described earlier in Chapter 3.

It is also important to understand when to compute each type of matrix.
Matrices that never change can be built in init(), but those that change would need
to be built in display() so that they are rebuilt for each frame. Let’s assume that the
models are animated and the camera is movable. Then:

* A model matrix needs to be created for each model, and at each frame.

e The view matrix needs to be created once per frame (because the camera
can be moved), but is the same for all objects rendered during that frame.

* The perspective matrix is created once (in init()), using the screen
window’s width and height (and desired frustum parameters), and
usually remains unchanged unless the window is resized.

Generating model and view transformation matrices then happens in the
display() function, as follows:

1. Build the view matrix based on the desired camera location and orientation.
2. For each model, do the following:

i. Build a model matrix based on the model’s location and orientation.

ii. Concatenate the model and view matrices into a single “MV” matrix.
iii. Send the MV and projection matrices to the corresponding shader

uniforms.

Technically, it isn’t necessary to combine the model and view matrices into a
single matrix. That is, they could be sent to the vertex shader in individual, separate
matrices. However, there are certain advantages to combining them, while keeping

Chapter 4 - Managing 3D Graphics Data Il 71

the perspective matrix separate. For example, in the vertex shader, each vertex in
the model is multiplied by the matrices. Since complex models may have hundreds
or even thousands of vertices, performance can be improved by pre-multiplying
the model and view matrices once before sending them to the vertex shader. Later,
we will see the need to keep the perspective matrix separate for lighting purposes.

XN OUR FIRST 3D PROGRAM—A 3D CUBE

It’s time to put all the pieces together! In order to build a complete Java/JOGL/
GLSL system to render our cube in a 3D “world,” all of the mechanisms described
so far will need to be put together and perfectly coordinated. We can reuse some of
the code that we have seen previously in Chapter 2. Specifically, we won’t repeat
the following functions for reading in files containing shader code, compiling and
linking them, and detecting GLSL errors; in fact, recall that we have moved them
to a “Utils.java” file:

» createShaderProgram()

» readShaderSource()

» checkOpenGLError()

e printProgramLog()

» printShaderLog()

We will also need a utility function that builds a perspective matrix, given a
specified field-of-view angle for the Y axis, the screen aspect ratio, and the desired
near and far clipping planes (selecting appropriate values for near and far clipping

planes is discussed in Section 4.9). While we could easily write such a function
ourselves, JOML already includes one:

Matrix4f.setPerspective(<field of view>, <aspect ratio>, <near plane>, <far plane>);

We now build the complete 3D cube program, shown in Program 4.1.

Program 4.1 Plain Red Cube
Java/JOGL Application

import java.nio.”;
import javax.swing.*;
import java.lang.Math;

72 B Computer Graphics Programming in OpenGL with Java, Third Edition

import static com.jogamp.opengl.GL4.*;
import com.jogamp.opengl.;

import com.jogamp.opengl.awt.GLCanvas;
import com.jogamp.common.nio.Buffers;
import com.jogamp.opengl.GLContext;
import org.joml.*;

public class Code extends JFrame implements GLEventListener
{ private GLCanvas myCanvas;

private int renderingProgram;

private int vao[] = new int[1];

private int vbo[] = new int[2];

private float cameraX, cameraY, cameraZ;
private float cubeLocX, cubeLocY, cubelLocZ;

// allocate variables used in display() function, so that they won't need to be allocated during rendering
private FloatBuffer vals = Buffers.newDirectFloatBuffer(16); / utility buffer for transferring matrices

private Matrix4f pMat = new Matrix4f(); // perspective matrix
private Matrix4f vMat = new Matrix4f(); // view matrix
private Matrix4f mMat = new Matrix4f(); // model matrix
private Matrix4f mvMat = new Matrix4f(); // model-view matrix
private int mvLoc, pLoc;

private float aspect;

public Code()

{ setTitle("Chapter4 - program1a");
setSize(600, 600);
myCanvas = new GLCanvas();
myCanvas.addGLEventListener(this);
this.add(myCanvas);
this.setVisible(true);

}

public void init(GLAutoDrawable drawable)

{ GL4 gl =(GL4) GLContext.getCurrentGL();
renderingProgram = Utils.createShaderProgram("vertShader.glsl", "fragShader.glsl");
setupVertices();
cameraX = 0.0f, cameraY = 0.0f, cameraZ = 8.0f;

cubeLocX = 0.0f; cubeLocY =-2.0f, cubeLocZ = 0.0f, // shifted down the Y-axis to reveal perspective

}

/| main(), reshape(), and dispose() are unchanged

public static void main(String[] args) { new Code(); }

public void reshape(GLAutoDrawable drawable, int x, inty, int width, int height) { }
public void dispose(GLAutoDrawable drawable) { }

Chapter 4 - Managing 3D Graphics Data Il 73

public void display(GLAutoDrawable drawable)

{ GL4 gl =(GL4) GLContext.getCurrentGL();
gl.glClear(GL_DEPTH_BUFFER_BIT);
gl.glUseProgram(renderingProgram);

// get references to the uniform variables for the MV and projection matrices
mvLoc = gl.glGetUniformLocation(renderingProgram, "mv_matrix");
pLoc = gl.glGetUniformLocation(renderingProgram, "p_matrix");

// build perspective matrix. This one has fovy=60, aspect ratio matches the screen window.
// Values for near and far clipping planes can vary as discussed in Section 4.9

aspect = (float) myCanvas.getWidth() / (float) myCanvas.getHeight();
pMat.setPerspective((float) Math.toRadians(60.0f), aspect, 0.1f, 1000.0f);

// build view matrix, model matrix, and model-view matrix
vMat.translation(-cameraX, -cameraY, -cameraZ);

mMat.translation(cubeLocX, cubelLocY, cubeLocZ);

mvMat.identity();
mvMat.mul(vMat);
mvMat.mul(mMat);

// copy perspective and MV matrices to corresponding uniform variables
gl.glUniformMatrix4fv(mvLoc, 1, false, mvMat.get(vals));
gl.glUniformMatrix4fv(pLoc, 1, false, pMat.get(vals));

// associate VBO with the corresponding vertex attribute in the vertex shader
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);

gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);

// adjust OpenGL settings and draw model
gl.glEnable(GL_DEPTH_TEST);
gl.glDepthFunc(GL_LEQUAL);
gl.glDrawArrays(GL_TRIANGLES, 0, 36);

}

private void setupVertices()
{ GL4 gl =(GL4) GLContext.getCurrentGL();

// 36 vertices of the 12 triangles making up a 2 x 2 x 2 cube centered at the origin
float[] vertexPositions =
{ -1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f,

1.0f, -1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f,

1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, -1.0f,

1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f,

1.0f, -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f,

74 B Computer Graphics Programming in OpenGL with Java, Third Edition

-1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
-1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, 1.0f,
-1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f,
-1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f,
1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f,
-1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, -1.0f
3
gl.glGenVertexArrays(vao.length, vao, 0);
gl.gIBindVertexArray(vao[0]);
gl.glGenBuffers(vbo.length, vbo, 0);

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
FloatBuffer vertBuf = Buffers.newDirectFloatBuffer(vertexPositions);
gl.glBufferData(GL_ARRAY_BUFFER, vertBuf.limit()*4, vertBuf, GL_STATIC_DRAW);

}
}

Vertex shader (file name: "vertShader.glsl")
#version 430
layout (location=0) in vec3 position;

uniform mat4 mv_matrix;
uniform mat4 p_matrix;

void main(void)
{ gdl_Position = p_matrix * mv_matrix * vec4(position, 1.0);

}
Fragment shader (file name: "fragShader.gls!")
#version 430

out vec4 color;

uniform mat4 mv_matrix;
uniform mat4 p_matrix;

void main(void)

{ color =vec4(1.0, 0.0, 0.0, 1.0); Figure 4.3 N
Output of Program 4.1: red cube positioned at
} (0,-2,0) viewed from (0,0,8).

Let’s take a close look at the code in Program 4.1. It is important that we
understand how all of the pieces work, and how they work together.

Chapter 4 - Managing 3D Graphics Data Il 75

the Java/JOGL listing, setupVertices(), called by init().
At the start of this function, an array is declared called
vertexPositions that contains the 36 vertices compris-
ing the cube. At first you might wonder why this cube
has 36 vertices, when logically a cube should only
require eight. The answer is that we need to build /
our cube out of triangles, and so each of the six cube /
faces needs to be built of two triangles, for a total of
6x2=12 triangles (see Figure 4.4). Since each triangle Figure 4.4

is specified by three vertices, this totals 36 vertices. Cube made of triangles

Since each vertex has three values (X,y,z), there are a total of 36x3=108 values in
the array. It is true that each vertex participates in multiple triangles, but we still
specify each vertex separately because for now we are sending each triangle’s
vertices down the pipeline separately.

Start by examining the function near the end of /

The cube is defined in its own coordinate system, with (0,0,0) at its center, and
with its corners ranging from -1.0 to +1.0 along the x, y, and z axes. The rest of the
setupVertices() function sets up the VAO, two VBOs (although only one is used),
and loads the cube vertices into the Oth VBO buffer.

Note that the init() function performs tasks that only need to be done once:
reading in the shader code and building the rendering program, and loading the
cube vertices into the buffer (by calling “setupVertices()”). Note that it also posi-
tions the cube and the camera in the world; later we will animate the cube and also
see how to move the camera around, at which point we may need to remove this
hardcoded positioning.

Now let’s look at the display() function. Recall that display() may be called
repeatedly and the rate at which it is called is referred to as the frame rate. That is,
animation works by continually drawing and redrawing the scene, or frame, very
quickly. It is usually necessary to clear the depth buffer before rendering a frame,
so that hidden surface removal occurs properly (not clearing the depth buffer can
sometimes result in every surface being removed, resulting in a completely black
screen). By default, depth values in OpenGL range from 0.0 to 1.0. Clearing the
depth buffer is done by calling glClear(GL_DEPTH_BUFFER_BIT), which fills the
depth buffer with the default value (usually 1.0).

Next, display() enables the shaders by calling glUseProgram(), installing the
GLSL code on the GPU. Recall this doesn’t run the shader program, but it does

76 M Computer Graphics Programming in OpenGL with Java, Third Edition

enable subsequent OpenGL calls to determine the shader’s vertex attribute and
uniform locations. The display() function next gets the uniform variable locations;
builds the perspective, view, and model matrices;® concatenates the view and
model matrices into a single MV matrix; and assigns the perspective and MV matri-
ces to their corresponding uniforms.

Next, display() enables the buffer containing the cube vertices and attaches it to
Oth vertex attribute to prepare for sending the vertices to the shader.

The last thing display() does is draw the model by calling glDrawArrays(), speci-
fying that the model is composed of triangles and has 36 total vertices. The call to
glDrawArrays() is typically preceded by additional commands that adjust rendering set-
tings for this model.*In this example, there are two such commands, both of which are
related to depth testing. Recall from Chapter 2 that depth testing is used by OpenGL
to perform hidden surface removal. Here we enable depth testing, and specify the
particular depth test we wish OpenGL to use. The settings shown correspond to the
description in Chapter 2; later in the book we will see other uses for these commands.

Finally, consider the shaders. First, note that they both include the same block
of uniform variable declarations. Although this is not always required, it is often a
good practice to include the same block of uniform variable declarations in all of
the shaders within a particular rendering program.

Note also in the vertex shader the presence of the layout qualifier on the
incoming vertex attribute position. Since the location is specified as “0” the dis-
play() function can reference this variable simply by using 0 in the first param-
eter of the glVertexAttribPointer() function call, and in the glEnableVertexAttribArray()
function call. Note also that the position vertex attribute is declared as a vec3, and
so it needs to be converted to a vec4 in order to be compatible with the 4x4 matri-
ces with which it will be multiplied. This conversion is done with vec4(position,1.0),
which builds a vec4 out of the variable named “position” and puts a value of 1.0 in
the newly added fourth spot.

* An astute reader may notice that it shouldn’t be necessary to build the perspective matrix
every time display() is called, because its value doesn’t change. This is partially true—the
perspective matrix would need to be recomputed if the user were to resize the window while
the program was running. In Section 4.11 we will handle this situation more efficiently, and
in the process we will move the computation of the perspective matrix out of display() and
into the init() function.

4 Often, these calls may be placed in init() rather than in display(). However, it is necessary to place
one or more of them in display() when drawing multiple objects with different properties. For
simplicity, we always place them in display().

Chapter 4 - Managing 3D Graphics Data W 77

The multiplication in the vertex shader applies the matrix transforms to the
vertex, converting it to camera space (note the right-to-left concatenation order).
Those values are put in the built-in OpenGL output variable gl_Position and then
proceed through the pipeline and are interpolated by the rasterizer.

The interpolated pixel locations (referred to as fragments) are then sent to the
fragment shader. Recall that the primary purpose of the fragment shader is to set
the color of an outputted pixel. In a manner similar to the vertex shader, the frag-
ment shader processes the pixels one-by-one, with a separate invocation for each
pixel. In this case, it outputs a hardcoded value corresponding to red. For reasons
indicated earlier, the uniform variables have been included in the fragment shader
even though they aren’t being used there in this example.

An overview of the flow of data starting with the Java/JOGL application and
passing through the pipeline is shown in Figure 4.5.

Java/JOGL
application -
uniforms
VBO
Y \ 4
Vertex
g R e o B > —
vertices | attribute interpolation | fragments colors
Vertex shader Rasterizer Fragment shader

Figure 4.5
Data flow through Program 4.1.

Let’s make a slight modification to the shaders. In particular, we will assign
a color to each vertex according to its location and put that color in the out-
going vertex attribute varyingColor. The fragment shader is similarly revised to
accept the incoming color (interpolated by the rasterizer) and use that to set the
color of the output pixel. Note that the code also multiplies the location by one-
half and then adds one-half to convert the range of values from [-1.+1] to [0..1].
Note also the use of the common convention of assigning variable names that
include the word varying to programmer-defined interpolated vertex attributes.
The changes in each shader are highlighted and the resulting output shown on
the following page.

78 B Computer Graphics Programming in OpenGL with Java, Third Edition

Revised vertex shader:

#version 430

layout (location=0) in vec3 position;
uniform mat4 mv_matrix;
uniform mat4 p_matrix;

out vec4 varyingColor;

void main(void)
{ gl_Position = p_matrix * mv_matrix * vec4(position,1.0);
varyingColor = vec4(position,1.0) * 0.5 + vec4(0.5, 0.5, 0.5, 0.5);

}

Revised fragment shader:

#version 430
in vec4 varyingColor;

out vec4 color;
uniform mat4 mv_matrix;
uniform mat4 p_matrix;

void main(void)
{ color = varyingColor;

}

Note that, because the colors are sent out from the vertex shader in a vertex
attribute (varyingColor), they too are interpolated
by the rasterizer! The effect of this can be seen in
Figure 4.6, where the colors from corner to cor-
ner are clearly interpolated smoothly throughout
the cube.

Note also that the “out” variable varyingColor
in the vertex shader is also the “in” variable in the
fragment shader. The two shaders know which
variable from the vertex shader feeds which
variable in the fragment shader because they have

13 H 99 : Figurg .4-6
the same name— varylngCoIor —1n both shaders. cube with interpolated colors.

Chapter 4 - Managing 3D Graphics Data Il 79

We can animate the cube using the Animator class as in Program 2.6, by build-
ing the model matrix using a varying translation and rotation based on the elapsed
time. For example, the code in the display() function in Program 4.1 could be modi-
fied as follows (changes are highlighted):

gl.giClear(GL_DEPTH_BUFFER_BIT);
gl.giClear(GL_COLOR_BUFFER_BIT);

// use system time to generate slowly-increasing sequence of floating-point values
elapsedTime = System.currentTimeMills() — startTime; // elapsedTime, startTime, and tf
tf = elapsedTime / 1000.0; // would all be declared of type double.

// use tf (time factor) to compute different translations in x, y, and z

mMat.identity();

mMat.translate((float)Math.sin(.35ftf)*2.0f, (float)Math.sin(.52f*tf)*2.0f, (float)Math.sin(.7*tf)*2.0f);
mMat.rotateXYZ(1.75f(float)tf, 1.75f(float)tf, 1.75f(float)tf); //the 1.75 adjusts the rotation speed

The use of elapsed time (and a variety of trigonometric functions) in the model
matrix causes the cube to appear to tumble around in space. Note that adding this
animation illustrates the importance of clearing the depth buffer each time through
display() to ensure correct hidden surface removal. It also necessitates clearing the
color buffer as shown; otherwise, the cube will leave a trail as it moves.

The translate() and rotateXYZ() functions are part of the JOML library. Note that
in the code, translate() is called before rotate(). This results in a concatenation of the
two transforms, with translation on the left and rotation on the right. When a vertex
is subsequently multiplied by this matrix, the computation is right-to-left, meaning
that the rotation is done first, followed by the translation. The order of application of
transforms is significant and changing the order would result in different behavior.
Figure 4.7 shows some of the frames that are displayed after animating the cube.

Figure 4.7
Animated (“tumbling”) 3D cube.

80 M Computer Graphics Programming in OpenGL with Java, Third Edition

EXE RENDERING MULTIPLE COPIES OF
AN OBJECT

Before we tackle the general case of rendering a variety of models in a single
scene, let’s consider the simpler case of multiple occurrences of the same model.
Suppose, for instance, that we wish to expand the previous example so that it ren-
ders a “swarm” of 24 tumbling cubes. We can do this by moving the portions of the
code in display() that build the MV matrix and that draw the cube (shown below)
into a loop that executes 24 times. We incorporate the loop variable into the cube’s
rotation and translation, so that each time the cube is drawn a different model
matrix is built. (We also positioned the camera further down the positive Z axis so
we can see all of the cubes and increased the multiplier from 2.0 to 8.0 to spread
them out.) The resulting animated scene is shown in Figure 4.8.

public void display(GLAutoDrawable drawable)

{ ...
timeFactor = elapsedTime/1000.0;

for (i=0; i<24; i++)
{ x=timeFactor +i;
mMat.identity();
mMat.translate((float)Math.sin(.35f*x)*8.0f, (float)Math.sin(.52f*x)*8.0f, (float)Math.
sin((.70f*x)*8.0f));
mMat.rotateXYZ(1.75f*(float)x, 1.75f*(float)x, 1.75f(float)x);

mvMat.identity();
mvMat.mul(vMat);
mvMat.mul(mMat);

gl.glUniformMatrix4fv(mvLoc, 1, false, mvMat.get(vals));
gl.glUniformMatrix4fv(pLoc, 1, false, pMat.get(vals));

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);

gl.glEnable(GL_DEPTH_TEST);
gl.glDepthFunc(GL_LEQUAL);
gl.glDrawArrays(GL_TRIANGLES, 0, 36);

Chapter 4 - Managing 3D Graphics Data [l 81

Figure 4.8
Multiple tumbling cubes.

Instancing

Instancing provides a mechanism for telling the graphics card to render multi-
ple copies of an object using only a single Java call. This can result in a significant
performance benefit, particularly when there are thousands or millions of copies
of the object being drawn—such as when rendering many flowers in a field, or
many zombies in an army.

We start by changing the glDrawArrays() call in our Java/JOGL application to
glDrawArraysinstanced(). Now we can ask OpenGL to draw as many copies as we
want. We can specify drawing 24 cubes as follows:

glDrawArraysinstanced(GL_TRIANGLES, 0, 36, 24);

When using instancing, the vertex shader has access to a built-in variable,
gl_InstancelD, an integer that refers to which numeric instance of the object is cur-
rently being processed.

To replicate our previous tumbling cubes example using instancing, we will
need to move the computations that build the different model matrices (previously
inside a loop in display()) into the vertex shader. Since GLSL does not provide
translate or rotate functions and we cannot make calls to JOML from inside a
shader, we will need to use the utility functions from Program 3.1. We will also
need to pass the “time factor” variable from the Java/JOGL application to the

82 M Computer Graphics Programming in OpenGL with Java, Third Edition

vertex shader in a uniform. We also need to pass the view matrix in its own
uniform variable because the rotation computations have been moved to the vertex
shader. The revisions, including those in the Java/JOGL application and those in
the new vertex shader, are shown in Program 4.2.

Program 4.2 Instancing: 24 Animated Cubes

Vertex Shader:

#version 430

layout (location=0) in vec3 position;

uniform mat4 v_matrix; // only the P and V matrices are sent from the appication
uniform mat4 p_matrix;

uniform float tf; // time factor for animation and placement of cubes

out vec4 varyingColor;

mat4 buildRotateX(float rad); // declaration of matrix transformation utility functions

mat4 buildRotateY (float rad); // (GLSL requires functions to be declared prior to invocation)
mat4 buildRotateZ(float rad);

mat4 buildTranslate(float x, float y, float z);

void main(void)
{ floatx =gl _InstancelD +tf;, // value based on time factor, but different for each cube instance

float a = sin(.35 * x) * 8.0; // these are the x, y, and z components for the translation, below
float b = sin(.52 * x) * 8.0;
float ¢ = sin(.70 * x) * 8.0;

// build the rotation and translation matrices to be applied to this cube’s model matrix
mat4 localRotX = buildRotateX(1.75*x);
mat4 localRotY = buildRotateY(1.75*x);
mat4 localRotZ = buildRotateZ(1.75*x);
mat4 localTrans = buildTranslate(a,b,c);

// build the model matrix and then the model-view matrix
mat4 newM_matrix = localTrans * localRotX * localRotY * localRotZ;
mat4d mv_matrix = v_matrix * newM_matrix;

gl_Position = p_matrix * mv_matrix * vecé(position, 1.0));
varyingColor = vec4(position,1.0) * 0.5 + vec4(0.5, 0.5, 0.5, 0.5);
}

// utility function to build a translation matrix (from Chapter 3)
mat4 buildTranslate(float x, float y, float z)
{ mat4 trans = mat4(1.0, 0.0, 0.0, 0.0,

Chapter 4 - Managing 3D Graphics Data I 83

0.0,1.0,0.0, 0.0,
0.0,0.0, 1.0, 0.0,
XY,z 1.0);
return trans;
}

// similar functions included for rotation around the X, Y, and Z axes (also from Chapter 3)

Java/JOGL Application (in display())

// computations that build (and transform) mMat have been moved to the vertex shader.
// there is no longer any need to build an MV matrix in the Java/JOGL application.

gl.glUniformMatrix4fv(vLoc, 1, false, vMat.get(vals)); // the shader does need the V matrix.
int tfLoc = gl.glGetUniformLocation(renderingProgram, "tf"); // uniform for the time factor
gl.glUniform1f(tfLoc, (float)timeFactor); // (the shader needs that too)

gl.glDrawArraysinstanced(GL_TRIANGLES, 0, 36, 24);

The resulting output of Program 4.2 is identical to that for the previous exam-
ple and can be seen in Figure 4.8.

Instancing makes it possible to greatly expand the number of copies of an
object; in this example animating /00,000 cubes is still feasible even for a modest
GPU. The changes to the code—mainly just a few modified constants to spread
the large number of cubes further apart—are as follows:

Vertex Shader:

float a = sin(203.0 *i/8000.0) * 403.0;
float b = cos(301.0 *i/4001.0) * 401.0;
float ¢ = sin(400.0 * i/6003.0) * 405.0;

Java/JOGL Application

cameraZ = 420.0f; // move camera further down the Z axis to view the increased number of cubes

gl.glDrawArraysinstanced(GL_TRIANGLES, 0, 36, 100000);

84 M Computer Graphics Programming in OpenGL with Java, Third Edition

The resulting output is shown in Figure 4.9.

Figure 4.9
Instancing: 100,000 animated cubes.

RENDERING MULTIPLE DIFFERENT
MODELS IN A SCENE

To render more than one model in a single scene, a simple approach is to use
a separate buffer for each model. Each model will need its own model matrix, and
thus a new model-view matrix will be generated for each model that we render.
There will also need to be separate calls to glDrawArrays() for each model. There are
changes both in init() and in display().

Another consideration is whether or not we will need different shaders—or a
different rendering program—for each of the objects we wish to draw. As it turns
out, in many cases we can use the same shaders (and thus the same rendering
program) for the various objects we are drawing. We usually only need to employ
different rendering programs for the various objects if they are built of different
primitives (such as lines instead of triangles), or if there are complex lighting or
other effects involved. For now, that isn’t the case, so we can reuse the same vertex
and fragment shaders, and just modify our Java/JOGL application to send each
model down the pipeline when display() is called.

Chapter 4 - Managing 3D Graphics Data I 85

Let’s proceed by adding a simple pyramid, so our scene includes both a single
cube and a pyramid. The code is shown in Program 4.3. A few of the key details are
highlighted, such as where we specify one or the other buffer and where we specify
the number of vertices contained in the model. Note that the pyramid is composed
of six triangles—four on the sides and two on the bottom, totaling 6x3=18 vertices.

The resulting scene, containing both the cube and the pyramid, is shown in
Figure 4.10.

Program 4.3 Cube and Pyramid

private void setupVertices()
{ GL4 gl = (GL4) GLContext.getCurrentGL();

float[] cubestitions =
{-1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f,
1.0f, -1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f,
... Same as before, for the rest of the cube vertices

3

/| pyramid with 18 vertices, comprising 6 triangles (four sides, and two on the bottom)

float[] pyramivaositions =
{ -1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 0.0f, // front face

1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 1.0f, 0.0f, // right face

1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 1.0f, 0.0f, //back face

-1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 0.0f, //left face

-1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, // base — left front

1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f // base — right back
3
gl.glGenVertexArrays(vao.length, vao, 0);
gl.gIBindVertexArray(vao[0]);
gl.glGenBuffers(vbo.length, vbo, 0);

gl.gBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
FloatBuffer cubeBuf = Buffers.newDirectFloatBuffer(cubePositions);
gl.giBufferData(GL_ARRAY_BUFFER, cubeBuf.limit()*4, cubeBuf, GL_STATIC_DRAW);

\J
gl.gBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
FloatBuffer pyrBuf = Buffers.newDirectFloatBuffer(pyramidPositions);
gl.glBufferData(GL_ARRAY_BUFFER, pyrBuf.limit()*4, pyrBuf, GL_STATIC_DRAW);

}

public void display(GLAutoDrawable drawable)
{ ...clearthe color and depth buffers as before (not shown here)

86 M Computer Graphics Programming in OpenGL with Java, Third Edition

... use rendering program and obtain uniform locations as before (not shown here)

// set up the projection and view matrices
aspect = (float) myCanvas.getWidth() / (float) myCanvas.getHeight();
pMat.setPerspective((float) Math.toRadians(60.0f), aspect, 0.1f, 1000.0f);

vMat.translation(-cameraX,-camerayY,-cameraZ);

// draw the cube (use buffer #0)
mMat.translation(cubeLocX, cubelLocY, cubeLocZ);

mvMat.identity();
mvMat.mul(vMat);
mvMat.mul(mMat);

gl.glUniformMatrix4fv(mvLoc, 1, false, mvMat.get(vals));
gl.glUniformMatrix4fv(pLoc, 1, false, pMat.get(vals));

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);

gl.glEnable(GL_DEPTH_TEST);
gl.giDepthFunc(GL_LEQUAL);

gl.glDrawArrays(GL_TRIANGLES, 0, 36);

/| draw the pyramid (use buffer #1)
mMat.translation(pyrLocX, pyrLocY, pyrLocZ);

mvMat.identity();
mvMat.mul(vMat);
mvMat.mul(mMat);

gl.glUniformMatrix4fv(mvLoc, 1, false, mvMat.get(vals));
gl.glUniformMatrix4fv(pLoc, 1, false, pMat.get(vals));
// (repeated for clarity)

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);

gl.glEnableVertexAttribArray(0); ‘
gl.glEnable(GL_DEPTH_TEST);

gl.glDepthFunc(GL_LEQUAL);
gl.glDrawArrays(GL_TRIANGLES, 0, 18);

Figure 4.10
} 3D cube and pyramid.

Chapter 4 - Managing 3D Graphics Data Il 87

A few other minor details to note regarding Program 4.3:

» The variables pyrLocX, pyrLocY, and pyrLocZ need to be declared in the
class and initialized in init() to the desired pyramid location, as was done
for the cube location.

* The view matrix vMat is built at the top of display() and then used in both
the cube’s and the pyramid’s model-view matrices.

* The vertex and fragment shaders are not shown—they are unchanged
from Section 4.5.

XN MATRIX STACKS

So far, the models we have rendered have each been constructed of a single set
of vertices. It is often desired, however, to build complex models by assembling
smaller simple models. For example, a model of a “robot” could be created by
separately drawing the head, body, legs, and arms, where each is a separate model.
An object built in this manner is often called a hierarchical model. The tricky part
of building hierarchical models is keeping track of all the model-view matrices,
and making sure they stay perfectly coordinated—otherwise the robot might fly
apart into pieces!

Hierarchical models are useful not only for building complex objects—they
can also be used to generate complex scenes. For example, consider how our
planet earth revolves around the sun, and in turn how the moon revolves around
the earth. Such a scene is shown in Figure 4.11.° Computing the moon’s actual
path through space could be complex. However, if we can combine the trans-
forms representing the two simple circular paths—the moon’s path around the
earth and the earth’s path around the sun—we avoid having to explicitly compute
the moon trajectory.

> Yes, we know that the moon doesn’t revolve in this “vertical” trajectory around the earth, but
rather in one that is more coplanar with the earth’s revolution around the sun. We chose this orbit
to make our program’s execution clearer.

88 M Computer Graphics Programming in OpenGL with Java, Third Edition

Figure 4.11
Animated planetary system.
Source: Sun and earth textures are from [HT12]; the moon texture is from [NA21].

It turns out that we can do this fairly easily with a matrix stack. A matrix stack
is, as its name implies, a stack of transformation matrices. As we will see, matrix
stacks make it easy to create and manage complex hierarchical objects and scenes,
where transforms can be built upon (and removed from) other transforms.

OpenGL has a built-in matrix stack, but as part of the older fixed-function
(nonprogrammable) pipeline it has long been deprecated. It was nicely devised and
convenient to use, and happily a similar Java class is available in JOML, called
Matrix4fStack, patterned after the one that became popular in older versions of
OpenGL [OL16]. As we will see, many of the model, view, and model-view matri-
ces that would normally be needed in a complex scene can be replaced by a single
instance of Matrix4fStack.

We will first examine the basic commands for instantiating and utilizing a
matrix stack, then use Matrix4fStack to build a complex animated scene. Some
important Matrix4fStack functions include the following:

* pushMatrix(}—makes a copy of the top matrix and pushes the copy onto
the stack

* popMatrix(}—removes and returns the top matrix

* get(v)—copies values in the topmost matrix to buffer v and returns a ref-
erence to the buffer (the topmost matrix is not removed from the stack)

» rotate(d,x,y,2)

o scale(x,y,z) apply directly to the

top matrix in the stack
» translate(x,y,2)

Chapter 4 - Managing 3D Graphics Data I 89

Matrix4fStack is designed as a subclass of Matrix4f, and thus inherits all of the
functions defined in Matrix4f. If one of those functions is called on a Matrix4fStack,
it is applied to the matrix at the top of the stack (in fact, the functions get(), rotate(),
scale(), and translate() listed above are examples of this mechanism, as are many of
the other JOML matrix functions, such as matrix concatenation).

Now, rather than building transforms by creating instances of Matrix4f, we
instead use the pushMatrix() command to create new matrices at the top of the
stack. Desired transforms are then applied as needed to the newly created matrix
on the top of the stack.

The first matrix pushed on the stack is frequently the VIEW matrix. The
matrices above it are model-view matrices of increasing complexity; that is, they
have an increasing number of model transforms applied to them. These transforms
can either be applied directly or by first concatenating other matrices.

In our planetary system example, the matrix positioned immediately above the
VIEW matrix would be the sun’s MV matrix. The matrix on top of that matrix would
be the earth’s MV matrix, which consists of a copy of the sun’s MV matrix with the
earth’s model matrix transforms applied to it. That is, the earth’s MV matrix is
built by incorporating the planet’s transforms into the sun’s transforms. Similarly,
the moon’s MV matrix sits on top of the planet’s MV matrix and is constructed by
applying the moon’s model matrix transforms to the planet’s MV matrix immedi-
ately below it.

After rendering the moon, a second “moon” could be rendered by “popping”
the first moon’s matrix off of the stack (restoring the top of the stack to the planet’s
model-view matrix) and then repeating the process for the second moon.

The basic approach is as follows:

1. When a new object is introduced relative to a parent object, do a “push-
Matrix()”” call.

2. Apply the new object’s transforms; i.e., multiply a transform to the matrix
at the top of the stack.

3. When an object or subobject has finished being drawn, call “popMatrix()”
to remove its model-view matrix from atop the matrix stack.

In later chapters we will learn how to create spheres and make them look like
planets and moons. For now, to keep things simple, we will build a “planetary
system” using our pyramid and a couple of cubes.

90 M Computer Graphics Programming in OpenGL with Java, Third Edition

Here is an overview of how a display() function using a matrix stack is typically

organized:

: Parent

Push a new matrix onto the stack.
(this will instantiate an empty VIEW matrix).

Apply transform(s) to the view matrix on the top of the stack.

Push a new matrix onto the stack (this will be the parent MV
matrix—for the first parent, it duplicates the view matrix).

Apply transforms to incorporate the parent's M
matrix into the duplicated view matrix.

Send the topmost matrix (“get”) to the MV
uniform variable in the vertex shader.

Draw the parent object.

Push a new matrix onto the stack. This will be the
child’s MV matrix, duplicating the parent MV matrix.

Apply transforms to incorporate the child’'s M
matrix into the duplicated parent MV matrix.

Send the topmost matrix (“get”) to the MV
uniform variable in the vertex shader.

Draw the child object.

Pop the child’s MV matrix off the stack.
Pop the parent’'s MV matrix off the stack.
Pop the VIEW matrix off the stack.

Note that the pyramid (“sun”) rotation on its axis is in its own local coordinate
space, and should not be allowed to affect the “children” (the planet and moon, in
this case). Therefore, the sun’s rotation (shown in the image below) is pushed onto
the stack, but then after drawing the sun, it must be removed (popped) from the

stack.

Chapter 4 - Managing 3D Graphics Data Il 91

The big cube’s (planet) revolution around the sun (left image, below) will
affect the moon’s movement, and so it is pushed on the stack and remains there
when drawing the moon as well. By contrast, the planet’s rotation on its axis (right
image, below) is local and does not affect the moon, so it is popped off the stack
before drawing the moon.

Similarly, we would push transforms onto the stack for the moon’s rotations
(around the planet and on its axis), indicated in the following images.

92 M Computer Graphics Programming in OpenGL with Java, Third Edition

Here is the sequence of steps for the “planet”:

» pushMatrix(—This will be the portion of the planet’s MV matrix that
will also affect children.

+ translate(...)—This will incorporate the planet movement around the
sun into the planet’s MV matrix. In this example we use trigonometry to
calculate the planet movement as a translation.

+ pushMatrix(}—This will be the planet’s complete MV matrix, also
including its axis rotation.

» rotate(...)—This will incorporate the planet’s axis rotation (this will later
be popped and not affect children).

» get()—This will obtain the MV matrix and then send it to the MV uniform.

e Draw the planet.

» popMatrix()—This removes the planet MV matrix off the stack, exposing
underneath it an earlier copy of the planet MV matrix that doesn’t include

the planet’s axis rotation (so that only the planet’s translation will affect
the moon).

We now can write the complete display() routine, shown in Program 4.4.

Program 4.4 Simple Solar System Using Matrix Stack

private Matrix4fStack mvStack = new Matrix4fStack(5);
public void display(GLAutoDrawable drawable)
{ // setup of background, depth buffer, rendering program, and proj matrices unchanged

tf = elapsedTime/1000.0; // time factor, as before
// push view matrix onto the stack

mvStack.pushMatrix();
mvStack.translate(-cameraX, -cameraY, -cameraZ);

] e pyramid == sun

mvStack.pushMatrix();

mvStack.translate(0.0f, 0.0f, 0.0f); // sun’s position
mvStack.pushMatrix();

mvStack.rotate((float)tf, 1.0f, 0.0f, 0.0f); // sun’s rotation on its axis

gl.glUniformMatrix4fv(mvLoc, 1, false, mvStack.get(vals));
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);
gl.glEnable(GL_DEPTH_TEST);

Chapter 4 - Managing 3D Graphics Data Il 93

gl.glDrawArrays(GL_TRIANGLES, 0, 18); // draw the sun

mvStack.popMatrix(); // remove the sun’s axial rotation from the stack
ffemmmmmmmemm e cube == planet

mvStack.pushMatrix();

mvStack.translate((float)Math.sin(tf)*4.0f, 0.0f, (float)Math.cos(if)*4.0f); // planet moves around sun
mvStack.pushMatrix();

mvStack.rotate((float)tf, 0.0f, 1.0f, 0.0f); // planet axis rotation

gl.glUniformMatrix4fv(mvLoc, 1, false, mvStack.get(vals));
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);
gl.glDrawArrays(GL_TRIANGLES, 0, 36); // draw the planet

mvStack.popMatrix(); // remove the planet's axial rotation from the stack
ffemmmmmmmem e smaller cube == moon

mvStack.pushMatrix();

mvStack.translate(0.0f, (float)Math.sin(tf)*2.0f, (float)Math.cos(tf)*2.0f); / moon moves around planet
mvStack.rotate((float)tf, 0.0f, 0.0f, 1.0f); // moon’s rotation on its axis
mvStack.scale(0.25f, 0.25f, 0.25f); // make the moon smaller

gl.glUniformMatrix4fv(mvLoc, 1, false, mvStack.get(vals));
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);
gl.glDrawArrays(GL_TRIANGLES, 0, 36); // draw the moon

// remove moon scale/rotation/position, planet position, sun position, and view matrices from stack
mvStack.popMatrix(); mvStack.popMatrix(); mvStack.popMatrix(); mvStack.popMatrix();

The matrix stack operations have been highlighted. There are several details
worth noting:

* We have introduced a scale operation in a model matrix. We want the
moon to be a smaller cube than the planet, so we use a call to scale()
when building the MV matrix for the moon.

+ In this example, we are using the trigonometric operations sin() and cos()
to compute the revolution of the planet around the sun (as a translation),
and also for the moon around the planet.

e The two buffers #0 and #1 contain cube and pyramid vertices, respectively.

* Note the use of the get() function call within the glUniformMatrix()
command. The get() call retrieves the values in the matrix on top of the
stack, and those values are then sent to the uniform variable (in this case,
the sun, planet, and then moon’s MV matrices).

94 B Computer Graphics Programming in OpenGL with Java, Third Edition

The vertex and fragment shaders are not shown—they are unchanged from
the previous example. We also moved the initial position of the pyramid (sun) and
the camera to center the scene on the screen.

EEE COMBATING “Z-FIGHTING” ARTIFACTS

Recall that when rendering multiple objects, OpenGL uses the Z-buffer
algorithm (shown earlier in Figure 2.14) for performing hidden surface removal.
Ordinarily, this resolves which object surfaces are visible and rendered to the
screen versus which surfaces lie behind other objects and thus should not be ren-
dered, by choosing a pixel’s color to be that of the corresponding fragment closest
to the camera.

However, there can be occasions when two object surfaces in a scene overlap
and lie in coincident planes, making it problematic for the Z-buffer algorithm
to determine which of the two surfaces should be rendered (since neither is
“closest” to the camera). When this happens, floating point rounding errors can
lead to some portions of the rendered surface using the color of one of the objects
and other portions using the color of the other object. This artifact is known
as Z-fighting or depth-fighting, because the effect is the result of rendered
fragments “fighting” over mutually corresponding pixel entries in the Z-buffer.
Figure 4.12 shows an example of Z-fighting between two boxes with overlapping
coincident (top) faces.

Situations like this often occur when
creating terrain or shadows. It is often
possible to predict Z-fighting in such
instances, and a common way of cor-
recting it in these cases is to move one
object slightly, so that the surfaces are no
longer coplanar. We will see an example
of this in Chapter 8.

Z-fighting can also occur due to
limited precision of the values in the
depth buffer. For each pixel processed
by the Z-buffer algorithm, the accuracy
of its depth information is limited by

. . . Figure 4.12
the number of bits available for storing 7 ggnting example.

Chapter 4 - Managing 3D Graphics Data Il 95

it in the depth buffer. The greater the range between near and far clipping planes
used to build the perspective matrix, the more likely two objects’ points with
similar (but not equal) actual depths will be represented by the same numeric
value in the depth buffer. Therefore, it is up to the programmer to select near
and far clipping plane values to minimize the distance between the two planes,
while still ensuring that all objects essential to the scene lie within the viewing
frustum.

It is also important to understand that, due to the effect of the perspective
transform, changing the near clipping plane value can have a greater impact on
the likelihood of Z-fighting artifacts than making an equivalent change in the far
clipping plane. Therefore, it is advisable to avoid selecting a near clipping plane
that is too close to the eye.

Previous examples in this book have simply used values of 0.1 and 1000 (in
our calls to perspective()) for the near and far clipping planes. These may need to
be adjusted for your scene.

OTHER OPTIONS FOR PRIMITIVES

OpenGL supports a number of primitive types—so far we have seen two:
GL_TRIANGLES and GL_POINTS. In fact, there are several others. All of the avail-
able primitive types supported in OpenGL fall into the categories of triangles,
lines, points, and patches. Here is a complete list:

Triangle primitives:

: GL_TRIANGLES The most common primitive type in this book.
: : Vertices that pass through the pipeline form dlstmct

2 > 8 triangles:
3 o£:| 3£’| si:l :

: vertices. |0 1 2"3 4 5"6 7 8| etc.

: triangles: v v v

: Each vertex that passes through the pipeline
- efficiently forms a triangle with the previous two
: vertices:

vertices: |0 |1[2] 3 | etc.

: triangles: v v v

96 M Computer Graphics Programming in OpenGL with Java, Third Edition

: GL_TRIANGLE_FAN : Each pair of vertices that passes through the pipe-
5 : line forms a triangle with the very first vertex:
1 :

. > cvertices: 012 3 4 etc.
20 H

3 : triangles: /I v 3|v alv

4 0 1 0o 2 0 3
'GL_TRIANGLES_ - Intended only for use with geometry shaders. Allows :
: ADJACENCY : the shader to access the vertices in the current :

 triangle, plus additional adjacent vertices.

GL_TRIANGLE_STRIP_ Intended only for use with geometry shaders. Similar
: ADJACENCY :to GL_ TRIANGLES ADJACENCY, except that tri- :
3 - angle vertices overlap as for GL_ TRIANGLE_STRIP. :

'GLLLINES | Vertices that pass through the pipeline form distinct :
] : lines: 3

1 4
§0/ 2 3 \5 gvertices.'| 0o 1 2 3| 4 5] etc.

: GL_LINE_STRIP Each vertex that passes through the pipeline
] - efficiently forms a line with the previous vertex:

io o 1 2 93 S vertices: etc.

: GL_LINE_LOOP - Same as GL_LINE_STRIP, except a line is also :
3 : formed between the very first and very last vertices. :

“ GL_LINES_ADJACENCY : Intended for use with geometry shaders. Allows the :
] : shader to access the vertices in the current line, plus :
- additional adjacent vertices. 3

. GL_LINE_STRIP_ADJA- : Similar to GL_LINES_ADJACENCY, except that line
: CENCY : vertices overlap as for GL_LINE_STRIP.

Chapter 4 - Managing 3D Graphics Data Il 97

Patch primitives:

: GL_PATCHES : Intended for use only with tessellation shaders.

3 : Indicates that a set of vertices passes from the
vertex shader to the tessellation control shader,
: where they are typically used to shape a tessellated
- grid into a curved surface.

CODING FOR PERFORMANCE

As the complexity of our 3D scenes grows, we will become increasingly
concerned with performance. We have already seen a few instances where coding
decisions were made in the interest of speed, such as when we used instancing and
when we moved expensive computations into the shaders.

Actually, the code we have presented has already also included some addi-
tional optimizations that we haven’t yet discussed, some of which are facilitated
by the JOML math library. We now explore these and other important techniques.

Minimizing Dynamic Memory Allocation

The critical module in our Java/JOGL applications, with respect to perfor-
mance, is clearly the display() function. This is the function that is called repeatedly
during any animation or real-time rendering, and it is thus in this function (or in
any function that it calls) where we must strive for maximum efficiency.

One important way of keeping overhead in the display() function to a minimum
is by avoiding any steps that require memory allocation. Obvious examples of
things to avoid thus would include the following:

* instantiating objects
» declaring variables

e allocating buffers

The reader is encouraged to review each of the programs that we have devel-
oped so far and note that every variable used in the display() function (with the
exception of the GL4 variable gl) was declared, and its space allocated, before the
display() function was ever actually called. Another example is Matrix4fStack, in
which JOML requires allocation of the maximum stack size up front, so that the

98 M Computer Graphics Programming in OpenGL with Java, Third Edition

entire stack is allocated ahead of time, so the “push” operations done in display()
don’t allocate space dynamically. In fact, we now minimize the number of declara-
tions or instantiations of any kind that appear in display(). For example, Program
4.1 included the following block of code early in its listing:

// allocate variables used in display(), so they aren't allocated during rendering
private FloatBuffer vals = Buffers.newDirectFloatBuffer(16); / for transfering matrices

private Matrix4f pMat = new Matrix4f(); // perspective matrix
private Matrix4f vMat = new Matrix4f(); // view matrix
private Matrix4f mMat = new Matrix4f(); // model matrix
private Matrix4f mvMat = new Matrix4f(); // model-view matrix
private int mvLoc, pLoc;

private float aspect;

Note that we purposely placed a comment at the top of the block indicating
that these variables are pre-allocated for later use in the display() function (although
we are only explicitly pointing that out now).

There are other, more subtle examples. For example, function calls that con-
vert data from one type to another may in some cases instantiate and return the
newly converted data. It is thus important to understand the behaviors of any
library functions called from display().

Fortunately, the math library we are using, JOML, has been carefully designed
to eliminate (or at least minimize) memory allocation as a result of calling its func-
tions, while still providing needed capabilities for OpenGL. Most of its functions
operate directly on the object from which the function is invoked, or on one of its
parameters (rather than building an answer and returning it), and thus in either
case allowing for the space holding the result to be pre-allocated.

An example of how cleverly JOML was designed to maximize performance
in this way is seen in the calls to glUniformMatrix4fv(). Let’s take a closer look at one
such call, that transfers the model-view matrix to a uniform variable:

gl.glUniformMatrix4fv(mvLoc, 1, false, mvMat.get(vals));

Recall that the variable mvMat is of type Matrix4f, and that we wish to send the
values in that matrix to the shader uniform pointed to by mvLoc. As expected,

Chapter 4 - Managing 3D Graphics Data Il 99

the JOML library has provided a get() function for retrieving the matrix val-
ues. We might ordinarily expect such a “get” function to return those values
in an object such as an array (as is done in other math libraries such as glm or
graphicslib3D). However, JOML instead requires that a parameter be included
on the call to get(), and then uses this parameter as the destination where it will
place the retrieved matrix values. What makes this so clever is that the JOML
get() function also returns a reference to the user-supplied destination object,
so that the call to get() can be placed directly into the glUniformMatrix4fv() call
(which is expecting such a reference). Note also that we have declared and allo-
cated this destination variable “vals” in the declaration block outside of display()
(along with all of the other variables used in display()). In a sense, the get() is
actually doing a sort of “put,” but when implemented in this manner clearly
fulfils the needs of a “get” function in this OpenGL setting, albeit much more
efficiently.

In keeping with the recommendations of JOML developers, we have used the
form of get() that expects a FloatBuffer as the destination parameter. JOGL allows
for transferring either a buffer or an array to a structured uniform variable (such as
mat4 or vec4). But performance is slightly better when using buffers, particularly
here because JOML forces the use of only direct NIO buffers, as opposed to buf-
fers that are wrappers for Java primitive types.

Pre-Computing the Perspective Matrix

Another optimization that can be done to reduce overhead in the display() func-
tion is to move the computation of the perspective matrix into the init() function. We
mentioned this possibility earlier in Section 4.5 (well, in a footnote). While this is
certainly easy to do, there is one slight complication. Although it is not normally
necessary to recompute the perspective matrix, it would be necessary if the user
running the application resizes the window (such as by dragging the window cor-
ner resize handle).

Fortunately, JOGL automatically makes a call to reshape() whenever the win-
dow is resized. So far, we have left the reshape() function empty—now we have a
use for it. We simply move the code that computes the perspective matrix into init(),
and also copy it into reshape().

100 M Computer Graphics Programming in OpenGL with Java, Third Edition

Consider, for example, Program 4.1. If we reorganize the code so as to remove
the computation of the perspective matrix from display(), then the revised versions
of the init(), display(), and reshape() functions would be as follows:

public void init(GLAutoDrawable drawable)

{ // same as earlier, plus the following two lines:
aspect = (float) myCanvas.getWidth() / (float) myCanvas.getHeight();
pMat.setPerspective((float) Math.toRadians(60.0f), aspect, 0.1f, 1000.0f);

}

public void display(GLAutoDrawable drawable)
{ // same as earlier, except with the following lines removed:

Ao oA arviae—rai AL At
a8 a8 Canveas: A

}

public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height)

{ GL4 gl = (GL4) GLContext.getCurrentGL();
aspect = (float) width / (float) height; // new window width & height are provided by the callback
gl.glViewport(0, 0, width, height); // sets region of screen associated with the frame buffer
pMat.setPerspective((float) Math.toRadians(60.0f), aspect, 0.1f, 1000.0f);

}

Back-Face Culling

Another way of improving rendering efficiency is to take advantage of
OpenGL’s ability to do back-face culling. When a 3D model is entirely “closed,”
meaning the interior is never visible (such as for the cube and for the pyramid),
then it turns out that those portions of the outer surface that are angled away from
the viewer will always be obscured by some other portion of the same model. That
is, those triangles that face away from the viewer cannot possibly be seen (they
would be overwritten by hidden surface removal anyway), and thus there is no
reason to rasterize or render them.

We can ask OpenGL to identify and “cull” (not render) back-facing triangles
with the command glEnable(GL_CULL_FACE). We can also disable face culling
with glDisable(GL_CULL_FACE). By default, face culling is disabled, so if you want
OpenGL to cull back-facing triangles, you must enable it.

Chapter 4 - Managing 3D Graphics Data Il 101

When face culling is enabled, by default triangles are rendered only if they
are front-facing. Also by default a triangle is considered front-facing if its three
vertices progress in a counterclockwise direction (based on the order that they
were defined in the buffer) as viewed from the OpenGL camera. Triangles whose
vertices progress in a clockwise direction (as viewed from the OpenGL cam-
era) are back-facing, and are not rendered. This counterclockwise definition of
“front-facing” is sometimes called the winding order, and can be set explicitly
using the function call glFrontFace(GL_CCW) for counterclockwise (the default) or
glFrontFace(GL_CW) for clockwise. Similarly, whether it is the front-facing or the
back-facing triangles that are rendered can also be set explicitly. Actually, for this
purpose we specify which ones are not to be rendered—that is, which ones are
“culled.” We can specify that the back-facing triangles be culled (although this
would be unnecessary because it is the default) by calling glCullFace(GL_BACK).
Alternatively, we can specify instead that the front-facing triangles be culled, or
even that all of the triangles be culled, by replacing the parameter GL_BACK with
either GL_FRONT or GL_FRONT_AND_BACK, respectively.

As we will see in Chapter 6, 3D models are typically designed so that the
outer surface is constructed of triangles with the same winding order—most com-
monly counterclockwise—so that if culling is enabled, then by default the portion
of the model’s outer surface that faces the camera is rendered. Since by default
OpenGL assumes the winding order is counterclockwise, if a model is designed
to be displayed with a clockwise winding order, it is up to the programmer to call
gl_FrontFace(GL_CW) to account for this if back-face culling is enabled.

Note that in the case of GL_TRIANGLE_STRIP, the winding order of each tri-
angle alternates. OpenGL compensates for this by “flipping” the vertex sequence
when building each successive triangle, as follows: 0-1-2, then 2-1-3, 2-3-4, 4-3-5,
4-5-6, and so on.

Back-face culling improves performance by ensuring that OpenGL doesn’t
spend time rasterizing and rendering surfaces that are never intended to be
seen. Most of the examples we have seen in this chapter are so small that there
is little motivation to enable face culling (an exception is the example shown
in Figure 4.9, with the 100,000 instanced animated cubes, which may pose a
performance challenge on some systems). In practice, it is common for most
3D models to be “closed,” and so it is customary to routinely enable back-face

102 B Computer Graphics Programming in OpenGL with Java, Third Edition

culling. For example, we can add back-face culling to Program 4.3 by modifying
the display() function as follows:

public void display(GLAutoDrawable drawable)

{..
gl.glEnable(GL_CULL_FACE);

// draw the cube

gl.glEnable(GL_DEPTH_TEST);

gl.glDepthFunc(GL_LEQUAL);

gl.glFrontFace(GL_CW); // the cube vertices have clockwise winding order
gl.glDrawArrays(GL_TRIANGLES, 0, 36);

// draw the pyramid

gl.glEnable(GL_DEPTH_TEST);

gl.glDepthFunc(GL_LEQUAL);

gl.glFrontFace(GL_CCW); // the pyramid vertices have counter-clockwise winding order
gl.glDrawArrays(GL_TRIANGLES, 0, 18);

Properly setting the winding order is important when using back-face culling.
An incorrect setting, such as GL_CW when it should be GL_CCW, can lead to the
interior of an object being rendered rather than its exterior, which in turn can
produce distortion similar to that of an incorrect perspective matrix.

Efficiency isn’t the only reason for doing face culling. In later chapters we will
see other uses, such as for those circumstances when we want to see the inside of
a 3D model or when using transparency.

SUPPLEMENTAL NOTES

JOML has a huge variety of functions for performing translation, rotation, and
scaling. For example, JOML’s functions “translate()”” and “translation()” are slightly
different. The first concatenates a translation onto an existing matrix, whereas
the second builds a translation matrix. We have used both of these functions in
our examples, and there are many others to choose from. The reader should be
careful to double-check that the JOML function being used does exactly what is
desired.

Chapter 4 - Managing 3D Graphics Data I 103

As mentioned in this chapter, when using Java buffers it is advisable to
ensure that only direct buffers are used. For example, it is tempting to use the
Java FloatBufferwrap() function to put vertex data stored in an array into a buffer.
However, wrap() produces a non-direct buffer, in which the resulting buffer is a
wrapper for data that is still stored in an array.® One approach for copying the data
into a direct buffer is to allocate a direct ByteBuffer, use ByteBuffer.asFloatBuffer() to
view it as a FloatBuffer, and then use a loop with the put() command to copy the data
one at a time. As described earlier, the JOGL com.jogamp.common.nio.Buffers class
makes it easier to populate direct buffers by providing convenience methods for
loading array data into a variety of buffer types:

newDirectByteBuffer(byte[])
newDirectCharBuffer(char[])
newDirectDoubleBuffer(double[])
newDirectFloatBuffer(float])
newDirectintBuffer(int[])
newDirectLongBuffer(long[])
newDirectShortBuffer(short])

Using the above JOGL methods for populating buffers with vertex data (that
is, data intended to be used by JOGL applications) also insures correct native byte
ordering. It also ensures correct size allocation and makes an explicit allocation
unnecessary.

There is a myriad of other capabilities and structures available for managing
and utilizing data in OpenGL/JOGL/GLSL, and we have only scratched the sur-
face in this chapter. We haven’t, for example, described a uniform block, which is
a mechanism for organizing uniform variables similar to a struct in C. Uniform
blocks can even be set up to receive data from buffers. Another powerful mecha-
nism is a shader storage block, which is essentially a buffer into which a shader
can write.

An excellent reference on the many options for managing data (albeit in
C++) is the OpenGL SuperBible [SW15], particularly the chapter entitled “Data”
(Chapter 5 in the seventh edition). It also describes many of the details and options

¢ Using non-direct buffers is actually allowable in JOGL. However, when a non-direct buffer is
passed to a JOGL method, JOGL will convert it to a direct buffer, and this conversion incurs a
performance penalty.

104 @ Computer Graphics Programming in OpenGL with Java, Third Edition

for the various commands that we have covered. The first two example programs
in this chapter, Program 4.1 and Program 4.2, were inspired by similar examples
in the SuperBible.

There are other types of data that we will need to learn how to manage and
how to send down the OpenGL pipeline. One of these is a texture, which contains
color image data (such as in a photograph) that can be used to “paint” the objects
in our scene. We will study texture images in Chapter 5. Another important buf-
fer that we will study further is the depth buffer (or Z-buffer). This will become
important when we study shadows in Chapter 8. We still have much to learn about
managing graphics data in OpenGL!

Exercises

4.1 (PROJECT) Modify Program 4.1 to replace the cube with some other simple
3D shape of your own design. Be sure to properly specify the number of
vertices in the glDrawArrays() command.

4.2 (PROJECT) In Program 4.1, the “view” matrix is defined in the display()
function simply as the negative of the camera location:

vMat.translation(-cameraX, -cameraY, -cameraZ);

Replace this code with an implementation of the computation shown in Figure
3.13. This will allow you to position the camera by specifying a camera position
and three orientation axes. You will find it necessary to store the vectors U,V,N
described in Section 3.7. Then, experiment with different camera viewpoints,
and observe the resulting appearance of the rendered cube.

4.3 (PROJECT) Modify Program 4.4 to include a second “planet,” which is your
custom 3D shape from Exercise 4.1. Make sure that your new “planet” is in a
different orbit than the existing planet, so that they don’t collide.

4.4 (PROJECT) Modify Program 4.4 so that the “view” matrix is constructed
using the “look-at” function (as described in Section 3.9). Then experiment
with setting the “look-at” parameters to various locations, such as looking at
the sun (in which case the scene should appear normal), looking at the planet,
or looking at the moon.

4.5 (RESEARCH) Propose a practical use for glCullFace(GL_FRONT_AND_BACK).

Chapter 4 - Managing 3D Graphics Data Il 105

References

[BL21] Blender, The Blender Foundation, accessed March 2021, https:/www
.blender.org/

[HT12] J. Hastings-Trew, JHT’s Planetary Pixel Emporium, accessed March
2021, http://planetpixelemporium.com/

[MA21] Maya, AutoDesk, Inc., accessed March 2021, http://www.autodesk.com/
products/maya/overview

INA21] NASA 3D Resources, accessed March 2021, http://nasa3d.arc.nasa.gov/

[OL16] Legacy OpenGL, accessed July 2020, https:/www.khronos.org/opengl/
wiki/Legacy OpenGL

[SW15] G. Sellers, R. Wright Jr., and N. Haemel, OpenGL SuperBible:
Comprehensive Tutorial and Reference, 7th ed. (Addison-Wesley, 2015).

5.1
5.2
53
5.4
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12

CHAPTER 5

TEXTURE MAPPING

Loading Texture Image Files. 108
Texture COOVAINAIES.o ii i 110
Creating a Texture Object e 112
Constructing Texture Coordinatesciiiiiiiiiiio... 112
Loading Texture Coordinates into Buffers. 114
Using the Texture in a Shader: Sampler Variables and Texture Units. 114
Texture Mapping: Example Program.0.0..ccccccioo... 115
Mipmapping 118
Anisotropic Filtering 123
Wrapping and Tiling 124
Perspective DIStOrtion 126
Loading Texture Image Files Using Java AWT Classes 128
Supplemental Notes oo 130

Texture mapping is the technique of overlaying an image across a rasterized

model surface. It is one of the most fundamental and important ways of adding
realism to a rendered scene.

Texture mapping is so important that there is hardware support for it, allowing

for very high performance resulting in real-time photorealism. Texture Units are
hardware components designed specifically for texturing, and modern graphics cards

typi

cally come with several texture units included.

108 M Computer Graphics Programming in OpenGL with Java, Third Edition

Figure 5.1
Texturing a dolphin model with two different images [TU16].

LOADING TEXTURE IMAGE FILES

There are a number of datasets and mechanisms that need to be coordinated to
accomplish texture mapping efficiently in JOGL/GLSL:

* atexture object to hold the texture image (in this chapter we consider
only 2D images)

» aspecial uniform sampler variable so that the vertex shader can access
the texture

e a buffer to hold the texture coordinates

Chapter 5 - Texture Mapping Il 109

* avertex attribute for passing the texture coordinates down the pipeline

e atexture unit on the graphics card

A texture image can be a picture of anything. It can be a picture of something
man-made or occurring in nature, such as cloth, grass, or a planetary surface, or
it could be a geometric pattern, such as the checkerboard in Figure 5.1. In video-
games and animated movies, texture images are commonly used to paint faces and
clothing on characters or skin on creatures such as on the dolphin in Figure 5.1.

Images are typically stored in image files, such as .jpg, .png, .gif, or .tiff. In order
to make a texture image available to shaders in the OpenGL pipeline, we need to
extract the colors from the image and put them into an OpenGL texture object
(a built-in OpenGL structure for holding a texture image).

Java has some useful image file tools in its imageio and awt packages that
can be used to read texture images. The steps are as follows: (a) read the image
data into a ByteBuffer, using the JOGL buffer tools we saw in Chapter 4, (b) use
glGenTextures() to instantiate a texture object and assign it an integer ID, (c) call
gIBindTexture() to make the newly created texture object active, (d) load the previ-
ously read-in image data into the texture object with the glTeximage2D() command,
and (e) adjust the texture settings using the glTexParameter() function. The result is
an integer ID referencing the now available OpenGL texture object. We will walk
through these steps at the end of this chapter.

However, JOGL includes its own tools for working with textures that make it
considerably simpler to load a texture image file into an OpenGL texture object.
Those tools are found in the JOGL classes Texture, TexturelO, and TextureData.

Texturing an object starts by declaring a variable of type Texture. This is a JOGL
class; a JOGL Texture object serves as a wrapper for an OpenGL texture object.
Next, we call newTexture()—a static method in the TexturelO class—to actually gen-
erate the texture object. The newTexture() function accepts an image file name as
one of its parameters (several standard image file types are supported, including
the four mentioned above). These steps are implemented in the following function:

public static int loadTexture(String textureFileName)
{ Texture tex = null
try { tex = TexturelO.newTexture(new File(textureFileName), false); }
catch (Exception e) { e.printStackTrace(); }
int texturelD = tex.getTextureObject();
return texturelD;

110 M Computer Graphics Programming in OpenGL with Java, Third Edition

We will use this function often, so we add it our Utils.java utility class. The
Java/JOGL application then simply calls the above loadTexture() function to create
the OpenGL texture object as follows:

int myTexture = Utils.loadTexture("image.jpg");

where image.jpg is a texture image file and myTexture is an integer ID for the resulting
OpenGL texture object.

E¥E TEXTURE COORDINATES

Now that we have a means for loading a texture image into OpenGL, we need
to specify how we want the texture to be applied to the rendered surface of an
object. We do this by specifying texture coordinates for each vertex in our model.

Texture coordinates are references to the pixels in a (usually 2D) texture
image. Pixels in a texture image are referred to as texels, in order to differentiate
them from the pixels being rendered on the screen. Texture coordinates are used
to map points on a 3D model to locations in a texture. Each point on the surface
of the model has, in addition to (X,y,z) coordinates that place it in 3D space, texture
coordinates (s,t) that specify which texel in the texture image provides its color.
Thus, the surface of the object is “painted” by the texture image. The orientation of
a texture across the surface of an object is determined by the assignment of texture
coordinates to object vertices.

In order to use texture mapping, it is necessary to provide texture coordinates
for every vertex in the object to be textured. OpenGL will use these texture coor-
dinates to determine the color of each rasterized pixel in the model, by looking up
the color stored at the referenced texel in the image. In order to ensure that every
pixel in your rendered model is painted with an appropriate texel from the texture
image, the texture coordinates are put into a vertex attribute so that they are also
interpolated by the rasterizer. In that way the texture image is interpolated, or
filled in, along with the model vertices.

For each set of vertex coordinates (x,y,z) passing through the vertex shader,
there will be an accompanying set of texture coordinates (s,t). We will thus set up
two buffers, one for the vertices (with three components X, Y, and z in each entry)
and one for the corresponding texture coordinates (with two components s and t in
each entry). Each vertex shader invocation thus receives one vertex, now compris-
ing both its spatial coordinates and its corresponding texture coordinates.

Chapter 5 - Texture Mapping Il 111

Texture coordinates are most often 2D (OpenGL does support some other
dimensionalities but we won’t cover them in this chapter). It is assumed that the
image is rectangular, with location (0,0) at the lower left and (1,1) at the upper
right.! Texture coordinates, then, should ideally have values in the range (0,1).

Consider the example shown in Figure 5.2. The cube model, recall, is con-
structed of triangles. The four corners of one side of the cube are highlighted, but
remember that it takes two triangles to specify each square side. The texture coordi-
nates for each of the six vertices that specify this one cube side are listed alongside
the four corners, with the corners at the upper left and lower right each comprising
a pair of vertices. A texture image is also shown. The texture coordinates (indexed
by s and t) have mapped portions of the image (the texels) onto the rasterized pixels
of the front face of the model. Note that all of the intervening pixels in between the
vertices have been painted with the intervening texels in the image. This is achieved
because the texture coordinates are sent to the fragment shader in a vertex attribute,
and thus are also interpolated just like the vertices themselves.

In this example, we purposely specified texture coordinates that result in an
oddly painted surface, for purposes of illustration. If you look closely, you can
also see that the image appears slightly stretched—that is because the aspect ratio
of the texture image doesn’t match the aspect ratio of the cube face relative to the
given texture coordinates.

Texture Image

Model

(0,2),

Figure 5.2
Texture coordinates.

I This is the orientation that OpenGL texture objects assume. However, this is different from the
orientation of an image stored in many standard image file formats, in which the origin is at the
upper left. Reorienting the image by flipping it vertically so that it corresponds to OpenGL’s
expected format is one of the operations performed by the JOGL newTexture() call that we made
from the loadTexture() function.

112 @ Computer Graphics Programming in OpenGL with Java, Third Edition

For simple models like cubes or pyramids, selecting texture coordinates is
relatively easy. But for more complex curved models with lots of triangles, it isn’t
practical to determine them by hand. In the case of curved geometric shapes, such
as a sphere or torus, texture coordinates can be computed algorithmically or math-
ematically. In the case of a model built with a modeling tool such as Maya [MA21]
or Blender [BL21], such tools offer “UV-mapping” (which is outside the scope of
this book) to make this task easier.

Let us return to rendering our pyramid, only this time texturing it with an
image of bricks. We will need to specify (a) an OpenGL texture object to hold
the texture image, (b) texture coordinates for the model vertices, (c) a buffer for
holding the texture coordinates, (d) vertex attributes so that the vertex shader can
receive and forward the texture coordinates through the pipeline, (¢) a texture unit
on the graphics card for holding the texture object, and (f) a uniform sampler vari-
able for accessing the texture unit in GLSL, which we will see shortly. These are
each described in the next sections.

CREATING A TEXTURE OBJECT

Suppose the image shown here is stored in a file
named “brick1.jpg” [LU16].

As shown previously, we can load this image by
calling our loadTexture() function, as follows:

int brickTexture = Utils.load Texture("brick1.jpg");

Recall that texture objects are identified by integer
IDs, so brickTexture is of type int.

XN CONSTRUCTING TEXTURE COORDINATES

Our pyramid has four triangular sides and a square on the bottom. Although
geometrically this only requires five (5) points, we have been rendering it with
triangles. This requires four triangles for the sides and two triangles for the square
bottom, for a total of six triangles. Each triangle has three vertices, for a total of
6*3=18 vertices that must be specified in the model.

We have already listed the pyramid’s geometric vertices in Program 4.3 in
the float array pyramidPositions[]. There are many ways that we could orient our

Chapter 5 - Texture Mapping Il 113

texture coordinates so as to draw our bricks onto the pyramid. One simple (albeit
imperfect) way would be to make the top center of the image correspond to the
peak of the pyramid, as follows:

We can do this for all four of the triangle sides. We also need to paint the bottom
square of the pyramid, which comprises two triangles. A simple and reasonable
approach would be to texture it with the entire area from the picture (the pyramid
has been tipped back and is sitting on its side):

pyramid top

Using this very simple strategy for the first nine of the pyramid vertices from
Program 4.3, the corresponding set of vertices and texture coordinates is shown
in Figure 5.3.

vertices texture coordinates

(-1.0,-1.0, 1.0) (0, 0) // front face
(1.0,-1.0, 1.0) (1, 0)

(0, 1.0, 0) (.5, 1)

(1.0,-1.0, 1.0) (0, 0) // right face
(1.0,-1.0,-1.0) (1, 0)

(0, 1.0, 0) (.5, 1)
(1.0,-1.0,-1.0) (0, 0) // back face
(-1.0,-1.0,-1.0) (1, 0)

(0, 1.0, 0) (.5, 1)

etc

Figure 5.3

Texture coordinates for the pyramid (partial list).

114 B Computer Graphics Programming in OpenGL with Java, Third Edition

BN LOADING TEXTURE COORDINATES
INTO BUFFERS

We can load the texture coordinates into a VBO in a similar manner as seen
previously for loading the vertices. In setupVertices(), we add the following declara-
tion of the texture coordinate values:

float[] pyrTextureCoordinates =

{ 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f, //top and right faces
0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f, // back and left faces
0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f }; // base triangles

Then, after the creation of at least two VBOs (one for the vertices and one for
the texture coordinates), we add the following lines of code to load the texture
coordinates into VBO #1:

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
FloatBuffer pTexBuf = Buffers.newDirectFloatBuffer(pyrTextureCoordinates);
gl.giBufferData(GL_ARRAY_BUFFER, pTexBuf.limit()*4, pTexBuf, GL_STATIC_DRAW);

BEXE USING THE TEXTURE IN A SHADER: SAMPLER
VARIABLES AND TEXTURE UNITS

To maximize performance, we will want to perform the texturing in hardware.
This means that our fragment shader will need a way of accessing the texture
object that we created in the Java/JOGL application. The mechanism for doing this
is via a special GLSL tool called a uniform sampler variable. This is a variable
designed for instructing a texture unit on the graphics card as to which texel to
extract or “sample” from a loaded texture object.

Declaring a sampler variable in the shader is easy—just add it to your set of
uniforms:

layout (binding=0) uniform sampler2D samp;

Ours is named “samp”; the “layout (binding=0)" portion of the declaration speci-
fies that this sampler is to be associated with texture unit 0.

A texture unit (and associated sampler) can be used to sample whichever tex-
ture object you wish, and that can change at runtime. Your display() function will
need to specify which texture object you want the texture unit to sample for the

Chapter 5 - Texture Mapping Il 115

current frame. So each time you draw an object, you will need to activate a texture
unit and bind it to a particular texture object, as follows:

gl.glActiveTexture(GL_TEXTUREO);
gl.glBindTexture(GL_TEXTURE_2D, brickTexture);

The number of available texture units depends on how many are provided on
the graphics card. According to the OpenGL API documentation, OpenGL ver-
sion 4.5 requires that this be at least 16 per shader stage and at least 80 total units
across all stages [OP21]. In this example, we have made the 0th texture unit active
by specifying GL_TEXTUREQ in the glActiveTexture() call.

To actually perform the texturing, we will need to modify how our fragment
shader outputs colors. Previously, our fragment shader either output a constant
color, or it obtained colors from a vertex attribute. This time instead, we need to use
the interpolated texture coordinates received from the vertex shader (through the
rasterizer) to sample the texture object, by calling the texture() function as follows:

in vec? tc; // texture coordinates

color = texture(samp, tc);

TEXTURE MAPPING: EXAMPLE PROGRAM

Program 5.1 combines the previous
steps into a single program. The result,
showing the pyramid textured with the
brick image, appears in Figure 5.4.
Two rotations (not shown in the code
listing) were added to the pyramid’s
model matrix to expose the underside
of the pyramid.

It is now a simple matter to replace

. . . Figure 5.4
the bI‘le texture 1mage with Other Pyramid texture mapped with brick image.

texture images, as desired, simply

by changing the filename in the load-

Texture() call. For example, if we replace “brick1.jpg” with the image file “ice.jpg”
[LU16], we get the result shown in Figure 5.5.

116 M Computer Graphics Programming in OpenGL with Java, Third Edition

Figure 5.5
Pyramid texture mapped with “ice” image.

Program 5.1 Pyramid with Brick Texture
JAVA/JOGL Application

/" the following additional imports will be necessary for the texture functions:
import java.io.”;

import java.nio.”;

import com.jogamp.opengl.util.texture.”;

public class Code extends JFrame implements GLEventListener
{ /7 previous declarations and constructor code applies. We just need to add declarations for the texture:

private int brickTexture;

public Code()
{ /unchanged. ..
}

public void display(GLAutoDrawable drawable)
{ GL4 gl =(GL4) GLContext.getCurrentGL();

// setup of background color, depth buffer.
// PROJ matrix moved to init() and reshape() as described in Chapter 2

// this time we are drawing only the pyramid.
// setup of M and MV matrices is unchanged.

// activate buffer #0, which contains the vertices
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);

}

Chapter 5 - Texture Mapping W 117

// activate buffer #1, which contains the texture coordinates
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
gl.glVertexAttribPointer(1, 2, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(1);

// activate texture unit #0 and bind it to the brick texture object
gl.glActiveTexture(GL_TEXTUREO);
gl.glBindTexture(GL_TEXTURE_2D, brickTexture);

gl.glEnable(GL_DEPTH_TEST);
gl.glDepthFunc(GL_LEQUAL);

gl.glDrawArrays(GL_TRIANGLES, 0, 18);

public void init(GLAutoDrawable drawable)

{

}

// setup of rendering program, camera and object location unchanged

brickTexture = Utils.loadTexture("brick1.jpg");

private void setupVertices()

{

}

}

GL4 gl = (GL4) GLContext.getCurrentGL();
float[] pyramidPositions = { /* data as listed previously in Program 4.2 */ };
float[] pyrTextureCoordinates =
{ 0.0f, 0.0f, 1.0f, 0.0f, 0.5, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f,
0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f,
0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f };

/... generate the VAQO as before, and at least two VBOs, then load the two buffers as follows:
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);

FloatBuffer pyrBuf = Buffers.newDirectFloatBuffer(pyramidPositions);
gl.glBufferData(GL_ARRAY_BUFFER, pyrBuf.limit()*4, pyrBuf, GL_STATIC_DRAW);

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
FloatBuffer pTexBuf = Buffers.newDirectFloatBuffer(pyrTextureCoordinates);
gl.glBufferData(GL_ARRAY_BUFFER, pTexBuf.limit()*4, pTexBuf, GL_STATIC_DRAW);

. // remainder of the class definition and utility functions here

Vertex shader

#version 430

layout (location=0) in vec3 pos;

layout (location=1) in vec2 texCoord;

out vec2 tc; // texture coordinate output to rasterizer for interpolation

118 M Computer Graphics Programming in OpenGL with Java, Third Edition

uniform mat4 mv_matrix;
uniform mat4 p_matrix;
layout (binding=0) uniform sampler2D samp; // not used in vertex shader

void main(void)
{ gl_Position = p_matrix * mv_matrix * vecd(pos, 1.0);
tc = texCoord;

}

Fragment shader
#version 430
in vec? tc; // interpolated incoming texture coordinate

out vec4 color;

uniform mat4 mv_matrix;

uniform mat4 p_matrix;

layout (binding=0) uniform sampler2D samp;

void main(void)
{ color = texture(samp, tc);

}

EXE MIPMAPPING

Texture mapping commonly produces a variety of undesirable artifacts in the
rendered image. This is because the resolution or aspect ratio of the texture image
rarely matches that of the region in the scene being textured.

A very common artifact occurs when the image resolution is /ess than that of
the region being drawn. In this case, the image would need to be stretched to cover
the region, becoming blurry (and possibly distorted). This can sometimes be com-
bated, depending on the nature of the texture, by assigning the texture coordinates
differently so that applying the texture requires less stretching. Another solution is
to use a higher resolution texture image.

The reverse situation is when the resolution of the image texture is greater than
that of the region being drawn. It is probably not at all obvious why this would pose
a problem, but it does! In this case, noticeable aliasing artifacts can occur, giving
rise to strange-looking false patterns, or “shimmering” effects in moving objects.

Aliasing is caused by sampling errors. It is most often associated with sig-
nal processing, where an inadequately sampled signal appears to have different

Chapter 5 - Texture Mapping Il 119

properties (such as wavelength) than it actually does when it is reconstructed. An
example is shown in Figure 5.6. The original waveform is shown in red. The yel-
low dots along the waveform represent the samples. If they are used to reconstruct
the wave, and if there aren’t enough of them, they can define a different wave
(shown in blue).

IR

il

I

Figure 5.6
Aliasing due to inadequate sampling.

Similarly, in texture-mapping, when a high-resolution (and highly detailed)
image is sparsely sampled (such as when using a uniform sampler variable), the
colors retrieved will be inadequate to reflect the actual detail in the image, and
may instead seem random. If the texture image has a repeated pattern, alias-
ing can result in a different pattern being produced than the one in the original
image. If the object being textured is moving, rounding errors in texel lookup
can result in constant changes in the sampled pixel at a given texture coordinate,
producing an unwanted sparkling effect across the surface of the object being
drawn.

Figure 5.7 shows a tilted
close-up rendering of the top
of a cube which has been tex-
tured by a large, high-resolution
image of a checkerboard.

Aliasing is evident near
the top of the image, where the
undersampling of the checker-
board has produced a “striped”
effect. Although we can’t show

. . 8 R X . Figure 5.7
it here in a still image, if this Aliasing in a texture map.

120 @ Computer Graphics Programming in OpenGL with Java, Third Edition

were an animated scene, the
patterns would likely undulate
between various incorrect pat-
terns such as this one.

Another example appears in
Figure 5.8, in which the cube has
been textured with an image of
the surface of the moon [HT21].
At first glance, this image
appears sharp and full of detail.
However, some of the detail at
fs';‘r'k’"‘;gf’i-:a toxture map. the upper right of the image is

false and causes “sparkling” as
the cube object (or the camera) moves. (Unfortunately, we can’t show the sparkling
effect clearly in a still image.)

These and similar sampling error artifacts can be largely corrected by a tech-
nique called mipmapping, in which different versions of the texture image are cre-
ated at various resolutions. OpenGL then uses the texture image that most closely
matches the resolution at the point being textured. Even better, colors can be aver-
aged between the images closest in resolution to that of the region being textured.
Results of applying mipmapping to the images in Figure 5.7 and Figure 5.8 are
shown in Figure 5.9.

Figure 5.9
Mipmapped results.

Mipmapping works by a clever mechanism for storing a series of successively
lower-resolution copies of the same image, in a texture image one-third larger

Chapter 5 - Texture Mapping Il 121

than the original image. This is achieved by storing the R, G, and B components
of the image separately in three-fourths of the texture image space, then repeating
the process in the remaining one-fourth-sized image space for the same image at
one-fourth the original resolution. This subdividing repeats until the remaining
quadrant is too small to contain any useful image data. An example image and a
visualization of the resulting mipmap is shown in Figure 5.10.

Figure 5.10
Mipmapping an image.

This method of stuffing several images into a small space (well, just a bit bigger
than the space needed to store the original image) is how mipmapping got its name.
MIP stands for multum in parvo [WI83], which is Latin for “much in a small space.”

When actually texturing an object, the mipmap can be sampled in several
ways. In OpenGL, the manner in which the mipmap is sampled can be chosen by
setting the GL_TEXTURE_MIN_FILTER parameter to the desired minification tech-
nique, which is one of the following:

* GL_NEAREST_MIPMAP_NEAREST
chooses the mipmap with the resolution most similar to that of the region
of pixels being textured. It then obtains the nearest texel to the desired
texture coordinates.

122 B Computer Graphics Programming in OpenGL with Java, Third Edition

* GL_LINEAR_MIPMAP_NEAREST
chooses the mipmap with the resolution most similar to that of the region
of pixels being textured. It then interpolates the four texels nearest to the
texture coordinates. This is called “linear filtering.”

* GL_NEAREST_MIPMAP_LINEAR
chooses the two mipmaps with resolutions nearest to that of the region
of pixels being textured. It then obtains the nearest texel to the texture
coordinates from each mipmap and interpolates them. This is called
“bilinear filtering.”

e GL_LINEAR_MIPMAP_LINEAR
chooses the two mipmaps with resolutions nearest to that of the region
of pixels being textured. It then interpolates the four nearest texels in
each mipmap and interpolates those two results. This is called “trilinear
filtering” and is illustrated in Figure 5.11.

’77/;0
'719,0 e Vey

’TI/;O

g,
/9% /el/e//v
R

interpolation

Figure 5.11
Trilinear filtering.

Trilinear filtering is usually prefera-
ble, as lower levels of blending often pro-
duce artifacts, such as visible separations
between mipmap levels. Figure 5.12
shows a close-up of the checkerboard
using mipmapping with only linear filter-
ing enabled. Note the circled artifacts,
where the vertical lines suddenly change
from thick to thin at a mipmap boundary.
By contrast, the example in Figure 5.9

Figure 5.12 . i
Linear filtering artifacts. used trilinear filtering.

Chapter 5 - Texture Mapping Il 123

Mipmapping is richly supported in OpenGL. There are mechanisms provided
for building your own mipmap levels or having OpenGL build them for you. In
most cases, the mipmaps built automatically by OpenGL are sufficient. This is done
by adding the following lines of code to the Utils.loadTexture() function (described
earlier in Section 5.1), immediately after the getTextureObject() function call:

gl.gIBindTexture(GL_TEXTURE_2D, texturelD);
gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
gl.glGenerateMipmap(GL_TEXTURE_2D);

This tells OpenGL to generate the mipmaps. The brick texture is made active
with the gIBindTexture() call, and then the glTexParameteri() function call enables
one of the minification factors listed above, such as GL_LINEAR_MIPMAP_LINEAR
shown in the above call, which enables trilinear filtering.

Once the mipmap is built, the filtering option can be changed (although
this is rarely necessary) by calling glTexParameteri() again, such as in the dis-
play function. Mipmapping can even be disabled by selecting GL_NEAREST or
GL_LINEAR.

For critical applications, it is possible to build the mipmaps yourself, using
whatever is your preferred image editing software. They can then be added as
mipmap levels when creating the texture object by repeatedly calling OpenGL’s
glTeximage2D() function, or JOGL’s updateSublmage() function, for each mipmap
level. Further discussion of this approach is outside the scope of this book.

EXE ANISOTROPIC FILTERING

Mipmapped textures can sometimes appear more blurry than non-mipmapped
textures, especially when the textured object is rendered at a heavily tilted viewing
angle. We saw an example of this back in Figure 5.9, where reducing artifacts with
mipmapping led to reduced detail (compared with Figure 5.8).

This loss of detail occurs because when an object is tilted, its primitives appear
smaller along one axis (i.e., width vs. height) than along the other. When OpenGL
textures a primitive, it selects the mipmap appropriate for the smaller of the two
axes (to avoid “sparkling” artifacts). In Figure 5.9 the surface is tilted heavily away
from the viewer, so each rendered primitive will utilize the mipmap appropriate
for its reduced height, which is likely to have a resolution lower than appropriate
for its width.

124 B Computer Graphics Programming in OpenGL with Java, Third Edition

One way of restoring some of this lost detail is to use anisotropic filtering (AF).
Whereas standard mipmapping samples a texture image at a variety of square
resolutions (e.g., 256x256, 128x128, etc.), AF samples the textures at a number of
rectangular resolutions as well, such as 256x128, 64x128, and so on. This enables
viewing at various angles while retaining as much detail in the texture as possible.

Anisotropic filtering is more computationally expensive than standard mip-
mapping, and is not a required part of OpenGL. However, most graphics cards
support AF (this is referred to as an OpenGL extension), and OpenGL does pro-
vide both a way of querying the card to see if it supports AF and a way of access-
ing AF if it does. The code is added immediately after generating the mipmap:

/" if mipmapping

gl.giBindTexture(GL_TEXTURE_2D, texturelD);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
gl.glGenerateMipmap(GL_TEXTURE_2D);

// if also anisotropic filtering

if (gl.isExtensionAvailable("GL_EXT _texture_filter_anisotropic"))

{ float anisoSetting[] = new float[1];
gl.glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, anisoSetting, 0);
gl.giTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, anisoSetting[0]);

The call to gl.isExtensionAvailable()
tests whether the graphics card sup-
ports AF. If it does, we set it to the max-
imum degree of sampling supported, a
value retrieved using glGetFloatv() as
shown. It is then applied to the active
texture object using glTexParameterf().
The result is shown in Figure 5.13.
Note that much of the lost detail from
Figure 5.13 Figure 5.8 has been restored, while
Anisotropic filtering. still removing the sparkling artifacts.

WRAPPING AND TILING

So far we have assumed that texture coordinates all fall in the range (0,1).
However, OpenGL actually supports texture coordinates of any value. There are

Chapter 5 - Texture Mapping Il 125

several options for specifying what happens when texture coordinates fall outside
the range (0,1). The desired behavior is set using glTexParameteri(), and some of the
options are as follows:

* GL_REPEAT: The integer portion of the texture coordinates are ignored,
generating a repeating or “tiling” pattern. This is the default behavior.

* GL_MIRRORED_REPEAT: The integer portion is ignored, except that the
coordinates are reversed when the integer portion is odd, so the repeating
pattern alternates between normal and mirrored.

* GL_CLAMP_TO_EDGE: Coordinates less than 0 and greater than 1 are set
to 0 and 1, respectively.

* GL_CLAMP_TO_BORDER: Texels outside of (0,1) will be assigned some
specified border color.

For example, consider a pyramid in which the texture coordinates have
been defined in the range (0,5) rather than the range (0,1). The default behavior
(GL_REPEAT), using the texture image shown previously in Figure 5.2, would
result in the texture repeating five times across the surface (sometimes called
“tiling”’), as shown in Figure 5.14.

Figure 5.14
Texture coordinate wrapping with GL_REPEAT.

To make the tiles’” appearance alternate between normal and mirrored, we can
specify the following:

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);

Specifyingthat values lessthan 0 and greaterthan 1 be setto 0 and 1, respectively,
can be done by replacing GL_MIRRORED_REPEAT with GL_CLAMP_TO_EDGE.

126 M Computer Graphics Programming in OpenGL with Java, Third Edition

Specifying that values less than 0 and greater than 1 result in a “border” color
can be done as follows:

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
float[] redColor = new float[] { 1.0f, 0.0f, 0.0f, 1.0f};

gl.glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, redColor, 0);

The effect of each of these options (mirrored repeat, clamp to edge, and clamp
to border), with texture coordinates ranging from —2 to +3, are shown, respectively
(left to right), in Figure 5.15.

Figure 5.15
Textured pyramid with various wrapping options.

In the center example (clamp to edge), the pixels along the edges of the texture
image are replicated outward. Note that as a side effect, the lower-left and lower-
right regions of the pyramid faces obtain their color from the lower-left and lower-
right pixels of the texture image, respectively.

PERSPECTIVE DISTORTION

We have seen that as texture coordinates are passed from the vertex shader
to the fragment shader, they are interpolated as they pass through the rasterizer.
We have also seen that this is the result of the automatic linear interpolation that is
always performed on vertex attributes.

However, in the case of texture coordinates, linear interpolation can lead to
noticeable distortion in a 3D scene with perspective projection.

Chapter 5 - Texture Mapping W 127

Consider a rectangle made of two triangles and textured with a checkerboard
image, facing the camera. As the rectangle is rotated around the X axis, the top
part of the rectangle tilts away from the camera, while the lower part of the rect-
angle swings closer to the camera. Thus, we would expect the squares at the top
to become smaller and the squares at the bottom to become larger. However,
linear interpolation of the texture coordinates will instead cause the height of a//
squares to be equal. The distortion is exacerbated along the diagonal defining
the two triangles that make up the rectangle. The resulting distortion is shown in
Figure 5.16.

Fortunately, there are algorithms for correcting perspective distortion, and by
default, OpenGL applies a perspective correction algorithm [OP14, SP16] during
rasterization. Figure 5.17 shows the same rotating checkerboard, properly ren-
dered by OpenGL.

g,
| m | |
i EE

.l.l.l.l

I.I.I.I.I

l.l-l.l.l

l-l.l.l-l

EEEEE

I.I.I.I.I
Figure 5.16 Figure 5.17
Texture perspective distortion. OpenGL perspective correction.

Although not common, it is possible to disable OpenGL’s perspective correc-
tion by adding the keyword “noperspective” in the declaration of the vertex attri-
bute containing the texture coordinates. This has to be done in both the vertex
and fragment shaders. For example, the vertex attribute in the vertex shader of
Program 5.1 would be declared as follows:

noperspective out vec? tc;
The corresponding attribute in the fragment shader would be declared
noperspective in vec? fc;

This second syntax was in fact used to produce the distorted checkerboard in
Figure 5.16.

128 M Computer Graphics Programming in OpenGL with Java, Third Edition

LOADING TEXTURE IMAGE FILES
USING JAVA AWT CLASSES

Throughout the rest of this textbook we use the JOGL Texture, TexturelO, and
TextureData classes as described earlier in this chapter to load texture image data
into OpenGL texture objects. However, it is possible to load texture image file
data into OpenGL textures directly, using Java AWT classes and some additional
OpenGL commands. The process is quite a bit more complicated, so for simplicity
and clarity we will use the JOGL classes in this book whenever possible. However,
it is useful to understand the process (and the particular commands) one could use
in lieu of the JOGL texture classes. For example, the JOGL texture classes don’t
support 3D textures, so as we will see later, building an OpenGL 3D texture object
will require doing many of the steps ourselves in Java. We will also use some of
these steps when building skyboxes, as described in Chapter 9.

Building a texture-loading function analogous to the one in Program 5.1 with-
out using JOGL texture classes is shown in Program 5.2. To avoid confusion, we
will call it loadTextureAWT().2 It starts by calling two utility functions (also shown).
The first one is getBufferedimage(), which reads the specified image file, assumed
to be in a recognized format such as .jpg or .png, and returns a Java Bufferedimage
containing the image file data. The second utility function, getRGBAPixelData(),
extracts the RGBA pixel colors from the specified Bufferedimage and returns them
in a byte array organized in the form expected by OpenGL. It is in this function
that we may or may not flip the image vertically (specified by a boolean param-
eter) as described earlier, depending on the application.

The loadTextureAWT() function then continues by copying the byte array
returned from getRGBAPixelData() into a Java ByteBuffer, using the JOGL Buffers.
newDirectByteBuffer() method described in Chapter 4. It then creates the texture
object, in a manner similar to the steps we used for creating VBOs. Textures, like
buffers, are given integer IDs by calling glGenTextures(). Here, the variable textu-
relD is used to hold the ID of a generated texture object. Next, the texture object
is made active by calling gIBindTexture(), and then we load the previously read-in
image data into the active texture object by using the glTeximage2D() command.
Note the first parameter on this call specifies the type of texture object—in this
case GL_TEXTURE_2D (later we will use this command to create other types of

2 We chose the name “loadTextureAWT()”” for this function because it uses several classes from the
Java AWT package.

Chapter 5 - Texture Mapping Il 129

OpenGL textures, such as texture cube maps in Chapter 9 and 3D textures in
Chapter 14). The next command, glTexParameteri(), can be used to adjust some of
the texture settings, such as building mipmaps. When loadTextureAWT() finishes, it
returns the integer ID for the now available OpenGL texture object, as we did in
Program 5.1.

Assuming that we have placed all of the relevant code in the Utils.java utilities
class, the following single call to loadTextureAWT() then creates the integer ID for
the OpenGL texture object:

int brickTexture = Utils.loadTextureAWT("brick1.jpg");

Program 5.2 Java AWT Routines for Loading Texture Images

public static int loadTextureAWT (String textureFileName)

{ GL4 gl = (GL4) GLContext.getCurrentGL();
Bufferedimage texturelmage = getBufferedimage(textureFileName);
byte[] imgRGBA = getRGBAPixelData(texturelmage, true);
ByteBuffer rgbaBuffer = Buffers.newDirectByteBuffer(imgRGBA);

int[] texturelDs = new int[1]; // array to hold generated texture IDs
gl.glGenTextures(1, texturelDs, 0);

int texturelD = texturelDs[0]; //ID for the Oth texture object
gl.glBindTexture(GL_TEXTURE_2D, texturelD); // specifies the active 2D texture

gl.glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA, // MIPMAP level, color space
texturelmage.getWidth(), texturelmage.getHeight(), 0 //image size, border (ignored)
GL_RGBA, GL_UNSIGNED_BYTE, // pixel format and data type
rgbaBuffer); // buffer holding texture data
gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
return texturelD;

}

private static Bufferedimage getBufferedimage(String fileName)
{ Bufferedimage img;
try {img = ImagelO.read(new File(fileName)); }
catch (IOException e)
{ System.err.printin("Error reading " + fileName + ""); throw new RuntimeException(e); }
return img;

}

private static byte[] getRGBAPixelData(Bufferedimage img, boolean flip)
{ byte[]imgRGBA,

int height = img.getHeight(null);

int width = img.getWidth(null);

130 M Computer Graphics Programming in OpenGL with Java, Third Edition

WritableRaster raster =
Raster.createlnterleavedRaster(DataBuffer. TYPE_BYTE, width, height, 4, null);
ComponentColorModel colorModel = new ComponentColorModel(
ColorSpace.getinstance(ColorSpace.CS_sRGB),

newint[]{8, 8, 8, 8}, true, false, // bits, has Alpha, isAlphaPreMultiplied
ComponentColorModel. TRANSLUCENT, // transparency
DataBuffer. TYPE_BYTE); // data transfer type

Bufferedimage newlmage = new Bufferedimage(colorModel, raster, false, null);
Graphics2D g = newlmage.createGraphics();

/| use an affine transform to "flip" the image to conform to OpenGL orientation.
/| In Java the origin is at the upper left. In OpenGL the origin is at the lower left.
if (flip)
{ AffineTransform gt = new AffineTransform();

gt.translate(0, height);

gt.scale(1, -1d);

g.transform(gt);

}
g.drawlmage(img, null, null);
g.dispose();

DataBufferByte dataBuf = (DataBufferByte) raster.getDataBuffer();
imgRGBA = dataBuf.getData();
return imgRGBA;

SUPPLEMENTAL NOTES

Researchers have developed a number of uses for texture units beyond just
texturing models in a scene. In later chapters, we will see how texture units can
be used for altering the way light reflects off an object, making it appear bumpy.
We can also use a texture unit to store “height maps” for generating terrain and for
storing “shadow maps” to efficiently add shadows to our scenes. These uses will
be described in subsequent chapters.

Shaders can also write to textures, allowing shaders to modify texture images,
or even copy part of one texture into some portion of another texture.

Mipmaps and anisotropic filtering are not the only tools for reducing aliasing
artifacts in textures. Full-scene anti-aliasing (FSAA) and other supersampling
methods, for example, can also improve the appearance of textures in a 3D scene.

Chapter 5 - Texture Mapping I 131

Although not part of the OpenGL core, they are supported on many graphics cards
through OpenGL’s extension mechanism [OE21].

There is an alternative mechanism for configuring and managing textures and
samplers. Version 3.3 of OpenGL introduced sampler objects (sometimes called
“sampler states”—not to be confused with sampler variables) that can be used
to hold a set of texture settings independent of the actual texture object. Sampler
objects are attached to texture units and allow for conveniently and efficiently
changing texture settings. The examples shown in this textbook are sufficiently
simple that we decided to omit coverage of sampler objects. For interested read-
ers, usage of sampler objects is easy to learn, and there are many excellent online
tutorials (such as [GE11]).

The JOGL Texture class makes a number of OpenGL texture-related func-
tions available directly, without extracting the actual OpenGL texture object as
we did in this chapter. For example, there are bind() and setTexParameter() func-
tions that invoke the OpenGL functions gIBindTexture() and glSetTexParameter().
We will explore more of the functionality in the JOGL texture classes later in the
book when we study cube maps and 3D textures. An excellent source of infor-
mation on the JOGL Texture, TexturelO, and TextureData classes is their extensive
Javadoc pages.

Exercises

5.1 Modify Program 5.1 by adding the “noperspective” declaration to the texture
coordinate vertex attributes, as described in Section 5.11. Then rerun the
program and compare the output with the original. Is any perspective distortion
evident?

5.2 Using a simple “paint” program (such as Windows “Paint” or GIMP [GI16]),
draw a freehand picture of your own design. Then use your image to texture
the pyramid in Program 5.1.

5.3 (PROJECT) Modify Program 4.4 so that the “sun,” “planet,” and “moon” are
textured. You may continue to use the shapes already present, and you may
use any texture you like. This will require you to build texture coordinates for
the cube.

132 B Computer Graphics Programming in OpenGL with Java, Third Edition

References

[BL21] Blender, The Blender Foundation, accessed March 2021, https:/www
.blender.org/

[GE11] Geeks3D, “OpenGL Sampler Objects: Control Your Texture Units,”
September 8,2011,accessed March 2021, http:/www.geeks3d.com/20110908/

[GI21] GNU Image Manipulation Program, accessed March 2021, http:/www
.gimp.org

[HT12] J. Hastings-Trew, JHT’s Planetary Pixel Emporium, accessed March
2021, http://planetpixelemporium.com/

[LU16] F. Luna, Introduction to 3D Game Programming with DirectX 12, 2nd ed.
(Mercury Learning, 2016).

[MA21] Maya, AutoDesk, Inc., accessed March 2021, http://www.autodesk.com/
products/maya/overview

[OE21] OpenGL Registry, The Khronos Group,accessed March 2021, https:/www
.khronos.org/registry/OpenGL/index_gl.php

[OP14] OpenGL Graphics System: A Specification (version 4.4), M. Segal and
K. Akeley, March 19, 2014, accessed March 2021, https:/www.khronos.
org/registry/OpenGL/specs/gl/glspec44.core.pdf

[OP21] OpenGL 4.5 Reference Pages,accessed March 2021, https:/www.khronos.
org/registry/OpenGL-Refpages/gl4/

[SP16] Perspective Correct Interpolation and Vertex Attributes. Scratchapixel,
©2016, Accessed March 2021. https://www.scratchapixel.com/lessons/
3d-basic-rendering/rasterization-practical-implementation

[TU18] J.Turberville,Studio522Productions,Scottsdale, AZ, www.studio522.com
(dolphin model developed March 2021).

[WI83] L. Williams, “Pyramidal Parametrics,” Computer Graphics 17, no. 3
(July 1983).

CHAPTER 6

3D MODELS

6.1 Procedural Models—Building a Sphere 134
6.2 OpenGL Indexing—Building a Torus. i i, 142
6.3 Loading Externally Produced Models 148

Supplemental Notes oo 158

So far we have dealt only with very simple 3D objects, such as cubes and
pyramids. These objects are so simple that we have been able to explicitly list all of
the vertex information in our source code and place it directly into buffers.

However, most interesting 3D scenes include objects that are too complex
to continue building them as we have, by hand. In this chapter, we will explore
more complex object models, how to build them, and how to load them into our
scenes.

3D modeling is itself an extensive field, and our coverage here will necessarily
be very limited. We will focus on the following two topics:

* building models procedurally
* loading models produced externally
While this only scratches the surface of the rich field of 3D modeling, it will

give us the capability to include a wide variety of complex and realistically detailed
objects in our scenes.

134 B Computer Graphics Programming in OpenGL with Java, Third Edition

PROCEDURALMODELS—BUILDINGASPHERE

Some types of objects, such as spheres, cones, and so forth, have mathematical
definitions that lend themselves to algorithmic generation. Consider for example
a circle of radius R; coordinates of points around its perimeter are well-defined
(Figure 6.1).

(Rcos6, Rsin0)

Figure 6.1
Points on a circle.

We can systematically use our knowledge of the geometry of a circle to
algorithmically build a sphere model. Our strategy is as follows:

1. Select a precision representing a number of circular regions the sphere
is divided into. In the left side Figure 6.2, the sphere is sliced into four
regions.

2. Subdivide the circumference of each circular slice into some number of
points. See the right side of Figure 6.2. More points and horizontal slices
produces a more accurate and smoother model of the sphere. In our model,
each slice will have the same number of points, including at the very top
and bottom (where those points are coincident).

Figure 6.2
Building vertices for a sphere.

Chapter 6 - 3D Models Il 135

3. Group the vertices into triangles. One approach is to step through the ver-
tices, building two triangles at each step. For example, as we move along
the row of the five colored vertices on the sphere in Figure 6.3, for each of
those five vertices we build the two triangles shown in the corresponding
color (the steps are described in greater detail below).

. N
’ freeaenst (N

L4
. .
LR A b

r;,uuov.. -

Mt 0i@ele o o
MINN G0 0|@e|e oo

Figure 6.3
Grouping vertices into triangles.

4. Select texture coordinates depending on the nature of our texture images. In
the case of a sphere, there exist many topographical texture images, such as
the one shown in Figure 6.4 [VE21] for planet earth. If we assume this sort
of texture image, then by imagining the image “wrapped” around the sphere
as shown in Figure 6.5, we can assign texture coordinates to each vertex
according to the resulting corresponding positions of the texels in the image.

-, SIS
Z . <
“e, T 0000 Y (S

‘eeeeant

.
.
Peeenn

Figure 6.4 Figure 6.5
Topographical texture image [VE21]. Sphere texture coordinates.

136 M Computer Graphics Programming in OpenGL with Java, Third Edition

5. It is also often desirable to generate normal vectors—vectors that are
perpendicular to the model’s surface—for each vertex. We will use them
soon, in Chapter 7, for lighting.

Determining normal vectors can be tricky, but in the case of a sphere, the
vector pointing from the center of the sphere to a vertex happens to conveniently
equal the normal vector for that vertex! Figure 6.6 illustrates this property (the
center of the sphere is indicated with a “star”).

gy

Figure 6.6
Sphere vertex normal vectors.

Some models define triangles using indices. Note in Figure 6.3 that each ver-
tex appears in multiple triangles, which would lead to each vertex being specified
multiple times. Rather than doing this, we instead store each vertex once, and then
specify indices for each corner of a triangle, referencing the desired vertices. Since
we will store a vertex’s location, texture coordinates, and normal vector, this can
facilitate memory savings for large models.

The vertices are stored in a one-dimensional array, starting with the vertices
in the bottommost horizontal slice. When using indexing, the associated array of
indices includes an entry for each triangle corner. The contents are integer ref-
erences (specifically, subscripts) into the vertex array. Assuming that each slice
contains n vertices, the vertex array would look as shown in Figure 6.7, along with
an example portion of the corresponding index array.

Chapter 6 - 3D Models W 137

Jth vertex in ith slice

slice #0 . ith slice / (i+1)th slice
A A A
(N T/ \
¥
| Vol V1 |V2 | vee [Vnat | e Vn*i Vi#i 41 Vn*i+2 ™ Vn*i+j e an(i+1) Vn*(i+1)+1 e Vn*(i+1)+n—1 | “ee

vertex array

| ce | n*i |n*i+1 |n*(i+1) |n*i+1 | n*(i+1)+1 | n*(i+1) |
index array \ Y)\ v)
triangle t triangle t+1

Figure 6.7
Vertex array and corresponding index array.

We can then traverse the vertices in a circular fashion around each horizon-
tal slice, starting at the bottom of the sphere. As we visit each vertex, we build
two triangles forming a square region above and to its right, as shown earlier in
Figure 6.3. The processing is thus organized into nested loops, as follows:

for each horizontal slice i in the sphere (i ranges from 0 through all the slices in the sphere)
{ foreach vertexjin slice i (j ranges from 0 through all the vertices in the slice)
{ calculate indices for two triangles which point to neighboring vertices to the right,
above, and to the above-right of vertex |

I

For example, consider the “red” vertex from Figure 6.3 (repeated in Figure 6.8).
The vertex in question is at the lower left of the yellow triangles shown in Figure 6.8
and, given the loops just described, would be indexed by i*n+j, where i is the slice
currently being processed (the outer loop), j is the vertex currently being processed
within that slice (the inner loop), and n is the number of vertices per slice. Figure 6.8
shows this vertex (in red) along with
its three relevant neighboring vertices,
each with formulas showing how they
would be indexed.

vertex[(i+1)*n+j] vertex[(i+1)*n+j+1]
N 'S

These four vertices are then used
to build the two triangles (shown in
yellow) generated for this (red) vertex. /4 X
The six entries in the index table for vertex[i*n+j] vertex[i*n+j+1]
these two triangles are indicated in
the ﬁgure in the order shown by the E:j?cle:sr :e:e.rgted for the jth vertex in the ith slice (n = number of
numbers 1 through 6. Note that entries vertices per sfice).

138 M Computer Graphics Programming in OpenGL with Java, Third Edition

3 and 6 both refer to the same vertex, which is also the case for entries 2 and 4.
The two triangles thus defined when we reach the vertex highlighted in red (i.e.,
vertex[i*n+j]) are built out of these six vertices—one with entries marked 1, 2, 3, ref-
erencing vertices vertex[i*n+j], vertex[i*n+j+1], and vertex[(i+1)*n+j], and one with entries
marked 4, 5, 6, referencing the three vertices vertex[i*n+j+1], vertex[(i+1)*n+j+1], and
vertex|(i+1)n+j].

Program 6.1 shows the implementation of our sphere model as a class named
Sphere. The center of the resulting sphere is at the origin. Code for using Sphere is
also shown. Note that each vertex is stored as a set of instances of the JOML classes
Vector2f and Vector3f (this is different from previous examples, where vertices were
stored in float arrays). Vector2f and Vector3f include methods for obtaining the x, y, and
z vertex components as float values, which are then put into float buffers as before.

Note the calculation of triangle indices in the Sphere class, as described ear-
lier in Figure 6.8. The variable “prec” refers to the “precision,” which in this case
is used both for the number of sphere slices and the number of vertices per slice.
Because the texture map wraps completely around the sphere, we will need an
extra coincident vertex at each of the points where the left and right edges of the
texture map meet. Thus, the total number of vertices is (prec+1)*(prec+1). Since six
triangle indices are generated per vertex, the total number of indices is prec*prec*6.

Program 6.1 Procedurally Generated Sphere

Sphere class

import org.joml.*;
import static java.lang.Math.*;

public class Sphere
{ private int numVertices, numindices, prec; // prec = precision
private int[] indices;
private Vector3f[] vertices;
private Vector2f] texCoords;
private Vector3f[| normals;

public Sphere(int p)

{ prec=p;
initSphere();

}

private void initSphere()

{

}

public int getNumindices() { return numindices; }
public int getNumVertices() { return numindices; }

numVertices = (prec+1) * (prec+1);
numindices = prec * prec * 6;

indices = new int[numindices];
vertices = new Vector3finumVertices];

texCoords = new Vector2f[numVertices];

normals = new Vector3flnumVertices];

for (int i=0; i<numVertices; i++)

{ vertices]i] = new Vector3f();
texCoords(i] = new Vector2f();
normals|i] = new Vector3f();

}

// calculate triangle vertices
for (inti=0; i<=prec; i++)
{ for(intj=0; j<=prec; j++)

{ floaty = (float) cos(toRadians(180-i*180/prec));

Chapter 6 -

3D Models

float x = -(float) cos(toRadians(j*360/(float)prec)) * (float)abs(cos(asin(y)));
float z = (float) sin(toRadians(j*360/(float)prec)) * (float)abs(cos(asin(y)));

vertices[i*(prect1)+j].set(x,y,2);

texCoords[i*(prec+1)+j].set((float)j/prec, (float)i/prec);

normals[i*(prec+1)+j].set(x,y,z);

b

// calculate triangle indices
for(int i=0; i<prec; i++)

{ for(intj=0; j<prec; j++)

{ indices[6*(i*prec+j)+0] = i*(prec+1)4j;
indices[6*(i*prectj)+1] = i*(prect+1)+j+1;
indices[6*(i*prec+j)+2] = (i+1)*(prec+1)+j;
indices[6*(i*prect)+3] = i*(prect+1)+j+1;
indices[6*(i*prectj)+4] = (i
indices[6*(i*prec+j)+5] = (i+1)*(prec+1)+j;

bl

public int[| getindices() { return indices; }

public Vector3f[] getVertices() { return vertices; }
public Vector2f[] getTexCoords() { return texCoords; }
public Vector3f[] getNormals() { return normals; }

+1)*(prec+1)+j+1;

W 139

140 @ Computer Graphics Programming in OpenGL with Java, Third Edition

Using the Sphere class

private void setupVertices()
{ GL4 gl =(GL4) GLContext.getCurrentGL();

mySphere = new Sphere(24);
numSphereVerts = mySphere.getindices().length;

int[] indices = mySphere.getindices();
Vector3f[] vert = mySphere.getVertices();
Vector2f[] tex = mySphere.getTexCoords();
Vector3f[] norm = mySphere.getNormals();

float[] pvalues = new float[indices.length*3]; // vertex positions
float[] tvalues = new float[indices.length*2]; // texture coordinates
float[] nvalues = new floatindices.length*3]; // normal vectors

for (int i=0; i<indices.length; i++)

{ pvalues|i*3] = (float) (vert[indices[i]]).x;
pvalues|i*3+1] = (float) (vert[indices][i]]).y;
pvalues[i*3+2] = (float) (vert[indices]i]]).z;

tvalues|i*2] = (float) (tex[indices[i]]).x;
tvalues[i*2+1] = (float) (tex[indices[i]]).y;

nvaluesli*3] = (float) (norm[indices[i]]).x;
nvalues|i*3+1]= (float)(norm[indices[i]]).y;
nvalues[i*3+2]=(float) (norm[indicesli]]).z;

}

gl.glGenVertexArrays(vao.length, vao, 0);
gl.gIBindVertexArray(vao[0]);
gl.glGenBuffers(3, vbo, 0);

/| put the vertices into buffer #0

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);

FloatBuffer vertBuf = Buffers.newDirectFloatBuffer(pvalues);
gl.glBufferData(GL_ARRAY_BUFFER, vertBuf.limit()*4, vertBuf, GL_STATIC_DRAW);

// put the texture coordinates into buffer #1

gl.gBindBuffer(GL_ARRAY_BUFFER, vbo[1]);

FloatBuffer texBuf = Buffers.newDirectFloatBuffer(tvalues);
gl.glBufferData(GL_ARRAY_BUFFER, texBuf.limit()*4, texBuf, GL_STATIC_DRAW);

// put the normals into buffer #2

gl.glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);

FloatBuffer norBuf = Buffers.newDirectFloatBuffer(nvalues);
gl.glBufferData(GL_ARRAY_BUFFER, norBuf.limit()*4, norBuf, GL_STATIC_DRAW);

Chapter 6 - 3D Models W 141

in display()

gl.glDrawArrays(GL_TRIANGLES, 0, numSphereVerts);

When using the Sphere class, we will need three values for each vertex posi-
tion and normal vector, but only two values for each texture coordinate. This is
reflected in the declarations for the arrays (pvalues, tvalues, and nvalues) that are
later populated with values obtained by calls to Sphere functions and loaded into
the buffers.

It is important to note that although indexing is used in the process of building
the sphere, the ultimate sphere vertex data stored in the VBOs doesn’t utilize
indexing. Rather, as setupVertices() loops
through the sphere indices, it generates sep-
arate (often redundant) vertex entries in the
VBO for each of the index entries. OpenGL
does have a mechanism for indexing vertex
data; for simplicity we didn’t use it in this
example, but we will use OpenGL’s index-
ing in the next example.

Figure 6.9 shows the output of Program
6.1, with a precision of 48. The view has
been slightly rotated for clarity. The
texture from Figure 6.5 has been loaded as

described in Chapter 5. Figure 6.9
Textured sphere model.

Many other models can be created pro-
cedurally, from geometric shapes to real-
world objects. One of the most well-known
is the “Utah teapot” [CH21], which was
developed in 1975 by Martin Newell, using
a variety of Bézier curves and surfaces.
The OpenGL Utility Toolkit (or “GLUT”)
[GL21] even includes procedures for draw-
ing teapots(!) (see Figure 6.10). We don’t
cover GLUT in this book, but Bézier sur-

K Figure 6.10
faces are covered in Chapter 11. OpenGL GLUT teapot.

142 @ Computer Graphics Programming in OpenGL with Java, Third Edition

K OPENGL INDEXING—BUILDING A TORUS
I%%W The Torus

Algorithms for producing a forus can be found on various websites. Paul Baker
gives a step-by-step description for defining a circular slice, and then rotating
the slice around a circle to form a donut, in his OpenGL bump mapping tutorial
[PPQ7]. Figure 6.11 shows two views—from the side and from above.

Outer Radius Ring 2
Y
Ring1
- Precision
X \\5_/
I« :
Ring 0
7 T—)x
Inner Radius .
© Precision [6——— > |<—>|
Inner Radius Outer Radius

Figure 6.11
Building a torus.

The way that the torus vertex positions are generated is rather different from
what was done to build the sphere. For the torus, the algorithm positions a vertex to
the right of the origin, and then rotates that vertex in a circle on the XY plane using
arotation around the Z axis to form a “ring.” The ring is then moved outward by the
“inner radius” distance. Texture coordinates and normal vectors are computed for
each of these vertices as they are built. An additional vector tangent to the surface
of the torus (called the tangent vector) is also generated for each vertex.

Vertices for additional torus rings are formed by rotating the original ring
around the Y axis. Tangent and normal vectors for each resulting vertex are com-
puted by also rotating the tangent and normal vectors of the original ring around the
Y axis. After the vertices are created, they are traversed from ring to ring, and for
each vertex two triangles are generated. The generation of six index table entries
comprising the two triangles is done in a similar manner as we did for the sphere.

Our strategy for choosing texture coordinates for the remaining rings will
be to arrange them so that the S axis of the texture image wraps halfway around
the horizontal perimeter of the torus, and then repeats for the other half. As we
rotate around the Y axis generating the rings, we specify a variable ring that starts

Chapter 6 - 3D Models H 143

at 1 and increases up to the specified precision (again dubbed “prec”). We then
set the S texture coordinate value to ring*2.0/prec, causing S to range between 0.0
and 2.0, then set the texture’s tiling mode to GL_REPEAT as described in Section
5.10. The motivation for this approach is to avoid having the texture image appear
overly “stretched” horizontally. If instead we did want the texture to stretch com-
pletely around the torus, we would simply remove the “*2.0” multiplier from the
texture coordinate computation.

Building a torus class in Java/JOGL could be done in a virtually identical
manner as for the Sphere class. However, we have the opportunity to take advan-
tage of the indices that we created while building the torus by using OpenGL’s
support for vertex indexing (we could have also done this for the sphere, but we
didn’t). For very large models with thousands of vertices, using OpenGL indexing
can result in improved performance, and so we will describe how to do that next.

[¥¥A Indexing in OpenGL

In both our sphere and torus models, we generate an array of integer indexes
referencing into the vertex array. In the case of the sphere, we used the list of indi-
ces to build a complete set of individual vertices and loaded them into a VBO just
as we did for examples in earlier chapters. Instantiating the torus and loading its
vertices, normals, etc. into buffers could be done in a similar manner as was done
in Program 6.1, but instead we will use OpenGL’s indexing.

When using OpenGL indexing, we also load the indices themselves intoa VBO.
We generate one additional VBO for holding the indices. Since each index value is
simply an integer reference, we first copy the index array into a Java IntBuffer, and
then use glBufferData() to load the IntBuffer into the added VBO, specifying that the
VBO is of type GL_ELEMENT_ARRAY_BUFFER (this tells OpenGL that the VBO
contains indices). The code that does this can be added to setupVertices():

int[] indices = myTorus.getindices(); / the torus index accessor returns the indices as an int array

gl.giBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]); //vbo #3 is the additional added vbho
IntBuffer idxBuf = Buffers.newDirectintBuffer(indices);
gl.giBufferData(GL_ELEMENT_ARRAY_BUFFER, idxBuf.limit()*4, idxBuf, GL_STATIC_DRAW);

In the display() method, we replace the glDrawArrays() call with a call to
glDrawElements(), which tells OpenGL to utilize the index VBO for looking up

144 B Computer Graphics Programming in OpenGL with Java, Third Edition

the vertices to be drawn. We also enable the VBO that contains the indices by
using gIBindBuffer(), specifying which VBO contains the indices and that it is a
GL_ELEMENT _ARRAY_BUFFER. The code is as follows:

int numTorusIndices = myTorus.getNumindices();
gl.gIBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);
gl.glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

Interestingly, the shaders used for drawing the sphere continue to work,
unchanged, for the torus, even with the changes that we made in the Java/JOGL
application to implement indexing. OpenGL is able to recognize the presence of a
GL_ELEMENT_ARRAY_BUFFER and utilize it to access the vertex attributes.

Program 6.2 shows a class named Torus based on Baker’s implementation.
The “inner” and “outer” variables refer to the corresponding inner and outer radius
in Figure 6.11. The prec (“precision”) variable has a similar role as in the sphere,
with analogous computations for number of vertices and indices. By contrast,
determining normal vectors is much more complex than it was for the sphere. We
have used the strategy given in Baker’s description, wherein two tangent vectors
are computed (dubbed sTangent and tTangent by Baker, although more commonly
referred to as “tangent” and “bitangent”); their cross product forms the normal.

We will use this torus class (and the sphere class described earlier) in many
examples throughout the remainder of the textbook.

Program 6.2 Procedurally Generated Torus

Torus class

public class Torus
{
private int numVertices, numindices, prec;
private int[] indices;
private Vector3f[] vertices;
private Vector2f[] texCoords;
private Vector3f[| normals;
private float inner, outer;
private Vector3f[| sTangents, tTangents;

public Torus()
{ prec=48;
inner = 0.5f;

}

Chapter 6 - 3D Models

outer = 0.2f;
initTorus();

public Torus(float innerRadius, float outerRadius, int precision)

{
}

inner = innerRadius; outer = outerRadius; prec = precision;
initTorus();

private void initTorus()

{

numVertices = (prec+1) * (prec+1);
numindices = prec * prec * 6;

indices = new int[numindices];

vertices = new Vector3flnumVertices];
texCoords = new Vector2f[numVertices];
normals = new Vector3flnumVertices];
sTangents = new Vector3f[numVertices];
tTangents = new Vector3flnumVertices];

for (int i=0; i<numVertices; i++)

{ vertices]i] = new Vector3f();
texCoords(i] = new Vector2f();
normals|i] = new Vector3f();
sTangents|i] = new Vector3f();
tTangents[i] = new Vector3f();

}

// calculate first ring.

for (int i=0; i<prec+1; i++)

{ float amt = (float) toRadians(i*360.0f/prec);

// build the ring by rotating points around the origin, then moving them outward

Vector3f ringPos = new Vector3f(0.0f, outer, 0.0f);
ringPos.rotateAxis(amt, 0.0f, 0.0f, 1.0f);
ringPos.add(new Vector3f(inner, 0.0f, 0.0f));
vertices]i].set(ringPos);

// compute texture coordinates for each vertex in the ring
texCoordsi].set(0.0f, ((float)i)/((float)prec));

// compute tangents and normal vectors for each vertex in the ring

W 145

tTangents|i] = new Vector3f(0.0f, -1.0f, 0.0); / The first tangent vector starts as the -Y axis,

tTangents[i].rotateAxis(amt+(3.14159f/2.0f), 0.0f, 0.0f, 1.0f);

//and is then rotated around the Z axis.

sTangents[i].set(0.0f, 0.0f, -1.0f);

// The second tangent is -Z in each case.

normals[i] = tTangents[i].cross(sTangents[i]); // The cross product produces the normal

146 M Computer Graphics Programming in OpenGL with Java, Third Edition

// rotate the first ring about the Y axis to get the other rings
for (int ring=1; ring<prec+1; ring++)
{ for (int vert=0; vert<prec+1; vert++)
{ /7 rotate the vertex positions of the original ring around the Y axis
float amt = (float) toRadians((float)ring*360.0f/prec);
Vector3f vp = new Vector3f(vertices[vert]);
vp.rotateAxis(amt, 0.0f, 1.0f, 0.0f);
vertices[ring*(prec+1)+vert].set(vp);

// compute the texture coordinates for the vertices in the new rings
texCoords[ring*(prect1)+vert].set((float)ring*2.0f/(float)prec, texCoords[vert].y());

// rotate the tangent and bitangent vectors around the Y axis
sTangents[ring*(prect1)+vert].set(sTangents|vert]);
sTangents[ring*(prec+1)+vert].rotateAxis(amt, 0.0f, 1.0f, 0.0f);
tTangents[ring*(prect1)+vert].set(tTangents|vert]);
tTangents[ring*(prec+1)+vert].rotateAxis(amt, 0.0f, 1.0f, 0.0f);

// rotate the normal vector around the Y axis

normals[ring*(prec+1)+vert].set(normals[vert]);

normals[ring*(prec+1)+vert].rotateAxis(amt, 0.0f, 1.0f, 0.0f);
Yol

// calculate triangle indices corresponding to the two triangles built per vertex
for(int ring=0; ring<prec; ring++)
{ for(int vert=0; vert<prec; vert++)

{ indices[((ring*prec+vert)*2) *3+0]= ring*(prec+1)+vert;
indices[((ring*prec+vert)*2) *3+1]=(ring+1)*(prec+1)+vert;
indices[((ring*prec+vert)*2) *3+2]= ring*(prec+1)+vert+1;
indices|[((ring*prectvert)*2+1)*3+0]= ring*(prec+1)+vert+1;
indices[((ring*prec+vert)*2+1)*3+1]=(ring+1)*(prec+1)+vert;
indices[((ring*prec+vert)*2+1)*3+2]=(ring+1)*(prec+1)+vert+1;

bod

// accessors for the torus indices and vertices

int getNumindices() { return numindices; }

public int[| getindices() { return indices; }

public int getNumVertices() { return numVertices; }
public Vector3f[] getVertices() { return vertices; }
public Vector2f[] getTexCoords() { return texCoords; }
public Vector3f[] getNormals() { return normals; }
public Vector3f[] getStangents() { return sTangents; }
public Vector3f[] getTtangents() { return tTangents; }

==

Chapter 6 - 3D Models W 147

Using the Torus class (with OpenGL indexing)

myTorus = new Torus(0.5f, 0.2f, 48); //in init(), or in setupVertices(), or in the top level declarations

private void setupVertices()
{ GL4 gl =(GL4) GLContext.getCurrentGL();

numTorusVertices = myTorus.getNumVertices();
numTorusindices = myTorus.getNumindices();

Vector3f[] vertices = myTorus.getVertices();
Vector2f[] texCoords = myTorus.getTexCoords();
Vector3f[] normals = myTorus.getNormals();
int[] indices = myTorus.getIndices();

float[] pvalues = new float[vertices.length*3];
float[] tvalues = new float[texCoords.length*2];
float]] nvalues = new float[normals.length*3];

for (int i=0; i<numTorusVertices; i++)

{ pvalues[i*3] = (float) vertices[i].x; // vertex position
pvalues[i*3+1] = (float) vertices[i].y;
pvalues[i*3+2] = (float) vertices[i].z;

tvalues[i*2] = (float) texCoords[i].x; // texture coordinates
tvaluesli*2+1] = (float) texCoords]i].y;
nvalues[i*3] = (float) normalsfi].x; // normal vector

nvalues[i*3+1] = (float) normals|i].y;
nvalues[i*3+2] = (float) normals|i].z;

}

gl.glGenVertexArrays(vao.length, vao, 0);
gl.gIBindVertexArray(vao[0]);
gl.glGenBuffers(4, vbo, 0); // generate VBOs as before, plus one for indices

gl.giBindBuffer(GL_ARRAY_BUFFER, vbo[0]); // vertex positions
FloatBuffer vertBuf = Buffers.newDirectFloatBuffer(pvalues);
gl.glBufferData(GL_ARRAY_BUFFER, vertBuf.limit()*4, vertBuf, GL_STATIC_DRAW);

gl.giBindBuffer(GL_ARRAY_BUFFER, vbo[1]); // texture coordinates
FloatBuffer texBuf = Buffers.newDirectFloatBuffer(tvalues);
gl.glBufferData(GL_ARRAY_BUFFER, texBuf.limit()*4, texBuf, GL_STATIC_DRAW);

gl.giBindBuffer(GL_ARRAY_BUFFER, vbo[2]); // normal vectors
FloatBuffer norBuf = Buffers.newDirectFloatBuffer(nvalues);
gl.glBufferData(GL_ARRAY_BUFFER, norBuf.limit()*4, norBuf, GL_STATIC_DRAW);

gl.gIBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]); // indices

148 @ Computer Graphics Programming in OpenGL with Java, Third Edition

IntBuffer idxBuf = Buffers.newDirectIntBuffer(indices);
gl.glBufferData(GL_ELEMENT_ARRAY_BUFFER, idxBuf.limit()*4, idxBuf, GL_STATIC_DRAW);

}
in display()

gl.gIBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);
gl.glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

Note in the code that uses the Torus class that the loop in setupVertices() now
stores the data associated with each vertex once, rather than once for each index
entry (as was the case in the sphere example). This difference is also reflected
in the declared array sizes for the data being entered into the VBOs. Also note
that in the torus example, rather than using the index values when retrieving ver-
tex data, they are simply loaded into VBO #3. Since that VBO is designated as
a GL_ELEMENT_ARRAY_BUFFER, OpenGL knows that that VBO contains vertex
indices.

Figure 6.12 shows the result of instantiating a torus and texturing it with the
brick texture.

Figure 6.12
Procedurally generated torus.

LOADING EXTERNALLY PRODUCED MODELS

Complex 3D models, such as characters found in videogames or computer-
generated movies, are typically produced using modeling tools. Such “DCC”
(digital content creation) tools make it possible for people (such as artists) to build

Chapter 6 - 3D Models H 149

arbitrary shapes in 3D space and automatically produce the vertices, texture
coordinates, vertex normals, and so on. There are too many such tools to list,
but some examples are Maya, Blender, Lightwave, and Cinema4D, among many
others. Blender is free and open source. Figure 6.13 shows an example Blender
screen during the editing of a 3D model.

Figure 6.13
Example Blender model creation [BL21].

In order for us to use a DCC-created model in our OpenGL scenes, that model
needs to be saved (exported) in a format that we can read (import) into our pro-
gram. There are several standard 3D model file formats; again, there are too many
to list, but some examples are Wavefront (.0bj), 3D Studio Max (.3ds), Stanford
Scanning Repository (.ply), and Ogre3D (mesh), to name a few. Arguably the
simplest is Wavefront (usually dubbed OBJ), so we will examine that one.

OBJ files are simple enough that we can develop a basic importer relatively
easily. In an OBJ file, lines of text specify vertex geometric data, texture coordi-
nates, normals, and other information. It has some limitations—for example, OBJ
files have no way of specifying model animation.

Lines in an OBJ file start with a character tag indicating what kind of data is

on that line. Some common tags include

e v —geometric (vertex location) data
e Vvt—texture coordinates

150 M Computer Graphics Programming in OpenGL with Java, Third Edition

e vn — vertex normal

« f —face (typically vertices in a triangle)

Other tags make it possible to store the object name, materials it uses, curves,
shadows, and many other details. We will limit our discussion to the four tags
listed above, which are sufficient for importing a wide variety of complex models.

Suppose we use Blender to build a simple pyramid such as the one we
developed for Program 4.3. Figure 6.14 is a screenshot of a similar pyramid being
created in Blender.

Figure 6.14
Pyramid built in Blender.

In Blender, if we now export our pyramid model, specify .obj format, and also
set Blender to output texture coordinates and vertex normals, an OBJ file is created
that includes all of this information. The resulting OBJ file is shown in Figure 6.15.
(The actual values of the texture coordinates can vary depending on how the model
is built.)

We have color-coded the important sections of the OBJ file for reference. The
lines at the top beginning with “#” are comments placed there by Blender, which
our importer ignores. This is followed by a line beginning with “0” giving the
name of the object. Our importer can ignore this line as well. Later, there is a line

Chapter 6 - 3D Models H 151

Blender v2.70 (sub 0) OBJ File: "'
www.blender.org

o Pyramid

v 1.000000 -1.000000 -1.000000
v 1.000000 -1.000000 1.000000
v -1.000000 -1.000000 1.000000
v -1.000000 -1.000000 -1.000000
v 0.000000 1.000000 0.000000
vt 0.515829 0.258220

vt 0.515829 0.750612

vt 0.023438 0.750612

vt 0.370823 0.790246

vt 0.820312 0.388210

vt 0.820312 0.991264

vt 0.566135 0.988689

vt 0.015625 0.742493

vt 0.566135 0.496298

vt 0.015625 0.250102

vt 0.566135 0.003906

vt 1.000000 0.000000

vt 1.000000 0.603054

vt 0.550510 0.402036

vt 0.023438 0.258220

vn 0.000000 -1.000000 0.000000
vn 0.894427 0.447214 0.000000
vn -0.000000 0.447214 0.894427
vn -0.894427 0.447214 -0.000000
vn 0.000000 0.447214 -0.894427
s off

f 2/1/1 3/2/1 4/3/1

f 1/4/2 5/5/2 2/6/2

£f 2/7/3 5/8/3 3/9/3

f 3/9/4 5/10/4 4/11/4

f 5/12/5 1/13/5 4/14/5

f 1/15/1 2/1/1 4/3/1

Figure 6.15
Exported OBJ file for the pyramid.

beginning with “s” that specifies that the faces shouldn’t be smoothed (our code
will also ignore lines starting with “s”).

The first substantive set of lines in the OBJ file are those starting with “v”
(colored blue). They specify the X, Y, and Z local spatial coordinates of the five
vertices of our pyramid model relative to the origin, which in this case is at the
center of the pyramid.

The values colored red (starting with “vt”) are the various texture coordinates.
The reason that the list of texture coordinates is longer than the list of vertices is

152 B Computer Graphics Programming in OpenGL with Java, Third Edition

that some of the vertices participate in more than one triangle, and in those cases
different texture coordinates might be used.

The values colored green (starting with “vn”) are the various normal vectors.
This list too is often longer than the list of vertices (although not in this example),
again because some of the vertices participate in more than one triangle, and in
those cases different normal vectors might be used.

The values colored purple (starting with “f”), near the bottom of the file, specify
the triangles (i.e., “faces”). In this example, each face (triangle) has three elements,
each with three values separated by “/”” (OBJ allows other formats as well). The
values for each element are indices into the lists of vertices, texture coordinates,
and normal vectors, respectively. For example, the third face is

f2/7/3 5/8/3 3/9/3

This indicates that the second, fifth, and third vertices from the list of vertices
(in blue) comprise a triangle (note that OBJ indices start at 1). The corresponding
texture coordinates are the seventh, eighth, and ninth from the list of texture coor-
dinates in the section colored red. All three vertices have the same normal vector,
the third in the list of normals in the section colored green.

Models in OBJ format are not required to have normal vectors, or even texture
coordinates. If a model does not have texture coordinates or normals, the face
values would specify only the vertex indices:

f253

If a model has texture coordinates, but not normal vectors, the format would
be as follows:

f2/7 518 3/9

And, if the model has normals but not texture coordinates, the format
would be

f 2113 5/13 3113

It is not unusual for a model to have tens of thousands of vertices. There are
hundreds of such models available for download on the Internet for nearly every
conceivable application, including models of animals, buildings, cars, planes,
mythical creatures, people, and so on.

Chapter 6 - 3D Models H 153

Programs of varying sophistication that can import an OBJ model are available
on the Internet. Alternatively, it is relatively easy to write a very simple OBJ loader
function that can handle the basic tags we have seen (v, vt, vn, and f). Program 6.3
shows one such loader, albeit a very limited one. It incorporates a class to hold an
arbitrary imported model, which in turn calls the importer.

Before we describe the code in our simple OBJ importer, we must warn the
reader of its limitations:

* It only supports models that include all three face attribute fields. That is,
vertex positions, texture coordinates, and normals must all be present
and in the form f #/#/# ### ##/#.

e The material tag, often used to specify a texture file, is ignored—
texturing must be done using the methods described in Chapter 5.

* Only OBJ models comprising a single triangle mesh are supported
(the OBJ format supports models comprised of multiple meshes, but our
simple importer does not).

* It assumes that elements on each line are separated by exactly one space.

If you have an OBJ model that doesn’t satisfy all of the above criteria and you
wish to import it using the simple loader in Program 6.3, it may still be feasible
to do so. It is often possible to load such a model into Blender, and then export it
to another OBJ file that accommodates the loader’s limitations. For instance, if
the model doesn’t include normal vectors, it is possible to have Blender produce
normal vectors while it exports the revised OBJ file.

Another limitation of our OBJ loader has to do with indexing. Observe in the
previous descriptions that the “face” tag allows for the possibility of mix-and-
matching vertex positions, texture coordinates, and normal vectors. For example,
two different “face” rows may include indices which point to the same v entry, but
different vt entries. Unfortunately, OpenGL’s indexing mechanism does not sup-
port this level of flexibility—index entries in OpenGL can only point to a particu-
lar vertex along with its attributes. This complicates writing an OBJ model loader
somewhat, as we cannot simply copy the references in the triangle face entries into
an index array. Rather, using OpenGL indexing would require ensuring that entire
combinations of v, vt, and vn values for a face entry each have their own references
in the index array. A simpler, albeit less efficient, alternative is to create a new
vertex for every triangle face entry. We opt for this simpler approach here in the
interest of clarity, despite the space-saving advantage of using OpenGL indexing
(especially when loading larger models).

154 M Computer Graphics Programming in OpenGL with Java, Third Edition

The Modellmporter class includes a parseOBJ() function that reads in each line of
an OBJ file one-by-one, handling separately the four cases v, vt, vn, and f. In each case,
the subsequent numbers on the line are extracted, first by using substring() to skip the
initial v, vt, vn, or f character(s) and then using the iterator returned by the split() func-
tion to extract each subsequent parameter value, storing them in an ArrayList. As the
face (f) entries are processed, the vertices are built, with corresponding entries in
parallel arrays for vertex positions, texture coordinates, and normal vectors.

The Modellmporter class is embedded in the ImportedModel class, which simplifies
loading and accessing the vertices of an OBJ file by putting the imported vertices
into arrays of Vector3f and Vector2f objects. Recall these are JOML classes; we use
them here to store vertex positions, texture coordinates, and normal vectors. The
accessors in the ImportedModel class then make them available to the Java/JOGL
application in much the same manner as was done in the Sphere and Torus classes.

Following the Modellmporter and ImportedModel classes is an example sequence
of calls for loading an OBJ file and then transferring the vertex information into a
set of VBOs for subsequent rendering.

Figure 6.16 shows a rendered model of the space shuttle, downloaded as an OBJ
file from the NASA website [NA21], imported using the code from Program 6.3
and textured using the code from Program 5.1 with the associated NASA texture
image file, with anisotropic filtering. This texture image is an example of the use
of UV-mapping, where texture coordinates in the model are carefully mapped to
particular regions of the texture image. (As mentioned in Chapter 5, the details of
UV-mapping are outside the scope of this book.)

Figure 6.16
NASA space shuttle model with texture.

Chapter 6 - 3D Models H 155

Program 6.3 Simple (Limited) OBJ Loader

ImportedModel class

public class ImportedModel

{ private Vector3f[] vertices;
private Vector2f[] texCoords;
private Vector3f[] normals;
private int numVertices;

public ImportedModel(String filename)
{ Modellmporter modellmporter = new Modellmporter();
try
{ modellmporter.parseOBJ(filename); // uses modellmporter to get vertex information
numVertices = modellmporter.getNumVertices();
float[] verts = modellmporter.getVertices();
float[] tcs = modellmporter.getTextureCoordinates();
float[] normals = modellmporter.getNormals();

vertices = new Vector3flnumVertices];
texCoords = new Vector2f[numVertices];
normals = new Vector3flnumVertices];

for(int i=0; i<vertices.length; i++)

{ vertices|i] = new Vector3f();
vertices]i].set(verts[i*3], verts[i*3+1], verts[i*3+2]);
texCoords|i] = new Vector2f();
texCoordsi].set(tcs[i*2], tcs[i*2+1]);
normals(i] = new Vector3f();
normals(i].set(norm[i*3], norm[i*3+1], norm([i*3+2]);

}

} catch (IOException e)
{ e.printStackTrace();

bl

public int getNumVertices() { return numVertices; } // accessors
public Vector3f[] getVertices() { return vertices; }

public Vector2f[] getTexCoords() { return texCoords; }

public Vector3f[] getNormals() { return normals; }

Modellmporter nested class

private class Modellmporter

{ /7 values as read in from OB/ file
private ArrayList<Float> vertVals = new ArrayList<Float>();
private ArrayList<Float> stVals = new ArrayList<Float>();
private ArrayList<Float> normVals = new ArrayList<Float>();

156 M Computer Graphics Programming in OpenGL with Java, Third Edition

// values stored for later use as vertex attributes

private ArrayList<Float> triangleVerts = new ArrayList<Float>();
private ArrayList<Float> textureCoords = new ArrayList<Float>();
private ArrayList<Float> normals = new ArrayList<Float>();

public void parseOBJ(String filename) throws IOException
{ InputStream input = new FilelnputStream(new File(filename));
BufferedReader br = new BufferedReader(new InputStreamReader(input));
String line;
while ((line = br.readLine()) != null)
{ if(line.startsWith("v")) // vertex position ("v" case)
{ for(String s : (line.substring(2)).split(" "))

{ vertVals.add(Float.valueOf(s)); // extract the vertex position values
}l
else if(line.startsWith("vt")) // texture coordinates ("vt" case)
{ for(String s : (line.substring(3)).split(" "))

{ stVals.add(Float.valueOf(s)); // extract the texture coordinate values
}l
else if(line.startsWith("vn")) // vertex normals ("vn" case)
{ for(String s : (line.substring(3)).split(" "))

{ normVals.add(Float.valueOf(s)); // extract the normal vector values
}l
else if(line.startsWith("f")) // triangle faces ("f" case)

{ for(String s : (line.substring(2)).split(" "))

{ String v = s.split("/")[0]; // extract triangle face references

String vt = s.split("/")[1];
String vn = s.split("/")[2];

int vertRef = (Integer.valueOf(v)-1)*3;
int tcRef = (Integer.valueOf(vt)-1)*2;
int normRef = (Integer.valueOf(vn)-1)*3;

triangleVerts.add(vertVals.get
triangleVerts.add(vertVals.get
triangleVerts.add(vertVals.get

—~

vertRef)); // build array of vertices
vertRef+1));
vertRef+2));

textureCoords.add(stVals.get(tcRef)); // build array of
textureCoords.add(stVals.get(tcRef+1)); // texture coordinates.

= =

—~

normals.add(normVals.get(normRef)); /... and normals
normals.add(normVals.get(normRef+1));
normals.add(normVals.get(normRef+2));

bl

input.close();

}

Chapter 6 - 3D Models W 157

// accessors for retrieving the number of vertices, the vertices themselves,
// and the corresponding texture coordinates and normals (only called once per model)

public int getNumVertices() { return (triangleVerts.size()/3); }

public float[| getVertices()

{ float[] p = new float]triangleVerts.size()];
for(inti = 0; i < triangleVerts.size(); i++)
{ pli] = triangleVerts.get(i);
}

return p;

}

// similar accessors for texture coordinates and normal vectors go here

I
Using the Model Importer

myModel = new ImportedModel("shuttle.obj");
private void setupVertices()
{ GL4 gl =(GL4) GLContext.getCurrentGL();

numObjVertices = myModel.getNumVertices();
Vector3f[] vertices = myModel.getVertices();

Vector2f] texCoords = myModel.getTexCoords();

Vector3f[] normals = myModel.getNormals();

float[] pvalues = new float[numObjVertices*3];
float]] tvalues = new floatinumObjVertices*2];
float[] nvalues = new float[numObjVertices*3];

for (int i=0; i<numObjVertices; i++)

{ pvalues[i*3] = (float) (vertices[i]).x();
pvalues[i*3+1] = (float) (verticesi]).y();
pvalues[i*3+2] = (float) (vertices]i]).z();
tvalues|i*2]
tvalues[i*2+1]

= (float) (texCoordsi
nvalues[i*3] =

(float) (
(float) (
(float) (
(float) (texCoords]i
(float) (
(float) (
(float) (

—

X
y()

—

float) (normalsfi]).x();
nvalues[i*3+1] = (float) (normals]i]).y();
nvalues[i*3+2] = (float) (normals[i]).z();

}
gl.glGenVertexArrays(vao.length, vao, 0);

gl.gIBindVertexArray(vao[0]);
gl.glGenBuffers(vbo.length, vbo, 0);

/ in init()

// vertex positions
// texture coordinates
// normal vectors

158 M Computer Graphics Programming in OpenGL with Java, Third Edition

// VBO for vertex locations

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);

FloatBuffer vertBuf = Buffers.newDirectFloatBuffer(pvalues);
gl.glBufferData(GL_ARRAY_BUFFER, vertBuf.limit()*4, vertBuf, GL_STATIC_DRAW);

// VBO for texture coordinates

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[1]);

FloatBuffer texBuf = Buffers.newDirectFloatBuffer(tvalues);
gl.glBufferData(GL_ARRAY_BUFFER, texBuf.limit()*4, texBuf, GL_STATIC_DRAW);

// VBO for normal vectors

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[2]);

FloatBuffer norBuf = Buffers.newDirectFloatBuffer(nvalues);
gl.giBufferData(GL_ARRAY_BUFFER, norBuf.limit()*4,norBuf, GL_STATIC_DRAW);

}
in display():

gl.giDrawArrays(GL_TRIANGLES, 0, myModel.getNumVertices());

SUPPLEMENTAL NOTES

Although we discussed the use of DCC tools for creating 3D models, we didn’t
discuss how to use such tools. While such instruction is outside the scope of this
text, there is a wealth of tutorial video material and documentation for all of the
popular tools such as Blender and Maya.

The topic of 3D modeling is itself a rich field of study. Our coverage in this
chapter has been just a rudimentary introduction, with emphasis on its relationship
to OpenGL. Many universities offer entire courses in 3D modeling, and readers
interested in learning more are encouraged to consult some of the popular resources
that offer greater detail (e.g., [BL21], [CH11], [VA12]).

We reiterate that the OBJ importer we presented in this chapter is limited and
can only handle a subset of the features supported by the OBJ format. Although
sufficient for our needs, it will fail on some OBJ files. In those cases it would be
necessary to first load the model into Blender (or Maya, etc.) and re-export it as
an OBJ file that complies with the importer’s limitations as described earlier in
this chapter.

Chapter 6 - 3D Models H 159

Exercises

6.1 Modify Program 4.4 so that the “sun,” “planet,” and “moon” are textured
spheres, such as the ones shown in Figure 4.11.

6.2 (PROJECT) Modify your program from Exercise 6.1 so that the imported
NASA shuttle object from Figure 6.16 also orbits the “sun.” You’ll want to
experiment with the scale and rotation applied to the shuttle to make it look
realistic.

6.3 (RESEARCH & PROJECT) Learn the basics of how to use Blender to create
a 3D object of your own. To make full use of Blender with your OpenGL
applications, you’ll want to learn how to use Blender’s UV-unwrapping tools
to generate texture coordinates and an associated texture image. You can then
export your object as an OBJ file and load it using the code from Program 6.3.

References

[BL21] Blender, The Blender Foundation, accessed March 2021, https:/www
.blender.org/

[CH11] A. Chopine, 3D Art Essentials: The Fundamentals of 3D Modeling,
Texturing, and Animation (Focal Press, 2011).

[CH21] Computer History Museum, accessed March 2021, http:/www
.computerhistory.org/revolution/computer-graphics-music-and-art/15/206

[GL21] GLUT and OpenGL Utility Libraries, accessed March 2021, https://www
.opengl.org/resources/libraries/

[NA21] NASA 3D Resources, accessed March 2021, http:/nasa3d.arc.nasa.gov/
[PP07] P.Baker, Paul’s Projects, 2007, accessed March 2021, www.paulsprojects.net
[VA12] V. Vaughan, Digital Modeling (New Riders, 2012).

[VE21] Visible Earth, NASA Goddard Space Flight Center Image, accessed
March 2021, http://visibleearth.nasa.gov

CHAPTER 7

LIGHTING

71 Lighting Models 161
T2 Lights. . ..o 163
T3 Materials. 166
7.4 ADS Lighting COmMPUIQLIONS oottt 168
7.5 Implementing ADS Lighting i 171
7.6 Combining Lighting and Textures., 185

Supplemental Notes o o 186

Historical Note i 188

Light affects the appearance of our world in varied and sometimes dramatic
ways. When a flashlight shines on an object, we expect it to appear brighter on the
side facing the light. The earth on which we live is itself brightly lit where it faces
the sun at noon, but as it turns, that daytime brightness gradually fades into evening,
until becoming completely dark at midnight.

Objects also respond differently to light. Besides having different colors, objects
can have different reflective characteristics. Consider two objects, both green, but
one is made of cloth versus the other made of polished steel—the latter will appear
more “shiny.”

LIGHTING MODELS

Light is the product of photons being emitted by high energy sources and sub-
sequently bouncing around until some of the photons reach our eyes. Unfortunately,
it is computationally infeasible to emulate this natural process, as it would require
simulating and then tracking the movement of a huge number of photons, adding
many objects (and matrices) to our scene. What we need is a lighting model.

162 M Computer Graphics Programming in OpenGL with Java, Third Edition

Lighting models are sometimes called shading models, although in the pres-
ence of shader programming, that can be a bit confusing. Sometimes the term
reflection model is used, complicating the terminology further. We will try to
stick to whichever terminology is simplest and most practical.

The most common lighting models today are called “ADS” models, because
they are based on three types of reflection labeled A, D, and S:

* Ambient reflection simulates a low-level illumination that equally affects
everything in the scene.

» Diffuse reflection brightens objects to various degrees depending on the
light’s angle of incidence.

* Specular reflection conveys the shininess of an object by strategically
placing a highlight of appropriate size on the object’s surface where light
is reflected most directly toward our eyes.

ADS models can be used to
simulate different lighting effects
and a variety of materials.

specular highlights

Figure 7.1 illustrates the ambi-
ent, diffuse, and specular contri-
butions of a positional light on a

r shiny gold torus.
- Recall that a scene is ulti-
ambient .
mately drawn by having the frag-
Figure 7.1 ment shader output a color for each
ADS Lighting contributions. pixel on the screen. Using an ADS

lighting model requires specifying
contributions due to lighting on a pixel’s RGBA output value. Factors include the
following:

» the type of light source and its ambient, diffuse, and specular
characteristics

* the object material’s ambient, diffuse, and specular characteristics
» the object material’s specified “shininess”
* the angle at which the light hits the object

* the angle from which the scene is being viewed

Chapter 7 - Lighting I 163

AN LIGHTS

There are many types of lights, each with different characteristics and requir-
ing different steps to simulate their effects. Some types include:

e Global (usually called “global ambient” because it includes only an
ambient component)

* Directional (or “distant”)
» Positional (or “point source”)
* Spotlight

Global ambient light is the simplest type of light to model. Global ambient
light has no source position—the light is equal everywhere, at each pixel on every
object in the scene, regardless of where the objects are. Global ambient lighting
simulates the real-world phenomenon of light that has bounced around so many
times that its source and direction are undeterminable. Global ambient light has
only an ambient component, specified as an RGBA value; it has no diffuse or
specular components. For example, global ambient light can be defined as follows:

float[] globalAmbient = new float[] { 0.6f, 0.6f, 0.6f, 1.0f };

RGBA values range from 0 to 1, so global ambient light is usually modeled as
dim white light, where each of the RGB values is set to the same fractional value
between 0 and 1, with the alpha set to 1.

Directional, or distant light also doesn’t have a source location, but it does
have a direction. It is useful for situations where the source of the light is so far
away that the light rays are effectively parallel, such as light coming from the
sun. In many such situations we may only be interested in modeling the light, and
not the object that produces the light. The effect of directional light on an object
depends on the light’s angle of impact; objects are brighter on the side facing a
directional light than on a tangential or opposite side. Modeling directional light
requires specifying its direction (as a vector) and its ambient, diffuse, and specular
characteristics (as RGBA values). A red directional light pointing down the nega-
tive Z axis might be specified as follows:

float[] dirLightAmbient = new float[] { 0.1f, 0.0f, 0.0f, 1.0f };
float[] dirLightDiffuse = new float[] { 1.0f, 0.0f, 0.0f, 1.0f };
float[] dirLightSpecular = new float]] { 1.0f, 0.0f, 0.0f, 1.0f };
float[] dirLightDirection = new float] { 0.0f, 0.0f, -1.0f };

164 @ Computer Graphics Programming in OpenGL with Java, Third Edition

It might seem redundant to include an ambient contribution for a light when
we already have global ambient light. The separation of the two, however, is inten-
tional and noticeable when the light is “on” or “off.” When “on,” the total ambi-
ent contribution would be increased, as expected. In the above example, we have
included only a small ambient contribution for the light. It is important to balance
the two contributions, depending on the needs of your scene.

A positional light has a specific location in the 3D scene. Light sources that are
near the scene, such as lamps, candles, and so forth, are examples. Like directional
lights, the effect of a positional light depends on angle of impact; however, its direc-
tion is not specified, as it is different for each vertex in our scene. Positional lights
may also incorporate attenuation factors, in order to model how their intensity
diminishes with distance. As with the other types of lights we have seen, positional
lights have ambient, diffuse, and specular properties specified as RGBA values. A
red positional light at location (5,2,-3) could for example be specified as follows:

float[] posLightAmbient = new float[] { 0.1f, 0.0f, 0.0f, 1.0f };
float[] posLightDiffuse = new float[] { 1.0f, 0.0f, 0.0f, 1.0 };
float[] posLightSpecular = new float[] { 1.0f, 0.0f, 0.0f, 1.0 };
float[] posLightLocation = new float[] { 5.0f, 2.0f, -3.0f };

Attenuation factors can be modeled in a variety of ways. One way is to include
tunable non-negative parameters for constant, linear, and quadratic attenuation
(k., k;, and k,, respectively). These parameters are then combined, taking into
account the distance (d) from the light source:

attenuationkactor ;2
k., kd kd

Multiplying this factor by the light intensity causes the intensity to be decreased
the greater the distance is to the light source. Note that k, should always be set
greater than or equal to 1.0, and at least one of the other parameters greater than
0.0, so that the attenuation factor will always be in the range [0..1] and approach 0
as the distance d increases.

Spotlights have both a position and a direction. The effect of the spotlight’s
“cone” can be simulated using a cutoff angle 6 between 0° and 90°, specifying the
half-width of the light beam, and a falloff exponent to model the variation of inten-
sity across the angle of the beam. As shown in Figure 7.2, we determine the angle

Chapter 7 - Lighting I 165

0 between the spotlight’s direction and a vector from the spotlight to the pixel. We
then compute an intensity factor by raising the cosine of ¢ to the falloff exponent
when ¢ is less than 0 (when ¢ is greater than 0 the intensity factor is set to 0). The
result is an intensity factor that ranges from O to 1. The falloff exponent adjusts the
rate at which the intensity factor tends to 0 as the angle ¢ increases. The intensity
factor is then multiplied by the light’s intensity to simulate the cone effect.

A red spotlight at location (5,2,-3) pointing down the negative Z axis could be
specified as follows:

float[] spotLightAmbient = new float[] { 0.1f, 0.0f, 0.0f, 1.0f };
float[] spotLightDiffuse = new float[] { 1.0f, 0.0f, 0.0f, 1.0f };
float[] spotLightSpecular = new float[] { 1.0f,0.0f, 0.0f, 1.0f };
float[] spotLightLocation = new float]] { 5.0f, 2.0f, -3.0f };
float[] spotLightDirection = new float[] { 0.0f, 0.0f, -1.0f };
float]] spotLightCutoff = 20.0f;

float[] spotLightExponent = 10.0f;

Spotlights also can include attenuation factors. We haven’t shown them in the
above settings, but defining them can be done in the same manner as described
earlier for positional lights.

Historically, spotlights have been iconic in computer graphics since Pixar’s
popular animated short Luxo Jr. appeared in 1986 [DI21].

D = spotlight direction

V = direction to pixel

0 = cutoff angle

¢ = light off-axis angle
intensityFactor = cos ®P(¢)

Figure 7.2
Spotlight components.

When designing a system containing many types of lights, a programmer
should consider creating a class hierarchy, such as defining a “Light” class and
subclasses for “Global Ambient,” “Directional,” “Positional,” and “Spotlight.”
Because spotlights share characteristics of both directional and positional
lights, it can be a bit tricky settling on a class hierarchy given Java’s absence of

166 M Computer Graphics Programming in OpenGL with Java, Third Edition

multiple inheritance. In a previous edition of this book, we used a library called
graphicslib3D which included container classes for each of these types of lights, in
which SpotLight was a subclass of PositionalLight. Our examples are sufficiently
simple that we omit building such a class hierarchy for lighting in this edition.

MATERIALS

The “look™ of the objects in our scene has so far been handled exclusively by
color and texture. The addition of lighting allows us to also consider the reflec-
tance characteristics of the surfaces. By that, we mean how the object interacts
with our ADS lighting model. This can be modeled by considering each object to
be “made of™ a certain material.

Materials can be simulated in an ADS lighting model by specifying four val-
ues, three of which we are already familiar with—ambient, diffuse, and specular
RGB colors. The fourth is called shininess, which, as we will see, is used to build
an appropriate specular highlight for the intended material. ADS and shininess
values have been developed for many different types of common materials. For
example, “pewter” can be specified as follows:

float[] pewterMatAmbient = new float[] { .11f, .06f, .11f, 1.0f };
float[] pewterMatDiffuse = new float[] { .43f, .47f, .54f, 1.0f };
float[] pewterMatSpecular = new float[] { .33f, .33f, .52f, 1.0f };
float pewterMatShininess = 9.85f;

ADS RGBA values for a few other materials are given in Figure 7.3 (from
[BA16]).

Sometimes other properties are included in the material properties.
Transparency is handled in the RGBA specifications in the fourth (or “alpha”)
channel, which specifies an opacity; a value of 1.0 represents completely opaque
and 0.0 represents completely transparent. For most materials it is simply set to
1.0, although for certain materials a slight transparency plays a role. For example,
in Figure 7.3, note that the materials “jade” and “pearl” include a small amount of
transparency (values slightly less than 1.0) to add realism.

Emission is also sometimes included in an ADS material specification. This is
useful when simulating a material that emits its own light, such as phosphorescent
materials.

Chapter 7 - Lighting I 167

ambient RGBA
material diffuse RGBA shininess
specular RGBA

0.2473, 0.1995, 0.0745, 1.0
Gold 0.7516, 0.6065, 0.2265, 1.0 | 51.200
0.6283, 0.5558, 03661, 1.0

0.1350, 0.2225, 0.1575, 0.95
Jade 0.5400, 0.8900, 0.6300, 0.95 | 12.800
03162, 03162, 03162, 0.95

0.2500, 0.2073, 0.2073, 0.922
Pearl 1.0000, 0.8290, 0.8290, 0.922 | 11.264
0.2966, 0.2966, 0.2966, 0.922

0.1923, 0.1923, 0.1923, 1.0
Silver | 0.5075, 0.5075, 0.5075, 1.0 | 51.200
0.5083, 0.5083, 0.5083, 1.0

Figure 7.3
Material ADS and shininess coefficients.

When an object is rendered that doesn’t have a texture, it is often desirable to
specify material characteristics. For that reason, it will be very convenient to have
a few predefined materials available to us. We thus add the following lines of code
to our “Utils.java” utility program:

// GOLD material - ambient, diffuse, specular, and shininess

public static float[] goldAmbient() { return (new float []{0.2473f, 0.1995f, 0.0745f, 1}); }
public static float[] goldDiffuse() { return (new float []{0.7516f, 0.6065f, 0.2265f, 1}); }
public static float[] goldSpecular() { return (new float []{0.6283f, 0.5558f, 0.3661f, 1}); }
public static float goldShininess() { return 51.2f; }

// SILVER material - ambient, diffuse, specular, and shininess

public static float]] silverAmbient() { return (new float [] {0.1923f, 0.1923f, 0.1923f, 1});}
public static float[] silverDiffuse() { return (new float []{0.5075f, 0.5075f, 0.5075f, 1}); }
public static float]] silverSpecular() { return (new float [] {0.5083f, 0.5083f, 0.5083f, 1});}
public static float silverShininess() { return 51.2f; }

// BRONZE material - ambient, diffuse, specular, and shininess

public static float]] bronzeAmbient() { return (new float []{0.2125f, 0.1275f, 0.0540f, 1}); }
public static float[] bronzeDiffuse() { return (new float []{0.7140f, 0.4284f, 0.1814f, 1});
public static float[] bronzeSpecular() { return (new float [] {0.3935f, 0.2719f, 0.1667f, 1}); }
public static float bronzeShininess() { return 25.6f; }

168 M Computer Graphics Programming in OpenGL with Java, Third Edition

This makes it very easy to specify that an object has, say, a “gold” material, in
either the init() function or in the top-level declarations, as follows:

float[] matAmbient = Utils.goldAmbient();
float[] matDiffuse = Utils.goldDiffuse();
float[] matSpecular = Utils.goldSpecular();
float matShininess = Utils.goldShininess();

Note that our code for light and material properties described so far in these
sections does not actually perform lighting. It merely provides a way to specify
and store desired light and material properties for elements in a scene. We still
need to actually compute the lighting ourselves. This is going to require some
serious mathematical processing in our shader code. So let’s now dive into the
nuts-and-bolts of implementing ADS lighting in our Java/JOGL and GLSL graph-
ics programs.

ADS LIGHTING COMPUTATIONS

As we draw our scene, recall that each vertex is transformed so as to simulate
a 3D world on a 2D screen. Pixel colors are the result of rasterization, as well
as texturing and interpolation. We must now incorporate the additional step of
adjusting those rasterized pixel colors to effect the lighting and materials in our
scene. The basic ADS computation that we need to perform is to determine the
reflection intensity (1) for each pixel in our scene. This computation takes the
following form:

+1/

diffuse + I

observed] ambient specular

That is, we need to compute and sum the ambient, diffuse, and specular reflec-
tion contributions for each pixel, for each light source. This will of course depend
on the type of light(s) in our scene and the type of material associated with the
rendered model.

Ambient contribution is the simplest. It is the product of the specified ambient
light and the specified ambient coefficient of the material:

I

ambient

* Material

ambient

= Light

ambient

Chapter 7 - Lighting I 169
Keeping in mind that light and material intensities are specified via RGB val-
ues, the computation is more precisely

I =Light™™ * Material’™

ambient ambient ambient
green __ 1 - green % . ggreen
]ambient - nghtambient Materlalambiem
blue T blue . _7blue
I ambient L g htambient Materlalambient

Diffuse contribution is more complex because it depends on the angle of
incidence between the light and the surface. Lambert’s Cosine Law (published in
1760) specifies that the amount of light that reflects from a surface is proportional
to the cosine of the light’s angle of incidence. This can be modeled as follows:

* Material

diffuse * cos (0)

] diffuse = L lg h tdifﬁxse

As before, the actual computations involve red, green, and blue components.

Determining the angle of incidence 0 requires us to (a) find a vector from
the pixel being drawn to the light source (or, similarly, a vector opposite the light
direction) and (b) find a vector that is normal (perpendicular) to the surface of the
object being rendered. Let’s denote these vectors L and N, respectively, as shown
in Figure 7.4.

light

source \\\\

o~

Figure 7.4
Angle of light incidence.

Depending on the nature of the lights in the scene, L could be computed by
negating the light direction vector or by computing a vector from the location of the
pixel to the location of the light source. Determining vector N may be trickier—
normal vectors may be available for the vertices in the model being rendered, but
if the model doesn’t include normals, N would need to be estimated geometrically

170 M Computer Graphics Programming in OpenGL with Java, Third Edition

based on the locations of neighboring vertices. For the rest of the chapter, we will
assume that the model being rendered includes normal vectors for each vertex (this
is common in models constructed with modeling tools such as Maya or Blender).

It turns out that, in this case, it isn’t necessary to compute 0 itself. What we
really desire is cos(0), and recall from Chapter 3 that this can be found using the
dot product. Thus, the diffuse contribution can be computed as follows:

L ypise = Light . * Material ;. * (]/\\7 o Z)
The diffuse contribution is only relevant when the surface is exposed to the
light, which occurs when -90 < 6 < 90—that is, when cos(6) > 0. Thus we must

replace the rightmost term above with
max (N e L), 0)

Specular contribution determines whether the pixel being rendered should be
brightened because it is part of a “specular highlight.” It involves not only the angle
of incidence of the light source but also the angle between the reflection of the light
on the surface and the viewing angle of the “eye” relative to the object’s surface.

light

source \\\\

pixel

Figure 7.5
View angle incidence.

In Figure 7.5, R represents the direction of reflection of the light, and ¥ (called
the view vector) is a vector from the pixel to the eye. Note that V is the negative of
the vector from the eye to the pixel (in world space, the negative of the translation
component of the view vector minus the pixel location). The smaller the angle ¢
between R and 17, the more the eye is on-axis, or “looking into” the reflection, and
the more this pixel contributes to the specular highlight (and thus the brighter it
should appear).

Chapter 7 - Lighting I 171

The manner in which ¢ is used to compute the specular contribution depends
on the desired “shininess” of the object being rendered. Objects that are extremely
shiny, such as a mirror, have very small specular highlights—that is, they reflect the
incoming light to the eye exactly. Materials that are less shiny have specular high-
lights that are more “spread out,” and thus more pixels are a part of the highlight.

Shininess is generally modeled
with a falloff function that expresses T cos(@)
how quickly the specular contribu- - cos?(y)
tion reduces to zero as the angle ¢
grows. We can use cos(p) to model
falloff, and increase or decrease -
the shininess by using powers of ‘—i - cos(@)
the cosine function, such as cos(p),

Figure 7.6

2 3 10 50
COS ((P)a COS ((P)a Cos ((P): COs ((P)a and Shininess modeled as cosine exponent.
so on, as illustrated in Figure 7.6.

~ cos’()

Note that the higher the value of the exponent, the faster the falloff, and thus
the smaller the specular contribution of pixels with light reflections that are off-
axis from the viewing angle.

We call the exponent 7, as used in the cos”(p) falloff function, the shininess
factor for a specified material. Note back in Figure 7.3 that shininess factors for
each of the materials listed are specified in the rightmost column.

We now can specify the full specular calculation:

1 *max (0, (1?2 . 17)")

specular

= Light

specular

* Material

specular

Note that we use the max() function in a similar manner as we did for the
diffuse computation. In this case, we need to ensure that the specular contribu-
tion does not ever utilize negative values for cos(¢), which could produce strange
artifacts such as “darkened” specular highlights.

And of course as before, the actual computations involve red, green, and blue
components.

IMPLEMENTING ADS LIGHTING

The computations described in Section 7.4 have so far been mostly theo-
retical, as they have assumed that we can perform them for every pixel. This is

172 B Computer Graphics Programming in OpenGL with Java, Third Edition

complicated by the fact that normal (V) vectors are typically available to us only
for the vertices that define the models, not for each pixel. Thus we need to either
compute normals for each pixel, which could be time-consuming, or find some
way of estimating the values that we need to achieve a sufficient effect.

One approach is called “faceted shading” or “flat shading.” Here we assume
that every pixel in each rendered primitive (i.e., polygon or triangle) has the same
lighting value. Thus we need only do the lighting computations for one vertex in
each polygon in the model, and then copy those lighting values across the nearby
rendered pixels on a per-polygon or per-triangle basis.

Faceted shading is rarely used today,
because the resulting images tend to not
look very realistic and because modern
hardware makes more accurate computa-
tions feasible. An example of a faceted-
shaded torus, in which each triangle
behaves as a flat reflective surface, is
shown in Figure 7.7.

Figure 7.7 Although faceted shading can be ade-
Torus with faceted shading. . .

quate in some circumstances (or used as
a deliberate effect), usually a better approach is “smooth shading,” in which the
lighting intensity is computed for each pixel. Smooth shading is feasible because
of the parallel processing done on modern graphics cards and because of the inter-
polated rendering that takes place in the OpenGL graphics pipeline.

We will examine two popular methods for smooth shading: Gouraud shading
and Phong shading.

Gouraud Shading

The French computer scientist Henri Gouraud published a smooth shading
algorithm in 1971 that has come to be known as Gouraud shading [GOT1]. Tt is
particularly well suited to modern graphics cards, because it takes advantage of
the automatic interpolated rendering that is available in 3D graphics pipelines such
as in OpenGL. The process for Gouraud shading is as follows:

1. Determine the color of each vertex, incorporating the lighting
computations.

Chapter 7 - Lighting I 173

2. Allow those colors to be interpolated across intervening pixels through
the normal rasterization process (which will also in effect interpolate the
lighting contributions).

In OpenGL, this means that most of the lighting computations will be done
in the vertex shader. The fragment shader will simply be a pass-through, so as to
reveal the automatically interpolated lighted colors.

Figure 7.8 outlines the strategy we will use to implement our Gouraud shader
in OpenGL, for a scene with a torus and one positional light. The strategy is then
implemented in Program 7.1.

JOGL (Java) code Vertex shader Frag. shader
1. compute vectors
Placed into buffers: N, L V,and R
1. model vertices for this vertex ; ;
2. vertex normals Incoming
» 2. compute A,D,S » interpolated:
Placed into uniform variables: contributions) COIO.;.
1. mv & proj matrix transforms 3. output attributes: - position
2. lighting and material characteristics - lighted color
- gl_position
Figure 7.8

Implementing Gouraud shading.

Program 7.1 Torus with Positional Light and Gouraud Shading

public class Code extends JFrame implements GLEventListener

{ private GLCanvas myCanvas;
// declarations for building shaders and rendering program, as before.
// declaration of one VAO, two VBOs, Torus object, and Torus and camera location as before.
// Utils.java class now has gold, silver, and bronze material accessors added.

// allocate variables for display() function
private FloatBuffer vals = Buffers.newDirectFloatBuffer(16);

private Matrix4f pMat = new Matrix4f(); // perspective matrix
private Matrix4f vMat = new Matrix4f(); // view matrix
private Matrix4f mMat = new Matrix4f(); // model matrix

private Matrix4f invTrMat = new Matrix4f(); // inverse-transpose matrix for converting normals

private int mLoc, vLoc, pLoc, nLoc;
private int globalAmbLoc, ambLoc, diffLoc, specLoc, posLoc,
mAmbLoc, mDiffLoc, mSpecLoc, mShiLoc; // locations of shader uniform variables

174 B Computer Graphics Programming in OpenGL with Java, Third Edition

private Vector3f currentLightPos = new Vector3f(); // current light position as Vector3f
private float[] lightPos = new float[3]; // current light position as float array

// initial light location
private Vector3f initialLightLoc = new Vector3f(5.0f, 2.0f, 2.0f);

// properties of white light (global and positional) used in this scene
float[] globalAmbient = new float[] { 0.6f, 0.6f, 0.6f, 1.0f };

float[] lightAmbient = new float[] { 0.1f, 0.1f, 0.1f, 1.0f };

float[] lightDiffuse = new float[] { 1.0f, 1.0f, 1.0f, 1.0f };

float[] lightSpecular = new float[] { 1.0f, 1.0f, 1.0f, 1.0 };

// gold material properties

float[] matAmb = Utils.goldAmbient();
float[] matDif = Utils.goldDiffuse();
float[] matSpe = Utils.goldSpecular();
float matShi = Utils.goldShininess();

private void setupVertices()
{ ...
// This function is unchanged from the previous chapter.

// The following portion is repeated for clarity, because we now will actually use the normals vectors:
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[2]);

FloatBuffer norBuf = Buffers.newDirectFloatBuffer(nvalues);
gl.glBufferData(GL_ARRAY_BUFFER, norBuf.limit()*4, norBuf, GL_STATIC_DRAW);

}

public void display(GLAutoDrawable drawable)
{ 7 setup of GL4 object, clearing of depth buffer, and load rendering program as in earlier examples.

mLoc = gl.glGetUniformLocation(renderingProgram, "m_matrix");
vLoc = gl.glGetUniformLocation(renderingProgram, "v_matrix");
pLoc = gl.glGetUniformLocation(renderingProgram, "p_matrix");
nLoc = gl.glGetUniformLocation(renderingProgram, "norm_matrix");

// setup of projection and view matrices as in earlier examples.

// build the MODEL matrix based on the torus location
mMat.translation(torusLoc.x(), torusLoc.y(), torusLoc.z());
mMat.rotateX((float)Math.toRadians(35.0f)); // rotate the torus to make it easier to see

// set up lights
currentLightPos.set(initialLightLoc);
installLights();

}

Chapter 7 - Lighting I 175

// build the inverse-transpose of the MV matrix, for transforming normal vectors
mMat.invert(invTrMat);
invTrMat.transpose(invTrMat);

// put the MV, PROJ, and Inverse-transpose(normal) matrices into the corresponding uniforms
gl.glUniformMatrix4fv(mLoc, 1, false, mMat.get(vals));

gl.glUniformMatrix4fv(vLoc, 1, false, vMat.get(vals));

gl.glUniformMatrix4fv(pLoc, 1, false, pMat.get(vals));

gl.glUniformMatrix4fv(nLoc, 1, false, invTrMat.get(vals));

// bind the vertices buffer (VBO #0) to vertex attribute #0 in the vertex shader
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);

gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);

// bind the normals buffer (in VBO #2) to vertex attribute #1 in the vertex shader
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[2]);

gl.glVertexAttribPointer(1, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(1);

gl.glEnable(GL_CULL_FACE);

gl.glFrontFace(GL_CCW);

gl.glEnable(GL_DEPTH_TEST);

gl.glDepthFunc(GL_LEQUAL);
gl.gIBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);
gl.glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

private void installLights()

{

GL4 gl = (GL4) GLContext.getCurrentGL();

// save the light position in a float array
lightPos[0]=currentLightPos.x();
lightPos[1]=currentLightPos.y();
lightPos[2]=currentLightPos.z();

// get the locations of the light and material fields in the shader

globalAmbLoc = gl.glGetUniformLocation(renderingProgram, "globalAmbient");
ambLoc = gl.glGetUniformLocation(renderingProgram, "light.ambient");

diffLoc = gl.glGetUniformLocation(renderingProgram, "light.diffuse");

specLoc = gl.glGetUniformLocation(renderingProgram, "light.specular");
posLoc = gl.glGetUniformLocation(renderingProgram, "light.position");
mAmbLoc = gl.glGetUniformLocation(renderingProgram, "material.ambient");
mDiffLoc = gl.glGetUniformLocation(renderingProgram, "material.diffuse");
mSpecLoc = gl.glGetUniformLocation(renderingProgram, "material.specular");
mShiLoc = gl.glGetUniformLocation(renderingProgram, "material.shininess");

176 B Computer Graphics Programming in OpenGL with Java, Third Edition

// set the uniform light and material values in the shader
gl.glProgramUniform4fv(renderingProgram, globalAmbLoc, 1, globalAmbient, 0);
gl.glProgramUniform4fv(renderingProgram, ambLoc, 1, lightAmbient, 0);
gl.glProgramUniform4fv(renderingProgram, diffLoc, 1, lightDiffuse, 0);
gl.glProgramUniform4fv(renderingProgram, specLoc, 1, lightSpecular, 0);
gl.glProgramUniform3fv(renderingProgram, posLoc, 1, lightPos, 0);
gl.glProgramUniform4fv(renderingProgram, mAmbLoc, 1, matAmb, 0);
gl.glProgramUniform4fv(renderingProgram, mDiffLoc, 1, matDif, 0);
gl.glProgramUniform4fv(renderingProgram, mSpecLoc, 1, matSpe, 0);
gl.glProgramUniform1f(renderingProgram, mShiLoc, matShi);

}

// init(), constructor, main(), dispose() and reshape() are all the same as before.

= A=A A A A

}

Most of the elements of Program 7.1 should be familiar. The torus, light, and
materials properties are defined. Torus vertices and associated normals are loaded
into buffers. The display() function is similar to that in previous programs, except
that it also sends the light and material information to the vertex shader. To do
this, it calls installLights(), which loads the light location and light and material ADS
characteristics into corresponding uniform variables to make them available to the
shaders. Note that we declared these uniform location variables ahead of time, for
performance reasons.

An important detail is that the transformation matrix M, used to move vertex
positions into world space, doesn’t always properly adjust normal vectors into
world space. Simply applying the M matrix to the normals doesn’t guarantee that
they will remain perpendicular to the object surface. The correct transformation
is the inverse transpose of M, as described earlier in the supplemental notes to
Chapter 3. In Program 7.1, this additional matrix, named “invirMat,” is sent to the
shaders in a uniform variable.

The variable lightPos contains the light’s position, but as a float array. This
facilitates sending the light’s world location to the vertex shader as a uniform.

The shaders are shown in the following continuation of program 7.1. The
vertex shader utilizes some notations that we haven’t yet seen. Note for example
the vector addition done at the end of the vertex shader—vector addition (and
subtraction) was shown in Chapter 3 and is available as shown here in GLSL.
We will discuss some of the other notations after presenting the shaders.

Program 7.1 (continued)
Vertex Shader

#version 430

layout (location=0) in vec3 vertPos;
layout (location=1) in vec3 vertNormal;
out vec4 varyingColor;

struct PositionalLight
{ vecd ambient;

vecd diffuse;

vecd specular;

vec3 position;
3
struct Material
{ vecd ambient;

vecd diffuse;

vecd specular;

float shininess;
3
uniform vec4 globalAmbient;
uniform PositionalLight light;
uniform Material material;
uniform mat4 m_matrix;
uniform mat4 v_matrix;
uniform mat4 p_matrix;
uniform mat4 norm_matrix; // for transforming normals

void main(void)
{ vec4 color;

// convert vertex position to view space,

// convert normal to view space, and

// calculate view space light vector (from vertex to light)

vecd P = m_matrix * vecéd(vertPos, 1.0);

vec3 N = normalize((norm_matrix * vecd(vertNormal,1.0)).xyz);
vec3 L = normalize(light.position - P.xyz);

// view vector is from vertex to camera, camera loc is extracted
vec3 V = normalize(-v_matrix[3].xyz - P.xyz);

/| R is reflection of -L with respect to surface normal N
vec3 R = reflect(-L,N);

// ambient, diffuse, and specular contributions

Chapter 7 - Lighting I 177

from view matrix

vec3 ambient = ((globalAmbient * material.ambient) + (light.ambient * material.ambient)).xyz;

178 M Computer Graphics Programming in OpenGL with Java, Third Edition

vec3 diffuse = light.diffuse.xyz * material.diffuse.xyz * max(dot(N,L), 0.0);
vec3 specular =
material.specular.xyz * light.specular.xyz * pow(max(dot(R,V), 0.0f), material.shininess);

// send the color output to the fragment shader
varyingColor = vec4((ambient + diffuse + specular), 1.0);

// send the position to the fragment shader, as before
gl_Position = p_matrix * v_matrix * m_matrix * vec4(vertPos,1.0);

Fragment Shader

#version 430
in vec4 varyingColor;
out vec4 fragColor;

// uniforms match those in the vertex shader,
// but are not used directly in this fragment shader

struct PositionalLight
{ vec4 ambient;

vecs diffuse;

vecd specular;

vec3 position;
3
struct Material
{ vec4 ambient;

vecs diffuse;

vecd specular;

float shininess;
3
uniform vec4 globalAmbient;
uniform PositionalLight light;
uniform Material material;
uniform mat4 m_matrix;
uniform mat4 v_matrix;
uniform mat4 p_matrix;
uniform mat4 norm_matrix;

void main(void)
{ fragColor = varyingColor;
}

Chapter 7 - Lighting Il 179

The output of Program 7.1 is shown
in Figure 7.9.

The vertex shader contains our first
example of using the struct notation. A
GLSL “struct” is like a datatype; it has a
name and a set of fields. When a variable
is declared using the name of a struct, it
then contains those fields, which are
accessed using the “.” notation. For exam- Figure 7.9
ple, variable “light” is declared of type forts wih Bouraud shadng
“PositionalLight” so we can thereafter refer to its fields light.ambient, light.diffuse, and

so forth.

Also note the field selector notation “.Xyz” that is used in several places in
the vertex shader. This is a shortcut for converting a vec4 to an equivalent vec3
containing only its first three elements.

The vertex shader is where most of the lighting computations are performed.
For each vertex, the appropriate matrix transforms are applied to the vertex posi-
tion and associated normal vector, and vectors for light direction (L) and reflec-
tion (R) are computed. The ADS computations described in Section 7.4 are then
performed, resulting in a color for each vertex (called varyingColor in the code).
The colors are interpolated as part of the normal rasterization process. The frag-
ment shader is then a simple pass-through. The lengthy list of uniform variable
declarations is also present in the fragment shader (for reasons described earlier in
Chapter 4), but none of them are actually used there.

Note the use of the GLSL functions normalize(), which converts a vector to
unit length and is necessary for proper application of the dot product, and reflect(),
which computes the reflection of one vector about another.

Artifacts are evident in the output torus shown in Figure 7.9. Specular high-
lights have a blocky, faceted appearance. This artifact is more pronounced if the
object is in motion (we can’t illustrate that here).

Gouraud shading is susceptible to other artifacts. If the specular highlight is
entirely contained within one of the model’s triangles—that is, if it doesn’t contain
at least one of the model vertices—then it may disappear entirely. The specular
component is calculated per-vertex, so if a model vertex with a specular contribu-
tion does not exist, none of the rasterized pixels will include specular light either.

180 M Computer Graphics Programming in OpenGL with Java, Third Edition

Phong Shading

Bui Tuong Phong developed a smooth shading algorithm while a graduate stu-
dent at the University of Utah and described it in his 1973 dissertation [PH73] and
published it in [PH75]. The structure of the algorithm is similar to the algorithm
for Gouraud shading, except that the lighting computations are done per-pixel
rather than per-vertex. Since the lighting computations require a normal vector N
and a light vector L, which are only available in the model on a per-vertex basis,
Phong shading is often implemented using a clever “trick,” whereby N and L are
computed in the vertex shader and interpolated during rasterization. Figure 7.10
outlines the strategy.

JOGL (Java) code Vertex shader Fragment shader
1. compute: 1. incoming
vectors N,L,V interpolated:
(same as for Gouraud shading) » 2. output attributes: » N LV
N LV 2. compute:
gl_position R 6 ¢
3. compute ADS
contributions
4. output color

Figure 7.10
Implementing Phong shading.

The Java/JOGL code is completely unchanged. Some of the computations
previously done in the vertex shader are now moved into the fragment shader. The
effect of interpolating normal vectors is illustrated in Figure 7.11.

Figure 7.11
Interpolation of normal vectors.

Chapter 7 - Lighting I 181

We now are ready to implement our
torus with positional lighting, using Phong
shading. Most of the code is identical to
that used for Gouraud shading. Since the
Java/JOGL code is unchanged, we present
only the revised vertex and fragment shad-
ers, shown in Program 7.2. Examining the
output of Program 7.2, as shown in Figure
7.12, Phong shading corrects the artifacts

. . Figure 7.12
present in Gouraud shading. Torus with Phong shading.

Program 7.2 Torus with Phong Shading
Vertex Shader

#version 430

layout (location=0) in vec3 vertPos;

layout (location=1) in vec3 vertNormal;

out vec3 varyingNormal; // eye-space vertex normal
out vec3 varyingLightDir; // vector pointing to the light
out vec3 varyingVertPos; // vertex position in eye space

// structs and uniforms same as for Gouraud shading

void main(void)

{ 7/ output vertex position, light direction, and normal to the rasterizer for interpolation
varyingVertPos=(m_matrix * vec4(vertPos,1.0)) xyz;
varyingLightDir = light.position - varyingVertPos;
varyingNormal=(norm_matrix * vec4(vertNormal,1.0)).xyz;

gl_Position = p_matrix * v_matrix * m_matrix * vec4(vertPos,1.0);

Fragment Shader

#version 430

in vec3 varyingNormal;
in vec3 varyingLightDir;
in vec3 varyingVertPos;
out vec4 fragColor;

// structs and uniforms same as for Gouraud shading

182 M Computer Graphics Programming in OpenGL with Java, Third Edition

void main(void)
{ // normalize the light, normal, and view vectors:
vec3 L = normalize(varyingLightDir);
vec3 N = normalize(varyingNormal);
vec3 V = normalize(-v_matrix[3].xyz - varyingVertPos);

// compute light reflection vector with respect to N:
vec3 R = normalize(reflect(-L, N));

// get the angle between the light and surface normal:
float cosTheta = dot(L,N);

// angle between the view vector and reflected light:
float cosPhi = dot(V,R);

// compute ADS contributions (per pixel), and combine to build output color:
vec3 ambient = ((globalAmbient * material.ambient) + (light.ambient * material.ambient)).xyz;
vec3 diffuse = light.diffuse.xyz * material.diffuse.xyz * max(cosTheta,0.0);
vec3 specular =
light.specular.xyz * material.specular.xyz * pow(max(cosPhi,0.0), material.shininess);

fragColor = vec4((ambient + diffuse + specular), 1.0);

Although Phong shading offers better realism than Gouraud shading, it does
so while incurring a performance cost. One optimization to Phong shading was
proposed by James Blinn in 1977 [BL77] and is referred to as the Blinn-Phong
reflection model. It is based on the observation that one of the most expensive
computations in Phong shading is determining the reflection vector R.

Blinn observed that the vector R itself actually is not needed—R is only pro-
duced as a means of determining the angle ¢. It turns out that ¢ can be found
without computing R, by instead comput-
ing a vector H that is halfway between L
and V. As shown in Figure 7.13, the angle
o between A and N is usually close to
Ya(@). Although o isn’t identical to ¢, Blinn
showed that good results can be obtained
by using a instead of ¢.

The “halfway” vector H is most easily
determined by finding L+ (see Figure
7.14), after which cos(a) can be found

Figure 7.13 .
Blinn-Phong reflection. using the dot product H e N.

Chapter 7 - Lighting Il 183

Figure 7.14 Figure 7.15
Blinn-Phong computation. Torus with Blinn-Phong shading.

The computations can be done in the fragment shader, or even in the vertex
shader (with some tweaks) if necessary for performance. Figure 7.15 shows the
torus rendered using Blinn-Phong shading; the quality is largely indistinguishable
from Phong shading, with substantial performance cost savings.

Program 7.3 shows the revised vertex and fragment shaders for converting the
Phong shading example shown in Program 7.2 to Blinn-Phong shading. As before,
there is no change to the Java/JOGL code.

Program 7.3 Torus with Blinn-Phong Shading
Vertex Shader

/| half-vector "H" is an additional output varying
out vec3 varyingHalfVector;
void main(void)
{ // computations same as before, plus the following that computes L+V
varyingHalfVector = normalize(normalize(varyingLightDir) + normalize(-varyingVertPos)).xyz;

// (the rest of the vertex shader is unchanged)

}

Fragment Shader

in vec3 varyingHalfVector;

184 M Computer Graphics Programming in OpenGL with Java, Third Edition

void main(void)
{ / note that it is no longer necessary to compute R in the fragment shader
vec3 L = normalize(varyingLightDir);
vec3 N = normalize(varyingNormal);
vec3 V = normalize(-v_matrix[3].xyz - varyingVertPos);
vec3 H = normalize(varyingHalfVector);

// get angle between the normal and the halfway vector
float cosPhi = dot(H,N);

// halfway vector H was computed in the vertex shader, and then interpolated by the rasterizer
vec3 ambient = ((globalAmbient * material.ambient) + (light.ambient * material.ambient)).xyz;
vec3 diffuse = light.diffuse.xyz * material.diffuse.xyz * max(cosTheta,0.0);
vec3 specular =
light.specular.xyz * material.specular.xyz * pow(max(cosPhi,0.0), material.shininess*3.0);
// the multiplication by 3.0 at the end is a "tweak" to improve the specular highlight.
fragColor = vecd((ambient + diffuse + specular), 1.0);

Studio 522 Dolphin :
g Figure 7.16 shows two

examples of the effect of Phong
shading on more complex
externally generated models.
The top image shows a render-
ing of an OBJ model of a dol-
phin created by Jay Turberville
at Studio 522 Productions
[TU18]. The bottom image is
a rendering of the well-known
“Stanford Dragon,” the result
of a 3D scan done in 1996 of
an actual figurine [ST14]. Both
models were rendered using
the “gold” material we placed
in our “Utilsjava” class. The
Stanford dragon is widely used
for testing graphics algorithms
and hardware because of its
size—it contains over 800,000

Stanford Dragon
871,167 triangles

Figure 7.16 .
External models with Phong shading. trlangles.

Chapter 7 - Lighting Il 185

COMBINING LIGHTING AND TEXTURES

So far, our lighting model has assumed that we are using lights with specified
ADS values to illuminate objects made of material that has also been defined with
ADS values. However, as we saw in Chapter 5, some objects may instead have
surfaces defined by texture images. Therefore, we need a way of combining colors
retrieved by sampling a texture and colors produced from a lighting model.

The manner in which we combine lighting and textures depends on the nature
of the object and the purpose of its texture. There are several scenarios, including
the following:

* The texture image very closely reflects the actual appearance of the
object’s surface.

* The object has both a material and a texture.

* The texture contains shadow or reflection information (covered in
Chapters 8 and 9).

e There are multiple lights and/or multiple textures involved.

Let’s consider the first case, where we have a simple textured object and we
wish to add lighting to it. One simple way of accomplishing this in the fragment
shader is to remove the material specification entirely and to use the texel color
returned from the texture sampler in place of the material ADS values. The fol-
lowing is one such strategy (expressed in pseudocode):

fragColor = textureColor * (ambientLight + diffuseLight) + specularLight

Here the texture color contributes to the ambient and diffuse computation,
while the specular color is defined entirely by the light. It is common to set the
specular contribution solely based on the light color, especially for metallic or
“shiny” surfaces. However, some less shiny surfaces, such as cloth or unvarnished
wood (and even a few metals, such as gold) have specular highlights that include
the color of the object surface. In those cases, a suitable slightly modified strategy
would be

fragColor = textureColor * (ambientLight + diffuseLight + specularLight)

There are also cases in which an object has an ADS material that is supple-
mented by a texture image, such as an object made of silver that has a texture that
adds some tarnish to the surface. In those situations, the standard ADS model with

186 M Computer Graphics Programming in OpenGL with Java, Third Edition

both light and material, as described in previous sections, can be combined with
the texture color using a weighted sum. For example:

textureColor = texture(sampler, texCoord)
lightColor = (ambLight * ambMaterial) + (diffLight * diffMaterial) + specLight
fragColor = 0.5 * textureColor + 0.5 * lightColor

This strategy for combining lighting, materials, and textures can be extended
to scenes involving multiple lights and/or multiple textures. For example:

texture1Color = texture(sampler1, texCoord)
texture2Color = texture(sampler2, texCoord)
light1Color = (ambLight1 * ambMaterial) + (diffLight1 * diffMaterial) + specLight1
light2Color = (ambLight2 * ambMaterial) + (diffLight2 * diffMaterial) + specLight2
fragColor = 0.25 * texture1Color

+ (.25 * texture2Color

+ 0.25 * light1Color

+ 0.25 * light2Color

Figure 7.17 shows the Studio 522 dolphin with a UV-mapped texture image
(produced by Jay Turberville [TU18]) and the NASA shuttle model we saw earlier
in Chapter 6. Both textured models are enhanced with Blinn-Phong lighting, with-
out the inclusion of materials, and with specular highlights that utilize light only.
In both cases, the relevant output color computation in the fragment shader is

vec4 texColor = texture(sampler, texCoord);
fragColor = texColor * (globalAmbient + lightAmb + lightDiff * max(dot(L,N),0.0))
+ lightSpec * pow(max(dot(H,N),0.0), matShininess*3.0);

Note that it is possible for the computation that determines fragColor to pro-
duce values greater than 1.0. When that happens, OpenGL clamps the computed
value to 1.0.

SUPPLEMENTAL NOTES

The faceted-shaded torus shown in Figure 7.7 was created by adding the “flat”
interpolation qualifier to the corresponding normal vector vertex attribute dec-
larations in the vertex and fragment shaders. This instructs the rasterizer to not
perform interpolation on the specified variable, and instead assign the same value

Chapter 7 - Lighting I 187

Figure 7.17
Combining lighting and textures.

for each fragment (by default it chooses the value associated with the first vertex
in the triangle). In the Phong shading example, this could be done as follows:

flat out vec3 varyingNormal; in the vertex shader, and
flat in vec3 varyingNormal; in the fragment shader.

An important kind of light source that we haven’t discussed is a distributed
light or area light, which is a light that is characterized by having a source that
occupies an area rather than being a single point location. A real-world example

188 M Computer Graphics Programming in OpenGL with Java, Third Edition

would be a fluorescent tube-style light commonly found in an office or classroom.
Interested readers can learn about such lighting details in [MH18].

HISTORICAL NOTE

We took the liberty of oversimplifying some of the terminology in this chapter,
with respect to the contributions of Gouraud and Phong. Gouraud is credited with
Gouraud shading—the notion of generating a smoothly curved surface appear-
ance by computing light intensities at vertices and allowing the rasterizer to inter-
polate these values (sometimes called “smooth shading”). Phong is credited with
Phong shading, another form of smooth shading that instead interpolates normals
and computes lighting per-pixel. Phong is also credited with pioneering the suc-
cessful incorporation of specular highlights into smooth shading. For this reason,
the ADS lighting model, when applied to computer graphics, is often referred to
as the Phong Reflection Model. So our example of Gouraud shading is, more accu-
rately, Gouraud shading with a Phong reflection model. Since Phong’s reflection
model has become so ubiquitous in 3D graphics programming, it is common to
demonstrate Gouraud shading in the presence of Phong reflection, although it is a
bit misleading because Gouraud’s original 1971 work did not, for example, include
any specular component.

Exercises

7.1 (PROJECT) Modify Program 7.1 so that the light can be positioned by moving
the mouse. After doing this, move the mouse around and note the movement
of the specular highlight and the appearance of the Gouraud shading artifacts.
You may find it convenient to render a point (or small object) at the location of
the light source.

7.2 Repeat Exercise 7.1, but applied to Program 7.2. This should only require
substituting the shaders for Phong shading into your solution to Exercise
7.1. The improvement from Gouraud to Phong shading should be even more
apparent here, when the light is being moved around.

7.3 (PROJECT) Modify Program 7.2 so that it incorporates TWO positional lights,
placed in different locations. The fragment shader will need to blend the
diffuse and specular contributions of each of the lights. Try using a weighted

Chapter 7 - Lighting Il 189

sum, similar to the one shown in Section 7.6. You can also try simply adding
them and clamping the result so it doesn’t exceed the maximum light value.

7.4 (RESEARCH AND PROJECT) Replace the positional light in Program 7.2
with a “spot” light, as described in Section 7.2. Experiment with the settings
for cutoff angle and falloff exponent, and observe the effects.

References

[BA20] N.Barradeu, accessed March 2021, http://www.barradeau.com/nicoptere/
dump/materials.html

[BL77] J.Blinn, “Models of Light Reflection for Computer Synthesized Pictures,”
Proceedings of the 4th Annual Conference on Computer Graphics and
Interactive Techniques, 1977.

[DI21] Luxo Jr. (Pixar, © Disney), accessed March 2021, https://www.pixar.com/
luxo-jr

[GO71] H. Gouraud, “Continuous Shading of Curved Surfaces,” IEEE Transactions

on Computers C-20, no. 6 (June 1971).

[MH18] T. Akenine-Moller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and

[PH73]

[PH75]

[ST14]

[TUI1S]

S. Hillaire, Real-Time Rendering, 4th ed. (A. K. Peters / CRC Press 2018).

B. Phong, “Illumination of Computer-Generated Images” (PhD thesis,
University of Utah, 1973).

B. Phong, “Illumination for Computer Generated Pictures,”
Communications of the ACM 18, no. 6 (June 1975): 311-317.

The Stanford 3D Scanning Repository, accessed March 2021, http://
graphics.stanford.edu/data/3Dscanrep/

J. Turberville, Studio 522 Productions, Scottsdale, AZ, www.studio522.com
(dolphin model developed March 2021).

CHAPTER 8

SHADOWS

8.1 The Importance of Shadows i 191
8.2 Projective Shadows 192
8.3 Shadow Volumes. 193
84 Shadow Mapping 194
8.5 A Shadow Mapping Example 201
8.6 Shadow Mapping Artifacts 208
8.7 Soft Shadows. 210

Supplemental Notes i 218

THE IMPORTANCE OF SHADOWS

In Chapter 7, we learned how to add lighting to our 3D scenes. However, we
didn’t actually add light—instead, we simulated the effects of light on objects—
using the ADS model-—and modified how we drew those objects accordingly.

The limitations of this approach become apparent when we use it to light more
than one object in the same scene. Consider the scene in Figure 8.1, which includes
both our brick-textured torus and a ground plane (the ground plane is the top of a
giant cube with a grass texture from [LU16]).

At first glance our scene may appear
reasonable. However, closer examination
reveals that there is something very impor-
tant missing. In particular, it is impossible to
discern the distance between the torus and
the large textured cube below it. Is the torus
floating above the cube, or is it resting on top

Figure 8.1
Scene without shadows. of the cube?

192 B Computer Graphics Programming in OpenGL with Java, Third Edition

The reason we cannot answer this question is due to the lack of shadows in the
scene. We expect to see shadows, and our brain uses shadows to help build a more
complete mental model of the objects we see and where they are located.

Consider the same scene, shown in Figure 8.2, with shadows incorporated. It
is now obvious that the torus is resting on the ground plane in the left example and
floating above it in the right example.

Figure 8.2
Lighting with shadows.

E¥*E PROJECTIVE SHADOWS

A variety of interesting methods have been devised for adding shadows to
3D scenes. One method that is well suited to drawing shadows on a ground plane
(such as our image in Figure 8.1) and relatively computationally inexpensive is
called projective shadows. Given a point light source position (X, Y;, Z)), an object
to render, and a plane on which the object’s shadow is to be cast, it is possible to
derive a transformation matrix that will convert points (X, Yy, Z4) on the object
to corresponding shadow points (Xg, 0, Zg) on the plane. The resulting “shadow
polygon” is then drawn, typically as a dark object blended with the texture on the
ground plane, as illustrated in Figure 8.3.

The advantages of projective shadow casting are its efficiency and simplic-
ity of implementation. However, it only works on a flat plane—the method can’t
be used to cast shadows on a curved surface or on other objects. It is still useful
for performance-intensive applications involving outdoor scenes, such as in many
video games.

Development of projective shadow transformation matrices is discussed in

[AS14], [BL88], and [KS16].

Light (xLyL.zL)

Chapter 8 - Shadows H 193

original polygon

Figure 8.3
Projective shadow.

SHADOW VOLUMES

Another important method, proposed by Crow in 1977, is to identify the
spatial volume shadowed by an object, and reduce the color intensity of poly-
gons inside the intersection of the shadow volume with the view volume [CR77].
Figure 8.4 shows a cube in a shadow volume, so the cube would be drawn

darker.

Shadow volumes have the
advantage of being highly accu-
rate, with fewer artifacts than other
methods. However, finding the
shadow volume, and then comput-
ing whether each polygon is inside
of'it, is computationally expensive
even on modern GPU hardware.
Geometry shaders can be used to
generate shadow volumes, and
the stencil buffer' can be used
to determine whether a pixel is
within the volume. Some graphics
cards include hardware support for
optimizing certain shadow volume
operations.

4 Q Shadow-generating object

Figure 8.4
Shadow volume.

' The stencil buffer is a third buffer—along with the color buffer and the z-buffer—accessible
through OpenGL. The stencil buffer is not described in this textbook.

194 B Computer Graphics Programming in OpenGL with Java, Third Edition

EXE SHADOW MAPPING

One of the most practical and popular methods for casting shadows is called
shadow mapping. Although it is not always as accurate as shadow volumes (and
is often accompanied by pesky artifacts), shadow mapping is easier to imple-
ment, can be used in a wide variety of situations, and enjoys powerful hardware
support.

We would be remiss if we failed to clarify our use of the word easier in the
previous paragraph. Although shadow mapping is simpler than shadow volumes
(both conceptually and in practice), it is by no means “easy”! Students often find
shadow mapping among the most difficult techniques to implement in a 3D graph-
ics course. Shader programs are by nature difficult to debug, and shadow mapping
requires the perfect coordination of several components and shader modules. Be
advised that successful implementation of shadow mapping will be greatly facili-
tated by liberal use of the debugging tools described earlier in Section 2.2.

Shadow mapping is based on a very simple and clever idea—namely, anything
that cannot be seen by the /ight is in shadow. That is, if object #1 blocks the light
from reaching object #2, it is the same as the light not being able to “see” object #2.

The reason this idea is so powerful is that we already have a method for
determining if something can be “seen”—the hidden surface removal algorithm
(HSR) using the Z-buffer, as described in Section 2.1.7. So a strategy for finding
shadows is to temporarily move the camera to the location of the light, apply the
Z-buffer HSR algorithm, and then use the resulting depth information to find
shadows.

Rendering our scene will require two passes: one to render the scene from the
point of view of the light (but not actually drawing it to the screen) and a second
pass to render it from the point of view of the camera. The purpose of pass one is
to generate a Z-buffer from the light’s point of view. After completing pass one,
we need to retain the Z-buffer and use it to help us generate shadows in pass two.
Pass two actually draws the scene.

Our strategy is now becoming more refined:

» (Pass 1) Render the scene from the light’s position. The depth buffer then
contains, for each pixel, the distance between the light and the nearest
object to it.

» Copy the depth buffer to a separate “shadow buffer.”

Chapter 8 - Shadows H 195

» (Pass 2) Render the scene normally. For each pixel, look up the corresponding
position in the shadow buffer. If the distance to the point being rendered is
greater than the value retrieved from the shadow buffer, then the object being
drawn at this pixel is further from the light than the object nearest the light, and
therefore this pixel is in shadow.

When a pixel is found to be in shadow, we need to make it darker. One simple
and effective way of doing this is to render only its ambient lighting, ignoring its
diffuse and specular components.

The method described above is often called “shadow buffering.” The term
“shadow mapping” arises when, in the second step, we instead copy the depth
buffer into a texture. When a texture object is used in this way, we will refer to it
as a shadow texture, and OpenGL has support for shadow textures in the form of
a sampler2DShadow type (discussed below). This allows us to leverage the power of
hardware support for texture units and sampler variables (i.e., “texture mapping”)
in the fragment shader to quickly perform the depth lookup in pass 2. Our strategy
now is revised:

» (Pass 1) as before.
» Copy the depth buffer into a texture.
» (Pass 2) as before, except that the shadow buffer is now a shadow texture.

Let’s now implement these steps.

Shadow Mapping (Pass One)—*“Draw” Objects
from Light Position

In step one, we first move our camera to the light’s position, and then ren-
der the scene. Our goal here is not to actually draw the scene on the display,
but to complete just enough of the rendering process that the depth buffer is
properly filled. Thus it will not be necessary to generate colors for the pixels,
and so our first pass will utilize a vertex shader, but the fragment shader does
nothing,.

Of course, moving the camera involves constructing an appropriate view
matrix. Depending on the contents of the scene, we will need to decide on an
appropriate direction to view the scene from the light. Typically, we would
want this direction to be toward the region that would ultimately be rendered in

196 B Computer Graphics Programming in OpenGL with Java, Third Edition

step 3. This is often application specific—in our scenes, we will generally be
pointing the camera from the light to the origin.

Several important details need to be handled in pass one:

* Configure the buffer and shadow texture.

* Disable color output.

e Build a look-at matrix from the light toward the objects in view.

* Enable the GLSL pass one shader program, containing only the simple
vertex shader shown in Figure 8.5 that expects to receive an MVP matrix.
In this case, the MVP matrix will include the object’s model matrix M, the
look-at matrix computed in the previous step (serving as the view matrix V),
and the perspective matrix P. We call this MVP matrix “shadowMVP”
because it is based on the point of view of the light rather than the camera.
Since the view from the light isn’t actually being displayed, the pass one
shader program’s fragment shader doesn’t do anything.

» For each object, create the shadowMVP matrix, and call glDrawArrays().
It is not necessary to include textures or lighting in pass one, because
objects are not rendered to the screen.

#version 430 // vertex shader
layout (location=0) in vec3 vertPos;
uniform mat4 shadowMVP;

void main(void)
{ gl_Position = shadowMVP * vec4(vertPos,1.0);
}

#version 430 // fragment shader
void main(void) {}

Figure 8.5
Shadow mapping pass 1 vertex and fragment shaders.

EX¥H Shadow Mapping (Intermediate Step)—Copying the
Z-Buffer to a Texture

OpenGL offers two methods for putting Z-buffer depth data into a texture unit.
The first method is to generate an empty shadow texture, and then use the com-
mand glCopyTeximage2D() to copy the active depth buffer into the shadow texture.

Chapter 8 - Shadows W 197

The second method is to build a “custom framebuffer” back in pass one
(rather than use the default Z-buffer) and attach the shadow texture to it using
the command glFrameBufferTexture(). This command was introduced into OpenGL,
in version 3.0, to further support shadow mapping. When using this approach, it
isn’t necessary to “copy” the Z-buffer into a texture, because the buffer already
has a texture attached to it, and so the depth information is put into the texture
by OpenGL automatically. This is the method we will use in our implementation.

EXXH Shadow Mapping (Pass Two)—Rendering the
Scene with Shadows

Much of pass two will resemble what we saw in Chapter 7. Namely, it is here
that we render our complete scene and all of the items in it, along with the light-
ing, materials, and any textures adorning the objects in the scene. We also need to
add the necessary code to determine, for each pixel, whether or not it is in shadow.

An important feature of pass two is that it utilizes two MVP matrices. One is the
standard MVP matrix that tranforms object coordinates into screen coordinates (as
seen in most of our previous examples). The other is the shadowMVP matrix that was
generated in pass one for use in rendering from the light’s point of view—this will
now be used in pass two for looking up depth information from the shadow texture.

A complication arises in pass two when we try to look up pixels in a tex-
ture map. The OpenGL camera utilizes a [-1..+1] coordinate space, whereas texture
maps utilize a [0..1] space. A common solution is to build an additional matrix
transform, typically called B, that converts (or “biases,” hence the name) from
camera space to texture space. Deriving B is fairly simple—a scale by one-half
followed by a translate by one-half.

The B matrix is as follows:

Bis then concatenated onto the shadowMVP matrix for use in pass two, as follows:

shadowMVP2 = [B] [shadowMVP ;1))

198 B Computer Graphics Programming in OpenGL with Java, Third Edition

Assuming that we use the method whereby a shadow texture has been attached
to our custom framebuffer, OpenGL provides some relatively simple tools for
determining whether each pixel is in shadow as we draw the objects. The follow-
ing is a summary of the details handled in pass two:

Build the “B” transform matrix for converting from light to texture space
(actually this is more appropriately done in init()).

Enable the shadow texture for look-up.
Enable color output.

Enable the GLSL pass two rendering program, containing both vertex
and fragment shaders.

Build MVP matrix for the object being drawn based on the camera
position (as normal).

Build the shadowMVP2 matrix (incorporating the B matrix, as described
earlier)—the shaders will need it to look up pixel coordinates in the
shadow texture.

Send the matrix transforms to shader uniform variables.

Enable buffers containing vertices, normal vectors, and texture
coordinates (if used), as usual.

Call gIDrawArrays().

In addition to their rendering duties, the vertex and fragment shaders have
additional tasks:

The vertex shader converts vertex positions from camera space to light
space and sends the resulting coordinates to the fragment shader in a
vertex attribute so that they will be interpolated. This makes it possible
to retrieve the correct values from the shadow texture.

The fragment shader calls the textureProj() function, which returns a 0
or 1 indicating whether or not the pixel is in shadow (this mechanism is
explained later). If it is in shadow, the shader outputs a darker pixel by
not including its diffuse and specular contributions.

Shadow mapping is such a common task that GLSL provides a special type
of sampler variable called a sampler2DShadow (as previously mentioned) that can
be attached to a shadow texture in the Java/JOGL application. The textureProj()
function is used to look up values from a shadow texture and is similar to texture()
which we saw previously in Chapter 5, except that it uses a vec3 to index the

Chapter 8 - Shadows H 199

texture rather than the usual vec2. Since a pixel coordinate is a vec4, it is neces-
sary to project that onto 2D texture space in order to look up the depth value in
the shadow texture map. As we will see below, textureProj() does all of this for us.

The remainder of the vertex and fragment shader code implements Blinn-
Phong shading. These shaders are shown in Figures 8.6 and 8.7, with the added
code for shadow mapping highlighted.

Let’s examine more closely how we use OpenGL to perform the depth com-
parison between the pixel being rendered and the value in the shadow texture. We
start in the vertex shader with vertex coordinates in model space, which we mul-
tiply by shadowMVP2 to produce shadow texture coordinates that correspond to
vertex coordinates projected into light space, previously generated from the light’s
point of view. The interpolated (3D) light space coordinates (X,y,z) are used in the

#version 430
layout (location=0) in vec3 vertPos;
layout (location=1) in vec3 vertNormal;

out vec3 varyingNormal, varyingLightDir, varyingVertPos, varyingHalfVec;
out vec4 shadow_coord;

struct PositionalLight { vec4 ambient, diffuse, specular; vec3 position; };
struct Material {vecd ambient, diffuse, specular; float shininess; };
uniform vec4 globalAmbient;

uniform PositionalLight light; / light’s position is assumed to be in eye space
uniform Material material;

uniform mat4 m_matrix;

uniform mat4 v_matrix;

uniform mat4 p_matrix;

uniform mat4 norm_matrix;

uniform mat4 shadowMVP2;

layout (binding=0) uniform sampler2DShadow shTex;

void main(void)

{ varyingVertPos = (m_matrix * vec4(vertPos,1.0)).xyz;
varyingLightDir = light.position - varyingVertPos;
varyingNormal = (norm_matrix * vec4(vertNormal,1.0)).xyz;
varyingHalfVec = (varyingLightDir - varyingVertPos).xyz;
shadow_coord = shadowMVP2 * vec4(vertPos,1.0);
gl_Position = p_matrix * v_matrix * m_matrix * vec4(vertPos,1.0);

Figure 8.6
Shadow mapping pass 2 vertex shader.

200 M Computer Graphics Programming in OpenGL with Java, Third Edition

#version 430

in vec3 varyingNormal, varyingLightDir, varyingVertPos, varyingHalfVec;
in vecd4 shadow_coord;

out vec4 fragColor;

// same structs and uniforms as in the vertex shader

void main(void)

{ vec3 L =normalize(varyingLightDir);
vec3 N = normalize(varyingNormal);
vec3 V = normalize(-v.matrix[3].xyz - varyingVertPos);
vec3 H = normalize(varyingHalfVec);

float inShadow = textureProj(shTex, shadow_coord);

fragColor = globalAmbient * material.ambient + light.ambient * material.ambient;
If (notinShadow == 1.0)
{ fragColor += light.diffuse * material.diffuse * max(dot(L,N),0.0)

+ light.specular * material.specular

* pow(max(dot(H,N),0.0),material.shininess*3.0);

Figure 8.7
Shadow mapping pass 2 fragment shader.

fragment shader as follows. The z component represents the distance from the
light to the pixel. The (x,y) components are used to retrieve the depth information
stored in the (2D) shadow texture. This retrieved value (the distance to the object
nearest the light) is compared with z. This comparison produces a “binary” result
that tells us whether the pixel we are rendering is further from the light than the
object nearest the light (i.e., whether the pixel is in shadow).

If in OpenGL we use glFrameBufferTexture() as described earlier and we enable
depth testing, then using a sampler2DShadow and textureProj() as shown in the frag-
ment shader (Figure 8.7) will do exactly what we need. That is, textureProj() will
output either 0.0 or 1.0 depending on the depth comparison. Based on this value,
we can then in the fragment shader omit the diffuse and specular contributions
when the pixel is further from the light than the object nearest the light, effectively
creating the shadow when appropriate. An overview is shown in Figure 8.8.

We are now ready to build our JOGL application to work with the previously
described shaders.

Chapter 8 - Shadows [l 201

texCoord:

x|y|z (}:{)z<=V?C:§5
!

s

shadow j

texture

if z <= V return 1.0, else return 0.0

Figure 8.8
Automatic depth comparison.

EXE A SHADOW MAPPING EXAMPLE

Consider the scene in Figure 8.9
that includes a torus and a pyramid. A
positional light has been placed on the
left (note the specular highlights—
the pyramid should cast a shadow on
the torus).

To clarify the development of
the example, our first step will be
to render pass one to the screen to

oo . Figure 8.9
make sure it is working properly. To Lighted scene without shadows.

do this, we will temporarily add a
simple fragment shader (it will not be included in the final version) to pass one that
just outputs a constant color (e.g., red); for example:

#version 430

out vec4 fragColor;

void main(void)

{ fragColor = vec4(1.0, 0.0, 0.0, 0.0);
}

202 M Computer Graphics Programming in OpenGL with Java, Third Edition

Let’s assume that the origin of the scene above is situated at the center of the
figure, in between the pyramid and the torus. In pass one we place the camera at
the light’s position (at the left in Figure 8.10) and point it toward (0,0,0). If we then
draw the objects in red, it produces the output shown at the right in Figure 8.10.
Note the torus near the top—from this vantage point it is partially behind the
pyramid.

Figure 8.10
Pass one: Scene (left) from light’s point of view (right).

The complete two-pass JOGL code with lighting and shadow mapping is
shown in Program 8.1.

Program 8.1 Shadow Mapping

// Much is the same as we have seen before. New sections to support shadows are highlighted.
/| The imports necessary for lighting, etc., would be included at the start, are the same as before,
//and are not shown here.

public class Code extends JFrame implements GLEventListener
{ // variable declarations for rendering programs, buffers, shader sources, efc., would go here.

private ImportedModel pyramid = new ImportedModel("pyr.obj"); // define the pyramid
private Torus myTorus = new Torus(0.6f, 0.4f, 48); // define the torus
private int numPyramidVertices, numTorusVertices, numToruslndices;

// locations of torus, pyramid, camera, and light

private Vector3f torusLoc = new Vector3f(1.6, 0.0, -0.3);
private Vector3f pyrLoc = new Vector3f(-1.0, 0.1, 0.3);
private Vector3f cameralLoc = new Vector3f(0.0, 0.2, 6.0);
private Vector3f lightLoc = new Vector3f(-3.8f, 2.2f, 1.1f);

// properties of white light (global and positional) used in this scene
private float]] globalAmbient = new float[] { 0.7f, 0.7f, 0.7f, 1.0f };

Chapter 8 - Shadows H 203

private float[] lightAmbient = new float[] { 0.0f, 0.0f, 0.0f, 1.0f };
private float[] lightDiffuse = new float[] { 1.0f, 1.0f, 1.0f, 1.0f };
private float[] lightSpecular = new float[] { 1.0f, 1.0f, 1.0f, 1.0f };

// gold material for the pyramid

private float[] goldMatAmb = Utils.goldAmbient();
private float[] goldMatDif = Utils.goldDiffuse();
private float[] goldMatSpe = Utils.goldSpecular();
private float goldMatShi = Utils.goldShininess();

// bronze material for the torus

private float[] bronzeMatAmb = Utils.bronzeAmbient();
private float[] bronzeMatDif = Utils.bronzeDiffuse();
private float[] bronzeMatSpe = Utils.bronzeSpecular();
private float bronzeMatShi = Utils.bronzeShininess();

// variables used in display() for transfering light to shaders
private float[] curAmb, curDif, curSpe, matAmb, matDif, matSpe;
private float curShi, matShi;

// shadow-related variables

private int screenSizeX, screenSizeY;

private int [] shadowTex = new int [1];

private int [] shadowBuffer = new int [1];
private Matrix4f lightVmat = new Matrix4f();
private Matrix4f lightPmat = new Matrix4f();
private Matrix4f shadowMVP1 = new Matrix4f();
private Matrix4f shadowMVP2 = new Matrix4f();
private Matrix4f b = new Matrix4f();

// light and camera view matrix transforms are all declared here (mMat, vMat, efc.) of type Matrix4f.
/| Other variables used in display() are also declared here.

public Code()
{ // The constructor is unchanged from Program 7-3, and so it is not shown here.
// This example assumes that Animator() is being used.

}

/| The init() routine performs the usual calls to compile shaders and initialize objects.
/| It also calls setupShadowBuffers() to instantiate the buffers related to shadow-mapping.
/| Lastly, it builds the B matrix for converting from light space to texture space.

public void init(GLAutoDrawable drawable)
{ GL4 gl =(GL4) GLContext.getCurrentGL();

renderingProgram1 = Utils.createShaderProgram(“code/vert1shader.glsl", "code/frag1shader.gls!");
renderingProgram2 = Utils.createShaderProgram(“code/vert2shader.glsl", "code/frag2shader.gls!");

204 M Computer Graphics Programming in OpenGL with Java, Third Edition

setupVertices();
setupShadowBuffers();

b.set (
0.5f, 0.0f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f, 0.0f,
0.0f, 0.0f, 0.5f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f);

}

private void setupShadowBuffers()

{ GL4 gl = (GL4) GLContext.getCurrentGL();
screenSizeX = myCanvas.getWidth();
screenSizeY = myCanvas.getHeight();

// create the custom frame buffer
gl.glGenFramebuffers(1, shadowBuffer, 0);

// create the shadow texture and configure it to hold depth information.
// these steps are similar to those in Program 5.2
gl.glGenTextures(1, shadowTex, 0);
gl.gBindTexture(GL_TEXTURE_2D, shadowTex[0]);
gl.glTeximage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32,

screenSizeX, screenSizeY, 0, GL_DEPTH_COMPONENT, GL_FLOAT, null);
gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,

GL_COMPARE_REF_TO_TEXTURE);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);

}

private void setupVertices()
{ //same as in earlier examples. This function creates the VAO, the VBOs, and then
// loads vertices and normal vectors for the torus and pyramid into the buffers.

}

/| The display() function manages the setup of the custom frame buffer and the shadow texture
/| in preparation for pass 1 and pass 2 respectively. New shadow-related features are highlighted.

public void display(GLAutoDrawable drawable)

{ GL4 gl =(GL4) GLContext.getCurrentGL();
gl.glClear(GL_COLOR_BUFFER_BIT);
gl.glClear(GL_DEPTH_BUFFER_BIT);

// set up perspective matrix for the camera, either here or in init()

// set up view and perspective matrix from the light point of view, for pass 1
lightVmat.identity().setLookAt(lightloc, origin, up); // vector from light to origin
lightPmat.identity().setPerspective((float) Math.toRadians(60.0f), aspect, 0.1f, 1000.0f);

Chapter 8 - Shadows H 205

// make the custom frame buffer current, and associate it with the shadow texture
gl.glBindFramebuffer(GL_FRAMEBUFFER, shadowBuffer[0]);
gl.glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, shadowTex[0], 0);

// disable drawing colors, but enable the depth computation
gl.glDrawBuffer(GL_NONE);
gl.glEnable(GL_DEPTH_TEST);

passOne();

// restore the default display buffer, and re-enable drawing
gl.glBindFramebuffer(GL_FRAMEBUFFER, 0);
gl.glActiveTexture(GL_TEXTUREO);
gl.gBindTexture(GL_TEXTURE_2D, shadowTex[0]);
gl.glDrawBuffer(GL_FRONT); // re-enables drawing colors

passTwo();

}

/| What follows now are the methods for the first and second passes.
/| They are largely identical to things we have seen before.
/| Shadow-related additions are highlighted.

public void passOne()
{ GL4 gl =(GL4) GLContext.getCurrentGL();

// renderingProgram1 includes the pass one vertex and fragment shaders
gl.glUseProgram(renderingProgram1);

// the following blocks of code render the torus to establish the depth buffer from the light
// point of view

mMat.identity();
mMat.translate(torusLoc.x(), torusLoc.y(), torusLoc.z());
mMat.rotateX((float)Math.toRadians(25.0f)); // slight rotation for viewability

// we are drawing from the light's point of view, so we use the light’s P and V matrices
shadowMVP1.identity();

shadowMVP1.mul(lightPmat);

shadowMVP1.mul(lightVmat);

shadowMVP1.mul(mMat);

sLoc = gl.glGetUniformLocation(renderingProgram1, "shadowMVP");
gl.glUniformMatrix4fv(sLoc, 1, false, shadowMVP1.get(vals));

// we only need to set up torus vertices buffer — we don’t need its textures or normals for
// pass one.

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);

gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);

gl.glEnableVertexAttribArray(0);

206 M Computer Graphics Programming in OpenGL with Java, Third Edition

gl.glClear(GL_DEPTH_BUFFER_BIT);
gl.glEnable(GL_CULL_FACE);
gl.glFrontFace(GL_CCW);
gl.glEnable(GL_DEPTH_TEST);
gl.glDepthFunc(GL_LEQUAL);

gl.glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[4]); //vbo[4] contains torus indices
gl.glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

// repeat for the pyramid (but don’t clear the GL_DEPTH_BUFFER_BIT).
// The pyramid is not indexed, so we use glDrawArrays() rather than glDrawElements()

gl.glDrawArrays(GL_TRIANGLES, 0, numPyramidVertices);
}

public void passTwo()
{ GL4 gl =(GL4) GLContext.getCurrentGL();

// renderingProgram2 includes the pass two vertex and fragment shaders
gl.glUseProgram(renderingProgram2);

// draw the torus - this time we need to include lighting, materials, normals, etc.
// We also need to provide MVP tranforms for BOTH camera space and light space.
mLoc = gl.glGetUniformLocation(renderingProgram2, "m_matrix");

vLoc = gl.glGetUniformLocation(renderingProgram2, "v_matrix");

pLoc = gl.glGetUniformLocation(renderingProgram2, "p_matrix");

nLoc = gl.glGetUniformLocation(renderingProgram2, "norm_matrix");

sLoc = gl.glGetUniformLocation(renderingProgram2, "shadowMVP");

curAmb = bronzeMatAmb; // the torus is bronze

curDif = bronzeMatDif;

curSpe = bronzeMatSpe;

curShi = bronzeMatShi;

vMat.identity().setTranslation(-cameraLoc.x(), -cameraLoc.y(), -cameralLoc.z());
currentLightPos.set(lightLoc);
installLights(renderingProgram2);

mMat.identity();
mMat.translate(torusLoc.x(), torusLoc.y(), torusLoc.z());
mMat.rotateX((float)Math.toRadians(25.0f)); // slight rotation for viewability

mMat.invert(invTrMat);
invTrMat.transpose(invTrMat);

// build the MVP matrix for the torus from the light’s point of view
shadowMVP2.identity();

Chapter 8 - Shadows W 207

shadowMVP2.mul(b);
shadowMVP2.mul(lightPmat);
shadowMVP2.mul(lightVmat);
shadowMVP2.mul(mMat);

/I put the MV and PROJ matrices into the corresponding uniforms
gl.glUniformMatrix4fv(mLoc, 1, false, mMat.get(vals));
gl.glUniformMatrix4fv(vLoc, 1, false, vMat.get(vals));
gl.glUniformMatrix4fv(pLoc, 1, false, pMat.get(vals));
gl.glUniformMatrix4fv(nLoc, 1, false, invTrMat.get(vals));
gl.glUniformMatrix4fv(sLoc, 1, false, shadowMVP2.get(vals));

// set up torus vertices and normals buffers (and texture coordinates buffer if used)
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]); // torus vertices
gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[2]); // torus normals
gl.glVertexAttribPointer(1, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(1);

gl.glClear(GL_DEPTH_BUFFER_BIT);
gl.glEnable(GL_CULL_FACE);
gl.glFrontFace(GL_CCW);
gl.glEnable(GL_DEPTH_TEST);
gl.glDepthFunc(GL_LEQUAL);

gl.giBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[4]); // vbo[4] contains torus indices
gl.glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

// repeat for the pyramid (but don't clear the GL_DEPTH_BUFFER_BIT)

// The pyramid is not indexed, so we use glDrawArrays() rather than glDrawElements()
gl.glDrawArrays(GL_TRIANGLES, 0, numPyramidVertices);

Program 8.1 shows the relevant portions of the Java/JOGL application that
interact with the pass one and pass two shaders previously detailed. Not shown are
the usual modules for reading in and compiling the shaders, building the models
and their related buffers, installing the positional light’s ADS characteristics in the
shaders, and performing the perspective and look-at matrix computations. Those
are unchanged from previous examples.

208 M Computer Graphics Programming in OpenGL with Java, Third Edition

EXE SHADOW MAPPING ARTIFACTS

Although we have implemented all of the basic requirements for adding shadows
to our scene, running Program 8.1 produces mixed results, as shown in Figure 8.11.

The good news is that our pyr-
amid is now casting a shadow on
the torus! Unfortunately, this suc-
cess is accompanied by a severe
artifact. There are wavy lines
covering many of the surfaces in
the scene. This is a common by-
product of shadow mapping and is
called shadow acne, or erroneous
self-shadowing.

Figure 8.11
Shadow “acne.”

Shadow acne is caused by rounding errors during depth testing. The texture coor-
dinates computed when looking up the depth information in a shadow texture often
don’t exactly match the actual coordinates. Thus, the lookup may return the depth for
a neighboring pixel, rather than the one being rendered. If the distance to the neigh-
boring pixel is further, then our pixel will appear to be in shadow even if it isn’t.

Shadow acne can also be caused by differences in precision between the tex-
ture map and the depth computation. This too can lead to rounding errors and
subsequent incorrect assessment of whether or not a pixel is in shadow.

Fortunately, fixing shadow acne is fairly easy. Since shadow acne typically
occurs on surfaces that are not in shadow, a simple trick is to move every pixel
slightly closer to the light during pass one, and then move them back to their nor-
mal positions for pass two. This is usually sufficient to compensate for either type
of rounding error. An easy way is to call glPolygonOffset() in the display() function,
as shown in Figure 8.12 (highlighted).

Adding these few lines of code to our display() function improves the output
of our program considerably, as shown in Figure 8.13. Note also that with the
artifacts gone, we can now see that the inner circle of the torus displays a small
correctly cast shadow on itself.

Although fixing shadow acne is easy, sometimes the repair causes new arti-
facts. The “trick” of moving the object before pass one can sometimes cause a gap
to appear inside an object’s shadow. An example of this is shown in Figure 8.14. This

Chapter 8 - Shadows H 209

public void display(GLAutoDrawable drawable)
{ GL4 gl = (GL4) GLContext.getCurrentGL();

// clearing the depth and color buffers as before goes here
// :setﬁng up matrices for camera and light points of view as before goes here
gl.gIBindFramebuffer(GL_FRAMEBUFFER, shadowBuffer[0]);

gl.glIFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,shadowTex[0], 0);

gl.glIDrawBuffer(GL_NONE);
dl.glEnable(GL_DEPTH_TEST);

// for reducing shadow artifacts
gl.glEnable(GL_POLYGON_OFFSET _FILL);
gl.glPolygonOffset(2.0f, 4.0f);

passOne();
gl.gIDisable(GL_POLYGON_OFFSET_FILL});

gl.gIBindFramebuffer(GL_FRAMEBUFFER, 0);
gl.glActiveTexture(GL_TEXTUREO);
gl.glBindTexture(GL_TEXTURE_2D, shadowTex[0]);
gl.gIDrawBuffer(GL_FRONT);

passTwo();

Figure 8.12
Combating shadow acne.

Figure 8.13

Rendered scene with shadows. Figure 8.14

"Peter Panning.”

artifact is often called “Peter Panning,” because sometimes it causes the shadow
of a resting object to inappropriately separate from the object’s base (thus making
portions of the object’s shadow detach from the rest of the shadow, reminiscent of
J. M. Barrie’s character Peter Pan [PP21]). Fixing this artifact requires adjusting the
glPolygonOffset() parameters. If they are too small, shadow acne can appear; if too
large, Peter Panning happens.

210 M Computer Graphics Programming in OpenGL with Java, Third Edition

There are many other artifacts that can happen during shadow mapping. For
example, shadows can repeat as a result of the region of the scene being rendered
in pass one (into the shadow buffer) being different from the region of the scene
rendered in pass two (they are from different vantage points). Because of this
difference, those portions of the scene rendered in pass two that fall outside the
region rendered in pass one will attempt to access the shadow texture using tex-
ture coordinates outside of the range [0..1]. Recall that the default behavior in this
case is GL_REPEAT, which can result in incorrectly duplicated shadows.

One possible solution is to add the following lines of code to setupShadowBuffers(),
to set the texture wrap mode to “clamp to edge”:

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

This causes values outside of a texture edge to be clamped to the value at edge
(instead of repeating). Note that this approach can introduce its own artifacts;
namely, when a shadow exists at the edge of the shadow texture, clamping to the
edge can produce a “shadow bar” extending to the edge of the scene.

Another common error is jagged
shadow edges. This can happen when the
shadow being cast is significantly larger than
the shadow buffer can accurately represent.
This usually depends on the location of the
objects and light(s) in the scene. In particular,
it commonly occurs when the light source is
relatively distant from the objects involved.

Figure 8.15 R K .
Jagged shadow edges. An example is shown in Figure 8.15.

Eliminating jagged shadow edges is not as simple as for the previous artifacts.
One technique is to move the light position closer to the scene during pass one, and
then return it to the correct position in pass two. Another approach that is often
effective is to employ one of the “soft shadow” methods that we will discuss next.

SOFT SHADOWS

The methods presented thus far are limited to producing hard shadows. These
are shadows with sharp edges. However, most shadows that occur in the real world

Chapter 8 - Shadows I 211

are soft shadows. That is, their edges are blurred to various degrees. In this section,
we will explore the appearance of soft shadows as they occur in the real world, and
then describe a commonly used algorithm for simulating them in OpenGL.

Soft Shadows in the Real World

There are many causes of soft shadows, and there are many types of soft
shadows. One thing that commonly causes soft shadows in nature is that real-
world light sources are rarely points—more often they occupy some area. Another
cause is the accumulation of imperfections in materials and surfaces, and the role
that the objects themselves play in generating ambient light through their own
reflective properties.

Figure 8.16 shows a photograph of an object casting a soft shadow on a table
top. Note that this is not a 3D computer rendering, but an actual photograph of an
object, taken in the home of one of the authors.

There are two aspects to note about the shadow in Figure 8.16:

* The shadow is “softer” the further it is from the object and “harder” the
closer it is to the object. This is apparent when comparing the shadow
near the legs of the object versus the wider portion of the shadow at the
right region of the image.

* The shadow appears slightly darker the closer it is to the object.

The dimensionality of the light source itself can lead to soft shadows. As
shown in Figure 8.17, the various regions across the light source cast slightly differ-
ent shadows. The lighter areas at the edges of the shadow — where only a portion
of the light is blocked by the object — are collectively called the penumbra.

object '

Figure 8.16 Figure 8.17
Soft shadow real-world example. Soft shadow penumbra effect.

212 B Computer Graphics Programming in OpenGL with Java, Third Edition

Generating Soft Shadows—Percentage Closer
Filtering (PCF)

There are various ways of simulating the penumbra effect to generate soft shad-
ows in software. One of the simplest and most common is called percentage closer
filtering (PCF). In PCF (proposed in 1987 by Reeves et al. [RS87]), we sample the
shadow texture at several surrounding locations to estimate what percentage of
nearby locations are in shadow. Depending on how many of the nearby locations
are in shadow, we increase or decrease the degree of lighting contribution for the
pixel being rendered. The entire computation can be done in the fragment shader,
and that is the only place where we have to change any of the code. PCF also can
be used to reduce jagged line artifacts.

Before we study the actual PCF algorithm, let’s first
look at a simple similar motivating example to illustrate
the goal of PCF. Consider the set of output fragments
(pixels) shown in Figure 8.18, whose colors are being
computed by the fragment shader.

Suppose that the darkened pixels are in shadow, as

computed using shadow mapping. Instead of simply
:::jus;:dosvﬂ';dering. rendering the pixels as shown (i.e., with or without the

diffuse and specular components included), suppose
that we had access to neighboring pixel information, so that we could see how
many of the neighboring pixels are in shadow. For example, consider the particular
pixel highlighted in yellow in Figure 8.19, which according to Figure 8.18 is not
in shadow.

In the nine-pixel neighborhood of the highlighted pixel, three of the pixels
are in shadow and six are not. Thus, the color of the rendered pixel could be

Figure 8.19
PCF sampling for a particular pixel.

Chapter 8 - Shadows H 213

computed as the sum of the ambient contribution at that
pixel, plus six-ninths of the diffuse and specular contri-
butions, resulting in a fairly (but not completely) bright-
ened pixel. Repeating this process throughout the grid
would produce pixel colors approximately as shown in
Figure 8.20. Note that for those pixels whose neighbor-
hoods are entirely in (or out of) shadow, the resulting

color is the same as for standard shadow mapping. Figure 8.20
Soft shadow rendering.

Unlike the example just shown, implementations of
PCF do not sample every pixel within a certain vicinity of the pixel being ren-
dered. There are two reasons for this: (a) we’d like to perform this computation in
the fragment shader, but the fragment shader does not have access to other pixels,
and (b) obtaining a sufficiently broad penumbra effect (say, 10 to 20 pixels wide)
would require sampling hundreds of nearby pixels for each pixel being rendered.

PCF addresses these two issues as follows. First, rather than attempting to
access nearby pixels, we instead sample nearby texels in the shadow map. The
fragment shader can do this because even though it doesn’t have access to nearby
pixel values, it does have access to the entire shadow map. Second, to achieve a
sufficiently broad penumbra effect, a moderate number of nearby shadow map
texels are sampled, each at some modest distance from the texel corresponding to
the pixel being rendered.

The width of the penumbra and the number of points sampled can be tuned
depending on the scene and performance requirements. For example, the image
shown in Figure 8.21 was generated using PCF, with each pixel’s brightness deter-
mined by sampling 64 nearby shadow map texels at various distances from the
pixel’s texel.

The accuracy or smoothness of our soft
shadows depends on the number of nearby
texels sampled. Thus, there is a tradeoff
between performance and quality—the
more points sampled, the better the results,
but the more computational overhead is
incurred. Depending on the complexity of
the scene and the frame rate required for
a given application, there is often a corre-

. . L. . Figure 8.21
sponding practical limit to the quality that soft shadow rendering—64 samples per pixel.

214 B Computer Graphics Programming in OpenGL with Java, Third Edition

can be achieved. Samping 64 points per pixel, such as in Figure 8.21, is usually
impractical.

A commonly used algorithm for implementing PCF is to sample four nearby
texels per pixel, with the samples selected at specified offset distances from the texel
which corresponds to the pixel. As we process each pixel, we alter the offsets used to
determine which four texels are sampled. Altering the offsets in a staggered manner
is sometimes called dithering, and aims to make the soft shadow boundary appear
less “blocky” than it ordinarily would given the small number of sample points.

A common approach is to assume one of four different offset patterns—we can
choose which pattern to use for a given pixel by computing the pixel’s glFragCoord
mod 2. Recall that glFragCoord is of type vec2, containing the X and y coordinates
of the pixel location; the result of the mod computation is then one of four values:
(0,0), (0,1), (1,0), or (1,1). We use this result to select one of our four different offset
patterns in texel space (i.e., in the shadow map).

The offset patterns are typically specified in the X and y directions with differ-
ent combinations of —1.5, —0.5, +0.5, and +1.5 (these can also be scaled as desired).
More specifically, the four usual offset patterns for each of the cases resulting
from the glFragCoord mod 2 computation are

case (0,0) case (0,1) case (1,0) case (1,1)
sample points: sample points: sample points: sample points:
(8,-1.5, 8,+1.5) (8,-1.5, 5,40.5) (5,05, s,+1.5) (5,05, 5,+0.5)
(s,-1.5, 8,-0.5) (8,-1.5, 8,-1.5) (8,05, 8,-0.5) (8,05, 8,-1.5)
(5,10.5, s,+1.5) (5,10.5, 5,+0.5) (s,+1.5, 8,+1.5) (s,+1.5, 8,+0.5)
(5,+0.5, 5,-0.5) (s,+0.5, 5,-1.5) (s,+1.5,5,-0.5) (s,+1.5, 5,-1.5)

S and S, refer to the location (S,, S,) in the shadow map corresponding to the
pixel being rendered, identified as shadow_coord in the code examples throughout
this chapter. These four offset patterns are illustrated in Figure 8.22, with each
case shown in a different color. In each case, the texel corresponding to the pixel
being rendered is at the origin of the graph for that case. Note that when shown
together in Figure 8.23, the staggering/dithering of the offsets is apparent.

Let’s walk through the entire computation for a particular pixel. Assume the
pixel being rendered is located at glFragCoord = (48,13). We start by determining
the four shadow map sample points for the pixel. To do that, we would compute
vec2(48,13) mod 2, which equals (0,1). From that we would choose the offsets shown

Chapter 8 - Shadows M 215

y‘ Y, Y,
2|~ 2|~ 2}~
@] s @} s @ O)
l l L1 1 ° L e L1 1 1 L1 1 l .r l d
2 1 1 2 X 2 -1 1 2 X 2 1 1 2 X -2 -1 1
(@) @) O @
1~ al al
] o @ O
2 2 2|
case. A case’ case. case.

glFragCoord Mod 2 = (0,0) glFragCoord Mod 2 = (0,1)

Figure 8.22
Dithered four-pixel PCF sampling cases.

for case (0,1), shown in green in Figure 8.22, and
the specific points to be sampled in the shadow
map (assuming that no scaling of the offsets has

been specified) would be
» (shadow_coord.x-1.5, shadow_coord.y+0.5)
(shadow_coord.x—1.5, shadow_coord.y-1.5)
» (shadow_coord.x+0.5, shadow_coord.y+0.5)
(

L]

shadow_coord.x+0.5, shadow_coord.y—1.5)

(Recall that shadow_coord is the location of
the texel in the shadow map corresponding to the
pixel being rendered—shown as a white circle in
Figures 8.22 and 8.23.)

glFragCoord Mod 2 = (1,0)

glFragCoordMod 2 = (1,1)

A
2=
@) O, o O
© /0 0
Gt Pt
@) O1 (ON©)
© /0 ©
2
A\ 4
Figure 8.23

Dithered four-pixel PCF sampling (four cases

shown together).

We next call textureProj() on each of these four points, which in each case
returns either 0.0 or 1.0 depending on whether or not that sampled point is in
shadow. We sum the four results and divide by 4.0 to determine the percentage of

sampled points which are in shadow. This
percentage is then used as a multiplier to
determine the amount of diffuse and spec-
ular lighting to be applied when rendering
the current pixel.

Despite the small sampling size—
only 4 samples per pixel—this dithered
approach can often produce surprisingly
good soft shadows. Figure 8.24 was gener-
ated using 4-point dithered PCF. While not

Figure 8.24
Soft shadow rendering—four samples per pixel, dithered.

216 M Computer Graphics Programming in OpenGL with Java, Third Edition

quite as good as the 64-point sampled version shown previously in Figure 8.21, it
renders considerably faster.

In the next section, we develop the GLSL fragment shader that produced both
this 4-sample dithered PCF soft shadow and the previously shown 64-sample PCF
soft shadow.

A Soft Shadow/PCF Program

As mentioned earlier, the soft shadow computation can be done entirely in the
fragment shader. Program 8.2 shows the fragment shader that replaces the one in
Figure 8.7. The PCF additions are highlighted.

Program 8.2 Percentage Closer Filtering (PCF)
Fragment Shader

#version 430
/I all variable declarations are unchanged

// Returns the shadow depth value for a texel at distance (x,y) from shadow_coord. Recall that
// shadow_coord is the location in the shadow map corresponding to the current pixel being rendered.

float lookup(float ox, float oy)
{ floatt = textureProj(shadowTex,
shadow_coord + vec4(ox * 0.001 * shadow_coord.w, oy * 0.001 * shadow_coord.w,
-0.01,0.0)); // the third parameter (-0.01) is an offset to counteract shadow acne
return t;

}

void main(void)
{ float shadowFactor = 0.0;
vec3 L = normalize(vLightDir);
vec3 N = normalize(vNormal);
vec3 V = normalize(-v_matrix[3].xyz - varyingVertPos);
vec3 H = normalize(vHalfVec);

/- this section produces a 4-sample dithered soft shadow

float swidth = 2.5; // tunable amount of shadow spread

// produces one of 4 sample patterns depending on glFragCoord mod 2
vec? offset = mod(floor(gl_FragCoord.xy), 2.0) * swidth;

shadowFactor += lookup(-1.5*swidth + offset.x, 1.5*swidth - offset.y);

Chapter 8 - Shadows H 217

shadowFactor += lookup(-1.5*swidth + offset.x, -0.5*swidth - offset.y);
shadowFactor += lookup(0.5*swidth + offset.x, 1.5*swidth - offset.y);
shadowFactor += lookup(0.5*swidth + offset.x, -0.5*swidth - offset.y);
shadowFactor = shadowFactor / 4.0; / shadowFactor is an average of the four sampled points

// ----- this section, if un-commented, produces a 64-sample hi resolution soft shadow
/| float swidth = 2.5; // tunable amount of shadow spread

/| float endp = swidth*3.0 +swidth/2.0;

/| for (float m=-endp ; m<=endp ; m=m+swidth)

// { for (float n=-endp ; n<=endp ; n=n+swidth)

/ { shadowFactor += lookup(m,n);

/.
/| shadowFactor = shadowFactor / 64.0;

vec4 shadowColor = globalAmbient * material.ambient + light.ambient * material.ambient;

vec4 lightedColor = light.diffuse * material.diffuse * max(dot(L,N),0.0)
+ light.specular * material.specular
* pow(max(dot(H,N),0.0),material.shininess*3.0);

fragColor = vecd((shadowColor.xyz + shadowFactor*(lightedColor.xyz)),1.0);

The fragment shader shown in Program 8.2 contains code for both the 4-sample
and 64-sample PCF soft shadows. First, a function lookup() is defined to make the
sampling process more convenient. It makes a call to the GLSL function textureProj()
that does a lookup in the shadow texture, but offset by a specified amount (0x,0y).
The offset is multiplied by 1/windowsize, which here we have simply hardcoded to
.001 assuming a window size of 1000x1000 pixels.?

The 4-sample dithered computation appears highlighted in main() and follows
the algorithm described in the previous section. A scale factor swidth has been
added that can be used to adjust the size of the “soft” region at the edge of the
shadows.

The 64-sample code follows, and is commented out. It can be used instead
of the 4-sample computation, by uncommenting it and instead commenting out
the 4-sample code. The swidth scale factor in the 64-sample code is used as a
step size in the nested loop that samples points at various distances from the

2 We have also multiplied the offset by the w component of the shadow coordinate, because
OpenGL automatically divides the input coordinate by w during texture lookup. This operation,
called perspective divide, is one which we have ignored up to this point. It must be accounted for
here. For more information on perspective divide, see [LO12].

218 M Computer Graphics Programming in OpenGL with Java, Third Edition

pixel being rendered. For example, using the value of swidth shown (2.5), points
would be sampled along each axis at distances of 1.25, 3.75, 6.25, and 8.25 in both
directions—then scaled based on the window size (as described earlier) and used
as texture coordinates into the shadow texture. With this many samples, dithering
is generally not necessary to obtain good results.

Figure 8.25 shows our running torus/pyramid shadow mapping example,
incorporating PCF soft shadowing with the fragment shader from Program 8.2,
for both 4-sample and 64-sample approaches. The value chosen for swidth is scene
dependent; for the torus/pyramid example it was set to 2.5, whereas for the dolphin
example shown previously in Figure 8.21, swidth was set to 8.0.

Figure 8.25
PCF Soft shadow rendering—4 samples per pixel, dithered (left), and 64 samples per pixel, not dithered (right).

SUPPLEMENTAL NOTES

In this chapter we have only given the most basic of introductions to the
world of shadows in 3D graphics. Even using the basic shadow mapping methods
presented here will likely require further study if used in more complex scenes.

For example, when adding shadows to a scene in which some of the objects are
textured, it is necessary to ensure that the fragment shader properly distinguishes
between the shadow texture and other textures. A simple way of doing this is to
bind them to different texture units, such as

layout (binding = 0) uniform sampler2DShadow shTex;
layout (binding = 1) uniform sampler2D otherTexture;

Chapter 8 - Shadows H 219

Then the JOGL application can refer to the two samplers by their binding
values.

When a scene utilizes multiple lights, multiple shadow textures are necessary—
one for each light source. And a pass one will need to be performed for each one,
with the results blended in pass two.

Although we have used perspective projection at each phase of shadow map-
ping, it is worth noting that orthographic projection is often preferred when the
light source is distant and directional, rather than the positional light we utilized.

Generating realistic shadows is a rich and complex area of computer graphics,
and many of the available techniques are outside the scope of this text. Readers
interested in more detail are encouraged to investigate more specialized resources

such as [ES12], [GP10], and [MI18].

The second fragment shader of Program 8.2 contains an example of a GLSL
function, lookup(). As in the C language, functions must be defined before (or
“above”) where they are called, or else a forward declaration must be provided.
In the example, a forward declaration isn’t required because the function has been
defined above the call to it.

Exercises

8.1 In Program 8.1, experiment with different settings for glPolygonOffset(), and
observe the effects on shadow artifacts such as Peter Panning.

8.2 (PROJECT) Modify Program 8.1 so that the /ight can be positioned by moving
the mouse, similar to Exercise 7.1. You will probably notice that some lighting
positions exhibit shadow artifacts, while others look fine.

8.3 (PROJECT) Add animation to Program 8.1, such that either the objects or
the light (or both) move around on their own—such as one revolving around
the other. The shadow effects will be more pronounced if you add a ground
plane to the scene, such as the one illustrated in Figure 8.14.

8.4 (PROJECT) Modify Program 8.2 to replace the hardcoded values 0.001 in the
lookup() function, with the more accurate values of 1.0/shadowbufferwidth and
1.0/shadowbufferheight. Observe to what degree this change makes a difference
(or not) for various window sizes.

220 M Computer Graphics Programming in OpenGL with Java, Third Edition

8.5 (RESEARCH) More sophisticated implementations of percentage closer
filtering (PCF) take into account the relative distance between the light and the
shadow versus the light and the occluder. Doing this can make soft shadows
more realistic, by allowing their penumbra to change in size as the light moves
closer or further from the occluder (or as the occluder moves closer or further
from the shadow). Study existing methods for incorporating this capability,
and add it to Program 8.2.

References

[AS14] E. Angel and D. Shreiner, Interactive Computer Graphics: A Top-Down
Approach with WebGL, Tth ed. (Pearson, 2014).

[BL88] J. Blinn, “Me and My (Fake) Shadow,” IEEE Computer Graphics and
Applications 8, no. 2 (1988).

[CR77] F. Crow, “Shadow Algorithms for Computer Graphics,” Proceedings of
SIGGRAPH °77 11, no. 2 (1977).

[ES12] E. Eisemann, M. Schwarz, U. Assarsson, and M. Wimmer, Real-Time
Shadows (CRC Press, 2012).

IGP10] GPU Pro (series), ed. Wolfgang Engel (A. K. Peters, 2010-2016).

[KS16] J. Kessenich, G. Sellers, and D. Shreiner, OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 4.5 with SPIR-V, 9th ed.
(Addison-Wesley, 2016).

[LO12] Understanding OpenGL’s Matrices, Learn OpenGL ES (2012), accessed
March 2021, http://www.learnopengles.com/tag/perspective-divide/

[LU16]| F. Luna, Introduction to 3D Game Programming with DirectX 12, 2nd ed.
(Mercury Learning, 2016).

[MI18] Common Techniques to Improve Shadow Depth Maps (Microsoft Corp.,
2018), accessed March 2021, https://docs.microsoft.com/en-us/windows/
win32/dxtecharts/common-techniques-to-improve-shadow-depth-maps

[PP21] Peter Pan, Wikipedia, accessed March 2021, https:/en.wikipedia.org/
wiki/Peter Pan

[RS87] W. Reeves, D. Salesin, and R. Cook, Rendering Antialiased Shadows with
Depth Maps, Computer Graphics, Volume 21, Number 4, July 1987.

CHAPTER 9

SKY AND BACKGROUNDS

0.0 SKyboxeso 221
0.2 Skydomes 224
9.3 Implementing a Skybox 226
9.4 Environment Mapping 234

Supplemental Notes oo 239

The realism in a 3D scene can often be improved by generating a realistic effect
at the distant horizon. As we look beyond our nearby buildings and trees, we are
accustomed to seeing large distant objects such as clouds, mountains, or the sun
(or at night, the moon and stars). However, adding such objects to our scene as indi-
vidual models may come at an unacceptable performance cost. A skybox or skydome
provides a relatively simple way of efficiently generating a convincing horizon.

SKYBOXES

The concept of a skybox is a remarkably clever and simple one:

1. Instantiate a cube object.
2. Texture the cube with the desired environment.
3. Position the cube so it surrounds the camera.
We already know how to do all of these steps. There are a few additional details,
however.
* How do we make the texture for our horizon?

A cube has six faces, and we will need to texture all of them. One way is to
use six image files and six texture units. Another common (and efficient) way
is to use a single image that contains textures for all six faces, such as shown in
Figure 9.1.

222 B Computer Graphics Programming in OpenGL with Java, Third Edition

Figure 9.1
Six-faced skybox texture cube map.

An image that can texture all six faces of a cube with a single texture unit is an
example of a texture cube map. The six portions of the cube map correspond to the
top, bottom, front, back, and two sides of the cube. When “wrapped” around the
cube, it acts as a horizon for a camera placed inside the cube, as shown in Figure 9.2.

Figure 9.2
Texture cube map wrapping around the camera.

Chapter 9 - Sky and Backgrounds [223

Texturing the cube with a texture cube map requires specifying appropriate
texture coordinates. Figure 9.3 shows the distribution of texture coordinates that
are in turn assigned to each of the cube vertices.

+Y
top

0.66
+2

left front nght back
0.33
-Y
bottom

0.00 1.00

1.00

TWT

JHL

Figure 9.3
Cube map texture coordinates.

* How do we make the skybox appear “distant”?

Another important factor in building a skybox is ensuring that the texture
appears as a distant horizon. At first, one might assume this would require mak-
ing the skybox very large. However, it turns out that this isn’t desirable because
it would stretch and distort the texture. Instead, it is possible to make the skybox
appear very large (and thus distant) by using the following two-part trick:

o Disable depth testing, and render the skybox first (re-enabling depth
testing when rendering the other objects in the scene).

o Move the skybox with the camera (if the camera moves).

By drawing the skybox first with depth testing disabled, the depth buffer
will still be filled completely with 1.0’s (i.e., maximally far away). Thus all other
objects in the scene will be fully rendered; that is, none of the other objects will be
blocked by the skybox. This causes the walls of the skybox to appear farther away
than every other object, regardless of the actual size of the skybox. The actual
skybox cube itself can be quite small, as long as it is moved along with the camera
whenever the camera moves. Figure 9.4 shows viewing a simple scene (actually
just a brick-textured torus) from inside a skybox.

224 B Computer Graphics Programming in OpenGL with Java, Third Edition

rli

Figure 9.4
Viewing a scene from inside a skybox.

It is instructive to carefully examine Figure 9.4 in relation to the previous
Figures 9.2 and 9.3. Note that the portion of the skybox that is visible in the scene
is the rightmost section of the cube map. This is because the camera has been
placed in the default orientation, facing in the negative Z direction, and is therefore
looking at the hack of the skybox cube (and so labeled in Figure 9.3). Also note that
this back portion of the cube map appears horizontally reversed when rendered in
the scene, because the cube map is being viewed from the inside of the cube. For
example, see how the “back” (-Z) portion of the cube map has been folded around
the camera and thus appears flipped sideways, as shown in Figure 9.2.

* How do we construct the texture cube map?

Building a texture cube map image, from artwork or photos, requires care to
avoid “seams” at the cube face junctions and to create proper perspective so that
the skybox will appear realistic and undistorted. Many tools exist for assisting in
this regard: Terragen, Autodesk 3ds Max, Blender, and Adobe Photoshop have
tools for building or working with cube maps. There are also many websites offer-
ing a variety of off-the-shelf cube maps—some for a price, some for free.

E*E SKYDOMES

Another way of building a horizon effect is to use a skydome. The basic idea
is the same as for a skybox, except that instead of using a textured cube, we use
a textured sphere (or half a sphere). As was done for the skybox, we render the
skydome first (with depth testing disabled) and keep the camera positioned at

Chapter 9 - Sky and Backgrounds I 225

camera ___--
inside dome

Figure 9.5
Skydome with camera placed inside.

the center of the skydome. (The skydome texture in Figure 9.5 was made using
Terragen [TE19].)

Skydomes have some advantages over skyboxes. For example, they are less
susceptible to distortion and seams (although spherical distortion at the poles must
be accounted for in the texture image). One disadvantage of a skydome is that a
sphere or dome is a more complex model than a cube, with many more vertices
and a potentially varying number of vertices depending on the desired precision.

When using a skydome to represent an outdoor scene, it is usually combined
with a ground plane or some sort of terrain. When using a skydome to represent
a scene in space, such as a starfield, it is often more practical to use a sphere,
such as shown in Figure 9.6 (a dashed line has been added for clarity in visualizing
the sphere).

Figure 9.6
Skydome of stars using a sphere (starfield from [BO11]).

226 M Computer Graphics Programming in OpenGL with Java, Third Edition

IMPLEMENTING A SKYBOX

Despite the advantages of a skydome, skyboxes are still more common. They
also are better supported in OpenGL, which is advantageous when doing environ-
ment mapping (covered later in this chapter). For these reasons, we will focus on
skybox implementation.

There are two methods for implementing a skybox: building a simple one from
scratch or using the cube map facilities in OpenGL. Each has its advantages, so
we will cover both.

Building a Skybox from Scratch

We have already covered almost everything needed to build a simple skybox.
A cube model was presented in Chapter 4; we can assign the texture coordinates
as shown earlier in this chapter in Figure 9.3. We saw how to read in textures and
how to position objects in 3D space. We will see how to easily enable and disable
depth testing (it’s a single line of code).

Program 9.1 shows the code organization for our simple skybox, with a scene
consisting of just a single textured torus. Texture coordinate assignments and calls
to enable/disable depth testing are highlighted.

Program 9.1 Simple Skybox

public class Code extends JFrame implements GLEventListener,

{

/| all variable declarations, constructor, and init() same as before

public void display(GLAutoDrawable drawable)
{ // clear color and depth buffers, and create projection and camera view matrix as before

gl.glUseProgram(renderingProgram);
/| Prepare to draw the skybox first. The M matrix places the skybox at the camera location
mMat.identity().setTranslation(cameraLoc.x(), cameraLoc.y(), cameralLoc.z());

// build the MODEL-VIEW matrix
mvMat.identity();
mvMat.mul(vMat);
mvMat.mul(mMat);

// put MV and PROJ matrices into uniforms, as before

Chapter 9 - Sky and Backgrounds W 227

/| set up buffer containing vertices
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
gl.glVertexAttribPointer(0,3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);

// set up buffer containing texture coordinates
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
gl.glVertexAttribPointer(1,2, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(1);

// activate the skybox texture

gl.glActiveTexture(GL_TEXTUREO);

gl.glBindTexture(GL_TEXTURE_2D, skyboxTexture);

gl.glEnable(GL_CULL_FACE);

gl.glFrontFace(GL_CCW); // cube has CW winding order, but we are viewing its interior

gl.gIDisable(GL_DEPTH_TEST);
gl.glDrawArrays(GL_TRIANGLES, 0, 36); // draw the skybox without depth testing
gl.glEnable(GL_DEPTH_TEST);

// now draw desired scene objects as before

gl.glDrawElements(. . .); // as before for scene objects

}

private void setupVertices()
{ / cube_vertices defined same as before
// cube texture coordinates for the skybox as they appear in Figure 9.3
float[] cubeTextureCoord =
{ 1.00f, 0.66f, 1.00f, 0.33f, 0.75f, 0.33f, // back face lower right
0.75f, 0.33f, 0.75f, 0.66f, 1.00f, 0.66f, // back face upper left
0.75f, 0.33f, 0.50f, 0.33f, 0.75f, 0.66f, // right face lower right
0.50f, 0.33f, 0.50f, 0.66f, 0.75f, 0.66f, // right face upper left
0.50f, 0.33f, 0.25f, 0.33f, 0.50f, 0.66f, // front face lower right
0.25f, 0.33f, 0.25f, 0.66f, 0.50f, 0.66f, // front face upper left
0.25f, 0.33f, 0.00f, 0.33f, 0.25f, 0.66f, // left face lower right
0.00f, 0.33f, 0.00f, 0.66f, 0.25f, 0.66f, // left face upper left
0.25f, 0.33f, 0.50f, 0.33f, 0.50f, 0.00f, // bottom face upper right
0.50f, 0.00f, 0.25f, 0.00f, 0.25f, 0.33f, // bottom face lower left
0.25f, 1.00f, 0.50f, 1.00f, 0.50f, 0.66f, // top face upper right
0.50f, 0.66f, 0.25f, 0.66f, 0.25f, 1.00f // top face lower left
3

// set up buffers for cube and scene objects as usual

// modules for loading shaders, textures, efc. as before

}

228 M Computer Graphics Programming in OpenGL with Java, Third Edition

Standard texturing shaders are now used for all objects in the
scene, including the cube map:

Vertex Shader

#version 430
layout (location = 0) in vec3 position;
layout (location = 1) in vec2 tex_coord;
out vec? fc;
uniform mat4 mv_matrix;
uniform mat4 p_matrix;
layout (binding = 0) uniform sampler2D s;
void main(void)
{ tc=tex_coord;
gl_Position = p_matrix * mv_matrix * vec4(position, 1.0);

}

Fragment Shader

#version 430

in vec? tc;

out vec4 fragColor;

uniform mat4 mv_matrix;

uniform mat4 p_matrix;

layout (binding = 0) uniform sampler2D s;
void main(void)

{ fragColor = texture(s,tc);

}

The output of Program 9.1 is shown in Figure 9.7, for each of two different
cube map textures.

As mentioned earlier, skyboxes are susceptible to image distortion and
seams. Seams are lines that are sometimes visible where two texture images
meet, such as along the edges of the cube. Figure 9.8 shows an example of a
seam in the upper part of the image that is an artifact of running Program 9.1.
Avoiding seams requires careful construction of the cube map image and
assignment of precise texture coordinates. There exist tools for reducing seams
along image edges (such as [GI21]); however, this topic is outside the scope of
this book.

Chapter 9 - Sky and Backgrounds [229

texturecube map (1)

texturecube map (2)

resulting scene with textured skybox

resulting scenewith textured skybox

Figure 9.7
Simple skybox results.

Figure 9.8
Skybox “seam” artifact.

Using OpenGL
Cube Maps

Another way to build a sky-
box is to use an OpenGL texture
cube map. OpenGL cube maps are
a bit more complex than the simple
approach we saw in the previous
section. There are advantages, how-
ever, to using OpenGL cube maps,
such as seam reduction and support
for environment mapping.

230 M Computer Graphics Programming in OpenGL with Java, Third Edition

OpenGL texture cube maps are similar to 3D textures that we will study later,
in that they are accessed using three texture coordinates—often labeled (s,7,7)—
rather than two as we have been doing thus far. Another unique characteristic of
OpenGL texture cube maps is that the images in them are oriented with texture
coordinate (0,0,0) at the upper left (rather than the usual lower left) of the texture
image; this is often a source of confusion.

Whereas the method shown in Program 9.1 reads in a single image for tex-
turing the cube map, the loadCubeMap() function shown in Program 9.2 reads in
six separate cube face image files. There are two approaches we could use to
read in the six image files and then build the cube map. We could use the JOGL
TexturelO and TextureData classes as we did throughout Chapter 5 or we could use
the AWT tools described at the end of Chapter 5. In this chapter, we choose the
latter approach as it affords more flexibility with respect to whether or not we
vertically flip the textures to accomodate the aforementioned difference in texture
coordinate orientation.

In the loadCubeMap() function, the six texture image files are read in using
the getRGBAPIxelData() function described back in Section 5.12. We set its second
parameter to false, so that it doesn’t flip the textures vertically—this is because
OpenGL automatically does a vertical flip for texture cube maps.

After reading in the textures and converting them to ByteBuffers, we then gen-
erate a single texture of type GL_TEXTURE_CUBE_MAP. OpenGL requires that we
specify the size of the texture images using the glTexStorage2D() function—in this
case they are 1024x1024 (they must be square). Finally, the loadCubeMap() function
uses glTexSublmage2D() to assign each texture to a cube face.

The init() function now includes a call to enable GL_TEXTURE_CUBE_MAP_
SEAMLESS, which tells OpenGL to attempt to blend adjoining edges of the cube
to reduce or eliminate seams. In display(), the cube’s vertices are sent down the
pipeline as before, but this time it is unnecessary to send the cube’s texture
coordinates. As we will see, this is because an OpenGL texture cube map usu-
ally uses the cube’s vertex positions as its texture coordinates. After disabling
depth testing, the cube is drawn. Depth testing is then re-enabled for the rest of
the scene.

The completed OpenGL texture cube map is referenced by an int identifier.
As was the case for shadow mapping, artifacts along a border can be reduced by
setting the texture wrap mode to “clamp to edge.” In this case it can help further
reduce seams. Note that this is set for all three texture coordinates (S, t, and r).

Chapter 9 - Sky and Backgrounds I 231

The texture is accessed in the fragment shader with a special type of sampler
called a samplerCube. In a texture cube map, the value returned from the sampler
is the texel “seen” from the origin as viewed along the direction vector (s,z,7). As a
result, we can usually simply use the incoming interpolated vertex positions as the
texture coordinates. In the vertex shader, we assign the cube vertex positions into
the outgoing texture coordinate attribute so that they will be interpolated when
they reach the fragment shader. Note also in the vertex shader that we convert
the incoming view matrix to 3x3, and then back to 4x4. This “trick” effectively
removes the translation component, while retaining the rotation (recall that trans-
lation values are found in the fourth column of a transformation matrix). This fixes
the cube map at the camera location, while still allowing the synthetic camera to
“look around.” The output of Program 9.2 is the same as for Program 9.1.

Program 9.2 OpenGL Cube Map Skybox
Java/JOGL application

public void init(GLAutoDrawable drawable)
{ GL4 gl =(GL4) GLContext.getCurrentGL();

// rendering programs and shaders for the torus, and for the cubemap
renderingProgram = Utils.createShaderProgram("vertShader.gls!", "fragShader.glsI");
renderingProgramCubeMap = Utils.createShaderProgram("vertCShader.glsl", "fragCShader.glsl");

setupVertices();

brickTexture = Utils.loadTexture("brick1.jpg"); / texture for the torus in the scene
gl.gIBindTexture(GL_TEXTURE_2D, brickTexture);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

skyboxTexture = Utils.loadCubeMap("cubeMap"); // folder containing the skybox textures
gl.glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);

}

public void display(GLAutoDrawable drawable)
{ // clear color and depth buffers, projection and camera view matrix as before.

// draw cube map first — note that it now requires a different rendering program
gl.glUseProgram(renderingProgramCubeMap);

// put the P and V matrices into their corresponding uniforms.

232 B Computer Graphics Programming in OpenGL with Java, Third Edition

// set up vertices buffer for cube (buffer for texture coordinates not necessary)
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);

gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);

// make the cube map the active texture
gl.glActiveTexture(GL_TEXTUREO);
gl.glBindTexture(GL_TEXTURE_CUBE_MAP, skyboxTexture);

// disable depth testing, and then draw the cube map
gl.glEnable(GL_CULL_FACE);
gl.glFrontFace(GL_CCW);
gl.gIDisable(GL_DEPTH_TEST);
gl.glDrawArrays(GL_TRIANGLES, 0, 36);
gl.glEnable(GL_DEPTH_TEST);

// draw remainder of the scene

}

public int loadCubeMap(String dirName)
{ GL4 gl =(GL4) GLContext.getCurrentGL();

// assumes that the six file names are xp, xn, yp, yn, zp, and zn and are JPG format
String topFile = dirName + File.separator + "yp.jpg";

String leftFile = dirName + File.separator + "xn.jpg";

String backFile = dirName + File.separator + "zn.jpg";

String rightFile = dirName + File.separator + "xp.jpg";

String frontFile = dirName + File.separator + "zp.jpg";

String bottomFile = dirName + File.separator + "yn.jpg";

Bufferedimage toplmage = getBufferedimage(topFile);
Bufferedimage leftimage = getBufferedimage(leftFile);
Bufferedimage frontimage = getBufferedimage(frontFile);
Bufferedimage rightimage = getBufferedimage(rightFile);
Bufferedimage backimage = getBufferedimage(backFile);
Bufferedimage bottomimage = getBufferedimage(bottomFile);

/| getRGBAPIxel is from Chapter 5. This time image NOT flipped because OpenGL does it for us
byte[] topRGBA = getRGBAPixelData(toplmage, false);

byte[] leftRGBA = getRGBAPixelData(leftimage, false);

byte[] frontRGBA = getRGBAPixelData(frontimage, false);

byte[] rightRGBA = getRGBAPixelData(rightimage, false);

byte[] backRGBA = getRGBAPixelData(backlmage, false);

byte[] bottomRGBA = getRGBAPixelData(bottomIimage, false);

Chapter 9 - Sky and Backgrounds I 233

ByteBuffer topWrappedRGBA = ByteBuffer.wrap(topRGBA);
ByteBuffer leftWrappedRGBA = ByteBuffer.wrap(leftRGBA);
ByteBuffer frontWrappedRGBA = ByteBuffer.wrap(frontRGBA);
ByteBuffer rightWrappedRGBA = ByteBuffer.wrap(rightRGBA);
ByteBuffer back\WrappedRGBA = ByteBuffer.wrap(backRGBA);
ByteBuffer bottomWrappedRGBA = ByteBuffer.wrap(bottomRGBA);

int[] texturelDs = new int[1];
gl.glGenTextures(1, texturelDs, 0);
int texturelD = texturelDs[0];

gl.gIBindTexture(GL_TEXTURE_CUBE_MAP, texturelD);
gl.glTexStorage2D(GL_TEXTURE_CUBE_MAP, 1, GL_RGBAS, 1024, 1024);

// attach the image texture to each face of the currently active OpenGL texture ID
gl.glTexSublmage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, 0, 0, 1024, 1024,
GL_RGBA, GL.GL_UNSIGNED_BYTE, rightWrappedRGBA);
gl.glTexSublmage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, 0, 0, 1024, 1024,
GL_RGBA, GL.GL_UNSIGNED_BYTE, leftWrappedRGBA);
gl.glTexSublmage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, 0, 0, 1024, 1024,
GL_RGBA, GL.GL_UNSIGNED_BYTE, bottomWrappedRGBA);
gl.glTexSublmage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 0, 0, 0, 1024, 1024,
GL_RGBA, GL.GL_UNSIGNED_BYTE, topWrappedRGBA);
gl.glTexSublmage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, 0, 0, 1024, 1024,
GL_RGBA, GL.GL_UNSIGNED_BYTE, frontWrappedRGBA);
gl.glTexSublmage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, 0, 0, 1024, 1024,
GL_RGBA, GL.GL_UNSIGNED_BYTE, backWrappedRGBA);

// to help reduce seams

gl.glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);

return texturelD;

Vertex shader

#version 430

layout (location = 0) in vec3 position;
out vec3 tc;

uniform mat4 v_matrix;

uniform mat4 p_matrix;
layout (binding = 0) uniform samplerCube samp;

234 B Computer Graphics Programming in OpenGL with Java, Third Edition

void main(void)

{

tc = position; // texture coordinates are simply the vertex coordinates
mat4 vrot_matrix = mat4(mat3(v_matrix)); // removes translation from view matrix
gl_Position = p_matrix * vrot_matrix * vec4(position, 1.0);

}

Fragment shader

#version 430
in vec3 fc;
out vec4 fragColor;

uniform mat4 v_matrix;
uniform mat4 p_matrix;
layout (binding = 0) uniform samplerCube samp;

void main(void)
{ fragColor = texture(samp,tc);

}
EXS ENVIRONMENT MAPPING

When we looked at lighting and materials, we considered the “shininess” of
objects. However, we never modeled very shiny objects, such as a mirror or some-
thing made out of chrome. Such objects don’t just have small specular highlights;
they actually reflect their surroundings. When we look at them, we see things in
the room, or sometimes even our own reflection. The ADS lighting model doesn’t
provide a way of simulating this effect.

Texture cube maps, however, offer a relatively simple way to simulate reflec-
tive surfaces—at least partially. The trick is to use the cube map to texture the
reflective object itself.! Doing this so that it appears realistic requires finding tex-
ture coordinates that correspond to the part of the surrounding environment we
should see reflected in the object from our vantage point.

Figure 9.9 illustrates the strategy of using a combination of the view vector
and the normal vector to calculate a reflection vector which is then used to look
up a texel from the cube map. The reflection vector can thus be used to access
the texture cube map directly. When the cube map performs this function, it is
referred to as an environment map.

' This same trick is also possible in those cases where a skydome is being used instead of a skybox,
by texturing the reflective object with the skydome texture image.

Chapter 9 - Sky and Backgrounds I 235

point to be “environment”
shaded \

“shiny” object

, . environment
view vector—| K‘ ot [~ texel used map
\ ,\ ‘\ for color
L/ reflection vector
eye
surface normal
Figure 9.9
Environment mapping overview.

We computed reflection vectors earlier when we studied Blinn-Phong lighting.
The concept here is similar, except that now we are using the reflection vector to
look up a value from a texture map. This technique is called environment mapping,
or reflection mapping. 1f the cube map is implemented using the second method
we described (in Section 9.3.2—that is, as an OpenGL GL_TEXTURE_CUBE_MAP),
then OpenGL can perform the environment mapping lookup in the same manner
as was done for texturing the cube map itself. We use the view vector and the sur-
face normal to compute a reflection of the view vector off the object’s surface. The
reflection vector can then be used to sample the texture cube map image directly.
The lookup is facilitated by the OpenGL samplerCube; recall from the previous
section that the samplerCube is indexed by a view direction vector. The reflection
vector is thus well suited for looking up the desired texel.

The implementation requires a relatively small amount of additional code.
Program 9.3 shows the changes that would be made to the display() and init() func-
tions and the relevant shaders for rendering a “reflective” torus using environment
mapping. The changes are highlighted. It is worth noting that if Phong lighting is
present, many of these additions would likely already be present. The only truly
new section of code is in the fragment shader (in the main() method).

In fact, it might at first appear as if the highlighted code in Program 9.3 (i.e., the
yellow sections) aren’t really new at all. Indeed, we have seen nearly identical code
before, when we studied lighting. However, in this case, the normal and reflection
vectors are used for an entirely different purpose. Previously they were used to

236 B Computer Graphics Programming in OpenGL with Java, Third Edition

implement the ADS lighting model. Here they are instead used to compute texture
coordinates for environment mapping. We highlighted these lines of code so that
the reader can more easily track the use of normals and reflection computations
for this new purpose.

The result, showing an environment-mapped “chrome” torus, is shown in
Figure 9.10.

Figure 9.10
Example of environment mapping to create a reflective torus.

Program 9.3 Environment Mapping

public void display(GLAutoDrawable drawable)
{ // the code for drawing the cube map is unchanged.

/| the changes are all in drawing the torus:
gl.glUseProgram(renderingProgram);

/| uniform locations for matrix transforms, including the transform for normals
mvLoc = gl.glGetUniformLocation(renderingProgram, "mv_matrix");

pLoc = gl.glGetUniformLocation(renderingProgram, "p_matrix");

nLoc = gl.glGetUniformLocation(renderingProgram, "norm_matrix");

// build the MODEL matrix, as before
mMat.identity();
mMat.translate(torusLoc.x(), torusLoc.y(), torusLoc.z());

Chapter 9 - Sky and Backgrounds I 237

// build the MODEL-VIEW matrix, as before
mvMat.identity();

mvMat.mul(vMat);

mvMat.mul(mMat);

mMat.invert(invTrMat);
invTrMat.transpose(invTrMat);

// the normals transform is now included in the uniforms:
gl.glUniformMatrix4fv(mvLoc, 1, false, mvMat.get(vals));
gl.glUniformMatrix4fv(pLoc, 1, false, pMat.get(vals));
gl.glUniformMatrix4fv(nLoc, 1, false, invTrMat.get(vals));

// activate the torus vertices buffer, as before
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);

// we need to activate the torus normals buffer:
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
gl.glVertexAttribPointer(1, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(1);

// the torus texture is now the cube map
gl.glActiveTexture(GL_TEXTUREO);
gl.glBindTexture(GL_TEXTURE_CUBE_MAP, skyboxTexture);

// drawing the torus is otherwise unchanged
gl.glClear(GL_DEPTH_BUFFER_BIT);
gl.glEnable(GL_CULL_FACE);
gl.glFrontFace(GL_CCW);
gl.giDepthFunc(GL_LEQUAL);

gl.glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3));
gl.glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

}

Vertex shader

#version 430

layout (location = 0) in vec3 position;

layout (location = 1) in vec3 normal;

out vec3 varyingNormal;

out vec3 varyingVertPos;

uniform mat4 mv_matrix;

uniform mat4 p_matrix;

uniform mat4 norm_matrix;

layout (binding = 0) uniform samplerCube tex_map;

238 M Computer Graphics Programming in OpenGL with Java, Third Edition

void main(void)

{ varyingVertPos = (mv_matrix * vec4(position,1.0)).xyz;
varyingNormal = (norm_matrix * vec4(normal,1.0)).xyz;
gl_Position = p_matrix * mv_matrix * vecé(position, 1.0);

}

Fragment shader

#version 430

in vec3 varyingNormal;

in vec3 varyingVertPos;

out vec4 fragColor;

uniform mat4 mv_matrix;

uniform mat4 p_matrix;

uniform mat4 norm_matrix;

layout (binding = 0) uniform samplerCube tex_map;

void main(void)
{ vec3r = -reflect(normalize(-varyingVertPos), normalize(varyingNormal));
fragColor = texture(tex_map, r);

}

Although two sets of shaders are required for this scene—one set for the cube
map and another set for the torus—only the shaders used to draw the torus are
shown in Program 9.3. This is because the shaders used for rendering the cube map
are unchanged from Program 9.2. The changes made to Program 9.2, resulting in
Program 9.3, are summarized as follows:

in init():
e A buffer of normals for the torus is created (actually done in
setupVertices(), called by init()).

* The buffer of texture coordinates for the torus is no longer needed.

in display():

e The matrix for transforming normals (dubbed “norm_matrix” in
Chapter 7) is created and linked to the associated uniform variable.

e The torus normal buffer is activated.

e The texture cube map is activated as the texture for the torus
(rather than the “brick”™ texture).

Chapter 9 - Sky and Backgrounds I 239

in the vertex shader:

¢ The normal vectors and norm_matrix are added.

* The transformed vertex and normal vector are output in preparation for
computing the reflection vector, similar to what was done for lighting
and shadows.

in the fragment shader:

e The reflection vector is computed in a similar way to what was done for
lighting.

e The output color is retrieved from the texture (now the cube map), with
the lookup texture coordinate now being the reflection vector.

The resulting rendering shown in Figure 9.10 is an excellent example of how
a simple trick can achieve a powerful illusion. By simply painting the background
on an object, we have made the object look “metallic,” when no such ADS mate-
rial modeling has been done at all. It has also given the appearance that light is
reflecting off of the object, even though no ADS lighting whatsoever has been
incorporated into the scene. In this example, there even seems to be a specular
highlight on the lower left of the torus, because the cube map includes the sun’s
reflection off of the water.

SUPPLEMENTAL NOTES

Throughout this chapter, we avoided JOGL’s texturing tools when building
our cube map. However, using JOGL’s TexturelO and TextureData classes for this
purpose can dramatically shorten the code in the loadCubeMap() function. This is
done by first creating the texture cube map:

Texture tex = new Texture(GL_TEXTURE_CUBE_MAP);

Each of the six texture image files are loaded, for example as follows:

TextureData leftFile = TexturelO.newTextureData(gIProfile, new File("code/left.jpg"), false, "jpg");
Then, each texure is assigned to a cube face:

tex.updatelmage(gl, leftFile, GL_TEXTURE_CUBE_MAP_NEGATIVE_X);

The drawback of this approach is that it isn’t as easy to control whether or not a
texture image is being flipped vertically, because nowhere do we have direct access

240 B Computer Graphics Programming in OpenGL with Java, Third Edition

to the individual texture objects comprising the cube map. In some cases, it is
necessary to provide vertically flipped versions of the original six texture images.

A major limitation of environment mapping, as presented in this chapter, is
that it only generates a reflection of the cube map. Other objects rendered in the
scene are not reflected in the reflection-mapped object. Depending on the nature
of the scene, this might or might not be acceptable. If other objects are present
that must be reflected in a mirror or chrome object, other methods must be used.
A common approach utilizes the stencil buffer (mentioned earlier in Chapter 8)
and is described in various web tutorials ([GR97], [NE14], and [OV12], for exam-
ple), but is outside the scope of this text.

We didn’t include an implementation of skydomes, although they are in some
ways arguably simpler than skyboxes and can be less susceptible to distortion.
Even environment mapping is simpler—at least the math—but the OpenGL support
for cube maps often makes skyboxes more practical. We will generate a skydome
later in Chapter 14 when we simulate clouds.

Of the topics covered in the later sections of this textbook, skyboxes and sky-
domes are arguably among the simplest conceptually. However, getting them to
look convincing can consume a lot of time. We have dealt only briefly with some
of the issues that can arise (such as seams), but depending on the texture image
files used, other issues can occur, requiring additional repair. This is especially
true when the scene is animated or when the camera can be moved interactively.

We also glossed over the generation of usable and convincing texture cube
map images. There are excellent tools for doing this, one of the most popular being
Terragen [TE19]. All of the cube maps in this chapter were made by the authors
(except for the starfield in Figure 9.6), using Terragen.

Exercises

9.1 (PROJECT) In Program 9.2, add the ability to move the camera around with
the mouse or keyboard. To do this, you will need to utilize the code you
developed earlier in Exercise 4.2 for constructing a view matrix. You’ll also
need to assign mouse or keyboard actions to functions that move the camera
forward and backward, and functions that rotate the camera on one or more of
its axes (you’ll need to write these functions too). After doing this, you should

Chapter 9 - Sky and Backgrounds I 241

be able to “fly around” in your scene, noting that the skybox always appears
to remain at the distant horizon.

9.2 Draw labels on the six cube map image files to confirm that the correct
oriention is being achieved. For example, you could draw axis labels on the
images, such as the following:

Also use your “labeled” cube map to verify that the reflections in the
environment-mapped torus are being rendered correctly.

9.3 (PROJECT) Modify Program 9.3 so that the object in the scene blends
environment mapping with a texture. Use a weighted sum in the fragment
shader, as described in Chapter 7.

9.4 (RESEARCH & PROJECT) Learn the basics of how to use Terragen [TE16] to
create a simple cube map. This generally entails making a “world” with the
desired terrain and atmospheric patterns (in Terragen), and then positioning
Terragen’s synthetic camera to save six images representing the front, back,
right, left, top, and bottom views. Use your images in Programs 9.2 and 9.3 to
see how they appear as cube maps and with environment mapping. The free
version of Terragen is quite sufficient for this exercise.

References

[BO11] P. Bourke, “Representing Star Fields,” October 2011, accessed March
2021, http:/paulbourke.net/miscellaneous/astronomy/

[GI21] GNU Image Manipulation Program, accessed March 2021, http:/www
.gimp.org
[GR97] OpenGL Resources, “Planar Reflections and Refractions Using the

Stencil Buffer,” accessed March 2021, https://www.opengl.org/archives/
resources/code/samples/advanced/advanced97/notes/node90.html

242 B Computer Graphics Programming in OpenGL with Java, Third Edition

[NE14] NeHeProductions, “Clipping and Reflections Using the Stencil Buffer,”
2014, accessed March 2021, http:/nehe.gamedev.net/tutorial/clipping_
reflections_using_the stencil buffer/17004/

[OV12] A.Overvoorde, “Depth and Stencils,” 2012, accessed March 2021, https:/
open.gl/depthstencils

[TE19] Terragen,Planetside Software, LLC,accessed March2021, http:/planetside
.co.uk/

CHAPTER 10

ENHANCING SURFACE DETAIL

101 Bump Mapping.o 243
10.2 Normal Mapping e 245
10.3 Height Mapping e 254

Supplemental Notes oo 258

Suppose we want to model an object with an irregular surface—like the bumpy
surface of an orange, the wrinkled surface of a raisin, or the cratered surface of the
moon. How would we do it? So far, we have learned two potential methods: (a) we
could model the entire irregular surface, which would often be impractical (a highly
cratered surface would require a huge number of vertices), or (b) we could apply a
texture map image of the irregular surface to a smooth version of the object. The sec-
ond option is often effective. However, if the scene includes lights and the lights (or
camera angle) move, it becomes quickly obvious that the object is statically textured
(and smooth) because the light and dark areas on the texture wouldn’t change, as they
would if the object was actually bumpy.

In this chapter we are going to explore several related methods for using lighting
effects to make objects appear to have realistic surface texture, even if the underly-
ing object model is smooth. We will start by examining bump mapping and normal
mapping, which can add considerable realism to the objects in our scenes when it
would be too computationally expensive to include tiny surface details in the object
models. We will also look at ways of actually perturbing the vertices in a smooth sur-
face through height mapping, which is useful for generating terrain (and other uses).

BUMP MAPPING

In Chapter 7, we saw how surface normals are critical to creating convincing light-
ing effects. Light intensity at a pixel is determined largely by the reflection angle, tak-
ing into account the light source location, camera location, and the normal vector at
the pixel. Thus, we can avoid generating detailed vertices corresponding to a bumpy or

244 B Computer Graphics Programming in OpenGL with Java, Third Edition

PG g S

Surface normals on a real “bump”

PEEEEEEOERALALI IO IE 444

Surface normals on a flat surface

- ~q

AAAARARNNKKRAAAATAAILEA44
Modified (“perturbed”) normals

Figure 10.1
Perturbed normal vectors for bump mapping.

Figure 10.2
Procedural bump mapping example.

wrinkled surface if we can find a way of
generating the corresponding normals.

Figure 10.1 illustrates the concept
of modified normals corresponding to
a single “bump.”

Thus, if we want to make an object
look as though it has bumps (or wrin-
kles, craters, etc.), one way is to com-
pute the normals that would exist on
such a surface. Then when the scene
is lit, the lighting would produce the
desired illusion. This was first proposed
by Blinn in 1978 [BL78], and became
practical with the advent of the capa-
bility of performing per-pixel lighting
computations in a fragment shader.

Anexampleisillustrated in the vertex
and fragment shaders shown in Program
10.1, which produces a torus with a
“golf-ball” surface as shown in Figure
10.2. The code is almost identical to what
we saw previously in Program 7.2. The

only significant change is in the fragment shader—the incoming interpolated nor-
mal vectors (named “varyingNormal” in the original program) are altered with bumps
calculated using a sine wave function in the X, Y, and Z axes applied to the original
(untransformed) vertices of the torus model. Note that the vertex shader therefore
now needs to pass these untransformed vertices down the pipeline.

Altering the normals in this manner, with a mathematical function computed
at runtime, is called procedural bump mapping.

Program 10.1 Procedural Bump Mapping

Vertex Shader

#version 430

// same as Phong shading, but add this output vertex attribute:

out vec3 originalVertex;

Chapter 10 - Enhancing Surface Detail I 245

void main(void)
{ // include this pass-through of original vertex for interpolation:
originalVertex = vertPos;

Fragment Shader

#version 430
// same as Phong shading, but add this input vertex attribute:
in vec3 originalVertex;

void main(void)

{ ...
// add the following to perturb the incoming normal vector:
floata = 0.25; // a controls height of bumps
float b = 100.0; // b controls width of bumps

float x = originalVertex.x;

float y = originalVertex.y;

float z = originalVertex.z;

N.x = varyingNormal.x + a*sin(b*x); // perturb incoming normal using sine function

N.y = varyingNormal.y + a*sin(b*y);

N.z = varyingNormal.z + a*sin(b*z);

N = normalize(N);

// lighting computations and output fragColor (unchanged) now utilize the perturbed normal N

E¥™ NORMAL MAPPING

An alternative to bump mapping is to replace the normals using a lookup
table. This allows us to construct bumps for which there is no mathematical func-
tion, such as the bumps corresponding to the craters on the moon. A common way
of doing this is called normal mapping.

To understand how this works, we start by noting that a vector can be stored
to reasonable precision in three bytes, one for each of the X, Y, and Z components.
This makes it possible to store normals in a color image file, with the R, G, and B
components corresponding to X, Y, and Z. RGB values in an image are stored in

246 B Computer Graphics Programming in OpenGL with Java, Third Edition

bytes and are usually interpreted as values in the range [0..1], whereas vectors can
have positive or negative component values. If we restrict normal vector compo-
nents to the range [-1..+1], a simple conversion to enable storing a normal vector N
as a pixel in an image file is

R=(N, +1)/2
G=(N,+1)/2
B=(N,+1)/2

Normal mapping utilizes an image file (called a normal map) that contains
normals corresponding to a desired surface appearance in the presence of lighting.
In a normal map, the vectors are represented relative to an arbitrary plane X-Y,
with their X and Y components representing deviations from “vertical” and their
Z component set to 1. A vector strictly perpendicular to the X-Y plane (i.e., with no
deviation) would be represented (0,0,1), whereas non-perpendicular vectors would
have non-zero X and/or Y components. We use the above formulae to convert to
RGB space; for example, (0,0,1) would be stored as (.5,.5,1), since actual offsets
range [-1..+1], but RGB values range [0.1].

We can make use of such a normal map through yet another clever application
of texture units: Instead of storing colors in the texture unit, we store the desired
normal vectors. We can then use a sampler to look up the value in the normal map
for a given fragment, and then rather than applying the returned value to the output
pixel color (as we did in texture mapping), we instead use it as the normal vector.

One example of such a normal map image
file is shown in Figure 10.3. It was gener-
ated by applying the GIMP normal mapping
plugin [GI21] to a texture from Luna [LU16].
Normal mapping image files are not intended
for viewing; we show this one to point out that
such images end up being largely blue. This
is because every entry in the image file has
a B value of 1 (maximum blue), making the
image appear “bluish” if viewed.

Figure 10.4 shows two different normal

Figure 10.3 . . .
Normal mapping image file example [LU16]. map image files (both are built out of textures

Chapter 10 - Enhancing Surface Detail W 247

Figure 10.4
Normal mapping examples.

from Luna [LU16]) and the result of applying them to a sphere in the presence of
Blinn-Phong lighting.

Normal vectors retrieved from a normal map cannot be utilized directly,
because they are defined relative to an arbitrary X-Y plane as described above,
without taking into account their position on the object and their orientation in
world space. Our strategy for addressing this will be to build a transformation
matrix for converting the normals into world space, as follows.

At each vertex on an object, we consider a plane that is tangent to the object.
The object normal at that vertex is perpendicular to this plane. We define two
mutually perpendicular vectors in that plane, also perpendicular to the normal,
called the tangent and bitangent (sometimes called the binormal). Constructing
our desired transformation matrix requires that our models include a tangent vec-
tor for each vertex (the bitangent can be built by computing the cross product of
the tangent and the normal). If the model does not already have tangent vectors
defined, they could be computed. In the case of a sphere they can be computed
exactly, as shown in the following modifications to Program 6.1:

for (int i=0; i<=prec; i++)
{ for (intj=0; j<=prec; j++)
{ floaty = (float)cos(toRadians(180-i*180/prec));
float x = -(float)cos(toRadians(j*360/prec)) * (float)abs(cos(asin(y)));
float z = (float)sin(toRadians(j*360/prec)) * (float)abs(cos(asin(y)));
vertices[i*(prect+1)+j].set(x,y,z));

248 B Computer Graphics Programming in OpenGL with Java, Third Edition

// calculate tangent vector
if (x==0) && (y==1) && (z==0)) || ((x==0) && (y==-1) && (z==0))) 7/ if north or south pole,

{ tangent[i*(prect+1)+j].set(0.0f, 0.0f, -1.0f); /| set tangent to -Z axis
}
else // otherwise, calculate tangent

{ tangent[i*(prect+1)+j] = (new Vector3f(0,1,0)).cross(new Vector3f(x,y,z));
}

... // remaining computations are unchanged

}
}

For models that don’t lend themselves to exact analytic derivation of surface tan-
gents, the tangents can be approximated, for example by drawing vectors from each
vertex to the next as they are constructed (or loaded). Note that such an approxima-
tion can lead to tangent vectors that are not strictly perpendicular to the correspond-
ing vertex normals. Implementing normal mapping that works across a variety of
models therefore needs to take this possibility into account (our solution will).

The tangent vectors are sent from a buffer (VBO) to a vertex attribute in the
vertex shader, as is done for the vertices, texture coordinates, and normals. The
vertex shader then processes them the same as is done for normal vectors, by
applying the inverse transpose of the M matrix and forwarding the result down the
pipeline for interpolation by the rasterizer and ultimately into the fragment shader.
The application of the inverse transpose converts the normal and tangent vectors
into world space, after which we construct the bitangent using the cross product.

Once we have the normal, tangent, and bitangent vectors in world space, we
can use them to construct a matrix (called the “TBN” matrix, after its components)
which transforms the normals retrieved from the normal map into their corre-
sponding orientation in world space relative to the surface of the object.

In the fragment shader, the computing of the new normal is done in the
calcNewNormal() function. The computation in the third line of the function (the
one containing dot(tangent, normal)) ensures that the tangent vector is perpendicu-
lar to the normal vector. A cross product between the new tangent and the normal
produces the bitangent.

We then create the TBN as a 3x3 mat3 matrix. The mat3 constructor takes three
vectors and generates a matrix containing the first vector in the top row, the sec-
ond vector in the middle row, and the third in the bottom row (similar to building
a view matrix from a camera position—see Figure 3.13).

Chapter 10 - Enhancing Surface Detail I 249

The shader uses the fragment’s texture coordinates to extract the normal map
entry corresponding to the current fragment. The sampler variable “normMap”
is used for this, and in this case is bound to texture unit 0 (note the Java/JOGL
application must therefore have attached the normal map image to texture unit 0).
To convert the color component from the stored range [0..1] to its original range
[-1.41] we multiply by 2.0 and subtract 1.0.

The TBN matrix is then applied to the resulting normal to produce the final
normal for the current pixel. The rest of the shader is identical to the fragment
shader used for Phong lighting. The fragment shader is shown in Program 10.2 and
is based on a version by Etay Meiri [ME11].

A variety of tools exist for developing normal map images. Some image edit-
ing tools, such as GIMP [GI21] and Photoshop [PH21], have such capabilities. Such
tools analyze the edges in an image, inferring peaks and valleys and producing a
corresponding normal map.

Figure 10.5 shows a texture map of the surface of the moon created by Hastings-
Trew [HT12] based on NASA satellite data. The corresponding normal map was
generated by applying the GIMP normal map plugin [GN12] to a black-and-white
reduction also created by Hastings-Trew.

Figure 10.5
Moon, texture and normal map.

250 M Computer Graphics Programming in OpenGL with Java, Third Edition

Program 10.2 Normal Mapping Fragment Shader

#version 430

in vec3 varyingLightDir;
in vec3 varyingVertPos;
in vec3 varyingNormal;
in vec3 varyingTangent;
in vec3 originalVertex;
in vec? tc;

out vec4 fragColor;

layout (binding=0) uniform sampler2D normMap;
// remaining uniforms same as before

vec3 calcNewNormal()

{ vec3 normal = normalize(varyingNormal);
vec3 tangent = normalize(varyingTangent);
tangent = normalize(tangent - dot(tangent, normal) * normal); //tangent is perpendicular to normal
vec3 bitangent = cross(tangent, normal);

mat3 tbn = mat3(tangent, bitangent, normal); // TBN matrix to convert to camera space
vec3 retrievedNormal = texture(normMap,tc).xyz;
retrievedNormal = retrievedNormal * 2.0 - 1.0; // convert from RGB space

vec3 newNormal = tbn * retrievedNormal;
newNormal = normalize(newNormal);
return newNormal;
}
void main(void)
{ // normalize the light, normal, and view vectors:
vec3 L = normalize(varyingLightDir);
vec3 V = normalize(-v_matrix[3].xyz - varyingVertPos);
vec3 N = calcNewNormal();

// get the angle between the light and surface normal:
float cosTheta = dot(L,N);

// compute light reflection vector with respect to N:
vec3 R = normalize(reflect(-L, N));

// angle between the view vector and reflected light:
float cosPhi = dot(V,R);

// compute ADS contributions (per pixel):

fragColor = globalAmbient * material.ambient

+ light.ambient * material.ambient

+ light.diffuse * material.diffuse * max(cosTheta,0.0)

+ light.specular * material.specular * pow(max(cosPhi,0.0), material.shininess);

Chapter 10 - Enhancing Surface Detail H 251

Figure 10.6
Sphere textured with moon texture (left) and normal map (right).

Figure 10.6 shows a sphere with the moon surface rendered in two different
ways: on the left, simply textured with the original texture map; on the right, tex-
tured with the image normal map (for reference). Normal mapping has not been
applied in either case. As realistic as the textured “moon” is, close examination
reveals that the texture image was apparently taken when the moon was being lit
from the left, because ridge shadows are cast to the right (most clearly evident in
the crater at the bottom center). [f we were to add lighting to this scene with Phong
shading, and then animate the scene by moving the moon, the camera, or the light,
those shadows would not change as we would expect them to.

Furthermore, as the light source moves (or as the camera moves), we would
expect many specular highlights to appear on the ridges. But a plain textured
sphere such as at the left of Figure 10.6 would produce only one specular highlight,
corresponding to what would appear on a smooth sphere, which would look very
unrealistic. Incorporation of the normal map can improve the realism of lighting
on objects such as this considerably.

If we use normal mapping on the sphere (rather than applying the texture), we
obtain the results shown in Figure 10.7. Although not as realistic (yet) as standard
texturing, it now does respond to lighting changes. The first image is lit from the
left, and the second is lit from the right. Note the blue and yellow arrows showing the
change in diffuse lighting around ridges and the movement of specular highlights.

Figure 10.8 shows the effect of combining normal mapping with standard tex-
turing, in the presence of Phong lighting. The image of the moon is enhanced with
diffuse-lit regions and specular highlights that respond to the movement of the

252 B Computer Graphics Programming in OpenGL with Java, Third Edition

Figure 10.7
Normal map lighting effects on moon.

Figure 10.8
Texturing plus normal mapping, with lighting from the left and right.

light source (or camera or object movement). Lighting in the two images is from
the left and right sides, respectively.

Our program now requires two textures—one for the moon surface image,
and one for the normal map—and thus two samplers. The fragment shader blends
the texture color with the color produced by the lighting computation as shown in
Program 10.3, using the technique described previously in Section 7.6.

Program 10.3 Texturing plus Normal Map

/| variables and structs as in previous fragment shader, plus:
layout (binding=0) uniform sampler2D s0; // normal map
layout (binding=1) uniform sampler2D s1; // texture

Chapter 10 - Enhancing Surface Detail I 253

void main(void)
{ // computations same as before, until:

vec3 N = calcNewNormal();
vecd texel = texture(s1,tc); // standard texture

// reflection computations as before, then blend results:
fragColor = globalAmbient +

texel * (light.ambient + light.diffuse * max(cosTheta,0.0)

+ light.specular * pow(max(cosPhi,0.0), material.shininess));

Interestingly, normal mapping can benefit from mipmapping, because the same
“aliasing” artifacts that we saw in Chapter 5 for texturing also occur when using
a texture image for normal mapping. Figure 10.9 shows a normal mapped moon,
with and without mipmapping. Although not easily shown in a still image, the
sphere at the left (not mipmapped) has shimmering artifacts around its perimeter.

Anisotropic filtering (AF) works even better, reducing sparkling artifacts
while preserving detail, as illustrated in Figure 10.10 (compare the detail on the
edge along the lower right). A version combining equal parts texture and lighting
with normal mapping and AF is shown alongside, in Figure 10.11.

The results are imperfect. Shadows appearing in the original texture image
will still show on the rendered result, regardless of lighting. Also, while normal

shimmering artifacts

Figure 10.9
Normal mapping artifacts, corrected with mipmapping.

254 B Computer Graphics Programming in OpenGL with Java, Third Edition

Figure 10.10 Figure 10.11
Normal mapping with AF. Texturing plus normal mapping with AF.

mapping can affect diffuse and specular effects, it cannot cast shadows. Therefore,
this method is best used when the surface features are small.

HEIGHT MAPPING

We now extend the concept of normal mapping—where a texture image is used
to perturb normals—to instead perturb the vertex locations themselves. Actually
modifying an object’s geometry in this way has certain advantages, such as mak-
ing the surface features visible along the object’s edge and enabling the features to
respond to shadow mapping. It can also facilitate building ferrain, as we will see.

A practical approach is to use a texture image to store Aeight values, which
can then be used to raise (or lower) vertex locations. An image that contains height
information is called a height map, and using a height map to alter an object’s ver-
tices is called height mapping. Height maps usually encode height information as
grayscale colors: (0,0,0) (black) = low height and (1,1,1) (white) = high height. This
makes it easy to create height maps algorithmically, or by using a “paint” program.
The higher the image contrast, the greater the variation in height expressed by the
map. These concepts are illustrated in Figure 10.12 (showing randomly generated
maps) and Figure 10.13 (showing a map with an organized pattern).

The usefulness of altering vertex locations depends on the model being altered.
Vertex manipulation is easily done in the vertex shader, and when there is a high
level of detail in the model vertices (such as in a sphere with sufficiently high

precision), this approach can
work well. However, when the
underlying number of vertices is
small (such as the corners of a
cube), rendering the object’s sur-
face relies on vertex interpola-
tion in the rasterizer to fill in the
detail. When there are very few
vertices available in the vertex
shader to perturb, the heights of
many pixels would be interpo-
lated rather than retrieved from
the height map, leading to poor
surface detail. Vertex manipula-
tion in the fragment shader is, of
course, impossible because by
then the vertices have been ras-
terized into pixel locations.

Program 10.4 shows a vertex
shader that moves the vertices
“outward” (i.e., in the direction
of the surface normal), by multi-
plying the vertex normal by the
value retrieved from the height
map and then adding that prod-
uct to the vertex position.

Chapter 10 - Enhancing Surface Detail W 255

-

Small variation in height Large variation in height

Figure 10.12
Height map examples.

(NN EEEN
INEEEEEN
HINEEEEEN|

Height map image -
£ 4 1 1 1 \ \ W\

/ /7 J 1 1 % \ \ W
2 1 1 1\ \ W\

NS

(height interpretation)

Figure 10.13
Height map interpretation.

Program 10.4 Height Mapping in Vertex Shader

#version 430

layout (location=0) in vec3 vertPos;
layout (location=1) in vec2 texCoord;
layout (location=2) in vec3 vertNormal;

out vec? tc;

uniform mat4 mv_matrix;
uniform mat4 p_matrix;

256 M Computer Graphics Programming in OpenGL with Java, Third Edition

layout (binding=0) uniform sampler2D t; // for texture
layout (binding=1) uniform sampler2D h; // for heightmap

void main(void)
{ //"p"is the vertex position altered by the height map.
// Since the height map is grayscale, any of the color components can be
// used (we use "r"). Dividing by 5.0 is to adjust the height.
vecd p = vecd(vertPos,1.0) + vecd((vertNormal * ((texture(h, texCoord).r) / 5.0f)),1.0f);
tc = tex_coord;
gl_Position = p_matrix * mv_matrix * p;

Figure 10.14 shows a simple height map (top left) created by scribbling in a
paint program. A white square is also drawn in the height map image. A green-
tinted version of the height map (bottom left) is used as a texture. When the height
map is applied to a rectangular 100x100 grid model using the shader shown in
Program 10.4, it produces a sort of “terrain” (shown on the right). Note how the
white square results in the precipice at the right.

Figure 10.15 shows another example of doing height mapping in a vertex
shader. This time the height map is an outline of the continents of the world [HT16].
It is applied to a sphere textured with a blue-tinted version of the height map
(see top left—note the original black and white version is not shown), and lit with
Blinn-Phong shading using a normal map (shown at the lower left) built using

Figure 10.14
Terrain, height mapped in the vertex shader.

Chapter 10 - Enhancing Surface Detail W 257

Figure 10.15
Vertex shader-based height mapping, applied to a sphere.

the tool SSBump Generator [SS15]. The sphere precision was increased to 500 to
ensure enough vertices to render the detail. Note how the raised vertices affect not
only the lighting, but also the silhouette edges.

The rendered examples shown in Figure 10.14 and Figure 10.15 work accept-
ably because the two models (grid and sphere) have a sufficient number of vertices
to sample the height map values. That is, they each have a fairly large number of
vertices, and the height map is relatively coarse and adequately sampled at a low
resolution. However, close inspection still reveals the presence of resolution arti-
facts, such as along the bottom left edge of the raised box at the right of the terrain
in Figure 10.14. The reason that the sides of the raised box don’t appear perfectly
square, and include gradations in color, is because the 100100 resolution of the
underlying grid cannot adequately align perfectly with the white box in the height
map, and the resulting rasterization of texture coordinates produces artifacts along
the sides.

The limitations of doing height mapping in the vertex shader are further
exposed when trying to apply it with a more demanding height map. Consider
the moon image shown back in Figure 10.5. Normal mapping did an excellent
job of capturing the detail in the image (as shown previously in Figure 10.9 and
Figure 10.11), and since it is grayscale, it would seem natural to try applying it as
a height map. However, vertex-shader-based height mapping would be inadequate
for this task, because the number of vertices sampled in the vertex shader (even for

258 M Computer Graphics Programming in OpenGL with Java, Third Edition

a sphere with precision = 500) is small compared to the fine level of detail in the
image. By contrast, normal mapping was able to capture the detail impressively,
because the normal map is sampled in the fragment shader, at the pixel level.

We will revisit height mapping later in Chapter 12 when we discuss methods
for generating a greater number of vertices in a fessellation shader.

SUPPLEMENTAL NOTES

One of the fundamental limitations of bump or normal mapping is that, while
they are capable of providing the appearance of surface detail in the interior of
a rendered object, the silhouette (outer boundary) doesn’t show any such detail
(it remains smooth). Height mapping, if used to actually modify vertex locations,
fixes this deficiency, but has its own limitations. As we will see later in this book,
sometimes a geometry or tessellation shader can be used to increase the number of
vertices, making height mapping more practical and more effective.

We have taken the liberty of simplifying some of the bump and normal map-
ping computations. More accurate and/or more efficient solutions are available for
critical applications [BN12].

Exercises

10.1 Experiment with Program 10.1 by modifying the settings and/or computations
in the fragment shader and observing the results.

10.2 Using a paint program, generate your own height map and use it in Program
10.4. See if you can identify locations where detail is missing as the result of
the vertex shader being unable to adequately sample the height map. You will
probably find it useful to also texture the terrain with your height map image
file as shown in Figure 10.14 (or with some sort of pattern that exposes the
surface structure, such as a grid), so that you can see the hills and valleys of
the resulting terrain.

10.3 (PROJECT) Add lighting to Program 10.4, so that the surface structure of the
height-mapped terrain is further exposed.

10.4 (PROJECT) Add shadow mapping to your code from Exercise 10.3 so that
your height-mapped terrain casts shadows.

Chapter 10 - Enhancing Surface Detail I 259

References

[BL78] J. Blinn, “Simulation of Wrinkled Surfaces,” Computer Graphics 12,
no. 3 (1978): 286-292.

[BN12] E. Bruneton and F. Neyret, “A Survey of Non-Linear Pre-Filtering
Methods for Efficient and Accurate Surface Shading,” IEEE Transactions
on Visualization and Computer Graphics 18, no. 2 (2012), pp 242-260.

[GI21] GNU Image Manipulation Program, accessed March 2021, http:/www
.gimp.org

[GN12] GIMP normal map plugin, accessed March 2021, https://code.google.com/
archive/p/gimp-normalmap/

[HT12] J. Hastings-Trew, JHT’s Planetary Pixel Emporium, accessed March
2021, http://planetpixelemporium.com/

[LU16] F. Luna, Introduction to 3D Game Programming with DirectX 12, 2nd ed.
(Mercury Learning, 2016).

[IME11] E. Meiri, OGLdev Tutorial 26, 2011, accessed March 2021, http://ogldev
.atspace.co.uk/index.html

[PH21] Adobe Photoshop, accessed March 2021, http:/www.photoshop.com

[SS15] SSBump Generator, accessed March 2021, https:/sourceforge.net/
projects/ssbumpgenerator/

CHAPTER 1 1

PARAMETRIC SURFACES

11.1 Quadratic Bézier CUrves.uuiiiie e 261
11.2 Cubic Bézier CUFVESou it 263
11.3 Quadratic Bézier Surfaces 266
11.4 Cubic Bézier SUrfaces e 268

Supplemental Notes oo 270

While working at the Renault corporation in the 1950s and 1960s, Pierre Bézier
developed software systems for designing automobile bodies. His programs utilized
mathematical systems of equations developed earlier by Paul de Casteljau, who was
working for the competing Citroén automobile manufacturer [BE72, DC63]. The
de Casteljau equations describe curves using just a few scalar parameters and are
accompanied by a clever recursive algorithm dubbed “de Casteljau’s algorithm” for
generating the curves to arbitrary precision. Now known as “Bézier curves” and
“Bézier surfaces,” these methods are commonly used to efficiently model many
kinds of curved 3D objects.

QUADRATIC BEZIER CURVES

A Quadratic Bézier curve is defined by a set P
of parametric equations that specify a particular
curved shape using three control points, each

of which is a point in 2D space.! Consider, for Po o
example, the set of three points [py,p;,p,] shown in ,
Figure 11.1. Fi

igure 11.1

Control points for a Bézier curve.

' Of course, a curve can exist in 3D space. However, a quadratic curve lies entirely within a 2D plane.

262 M Computer Graphics Programming in OpenGL with Java, Third Edition

By introducing a parameter f, we can build
a system of parametric equations that define
a curve. The t represents a fraction of the dis-
tance along the line segment connecting one
control point to the next control point. Values
Figure 11.2 for t are within the range [0..1] for points along
Points at parametric position t = 0.75. the segment. Figure 11.2 shows one such value,
t = 0.75, applied to the lines connecting py-p;
and p;-p,, respectively. Doing this defines two
new points py(t) and py,(t) along the two original
lines. We repeat this process for the line seg-
ment connecting the two new points py,(t) and
pio(t) producing point P(t) where t = 0.75 along
the line pyy(t)-ps,(t). P(t) is one of the points on the
resulting curve, and for this reason is denoted

Figure 11.3 with a capital P.
Building a quadratic Bézier curve.

Collecting many points P(t) for various
values of t generates a curve, as shown in Figure 11.3. The more parameter values
for t that are sampled, the more points P(t) are generated, and the smoother the
resulting curve.

The analytic definition for a quadratic Bézier curve can now be derived. First,
we note that an arbitrary point p on the line segment p,-p, connecting two points p,
and p, can be represented in terms of the parameter t as follows:

pab(t) :tpb +(1_t)pa

Using this, we find the points py, and p;, (points on py-p; and ps-p,, respectively)
as follows:

Py =tp,+(1-1)p,
p,O)=wp,+(1-1)p,

Similarly, a point on the connecting line segment between these points
would be

P =1p,, () +(1=1)py, (1)

Chapter 11 - Parametric Surfaces I 263

Substituting the definitions of p;, and py; gives
P(t) = t[tpz + (1 - t)p1] + (1 - t)[tp1 + (1 - t)po]
Factoring and combining terms then gives
P(t)=(—1) p, +(=2> +2t)p, + ' p,
or
2
P(t)= ZizopiBi(t)
where
By(n=(1-1)
B,(t)=-2t" +2t
B, ()=t ?
Thus, we find any point on the curve by a weighted sum of the control points.
The weighting function B is often called a “blending function” (although the name
B actually derives from Sergei Bernstein [BE21] who first characterized this fam-

ily of polynomials). Note that the blending functions are all quadratic in form,
which is why the resulting curve is called a quadratic Bézier curve.

CUBIC BEZIER CURVES

We now extend our model to four con-
trol points, resulting in a cubic Bézier curve
as shown in Figure 11.4. Cubic Bézier curves
are capable of defining a much richer set of
shapes than are quadratic curves, which are
limited to concave shapes.

As for the quadratic case, we can derive gigure 11.4
an analytic definition for cubic Bézier curves: Building a cubic Bézier curve.

P =tp,+(1-1)p,
p,O)=tp,+(1-)p,

264 M Computer Graphics Programming in OpenGL with Java, Third Edition

[)23(Z) =1Ip; + (l _t)pz
Por () =1p, () + (1=1) p,, ()
Pioos (D) =1py3 () + (1=12) py, (1)

A point on the curve would then be
P)=1p,, »(0)+(1—1) py,_1,(?)

Substituting the definitions of p;y.3 and pyy.4 and collecting terms yields

P(=Y" pB®)

where

B,(t)=(1-1t)’
B,(t)=3t —6t> +3¢
B,(t)=-3¢ +3¢
B,(t)=t

There are many different techniques for rendering Bézier curves. One approach
is to iterate through successive values of t, starting at 0.0 and ending at 1.0, using a
fixed increment. For instance, if the increment is 0.1, then we could use a loop with
t values 0.0, 0.1, 0.2, 0.3, and so on. For each value of't, the corresponding point on
the Bézier curve would be computed and a series of line segments connecting the
successive points would be drawn, as described in the algorithm in Figure 11.5.

Another approach is to use de Casteljau’s algorithm to recursively subdivide
the curve in half, where t = !4 at each recursive step. Figure 11.6 shows the left side
subdivision into new cubic control points (q,,0,02,03) shown in green, as derived by
de Casteljau (a full derivation can be found in [AS14]).

The algorithm is shown in Figure 11.7. It subdivides the curve segments in half
repeatedly, until each curve segment is sufficiently straight enough that further
subdivision produces no tangible benefit. In the limiting case (as the control points
are generated closer and closer together), the curve segment itself is effectively
the same as a straight line between the first and last control points (q, and qy).
Determining whether a curve segment is “straight enough” can therefore be done

Chapter 11 - Parametric Surfaces W 265

drawBezierCurve (controlPointVector C)
{ currentPoint =C[0]; // curve starts at first control point
t=0.0;
while (t <= 1.0)
{ // compute next point as the sum of the Control Points,
// weighted by the blending function evaluated at t.
nextPoint = (0,0) ;
for (i=0; i<=3; i++)
nextPoint = nextPoint + (blending(i,t) * C[i]);
drawLine (currentPoint,nextPoint);
currentPoint = nextPoint;
t=t+increment;

}ol
blending(i, t)
{ switch (i)

{ case 0: return (1-t)*(1-t)*(1-t)); /(113
case 1: return (3*t*(1-t)*(1-t)); H3t(14)2
case 2: return (3*t*t*(1-t)); H3t2(1-)
case 3: return (t't't); V/as

L

Figure 11.5
Iterative algorithm for rendering Bézier curves.

by comparing the distance from the first control point to the last control point,
versus the sum of the lengths of the three lines connecting the four control points:

Dy =1Po-pi | + | PPz |+ P2Ps |
D, =1 poPs |
Then, if D;-D, is less than a suf-
ficiently small tolerance, there is no P

.. ... q2 = (Pot+p1)/4 +
point in further subdivision. (pr+p2)/d

P2

spep2z—f
An interesting property of the ~ *~ PP

de Casteljau algorithm is that it is
possible to generate all of the points
on the curve without actually using .
.) . Figure 11.6
the previously described blending subdividing a cubic Bézier curve.

qo=po

266 M Computer Graphics Programming in OpenGL with Java, Third Edition

drawBezierCurve(ControlPointVector C)
{ if(Cis “straight enough”)
draw line from first to last control point

else
{ subdivide(C, LeftC, RightC)
drawBezierCurve(LeftC)
drawBezierCurve(RightC)
bl

subdivide(ControlPointVector p, g, 1)

{ /# compute left subdivision control points
q(0) = p(0)
q(1) = (p(0)+p(1)) 2
q(2) = (p(0y+p(1)) 1 4+ (p(1)+p(2)) I 4
// compute right subdivision control points
(1) = (p(1)ytp(2)) 1 4 + (p(2)+p(3)) 1 4
12) = (p(21+p(3)) 1 2
r3) = p(3)
// compute “shared” center point at =0.5
q(3) = r(0) = (a(2)+r(1)) 1 2

Figure 11.7
Recursive subdivision algorithm for Bézier curves.

functions. Also, note that the center point at p(’%) is “shared”; that is, it is both the
rightmost control point in the left subdivision and the leftmost control point in the
right subdivision. It can be computed either using the blending functions at t = 2
or by using the formula (g, + r,)/2, as derived by de Casteljau.

As a side note, we point out that the subdivide() function shown in Figure 11.7
assumes that the incoming parameters p, g, and r are “reference” parameters (such
as Java objects), and hence the computations in the function modify the actual
parameters in the calls from the drawBezierCurve() function listed above it.

EikE QUADRATIC BEZIER SURFACES

Whereas Bézier curves define curved lines (in 2D or 3D space), Bézier surfaces
define curved surfaces in 3D space. Extending the concepts we saw in curves to
surfaces requires extending our system of parametric equations from one param-
eter to two parameters. For Bézier curves, we called that parameter t. For Bézier

Chapter 11 - Parametric Surfaces W 267

surfaces, we will refer to the parameters
as u and v. Whereas our curves were com-
posed of points P(t), our surfaces will com-
prise points P(u,v), as shown in Figure 11.8.

For quadratic Bézier surfaces, there are
three control points on each axis u and v,
for a total of nine control points. Figure 11.9
shows an example of a set of nine control
points (typically called a control point
“mesh”) in blue, and the associated cor-
responding curved surface (in red).

The nine control points in the mesh
are labeled p;;, where i and j represent the
indices in the u and v directions, respec-
tively. Each set of three adjacent con-
trol points, such as (pyg,Pg1,Po2), defines a
Bézier curve. Points P(uyv) on the surface
are then defined as a sum of two blend-
ing functions, one in the u direction and

Point P(u,v)

Figure 11.8
Parametric surface.

Figure 11.9
Quadratic Bézier control mesh and corresponding surface.

one in the v direction. The form of the two blending functions for building Bézier
surfaces then follows from the methodology given previously for Bézier curves:

By(u)=(1-u)’
B,(u)=—-2u" +2u

B,(u)=u’

B, =)
B, (v)=-2v +2v

B,(v)=V’

The points P(u,v) comprising the Bézier surface are then generated by sum-
ming the product of each control point p; and the ith and jth blending functions
evaluated at parametric values u and v, respectively:

P(uv)=2> p,*B,u)*B,(v)

i=0 j=0

268 M Computer Graphics Programming in OpenGL with Java, Third Edition

The set of generated points that comprise a Bézier surface is sometimes called
a patch. The term patch can sometimes be confusing, as we will see later when
we study tessellation shaders (useful for actually implementing Bézier surfaces).
There, it is the grid of control points that is typically called a “patch.”

CUBIC BEZIER SURFACES

Moving from quadratic to cubic sur-
faces requires utilizing a larger mesh—4x4
rather than 3x3. Figure 11.10 shows an exam-
ple of a 16-control-point mesh (in blue) and
the corresponding curved surface (in red).

As before, we can derive the formula
for points P(u\v) on the surface by combin-
ing the associated blending functions for
cubic Bézier curves:

Figure 11.10
Cubic Bézier control mesh and corresponding surface.

Puv)=2.> p;*Bu)*B,(v)

i=0 j=0
where
By(u)=(1~u)’ B,()=(1-v)’
B, (u)=3u’ —6u’ +3u B,(v)=3v' -6V’ +3v
B, (u)=-3u’ +3u’ B,(v)=-3v' +3V’
B,(u)=u’ B,(v)=V’

Rendering Bézier surfaces can also be done with recursive subdivision [AS14],
by alternately splitting the surface in half along each dimension, as shown in
Figure 11.11. Each subdivision produces four new control point meshes, each
containing 16 points, which define one quadrant of the surface.

When rendering Bézier curves, we stopped subdividing when the curve was
“straight enough.” For Bézier surfaces, we stop recursing when the surface is “flat
enough.” One way of doing this is to ensure that all of the recursively generated

Chapter 11 - Parametric Surfaces I 269

Figure 11.11
Recursive subdivision for Bézier surfaces.

points in a subquadrant control mesh are within some small allowable distance
from a plane defined by three of the four corner points of that mesh. The distance
d between a point (x,y,z) and a plane (A,B,C,D) is

d:abS[Ax+By+CZ+DJ

NA*+B*+C?

If d is less than some sufficiently small tolerance, then we stop subdividing,
and simply use the four corner control points of the subquadrant mesh to draw two
triangles.

270 M Computer Graphics Programming in OpenGL with Java, Third Edition

The tessellation stage of the OpenGL pipeline offers an attractive alterna-
tive approach for rendering Bézier surfaces based on the iterative algorithm in
Figure 11.5 for Bézier curves. The strategy is to have the tessellator generate a
large grid of vertices, and then use the blending functions to reposition those ver-
tices onto the Bézier surface as specified by the cubic Bézier control points. We
implement this in Chapter 12.

SUPPLEMENTAL NOTES

This chapter focused on the mathematical fundamentals of parametric Bézier
curves and surfaces. We have deferred presenting an implementation of any of
them in OpenGL, because an appropriate vehicle for this is the tessellation stage,
covered in the next chapter. We also skipped some of the derivations, such as for
the recursive subdivision algorithm.

In 3D graphics, there are many advantages to using Bézier curves for model-
ing objects. First, those objects can, in theory, be scaled arbitrarily and still retain
smooth surfaces without “pixelating.” Second, many objects made up of complex
curves can be stored much more efficiently as sets of Bézier control points rather
than storing thousands of vertices.

Bézier curves have many real-world applications besides computer graph-
ics and automobiles. They can also be found in the design of bridges, such as in
the Chords Bridge in Jerusalem [RG12]. Similar techniques are used for building
TrueType fonts, which as a result can be scaled to any arbitrary size, or zoomed in
to any degree of closeness, while always retaining smooth edges.

Exercises

11.1 A quadratic Bézier curve is limited to defining a curve that is wholly
“concave” or “convex.” Describe (or draw) an example of a curve that bends
in a manner that is neither wholly concave nor convex, and thus could not
possibly be approximated by a quadratic Bézier curve.

11.2 Using a pen or pencil, draw an arbitrary set of four points on a piece of paper,
number them from 1 to 4 in any order, and then try to draw an approximation
of the cubic Bézier curve defined by those four ordered control points. Then

Chapter 11 - Parametric Surfaces W 271

rearrange the numbering of the control points (i.e., their order, but without
changing their positions) and redraw the new resulting cubic Bézier curve.
There are numerous online tools for drawing Bézier curves you can use to
check your approximation.

References

[AS14] E. Angel and D. Shreiner, Interactive Computer Graphics: A Top-Down
Approach with WebGL, Tth ed. (Pearson, 2014).

[BE21] S. Bernstein, Wikipedia, accessed March 2021, https://en.wikipedia.org/
wiki/Sergei Natanovich Bernstein

[BE72] P. Bézier, Numerical Control: Mathematics and Applications (John Wiley
& Sons, 1972).

[RG12] R. Gross, “Bridges, String Art, and Bézier Curves”, Plus Magazine, March
2012, https://plus.maths.org/content/bridges-string-art-and-bezier-curves

[DC63] P. de Casteljau, Courbes et surfaces a poles, technical report (A. Citroén,
1963).

CHAPTER 12

TESSELLATION

12.1 Tessellationin OpenGL @i, 273
12.2 Tessellation for Bézier Surfaces 279
12.3 Tessellation for Terrain/Height Maps i .. 286
12.4 Controlling Level of Detail (LOD) iiiiiiiiiio.. 293

Supplemental Notes oo 296

The English language term fessellation refers to a large class of design activities
in which tiles of various geometric shapes are arranged adjacently to form patterns,
generally on a flat surface. The purpose can be artistic or practical, with examples
dating back thousands of years [TS21].

In 3D graphics, tessellation refers to something a little bit different, but no doubt
inspired by its classical counterpart. Here tessellation refers to the generation and
manipulation of large numbers of triangles for rendering complex shapes and surfaces,
preferably in hardware. Tessellation is a rather recent addition to the OpenGL core,
not appearing until 2010 with version 4.0.!

TESSELLATION IN OPENGL
OpenGL support for hardware tessellation is made available through three
pipeline stages:
1. the tessellation control shader
2. the tessellator

3. the tessellation evaluation shader

I The OpenGL Utility library (GLU) had previously included a utility for tessellation much earlier
called gluTess. In 2001, Radeon released the first commercial graphics card with tessellation support,
but there were few tools able to take advantage of it.

274 B Computer Graphics Programming in OpenGL with Java, Third Edition

The first and third stages are programmable; the intervening second stage is
not. In order to use tessellation, the programmer generally provides both a control
shader and an evaluation shader.

The tessellator (its full name is tessellation primitive generator, or TPG) is
a hardware-supported engine that produces fixed grids of triangles.? The con-
trol shader allows us to configure what sort of triangle mesh the tessellator is to
build. The evaluation shader then lets us manipulate the grid in various ways. The
manipulated triangle mesh is then the source of vertices that proceed through the
pipeline. Recall from Figure 2.2 that tessellation sits in the pipeline between the
vertex and geometry shader stages.

Let’s start with an application that simply uses the tessellator to create a tri-
angle mesh of vertices, and then displays it without any manipulation. For this, we
will need the following modules:

1. Java/JOGL application:

Creates a camera and associated mvp matrix. The view (V) and projec-
tion (p) matrices orient the camera; the model (m) matrix can be used to
modify the location and orientation of the grid.

2. Vertex Shader:

Essentially does nothing in this example; the vertices will be generated
in the tessellator.

3. Tessellation Control Shader (TCS):

Specifies the grid for the tessellator to build.
4. Tessellation Evaluation Shader (TES):

Applies the mvp matrix to the vertices in the grid.
5. Fragment Shader:

Simply outputs a fixed color for every pixel.

Program 12.1 shows the entire application code. Even a simple example such as
this one is fairly complex, so many of the code elements will require explanation.
Note that this is the first time we must build a GLSL rendering program with com-
ponents beyond just vertex and fragment shaders. So a four-parameter overloaded
version of createShaderProgram() is implemented.

2 Or lines, but we will focus on triangles.

Chapter 12 - Tessellation W 275

Program 12.1 Basic Tessellator Mesh

Java / JOGL application

public int createShaderProgram(String vS, String tCS, String tES, String fS)
{ GL4 gl = (GL4) GLContext.getCurrentGL();

String vshaderSource[] = Utils.readShaderSource(vS);
String tcshaderSource][| = Utils.readShaderSource(tCS);
String teshaderSource[] = Utils.readShaderSource(tES);
String fshaderSource[] = Utils.readShaderSource(fS);

int vShader = gl.gICreateShader(GL_VERTEX_SHADER);

int tcShader = gl.glCreateShader(GL_TESS_CONTROL_SHADER);
int teShader = gl.glCreateShader(GL_TESS_EVALUATION_SHADER);
int fShader = gl.glCreateShader(GL_FRAGMENT_SHADER);

gl.glShaderSource(vShader, vshaderSource.length, vshaderSource, null, 0);
gl.glShaderSource(tcShader, tcshaderSource.length, tcshaderSource, null, 0);
gl.glShaderSource(teShader, teshaderSource.length, teshaderSource, null, 0);
gl.giShaderSource(fShader, fshaderSource.length, fshaderSource, null, 0);

gl.glCompileShader(vShader);
gl.glCompileShader(tcShader);
gl.glCompileShader(teShader);
gl.glCompileShader(fShader);

int vifprogram = gl.glCreateProgram();
gl.glAttachShader(vtfprogram, vShader);
gl.glAttachShader(vtfprogram, tcShader);
gl.glAttachShader(vtfprogram, teShader);
gl.glAttachShader(vtfprogram, fShader);
gl.glLinkProgram(vtfprogram);

return vtfprogram;

}

public void init(GLAutoDrawable drawable)
{

renderingProgram = createShaderProgram("vertShader.glsl",
"tessCShader.glsl", "tessEShader.glsl", "fragShader.gls!");

}

public void display(GLAutoDrawable drawable)
{

gl.glUseProgram(renderingProgram);

276 B Computer Graphics Programming in OpenGL with Java

gl.glPatchParameteri(GL_PATCH_VERTICES, 1);
gl.glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
gl.glDrawArrays(GL_PATCHES, 0, 1);

}

Vertex Shader

#version 430
uniform mat4 mvp;
void main(void) { }

Tessellation Control Shader

#version 430
uniform mat4 mvp;
layout (vertices = 1) out;

void main(void)

{ gl_TessLevelOuter[0] = 6;
gl_TessLevelOuter[1] = 6;
gl_TessLevelOuter[2] = 6;
gl_TessLevelOuter[3] = 6;
gl_TessLevellnner[0] = 12;
gl_TessLevellnner[1] = 12;

}

Tessellation Evaluation Shader

#version 430
uniform mat4 mvp;
layout (quads, equal_spacing, ccw) in;

void main (void)

{ floatu=gl_TessCoord.x;
float v = gl_TessCoord.y;
gl_Position = mvp * vec4(u,0,v,1);

}
Fragment Shader

#version 430

out vec4 color;

uniform mat4 mvp;

void main(void)

{ color=vec4(1.0, 1.0, 0.0, 1.0); / yellow
}

, Third Edition

Chapter 12 - Tessellation [l 277

The resulting output mesh is
shown in Figure 12.1.

The tessellator produces a mesh
of vertices defined by two param-
eters: inner level and outer level. In
this case, the inner level is 12 and the
outer level is 6—the outer edges of Figure 12.1
the grid are divided into 6 segments, Tessellator triangle mesh output.
while the lines spanning the interior
are divided into 12 segments.

The specific relevant new constructs in Program 12.1 are highlighted. Let’s
start by discussing the first portion—the Java/JOGL code.

Compiling the two new shaders is done exactly the same as for the vertex and
fragment shaders. They are then attached to the same rendering program, and the
linking call is unchanged. The only new items are the constants for specifying the
type of shader being instantiated—the new constants are named

GL_TESS_CONTROL_SHADER
GL_TESS_EVALUATION_SHADER

Note the new items in the display() function. The glDrawArrays() call now speci-
fies GL_PATCHES. When using tessellation, vertices sent from the Java/JOGL
application into the pipeline (i.e., in a VBO) aren’t rendered but are usually control
points, such as those we saw for Bézier curves. A set of control points is called a
patch, and in those sections of the code using tessellation, GL_PATCHES is the only
allowable primitive. The number of vertices in a patch is specified in the call to
glPatchParameteri(). In this particular example, there aren’t any control points being
sent, but we are still required to specify at least one. Similarly, in the giDrawArrays()
call we indicate a start value of 0 and a vertex count of 1, even though we aren’t
actually sending any vertices from the JOGL program.

The call to glPolygonMode() specifies how the mesh should be rasterized. The
default is GL_FILL. Shown in the code is GL_LINE, which as we saw in Figure
12.1 caused only connecting lines to be rasterized (so we could see the grid itself
that was produced by the tessellator). If we change that line of code to GL_FILL
(or comment it out, resulting in the default behavior GL_FILL), we get the version
shown in Figure 12.2.

278 M Computer Graphics Programming in OpenGL with Java, Third Edition

Figure 12.2
Tessellated mesh rendered with GL_FILL.

Now let’s work our way through
the four shaders. As indicated earlier,
the vertex shader has little to do, since
the Java/JOGL application isn’t pro-
viding any vertices. All it contains is a
uniform declaration, to match the other
shaders, and an empty main(). In any
case, it is a requirement that all shader
programs include a vertex shader.

The Tessellation Control Shader specifies the topology of the triangle mesh that
the tessellator is to produce. Six “level” parameters are set—two “inner” and four
“outer” levels—by assigning values to the reserved words named gl_TessLevelxxx.
This is for tessellating a large rectangular grid of triangles, called a quad.®> The
levels tell the tessellator how to subdivide the grid when forming triangles, and are

arranged as shown in Figure 12.3.

Note the line in the control shader that says

layout (vertices=1) out;

<« outerlevel 3 — =

21
)
> [
5 £3
9 K
3
ol
inner
level O
<« outer level 1 — =
Figure 12.3

Tessellation levels.

<—— 7 [2A8] J8no

This is related to the prior GL_
PATCHES discussion and specifies
the number of vertices per “patch”
being passed from the vertex shader
to the control shader (and “out” to the
evaluation shader). In this particular
program there are none, but we still
must specify at least one, because
it also affects how many times the
control shader executes. Later this
value will reflect the number of con-
trol points and must match the value
in the glPatchParameteri() call in the
Java/JOGL application.

3 The tessellator is also capable of building a triangular grid of triangles, but that isn’t covered in

this textbook.

Chapter 12 - Tessellation I 279

Next let’s look at the tessellation evaluation shader. It starts with a line of code
that says

layout (quads, equal_spacing, ccw) in;

This may at first appear to be related to the “out” layout statement in the control
shader, but actually they are unrelated. Rather, this line is where we instruct the
tessellator to generate vertices so they are arranged in a large rectangle (a “quad”).
It also specifies the subdivisions (inner and outer) to be of equal length (later we
will see a use for subdivisions of unequal length). The “ccw” parameter specifies
the winding order in which the tessellated grid vertices are generated (in this case,
counterclockwise).

The vertices generated by the tessellator are then sent to the evaluation shader.
Thus, the evaluation shader may receive vertices both from the control shader
(typically as control points) and from the tessellator (the tessellated grid). In
Program 12.1, vertices are only received from the tessellator.

The evaluation shader executes once for each vertex produced by the tessellator.
The vertex location is accessible using the built-in variable gl_TessCoord. The tessel-
lated grid is oriented such that it lies in the X-Z plane, and therefore gl_TessCoord’s
Xand Y components are applied at the grid’s X and Z coordinates. The grid coordi-
nates, and thus the values of gl_TessCoord, range from 0.0 to 1.0 (this will be handy
later when computing texture coordinates). The evaluation shader then uses the mvp
matrix to orient each vertex (this was done in the vertex shader in examples from
earlier chapters).

Finally, the fragment shader simply outputs a constant color yellow for each
pixel. We can, of course, also use it to apply a texture or lighting to our scene as
we saw in previous chapters.

BP9 TESSELLATION FOR BEZIER SURFACES

Let’s now extend our program so that it turns our simple rectangular grid into
a Bézier surface. The tessellated grid should give us plenty of vertices for sam-
pling the surface (and we can increase the inner/outer subdivision levels if we want
more). What we now need is to send control points through the pipeline, and then
use those control points to perform the computations to convert the tessellated grid
into the desired Bézier surface.

280 M Computer Graphics Programming in OpenGL with Java, Third Edition

JavalJOGL code Assuming that we wish to build a cubic
controlpts textures, etc Bézier surface, we will need 16 control points.
We could send them from the Java side in a
VBO, or we could hardcode them in the vertex
shader. Figure 12.4 shows an overview of the
process, with the control points coming from
the Java side.

control pts
Tess Control
Shader
control pts
Tess Eval
Shader

modified
vertices

l textured the TCS executes once per incoming vertex.

— @s"”m Also, recall from Chapter 2 that OpenGL

provides a built-in variable called gl_VertexID

Figure 12.4 which holds a counter that indicates which
Overview of tessellation for Bézier surfaces. . . .

invocation of the vertex shader is currently

executing. A similar built-in variable called gl_InvocationID exists for the tessella-
tion control shader.

tessLevels

Tessellator

tessCoords

(arid) Now is a good time to explain a bit more
precisely how the tessellation control shader
(TCS) works. Similar to the vertex shader,

A powerful feature of tessellation is that the TCS (and also the TES) shader
has access to all of the control point vertices simultaneously, in arrays. At first,
it may seem confusing that the TCS executes once per vertex, when each invo-
cation has access to all of the vertices. It is also counterintuitive that the tessel-
lation levels are specified in assignment statements which are redundantly set
at each TCS invocation. Although all of this may seem odd, it is done this way
because the tessellation architecture is designed so that TCS invocations can run
in parallel.

OpenGL provides several built-in variables for use in the TCS and TES
shaders. Ones that we have already mentioned are gl_InvocationID and, of course,
gl_TessLevellnner and gl_TessLevelOuter. Here are some more details and descrip-
tions of some of the most useful built-in variables:

Tessellation Control Shader (TCS) built-in variables:

* glLin[]- an array containing each of the incoming control point
vertices—one array element per incoming vertex. Particular vertex
attributes can be accessed as fields using the “.” notation. One built-
in attribute is gl_Position—thus, the position of incoming vertex “i” is

accessed as gl_in[i].gl_Position.

Chapter 12 - Tessellation I 281

* gl_out[]-— an array for sending outgoing control point vertices to the
TES—one array element per outgoing vertex. Particular vertex attributes
can be accessed as fields using the “.” notation. One built-in attribute
is gl_Position—thus, the position of outgoing vertex “i”” is accessed as
gl_out[i].gl_Position.

* gl_InvocationID — an integer ID counter indicating which invocation
of the TCS is currently executing. One common use is for passing
through vertex attributes; for example, passing the current invocation’s
vertex position from the TCS to the TES would be done as follows:

gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;

Tessellation Evaluation Shader (TES) built-in variables:

* glLin[]- an array containing each of the incoming control point
vertices—one element per incoming vertex. Particular vertex attributes
can be accessed as fields using the “.” notation. One built-in attribute is
gl_Position—thus, incoming vertex positions are accessed as gl_in[xxx].
gl_Position.

» gl_Position — output position of a tessellated grid vertex, possibly
modified in the TES. It is important to note that gl_Position and gl_in[xxx].
gl_Position are different—gl|_Position is the position of an output vertex
that originated in the tessellator, while gl_in[xxx].gl_Position is a control

point vertex position coming into the TES from the TCS.

It is important to note that input and output control point vertices and ver-
tex attributes in the TCS are arrays. By contrast, input control point vertices and
vertex attributes in the TES are arrays, but output vertices are scalars. Also, it is
easy to become confused as to which vertices are for control points and which are
tessellated and then moved to form the resulting surface. To summarize, all vertex
inputs and outputs to the TCS are control points, whereas in the TES, gl_in[] holds
incoming control points, gl_TessCoord holds incoming tessellated grid points, and
gl_Position holds output surface vertices for rendering.

Our tessellation control shader now has two tasks: specifying the tessellation
levels and passing the control points through from the vertex shader to the evalua-
tion shader. The evaluation shader can then modify the locations of the grid points
(the gl_TessCoords) based on the Bézier control points.

Program 12.2 shows all four shaders—vertex, TCS, TES, and fragment—
for specifying a control point patch, generating a flat tessellated grid of vertices,

282 M Computer Graphics Programming in OpenGL with Java, Third Edition

repositioning those vertices on the curved surface specified by the control points,
and painting the resulting surface with a texture image. It also shows the relevant
portion of the Java/JOGL application, specifically in the display() function. In this
example, the control points originate in the vertex shader (they are hardcoded
there) rather than entering the OpenGL pipeline from the Java/JOGL application.
Additional details follow after the code listing.

Program 12.2 Tessellation for Bézier Surface
Vertex Shader

#version 430

out vec2 texCoord;

uniform mat4 mvp;

layout (binding = 0) uniform sampler2D tex_color;

void main(void)

{ 7/ this time the vertex shader defines and sends out control points:
const vec4 vertices[] =
vecd[] (vec4(-1.0, 0.5, -1.0, 1.0), vec4(-0.5, 0.5, -1.0, 1.0),

), vecA(-
vecd(0.5, 0.5, -1.0, 1.0), vecd(1.0, 0.5, -1.0, 1.0),
vecd(-1.0, 0.0, 0.5, 1.0), vecd(-0.5, 0.0, 0.5, 1.0),
vecd(0.5, 0.0, -0.5, 1.0), vecd(1.0, 0.0, -0.5, 1.0),
)

()
vecd(-1.0, 0.0, 0.5, 1.0), vecd(-0.5, 0.0, 0.5, 1.0),
vecd(0.5, 0.0, 0.5, 1.0), vec4(1.0, 0.0, 0.5, 1.0,

vecd(-1.0,-0.5, 1.0, 1.0), vecd(-0.5, 0.3, 1.0, 1.0),
vecd(0.5,0.3, 1.0, 1.0), vecd(1.0, 0.3, 1.0, 1.0));

/| compute an appropriate texture coordinate for the current vertex, shifted from [-1..+1] to [0..1]
texCoord = vec2((vertices[gl_VertexID].x + 1.0) / 2.0, (vertices[gl_VertexID].z + 1.0) / 2.0);

B BN BN B

gl_Position = vertices[gl_VertexID];
}
Tessellation Control Shader

#version 430

in vec2 texCoord] |; // The texture coords output from the vertex shader as scalars arrive
out vec2 texCoord_TCSout[]; /in an array and are then passed through to the evaluation shader

uniform mat4 mvp;
layout (binding = 0) uniform sampler2D tex_color;
layout (vertices = 16) out; // there are 16 control points per patch

Chapter 12 - Tessellation I 283

void main(void)
{ intTL=32; // tessellation levels are all set to this value
if (gl_InvocationID == 0)
{ gl_TessLevelOuter[0] = TL; gl_TessLevelOuter[2] = TL;
gl_TessLevelOuter[1] = TL; gl_TessLevelOuter[3] = TL;
gl_TessLevellnner[0] = TL; gl_TessLevellnner[1] = TL;

/| forward the texture and control points to the TES
texCoord_TCSout[gl_InvocationID] = texCoord|[gl_InvocationID];
gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;

Tessellation Evaluation Shader

#version 430

layout (quads, equal_spacing,ccw) in;

uniform mat4 mvp;

layout (binding = 0) uniform sampler2D tex_color;

in vec2 texCoord_TCSout[J; // texture coordinate array coming in
out vec2 texCoord_TESout; // scalars going out one at a time

void main (void)

{ vec3 p00 = (gl_in[0].gl_Position).xyz;
vec3 p10 = (gl_in[1].gl_Position).xyz;
vec3 p20 = (gl_in[2].gl_Position).xyz;
vec3 p30 = (gl_in[3].gl_Position).xyz;
vec3 p01 = (gl_in[4].gl_Position).xyz;
vec3 p11 = (gl_in[5].gl_Position).xyz;

vec3 p21 = (gl_in[6].gl_Position).xyz;

vec3 p31 = (gl_in[7].gl_Position).xyz;
vec3 p02 = (gl_in[8].gl_Position).xyz;
vec3 p12 = (gl_in[9].gl_Position).xyz;
vec3 p22 = (gl_in[10].gl_Position).xyz;
vec3 p32 = (gl_in[11].gl_Position).xyz;
vec3 p03 = (gl_in[12].gl_Position).xyz;
vec3 p13 = (gl_in[13].gl_Position).xyz;
vec3 p23 = (gl_in[14].gl_Position).xyz;
vec3 p33 = (gl_in[15].gl_Position).xyz;

float u = gl_TessCoord.x;

float v = gl_TessCoord.y;

// cubic Bezier basis functions

float bu0 = (1.0-u) *(1.0-u) * (1.0-u); N (1-u)3
float bu1 =3.0 *u * (1.0-u) * (1.0-u); / 3u(1-u)*2

284 B Computer Graphics Programming in OpenGL with Java, Third Edition

float bu2 = 3.0 *u* u * (1.0-u); / 3ur2(1-u)
float bu3 =u*u* u; //ur3

float bv0 = (1.0-v) *(1.0-v) *(1.0-v); N (1-v)"3
float bv1 = 3.0 * v * (1.0-v) * (1.0-v); N 3v(1-v)A2
float bv2 = 3.0 * v * v * (1.0-v); / 3vh2(1-v)
floatbv3 =v *v *v; VA3

// output the position of this vertex in the tessellated patch
vec3 outputPosition =
bu0 * (bv0*p00 + bv1*p01 + bv2*p02 + bv3*p03
+but* (bv0*p10 + bv1*p11 + bv2*p12 + bv3*p13
+bu2 * (bv0*p20 + bv1*p21 + bv2*p22 + bv3*p23
+bu3 * (bv0*p30 + bv1*p31 + bv2*p32 + bv3*p33
gl_Position = mvp * vec4(outputPosition,1.0f);

// output the interpolated texture coordinates

vec2 tc1 = mix(texCoord_TCSout[0], texCoord_TCSout[3], gl_TessCoord.x);
vec2 tc2 = mix(texCoord_TCSout[12], texCoord_TCSout[15], gl_TessCoord.x);
vec2 tc = mix(tc2, tc1, gl_TessCoord.y);

texCoord_TESout = tc;

Fragment Shader

#version 430

in vec2 texCoord_TESout;

out vec4 color;

uniform mat4 mvp;

layout (binding = 0) uniform sampler2D tex_color;

void main(void)
{ color = texture(tex_color, texCoord_TESout);

}

Java / JOGL application

// This time we also pass a texture to paint the surface.
/| Load the texture in init() as usual, then enable it in display()

public void display(GLAutoDrawable drawable)

{ ...
gl.glActiveTexture(GL_TEXTUREO);

gl.gIBindTexture(GL_TEXTURE_2D, texturelD);
gl.glFrontFace(GL_CCW);

Chapter 12 - Tessellation I 285

gl.glPatchParameteri(GL_PATCH_VERTICES, 16); // number of vertices per patch = 16
gl.glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
gl.giDrawArrays(GL_PATCHES, 0, 16); // total number of patch vertices: 16 x 1 patch = 16

}

The vertex shader now specifies 16 control points (the “patch” vertices) repre-
senting a particular Bézier surface. In this example they are all normalized to the
range [-1.+1]. The vertex shader also uses the control points to determine texture
coordinates appropriate for the tessellated grid, with values in the range [0..1]. It
is important to reiterate that the vertices output from the vertex shader are not
vertices that will be rasterized, but instead are Bézier control points. When using
tessellation, patch vertices are never rasterized—only tessellated vertices proceed
to rasterization.

The control shader still specifies the inner and outer tessellation levels. It now
has the additional responsibility of forwarding the control points and texture coor-
dinates to the evaluation shader. Note that the tessellation levels only need to be
specified once, and therefore that step is done only during the Oth invocation (recall
that the TCS runs once per vertex—thus there are 16 invocations in this example).
For convenience, we have specified 32 subdivisions for each tessellation level.

Next, the evaluation shader performs all of the Bézier surface computations.
The large block of assignment statements at the beginning of main() extracts the
control points from the incoming gl_Positions of each incoming gl_in (note that
these correspond to the control shader’s gl_out variable). The weights for the
blending functions are then computed using the grid points coming in from the
tessellator, resulting in a new outputPosition, to which the model-view-projection
matrix is then applied, producing an output gl_Position for each grid point, forming
the Bézier surface.

It is also necessary to create texture coordinates. The vertex shader only
provided one for each control point location. But it isn’t the control points that
are being rendered—we ultimately need texture coordinates for the much larger
number of tessellated grid points. There are various ways of doing this—here we
linearly interpolate them using GLSL’s handy mix function. The mix() function
expects three parameters: (a) starting point, (b) ending point, and (c) interpola-
tion value, which ranges from 0 to 1. It returns the value between the starting and
ending point corresponding to the interpolation value. Since the tessellated grid
coordinates also range from 0 to 1, they can be used directly for this purpose.

286 M Computer Graphics Programming in OpenGL with Java, Third Edition

This time in the fragment shader,
rather than outputting a single color,
standard texturing is applied. The
texture coordinates, in the attri-
bute texCoord_TESout, are those that
were produced in the evaluation
shader. The changes to the JOGL
program are similarly straightfor-
ward—note that a patch size of 16 is
now specified. The resulting output

Figure 12.5 . Rk . .
Tessellated Bézier surface. is shown in Figure 12.5 (a tile texture

from [LU16] is applied).

TESSELLATION FOR TERRAIN/HEIGHT MAPS

Recall that performing height mapping in the vertex shader can suffer from
an insufficient number of vertices to render the desired detail. Now that we have
a way to generate lots of vertices, let’s go back to Hastings-Trew’s moon surface
texture map (from [HT12]) and use it as a height map by raising tessellated vertices
to produce moon surface detail. As we will see, this has the dual advantages of
achieving vertex geometry that better matches the moon image along with produc-
ing improved silhouette (edge) detail.

Our strategy is to modify Program 12.1, placing a tessellated grid in the X-Z
plane and using height mapping to set the Y coordinate of each tessellated grid
point. To do this, a patch isn’t needed, because we can hardcode the location of the
tessellated grid. So we will specify the required minimum of 1 vertex per patch
in glDrawArrays() and glPatchParameteri() as was done in Program 12.1. Hastings-
Trew’s moon texture image is used both for color and as the height map.

We generate vertex and texture coordinates in the evaluation shader by map-
ping the tessellated grid’s gl_TessCoord values to appropriate ranges for vertices and
textures.* The evaluation shader also is where the height mapping is performed by
adding a fraction of the color component of the moon texture to the Y component
of output vertex. The changes to the shaders are shown in Program 12.3.

4 In some applications the texture coordinates are produced externally, such as when tessellation
is being used to provide additional vertices for an imported model. In such cases, the provided
texture coordinates would need to be interpolated.

Chapter 12 - Tessellation I 287

Program 12.3 Simple Tessellated Terrain

Vertex Shader

#version 430

uniform mat4 mvp;

layout (binding = 0) uniform sampler2D tex_color;
void main(void) {}

Tessellation Control Shader

layout (vertices = 1) out; // no control points are necessary for this application

void main(void)
{ intTL=32;

if (gl_InvocationID == 0)

{ gl_TessLevelOuter[0] = TL; gl_TessLevelOuter[2] = TL;
gl_TessLevelOuter[1] = TL; gl_TessLevelOuter[3] = TL;
gl_TessLevellnner[0] = TL; gl_TessLevellnner[1] = TL,;

1

}

Tessellation Evaluation Shader

out vec2 tes_out;
uniform mat4 mvp;
layout (binding = 0) uniform sampler2D tex_color;

void main (void)
{ // map the tessellated grid vertices from [0..1] onto the desired vertices [-0.5..+0.5]
vecd tessellatedPoint = vec4(gl_TessCoord.x - 0.5, 0.0, gl_TessCoord.y - 0.5, 1.0);

// map the tessellated grid vertices as texture coordinates by "flipping” the Y values vertically.
/| Vertex coordinates have (0,0) at upper left, texture coordinates have (0,0) at the lower left.
vec2 tc = vec2(gl_TessCoord.x, 1.0 - gl_TessCoord.y);

// The image is grayscale, so either component (R, G, or B) can serve as height offset.
tessellatedPoint.y += (texture(tex_color, tc).r)/ 40.0; // Scale down color values.

// convert the height-map raised point to eye space
gl_Position = mvp * tessellatedPoint;
tes_out = fc;

288 M Computer Graphics Programming in OpenGL with Java, Third Edition

Fragment Shader

in vec? tes_out;
out vec4 color;
layout (binding = 0) uniform sampler2D tex_color;

void main(void)
{ color = texture(tex_color, tes_out);

}

The fragment shader is similar to the one for Program 12.2 and simply outputs
the color based on the texture image. The Java/JOGL application is essentially
unchanged—it loads the texture (serving as both the texture and height map) and
enables a sampler for it. Figure 12.6 shows the texture image (on the left) and the
final output of this first attempt, which unfortunately does not yet achieve proper
height mapping.

The first results are severely flawed. Although we can now see silhouette
detail on the far horizon, the bumps there don’t correspond to the actual detail in
the texture map. Recall that in a height map, white is supposed to mean “high” and
black is supposed to mean “low.” The area at the upper right, in particular, shows
large hills that bear no relation to the light and dark colors in the image.

Figure 12.6
Tessellated terrain—failed first attempt, with insufficent number of vertices.

Chapter 12 - Tessellation I 289

The cause of this problem is the resolution of the tessellated grid. The maximum
number of vertices that can be generated by the tessellator is hardware dependent,
and a maximum value of at least 64 for each tessellation level is all that is required
for compliance with the OpenGL standard. Our program specified a single tes-
sellated grid with inner and outer tessellation levels of 32, so we generated about
32¥32, or just over 1000 vertices, which is insufficient to reflect the detail in the
image accurately. This is especially apparent along the upper right (enlarged in the
figure)—the edge detail is only sampled at 32 points along the horizon, producing
large, random-looking hills. Even if we increased the tessellation values to 64, the
total of 6464 or just over 4000 vertices would still be woefully inadequate to do
height mapping using the moon image.

A good way to increase the number of vertices is by using instancing, which
we saw in Chapter 4. Our strategy will be to have the tessellator generate grids,
and use instancing to repeat this many times. In the vertex shader we build a
patch defined by four vertices, one for each corner of a tessellated grid. In our
Java/JOGL application we change the glDrawArrays() call to glDrawArraysinstanced().
There we specify a grid of 64 by 64 patches, each of which contains a tessellated
mesh with levels of size 32. This will give us a total of 64*64*32*32, or over four
million vertices.

The vertex shader starts by specifying four texture coordinates (0,0), (1,0), (0,1),
and (1,1). When using instancing, recall that the vertex shader has access to
an integer variable gl_InstancelD, which holds a counter corresponding to the
glDrawArraysinstanced() call that is currently being processed. We use this ID
value to distribute the locations of the individual patches within the larger grid.
The patches are positioned in rows and columns, the first patch at location (0,0), the
second at (1,0), the next at (2,0), and so on, and the final patch in the first column
at (63,0). The next column has patches at (0,1), (1,1), and so forth up to (63,1). The
final column has patches at (0,63), (1,63), and so on up to (63,63). The X coordinate
for a given patch is the instance ID modulo 64, and the Y coordinate is the instance
ID divided by 64 (with integer division). The shader then scales the coordinates
back down to the range [0..1].

The control shader is unchanged, except that it passes through the vertices and
texture coordinates.

Next, the evaluation shader takes the incoming tessellated grid vertices (speci-
fied by gl_TessCoord) and moves them into the coordinate range specified by the
incoming patch. It does the same for the texture coordinates. It also applies height

290 M Computer Graphics Programming in OpenGL with Java, Third Edition

mapping in the same way as was done in Program 12.3. The fragment shader is
unchanged.

The changes to each of the components are shown in Program 12.4. The result
is shown in Figure 12.7. Note that the highs and lows now correspond much more
closely to light and dark sections of the image.

Program 12.4 Instanced Tessellated Terrain

Java / JOGL application

// same as for Bezier surface example, with these changes:
gl.glPatchParameteri(GL_PATCH_VERTICES, 4);
gl.glDrawArraysinstanced(GL_PATCHES, 0, 4, 64*64);

Vertex Shader

out vec? tc;

void main(void)
{ vec2 patchTexCoords[] = vec2[] (vec2(0,0), vec2(1,0), vec2(0,1), vec2(1,1));
// compute an offset for coordinates based on which instance this is

int x = gl_InstancelD % 64;
inty = gl_InstancelD / 64;

// tex coords are distributed across 64 patches, normalized to [0..1]. Flip Y coordinates.
tc = vec2((x+patchTexCoords[gl_VertexID].x) / 64.0, (63 - y+patchTexCoords[gl_VertexID].y) / 64.0);

// vertex locations are the same as texture coordinates, except they range from -0.5 to +0.5.
gl_Position = vec4(tc.x - 0.5, 0.0, (1.0 - tc.y) - 0.5, 1.0); //Also un-flip the Y’s
}

Tessellation Control Shader

layout (vertices = 4) out;
in vec2 tc[];
out vec? tes_out] |;

void main(void)
{ //tessellation level specification the same as the previous example

Chapter 12 - Tessellation [l 291

tcs_out[gl_InvocationlD] = tc[gl_InvocationID];
gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;

}

Tessellation Evaluation Shader

in vec2 tcs_out[|;
out vec? tes_out;
void main (void)

{ // map the texture coordinates onto the sub-grid specified by the incoming control points
vec? tc = vec2(tcs_out[0].x + (gl_TessCoord.x) / 64.0, tcs_out[0].y + (1.0 - gl_TessCoord.y) / 64.0);

// map the tessellated grid onto the sub-grid specified by the incoming control points
vec4 tessellatedPoint = vec4(gl_in[0].gl_Position.x + gl_TessCoord.x / 64.0, 0.0,
gl_in[0].gl_Position.z + gl_TessCoord.y / 64.0, 1.0);

// add the height from the height map to the vertex:
tessellatedPoint.y += (texture(tex_height, tc).r) / 40.0;

gl_Position = mvp * tessellatedPoint;
tes_out = c;

Now that we have achieved height mapping, we can work on improving it and
incorporating lighting. One challenge is that our vertices do not yet have normal
vectors associated with them. Another challenge is that simply using the texture
image as a height map has produced an overly “jagged” result—in this case because

not all grayscale variation in the tex-
ture image is due to height. For this
particular texture map, it so hap-
pens that Hastings-Trew has already
produced an improved height map
that we can use [HT12]. It is shown
in Figure 12.8 (on the left).

To create normals, we could
compute them on the fly, by gen-
erating the heights of neighboring
vertices (or neighboring texels in
the height map), building vectors
connecting them, and using a cross

Figure 12.7
Tessellated terrain—second attempt, with instancing.

292 B Computer Graphics Programming in OpenGL with Java, Third Edition

Figure 12.8
Moon surface: height map [HT16] and normal map.

product to find the normal. This requires some tuning, depending on the precision
of the scene (and/or the height map image). Here we have instead used the GIMP
“normalmap” plugin [GN12] to generate a normal map based on Hastings-Trew’s
height map, shown in Figure 12.8 (on the right).

Most of the changes to our code are now simply to implement the standard
methods for Phong shading:

Java /JOGL application

We load and activate an additional texture to hold the normal map. We
also add code to specify the lighting and materials as we have done in
previous applications.

Vertex shader

The only additions are declarations for lighting uniforms and the
sampler for the normal map. Lighting code customarily done in the
vertex shader is moved to the tessellation evaluation shader, because
the vertices aren’t generated until the tessellation stage.

Tessellation control shader

The only additions are declarations for lighting uniforms and the sampler
for the normal map.

Tessellation evaluation shader

The preparatory code for Phong lighting is now placed in the evaluation
shader:

varyingVertPos = (m_matrix * tessellatedPoint).xyz;
varyingLightDir = light.position - varyingVertPos;

Chapter 12 - Tessellation I 293

Figure 12.9
Tessellated terrain with normal map and lighting (light source positioned at left and at right, respectively).

* Fragment shader

The typical code sections, described previously, for computing Phong
(or Blinn-Phong) lighting are done here, as well as the code to extract
normals from the normal map. The lighting result is then combined with
the texture image with a weighted sum.

The final result, with height and normal mapping as well as Phong lighting,
is shown in Figure 12.9. The terrain now responds to lighting. In this example,
a positional light has been placed to the left of center in the image on the left, and
to the right of center in the image on the right.

Although the response to the movement of the light is difficult to tell from a
still picture, the reader should be able to discern the diffuse lighting changes and
that specular highlights on the peaks are very different in the two images. This is
of course more obvious when the camera or the light source is moving. The results
are still imperfect, because the original texture that is incorporated in the output
includes shadows that will appear on the rendered result, regardless of lighting.

CONTROLLING LEVEL OF DETAIL (LOD)

Using instancing to generate millions of vertices in real time, as in Program 12.4,
is likely to place a load on even a well-equipped modern computer. Fortunately, the
strategy of dividing the terrain into separate patches, as we have done to increase

294 B Computer Graphics Programming in OpenGL with Java, Third Edition

the number of generated grid vertices, also affords us a nice mechanism for reduc-
ing that load.

Of the millions of vertices being generated, many aren’t necessary. Vertices
in patches that are close to the camera are important because we expect to discern
detail in nearby objects. However, the further the patches are from the camera,
the less likely there will even be enough pixels in the rasterization to warrant the
number of vertices we are generating!

Changing the number of vertices in a patch based on the distance from the cam-
era is a technique called level of detail, or LOD. Sellers and colleagues describe a
way of controlling LOD in instanced tessellation [SW15] by modifying the control
shader. Program 12.5 shows a simplified version of this approach. The strategy is
to use the patch’s perceived size to determine the values of its tessellation levels.
Since the tessellated grid for a patch will eventually be placed within the square
defined by the four control points entering the control shader, we can use the loca-
tions of the control points relative to the camera to determine how many vertices
should be generated for the patch. The steps are as follows:

1. Calculate the screen locations of the four control points by applying the
MVP matrix to them.

2. Calculate the lengths of the sides of the square (i.e., the width and height)
defined by the control points (in screen space). Note that even though the
four control points form a square, these side lengths can differ because the
perspective matrix has been applied.

3. Scale the lengths’ values by a tunable constant, depending on the preci-
sion needed for the tessellation levels (based on the amount of detail in
the height map).

4. Add 1 to the scaled length values, to avoid the possibility of specifying a
tessellation level of 0 (which would result in no vertices being generated).

5. Set the tessellation levels to the corresponding calculated width and
height values.

Recall that in our instanced example we are not creating just one grid, but
64*64 of them. So the five steps listed above are performed for each patch. Thus,
the level of detail varies from patch to patch.

All of the changes are in the control shader and are shown in Program 12.5, with
the generated output following in Figure 12.10. Note that the variable gl_InvocationID
refers to which vertex in the patch is being processed (not which patch is being

Chapter 12 - Tessellation I 295

processed). Therefore, the LOD computation which tells the tessellator how many
vertices to generate occurs during the processing of the Oth vertex in each patch.

Program 12.5 Tessellation Level of Detail (LOD)

Tessellation Control Shader

void main(void)
{ float subdivisions = 16.0; // tunable constant based on density of detail in height map

if (g_InvocationID == 0)

{ vec4 p0=mvp * gl_in[0].gl_Position; // control pt. positions in screen space
vec4 p1 =mvp * gl_in[1].gl_Position;
vec4 p2 = mvp * gl_in[2].gl_Position;
p0 =p0/p0.w;
p1=p1/plw;
p2 = p2 [p2.w;
float width = length(p2.xy - p0.xy) * subdivisions + 1.0; // perceived "width" of tess grid
float height = length(p1.xy - p0.xy) * subdivisions + 1.0; // perceived "height" of tess grid
gl_TessLevelOuter[0] = height; // set tess levels based on perceived side lengths
gl_TessLevelOuter[1] = width;
gl_TessLevelOuter[2] = height;
gl_TessLevelOuter[3] = width;
gl_TessLevellnner[0] = width;
gl_TessLevellnner[1] = height;

}

/| forward texture coordinates and control points to TES as before

tes_out[gl_InvocationlD] = tc[gl_InvocationID];

gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;

Applying these control shader changes to the instanced (but not lighted) version
of our scene from Figure 12.7 and replacing the height map with Hastings-Trew’s
more finely tuned version shown in Figure 12.8 produces the improved scene, with
more realistic horizon detail, shown in Figure 12.10.

In this example it is also useful to change the layout specifier in the evaluation
shader from

layout(quads, equal_spacing, ccw) in;
to

layout(quads, fractional_even_spacing, ccw) in;

296 B Computer Graphics Programming in OpenGL with Java, Third Edition

The reason for this modification
is difficult to illustrate in still images.
In an animated scene as a tessellated
object moves through 3D space, it is
sometimes possible, if LOD is used,
to see the changes in tessellation
levels on the surface of the object as
wiggling artifacts called “popping.”
Changing from equal spacing to
fractional spacing reduces this effect
by making the grid geometry of adja-
cent patch instances more similar,
Figure 12.10 even if they differ in level of detail.
Tessellated moon with controlled level of detail (LOD). (See Exercises 12.2 and 12'3.)

Employing LOD can dramatically reduce the load on the system. For example,
when animated, the scene might be less likely to appear jerky or to lag than would
be the case without controlling LOD.

Applying this simple LOD technique to the version that includes Phong
shading (i.e., Program 12.4) is a bit trickier. This is because the changes in LOD
between adjacent patch instances can in turn cause sudden changes to the associ-
ated normal vectors, causing popping artifacts in the lighting! As always, there are
tradeoffs and compromises to consider when constructing a complex 3D scene.

SUPPLEMENTAL NOTES

Combining tessellation with LOD is particularly useful in real-time virtual
reality applications that require both complex detail for realism and frequent object
movement and/or changes in camera position, such as in computer games. In this
chapter we have illustrated the use of tessellation and LOD for real-time terrain
generation, although it can also be applied in other areas such as in displacement
mapping for 3D models (where tessellated vertices are added to the surface of
a model and then moved so as to add detail). It is also useful in computer-aided
design applications.

Sellers and colleagues extend the LOD technique (shown in Program 12.5) fur-
ther than we have presented by also eliminating vertices in patches that are behind
the camera (they do this by setting their inner and outer levels to zero) [SW15].

Chapter 12 - Tessellation I 297

This is an example of a culling technique, and it is a very useful one because of the
load that instanced tessellation can still place on the system.

The four-parameter version of createShaderProgram() used in Program 12.1 is
added to the Utils.java file. Later, we will add additional versions to accomodate
the geometry shader stage.

Exercises

12.1 Modify Program 12.1 to experiment with various values for inner and outer
tessellation levels and observing the resulting rendered mesh.

12.2 Test Program 12.5 with the layout specifier in the evaluation shader set to
equal_spacing, and then to fractional_even_spacing, as described in Section
12.4. Observe the effects on the rendered surface as the camera moves. You
should be able to observe popping artifacts in the first case, which are mostly
alleviated in the second case.

12.3 (PROJECT) Modify Program 12.4 to utilize a height map of your own
design (you could use the one you built previously in Exercise 10.2). Then
add lighting and shadow mapping so that your tessellated terrain casts
shadows. This is a complex exercise, because some of the code in the first
and second shadow mapping passes will need to be moved to the evaluation
shader.

References

[GN12] GIMP normal map plugin, accessed March 2021, https:/code.google.
com/archive/p/gimp-normalmap/

[HT12] J. Hastings-Trew, JHT’s Planetary Pixel Emporium, accessed March
2021, http://planetpixelemporium.com/

[LU16] F. Luna, Introduction to 3D Game Programming with DirectX 12, 2nd ed.
(Mercury Learning, 2016).

298 B Computer Graphics Programming in OpenGL with Java, Third Edition

[SW15] G. Sellers, R. Wright Jr., and N. Haemel, OpenGL SuperBible:
Comprehensive Tutorial and Reference, 7th ed. (Addison-Wesley, 2015).

[TS21] Tessellation, Wikipedia, accessed March 2021, https:/en.wikipedia.org/
wiki/Tessellation

CHAPTER 13

GEOMETRY SHADERS

13.1 Per-Primitive Processing in OpenGL. 299
13.2 Altering Primitives i 301
13.3 Deleting Primitives. oo 305
13.4 Adding Primitives. 306
13.5 Changing Primitive T/pes 309

Supplemental Notes oo 310

Immediately following tessellation in the OpenGL pipeline is the geometry
stage. Here the programmer has the option of including a geometry shader. This
stage actually predates tessellation; it became part of the OpenGL core at version 3.2
(in 2009).

Like tessellation, geometry shaders enable the programmer to manipulate groups
of vertices, in ways that are impossible to do in a vertex shader. In some cases, a task
might be accomplished using either a tessellation shader or a geometry shader, as
their capabilities overlap in some ways.

PER-PRIMITIVE PROCESSING IN OPENGL

The geometry shader stage is situated between tessellation and rasterization,
within the segment of the pipeline devoted to primitive processing (refer back to
Figure 2.2). Whereas vertex shaders enable the manipulation of one vertex at a time
and fragment shaders enable the manipulation of one fragment (essentially one pixel)
at a time, geometry shaders enable manipulation of one primitive at a time.

Recall that primitives are the basic building blocks in OpenGL for drawing
objects. Only a few types of primitives are available; we will focus primarily on
geometry shaders that manipulate triangles. Thus, when we say that a geometry

300 M Computer Graphics Programming in OpenGL with Java, Third Edition

shader can manipulate one primitive at a time, we usually mean that the shader
has access to all three vertices of a triangle at a time. Geometry shaders allow
you to

* access all vertices in a primitive at once, then

* output the same primitive unchanged, or

e output the same primitive with modified vertex locations, or
e output a different type of primitive, or

e output additional primitives, or

e delete the primitive (not output it at all).

Similar to the tessellation evaluation shader, incoming vertex attributes are
accessible in a geometry shader as arrays. However, in a geometry shader, incom-
ing attribute arrays are indexed only up to the primitive size. For example, if the
primitives are triangles, then the available indices are 0, 1, and 2. Accessing the
vertices themselves is done using the predefined array gl_in, as follows:

gl_in[2].gl_Position / position of the 3 vertex

Also similar to the tessellation evaluation shader, the geometry shader’s out-
put vertex attributes are all scalars. That is, the output is a stream of individual
vertices (their positions and other attribute variables, if any) that form primitives.

There is a layout qualifier used to set the primitive input/output types and the
output size.

The special GLSL command EmitVertex() specifies that a vertex is to be output.
The special GLSL command EndPrimitive() indicates the completion of building a
particular primitive.

The built-in variable gl_PrimitivelDIn is available and holds the ID of the current
primitive. The ID numbers start at 0 and count up to the number of primitives
minus 1.

We will explore four common categories of operations:

* altering primitives
e deleting primitives
* adding primitives

* changing primitive types

Chapter 13 - Geometry Shaders Il 301

ALTERING PRIMITIVES

Geometry shaders are convenient for changing the shape of an object when
that change can be effected through isolated changes to the primitives (typically
triangles).

Consider, for example, the torus we rendered previously in Figure 7.12.
Suppose that torus represented an inner tube (such as for a tire), and we want to
“inflate” it. Simply applying a scale factor in the Java/JOGL code won’t accom-
plish this, because its fundamental shape wouldn’t change. Giving it the appear-
ance of being “inflated” requires also making the inner hole smaller as the torus
stretches into the empty center space.

One way of doing this would be to add the surface normal vector to each vertex.
While it is true that this could be done in the vertex shader, let’s do it in the geom-
etry shader, for practice. Program 13.1 shows the GLSL geometry shader code.
The other modules are the same as for Program 7.3, with a few minor changes: The
fragment shader input names now need to reflect the geometry shader outputs (for
example, varyingNormal becomes varyingNormalG), and the Java/JOGL application
needs to compile the geometry shader and attach it to the shader program prior to
linking. The new shader is specified as being a geometry shader as follows:

int gShader = gl.gICreateShader(GL_GEOMETRY_SHADER);

Program 13.1 Geometry Shader: Altering Vertices
#version 430
layout (triangles) in;

in vec3 varyingNormal[|; / inputs from the vertex shader

in vec3 varyingLightDir[;

in vec3 varyingHalfVector ;

out vec3 varyingNormalG; // outputs through the rasterizer to the fragment shader
out vec3 varyingLightDirG;

out vec3 varyingHalfVectorG;

layout (triangle_strip, max_vertices=3) out;
// matrices and lighting uniforms same as before

void main (void)
{ // move vertices along the normal, and pass through the other vertex attributes unchanged

302 M Computer Graphics Programming in OpenGL with Java, Third Edition

for (int i=0; i<3; i++)
{ gl_Position = p_matrix * v_matrix *
gl_in[i].gl_Position + normalize(vec4(varyingNormal[i],1.0)) * 0.4;
varyingNormalG = varyingNormal[i];
varyingLightDirG = varyingLightDir{i];
varyingHalfVectorG = varyingHalfVector(i];
EmitVertex();

}
EndPrimitive();

}

Note in Program 13.1 that the input variables corresponding to the output vari-
ables from the vertex shader are declared as arrays. This provides the programmer
a mechanism for accessing each of the vertices in the triangle primitive and their
attributes using the indices 0, 1, and 2. We wish to move those vertices outward
along their surface normals. Both the vertices and the normals have already been
transformed to world space in the vertex shader. We add a fraction of the normal
to each of the incoming vertex positions (gl_in[i].gl_Position), and then apply the
perspective and view matrices to the result, producing each output gl_Position.

Note the use of the GLSL call EmitVertex()
that specifies when we have finished com-
puting the output gl_Position and its asso-
ciated vertex attributes and are ready to
output a vertex. The EndPrimitive() call speci-
fies that we have completed the definition
of a set of vertices comprising a primitive
(in this case, a triangle). The result is shown

Figure 13.1 in Figure 13.1.
“Inflated” torus with vertices altered by geometry shader.

The geometry shader includes two lay-
out qualifiers. The first specifies the input primitive type and must be compatible
with the primitive type in the Java-side glDrawArrays() or glDrawElements() call. The
options are as follows:

geometry shader compatible OpenGL primitives sent #vertices per
input primitive from glDrawArrays() invocation
points GL POINTS

Chapter 13 - Geometry Shaders Il 303

- GL_LINES_ADJACENCY, GL_LINE_STRIP_

lines_adjacency " ADJACENCY 4
man|es féL'fRiANé'Léé,"é'L’_’féiANéL"E:s'fRi'P,’ 3
........ o . GLTRANGLEFAN i
o . : GL_TRIANGLES_ADJACENCY, GL_TRIANGLE_ :
 triangles_adjacency 5 6

STRIP_ADJACENCY

The various OpenGL primitive types (including “strip” and “fan” types) were
described in Chapter 4. “Adjacency” types were introduced in OpenGL for use with
geometry shaders and allow access to vertices adjacent to the primitive. We don’t
use them in this book, but they are listed for completeness.

The output primitive type must be points, line_strip, or triangle_strip. Note that
the output layout qualifier also specifies the maximum number of vertices the
shader outputs in each invocation.

This particular alteration to the torus could have been done more easily in the
vertex shader. However, suppose that instead of moving each vertex outward along
its own surface normal, we wished instead to move each triangle outward along its
surface normal, in effect “exploding” the torus triangles outward. The vertex shader
cannot do that, because computing a normal for the triangle requires averaging the
vertex normals of all three triangle vertices, and the vertex shader only has access to
the vertex attributes of one vertex in the triangle at a time. We can, however, do this
in the geometry shader, because the geometry shader does have access to all three
vertices in each triangle. We average their normals to compute a surface normal for
the triangle, then add that averaged normal to each of the vertices in the triangle
primitive. Figures 13.2, 13.3, and 13.4 show the averaging of the surface normals,
the modified geometry shader main() code, and the resulting output, respectively.

original normals: averaged: result:
A e

Figure 13.2
Applying averaged triangle surface normal to triangle vertices.

304 M Computer Graphics Programming in OpenGL with Java, Third Edition

void main (void)

vec4 triangleNormal =
for (i=0; i<3; i++)

EmitVertex();

}
EndPrimitive();
}

{ // average the three triangle vertex normals, creating a single triangle surface normal

vecd(((varyingNormal[0] + varyingNormal[1] + varyingNormal[2]) / 3.0),1.0);

/" move all three vertices outward along the same normal

{ gl_Position = p_matrix * v_matrix * (gl_in[i].gl_Position + normalize(triangleNormal) * 0.4);
varyingNormalG = varyingNormalli];
varyingLightDirG = varyingLightDir[i];
varyingHalfVectorG = varyingHalfVector]i];

Figure 13.3
Modified geometry shader for “exploding” the torus.

Figure 13.4
“Exploded” torus.

The appearance of the “exploded”
torus can be improved by ensuring
that the inside of the torus is also
visible (normally those triangles are
culled by OpenGL because they are
“back-facing”). One way of doing this
is to render the torus twice, once in the
normal manner and once with winding
order reversed (reversing the winding
order effectively switches which faces
are front-facing and which are back-
facing). We also send a flag to the

shaders (in a uniform) to disable diffuse and specular lighting on the back-facing
triangles, to make them less prominent. The changes to the code are as follows:

changes to display() function:

/| draw front-facing triangles — enable lighting

gl.glUniform1i(enableLightingLoc, 1);
gl.glFrontFace(GL_CCW);

gl.giDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

/| draw back-facing triangles - disable lighting

gl.glUniform1i(enableLightingLoc, 0);
gl.glFrontFace(GL_CW);

gl.giDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

Chapter 13 - Geometry Shaders Il 305

modification to fragment shader:

if (enableLighting == 1)

{ fragColor =... //when rendering front faces, use normal lighting computations
}
else // when rendering back faces, enable only the ambient lighting component

{ fragColor = globalAmbient * material.ambient + light.ambient * material.ambient;

}

The resulting “exploded” torus,
including back faces, is shown in
Figure 13.5.

DELETING
PRIMITIVES

A common use for geometry shad-
ers is to build richly ornamental objects

out of simple ones, by judiciously delet- Figure 13.5
“Exploded” torus, including back faces.

ing some of the primitives. For example,
removing some of the triangles from our torus can turn it into a sort of complex
latticed structure that would be more difficult to model from scratch. A geom-
etry shader that does this is shown in Program 13.2, and the output is shown in
Figure 13.6.

Program 13.2 Geometry: Delete Primitives

/| inputs, outputs, and uniforms as before

void main (void)
{ if (mod(gl_PrimitivelDIn,3) = 0)
{ for(inti=0; i<3; i++)
{ gl_Position = p_matrix * v_matrix * gl_in[i].gl_Position;

varyingNormalG = varyingNormal[i];
varyingLightDirG = varyingLightDir[i];
varyingHalfVectorG = varyingHalfVector[i];
EmitVertex();

I
EndPrimitive();

}

306 M Computer Graphics Programming in OpenGL with Java, Third Edition

Figure 13.6 Figure 13.7
Geometry shader: primitive deletion. Primitive deletion showing back faces.

No other changes to the code are necessary. Note the use of the mod function—
all vertices are passed through except those in the first of every three primitives,
which are ignored. Here too, rendering the back-facing triangles can improve real-
ism, as shown in Figure 13.7.

ADDING PRIMITIVES

Perhaps the most interesting and powerful use of geometry shaders is for add-
ing additional vertices and/or primitives to a model being rendered. This makes
it possible to do such things as increase the detail in an object to improve height
mapping or to change the shape of an object completely.

Consider the following example, where we change each triangle in the torus to
a tiny triangular pyramid.

Our strategy, similar to our previous “exploded” torus example, is illustrated
in Figure 13.8. The vertices of an incoming triangle primitive are used to define
the base of a pyramid. The walls of the pyramid are constructed of those vertices,
and of a new point (called the “spike point””) computed by averaging the normals of
the original vertices. New normal vectors are then computed for each of the three
“sides” of the pyramid by taking the cross product of two vectors from the spike
point to the base.

The geometry shader in Program 13.3 does this for each triangle primitive in
the torus. For each incoming triangle, it outputs three triangle primitives, for a total
of nine vertices. Each new triangle is built in the function makeNewTriangle(), which

Chapter 13 - Geometry Shaders W 307

original normals: ~ averaged: result:
: 4 I NP

: K
d : '

computed
normal

Figure 13.8
Converting triangles to pyramids.

is called three times. It computes the normal for the specified triangle, then calls
the function setOutputValues() to assign the appropriate output vertex attributes
for each vertex emitted. After emitting all three vertices, it calls EndPrimitive(). To
ensure that the lighting is performed accurately, new values of the light direction
vector are computed for each newly created vertex.

Program 13.3 Geometry: Add Primitives

vec3 newPoints[9], lightDir[9];
float sLen = 0.01; // sLen is the "spike length", the height of the small pyramid

void setOutputValues(int p, vec3 norm)
{ varyingNormal = norm;
varyingLightDir = lightDir{p];
varyingVertPos = newPoints[p];
gl_Position = p_matrix * v_matrix * vec4(newPoints[p], 1.0);
}
void makeNewTriangle(int p1, int p2)
{ // generate surface normal for this triangle
vec3 ¢1 = normalize(newPoints[p1] - newPoints[3]);

308 M Computer Graphics Programming in OpenGL with Java, Third Edition

vec3 ¢2 = normalize(newPoints[p2] - newPoints[3]);
vec3 norm = cross(c1,c2);

// generate and emit the three vertices
setOutputValues(p1, norm); EmitVertex()
setOutputValues(p2, norm); EmitVertex()
setOutputValues(3, norm); EmitVertex();
EndPrimitive();

)
)

}

void main(void)

{ // offset the three triangle vertices by the original surface normal
vec3 sp0 = gl_in[0].gl_Position.xyz + varyingOriginalNormal[0]*sLen;
vec3 sp1 = gl_in[1].gl_Position.xyz + varyingOriginalNormal[1]*sLen;
vec3 sp2 = gl_in[2].gl_Position.xyz + varyingOriginalNormal[2]*sLen;

// compute the new points comprising a small pyramid
newPoints[0] = gl_in[0].gl_Position.xyz;

newPoints[1] = gl_in[1].gl_Position.xyz;

newPoints[2] = gl_in[2].gl_Position.xyz;

newPoints[3] = (sp0 + sp1 + sp2)/3.0; // spike point

// compute the directions from the vertices to the light
lightDir[0] = light.position - newPoints[0];
lightDir[1] = light.position - newPoints[1];
lightDir[2] = light.position - newPoints[2];
lightDir[3] = light.position - newPoints[3];

// build three new triangles to form a small pyramid on the surface
makeNewTriangle(0,1); // the third point is always the spike point
makeNewTriangle(1,2);
makeNewTriangle(2,0);

The resulting output is shown in
Figure 13.9. If the spike length (sLen)
variable is increased, the added sur-
face “pyramids” would be taller.
However, they could appear unrealis-
tic in the absence of shadows. Adding
shadow mapping to Program 13.3 is
left as an exercise for the reader.

Careful application of this tech-

Figure 13.9 nique can enable the simulation of
Geometry shader: primitive addition.

Chapter 13 - Geometry Shaders [l 309

spikes, thorns, and other fine surface protrusions, as well as the reverse, such as
indentations and craters ([DV20], [KS16], and [TR13]).

CHANGING PRIMITIVE TYPES

OpenGL allows for switching primitive types in a geometry shader. A com-
mon use for this feature is to convert input triangles into one or more output /ine
segments, simulating fur or hair. Although hair remains one of the more difficult
real-world items to generate convincingly, geometry shaders can help make real-
time rendering achievable in many cases.

Program 13.4 shows a geometry shader that converts each incoming three-
vertex triangle to an outward-facing two-vertex line segment. It starts by comput-
ing a starting point for the strand of hair by averaging the triangle vertex locations,
thus generating the centroid of the triangle. It then uses the same “spike point”
from Program 13.3 as the hair’s ending point. The output primitive is specified as
a line strip with two vertices, the first vertex being the start point and the second
vertex being the end point. The result is shown in Figure 13.10 for a torus instanti-
ated with a dimensionality of 72 slices.

Of course, this is merely the start-
ing point for generating fully realistic
hair. Making the hair bend or move
would require several modifications,
such as generating more vertices for the
line strip and computing their positions
along curves and/or incorporating ran-
domness. Lighting is complicated by the
lack of an obvious surface normal for a
line segment; in this example, we sim-
ply assigned the normal to be the same

s . Figure 13.10
as the original triangle’s surface normal. changing triangle primitives to line primitives.

Program 13.4 Geometry: Changing Primitive Types

layout (line_strip, max_vertices=2) out;

void main(void)
{ vec3 op0 = gl_in[0].gl_Position.xyz; // original triangle vertices

310 M Computer Graphics Programming in OpenGL with Java, Third Edition

vec3 op1 = gl_in[1].9l_Position.xyz;

vec3 op2 = gl_in[2].gl_Position.xyz;

vec3 ep0 = gl_in[0].gl_Position.xyz + varyingNormal[0]*sLen; // offset triangle vertices
vec3 ep1 = gl_in[1].9l_Position.xyz + varyingNormal[1]*sLen;

vec3 ep2 = gl_in[2].gl_Position.xyz + varyingNormal[2]*sLen;

// compute the new points comprising a small line segment

vec3 newPoint1 = (op0 + op1 + 0p2)/3.0; // original (start) point
vec3 newPoint2 = (ep0 + ep1 + ep2)/3.0; // end point
gl_Position = p_matrix * v_matrix * vec4(newPoint1, 1.0);
varyingVertPosG = newPoint1;

varyingLightDirG = light.position - newPoint1;

varyingNormalG = varyingNormal[0];

EmitVertex();

gl_Position = proj_matrix * vecd(newPoint2, 1.0);

varyingVertPosG = newPoint2;

varyingLightDirG = light.position - newPoint2;

varyingNormalG = varyingNormal[1];

EmitVertex();

EndPrimitive();

SUPPLEMENTAL NOTES

One of the appeals of geometry shaders is that they are relatively easy to use.
Although many applications for which geometry shaders are used could be achieved
using tessellation, the mechanism of geometry shaders often makes them easier to
implement and debug. Of course, the relative fit of geometry versus tessellation
depends on the particular application.

Generating convincing hair or fur is challenging, and there is a wide range of
techniques employed depending on the application. In some cases, simple textur-
ing is adequate and/or the use of tessellation or geometry shaders such as the basic
technique shown in this chapter. When greater realism is required, movement (ani-
mation) and lighting become tricky. Two dedicated tools for hair and fur generation
are HairWorks which is part of the NVIDIA GameWorks suite [GW21] and TressFX
which was developed by AMD [TR21]. The former works with both OpenGL and
DirectX, whereas the latter works only with DirectX. Examples of using TressFX
can be found in [GP14].

Chapter 13 - Geometry Shaders I 311

Exercises

13.1 Modify Program 13.1 so that it moves each vertex slightly toward the center
of its primitive triangle. The result should look similar to the exploded torus
in Figure 13.5, but without the overall change in torus size.

13.2 Modify Program 13.2 so that it deletes every other primitive, or every
fourth primitive (rather than every third primitive), and observe the effect
on the resulting rendered torus. Also, try changing the dimensionality of the
instantiated torus to a value that is not a multiple of three (such as 40), while
still deleting every third primitive. There are many possible effects.

13.3 (PROJECT) Modify Program 13.4 to additionally render the original torus.
That is, render both a lighted torus (as previously done in Chapter 7) and the
outgoing line segments (using a geometry shader) so that the “hair” looks
like it is coming out of the torus.

13.4 (PROJECT) Modify Program 13.4 so that it produces outward-facing line
segments with more than two vertices, arranged so as to make the line
segments appear to bend slightly.

References

[DV20] J. deVries, LearnOpenGL (Kendall and Welling, 2020), accessed March
2021, http://www.learnopengl.com/

IGP14] GPU Pro 5: Advanced Rendering Techniques, ed. W. Engel (CRC Press,
2014).

[GW21] NVIDIA GameWorks Suite, 2018, accessed March 2021, https://developer
.nvidia.com/gameworks

[KS16] J. Kessenich, G. Sellers, and D. Shreiner, OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 4.5 with SPIR-V, 9th ed.
(Addison-Wesley, 2016).

[TR13] P. Trettner, Prototype Grass (blog), 2013, accessed July 2016, https:/
upvoid.com/devblog/2013/02/prototype-grass/

[TR21] TressFX Hair, AMD, 2018, accessed March 2021, https:/www.amd.com/
en/technologies/tressfx

CHAPTER 14

OTHER TECHNIQUES

T4.1 FOg. . o oo 313
14.2 Compositing/Blending/Transparency. iiiiiiio... 316
14.3 User-Defined Clipping Planes, 322
14.4 3D TeXtUFES.o oo 324
14.5 NOISE . . . oo 330
14.6 Noise Application—Marble. 335
14.7 Noise Application—Wood i 340
14.8 Noise Application—Clouds. i iiiiiieaaaii. 344
14.9 Noise Application—Special Effects i .. 349

Supplemental Notes oo 351

In this chapter we explore a variety of techniques utilizing the tools we have
learned about throughout the book. Some we will develop fully, while for others we
will offer a more cursory description. Graphics programming is a huge field, and this
chapter is by no means comprehensive, but rather an introduction to just a few of the
creative effects that have been developed over the years.

E5E FOG

Usually when people think of fog, they think of early misty mornings with low
visibility. In truth, atmospheric haze (such as fog) is more common than most of us think.
The majority of the time, there is some degree of haze in the air, and although we have
become accustomed to seeing it, we don’t usually realize it is there. So we can enhance
the realism in our outdoor scenes by introducing fog—even if only a small amount.

Fog also can enhance the sense of depth. When close objects have better clarity
than distant objects, it is one more visual cue that our brains can use to decipher the
topography of a 3D scene.

314 B Computer Graphics Programming in OpenGL with Java, Third Edition

. fog color
color based (mostly) on object

color based (mostly) on fog

Figure 14.1
Fog: blending based on distance.

There are a variety of methods for simulating fog, from very simple ones to
sophisticated models that include light scattering effects. However, even very sim-
ple approaches can be effective. One such method is to blend the actual pixel color
with another color (the “fog” color, typically gray or bluish-gray—also used for
the background color), based on the distance the object is from the eye.

Figure 14.1 illustrates the concept. The eye (camera) is shown at the left, and
two red objects are placed in the view frustum. The cylinder is closer to the eye, so
it is mostly its original color (red); the cube is further from the eye, so it is mostly
fog color. For this simple implementation, virtually all of the computations can be
performed in the fragment shader.

Program 14.1 shows the relevant code for a very simple fog algorithm that uses
a linear blend from object color to fog color based on the distance from the camera
to the pixel. Specifically, this example adds fog to the height mapping example
from Program 10.4.

Program 14.1 Simple Fog Generation

Vertex (or Tessellation Control) shader

out vec3 vertEyeSpacePos;

// Compute vertex position in eye space, without perspective, and send it to the fragment shader.
// The variable "p" is the height-mapped vertex, as described earlier in Program 10-4.
vertEyeSpacePos = (mv_matrix * p).xyz;

Chapter 14 - Other Techniques Il 315

Fragment shader

in vec3 vertEyeSpacePos;
out vec4 fragColor;

void main(void)

{ vecd fogColor = vec4(0.7, 0.8, 0.9, 1.0); // bluish gray
float fogStart = 0.2;
float fogEnd = 0.8;

// the distance from the camera to the vertex in eye space is simply the length of a
// vector to that vertex, because the camera is at (0,0,0) in eye space.

float dist = length(vertEyeSpace.xyz);

float fogFactor = clamp(((fogEnd - dist) / (fogEnd - fogStart)), 0.0, 1.0);

fragColor = mix(fogColor, (texture(t,tc), fogFactor);

The variable fogColor specifies a color for the fog. The variables fogStart and
fogEnd specify the range (in eye space) over which the output color transitions from
object color to fog color, and can be tuned to meet the needs of the scene. The per-
centage of fog mixed with the object color is calculated in the variable fogFactor,
which is the ratio of how close the vertex is to fogEnd to the total length of the transi-
tion region. The GLSL clamp() function is used to restrict this ratio to being between
the values 0.0 and 1.0. The GLSL mix() function then returns a weighted average
of fog color and object color, based on the value of fogFactor. Figure 14.2 shows the
addition of fog to a scene with height-mapped terrain. (A rocky texture from [LU16]
has also been applied.)

Figure 14.2
Fog example.

316 M Computer Graphics Programming in OpenGL with Java, Third Edition

¥ COMPOSITING/BLENDING/TRANSPARENCY

We have already seen a few examples of blending—in the supplementary notes
for Chapter 7 and just above in our implementation of fog. However, we haven’t yet
seen how to utilize the blending (or compositing) capabilities that follow after the
fragment shader, during pixel operations (recall the pipeline sequence shown in
Figure 2.2). It is there that transparency is handled, which we look at now.

Throughout this book we have made frequent use of the vec4 data type, to
represent 3D points and vectors in a homogenous coordinate system. You may
have noticed that we also frequently use a vec4 to store color information, where
the first three values consist of red, green, and blue, and the fourth element
is—what?

The fourth element in a color is called the alpha channel and specifies the
opacity of the color. Opacity is a measure of how non-transparent the pixel color
is. An alpha value of 0 means “no opacity,” or completely transparent. An alpha
value of 1 means “fully opaque,” not at all transparent. In a sense, the “transpar-
ency” of a color is 1-a, where d is the value of the alpha channel.

Recall from Chapter 2 that pixel operations utilize the Z-buffer, which achieves
hidden surface removal by replacing an existing pixel color when another object’s
location at that pixel is found to be closer. We actually have more control over this
process—we may choose to blend the two pixels.

When a pixel is being rendered, it is called the “source” pixel. The pixel
already in the frame buffer (presumably rendered from a previous object) is called
the “destination” pixel. OpenGL provides many options for deciding which of
the two pixels, or what sort of combination of them, ultimately is placed in the
frame buffer. Note that the pixel operations step is not a programmable stage—so
the OpenGL tools for configuring the desired compositing are found in the Java/
JOGL application rather than in a shader.

The two OpenGL functions for controlling compositing are
glBlendEquation(mode) and gIBlendFunc(srcFactor, destFactor). Figure 14.3 shows an
overview of the compositing process.

The compositing process works as follows:
1. The source and destination pixels are multiplied by source factor and

destination factor, respectively. The source and destination factors are
specified in the gIBlendFunc() function call.

Chapter 14 - Other Techniques [317

From Java/JOGL application
glBlendEquation() glBlendFunc()
source color [RGBA] ‘l’ ‘l’
from Fragment shader Compositing
new dest
dest color [RGBA] W color [RGBA]
Frame
Buffer

Figure 14.3
OpenGL compositing overview.

2. The specified blendEquation is then used to combine the modified source
and destination pixels to produce a new destination color. The blend equa-
tion is specified in the glBlendEquation() call.

The most common options for glBlendFunc() parameters (i.e., srcFactor and
destFactor) are shown in the following table:

giBlendFunc() parameter resulting srcFactor or destFactor

: GL_ZERO

318 M Computer Graphics Programming in OpenGL with Java, Third Edition

: GL_CONSTANT ALPHA (AyerucaorAnengcoerAerdcoorPendcaor)
: GL_ONE_MINUS_CONSTANT_ALPHA : (1,1,1,1) = (AtjenacoiorAbiendColor biendcolorbiendcaer)
i GL_ALPHA_SATURATE (f, f, f, 1) where = min(Ay,, 1)

Those options that indicate a “blendColor” (GL_CONSTANT_COLOR, etc.)
require an additional call to gIBlendColor() to specify a constant color that will be
used to compute the blend function result. There are a few additional blend func-
tions that aren’t listed above (not described here).

The possible options for the glBlendEquation() parameter (i.e., mode) are as
follows:

mode blended color

: GL_FUNC_ADD : result = sourcegggy + destinationggg,

GL_ FUNC_ ST o sourceRGBA S natlonRGBA
| GL_FUNC_REVERSE SUBTRACT ' result = desfinationgegs - SoUrceqegs
B e o mm(sou rceRGBA p onRGBA)
e e max(sourceRGBA p lonRGB .A.)

The gIBlendFunc() defaults are GL_ONE (1.0) for srcFactor and GL_ZERO
(0.0) for destFactor. The default for gIBlendEquation() is GL_FUNC_ADD. Thus, by
default, the source pixel is unchanged (multiplied by 1), the destination pixel is
scaled to 0, and the two are added—meaning that the source pixel becomes the
frame buffer color.

There are also the commands glEnable(GL_BLEND) and glDisable(GL_BLEND),
which can be used to tell OpenGL to apply the specified blending or to ignore it.

We won'’t illustrate the effects of all of the options here, but will walk through
some illustrative examples. Suppose we specify the following settings in the
Java/JOGL application:

» gIBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
« ¢IBlendEquation(GL_FUNC_ADD)
Compositing would proceed as follows:
1. The source pixel is scaled by its alpha value.
2. The destination pixel is scaled by 1-srcAlpha (the source transparency).
3. The pixel values are added together.

Chapter 14 - Other Techniques Il 319

For example, if the source pixel is red, with 75% opacity ([1, 0, 0, 0.75]) and
the destination pixel contains completely opaque green ([0, 1, 0, 1]), then the result
placed in the frame buffer would be

srcPixel * srcAlpha = [0.75, 0, 0, 0.5625]
destPixel * (1-srcAlpha) = [0, 0.25, 0, 0.25]
resulting pixel = [0.75, 0.25, 0, 0.8125]

That is, predominantly red, with some green, and mostly solid. The overall
effect of the settings is to let the destination show through by an amount corre-
sponding to the source pixel’s transparency. In this example, the pixel in the frame
buffer is green, and the incoming pixel is red with 25% transparency (75% opacity).
So some green is allowed to show through the red.

It turns out that these settings for blend function and blend equation work well
in many cases. Let’s apply them to a practical example in a scene containing two
3D models: a torus and a pyramid in front of the torus. Figure 14.4 shows such
a scene, on the left with an opaque pyramid and on the right with the pyramid’s
alpha value set to 0.8. Lighting has been added.

For many applications—such as creating a flat “window” as part of a model of
a house—this simple implementation of transparency may be sufficient. However,
in the example shown in Figure 14.4, there is a fairly obvious inadequacy. Although
the pyramid model is now effectively transparent, an actual transparent pyramid
should reveal not only the objects behind it but also its own back surfaces.

Figure 14.4
Pyramid with alpha=1.0 (left), and alpha=0.8 (right).

320 M Computer Graphics Programming in OpenGL with Java, Third Edition

Actually, the reason that the back faces of the pyramid did not appear is
because we enabled back-face culling. A reasonable idea might be to disable back-
face culling while drawing the pyramid. However, this often produces other arti-
facts, as shown in Figure 14.5 (on the left). The problem with simply disabling
back-face culling is that the effects of blending depend on the order that surfaces
are rendered (because that determines the source and destination pixels) and we
don’t always have control over the rendering order. It is generally advantageous
to render opaque objects first, as well as objects that are in the back (such as the
torus), before any transparent objects. This also holds true for the surfaces of the
pyramid, and in this case the reason that the two triangles comprising the base
of the pyramid appear different is that one of them was rendered before the front
of the pyramid and one was rendered after. Artifacts such as this are sometimes
called “ordering” artifacts and can manifest in transparent models, because we
cannot always predict the order that its triangles will be rendered.

We can solve the problem in our pyramid example by rendering the front and
back faces separately, ourselves, starting with the back faces. Program 14.2 shows
the code for doing this. We specify the alpha value for the pyramid by passing it to
the shader program in a uniform variable, and then apply it in the fragment shader
by substituting the specified alpha into the computed output color.

Note also that for lighting to work properly, we must flip the normal vector
when rendering the back faces. We accomplish this by sending a flag to the vertex
shader, where we then flip the normal vector.

Program 14.2 Two-Pass Blending for Transparency
JOGL/Java application - in display() for rendering pyramid:

ol.glEnable(GL_CULL_FACE):

gl.glEnable(GL_BLEND); // configure blend settings
gl.glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
gl.gIBlendEquation(GL_FUNC_ADD);

gl.glCullFace(GL_FRONT); // render pyramid back faces first
gl.glProgramUniform1f(renderingProgram, alphalLoc, 0.3f); / back faces very transparent
gl.glProgramUniform1f(renderingProgram, flipLoc, -1.0f); // flip normals on back faces

gl.glDrawArrays(GL_TRIANGLES, 0, numPyramidVertices);

Chapter 14 - Other Techniques [H 321

gl.glCullFace(GL_BACK); // then render pyramid front faces
gl.glProgramUniform1f(renderingProgram, alphalLoc, 0.7f); / front faces slighlty transparent
gl.glProgramUniform1f(renderingProgram, flipLoc, 1.0f); // don’t flip normals on front faces

gl.glDrawArrays(GL_TRIANGLES, 0, numPyramidVertices);
gl.gDisable(GL_BLEND);

Vertex shader:

if (fipNormal < 0) varyingNormal = -varyingNormal;

Fragment shader:

fragColor = globalAmbient * material.ambient + ... etc. // same as for Blinn-Phong lighting.
fragColor = vecé(fragColor.xyz, alpha); // replace alpha value with one sent in uniform variable

The result of this “two-pass” solution is shown in Figure 14.5, on the right.

Although it works well here, the two-pass solution shown in Program 14.2 is not
always adequate. For example, some more complex models may have hidden sur-
faces that are front facing, and if such an object were made transparent, our algorithm
would fail to render those hidden front-facing portions of the model. Alec Jacobson
describes a five-pass sequence that works in a large number of cases [JA12].

Figure 14.5
Transparency and back faces: ordering artifacts (left) and two-pass correction (right).

322 B Computer Graphics Programming in OpenGL with Java, Third Edition

USER-DEFINED CLIPPING PLANES

OpenGL includes the capability to specify clipping planes beyond those
defined by the view frustum. One use for a user-defined clipping plane is to slice
amodel. This makes it possible to create complex shapes by starting with a simple
model and slicing sections off of it.

A clipping plane is defined according to the standard mathematical definition
of a plane:

axtby+cz+d=0

where a, b, ¢, and d are parameters defining a particular plane in 3D space with X,
Y, and Z axes. The parameters represent a vector (a,b,c) normal to the plane and a
distance d from the origin to the plane. Such a plane can be specified in the vertex
shader using a vec4, as follows:

vec4 clip_plane = vec4(0.0, 0.0, -1.0, 0.2);

This would correspond to the plane
(0.0)x + (0.0)y + (-1.0) 2+ 0.2=0

The clipping can then be achieved, also in the vertex shader, by using the built-
in GLSL variable gl_ClipDistance[], as in the following example:

gl_ClipDistance[0] = dot(clip_plane.xyz, vertPos) + clip_plane.w;

In this example, vertPos refers to the vertex position coming into the vertex
shader in a vertex attribute (such as from a VBO); clip_plane was defined above.
We then compute the signed distance from the clipping plane to the incoming
vertex (shown in Chapter 3), which is either 0 if the vertex is on the plane, or is
negative or positive depending on which side of the plane the vertex lies. The sub-
script on the gl_ClipDistance array enables multiple clipping distances (i.e., multiple
planes) to be defined. The maximum number of user clipping planes that can be
defined depends on the graphics card’s OpenGL implementation.

User-defined clipping must then be enabled in the Java/JOGL application.
There are built-in OpenGL identifiers GL_CLIP_DISTANCEO, GL_CLIP_DISTANCE1,
and so on, corresponding to each gl_ClipDistance[] array element. The Oth user-
defined clipping plane can be enabled, for example, as follows:

gl.glEnable(GL_CLIP_DISTANCEO);

Chapter 14 - Other Techniques [323

Figure 14.6 Figure 14.7
Clipping a torus. Clipping with back faces.

Applying the above steps to our lighted torus results in the output shown in
Figure 14.6, in which the front half of the torus has been clipped. (A rotation has
also been applied to provide a clearer view.)

It may appear that the bottom portion of the torus has also been clipped, but
that is because the inside faces of the torus were not rendered. When clipping
reveals the inside surfaces of a shape, it is necessary to render them as well, or the
model will appear incomplete (as it does in Figure 14.6).

Rendering the inner surfaces requires making a second call to gl_DrawArrays(),
with the winding order reversed. Additionally, it is necessary to reverse the sur-
face normal vector when rendering the back-facing triangles (as was done in the
previous section). The relevant modifications to the Java application and the vertex
shader are shown in Program 14.3, with the output shown in Figure 14.7.

Program 14.3 Clipping with Back Faces

Java/JOGL application:

public void display(GLAutoDrawable drawable)
{

flipLoc = gl.glGetUniformLocation(renderingProgram, "flipNormal");

gl.glEnable(GL_CLIP_DISTANCEO);

// normal drawing of external faces

gl.glUniform1i(flipLoc, 0);

gl.glFrontFace(GL_CCW);

gl.glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

324 B Computer Graphics Programming in OpenGL with Java, Third Edition

// rendering of back faces with normals reversed

gl.glUniform1i(flipLoc, 1);

gl.glFrontFace(GL_CW);

gl.glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

}
Vertex shader:

vec4 clip_plane = vec4(0.0, 0.0, -1.0, 0.5);
uniform int flipNormal; // flag for inverting normal

void main(void)
{

if (flipNormal==1) varyingNormal = -varyingNormal;
gl_ClipDistance[0] = dot(clip_plane.xyz, vertPos) - clip_plane.w;

}

E'*8 3D TEXTURES

Whereas 2D textures contain image data indexed by two variables, 3D textures
contain the same type of image data, but in a 3D structure that is indexed by three
variables. The first two dimensions still represent width and height in the texture
map; the third dimension represents depth.

Because the data in a 3D texture is stored in a similar manner as for 2D tex-
tures, it is tempting to think of a 3D texture as a sort of 3D “image.” However,
we generally don’t refer to 3D texture source data as a 3D image, because there
are no commonly used image file formats for this sort of structure (i.e., there
is nothing akin to a 3D JPEG, at least not one that is truly three-dimensional).
Instead, we suggest thinking of a 3D texture as a sort of substance into which we
will submerge (or “dip”) the object being textured, resulting in the object’s sur-
face points obtaining their colors from the corresponding locations in the texture.
Alternatively, it can be useful to imagine that the object is being “carved” out of

the 3D texture “cube,” much like a sculptor carves a figure out of a single solid
block of marble.

OpenGL has support for 3D texture objects. In order to use them, we need to
learn how to build the 3D texture and how to use it to texture an object.

Chapter 14 - Other Techniques [l 325

Unlike 2D textures, which can be built from standard image files, 3D textures are
usually generated procedurally. As was done previously for 2D textures, we decide
on a resolution—that is, the number of texels in each dimension. Depending on the
colors in the texture, we may build a three-dimensional array containing those col-
ors. Alternatively, if the texture holds a “pattern” that could be utilized with various
colors, we might instead build an array that holds the pattern, such as with Os and 1s.

For example, we can build a 3D texture that represents horizontal stripes by
filling an array with Os and 1s corresponding to the desired stripe pattern. Suppose
that the desired resolution of the texture is 200x200x200 texels and the texture
comprises alternating stripes that are each 10 texels high. A simple function that
builds such a structure by filling an array with appropriate Os and 1s in a nested
loop (assuming in this case that width, height, and depth variables are each set to
200), would be as follows:

void generate3Dpattern()
{ for (int x=0; x<texWidth; x++)
{ for (int y=0; y<texHeight; y++)
{ for (int z=0; z<texDepth; z++)
{ if((y[10)%2==0)
tex3Dpattern[x][y](z] = 0.0;
else
tex3Dpattern[x][y][z] = 1.0;

The pattern stored in the tex3Dpattern array is
illustrated in Figure 14.8, with the Os rendered in
blue and the 1s rendered in yellow.

Texturing an object with the above striped V

pattern requires the following steps:

Generating the pattern as already shown

2. Using the pattern to fill a byte array of
desired colors

3. Loading the byte array into a texture

. Figure 14.8
Ob] ect Striped 3D texture pattern.

326 M Computer Graphics Programming in OpenGL with Java, Third Edition

4. Deciding on appropriate 3D texture coordinates for the object vertices

5. Texturing the object in the fragment shader using an appropriate sampler

Texture coordinates for 3D textures range from 0 to 1, in the same manner as
for 2D textures.

Interestingly, step 4 (determining 3D texture coordinates) is usually a lot simpler
than one might initially suspect. In fact, it is usually simpler than for 2D textures!
This is because (in the case of 2D textures), since a 3D object was being textured
with a 2D image, we needed to decide how to “flatten” the 3D object’s vertices (such
as by UV mapping) to create texture coordinates. But when 3D texturing, both the
object and the texture are of the same dimensionality (three). In most cases, we want
the object to reflect the texture pattern, as if it were “carved” out of it (or dipped
into it). So the vertex locations themselves serve as the texture coordinates! Usually
all that is necessary is to apply some simple scaling to ensure that the object’s verti-
ces’ location coordinates map to the 3D texture coordinates’ range [0..1].

Since we are generating the 3D texture procedurally, we need a way of con-
structing an OpenGL texture map out of generated data. The process for loading
data into a texture is similar to what we saw earlier in Section 5.12. In this case, we
fill a 3D array with color values, and then copy them into a texture object.

Program 14.4 shows the various components for achieving all of the steps
listed above, in order to texture an object with blue and yellow horizontal stripes
from a procedurally built 3D texture. The desired pattern is built in the generat-
e3Dpattern() function, which stores the pattern in an array named tex3Dpattern. The
“image” data is then built in the function fillDataArray(), which fills a 3D array with
byte data corresponding to the RGB colors R, G, B, and A, each in the range [0..255],
according to the pattern. Those values are then copied into a texture object in the
load3DTexture() function.

Program 14.4 3D Texturing: Striped Pattern
Java/JOGL application:

private int texWidth = 256;
private int texHeight= 256;
private int texDepth = 256;
private double[][][] tex3Dpattern = new double[texWidth][texHeight][texDepth];

Chapter 14 - Other Techniques [327

//fill a byte array with RGB blue/yellow values corresponding to the pattern built by generate3Dpattern()
private void fillDataArray(byte data]])
{ for (inti=0; i<texWidth; i++)
{ for(intj=0; j<texHeight; j++)
{ for (int k=0; k<texDepth; k++)
{ if (tex3Dpattern(i][jlk] == 1.0)
{ //yellow color

data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+0] = (byte) 255; / red
data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+1] = (byte) 255; // green
data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+2] = (byte) 0; // blue
data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+3] = (byte) 255; // alpha

}

else

{ // blue color
data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+0] = (byte) 0; / red
data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+1] = (byte) 0; // green
data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+2] = (byte) 255; // blue
data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+3] = (byte) 255; // alpha

IR

// build 3D pattern of stripes

void generate3Dpattern()

{ for (int x=0; x<texWidth; x++)

{ for (int y=0; y<texHeight; y++)
{ for (int z=0; z<texDepth; z++)
{ if((y110)%2==0)
tex3Dpattern[x][y][z] = 0.0;
else

tex3Dpattern[x][y][z] = 1.0;

IR

// load the sequential byte data array into a texture object
private int load3DTexture()
{ GL4 gl = (GL4) GLContext.getCurrentGL();

byte[] data = new byte[texWidth * texHeight * texDepth * 4];
fillDataArray(data);
ByteBuffer bb = Buffers.newDirectByteBuffer(data);

int[] texturelDs = new int[1];
gl.glGenTextures(1, texturelDs, 0);
int texturelD = texturelDs|[0];

gl.gIBindTexture(GL_TEXTURE_3D, texturelD);
gl.glTexStorage3D(GL_TEXTURE_3D, 1, GL_RGBA8, texWidth, texHeight, texDepth);
gl.glTexSublmage3D(GL_TEXTURE_3D, 0, 0, 0, 0,

328 M Computer Graphics Programming in OpenGL with Java, Third Edition

gl.glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
return texturelD;

}

public void init(GLAutoDrawable drawable)
{

generate3Dpattern(); // 3D pattern and texture only loaded once, so done from init()
stripeTexture = load3DTexture(); / holds the integer texture ID for the 3D texture

}

public void display(GLAutoDrawable drawable)

{ ...
gl.glActiveTexture(GL_TEXTUREO);

gl.glBindTexture(GL_TEXTURE_3D, stripeTexture);
gl.glDrawArrays(GL_TRIANGLES, 0, numObjVertices);

}
Vertex Shader:

out vec3 originalPosition; // the original model vertices will be used for texture coordinates

layout (binding=0) uniform sampler3D s;

void main(void)
{ originalPosition = position; // pass original model coordinates for use as 3D texture coordinates
gl_Position = p_matrix * mv_matrix * vecé4(position, 1.0);

}
Fragment Shader:

in vec3 originalPosition; // receive original model coordinates for use as 3D texture coordinates
out vec4 fragColor;

layout (binding=0) uniform sampler3D s;

void main(void)

{
}

fragColor = texture(s, originalPosition/2.0 + 0.5); / vertices are [-1..+1], tex coords are [0..1]

In the Java/JOGL application, the load3Dtexture() function is similar to the Java
AWT loadTexture() function shown earlier in Program 5.2. As before, it expects
the image data to be formatted as a sequence of bytes corresponding to RGBA

color components. The function
fillDataArray() does this, apply-
ing the RGB values for yel-
low and blue corresponding to
the striped pattern built by the
generate3Dpattern() function and
held in the tex3Dpattern array.
Note also the specification of
texture type GL_TEXTURE_3D
in the display() function.

Since we wish to use the
object’s vertex locations as tex-
ture coordinates, we pass them

Chapter 14 - Other Techniques [l 329

Figure 14.9
Dragon object with 3D striped texture.

through from the vertex shader to the fragment shader. The fragment shader then
scales them so that they are mapped into the range [0..1] as is standard for texture
coordinates. Finally, 3D textures are accessed via a sampler3D uniform, which
takes three parameters instead of two. We use the vertex’s original X, Y, and Z
coordinates, scaled to the correct range, to access the texture. The result is shown

in Figure 14.9.

More complex patterns can be generated by modifying generate3Dpattern().
Figure 14.10 shows a simple change that converts the striped pattern to a 3D

void generate3Dpattern()
{ int xStep, yStep, zStep, sumSteps;
for (int x=0; x<texWidth; x++)
{ for (int y=0; y<texHeight; y++)
{ for (int z=0; z<texDepth; z++)
{ xStep=(x/10) % 2;
yStep=(y/10)} % 2;
zStep =(z/10) % 2;

if ((sumSteps % 2) == 0)
else

PP}

sumSteps = xStep + yStep + zStep;
tex3Dpattern[x][y][z] = 0.0;

tex3Dpattern[x][yl[z] = 1.0;

Figure 14.10
Generating a checkerboard 3D texture pattern.

330 M Computer Graphics Programming in OpenGL with Java, Third Edition

checkerboard. The resulting effect
is then shown in Figure 14.11. Itis
worth noting that the effect is very
different than would be the case if
the dragon’s surface had been tex-
tured with a 2D checkerboard tex-
ture pattern. (See Exercise 14.3)

NOISE

Figure 14.11 Many natural phenomena can
Dragon with 3D checkerboard texture. be simulated U.Sil’lg randomness,

or noise. One common technique,
Perlin Noise [PE85], is named after Ken Perlin, who in 1997 received an Academy
Award! for developing a practical way to generate and use 2D and 3D noise. The
procedure described here is based on Perlin’s method.

There are many applications of noise in graphics scenes. A few common
examples are clouds, terrain, wood grain, minerals (such as veins in marble),
smoke, fire, flames, planetary surfaces, and random movements. In this section,
we focus on generating 3D textures containing noise, and then subsequent sections
illustrate using the noise data to generate complex materials such as marble and
wood and to simulate animated cloud textures for use with a cube map or sky-
dome. A collection of spatial data (e.g., 2D or 3D) that contains noise is sometimes
referred to as a noise map.

We start by constructing a 3D texture map out of random data. This can be done
using the functions shown in the previous section, with a few modifications. First,
we replace the generate3Dpattern() function from Program 14.4 with the following
simpler generateNoise() function:

double[][][1 noise = new double[noiseWidth][noiseHeight][noiseDepthl;
java.util.Random random = new java.util.Random();

void generateNoise()
{ for (int x=0; x<noiseWidth; x++)
{ for (int y=0; y<noiseHeight; y++)

' The Technical Achievement Award, given by the Academy of Motion Picture Arts and Sciences.

Chapter 14 - Other Techniques [l 331

{ for (int z=0; z<noiseDepth; z++)
{ noise[x][y][z] = random.nextDouble(); // returns a double in the range [0..1]

I

Next, the fillDataArray() function from Program 14.4 is modified so that it cop-
ies the noise data into the byte array in preparation for loading into a texture
object, as follows:

private void fillDataArray(byte data]])
{ for (inti=0; i<noiseWidth; i++)
{ for (intj=0; j<noiseHeight; j++)
{ for (int k=0; k<noiseDepth; k++)

{ data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+0] = (byte) (noiselil[j][k] * 255);
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+1] = (byte) (noise[i][j][k] * 255);
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+2] = (byte) (noise[i][j][k] * 255);
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+3] = (byte) 255;

bl

The rest of Program 14.4 for loading data into a texture object and applying it to
a model is unchanged. We can view this 3D noise map by applying it to our simple
cube model, as shown in Figure 14.12. In this example, noiseHeight = noiseWidth =
noiseDepth = 256.

This is a 3D noise map, although it isn’t a very useful one. As is, it is just too
noisy to have very many practical applications. To make more practical, tunable
noise patterns, we will replace the fillData-
Array() function with different noise-pro-
ducing procedures.

Suppose that we fill the data array
by “zooming in” to a small subsection of
the noise map illustrated in Figure 14.12,
using indexes made smaller by integer
division. The modification to the
fillDataArray() function is shown below.
The resulting 3D texture can be made
more or less “blocky” depending on
the “zooming” factor used to divide the Figure 14.12
index. In Figure 14.13, the textures Show Cube textured with 3D noise data.

332 B Computer Graphics Programming in OpenGL with Java, Third Edition

e

=—=—_—_—x,

Figure 14.13
“Blocky” 3D noise maps with various “zooming-in” factors.

the result of zooming in by dividing the indices by zoom factors 8, 16, and 32
(left to right, respectively).

private void fillDataArray(byte data[])
{ intzoom=8; / zoom factor

for (int i=0; i<noiseWidth; i++)

{ for (intj=0; j<noiseHeight; j++)

{ for (int k=0; k<noiseDepth; k++)
{ data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+0] =

byte) (noise [i/zoom] [j/zoom] [k/zoom] * 255);
noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+1] =
byte) (noise [i/zoom] [j/zoom] [k/zoom] * 255);
noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+2] =
byte) (noise [i/zoom] [j/zoom] [k/zoom] * 255);
noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+3] = (byte) 255;

data[i*

datali*

datali*
bbbl

The “blockiness” within a given noise map can be smoothed by interpolating
from each discrete grayscale color value to the next one. That is, for each small
“block” within a given 3D texture, we set each texel color within the block by inter-
polating from its color to its neighboring blocks’ colors. The interpolation code is
shown below in the function smoothNoise(), along with the modified fillDataArray()
function. The resulting “smoothed” textures (for zooming factors 2, 4, 8, 16, 32,
and 64—Tleft to right, top to bottom) then follow in Figure 14.14. Note that the zoom
factor is now a double, because we need the fractional component to determine the
interpolated grayscale values for each texel.

Chapter 14 - Other Techniques [l 333

private void fillDataArray(byte data[])
{ double zoom =32.0;

for (int i=0; i<noiseWidth; i++)

{ for (intj=0; j<noiseHeight; j++)

{ for (int k=0; k<noiseDepth; k++)
{ data[i*(noiseWidth*noiseHeight*4) + j*(noiseHeight*4) + k*4 +0] =

byte) (smoothNoise(zoom, i/zoom, j/zoom, k/zoom) * 255);
noiseWidth*noiseHeight*4) + j*(noiseHeight*4) + k*4 +1] =
byte) (smoothNoise(zoom, i/zoom, j/zoom, k/zoom) * 255);
noiseWidth*noiseHeight*4) + j*(noiseHeight*4) + k*4 +2] =
byte) (smoothNoise(zoom, i/zoom, j/zoom, k/zoom) * 255);
noiseWidth*noiseHeight*4) + j*(noiseHeight*4) + k*4 +3] = (byte) 255;

data[i*

data[i*

data[i*
Probod

double smoothNoise(double zoom, double x1, double y1, double z1)

{ //fraction of x1, y1, and z1 (percentage from current block to next block, for this texel)
double fractX = x1 - (int) x1;
double fractY = y1 - (int) y1;
double fractZ = z1 - (int) z1;

// indices for neighboring values with wrapping at the ends

double x2 = x1 - 1; if (x2<0) x2 = (Math.round(noiseWidth / zoom)) - 1.0;
double y2 = y1 - 1; if (y2<0) y2 = (Math.round(noiseHeight / zoom)) - 1.0;
double z2 = z1 - 1; if (z2<0) z2 = (Math.round(noiseDepth / zoom)) - 1.0;

// smooth the noise by interpolating the greyscale intensity along all three axes
double value = 0.0;

value += fractX * fractY * fractZ * noise[(int)x1][(int)y1][(int)z1];
value += (1-fractX) * fractY * fractZ * noise[(int)x2][(int)y1][(int)z1];
value += fractX *(1-fractY) *fractZ * noise[(int)x1][(int)y2]((int)z1];
value += (1-fractX) * (1-fractY) *fractZ * noise[(int)x2][(int)y2][(int)z1];
value += fractX * fractY *(1-fractz) * noise[(int)x1][(int)y1][(int)z2];
value += (1-fractX) * fractY *(1-fractz) * noise[(int)x2][(int)y1][(int)z2];
value += fractX *(1-fractY) *(1-fractz) * noise[(int)x1][(int)y2][(int)z2];
value += (1-fractX) ~ * (1-fractY) *(1-fractZ) * noise[(int)x2][(int)y2][(int)z2];

return value;

The smoothNoise() function computes a grayscale value for each texel in the
smoothed version of a given noise map by computing a weighted average of
the eight grayscale values surrounding the texel in the corresponding original
“blocky” noise map. That is, it averages the color values at the eight vertices of the
small “block” the texel is in. The weights for each of these “neighbor” colors are
based on the texel’s distance to each of its neighbors, normalized to the range [0..1].
Values at the ends wrap smoothly to facilitate tiling.

334 B Computer Graphics Programming in OpenGL with Java, Third Edition

Figure 14.14
Smoothing of 3D textures, at various zooming levels.

Next, smoothed noise maps of various zooming factors are combined. A new
noise map is created in which each of its texels is formed by another weighted
average, this time based on the sum of the texels at the same location in each
of the “smoothed” noise maps, with the zoom factor serving as the weight. The
effect was dubbed “turbulence” by Perlin [PE85], although it is really more closely
related to the harmonics produced by summing various waveforms. A new turbu-
lence() function and a modified version of fillDataArray() that specifies a noise map
that sums zoom levels 1 through 32 (the ones that are powers of two) are shown
below, followed by an image of a cube textured with the resulting noise map.

private double turbulence(double x, double y, double z, double maxZoom)
{ double sum = 0.0, zoom = maxZoom;
while (zoom >=1.0) // the last pass is when zoom=1.
{ // compute weighted sum of smoothed noise maps
sum = sum + smoothNoise(zoom, x / zoom, y / zoom, z / zoom) * zoom;
zoom = zoom / 2.0; // for each zoom factor that is a power of two.

Chapter 14 - Other Techniques [l 335

sum = 128.0 * sum / maxZoom, // quarantees RGB < 256 for maxZoom values up to 64

return sum;

}

private void fillDataArray(byte data[])
{ double maxZoom = 32.0;
for (int i=0; i<noiseWidth; i++)
{ for (intj=0; j<noiseHeight; j++)
{ for (int k=0; k<noiseDepth; k++)

{ data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+0] =
byte) turbulence(i, j, k, maxZoom);

data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+1] =
byte) turbulence(i, j, k, maxZoom);

byte) turbulence(i, j, k, maxZoom);

datali*
byte) 255;
IS S

3D noise maps, such as the one shown
in Figure 14.15, can be used for a wide vari-
ety of imaginative applications. In the next
sections, we will use it to generate marble,
wood, and clouds. The distribution of the
noise can be adjusted by various combina-
tions of zoom-in levels.

It is important to note that because
of our use of successive powers of two
in building the noise map, it only wraps
smoothly on the ends if the dimensions of
the map are also a power of two. In all of
the examples we present, the dimensions
are 256x256x256.

X3 NOISE APPLICATION -

(

(

(
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+2] =

(

(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+3] =

(

Figure 14.15
3D texture map with combined “turbulence” noise.

MARBLE

By modifying the noise map and adding Phong lighting with an appropri-
ate ADS material as described previously in Figure 7.3, we can make the dragon
model appear to be made of a marble-like stone.

336 B Computer Graphics Programming in OpenGL with Java, Third Edition

We start by generating a striped pattern somewhat similar to the “stripes”
example from earlier in this chapter—the new stripes differ from the previous
ones, first because they are diagonal, and also because they are produced by a sine
wave and therefore have blurry edges. We then use the noise map to perturb those
lines, storing them as grayscale values. The changes to the fillDataArray() function
are as follows:

private void fillDataArray(byte data[])
{ double veinFrequency = 2.0;
double turbPower = 1.5;
double maxZoom = 64;
for (int i=0; i<noiseWidth; i++)
{ for (intj=0; j<noiseHeight; j++)
{ for (int k=0; k<noiseDepth; k++)
{ double xyzValue = (float)i / noiseWidth + (float)j / noiseHeight + (float)k / noiseDepth
+ turbPower * turbulence(i,j,k,maxZoom) / 256.0;
double sineValue = Math.abs(Math.sin(xyzValue * 3.14159 * veinFrequency));
Color ¢ = new Color((float)sineValug, (float)sineValue, (float)sineValue);
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+0] = (byte) c.getRed();
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+1] = (byte) c.getGreen();
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+2] = (byte) c.getBlue();
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+3] = (byte) 255;
IS S

The variable veinFrequency is used to adjust the number of stripes, maxZoom
adjusts the zoom factor used when generating the turbulence, and turbPower adjusts
the amount of perturbation in the stripes (setting it to zero leaves the stripes unper-
turbed). Since the same sine wave value is used for all three (RGB) color com-
ponents, the final color stored in the image data array is grayscale. Figure 14.16

e — ———— ———

T\ o A oy
2RRE

N (R4

S 4 &

Figure 14.16
Building 3D “marble” noise maps.

Chapter 14 - Other Techniques [l 337

shows the resulting texture map for various values of turbPower (0.0, 0.5, 1.0, and
1.5, left to right).

We can further control the definition and thickness of the marble veins by
modifying the turbulence() function so that it uses a logistic function. A logistic
(or “sigmoid”) function has an S-shaped curve with asymptotes on both ends.
Common examples are hyperbolic tangent and f(x) = 1/(1+e¥). They are also some-
times called “squashing” functions. Many noise applications utilize a logistic
function to push the values in the noise map more towards 0.0 or 255.0, rather than
values in between. Program 14.5 includes a logistic() function which implements 1/
(1+e™), where k is used to tune the degree to which the output is pushed towards
0.0 or 255.0 — in this case tuning the sharpness of the marble vein edges.

Since we expect marble to have a shiny appearance, we incorporate Phong
shading to make a “marble” textured object look convincing. Program 14.5 sum-
marizes the code for generating a marble dragon. The vertex and fragment shad-
ers are the same as used for Phong shading, except that we also pass through the
original vertex coordinates for use as 3D texture coordinates (as described earlier).
ADS lighting values are the same as specified earlier in Section 7.1, and shininess
is set to 0.75. The fragment shader combines the noise result with the lighting
result as described previously in Section 7.6.

Program 14.5 Building a Marble Dragon

Java / JOGL application:
public void init(GLAutoDrawable drawable)
{ ...
generateNoise();
noiseTexture = load3DTexture(); // same as in Prog 14.4, and which in turn calls fillDataArray()

}

private double logistic(double x)
{ double k =3.0;
return (1.0 / (1.0 + pow(2.718, -k*x)));

}

private void fillDataArray(byte data]])
{ double veinFrequency = 2.0;
double turbPower = 3.0;
double maxZoom = 32.0;
for (inti = 0; i<noiseWidth; i++)
{ for(intj=0; j<noiseHeight; j++)

338 M Computer Graphics Programming in OpenGL with Java, Third Edition

{ for(intk = 0; k<noiseDepth; k++)
{ double xyzValue = (float)i / noiseWidth + (float)j / noiseHeight + (float)k / noiseDepth
+ turbPower * turbulence(i, j, k, maxZoom) / 256.0;
double sineValue = logistic(Math.abs(Math.sin(xyzValue * 3.14159 * veinFrequency)));
sineValue = Math.max(-1.0, Math.min(sineValue*1.25 - 0.20, 1.0)); // make veins thinner

Color ¢ = new Color((float)sineValue,
(float)Math.min(sineValue*1.5-0.25, 1.0),
(float)sineValue);

data[i*(noiseWidth*noiseHeight*4) + j*(noiseHeight*4) + k*4+0] = (byte) c.getRed();
data[i*(noiseWidth*noiseHeight*4) + j*(noiseHeight*4) + k*4+1] = (byte) c.getGreen();
data[i*(noiseWidth*noiseHeight*4) + j*(noiseHeight*4) + k*4+2] = (byte) c.getBlue();
data[i*(noiseWidth*noiseHeight*4) + j*(noiseHeight*4) + k*4+3] = (byte) 255;

Probod

public void display(GLAutoDrawable drawable)

{

gl.glActiveTexture(GL_TEXTUREO);
gl.glBindTexture(GL_TEXTURE_3D, noiseTexture);

gl.glEnable(GL_CULL_FACE);

gl.glFrontFace(GL_CCW);
gl.glEnable(GL_DEPTH_TEST);
gl.giDepthFunc(GL_LEQUAL);
gl.glDrawArrays(GL_TRIANGLES, 0, numDragonVertices);

}
Vertex Shader:

/| unchanged from program 14-4

Fragment Shader:

void main(void)
{

// model vertices are [-1.5..+1.5], texture coordinates are [0...1]
vecd texColor = texture(s, originalPosition / 3.0 + 0.5);

fragColor =
0.7 * texColor * (globalAmbient + light.ambient + light.diffuse * max(cosTheta,0.0))
+ 0.5 * light.specular * pow(max(cosPhi, 0.0), material.shininess);

There are various ways of simulating different colors of marble (or other
stones). One approach for changing the colors of the “veins” in the marble is by

Chapter 14 - Other Techniques [l 339

modifying the definition of the Color variable in the fillDataArray() function; for
example, by increasing the green component:

Color ¢ = new Color((float)sineValue,
(float)Math.min(sineValue*1.5-0.25, 1.0),
(float)sineValue);

We can also introduce ADS material values (i.e., specified in init()) to simulate
completely different types of stone, such as “jade.”

Figure 14.17 shows four examples, the first three using the settings shown in
Program 14.5, and the fourth incorporating the “jade” ADS material values shown
earlier in Figure 7.3.

Figure 14.17
Dragon textured with 3D noise maps—three marble and one jade.

340 B Computer Graphics Programming in OpenGL with Java, Third Edition

NOISE APPLICATION - WOOD

Creating a “wood” texture can be done in a similar way as was done in the
previous “marble” example. Trees grow in rings, and it is these rings that produce
the “grain” we see in objects made of wood. As trees grow, environmental stresses
create variations in the rings, which we also see in the grain.

We start by building a procedural “rings” 3D texture map, similar to the
“checkerboard” from earlier in this chapter. We then use a noise map to perturb
those rings, inserting dark and light brown colors into the ring texture map. By
adjusting the number of rings, and the degree to which we perturb the rings, we
can simulate wood with various types of grain. Shades of brown can be made by
combining similar amounts of red and green, with less blue. We then apply Phong
shading with a low level of “shininess.”

We can generate rings encircling the Z-axis in our 3D texture map by modi-
fying the fillDataArray() function, using trigonometry to specify values for X and
Y that are equidistant from the Z axis. We use a sine wave to repeat this process
cyclically, raising and lowering the red and green components equally based on
this sine wave to produce the varying shades of brown. The variable sineValue
holds the exact shade, which can be adjusted by slightly offsetting one or the other
(in this case increasing the red by 80, and the green by 30). We can create more
(or fewer) rings by adjusting the value of xyPeriod. The resulting texture is shown
in Figure 14.18.

private void fillDataArray(byte data[])
{ double xyPeriod = 40.0;
for (int i=0; i<noiseWidth; i++)
{ for(intj=0; j<noiseHeight; j++)
{ for (int k=0; k<noiseDepth; k++)
{ double xValue = (i - (double)noiseWidth/2.0) / (double)noiseWidth;
double yValue = (j - (double)noiseHeight/2.0) / (double)noiseHeight;
double distanceFromZ = Math.sqrt(xValue * xValue + yValue * yValue);
double sineValue = 128.0 * Math.abs(Math.sin(2.0 * xyPeriod * distanceFromZ * 3.14159));

Color ¢ = new Color((int)(60+(int)sineValue), (int)(10+(int)sineValue), 0);

data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+0] = (byte) c.getRed();
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+1] = (byte) c.getGreen();
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+2] = (byte) c.getBlue();
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+3] = (byte) 255;

Chapter 14 - Other Techniques [l 341

The wood rings in Figure 14.18 are a good start, but they don’t look very
realistic—they are too perfect. To improve this, we use the noise map (more spe-
cifically, turbulence) to perturb the distanceFromZ variable so that the rings have
slight variations. The computation is modified as follows:

maxZoom = 32.0;

double distanceFromZ = Math.sqrt(xValue * xValue + yValue * yValue)

Figure 14.18
Creating rings for 3D wood texture.

+ turbPower * turbulence(j, j, k, maxZoom) / 256.0;

Again, the variable turbPower adjusts how
much turbulence is applied (setting it to 0.0
results in the unperturbed version shown in
Figure 14.18), and maxZoom specifies the zoom
value (32, in this example). Figure 14.19 shows
the resulting wood textures for turbPower val-
ues 0.05, 1.0, and 2.0 (left to right).

We can now apply the 3D wood texture map
to a model. The realism of the texture can be
further enhanced by applying a rotation to the
originalPosition vertex locations used for texture
coordinates; this is because most items carved
out of wood don’t perfectly align with the ori-

entation of the rings. To accomplish this, we send an additional rotation matrix to
the shaders for rotating the texture coordinates. We also add Phong shading, with
appropriate wood-color ADS values, and a modest level of shininess. The complete
additions and changes for creating a “wood dolphin” are shown in Program 14.6.

Figure 14.19

bl

“Wood” 3D texture maps with rings perturbed by noise map.

342 B Computer Graphics Programming in OpenGL with Java, Third Edition

Program 14.6 Creating a Wood Dolphin
Java / JOGL application:

private Matrix4f texRotMat = new Matrix4f(); // rotation for wood texture
// wood material (brown)

float[] matAmbient = new float[] {0.5f, 0.35f, 0.15f, 1.0f};

float[] matDiffuse = new float[] {0.5f, 0.35f, 0.15f, 1.0f};

float[] matSpecular = new float]] {0.5f, 0.35f, 0.15f, 1.0f};

float matShi = 15.0f;

public void init(GLAutoDrawable drawable)
{ ...
// rotation to be applied to texture coordinates — adds additional grain variation
texRotMat.rotateY/((float)Math.toRadians(10.0f));
texRotMat.rotateX((float)Math.toRadians(10.0f));
texRotMat.rotateZ((float)Math.toRadians(10.0f));
}
private void fillDataArray(byte data[])
{ double xyPeriod = 30.0;
double turbPower = 0.15;
double maxZoom = 40.0;
for (int i=0; i<noiseWidth; i++)
{ for (intj=0; j<noiseHeight; j++)
{ for (int k=0; k<noiseDepth; k++)
{ double xValue = (i - (double)noiseWidth/2.0) / (double)noiseWidth;
double yValue = (j - (double)noiseHeight/2.0) / (double)noiseHeight;
double distanceFromZ = Math.sqrt(xValue * xValue + yValue * yValue)
+ turbPower * turbulence(j, j, k, maxZoom) / 256.0;
double sineValue = 128.0 * Math.abs(Math.sin(2.0 * xyPeriod * distanceFromZ * Math.PI));

Color ¢ = new Color((int)(60+(int)sineValue), (int)(10+(int)sineValue), 0);

data[i* c.getRed();
data[i* c.getGreen();
data[i* c.getBlue();
data[i* 255;

byte
byte
byte
byte

)

noiseWidth*noiseHeight*4)

noiseWidth*noiseHeight*4)+
)

—_— = =

>

o,

(72}

@D

T

@.

«Q

=0

=

*

~
==

T+

=~

3

S

4

S

1
_—— — —

Frobod

public void display(GLAutoDrawable drawable)
{

texRotLoc = gl.glGetUniformLocation(renderingProgram, "texRot_matrix");
gl.glUniformMatrix4fv(texRotLoc, 1, false, texRotMat.get(vals));

Chapter 14 - Other Techniques [l 343

Vertex shader:

uniform mat4 texRot_matrix;
void main(void)

{

originalPosition = vec3(texRot_matrix * vec4(position,1.0)).xyz;

}
Fragment shader:

void main(void)
{

uniform mat4 texRot_matrix;

// combine lighting with 3D texturing
fragColor =
05%(...)
+

0.5 * texture(s,originalPosition / 2.0 + 0.5);

The resulting 3D textured wood
dolphin is shown in Figure 14.20.

There is one additional detail
in the fragment shader worth not-
ing. Since we are rotating the model
within a 3D texture, it is sometimes
possible for this to cause the vertex
Figure 14.20 positions to move beyond the typical
Dolphin textured with “wood” 3D noise map. [01] range of texture coordinates as

a result of the rotation. If this were to
happen, we could adjust for this possibility by dividing the original vertex posi-
tions by a larger number (such as 4.0 rather than 2.0), and then adding a slightly
larger number (such as 0.6) to center it in the texture space. Since our noise map
wraps, vertex coordinates that move beyond the [0..1] range do not cause a problem.

344 B Computer Graphics Programming in OpenGL with Java, Third Edition

EZXEE NOISE APPLICATION - CLOUDS

The “turbulence” noise map built earlier in Figure 14.15 already looks a bit
like clouds. Of course, it isn’t the right color, so we start by changing it from gray-
scale to an appropriate mix of light blue and white. A straightforward way of doing
this is to assign a color with a maximum value of 1.0 for the blue component and
varying (but equal) values between 0.0 and 1.0 for the red and green components,
depending on the values in the noise map. The new fillDataArray() function follows:

private void fillDataArray(byte data])
{ double maxZoom = 32.0;
for (int i=0; i<noiseWidth; i++)
{ for (intj=0; j<noiseHeight; j++)
{ for (int k=0; k<noiseDepth; k++)
{ float brightness = 1.0f - (float) turbulence(i, j, k, maxZoom) / 256.0f;
Color ¢ = new Color(brightness, brightness, 1.0f, 1.0f);

data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+0] = (byte) c.getRed();
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+1] = (byte) c.getGreen();
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+2] = (byte) c.getBlue();
data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+3] = (byte) 255;

Proy

The resulting blue version of the
noise map can now be used to texture
a skydome. Recall that a skydome is a
sphere or half-sphere that is textured,
rendered with depth-testing disabled,
and placed so that it surrounds the cam-
era (similar to a skybox).

One way of building the skydome
Figure 14.21 would be to texture it in the same way
Skydome textured with misty clouds. as we have for other 3D textures, using

the vertex coordinates as texture coor-
dinates. However, in this case, it turns out that using the skydome’s 2D texture
coordinates instead produces patterns that look more like clouds, because the
spherical distortion slightly stretches the texture map horizontally. We can grab a
2D slice from the noise map by setting the third dimension in the GLSL texture()
call to a constant value. Assuming that the skydome’s texture coordinates have

Chapter 14 - Other Techniques [l 345

been sent to the OpenGL pipeline in a vertex attribute in the standard way, the fol-
lowing fragment shader textures it with a 2D slice of the noise map:

#version 430

in vec? tc;

out vec4 fragColor;

uniform mat4 mv_matrix;

uniform mat4 p_matrix;

layout (binding=0) uniform sampler3D s;

void main(void)

{ fragColor = texture(s,vec3(tc.x, tc.y, 0.5)); / constant value in place of tc.z

}

The resulting textured skydome is shown in Figure 14.21. Although the cam-
era is usually placed inside the skydome, we have rendered it here with the camera
outside, so that the effect on the dome itself can be seen. The current noise map
leads to “misty-looking” clouds.

Although our misty clouds look nice, we would like to be able to shape them—
that is, make them more or less hazy. Here again we can utilize a logistic function,
as we did for simulating marble. The modified turbulence() function is shown in
Program 14.7, along with an associated logistic() function. The complete Program
14.7 also incorporates the smooth(), fillDataArray(), and generateNoise() functions
described earlier.

Program 14.7 Cloud Texture Generation

Java / JOGL application:

private double turbulence(double x, double y, double z, double maxZoom)
{ double sum = 0.0, zoom = maxZoom, cloudQuant;

while (zoom >=0.9)

{ sum =sum + smoothNoise(zoom, x/zoom, y/zoom, z/zoom) * zoom;

zoom = zoom / 2.0;

}

sum = 128 * sum / maxZoom;

cloudQuant = 130.0; // tunable quantity of clouds

sum = 256.0 * logistic(sum - cloudQuant);

return sum;

346 B Computer Graphics Programming in OpenGL with Java, Third Edition

private double logistic(double x)
{ doublek=0.2; // tunable haziness of clouds, smaller values are more hazy
return (1.0 / (1.0 + Math.pow(2.718, -k*x)));

}

The logistic function causes
the colors to tend more toward
white or blue, rather than values
in between, producing the visual
effect of there being more distinct
cloud boundaries. The variable
cloudQuant adjusts the relative
amount of white (versus blue) in
the noise map, which in turn leads
to more (or fewer) generated white

Figure 14.22
Skydome with exponential cloud texture. regions (i.e., distinct clouds) when

the logistic function is applied.
The resulting skydome, now with more distinct cloud formations, is shown in
Figure 14.22.

Lastly, real clouds aren’t static. To enhance the realism of our clouds, we
should animate them by (a) making them move or “drift” over time and (b) gradu-
ally changing their form as they drift.

One simple way of making the clouds “drift” is to slowly rotate the skydome.
This isn’t a perfect solution, as real clouds tend to drift in a straight direction rather
than rotating around the observer. However, if the rotation is slow and the clouds
are simply for decorating a scene, the effect is likely to be adequate.

Having the clouds gradually change form as they drift may at first seem tricky.
However, given the 3D noise map we have used to texture the clouds, there is actu-
ally a very simple and clever way of achieving the effect. Recall that although
we constructed a 3D texture noise map for clouds, we have so far only used one
“slice” of it, in conjunction with the skydome’s 2D texture coordinates (we set the
“Z” coordinate of the texture lookup to a constant value). The rest of the 3D tex-
ture has so far gone unused.

Our trick will be to replace the texture lookup’s constant “Z” coordinate with
a variable that changes gradually over time. That is, as we rotate the skydome, we
gradually increment the depth variable, causing the texture lookup to use a differ-
ent slice. Recall that when we built the 3D texture map, we applied smoothing to

Chapter 14 - Other Techniques [l 347

the color changes along all three axes. So, neighboring slices from the texture map
are very similar, but slightly different. Thus, by gradually changing the “Z” value
in the texture() call, the appearance of the clouds will gradually change.

The code changes to cause the clouds to slowly move and change over time are

shown in Program 14.8.

Program 14.8 Animating the Cloud Texture

Java / JOGL application:
double prevTime, elapsedTime;
double rotAmt = 0.0; // Y-axis rotation amount to make clouds appear to drift
float depth = 0.01f; // depth lookup for 3D noise map, to make clouds gradually change
private void display(GLAutoDrawable drawable)
{ ...
// gradually rotate the skydome
mMat.identity();
mMat.translate(domeLocX, domeLocY, domeLocZ);
elapsedTime = System.currentTimeMillis() — prevTime;
prevTime = System.currentTimeMillis();
rotAmt += elapsedTime * 0.0001);
mMat.rotateY (rotAmt);
// gradually alter the third texture coordinate to make clouds change
dOffsetlLoc = gl.glGetUniformLocation(renderingProgram, "d");
depth += elapsedTime * 0.000002;
if (depth >= 0.99f) depth = 0.01f; // wrap-around when we get to the end of the texture map
gl.glUniform1f(dOffsetLoc, depth);
}
Fragment Shader:
#version 430
in vec? tc;

out vec4 fragColor;

uniform mat4 mv_matrix;
uniform mat4 p_matrix;
uniform float d;

348 B Computer Graphics Programming in OpenGL with Java, Third Edition

layout (binding=0) uniform sampler3D s;

void main(void)
{ fragColor = texture(s, vec3(tc.x, tc.y, d)); // gradually-changing “d” replaces previous constant

}

The full implementation on the accompanying CD includes a few additional
minor changes to the turbulence() function to enhance the drifting cloud effect.
While we cannot show the effect of gradually changing drifting and animated
clouds in a single still image, Figure 14.23 shows such changes in a series of snap-
shots of the 3D generated clouds as they drift across the skydome from right to left
and slowly change shape while drifting.

e —

Figure 14.23
3D clouds changing while drifting.

Chapter 14 - Other Techniques [349

EZXE NOISE APPLICATION - SPECIAL EFFECTS

Noise textures can be used for a variety of special effects. In fact, there are so
many possible uses that its applicability is limited only by one’s imagination.

One very simple special effect that we will demonstrate here is a dissolve
effect. This is where we make an object appear to gradually dissolve into small
particles, until it eventually disappears. Given a 3D noise texture, this effect can
be achieved with very little additional code.

To facilitate the dissolve effect, we introduce the GLSL discard command.
This command is only legal in the fragment shader, and when executed, it causes
the fragment shader to discard the current fragment (meaning not render it).

Our strategy is a simple one. In the Java/JOGL application, we create a fine-
grained noise texture map identical to the one shown back in Figure 14.12, and
also a float variable counter that gradually increases over time. This variable is
then sent down the shader pipeline in a uniform variable, and the noise map is
also placed in a texture map with an associated sampler. The fragment shader then
accesses the noise texture using the sampler—in this case we use the returned
noise value to determine whether or not to discard the fragment. We do this by
comparing the grayscale noise value against the counter, which serves as a sort
of “threshold” value. Because the threshold is gradually changing over time, we
can set it up so that gradually more and more fragments are discarded. The result
is that the object appears to gradually dissolve. Program 14.9 shows the relevant
code sections, which are added to the earth-rendered sphere from Program 6.1.
The generated output is shown in Figure 14.24.

Program 14.9 Dissolve Effect Using discard Command
Java / JOGL application:

float threshold = 0.0f; // gradually-increasing threshold for retaining/discarding fragment
in display():

tLoc = gl.glGetUniformLocation(renderingProgram, "t");
threshold += (System.currentTimeMillis() - prevTime) * .0001f;
prevTime = System.currentTimeMillis();

gl.glActiveTexture(GL_TEXTUREOQ);

350 B Computer Graphics Programming in OpenGL with Java, Third Edition

gl.gBindTexture(GL_TEXTURE_3D, noiseTexture);

gl.glActiveTexture(GL_TEXTURE1);
gl.gBindTexture(GL_TEXTURE_2D, earthTexture);

gl.glDrawArrays(GL_TRIANGLES, 0, numSphereVertices);

Fragment Shader:
#version 430
in vec? tc; // texture coordinates for this fragment

in vec3 origPos; // original vertex positions in the model, for accessing 3D texture

layout (binding=0) uniform sampler3D n; // sampler for noise texture
layout (binding=1) uniform sampler2D e; /| sampler for earth texture

uniform float t; // threshold for retaining or discarding fragment

void main(void)
{ float noise = texture(n, origPos).x; // retrieve noise value for this fragment.
if (noise > t) // if the noise value > current threshold value,
{ fragColor = texture(e, tc); /| render the fragment using the earth texture.
}
else
{ discard; // otherwise, discard the fragment (do not render it)

}

Figure 14.24
Dissolve effect with discard shader.

Chapter 14 - Other Techniques [351

The discard command should, if possible, be used sparingly, because it can
incur a performance penalty. This is because its presence makes it more difficult
for OpenGL to optimize Z-buffer depth testing.

SUPPLEMENTAL NOTES

When specifying a user-defined clipping plane for the plane ax + by +cz+d =0,

the plane should be “normalized” so that va® + 5> + ¢* =1. The plane that we used
in the example shown in Section 14.3 was already normalized in this manner.

Alternatively, the distance d can be divided by va® +b* +¢”.

In this chapter, we used Perlin noise to generate clouds and to simulate both
wood and a marble-like stone from which we rendered the dragon. People have
found many other uses for Perlin noise. For example, it can be used to create fire
and smoke [CC16, AF14], build realistic bump maps [GR05], and has been used to
generate terrain in the video game Minecraft [PE11].

The noise maps generated in this chapter are based on procedures outlined
by Lode Vandevenne [VAO4]. There remain some deficiencies in our 3D cloud
generation. Occasionally small horizontal and vertical structures appear that don’t
look very cloud-like (the enhanced implementation of the turbulence() function on
the accompanying CD corrects most of these in the animated example). Another
issue is that at the northern peak of the skydome spherical distortion can cause a
pincushion effect.

The clouds we implemented in this chapter also fail to model some important
aspects of real clouds, such as the way that real clouds scatter the sun’s light. Real
clouds also tend to be more white on the top and grayer at the bottom. Our clouds
also don’t achieve a 3D “fluffy” look that many actual clouds have.

Similarly, more comprehensive models exist for generating fog, such as the
one described by Kilgard and Fernando [KF03].

While perusing the OpenGL documentation, the reader might notice that
GLSL includes some noise functions named noise1(), noise2(), noise3(), and noise4(),
which are described as taking an input seed and producing Gaussian-like stochas-
tic output. We didn’t use these functions in this chapter because, as of this writing,
most vendors have not implemented them. For example, many NVIDIA cards cur-
rently return 0 for these functions, regardless of the input seed.

352 l Computer Graphics Programming in OpenGL with Java, Third Edition

Exercises

14.1 Modify Program 14.2 to gradually decrease the alpha value of an object,
causing it to progressively fade out and eventually disappear.

14.2 Modify Program 14.3 to clip the torus along the horizontal, creating a circular
“trough.”

14.3 Modify Program 14.4 (the version including the modification in Figure 14.10
that produces a 3D cubed texture) so that it instead textures the Studio 522
dolphin. Then observe the results. Many people when first observing the
result—such as that shown on the dragon, but also even on simpler objects—
believe that there is some error in the program. Unexpected surface patterns
can result from “carving” an object out of 3D textures, even in simple cases.

14.4 The simple sine wave used to define the wood “rings” (shown in Figure 14.18)
generate rings in which the light and dark areas are equal width. Experiment
with modifications to the associated fillDataArray() function with the goal of
making the dark rings narrower in width than the light rings. Then observe
the effects on the resulting wood-textured object.

14.5 (PROJECT) Incorporate the logistic function (from Program 14.7) into the
marble dragon from Program 14.5, and experiment with the settings to create
more distinct veins.

14.6 Modify Program 14.9 to incorporate the zooming, smoothing, turbulence,
and logistic steps described in prior sections. Observe the changes in the
resulting dissolve effect.

References

[AF14] S. Abraham and D. Fussell, “Smoke Brush,” Proceedings of the Workshop
on Non-Photorealistic Animation and Rendering (NPAR’14),2014, accessed
March 2021, https:/www.cs.utexas.edu/~theshark/smokebrush.pdf

[AS04] D. Astle, “Simple Clouds Part 1,” gamedev.net, 2004 (tutorial by Francis
Huang), accessed March 2021, https:/www.gamedev.net/tutorials/ /
technical/game-programming/simple-clouds-part-1-r2085/

[CC16] A Fire Shader in GLSL for your WebGL Games (2016), Clockwork Chilli
(blog), accessed March 2021, http://clockworkchilli.com/blog/8 a fire
shader in_glsl for your webgl games

Chapter 14 - Other Techniques [l 353

[GRO5] S. Green, “Implementing Improved Perlin Noise,” GPU Gems 2, NVIDIA,
2005, accessed March 2021, https:/developer.nvidia.com/gpugems/
gpugems2/part-iii-high-quality-rendering/chapter-26-implementing-
improved-perlin-noise

[JA12] A. Jacobson, “Cheap Tricks for OpenGL Transparency,” 2012, accessed
March 2021, http:/www.alecjacobson.com/weblog/?p=2750

[KF03] M. Kilgardand R. Fernando, “Advanced Topics,” The Cg Tutorial (Addison-
Wesley, 2003), accessed March 2021, https://developer.download.nvidia.
com/CgTutorial/cg_tutorial chapter09.html

[LU16] F. Luna, Introduction to 3D Game Programming with DirectX 12, 2nd ed.
(Mercury Learning, 2016).

[PE11] M. Persson, “Terrain Generation, Part 1,” The Word of Notch (blog), Mar
9, 2011, accessed March 2021, http:/notch.tumblr.com/post/3746989361/
terrain-generation-part-1

[PE85] K. Perlin, “An Image Synthesizer,” SIGGRAPH ‘85 Proceedings of the
12th annual conference on computer graphics and interactive techniques
(1985).

[VAO4] L. Vandevenne, “Texture Generation Using Random Noise,” Lode’s
Computer Graphics Tutorial, 2004, accessed March 2021, http:/lodev.
org/cgtutor/randomnoise.html

CHAPTER 15

SIMULATING WATER

15.1 Pool Surface and Floor Geometry Setup. 355
15.2 Adding Surface Reflection and Refraction. 360
15.3 Adding Surface Waves 371
15.4 Additional Corrections uuuuiiiiiiiiiiiiaaaaa.. 374
15.5 Animating the Water Movement oo, 379
15.6 Underwater CAustics. e 381

Supplemental Notes o o 383

Simulating water is a complex topic, because water is found in so many different
settings and takes so many different forms. The technique used depends on the appli-
cation. The water could be coming out of a kitchen faucet, or out of a lawn sprinkler,
or it could be flowing in a river, or in large dark blue ocean waves, or swirling around
in a drinking glass. There are too many possibilities to cover all of them here, so in
this chapter, we focus on one common scenario: a swimming pool. Our setup will
enable viewing the water downwards from above the surface, or upwards from below
the surface, and we will tilt the camera accordingly. With minor modifications, it
could be modified to instead simulate a lake surface (or an ocean with small waves).

POOL SURFACE AND FLOOR GEOMETRY SETUP

We start by setting up a very simple scene that includes a flat (horizontal) plane
segment and a skybox. The plane is made of two triangles comprising a rectangle,
and is textured with a checkerboard procedural texture function similar to (but sim-
pler than) the 3D checkerboard texture described in Chapter 14. (Later, in Program
15.2, we will change the appearance of this plane to instead look like water, and we
will move the checkerboard pattern to a second plane at the bottom of the swimming
pool. The checkerboard pattern will be used to simulate tiles — if we were instead
modeling a lake, then we would of course use a different texture for the bottom.)

356 M Computer Graphics Programming in OpenGL with Java, Third Edition

Program 15.1 shows the organization of the code. Explanations describing
code already presented in previous chapters are not repeated here. Figure 15.1
shows the result when executed.

Program 15.1 Horizontal Plane Geometry (setup)
Java/JOGL Application

// imports, variables for camera, rendering programs, matrices, and skybox texture as before.

private float cameraHeight = 2.0f, cameraPitch = 15.0f;
private float planeHeight = 0.0f;

private void setupVertices()
{ float[] PLANE_POSITIONS =
{ -128.0f, 0.0f, -128.0f, -128.0f, 0.0f, 128.0f, 128.0f, 0.0f, -128.0f,
128.0f, 0.0f, -128.0f, -128.0f, 0.0f, 128.0f, 128.0f, 0.0f, 128.0f
Y
float[] PLANE_TEXCOORDS =
{ 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f
Y
/| cube map vertices, building VAO, VBOs, and loading buffers as before

}

public void display(GLAutoDrawable drawable)

{ //code for clearing color buffer, perspective matrix, and rendering skybox as before
// code for drawing the scene is the same as for Program 4.1, but this time for the plane
vMat.translation(0.0f, -cameraHeight, 0.0f);
vMat.rotateX((float)Math.toRadians(cameraPitch));

// code for rendering skybox as before

// render the scene — in this case it is just a plane
mMat.translation(0, planeHeight, 0);

gl.glDrawArrays(GL_TRIANGLES, 0, 6); // plane is 2 triangles, total of 6 vertices
}

... //'init() and other components as before

Vertex Shader (for plane segment)

// same as Program 5.1

Chapter 15 - Simulating Water W 357

Fragment Shader (for plane segment)

/I Similar to previous fragment shaders, except that a checkerboard texture has been added.
/I Incoming texture coordinates are scaled up here to facilitate repeating texture.
#version 430

in vec? tc;

out vec4 color;

uniform mat4 m_matrix;
uniform mat4 v_matrix;
uniform mat4 p_matrix;

vec3 checkerboard(vec? tc)

{ float tileScale = 64.0;
float tile = mod(floor(tc.x * tileScale) + floor(tc.y * tileScale), 2.0);
return tile * vec3(1,1,1);

}

void main(void)
{ color = vec4(checkerboard(tc), 1.0);
}

The Java/JOGL applica-
tion specifies that the plane is
at a height of 0.0, meaning it is
level with the XZ plane. The
camera is 2.0 units above the
plane, and pitched -15° look-
ing downwards towards the
plane. Specifying the plane
requires 18 floating point
values (2 triangles X 3 verti-

84 Program 15.1 - surface setup

ces/triangle X 3 coordinates/
vertex). Computing its proce-
dural “checkerboard” pattern
is accomplished in a similar
manner as for the 3D example
shown previously in Section
14.4. The desired number of Figure 15.1

squares per side is specified in Geometry setup for the plane segment surface.

the variable tileScale, and the

pattern is then produced by scaling the texture coordinates up by tileScale and taking

358 M Computer Graphics Programming in OpenGL with Java, Third Edition

that result modulo 2. The result of 0 or 1 is then returned as either color (0,0,0) or (1,1,1) —
i.e., black or white — respectively.

We now add a second plane to our scene and build a swimming pool, using the
same plane model (PLANE_POSITIONS and PLANE_TEXCOORDS) for both the top
surface and bottom floor of the pool. We put the checkerboard pattern on the lower
plane (the floor), and for the top surface plane, we start with a solid blue color. We
also add ADS Phong lighting (covered earlier in Chapter 7). The organization of
the Java/JOGL application for these additions is shown in Program 15.2.

Program 15.2 Water Geometry (top surface and bottom floor)
Java/JOGL Application

// modifications to Program 15.1 shown here. Code for lighting not shown (see Chapter 7)

private float surfacePlaneHeight = 0.0f;
private float floorPlaneHeight = -10.0f;
private int renderingProgramSURFACE, renderingProgramFLOOR, renderingProgramCubeMap;

private void setupVertices()
{ ...
// add normal vectors for top surface and floor lighting (all of them point upwards)
float[] PLANE_NORMALS =
{ 0.0f, 1.0f, 0.0, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,

0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f

h

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[3]);
FloatBuffer norBuf = Buffers.newDirectFloatBuffer(PLANE_NORMALS);
gl.glBufferData(GL_ARRAY_BUFFER, norBuf.limit()*4, norBuf, GL_STATIC_DRAW);

}

public void init(GLAutoDrawable drawable)
{ renderingProgramSURFACE =
Utils.createShaderProgram(“code/vertShaderSURFACE..glsl", "code/fragShaderSURFACE .glsl");
renderingProgramFLOOR =
Utils.createShaderProgram("code/vertShaderFLOOR.glsl", "code/fragShaderFLOOR.glsI");
renderingProgramCubeMap =
Utils.createShaderProgram("code/vertCShader.glsl", "code/fragCShader.glsl");

Chapter 15 - Simulating Water Il 359

public void display(GLAutoDrawable drawable)
{ / code for drawing skybox unchanged. Code for surface geometry now done twice, for top surface and floor

// draw water top (surface)
gl.glUseProgram(renderingProgramSURFACE);
mMat.translation(0, surfacePlaneHeight, 0); // positions the top plane at the specified height

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[3]); // also send normals for lighting
gl.glVertexAttribPointer(2, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(2);

// render the top surface twice, so that it can be viewed from both above and below the surface
if (cameraHeight >= surfacePlaneHeight)
gl.glFrontFace(GL_CCW);
else
gl.glFrontFace(GL_CW);
gl.glDrawArrays(GL_TRIANGLES, 0, 6);

// draw water bottom (floor)
gl.glUseProgram(renderingProgramFLOOR);
mMat.translation(0, floorPlaneHeight, 0); // positions the bottom plane at the specified height

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[3]); // also send normals for lighting
gl.glVertexAttribPointer(2, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(2);

gl.glFrontFace(GL_CCW); / since the previous setting might have been CW, we set it to CCW here
gl.glDrawArrays(GL_TRIANGLES, 0, 6);

}

... //'init() and other components as before

We have now expanded the previous program to include two plane segments,
one for the top surface and one for the bottom surface. We have included normals
so that we can use ADS lighting on both surfaces. We have two rendering pro-
grams because in this version the top surface is rendered without a texture, and
the bottom surface is rendered with the checkerboard texture. Also, the winding
order setting for the top surface is based on whether the camera is above or below
the water surface (since one or the other side of that plane would then need to be
rendered). Figure 15.2 shows the result with the camera both above and below the
water surface. A specular highlight is apparent in both cases. In the underwater
case, the light-colored band in the distance is the skybox visible beyond the top
surface plane. This issue will be resolved later when we add a “fog” effect.

360 M Computer Graphics Programming in OpenGL with Java, Third Edition

84 Program 15.2 - geometry surface and floor = o X i Program 15.2 - geometry surface and floor

Figure 15.2
Geometry for water top surface and bottom floor, camera above surface (left) and below surface (right).

B ADDING SURFACE REFLECTION
AND REFRACTION

Water is complex, and making a completely realistic simulation would require
adding the many reflections and refractions that are usually visible in a body of
water. A further complication is that different effects are needed depending on
whether the camera is above or below the water surface.

We will start by focusing on the first case: the camera above the water surface.
In Figure 15.2 (the left figure), we can see that so far we have (1) a solid blue sur-
face, (2) a skybox above the water, and (3) lighting on the surface. To start making
this look more like water, Program 15.3 adds the following two items:

» reflection, so that objects above the water (such as the skybox) are
reflected on the water’s surface

* refraction of the view through the top surface to the bottom floor, so that
items under the water (such as the checkerboard floor) are visible when
looking down from above the surface of the water

We will accomplish these by rendering the scene to multiple frame buffers,
from various vantage points, and then use the resulting frame buffers as textures

Chapter 15 - Simulating Water I 361

to apply to the ADS-lighted blue water surface. This is fairly complicated, so we
present Program 15.3 in three parts. In part one, we start by reorganizing the code
in display() into separate functions: (1) one that prepares for rendering the skybox,
(2) one that prepares for rendering the top surface, and (3) one that prepares for
rendering the floor. We then render each of those as before. Later, in part two, we
render these items to textures called reflection and refraction textures, and apply
them both to the top surface — but for now we just reorganize the code to help
facilitate this future step.

(These same functions will be useful when the camera is below the water sur-
face. But for now, we will concentrate just on the case of the camera being above
the water surface.)

The division of the display() function, and the creation of (but not yet filling)
the reflection and refraction frame buffers, is shown in Program 15.3. Note that the
two framebuffers also include depth attachments (which we saw earlier in Chapter
8 when we studied shadow mapping), which will be useful later.

Program 15.3 Reflection and Refraction (Part 1: preparation)
Java/JOGL Application

private void createReflectRefractBuffers() // called once from init()
{ GL4 gl = (GL4) GLContext.getCurrentGL();

// initialize reflection framebuffer

gl.glGenFramebuffers(1, bufferld, 0);

reflectFrameBuffer = bufferld[0];

gl.glBindFramebuffer(GL_FRAMEBUFFER, reflectFrameBuffer);

gl.glGenTextures(1, bufferld, 0);

reflectTextureld = bufferld[0];

gl.glBindTexture(GL_TEXTURE_2D, reflectTextureld);

gl.glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA, myCanvas.getWidth(), myCanvas.getHeight(), 0,
GL_RGBA, GL_UNSIGNED_BYTE, null);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

gl.glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, GL_TEXTURE_2D,
reflectTextureld, 0);

gl.gIDrawBuffer(GL_COLOR_ATTACHMENTO);

gl.glGenTextures(1, bufferld, 0);

gl.glBindTexture(GL_TEXTURE_2D, bufferld[0]);

362 M Computer Graphics Programming in OpenGL with Java, Third Edition

gl.glTeximage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, myCanvas.getWidth(),
myCanvas.getHeight(), 0, GL_DEPTH_COMPONENT, GL_FLOAT, null);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

gl.glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,

bufferld[0], 0);

// initialize refraction framebuffer

gl.glGenFramebuffers(1, bufferld, 0);

refractFrameBuffer = bufferld[0];

gl.glBindFramebuffer(GL_FRAMEBUFFER, refractFrameBuffer);

(the remainder of this section is identical to the code above for the reflection buffer, but with
“refractTexturelD”)

}

private void prepForSkyBoxRender()
{ GL4 gl =(GL4) GLContext.getCurrentGL();
gl.glUseProgram(renderingProgramCubeMap);

vLoc = gl.glGetUniformLocation(renderingProgramCubeMap, "v_matrix");
pLoc = gl.glGetUniformLocation(renderingProgramCubeMap, "p_matrix");

gl.glUniformMatrix4fv(vLoc, 1, false, vMat.get(vals));
gl.glUniformMatrix4fv(pLoc, 1, false, pMat.get(vals));

// vbo[0] holds the skybox vertices
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);

gl.glActiveTexture(GL_TEXTUREO);
gl.glBindTexture(GL_TEXTURE_CUBE_MAP, skyboxTexture);

}
private void prepForTopSurfaceRender()

{ GL4 gl =(GL4) GLContext.getCurrentGL ();
gl.glUseProgram(renderingProgramSURFACE);

mLoc = gl.glGetUniformLocation(renderingProgramSURFACE, "m_matrix");
vLoc = gl.glGetUniformLocation(renderingProgramSURFACE, "v_matrix");
pLoc = gl.glGetUniformLocation(renderingProgramSURFACE, "p_matrix");
nLoc = gl.glGetUniformLocation(renderingProgramSURFACE, "norm_matrix");

mMat.translation(0.0f, surfacePlaneHeight, 0.0f);

mMat.invert(invTrMat);
invTrMat.transpose(invTrMat);

Chapter 15 - Simulating Water I 363

currentLightPos.set(initialLightLoc);
installLights(renderingProgramSURFACE);

// get references to uniform variables
gl.glUniformMatrix4fv(mLoc, 1, false, mMat.get(vals));
gl.glUniformMatrix4fv(vLoc, 1, false, vMat.get(vals));
gl.glUniformMatrix4fv(pLoc, 1, false, pMat.get(vals));
gl.glUniformMatrix4fv(nLoc, 1, false, invTrMat.get(vals));

// VBOs 1, 2, and 3 contain the plane vertices, texcoords, and normals
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
gl.glVertexAttribPointer(1, 2, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(1);

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[3]);
gl.glVertexAttribPointer(2, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(2);

}

private void prepForFloorRender()
{ GL4 gl =(GL4) GLContext.getCurrentGL();
gl.glUseProgram(renderingProgramFLOOR);

mLoc = gl.glGetUniformLocation(renderingProgramFLOOR, "m_matrix");
vLoc = gl.glGetUniformLocation(renderingProgramFLOOR, "v_matrix");
pLoc = gl.glGetUniformLocation(renderingProgramFLOOR, "p_matrix");
nLoc = gl.glGetUniformLocation(renderingProgramFLOOR, "norm_matrix");
abovelLoc = gl.glGetUniformLocation(renderingProgramFLOOR, "isAbove");

mMat.translation(0.0f, floorPlaneHeight, 0.0f);

mMat.invert(invTrMat);
invTrMat.transpose(invTrMat);

currentLightPos.set(initialLightLoc);
installLights(renderingProgramFLOOR);

// getting the uniform references and preparing plane VBOs — same as prepForTopSurfaceRender()

}

public void display(GLAutoDrawable drawable)
{ GL4 gl =(GL4) GLContext.getCurrentGL();

364 B Computer Graphics Programming in OpenGL with Java, Third Edition

gl.giBindFramebuffer(GL_FRAMEBUFFER, 0); // enable the default framebuffer to render scene

// draw cube map — most of the code moved to the "prepForSkyBoxRender()" function
prepForSkyBoxRender();

gl.glEnable(GL_CULL_FACE);

gl.glFrontFace(GL_CCW); // cube is CW, but we are viewing the inside
gl.gIDisable(GL_DEPTH_TEST);

gl.glDrawArrays(GL_TRIANGLES, 0, 36);

gl.glEnable(GL_DEPTH_TEST);

// draw water top (surface) — most of the code moved to "prepForTopSurfaceRender()" function
prepForTopSurfaceRender();

gl.glEnable(GL_DEPTH_TEST);

gl.giDepthFunc(GL_LEQUAL);

if (cameraHeight >= surfacePlaneHeight)
gl.glFrontFace(GL_CCW);
else
gl.glFrontFace(GL_CW);
gl.glDrawArrays(GL_TRIANGLES, 0, 6);

// draw water bottom (floor) — most of the code moved to "prepForFloorRender()" function
prepForFloorRender();

gl.glEnable(GL_DEPTH_TEST);

gl.giDepthFunc(GL_LEQUAL);

gl.glFrontFace(GL_CCW);

gl.glDrawArrays(GL_TRIANGLES, 0, 6);

As previously mentioned, the code for Program 15.3 is spread over three
parts, starting with part one, which is listed above. So far, Program 15.3 doesn’t
actually produce any rendered output different from that produced by Program
15.2. However, it reorganizes the code in a way that will be useful as we proceed,
because we have (1) created two custom framebuffers for holding reflection and
refraction information, and (2) isolated those sections of display() that prepare par-
ticular portions of the scene for rendering (skybox, floor, and surface), facilitating
multiple renders.

Now in part two (of Program 15.3), we build the reflection and refraction tex-
tures. We do this by repeating some of the actions in display(), but with different
view matrices. The strategy is illustrated in Figure 15.3. The camera is above
the water’s surface looking slightly downwards. Directly below the camera and
under the surface is a second camera pointing slightly upwards, which is dubbed

Chapter 15 - Simulating Water I 365

the “reflection camera.” It is used to render objects above the surface (such as the
skybox) to build the reflection texture. It is positioned at a depth equal to the height
of the camera above the water, which would be surfacePlaneHeight — cameraHeight.
Our camera rotation implementation only includes the pitch (rotation around the X
axis), so for the reflection camera, we simply negate the pitch value.

Since the purpose of the reflection camera is to generate a texture containing
items reflecting off of the surface, we only render those objects that are above
the surface of the water when rendering from the point of view of the reflection
camera. Therefore, in this example, we would render the skybox, but we wouldn’t
render the floor, the top surface, or any objects in the water (such as fish).

The refraction texture is generated from a third camera, dubbed the “refraction
camera.” It utilizes the same view matrix as the camera’s view matrix. Refraction
should render everything seen through the water. That is, when the main camera
is above the surface looking down at the water, refraction should reveal those
objects below the surface (such as fish, and in this example, the checkerboard floor
object).

. camera

~ (and refraction camera)
water surface ~.

TSoUEA
AN)
/ 7 % reflection camera
4

floor with checkerboard texture — =ss

Figure 15.3
Positions for reflection and refraction cameras.

Program 15.3 (in part two) adds code for rendering the scene to the reflec-
tion and refraction buffers. There are two calls to display() here, one for filling the
reflection buffer and one for filling the refraction buffers. (Later, in part three,
we add a third call to display() that renders the final scene from the actual camera
for building the completed scene. Note that the two display() functions shown here
in part two render portions of the scene to the reflection and refraction scenes in
preparation for assembling the final scene in part three.) In each case, we bind the
respective buffers before rendering the associated relevant elements in the scene.
Note that we have now added code to build the appropriate view matrix code in
each case, adjusting the pitch as described above for the reflection camera. We

366 M Computer Graphics Programming in OpenGL with Java, Third Edition

have included the subsequent binding of the default framebuffer before assembling
the complete scene (those steps are given in part three).

Program 15.3 Part 2: Filling the Reflection and Refraction
Buffers

Java/JOGL Application

public void display(GLAutoDrawable drawable)

// render reflection scene to reflection buffer (if camera above surface)

if (cameraHeight >= surfacePlaneHeight)

{ vMat.translation(0.0f, cameraHeight-surfacePlaneHeight, 0.0f);
vMat.rotateX((float)Math.toRadians(-cameraPitch));

gl.glBindFramebuffer(GL_FRAMEBUFFER, reflectFrameBuffer);
gl.glClear(GL_DEPTH_BUFFER_BIT);
gl.glClear(GL_COLOR_BUFFER_BIT);

prepForSkyBoxRender();

gl.glEnable(GL_CULL_FACE);

gl.glFrontFace(GL_CCW); // cube is CW, but we are viewing the inside
gl.gIDisable(GL_DEPTH_TEST);

gl.glDrawArrays(GL_TRIANGLES, 0, 36);

gl.glEnable(GL_DEPTH_TEST);

}

// render refraction scene to refraction buffer using view matrix for the reqular camera
vMat.translation(0.0f, -cameraHeight, 0.0f);
vMat.rotateX((float)Math.toRadians(cameraPitch));

gl.glBindFramebuffer(GL_FRAMEBUFFER, refractFrameBuffer);
gl.glClear(GL_DEPTH_BUFFER_BIT);
gl.glClear(GL_COLOR_BUFFER_BIT);

// now render the checkerboard floor (and other items below the surface) to the refraction buffer
prepForFloorRender();

gl.glEnable(GL_DEPTH_TEST);

gl.glDepthFunc(GL_LEQUAL);

gl.glDrawArrays(GL_TRIANGLES, 0, 6);

// now switch back to the standard buffer in preparation for assembling the entire completed scene
gl.glBindFramebuffer(GL_FRAMEBUFFER, 0);

Chapter 15 - Simulating Water I 367

Finally, in part three, we complete Program 15.3 by incorporating the reflec-
tion and refraction textures (that were built in part two) into the top surface of the
water. However, we have a slight problem...

When we rendered the reflection and refraction textures, we did so in the stan-
dard manner with 3D perspective, as though they were going to be displayed to a
viewer. For example, the checkerboard pattern is rendered in a horizontal plane,
making squares nearer the camera larger and those in the distance smaller. But
we are used to applying texture images that are “flat” 2D images (i.e., that don’t
have perspective). So we can’t use these reflection and refraction textures in the
standard manner using the texture coordinates for the top surface.

Fortunately, correcting for this is surprisingly easy. Consider the case of the
camera above the water’s surface. Figure 15.4 shows the scene rendered into the
refraction buffer (on the left), which contains only the objects below the water’s
surface (and which is black everywhere else), the reflection buffer (on the right)
which contains only the objects above the water’s surface (and black everywhere
else), and the original scene from Figure 15.2 (repeated in the center of Figure
15.4), which contains the untextured top surface on which we wish to assemble the
final rendered scene.

~,

o e e e e e

N - o

i o

/

Figure 15.4
Refraction and reflection buffers (left / right) and render scene (center).

Figure 15.4 illustrates that the textures in the reflection and refraction buf-
fers are already in the desired screen position. Therefore, all we need to do is use
the screen coordinates of the object being textured (in this case, the top water
surface), as the coordinates which are used to access the textures in the reflection
and refraction buffers. The screen coordinates have already been computed in

368 M Computer Graphics Programming in OpenGL with Java, Third Edition

the vertex shader and are found in the (x,y) portion of the variable gl_Position. We
merely need to pass a copy of gl_Position from the vertex shader to the fragment
shader (as a varying vertex attribute) and use the .xy portion of that as the texture
coordinates.

This technique is a simple case of projective texture mapping [E01], which can
be used in cases where some portion of the scene appears on an object. A common
example is building a mirror (which, in a sense, we are doing here in the case of
the reflection buffer). It is called “projective” because it is similar to projecting a
scene onto an object like a projection screen.

We are now ready to complete Program 15.3. In part three, the reflection and
refraction textures are incorporated onto the water’s top surface. To do this, the
Java/JOGL application needs to make the reflection and refraction buffers avail-
able to the shaders for rendering the top surface. The fragment shader for the top
surface of the water is where the reflection and refraction textures are applied. The
vertex shader copies gl_Position into the new vertex attribute named glp and passes
it to the fragment shader, which then uses it as texture coordinates for applying the
reflection and refraction textures. Note that the coordinates are converted from the
range of screen coordinates to the appropriate [0..1] range for texture coordinates.
Notice also that in the case of reflection, the Y texture coordinate is subtracted
from 1, because in this case, the reflection off the surface of the water needs to be
flipped vertically.

Part three also includes the code that handles the case of the main camera
being positioned below the surface of the water (i.e., the scene being viewed
underwater), and we can now discuss that case. It turns out to only require a few
minor additions and modifications:

» If the camera is below the water surface, we can ignore the reflection.

* When the camera is below the surface looking up through the top
surface, the refraction buffer (and texture) should include the skybox (as
well as objects such as birds and airplanes).

e Code is added to the prepForTopSurfaceRender() and prepForFloorRender()
functions that informs the shaders whether the camera is above or below
the surface. This is necessary because the fragment shader needs to
know whether to include the reflection texture in the top surface.

Thus, in part three, we only compute the reflection if the camera is above the
water’s surface.

Chapter 15 - Simulating Water I 369

In the fragment shader for the water’s top surface, the mixture of reflection
and refraction depends on whether the camera is above or below the water surface.
If the camera is above the surface, then both textures are included. If the camera
i1s underwater, then the refraction texture is mixed with the blue water color. The
output, both for the camera above and below the water surface, is shown immedi-
ately after the code, in Figure 15.5.

Program 15.3 Part 3: Applying the Reflection/Refraction
Textures

Java/JOGL Application

// added to prepForTopSurfaceRender() and prepForFloorRender():
aboveloc = gl.glGetUniformLocation(renderingProgramFLOOR, "isAbove");
if (cameraHeight >= surfacePlaneHeight)
gl.glUniform1i(abovelLoc, 1);
else
gl.glUniform1i(aboveLoc, 0);

public void display(GLAutoDrawable drawable)
{ ...
// now render the appropriate items to the refraction buffer
if (cameraHeight >= surfacePlaneHeight)
{ prepForFloorRender();
gl.glEnable(GL_DEPTH_TEST);
gl.giDepthFunc(GL_LEQUAL);
gl.giDrawArrays(GL_TRIANGLES, 0, 6);
}
else
{ prepForSkyBoxRender();
gl.glEnable(GL_CULL_FACE);
gl.glFrontFace(GL_CCW); // cube is CW, but we are viewing the inside
gl.gIDisable(GL_DEPTH_TEST);
gl.giDrawArrays(GL_TRIANGLES, 0, 36);
gl.glEnable(GL_DEPTH_TEST);

}

// now switch back to the standard buffer in preparation for assembling the entire completed scene
gl.gIBindFramebuffer(GL_FRAMEBUFFER, 0);
gl.glClear(GL_DEPTH_BUFFER_BIT);

370 M Computer Graphics Programming in OpenGL with Java, Third Edition

gl.giClear(GL_COLOR_BUFFER_BIT);

// draw water top (surface)
prepForTopSurfaceRender();
gl.glActiveTexture(GL_TEXTUREO);
gl.glBindTexture(GL_TEXTURE_2D, reflectTextureld);
gl.glActiveTexture(GL_TEXTUREY);
gl.gBindTexture(GL_TEXTURE_2D, refractTextureld);

// the remainder of display() is identical to that shown in part one

Vertex Shader (for top surface)

out vec4 glp;

void main(void)
{ ...
glp = p_matrix * v_matrix * m_matrix * vecd(position,1.0);
gl_Position = glp;

}

Fragment Shader (for top surface)

in vec4 glp;

uniform int isAbove;

void main(void)

{ .../ lighting computations are unchanged from before

vec4 mixColor, reflectColor, refractColor, blueColor;

if (isAbove == 1)

{ refractColor = texture(refractTex, (vec2(glp.x,glp.y))/(2.0*glp.w)+0.5);
reflectColor = texture(reflectTex, (vec2(glp.x,-glp.y))/(2.0*glp.w)+0.5);
mixColor = (0.2 * refractColor) + (1.0 * reflectColor);

}

else

{ refractColor = texture(refractTex, (vec2(glp.x,glp.y))/(2.0*glp.w)+0.5);
blueColor = vec4(0.0, 0.25, 1.0, 1.0);
mixColor = (0.5 * blueColor) + (0.6 * refractColor);

}

color = vec4((mixColor.xyz * (ambient + diffuse) + 0.75*specular), 1.0);

Chapter 15 - Simulating Water W 371

[Program 15.3 - reflection/refraction - u] X {4 Program 153 - reflection/refraction - o X

Figure 15.5
Reflection and Refraction - camera above the water’s surface (left), and below the water’s surface (right).

ADDING SURFACE WAVES

So far, our simulated water has been perfectly still. We now add movement
to the water’s surface. There are many ways to do this, depending on whether we
wish to simulate tiny ripples, random effects from wind, current flow, or ocean
waves. In our example, we simulate modest waves such as might appear if there
were a slight breeze, by combining the normal mapping technique previously cov-
ered in Chapter 10, with a noise map. Since waves are not entirely random, the
noise map we build for our water’s surface will be a combination of the noise that
we generated previously in Chapter 14, with the regularity of a sine wave. The
noise map will then serve as a sort of height map, but note that we are not going
to actually modify the water surface geometry as is typically done in height map-
ping; rather, we will modify the normal vectors (in a manner similar to normal
mapping) to make it appear that way. (Techniques exist for actually modifying
surface geometry; for example, a geometry shader could be used, as we studied
previously in Chapter 13.)

372 B Computer Graphics Programming in OpenGL with Java, Third Edition

The noise map is built using the code from Section 14.5, with a slight modi-
fication to the turbulence() function. Specifically, we add a sine wave that runs
diagonally across the XZ plane:

private double turbulence(double x, double y, double z, double maxZoom)
{ double sum = 0.0, zoom = maxZoom;
sum = (Math.sin((1.0/512.0)*(8*PI)*(x+z)) + 1) * 8.0;
while(zoom >= 0.9)
{ sum =sum + smooth(zoom, x/zoom, y/zoom, z/zoom) * zoom;
zoom = zoom / 2.0;

}

sum = 128.0 * sum/maxZoom;
return sum;

The diagonal sine wave is accomplished via sin(x+z), with additional factors
for scaling (1/512 assuming that the size of the noise map is 256 along the X and Z
dimensions), ensuring that the range of values for x+y span a multiple of PI so that
the sine wave wraps smoothly at edge boundaries, adding 1 to convert the sine
wave from -1..+1 to 0..2, and then scaling the height to the desired amount (in this
case, by a factor of 8). Note that since we have been making heavy use of tiling, it
is especially important in this application to use a noise map dimension that is a
power of 2, so that the noise also wraps smoothly at edge boundaries.

We then pass the noise map to the fragment shader, where we use it to alter the
normals by a very small offset. The additions to the code are shown in Program
15.4. The resulting output is shown in Figure 15.6.

Program 15.4 Adding Surface Waves
Java/JOGL Application

private int noiseTexture;

private int noiseHeight = 256;

private int noiseWidth = 256;

private int noiseDepth = 256;

private double[][][] noise[noiseWidth][noiseHeight][noiseDepth];

// buildNoise Texture(), fillDataArray(), smoothNoise() same as in Chapter 14
// turbulence() function as described above

Chapter 15 - Simulating Water I 373

public void init(GLAutoDrawable drawable)

{
}

noiseTexture = buildNoiseTexture();

public void display(GLAutoDrawable)

{

// draw water top (surface)

gl.glActiveTexture(GL_TEXTUREZ2);
gl.glBindTexture(GL_TEXTURE_3D, noiseTexture);

Fragment Shader (for top surface)

layout (binding=2) uniform sampler3D noiseTex;

vec3 estimate\WWaveNormal(float offset, float mapScale, float hScale)

{

}

// estimate the normal using the wave height values stored in the noise texture.

// Do this by looking up three height values at the specified offset distance around this fragment.
// parameters are an offset for neighbors, size of map relative to scene, and height.

float h1 = (texture(noiseTex, vec3(((tc.s))*mapScale, 0.5, ((tc.t)+offset)*wScale))).r * hScale;
float h2 = (texture(noiseTex, vec3(((tc.s)-offset)'mapScale, 0.5, ((tc.t)-offset)*mapScale))).r * hScale;
float h3 = (texture(noiseTex, vec3(((tc.s)+offset)*mapScale, 0.5, ((tc.t)-offset)'mapScale))).r * hScale;

// build two vectors using neighboring heights. The cross product estimates the normal.

vec3d v1 = vec3(0, h1, -1); // neighboring height value #1

vec3d v2 = vecd(-1, h2, 1); // neighboring height value #2

vec3d v3 = vec3(1, h3, 1); // neighboring height value #3

vec3d v4 = v2-v1; // first vector orthogonal to desired normal
vec3d v5 = v3-vi; // second vector orthogonal to desired normal

vec3d normEst = normalize(cross(v4,v5));
return normEst;

void main(void)

{

vec3 L = normalize(varyingLightDir);
vec3 V = normalize(-v_matrix[3].xyz - varyingVertPos);
vec3 N = estimateWaveNormal(.0002, 32.0, 16.0);

374 B Computer Graphics Programming in OpenGL with Java, Third Edition

4 Program 15.4 - ne

Figure 15.6
Adding surface waves by combining a sine wave and noise map — camera above water surface (left) and below water surface (right).

FEE ADDITIONAL CORRECTIONS

Take a look at the images in Figure 15.6 and observe the following “flaws” in
them:

* When the camera is above the water (left image), we would expect the
visible “checkerboard” lines on the floor to be distorted based on the
distortions on the water surface — but they are straight.

* When the camera is below the surface (right image), we expect the
lighting on the floor to be similarly distorted, but the specular highlight is
perfectly round.

» Light is attenuated more rapidly under water, but the floor is equally
bright both up close and far away.

* The Fresnel effect is missing. This is a phenomenon in which viewing
straight down through a transparent medium (such as water) favors
the refraction contribution, while looking across the surface favors the
reflection [BO1]. Instead, in the image at the left, reflection and refraction
are equally apparent across the entire top surface.

Distorting the checkerboard lines when the camera is above the water surface
can be done in the portion of the fragment shader that renders the checkerboard.

Chapter 15 - Simulating Water I 375

The shader needs the noise map, so we add the following code to the section of the
Java/JOGL application that builds the refraction buffer, to send it the noise texture:

gl.glActiveTexture(GL_TEXTUREO);
gl.gBindTexture(GL_TEXTURE_3D, noiseTexture);

The revised fragment shader for rendering the floor is shown in Program 15.5.

Program 15.5 Distorting Objects Under the Water’s Surface

Fragment Shader (for floor plane)

layout (binding=0) uniform sampler3D noiseTex;

vec3 checkerboard(vec? tc)
{ 7/ we use the estimated normals derived from the noise map, as before, but with much less height
vec3 estN = estimateWaveNormal(.05, 32.0, 0.05); // this function was described in Section 15.3

// Compute the amount to distort the color location lookup.

// The amount of distortion is tunable using the variable distortStrength.
float distortStrength = 0.1;

if (isAbove != 1) distortStrength = 0.0;

vec? distorted = tc + estN.xz * distortStrength;

// adjust the lookup for the color by modifying the axes by the distortion amount
float tileScale = 64.0;

float tile = mod(floor(distorted.x * tileScale) + floor(distorted.y * tileScale), 2.0);
return tile * vec3(1,1,1);

In Program 15.5 we perturb the normals on the checkerboard floor using
small scale factors for height and distortion strength. Experimenting with various
distortionStrength values shows that it only takes a very small amount of distortion
in the checkerboard color lookup to generate a large visible distortion effect in the
lines of the checkerboard. Also note that the test (isAbove!=1) ensures that we only
include a distortion factor if the camera is above the surface.

Distorting the underwater lighting when the camera is below the water’s sur-
face can also be done in the fragment shader that renders the checkerboard. We
simply modify the normal vectors for the floor based on the estimated normals
from the noise map. In this case, experimentation reveals that larger values for
height and distortion strength are needed than were used previously for distorting

376 B Computer Graphics Programming in OpenGL with Java, Third Edition

the lines of the checkerboard itself. The revised fragment shader for rendering the
floor is shown in the continuation of Program 15.5.

The output incorporating all of the changes shown in Program 15.5 is shown
in Figure 15.7.

Program 15.5 (Continued) Distorting Lighting Under the Water’s
Surface

Fragment Shader (for floor plane)

void main(void)
{ ...
vec3 N = normalize(varyingNormal);

vec3 estN = estimateWaveNormal(.05, 32.0, 0.5);
float distortStrength = 0.5;

vec? distort = estN.xz * distortStrength;

N = normalize(N + vec3(distort.x, 0.0, distort.y));

// the rest of the main() is unchanged

Figure 15.7
Adding distortion to the floor pattern and its lighting — camera above water surface (left, floor pattern distorted), and below water surface
(right, lighting distorted).

Chapter 15 - Simulating Water W 377

Making items that are further away become less visible was covered previ-
ously in Section 14.1 (“fog”). The code given there works almost verbatim here,
and it is only used when the camera is below the water’s surface.

A simple Fresnel effect can dramatically enhance realism when the camera is
above the top surface, and can be implemented in the fragment shader by com-
puting the angle between the water’s surface normal and the view direction, and
then mixing the reflection and refraction components based on the magnitude of
the angle. We experimented with various offsets and scaling factors and found
that, for this scene, shifting the Fresnel factor to smaller values (to increase the
refractive contribution), clamping the range to [0..1] (for subsequent use in the
mix() function) and raising it to a power of 3 (making the effect nonlinear and
sharpening the transition between refractive and reflective dominance) produced a
pleasing result. Other scenes may require different adjustments We also observed
that the effect is clearest if the original surface normal is used, i.e., without the
normals having been perturbed by noise and waves. The additions for both effects
are given in Program 15.6, and the results are shown in Figure 15.8.

Program 15.6 Adding “fog” and “Fresnel” Effects

Fragment Shader (for top surface)

void main(void)
{ // code for determining amount of fog to add — very similar to Section 14.1
vec4 fogColor = vec4(0.0, 0.0, 0.2, 1.0);
float fogStart = 10.0;
float fogEnd = 300.0;
float dist = length(varyingVertPos.xyz);
float fogFactor = clamp(((fogEnd-dist) / (fogEnd-fogStart)), 0.0, 1.0);

// angle between normal vector and view vector (for Fresnel effect)

vec3 Nfres = normalize(varyingNormal);

float cosFres = dot(V,Nfres);

float fresnel = acos(cosFres);

fresnel = pow(clamp(fresnel-0.3, 0.0, 1.0), 3); // tuning for this particular application

if (isAbove == 1)

{ / if above the surface, compute reflection and refraction contributions separately, then mix
refractColor = texture(refractTex, (vec2(glp.x,glp.y))/(2.0*glp.w)+0.5);
reflectColor = texture(reflectTex, (vec2(glp.x,-glp.y))/(2.0*glp.w)+0.5);

378 B Computer Graphics Programming in OpenGL with Java, Third Edition

reflectColor = vec4((reflectColor.xyz * (ambient + diffuse) + 0.75*specular), 1.0);
color = mix(refractColor, reflectColor, fresnel);

}

else

{ / if below the surface, compute only the refractive contribution, and add fog
refractColor = texture(refractTex, (vec2(glp.x,glp.y))/(2.0*glp.w)+0.5);
mixColor = (0.5 * blueColor) + (0.6 * refractColor);
color = vec4((mixColor.xyz * (ambient + diffuse) + 0.75*specular), 1.0);
color = mix(fogColor, color, pow(fogFactor,5));

I

Fragment Shader (for floor plane)

void main(void)
{ // code for determining amount of fog to add — very similar to Section 14.1
vec4 fogColor = vec4(0.0, 0.0, 0.2, 1.0);
float fogStart = 10.0;
float fogEnd = 300.0;
float dist = length(varyingVertPos.xyz);
float fogFactor = clamp(((fogEnd-dist) / (fogEnd-fogStart)), 0.0, 1.0);

if (isAbove != 1) color = mix(fogColor, color, pow(fogFactor,5.0));

& Program 156 - adding underwater distortion

= g

Figure 15.8
Fresnel effect (left, above the water’s surface) and fog effect (right, below the water’s surface).

Chapter 15 - Simulating Water I 379

B ANIMATING THE WATER MOVEMENT

Animating the water’s surface can be done in a similar manner as was done
for clouds by taking advantage of the third dimension in the noise map (as yet
unused). Recall from Section 14.8 the trick of replacing the texture lookup con-
stant in the third dimension with a variable that changes over time. As the retrieved
“slice” of the noise map changes, the noise details change. We can use that same
trick here to move the sine wave by adjusting the position along the third axis over
time when we look up which “slice” of the noise map to apply.

This modification is given in Program 15.7. Although we cannot adequately
show the animation here, some frames showing the changes to the surface and
lighting over time are given in Figure 15.9, viewed from both above and below the
water’s surface. (Or, to see the actual movement, run the code on the accompany-
ing disk.)

Program 15.7 Animating the Water’s Surface
Java/JOGL Application

private float depthLookup = 0.0f;
private int dOffsetLoc;

private double turbulence(double x, double y, double z, double maxZoom)
{ double sum = 0.0, zoom = maxZoom;
sum = (sin((1.0/512.0)*(8*PI)*(x+z-4*y)) + 1) * 8.0;
// this change moves the sine wave through the noise map

} e
private void prepForTopSurfaceRender() {

dOffsetLoc = gl.glGetUniformLocation(renderingProgramSURFACE, "depthOffset");
gl.glUniform1f(dOffsetLoc, depthLookup);

}

private void prepForFloorRender()

dOffsetLoc = gl.glGetUniformLocation(renderingProgramFLOOR, "depthOffset");
gl.glUniform1f(dOffsetLoc, depthLookup);

}

380 M Computer Graphics Programming in OpenGL with Java, Third Edition

public void display(GLAutoDrawable drawable)
{ depthLookup += (float)(currTime - prevTime) * .0001f;
prevTime = currTime; // all time variables are of type long

}

Vertex Shaders (for top surface, and for floor)

uniform float depthOffset;

Fragment Shaders (for top surface, and for floor)

uniform float depthOffset;
vec3 estimateWaveNormal(float offset, float mapScale, float hScale)

float h1 = (texture(noiseTex, vec3(tc.s*mapScale, depthOffset, (tc.t + offset)*mapScale))).r * hScale;
float h2 = (texture(noiseTex, vec3((tc.s-offset)*mapScale, depthOffset,

(tc.t - offset)*mapScale))).r * hScale;
float h3 = (texture(noiseTex, vec3((tc.s+offset)*mapScale, depthOffset,

(tc.t - offset)*mapScale))).r * hScale;

In Figure 15.9, when the camera is above the top surface, note the changes in
each frame over time, seen in the waves on the surface of the water, the changing
light reflections off the surface, and the changing distortions in the lines of the
checkerboard. When the camera is below the surface, note the changes in the light-
ing on the floor, and the changes in the waves and their specular highlights when
looking up at the top surface.

Chapter 15 - Simulating Water I 381

i Program 157 - anmation [T | PIpr—— [R | PIpr———— - o x

T - o - —| e

Figure 15.9
Animating water effects, both above and below the water’s surface. In the top three images, the camera is above the top surface. In the
bottom three images, the camera is below the surface.

EEH3E UNDERWATER CAUSTICS

It is common to observe curved bands of light on an underwater floor, as light
from above the water is transmitted to the floor from the various undulations on
the wavy surface. These bands are sometimes called water caustics [W19], and
adding them can make an underwater scene more clearly appear underwater. In
this section, we only add them to our scene whenever the camera is below the
water surface (see Exercise 15.4 for the case where the camera is above the water
surface).

Simulating water caustics can be done in a variety of ways. They can be done
fairly accurately using ray tracing, although this can be complex and computation-
ally expensive [G07]. However, in most cases, it isn’t necessary for the caustics to
be perfectly accurate, and even a rough simulation is adequate to convey an under-
water effect. In most cases, generating white lines that bend in a manner consistent
with the waves on the water surface is sufficient.

382 M Computer Graphics Programming in OpenGL with Java, Third Edition

We can generate a sort of caustic pattern in the fragment shader, directly from
the noise map, as follows. We start by computing the sine of the noise value; the
noise value (which ranges between 0 and 1) is first multiplied by 2x so that the
sine values cycle smoothly. This results in a value that cycles between -1.0 and 1.0.
The absolute value of this cycles between 0.0 and 1.0, but with steep slopes around
0.0 and shallower slopes around 1.0. Subtracting this absolute value from 1.0 then
inverts this, resulting in long flat regions around 0.0 and sharp peaks around 1.0.
This can be amplified by raising it to an adjustable exponent, using a tunable
variable named strength. The result is a function that usually outputs values near
0, but has occasional small regions of output values near 1.0. When applied to the
top surface color value at a given world coordinate, it generates periodic patterns
that follow the top surface waves, which we can then incorporate into the bottom
surface color. Program 15.8 shows this code added to the fragment shader and the
resulting computed values added to the color rendered to the floor. The output is
shown in Figure 15.10.

Note that the floor color elements after adding the caustic are clamped to the
range [0..1] to ensure that they are within the valid range for RGB values.

Program 15.8 Adding Underwater Caustics
Fragment Shader (for floor)

float getCausticValue(float x, float y, float z)

{ floatw=8; // frequency of caustic curved bands
float strength = 4.0;
float PI = 3.14159;
float noise = texture(noiseTex, vec3(x*w, y, Z*w)).r;
return pow((1.0-abs(sin(noise*2*Pl))), strength);

}

void main(void)

{

color = vec4((mixColor * (ambient + diffuse) + specular), 1.0);

// add caustics

if (isAbove != 1)

{ float causticColor = getCausticValue(tc.s, depthOffset, tc.t);
float colorR = clamp(color.x + causticColor, 0.0, 1.0);
float colorG = clamp(color.y + causticColor, 0.0, 1.0);

Chapter 15 - Simulating Water I 383

float colorB = clamp(color.z + causticColor, 0.0, 1.0);
color = vec4(colorR, colorG, colorB, 1.0);

}

// add fog
if (isAbove = 1) color = mix(fogColor, color, pow(fogFactor,5.0));

Figure 15.10
Caustics added when the camera is below the water’s surface.

SUPPLEMENTAL NOTES

Methods for simulating water in a real-time graphics application is a complex
topic, and we have only scratched the surface. We also have only focused on one
type of water. Completely different techniques are needed to simulate water spray-
ing from a garden hose or wine splashing in a wine glass.

Even our simulation of a swimming pool or lake surface is limited. For
example, only small ripples on the water’s surface are possible using the method
described. Larger waves would require modifying the surface geometry. One way
of doing this would be to use the tessellation stage to increase the number of ver-
tices, and then use height mapping to move them according to the values in the
noise map.

Our simulation of the visible distortions on the floor have a fundamental inac-
curacy, in that they are based on the noise values for the surface locations directly
above the corresponding floor locations. Actually, the distortion for a given floor
location should be based on the noise value for the surface location in between

384 B Computer Graphics Programming in OpenGL with Java, Third Edition

the camera and the floor location. However, it is unlikely to make a difference in
the perceived realism. There are many simplifications such as this throughout our
implementation.

“Fresnel” is pronounced “Fre-nel” — the “s” is silent.

There are numerous papers and resources for readers interested in diving more
deeply into the topic of simulating water and other fluids. There are even entire
books on the topic [B15].

The technique described in this chapter was patterned closely after an imple-
mentation by Chris Swenson as part of a special project when he was a student at
California State University, Sacramento. His contributions greatly facilitated our
explanations and we appreciate the excellent work that he did generating a nicely
coherent step-by-step approach.

Exercises

15.1 Add a flying object such as a bird or airplane (or even the NASA space
shuttle model) flying overhead, above the top surface of the water. Then
include it in the reflection off the top surface of the water when the camera is
above the water’s surface and in the refraction through the top surface when
the camera is below the water surface.

15.2 Add an object moving underwater, such as a fish or submarine (or even the
Studio 522 dolphin) below the top surface of the water. Then include it in the
scene when the camera is below the top surface and in the refraction when
the camera is above the top surface.

15.3 In Exercise 15.2 (above), if you haven’t done so already, add water caustics to
the underwater object.

15.4 Modify the fragment shader in Program 15.8 so that the water caustics are
also rendered when the camera is above the top surface as well. Do you
think that the scene appears more realistic or less realistic with the caustics
included in this case? If the latter, try to find a way to tune the caustics so
that they increase realism rather than detracting from it.

Chapter 15 - Simulating Water Il 385

References

[BO1]

[B15]
[E01]

[G07]

[W19]

J. Birn (2001), Fresnel Effect, from 3dRender.com, Accessed July 2020,
http://www.3drender.com/glossary/fresneleffect.htm.

R. Bridson (2015), Fluid Simulation for Computer Graphics, CRC Press.

C. Everitt (2001), Projective Texture Mapping, NVIDIA white paper.
Accessed July 2020, Available at: https:/www.nvidia.com/object/
Projective Texture Mapping.html

J. Guardado (2007), Rendering Water Caustics, GPU Gems (NVIDIA),
Accessed July 2020, https:/developer.download.nvidia.com/books/
HTML/gpugems/gpugems_ch02.html

Caustic (optics) — Wikipedia, 2019. Accessed July 2020, https:/
en.wikipedia.org/wiki/Caustic_(optics)

CHAPTER 16

RAY TRACING AND COMPUTE
SHADERS

16.1 Compute Shaders 389
16.2 Ray Casting. et 399
16.3 Ray Tracing. 430

Supplemental Notes 463

In this chapter, we study a method for creating highly realistic lighting effects
called ray tracing. We studied lighting previously in Chapter 7, and then in Chapter
9 we saw a simple method for simulating reflection called environment mapping.
However, all of these methods only partially simulate lighting effects. For example,
the ADS lighting model only considers the effect that a light source has on a sur-
face, without regard to the effects of light reflected between objects in the scene.
Similarly, environment mapping is limited to modeling the reflection of a cube map,
but not neighboring objects. By contrast, ray tracing more closely models the actual
paths of light through a scene, considering reflections between objects, shadows,
and even refraction through transparent objects. Ray tracing is capable of generating
highly detailed and photo-realistic effects, although it requires significant computing
resources and cannot always be done in real time.

Ray tracing is motivated by a simple idea: if we can follow the paths of light
rays from their source to our eyes, we can faithfully reproduce what we would see.
However, in practice this would be infeasible — there are simply too many light rays,
most of which don’t even end up reaching our eyes (or have only a marginal effect on
what we perceive).

A very clever alternative is to reverse this idea. Instead of tracing rays from
their source to our eye, we instead trace rays starting from the eye, “bouncing” them
some number of times off of the objects in the scene, accumulating and combining

388 M Computer Graphics Programming in OpenGL with Java, Third Edition

whatever lighting effects are noted along the way. In between the eye and the
scene, we place a grid of pixels (at the desired resolution) in which we store the
rendering of the scene. For each pixel in the grid, we generate one ray, as shown in
Figure 16.1. An algorithm for rendering a scene in this manner was first described
in 1968 by Arthur Appel, who dubbed it ray casting [A68]. The idea was extended
in 1979 by Foley and Whitted to include bouncing each ray recursively to simulate
reflection, shadows, and refraction [FW79], and this process is called “ray tracing.”
Today, ray tracing tools and hardware are being introduced into the consumer
market (such as Nvidia RTX [RTX19])

-

re

"3

|l
-
9’»6
Figure 16.1
Ray Casting.

Implementing ray tracing using OpenGL shaders is challenging. The large
number of computations that must be done can tax even modern GPUs. Also, as
we shall see, a generalized ray tracing algorithm uses recursion, which is not sup-
ported in OpenGL (GLSL) shaders. While some simple cases can be done without
recursion, implementing a reasonably complete ray tracing algorithm will require
us to implement the recursion stack ourselves. Our overall approach will involve
a two-phase process:

Chapter 16 - Ray Tracing and Compute Shaders [l 389

(phase 1) Implement the ray-tracing algorithm that builds the pixel grid as
an image

(phase 2) Render the resulting image

Phase 2 will be extremely easy, as we already know how to render an image as
a texture. All of the hard work is done in phase 1, and so to help achieve reasonable
performance, we will use a compute shader for this step.

COMPUTE SHADERS

GPUs offer extraordinary parallel computing power. Whereas modern CPUs
may have 4 or 8 cores, GPUs can have thousands. Therefore, they are often used
for computationally-intensive non-graphics tasks. One way of doing this is to use a
special-purpose language such as CUDA [NV20], or OpenCL [KR20]. Another way
is to use a compute shader, which is a variant of the graphics pipeline shaders that
we already know. OpenGL compute shaders are programmed in GLSL, so most
of the same programming techniques that we have learned so far in the preceding
chapters are immediately applicable.

There are many uses for compute shaders. The OpenGL SuperBible describes
a few, including parallelizing matrix computations, building special-purpose
image filters (such as adding depth-of-field), and simulating flocks or particle sys-
tems [SW15]. The topic of compute shaders is vast, and we focus only on using
them for ray tracing. So, this chapter serves both as an introduction to ray tracing,
and to compute shaders.

Compiling and Using Compute Shaders

Compute shaders are just like the other shaders we’ve seen, except that they
are not a part of the graphics pipeline. They run independently; that is, they do
not interact with, say, vertex or fragment shaders, and have no predefined inputs
or outputs. However, they can accept data passed to them, such as in uniform
variables, and can generate or modify data in memory. Compute shaders are com-
piled with glCompileShader(), linked with glLinkProgram(), and made active with
glUseProgram() just like any other shader, except that the predefined constant
GL_COMPUTE_SHADER is used to specify the shader type. We extend the Utils.java
file to include a function for compiling a compute shader and building a rendering

390 M Computer Graphics Programming in OpenGL with Java, Third Edition

program from it. The format of this function matches the format of the other func-
tions for compiling shaders, and is:

public static int createShaderProgram(String ¢S)

That is, it accepts one string specifying the name of the file containing the
compute shader. For example:

computeShaderProg = Utils.createShaderProgram("code/computeShader.glsl");

Setting a particular compute shader program as the current one for execution
is then the same as before:

gl.glUseProgram(computeShaderProg);

Launching the compute shader invocations is then done using the glDispatch()
command, for example:

gl.gIDispatch(250, 1, 1);

The three parameters on the glDispatch() command will be described as we
proceed.

Parallel Computing in Compute Shaders

Recall that the exact number of times that a vertex shader runs (is “invoked”)
is typically once per vertex, and is stated explicitly by the programmer as a param-
eter in the glDrawArrays() command. Similarly, the number of times that a com-
pute shader is invoked is specified explicitly in the parameters to the glDispatch()
command.

Let’s look at an example of a compute shader to perform a simple parallel
computing task. In Program 16.1, we present an application that sums the corre-
sponding elements of two one-dimensional matrices. We choose that task because
each of the additions are independent, and therefore can be done in parallel. To
keep things simple, we will consider only matrices of size six. The strategy is to

Chapter 16 - Ray Tracing and Compute Shaders Il 391

write a compute shader that simply adds two numbers together, and we run that
shader six times, once for each matrix element. This will allow the six executions
of the shader to be run in parallel. It is sufficiently simple that we can use it to eas-
ily illustrate how to: (1) pass data to a compute shader, (2) perform a simple paral-
lel computation, and (3) pass the result back to the Java/JOGL application. Details
of the code follow the listing.

There are multiple ways of passing data to a compute shader, including many
of the normal methods we have already learned such as uniforms, buffers, etc.
However, there are only two ways of getting computed data out of a compute
shader. The first way is to use a special kind of buffer called a Shader Storage
Buffer Object (SSBO), which was introduced at OpenGL version 4.3 and is con-
venient for mathematical applications, such as matrix operations. The second way
is to use an image load/store, which is more convenient for image processing or
graphics applications. For this simple application of summing two matrices, we
will use SSBOs. Later, we will use the second method (image load/store) in section
16.2 when we study ray tracing.

Program 16.1 Simple Compute Shader Example
Java/JOGL Application

// imports for JOGL, Java, and Utils are the same as in previous examples

private int buffer[] = new int[3];

private int computeShaderProgram;

private float[] v1 = {10, 12, 16, 18, 50, 17 }; // these are the two matrices we are adding together
private float[] v2 = { 30, 14, 80, 20, 51, 12 };

private float res[] = new float[6]; // this is the array into which the result will be placed

public void init(GLAutoDrawable drawable)

{ GL4 gl =(GL4) GLContext.getCurrentGL();
computeShaderProgram = Utils.createShaderProgram("code/computeShader.gls!");
gl.glGenBuffers(3, buffer, 0); / note that each buffer is an SSBO (Shader Storage Buffer) of size 6
gl.gIBindBuffer(GL_SHADER_STORAGE_BUFFER, buffer[0]);
FloatBuffer v1Buf = Buffers.newDirectFloatBuffer(v1);
gl.giBufferData(GL_SHADER_STORAGE_BUFFER, v1Buf.limit()*4, v1Buf, GL_STATIC_DRAW);
gl.gIBindBuffer(GL_SHADER_STORAGE_BUFFER, buffer[1]);
FloatBuffer v2Buf = Buffers.newDirectFloatBuffer(v2);
gl.giBufferData(GL_SHADER_STORAGE_BUFFER, v2Buf.limit()*4, v2Buf, GL_STATIC_DRAW);
gl.gIBindBuffer(GL_SHADER_STORAGE_BUFFER, buffer[2));

392 M Computer Graphics Programming in OpenGL with Java, Third Edition

FloatBuffer resBuf = Buffers.newDirectFloatBuffer(res.length);
gl.glBufferData(GL_SHADER_STORAGE_BUFFER, resBuf.limit()*4, null, GL_STATIC_READ);

}

public void display(GLAutoDrawable drawable)
{ GL4 gl =(GL4) GLContext.getCurrentGL();
computeSum(); // we don't actually use the GL window, instead we call computeSum()

// display the input matrices, and the computed output matrix retrieved from the output SSBO
System.out.printin(v1[0]+ " " +vA[1]+ " " +v1[2]+ " " +v1[3]+ " " +vA[4]+ " " +v1[5]);
System.out.printin(v2[0]+ " " +v2[1]+ " " +v2[2]+ " " +v2[3]+ " " +v2[4]+ " " +v2[5]);
System.out.printin(res[0]+ " " +res[1]+ " " +res[2]+ " " +res[3]+ " " +res[4]+ " " +res[5]);

}

private void computeSum()
{ GL4 gl =(GL4) GLContext.getCurrentGL();
gl.glUseProgram(computeShaderProgram);

gl.gIBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, buffer[0]); // first input matrix
gl.gIBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, buffer[1]); / second input matrix
gl.giBindBufferBase(GL_SHADER_STORAGE_BUFFER, 2, buffer{2]); / buffer to hold output matrix

gl.glDispatchCompute(6, 1, 1); /invokes compute shader 6 times — the invocations can run in paralle!
gl.glFinish(); // ensure shader invocations finish before proceeding

gl.gIBindBuffer(GL_SHADER_STORAGE_BUFFER, buffer[2]); // retrieve the result
FloatBuffer resBuf = Buffers.newDirectFloatBuffer(res.length);
gl.glGetBufferSubData(GL_SHADER_STORAGE_BUFFER, 0, resBuf.limit()*4, resBuf);

res[0] = resBuf.get
res[1] = resBuf.get
res[2] = resBuf.get
res[3] = resBuf.get
res[4] = resBuf.get
res[5] = resBuf.get

), //transfer the result buffer into array 'res’

)
);
);
).
)

= o o o o

}
Compute Shader

#version 430

layout (local_size_x=1) in; // sets the number of invocations per work group to 1
layout(binding=0) buffer inputBuffer1 { int inVals1[J; };

layout(binding=1) buffer inputBuffer2 { int inVals2[J; };

layout(binding=2) buffer outputBuffer { int outVals[J; };

void main()

{ uint thisRun = gl_GloballnvocationID.x;
outVals[thisRun] = inVals1[thisRun] + inVals2[thisRun];

}

Chapter 16 - Ray Tracing and Compute Shaders [l 393

Start by looking at the compute shader. Three buffers are declared, two for the
input matrices, and one for the output matrix. Next let’s consider the preceeding
line that says:

layout (local_size_x=1) in;

Compute shader invocations are organized into structures called work groups.
In this simple example, we don’t really utilize work groups, and instead we simply
want the shader to run six times. So, this layout command sets the work group size
to 1. We will learn more about work groups shortly.

The actual number of times that the compute shader runs is specified in the
Java/JOGL application, specifically in the glDispatchCompute(6,1,1) call. Here we
are specifying that the shader will run six times. Note here that the number of
compute shader invocations was specified using three parameters comprising a
vec3 of dimension 6x1x1, and therefore the invocations will be numbered (0,0,0),
(1,0,0), (2,0,0), (3,0,0), (4,0,0), and (5,0,0). (We will see shortly how the other two
dimensions of the shader invocation numbering — here both set to zero — can be
used in more complex situations.)

Now let’s look at the main() function in the compute shader. Each time the
shader runs, it first retrieves its invocation number by accessing the built-in GLSL
variable gl_GloballnvocationID (which is a vec3). In this case the “X” component of
gl_GloballnvocationID will be either 0, 1, 2, 3, 4, or 5, depending on which of the six
invocations it is. It then uses this value as an index into the input SSBOs. Next,
the compute shader adds one element from each of the input SSBOs, depending on
which invocation ID it has, storing the result in the corresponding element of the
output SSBO. In this manner, each invocation of the shader handles one of the six
additions, and therefore the six additions can run in parallel.

The code in the Java/JOGL application is primarily concerned with get-
ting the data in and out of the compute shader. The input matrices v1 and v2 are
declared as arrays and initialized to some test values at the top of the code. The
output matrix is declared as array res. The buffers themselves are set up in the init()
function, very similar to how we created VBOs, except that we specify type GL_
SHADER_STORAGE_BUFFER. The three buffers are associated with v1, v2, and res,
respectively. Note that in the case of the third buffer, we specify GL_STATIC_READ
(instead of GL_STATIC_DRAW), because the Java program will be retrieving data
from that buffer rather than sending data into it. The init() function also compiles
and links the shader.

394 B Computer Graphics Programming in OpenGL with Java, Third Edition

Next, display() is invoked, which in turn calls computeSum(). After making the
shader program active, it associates each of the SSBOs with an integer index in a
manner similar to what we have been doing with VBOs. In that case, we used the
glBindBuffer() command, but since SSBOs aren’t inherently indexed, we must use
glBindBufferBase() to specify both the buffer and an associated index. Observe that
the compute shader uses this same index in the binding qualifier to associate each
buffer with an array variable (inVals1, inVals2, and outVals).

The computeSum() method next initiates the compute shader invocations by
calling gIDispatchCompute(). The result will then have been accumulated in the third
buffer (i.e., buffer[2]), which can then be extracted into the float buffer resBuf by
calling glGetBufferSubData(). We then copy the result into the array res. The reader
has probably also noticed the rather cryptic call to glFinish() — this is required by
OpenGL to ensure that the compute shader invocations fully complete before the
code that follows is executed. That is, it ensures that the items produced by the
glDispatchCompute() call are all fully available after the call.

Finally, display() prints all three arrays. Note that we never actually use the
JFrame. When run, the output is:

10 12 16 18 50 17
30 14 80 20 51 12
40 26 96 38 101 29

As expected, the third line contains the sum of the values in the first two lines.

Work Groups

In the previous simple example, we parallelized the matrix addition into six
separate integer additions. We did this by specifying that the compute shader run
six times, with the gIDispatchCompute(6,1,1) call. The shader was written in such a
way that each of the six invocations processed a different element of the matrix.

However, the glDispatchCompute() function is more flexible than that. Its three
parameters make it possible to spread the computations over a 1D, 2D or 3D grid.
In the matrix example, the matrices had dimension 6x1, so it was logical to spread
the invocations across a 1D matrix of dimension 6x1x1 (which is what we did).
However, soon we will write a compute shader that uses ray tracing to produce a
display image, and in that application we will process each pixel in parallel. Since

Chapter 16 - Ray Tracing and Compute Shaders Il 395

the display is a 2D grid of pixels, it will make more sense to specify the set of
computations in a 2D grid. For example, if the GL window was 800x600 pixels,
then we could initiate the compute shaders with gl.gIDispatchCompute(800, 600, 1),
and then each gl_GloballnvocationID value would correspond directly to the value
of a particular pixel’s 2D coordinates. The total number of invocations would then
be 800x600 = 480,000. OpenGL will assign these 480,000 invocations to as many
different processors (running in parallel) as it can.

The setup for compute shader invocations is even more flexible than that! In
this last example, the total number 800x600 = 480,000 specified in the glDispatch-
Compute() call is actually not strictly the number of invocations, but the number of
work groups. Since in our simple matrix example, the compute shader specified:

layout (local_size_x=1) in;

the work group size was set to 1, meaning that there was one invocation per work-
group. Therefore, in this case, the number of work groups equals the number of
invocations. This is how we set the work group size in the matrix example, and
could also be used in the additional 800x600 example that we just described. It is
also how we will set the work group size when we do ray tracing.

If you just want to learn about implementing ray tracing, and don’t care to
learn more about work groups, you may now bypass the next section and skip
ahead to Section 16.2.

Work Group Details

A more complete description of work groups would start by stating that the
glDispatchCompute() call distributes the desired computations that are to be done in
parallel into work groups, where a work group is a set of invocations that have a
need to share some local data. If, for a particular application, all of the invocations
can be done completely independently of each other, such as is the case in our
matrix or ray tracing applications (i.e., without any of them needing to share any
local data), then the work group size may be set to 1, and in that case, the number
of invocations is equal to the number of work groups.

The set of all work groups is organized in an abstract 3D grid (if the program-
mer wishes, one or more of the dimensions may be set to 1, reducing the dimen-
sionality of the grid of workgroups to 2D or 1D). Thus, the numbering scheme

396 M Computer Graphics Programming in OpenGL with Java, Third Edition

used to identify a particular work group is not a single integer, but a fuple of
three values. Furthermore, the invocations within a work group (i.e., in those cases
where the work group size is specified to be greater than one) are also organized
in a 3D grid. Thus, the programmer must specify (1) the size and dimensionality
of the grid of work groups and (2) the size and dimensionality of each work group
(also organized as a grid). This gives the programmer a huge degree of flexibility
in organizing a potentially large set of parallel computations. The entire set of
invocations are then initiated in the Java/JOGL application by calling

gl.gIDispatchCompute(x,y,z)

where the X, y, and z parameters specify the size and dimensionality of the
abstract grid of the set of work groups. The number of compute shader invocations
then executed within each work group (and the dimensionality in which they are
organized) is specified in the compute shader with the GLSL command

layout (local_size_x = X, local_size_y =Y, local_size_z = Z)

where X, Y, and Z are the dimensions of each work group. The dimensionalities
of the set of work groups, and the work groups themselves, need not be the same,
and may be 1D, 2D, or 3D. The resulting compute shader invocations can then run
in parallel on the GPU.

During execution, a compute shader can determine how many work groups
had been dispatched, and in which work group and invocation it is running by
querying one or more of the following built-in GLSL variables:

gl_NumWorkGroups the number of work groups dispatched by the Java/JOGL program
gl_WorkGroupID which work group the current invocation belongs to
gl_LocallnvocationID which invocation within the current work group this execution represents

gl_GloballnvocationlD which invocation within the total invocations this execution represents

Let’s walk through an example. Suppose the Java/JOGL program made the
call gl.gIDispatchCompute(16,16,4). This would cause the compute shader to be exe-
cuted with a total of 16 x 16 x 4 = 1024 work groups. If the compute shader specified
the work group size as layout (local_size_x=5, local_size_y=5, local_size_z=1), then

Chapter 16 - Ray Tracing and Compute Shaders [l 397

the total size of each workgroup is 5 x 5 x 1 =25, and therefore the total number of
times that the compute shader would execute would be 1024 x 25 = 5120.

It is then possible to reference a particular work group and invocation being
processed via its abstract grid indices. For example, the 1024 work groups dis-
patched in the previous example would be numbered (0,0,0), (0,0,1), (0,0,2), (0,0,3),
(0,1,0), (0,1,1), and so forth, counting up to (15,15,3), and each execution of the com-
pute shader can determine which of these work groups it belongs to by query-
ing the built-in variable gl_WorkGroupID, which will return that value in a vec3.
Similarly, in the same example (above), the 25 invocations done within each work
group are numbered (0,0,0), (0,1,0), (0,2,0), (0,3,0), (0,4,0), (1,0,0), (1,1,0), (1,2,0), and
so forth, counting up to (4,4,0), and each execution of the compute shader can
determine which of these invocations it belongs to by querying the built-in vari-
able gl_LocallnvocationID, which also returns a vec3. Note the contrast between how
invocations are organized and “counted” in a vertex shader using the simple built-
in int variable gl_VertexID (or gl_InstancelD in the case of instancing) versus the mul-
tidimensional organization (and numbering) of invocations in a compute shader.

The reason that compute shader invocations are organized into grids (actually,
grids within grids!) is because many parallel computing tasks lend themselves
to being conceptually subdivided into one or more grid structures. If a 3D grid
structure is not needed, the programmer can simply set the Z dimensionality in the
glDispatchCompute() command to one, reducing the grid to 2D on the remaining X
and Y dimensions. And, if the application really only requires a simple series of
computations without a grid organization at all, both the Y and Z dimensions can
be set to one, producing a one-dimensional numbering of the invocations along
the remaining X dimension. Similarly, in the compute shader, the dimensionality
of the work group size can be reduced by leaving off the Y and/or Z terms (which
is what we did for the matrix example, and what we will do for the ray tracing
application).

The reader may still wonder why it can be advantageous to subdivide a solu-
tion among work groups, rather than simply making each work group be of size
1 and dispatching a large number of them (or, conversely, one very large work
group). The answer depends on the application. Some problems lend themselves
to being decomposed into chunks, such as an image blurring filter (described in
[SW15]) in which the colors of groups of neighboring pixels are averaged together.

398 M Computer Graphics Programming in OpenGL with Java, Third Edition

In such cases, the need for shared data within a group arises and is supported by
OpenGL’s shared local memory construct (which is not covered in this book). In
some cases, there can be performance benefits to selecting a work group size that
best utilizes a particular GPU’s architecture [Y10].

Our ray tracing application builds a two-dimensional texture image. So, it
makes sense to utilize abstract grids that are of 2D dimensionality. For simplic-
ity, we set the work group size to 1 and generate a workgroup for each pixel.
For example, if our ray traced texture image is of size 512 x 512, we would call
gl.glDispatchCompute(512, 512, 1), and in the compute shader use layout (local_size_
x=1) in; to denote a work group size of (1,1,1). This will generate a compute shader
invocation for each pixel. Alternatively, we could subdivide the problem into work
groups of size 8 x 8 by calling gl.gIDispatchCompute(64,64,1) and in the compute
shader use layout (local_size_x=8, local_size_y=8) in; to denote a workgroup size of
(8,8,1). This would also generate a compute shader invocation for each pixel, and
result in the same number of total invocations. For this simple application, there
are no dependencies between pixel computations, and it doesn’t matter in what
order the GPU does them (as long as all of them are completed before we try to
display the resulting texture image), so either approach would work fine. For sim-
plicity, we will choose the former.

Work Group Limitations

There are limitations on the number and sizes of work groups, and on the num-
ber of invocations allowed for each work group, depending on the graphics card. In
some cases, these limitations may impact the selection of size and dimensionality
of work groups. Those limitations can be determined by querying the built-in vari-
ables GL_MAX_COMPUTE_WORK_GROUP_COUNT, GL_MAX_COMPUTE_WORK_
GROUP_SIZE, and GL_MAX_COMPUTE_WORK_GROUP_INVOCATIONS. Since
these variables are of type vec3, the glGetlntegeri_v command can be used to access
the values in each of the X, Y, and Z dimensions. A Java/JOGL method for doing
this is shown in Figure 16.2 (and added to our Utils java file).

Chapter 16 - Ray Tracing and Compute Shaders [l 399

public static void displayComputeShaderLimits()
{ GL4 gl=(GL4) GLContext.getCurrentGL();
int[] work_grp_cnt = new int[3];
int[] work_grp_siz = new int[3];
int[] work_grp_inv = new int[1];
ol.glGetIntegeri_v(GL_MAX_COMPUTE_WORK_GROUP_COUNT, 0, work_grp_cnt, 0);
gl.glGetintegeri_v(GL_MAX_COMPUTE_WORK_GROUP_COUNT, 1, work_grp_cnt, 1);
gl.glGetIntegeri_v(GL_MAX_COMPUTE_WORK_GROUP_COUNT, 2, work_grp_cnt, 2);
gl.glGetIntegeri_v(GL_MAX_COMPUTE_WORK_GROUP_SIZE, 0, work_grp_siz, 0);
gl.glGetIntegeri_v(GL_MAX_COMPUTE_WORK_GROUP_SIZE, 1, work_grp_siz, 1);
gl.glGetIntegeri_v(GL_MAX_COMPUTE_WORK_GROUP_SIZE, 2, work_grp_siz, 2);
gl.glGetIntegerv(GL_MAX_COMPUTE_WORK_GROUP_INVOCATIONS, work_grp_inv, 0);
System.out.printin("maximum number of workgroups is: \n" +
work_grp_cnt[0] + " " + work_grp_cnt[1] + " " + work_grp_cnt[2]);
System.out.printin("maximum size of workgroups is: \n" +
work_grp_siz[0] + " " + work_grp_siz[1] + " " + work_grp_siz[2]);
System.out.printin("max local work group invocations is " + work_grp_inv[0]);

Figure 16.2
Querying work group limitations.

EI¥8 RAY CASTING

We start our study of ray tracing by first implementing a very basic ray cast-
ing algorithm as illustrated previously in Figure 16.1. In ray casting, we initialize
a rectangular 2D texture (a grid of pixels), then create a series of rays, one for each
pixel, starting from the camera (eye) through the pixel into the scene. Whichever
closest object the ray hits, we assign that object’s color to the pixel.

Ray casting (and ray tracing, which we will study later) is easiest when the
scene contains simple shapes such as spheres, planes, etc., but can also be done
on more complex objects comprised of triangle meshes. In this brief introduction,
we limit our scene to spheres, planes, and boxes. Later, we will also incorporate
textures and ADS lighting, as well as reflection, refraction, and shadows.

Defining the 2D Texture Image

The ray cast image is generated on a 2D texture that is initially defined in
the Java/JOGL application. The Java code is shown in Program 16.2. It starts
by defining the width and height of the texture on which the ray cast image is

400 B Computer Graphics Programming in OpenGL with Java, Third Edition

built (and ultimately displayed), and allocating a byte array for the texture of size
width*height. As explained earlier, there is one work group per pixel, so the X
and Y dimensions for the work group abstract grid are set equal to the texture
dimensions.

The init() method sets each of the entries to color values corresponding to
the color pink. Since our algorithm is intended to send a ray through each pixel
(and thus calculate the color for each and every one of them), the presence of any
remaining pink in the resulting image indicates a likely bug in our implementa-
tion. The init() method then creates an OpenGL texture object and associates it with
the allocated memory. Next, a rectangle (or “quad”) consisting of two triangles is
defined that is used for displaying the ray cast texture image; its vertices and cor-
responding texture coordinates are each loaded into their own buffers. Finally, the
two shader programs are generated: (1) the ray casting compute shader program
and (2) a simple shader program that displays the ray cast texture image on the
rectangular quad.

[[¥¥1 Building and Displaying the Ray Cast Image

The display() method is broken down into “phase 1”” and “phase 2”, as outlined
earlier. Phase 1 uses the ray casting compute shader program, binds the texture
image, and then initiates the shader with glDispatchCompute() as described earlier.
Rather than binding the texture image to a sampler, as we did in previous chapters,
we used glBindimageTexture() to bind the texture image to an OpenGL image unit.
Image units are distinct from samplers, and in this case, make accessing the indi-
vidual pixels from within the shader more convenient. The call to glFinish() is there
to ensure that, as described previously, we don’t try to draw the ray cast image
until it is entirely built. Then, phase 2 simply draws that image on the two-triangle
quad using the basic techniques described in Chapter 5.

Program 16.2 Ray Casting
Java/JOGL Application

private int screenQuadShader, raytraceComputeShader;

private int raytraceRenderWidth = 512; // also set window width & height to these values
private int raytraceRenderHeight = 512;
private int workGroupsX = raytraceRenderWidth;

Chapter 16 - Ray Tracing and Compute Shaders I 401

private int workGroupsY = raytraceRenderHeight;
private int workGroupsZ = 1;

private int[] screenTexturelD = new int[1]; // The texture ID for the render area
private byte[] screenTexture = new byte[raytraceRenderWidth * raytraceRenderHeight * 16];

// other variable declarations for VAOs, VBOs, efc., as before

public void init(GLAutoDrawable drawable)

{ GL4 gl =(GL4) GLContext.getCurrentGL ();

// set the initial texture pixel colors to pink — if pink appears, there might be an error at that pixel
for (int i=0; i<raytraceRenderHeight; i++)
{ for (intj=0; j<raytraceRenderHeight; j++)

{ screenTexture[i*raytraceRenderWidth *4 +j*4 + 0] =
screenTexture[i*raytraceRenderWidth * 4 +j* 4 + 1] =
screenTexture[i*raytraceRenderWidth * 4 +j* 4 + 2] =
screenTexture[i*raytraceRenderWidth * 4 +j* 4 + 3] =

} ol

ByteBuffer screenTextureBuffer = Buffers.newDirectByteBuffer(screenTexture);

250;
128;
255;
255;

byte
byte
byte
byte

PR
_—— — —

// create the OpenGL Texture on which to ray cast the scene

gl.glGenTextures(1, screenTexturelD, 0);

gl.glBindTexture(GL_TEXTURE_2D, screenTexturelD[0]);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

gl.glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA, raytraceRenderWidth, raytraceRenderHeight,
0, GL_RGBA, GL_UNSIGNED_BYTE, screenTextureBuffer);

// create quad vertices and texture coordinates for rendering the finished texture to the window
float[] fullscreenQuadVerts =
{ -1.0f, 1.0f, 0.0f, -1.0f-1.0f, 0.0f, 1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0, 1.0f, 1.0f, 0.0f, -1.0f, 1.0f, 0.0f
3
float[] fullscreenQuadUVs =
{ 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f
3

gl.glGenVertexArrays(vao.length, vao, 0);
gl.gIBindVertexArray(vao[0]);
gl.glGenBuffers(vbo.length, vbo, 0);

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]); // vertex positions
FloatBuffer quadVertsBuf = Buffers.newDirectFloatBuffer(fullscreenQuadVerts);
gl.glBufferData(GL_ARRAY_BUFFER, quadVertsBuf.limit()*4, quadVertsBuf, GL_STATIC_DRAW);

402 B Computer Graphics Programming in OpenGL with Java, Third Edition

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[1]); // texture coordinates
FloatBuffer quadUVsBuf = Buffers.newDirectFloatBuffer(fullscreenQuadUVs);
gl.glBufferData(GL_ARRAY_BUFFER, quadUVsBuf.limit()*4, quadUVsBuf, GL_STATIC_DRAW);

screenQuadShader = Utils.createShaderProgram("code/vertShader.glsl", "code/fragShader.glsl");
raytraceComputeShader = Utils.createShaderProgram("code/raytraceComputeShader.glsl");

}

public void display(GLAutoDrawable drawable)
{ GL4 gl =(GL4) GLContext.getCurrentGL ();

/| ========= Phase 1 invoke the ray tracing compute shader =============
gl.glUseProgram(raytraceComputeShader);

// bind the screen_texture_id texture to an image unit as the compute shader’s output
gl.gIBindimageTexture(0, screenTexturelD[0], O, false, 0, GL_WRITE_ONLY, GL_RGBAS8);

// start the compute shader with the specified number of work groups
gl.gIDispatchCompute(workGroupsX, workGroupsY, workGroupsZ);
gl.glFinish(); // block until all previous shader computation is complete

/| ========= Phase 2 draw the resulting texture =============
gl.glUseProgram(screenQuadShader);
gl.glClear(GL_COLOR_BUFFER_BIT);
gl.glClear(GL_DEPTH_BUFFER_BIT);

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);

gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
gl.glVertexAttribPointer(1, 2, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(1);

gl.glActiveTexture(GL_TEXTUREO);
gl.glBindTexture(GL_TEXTURE_2D, screenTexturelD[0]);

gl.glEnable(GL_DEPTH_TEST);
gl.glDepthFunc(GL_LEQUAL);
gl.glDrawArrays(GL_TRIANGLES, 0, 6);

}

// the rest of the application as before

The phase 2 shaders then fetch the pixels that were put into the texture object
by the phase 1 shaders (and subsequently bound to texture unit 0 in the Java/JOGL
application) and use them to display the ray cast image.

Chapter 16 - Ray Tracing and Compute Shaders [l 403

Program 16.2 Ray Casting (Continued)

Vertex Shader

#version 430

layout (location=0) in vec3 vert_pos;
layout (location=1) in vec2 vert_uv;
out vec2 uv;

void main(void)
{ gl_Position = vec4(vert_pos, 1.0);
uv = vert_uv;

}

Fragment Shader

#version 430
layout (binding=0) uniform sampler2D tex;
in vec2 uv;

void main()
{ gl_FragColor = vec4(texture2D(tex, uv).rgb, 1.0);
}

The phase 1 ray cast compute shader completes Program 16.2. This shader is
the heart of the ray casting program. We give the code first, then follow it with
detailed explanation of the algorithm and implementation.

Program 16.2 — Ray Casting (Continued)
Compute Shader

#version 430

layout (local_size_x=1) in;

layout (binding=0, rgba8) uniform image2D output_texture;
float camera_pos_z = 5.0;

struct Ray

{ vec3start; //origin of the ray
vecd dir; // normalized direction of the ray

3

struct Collision

{ floatt; // distance along ray at which this collision occurs
vec3 p; // world position of the collision
vecd n; // surface normal at the collision point

404 B Computer Graphics Programming in OpenGL with Java, Third Edition

bool inside; // whether the ray started inside of the object and collided while exiting
int object_index; // index of the object this collision hit

3

float sphere_radius = 2.5;

vec3 sphere_position = vec3(1.0, 0.0, -3.0);

vec3 sphere_color = vec3(0.0, 0.0, 1.0); // sphere color is blue

vec3 box_mins = vec3(-2.0,-2.0, 0.0);
vec3 box_maxs = vec3(-0.5, 1.0, 2.0);
vec3 box_color = vec3(1.0, 0.0, 0.0); // box color is red

I
// Checks if Ray r intersects the box
I
Collision intersect_box_object(Ray r)
{ // Calculate the box’s world mins and maxs:

vec3 t_min = (box_mins - r.start) / r.dir;

vec3 t_max = (box_maxs - r.start) / r.dir;

vec3 t_minDist = min(t_min, {_max);

vec3 t_maxDist = max(t_min, t_max);

float t_near = max(max(t_minDist.x, t_minDist.y), _minDist.z);

float t_far = min(min(t_maxDist.x, t_maxDist.y), t_maxDist.z);

Collision c;
c.t=t_near;
c.inside = false;

// If the ray didn't intersect the box, return a negative t value
if (t_near >=t_far || t_far <= 0.0)
{ ct=-10;

return c;

}

float intersect_distance = t_near;
vec3 plane_intersect_distances = t_minDist;

//if t_near < 0, then the ray started inside the box and left the box
if (t_near < 0.0)
{ ct=tfar;

intersect_distance = t_far;

plane_intersect_distances = t_maxDist;

c.inside = true;

}

// Checking which boundary the intersection lies on

int face_index = 0;

if (intersect_distance == plane_intersect_distances.y) face_index = 1;
else if (intersect_distance == plane_intersect_distances.z) face_index = 2;

Chapter 16 - Ray Tracing and Compute Shaders Il 405

// Create the collision normal
c.n =vec3(0.0);
c.nfface_index] = 1.0;

// If we hit the box from the negative axis, invert the normal
if (r.dir[face_index] > 0.0) c¢.n *=-1.0;

// Calculate the world-position of the intersection
c.p =r.start + c.t * r.dir;
return c;

}

V/
// Checks if Ray r intersects the sphere
V/
Collision intersect_sphere_object(Ray r)
{ floatga = dot(r.dir, r.dir);

float gb = dot(2*r.dir, r.start-sphere_position);

float qc = dot(r.start-sphere_position, r.start-sphere_position) - sphere_radius*sphere_radius;

// Solving forqa * "2+ qb *t+ qc=0
floatqd=qb*qgb-4*qa*qc;

Collision c;
c.inside = false;

if (qd < 0.0) //no solution in this case
{ ct=-10;
return c;

}

float t1 = (-gb + sqrt(qd)) / (2.0 * qa);
float t2 = (-gb - sqrt(qd)) / (2.0 * ga);
float t_near = min(t1, t2);

float t_far = max(t1, t2);

c.t=1t_near,

if (t_far <0.0) // sphere is behind the ray, no intersection
{ ct=-10;
return c;
!
if (t_near < 0.0) / the ray started inside the sphere
{ ct=tfar;
c.inside = true;

}

cp=rstart+ct*rdir;, /world position of the collision

c.n = normalize(c.p - sphere_position); 1/ use the world position to compute the surface normal

406 M Computer Graphics Programming in OpenGL with Java, Third Edition

if (c.inside) //if collision is leaving the sphere, flip the normal
{ cn*=-10;
}

return c;

}

Ve
// Returns the closest collision of a ray

// object_index == -1 if no collision

// object_index == 1 if collision with sphere
// object_index == 2 if collision with box

Ve

Collision get_closest_collision(Ray r)
{ Collision closest_collision, cSph, cBox;
closest_collision.object_index = -1;

cSph = intersect_sphere_object(r);
cBox = intersect_box_object(r);

if ((cSph.t > 0) && ((cSph.t < cBox.t) || (cBox.t < 0)))
{ closest_collision = cSph;
closest_collision.object_index = 1;

}

if ((cBox.t > 0) && ((cBox.t < cSph.t) || (cSph.t < 0)))

{ closest_collision = cBox;
closest_collision.object_index = 2;

}

return closest_collision;

}

V/
// This function casts a ray into the scene and returns the final color for a pixel
V/
vec3 raytrace(Ray r)
{ Collision ¢ = get_closest_collision(r);
if (c.object_index == -1) return vec3(0.0); // if no collision, return black
if (c.object_index == 1) return sphere_color;
if (c.object_index == 2) return box_color;

}

void main()

{ intwidth =int(gl_NumWorkGroups.x); // one workgroup = one invocation = one pixel
int height = int(gl_NumWorkGroups.y);
ivec2 pixel = ivec2(gl_GloballnvocationID.xy);

Chapter 16 - Ray Tracing and Compute Shaders Il 407

// convert this pixel's screen space location to world space

float x_pixel = 2.0 * pixel.x / width — 1.0;

float y_pixel = 2.0 * pixel.y / height - 1.0;

// Get this pixel's world-space ray

Ray world_ray;

world_ray.start = vec3(0.0, 0.0, camera_pos_z);

vecd world_ray_end = vec4(x_pixel, y_pixel, camera_pos_z - 1.0, 1.0);
world_ray.dir = normalize(world_ray_end.xyz - world_ray.start);

// Cast the ray out into the world and intersect the ray with objects
vec3 color = raytrace(world_ray);
imageStore(output_texture, pixel, vecd(color, 1.0));

The declarations at the top of the compute shader start by setting the work-
group size to 1, as described earlier. A uniform variable for the output texture
image is then defined, as well as the camera position (in this example we limit the
camera to being positioned along the Z axis, facing in the negative Z direction).
Then, structs are declared for defining rays (their origins and directions) and col-
lisions. Collisions include information about a ray intersecting an object, e.g., the
distance along the ray, collision location in world coordinates, which object is hit,
and the normal at the surface point of the collision, which will be used later when
we add lighting. The declarations conclude by creating variables for the location
and color of the objects we intend to draw (in this case, a box and a sphere).

The main() function, shown at the bottom of the code listing, starts by using the
work group’s invocation|D to determine the pixel’s X/Y location in the screen-space
grid, then converts that from the range [0..width] to the range [-1..+1] correspond-
ing to where the pixel is positioned in the scene’s world coordinate system. A
ray starting at the camera position and passing through this point is then created,
assuming that the render grid is placed a distance of 1.0 (along the Z axis) in front
of the camera. main() then calls raytrace(), which accepts a ray and returns the color
of the nearest object hit by that ray. main() then stores that color in the image.

The raytrace() function calls get_closest_collision(), which returns a Collision
object containing the index of the first object with which the ray collides; ray-
trace() then returns the color of that object. If the ray doesn’t collide with any
object in the scene, raytrace() returns the default color (set to black in this example).
The get_closest_collision() function works by finding the collision point(s) with the
sphere object and the box object (via the functions intersect_sphere_object() and

408 B Computer Graphics Programming in OpenGL with Java, Third Edition

intersect_box_object(), respectively), and returning the collision that has the shortest
ray. If there is no colliding object, a special value of -1 is returned.

Ray-Sphere Intersection

Computing the intersection(s) of a ray with a sphere is derived using geometry
and is well-documented [S16]. Although the derivation is relatively simple, here we
describe only the solution. There are either 0, 1, or 2 intersection points, depending
on if the ray misses the sphere, skims the surface, or enters on one side and exits
out the other. Given the ray’s origin r; and direction ry, and the sphere’s position s,
and radius s, then finding the distance t along the ray at which the intersection(s)
occur requires solving the following quadratic equation:

(r, o1t + (2rd . |2 -52=0 (1]

7 —Sp|)t+

’/?9 _Sp

First, we compute its discriminant!:

A=<27‘d |7, —sp|)2—4|rd|2(|rs —Sp|2—sf)

If A <0, we can stop because the ray misses the sphere (and to avoid attempt-
ing to take the square root of a negative number). When A is not less than zero,
there are then two solutions to equation [1]:

(—2rd e|r. —sp|)i\/K

2(rd 'rd)2

=

The smaller and larger of the two resulting values of 7 are denoted t_near and
t_far, respectively.

* When both t_near and t_far are negative, the entire sphere is behind the
ray and there is no intersection.

I In the code, we sometimes compute the square of the length of a vector /" by computing
V eV, for performance reasons.

Chapter 16 - Ray Tracing and Compute Shaders [l 409

» When t_near is negative and t_far is positive, then the ray started inside
the sphere and the first intersection point is at t_far.

* When both are positive, the first intersection point is at t_near. Note that
this also handles the case of the ray skimming the surface of the sphere,
when both t_near and t_far are positive and equal to each other (which
occurs when the discriminant A is zero).

Finally, once the value of t has been determined, the corresponding point is
easily calculated:

collision point =r, +tx*r,

Later, we will need the surface normal at the collision point, hereafter called
the collision normal, which is a vector from the center of the sphere to the intersec-
tion point:

collisionnormal = normalize(collision point —sp)

noting that if the ray started inside the sphere, then the collision normal would
need to be negated.

IT¥XA Axis-Aligned Ray-Box Intersection

Computing the intersection(s) of a ray with a box is similarly well-documented
and derived using geometry, the most common approach having been derived by
Kay and Kajiya [K86]. Again we describe only the solution, as adapted for GPU
vector operations [H89]. And as for the sphere, a ray will intersect a box at 0, 1, or
2 points.

Program 16.2 assumes the box is aligned with the world axes (we handle other
orientations later). We define the box using two points at diagonally-opposite
corners; i.€., Xmin> Ymins Zmin) 30d Xinax> Ymaxs Zmax)- 1N Program 16.2, those are box_
mins and box_maxs at (-2, -2, 0) and (-0.5, 1, 2), respectively. These two points are
then used to identify the six X/Y/Z planes that comprise the box. For example, the
two “X” planes are specified as the X values for the two box sides parallel to the
YZ plane. Finding the distance t at which the ray intersects each of the six planes
can be done efficiently with GLSL vec3 operations (see [S11] for a derivation):

410 M Computer Graphics Programming in OpenGL with Java, Third Edition

l = (bo'xmins B }’;) / rd

mins

t = (box

maxs

_Vs)/rd

maxs

The resulting ¢,,,, and ¢,,,,, vectors contain minimum and maximum distances
to planes defined by the X, Y, and Z-aligned box sides. The smaller and larger of
each of those can then be found efficiently as follows:

maxs

tminDist = min(t

mins ’tmaxs)
tmaxDist = max (t

mins > tmaxs)

(In GLSL, the “min” of two vec3s is a vec3 containing the smaller of each pair
of X, Y, and Z elements.)

The vector t,,pit then contains (distance r, to X, distance rg to y,,,, distance r,
to Z,,in)-

The vector t,,,,pi; then contains (distance rg to X,,,,, distance r, to y,..,, distance r,
to Zmax)-

Some of the plane collision points are actually outside of the box. The distance
from the ray origin to the nearest collision point that is actually on a box surface is
the largest of the t;,p Values, and the distance from the ray origin to the furthest
collision point that is on a box surface is the smallest of the t,,,pi values:

t near = max (tminDist _, tminDist) tminDistz)

t far =min (tmaxDist, , tmaxDist , tmaxDistZ)

There are then three cases:

e The ray doesn’t intersect the box at all, which is the case when {_near >
t_far orift_far<0.

e There is one collision point when the ray starts inside the box and exits
the box, which is the case when t_near <0 and t_far > 0.

* Otherwise, there are two collision points which occur at distances t_near
and t_far.

Chapter 16 - Ray Tracing and Compute Shaders I 411

Computing the world coordinates of the nearest collision is then done the same
as for the sphere. Computing the normal at this point is then either (+1,0,0), (0,£1,0)
or (0,0,£1), depending on which surface the collision occurs.

[I¥X& Output of Simple Ray Casting Without Lighting

Figure 16.3 shows the output of Program 16.2. The scene contains a red sphere
on the right, and a green box on the left. The box is axis-aligned, and is placed
slightly closer to the camera than the sphere. Note that lighting has not been
applied, so the surfaces appear flat and the sphere just looks like a disk.

:,’_:, Program 16.2 - simple ray casting

Figure 16.3
Output of Program 16.2, showing simple ray casting without lighting.

[¥X3 Adding ADS Lighting

ADS (“ambient-diffuse-specular”) lighting was covered in Chapter 7. Here
we implement it in the ray casting compute shader by adding code that specifies
the global ambient light, the position and ADS characteristics of a positional light,
ADS material characteristics of the objects in the scene, and a function to compute
the ADS lighting in the same manner as was done in Chapter 7.

412 B Computer Graphics Programming in OpenGL with Java, Third Edition

Program 16.3 shows the additions and changes to the ray casting compute
shader. There are declarations added at the top of the shader, and a new function
ads_phong_lighting(). Changes to the raytrace() function are highlighted, in which
the lighting result is multiplied by the color of the object. In this simple example,
both the sphere and the box have the same material characteristics. The output is
shown in Figure 16.4.

Program 16.3 Adding Lighting
Compute Shader

vecd global_ambient = vec4(0.3, 0.3, 0.3, 1.0);

vec4 objMat_ambient = vec4(0.2, 0.2, 0.2, 1.0);
vec4 objMat_diffuse = vec4(0.7, 0.7, 0.7, 1.0);
vecd objMat_specular = vec4(1.0, 1.0, 1.0, 1.0);
float objMat_shininess = 50.0;

vec3 pointLight_position = vec3(-3.0, 2.0, 4.0);
vecd pointLight_ambient = vec4(0.2, 0.2, 0.2, 1.0);
vec4 pointLight_diffuse = vec4(0.7, 0.7, 0.7, 1.0);
vecd pointLight_specular = vec4(1.0, 1.0, 1.0, 1.0);

vec3 ads_phong_lighting(Ray r, Collision c)
{ // Compute the ambient contribution from the ambient and positional lights
vecd ambient = global_ambient + pointLight_ambient * objMat_ambient;

// Compute the light's reflection on the surface

vec3 light_dir = normalize(pointLight_position - c.p);
vec3 light_ref = normalize(reflect(-light_dir, c.n));
float cos_theta = dot(light_dir, c.n);

float cos_phi = dot(normalize(-r.dir), light_ref);

// Compute the diffuse and specular contributions
vecd diffuse = pointLight_diffuse * objMat_diffuse * max(cos_theta, 0.0);
vec4 specular = pointLight_specular * objMat_specular * pow(max(cos_phi, 0.0), objMat_shininess);

vecé4 phong_color = ambient + diffuse + specular;
return phong_color.rgb;

}

vec3 raytrace(Ray r)
{ Collision ¢ = get_closest_collision(r);

Chapter 16 - Ray Tracing and Compute Shaders Il 413

if (c.object_index == -1) return vec3(0.0); // if no collision, return black
if (c.object_index == 1) return ads_phong_lighting(r,c) * sphere_color;
if (c.object_index == 2) return ads_phong_lighting(r,c) * box_color;

}

i Program 16.3 - lighting - a x

Figure 16.4
Qutput of Program 16.3, showing simple ray casting with lighting.

Adding Shadows

Ray casting provides a remarkably elegant method for detecting whether some-
thing is in shadow by leveraging some of the functions we have already written.
We do this by defining a “shadow feeler ray” starting at the collision point being
rendered, towards the position of the light. We then use our already-developed
get_closest_collision() function to determine the closest collider for that ray. If it is
closer than the positional light, then there must be an object in between the light
and the collision point, and the point must be in shadow.

Recall from Chapter 8 that the way we render the portion of an object that
is in shadow is by rendering only the ambient contribution. Therefore, in our
compute shader, a convenient place to put our shadow-detecting code is in the

414 B Computer Graphics Programming in OpenGL with Java, Third Edition

ads_phong_lighting() function that we developed in the previous section. Here, the
diffuse and specular contributions are initialized to zero, and only computed if
the collision point is determined to not be in shadow. Note also that the shadow
feeler ray starts at a slight offset away from the object (along the normal) to avoid
shadow acne (this is because without this offset, some of the feeler rays will imme-
diately bump into the object itself). The additions are shown in Program 16.4 and
are highlighted. The algorithm is considerably simpler than the shadow mapping
we learned in Chapter 8! Figure 16.5 shows the program’s output. The box is now
casting a shadow on the sphere.

Program 16.4 Adding Shadows
Compute Shader

vec3 ads_phong_lighting(Ray r, Collision c)
{ // Compute the ambient contribution from the ambient and positional lights
vec4 ambient = worldAmb_ambient + pointLight_ambient * objMat_ambient;

/ initialize diffuse and specular contributions
vec4 diffuse = vec4(0.0);
vec4 specular = vec4(0.0);

// Check to see if any object is casting a shadow on this surface
Ray light_ray;

light_ray.start = c.p + c.n * 0.01;

light_ray.dir = normalize(pointLight_position - c.p);

bool in_shadow = false;

// Cast the ray against the scene
Collision c_shadow = get_closest_collision(light_ray);

// If the ray hit an object and if the hit occurred between the surface and the light
if (c_shadow.object_index != -1 && c_shadow.t < length(pointLight_position - c.p))
{ in_shadow = true;

}

// If this surface is in shadow, don't add diffuse and specular components
if (in_shadow == false)
{ // Compute the light's reflection on the surface

vec3 light_dir = normalize(pointLight_position - c.p);

vec3 light_ref = normalize(reflect(-light_dir, c.n));

float cos_theta = dot(light_dir, c.n);

float cos_phi = dot(normalize(-r.dir), light_ref);

Chapter 16 - Ray Tracing and Compute Shaders Il 415

// Compute the diffuse and specular contributions
diffuse = pointLight_diffuse * objMat_diffuse * max(cos_theta, 0.0);
specular = pointLight_specular * objMat_specular * pow(max(cos_phi, 0.0), objMat_shininess);

vec4 phong_color = ambient + diffuse + specular;
return phong_color.rgb;

}

&y Program 16.4 - shadows - a x

Figure 16.5
Qutput of Program 16.4, showing simple ray casting with lighting and shadows.

[T¥XA Non-Axis-Aligned Ray-Box Intersection

So far, our box has been limited to an orientation where its X, Y, and Z axes
are parallel with the world axes. We now show how to include translation and
rotation, so that we can orient the box however we wish. Applying translation and
rotation on the box is conceptually similar to building a view matrix, as we did in
Chapter 4, although the details are slightly different.

We start by making sure that our box_mins and box_maxs variables define a
box shape that is centered at the origin. We also specify:

416 B Computer Graphics Programming in OpenGL with Java, Third Edition

+ the position where we wish to move the box, as a vec3

* X.,Y, and Z rotations around the box origin, as floats

Next, we build translation and rotation transform matrices using the buildTrans-
late() and buildRotate() functions described back in Section 3.10. The trick is then
to use the inverses of these matrices to modify the start point and direction of the
ray; specifically, we rotate the ray’s direction and rotate/translate the ray’s starting
point. The computations then proceed as before to generate the collision distance
(and of course determining whether the ray collides with the box at all). Once the
collision distance is determined, it is then used to compute the world collision
point as before, based on the actual ray start point and direction. Note that the
surface normal also needs to be rotated based on the rotation matrix (actually the
inverse-transpose of the rotation matrix, as we learned in Chapter 7).

The changes to intersect_box_object() are shown in Program 16.5 (highlighted),
along with an example set of box parameters for its shape, position, and orienta-
tion. The output is shown in Figure 16.6.

Program 16.5 Non-Axis-Aligned Box Intersection
Compute Shader

vec3 box_mins = vec3(-0.5, -0.5, -1.0);
vec3 box_maxs = vec3(0.5, 0.5, 1.0);
vec3 box_pos = vec3(-1, -0.5, 1.0);

const float DEG_TO_RAD = 3.1415926535 / 180.0;
float box_xrot = 10.0;
float box_yrot = 70.0;
float box_zrot = 55.0;

Collision intersect_box_object(Ray r)
{ // Compute the box's local-space to world-space transform matrices and their inverses
mat4 local_to_worldT = buildTranslate(box_pos.x, box_pos.y, box_pos.z);
mat4 local_to_worldR =
buildRotateY(DEG_TO_RAD * box_yrot)
* buildRotateX(DEG_TO_RAD * box_xrot)
* buildRotateZ(DEG_TO_RAD * box_zrot);
mat4 local_to_worldTR = local_to_worldT * local_to_worldR;
mat4 world_to_localTR = inverse(local_to_worldTR);
mat4 world_to_localR = inverse(local_to_worldR);

Chapter 16 - Ray Tracing and Compute Shaders W 417

// Convert the world-space ray to the box's local space:
vec3 ray_start = (world_to_localTR * vecé(r.start,1.0)).xyz;
vec3 ray_dir = (world_to_localR * vec4(r.dir,1.0)).xyz;

// Calculate the box's world mins and maxs:
vec3 t_min = (box_mins - ray_start) / ray_dir;
vec3 t_max = (box_maxs - ray_start) / ray_dir;
vec3 t1 = min(t_min, {_max);

vec3 t2 = max(t_min, t_max);

float t_near = max(max(t1.x,t1.y),1.2);

float t_far = min(min(t2.x, t2.y), 12.2);

/| The computations for determining the collision, which surface of the box
/I is intersected, and the normal at the collision are unchanged from before.
// There is one addition to the normal vector computation, highlighted below.

// If we hit the box from the negative axis, invert the normal
if(ray_dir{face_index] > 0.0) c.n *= -1.0;

// now convert the normal back into world space
c.n = transpose(inverse(mat3(local_to_worldR))) * c.n;

// Calculate the world-position of the intersection:
c.p =rstart + c.t * r.dir;
return c;

‘-:; Program 16.5 - non axis aligned box - [m] x

Figure 16.6
Output of Program 16.5 showing simple ray casting with a non-axis-aligned box.

418 B Computer Graphics Programming in OpenGL with Java, Third Edition

[[¥XA Determining Texture Coordinates

If we wish to apply a texture image to the objects in the scene, we need to
compute texture coordinates. In previous examples, each texture coordinate cor-
responded to a vertex in the model, and they were loaded into a VBO either proce-
durally or by reading them in from an .OBJ file. We cannot do that here, because
we aren’t using models — we aren’t even using vertices! Our shapes are the result
of computing ray intersections on mathematically-defined shapes, so we need to
extend our computations to determine texture coordinates.

This can be complicated, because the desired layout of the texture coordinates
can vary depending on the application. For example, the box might represent a
brick wall or it might be a skybox, each of which would require different texture
coordinate assignments. In the case of the sphere, it is a bit easier because the
layout of the texture images that we have been using (such as for the earth or the
moon) is by far the most common.

For the sphere, a clever trick is to use the computed surface normal to specify a
point on the surface, along with standard spherical coordinate methods, to find the
corresponding point in flattened 2D space. The derivations from classical geom-
etry are well-known [S16] and not repeated here. Given the normal vector N,

arcTan(—N,, N,)
2n
arcSin(—N,)

T

texCoord, = 0.5+

texCoord,=0.5—

For the box, our first example assumes the need is to simply apply a texture
image evenly over all surfaces, so we will scale it based on the longest box side.
One set of steps for doing this is:

1. Compute the collision point, using the world_to_local matrix previously
developed.

Determine the largest box side length.

3. Convert the X, Y, and Z collision point coordinates to the range [0..1],
based on the largest box side.

4. Divide each coordinate by the largest box dimension, so that the image
isn’t compressed along box sides.

Chapter 16 - Ray Tracing and Compute Shaders Il 419

5. Select (X.Y), (X,Z), or (Y,Z) as the texture coordinates, depending on
which surface the collision occurred.

Program 16.6 shows the additions and changes to the Java/JOGL program and
the compute shader. It textures the sphere with the earth image and the box with
the brick image. The output is shown in Figure 16.7.

Program 16.6 Adding Texture Coordinates
Java/JOGL Application

private int earthTexture, brickTexture; // added to the top-level declarations

public void init(GLAutoDrawable drawable)
{ ...
brickTexture = Utils.loadTexture("code/brick1.jpg");

earthTexture = Utils.loadTexture("code/earthmap1k.jpg");

}

public void display(GLAutoDrawable drawable)

{ ...
gl.giBindimageTexture(0, screenTexturelD[0], 0, false, 0, GL_WRITE_ONLY, GL_RGBAS8);

gl.glActiveTexture(GL_TEXTURE1);

gl.gBindTexture(GL_TEXTURE_2D, earthTexture);

gl.glActiveTexture(GL_TEXTUREZ2);

gl.gIBindTexture(GL_TEXTURE_2D, brickTexture);

gl.glActiveTexture(GL_TEXTUREOQ); // reset of active texture is required when using
// both image store and texture

gl.gIDispatchCompute(workGroupsX, workGroupsY, workGroupsZ);

Compute Shader

layout (binding=1) uniform sampler2D sampEarth;
layout (binding=2) uniform sampler2D sampBrick;

struct Collision
{ floatt; // value at which this collision occurs for a ray
vec3 p; // world position of the collision

420 B Computer Graphics Programming in OpenGL with Java, Third Edition

vec3 n; // normal of the collision

bool inside; // whether the collision occurs inside of the object

int object_index; // index of the object this collision hit

vec? fc; // texture coordinates for the object at the collision point

Collision intersect_sphere_object(Ray r)
{ ...
c.tex=0.5 + atan(-c.n.z, c.n.x) / (2.0*PI);
c.tey = 0.5 - asin(-c.n.y) / Pl;

return c;

}

Collision intersect_box_object(Ray r)
{ ...
// Compute texture coordinates.

// Start by computing the position in the box space that the ray collides with
vec3 cp = (world_to_localTR * vecé(c.p,1.0)).xyz;

// now compute largest box dimension

float totalWidth = box_maxs.x - box_mins.x;

float totalHeight = box_maxs.y - box_mins.y;

float totalDepth = box_maxs.z - box_mins.z;

float maxDimension = max(totalWidth, max(totalHeight, totalDepth));

// convert X/Y/Z coordinates to range [0..1], and divide by largest box dimension
float rayStrikeX = (cp.x + totalWidth/2.0) / maxDimension;
float rayStrikeY = (cp.y + totalHeight/2.0) / maxDimension;
float rayStrikeZ = (cp.z + totalDepth/2.0) / maxDimension;

/ finally, select (X,Y), (X,Z), or (Y,Z) as tex coordinates depending on box face
if (face_index == 0)
c.tc = vec2(rayStrikeZ, rayStrikeY);
else if (face_index == 1)
c.tc = vec2(rayStrikeZ, rayStrikeX);
else
c.tc = vec2(rayStrikeY, rayStrikeX);
return c;

vec3 raytrace(Ray r)
{ Collision ¢ = get_closest_collision(r);
if (c.object_index == -1) return vec3(0.0); / no collision

Chapter 16 -+ Ray Tracing and Compute Shaders I 421

if (c.object_index == 1) return ads_phong_lighting(r,c) * (texture(sampEarth, c.tc)).xyz;
if (c.object_index == 2) return ads_phong_lighting(r,c) * (texture(sampBrick, c.tc)).xyz;

}

i Program 16.6 - textures - O b

Figure 16.7
Example textures and output of Program 16.6, where texture coordinates are added.

If the box is to serve as a room box or skybox, the texture coordinates will
need to be computed slightly differently, so as to match the texturing methods we
saw in Chapter 9. We can start by adding a second box to the scene, specifically
an axis-aligned box as described back in Program 16.2, with a solid color. Figure
16.8 shows such a box of size 20x20x20 added to the scene. Because the camera
is positioned inside the box, only the inside faces of the box are visible. Note also
that in this example the objects in the scene cast shadows on the box, as would be
the case for a room box.

422 B Computer Graphics Programming in OpenGL with Java, Third Edition

¥4 room box with solid color - | >

Figure 16.8
Adding a simple axis-aligned room box with solid color?.

Computing texture coordinates so that we can apply a room box or skybox
texture depends on if we wish to use a single texture (such as the one in Figure 9.1)
or six separate textures (one for each face of the box). Program 16.7 implements
the latter approach, with an additional intersection method specifically to handle
room or sky boxes. The changes to both the Java/JOGL application and the com-
pute shader are shown. The six textures are loaded and assigned to texture units
in the Java program, sampled in the compute shader, and selected depending on
which face the ray collides with. Which of the six faces this is can be easily deter-
mined from the normal vector, since each box face has a different normal vector.
Texture coordinates are then computed in a manner similar to what was shown
in Program 16.6. Finally, note that as we add more and more objects to our scene,
the number of tests needed for determining which collision is the closest quickly
grows larger.

2 Note the seam on the lower right. The .01 offset of light_ray.start (to combat shadow acne) in
Program 16.4 is ineffective at the corners because the normal is tangential to an adjoining box
side. This isn’t an issue for skyboxes, on which shadows aren’t used.

Chapter 16 - Ray Tracing and Compute Shaders [l 423

Program 16.7 Adding Textures to the Skybox
Java/JOGL Application

private int xpTex, xnTex, ypTex, ynTex, zpTex, znTex; // added to the top-level declarations

public void init(GLAutoDrawable drawable)
{

xpTex = Utils.loadTexture
xnTex = Utils.loadTexture
ypTex = Utils.loadTexture
ynTex = Utils.loadTexture
zpTex = Utils.loadTexture
znTex = Utils.loadTexture

}

public void display(GLAutoDrawable drawable)
{

"code/cubeMap/xp.jpg")
"code/cubeMap/xn.jpg");
'code/cubeMap/yp.jpg");
)
)
)

'code/cubeMaplyn.jpg"
'code/cubeMap/zp.jpg"
"code/cubeMap/zn.jpg"

| L

gl.gIBindimageTexture(0, screenTexturelD[0], O, false, 0, GL_WRITE_ONLY, GL_RGBAS8);
gl.glActiveTexture(GL_TEXTURES3);
gl.gIBindTexture(GL_TEXTURE_2D, xpTex);
gl.glActiveTexture(GL_TEXTURE4);
gl.gIBindTexture(GL_TEXTURE_2D, xnTex);
gl.glActiveTexture(GL_TEXTURED);
gl.gIBindTexture(GL_TEXTURE_2D, ypTex);
gl.glActiveTexture(GL_TEXTURES);
gl.gIBindTexture(GL_TEXTURE_2D, ynTex);
gl.glActiveTexture(GL_TEXTURET);
gl.gIBindTexture(GL_TEXTURE_2D, zpTex);
gl.glActiveTexture(GL_TEXTURES);
gl.gIBindTexture(GL_TEXTURE_2D, znTex);
gl.glActiveTexture(GL_TEXTUREO);
gl.gIDispatchCompute(workGroupsX, workGroupsY, workGroupsZ);

Compute Shader

layout
layout
layout
layout

binding=3
binding=4
binding=5
binding=6

uniform sampler2D xpTex;
uniform sampler2D xnTex;
uniform sampler2D ypTex;
uniform sampler2D ynTex;

N N N
—_ ===

424 B Computer Graphics Programming in OpenGL with Java, Third Edition

layout (binding=7) uniform sampler2D zpTex;
layout (binding=8) uniform sampler2D znTex;

struct Collision

{

%

float t; // value at which this collision occurs for a ray

vec3 p; // world position of the collision

vec3 n; // normal of the collision

bool inside; // whether the collision occurs inside of the object

int object_index; // index of the object this collision hit

vec? fc; // texture coordinates for the object at the collision point
int face_index; // which box face collides (for textured skybox)

Collision intersect_sky_box_object(Ray r)

{

// Calculate face index for collision object (assumes that the normal vectors are of length 1)
if (c.n == vec3(1,0,0)) c.face_index = 0;

else if (c.n == vec3(-1,0,0)) c.face_index = 1;

else if (c.n == vec3(0,1,0)) c.face_index = 2,

else if (c.n == vec3(0,-1,0)) c.face_index = 3;

else if (c.n == vec3(0,0,1)) c.face_index = 4;

else if (c.n == vec3(0,0,-1)) c.face_index = 5;

// Compute texture coordinates

float totalWidth = skybox_maxs.x - skybox_mins.x;

float totalHeight = skybox_maxs.y - skybox_mins.y;

float totalDepth = skybox_maxs.z - skybox_mins.z;

float maxDimension = max(totalWidth, max(totalHeight, totalDepth));

// select tex coordinates depending on box face

float rayStrikeX = ((c.p).x + totalWidth/2.0)/maxDimension;
float rayStrikeY = ((c.p).y + totalHeight/2.0)/maxDimension;
float rayStrikeZ = ((c.p).z + totalDepth/2.0)/maxDimension;

if (c.face_index == 0) c.tc = vec2(rayStrikeZ, rayStrikeY);

else if (c.face_index == 1) c.tc = vec2(1.0-rayStrikeZ, rayStrikeY);
else if (c.face_index == 2) c.tc = vec2(rayStrikeX, rayStrikeZ);
else if (c.face_index == 3) c.tc = vec2(rayStrikeX, 1.0-rayStrikeZ);
else if (c.face_index == 4) c.tc = vec2(1.0-rayStrikeX, rayStrikeY);
else if (c.face_index == 5) c.tc = vec2(rayStrikeX, rayStrikeY);
return c;

e e

Chapter 16 -

Collision get_closest_collision(Ray r)

{ ..

Collision closest_collision, cSph, cBox, cSBox;

cSBox =

intersect_sky_box_object(r);

// determine which collision is the closest

if ((cSBox.t > 0) && ((cSBox.t < cSph.t) || (cSph.t < 0)) && ((cSBox.t < cBox.t) || (cBox.t < 0)))

{ closest_collision = cSBox;
closest_collision.object_index = 3;

}

return closest_collision;

}

vec3 raytrace(Ray r)

{ Collision ¢ = get_closest_collision(r);

If (C Object_index ==

(C Object_index ==
(C Object_index ==
(

if (c.object_index == 3)
if (c.face_index ==

else if (c.face_index ==
else if (c.face_index ==
c.face_index ==
c.face_index ==
else if (c.face_index ==

else if
else if

(
(
(
(

-1) return vec3(0.0); // no collision
) return ads_phong_lighting(r,c) * (texture(sampEarth, c.tc)).xyz;
) return ads_phong_lighting(r,c) * (texture(sampBrick, c.tc)).xyz;

return texture
return texture
return texture
return texture

—_ = —
AAAA

znTex, c.tc).xyz;
zpTex, c.tc).xyz;

Ray Tracing and Compute Shaders I 425

// this example is a skybox, so we return only the texture, without lighting

) return texture(xnTex, c.tc).xyz;
) return texture(xpTex, c.tc).xyz;
ynTex, c.ic).xyz;
ypTex, c.tc).xyz;

).

).

// sample -X face texture image
// sample +X face texture image
// sample -Y face texture image
// sample +Y face texture image
// sample -Z face texture image
// sample +Z face texture image

Notice that in Program 16.7, we did not include ADS lighting when the ray’s
closest collision is the skybox (this can be seen in the raytrace() function in the
compute shader), because a skybox should not respond to lighting. In the case of
a room box, we would include ADS lighting, but only if the images of the cube
faces strictly correspond to the walls of a room. Figure 16.9 shows the output of
Program 16.7, with and without ADS lighting applied to the skybox (ADS lighting
is applied to the other objects). Comparing Figures 16.8 and 16.9 illustrates why
lighting effects are generally appropriate for room boxes, but not for skyboxes.

426 B Computer Graphics Programming in OpenGL with Java, Third Edition

ﬁ Program 16.7 - lighting as if roombox =] X ﬁ Program 16.7 - lighting as if skybox e] X

Figure 16.9
Qutput of Program 16.7 with and without ADS lighting applied to a skybox.

Plane Intersection and Procedural Textures

In the previous examples, textures were provided in the form of texture image
files. In some cases, a surface texture is sufficiently simple that it can be cre-
ated procedurally, with the advantage that such textures are less likely to exhibit
image-related artifacts.

In Program 16.8, we add a plane object (more precisely, a plane segment) to the
scene, serving as a sort of table-top surface below the objects. Shadows are cast
onto the plane object, but not onto the skybox. The plane has been textured with a
checkerboard pattern, generated procedurally.

Computing the intersection point of a ray with a plane is significantly easier
than it was for the sphere and the box because a plane has no “inside” that needs
to be considered, so there is always at most one intersection point to consider. The
derivation is well documented [S16]. Using standard geometry, the distance t along
a ray starting at position 7, with direction »;, when it intersects a horizontal plane
centered at the origin with normal n, = (0,1,0) is

= (o) o)

Chapter 16 - Ray Tracing and Compute Shaders Il 427

The intersect point is then, as before,
collision point =r, +tx*r,

Given the plane’s width w (i.e., on the x-axis) and depth d (i.e., on the z-axis),
the ray misses the plane segment when

. . w . . d
|colllszonP0mtx| > > or |collzs10nP0mtz| > 3

These can be generalized to planes at an arbitrary location and rotation using
the non-axis-aligned methods described previously in Section 16.2.8. Similarly,
the surface normal at the collision point, which so far has been fixed as (0,1,0),
may be rotated if the plane is not aligned with the XZ-axes. Texture coordinates
are just the collisionPoint X and z coordinates, normalized to the range [0.1].

Computing the procedural checkerboard pattern of white and black colors can
be done by scaling the texture coordinates up by the desired number of squares in
the checkerboard, and then taking that result modulo 2. The result of 0 or 1 is then
returned as either color (0,0,0) or (1,1,1) — i.e., black or white — respectively.

Note that as we increase the number of objects, the test for which collision is
the closest (done in the get_closest_collision() function) is becoming increasingly
complicated; we improve this design later. The added code for both the plane inter-
section and the procedural texture are given in Program 16.8, with the resulting
output shown in Figure 16.10. All of the changes are in the compute shader.

Program 16.8 Plane Intersection and Procedural Texturing

Compute Shader

vec3 plane_pos = vec3(0, -2.5, -2.0); // position of the plane
float plane_width = 12.0;

float plane_depth = 8.0;

float plane_xrot = 0.0; // rotation of the plane
float plane_yrot = 0.0;

float plane_zrot = 0.0;

428 B Computer Graphics Programming in OpenGL with Java, Third Edition

Collision intersect_plane_object(Ray r)
{ // Compute the plane's local-space to world-space transform matrices and their inverses

}

mat4 local_to_worldT = buildTranslate(plane_pos.x, plane_pos.y, plane_pos.z);

mat4 local_to_worldR = buildRotateY (plane_yrot) * buildRotateX(plane_xrot) *
buildRotateZ(plane_zrot);

mat4 local_to_worldTR = local_to_worldT * local_to_worldR;

mat4 world_to_localTR = inverse(local_to_worldTR);

mat4 world_to_localR = inverse(local_to_worldR);

// Convert the world-space ray to the plane's local space
vec3 ray_start = (world_to_localTR * vecé(r.start,1.0)).xyz;
vec3 ray_dir = (world_to_localR * vec4(r.dir,1.0)).xyz;

Collision ¢;
c.inside = false; //there is no "inside" of a plane

// compute intersection point of ray with plane
c.t = dot((vec3(0,0,0) - ray_start),vec3(0,1,0)) / dot(ray_dir, vec3(0,1,0));

// Calculate the world-position and plane-space positions of the intersection
c.p =r.start + c.t * r.dir;
vec3 intersectPoint = ray_start + c.t * ray_dir;

// If the ray didn't intersect the plane object, return a negative t value
if ((abs(intersectPoint.x) > (plane_width/2.0)) || (abs(intersectPoint.z) > (plane_depth/2.0)))
{ ct=-10;

return c;

}

// Create the normal, invert if the ray hits the plane from underneath, and convert to world space
c.n=vec3(0, 1, 0);

if(ray_dir.y > 0.0) c.n *=-1.0;

c.n = transpose(inverse(mat3(local_to_worldR))) * c.n;

// Compute texture coordinates

float maxDimension = max(plane_width, plane_depth);
c.tc = (intersectPoint.xz + plane_width/2.0)/maxDimension;
return c;

Collision get_closest_collision(Ray r)

{

Collision cPlane;
cPlane = intersect_plane_object(r);

if ((cPlane.t > 0) &&

Chapter 16 - Ray Tracing and Compute Shaders I 429

((cPlane.t < cSph.t) || (cSph.t < 0))&&((cPlane.t < cBox.t) || (cBox.t < 0))&&((cPlane.t < cRBox.t)
|| (cRBox.t < 0)))
{ closest_collision = cPlane;
closest_collision.object_index = 4; // object_index of 4 designates collision with the plane

}
-

vec3 checkerboard(vec? tc)

{ float tileScale = 24.0;
float tile = mod(floor(tc.x * tileScale) + floor(tc.y * tileScale), 2.0);
return tile * vec3(1,1,1);

}

vec3 raytrace(Ray r)

{

if (c.object_index == 4) return ads_phong_lighting(r,c) * (checkerboard(c.tc)).xyz;

gj Program 16.8 - plane w/checkerboard texture — — O X

Figure 16.10
Output of Program 16.8, showing the addition of a plane with a procedural checkerboard texture.

430 B Computer Graphics Programming in OpenGL with Java, Third Edition

RAY TRACING

So far, all of the results we have seen from Programs 16.2 through 16.8 could
have been accomplished with the methods described earlier in the book using
models and buffers (and probably more efficiently). We now extend our ray cast-
ing program to do full ray tracing, which extends the capabilities for lighting and
reflection beyond what we have been able to perform up to now.

The ray casting algorithm described in Section 16.2 involved sending out a
single ray per pixel, identifying whether (and where) it first encounters an object
in the scene, and then painting the pixel accordingly. However, we have the option
of generating a new ray from the intersection point (such as a ray that simulates a
reflection off of the surface, which we can use the surface normal to generate) and
then seeing where that new ray leads. These bounced rays are called secondary
rays, and these can be used to generate reflections, refractions, and other effects.
We have actually already seen one example of a secondary ray: in Program 16.4,
when we tested to see if an object was in shadow, we did so by generating a sec-
ondary ray from the collision point to the light source and checked to see if that
secondary ray collided with an intervening object.

[TXNH Reflection

Perhaps the most obvious use for secondary rays is to generate reflections
of objects off of each other. If we color an object based solely on a secondary
reflected ray, it will behave like a pure mirror. Or, we might choose to blend an
object’s color with the color obtained by a reflected ray, depending on the material
qualities we are trying to simulate. We have already seen GLSL’s reflect() function,
which is useful here. Recall that the reflect() function takes an incident vector and
a surface normal and returns the direction of a reflection vector.

In Program 16.9, we extend Program 16.8 so as to generate a single secondary
reflection ray when the initial ray collides with the sphere. The sphere color is then
set to the color encountered by the secondary ray (also incorporating ADS light-
ing). The result is shown in Figure 16.11.

Chapter 16 - Ray Tracing and Compute Shaders I 431

Program 16.9 Adding a Single Secondary Reflection Ray
Compute Shader

vec3 raytrace2(Ray r)
{ //this function is identical to raytrace() from Program 16.7 (see text for explanation)

}

vec3 raytrace(Ray r)
{ Collision ¢ = get_closest_collision(r);
if (c.object_index == -1) return vec3(0.0); // no collision
if (c.object_index == 1)
{ /in the case of the sphere, determine the color by generating a secondary ray
Ray reflected_ray;
// compute start point of secondary ray, offset slightly to avoid colliding with the same object
reflected_ray.start = c.p + c¢.n *0.001;

reflected_ray.dir = reflect(r.dir, c.n);
vec3 reflected_color = raytrace2(reflected_ray);
return ads_phong_lighting(r,c) * reflected_color;

ﬁj Program 16.9 - reflective sphere

Figure 16.11
Output of Program 16.9 showing a single reflected ray at the sphere object.

432 B Computer Graphics Programming in OpenGL with Java, Third Edition

Note that the sphere is now acting as a mirror, reflecting the surrounding
skybox and the neighboring brick box and checkerboard plane. Recall that back
in Chapter 8, we simulated a reflective object using environment mapping. The
drawback there was that the environment-mapped objects were able to reflect
the skybox, but not neighboring objects. By contrast, here ray tracing enables the
reflective object to reflect all neighboring objects, in addition to the skybox. Also
note that the front of the skybox (otherwise unseen because it is behind the cam-
era) is now reflected in the sphere.

Figure 16.12 shows the result when we make the box object reflective and use
the earth texture for the sphere. We have moved the box object behind the sphere
so that its reflections are visible.

&b Program 16.9 - reflective box - | >

Figure 16.12
Single reflected ray at the box object.

In the code shown in Program 16.9, it would have been preferable to eliminate
the raytrace2() function altogether and replace the call to raytrace2() with a recursive
call to raytrace(). Unfortunately, GLSL doesn’t support recursion, so we duplicated
the function. Later, as we increase the number of secondary rays, we will build an
iterative version of raytrace() that keeps track of recursive ray generation.

Chapter 16 - Ray Tracing and Compute Shaders [l 433

It is also worth pointing out one important detail in the code for Program 16.9.
The collision point of the initial ray becomes the starting point of the secondary
ray, so one would naturally expect the following:

reflected_ray.start = c.p;

However, the code instead contains the following line:

reflected_ray.start = c.p + ¢.n * 0.001;

This causes the secondary ray to start at a very small distance away, in the direc-
tion of the surface normal at the collision point, from the object that was just collided.
The purpose of this adjustment is to avoid an artifact very similar to shadow acne
(which we saw in Chapter 8). If we were to actually start the reflection ray exactly
at ¢.p, then when the reflection ray is built, rounding errors will sometimes cause it
to immediately collide again with the same object (at nearly the exact same point).
Figure 16.13 shows the same scene as previously shown in Figure 16.12, except with-
out the correction. Surface acne is now evident on the reflective box object.

P reflection surface acne — O ped

Figure 16.13
Surface acne.

434 B Computer Graphics Programming in OpenGL with Java, Third Edition

TX¥A Refraction

What happens when an object is transparent? Of course, we expect to see what
lies behind it (at least partially). As we saw in Chapter 14, OpenGL has support
for rendering with transparency, and there are commands for blending colors to
simulate transparency. However, ray tracing can give us the tools to generate some
of the more complex aspects of transparency and improve realism. For example,
ray tracing allows us to simulate refraction.

Refraction happens when light rays are bent when passing through a transpar-
ent object, causing an object’s position to appear to shift when it is placed behind
another transparent object. The amount that the light rays are bent depends on the
shape of the transparent object and the material of which it is made. A transparent
object is sometimes referred to as the medium that the light is passing through,
and different transparent media (such as water, glass, or a diamond) bend light to
different degrees. Anyone who has peered through a fishbowl knows how com-
plex refraction can be. We will only scratch the surface and see some very simple
examples.

The amount that a given medium bends light is called its index of refraction or
IOR. We usually indicate index of refraction with 7. IOR is a factor that indicates
the degree to which a ray’s angle when it hits a medium is altered when the ray
continues through the medium (actually, the sines of those angles). The IOR of a
vacuum is 1, and the IOR of glass is about 1.5. The IOR of air is so close to 1 that
it is usually ignored.

In the case of an object that has thickness (such as our sphere or box, if trans-
parent), refraction may occur both when the ray enters the object, and then again
when it exits, and both would need to be considered to properly render an object
behind a transparent one. Thus, adding refraction to our scene (e.g., making the
sphere or the box transparent) requires a sequence of two successive secondary
rays, one that refracts from the initial ray into the object and a second one that
refracts as the ray exits the object. An example is shown in Figure 16.14, where the
current initial ray being processed is labeled I, the normal at the initial collision
point is Ny, the first secondary ray is S;, the normal at the second collision point is
N,, and the second secondary ray is S,. In a purely transparent object, the color at
the final collision point C is the color that would be ultimately be rendered at the
collision point of the initial ray I.

Chapter 16 - Ray Tracing and Compute Shaders Il 435

N,

Figure 16.14
Refraction with two secondary rays, through a transparent sphere (the angles have been exaggerated for clarity).

The derivation for computing a refraction angle is well-documented [F96]:

S=(77, (N-I)—\/l—nf(l—dot(N,I)z)jN—;yrl

where 77, is the ratio of the IORs of the source and destination media. Rather than
code this formula, we simply use the GLSL refract() function that implements it.
refract() takes three parameters as input: the incoming vector /, the normal vector
N, and the IOR ratio 7,. It then produces the refracted secondary ray S as output.

For a transparent solid glass sphere, the IOR at the point of entry
is IOR./IOR, =10/1.5~0.66, and at the point of exit, it is

air lass
IOR,,, / TOR, =1.5/1.0=125.

Program 16.10 converts the sphere to solid transparent glass, this time using
a sequence of two secondary rays so as to generate the refraction of the brick box
and skybox behind it. We have also built yet a third copy of the raytrace() function,
so that the two secondary rays can be generated and traced in succession, one
entering the sphere (with IOR=0.66) and one leaving it (with IOR=L1.5). Lighting is
included in both the entry and exit points. Since the color and lighting values are
all fractions in the range [0..1], and we are multiplying them together, it is common
to also need to scale the resulting color values up or the final result will be too
dark; here we have scaled the refracted colors up by a factor of 2.0.

436 B Computer Graphics Programming in OpenGL with Java, Third Edition

Note also that the trick we used to avoid surface acne is modified slightly in
both functions; instead of adding a small offset along the normal, we subtract the
offset. This is because the secondary rays now continue through the collision point
rather than rebounding. So, for refracted rays, we must add a small offset along the
negative of the normal.

Program 16.10 Refraction Through a Sphere
— Two Secondary Rays

Compute Shader

vec3 raytrace3(Ray r)
{ //this function is identical to raytrace() from Program 16.7

}

vec3 raytrace2(Ray r)
{ ...
if (c.object_index == 1) //recall that index==1 indicates collision with the sphere
{ // generate a second secondary ray for the intersection with the back of the sphere
Ray refracted_ray;
refracted_ray.start = c.p — ¢.n * 0.001;
refracted_ray.dir = refract(r.dir, c.n, 1.5); /index of refraction from glass to air: IOR = 1.5
vec3 refracted_color = raytrace3(refracted_ray);
return 2.0*ads_phong_lighting(r, c) * refracted_color;

}

vec3 raytrace(Ray r)
{ ...
if (c.object_index == 1)
{ // generate a secondary ray for the intersection with the front of the sphere
Ray refracted_ray;
refracted_ray.start = c.p — ¢.n * 0.001;
refracted_ray.dir = refract(r.dir, c.n, .66667); // index of refraction from air to glass: IOR=1.0/1.5
vec3 refracted_color = raytrace2(refracted_ray);
return 2.0*ads_phong_lighting(r, c) * refracted_color;

Chapter 16 - Ray Tracing and Compute Shaders M 437

Figure 16.15 shows the result. Notice that the view of the scene through the
transparent sphere has been flipped and appears upside down. A flipped (and
severely curved) version of the brick box is also visible in the sphere, as is the
checkerboard plane. Also, although not easily seen in Figure 16.15, it is the back
of the skybox that is visible in the sphere, whereas in Figure 16.11, the sphere
reflected the front portion of the skybox.

gj Program 16.10 - refractive sphere — O x

Figure 16.15
Output of Program 16.10, showing refraction through a solid transparent sphere.

Combining Reflection, Refraction, and Textures

Transparent objects are also usually slightly reflective. Combining reflection
and refraction (as well as textures) can be done in a similar manner as combin-
ing lighting and textures, as we did in Chapter 7. That is, we can simply build a
weighted sum of whichever elements our objects incorporate.

In Program 16.11, the raytrace() function generates both reflection and refrac-
tion rays, combining them using a weighted sum. The degree to which the object
is reflective rather than transparent can be tuned by adjusting the weights to get
various effects. In this example, we have also replaced the skybox with a blue
room box to make the specific effects of reflection and refraction more clearly

438 B Computer Graphics Programming in OpenGL with Java, Third Edition

visible. We replaced the brick box with a marble-textured slightly reflective box
to show an example of combining texturing with reflection. The results are shown
in Figure 16.16. Note also the interesting propagation of the specular highlights!

Program 16.11 — Combining Reflection and Refraction
Compute Shader

vec3 raytrace(Ray r)
{ ...
if (c.object_index == 1)
{ //generate a refraction ray

Ray refracted_ray;

refracted_ray.start = c.p - ¢.n * 0.001;

refracted_ray.dir = refract(r.dir, c.n, .66667);

vec3 refracted_color = raytrace2(refracted_ray); // refraction requires two rays, entry and exit

// generate a reflection ray

Ray reflected_ray;

reflected_ray.start = c.p + ¢.n * 0.001;

reflected_ray.dir = reflect(r.dir, c.n);

vec3 reflected_color = raytrace3(reflected_ray); // reflection only requires a single ray

return clamp(ads_phong_lighting(r,c) *
((0.3 * reflected_color) + (2.0 * refracted_color)), 0, 1); / weighted sum of raytrace collisions

& Program 16.11 - reflection only

Figure 16.16
Qutput of Program 16.11, showing the combination of the reflection, refraction, and textures: sphere with reflection only (left), sphere with
refraction only (center), and sphere with both reflection and refraction (right).

Chapter 16 - Ray Tracing and Compute Shaders I 439

IMXXA Increasing the Number of Rays

What if we have a transparent object and behind it is another transparent
object? Ideally, the ray tracer should generate a series rays for the first and second
transparent objects. Then, whichever surface is encountered behind the 2" object
is what we would see. If the transparent objects were boxes (or spheres), how many
rays would be required for the final object to appear? An example is shown in
Figure 16.17, in which a green star is viewed through two transparent boxes. Since
each transparent object would generally require two secondary rays (one entering
the object and one leaving the object), we would need a total of five rays.

<0 > >|—> >
<= <= <=

Figure 16.17
Returning an object’s color through a sequence of transparent objects.

However, that is not what the code we have built so far will do. Rather, we have
hard-coded functions raytrace(), raytrace2(), and raytrace3() that result in a maxi-
mum sequence of three rays (ignoring the shadow ray). So, in the example shown
in Figure 16.17, the sequence of rays would stop at the second transparent object,
and we wouldn’t see the star at all. As the need for longer and longer sequences of
rays increases, we cannot keep making more copies of the raytrace() function, as
such a solution would not be scalable.

Another similar situation occurs if
we have two highly reflective objects
facing each other. Anyone who has
done this with two mirrors knows the
effect as they reflect back and forth
between each other. Figure 16.18 shows
such an example generated by one of
the authors at his home. Our code
could only do two reflections, but no
subsequent reflections. A much longer
sequence of rays is needed to achieve
this effect.

Figure 16.18
Two mirrors facing each other

440 B Computer Graphics Programming in OpenGL with Java, Third Edition

We actually faced this situation in the previous example from Program 16.11
(Figure 16.16) because both the box and the sphere were reflective. The effects
of any additional rays in that particular example would be negligible, and in such
cases, a depth of one or two rays is sufficient. However, in those cases where the
additional rays are needed to achieve realistic results, we need a way of generating
more rays.

The general solution to this problem is to recursively call raytrace(), with the
condition that terminates the recursion (the so-called “base case”) being when-
ever a ray encounters a non-reflective or non-transparent surface (or whenever
a pre-determined maximum depth has been reached) or if the ray collides with
no object. Unfortunately, GLSL does not support recursion. So, to achieve any
reasonable simulation of the above effects, we need to keep track of the recursion
ourselves.

Building a recursive version of raytrace() in the absence of native support for
recursion is not trivial. Our solution requires a stack, defining a structure for items
to be pushed onto the stack, building the appropriate push and pop operations, a
driver that contains the main loop for processing the rays (using stack operations),
and a function to process a stack element (which contains the information for an
individual ray).

Program 16.12 shows these as additions (and replacements) to elements of
the previous Program 16.11. There is a struct called Stack_Element that defines
the items stored in the stack and functions for raytrace() (which is the driver),
push(), pop(), and process_stack_element(). The stack itself is stored as an array of
Stack_Elements. After presenting the code, more detailed explanations follow.

Program 16.12 Recursive Ray Generation

Compute Shader

struct Stack_Element
{ inttype; // type of ray (1= reflected, 2 = refracted. Shadow rays are never pushed on stack)
intdepth; // depth of the recursive raytrace
int phase; // which of the five phases of a recursive call is currently being processed
vec3 phong_color; // holds the computed ADS color
vec3 reflected_color; // holds the reflected color

Chapter 16 - Ray Tracing and Compute Shaders I 441

vec3 refracted_color,; // holds the refracted color

vec3 final_color; // final mixture of all colors (plus texture) for this invocation
Ray ray; // the ray for this raytrace invocation
Collision collision; // the collision for this raytrace invocation. Starts with null_collision value.

%
const int RAY_TYPE_REFLECTION = 1;
const int RAY_TYPE_REFRACTION = 2;

// "NULL" values for structs are defined to make it easier to tell when a value hasn't been assigned
Ray null_ray = {vec3(0.0), vec3(0.0)};

Collision null_collision = { -1.0, vec3(0.0), vec3(0.0), false, -1, vec2(0.0, 0.0), -1 };

Stack_Element null_stack_element = { 0,-1,-1,vec3(0),vec3(0),vec3(0),vec3(0), null_ray, null_collision };

const int stack_size = 100;

Stack_Element stack[stack_size]; // holds the "recursive" stack of raytrace invocations

const int max_depth = 6; /| max sequence of rays, which equals max recursion depth
int stack_pointer = -1; // Points to the top of the stack (-1 if empty)
Stack_Element popped_stack_element; // Holds the last popped element from the stack

// The "push" function, which schedules a new raytrace by adding it to the top of the stack
void push(Ray r, int depth, int type)
{ if (stack_pointer >= stack_size-1) return; // if there is no more room on the stack, exit

Stack_Element element; // initialize those fields that we already know, and set others to zero or null
element = null_stack_element;

element.type = type;

element.depth = depth;

element.phase = 0;

element.ray =r;

stack_pointer++;
stack[stack_pointer] = element; // add this element to the stack

}

// The "pop" function, which removes a raytrace operation that has been completed
Stack_Element pop()
{ // removes and returns the top stack element

Stack_Element top_stack_element = stack[stack_pointer];

stack[stack_pointer] = null_stack_element;

stack_pointer--;

return top_stack_element;

442 B Computer Graphics Programming in OpenGL with Java, Third Edition

// Five-phase processing of a given ray: (1) collision, (2) lighting, (3) reflection, (4) refraction, (5) mixing

void process_stack_element(int index)

{ // Ifthere is a popped_stack_element that was previously processed, it holds reflection/refraction
//information for the current stack element. Store that info, then clear the popped element reference.
if (popped_stack_element != null_stack_element) // GLSL element-wise comparison of structs
{ if (popped_stack_element.type == RAY_TYPE_REFLECTION)

stack[index].reflected_color = popped_stack_element.final_color;
else if (popped_stack_element.type == RAY_TYPE_REFRACTION)
stack[index].refracted_color = popped_stack_element.final_color;
popped_stack_element = null_stack_element;
}
Ray r = stack[index].ray; // initialized by the initial call
Collision ¢ = stack[index].collision; // starts null, gets set in phase 1

switch (stack[index].phase)

{ //========== PHASE 1 - raytrace collision detection

case 1
¢ = get_closest_collision(r); // Cast ray into the scene, store collision result
if (c.object_index !=-1) // If the ray didn't hit anything, stop.

stack[index].collision = c; // otherwise, store the collision result

break;

/] ========== PHASE 2 - Phong ADS lighting computation

case 2:
stack[index].phong_color = ads_phong_lighting(r, ¢);
break;

/| ========== PHASE 3 - generate a reflection ray

case 3:
if (stack[index].depth < max_depth) // stop if at max depth

{ if((c.object_index == 1) || (c.object_index == 2)) // only sphere and box are reflective
{ Ray reflected_ray;
reflected_ray.start = c.p + ¢.n * 0.001;
reflected_ray.dir = reflect(r.dir, c.n);
// add a raytrace for that ray to the stack, and set its type to reflection
push(reflected_ray, stack[index].depth+1, RAY_TYPE_REFLECTION);

I
break;
/| ========== PHASE 4 - generate a refraction ray
case 4:
if (stack[index].depth < max_depth) // stop if at max depth
{ if(c.object_index ==1) // only the sphere is transparent

{ Ray refracted_ray;
refracted_ray.start = c.p - ¢c.n * 0.001;

Chapter 16 - Ray Tracing and Compute Shaders [l 443

float refraction_ratio = 0.66667;
if (c.inside) refraction_ratio = 1.5; // 1.0/ refraction_ratio, when ray exits the sphere
refracted_ray.dir = refract(r.dir, c.n, refraction_ratio);

// Add a raytrace for that ray to the stack
push(refracted_ray, stack[index].depth+1, RAY_TYPE_REFRACTION);

bl
break;
/| ========== PHASE 5 - mixing
case 5:
if (c.object_index == 1) // for the sphere, blend refraction, refraction, and lighting

{ stack[index].final_color = stack[index].phong_color *
(0.3 * stack[index].reflected_color) + (2.0 * (stack[index].refracted_color));
}
if (c.object_index == 2) // for the box, blend reflection, lighting, and texture
{ stack[index].final_color = stack[index].phong_color *
((0.5 * stack[index].reflected_color) + (1.0 * (texture(sampMarble, c.tc)).xyz));

if (c.object_index == 3) stack[index].final_color = stack[index].phong_color * rbox_color;
if (c.object_index == 4) stack[index].final_color = stack[index].phong_color *
(checkerboard(c.tc)).xyz;

break;
// ========== when all five phases are complete, end the recursion
case 6:

popped_stack_element = pop();

return;

stack[index].phase++;
return; // only process one phase per process_stack_element() invocation

}

// This is the "driver" function that sends out the first ray,

// and then processes secondary rays until all have completed
vec3 raytrace(Ray r)

{ push(r, 0, RAY_TYPE_REFLECTION);

while (stack_pointer >= 0) // process the stack until it is empty

{ intelement_index = stack_pointer; // peek at the topmost stack element
process_stack_element(element_index); // process next phase of the current stack element

}

return popped_stack_element.final_color; //final color of the last-popped stack element

}

444 B Computer Graphics Programming in OpenGL with Java, Third Edition

In Program 16.12, the stack is an array of structs of type StackElement, where
an instance of StackElement contains all of the information necessary to process
any given ray. The functions that do the stack pushing and popping — push() and
pop() — should be straightforward. The size of the stack must be chosen carefully;
if there are many objects that are both reflective and refractive, the number of rays
can grow exponentially. However, in practice, many rays terminate due to collid-
ing with the skybox before the maximum recursion depth is reached.

Ray tracing begins in raytrace(). Although all rays require their type to be set
(reflection or refraction), the type of the initial ray isn’t used — we set it to reflec-
tion arbitrarily. We then start processing all of the rays in the stack (by repeatedly
calling process_stack_element()), and in so doing, secondary (and subsequent) rays
may be generated and added to the stack as well. When all processing for a ray has
been completed, its final computed color is then made available to its “parent” ray,
which in turn may utilize it to compute its own color.

All of this - the “meat” of the raytrace processing - is done in process_stack_
element(), which is organized as a five-phase series of operations. Each of the
phases is basically identical to the steps we saw in earlier programs in this chap-
ter. Some of the phases don’t require the generation of additional rays (collision
detection, lighting/shadows, and texturing). However, the reflection and refraction
phases both require generating a new ray and running process_stack_element() on
the new ray(s). Since there is no way in GLSL to make such a call recursively,
we adjust the contents of the current stack element to keep track of where we left
off, push a new stack element containing the new ray to be processed, and then
exit process_stack_element(). The driver function — the new version of raytrace() —
then continues iteratively calling process_stack_element() until every stack element
(every ray) has had a chance to complete all five phases. The end result is the same
as if recursion had been available.

The code in Program 16.12 (the declarations, and the push(), pop(), process_
stack_element(), and raytrace() functions) replaces the previous raytrace() function
(and its “children” raytrace2() and raytrace3()) from Program 16.11. The remainder
of Program 16.12 is unchanged from Program 16.11.

The output of Program 16.12 depends on the max_depth setting. The larger the
value, the longer the sequence of rays that can be generated. Figure 16.19 shows
the outputs for max_depth values of 0, 1, 2, 3, and 4.

Chapter 16 - Ray Tracing and Compute Shaders I 445

i Pragram 16,12 - recursion = [u] *®

2 Program 16.12 - recursion

ﬁ Program 16.12 - recursion

Figure 16.19
Output of Program 16.12, showing recursive depth values of 0, 1, 2, 3, and 4 (left-to-right, top-to-bottom).

At depth zero, only direct textures and lighting are visible (and since the sphere
isn’t textured, it has no color). At depth one, immediate reflections are visible, and
the very first refraction of the sphere has occurred but had little effect because
its ray terminates inside of the sphere. At depth two, the results are essentially
equivalent to our previous hard-coded output of Program 16.11 (shown in Figure
16.16). At depths three and four, additional reflections are evident in the sphere,
and a second reflection of the box can be seen faintly against the inside back of
the sphere. Any differences between depth 3 and depth 4 are negligible for this
particular scene.

446 B Computer Graphics Programming in OpenGL with Java, Third Edition

Generalizing the Solution

Our solution works well, but it is hardcoded for a particular set of four objects:
one transparent and partially reflective sphere, one textured and partially reflec-
tive box, a procedurally textured plane, and a solid-colored room box. If we wish
to alter the set of objects in the scene, say by adding another box, or making the
sphere textured, we would have to not only change the declarations at the top of
the compute shader, we would also need to make significant changes in the pro-
cess_stack_element() and get_closest_collision() functions. What we really need is
a more general solution that allows us to define an arbitrary set of these objects.

To achieve this, we introduce another struct definition for specifying an object
in the scene, and then build an array of these objects. The get_closest_collision()
function iterates through them, taking into account the type of each object. The
room box is handled separately as the 0™ object, and we assume there is exactly
one of those.

Our “more general” solution still has limitations; for example, there are many
ways of defining texture coordinates even for simple shapes. So, our solution is
still limited to spheres, planes, and boxes with texture coordinates as specified so
far, a single room box, global ambient light plus a single positional light (although
adding more lights is not difficult), and a fixed camera facing down the negative Z
axis. Program 16.13 shows the additions to Program 16.12, along with an example
configuration that matches the previous example.

Program 16.13 More Generalized Object Definition

Compute Shader
struct Object
{ float type; // 0=skybox, 1=sphere, 2=box, 3=plane
float radius; // sphere radius (only relevant if type=sphere)
vec3 mins; // box corner (if type=box). If type=plane, X and Z values are width and depth
vecd maxs; // opposite box corner (if type=box)
float xrot; // X component of object rotation (only relevant if type=box or plane)
float yrot; //'Y component of object rotation (only relevant if type=box or plane)
float zrot; // Z component of object rotation (only relevant if type=box or plane)
vec3 position; // location of center of object

bool hasColor; // whether or not the object has a particular color specified

Chapter 16 - Ray Tracing and Compute Shaders [l 447

bool hasTexture; // whether or not the object includes a texture image in computing its color
bool isReflective; // whether or not the object is reflective (generates a secondary ray)

// (if the object is a room box, this field is used to enable or disable lighting)
bool isTransparent; // whether or not the object is refractive (generates a secondary ray)
vec3 color; // the RGB color specified for the object (only relevant if hasColor is true)
float reflectivity, // percentage of reflective color to include (only relevant if isReflective is true)
float refractivity; / percentage of refractive color to include (only relevant if isTransparent)

float IOR; // Index of Refraction (only relevant if isTransparent is true)
vecd ambient; // ADS ambient material characteristic
vecd diffuse; // ADS diffuse material characteristic
vec4d specular; // ADS specular material characteristic
float shininess; // ADS shininess material characteristic
3
Object[] objects =

{ // object#0 is the room box
{0, 0.0, vec3(-20, -20, -20), vec3(20, 20, 20), 0, 0, 0, vec3(0), true, false, true, false, vec3(0.25, 1.0, 1.0),
0,0,0,vec4(0.2,0.2,0.2, 1.0), vecd(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 50.0
}1
// object #1 is the checkerboard ground plane
{3,0.0, vec3(12, 0, 16), vec3(0), 0.0, 0.0, 0.0, vec3(0.0, -1.0, -2.0), false, true, false, false, vec3(0),
0.0, 0.0, 0.0, vec4(0.2, 0.2, 0.2, 1.0), vec4(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0 ,1.0), 50.0
}1
// object #2 is the transparent sphere with slight reflection and no texture
{1, 1.2, vec3(0), vec3(0), 0, 0, 0, vec3(0.7, 0.2, 2.0), false, false, true, true, vec3(0),
0.8, 0.8, 1.5, vec4(0.5, 0.5, 0.5, 1.0), vec4(1.0,1.0,1.0,1.0), vec4(1.0, 1.0, 1.0, 1.0), 50.0
}1
// object #3 is the slightly reflective box with texture
{2,0.0, vec3(-0.25, -0.8, -0.25), vec3(0.25, 0.8, 0.25), 0.0, 70.0, 0.0, vec3(-0.75, -0.2, 3.4),
false, true, true, false, vec3(0), 0.5, 0.0, 0.0, vec4(0.5, 0.5, 0.5, 1.0), vec4(1.0, 1.0, 1.0, 1.0),
vec4(1.0, 1.0, 1.0, 1.0), 50.0
bk

int numObjects = 4;

vec3 getTextureColor(int index, vec? tc)
{ //customized for this scene
if (index==1) return (checkerboard(tc)).xyz;

448 B Computer Graphics Programming in OpenGL with Java, Third Edition

else if (index==3) return texture(sampMarble, tc).xyz;
else return vec3(1,.7,.7); // return pink if index is for an object other than the plane or box

}

Collision intersect_plane_object(Ray r, Object 0)
{ ...
mat4 local_to_worldT = buildTranslate((o.position).x, (0.position).y, (0.position).z);
mat4 local_to_worldR =
buildRotateY(DEG_TO_RAD*o.yrot) * buildRotateX(DEG_TO_RAD*o.xrot) *
buildRotateZ(DEG_TO_RAD*0.zrot);
} 7/ similar object references in other intersection functions also changed to "o.position", "o.mins", etc.
V/
// Returns the closest collision of a ray
// object_index == -1 if no collision
// object_index == 0 if collision with room box
// object_index > 0 if collision with another object
V/
Collision get_closest_collision(Ray r)
{ float closest = 3.402823466e+38; // initialize to a very large number (max value of a float)
Collision closest_collision;
closest_collision.object_index = -1;

for (int i=0; i<numObjects; i++)
{ Collision c;
if (objects]i].type == 0)
{ c=intersect_room_box_object(r);
if (c.t <= 0) continue; / ray didn't collide with this skybox object
}
else if (objects|i].type == 1)
{ c=intersect_sphere_object(r, objects[i]);
if (c.t <= 0) continue; / ray didn't collide with this sphere object

}
else if (objects|i].type == 2)
{ c=intersect_box_object(r, objects]i]);
if (c.t <= 0) continue; // ray didn't collide with this box object
}
else if (objects|i].type == 3)
{ c=intersect_plane_object(r, objects]i]);
if (c.t <= 0) continue; / ray didn't collide with this plane object
}
else continue; // in case we have any non-collidable object types
if (c.t < closest) // we found a collision, now check if it is closer than the current closest

Chapter 16 - Ray Tracing and Compute Shaders [l 449

{ closest=c.t;
closest_collision = c;
closest_collision.object_index = i;

return closest_collision;

}

void process_stack_element(int index)
{ ... // phases 1-4 remain unchanged
// PHASE 5 - Mixing to produce the final color — generalized for any combination of these objects
if(stack[index].phase == 5)
{ if(c.object_index > 0) // we collided with something, and it is not a room box
{ //first get texture color if applicable
vec3 texColor = vec3(0.0);
if (objects[c.object_index].hasTexture)
texColor = getTextureColor(c.object_index, c.tc);

// next, get object color if applicable

vec3 objColor = vec3(0.0);

if (objects[c.object_index].hasColor)
objColor = objects[c.object_index].color;

// then get reflected and refractive colors, if they are needed later
vec3 reflected_color = stack[index].reflected_color;
vec3 refracted_color = stack[index].refracted_color;

// Now build the mix of colors — if it is the last color, just return it without blending

vec3 mixed_color = objColor + texColor;

if ((objects[c.object_index].isReflective) && (stack[index].depth<max_depth))
mixed_color = mix(mixed_color, reflected_color, objects|c.object_index].reflectivity);

if ((objects[c.object_index].isTransparent) && (stack[index].depth<max_depth))
mixed_color = mix(mixed_color, refracted_color, objects[c.object_index].refractivity);

stack[index].final_color = mixed_color * stack[index].phong_color;

}
if (c.object_index == 0) // room box object is unique because it might have six textures
{ vec3 lightFactor = vec3(1.0); // holds the lighting value if isReflective is true

if (objects[c.object_index].isReflective) lightFactor = stack[index].phong_color;

if (objects[c.object_index].hasColor) // here, roomboxes have color or texture (not both)
stack[index].final_color = lightFactor * objects[c.object_index].color;

else

{ if(c.face_index == 0) stack[index].final_color = lightFactor * getTextureColor(5, c.tc);
else if (c.face_index == 1) stack[index].final_color = lightFactor * getTextureColor(6, c.tc);

450 B Computer Graphics Programming in OpenGL with Java, Third Edition

else if (c.face_index == 2) stack[index].final_color = lightFactor * getTextureColor(7, c.tc);
else if (c.face_index == 3) stack[index].final_color = lightFactor * getTextureColor(8, c.tc);
else if (c.face_index == 4) stack[index].final_color = lightFactor * getTextureColor(9, c.tc);
else if (c.face_index == 5) stack[index].final_color = lightFactor * getTextureColor(10, c.tc);

Py

... // other parts of this function are unchanged

The definition of the objects array in Program 16.13 corresponds to the exam-
ple built previously in programs 16.10 and 16.11, and the output matches that
shown in Figure 16.18. Note that there are still spots in the program (in addition to
the definition of the objects array) that might need to be tailored slightly depend-
ing on the scene: the camera position, the light position, the texture sampler used
for each textured object (or the function to use if procedurally textured — these
are all specified in getTextureColor()), recursion depth, and whether shadows are
desired (disabling shadows simply requires commenting out the relevant test in the
ads_phong_lighting() function). Of course, the program could be generalized further
by encapsulating tasks such as ray intersection and texturing into object subtypes,
which would also make it more easily extended.

Additional Examples

Now that the ray tracing program is complete and can be used for various
combinations of our basic objects, let’s try some of the interesting cases discussed
at the beginning of Section 16.3.4. For each configuration, we need to set the fol-
lowing variables appropriate for the particular scene:

e the objects that comprise the scene (by filling the objects array)

e the number of objects (by setting the variable numObjects)

e the camera position along the Z axis (by setting the variable
camera_pos)

e the maximum recursion depth (by setting the variable max_depth)

e the maximum size of the recursion stack (by setting the variable
stack_size)

e the location of the positional light (by setting the variable
pointLight_position)
For example, can our ray tracer now see an object sitting behind two transpar-
ent other objects? We can test this by defining the objects array to include two thin

Chapter 16 - Ray Tracing and Compute Shaders I 451

refractive boxes and a solid red ball placed behind them, as shown in Program
16.14. The red sphere and transparent boxes are all centered on the positive Z axis
at distances 2.0, 3.0, 4.0, and 5.0, respectively, and the camera is also positioned on
the positive Z axis at a distance of 5.0.

Program 16.14 Viewing Through Multiple Transparent Objects
Compute Shader

Object[] objects =
{ // object#0 is the room box - this time the room box is white (or grey depending on the lighting)
{0, 0.0, vec3(-20, -20, -20), vec3(20, 20, 20), 0, 0, 0, vec3(0), true, false, true, false, vec3(1.0, 1.0, 1.0),
0,0,0,vec4(0.2,0.2,0.2, 1.0), vec4(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 50.0
3
// red sphere
{1,0.25, vec3(0), vec3(0), 0, 0, 0, vec3(0, 0, 2), true, false, false, false, vec3(1.0, 0.0, 0.0), 0.0, 0.0, 0.0,
vec4(0.3, 0.3, 0.3, 1.0), vec4(0.7,0.7, 0.7, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 50.0
3
// transparent box with no texture
{2,0,vec3(-0.5,-0.5, -0.1), vec3(0.5, 0.5, 0.01), 0, 0, 0, vec3(0.0, 0.0, 4.0), true, false, false, true,
vec3(0.9, 0.9, 0.9), 0.0, 0.95, 1.1, vec4(0.8, 0.8, 0.8, 1.0), vec4(1.0, 1.0, 1.0, 1.0), vec4(1.0,
1.0, 1.0, 1.0), 50.0
3
// transparent box with no texture
{2,0,vec3(-0.5,-0.5, -0.1), vec3(0.5, 0.5, 0.01), 0, 0, 0, vec3(0.0, 0.0, 3.0), true, false, false, true,
vec3(0.9, 0.9, 0.9), 0.0, 0.95, 1.1, vec4(0.8, 0.8, 0.8, 1.0), vec4(1.0, 1.0, 1.0, 1.0), vec4(1.0,
1.0, 1.0, 1.0), 50.0
bk
int numObijects = 4;
float camera_pos = 5.0;
const int max_depth = 5;
const int stack_size = 100;
vec3 pointLight_position = vec3(-1,1,3);

The output of Program 16.14 is shown in Figure 16.20. Note that at a recursion
depth of 3, the red sphere is not visible, because the sequence of rays is not suf-
ficient to go through both sides of both boxes and reach the sphere. However, at
recursion depth of 5, the sphere becomes visible.

452 B Computer Graphics Programming in OpenGL with Java, Third Edition

ﬁ Program 16.14 - looking through two panes — [m] X ﬁ Program 16.14 - looking through two panes = [m] X

Figure 16.20
Output of Program 16, showing a red ball through two thin transparent boxes. The recursion depth is 3 in the left image
and 5 in the right image.

Another example discussed in Section 16.3.4 was the case of two mirrors
facing each other. As illustrated in Figure 16.18, at just the right relative angles
between the two mirrors and the viewer, a sort of “recursive tunnel” appears. Can
our ray tracer replicate that effect?

We test this by creating two reflective planes (to serve as mirrors) with a red
sphere and the camera in between. Figure 16.21 shows the layout of the objects,
all of which are placed along the Z axis (slightly offset in some cases), with the
camera looking down the negative-Z direction. Although the camera (shown in
green) would not be able to see the plane that is behind it, it should be able to see
the mirror in front of it and the red sphere, as well as additional images of the red
sphere as the reflection bounces back and forth between the two mirrors. Program
16.15 sets up a scene with these objects so oriented.

Figure 16.21
Building two mirrors facing each other.

Chapter 16 - Ray Tracing and Compute Shaders [l 453

Configuring ascenethatrevealsa“recursive tunnel” takes abit of trial-and-error
(this can be true with real mirrors in the real world as well!). The settings that we
arrived at in Program 16.15 represent one such set of object positions and angles
that produce a clear example of the desired effect.

Program 16.15 — Two Mirrors Facing Each Other
Compute Shader

Object[] objects =
{ // object#0 is the room box
{0, 0.0, vec3(-20, -20, -20), vec3(20, 20, 20), 0, 0, 0, vec3(0), true, false, true, false, vec3(0.25,
1.0,1.0),0, 0,0, vec4(0.2,0.2, 0.2, 1.0), vec4(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 50.0
13
// red sphere
{1, 0.25, vec3(0), vec3(0), 0, 0, 0, vec3(0, -0.33, 3.3), true, false, false, false, vec3(1.0, 0.0,
0.0), 0.0, 0.0, 0.0, vec4(0.5, 0.5, 0.5, 1.0), vec4(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 50.0
13
// first mirror - reflective plane behind camera
{3,0,vec3(4, 0, 4), vec3(0), 90.0, -1.0, 0.0, vec3(0, 0, 3.8), true, false, true, false, vec3(1.0, 1.0, 1.0),
0.9, 0.0, 0.0, vec4(0.5, 0.5, 0.5, 1.0), vec4(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 100.0
13
// second mirror - reflective plane, behind red sphere
{3,0,vec3(8,0,.8), vec3(0), 92.0, 0.0, 0.0, vec3(0, 0, 3.1), true, false, true, false, vec3(1.0, 1.0, 1.0),
0.9, 0.0, 0.0, vec4(0.5, 0.5, 0.5, 1.0), vec4(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 100.0
bk
int numObjects = 4;
float camera_pos = 3.7;
const int max_depth = 14;
const int stack_size = 100;
vec3 pointLight_position = vec3(-2, 2, 3);

The red sphere, camera, and two mirrors are sitting at various spots along the
Z axis, at positions 3.3, 3.7, 3.1, and 3.8, respectively. The red sphere is lowered
slightly along the Y axis so that the camera can peer over it. A very light grey
color has been specified for the mirrors, so that they don’t overly darken what they
reflect. Since the light has typical ADS characteristics, the darkening of the off-
axis areas slightly increases with each reflection (as was the case in the real-world

454 B Computer Graphics Programming in OpenGL with Java, Third Edition

photo in Figure 16.18). The light has been positioned near the sphere so that shad-
ows cast by the mirrors don’t darken it further. The mirror behind the sphere has
been tilted down very slightly (by 2.0 degrees on the X axis, to be exact), to make
the reflections of the sphere more visible.

Figure 16.22 shows the resulting output for a series of recursion depths. At a
recursion depth of 0, only the sphere and one mirror are visible in the scene. At
depth=1, the reflection of the sphere in the plane is visible. At depth=2, the reflec-
tion of the sphere in the opposite plane has also appeared, and the “tunnel” effect
is starting to take shape. Moving forward to a depth of 14, the expected long series
of red spheres shows, and the tunnel effect has fully materialized. (The sphere
nearest the camera is slightly oblong due to perspective distortion.)

g Program 16.15 - two mirors - a X

Figure 16.22
Output of Program 16.15, showing two mirrors facing each other. Recursion depth equals 0, 1, 2, and then 14 in the final image.

Chapter 16 - Ray Tracing and Compute Shaders I 455

Blending Colors for Transparent Objects

So far, all of our transparent objects (which we have been modeling with
refracted secondary rays) have had no color (or have been colored white). It is
natural to want to make colored transparent objects, such as a tinted window. Even
though we have the tools for doing this, there are some rather surprising difficul-
ties that can occur in many cases.

It is a simple matter to declare an object to be transparent, and also having
a color, by simply assigning an RGB value for whatever color we want (such as
[1,0,0] for red), and then combining this color with the incoming refracted color
as we did in previous examples. However, the results are not always as one would
expect! For example, suppose that we declare three planes colored red, yellow,
and blue, and stack them in our scene so that we can see the result of mixing the
colors as we have been doing, with equal weights where they overlap. The result
is shown in Figure 16.23. Is this what you would expect to see if these were real
colored panes of glass?

gj mixing transparent colored panes - O x

Figure 16.23
A scene with three overlapping colored panes, colors mixed equally.

456 M Computer Graphics Programming in OpenGL with Java, Third Edition

Figure 16.23 was created by defining three overlapping transparent colored
panes (red, yellow, and blue) and mixing their colors with a weighted sum as we
have done before, such as

mixed_color = mix(pane_color, refracted_color, 0.5);

Where the red and yellow overlap, we see orange, and where the red and
blue overlap we see purple, both of which are likely to match our expectations.
However, where yellow and blue overlap we probably expected green, but a sort of
grey color appears there instead.

Welcome to the complex world of color models! If those were real glass panes,
we should indeed see green where the yellow and blue panes overlap. That is
because as white light passes through a yellow pane, and then a blue pane, some
of the spectrum from the original white light is removed, leaving only the green
portion. This is called a subtractive color effect, and is how colors blend when, for
example, mixing paint or ink.

However, suppose that these panes were actually emitting colors, rather than fil-
tering them — such as if a yellow light source was combined (added) to a blue light
source. In that case, the yellow and blue panes would not combine to form green.
Thus, depending on what we wish to model, we need to blend colors in different ways.

So far, all of our colors have been expressed using the RGB color model. RGB
is an example of an additive color model, and it is designed for blending light
sources —most specifically the red, green, and blue elements of an RGB computer
monitor — by adding them together. That is, it is designed not to “mix” its colors
like paint, but ideally to add them. When mixing paint, we expect each successive
combined color to darken the mix (because each successive color subtracts some
portion of the light). However, in an additive model which blends light sources,
each successive color brightens the mix, moving it closer and closer to white light.

Another thing about the RGB model that is a common source of confusion is that
it is designed with primary colors red, green, and blue, rather than the familiar red,
yellow, and blue primary colors for paints or crayons that most of us learned in ele-
mentary school. The RGB primary colors work very well if our three panes are light
sources. Suppose for example that we replaced the red/yellow/blue panes with red/
green/blue panes, and simply added their colors, without weights, as in the following:

mixed_color = pane_color + refracted_color;

Chapter 16 - Ray Tracing and Compute Shaders W 457

The result is shown in Figure 16.24.

;‘_3' mixing transparent colored panes — O X

Figure 16.24
A scene with three overlapping colored light sources, colors added together.

To most people new to color models, Figure 16.24 looks very strange (it looks
even stranger with red/yellow/blue panes — try it!). The red and blue planes com-
bine to form a sort of light purple called magenta, which probably seems fairly rea-
sonable — but few people expect red and green would combine to make yellow. And
yet, if these panes were light sources, believe it or not, this is much closer to what
would actually happen in the real world. Note, for example, that at the very center,
all three red/green/blue primary light colors have been added together, resulting
in full spectrum white light. So the RGB additive color model, when used to blend
colors by adding them, is accurate when we use it to blend colored light sources.

But what if we want to model colored objects that aren’t light sources, but are
instead passive colored objects responding to white light sources, such as a colored
window pane or a pair of orange sunglasses? It turns out that the additive RGB
model is quite clumsy for this task.

If colored transparent objects are desired, rather than light sources, one option
is to switch to a subtractive color model, such as CMY (cyan/magenta/yellow).
Whereas RGB is designed for computer monitors composed of tiny red, blue, and
green light emitters, CMY is commonly used for printers that mix ink to build

458 B Computer Graphics Programming in OpenGL with Java, Third Edition

colors. In RGB, [0,0,0] is black and [1,1,1] is white, whereas in CMY, [0,0,0] is
white and [1,1,1] is black. Thus adding colors together in CMY makes them darker.
This models the real-world observation that when two pigments (such as paint)
are mixed together, the resulting substance subtracts out more of the surrounding
light and becomes darker. That’s why the model is called subtractive: the values
indicate the amount of light removed from surrounding light sources, even though
we still combine colors by adding them together.

It is easy to convert back and forth between RGB and CMY by inverting the
colors (subtracting them from [1,1,1] or white). One way of blending colors using
CMY is to invert the RGB colors to generate CMY versions, add them, and then
convert back to RGB:

colorl,,,, =vec3 (1, 1, 1) —colorl g,

color2,,, =vec3 (1, 1 1) —color2 .,
blend

result g, = vec3(1,1,1)—blend,.,,

oy =colorl,,, +color2 .,

This works quite well if the colors of our panes are magenta (RGB=[1,0,1]),
yellow (RGB=[1,1,0]), and cyan (RGB=[0,1,1]). Note that it is often necessary to
scale the results down so that the final RGB color values don’t exceed 1.0. Figure
16.25 shows the resulting blends of colors produced by adding their CMY values.

gj mixing transparent colored panes - O x

Figure 16.25
Adding cyan, magenta, and yellow panes in CMY color space.

Chapter 16 - Ray Tracing and Compute Shaders [l 459

It turns out that the results are rather similar if we start with these same
magenta, yellow, and cyan panes, and blend their RGBs with a weighted sum as
we have been doing earlier in this chapter, as shown in Figure 16.26.

!1‘ mixing transparent colored panes - O X

Figure 16.26
Blending cyan, magenta, and yellow panes in RGB color space.

To summarize, we have learned thus far that blending RGB colors for light
sources works very well by simply adding the RGB colors, but blending RGB
colors for transparent planes (as if we are mixing paint) is more problematic.
Depending on the colors being used, some applications may suffice by using one
of the two methods just described, that is, either converting the colors to CMY,
adding them, and converting back to RGB, or simply blending the two colors in
RGB with a weighted sum. Figure 16.27 shows both methods in three scenarios:
red/yellow/blue, red/green/blue, and magenta/yellow/cyan panes.

460 M Computer Graphics Programming in OpenGL with Java, Third Edition

] mixing transparent colored panes - o X] mixing transparent colored panes - o X 1 mixing transparent colored panes - o X

1 mixing transparent colored panes - o X 81 mixing transparent colored panes — O X || & ming transparent colored panes - o X

i

Figure 16.27
Adding in CMY color space (top row), and blending in RGB color space (bottom row).

In each of the methods shown in Figure 16.27, there is at least one color com-
bination that would appear incorrect for mixing paint (or stacking glass panes).
Therefore, if an application requires correct subtractive blending across the color
spectrum, none of the above methods will be adequate, and another method is
needed.

A third approach for handling colored planes is to convert the colors from an
RGB color model to an RYB subtractive model based on primary colors red/yellow/
blue. Precise algorithms for doing this tend to be complex. Sugita and Takahashi
[ST15] described a surprisingly simple algorithm for converting between RGB and
RYB that isn’t perfect but works pretty well across the color spectrum. Program
16.16 shows GLSL implementations of their conversion functions, which may be
practical for many cases.

Chapter 16 - Ray Tracing and Compute Shaders I 461

Program 16.16 — Blending via Conversion to RYB

Compute Shader
void process_stack_element(int index)
{ ...
// during phase 4 blending:
if ((objects[c.object_index].isTransparent)
{ vec3 mixedRYB = rgb2ryb(mixed_color);
vec3 refractedRYB = rgb2ryb(refracted_color);
mixed_color = ryb2rgb(mixedRYB + refractedRYB);
}
}
vec3 rgb2ryb(vec3 rgb)

{ float white = min(rgb.r, min(rgb.g, rgb.b)); / compute white and black contributions for input color
float black = min((1-rgb.r), min((1-rgb.g), (1-rgb.b))); / assumes colors are clamped to the range [0..1]
vec3 rgbWhiteRemoved = rgb - white; // remove white from input color before converting to RYB

// build initial RYB values for the output color
vec3 buildRYB = vec3(
rgbWhiteRemoved.r - min(rgbWhiteRemoved.r, rgbWhiteRemoved.g),
(rgbWhiteRemoved.g + min(rgbWhiteRemoved.r, rgbWhiteRemoved.g)) / 2.0,
(rgbWhiteRemoved.b + rgbWhiteRemoved.g - min(rgbWhiteRemoved.r,
rgbWhiteRemoved.q)) / 2.0);

float normalizeFactor = max(buildRYB.x, max(buildRYB.y, buildRYB.z))
I max(rgbWhiteRemoved.r, max(rgbWhiteRemoved.g, rgbWhiteRemoved.b));

buildRYB /= normalizeFactor,; // normalize for similar white level
buildRYB += black; // normalize for similar black level
return buildRYB;

}

vec3 ryb2rgb(vec3 ryb)

{ float white = min(ryb.x, min(ryb.y, ryb.z)); // compute white and black contributions for input color
float black = min((1-ryb.x),min((1-ryb.y),(1-ryb.2)));
vec3 rybWhiteRemoved = ryb - white; // remove white from input color before converting to RGB

462 B Computer Graphics Programming in OpenGL with Java, Third Edition

// build initial RGB values for the output color

vec3 buildRGB = vec3(
rybWhiteRemoved.x + rybWhiteRemoved.y - min(rybWhiteRemoved.y, rybWhiteRemoved.z),
rybWhiteRemoved.y + 2.0 * min(rybWhiteRemoved.y, rybWhiteRemoved.z),
2.0 * rybWhiteRemoved.z - min(rybWhiteRemoved.y, rypWhiteRemoved.z));

float normalizeFactor = max(buildRGB.r, max(buildRGB.g, buildRGB.b))
 max(rybWhiteRemoved.x, max(rybWhiteRemoved.y, rybWhiteRemoved.z));

buildRGB /= normalizeFactor; // normalize for similar white level
buildRGB += black; // normalize for similar black level
return buildRGB;

The functions that convert between RGB and RYB are named rgb2ryb() and
ryb2rgb(). They both start by computing the amount of white and black in the input
color, as minimum distance from [0,0,0] and [1,1,1] for any of the three color chan-
nels (R, G, B, or R, Y, B). They then remove the white portion in all three channels.
They each then build equivalent values for each of the three channels of the other
color model. The approach is based on a proposed subtractive RYB color model
where white = [0,0,0], black = [1,1,1], red = [1,0,0], yellow = [0,1,0], blue = [0,0,1],
green = [0,1,1], purple = [1,0, .5], and aqua = [0, .5, 1]. The code for constructing
the vectors buildRGB and buildRYB utilizing these proposed colors is based on the
equations derived by Sugita and Takahashi and not detailed here. Finally, the result
is normalized to generate similar white and black levels as the original input color.

The color palette proposed by Sugita and Takahashi is designed to be subtrac-
tive, and like CMY, its white and black definitions are reversed from the RGB
model. Blending colors is again done by simply adding them together, as shown in
the changes to the process_stack_element() function in Program 16.16.

The results are shown in Figure 16.28 for the same three scenarios as shown in
Figure 16.27 (that is, the red/yellow/blue, red/green/blue, and magenta/yellow/cyan
panes). In each case, the colors of the panes were defined in RGB as described in
Program 16.13, converted to RYB using the rgb2ryb() function from Program 16.16,
added together (also as shown in Program 16.16), and then the result was converted
back to RGB using the ryb2rgb() function before displaying the result. We think
that, with slight adjustments, the results in every case are quite close to what one
would expect to see when stacking colored transparent planes (or mixing paint) in
the real world.

Chapter 16 - Ray Tracing and Compute Shaders I 463

i Program 16.16 - Sugita/Takehashi blenging ~ — 0 X | | B4Program 16.16 - Sugita/Takehashi blending ~ — O X || &Program 16.16 - Sugita/Takehashi blending ~ — O X

Figure 16.28
Output of Program 16.16 showing blending using the Sugita/Takehashi RYB color conversion.

SUPPLEMENTAL NOTES

Even the simple examples given in this chapter require significant computing
cycles, and the later ones (Programs 16.13, 16.14, and 16.15) run very slowly. On
a standard laptop, the reader can expect them to take several seconds or more to
render, especially for large depth of recursion settings. On some machines, the
default settings for the graphics card may cause OpenGL to time out, crashing the
program before it has a chance to complete. On a Windows machine, the time limit
is typically set to 2 seconds, but can be increased by increasing the TdrDelay regis-
try setting. Instructions for doing this are widely available on the Web [A19]. The
author set his timeout to 8 seconds. An appropriate value depends on the machine
and the application. Be warned that making this change can also make it a bit more
difficult to stop a runaway graphics process.

We have tried to write our compute shader code for readability rather than per-
formance; e.g., our heavy use of conditionals (“if”” statements) can slow execution.
Tricks for removing conditionals can be found elsewhere [H13].

There are a few rather obvious things that we have not implemented in our
ray tracer. One is the ability to rotate the sphere. Of course, if the sphere is a solid
color or transparent, this is not an issue. However, if it is textured, such as in the
examples utilizing the earth texture, it would be desirable to be able to rotate it to
different orientations. Such a rotation can be incorporated in the same manner as
was done for the box and the plane.

464 B Computer Graphics Programming in OpenGL with Java, Third Edition

Another deficiency is that we have only implemented hard shadows. Soft
shadows for ray tracing are widely used, we just didn’t cover them here. Many
resources are available for those interested ([K16], for example).

Probably the most significant technique that we didn’t cover in this chap-
ter is how to perform ray tracing on 3D models constructed as a triangle mesh.
Computing intersections on triangles is similar to plane intersection, and can be
performed on all of the triangles that comprise a model. This requires some setup
that goes beyond what we have covered here, so that the triangles from, say, an .obj
file, can be sent to the compute shader and then iterated as objects in the scene.
This topic is beyond the scope of our introductory chapter. Scratchapixel [S16] is a
nice place to start for those who wish to explore this topic.

Ray tracing is a very rich topic, and there is a wealth of techniques for enhanc-
ing realism that we didn’t describe in this brief introduction. The reader is encour-
aged to explore the myriad of textbooks and online resources on ray tracing ([S16]
is a particularly nice online overview).

As we saw in Section 16.2, OpenGL has support for blending, including a
wide variety of ways to blend colors. However, in this chapter, we didn’t utilize the
rendering pipeline, so we had to blend the colors ourselves.

Much of the code in this chapter was developed by Luis Gutierrez as part of a
special project when he was a student at California State University, Sacramento.
His contributions greatly facilitated our explanations and we appreciate the excel-
lent work that he did distilling these topics into manageable-sized code, especially
his code organization for managing the recursion in the non-recursive language
of GLSL.

Exercises

16.1 In Program 16.4, shadows can be very easily disabled by commenting out
one particular line of code. Identify that line of code.

16.2 Make the following simple changes to Program 16.5: (i) move the box so that
it is behind the sphere, but still visible, (ii) change the background color from
black to light blue, and (iii) modify the properties and position of the light
source.

16.3

16.4

16.5

16.6

Chapter 16 - Ray Tracing and Compute Shaders Il 465

Make the following changes to Program 16.10: (i) move the box so that it is
in front of the sphere, (ii) make the box transparent/refractive, and the sphere
reflective, and (iii) move the checkerboard plane so that it is placed vertically
behind the box and sphere. Try to place the objects so that both the sphere
and the checkerboard plane are visible through the transparent box.

In Program 16.12, replace the blue roombox with the lake scene skybox.
Don’t forget to disable lighting on the skybox.

Modify Program 16.13 to build a scene with a transparent sphere and a
transparent box, both of different colors. Include the vertical checkerboard
plane behind them as a backdrop. Experiment with the color blending
approaches described in Section 16.3.6. Which approach worked best in your
scene?

In Figure 16.28 (the center image), the Sugita/Takehashi blending of red and
green produces black. Is this a reasonable result? If not, can you devise a
workaround that doesn’t compromise other color blends?

References

[A19] AMD forum (edited by Pat Densman) (2019), “Graphics Driver Stopped

Responding: TDR fix”, AMD forum discussion, Accessed July 2020,
https://community.amd.com/thread/180166

[A68] A. Appel (1968), Some Techniques for Shading Machine Renderings of

[F96]

Solids, AFIPS Conference Proceedings 32, pp. 37-45.

Foley, James D. (ed.). (1996), Computer graphics: Principles and Practice,
Second Edition in C. © 1996 Addison-Wesley Professional.

[FW79]J. D. Foley and T. Whitted (1979), An Improved Illumination Model for

Shaded Display, Proceedings of the 6" Annual Conference on Computer
Graphics and Interactive Techniques.

[H13] D. Holden (2013), Avoiding Shader Conditionals, Accessed July 2020,

http://theorangeduck.com/page/avoiding-shader-conditionals

[H89] E. Haines et al. (1989), An Introduction to Ray Tracing, edited by A.

Glassner, © 1989 Academic Press.

466 M Computer Graphics Programming in OpenGL with Java, Third Edition

[K16] M. Kissner (2016), Ray Traced Soft Shadows in Real Time in Spellwrath,
Imagination Technologies Blog, Accessed July 2020, https:/www.imgtec.
com/blog/ray-traced-soft-shadows-in-real-time-spellwrath/

[KK86] T. Kay and J. Kajiya (1986), Ray Tracing Complex Scenes, SIGGRAPH ’86
Proceedings of the 13" Annual Conference on Computer Graphics and
Interactive Techniques, pp 269-278.

[KR20] OpenCL Overview (2020), Khronos Group. Accessed July 2020, https:/
www.khronos.org/opencl/

[NV20] About CUDA (2020), NVIDIA Developer. Accessed July 2020, https:/
developer.nvidia.com/about-cuda

[RTX19] RTX Ray Tracing (2019), NVIDIA Corp. Accessed July 2020, https:/
developer.nvidia.com/rtx/raytracing

[S11] H. Shen (2011), Ray-Tracing Basics, Accessed July 2020, http:/web.cse.
ohio-state.edu/~shen.94/681/Site/Slides_files/basic_algo.pdf

[S16] Scratchapixel (2016, Jean-Colas Prunier), A Minimal Ray-Tracer,
Accessed July 2020, https:/www.scratchapixel.com/lessons/3d-basic-
rendering/minimal-ray-tracer-rendering-simple-shapes

[ST15] J. Sugita and T. Takahashi (2015), Paint-Like Compositing Based on
RYB Color Model, The 42" International Conference and Exhibition on
Computer Graphics and Interactive Techniques (ACM SIGGRAPH), Los
Angeles, 2015. Also available (Accessed July 2020) at: http:/nishitalab.
org/user/UEl/publication/Sugita IWAIT2015.pdf

[SW15] G. Sellers, R. Wright Jr., and N. Haemel (2015), OpenGL SuperBible:
Comprehensive Tutorial and Reference, 7th ed. (Addison-Wesley, 2015).

[Y10] E. Young (2010), Direct Compute Optimizations and Best Practices, GPU
Technology Conference, San Jose, CA, Accessed July 2020, https:/www.
nvidia.com/content/GTC-2010/pdfs/2260 GTC2010.pdf

CHAPTER 17

STEREOSCOPY FOR 3D GLASSES
AND VR HEADSETS

17.1 View and Projection Matrices for Two Eyes, 469
17.2 Anaglyph Rendering0 i 471
17.3 Side-by-Side Rendering. i, 474
17.4 Correcting Lens Distortion in Headsets 475
17.5 A Simple Testing Hardware Configurationc.cccooiuuno... 483

Supplemental Notes 484

This entire textbook is about 3D rendering. However, “3D” is a rather overloaded
term. We have been using it to mean displaying scenes using 3D perspective so that
we can realistically perceive their objects at their locations and at their relative sizes.
However, “3D” can also mean viewing a scene through a binocular mechanism that
creates a fuller illusion of depth, often called stereoscopy. For example, many read-
ers have seen such techniques in action at a movie cinema, where viewers are given
special glasses to see a movie in “3D.” In this chapter, we explore the basics of how
to generate stereoscopic renderings using OpenGL.

In the real world, we experience a sensation of depth because our two eyes physi-
cally exist in slightly different locations. Our brain is able to combine our two eyes’
slightly different viewpoints into a single 3D experience. To replicate this experience
mechanically requires providing each eye with a similarly slightly different view of
the scene we are rendering. Many approaches for doing this have been invented over
the years.

One of the first such devices was produced in the 1800s, and it consisted of a
simple bracket called a “stereoscope” [WST]. This allowed one to view specially-
produced photographs — more specifically, image pairs — so that each eye viewed the
same subject but from very slightly different vantage points. These early stereoscopes

468 M Computer Graphics Programming in OpenGL with Java, Third Edition

were the inspiration for the widely popular View-Master® toys that emerged in the
mid-1900s, and more recently for virtual reality headsets (see Figure 17.1). Devices
of this sort are often called “side-by-side” viewers.

Figure 17.1

Side-by-side viewers, from left to right: 1800’s stereoscope, 1960’s View-Master®, and 2016 Oculus Quest® VR headset.
Photo of 1800’s Holmes stereoscope image by Dave Pape.

https.//commons.wikimedia.org/wiki/File:Holmes_ stereoscope.jpg

Photo of Oculus Quest by Bryan Clevenger, used with permission.

Side-by-side viewing produces excellent results, however, it has one primary
disadvantage: it is only feasible for small images, such as on a personal headset.

Achieving stereoscopy on a larger scale, such as on a cinema movie screen,
requires a different approach. The usual method is to project an image that con-
tains both left and right images simultaneously, and then provide a special pair of
glasses that only allows the left and right eyes to see their respective images. There
are several technologies for achieving this; three currently popular ones are:

* Anaglyph — the glasses’ lenses are two different colors, typically red and
cyan; the left eye sees the red component of the image, and the right eye
sees the cyan component. The image is projected such that the left eye’s
view is rendered in red, and the right eye’s view is rendered in cyan.

* Polarized — the glasses are split such that one side is polarized vertically
and the other side is polarized horizontally. The image is projected such
that each eye’s view is polarized in one or the other manner.

» Shutter — the projected image alternates displaying the left and right

images. The glasses alternate allowing the left and right sides to allow
the image to pass through.

Each of these technologies has its advantages and disadvantages. Anaglyph is
the simplest and least expensive; early 3D movies used this method. However, the
resulting color is often compromised. Polarized doesn’t suffer from color issues,

Chapter 17 - Stereoscopy for 3D Glasses and VR Headsets I 469

and the glasses are also inexpensive, but projecting a specially-polarized image
requires special technology.! Shutter offers the best quality, but the technology is
the most expensive, including the glasses. Figure 17.2 shows an inexpensive card-
board pair of anaglyph glasses.

Figure 17.2
Red/cyan anaglyph 3D glasses for cinematic projection.

In this chapter, we introduce the basics of generating 3D stereoscopic images
in OpenGL using two techniques: (1) anaglyph and (2) side-by-side. In both cases,
we will first need to learn a few basics regarding the view and projection matrices
we need to properly generate the separate images for each eye.

VIEW AND PROJECTION MATRICES FOR
TWO EYES

The science of how our pair of eyes converge on a particular object and allow
us to perceive its distance from us (stereopsis or depth perception) is complex
[WSS], and a complete discussion is outside the scope of this book. Our implemen-
tations are limited to incorporating only the most basic elements.

Let’s consider the vantage point of each eye. Although our eyes are very close
together, they are at different points in space. A common approach is to decide
on an appropriate interocular distance (10D), which is the distance between the
pupils of our two eyes. While it is a simple matter to measure this distance, say in

I Anaglyph and polarized techniques are called passive because the glasses don’t need to physi-
cally do anything other than filter colors. By contrast, shutter glasses need to dynamically open
and close in sync with the projected image, and are therefore referred to as an active technology.

470 B Computer Graphics Programming in OpenGL with Java, Third Edition

millimeters or inches, the relationship between that real-world distance measure
(e.g., millimeters) and the axes units used in our rendered scene (i.e., the meaning
of “17, “2”, etc. along our X, Y, and Z axes) is entirely application-dependent. A
commercial application, such as a videogame or movie, needs to ensure that the
IOD value chosen for the application domain correctly corresponds to the average
human’s 10D (about 65 mm), and may even need to provide for the user to adjust
for his/her own IOD. In our application, we define a variable called IOD and simply
decide by trial and error on a value that produces decent results.

We determine the location of each eye as the location of the camera offset by
half of the interocular distance. The offset computation also includes any rotation
applied to the camera. In the examples in this chapter, the camera is fixed at loca-
tion (cameraX, cameraY, cameraZ) and faces down the negative Z axis. Therefore,
in those cases, ignoring rotation, the eye locations are simply (cameraX + 10D/2.0,
cameraY, cameraZ), and the remainder of the computations for computing each
eye’s respective view matrix are unchanged.

Deriving accurate perspective projection matrices is complex [N10], although
implementing them is fairly simple. While it is possible to get decent results sim-
ply using the standard perspective matrix used for the camera, this can lead to
undesirable effects at the periphery, namely distant regions that only one eye can
see. Figure 17.3 shows frustums applied to both eyes, the first using standard per-
spective transforms, and then with slightly modified perspective transforms that
allow both eyes the same distance view while still facing forward. The second
approach produces better results, but requires the creation of perspective matrices
for asymmetric frustums. JOML provides a function called setFrustum() that builds
such a matrix given the top, bottom, left, and right boundaries of the projection
plane. Derivations for various such matrices can be found elsewhere [S16].

projection
plane

Figure 17.3
Standard and asymmetric frustums for stereoscopic perspective matrices.

Chapter 17 - Stercoscopy for 3D Glasses and VR Headsets W 471

Finding the boundaries of the projection plane in the asymmetric case can
be accomplished using a bit of geometry, given the field of view, aspect ratio,
and near and far clipping planes that we have already been using. Figure 17.4
defines Java/JOGL function computePerspectiveMatrix() that does this. The param-
eter leftRight is set to -1 for the left eye and +1 for the right eye. All other variables
are allocated globally (as before), for reasons of efficiency. The result is placed in
the variable pMat.

private void computePerspectiveMatrix(float leftRight)
{ float top = (float)Math.tan(fov/2.0f) * (float)near;
float bottom = -top;
float frustumShift = (I0OD / 2.0f) * near / far;
float left = -aspect * top - frustumShift * leftRight;
float right = aspect * top - frustumShift * leftRight;
pMat.setFrustum(left, right, bottom, top, near, far);

Figure 17.4
Java/JOGL function for computing an asymmetric perspective matrix.

ANAGLYPH RENDERING

Rendering an anaglyph 3D version of a scene for viewing with red-blue or red-
cyan glasses is basically the same as we have been doing, except that we need to
render the scene twice, once for the left eye and once for the right eye. One of these
renderings uses only the red portion of RGB color palette (the red channel), and the
other renders the green and blue channels (combining green and blue in RGB color
space produces cyan). The two renderings also each employ their own view and
perspective matrices. When viewed through red-cyan glasses, the brain fuses the
two images into a single 3D scene. An overview of the steps in display() is as follows:

Clear the depth and color buffers.

Set the OpenGL color mask to enable only the red channel.

Render the scene using the view and perspective matrices for the left eye.
Clear the depth buffer (but not the color buffer).

Set the OpenGL color mask to enable only the green and blue channels.

A i e

Render the scene using the view and perspective matrices for the right eye.

472 B Computer Graphics Programming in OpenGL with Java, Third Edition

The above steps occur in display(), except that we move the rendering step to its
own function called scene() since the two renders are nearly identical. Note steps
#2 and #5 — it is convenient that OpenGL offers the command glColorMask(), which
can be used to restrict the color channels that are written to the color buffer.

We illustrate anaglyph rendering using the fog example from Section 14.1 (the
scene continually rotates, and this particular image is captured at a different time
point than the one shown earlier in Figure 14.2). While we could use almost any
example from the preceding chapters, we chose to use a scene that includes fog
because incorporating methods that slightly obscure distant objects can further
enhance the 3D experience.

Program 17.1 shows the changes and additions to Program 14.1. Explanations
follow the code.

Program 17.1 Anaglyph Rendering of the Fog Example
Java/JOGL Application

// imports, variables for display, rendering programs, init(), matrices, as before.

// tunable interocular distance — we arrived at 0.01 for this scene by trial-and-error
private float IOD = 0.01f;

private void computePerspectiveMatrix(float leftRight)
{ //as shown previously in Figures 17.3 and 17.4

}

public void display(GLAutoDrawable drawable)
{ GL4 gl =(GL4) GLContext.getCurrentGL();

gl.glColorMaskitrue, true, true, true); // all color channels enabled for background color
gl.glClear(GL_DEPTH_BUFFER_BIT);

gl.glClearColor(0.7f, 0.8f, 0.9f, 1.0f); // the fog color is bluish-grey
gl.glClear(GL_COLOR_BUFFER _BIT);

gl.glColorMask(true, false, false, false); // enables only the red channel

scene(-1.0f); // render left eye's view

gl.giClear(GL_DEPTH_BUFFER_BIT);

gl.glColorMask(false, true, true, false); // enables only the green and blue channels
scene(1.0f); // render right eye's view

Chapter 17 - Stereoscopy for 3D Glasses and VR Headsets I 473

public void scene(float leftRight)

{ // .this function contains the display() code from Program 14.1, with the following changes
;;c.)r.nputePerspectiveMatrix(leftRight);
;/Mat.identity().setTransIation(-(cameraX + leftRight * I0D/2.0f), -cameraY, -cameraZ);

} .

// other components same as before. Shaders are also unchanged.

There are very few changes made to the original Program 14.1. The interocular
distance is set to 0.01, which was arrived at by trial-and-error as described in Section
17.1. Note that display() is effectively running twice, with an additional parameter
leftRight, which is set to -1 and then +1, corresponding to the left and right eyes. The
display() function then uses this value to offset the camera location used to build the
view matrix, to either the left or the right, by half of the interocular distance. The
code in the display() function from Program 14.1 has been moved into a separate
function called scene() which is called twice by display() to avoid duplication.

The output of Program 17.1 is shown in Figure 17.5. Note that the output com-
prises two renderings of the fog example, with one in red and the other in cyan,
slightly offset horizontally. View this figure through red/cyan glasses to see the
resulting 3D stereoscopic effect.

Figure 17.5
Anaglyph rendering of Program 17.1, the fog example (best viewed through red/cyan 3D glasses).

474 B Computer Graphics Programming in OpenGL with Java, Third Edition

SIDE-BY-SIDE RENDERING

Now that we have seen how to render appropriate left and right eye images
using asymmetric perspective matrices, let’s adapt these techniques to generating
a side-by-side stereoscopic pair for our fog example.

If all we desire is a pair of rectangular images for use in a device such as the
stereoscope or View-Master®, then the solution is straightforward. We simply use
the OpenGL glViewport() function to specify separate halves of the screen (view-
ports) for each image, then display() calls scene() twice, once for each viewport.
Program 17.2 shows the changes to Program 14.1. Explanations follow the code.

Program 17.2 Side-by-Side Rendering of Fog Example
Java/JOGL Application

// imports, variables for display, rendering programs, init(), matrices, and 10D as before.
// Addition of the computePerspectiveMatrix() function, and scene(), the same as Program 17.1

rivate int sizeX = 1920, sizeY = 1080;

public void display(GLAutoDrawable drawable)
{ GL4 gl = (GL4) GLContext.getCurrentGL();

gl.glViewport(0, 0, sizeX, sizeY);
gl.glClear(GL_DEPTH_BUFFER_BIT);
gl.glClearColor(0.7f, 0.8f, 0.9f, 1.0f);
gl.glClear(GL_COLOR_BUFFER_BIT);

gl.glViewport(0, 0, sizeX/2, sizeY);
scene(-1.0f);

gl.glViewport(sizeX/2, 0, sizeX/2, sizeY);
scene(1.0f);

// remaining code same as before. Shaders are also unchanged.

The glViewport() function is used to specify a portion of the screen (or view-
port) for rendering. It takes four parameters; the first two specify the X and Y
screen coordinates of the lower left corner of the viewport, and the next two spec-
ify the width and height of the viewport region (in pixels). We have defined the
variables sizeX and sizeY to common dimensions for a modern laptop screen; they
should be set to match the machine being used. We then use these values to divide

Chapter 17 - Stereoscopy for 3D Glasses and VR Headsets W 475

the screen in half, one side for each eye. The resulting output is shown in Figure
17.6. In this example, we have also set the clear color to the fog color, as we did in
Program 17.1.

Figure 17.6
Side-by-side rendering of Program 17.2, the fog example. (best viewed through a stereo headset).

By comparing Figures 17.5 and 17.6, we can see that the images in 17.6 have
clearly been compressed horizontally. With only half of the screen width available
for rendering each image, an application would need to take this into account by
changing either the field of view or the aspect ratio. We have ignored that in this
simple example.

CORRECTING LENS DISTORTION IN
HEADSETS

Headsets for viewing side-by-side images utilize high field-of-view lenses that
often suffer from lens distortion. Two important types of distortion in lenses are
barrel distortion, where straight lines bulge outward, and pincushion distortion,
where straight lines pinch inwards. Figure 17.7 shows a simple grid, and then the
same grid having been distorted with both pincushion and barrel distortions.

476 B Computer Graphics Programming in OpenGL with Java, Third Edition

Figure 17.7
Simple grid (left), and the same grid with pincushion (center) and barrel (right) distortions.

Most headsets utilize high field-of-view lenses that suffer from pincushion
distortion. For example, consider the popular stereoscopic headset, the Google
Cardboard® [GC20], in which the user places a cell phone inside of a cardboard
frame that incorporates a pair of lenses. If the cell phone displays a side-by-side
stereoscopic image, it can be viewed in 3D through the Google Cardboard. Figure
17.8 shows a Google Cardboard headset, along with the leftmost grid from Figure
17.7, but actually photographed through one of the Google Cardboard lenses. A
pincushion distortion can clearly be observed.

8

Figure 17.8
Google Cardboarde headset (left) and a simple grid viewed through one of its lenses (right), exhibiting
pincushion distortion.

Because headsets tend to use lenses that produce pincushion distortion, appli-
cations that target virtual reality headsets usually try to anticipate the pincushion
distortion and correct for it by applying a reverse distortion, specifically barrel

Chapter 17 - Stercoscopy for 3D Glasses and VR Headsets W 477

distortion. Since different headset lenses can have different properties, this distor-
tion correction would ideally be tunable for different headsets.

Measuring and correcting lens distortion is complex, and a full study is beyond
the scope of this book. Instead we walk through the steps for a typical example.
Specifically, we apply a barrel distortion correction to our fog example, roughly
tuned for the Google Cardboard headset. We also point out some of the tunable
parameters along the way. More thorough coverage can be found on the Internet

[BS16].

Applying a distortion correction to a rendered scene can be done in a variety
of ways. One of the most efficient methods is called vertex displacement, in which
the elements in the scene are each rendered with the desired distortion correction
applied to the vertices [BS16]. For purposes of simplicity, in this chapter we use
an easier, albeit less efficient, fragment-shader-based approach. The steps are as
follows:

1. Render the entire scene to a framebuffer texture, from the left eye point
of view.

2. Use the texture to render a rectangular region to the left half of the screen
(the fragment shader applies barrel distortion in this step).

3. Repeat the process for the right eye, to the right half of the screen.

We have already studied how to render a scene to a framebuffer texture, for
example, when we studied shadows. We have just learned how to render to the left
and right halves of the screen using glViewport(). Now we need to learn how to take
a framebuffer texture and render it while distorting the image it contains.

Rendering (and texturing) a rectangular object should by now be a simple mat-
ter, using six vertices comprising two triangles. Applying a corresponding texture
would then typically be done in the fragment shader using the texture() function,
which expects parameters for the X and Y texture coordinates. Since our rectangle
fills the entire viewport, an undistorted rendering would be achieved by simply
scaling the texture coordinates to the viewport dimensions, such as

fragColor = texture(gl_FragCoord.x / (sizeX/2), gl_FragCoord.y / sizeY);

Instead, we need to modify the X and Y texture lookup values so that they
access a different texel, specifically the one that would be at that location (X,Y) if
the texture were barrel-distorted. The mathematical derivation of barrel distortion

478 B Computer Graphics Programming in OpenGL with Java, Third Edition

dates back more than 100 years, by Conrady [C19], further refined by Brown [B66].
A simplified model (from [W20]) commonly used in VR systems is as follows:

X, =X, /(1+K1r2 +K2r4)
Y, =Y, /(1+K1r2 +K2r4)

where (X4, Yy) is the original (distorted) texture coordinate location, (x,, y,) is the
corresponding texture coordinate in an undistorted (corrected) version of the
scene, r is the straight-line distance from (X4, Y4) to the center of the image, and K|
and K, are tunable constants. Even in this simple model, the values for r, K;, and
K, require tuning depending on the viewing device, and sometimes even for the
person doing the viewing. Commonly-used values for Google Cardboard are -0.55
for Ky, and 0.34 for K,. For r, we simply use the Pythagorean Theorem to compute
a distance, and then scale that distance by trial-and-error to come up with a rea-
sonably effective result. From here on, we refer to this barrel distortion as lens
distortion correction.

Program 17.3 shows the changes made to Program 17.2 to render each half
screen with lens distortion correction, roughly tuned for Google Cardboard. Note
that the existing shaders (unchanged) now render to framebuffer textures, and a
new second set of shaders is added to do the final lens distortion correction of
these framebuffer textures to their respective half screens. Additional discussion
follows the code. The resulting output is shown in Figure 17.9.

Program 17.3 Side-by-Side Rendering with Lens Distortion
Correction

Java/JOGL Application

// only the changes to Program 17.2 are shown here
// the 4th VBO (vbo[3]) is the rectangular region for drawing the texture buffer to half of the screen
private int vbo[] = new int[4];

private int renderingProgram, distCorrectionProgram;
private int leftRightBuffer, leftRightTexture;

Chapter 17 - Stercoscopy for 3D Glasses and VR Headsets I 479

private void setupVertices() {

}

// rectangular region for drawing half of the screen (these vertices are placed in vbo[3])
float[] lensQuad =
{ -1.0f, 1.0f, 0.0f, -1.0f, -1.0f, 0.0f, 1.0f, 1.0f, 0.0f,
1.0f, 1.0f, 0.0f, -1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 0.0f
3
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[3]);
FloatBuffer quadBuf = Buffers.newDirectFloatBuffer(lensQuad);
gl.glBufferData(GL_ARRAY_BUFFER, quadBuf.limit()*4, quadBuf, GL_STATIC_DRAW);

private void setupLeftRightBuffer()

{

GL4 gl = (GL4) GLContext.getCurrentGL();

/ Initialize Framebuffer for rendering a screen half

gl.giGenFramebuffers(1, bufferld, 0);

leftRightBuffer = bufferld[0];

gl.giBindFramebuffer(GL_FRAMEBUFFER, leftRightBuffer);

gl.glGenTextures(1, bufferld, 0); // this is for the color buffer

leftRightTexture = bufferld[0];

gl.gIBindTexture(GL_TEXTURE_2D, leftRightTexture);

gl.giTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA, myCanvas.getWidth() / 2, myCanvas.getHeight(),
0, GL_RGBA, GL_UNSIGNED_BYTE, null);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);

float[] blackColor = { 0.0f, 0.0f, 0.0f, 1.0f };

gl.glTexParameterfy(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, blackColor, 0);

gl.glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, GL_TEXTURE_2D,
leftRightTexture, 0);

gl.gIDrawBuffer(GL_COLOR_ATTACHMENTO);

gl.glGenTextures(1, bufferld, 0); // this is for the depth buffer

gl.gIBindTexture(GL_TEXTURE_2D, bufferld[0]);

gl.glTeximage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, myCanvas.getWidth() / 2,
myCanvas.getHeight(), 0, GL_DEPTH_COMPONENT, GL_FLOAT, null);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

gl.glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
bufferld[0], 0);

480 M Computer Graphics Programming in OpenGL with Java, Third Edition

public void init(GLAutoDrawable drawable)
{ ...
distCorrectionProgram =

Utils.createShaderProgram("code/vertDistCorrShader.glsl", "code/fragDistCorrShader.gls!");

setupLeftRightBuffer();
}

private void copyFrameBufferToViewport(float leftRight)
{ GL4 gl =(GL4) GLContext.getCurrentGL ();
gl.glUseProgram(distCorrectionProgram);

// the "leftRight" uniform is which side to render, winSizeX/Y are viewport dimensions
leftRightLoc = gl.glGetUniformLocation(distCorrectionProgram, "leftRight");
sizeXLoc = gl.glGetUniformLocation(distCorrectionProgram, "winSizeX");

sizeYLoc = gl.glGetUniformLocation(distCorrectionProgram, "winSizeY");
gl.glUniform1f(leftRightLoc, leftRight);

gl.glUniform1f(sizeXLoc, (float)sizeX/2.0f);

gl.glUniform1f(sizeYLoc, (float)sizeY);

// vbo[3] contains the vertices for the rectangular region (two triangles)
gl.gIBindBuffer(GL_ARRAY_BUFFER, vbo[3]);
gl.glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
gl.glEnableVertexAttribArray(0);

// the texture containing the rendered scene is sent to the shaders,
// which will apply lens distortion correction
gl.glActiveTexture(GL_TEXTUREO);
gl.glBindTexture(GL_TEXTURE_2D, leftRightTexture);

gl.glEnable(GL_DEPTH_TEST);
gl.giDepthFunc(GL_LEQUAL);
gl.glDrawArrays(GL_TRIANGLES, 0, 6);

}

private void clearDisplay()

{ //this s for clearing the actual screen display buffer
GL4 gl = (GL4) GLContext.getCurrentGL();
gl.glClearColor(0, 0, 0, 1);
gl.gIBindFramebuffer(GL_FRAMEBUFFER, 0);
gl.glClear(GL_DEPTH_BUFFER_BIT);
gl.glClear(GL_COLOR_BUFFER_BIT);

}

private void clearBuffer()

{ //this is for clearing the framebuffer texture where the scene is initially rendered
GL4 gl = (GL4) GLContext.getCurrentGL();
gl.glClearColor(0.7f, 0.8f, 0.9f, 1.0f);

Chapter 17 - Stercoscopy for 3D Glasses and VR Headsets I 481

gl.glBindFramebuffer(GL_FRAMEBUFFER, leftRightBuffer);
gl.glClear(GL_DEPTH_BUFFER_BIT);
gl.glClear(GL_COLOR_BUFFER_BIT);

}

public void display(GLAutoDrawable drawable)
{ GL4 gl =(GL4) GLContext.getCurrentGL();
clearDisplay();

// draw left viewport to framebuffer texture

clearBuffer();

gl.gBindFramebuffer(GL_FRAMEBUFFER, leftRightBuffer);
gl.glViewport(0, 0, sizeX/2, sizeY);

scene(-1.0f);

// transfer left viewport framebuffer to the screen
gl.glBindFramebuffer(GL_FRAMEBUFFER, 0);
gl.glViewport(0, 0, sizeX/2, sizeY);
copyFrameBufferToViewport(0.0f);

// draw right viewport to framebuffer texture

clearBuffer();

gl.gBindFramebuffer(GL_FRAMEBUFFER, leftRightBuffer);
gl.glViewport(0, 0, sizeX/2, sizeY);

scene(1.0f);

// transfer right viewport framebuffer to the screen
gl.glBindFramebuffer(GL_FRAMEBUFFER, 0);
gl.glViewport(sizeX/2, 0, sizeX/2, sizeY);
copyFrameBufferToViewport(1.0f);

gl.glViewport(0, 0, sizeX, sizeY);
}

Vertex Shader (“vertDistCorrShader.glsl’)

// these shaders are for the final rendering of the completed framebuffer texture
// the vertex shader is just a simple pass-through to the fragment shader
#version 430

layout (location=0) in vec3 position;

uniform float leftRight;

uniform float winSizeX;

uniform float winSizeY;

layout (binding=0) uniform sampler2D lensTex;

void main(void)
{ gl_Position = vec4(position, 1.0);
}

482 B Computer Graphics Programming in OpenGL with Java, Third Edition

Fragment Shader (“fragDistCorrShader.glsl’)

/| The fragment shader does all of the lens distortion correction computations

#version 430

out vec4 fragColor;

uniform float leftRight; /-1 for left, +1 for right

uniform float winSizeX;

uniform float winSizeY;

layout (binding=0) uniform sampler2D lensTex; // this is the previously rendered framebuffer texture

void main(void)
{ float K1 =-0.55; / distortion parameters for Google Cardboard
float K2 = 0.34;

// compute the location in the half window scaled to (-0.5..+0.5) with (0,0) center
float xd = (gl_FragCoord.x - winSizeX*leftRight) / winSizeX - 0.5;
float yd = gl_FragCoord.y / winSizeY - 0.5;

// compute the distance to the center of the half window
float ru = sqrt(pow(xd,2.0) + pow(yd,2.0));

// tune conversion from screen units to physical millimeters
float mmRatio = 1.3; // ratio of ru/d, where d is the distance to the lens
float rn = ru * mmRatio;

// compute the undistorted corresponding location

float distortionFactor = 1+ K1 * pow(rn,2.0f) + K2 * pow(rn,4.0f);
float xu = xd / distortionFactor;

float yu = yd / distortionFactor;

// move the resulting point by (+0.5, +0.5) to convert to texture space
fragColor = texture(lensTex, vec2(xu+0.5, yu+0.5));

In Program 17.3, specifically the Java/JOGL application, setup of the framebuf-
fer texture (i.e., setting up leftRightBuffer and its associated texture named leftRight-
Texture) is identical to the water example from Program 15.3. There, the buffer was
used to store a reflection (later, a second one was used to store a refraction). Here, it is
used to store the entire scene, at the same dimensions as the one-half screen window
viewport. A second rendering program (called distCorrectionProgram) is created for
displaying this buffer to the screen, which happens in the function copyFrameBuffer-
ToViewport(), which is called once for the left eye, and then again for the right eye.
Most of the remaining Java code is unchanged, including the scene() function that
renders the details of the scene. The display() function is expanded to manage enabling
which of the two framebuffers (the screen buffer, or the leftRightBuffer) is active.

Chapter 17 - Stercoscopy for 3D Glasses and VR Headsets [l 483

The actual distortion correction happens in distCorrectionProgram’s fragment
shader. The GLSL shader code implements (1) the computation of the distance from
the location being rendered to the center of the half-screen viewport, (2) the lens dis-
tortion correction computations, and (3) the resulting texel lookup in leftRightTexture.

Figure 17.9
Side-by-side rendering of Program 17.3 with lens distortion correction (best viewed through a stereo headset).

A SIMPLE TESTING HARDWARE
CONFIGURATION

There are many ways available today for viewing side-by-side scenes such as
the one rendered by Program 17.3. While modern headsets can be pricey, a simple
method that the authors have used for preparing the examples in this chapter is to
utilize the following set of technologies:

* areasonably modern cell phone (such as Android or iPhone) connected
to a computer

* WiredXDisplay [WX20] (cell phone app), which duplicates the computer
screen to the cell phone

* Google Cardboard [GC20] for viewing the cell phone display in split
screen format

For readers who already own a smart phone, the total cost for the above solution
is under $20. The phone can be connected to a computer using a USB cable. The
WiredXDisplay application then transmits the contents of the computer screen to

484 B Computer Graphics Programming in OpenGL with Java, Third Edition

the cell phone, essentially turning the phone into a computer monitor. The phone
is then placed inside the Google Cardboard headset, which assumes the left half of
the display screen is for the left eye, and the right half is for the right eye. Figure
17.10 shows this configuration being deployed for Program 17.3.

Figure 17.10
Side-by-side output of Program 17.3 using Google Cardboard.

Hardware for testing anaglyph examples, such as the one in Program 17.1, is
considerably simpler. We use an inexpensive set of cardboard red/cyan glasses,
which can be purchased online.

SUPPLEMENTAL NOTES

The stereoscopic techniques described in this chapter constitute only a very basic
introduction. Professional systems for movie theaters and VR games and applica-
tions typically utilize more sophisticated models and are more carefully tuned for the
hardware being used. We have also ignored important related topics, such as retinal
blur for depth of field rendering, which would be incorporated in a fully professional
deployment. That said, it is fun to use the simple methods shown here to experience
the various examples throughout the textbook with full 3D depth perception.

In just a few cases, there are some stumbling blocks. Some of the examples in
the textbook utilize user-defined framebuffers for various purposes or render to

Chapter 17 - Stercoscopy for 3D Glasses and VR Headsets [485

textures, such as for building shadows, generating water effects, or doing ray trac-
ing. In those cases, the Java code would need to be further modified to manage the
buffers. This is especially tricky in the water examples from Chapter 15, where the
reflection and refraction buffers are largely estimated and won’t lend themselves
to accurate splitting between the two eyes without modification.

We chose the fog example for rendering because the fog further helps the ste-
reoscopic effect and because that example was not overly hampered by the color
limitations of red/cyan anaglyph viewing. The colors of some of the other exam-
ples in the textbook will not fare as well when viewed in red/cyan anaglyph.

The reader no doubt has noticed that our side-by-side rendering was hori-
zontally squished. We didn’t correct for this to keep the code as simple as pos-
sible. A more complete solution would also correct the view frustums so that the
aspect ratio isn’t so radically changed. One drawback of side-by-side viewing is
the resulting loss of half of the screen real estate when rendering a scene.

Details on the vertex displacement method for correcting lens distortion,
which has better performance than the simple fragment-shader-based method pre-
sented in this chapter, can be found elsewhere [K16].

Although we have presented basic approaches to stereoscopic rendering (and
viewing) such as are applied for virtual reality systems, there is quite a large set of
VR topics that we haven’t discussed at all. A full VR system not only displays in
stereoscopic 3D, it also includes sensors that enable the user to move and interact
more naturally, such as by turning one’s head or reaching with the hands. We have
focused solely on the graphics.

This chapter also doesn’t cover how to render for polarized or shutter tech-
nologies (although they are mentioned briefly in the beginning of the chapter).
Those require more specialized hardware and their solutions are beyond the scope
of this introduction.

Exercises

17.1 Modify Program 17.1 to try a variety of different values for the IOD. What
range of values do you think works the best for this scene? What happens if
the 10D is set too small? What do you observe as the IOD increases, and then
what happens when the 10D is set too large?

486 M Computer Graphics Programming in OpenGL with Java, Third Edition

17.2 Convert Program 4.2, specifically the modified version with 100,000 cubes,
to both anaglyph and side-by-side stereoscopy.

17.3 Convert Program 12.5, the tessellated moon surface, to both anaglyph and
side-by-side stereoscopic rendering. Animate the camera movement so that
it skims along and close to the moon surface.

References

[B66] D. Brown (1966), Decentering Distortion of Lenses, Photogrammetric
Engineering 32 (3).

[BS16] B. Smus (2016), Three Approaches to VR Lens Distortion. Blog entry,

accessed July 2020. https://smus.com/vr-lens-distortion/

[C19] A. Conrady (1919), Decentered Lens-Systems, Monthly notices of the
Royal Astronomical Society 79 (1919).

[GC20] Google Cardboard —accessed July 2020. https://arvr.google.com/cardboard

[K16] B. Kehrer (2016), VR Distortion Correction Using Vertex Displacement
(blog), accessed July 2020. https://www.ustwo.com/blog/vr-distortion-
vertex-displacement

[N10] S.Gateau, S. Nash(2010), Implementing Stereoscopic 3D in Your Applications,
NVIDIA, GPU Technology Conference, San Jose CA, accessed July 2020,
https:/www.nvidia.com/content/GTC-2010/pdfs/2010_GTC2010.pdf

[S16] Scratchapixel 2.0 (2016), The Perspective and Orthographic Projection
Matrix, accessed July 2020, https:/www.scratchapixel.com

[W20] G. Wetzstein (2020), Head Mounted Display Optics 1, accessed July 2020,
https://stanford.edu/class/ee267/lectures/lecture7.pdf

I[WSE] Wikipedia — Stereoscopy, accessed July 2020, https:/en.wikipedia.org/
wiki/Stereoscopy

[WSS] Wikipedia — Stereopsis, accessed July 2020, https://en.wikipedia.org/
wiki/Stereopsis

[WST] Wikipedia — Stereoscope, accessed July 2020, https:/en.wikipedia.org/
wiki/Stereoscope

[WX20] WiredXDisplay (cell phone application) — Splashtop.com, accessed July
2020, https:/www.splashtop.com/wiredxdisplay

APPENDIX A

INSTALLATION AND SETUP
FOR PC (WINDOWS)

A.l Installing the Libraries and Development Environment 487

As described in Chapter 1, there are a number of installation and setup steps that
must be accomplished in order to use OpenGL and Java on your machine. These
steps vary depending on which platform you wish to use. The code samples in this
book are designed to be run as given on a PC (Windows); this appendix provides
setup instructions for the Windows platform. Libraries and tools change frequently,
so these steps may become outdated. We maintain updated installation and setup
instructions at: http:/ecs.csus.edu/~gordonvs/textJ3E. html.

INSTALLING THE LIBRARIES AND
DEVELOPMENT ENVIRONMENT

Installing Java

To use Java for the examples in this book, you will need both the JRE (Java
Runtime Environment) and the JDK (Java Development Kit). To install them, use
Oracle’s download site, http./www.oracle.com/java/technologies, and click the “Java
SE 11 (LTS)” link under Newest Downloads. From there you can find instructions
for downloading the latest JDK, which includes both the Java compiler and the JRE.
We assume that the reader is experienced with programming in Java and is using
version 11.

Installing OpenGL/GLSL

It is not necessary to “install” OpenGL or GLSL, but it is necessary to ensure
that your graphics card supports at least version 4.3 of OpenGL. If you do not know

488 M Computer Graphics Programming in OpenGL with Java, Third Edition

what version of OpenGL your machine supports, you can use one of the various
free applications (such as GLView [GV21]) to find out.

Installing JOGL

To install JOGL, visit the JogAmp Website [JO16], http.//jogamp.org. There,
as of this writing (April 2021), the current version 2.4 of JOGL is found in the
Builds/Downloads section—Ilook under Archives and click on [releases]. The archive
of JOGL versions are then displayed in a folder named /deployment/archive/rc. Scroll
down and open version 2.4. Then open the folder named Archive and download the
following:

jogamp-all-platforms.7z
jogl-javadoc.7z

Unzip these files into the folder on your machine where you would like to
store the JOGL system. A typical location in Windows could be, for example, in a
folder named “JOGL” at the root of the C: drive.

The unzipped jogamp-all-platforms file contains a folder named jar which con-
tains two important files that will be used by your applications:

jogl-all jar
gluegen-rt.jar

Add the full path name of each of these two files to your CLASSPATH environ-
ment variable.

After you have copied the above files onto your machine, go into the jogl-
javadoc folder and double-click the file named index.html. This opens the JOGL
javadocs in a browser, which you should then bookmark for future reference.

Installing JOML

To install JOML, visit the JOML GitHub page and click on “Releases,” or
navigate directly to the Releases page [JR21]. You will probably want to download
the latest version (1.10.0 at the time of this writing), specifically the .jar file named
joml-1.10.0.jar (found under “assets”). This file is also available on the companion
DVD distributed with this book.

Appendix A - Installation and Setup for PC (Windows) Il 489

After downloading the jar file, move it to wherever you would like to store
JOML—a typical location in Windows could be, for example, in a folder named
“JOML” at the root of the C: drive. Then add the full path name of the .jar file to
your CLASSPATH environment variable.

There is a lot of helpful reference material on JOML and how to most effec-

tively use it. Note especially two pages definitely worth bookmarking:

* the readme for using JOML with JOGL [JJ21]
* the JOML Wiki [JW20]

Libraries and tools change frequently, so these steps may become out-
dated. We maintain updated installation and setup instructions at http.//ecs.csus.
edu/~gordonvs/textJ3E.html.

References

[GV21] GLView, accessed March 2021, https://www.realtech-vr.com/home/
glview

[JJ21] JOML, “Using with JOGL,” accessed March 2021, https:/github.com/
JOML-CI/JOML#using-with-jogl

[JO21] JogAmp, accessed March 2021, http://jogamp.org/

[JR21] JOML, Releases, accessed March 2021, https:/github.com/JOML-CI/
JOML/releases

[JW20] JOML, wiki, accessed March 2021, https:/github.com/JOML-CI/JOML/
wiki

APPENDIX B

INSTALLATION AND SETUP
FOR MACINTOSH

B.1 Installing the Libraries. i 491
B.2 Modifying the Java/OpenGL/GLSL Application Code for the Mac. 493

As described in Chapter 1, there are a number of installation and setup steps that
must be accomplished in order to use OpenGL and Java on your machine. These
steps vary depending on which platform you wish to use. This Appendix provides
setup instructions for the Macintosh platform. Libraries and tools change frequently,
so these steps may become outdated. We maintain updated installation and setup
instructions at: http:/ecs.csus.edu/~gordonvs/textJ3E. html.

Apple support for OpenGL on the Macintosh has languished in the past
few years. For example, modern Macs as of this writing still only support up to
OpenGL version 4.1. Still, it is possible to run the examples in this book with
minor modifications. As for preparing the necessary libraries, all of the libraries
described in Chapter 1 are cross-platform and available for the Apple Macintosh. We
first describe how to install these libraries.

In addition, since the code samples in this book are designed to be run (as-given)
on a Windows platform with OpenGL 4.3, this Appendix provides details on con-
verting the code samples so that they run correctly on the Macintosh.

XN INSTALLING THE LIBRARIES
Installing Java

To use Java for the examples in this book, you will need both the JRE (Java
Runtime Environment) and the JDK (Java Development Kit). To install them, use
Oracle’s download site, http.//www.oracle.com/java/technologies, and click the “Java

492 B Computer Graphics Programming in OpenGL with Java, Third Edition

SE 11 (LTS)” link under Newest Downloads. From there you can find instructions
for downloading the latest JDK, which includes both the Java compiler and the
JRE. We assume that the reader is experienced with programming in Java and is
using version 11.

EX®A Installing OpenGL/GLSL

It is not necessary to “install” OpenGL or GLSL, but it is necessary to ensure
that your machine supports at least version 4.1 of OpenGL. If you do not know

what version of OpenGL your machine supports, a list is available on the Apple
website [AP20].

Installing JOGL

To install JOGL, visit the JogAmp Website [JO16], http://jogamp.org. There, as
of this writing (April 2021), the current version 2.4 of JOGL is found in the Builds/
Downloads section—Ilook under Archives and click on [releases]. The archive of JOGL
versions are then displayed in a folder named /deployment/archive/rc. Scroll down and
open version 2.4. Then open the folder named Archive and download the following:

jogamp-all-platforms.7z
jogl-javadoc.7z

Unzip these files into the folder on your machine where you would like to
store the JOGL system.

The unzipped jogamp-all-platforms file contains a folder named jar which con-
tains several important files that will be used by your applications:

jogl-all jar
jogl-all-natives-macosc-universal.jar
gluegen-rt.jar
gluegen-rt-natives-macosc-universal.jar

Traditionally these files would be placed in the /System/Library/Java/Extensions
folder. However, this Extensions mechanism has been deprecated [OR18]. Instead,
save the four files in whatever folder you'd like for them to be stored, then add full
paths for jogl-all.jar and gluegen-rt.jar to your CLASSPATH environment variable.

After you have copied the above files onto your machine, go into the jogl-javadoc
folder and double-click the file named index.html. This opens the JOGL javadocs in
a browser, which you should then bookmark for future reference.

Appendix B - Installation and Setup for Macintosh [l 493

EX®HE Installing JOML

To install JOML, visit the JOML GitHub page and click on “Releases,” or navi-
gate directly to the Releases page [JR21]. You’ll probably want to download the
latest version (1.10.0 at the time of this writing), specifically the .jar file named
joml-1.10.0jar (found under “assets”).

After downloading the .jar file, move it to wherever you would like to store
JOML on your machine Then add the full path name of the .jar file to your
CLASSPATH environment variable.

There is a lot of helpful reference material on JOML and how to most effec-
tively use it. Note especially two pages definitely worth bookmarking:

» the readme for using JOML with JOGL [JJ21]
+ the JOML Wiki [JW20]

¥ MODIFYING THE JAVA/OPENGL/GLSL
APPLICATION CODE FOR THE MAC

For the most part, the Java programs themselves, as described in this textbook,
will run as-is. There are, however, a small number of changes that must be made.
Some of these changes won’t make much sense until one has studied the corre-
sponding programming sections in the text. The reader may choose to skip parts
of this section and return to it later while learning the material in question. Despite
the possible risk of introducing confusion, we have decided to place all of the code
changes for the Macintosh here, so that they are assembled in one place.

X5l Modifying the Java Code

Many Macs default to much earlier versions of OpenGL. To force use of the
latest version of OpenGL on the hardware, in each of the code examples in this
book replace the line of code

myCanvas = new GLCanvas();

with the following lines:
GLProfile glp = GLProfile.getMaxProgrammableCore(true);

GLCapabilities caps = new GLCapabilities(glp);
myCanvas = new GLCanvas(caps);

494 B Computer Graphics Programming in OpenGL with Java, Third Edition

E¥®H Modifying the GLSL Code

Some changes will need to be made at various locations in our GLSL shader
code (and some of the associated Java/OpenGL code) because of the slightly ear-
lier version of OpenGL (specifically, 4.1) present in Macs:

The specified version number in the shaders must be changed. Presuming
that your Mac supports version 4.1, at the top of each shader locate the
line that says

#version 430

and change it to

#version 410

Version 4.1 doesn’t support layout binding qualifiers for texture sampler
variables. This affects material starting from Chapter 5. You’ll need

to remove the layout binding qualifiers and replace them with another
command that accomplishes the same thing. Specifically, look for lines
in the shaders that have the following format:

layout (binding=0) uniform sampler2D samp;

The texture unit number specified in the binding clause might be different
(it is “0” here), and the name of the sampler variable might be different
(it is “samp” here). In any case, you’ll need to remove the layout clause and
simplify the command so that it just says

uniform sampler2D samp;

Then you’ll need to add the following command to the Java program, for
each texture enabled:

glUniformli(gl.glGetUniformLocation(renderingProgram, “samp”), 0);

immediately after the glBindTexture() command in the Java display()
function, where samp is the name of the uniform sampler variable and the
0 in the above example is the texture unit specified in the binding com-
mand that was removed earlier.

Appendix B - Installation and Setup for Macintosh [l 495

Compiling and Running a Program

To compile a program, open a terminal window, navigate to the parent folder
of the java files (if using the code on the accompanying DV D, you can recognize
this parent folder because it contains the compile.bat and run.bat files intended for
use with a PC) and type

javac code/*.java
To run your compiled program, type

java code.Code

E¥XH Additional Notes

e The ray tracing programs shown in Chapter 16 won’t run on the
Macintosh, because they utilize compute shaders, which weren’t
introduced until version 4.3 of OpenGL.

* On some Macs that utilize a Retina Display, the pixel count can be
inconsistent. For example, in the code described in Section 2.1.6 (with result
shown in Figure 2.13), gl_FragCoord.x returns a value twice as big as would
be expected based on the window dimensions specified in main(). In that
example, change the test value 295 to 590, to produce the desired result.

References

[AP20] “Mac computers that use OpenCL and OpenGL graphics,” accessed
March 2021, https:/support.apple.com/en-us/HT202823

[JJ21] JOML, “Using with JOGL,” accessed March 2021, https:/github.com/
JOML-CI/JOML#using-with-jogl

[JO21] JogAmp, accessed March 2021, http://jogamp.org/

[JR21] JOML, Releases, accessed March 2021, https:/github.com/JOML-CI/
JOML/releases

[JW20] JOML, wiki, accessed March 2021, https:/github.com/JOML-CI/JOML/
wiki

[OR18] “The Extension Mechanism for Support of Optional Packages” (Oracle),
accessed September 2018, https://docs.oracle.com/javase/8/docs/technotes/
guides/extensions/index.html

APPENDIX C

UsING THE NSIGHT GRAPHICS
DEBUGGER

C.d About NVIDIANSIGRt e 497
C.2 Setting Up Nsight for JOGL i, 498
C.3 Running a Java/JOGL Application in Nsight. 498

Debugging GLSL shader code is notoriously difficult. Unlike programming in
typical languages such as Java or C++, it is often unclear exactly where a shader pro-
gram failed. Often, a shader error manifests as a blank screen, offering no clues as to
the nature of the error. Even more frustrating is that there is no way to print out the
values of shader variables during run time, as one would commonly do when track-
ing down an elusive bug.

We listed some techniques for detecting OpenGL and GLSL errors in Section
2.2. Despite the help that these techniques provide, the lack of a simple ability to
display shader variables is a serious handicap.

For this reason, graphics card manufacturers have sometimes provided capabili-
ties in hardware for extracting information from shaders at run time, and then built
tools for accessing the information in the form of a graphics debugger. Each manu-
facturer’s debugging tool(s) work only in the presence of that manufacturer’s graph-
ics card. NVIDIA’s graphics debugger is part of a larger suite of tools called Nsight,
and AMD has a similar suite of tools called CodeXL. This appendix describes how to
get started using Nsight with Java/JOGL on a PC (Windows) machine.

ABOUT NVIDIA NSIGHT

Nsight is an NVIDIA suite of tools that includes a graphics debugger, which
makes it possible to look inside the shader stages of the OpenGL graphics pipeline
while a program is running. It isn’t necessary to change the code at all, or to add

498 B Computer Graphics Programming in OpenGL with Java, Third Edition

any code. Simply run an existing program using the Nsight application. Nsight
allows examining shaders at runtime, such as seeing the current contents of a
shader’s uniform variables. It also enables seeing the C calls being made by a
JOGL-wrapped program.

There are versions of Nsight for Windows and for Linux, including versions
that run under Microsoft’s Visual Studio and under the Eclipse IDE. We restrict
our discussion to the standalone Nsight Graphics application for Windows.

Nsight works only with compatible NVIDIA graphics cards; it won’t work
with Intel or AMD graphics cards. A complete list of supported cards is available
on the NVIDIA Website [NS21].

Nsight is changing quickly, and the description in our previous (second) edi-
tion of this textbook is already outdated. The reader should consider this brief
introduction just a starting point, as there are likely to be many more exciting
changes and developments in Nsight in the near future.

SETTING UP NSIGHT FOR JOGL

Using Nsight with Java/JOGL has become much easier than it was when
we wrote the first two editions of this book. In previous editions we described
incorporating Nsight into Visual Studio and running our Java/JOGL program as
an “external program.” This is no longer necessary, as there is now a standalone
Nsight graphics debugging tool called Nsight Graphics, which eliminates the
need for using Visual Studio entirely.

Start by installing Nsight Graphics, available at Attps:/developer.nvidia.com/
nsight-graphics. There are many versions throughout Nsight Graphics’ history
available there. We installed version 2020.4 and it has worked well for us.

RUNNING A JAVA/JOGL APPLICATION IN
NSIGHT

1. Run Nsight Graphics. A menu comes up, as shown below. Choose either
“Quick Launch” or “New Project.” Both will work fine — creating a new
project will allow you to save your settings. For this example, we chose
“Quick Launch.”

Appendix C - Using the Nsight Graphics Debugger I 499

2 NVIDIA Nsight Graphics X

NVIDIA Nsight Graphics

Recent Files Quick Launch

Recent projects and files used by NVIDIA Nsight Graphics will be shown Continue without a project instead
here for quick access on launch. using settings from the last Quick
Launch session.

Continue

New Project

Create a new project to store target
application and activity settings.
Projects also serve as a parent to
files generated during activity
sessions.

Create New Project

Load Project

Load an existing project file from
disk.

Load Project

2. A “Target Platform” window should appear. This is where we specify
which application we wish to debug using Nsight. Near the top, under
“Windows”, make sure that the “Launch” selection is highlighted. There
are three entries below that that need to be changed:

First, there is a line that says “Application Executable:”. In the box to
the right of that, replace whatever is there with the path to the Java SDK
executable. On most Windows machines, this will be something like:

C:\Program Files\Java\jdk-11.0.7\bin\java.exe

Second, further down on the same pane is a line that says “Working direc-
tory:”. In the box to the right of that, replace whatever is there with the path
to the directory from which you would execute the command to run your
program (for the programs on the accompanying disk, this would be the
location of the folder containing “run.bat”). For example, something like:

C:\Users\gordonvs\Documents\graphics\cubes

Third, further down on the same pane is a line that says “Command Line
Arguments:”. In the box to the right of that, replace whatever is there with
the command line arguments needed to run your Java/JOGL application.
Each argument must be in its own set of quotations. For example, if you
usually run your program with a command such as:

500 B Computer Graphics Programming in OpenGL with Java, Third Edition

java -Dsun.java2d.d3d=false -Dsun.java2d.uiScale=1 code.Code
then the entry in the argument box would need to be
"-Dsun java2d.d3d=false" "-Dsun.java2d.uiScale=1" "code.Code"

Note the sets of double quotes around EACH parameter, separately, with
the last item being the Java/JOGL executable application.

Here is an example screenshot showing all three changes:

2 Connect to process X

Target Platform

58 Windows .
Connection: localhost

Launch

Application Executable: C:\Program Files\Java\jdk-11.0.7\bin\java.exe S
Working Directory: C:\Users\gordonvs\Documents\graphics\cubes v
Command Line Argument: : "-Dsun.java2d.d3d=false" "-Dsun.java2d.uiScale=1" "code.Code"

Environment:

Automatically Connect:

13t Frame Debugger Pause and capture an application frame for real-time inspection of rendering and compute calls. While
Ll Frame Profiler paused, step through API events to view the current rendering event in isolation, inspect API-specific

~ ~ state, examinethe geometry, and browse contributing resources. Other debugging features include pixel
&% Generate C++ Capture history and live shader editing.

& GPU Trace Supported APIs: D3D11, D3D12, OpenGL, Vulkan
(@ System Trace

General OpenG

Enable Target HUD: Yes

Force Repaint: No

Launch Frame Debugger

3. Click “Launch Frame Debugger” in the lower right. Your Java/JOGL
graphics program should now execute. Depending on your installation,
various windows may appear alongside your running program. Nsight
may also superimpose some information over your running program, as
shown here:

Appendix C - Using the Nsight Graphics Debugger I 501

File Connection Frame Debugger Tools Window Help

& pisconnect X Terminate | Q Capture for Live Analysis B

Linked Programs View

Filter: Enter a filter 60.0 FPS, 16.67 ms/frame

Active shaders: Original
All Programs & Shaders (1) Hit Ctrk2Z for HUD

Name Type Status
> 3 Program Binary + SAS
* Vs Binary + SAS

" Fs Binary + SAS:

Output Messages

B ﬁc\ear @ A @ @ Filter Sources: Select Sou
D - Origin Source

1@ Target

2@ Target

4. Once your program is running, interact with it in whatever area you wish to
examine. At that point, you will need to pause the execution. In some instal-
lations, this is done from the Nsight menu by selecting “Pause and Capture
Frame,” while in other versions, it is done from the run window itself by
pressing CTRL-Z, then clicking on the “Pause for Live Analysis” button.

1 60.0 FPS, 16.66
Active shaders:
HUD activ:

502 M Computer Graphics Programming in OpenGL with Java, Third Edition

5. The Frame debugger screen should appear, along with a HUD toolbar and
a horizontal selection tool called a “scrubber.” Your program will likely
freeze at this point. In the center of the debugger screen is a left bar with
buttons for each shader stage. For example, you can highlight “VS” for
“Vertex Shader,” and in the larger center box to its right, you can scroll
down and look at the contents of the uniform variables (presuming you
have “API inspector” selected above it). In the following screenshot, the
small box to the right of “proj matrix” has been opened, revealing the
contents of the 4x4 projection matrix.

API Inspector View

]

Vix Spec Event 176 - SwapBuffers(HDC hdc =
Transform

¥ Program Interfaces

S ¥ Uniform

Name Location Value Type Array Size Array Stride Matrix
mv_matrix Default: 0 & {).873688, 0.477508, -0.0930387. 0... } GL FLOAT MAT4 1 =1
proj_matrix Default: 1 Urfset: 0 Columns: 4 ¥ Data Size: 32-bitFloat ¥ Precision: 5 %

3
[)
-
[
x
(7}
=
]
=%
]
2

Address Data
2x00000000 0.87369 0.47751 -0.09304 0.00000
2x00000010 -0.09304 0.35172 0.93147 0.00000
2x00000020 0.47751 -0.808516 0.35172 0.00000

4 0x00000030 7.93560 -3.07695 -29.99024 1.00000

Pix Ops
¥ Program Input

6. Another interesting window that appears is one that looks similar to your
running program. This window has a timeline along the bottom, which
allows you to click and see the sequence of items drawn on the frame.
Here is an example—note the cursor has been clicked on the left area of
the timeline and it shows those items that have been drawn up to that point:

[—
toe=

40 E

| | | | Il | Il |
T 3
3

1 NVIDIA Nsight Graphics replay

® 1

Active shaders: Original
Frame Debugger: Active .

£ T3 Arguments: Variable +

. GLint first = 0, GLsizei count = 36)

Event Description
84" (GLenum mo..

Aray Size A
XT_MAT4 1

Lint .

(GLenum targe.
XT_MAT4 1

(Guint.
(GLenum targe.
(GL... Aray Size |Referenced By I Per Patch Location Companent
1vs 0 0

Appendix C - Using the Nsight Graphics Debugger I 503

Consult Nsight documentation for details on how to get the most out of the
Nsight tool.

References

[NS21] Nsight Graphics Requirements, accessed May 2021, https:/developer.
nvidia.com/nsight-graphics-requirements

Index

3D models
loading externally produced
models, 148—-158
Blender, 149, 150, 153
DCC-created model, 149
ImportedModel class, 154,
155
Modellmporter class, 154
OBJ files, 149151, 153, 154
OpenGL indexing
torus, 142148
VBO, 143, 144
procedural models, 134—-141
objects, types of, 134
sphere, 134-138
torus, 142
3D movies, 467468
3D textures, 324-330
checkerboard pattern, 329, 310
Java/JOGL application, 326-328
striped pattern, 325-329

A

ADS lighting model
computations, 168—171

ambient contribution, 168—169
diffuse contribution, 169
specular contribution, 170
implementing, 171-184
faceted shading, 172
smooth shading. see Smooth
shading
ray casting, applied to, 411-413
Aliasing, 118-119
Alpha channel, 166, 316
Ambient reflection, 162
AMD
CodeXL, 497
TressFX, 310
Anaglyph stereoscopy, 468
Animation, 75, 79
Animator, 29
Anisotropic filtering (AF), 123—-124
normal mapping, use in, 253-254
Appel, Arthur, 388
Application Programming Interfaces
(APIs), 2
Aspect ratio, 54
Asymmetric frustum, 470471
Attenuation factors, 164, 165

506 B Index

B

Back-face culling. see Culling
Barrel distortion, 475-476
Bernstein, Sergei, 263
Bézier curve, 261-266
Bézier surfaces
cubic, 268-270
quadratic, 266268
tessellation, 268
Bézier, Pierre, 261
Bilinear filtering, 122
Bitangent vectors, 248
Blender, 149, 150, 153
Blending function, 263
Blending. see Transparency
Blinn, James, 182
Blinn-Phong shading, 183184
Bronze, 167, 173, 203, 206
Bump mapping, 243-245
perturbed normal vectors for, 244
procedural bump mapping, 244

C

Camera space. see Eye space
Camera, 50-53

Caustics, see Water caustics
Clipping plane, 54, 322
Clouds, 344348

CMY (cyan/magenta/yellow), 457
CodeXL, 497

Collision normal, 409

Color buffer, 10, 20

Color models, 456-463
Compositing. see Transparency
Computer aided design, 57
Compute shader, 389—399
Concatenation, 41

Cross product, 47-49

Crow, Frank, 193

Cube map
camera placed inside, 222
six-faced skybox texture, 222
texture coordinates, 223
using OpenGL, 229-234
CUDA, 389
Culling
back-face culling, 100-102, 320
level of detail (LOD), in, 297
winding order, 101, 102

D

de Casteljau, Paul, 261

de Casteljau’s algorithm, 261, 264
Debugging, 25, 26

Nsight, with, 497-503

Depth buffer. see Z-buffer
Depth-fighting. see Z-fighting
Diffuse reflection, 162

Digital Content Creation (DCC), 148
Direct buffer, 103

Directional light, 163

discard (GLSL command), 349-351
Dissolve effect, 349-350

Distant light. see Directional light
Dot product, 4748

E

Emissiveness, 166
Enhancing surface detail, 243-258
Environment mapping, 234-239
overview, 235
reflection vector, 234, 235, 239
shaders, 235, 238
texture cube maps, 234-235, 238
Erroneous self-shadowing. see
Shadow acne
Euler angles, 44, 45

Euler’s Theorem, 44
Eye space, 50-51, 315

F

Faceted shading, 172

Far clipping plane, 54, 56, 71, 95, 471
Field of view, 54, 71

Flat shading. see Faceted shading
Fog, 313-315, 377, 472-473

Foley, J.D., 388

Fragment shader, 10, 11, 14-16, 19
Frame, 29

Frame buffer, 197, 477-481

Frame rate, 29, 75, 213

Fresnel effect, 374-378

Frustum, 54-55, 470471

Full-scene anti-aliasing (FSAA), 130

G

GameWorks (NVIDIA), 310
Geometry shaders
adding primitives, 306-309
altering primitives, 301-305
changing primitive types, 309-310
deleting primitives, 305-306
OpenGL, per-primitive processing
in, 299-300
GLCanvas, 7, 9-19
Global ambient light, 163—164
GLSL
matrix transforms, functions for,
58-60
error-detecting modules, 32—33
checkOpenGLError(), 22
printProgramLog, 22
printShaderLog, 22, 71
GLSL shader code, files, 2627
shader languages, 6

Index I 507

GLUT, 141
GNU Image Manipulation Program
(GIMP), 246, 249, 292
Gold, 162, 168, 184, 185
Google Cardboard® headset, 476
Gouraud shading, 171-179, 181,
182, 188
Gouraud, Henri, 172
Graphics card (GPU), 1, 81, 112, 114,
115, 498
Graphics pipeline. see OpenGL
pipeline
Graphics programming
installation and configuration, 4
Java, 491492
JOGL, 492
JOML, 493
OpenGL/GLSL, 492
languages and libraries, 1-2
Java, 2
JOGL, 3
JOML, 34
OpenGL/GLSL, 2-3
graphicslib3D, 4, 46, 99, 166

H

Hair
GameWorks (NVIDIA), 310
geometry shader, in, 16
TressFX, 310

Hard shadows, 210

Height mapping, 254-258
defining, 254
interpretation, 255
terrain, 254, 256
vertex manipulation, 254, 255
vertex-shader-based, 257

Hidden surface removal algorithm
(HSR), 194

508 B Index

Hierarchical model, 87
Homogeneous notation, 38, 40, 42
HSR. see hidden surface removal

I

Identity matrix, 39, 42, 43
Image load/store, 391
Immediate mode, 3, 88
Indexing, 136, 141, 143—-148
Index of refraction (IOR), 434
Instancing, 81-84, 289, 293
Interocular distance (I0OD), 469

J

Jade, 166, 339

Java Abstract Window Toolkit (AWT),
7, 128-130

Java Development Kit (JDK),
487,491

Java OpenGL. see JOGL

Java
installation and configuration,

491492

languages and libraries, 2

JogAmp, 3

JOGL
animator classes, 29
DebugGL, 24
installation and configuration, 492
languages and libraries, 3
overview of, 6, 77
texture mapping, 108—109
TraceGL, 24

JOML
installation and configuration, 493
languages and libraries, 3—4
rotation matrices, 44
scale matrices, 43
translation matrices, 43

L

Layout qualifier, 66, 67, 76, 300, 303
Level of detail (LOD), 293-297
Lens distortion, 475-483
Lighting
ADS lighting computations
ambient contribution, 168—169
diffuse contribution, 169
specular contribution, 170
ADS model, 181, 191
combining lighting and textures,
185-186
directional/distant light, 163
global ambient, 163
implementing ADS lighting
faceted shading, 172
smooth shading, 172, 180, 188
materials, 186, 197
positional, 181
for ray tracing, 411413
reflection model, 162, 182
shading models, 162
shadows, 192
spotlights, 164, 165
types of, 163—166
Lightweight Java Game Library. see
LWJGL
Linear filtering, 122
Local space. see Model space
LOD. see Level of detail
Logistic function, 345, 346
Look-at matrix, 57-58
Luxo Jr., 165
LWJGL, xii

M

Macintosh, 491495
Managing 3D graphics data
3D cube

3D cube program, 71-74

display() function, 75

fragment shader, 77, 78

frame rate, 75

rotate() function, 79

translate() function, 79

vertex positions, 75, 76
back-face culling, 100-102
buffers, types of, 67
combating Z-fighting artifacts,

94-95
instancing, 81
matrix stack

hierarchical models, 87

JOML, 88, 89

planetary system, 88—89

view matrices, 87-89
model matrix, 70
model-view matrix, 69—71
perspective matrix, 69-71
primitives

line, 96

patch, 97

point, 96

triangle, 95

triangle fan, 96

triangle strip, 95

rendering multiple different models,

84-87
rendering multiple objects, 94
uniform variables, 67-68
vertex attributes
interpolation of, 68—69
vertex shader, 76
view matrix, 70
Marble, 335-339
Marble noise maps, 336
Mathematical foundations
3D coordinate systems, 38
building matrix transforms, GLSL
functions for, 58-60

Index I 509

eye space, 50-53
local and world space, 49-50
look-at matrix, 57-58
matrices
addition, 40
identity matrix, 39
inverse, 41
multiplication, 41
transformation, 42—45
transpose, 39
points, 38-39
projection matrix
orthographic projection, 5657
perspective projection, 53—56
synthetic camera, 50-53
vectors
cross product, 47-49
dot product, 47-48
Materials, 166—168
Matrices
addition, 40
identity matrix, 39
inverse, 41
look-at matrix, 57-58
multiplication, 41
projection matrix
orthographic projection, 5657
perspective projection, 53—56
transformation
rotation, 4445
scale, 43-44
translation, 42—43
transpose, 39
Matrix multiplication, 41
Matrix stack
hierarchical models, 87
JOML, 88, 89
planetary system, 88—89
view matrices, 87—88
Maya, 66, 112
Macintosh, 4, 491

510 B Index

Mipmapping, 118-123
aliasing artifacts, 118
anisotropic filtering (AF), 123-124
minification, 121, 123
OpenGL support for, 123
trilinear filtering, 122, 123

mix() function, 285, 377

Modeling. see 3D modeling

Model matrix, 70, 89

Model space, 50, 53

Model-view matrix, 67, 84, 98

N

NASA, 154, 186, 249

Near clipping plane. see Projection
plane

Newell, Martin, 141

Noise
3D noise data, 331
clouds, 344-348
cube textured with, 331, 334
marble, 335-339
noise maps, 332, 334, 335, 336
Perlin, Ken, 330, 334
smoothed noise map, 334
special effects, 349-351
turbulence, 334, 336, 341
water, 371-372
wood, 340-343
zooming factor, 331

Normal mapping
anisotropic filtering, 253, 254
Blinn-Phong lighting, 247
fragment shader, 244, 245, 248—

250, 252

image file, 245, 246
mipmapping, 253
moon surface, 251, 252
object normal, 247

tangent and bitangent vectors, 248
TBN matrix, 248, 249
texture units, application of, 246
water, 371-372
Normal vector, 49, 234, 246, 371
Nsight, 26, 497-503
NVIDIA
GameWorks, 310
Nsight, 497-503
RTX, 388

O

OBJ. see Wavefront OBJ
Oculus Quest, 468
Opacity, 316, 319
OpenCL, 389
OpenGL
history, 3
immediate mode, 3, 88
shader programming, 3
versions, 3
OpenGL Architecture Review Board
(ARB), 2
OpenGL camera, 51, 70, 101, 197
OpenGL extension, 124
OpenGL pipeline
error-detecting modules
enabling debugging support, 24
enabling tracing support, 24
fragment shader, 19
geometry shader, 16—19
hardware side, 5
Java/JOGL application
color buffer, 10
Direct3D accelleration,
disabling, 8
GL4,9, 10
GLCanvas, 7-10
overview of, 6

pixel operations, 20-21
rasterization, 17-19
shader stages, 10—15
software side, 5
tessellation, 15
vertex and fragment shaders
glUseProgram(), 13
primitives, 10, 11, 13, 15
RGB color, 14
OpenGL Shading Language. see
GLSL
Orthographic projection, 219

P

Parallel computing, 389-399
Parametric surfaces
cubic Bézier curves, 263-266
analytic definition for, 263
de Casteljau’s algorithm, 261, 264
recursive subdivision algorithm,
266,270
cubic Bézier surface, 268-270
quadratic Bézier curve, 261-263
quadratic Bézier surface, 266268
Patch, 268, 277, 278, 289, 294
PCF. see Percentage Closer Filtering
Pearl, 166
Percentage Closer Filtering (PCF),
212216
Perlin Noise. see Noise
Perlin, Ken, 330
Perspective correction, 127
Perspective distortion, 126127
Perspective matrix, 54, 55, 70, 71, 95,
99-100, 471
Perspective projection, 53—56
Perspective transform, 54, 56, 95
Peter Panning, 209
Pewter, 166

Index I 511

Phong, Bui Tuong, 180

Phong shading, 180-184, 292
Blinn-Phong shading, 183184
external models with, 184
implementing Phong shading, 180
Stanford dragon, 184

Photoshop, 249

Pincushion distortion, 475-476

Pipeline. see OpenGL pipeline

Pixar, 165

Point, 38-39

Popping, 296

Positional light, 162, 164, 201, 207,
219,293

Primitive assembly, 16

Primitives, 10, 15, 16, 95-96

Procedural bump mapping, 244

Procedural texture, 325-326, 426429

Projection matrices
orthographic projection, 5657
perspective projection, 53-56,

470-471

Projection plane, 51, 54, 56

Projective shadows, 192—-193

Projective texture mapping, 368

Q

Quadratic Bézier curve, 261-263
Quaternion, 3, 45, 61

R

Rasterization, 17-19

Ray-box intersection, 409-410,
415417

Ray casting, 399-429

Ray-plane intersection, 426429

Ray-sphere intersection, 408—409

Ray tracing, 387463

512 B Index

Reflection, 430433

Reflection mapping. see Environment
mapping

Reflection ray, 430, 433

Refraction, 434437

Refraction ray, 434-435

RGB (red/green/blue), 455-462

Room box, 421-426

S

Sampler variable, 114, 119, 198, 249,
494
sampler2D, 114, 494
sampler3D, 329
samplerCube, 231, 235
Scale matrix, 43, 44
Secondary ray, 430
Self-shadowing, see Shadow acne
Shader programming, 1, 162
Shader Storage Buffer Object
(SSBO), 391
Shading models, 162
Shadow(s)
importance of, 91-92
Percentage Closer Filtering (PCF),
212-216
projective shadows, 192193
ray tracing and, 413415
shadow mapping
artifacts, 208-210
framebuffer, custom, 197, 198
HSR algorithm, and, 194
Java/JOGL implementation, 198
light position, drawing objects
from, 195-196
sampler2Dshadow, 195, 198, 200
shadow bulffer, 210
shadow texture, 195-200, 208,
210, 212,217,218

shadowMVP matrix, 196, 197
shadow volumes, 193, 194
soft shadows
Percentage Closer Filtering
(PCF), 212-216
real world, 210
Shadow acne, 208, 209, 433
Shadow buffering, 195
Shadow feeler ray, 413
Shadow mapping artifacts
jagged shadow edges, 210
Peter Panning, 209
shadow acne, 208-209
shadow bars, 210
Shadow texture, 195-200, 208, 210,
212,217,218
Shadow volumes, 193, 194
Shininess, 166, 171, 234, 340, 341
Side-by-side stereoscopy, 474-484
Side-by-side viewers, 468
fog example, 474-475
glViewport() function, 474
testing hardware configuration,
483-484
Silver, 189
Skybox, 221-224
concept, 221
implementing, 226-234
texture coordinates, 226, 228,
230, 231
texture images, 228, 230
using OpenGL cube maps,
229-231
ray tracing and, 421-426
texture cube map, 222
Skydome, 224-225
advantages and disadvantages, 225
using Sphere, 224-225
Smooth Shading, 172, 180, 188

Gouraud shading, 171-179, 181,
182,188
Phong shading, 180—-184, 292
Blinn-Phong shading, 183—184
Soft Shadows
Percentage Closer Filtering (PCF),
212-216
ray tracing and, 464
real world, 210
Specular highlight, 166, 170, 179,
251,359, 374, 376
Specular reflection, 162
Spotlights, 164, 165
Stanford dragon, 184
Starfield, 225, 240
Stencil buffer, 193, 240
Stereoscopy, 467
anaglyph rendering, 471-473
cinematic projection
anaglyph, 468-469
polarized, 468
shutter, 468—-469
lens distortion, 475483
side-by-side rendering, 474-483
view and projection matrices,
469-470
computePerspectiveMatrix()
function, 471
interocular distance (IOD), 469
standard and asymmetric
frustums, 470
Studio 522 dolphin, 186
Sugita, J., 460
Surface acne, see Shadow acne
Synthetic camera, 5053

T

Takahashi, T., 460
Tangent vector, 142, 247, 248

Index M 513

Teapot, Utah, 141
Terragen, 224, 225, 240
Terrain, 15, 94, 130, 225, 243, 254,
256,257, 286, 293, 351
Tessellation, 15
Bézier surfaces, for, 279-286
control shader (TCS), 280-282
evaluation shader (TES),
281, 283
Java/JOGL application, 282
overview of, 280
vertex shader, 280-282, 285
Level of Detail (LOD), controlling,
293-297
OpenGL, 273-279
inner and outer levels,
specifying, 277
patch, 277,278
pipeline stages, 273-274
triangle mesh output, 277
terrain/height maps, for, 286-293
control shader (TCS), 287,
290, 292
evaluation shader (TES), 287,
291, 292
Java/JOGL application, 288,
289, 292
Phong shading, with, 292
vertex shader, 292
Tessellation control shader (TCS),
280-282, 287, 290, 292
Tessellation evaluation shader (TES),
281,283, 287,291, 292
Tessellation levels, 276-278
Tessellation primitive generator
(TPG), 274
Texels, 110, 111, 213, 214, 325, 334,
477, 482
Texture coordinates, 110—112
3D model, 110

514 B Index

constructing, 112—-113
cube model, 111
curved geometric shapes, in, 112
interpolation by rasterizer, 110
ray tracing and, 418—421
Texture cube map. see Cube map
Texture image, 108—112, 118-120,
126, 128, 135, 142, 143, 154
Texture mapping
anisotropic filtering (AF), 123-124
creating texture object, 112
Java AWT classes, using, 128—-131
JOGL, using, 108-109
mipmapping, 118-123
aliasing artifacts, 118
anisotropic filtering (AF),
123-124
minification, 121, 123
OpenGL support for, 123
trilinear filtering, 122, 123
OpenGL texture object, 109, 110,
112, 129
perspective distortion, 126—127
procedural texture, 325-326,
426-429
pyramid model, 113, 115, 116, 126
sampler variables, 114-115
texture coordinates, 110-112
3D model, 110
constructing, 112—-113
cube model, 111
curved geometric shapes, in, 112
interpolation by rasterizer, 110
ray tracing and, 418-421
Texture class, 109
texture units, 107, 114-115, 130
wrapping and tiling, 124-126
Texture object, 112, 114-115
Texture units, 107, 114-115, 130, 494
Tiling. see Wrapping

Tracing, 24-25
Translation matrix, 42-43
Transparency, 316321
alpha channel, 166, 316
compositing process, 316-317
glBlendEquation() parameter, 318
glBlendFunc() parameter, 317
Java/JOGL application, 316, 318
opacity, 316, 319
ray tracing and, 434-437, 439,
450-452, 455
Z-buffer, and, 316
TressFX, 310
Triangle strip, 95, 101, 303
Trilinear filtering, 122, 123
Turberville, Jay, 184, 186
Turbulence, 334, 336, 341

U

Uniform sampler variable, 112,
114, 494
Uniform variable, 30, 67-68, 498, 502
User-defined clipping planes. see
Clipping plane
UV-mapping, 112, 154

\%

VAO. see Vertex Array Object
VBO. see Vertex Buffer Object
vmath, 3
Vectors

cross product, 4749

dot product, 4748
Vertex, 10, 11, 13, 15, 27-28, 75,

136-138, 142, 168, 230, 231
Vertex Array Object (VAO), 65
Vertex attributes

interpolation of, 68—69

vertex shader, specifying in, 69
Vertex Buffer Object (VBO), 64
Vertex displacement, 477, 485
View-Master®, 468, 474
View matrix, 70, 470, 473
View space. see Eye space
Viewing transform matrix, 52
Visual Studio, 498

W

Water, 355-384
animating, 379-381
fog and fresnel effects, 374-378
reflection and refraction
cameras, 365
surface waves, 371-374

Index M 515

underwater caustics, 381-383
Water caustics, 381-383
Wavefront OBJ, 149
Whitted, T., 388
Winding order, 101, 102, 279, 304
WiredXDisplay, 483-484
Wireframe rendering, 18
Work group, 394-399
World space, 49-51
Wood, 340-343
Wrapping, 124-126

Z

Z-buffer algorithm, 11, 94
Z-buffer, 20, 104, 194, 196-197, 316
Z-fighting, 94-95

	Cover
	Half-Title
	Title
	Copyright
	Contents
	Preface
	What’s New in This Edition
	Intended Audience
	How to Use This Book
	Acknowledgments
	About the Authors

	Chapter 1: Getting Started
	1.1 Languages and Libraries
	1.1.1 Java
	1.1.2 OpenGL / GLSL
	1.1.3 JOGL
	1.1.4 JOML

	1.2 Installation and Configuration

	Chapter 2: The OpenGL Graphics Pipeline
	2.1 The OpenGL Pipeline
	2.1.1 Java/JOGL Application
	2.1.2 Vertex and Fragment Shaders
	2.1.3 Tessellation
	2.1.4 Geometry Shader
	2.1.5 Rasterization
	2.1.6 Fragment Shader
	2.1.7 Pixel Operations

	2.2 Detecting OpenGL and GLSL Errors
	2.3 Reading GLSL Source Code from Files
	2.4 Building Objects from Vertices
	2.5 Animating a Scene
	2.6 Organizing the Java Code Files

	Chapter 3: Mathematical Foundations
	3.1 3D Coordinate Systems
	3.2 Points
	3.3 Matrices
	3.4 Transformation Matrices
	3.4.1 Translation
	3.4.2 Scaling
	3.4.3 Rotation

	3.5 Vectors
	3.5.1 Uses for Dot Product
	3.5.2 Uses for Cross Product

	3.6 Local and World Space
	3.7 Eye Space and the Synthetic Camera
	3.8 Projection Matrices
	3.8.1 The Perspective Projection Matrix
	3.8.2 The Orthographic Projection Matrix

	3.9 Look-At Matrix
	3.10 GLSL Functions for Building Matrix Transforms

	Chapter 4: Managing 3D Graphics Data
	4.1 Buffers and Vertex Attributes
	4.2 Uniform Variables
	4.3 Interpolation of Vertex Attributes
	4.4 Model-View and Perspective Matrices
	4.5 Our First 3D Program—A 3D Cube
	4.6 Rendering Multiple Copies of an Object
	4.6.1 Instancing

	4.7 Rendering Multiple Different Models in a Scene
	4.8 Matrix Stacks
	4.9 Combating “Z-Fighting” Artifacts
	4.10 Other Options for Primitives
	4.11 Coding for Performance
	4.11.1 Minimizing Dynamic Memory Allocation
	4.11.2 Pre-Computing the Perspective Matrix
	4.11.3 Back-Face Culling

	Chapter 5: Texture Mapping
	5.1 Loading Texture Image Files
	5.2 Texture Coordinates
	5.3 Creating a Texture Object
	5.4 Constructing Texture Coordinates
	5.5 Loading Texture Coordinates into Buffers
	5.6 Using the Texture in a Shader: Sampler Variables and Texture Units
	5.7 Texture Mapping: Example Program
	5.8 Mipmapping
	5.9 Anisotropic Filtering
	5.10 Wrapping and Tiling
	5.11 Perspective Distortion
	5.12 Loading Texture Image Files using Java AWT Classes

	Chapter 6: 3D Models
	6.1 Procedural Models—Building a Sphere
	6.2 OpenGL Indexing—Building a Torus
	6.2.1 The Torus
	6.2.2 Indexing in OpenGL

	6.3 Loading Externally Produced Models

	Chapter 7: Lighting
	7.1 Lighting Models
	7.2 Lights
	7.3 Materials
	7.4 ADS Lighting Computations
	7.5 Implementing ADS Lighting
	7.5.1 Gouraud Shading
	7.5.2 Phong Shading

	7.6 Combining Lighting and Textures

	Chapter 8: Shadows
	8.1 The Importance of Shadows
	8.2 Projective Shadows
	8.3 Shadow Volumes
	8.4 Shadow Mapping
	8.4.1 Shadow Mapping (Pass One)—“Draw” Objects from Light Position
	8.4.2 Shadow Mapping (Intermediate Step)—Copying the Z-Buffer to a Texture
	8.4.3 Shadow Mapping (Pass Two)—Rendering the Scene with Shadows

	8.5 A Shadow Mapping Example
	8.6 Shadow Mapping Artifacts
	8.7 Soft Shadows
	8.7.1 Soft Shadows in the Real World
	8.7.2 Generating Soft Shadows—Percentage Closer Filtering (PCF)
	8.7.3 A Soft Shadow/PCF Program

	Chapter 9: Sky and Backgrounds
	9.1 Skyboxes
	9.2 Skydomes
	9.3 Implementing a Skybox
	9.3.1 Building a Skybox from Scratch
	9.3.2 Using OpenGL Cube Maps

	9.4 Environment Mapping

	Chapter 10: Enhancing Surface Detail
	10.1 Bump Mapping
	10.2 Normal Mapping
	10.3 Height Mapping

	Chapter 11: Parametric Surfaces
	11.1 Quadratic Bézier Curves
	11.2 Cubic Bézier Curves
	11.3 Quadratic Bézier Surfaces
	11.4 Cubic Bézier Surfaces

	Chapter 12: Tessellation
	12.1 Tessellation in OpenGL
	12.2 Tessellation for Bézier Surfaces
	12.3 Tessellation for Terrain/Height Maps
	12.4 Controlling Level of Detail (LOD)

	Chapter 13: Geometry Shaders
	13.1 Per-Primitive Processing in OpenGL
	13.2 Altering Primitives
	13.3 Deleting Primitives
	13.4 Adding Primitives
	13.5 Changing Primitive Types

	Chapter 14: Other Techniques
	14.1 Fog
	14.2 Compositing/Blending/Transparency
	14.3 User-Defined Clipping Planes
	14.4 3D Textures
	14.5 Noise
	14.6 Noise Application - Marble
	14.7 Noise Application - Wood
	14.8 Noise Application - Clouds
	14.9 Noise Application - Special Effects

	Chapter 15: Simulating Water
	15.1 Pool Surface and Floor Geometry Setup
	15.2 Adding Surface Reflection and Refraction
	15.3 Adding Surface Waves
	15.4 Additional Corrections
	15.5 Animating the Water Movement
	15.6 Underwater Caustics

	Chapter 16: Ray Tracing and Compute Shaders
	16.1 Compute Shaders
	16.1.1 Compiling and Using Compute Shaders
	16.1.2 Parallel Computing in Compute Shaders
	16.1.3 Work Groups
	16.1.4 Work Group Details
	16.1.5 Work Group Limitations

	16.2 Ray Casting
	16.2.1 Defining the 2D Texture Image
	16.2.2 Building and Displaying the Ray Cast Image
	16.2.3 Ray-Sphere Intersection
	16.2.4 Axis-Aligned Ray-Box Intersection
	16.2.5 Output of Simple Ray Casting Without Lighting
	16.2.6 Adding ADS Lighting
	16.2.7 Adding Shadows
	16.2.8 Non-Axis-Aligned Ray-Box Intersection
	16.2.9 Determining Texture Coordinates
	16.2.10 Plane Intersection and Procedural Textures

	16.3 Ray Tracing
	16.3.1 Reflection
	16.3.2 Refraction
	16.3.3 Combining Reflection, Refraction, and Textures
	16.3.4 Increasing the Number of Rays
	16.3.5 Generalizing the Solution
	16.3.6 Additional Examples
	16.3.7 Blending Colors for Transparent Objects

	Chapter 17: Stereoscopy for 3D Glasses and VR Headsets
	17.1 View and Projection Matrices for Two Eyes
	17.2 Anaglyph Rendering
	17.3 Side-by-Side Rendering
	17.4 Correcting Lens Distortion in Headsets
	17.5 A Simple Testing Hardware Configuration

	Appendix A: Installation and Setup for PC (Windows)
	Appendix B: Installation and Setup for Macintosh
	Appendix C: Using the Nsight Graphics Debugger
	Index

