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Preface

This book has grown out of econometrics modules that I have taught over 
the past twenty years at various universities. During that time there have 
been major changes in the subject matter of the discipline but even more 
significant changes in the way it is taught. Both of these developments have 
been due to the increasing availability of cheap, fast computing power. The 
subject itself has changed as numerical or “Monte Carlo” methods have 
allowed econometricians to explore the properties of estimators through the 
use of artificially generated data. The teaching of the subject has changed 
because students can, from an early stage, get hands-on experience of the 
methods being taught using personal computers and widely available econo-
metric software.

In this book, I have attempted to make econometrics accessible for 
students in ways that reflect both the trends described. The emphasis 
throughout is on econometrics as a practical discipline. Some level of sta-
tistical theory is essential, but this is accompanied at each stage by exam-
ples drawn from either real-world data sets, or artificially created data sets 
designed to illustrate particular points. Wherever possible, the data sets are 
made available for download by instructors and students, so that they can 
replicate the results given in the text and try out alternative specifications. 
Exercises are provided at the end of each chapter to reinforce understanding 
of the important points, with worked answers provided for odd-numbered 
problems. The online resources for the book consist of Excel data sets for 
the problems and examples given in the text. 

The subject matter of this book consists of the econometric methods 
necessary for a practicing applied economist. Chapters 1 to 9 present the 
material most often taught as part of an undergraduate degree program in 
economics. Much of this is concerned with basic statistical theory. Chap-
ters 1 and 2 review basic concepts in probability theory. This leads to the 
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xiv • Preface

development of the most basic tool in the kitbag of the econometrician – the 
linear regression model. Chapter 3 presents the bivariate linear regression 
model and uses the probability theory of the earlier chapters to derive the 
sampling distribution of the regression parameter estimates. This gives the 
basic framework necessary for the estimation and interpretation of model 
parameters. The main estimation method discussed is that of least squares, 
but the idea of maximum likelihood estimation, which takes on increasing 
importance in later chapters, is also introduced at this stage. In Chapter 4,  
the linear regression model is extended to the multivariable case. This is 
particularly important for econometrics, since it deals with some of the 
problems caused by the fact that economics is typically not an experimental 
discipline. In particular, it permits the isolation of phenomena of interest 
through the inclusion of variables designed to allow for effects which are 
outside the control of the econometrician.

Chapters 5 to 7 present tests for the assumptions underlying the classical 
statistical method. In Chapter 5, the possibility that the errors of the regres-
sion model are not independent is explored. This is a particular problem for 
models estimated using time series data where it is known as the problem 
of serial correlation. Chapter 6 considers the problem of heteroscedastic-
ity, or situations in which the variance of the errors is not constant. This is 
often associated with models estimated using cross-section data but can also 
be found in some time series applications. Chapter 7 modifies the standard 
regression model to allow for limited dependent variables, that is, situations 
in which the dependent variable is grouped according to some qualitative 
property. The simplest case of this is where the data are binary in nature, for 
example, an individual is either employed or unemployed. In cases like this, 
the linear regression model becomes hard to interpret and the method of 
maximum likelihood becomes the statistical tool of choice.

Classical statistics typically assumes that the independent variables in 
a regression are “fixed in repeated samples.” This means that they are the 
outcome of an experimental process in which the investigator chooses the 
model inputs. In Chapter 8, we consider the implications of modifying this 
assumption so that the independent variables are themselves stochastic 
variables. That is, dependent and independent variables are generated by 
a joint random process with unknown parameters. This permits the analysis 
of the problems of “errors in variables” and “simultaneous equations” which 
require the introduction of new estimators such as indirect least squares and 
instrumental variables. It also permits discussion of the issue of the “iden-
tification” of models, that is, the extent to which the unknown structural 
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parameters of interest can be isolated when the data is generated by a com-
plex system of interacting variables.

 Chapter 9 discusses the issue of dynamic adjustment in time series rela-
tionships. This is a central feature of most time series econometric models. 
Models in which dynamic relationships are present typically include lagged 
values of both the dependent and explanatory variables. The statistical impli-
cations of including such lags in the regression model and the methodology 
for choosing an appropriate model to capture the process of dynamic adjust-
ment are discussed in the chapter along with the role of the General to Spe-
cific modeling methodology in econometrics.

Chapters 10–13 introduce topics that are often taught as part of under-
graduate econometrics programs but not, generally, as part of the core 
econometrics module. Instead, these topics typically form the basis of more 
advanced option modules. The particular focus of interest is the use of time 
series methods in applied econometrics. Chapter 10 discusses the historical 
origin of this approach in the form of Box-Jenkins or ARIMA modeling of 
individual time series. This theme is developed further in Chapter 11, where 
the importance of unit root processes for both estimation and inference is 
discussed. Chapter 12 builds on the discussion of individual unit root pro-
cesses in Chapter 11, to introduce the idea of cointegration which allows for 
links between multiple unit root processes. Finally, in Chapter 13, there is 
a brief survey of the topic of vector autoregressions. This is both a topic of 
interest in itself and a way of bringing together the material developed in 
Chapters 10 to 12.

Companion Files. (available for downloading by writing to the publisher 
at info@merclearning.com)

Microsoft Excel Data Files. Each chapter in this book comes with a set of 
exercises. Many of these are hands-on exercises based on data which can 
be accessed as part of the resources for instructors and students. There 
are numerous alternative econometric software packages available such as 
EViews, PC-Give, and Stata which can be used to reproduce the results of 
the text and to work through the chapter exercises. Rather than link this 
text to one specific package, the data is supplied in the form of Microsoft 
Excel data files. There are 22 data sets in total and the only software which 
users need to access them is Microsoft Excel or a similar program. All of 
the standard econometrics software packages have the ability to input data 
either directly from Excel files or by copying and pasting from Excel. This 
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is a generic format which allows the user to read the data quickly into the 
package of choice. Most of the examples given in the text have been gener-
ated using either the EViews regression package or software written by the 
author.

Figures in the Text. All of the figures from the text, including those originally 
in full-color, appear in the companion files. 

Instructor Ancillaries. The following instructor ancillaries are available to 
adopters of the text by writing to the publisher at info@merclearning.com:

Solutions to Even-Numbered Exercises. Worked-out solutions to even-
numbered exercises in the text.

Microsoft Excel Data Files. Twenty-two data sets in total to be used with the 
exercises in the book.

Microsoft Power Point Slides. Each chapter includes slides with key terms, 
equations, figures, content, etc.

Figures in the Text. All of the figures from the text, including those originally 
in full-color.
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C H A P T E R  1
Probability and the Statistical 
Foundations of Econometrics

The statistical foundations of econometric analysis lie in the theory of prob-
ability. Many of you reading this textbook will have already completed an 
introductory module in statistics in which you will have come across some of 
the important ideas of probability theory. However, it will be useful to review 
these ideas before we move on to more advanced topics. If you haven’t been 
introduced to these concepts already, then this chapter will cover the essen-
tial ideas you need to study econometrics.

Before we begin our discussion of probability, we must first introduce 
some terminology. The most basic concept of statistical theory is the idea of 
a random experiment. This is an experiment that can be repeated a number 
of times, under essentially similar conditions, but whose outcome is uncer-
tain. Consider, for example, the tossing of a coin. This can be repeated any 
number of times, but the outcome of any single coin toss is not known in 
advance. The set of possible outcomes of a random experiment is known as 
the sample space. In the case of the coin toss, the sample space consists of 
two possibilities – heads or tails. Finally, an event is a subset of the sample 
space which corresponds to a particular outcome, for example, heads or tails 
in the coin toss experiment.

The coin toss experiment we described in the previous paragraph is an 
example of a special kind of experiment known as a Bernoulli trial. In this 
kind of experiment the sample space can be reduced to only two possible 
outcomes which can be classified as “success” and “failure.” For example, 
we might define a head as a success and a tail as a failure. However, this is 
essentially arbitrary because nothing would change if we were to reverse 
these labels. Bernoulli trials are a very important special case of a random 
experiment because many real-world applications can be described in these 
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2 • Econometrics in Practice

terms and a surprising amount of statistical theory can be developed using 
this as a basis.

Let us suppose that we conduct a total of n Bernoulli trials and that we 
observe k successes. We can define the relative frequency of successes as 

/k n. The probability of a success in an individual trial can then be defined 
as the value to which the relative frequency converges as the number of 
experiments becomes large. For example, in the case of the coin toss exper-
iment, if the coin is unbiased, we would expect the relative frequency of 
success (heads) to average out at ½ as the number of experiments increases. 
More generally, let p denote the probability of success in an individual trial. 
Therefore, it follows that the probability of failure is equal to 1 − p because 
the two events (success and failure) constitute the whole of the sample space. 
Another way of describing this is to say that the two possible events are 
exhaustive. Note also that success and failure are mutually exclusive events, 
that is, they cannot occur simultaneously.

To illustrate some of the ideas we have introduced, let us consider 
another example. Suppose we have a well-shuffled pack of cards. We make 
a draw from the pack and inspect the card. If the card drawn is a club then 
we deem the experiment a success. We then return the card and repeat the 
experiment a large number of times. The probability of drawing a club can 
then be calculated as the number of successes divided by the number of 
experiments. Since there are 13 clubs in a pack of 52 cards, it is not hard to 
see that the probability of drawing a club is equal to ¼ and the probability of 
drawing another suit is ¾, that is, 

	
( )

( ) ( )

1
4

3
1 ,

4

p A

p B p A

=

= - =
� (1.1)

where we have defined event A as the drawing of a club and the event B 
as the drawing of any other suit. The two probabilities defined in equation 
(1.1) define the probability distribution function for an individual Bernoulli 
trial. That is, they attach a probability to all possible outcomes in the sample 
space.

Now let us consider another experiment, this time we make two suc-
cessive draws from the pack (after replacing the card following the initial 
draw). The sample space now consists of four possible outcomes which can 
be summarized as AA AB BA BB� � � � � � � �, , , . To find the probability distribu-
tion function for this experiment we note that the outcomes of each draw 
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Probability and the Statistical Foundations of Econometrics • 3

are independent of each other. That is, the probability of drawing a club on 
the second draw is not influenced by whether a club was drawn in the first 
draw. It follows that probability of two successive clubs can be calculated as 

( ) 1 / 4 1 / 4 1 / 16p AA = ´ = , similarly, the probability of a club followed by 
another suit is ( ) 1 / 4 3 / 4 3 / 16p AB = ´ = . In this manner, we can construct 
the probability distribution function as

	

( )

( )

( )

( )

1 1 1
4 4 16
1 3 3
4 4 16
3 1 3
4 4 16
3 3 9

.
4 4 16

p AA

p AB

p BA

p BB

= ´ =

= ´ =

= ´ =

= ´ =

� (1.2)

Note that, because the events listed in (1.2) are exhaustive, their probabili-
ties sum to one. This example also illustrates that, depending on the defini-
tion of an event, there are different ways in which some events can occur. 
For example, suppose we are interested in evaluating the probability distri-
bution function of the number of clubs drawn. The probability that we draw 
one club is equal to the sum of the probability that we observe a club on 
the first draw followed by another suit and the probability that we observe 
another suit on the first draw followed by a club on the second. Thus, if we 
are simply interested in the distribution of the number of clubs k, and the 
order in which they occur is irrelevant, then we could write the probability 
distribution function as

	 ( ) ( ) ( )9 6 1
0 , 1 , 2

16 16 16
p k p k p k= = = = = = � (1.3)

Historical Note: The historical origins of the theory of probability can be 
found in a series of letters between Blaise Pascal (1623–1662) and Pierre 
de Fermat (1607–1665) in 1654. They considered the problem of how 
to divide up the winnings in a game of chance that was incomplete. In 
doing so they established the key ideas of probability and expected value. 
The interested reader can find an excellent discussion of this in Devlin 
[Devlin2008].
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4 • Econometrics in Practice

1.1  JOINT, CONDITIONAL, AND MARGINAL PROBABILITIES

So far, we have considered events that are mutually exclusive. However, this 
will not always be the case. Often, we will be interested in experiments in 
which there are multiple outcomes, some of which are not mutually exclu-
sive. For example, when considering our experiment of drawing a card from 
a pack, let us suppose that we are also interested in whether the card drawn 
is a face card. Note that a card can be both a face card and a club, so the two 
events are not mutually exclusive. Let us define event A as the card drawn 
being a club, and event C as the card drawn being a face card. We can define 
the joint probability that two events occur simultaneously as ( )p A CÇ . The 
joint probability can be decomposed into the product of a conditional proba-
bility (the probability that one event occurs given that another has occurred) 
and a marginal probability (the simple probability that one event occurs 
irrespective of the other event). The mathematical notation for a conditional 
probability is ( )p A C , that is, the probability event A occurs given event C, 
and that for a marginal probability is ( )p C . The relationship between joint, 
conditional, and marginal probabilities can be written as

	 ( ) ( ) ( ) ( ) ( )| |p A C p A C p C p C A p AÇ = = � (1.4)

This relationship is fundamental to probability theory and many important 
results derive directly from this definition.

Using we can write the conditional probability as

	 ( ) ( )
( )

p A C
p A C

p C

Ç
= � (1.5)

This shows that the conditional probability is determined as the ratio of the 
joint probability to the marginal probability. Two other results that derive 
directly from the definition of conditional probability are:

1.	 The sum of the joint probabilities across all outcomes gives the marginal 
probability, that is, ( ) ( ) ( )p C p C A p C B= Ç + Ç .

2.	 The conditional probability relationships are symmetric, which means 
that ( ) ( ) ( ) ( )| |p A C p C p C A p A= .

From the definition of the joint probability and the symmetry of conditional 
probabilities, we have ( ) ( ) ( )p A C p C A p AÇ = . Substituting this allows us 
to write

	 ( ) ( ) ( )
( )

p A
p A C p C A

p C
= � (1.6)
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Probability and the Statistical Foundations of Econometrics • 5

This form of the probability relationship is referred to as Bayes’ Law or Bayes’ 
Theorem, after the eighteenth century cleric and statistician the Reverend 
Thomas Bayes. It is frequently used in the derivation of conditional prob-
abilities based on experimental data.

Now let us return to our example, in which we wish to determine the 
joint probability that a card drawn from a pack is both a club and a face 
card. There are three face cards which are also clubs. Therefore, the con-
ditional probability that the card drawn is a face card, given that it is a club 
is ( )| 3 / 13p C A =  and we already know that the unconditional probabil-
ity that the card draw is a club is ( ) 1 / 4p A = . It follows from the defini-
tion of the conditional probability that the joint probability is ( )p C AÇ =  
3 / 13 1 / 4 3 / 52´ = .

When dealing with more complex situations in which there are multiple 
events that are not mutually exclusive, it is often useful to represent the 
probability distribution function in tabular form. To do this we will intro-
duce the idea of a contingency table. Let us begin with a simple example in 
which we wish to examine the relationship between changes in price and 
quantity for a product. The events we consider are firstly, whether prices 
fall or rise, and secondly, whether quantity produced falls or rises.1 Table 1.1 
summarizes the different outcomes observed for the market for potatoes 
based on annual United States data for the period 1976–2017.

We have argued that probabilities can be thought of as relative frequen-
cies for large samples. This means that we can estimate the probabilities of 
the different events defined in the contingency table by dividing each of the 
cell entries by the total number of observations. The results are shown in 
Table 1.2.

1  You may wonder how we would deal with the case where the change is identically 
zero. If the data are measured on a continuous basis, then the probability that this occurs 
is very small and can be safely ignored. However, if this is a concern, then it is always 
possible to define one of the events to include this possibility, for example, the price falls or 
remains constant.

TABLE 1.1  Contingency Table for US Market for Potatoes.

Price rises Price falls Total
Quantity rises 6 21 27

Quantity falls 11 4 15

Total 17 25 42
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In this form, we can interpret the cell entries as probabilities. Where an entry 
shows the relationship between two events, we have a joint probability. For 
example, the probability that price rises and quantity falls, is equal to 0.2619. 
The row and column sums of these entries give marginal probabilities. For 
example, the probability that the price rises is equal to 0.4047 which is the 
sum of two mutually exclusive joint events, i.e., the probability that price and 
quantity rise simultaneously, and that price rises while quantity falls. Having 
calculated joint and marginal probabilities, it is now straightforward to calcu-
late conditional probabilities. Suppose, for example, that we wish to calculate 
the probability that price rises given that quantity falls. This is calculated as the 
ratio of the joint probability that these events occur simultaneously to the mar-
ginal probability that quantity falls, that is, 0.2619 / 0.3571 0.7334= . A com-
mon mistake is to confuse joint and conditional probabilities when discussing 
related events but, as this example illustrates, this can be very misleading.

Example: Suppose we are interested in the behavior of the Federal Reserve 
when setting the Federal Funds Rate (FFR). We assume that it has three 
options which we will label as follows, 1Y  is the case where it cuts the FFR, 

2Y  is the case where it leaves it constant and 3Y  is the case where it increases 
the FFR. There are also three different states of the economy which might 
influence this decision, 1X  is the case where inflation is below target, 2X  is 
the case where inflation is equal to the target (or within the target range) and 

3X  is the case where inflation is above target. Now suppose we have observed 
how the Federal Reserve behaves over a period of time and determined the 
relative frequencies (or joint probabilities) for these events. These are shown 
in Table 1.3 as the numbers in the central rectangle. For example, the joint 
probability of inflation being too low and the interest rate being cut is equal 
to ( )1 1 0.1p X YÇ =  while the probability of inflation being too high and the 
interest rate being cut is ( )3 1 0.01P X YÇ = . Once we have determined these 
joint probabilities then it is straightforward to determine the marginal and 
conditional probabilities. The marginal probabilities are calculated as either 
the row or column sums of the joint probabilities. The conditional prob-
abilities can then be calculated as the ratio of joint probabilities to marginal 
probabilities using (1.5).

TABLE 1.2  Two-Way Probability Table for US Market for Potatoes.

Price rises Price falls Total
Quantity rises 0.1428 0.5000 0.6429

Quantity falls 0.2619 0.0952 0.3571

Total 0.4047 0.5952 1.0000
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For example, consider the marginal probability that the interest rate will be 
cut. This depends on the relationship between the actual rate of inflation and 
the target rate. There are three possible scenarios that need to be consid-
ered and the probability of an interest rate cut is different in each. However, 
because these scenarios are mutually exclusive, we can calculate the overall 
probability of an interest rate cut as the sum of the three joint probabilities 
as shown in the following equation:

	
( ) ( ) ( ) ( )1 1 1 1 2 1 3

0.10 0.10 0.01 0.21

p Y p Y X p Y X p Y X= Ç + Ç + Ç
= + + =

� (1.7)

This equation defines the marginal probability of an interest rate cut. 
Historically, probabilities of this kind were calculated as the sum of the 
row (or column) entries of the contingency table and then written in its 
margins – hence the term marginal probability. The marginal probabilities 
of the interest rate being held constant and of it increasing are given by the 
other row sums and are equal to ( )2 0.52p Y =  and ( )3 0.27p Y = . Similarly, 
the column sums give the probabilities of inflation being below, equal to 
or above target which are, respectively, ( )1 0.20,p X =  ( )2 0.60,p X =  and  

( )3 0.20p X = . Since the events associated with the marginal probabilities are 
both mutually exclusive and exhaustive, it follows that the marginal prob-
abilities sum to one in both cases.

Our interest is often in the conditional probabilities rather than the 
probabilities that appear in the contingency table. However, these can eas-
ily be calculated using the information in the table. For example, suppose 
we wish to calculate the probability that the Federal Reserve will cut the 

TABLE 1.3  Probability Distribution for Federal Reserve Interest Rate Decision.

Inflation too 
low

Inflation equal 
to target

Inflation too 
high

1X 2X 3X

Cut interest 
rate 1Y 0.10 0.10 0.01 0.21

Keep interest 
rate constant 2Y 0.08 0.40 0.04 0.52

Increase 
interest rate 3Y 0.02 0.10 0.15 0.27

0.20 0.60 0.20
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interest rate if inflation is below target. Using the definition of conditional 
probability, we have

	 ( ) ( )
( )
1 1

1 1
1

0.10
| 0.50

0.20
p Y X

p Y X
p X

Ç
= = = � (1.8)

that is, there is a 50% chance that the interest rate will be cut when inflation 
falls below target. Similarly, if we wish to calculate that probability that the 
interest rate will not change, even when inflation is above target, then we 
can write this as

	 ( ) ( )
( )
2 3

2 3
3

0.04
| 0.067

0.60
p Y X

p Y X
p X

Ç
= = = � (1.9)

Calculation of the other conditional probabilities is left as an exercise for the 
interested reader.

1.2  THE PROBABILITY DISTRIBUTION FUNCTION

So far the random variables we have considered have been discrete random 
variables. This means that the number of possible outcomes for the ran-
dom experiment is limited. The probability distribution function defines the 
probability of all the possible outcomes in the sample space. This function 
is important because it can be used to define the mean and the variance of 
the distribution in question. Suppose we have an experiment in which there 
are n + 1 possible outcomes, corresponding to 0,1,...,x n= . The mean, or 
expected value, of the random variable X can be defined as

	 ( ) ( )
0

n

X
x

E X p x xm
=

= = å � (1.10)

while the variance, defined as the expected value of the squared deviation of 
the random variable from its mean, can be written

	 ( ) ( )( )2 22

0

n

X
x

E X p x Xs m m
=

= - = -å � (1.11)

For example, let X be the number of successes in a set of n Bernoulli trials. 
This is a random variable that can take on the values x n= 0,1,..., . Such a 
random variable follows the binomial distribution and has a probability 
distribution function of the form
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	 ( ) ( ) ( )!
1

! !
n xxn

p x p p
n x x

-= -
-

� (1.12)

We can show that the mean of this distribution is ( )X E X npm = =  and the var-
iance is ( )( ) ( )22 1X E X E X np ps = - = - . We can also define the cumulative 
probability distribution function or CDF as the function ( ) ( )F x p X x= £ .  
The CDF is calculated by adding the individual probabilities over the range 
0 to x. The binomial distribution is interesting in its own right but is also of 
historical importance because it led to the development of the normal distri-
bution which we will consider in detail later.

Consider again the Bernoulli experiment of drawing a card from a pack 
and in which a success corresponds to drawing a club. If five draws (with 
replacement) are made, then the sample space consists of six alternative 
outcomes ranging from no successes to all five draws being clubs. We can 
calculate the probability distribution function of the number of clubs drawn 
using (1.12). This gives the results shown in Table 1.4.

The probability distribution function given in Table 1.4 can be pre-
sented as a bar chart, as shown in Figure 1.1. This shows that the probabili-
ties are unevenly distributed. The probabilities attached to lower values of X 
are larger than those for higher values. Thus, the distribution appears to be 
asymmetric, with large probability values at the lower end and probabilities 
that decline gradually towards zero at the upper end.

As the number of trials increases, the shape of the PDF changes. 
Figure 1.2 shows PDFs for binomial distributions with 10n =  and 30n = .  
For 10n =  the shape remains basically similar to that for 5n =  with high 
probabilities for low values and a gradual decline in probability for 2x > .  
However, relative to 5n = , there is already a reduction in the degree of 

TABLE 1.4  Probability Distribution for the Binomial Distribution with n = 5 and p = �.

Number of 
successes = x

Probability 	
p (X = x)

Cumulative probability 
p (X ≤ x)

0 0.23730 0.23730

1 0.39551 0.63281

2 0.26367 0.89648

3 0.08789 0.98437

4 0.01465 0.99902

5 9.77E-04 1.00000
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10 • Econometrics in Practice

asymmetry of the function. This process continues as we increase the num-
ber of trials. When 30n =  the asymmetry in the function is hardly visible at 
all. The probability of the number of successes is close to zero when 0x = ,  
increases to a maximum when 7x = , and then declines back to 0 as 30x ® .  
In this case, however, the function is close to being symmetric around the 
maximum point.

FIGURE 1.1  Probability Distribution Function for the  
Binomial Distribution with n = 5 and p = �.

FIGURE 1.2  Probability Distribution Functions for the Binomial Distribution with p = �.
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The tendency for the PDF to become more symmetric as the number of 
trials increases is no accident. As the number of trials increases, the shape of 
the PDF function can be more closely approximated by a continuous func-
tion ( )f x  which eventually converges to the function given in equation (1.13) 
where npm =  and ( )2 1np ps = - . This is the equation of the normal prob-
ability density function. The convergence of the binomial distribution is an 
example of a much more general phenomenon known as the Central Limit 
Theorem. This is an important theorem for statistical theory which shows that 
whatever the process determining the probabilities of success in an individual 
trial, the shape of the distribution of the number of successes will eventually 
converge on the normal probability density function as given in equation (1.13)

	 ( ) ( )2

2

1
exp ,

22

x
f x

m
ss p

æ ö-
= -ç ÷ç ÷è ø

� (1.13)

where m and s2 are the mean and the variance of the distribution. For exam-
ple, Figure 1.3 shows that the equation for the normal distribution given by 
provides a very close approximation to the PDF for the binomial distribution 
with 30n = . The bars in Figure 1.3 show the probabilities of the number of 
successes from the binomial distribution, that is, ( )p X x=  from (1.12). The 
continuous line shows the curve generated by equation (1.13) with npm =  
and ( )np ps = -2 1 . We can see that for any given value of X the normal curve 
is a good approximation to the binomial probabilities. This approximation 
will continue to improve as we increase the number of trials.

FIGURE 1.3  Normal Approximation to the Binomial PDF.
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Historical Note: The binomial theorem was first set out by Jakob 
Bernouilli (1654–1705) in a posthumously published book in 1713 
[Bernouilli1713]. Bernouilli showed that the probability of k successes 
in n trials is given by the coefficient of k n kp q -  in the expansion of ( )n

p q+  
where 1q p= - . This generates the probabilities shown in (1.12). The 
special case where 1 / 2p =  had previously been considered by Pascal 
in his correspondence with Fermat. The use of the normal function to 
approximate the binomial coefficients when n is large was introduced by  
De Moivre [DeMoivre1718] in the Doctrine of Chances (1718).

1.3  THE NORMAL DISTRIBUTION

We have seen that the normal curve provides a continuous curve which gives 
a good approximation to the binomial probabilities for a large number of 
trials. However, it is also an example of a general class known as continuous 
distributions. These allow us to calculate probabilities for continuous ran-
dom variables. A continuous random variable is one that can take any real 
value on some interval. For example, we might wish to measure the heights 
of a group of people, the temperature in different locations at noon on a par-
ticular date or the distance between the place of residence and the place of 
work for the employees of a company. In all these cases the random variable 
is more naturally thought of as lying somewhere on a continuum of possible 
values rather than taking one of a discrete number of possibilities.

If the random variable X can take on a continuum of values along some 
range, it makes more sense to think in terms of the probability that X lies 
between two particular values within that range rather than being equal to 
a particular point value. This means that instead of thinking in terms of the 
probability distribution function, which assigns probabilities to particular 
point values of X, we need to think in terms of the rather more difficult con-
cept of a probability density function. The probability density function, or 
PDF, is a function ( )f x  which, when integrated with respect to x between 
two limits a and b, gives the probability that the random variable X lies 
between these limits, that is

	 ( ) ( ) .
b

a

p a X b f x dx£ £ = ò � (1.14)

To be a valid probability density function ( )f x  must satisfy two criteria. 
Firstly, it must be positive for all values of x, ( ) 0f x ³  and, secondly, the 
area under the curve must equal one, ( ) 1

b

a
f x dx =ò , where a and b are the 
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limits of the range of possible values for the random variable. The normal 
curve satisfies both these properties. Therefore, if X is a random variable that 
follows a normal distribution with known mean and variance, then we can 
calculate the probability that X lies between any two real numbers by a pro-
cess of integration using equation (1.13). Note that the PDF of the normal 
distribution defined in equation 1.13 is a function of only two parameters the 
mean m and the variance s 2.

The standard normal distribution is the normal distribution with mean 
zero and variance one. Any normally distributed random variable can be 
transformed to create another random variable with the standard normal 
distribution by subtracting the mean and dividing by the standard deviation 
(or square root of the variance). This transformation is illustrated in the fol-
lowing expression

	 ( ) ( )2~ , ~ 0,1 .
X

X N Z N
mm s

s
-Þ = � (1.15)

Transformation to the standard normal distribution is useful because inte-
grals for this function are tabulated and available in books of statistical tables. 
This allows us to calculate critical values and confidence intervals for any 
arbitrary normal distribution without the computational difficulty of evaluat-
ing integrals. This is illustrated in Figure 1.4 where the shaded area is equal 
to 5% of the total mass of the distribution. This is the integral of the function 
between the limits 1.645 and ¥ which gives the probability that the random 
variable with this distribution lies between these limits.

FIGURE 1.4  Use of the Standard Normal Distribution to Determine Probabilities.
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An important feature of the normal distribution is that linear combi-
nations of normally distributed random variables will themselves follow a 
normal distribution. For example, let ( )2

1 1 1~X N m s,  and ( )2
2 2 2~X N m s,  be 

independent normal random variables. If a and b are constants, then a linear 
combination of the variables using a and b as weights has the following nor-
mal distribution

	 ( )2 2 2 2
1 2 1 2 1 2~ , ,aX bX N a b a bm m s s+ + + � (1.16)

If 1X  and 2X  are not independent, then their covariance, that is, 
( )( ){ }1 1 2 2E X Xm m- - , is not zero, and this expression becomes

	 ( )2 2 2 2
1 2 1 2 1 2 12~ , 2aX bX N a b a b abm m s s s+ + + + � (1.17)

where 12s  is the covariance. The normal distribution is unique in having this 
property and therefore the assumption of normality is very useful in deriving 
the distribution of random variables which are functions of other random 
variables. Of course, the fact that the normal distribution has convenient 
properties is not a reason in itself to make the assumption but, as we saw 
earlier in our discussion of the central limit theorem, there are often good 
reasons to assume that random variables are approximately normally distrib-
uted in large enough samples.

Historical Note: Although the normal function had been introduced by 
Abraham De Moivre (1667–1754) as a method of approximating the coef-
ficients of the binomial expansion, Carl Friedrich Gauss (1777–1855) was 
the first to interpret it as a probability density function in its own right 
in his book of 1809 [Gauss1809]. Gauss’s particular contribution was to 
interpret the normal curve as capturing the distribution of measurement 
errors with imperfectly recorded data.

1.4 � THE PROBABILITY DENSITY FUNCTION AND THE 
MOMENTS OF THE DISTRIBUTION

The moments of a distribution are defined as the expectations of integer 
powers of the random variable in question. For example, if X is a random 
variable, then its first three moments are ( ) ( )2,E X E X  and ( )3E X . These are 
the raw moments of the distribution. Apart from the first moment, it is usu-
ally more convenient to work in terms of the central moments which are the 
expectations of the deviation of the random variable from its mean (or first 
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moment). Thus the second central moment of the random variable X can 
be written as ( )( )2 2E X E X s- =  which is the variance of X. Higher-order 
moments are often scaled by the standard deviation to obtain measures 
such as skewness = ( )( )3 3/E X E X s-

 
and kurtosis = ( )( )4 4/E X E X s- .  

These measures are useful in characterizing the shape of a distribution and 
are often referred to as the moments of the distribution even though, strictly 
speaking, they are transformations of the raw moments. We will adopt this 
convention in the rest of this chapter.

If we know the PDF of a distribution, then we can write the moments in 
terms of this function. For example, the mean of the distribution can be written

	 ( ) ( ) .
b

a

E X x f x dxm = = ò � (1.18)

By integrating ( )x f x  over the range of possible values for X (where b is 
the maximum possible value of X and a is the minimum possible value) we 
are effectively taking a weighted average of these possible values with the 
weights being the probabilities X x=  is observed. Similarly, the variance of 
X can be written

	 ( )( ) ( ) ( )2 22 .
b

a

E X E X x f x dxs m= - = -ò � (1.19)

Higher-order moments can then be calculated by integrating a function of 
the form ( )( ) ( )k

x E x f x dx-  and then scaling by ks .
We have already seen that, in the case of the normal distribution, the 

first two moments fully characterize the shape of the PDF and are therefore 
the only parameters we need to know. This can be seen by the fact that the 
equation has only two parameters m and 2s . This is not the case for other 
distributions where higher-order moments become important. In particular, 
the third and fourth moments become important because they capture fea-
tures such as skewness and kurtosis of the distribution.

1.5  OTHER USEFUL DISTRIBUTIONS

The normal distribution can be used to derive a number of other distributions 
that are important in econometric analysis. These are the chi-squared, F and 
Student’s t distributions which will all figure prominently in econometric 
theory. We will consider each in turn and discuss the nature of the distribution, 
the sorts of data that might be characterized by such a distribution and what 
the theory tells us about their moments.
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Let us first consider the chi-squared distribution. Suppose we have k 
independent random variables : 1,...,jZ j k=  each of which follows a normal 
distribution with mean zero and variance one. This is not unduly restrictive 
because we have already seen that any normal distribution can be written in 
this form with an appropriate transformation. Now let us define the follow-
ing random variable

	 2

1

.
k

j
j

X Z
=

= å � (1.20)

The random variable defined by is said to follow a chi-squared distribution 
with k degrees of freedom. Variables with a chi-squared distribution arise 
naturally when we consider statistics which are defined as the sum of squared 
variables. This occurs frequently in econometric analysis when we consider 
the residual sum of squares for a regression equation. Critical values for the 
chi-squared distribution with different degrees of freedom are given in most 
standard books of statistical tables.

For values of k greater than 2, the chi-squared distribution has the char-
acteristic shape shown in Figure 1.5 which shows the PDF for a chi-squared 
random variable with four degrees of freedom. The value of the PDF is zero 
at 0,x =  it then increases to a peak value for some positive value of x and then 
declines asymptotically to zero as x becomes large. The distribution exhibits 

FIGURE 1.5  Probability Density Function for the Chi-Squared Distribution with  
Four Degrees of Freedom.
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positive or right skew in that the right tail of the distribution is longer than 
the left tail. This characteristic shape is only observed for 2k > . If 1k =  or 2 
then it is no longer the case that the chi-squared distribution has a PDF that 
takes the value 0 at 0x = . Instead, the value of the PDF either tends to infin-
ity as x tends to zero when k = 1 or to a positive, non-zero value when k = 2. 

The mean and the variance of a random variable that follows a chi-
squared distribution with k degrees of freedom are given by the values k 
and 2k, respectively. Most books of statistical tables give tables of critical 
values of the chi-squared distribution for different degrees of freedom. 
As k becomes large, the asymmetry which in the PDF of the chi-squared 
distribution becomes less pronounced. In the limit, for large k, the chi-
squared distribution will look more and more like the normal distribution 
(as predicted by the central limit theorem).

Historical Note: The chi-squared distribution was first considered by 
Friedrich Helmert (1843–1917) in a paper published in German in 1876 
[Helmert1876], but was later discovered independently by Karl Pearson 
(1857–1936) in his paper of 1905 [Pearson1905]. It was given the name 
“chi-squared” as one of the family of “skew” distributions which Pearson 
believed could form the basis for all continuous probability distributions.

The next distribution we will consider is the F distribution. Suppose we 
have two random variables each of which follows a chi-squared distribution. 
In particular, let us assume that 2

1 ~ mX c  and 2
2 ~ nX c . Now let us define the 

following random variable as the ratio of the two chi-squared variables each 
of which is divided by its degrees of freedom

	 1 1

2 2

/
.

/
X m X n

X
X n X m

= = � (1.21)

The random variable X defined in equation 1.21 follows an F distribution with 
m and n degrees of freedom. This is written as ,~ m nX F . The F-distribution 
arises naturally in econometric analysis when we consider the ratios of vari-
ables which are constructed as the sum of squared random variables. As we 
will see in later chapters this situation arises frequently when we perform 
tests of restrictions in linear regression models.

For 3m ³  the F distribution has a similar shape to the chi-squared distri-
bution in that its PDF takes the value 0 at its lower limit, has a single interior 
maximum and is right skewed. This is illustrated in Figure 1.6, which shows 
the probability density function for the F distribution with 10 and 10 degrees 
of freedom. F distributions with m less than three do not have the typical 
shape illustrated in Figure 1.6. For m = 1, ( )f x ® ¥ as 0x ® , rather like we 
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saw for the chi-squared distribution while for m = 2, it will tend to a non-zero 
value. Another similarity with the chi-squared distribution is that as both m 
and n become large, the shape of the F distribution becomes symmetric and 
eventually converges to a normal distribution.

Historical Note: The form of the F distribution was first set out by 
Ronald Fisher (1890–1962) in his 1922 paper [Fisher1922]. It was later 
tabulated and given its name (in honor of Fisher) by George Snedecor 
(1881–1974) in his 1934 book Calculation and Interpretation of Analysis 
of Variance and Covariance [Snedecor1934]. 

Student’s t distribution is defined as follows. Suppose 1X  is a random 
variable that follows a standard normal distribution, ( )1 ~ 0,1X N  and 2X  is 
an independent random variable that follows a chi-squared distribution with 
k degrees of freedom, 2

2 ~ .kX c  It can be shown that the random variable T 
defined in equation 1.22 follows Student’s t distribution with k degrees of 
freedom,

	 1

2 /
X

T
X k

= � (1.22)

Student’s t distribution is often referred to simply as the t distribution. It 
is useful when we wish to conduct hypothesis tests on a variable which we 

FIGURE 1.6  Probability Density Function for the F Distribution with 10 and  
10 Degrees of Freedom.
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assume is normally distributed but for which we do not know the variance. 
We will see in subsequent chapters that tests for the significance of regres-
sion coefficients fall into this category. The shape of the PDF of the t dis-
tribution looks very much like that of the standard normal distribution. It is 
symmetric around zero and has the characteristic bell shape of the normal 
distribution. However, the t-distribution has “fatter tails” than those of the 
normal distribution. By this, we mean that more of the mass of the distribu-
tion lies in its tails than is the case of the normal. This means that extreme 
events (or values of the random variable that lie in the tails) are more likely 
for the t distribution. The difference between the two distributions is illus-
trated in Figure 1.7.

The t-distribution is useful when constructing tests based on small sam-
ples. As the sample size gets larger the differences between the t distribu-
tion and the normal get smaller. In the limit, as the sample size becomes 
arbitrarily large, the t distribution converges on the normal. In practice, for 
sample sizes more than 30, the difference between the t-distribution and the 
normal distribution is negligible.

Historical Note: The t distribution was first set out by William Sealy 
Gosset (1876–1937) in 1908 [Student1908]. Gosset was working for 
the Guinness brewing company at the time who (allegedly) forbade 
employees to publish research on the ground that it might be 
commercially sensitive. As a result, Gosset published extensively under 
the name of “Student.”

FIGURE 1.7  Relationship Between the Probability Density Functions of the  
t-distribution and the Standard Normal Distribution.
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1.6  CLASSICAL AND BAYESIAN STATISTICS

The discussion of probability and statistical distributions in this chapter has 
implicitly assumed that we can repeat the experiment generating the data 
however many times we like. For example, in generating the probability of 
drawing a club from a pack of cards, it is assumed that we can repeat this 
experiment a large enough number of times for the measured frequency 
to converge to the true underlying probability. This makes sense for sim-
ple examples but becomes more difficult in more complex situations where 
experiments are not possible. For example, suppose we are asked to state the 
probability that the economy will emerge from recession during the coming 
year. In circumstances like this, we do not have the luxury of re-running his-
tory an arbitrary number of times to measure relative frequency.

If it is not possible to repeat experiments, then the interpretation of 
probabilities in terms of relative frequency becomes problematic. Some stat-
isticians argue that it is still possible to interpret probabilities in this way 
even when repeated experiments are not physically possible. This is the 
standpoint taken by the classical or frequentist school. A characteristic of 
the classical school is that the parameters of distributions of random vari-
ables are treated as objective. That is, they are fixed numbers that exist inde-
pendently of the experiment being conducted or the person conducting the 
experiment. In contrast, the Bayesian school of statisticians argues that the 
inability to repeat experiments means that it is not possible to treat proba-
bilities or parameters as objective. Instead, they begin with the premise that 
these parameters are inherently subjective. This means that they reflect the 
beliefs of the investigator rather than something external. In many economic 
examples, the Bayesian interpretation of probabilities is arguably more plau-
sible than the classical interpretation. This is because economic situations 
are often non-repeatable in nature. Despite this, the statistical foundations 
of econometrics remain firmly rooted in the classical approach and we shall 
continue with this interpretation.

1.7  SUMMARY

This chapter has been concerned with the statistical foundations necessary 
for an understanding of econometrics. We begin with the idea of probabil-
ity and the probability distribution function of a discrete random variable. 
This is illustrated by the binomial distribution which gives the probability 
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of x successes in a set of n Bernoulli trials. If the number of trials is large, 
then we show that the binomial distribution can be approximated by the 
function which can also be interpreted as the probability density function 
of the normal distribution. The normal distribution is important because 
the central limit theorem shows that if we take the mean of a large number 
of independent random variables then this will follow a normal distribution. 
It is also important because it provides the basis for the development of the 
chi-squared, F and Student’s t distributions. All of these are important for 
econometric analysis.

EXERCISES 

EXERCISE 1.1

The following table gives population data for the United Kingdom in 2007 
taken from the Office of National Statistics (ONS) database. The data are 
broken down into categories of employment and by gender. This can be 
thought of as a contingency table.

Male Female Total
Employed 12,950 12,254 25,204

Self-employed 2762 1054 3816

Unemployed 944 709 1653

Not economically active 13,260 17,042 30,302

Total 29,916 31,059 60,975

�UK Population in 2007 (thousands) taken from ONS database

a.	 Create a new table that contains the estimated joint probabilities of an 
individual worker falling into each of the different categories.

b.	 Calculate the marginal probabilities for the rows and columns and check 
that these add up to one (there may be a slight rounding error).

c.	 Calculate the conditional probability that an individual is male given that 
they are self-employed.

d.	 Calculate the conditional probability that an individual is unemployed, 
given that they are male.
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EXERCISE 1.2

The uniform distribution for a continuous random variable X has PDF 
( ) ( )1 /f x b a= -  where b and a are the maximum and minimum values of 

X. Using the definitions in terms of moments given in equations (1.18) and 
(1.19), show that the mean and the variance of X are given by the following 
expressions

( )2
2

2

12

a b

b a

m

s

+=

-
=

EXERCISE 1.3

X and Y are independent normal random variables with distributions 
( )2~ ,X XX N m s  and ( )2~ ,Y YY N m s . Calculate the distributions of X Y+  and 

X Y- , respectively.
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C H A P T E R  2
Statistical Inference

Classical statistical theory assumes that the random variables that are of 
interest to us are generated by a distribution which is unknown, but about 
which we can draw inferences based on observation. In this chapter, we dis-
cuss the theory of statistical inference. To do so, we first need to define some 
terms. First, suppose we have a set of N independent random variables each 
of which has probability density function (PDF) ( )f x . Because the variables 
are independent, we can therefore write the joint PDF as the product of the 
individual PDFs, that is, ( ) ( ) ( )Nf x f x f x1 2 ... . A set of random variables of 
this type is referred to as a random sample. Next, we define a statistic as a 
function of one or more random variables, which does not depend on any 
unknown parameters. For example, given a random sample 1 2, ,..., nX X X , the 
sample mean is defined as

	
1

1
.

N

i
i

X X
N =

= å � (2.1)

This satisfies the condition for a statistic because it does not depend 
on any unknown population parameters. Similarly, the sample variance is 
defined as

	 ( )22

1

1ˆ ,
1

N

X i
i

X X
N

s
=

= -
- å � (2.2)

and again, this qualifies as a statistic because it does not depend on any 
unknown parameters. Note, however, that in both cases, the distribution of 
these statistics will depend on the unknown parameters that describe the 
distribution of the random variables iX .

These are examples of estimators of unknown population parameters 
based on sample data. In both cases, we can show that these estimators are 
unbiased. That is, if the population mean of the X variable is ( )iE X m=  for all 
values of i, and its variance is ( )2 2

i XE X m s- = , then ( )E X m= , and ( )2 2ˆ
X XE s s= .  
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To get an unbiased estimator of the population variance, we divide the sum 
of the squared deviations of the X variables from the sample mean by the 
number of observations minus one. This is because the use of the sample 
mean, rather than the population mean in (2.2), implies that there are only 
N − 1 independent squared deviations in this expression. Thus, the degrees 
of freedom for the sum of squared deviations around the sample mean is 
equal to the number of observations minus one. This correction follows nat-
urally from the construction of the estimator of sample variance. To demon-
strate this, note that we can write

	
( ) ( ) ( ){ }

( ) ( ) ( )( )

22

1 1

22

1 1 1

2 .

N N

i i
i i

N N N

i i
i i i

X X X X

X X X X

m m

m m m m

= =

= = =

- = - - -

= - + - - - -

å å

å å å
� (2.3)

To find the expected value of this expression, we take each of its elements in 

turn. First, since ( )2 2
i XE X m s- = , we have ( )2 2

1

N

i Xi
E X Nm s

=
é ù- =ë ûå . Next, 

by definition of the sample mean, we have ( )1
1 /

N

ii
X N Xm m

=
- = -å  and 

therefore

	 ( ) ( )2 2 2

1

1N

i X
i

E X N E X
N

m m s
=

é ù- = ´ - =ê úë û
å .� (2.4)

Finally, since we have ( )( ) ( )2

1 1
1 /

N N

i ii i
X X N Xm m m

= =
- - = -å å , taking 

expectations yields

	 ( )( ) 2

1

.
N

i X
i

E X Xm m s
=

é ù- - =ê úë û
å � (2.5)

Combining these expectations yields

	 ( ) ( )2 2 2 2 2

1

2 1 .
N

i X X X X
i

E X X N Ns s s s
=

é ù- = + - ´ = -ê úë û
å � (2.6)

Therefore, to obtain an unbiased estimator of the sample variance, we must 
divide by N − 1 rather than N. As the sample size N increases, then the bias 
resulting from dividing by N rather than N − 1 will become arbitrarily small.

Estimation is defined as the process of using sample data to con-
struct estimates of unknown population parameters. In doing so, we often 
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have different estimators available to us and must choose between them.1 
Consider an estimator q̂  of an unknown population parameter q. The crite-
ria we use to assess whether this is a good estimator (and whether it is better 
than alternatives) can be summarized as follows:

1.	 An estimator is unbiased if its expectation is equal to the population 
value, that is, ˆ( ) .E q q=  For unbiasedness, this property must be true 
whatever the sample size. 

2.	 An estimator is consistent if it converges in probability on the population 
value, that is, ˆlim NN

q q
®¥

= , where ˆ
Nq  is an estimator based on N observations. 

This is a large sample property that is often used when it is not possible 
to prove unbiasedness. Note that unbiasedness and consistency are dif-
ferent properties. Estimators that are biased in small samples can often 
be consistent. Although it is less common, it is also possible to find unbi-
ased estimators that are not consistent.

3.	 An estimator is said to be efficient if it has lower variance than other 
possible estimators. Unlike the first two criteria, efficiency is defined 
as a comparison between alternative estimators rather than an intrinsic 
property of an individual estimator.

In addition to estimation of parameters, we also often wish to make infer-
ences about them. That is, we wish to test hypotheses about population 
parameters. Inference is also concerned with judgments concerning the 
range of possible values within which parameters might lie. The topics of 
estimation and inference will form the major part of this chapter.

The statistical methodology for estimating parameters and making infer-
ences based on these estimates is well established. However, most of this 
analysis assumes that the data we examine are generated experimentally 
and are, therefore, under the control of the investigator. The main practical 
problems for the econometrician arise because of the nature of the data we 
work with. In most cases, economic data are nonexperimental and are pas-
sively observed by the investigator. The implications of this are far-reaching 
and the role of econometrics as a discipline is to analyze the implications 
of data generated in this way and to suggest methods for dealing with the 
problems it creates.

1  An estimate is a particular numerical value based on data. An estimator is a method, or 
algorithm, by which data is processed to form estimates. 
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2.1  SAMPLING

A sample is said to be random if there is an equal probability of selecting 
any member of the population as part of the sample to be examined. In 
classical statistical theory, this is often motivated by stylized examples such 
as the drawing of different colored balls from an urn. A standard scenario 
is one in which we have an urn containing both black balls and white balls 
and we wish to draw a random sample to test the hypothesis that there is an 
equal number of each color in the urn. For a controlled experiment of this 
type, it is easy to construct a random sample – we simply make sure that the 
experimenter cannot see the color of the balls prior to making the draw. An 
artificial scenario of this kind helps identify the strict criteria under which a 
sample can be said to be random.

In the more complex situations, we encounter in the real world, it may 
be more difficult to ensure a random sample. For example, suppose we wish 
to generate a random sample of households to investigate expenditure on 
a consumer product. We might dial random telephone numbers from the 
directory and interview the person answering. Although this sounds like a 
reasonable procedure, it is anything but random. First, this procedure auto-
matically eliminates from the sample all those households that do not have a 
listed number. This may be because they do not have a telephone or because 
they choose not to be listed. In either case, a group of households, who are 
likely to have somewhat different characteristics from the rest of the popu-
lation, are excluded. Second, only those calls that are answered will be con-
sidered. This will bias the sample according to the time of day at which the 
calls are made. If the calls were made during working hours, then the sample 
will tend to overrepresent households in which there is at least one member 
who is not currently employed. In general, sampling procedures, which look 
random at first sight, may be subject to subtle forms of sample selection bias 
when we think about them more carefully.

Since it is often very difficult to obtain a truly random sample, 
statisticians often use a system of stratified sampling to obtain a sample 
which is genuinely representative of the population as a whole. Usually, 
this will involve sampling different subgroups in numbers that reflect their 
share in the overall population. For example, we might divide the sample up 
into different age bands and ensure that the numbers we interview in each 
reflects the proportions that they make up of the total population. Although 
procedures like this may look nonrandom, they are nevertheless more likely 
to produce samples that are representative of the population than less-
structured approaches.
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One way of thinking of the sampling problem is to think of each observa-
tion as an experiment. To be a genuine experiment, the results must be inde-
pendent of the experiments that have gone before. When using cross-section 
data, this seems to be a reasonable assumption. We can think of the process 
of generating a new observation as akin to conducting a new experiment 
and enlarging the sample. However, when dealing with time-series data, the 
analogy begins to break down. In what sense does a new time-series obser-
vation constitute an independent observation? The answer is that in many 
cases, it does not. For example, when new Gross Domestic Product (GDP) 
estimates are reported each quarter, the figures released do not constitute 
a random drawing from the population of possible outcomes. Instead, they 
depend heavily on the recent history of the economy and on the behavior of 
GDP over the recent past. To justify the use of classical statistical methods 
with time-series data, it is necessary to make strong assumptions about the 
distribution of the variables in questions. In particular, we need to make the 
assumption that the series in question is stationary. That is, we assume that 
its moments are independent of time. We will discuss this issue in greater 
detail in subsequent chapters but, for the moment, we will simply assume 
that the necessary conditions hold and that we can treat time-series data in 
the same way as we treat experimental or survey data.

Taking all these considerations into account, and assuming that we can 
generate a true random sample, then we can define the sampling distribu-
tion of a statistic as the probability distribution based on a random sample 
of size N. Note that the sampling distribution does not refer to a particular 
sample of data. Instead, it is the distribution of all possible samples of a given 
size. The sampling distribution is determined by the underlying distribution 
of the population generating each observation, the statistic concerned, and 
the sample size. The sampling distribution of a statistic is distinct from its 
asymptotic distribution which is the limit of the sampling distribution as the 
sample size becomes large, that is, as N ® ¥.

For example, let us consider the derivation of the sampling distribution 
of the arithmetic mean from a random sample : 1,...,iX i N=  when each indi-
vidual observation is assumed to follow a normal distribution with mean m 
and variance 2

Xs , that is, ( )2~ , .i XX N m s  The sample mean is a linear combi-
nation of normal random variables and will therefore itself follow a normal 
distribution. Consider the first moment or expectation 
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Now, by assumption ( )iE X m=  for all values of i, which means that the 
expected value of the arithmetic mean is equal to the population mean. The 
sample mean is therefore an unbiased estimator of the unknown population 
mean. Next, consider the variance of the sample mean which is defined as

	 ( )( )2
E X E X- ,� (2.8)

and we have already shown that ( )E X m= , so this can be written as ( )2
E X m- .  

Expanding this expression yields
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Since ( )2 2
i XE X m s- =  for all values of i, we have

	
2 2

2
2
X X

X

N
N N
s ss = = .� (2.10)

Combining these results shows that, under our assumptions, the sample 
mean will follow a normal distribution with mean equal to the population 
mean of the distribution for the underlying random variable. The variance 
of the sample mean is equal to the variance of the underlying distribution 
divided by the number of observations, that is,

	
2

~ , .XX N
N

sm
æ ö
ç ÷
è ø

� (2.11)

One implication of this is that the variance of the sample mean will fall as the 
number of observations increases and, in the limit, will go to zero as N ® ¥.

Now that we have derived the sampling distribution of the arithmetic 
mean, we can use this to derive test statistics for the purposes of statistical 
inference. Using the transformation for the standard normal distribution, 
we have

	 ( )~ 0,1
/X

X
N

N
m

s
- .� (2.12)
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If Xs  is known, then this would be a valid test statistic. However, Xs  is not 
known in most circumstances. In order to derive a valid test statistic, we 
must substitute the sample variance for the unknown population variance. 
This, in turn, requires us to derive the distribution of the sample variance. 
This is not easy, and we will offer only an heuristic derivation here. Consider 
the expression ( )2

1

N

ii
X X

=
-å . From the definition of the sample mean, this 

consists of the sum of N − 1 independent sums of squares, each of which 
has expected value 2

Xs . Dividing by 2
Xs  means that we have an expression of 

the form ( )( )2

1
/

N

i Xi
X X s

=
-å  

which consists of the sum of N − 1 squared 
standard normal random variables and hence has a chi-squared distribution 
with N − 1 degrees of freedom. Now consider again the definition of the 
sample variance given in equation (2.2). Multiplying both sides by N − 1 and 
dividing by 2

Xs  yields

	 ( )
22

2
1

ˆ
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N
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iX X
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We have established that the right-hand side of this expression has a 2
1Nc -  

distribution. Hence, it follows that ( ) 2 2 2
1ˆ1 / ~X X NN s s c -- . In the next section, 

we will make use of this result to derive a valid test statistic for the purposes 
of inference.

2.2  HYPOTHESIS TESTING

Hypothesis testing can be thought of as the process of using a sample of data 
to draw inferences about population parameters. A hypothesis test requires 
the following elements:

1.	 A hypothesis to be tested (usually described as the null hypothesis) and 
another hypothesis against which it will be examined (the alternative 
hypothesis).

2.	 A test statistic whose distribution is known under the assumption that 
the null hypothesis is true.

3.	 A decision rule that determines the circumstances under which the null 
hypothesis will be rejected.

The first of these elements is normally determined by economic theory. 
However, the second two elements depend more on statistical theory. 
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The test statistic we use will depend on the assumptions we make about the 
statistical distribution of the variables we examine, whereas the decision rule 
will depend on the costs of making either Type I or Type II errors. A Type I 
error is the case where we reject the null hypothesis when it is true, whereas 
a Type II error is the case where we fail to reject the null hypothesis when 
it is false.

Historical Note: The first use of the term null hypothesis comes in 
Ronald Fisher’s 1935 book The Design of Experiments [Fisher1935]. The 
term alternative hypothesis had been used earlier by Jerzy Neyman and 
Egon Pearson [Neyman1928] who developed much of the methodology 
and terminology discussed this chapter.

Usually, the decision rule involves fixing the size of the test or the proba-
bility that we make a Type I error. The size of the test gives the proportion of 
experiments that would be expected to incorrectly reject the null hypothesis, 
that is, to generate a false positive result. It is usually expressed as a percent-
age. For example, a 5% size implies that we would be willing to accept five 
false positive results in every 100 experiments. Test size is usually set at a 
low level so that we reduce the probability of a false positive result in any 
individual experiment. However, common test sizes such as 5% and 1% are 
arbitrary choices which are often used because they are conventional rather 
than because of any conscious choice by the researcher. The choice of test 
size reflects the researcher’s view of the costs of a false positive result. In 
addition to the cases in which the test produces errors, we are also interested 
in the extent to which it gets the answer correct. Ideally, we would like tests 
to have both high degrees of specificity and sensitivity. Specificity is the 
ability of the test to correctly identify the null when this is correct (a true 
negative), whereas sensitivity is the ability to correctly identify the alterna-
tive when this is correct (a true positive).

As an example of the testing process, let us consider a situation in which 
we wish to use a sample of data to test a hypothesis about the population 
mean. For simplicity, we will assume that each observation is a random 
experiment in which the outcome follows a normal distribution. The first 
stage is to specify the hypothesis we wish to text. Suppose, for example, 
that we wish to test the null hypothesis 0 :H m m=  against the alternative 

1 :H m m¹ . From the previous section, we have shown that if the population 
variance is known, then a possible test statistic would take the following form

	 ( )~ 0,1
/X

X
N

N
m

s
- .� (2.14)
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In this case, the statistic will follow a standard normal distribution. If the 
population variance is unknown, then we must substitute an estimate for 

Xs  in (2.14) in order to construct an operational test statistic. By doing 
this, however, we will change its distribution. Consider, for example, the 
effects of replacing Xs  by its estimate ˆ

Xs . From the previous section, we 
have ( ) 2 2 2

1ˆ1 / ~X X NN s s c -- . Recall that the t distribution is defined as the 
distribution of the random variable defined as the ratio of standard normal 
random variable to the square root of a chi-squared random variable divided 
by its degrees of freedom. Therefore, if we divide the random variable 

( ) / XN X m s-  by ˆ /X Xs s , then the result will be a random variable that 
follows a t distribution with N − 1 degrees of freedom. This gives us a valid 
test statistic of the form

	 1~
ˆ / N
X

X
t t

N
m

s -
-= .� (2.15)

Unlike the previous expression (2.14), this does not contain any unknown 
parameters and therefore constitutes a usable test statistic.

Next, we need to determine a critical value as a basis for comparison 
with the test statistic. The critical value is normally chosen so that it fixes the 
size of the test or the probability of making a Type I error. The value chosen 
will depend on the nature of the alternative hypothesis. If the alternative to 

0H  is 1 :H m m¹ , then we have a two-sided alternative, that is, we are equally 
concerned about positive and negative deviations of the estimate from the 
hypothesized value. However, if the alternative takes the form 1 :H m m> , 
then we have a one-sided alternative in which only positive deviations are of 
interest.

Let us first consider the case of two-sided alternative. The decision rule 
will involve choosing a critical value critt  such that, if critt t> , we reject the 
null. critt  is set so that ( )0 0Reject |  truep H H a= , where a is the size of the 
test. This is illustrated in Figure 2.1 for a t-test in which we have 20 observa-
tions and a 5% significance level. We must find critt  so that 95% of the mass 
of the distribution lies between critt-  and critt . Alternatively, because the dis-
tribution is symmetric, we need to find critt  so that 2.5% of the area under the 
curve lies to the right of this value. In our case, this gives a value 2.093critt = . 
Tests of this kind, using a two-sided alternative, are often referred to as two-
tailed tests because the critical value is determined by the area under both 
tails of the PDF.
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Critical values are often written to indicate the size of the test. For 
example, for a 5% critical value and a two-tailed based on the Student’s t 
distribution, we could write the critical values as 0.025

ct±  or 2.5%
ct± . For a one-

tailed test, the notation is somewhat simpler because there is only one crit-
ical value that we would write as 0.05

ct  or 5%.ct  At the risk of being pedantic, 
when we have a two-tailed test, we must find a pair of critical values. For 
example, let Z be a statistic with a known distribution. For a test of size a, we 
need to find critical values such that ( ) / 2L

cp Z z a< =  and ( ) / 2U
cp Z z a> = .  

Taken together, these critical values give the correct size for the test 
because ( ) 1L U

c cp z z z a< < = - . In the case of symmetric distributions, such 
as Student’s t or the normal, we have L U

c cz z= - , and therefore, we choose cz  
such that ( )cp z z a> = . Unfortunately this shortcut cannot be applied for 
nonsymmetric distributions, such as the chi-squared or F distributions. In 
such cases, we need to find a distinct pair of critical values to conduct a two-
tailed test. 

Consider now the case in which there is a one-sided alternative, for 
example, 1 : .H m m>  In this case, we are only interested in cases in which the 
test statistic exceeds its expected value under the null. This means that the 
critical value is determined only by the right tail of the distribution as illus-
trated in Figure 2.2. The critical value in this case is given by 0.05 1.729ct = .  
Tests of this kind are referred to a one-tailed tests for obvious reasons.

FIGURE 2.1  Determination of t Critical Values for a Two-Sided Alternative.
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Example: The average annual growth rate for US consumption expendi-
tures between 1970 and 2019 is calculated as 2.9569 with standard deviation 
ˆ 1.7495Xs = . Can we reject the null hypothesis that the underlying growth 

rate is equal to 3% per annum?
Assuming that the underlying growth rate is normally distributed, we 

first need to set out the null and alternative hypotheses. The form of the 
question implies a two-sided alternative. Therefore, we will test 0 : 3H m =  
against 1 : 3H m ¹ . The test statistic we will use is written as

	 2.9569 3
0.1724.

1.7495 / 49
t

-= = - �

From the t tables, we obtain critical value(s) 2.011±  for a t-distribution with 
48 degrees of freedom. The t-ratio lies between the critical bounds and 
therefore we cannot reject the null hypothesis in this case.

In many situations, we do not want to test a null hypothesis that specifies 
a specific value for the unknown parameter. We may simply be interested 
in testing whether a parameter is greater or less than some specific value. In 
such cases, it is more natural to use a one-sided alternative and a one-tailed 
test. For example, we might wish to test 0 :H m m£ , in which case, it is natu-
ral to specify the alternative hypothesis as 1 :H m m> . The following example 
may help to make this clearer.

FIGURE 2.2  Determination of t Critical Value for a One-Sided Alternative.
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Example: Let us assume that the growth rate of the Canadian economy 
is a normally distributed random variable X with mean m and variance 2

Xs .  
The average annual growth rate between 1962 and 2019 is calculated as 

3.2221X =  with standard deviation ˆ 2.2658Xs = . Should we reject the null 
hypothesis that 3m £  against the alternative that it is >3?

In this case, the wording of the question indicates a one-sided alterna-
tive. The test statistic can be written as follows:

	 3.2221 3
0.7465.

2.2658 / 58
t

-= = �

The 5% critical value for a t-distribution with 57 degrees of freedom with a 
one-sided alternative is 1.672. Therefore, we cannot reject the null hypoth-
esis in favor of the alternative at the 5% level.

When we fail to reject the null, does this mean that we implicitly “accept” 
it? Strictly speaking, the answer is no. Failure to reject the null means pre-
cisely that–there is no implication that the null is accepted, simply that there 
is not enough evidence to reject it. However, it is not unusual to see failure 
to reject as being described as acceptance of the null hypothesis.

2.3  CONFIDENCE INTERVALS

Hypothesis testing is a useful tool but can sometimes lead to a very black 
and white approach to statistical inference. We are only allowed two possi-
ble choices in a hypothesis test – either we accept (or fail to reject!) the null 
hypothesis or we reject it. In many cases, a more interesting, and possibly a 
more honest, approach is to express our results in such a way as to indicate 
our degree of uncertainty about the parameter, or hypothesis, in question. 
One approach of this kind is to express the results in terms of a confidence 
interval. This consists of an upper or lower bound for the parameter in ques-
tion that defines a 100(1 − α)% degree of confidence about the value of the 
unknown parameter, where a reflects an acceptable probability of making a 
Type I error. For example, if we set 0.05a = , then this would be consistent 
with a 95% confidence interval. We can interpret such an interval as stating 
that there is a 100(1 − α)% chance that the range quoted contains the true 
unknown value of the parameter in question.

When we define the confidence interval, it is important to note that it is 
the confidence interval itself which is treated as a random variable. A state-
ment of the form “there is a 95% probability that the population mean lies 
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between these limits” is not valid in classical statistical theory. In the classical 
framework, the population mean is not a random number and therefore we 
cannot make probabilistic statements about it. A more accurate, though not 
so intuitive, statement would be to say that, if the experiment used to con-
struct the confidence interval was to be carried out 100 times, then 95 of the 
intervals obtained would be expected to contain the population mean. Thus, 
the probabilistic statement we make refers to the interval not to the popula-
tion parameter. A Bayesian statistician, however, would have no such qualms 
about making probabilistic statements about the population mean. This is 
because, within the Bayesian framework, there is no assumption that popu-
lation parameters are fixed numbers that are independent of the investiga-
tor. Instead, it is assumed that they are subjective parameters that reflect the 
investigator’s beliefs. It is therefore perfectly valid within a Bayesian frame-
work to refer to “probability intervals” (or more usually “credible intervals”) 
for the parameters. While it would certainly be interesting to discuss this 
further, most econometrics is conducted within the classical, or frequentist 
framework, and we will adopt this terminology throughout our book.

Historical Note: The idea of a confidence interval was first introduced 
by Jerzy Neyman in his 1937 paper in the Philosophical Transactions of 
the Royal Society [Neyman1937]. It was highly controversial at the time 
in that statisticians from the frequentist tradition regarded it as being 
dangerously close to Bayesian methodology.

For any statistical distribution, it is possible to find lower and upper 
bounds that define a 100(1 − α)% confidence interval. This is particularly easy 
for symmetric distributions centered on zero such as the standard normal or 
t-distribution. For example, let us consider the case of generating a confi-
dence interval for the population mean under the assumption that our data 
are generated by a normal distribution of the form ( )2~ , ; 1,...,i XX N i Nm s = .  
We can show that ( ) 1ˆ/ ~X NN X tm s -- , where X and ˆ

Xs  are the usual esti-
mates of the mean and standard deviation. Let 0.025

1Nt -  be that number such 
that 2.5% of the mass of the t distribution with N − 1 degrees of the freedom 
lies to the right of this value (it immediately follows that 2.5% of the mass 
of the distribution lies to the left of 0.025

1 )Nt -- . From the results in the previous 
section, we can therefore write

	 ( )0.025 0.025
1 1 0.95.

ˆN N
X

N X
p t t

m
s- -

æ ö-
ç ÷- < < =ç ÷è ø

� (2.16)

EIP.Ch2.2pp.indd   37EIP.Ch2.2pp.indd   37 12-Apr-21   5:47:38 PM12-Apr-21   5:47:38 PM



38 • Econometrics in Practice

We can transform the inequality on the right and write this as

	 0.025 0.025
1 1

ˆ ˆ
0.95X X

N Np X t X t
N N

s sm- -
æ ö- < < + =ç ÷è ø

.� (2.17)

The pair of numbers { }0.025 0.025 0.025 0.025
1 1ˆ ˆ/ , /c N X c N XL X t N U X t Ns s- -= - = +

give the 95% confidence interval for the unknown population mean.
The construction of a confidence interval becomes a little more com-

plicated for nonsymmetric distributions. Let us consider, for example, the 
population variance. We have already seen that based on a random sample of 
data 1 2, ,..., NX X X , where ( )2~ ,i XX N m s , we have ( ) 2 2 2

1ˆ1 / ~X X NN s s c -- . It is 
straightforward to determine lower and upper bounds for the chi-squared 
distribution such that

	 ( )
2

/2 /2
2

ˆ
1 X

c c
X

p L N Ua as a
s

æ ö
< - < =ç ÷

è ø
.� (2.18)

From this, we obtain

	 2 2 2
/2 /2

1 1ˆ ˆ
X X X

c c

N N
p

L Ua as s s a
æ ö- -> > =ç ÷
è ø

,� (2.19)

which gives the 100(1 − α)% confidence interval for the population variance. 

Example: Suppose we wish to construct a 95% confidence interval for the 
standard deviation of the growth rate of US consumption expenditures. 
We saw earlier that the sample standard deviation based on 49 annual 
observations from 1970 to 2019 was 1.7495. From the chi-squared tables, 
we have 0.025 30.755cL =  and 0.025 69.023cU = . Therefore, the lower and upper 
bounds of the confidence interval for the population variance can be 
calculated as

	 2 248 48
1.7495 2.1285   and   1.7495 4.7770

69.023 30.755
´ = ´ = .

Taking square roots gives the lower and upper bounds of the 95% confi-
dence interval for the standard deviation as 1.4589 and 2.1856.
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2.4  P VALUES

Another method of dealing with the “all or nothing” nature of classical 
hypothesis testing is to quote the p value of a hypothesis test rather than 
a simple accept/reject decision. Consider a random variable that follows a 
standard normal distribution under the null hypothesis. The 5% critical val-
ues for a two-tailed test are 1.96± . Therefore, using a 5% significance level, 
we would fail to reject the null if the test statistic is 1.95 but reject if it 
is 1.97. Any reasonable investigator would, however, realize that there was 
virtually no difference between these two cases. The p value is a function of 
the test statistic that helps avoid this problem. What it involves is evaluating 
the cumulative density function for the observed value of the test statistic. 
Instead of deciding on a critical value, and then basing an accept/reject deci-
sion on this one value, the p value approach asks the question at what level 
of significance would our test statistic lead us to reject the null?

Historical Note: The idea of p values has been present for many years. 
However, the term itself was first used by Karl Pearson [Pearson1900] in 
the context of a discussion of the chi-square test. This concept underlies 
much of the statistical methodology of Ronald Fisher.

Figure 2.3 illustrates the determination of the p value. Suppose we wish 
to test the null hypothesis that a parameter is equal to zero and the test statis-
tic follows a standard normal distribution under the null. The function ( )F x  
is the cumulative normal density function. Next, we assume that we obtain 
a test statistic equal to one. We have ( )1 0.8413F =  and this tells us that the 
probability of a standard normal random variable taking a value of one or 
less is equal to 0.8413. The p value is defined as ( )1 1 0.1587F- =  which 
gives us the significance level at which we would reject the null hypothesis 
that the random variable has a mean of zero on the basis of a one-tailed test. 
Thus, the p value gives us a more flexible way of assessing a test statistic. 
Rather than allowing only an accept/reject decision, it allows us to assess the 
strength of the evidence for rejection of the null hypothesis.

Let us consider another example of a case in which the p value might 
prove useful. Suppose we have two random samples of data 

11 2, ,..., NX X X
 
and 

21 2, ,..., NY Y Y . In each case, we assume that the observations are generated as 
independent drawings from normal distributions of the form ( )2~ ,i X XX N m s  
and ( )2~ ,i Y YY N m s . Now suppose we wish to test the null hypothe-
sis that the population variances are the same, that is, 2 2 2

0 : X YH s s s= = .  
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From results already established, we have ( )
1

2 2 2
1 1ˆ1 / ~X NN s s c --  and 

( )
2

2 2 2
2 1ˆ1 / ~Y NN s s c --  under the null hypothesis. Therefore, dividing each 

of these expressions by the degrees of freedom and taking the ratio will give 
us a random variable that follows an F distribution, that is,

	
1 2

2

1, 12

ˆ
~

ˆ
X

N N
Y

F
s
s - - .� (2.20)

The p value for this test statistic gives us the probability that we will make a 
Type I error if we reject the null hypothesis.

Example: Suppose we wish to test whether GDP growth is equally variable 
in the United States and the United Kingdom. Annual data for the United 
States for 1949–2019 give an estimate of the standard deviation of 2.3139, 
whereas that for the United Kingdom for 1949–2019 is equal to 2.0008. To 
test the hypothesis that growth is equally as variable for the two economies, 
we construct the following test statistic:

	
22.3139

1.3375.
2.0008

æ ö =ç ÷è ø
� (2.21)

FIGURE 2.3  Determination of the P Value.
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Under the null hypothesis that the growth rates are equally variable, this is 
distributed as F with 70 and 70 degrees of freedom. The F tables do not give 
enough fine detail to determine the p value for these degrees of freedom, 
but it can easily be determined using modern statistical software. The value 
we obtain is 0.113 which indicates that we would not reject the null at the 
5%, or even the 10%, level of significance.

2.5  HIGHER-ORDER MOMENTS

One of the advantages of the normal distribution is that we only need to 
know its first two moments (the mean and the variance) to know everything 
about it. When we consider other distributions, we need to consider higher-
order moments such as skewness and kurtosis. Skewness measures the extent 
to which the mass of the distribution (the area under the PDF) is unevenly 
distributed to the left and right of the mean. Kurtosis is a measure of the 
“peakedness” of the distribution, that is, the frequency of extreme deviations 
from the mean – usually measured relative to the normal distribution. 

The skewness of a random variable X is defined as

	
3

1
X

X
E

mg
s

é ùæ ö-ê ú= ç ÷
ê úè øë û

.� (2.22)

This is usually estimated using the formula given in equation (2.23) even 
though this will be biased in small samples. However, as the sample size gets 
larger, this will converge on the true value

	
3

1
1

1ˆ
ˆ

N
i

i X

X X
N

g
s=

æ ö-= ç ÷
è ø

å .� (2.23)

The skewness coefficient measures the degree of asymmetry of the sam-
pling distribution in that it measures the extent to which the mass of the 
distribution lies to the right or the left of the sample mean. For a normally 
distributed variable, we would expect to observe a skewness coefficient close 
to zero. This is because observations should be evenly distributed around 
the mean and, because we are raising deviations to an odd power in (2.23), 
the effects of positive and negative deviations should approximately cancel 
out. If 1

ˆ 0g > , then this indicates positive (or right) skew in the PDF and the 
mass of the distribution is concentrated to the left. An example of this is the 
chi-squared distribution with degrees of freedom >2.
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Kurtosis is based on the fourth moment of the distribution. The theoret-
ical kurtosis coefficient is defined as

	
4

2 .
X

X
E

mg
s

é ùæ ö-ê ú= ç ÷
ê úè øë û

� (2.24)

For the normal distribution, we have 2 3g = . Because we are often interested 
in comparing distributions with the normal, kurtosis is sometimes expressed 
as ( )2 3g -  or excess kurtosis. The kurtosis coefficient can be estimated using 
the formula given in equation (2.25). Again, this will be biased in small 
samples, but the bias will go to zero as the sample size gets larger.

	
4

2
1

1ˆ .
ˆ

N
i

i X

X X
N

g
s=

æ ö-= ç ÷
è ø

å � (2.25)

If kurtosis is <3, then the distribution is said to be platykurtic or “flatter” 
than the normal distribution. An extreme example of a platykurtic distribu-
tion is the uniform distribution, which is effectively perfectly flat. In con-
trast, if kurtosis is >3, then the distribution is said to be leptokurtic or “more 
peaked” than the normal distribution. In cases like this, more of the mass of 
the distribution will be found in the tails than is the case for the normal dis-
tribution. A good example of a leptokurtic distribution is the t distribution. 
Examples of platykurtic and leptokurtic distributions are given in Figure 2.4. 
In each case, the PDF of the distribution is shown relative to that of the 
normal distribution.

Historical Note: The four moments (mean, variance, skewness, and 
kurtosis) came to prominence in statistical theory because of the work of 
Karl Pearson [Pearson1895]. Pearson introduced a “family” of distribu-
tion curves based on these moments as parameters. His intention was 
that these would form the basis for a complete analysis of all continuous 
probability distributions. The Pearson family of distributions is not used 
in modern statistical analysis but the moments themselves have proved 
to be an important way of visualizing and understanding probability den-
sity functions. In recent years, the higher-order moments, skewness, and 
kurtosis have proved to be particularly important in understanding and 
interpreting the distribution of high frequency financial data.
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The reason why higher-order moments are important is that many of 
our statistical testing procedures are based on the idea of a normal distri-
bution. This is true even we consider tests based around Student’s t, the 
chi-squared or the F distribution. In each of these cases, the test statistic is 
ultimately based on the assumption of normality. For example, in the case 
of the Student’s t distribution, we assume a normally distributed variable 
with unknown variance. It is the fact that we must replace the unknown 
population standard deviation with its sample equivalent which means that 
we must use the t distribution rather than the normal. It therefore becomes 
extremely difficult to derive the sampling distributions of the test statistics 
if the underlying data are not normally distributed. Testing for normality 
of a random variable is therefore an important part of the econometrician’s 
toolkit.

In order to test whether a random variable is normally distributed, we 
make use of the Jarque-Bera test statistic. This is defined in terms of the 
sample skewness and kurtosis coefficients as shown in equation (2.26)

	 ( )22
1 2

1ˆ ˆ 3
6 4
N

JB g gé ù= + -ê úë û
.� (2.26)

Under the null hypothesis that the variable in question follows a normal 
distribution, it can be shown that this statistic is distributed as chi-squared 
with two degrees of freedom. A test based on this statistic is often applied to 
assess if deviations from the normal distribution are severe.

FIGURE 2.4  Different Forms of Kurtosis (Relative to the Normal Distribution).
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Example: Consider the rate of return on a diversified portfolio of stocks. We 
can approximate this using one of the stock market indices used to measure 
overall movements in the market. In this case, we use the Financial Times 
100 index, which is one of the most frequently quoted indices for the UK 
market. The return on holding a diversified portfolio can be measured as the 
first difference of the logarithm of the index. Table 2.1 gives sample statistics 
for the average return on the UK FTSE 100 index using this method. The 
sample period is from January 2015 to September 2020.

TABLE 2.1  Returns on the UK Stock Market 1/1/2015–12/9/2020.

Variable                           DLOG(FTSE)

Mean                            –0.177686 E–6
Maximum                              0.086668
Minimum                             –0.115124
Standard Deviation                   0.010865
Skewness                            –0.970049
Kurtosis                            17.230814
Jarque-Bera                      13262.089000

Suppose we wish to test the null hypothesis that returns are normally distrib-
uted. Under the null, the Jarque-Bera statistic follows a chi-squared distribu-
tion with two degrees of freedom and therefore the 5% critical value is 5.99. 
Given a test statistic of 13,262, we reject the null in favor of the alternative. 
From the other statistics presented in the table, we see that an important 
factor leading to our rejection of the null is the excess kurtosis indicated by a 
kurtosis coefficient of 17.23. This indicates a highly leptokurtic distribution, 
that is, one in which many more observations lie in the tails of the distribu-
tion than would be expected with a normal distribution. Therefore, if we had 
assumed a normal distribution, we would considerably underestimate the 
probability of extreme observations in stock market returns. Features such 
as this are of obvious interest to stock market traders who wish to estimate 
the chances of being caught out by a sudden crash in the market.

2.6  NONPARAMETRIC TESTS

The tests we have discussed so far have all been parametric in nature. That 
is, they are concerned with testing hypotheses about the parameters of an 
unknown distribution. There are, however, tests that do not rely on this 
process but are instead concerned with features of the data which do not 
depend on parameters. An example here is the use of tests based on contin-
gency tables for the independence of two or more variables or events. Let us 
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consider a simple example in which there are two events of interest which 
we label A and B. In the example we used in Chapter 1, event A was an 
increase in price for a good and event B was a fall in quantity. Each event has 
a complementary event, say A- and B- such that, between them, the event 
and the complementary event are exhaustive. Using this framework, we can 
draw up a 2 × 2 contingency table of the form.

TABLE 2.2  Hypothetical 2 × 2 Contingency Table.

A A–

B A b a + b

B– C d c + d

a + c b + d a + b + c + d = N

Using this framework, we can construct tests for the independence of the 
two events. In the example of Chapter 1, this would be equivalent to testing 
the null hypothesis that the direction of changes in prices is unrelated to that 
of the change in quantity. More formally, it amounts to a test of the hypoth-
esis that the joint probability that events A and B occur simultaneously is 
equal to the product of the marginal events, that is, ( ) ( ) ( )P A B P A P BÇ = .

The most intuitive test here is Pearson’s chi-square test. This involves 
comparing the observed values in each cell of the contingency table with 
their expected values under the assumption of independence. The expected 
values can be calculated as ij i jE p p N= ; ,i A A-=  and ,j B B-= , where the 
superscript – indicates a complementary event, that is, if Ap  is the prob-
ability that event A occurs, then 

A
p - is the probability that event A does 

not occur. The marginal probabilities can be calculated as ( ) /Ap a c N= + ,  
( )1 /

A
p b d N- = + , ( ) /Bp a b N= +  and ( ) /

B
p c d N- = + . The test statistic is

	
( )2

, ,

,
ij ij

i A A j B B ij

O E

E- -= =

-
å å � (2.27)

which is distributed asymptotically as chi-squared with one degree of free-
dom. More generally, if the contingency table contains r rows and s columns, 
then the test statistic will be distributed asymptotically as ( )( )

2
1 1 .r sc - -

To illustrate the use of the Pearson chi-square test, let us consider a 
real-world example. In Chapter 1, we looked at the relationship between 
current price and quantity changes in the market for potatoes and argued 
that this reflected movements along a demand curve because quantity was 
fixed in the short term. If we wish to examine the supply relationship, then 
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we need to consider the fact that supply responds to lagged, rather than 
current, values of price. Therefore, let us consider the following contingency 
table that relates changes in quantity to the 1-year lag in price changes. If our 
hypothesis is correct, then we should still observe a significant relationship 
between these variables, but one in which a positive change in price results 
in a positive change in quantity which is delayed by 1 year. The contingency 
table we observe is given in Table 2.3.

TABLE 2.3  Contingency Table for Relationship Between Quantity Changes and Lagged Price Changes.

Price rises 
(lagged 1 year)

Price falls 
(lagged 1 year)

Total

Quantity rises 17 9 26

Quantity falls 0 15 15

Total 17 24 41

TABLE 2.4  �Expected Values of Quantity Changes and Lagged Price Changes under the  
Assumption of Independence.

Price rises 
(lagged 1 year)

Price falls 
(lagged 1 year)

Total

Quantity rises 10.7788 15.2193 26

Quantity falls 6.2198 8.7821 15

Total 17 24 41

From this table, we can first calculate the marginal probabilities of each 
event and then calculate the expected values of each joint event under the 
assumption of independence. The results of this are given in Table 2.4.

If we compare Tables 2.3 and 2.4, we note that the row and column sums 
are the same (subject to rounding errors in the calculations). The cell entries 
for individual events are, however, very different. For example, under the 
assumption of independence, we would expect just over six cases in which 
quantity falls after a lagged price increase. In practice, however, we observe 
no such cases. Similarly, we would expect between eight and nine cases in 
which quantity falls after a fall in price, but we observe nearly double that 
number at 15. The question is, however, whether these differences are sta-
tistically significant. To test this, we calculate the Pearson chi-square statistic 
given in equation (2.27) that gives a value of 16.75. The 5% critical value for 
a chi-square test with one degree of freedom is 3.84, and therefore, we reject 
the null hypothesis at this level.
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The Pearson test is most appropriate in large samples of data because 
the distribution of the test statistic is only known asymptotically. For small 
samples, there is an exact test provided by Fisher who shows that the distri-
bution of the values in a 2 × 2 contingency table follows a hypergeometric 
distribution under the null of independence. The p value for observing the 
sample of values shown in Table 2.2 is given by

	 ( ) ( ) ( ) ( )! ! ! !
! ! ! ! !

a b c d a c b d

a b c d N
j

+ + + +
= .� (2.28)

The value of this statistic for the data shown in Table 2.3 is 0.00002. This 
confirms the conclusion from Pearson’s test that the events defined in this 
table are not independent. There is a significant relationship between cur-
rent changes in quantity and lagged changes in price.

EXERCISES

Variable                        Ratio

Mean                        60.925342
Maximum                    106.116351
Minimum                     10.000000
Standard Deviation          20.922939
Skewness                    –0.027204
Kurtosis                     2.394301

The table above gives summary statistics for the ratio of Consumption 
Expenditures to GDP for 50 economies taken from the United Nations 
online database.

EXERCISE 2.1

Test the null hypothesis that the population mean is >55%.

EXERCISE 2.2

Test the null hypothesis that the population mean is equal to 65%.

EXERCISE 2.3

Calculate the Jarque-Bera test statistic and test the null hypothesis that this 
ratio follows a normal distribution.
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C H A P T E R  3
The Bivariate Regression Model

Regression analysis is the most important tool that economists use to 
quantify their models. Economic theory provides explanations of linkages 
between variables of interest, for example, the relationship between con-
sumption expenditures and disposable income. However, theory rarely gives 
precise values for the size of the response of one variable to another. For 
this, we must turn to econometrics and, in particular, to regression analysis. 
The regression model provides a mechanism by which the response of one 
variable to another can be quantified and evaluated from a statistical per-
spective. It therefore acts as one of the key items in the toolkit of the applied 
social scientist, and the objective of this chapter is to discuss how it can be 
used sensibly in the investigation of economic relationships.

We will begin with a discussion of the simplest possible case – the bivar-
iate linear regression model. This consists of a single endogenous variable Y 
linked to a single exogenous variable X by a linear relationship. The param-
eters of interest in this model are the intercept a and the slope coefficient b 
as shown in equation (3.1)

	 i i iY X ua b= + + ,� (3.1)

where iu  is a random error that introduces a stochastic element into the rela-
tionship. In practice, it is very rare that the applied econometrician will be 
interested in a relationship as simple as (3.1). Most of the time we deal with 
complex relationships in which there are several right-hand side variables 
and where the equation of interest may be one of a system of simultaneous 
equations. Nevertheless, the analysis of a simple equation like this gives us 
the opportunity to develop an understanding of the regression model that 
will be of value when it comes to dealing with more complex relationships. 
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Therefore, in this chapter, we will present a thorough review of the bivari-
ate regression model that will cover estimation, statistical inference, and 
prediction. 

3.1	 DERIVATION OF THE OLS ESTIMATOR

The problem facing the econometrician is how best to use the data available 
( ){ }, ; 1,...,i iX Y i N=  to estimate the unknown parameters of equation (3.1). 

Ordinary least squares (OLS) provide a simple method for the generation of 
such estimates which, under certain conditions, can be shown to have the 
properties that the estimates are both unbiased and efficient (in the sense 
that they have the lowest possible variances in the class of unbiased estima-
tors). The method of OLS is to choose parameter estimates α̂ and b̂  which 
minimize the sum of the squared deviations of the actual values of iY  from 
the fitted values ˆ ˆ� �� Xi. In mathematical notation, we can write the prob-
lem as

	
min RSS Y Xi i

i

N

� � �� �
�
� ˆ ˆ� �

2

1

.
�

(3.2)

This is a relatively straightforward problem in calculus since the loss func-
tion is quadratic in the variables of interest. Differentiation with respect to 

α̂ and b̂  yields the following pair of first-order conditions for a minimum,

	
�
�

� � � �� � �
�
�RSS

Y Xi i
i

N

ˆ
ˆ ˆ

�
� �2 0

1

� (3.3)

	
�
�

� � � �� � �
�
�RSS

X Y Xi i i
i

N

ˆ
ˆ ˆ

�
� �2 0

1

.� (3.4)

Equations (3.3) and (3.4) in turn can be used to derive the following pair 
of simultaneous equations in α̂ and b̂  which are known as the least-squares 
normal equations. Since all summations here are over the full sample of 
data i = 1,…, N, we will omit the limits of the summation operator in future 
expressions to simplify the notation,

ˆ , ˆ� �
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	 ˆ ˆ� �N X Yi i� �� � � (3.5)

	 ˆ ˆ� �X X X Yi i i i� ���� 2 .� (3.6)

The solution of these equations is interesting because it demonstrates that 
the OLS parameter estimates are functions of the sample moments of the 
data. For example, dividing equation (3.5) by N immediately yields the result 
that the regression line passes through the sample means of the data, that is,

	 Y X� �ˆ ˆ� � .� (3.7)

Substituting ˆ ˆ� �� �Y X  into (3.6) and rearranging yields

	 2 2 2
ˆ i i i i i

i i i

X Y Y X X Y N YX

X X X X N X
b

− −
= =

− −
∑ ∑ ∑
∑ ∑ ∑

.� (3.8)

Given that ( )( )i i i iX Y N Y X X X Y Y− = − −∑ ∑  and that 2 2
iX N X−∑  

( )2

iX X= −∑ , we can write (3.8) as

	
( )( )

( )2
ˆ i i

i

X X Y Y

X X
b

− −
=

−

∑
∑

.� (3.9)

Equation (3.9) enables an intuitive interpretation of the OLS slope coef-
ficient in terms of the sample moments of the Y and X variables. Dividing 
numerator and denominator by N − 1 enables (3.9) to be written as

	 ˆ /

/

ˆ
�

�
�

�
�� � �� � �� �

�� � �� �
��

�
X X Y Y N

X X N

i i

i

XY

X

1

1
2 2 .� (3.10)

The numerator of this expression is an unbiased estimator of the population 
covariance and the denominator is an unbiased estimator of the variance 
of X. Thus, the slope coefficient for the bivariate regression model is equal 
to the ratio of the sample covariance of X and Y and the sample variance 
of X. We have therefore established that both the intercept and the slope 
coefficient estimates for the OLS model can be written in terms of the first 
and second sample moments of the data. Note that, in our estimates of the 
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covariance of X and Y and the variance of X, we divide by N − 1 rather than 
by the number of observation to allow for the loss of degrees of freedom 
incurred when estimating sample means. In large samples, this makes rela-
tively little difference to the calculation of the sample moments and, because 
in this case we are taking the ratio of two sample moments, the estimate of 
the slope coefficient is unaffected when we use the same divisor for both 
sample moments. However, we need to be careful if we use this method to 
calculate the regression slope coefficient because some statistical packages 
and spreadsheets will use N − 1 as the divisor for the variance of X and N as 
the divisor for the covariance of X and Y.

Historical Note: Adrien Marie Legendre (1752–1833) was the first 
mathematician to set out the least squares method in print in his book 
(New Methods for the Determination of the Orbits of Comets) published 
in 1805, [Legendre1805]. However, Carl Friedrich Gauss (1777–1855), 
in his 1809 book (Theory of the Motion of the Heavenly Bodies Moving 
about the Sun in Conic Sections [Gauss1809]), later claimed to have been 
using the method since 1795.

Example: An econometrician wishes to estimate the parameters of the 
demand curve for potatoes in the United States. A preliminary investiga-
tion indicates a negative relationship between these variables as shown in 
Figure 3.1.

FIGURE 3.1  Scatter Diagram of the Price of Potatoes against the Quantity Sold.
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The data here are taken from the National Potato Council Yearbook 2019. 
Price is measured as $ per hundredweight (CWT) and quantity is measured 
as millions of CWT. The price series has been deflated by the consumer 
price index where the 2015 value is equal to 100. We have 43 annual obser-
vations for the period 1975–2017. From Figure 3.1, it certainly appears that 
there is a strong negative relationship between these series.

The equation to be estimated takes the following form: t t tp q ua b= + + .1 
To calculate the least squares estimates of the regression parameters, we first 
calculate the sample moments of the data. This yields the following results:

p q= =10 3762 378 4450. .

	 ˆ . ˆ .

ˆ .

� �

�
p q

pq

� �

� �

2 8417 48 9175

0 8437�

� (3.11)

This contains all the information necessary to calculate the least squares 
parameter estimates. First, we calculate the slope coefficient estimate as the 
ratio of the sample covariance of p and q to the sample variance of q. The 
sample covariance is calculated as ˆ ˆ ˆ ˆ� � � �pq pq p q� , where ˆ

pqr  is the sample 
correlation coefficient. Using this, we have

	 ˆ ˆ

ˆ
ˆ

ˆ

ˆ
.�

�

�
�

�

�
� � � �pq

q
pq

p

q
2 0 0490.� (3.12)

We can then calculate the estimate of the intercept by using the property 
that the regression line passes through the sample means of the data. This 
yields

	 ˆ ˆ .� �� � �p q 28 9203.� (3.13)

The estimates are therefore consistent with the hypothesis of a downward 
sloping demand curve that takes the form 28.9203 0.049t tp q= − .

3.2	� INTERPRETING THE REGRESSION LINE – MARGINAL 
EFFECTS AND ELASTICITIES

The slope coefficient of the regression line gives us an estimate of the mar-
ginal effect of the variable X on the variable Y, that is, we can think of b̂  as an 
estimate of /dY dX. This means that the units of measurement for the slope 

1  Note that we use the subscript t for this example to indicate that this is time-series data.
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coefficient depend on the units of the X and Y variables. In our example, the 
slope coefficient of −0.049 indicates that an increase of one million hundred-
weight of potatoes implies a fall in price of 4.9 cents per hundredweight. The 
assumption of a constant marginal effect is a very strong assumption which 
can be misleading if taken too literally. A more reasonable assumption is that 
the marginal effect is approximately constant within the range of the sample 
data for X. If we try to use the estimated regression model to predict the 
value of Y using values of X which lie a long way outside the range of the data 
used to estimate the model, then it is likely that the predictions will prove 
unreliable.

The marginal effect of X on Y is not always the most interesting statis-
tic for the investigator. In many cases, a more interesting quantity is the 
elasticity. This measures the proportional response of Y to a given propor-
tional change in X. The elasticity can be written in mathematical terms as 

( ) ( ) ( ) ( )/ / / /dY Y dX X dY dX X Yh = ÷ = × . Along a linear regression line, 
the elasticity will change because /dY dX is constant, but /X Y changes if 
the intercept is nonzero. It is possible to obtain an elasticity estimate for a 
point on the regression line: for example, we can evaluate the elasticity at 
the sample means of the data ˆ ˆ /� �� � X Y. In our example of the demand 
curve for potatoes, we obtain an estimate of the elasticity at the means of the 
variables as ˆ .� � �1 7871. Note that this is the elasticity of price with respect 
to quantity not the price elasticity of demand as defined in most economics 
textbooks. We can obtain an estimate of the price elasticity of demand using 
the following transformation: ˆ / ˆ .� �D � �� � �1 0 56. This indicates that the 
demand for potatoes is price inelastic, that is, a change in price is associated 
with a less than proportionate change in quantity. One implication of this is 
that a cut in price will reduce total sales revenue for this product.

It is often useful to obtain a more direct estimate of the elasticity through 
a modification of the regression equation itself. Consider an alternative spec-
ification of the regression equation which is expressed in logarithms of the 
variables Y and X,

	 ( ) ( )ln lni i iY X ua b= + + .� (3.14)

This is referred to as a log-linear regression model for obvious reasons. 
We can estimate this by OLS to obtain the slope coefficient b̂ , which can 
be interpreted as an estimate of the marginal effect ln / lnd Y d X. Now, 
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the first-order differential of the logarithmic function can be written as 
ln /d z dz z=  and, for small increments, the ratio of the first-order differ-

entials of lnYand ln X  will give the derivative of lnY with respect to ln X, 
that is, ln / lnd Y d X = / /dY dX X Y× . This means that the marginal effect 
from a log-linear model gives the elasticity of Y with respect to X. Because 
of this, the log-linear specification is very convenient in many economet-
ric applications and is frequently chosen in preference to the simple linear 
specification.

Example: If we apply the log-linear specification to our example data for the 
potato market, then we obtain the following estimated demand curve

	 ( ) ( ) ˆln 11.7061 1.5854 lnt t tp q u= − + .� (3.15)

The slope coefficient here gives us an estimate of the elasticity of price 
with respect to quantity. That is, it measures the percentage response of 
price to a 1% increase in quantity. Note that the estimate of the slope coef-
ficient for this equation is quite close to the estimate of the elasticity of 
price with respect to quantity which we calculated for the linear equation 
at the means of the variables. In order to compare the linear and log-linear 
specification, we can write equation (3.15) in terms of the levels of the 
variables as

	 ( ) ( )1.5854 ˆexp 11.7061 expt t tp q u−= .� (3.16)

We can now compare the fit of these alternative specifications against the 
actual data in Figure 3.2. This shows that, although the mathematical forms 
of the two equations appears to be very different, they both provide rea-
sonable fits to the data. The log-linear specification has the property that 
it approaches the axes asymptotically as quantity either approaches zero or 
tends to infinity. This property is desirable for a demand curve as it avoids 
predictions of negative price or quantity in extreme circumstances. In con-
trast, the linear specification predicts negative quantity when 28.9203p >  
and negative price when 590.2q > .

Historical Note: Alfred Marshall (1842–1924) is credited as the first 
to use the concept of elasticity in the context of economics in his book 
Principles of Economics first published in 1890 [Marshall1890].
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3.3	 THE REVERSE REGRESSION

In some cases, the direction of causation for an economic model is obvious. 
However, in others, it may be less so, and there may be a sensible inter-
pretation of the model in which Y causes X rather than vice versa. That is, 
instead of thinking of X as the exogenous variable and Y as the endogenous 
variable, we might think of Y as the variable causing changes in X. For exam-
ple, in our demand curve estimates, we have chosen price as the dependent 
variable and quantity as the independent variable. There is a strong case 
for doing this when modeling agricultural markets, because it is difficult to 
adjust quantity in the short run while price is free to adjust immediately in 
response to external shocks. However, there are many markets in which this 
is not the case and, in which, it may make more sense to think of quantity 
adjusting in the short run while price remains relatively sticky.

Consider the regression equation i i iY X ua b= + + . It may be tempting 
to assume that we could estimate the marginal effect of Y on X by estimat-
ing this equation by least squares to obtain ˆ ˆ ˆY Xi i� �� �  and then “solving” 
this equation to obtain X Yi i� � �ˆ / ˆ ˆ / ˆ� � �. This would yield an estimate of 
the marginal effect of Y on X which is equal to the reciprocal of the OLS 
slope coefficient from the original regression equation. Unfortunately, this 

FIGURE 3.2  Linear and Log-Linear Demand Curve Estimates.
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procedure is quite incorrect. To see this, consider the reverse regression 
equation i i iX Y vg d= + + , where g and d are the intercept and slope param-
eters, and v is a random error. It is easy to see that the estimate of the slope 
coefficient from this regression will take the form

	
( )( )

( )2
ˆ i i

i

X X Y Y

Y Y
d

− −
=

−

∑
∑

.� (3.17)

This is clearly not equal to the reciprocal of the slope coefficient from a 
regression of Y on X. However, there is an interesting relationship between 
the least squares estimates of the slope coefficients of the original regression 
and the reverse regression. If we multiply these estimates together, then we 
obtain the following result:

	
( )( )( )

( ) ( )

2

2
2 2

ˆ ˆ ˆi i

XY

i i

X X Y Y

X X Y Y
b d r

− −
× = =

− −

∑
∑ ∑

.� (3.18)

This shows that the product of the slope coefficient from our original regres-
sion and the reverse regression is the square of the sample correlation coeffi-
cient of Y and X. This establishes a link between the three possible measures 
of association between a pair of variables Y and X that we have considered.

Example: Estimation of the reverse regression for our model of the demand 
for potatoes yields

	 ˆ529.1471 14.5239t t tq p u= − + .� (3.19)

The product of the slope coefficients from the original and reverse regres-
sions is equal to 0.049 14.5239 0.7167− ×− =  which is approximately equal to 
the squared value of the correlation coefficient between these two variables. 
The fact that this is not an exact relationship because of rounding errors in 
the process of the calculation.

We therefore have three measures of the association between two vari-
ables in the form of the correlation coefficient and the slope coefficients 
from the original and the reverse regressions. We can think of these as being 
the result of alternative methods of specifying a best-fit line through the 
scatter of points, which characterizes these variables. The simple regression 
is constructed by minimizing the sum of the squared vertical distances of 
the scatter of points from the line. The reverse regression is constructed 
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by minimizing the sum of the squared horizontal distances, and finally, the 
correlation line can be thought of as minimizing the sum of the squared 
perpendicular distances of the scatter from the line. The method we choose 
to use to fit a line to the data will depend on our views of the causal relation-
ships between the variables and what we wish to do with the model once it 
has been constructed.

3.4	� ASSUMPTIONS OF THE CLASSICAL LINEAR 
REGRESSION MODEL

So far, we have concentrated on the mechanics of the regression model. 
However, if we wish to go further and discuss the statistical properties of the 
estimator, then we need to make further assumptions about the nature of 
the data and the properties of the random error term. We will begin with the 
standard set of assumptions listed in Table 3.1.

TABLE 3.1  Assumptions of the Classical Linear Regression Model (CLRM).

1.  The error term has zero mean ( ) 0; 1,...,iE u i N= = .

2. � The covariance of the error term indexed i and that indexed j i≠  is zero 
( ) 0;i jE u u i j= ≠ .

3.  The variance of the error term is constant ( )2 2 ; 1,...,i uE u i Ns= = .

4.  Exogeneity of regressors
Strong form: The X variable is nonstochastic (fixed in repeated samples).
Weak form: The covariance of the X variable and the error is zero 
( ) 0i iE X u = .

5.  The errors follow a normal distribution.

Assumption 1 is not controversial. Providing our regression equation 
contains a constant, that is, the intercept is nonzero, then the error term will 
always have expectation zero by construction. However, Assumptions 2–5 
place somewhat stronger requirements on our model. Assumption 2 requires 
the errors to be independent. This is frequently problematic when dealing 
with time series data, where the assumption is described as the assumption 
of serial independence. Time series models often have errors that are related 
to errors in the immediate past, for example, ( )1 0t tE u u − ≠ . In such circum-
stances, the error is said to be serially correlated and we need to take account 
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of this when assessing the properties of the OLS estimator. Assumption 3 is 
described as the assumption of homoscedasticity. Models that violate this 
condition are most often found when we are dealing with cross-section data, 
where the size of the variance of the error term is related to the value of the 
exogenous variable. For example, we might have � �u ii

X2 2 2� . Again, this has 
implications for the properties of the least squares estimator which must be 
taken into account when regression results are evaluated. Assumption 4 is 
that the X variable should be regarded as exogenous, that is, independent of 
any random disturbances to the relationship. This assumption is problematic 
when the equation is one of a system of equations that describe the joint 
behavior of a set of variables of interest. Finally, Assumption 5 states that 
the errors should ideally follow a normal distribution. This assumption is 
frequently made so that the distribution of estimators can be derived easily. 
However, it is not necessary in all circumstances.

Assumptions 1–4 are the Gauss–Markov assumptions. Under these con-
ditions, the OLS estimator has lowest variance in the class of linear unbi-
ased estimators. Alternatively, the OLS estimator is said to be Best Linear 
Unbiased Estimator (BLUE). The assumption that the errors follow a nor-
mal distribution is not necessary for the OLS estimator to be BLUE, but it 
is included in the list of Classical Linear Regression assumptions because 
it proves useful in deriving the distribution of the estimator. Note that, if 
we replace the strong form of Assumption 4 with the weaker version given 
in 4(b), then proof of the Gauss–Markov theorem becomes very difficult. 
However, it is possible to derive equivalent large sample properties. In par-
ticular, we can show that the OLS estimator is consistent (converges in prob-
ability on the population value in large samples) and that it converges faster 
than other consistent estimators.

In the discussion which follows, we will maintain the strong form of 
Assumption 4. This is not realistic for most econometric models because it 
assumes the ability of the investigator to replicate the input data (X values) 
by experimental means. It implies that the only source of random variation 
in the sample data is the random error term u. While such an assumption 
is appropriate for experimental sciences, it is unrealistic for most economic 
applications. However, it will make it possible to derive distributional results 
for the OLS parameter estimates that would not be possible if we were to 
use the weaker form. We will therefore maintain this assumption for the 
moment and consider the effects of relaxing it later.
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3.5	 DISTRIBUTION OF THE OLS ESTIMATOR

Consider the OLS estimator of the slope coefficient given in equation (3.9). 
From the original model we have ( )i i iY Y X X u ub− = − + − , substituting 
into (3.9) and noting that ( ) 0iu X X− =∑  by definition of the arithmetic 
mean of x, yields

	
( )
( )2

ˆ i i

i

X X u

X X
b b

−
= +

−

∑
∑

.� (3.20)

Now, if we maintain the strong version of Assumption 4, then taking expecta-
tions yields

	 ( ) ( ) ( )
( )2

ˆ i i

i

X X E u
E

X X
b b

−
= +

−

∑
∑

.� (3.21)

From Assumption 1, we have that ( ) 0; 1, ,iE u i N= =  , and therefore equa-
tion (3.21) shows ( )ˆE b b=  under these assumptions, that is, the OLS esti-
mator of the slope coefficient is unbiased. Note the crucial role of the strong 
version of Assumption 4 here. Without this assumption, we would have to 
treat the X variables as random quantities, and it would be extremely diffi-
cult to prove unbiasedness in this way. Instead, we would have to rely on the 
large sample concept of consistency in which, under certain assumptions, 
the estimator b̂  can be shown to “converge” on the true value if the sample 
size is sufficiently large. Note also that we only require Assumptions 1 and 
4 for the OLS estimator to be unbiased. Failure of either Assumption 2 or 
Assumption 3 (or both) does not, in itself, mean that the OLS estimator will 
be biased.

Next, consider the variance of the OLS estimator. From the results 

derived so far, we have that ( ) ( ) ( )
( )2

ˆ ˆ i i

i

X X E u
E

X X
b b

−
− =

−

∑
∑

. Therefore, the 

variance of b̂  is given by the expression in equation (3.22)

	 ( ) ( )( ) ( )
( )

2
2

2
ˆ ˆ ˆ i i

i

X X u
V E E E

X X
b b b

 −
 = − =
 − 

∑
∑

.� (3.22)
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From Assumptions 2 and 3 of the Classical Linear Regression Model (CLRM), 
we have that ( ) 0;i jE u u i j= ≠  and ( )2 2 ; 1,...,i uE u i Ns= = . Therefore, tak-
ing expectations of the right-hand side of equation (3.22) yields

	 ( )
( )

2

2
ˆ u

i

V
X X

sb =
−∑

.� (3.23)

Finally, from Assumption 5 of the CLRM, we have that the errors are nor-
mally distributed and, from equation (3.20), we have the results that the 
OLS estimator is a linear combination of the errors. Since any linear combi-
nation of normally distributed variables itself follows a normal distribution, 
we therefore can show that under the CLRM assumptions, the OLS estima-
tor follows a normal distribution as shown in expression (3.24)

	
( )

2

2
ˆ ~ , u

i

N
X X

sb b
 
 
 − ∑

.� (3.24)

Equation (3.24) illustrates an interesting feature of the regression 
model. Let us consider the denominator of the variance expression. As the 
sample size increases, then this must also increase because the summation 
always involves the addition of positive numbers. Therefore, since 2

us  is 
constant, it follows that the variance of the OLS estimator tends to zero as 
the sample size become large, that is, the distribution of the OLS estimator 
is degenerate. Figure 3.3 illustrates the behavior of the probability density 
function (PDF) of the OLS estimator as the sample size changes for the 
case 21, 1ub s= = , and 2 1Xs = . As the sample size increases, the variance of 
the OLS estimator falls, reducing the spread of the PDF. In the limit, as the 
sample size becomes infinite, the PDF of the OLS estimator collapses onto 
a vertical line going through the population value of the parameter b.

Next, we consider the distribution of the intercept estimator in the OLS 
regression model. From the least squares normal equations, we have

	 ˆ ˆ ˆ� � � � �� � � � �� � �Y X X u.� (3.25)

If Assumptions 1 and 4 hold, then ( )ˆE b b=  and ( ) 0E u = , and it immedi-
ately follows that E �̂ �� � � . Therefore, the OLS estimator of the intercept 
is unbiased under the same assumptions that ensure that the slope coef-
ficient is unbiased. Since the OLS estimator of a is a linear combination of 
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normally distributed variables, it follows that it too is normally distributed. 
Substituting (3.20) for b̂  in (3.25) yields

	 �̂ �� �
�� �
�� �

��
�

X X X u

X X
ui i

i

2 .� (3.26)

Therefore, the variance can be derived as

	 V E E E
X X X u

X X
ui i

i

ˆ ˆ ˆ� � �� � � � � �� � � �
�� �
�� �

�
�

�

�
�

�

�

�
�

�
�

2

2

2

.� (3.27)

Expanding the term in brackets and taking expectations2 yields

	 V
N

X

X X
u

i

�̂ �� � � �
�� �

�

�

�
�

�

�

�
��

2
2

2

1
.� (3.28)

2  Note that this derivation makes use of the CLRM assumptions in the same way as the 
derivation of the variance of the slope coefficient estimator. Also note that the crossproduct 

terms are eliminated because ( ) 0iX X− =∑  by construction.

FIGURE 3.3  Effects of Increasing Sample Size on the PDF of the Least  
Squares Estimator.
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For completeness, we can also derive the covariance of the slope and inter-
cept estimates as

	
cov ˆ , ˆ ˆ ˆ ˆ ˆ� � � � � �� � � � � �� � � � �� �E E E

�

(3.29)� �
�� �
�� �

�
�

�

�
�

�

�

�
�

�� �
�� �

�

�

�
�

�

�

�
�

�
�

�
�

E
X X X u

X X
u

X X u

X X

i i

i

i i

i

2 2 .

Multiplying out the parentheses and taking expectations yields

	 cov ˆ , ˆ� � �� � � �
�� ��

X

X Xi

u2
2.� (3.30)

Therefore, the intercept and slope estimates for the OLS model can be 
shown to follow a joint normal distribution of the form

	
ˆ

ˆ ~ ,
�

�

�
�

�
�

�
��

�

�
��

�

�
�

�

�
�

�
�� �

�
�� �

�
�� �

� �
N

N
X

X X

X

X X

X

X X

u

i i

i

2

2

2 2

2

1

�� � �� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

1
2

X Xi

� (3.31)

3.6	 STATISTICAL INFERENCE WITH THE OLS ESTIMATOR

The main reason why we are interested in the distribution of the OLS esti-
mator is that we wish to use this for the purposes of statistical inference. 
That is, we wish to be able to conduct hypothesis tests on the coefficients 
of the model and to construct confidence intervals for the unknown model 
parameters. First, note that the distribution of the OLS estimator of the 
slope coefficient can be transformed to the standard normal distribution as 
shown in expression (3.32).

	
( )

( )
2

ˆ
~ 0,1

/u i

N
X X

b b

s

−

−∑
.� (3.32)

If we knew the error variance, then statistical inference would be rela-
tively simple. For example, suppose we wished to test 0 0:H b b=  against 

1 0:H b b≠ . The test statistic for this test would be
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	 ( )
( )

0

2

ˆ

/u iX X

b b

s

−

−∑
,� (3.33)

and we could compare this with the appropriate critical value from the stand-
ard normal tables. Similarly, we could construct %a  confidence intervals 

using the formula ( )2/2 /c u iz X Xab s± −∑ , where z is the critical value 

for a two-tailed test, again taken from the standard normal tables. However, 
we do not typically know the error variance and therefore we must use an 
estimate. Substitution of an estimated value for 2

us  in (3.33) means that the 
resulting statistic no longer follows the normal distribution. Instead, the test 
statistic can be shown to follow Student’s t distribution. Although the t dis-
tribution is in many ways similar to the normal distribution, in that it is sym-
metric and has the characteristic “bell shape,” it differs in that relatively 
more of the mass of the t distribution lies in the tails. However, this differ-
ence declines as the sample size gets larger and, in large enough samples, 
the t and normal distributions become indistinguishable. Nevertheless, the 
convention is to use the t distribution when conducting hypothesis tests on 
the coefficients of linear regression model because this will be valid in both 
large and small samples.

Example: Consider the following regression equation that relates the growth 
rate of household consumption expenditure for the US to the growth rate of 
real personal disposable income. Growth rates are calculated as the first dif-
ference of the logarithm of each variable. The data are annual from 1971 to 
2019 and are taken from the Federal Reserve Economic Database (FRED). 
Standard errors are given in parentheses below parameter estimates and are 
calculated using the formulae given in equation (3.31).

	
( ) ( )0.0033 0.1001

ˆln 0.0052 0.8284 ln D
t t tC Y u∆ = + ∆ + .� (3.34)

Suppose we wish to test the null hypotheses that the coefficients are zero 
against the alternative that they are nonzero. Given this alternative hypoth-
esis, a two-tailed test is appropriate and therefore the 5% critical value 
for a t test with 47 degrees of freedom is 2.01. The test statistic3 for the 

3  The values of the test statistics here are calculated using the rounded values reported in 
the regression equation. Those calculated by the regression package will be slightly differ-
ent as they use unrounded values. However, the difference does not change the conclusions 
of the testing procedure in either case.
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intercept is 0.0052 / 0.0033 1.58= , whereas that for the slope coefficient is 
0.8284 / 0.1001 8.26= . Therefore, in the case of the slope coefficient, we 
reject the null hypothesis that the slope parameter is zero in favor of the 
alternative that it is not zero. In the case of intercept, however, we cannot 
reject the null hypothesis that the intercept is equal to zero.

Tests of the null hypothesis that the coefficients are zero form a standard 
part of econometric procedure. However, this null hypothesis is not always 
the most interesting from the point of view of economic theory. For exam-
ple, in the case of the consumption–income relationship, we might be more 
interested in testing the null hypothesis that the slope coefficient is equal to 
one against the alternative that it is less than one. In this case, the null is that 
there the elasticity of consumption with respect to income is equal to one 
which implies that consumption and income are proportionally related. In 
this case, the alternative hypothesis is that the elasticity is less than one so 
that a 1% change in income produces a less than proportionate response in 
consumption. The one-sided nature of the alternative hypothesis means that 
a one-tailed test is appropriate in this case, and so the 5% critical value in this 
case is 1.68. The test statistic is ( )0.8284 1 / 0.1001 1.71− = − , and therefore, 
we reject the null that the parameter is equal to one in favor of the alterna-
tive that it is less than one in this case.

The regression results given in equation (3.34) also allow us to construct 
confidence intervals for the model parameters. Suppose, for example, that 
we wish to calculate the 95% confidence interval for the slope. This will be 
given by the following expression:

( ) ( )1 1 1 1 1
ˆ ˆ ˆ ˆ2.01 2.01SE SEb b b b b− × < < + × ,

where 1b̂  is the OLS estimate of the slope coefficient and ( )1
ˆSE b  is its 

standard error. Using the values reported in (3.34), this gives

1

1

0.8284 2.01 0.1001 0.8284 2.01 0.1001
0.6272 1.0296.

b
b

− × < < + ×
< <

Note that this confidence interval includes the value one. This is consistent 
with our earlier rejection of the null hypothesis that the parameter was equal 
to one because that test was conducted on the basis of a one-sided alterna-
tive. The confidence interval above has been calculated using the critical 
value for a two-sided alternative. Therefore, the fact that the confidence 
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interval includes the value one indicates that we would not reject the null 
hypothesis that the parameter is equal to one at the 5% level using a two-
tailed test and we know, from earlier examples, that the critical values for a 
two-tailed test are larger, in absolute value, than those for a one-tailed test 
of the same size.

Econometricians tend to place most emphasis on the size of the tests 
they conduct rather than their power. The size of the test is the probability 
of rejecting the null hypothesis when it is true. This can always be set by the 
investigator through the choice of an appropriate critical value. We can think 
of the size of the test as the probability of generating a false positive result, 
that is, a Type I error. The power of a test is defined as the probability of 
rejecting the null hypothesis when the alternative is true. Alternatively, we 
can think of this as one minus the probability of generating a false-negative 
result. A false negative corresponds to a Type II error, where we accept 
the null even though the alternative is true. For a variety of reasons, it is 
much more difficult to determine the power of test than it is to fix its size. 
However, this does not mean that power is unimportant, and it needs to be 
considered whenever we implement a testing procedure.

To consider the relationship between size and power, consider the case 
illustrated in Figure 3.4. This corresponds to a situation in which both the 
null and the alternative hypotheses involve specific values of an unknown 

FIGURE 3.4  PDFs for Null and Alternative Hypotheses.
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parameter q. For example, we might have a test of the form 0 : AH q q=  
against 1 : BH q q= . Figure 3.4 shows the PDFs for 0H  when ( )~ 0,1Nq  and 
for 1H  when ( )~ 3,1Nq .

The size of the test is illustrated by the vertical line corresponding to 
1.96ct = . For a standard normal distribution and a one-tailed test, this indi-

cates a significance level of 2.5%. The shaded region labeled a shows 2.5% of 
the area under the PDF for the null lying to the right of ct . We would reject 
the null hypothesis at the 2.5% level if the test statistic is >1.96. If the null 
hypothesis is correct, then this gives the probability of a Type I error. Next, 
consider the implications if the alternative hypothesis is true. The proba-
bility that we fail to reject the null is given by the area under the PDF for 
the alternative hypothesis to the left of the line 1.96ct = . This is shown by 
the shaded region in Figure 3.4 labeled b and, if the alternative hypothesis 
is true, this gives the probability of a Type II error. The power of the test is 
equal to 1 b− . Therefore, the choice of the critical value determines both the 
size of the test and its power. If we increase the critical value by increasing 
the critical value, then the shaded area a falls which lowers the probability 
of making a Type I error, but we simultaneously increase the shaded area 
b which lowers the power of the test (increases the probability of making a 
Type II error).

In the example given in Figure 3.4, we can write down an expression 
for the power of a test as ( )ˆ ˆ1 1

ct

Bf db q q q
−∞

− = − −∫ , where f is the PDF 
of the random variable q̂  (the estimator) and Bq  is the hypothesized value 
under the alternative hypothesis. Consider the case in which we are inter-
ested in estimating the slope coefficient for a least squares regression. We 
know that the distribution of such an estimator is degenerate, that is, its 
variance falls to zero as the sample size gets large. It therefore follows that 

( )ˆ ˆ 0
ct

Bf dq q q
−∞

− →∫  as N →∞ or the power of the test approaches one as 

the sample size becomes large. Another implication of this is that, for any 
given size of such a test, we can determine the power of the test providing 
that we have enough observations. Of course, this last point is the tricky 
one for econometricians, who rarely have the opportunity to generate data 
experimentally, and are forced to take the number of observations as a given. 
This may help us understand the lack of discussion of power in many econo-
metrics textbooks. In an experimental science, the investigator can control 
the power of a test by replicating the experiment an appropriate number of 
times. Since econometricians do not have such control the issue of power is 
often mentioned and then promptly ignored. 
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The example in Figure 3.4 indicates several other problems for the deter-
mination of the power of a statistical test. First, in order to determine the 
probability of making a Type II error, we need to assume that the alterna-
tive hypothesis takes a specific form, 1 : BH q q= . In the more general cases, 

1 : BH q q<  and 1 : BH q q≠ , we cannot draw a unique PDF for the alternative 
hypothesis and therefore we cannot identify the power of the test with a 
specific number. Second, to determine the PDF of the estimator, we need 
to know the parameters of its distribution such as the variance and possi-
bly higher-order moments. These are rarely known in advance and we must 
usually make use of estimates that complicate the distribution and make it 
harder to determine both size and power for any given test. However, the 
general points illustrated by the diagram and the discussion remain true for 
more complex cases. If we increase the size of the test, taking the number 
of observations as fixed, then we reduce its power. The only way to increase 
both the size and the power of a test simultaneously is to generate more data.

3.7	 PROOF OF THE GAUSS–MARKOV THEOREM

One of the reasons why the least squares estimator is given such prominence 
in the statistics literature is that it can be shown to be the estimator with the 
lowest variance in the class of linear unbiased estimators. This is often sum-
marized by the description that the OLS estimator is BLUE. In this section, 
we provide a proof of this property. For simplicity, we consider the case of an 
equation without an intercept, that is, i i iY X ub= + . This means that we can 
concentrate on the estimation of a single parameter. However, the proof gen-
eralizes easily to more complex cases in which the equation contains an inter-
cept and more than one independent variable. Our objective is to show that 
under the Gauss–Markov assumptions, the least squares estimator is unbi-
ased and has the lowest variance in the class of linear unbiased estimators.

To demonstrate the Gauss–Markov theorem, we write the OLS estima-
tor as

	
21

1

ˆ where
N

i
i i i N

i
i

i

X
a Y a

X
b

=

=

= =∑
∑

.� (3.35)

That is, the least squares estimator is a weighted average of the Y observa-
tions, where the weights are functions of the X observations. Now, let us 
consider any other linear combination of the Y variables of the form
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1

, where
N

i i i i i
i

g Y g a hb
=

= = +∑ ,� (3.36)

and at least one 0ih ≠ . It is assumed that b  is also an unbiased estimator. 
We will now show that the variance of b is necessarily greater than the vari-
ance of b̂ . First, note that

	 ( )
1 1 1

N N N

i i i i i i i
i i i

g X u g X g ub b b
= = =

= + = +∑ ∑ ∑ .� (3.37)

Since β  is unbiased, it follows that 
1

1
N

i i
i

g X
=

=∑ , and therefore, it also follows 

that ( )
1

1
N

i i i
i

a h X
=

+ =∑ . Since b̂  is also unbiased, we have 
1

1
N

i i
i

a X
=

=∑  and 

therefore, 
1

0
N

i i
i

h X
=

=∑ . Now, consider the variance of b, we have

	 ( ) ( )( ) ( )

( )

2
2 2

1

2

1

.

N

i i
i

N

i i i
i

V E E E E g u

E a h u

b b b b b
=

=

 
= − = − =  

 

 
= + 

 

∑

∑

    � (3.38)

Assuming that the Gauss–Markov assumptions hold we have 
( ) 0 for alli jE u u i j= ≠  and ( )2 2 for all iE u is= . Therefore,

	
( ) ( )2 2

1

2 2 2

1 1 1

2 .

N

i i u
i

N N N

u i i i i
i i i

V a h

a h a h

b s

s

=

= = =

= +

 
= + + 

 

∑

∑ ∑ ∑



� (3.39)

Now, consider 
21 1

1

1N N

i i i iN
i i

i
i

a h X h
X= =

=

 
 
 =
 
 
 

∑ ∑
∑

 which is equal to zero by the 

assumption of unbiasedness. It therefore follows that we can write the vari-
ance of this estimator as

	 ( ) 2 2 2 2

1 1

N N

u i u i
i i

V a hb s s
= =

= +∑ ∑ ,� (3.40)

EIP.Ch3.2pp.indd   69EIP.Ch3.2pp.indd   69 4/10/2021   1:53:39 PM4/10/2021   1:53:39 PM



70 • Econometrics in Practice

and since

	 ( )
2

2 2 2 2 2 2 2

1 1 1 1

ˆ/ /
N N N N

u i u i i u i
i i i i

a X X X Vs s s b
= = = =

 
= = = 

 
∑ ∑ ∑ ∑ ,� (3.41)

we have

	 ( ) ( ) 2 2

1

ˆ
N

u i
i

V V hb b s
=

= + ∑ .� (3.42)

The second term in this expression is a sum of squares and is therefore always 
positive. It follows that any linear unbiased estimator has variance which dif-
fers from the least squares estimator by a positive number. This establishes 
the Gauss–Markov result and demonstrates why the least squares estimator 
is the most efficient estimator in the class of linear unbiased estimators.

3.8	 THE METHOD OF MAXIMUM LIKELIHOOD

So far, we have concentrated on the method of least squares for the estima-
tion of model parameters. Although least squares does have good properties 
as shown in the previous section, there are circumstances in which alterna-
tive methods become useful. In particular, there is an alternative method 
known as the method of maximum likelihood which is applicable in a wide 
range of statistical frameworks. In the case of the linear regression model, 
this produces very similar results to the method of least squares. However, 
it has wider applicability, and it is useful to introduce it at this stage. The 
method of maximum likelihood begins by making specific assumptions about 
the distribution of the errors in the model and then deriving an estimator 
based on choosing parameter values that maximize the joint “probability” of 
observing the sample data. Note that we have placed the work probability in 
inverted commas here because there is a subtlety in the use of the concept 
which we will explain as we progress.

Let us consider the regression model (3.1) and assume that the errors 
; 1, ,iu i N=   are independent random variables that follow a normal distri-

bution with mean zero and variance 2
us . We can write the joint probability of 

observing a particular sample of data as

	 ( )2; 1, , , ,i uP u i N a b s=  ,� (3.43)
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where ,a b and 2
us  are the parameters of interest. For the purposes of maxi-

mum likelihood estimation, we now reverse this function so that the param-
eters of interest become a function of the sample data. We refer to this as the 
likelihood function and it written as shown in equation (3.44)

	 ( )2, , ; 1, ,u iL u i Na b s =  .� (3.44)

The problem here is that we cannot interpret (3.44) as a joint probability 
because the parameters of interest are not random variables. Hence, we 
redefine (3.44) as a likelihood function. The maximum likelihood function 
is defined by taking the values of the parameters of interest which maximize 
this function for a particular sample of data.

Maintaining the assumption that the errors are independent random 
variables which follow a normal distribution with mean zero and variance 2

us  
means that we can write the likelihood function as

	 ( )
2

2

1

1 1
, , exp

22

N
i i

u
i uu

Y X
L

a ba b s
ss p=

  − − = −     
∏ .� (3.45)

The log function is monotonic so it is easier to take the log transformation 
of this function that defines the log likelihood function as shown in equation 
(3.46)

	 ( ) ( )22
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1

1
, , ln 2 ln

2

N

u u i i
iu
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= − − − − −∑ .� (3.46)

The first-order conditions for a maximum of this function can be written as
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� (3.47)

Thus, we can solve for the maximum likelihood estimators of a and b  from 
the following pair of simultaneous equations
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These equations are identical to the least squares normal equations, and 
therefore, for the linear regression model under Gauss–Markov assumptions, 
least squares and maximum likelihood procedures yield identical estimates. 
Solving the third first-order condition gives us the maximum likelihood esti-
mator of the error variance as shown in equation (3.49)

	 ˆ ˆ ˆ
,� � �u ML i ML ML i

i

N

N
Y X2

2

1

1
� � �� �

�
� .� (3.49)

From our discussion of the least squares procedure, we note that this is a 
biased (but consistent) estimator because it does not incorporate the degrees 
of freedom correction when taking the average of the residual sum of squares.

Historical Note: Carl Friedrich Gauss was the first to set out the method 
of maximum likelihood in his book of 1809 “Theory of the Motion of the 
Heavenly Bodies Moving about the Sun in Conic Sections” [Gauss1809] 
(the same book in which he claimed to have been using least squares since 
1795).

3.9	 PREDICTION WITH THE OLS ESTIMATOR

When discussing prediction, the first thing to note is that prediction and 
forecasting are different activities. Prediction involves the generation of a 
value of y given a particular value of x. For example, if we have estimated a 
regression equation of the form ˆ ˆ ˆY Xi i� �� � , then the predicted value of y 
for 0X x=  is ˆ ˆ ˆy x0 0� �� � . Forecasting generally requires us to predict values 
for X as well as those for Y. The main practical difference is that forecasts 
can be in error because we use the “wrong” value of x, whereas this is not a 
consideration when it comes to prediction.

We will first consider the topic of prediction. Suppose we wish to predict 
1NY +  for a given value of 1NX x += , having estimated the parameters of the 
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model using data for 1,...,i N= . The prediction error from the OLS estima-
tor can be written as

	 Y Y x uN N N N� � � �� � �� � � �� � �1 1 1 1
ˆ ˆ ˆ� � � � .� (3.50)

Taking expectations through (3.50) gives ( )1 1
ˆ 0N NE Y Y+ +− =  since the OLS 

estimates of the intercept and the slope are unbiased and the expected value 
of the error is zero. Next, we consider the variance of the prediction error. 
The prediction error variance is defined as

	 E Y Y E x u xN N N i N� � � ��� � � � � � �� �1 1

2

1 1

2ˆ ˆ ˆ� � � � .� (3.51)

The right-hand side of this expression can be written as
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.� (3.52)

Expanding this expression yields
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Since ( )1cov 0; 1,...,i Nu u i N+ = = , we have E uN� �� �� �1 � �̂  � �� �� ��E uN 1 � �̂

0=  and therefore taking expectations through (3.51) yields
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� (3.54)

Thus, the forecast error variance can be decomposed into a part due to ran-
dom errors to the underlying relationship, 2

us , and a part due to the variance 
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of the parameter estimates, ( ) ( )2 22
11 / /u N iN x x x xs +

 + − − ∑ . The pre-

diction error variance changes according to the deviation of the right-hand 
side variable from its sample mean. The greater the discrepancy between 
the value of x used to construct the prediction and the sample mean of x, 
then the larger is the prediction error variance. What this means is that we 
are more likely to get accurate predictions when the value of the x variable 
used is a “typical” value in the sense that it is close to the sample mean. The 
more extreme the value of x we use, that is, the further from the sample 
mean, then the less reliable will be the prediction. The importance of this 
effect will vary depending on the nature of the data used.

3.10	 SUMMARY

In this chapter, we have introduced one of the basic statistical tools of econo-
metrics in the form of the linear regression model. We have shown that the 
least squares estimator can be derived straightforwardly from a simple calcu-
lus problem. In addition, we have shown that under certain assumptions, this 
estimator has desirable properties in that it is unbiased and has the small-
est variance in the class of unbiased estimators. These assumptions, known 
as the Classical Linear Regression Model assumptions or alternatively the 
Gauss–Markov assumptions, also allow us to determine the distribution of 
the least squares estimator and therefore, to conduct hypothesis tests con-
cerning the unknown parameters of the relationship between the Y and X 
variables. However, it should be emphasised that the Gauss–Markov assump-
tions rarely hold in practice when estimating econometric models based on 
real-world data. We therefore need to investigate further the implications of 
these assumptions and to develop techniques for dealing with situations in 
which they fail. Finally, we have considered the method of maximum likeli-
hood as an alternative way of constructing an estimator for the parameters of 
interest. In the case of the linear regression model, with normally distributed 
errors, the least squares and maximum likelihood methods yield identical 
parameter estimates for the slope and intercept. However, the maximum 
likelihood method allows us to consider more general cases in which the 
assumption of normality fails, and it is therefore useful to introduce it at this 
stage.
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EXERCISES 

EXERCISE 3.1

For the least-squares regression model ; 1, ,i i iY X u i Na b= + + =  , show 

that the residual sum of squares is equal to N Y XY X�� � �� �1 2 2 2ˆ ˆ / ˆ� � � , where σ̂ Y
2 

and σ̂ X
2 are the sample variances of Y and X, and σ̂XY is the sample covariance 

of X and Y.

EXERCISE 3.2

For the least-squares regression model ; 1, ,i i iY X u i Na b= + + =  , show 
that the regression residuals are uncorrelated with the X variable.

EXERCISE 3.3

The following sample moments have been calculated for observations on the 
price and quantity produced of oranges in the United States. The data are 
annual from 1981 to 2016 and are calculated as percentage changes relative 
to the previous year:

Mean of price changes 0.441150

Mean of quantity changes -2.034617

Variance of price changes 211.5094

Variance of quantity changes 246.5624

Covariance of price and quantity changes -145.3071

a.	 Calculate the correlation coefficient for price and quantity changes.

b.	 Calculate the slope and intercept coefficients for a regression of price 
changes on quantity changes.

c.	 Calculate the slope and intercept coefficients for a regression of quantity 
changes on price changes.

d.	 Explain why the correlation coefficient in part a) and the regression 
slope coefficients in parts b) and c) are different and set out the relation-
ship between them.
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Exercises 3.4–3.6 make use of the data contained in the workfile SHARES.
XLSX. This contains daily data for the share prices of a number of leading 
UK companies as well as the FTSE 100 share price index for the period 
January 2003 to May 2008. The aim is to estimate the market model which 
relates the daily return on a particular share to the return on the market as 
a whole. Daily returns are defined as the percentage change in the value of 
the share or the overall market index. Thus, the model we will estimate takes 
the form

i M i
t t tR R ua b= + + ,

where ( )1 1100 /i i i i
t t t tR P P P− −= × −  and ( )1 1100 /M M M M

t t t tR P P P− −= × − . i
tP  is the 

price of share i at date t and M
tP  is the value of the market index at date t. 

EXERCISE 3.4

If we estimate the market model for AstraZeneca shares, then we obtain the 
following results:

Ordinary Least-squares Regression Results

Sample period: 2 to 1359

Dependent Variable DASTRA

Sample Size 1358

Variable	 Coefficient	 Std Err	 T-Ratio

C	 -0.008039	 0.034037	 -0.236183

DFTSE	 0.891929	 0.035108	 25.405183

R-squared	 0.3224	 F-statistic	 645.4233

SEE	 1.253479	 RSS	 2130.563220

Durbin-Watson	 1.7797	 LogL	 -2232.722030

ARCH(1) Test	 5.4683	 AIC	 3.291195

Jarque-Bera	 1519.7986	 SIC	 3.298874

a.	 Test the null hypothesis 0 : 0H b =  against the alternative 1 : 0H b ≠  
using a 5% level of significance.

b.	 Test the null hypothesis 0 : 1H b =  against the alternative 1 : 1H b <  
using a 5% level of significance.

c.	 Explain why the critical value you use in these two tests is different.
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EXERCISE 3.5

An econometrician has estimated the following market model for British 
Airways shares

Ordinary Least-squares Regression Results

Sample period: 2 to 1359

Dependent Variable DBA

Sample Size 1358

Variable	 Coefficient	 Std Err	 T-Ratio

C	 2.742235 E-3	 0.052921	 0.051818

DFTSE	 1.523805	 0.054585	 27.915937

R-squared	 0.3650	 F-statistic	 779.2996

SEE	 1.948886	 RSS	 5150.302785

Durbin-Watson	 2.0365	 LogL	 -2832.054370

ARCH(1) Test	 16.3298	 AIC	 4.173865

Jarque-Bera	 457.4844	 SIC	 4.181544

In addition, we are given that the average value of DM is 0.035445 and 
2_

1274.731713DM DM − = 
 ∑ . 

a.	 Calculate the predicted return on BA shares at the sample mean 
of the market return and calculate a 95% confidence interval for the  
prediction.

b.	 The maximum and minimum values for the daily change in the market 
are 6.081533 and −5.481471, respectively. Calculate the central pre-
dicted values for the change in BA shares as well as 95% confidence 
intervals based on these values. Are the confidence intervals noticeably 
wider than that calculated for the mean?

EXERCISE 3.6

Estimate the market model for Vodafone shares.

a.	 Test the null hypothesis 0 : 0H b =  against the alternative 1 : 0H b ≠  
using a 5% level of significance.

b.	 Test the null hypothesis 0 : 1H b = . Is it sensible to use 1 : 1H b < . Does 
the model support this hypothesis? If not, suggest another alternative 
and use this for your test.
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C H A P T E R  4
The Multivariate Regression 
Model

In Chapter 3, we set out the bivariate regression model and discussed its 
properties. This model is most suited to the experimental sciences, where 
the data are generated by the investigator, and the errors are essentially 
errors of measurement or purely random effects outside the control of the 
investigator. When we apply regression models to economic data, however, 
this is rarely appropriate. In most situations, economic data are generated by 
a complex, multivariable process in which there are numerous interacting 
variables, none of which is controllable by the modeler. It therefore becomes 
necessary to develop multivariable approaches that allow for the interaction 
of groups of variables.

Multivariate regression analysis extends the model discussed in Chapter 3  
to the case where there are potentially many variables on the right-hand 
side of the model. In this way, we can start to develop methods for dealing 
with the complex world of economic data. Suppose we wish to determine 
the relationship between two variables of interest. Experimental sciences 
can focus on the relationship between these variables by conducting experi-
ments in which all other factors are held constant. The multivariable regres-
sion model can be used to achieve a similar effect by controlling for the 
influence of other factors through the inclusion of variables in the regression 
equation which capture their effects on the variable of interest.

Let us begin with a model of the form

	 1 2 2 3 3 ,i i i k ki iY X X X ub b b b= + + + + + � (4.1)
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in which we have data for each of the variables for a sample 1,...,i N= . Now 
suppose we have estimates for each of the model parameters 1 2

ˆ ˆ ˆ, , , kb b b .  
The sum of the squared deviations of the Y variable from the fitted values 
can be written as

	 ( )2

1 2 2 3 3
1

ˆ ˆ ˆ ˆ .
N

i i i k ki
i

RSS Y X X Xb b b b
=

= − − − − −∑  � (4.2)

The OLS estimator is defined by taking the partial derivatives of (4.2) and 
setting them equal to zero. This creates a system of k equations in the k 
unknown parameters that can be written as follows1:

	

1 2 2

2
2 1 2 2 2 2

2
1 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ

.........................................................................
ˆ ˆ ˆ .

i ki k i

i i i ki k i i

ki ki i ki k ki i

N X X Y

X X X X X Y

X X X X X Y

b b b

b b b

b b b

+ + + =

+ + + =

+ + + =

∑ ∑ ∑
∑ ∑ ∑ ∑

∑ ∑ ∑ ∑







� (4.3)

These are the least squares normal equations for the multivariable model. 
They are analogous to the pair of normal equations derived for the bivari-
ate regression model in Chapter 3 in that they define a system of k linear 
equations in k unknown variables, that is, the regression parameters. If these 
equations are not collinear, then they can be solved to yield the OLS esti-
mates of the regression parameters in equation (4.1). For a solution to exist, 
these equations must be linearly independent, that is, it must not be possible 
to write any one of the equations in (4.3) as a linear combination of other 
equations in the system. Note that, as in the bivariate case, the first of the 
normal equations establishes the property that the regression passes through 
the sample means of the data. This property can be used to write the model 
in mean deviation form for the purposes of solving for the slope coefficient 
estimates.

A derivation of the OLS estimator with simpler notation can be obtained 
by rewriting the model in matrix form. For example, we can write (4.1) in 
matrix form as

	 ,y X ub= + � (4.4)

1  Since the limits are 1 and N for all summation operations, we omit them to simplify the 
notation.
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where y is an 1N×  vector of observations for the endogenous variable, X is 
an N k×  matrix whose first column consists of ones and whose other columns 
are the observations for each of the exogenous variables in turn, β  is a 1k×  
vector of parameters, and u is an 1N×  vector of random errors. To derive 
the OLS estimator, we first specify a loss function consisting of the following 
quadratic form:

	 ( ) ( )ˆ ˆ ˆ ˆ ˆ2 .RSS ′ ′ ′ ′ ′ ′= − − = + −y X y X y y X X  X yβ β β β β � (4.5)

Differentiating with respect to β̂  and setting the derivative equal to zero 
yields

	 ( ) ˆ′ ′=X X X yβ .� (4.6)

Equation (4.6) is the matrix form of the least-squares normal equations. A 
comparison of the simplicity and elegance of equation (4.6) with the equiva-
lent scalar expression (4.3) illustrates the value of using the matrix form of 
the model. Another advantage of this form of the model is that it makes the 
conditions for the existence of a solution to the normal equations transpar-
ent. For a solution to exist, we require ( )X X′  to be invertible. This in turn 
requires the matrix X to have rank k, that is, there must be no linear depend-
ent relationships between the columns of X. If we assume that a solution to 
(4.6) exists, then it takes the form

	 ( ) 1ˆ −′ ′= X X X yβ .� (4.7)

This form of the solution is considerably more elegant than that obtained 
through scalar algebra, again illustrating the value of the matrix approach.

Example: As with the bivariate regression model, the least square parameter 
estimates for the multivariable model are functions of the sample moments 
of the variables in the model. This can be illustrated using the following 
numerical example, in which we estimate a demand curve for gasoline for 
the US economy. The data are annual observations from the period 1950 to 
2016 and our estimating equation takes the form

	 1 2 2 3 3 .t t t tg y p ub b b∆ = + ∆ + ∆ + � (4.8)
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g∆  is the first difference of the logarithm of consumption of gasoline meas-
ured in millions of barrels, y∆  is the first difference of the logarithm of gross 
domestic product (GDP) in $bn at 2000 prices, p∆  is the first difference of 
the logarithm of the ratio of the price index for gasoline and the GDP defla-
tor, and u is a random error. From the data, we obtain the means of the data 
and the sums of squares and crossproducts given in (4.9)
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( )
( )( )
( )( )
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2

2

4
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−
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∆ − ∆ =

∆ − ∆ =

∆ − ∆ ∆ − ∆ = ×

∆ − ∆ ∆ − ∆ =

∆ − ∆ ∆ − ∆ = −

∑
∑
∑
∑
∑

� (4.9)

The slope coefficients for this regression equation can therefore be calcu-
lated as

	

14
2

4

3

ˆ 0.026280.03437 4.055 10
ˆ 0.083574.055 10 0.83355

0.7657
.

0.1006

b

b

−−

−

   ×  
  =      −×    

 
=  − 

� (4.10)

An estimate of the intercept can then be obtained by using the condition 
that the regression line must pass through the sample means of the data. 
This yields

	
4

1
ˆ 0.02022 0.7657 0.03162 0.1006 2.57 10

0.003966.
b −= − × + × ×

= −
� (4.11)
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4.1	� DERIVATION OF THE DISTRIBUTION OF THE OLS 
ESTIMATOR

TABLE 4.1  Assumptions of the Classical Linear Regression Model (CLRM)

Assumption 1: The errors have zero mean:
( ) .E = 0u

Assumptions 2 and 3: The errors are serially independent and have 
constant variance:
( ) 2

u NE s′ =uu I

Assumption 4: The right-hand side variables are exogenous

(a)  Strong form - �X is fixed in repeated samples

(b)  Weak form - ( )E ′ = 0X u
Assumption 5: The errors follow a normal distribution:

( )2~ 0, u NN su I

To derive the distribution of the multivariate OLS estimator, we estab-
lish the matrix equivalents of the CLRM assumptions that we discussed in 
Chapter 3. These are listed in Table 4.1. Given these assumptions, we can 
demonstrate that the result that OLS estimator is the Best Linear Unbiased 
Estimator (BLUE) continues to hold in the multivariable case. We can also 
derive the distribution of the OLS estimator using the same methods as for 
the bivariate model in Chapter 3.

First, we will show that the OLS estimator for the multivariable 
model is unbiased. We have ( ) 1ˆ −′ ′= X X X yβ  and substituting for y yields 

( ) 1ˆ −′ ′= + X X X uβ β . From Assumption 4(a), we have that the only stochastic 
element in this expression is the vector of random errors u. Taking expectations 

yields ( ) ( ) ( )1ˆE E−′ ′= + X X X uβ β  and, by Assumption 1, we have ( )E = 0u  

which ensures that ( )ˆE =β β . Therefore, under the Gauss–Markov assump-
tions, the OLS estimator is unbiased. Moreover, if Assumption 5 holds, then 
the OLS estimator is a linear combination of normally distributed random 
variables and is therefore itself normally distributed.

To derive the variance of the OLS estimator, we first note that the 
variance in the multivariate case will consist of a k k×  symmetric matrix 
with variances of the individual OLS coefficient estimates on the diagonal 
and their covariances off the diagonal. This is referred to as the variance–
covariance matrix of the regression parameters. As we have demonstrated 
unbiasedness, we can write
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	 ( ) ( )( )
( ) ( )1 1

ˆ ˆ ˆvar

.

E

E − −

′= − −

′ ′ ′ ′= X X X uu X X X

β β β β β
� (4.12)

Assumption 4(a) allows us to write the right-hand side of this expression as 
( ) ( ) ( )1 1E− −′ ′ ′ ′X X X uu X X X . From Assumptions 2 and 3 of the CLRM, we 
have that ( ) 2

u NE s′ =uu I  and therefore with some minor algebra this yields

	 ( ) ( ) 12ˆvar us −′= X Xβ .� (4.13)

Again, note that the use of matrix algebra permits a considerable improve-
ment in terms of the elegance of the notation and the ease of the derivation. 
Using only a few lines of algebra, we have been able to show that under the 
CLRM assumptions,

	 ( )( )12ˆ ~ , uN s −′X Xβ β .� (4.14)

The derivation of the distribution of the OLS estimator would have been 
considerably more difficult, and would have involved far more complex 
expressions, if we had retained the use of scalar notation. Thus, the initial 
costs of writing the model in matrix form are more than justified in terms of 
the subsequent ease with which we can derive important results for the OLS 
estimator.

Historical Note: The first clear statement of the distribution of regres-
sion coefficients in the multivariable model comes in a paper by Fisher 
(Journal of the Royal Statistical Society, 1922) [Fisher1922]. However, he 
credits “Student” (W.S. Gosset) as having developed the theory.

4.2	 PRINCIPLES OF TESTING

One purpose of estimating multivariate regression models is the testing of 
hypotheses derived from economic theory. We have already discussed the 
construction and implementation of testing procedures in the context of the 
bivariate regression model in Chapter 3. When we move to a multivariate 
framework, the nature of the hypotheses to be tested changes as it becomes 
possible to test hypotheses relating different parameters as well as those rel-
evant to a single parameter. We will therefore spend some time discussing 
testing in a multivariate framework. Before we begin this, however, we will 
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expand a little on the different approaches to testing which form the basis of 
statistical inference in multivariate econometrics.

There are three main approaches to testing which form the basis of most 
of the tests used in econometrics. These are the Wald, Lagrange Multiplier, 
and Likelihood Ratio approaches. Although all of these can be applied in the 
context of least squares estimation, it is easier to explain them in terms of the 
maximum likelihood approach. In this section, therefore, we discuss testing 
approaches using maximum likelihood examples, on the understanding that 
this generalizes easily to the least squares framework.

Consider an investigator who estimates a model using the maximum 
likelihood approach. That is, he or she seeks to maximize a log-likelihood 
function of the form ( )LL Ωθ , where θ  is vector of parameters and Ω is the 
information set available including the data. Any restriction on the parameter 
vector will result in a value of the likelihood which is lower than the maximum 
given a free choice of parameters. The question is whether this reduction is 
significant or not and we can approach testing this in three different ways:

1.	 The Wald approach examines the difference between the values of the 
parameters at the restricted and unrestricted solutions to the problem, 
that is, ˆ ˆ

U R−θ θ .

2.	 The Lagrange multiplier approach examines the derivative of the (log) 
likelihood function at the restricted solution, that is, ( ) ˆ/ RLL∂ ∂θ θ θ . If 
the restrictions are valid, then this should be close to zero. 

3.	 The likelihood ratio approach examines the difference between the val-
ues of the likelihood function when evaluated at the maximum and at the 
restricted values of the parameters.

FIGURE 4.1  Wald, Lagrange Multiplier, and Likelihood Ratio Approaches to Testing.
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The three approaches to testing are illustrated in Figure 4.1 for the exam-
ple of a model with a single parameter. The Wald approach is based on the 
distance ,u rq q−  the Lagrange multiplier approach is based on ( ) /LL q q∂ ∂ ,  
and the likelihood ratio approach is based on ( ) ( )u rLL LLq q− . All three 
tests lead to test statistics with the same asymptotic distribution. However, 
there are differences in small sample properties. The tests also differ in how 
easily they can be set up and implemented in different circumstances. For 
example, in many circumstances in econometrics, it is easy to estimate an 
unrestricted model and generate a test statistic based on these estimates. 
This means that the Wald testing approach is most appropriate, and this 
leads naturally to the t tests we frequently apply to individual coefficient 
estimates. In contrast, there are some circumstances in which it will be much 
easier to estimate a restricted rather than an unrestricted model. This will 
be the case in subsequent chapters when we wish to test for misspecifica-
tion, where it is natural to define a restricted model that can then be relaxed 
in several different ways. This leads naturally to the Lagrange multiplier 
approach. The likelihood ratio approach is most appropriate when both the 
unrestricted and restricted versions of the model are straightforward to esti-
mate. This is not uncommon in econometrics and again, there are many 
circumstances in which this will be the natural testing approach.

4.3	� HYPOTHESIS TESTING IN THE MULTIVARIATE 
REGRESSION MODEL

In the previous section, we discussed testing approaches in very general 
terms. In this section, we will look at the details of how tests are constructed 
and applied in practice. We have seen that testing a hypothesis requires the 
following: (1) a null and an alternative hypothesis, (2) a test statistic whose 
distribution is known under the null, and (3) a decision rule for acceptance/
rejection of the null hypothesis. The main difference between testing in the 
bivariate and multivariate regression models is that we have a greater variety 
of hypotheses of interest. We will consider three cases of interest: the first is 
where we wish to test a hypothesis relating to a single coefficient, the second 
is where we wish to test a hypothesis that relates two or more coefficients, 
and the third is where we wish to test several hypotheses simultaneously.
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4.3.1	 Testing a Hypothesis Relating to a Single Coefficient

Suppose we wish to test 0 : j jH b b=  against the alternative 1 : j jH b b≠ .  

From (4.14), we have that ( )2ˆ ~ ,j j u jjNb b s V  under the null – where jjV  is the 

(j, j)th element of the matrix ( ) 1.−′X X  If 2
us  was known, then we could use 

ˆ /j j u jjb b s V−  as our test statistic as this would follow the standard normal 

distribution. The problem is that 2
us  is typically not known. Therefore, we 

replace us  with the estimate ( ) ( )
2ˆˆ /u i iY Y N ks = − −∑ . This means that 

our test statistic becomes

	
ˆ

~
ˆ

j j
N k

u jj

t t
b b

s V −

−
= ,� (4.15)

which follows the t distribution with N − k degrees of freedom under the 
null. We can then compare (4.15) with an appropriate critical value from the 

N kt −  distribution tables to make a decision as to whether to accept or reject 
the null hypothesis. Note that t tests of this form employ the Wald testing 
procedure because they involve estimation of the unrestricted model only.

Example: Consider our estimates of the demand curve for gasoline in the 
United States from Section 4.1. We already have estimates of the parameters 
and we can easily calculate the variance–covariance matrix of the coefficients 
in order to perform hypothesis tests. We have

	

14
2 2

4

3

2

ˆ 0.03457 4.5055 10
ˆ

ˆ 4.5055 10 0.83355

29.0953 0.01538
ˆ .

0.01538 1.1997

u

u

V
b

s
b

s

−−

−

   ×
  =    ×  

− 
=  − 

� (4.16)

The residual sum of squares is 0.02753RSS = , and therefore, 

ˆ 0.02753 / 64 0.02074us = =  is the standard error of the regres-
sion. Now suppose, for example, that we want to test the null hypoth-
esis 0 2: 1H b =  against the alternative 1 2: 1H b < . The test statistic is 

( ) ( )0.7657 1 / 0.02074 29.0953 2.09− = − , and the 5% critical value for 
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a one-tailed t statistic with 64 degrees of freedom is −1.669. Therefore, 
we reject the null hypothesis in favor of the alternative at the 5% level. 
Alternatively, we can calculate the p value of the test statistic as 0.02 which 
again indicates that we should reject the null at most reasonable levels of 
significance.

4.3.2	 Testing a Hypothesis Involving Several Coefficients

In multivariate regression models, we often wish to test hypothesis which 
relates several of the model parameters. A typical example of this is where 
we wish to test the hypothesis that two coefficients have equal but opposite 
sign. Hypotheses of this type can be written as linear combinations of the 
model parameters. For example, in equation (4.1), we might want to test 
the null hypothesis 0 2 3:H b ab=  against the alternative 1 2 3:H b ab≠  where 
a is a nonzero number. Following the discussion in the previous section, we 
could write a test statistic for this hypothesis as

	
( )
2 3

2 3

ˆ ˆ
~

ˆ ˆvar
N kt

b ab

b ab
−

−

−
.� (4.17)

It is straightforward to calculate ( )2 3
ˆ ˆvar b ab− . From the definition of the 

variance, we have

	 ( ) ( ) ( ) ( )2
2

2 3 2 3 2 3
ˆ ˆ ˆ ˆ ˆ ˆvar var 2 cov ,E b ab b a b a b b− = + − .� (4.18)

Therefore, when we test hypotheses which relate different model param-
eters, the relevant variance depends on the off-diagonal elements of the 
variance–covariance matrix.

Example: Suppose we wish to test the null hypothesis 0 2 3:H b b= −  against 
the alternative 1 2 3:H b b≠  in the gasoline demand model we estimated ear-
lier. This is not necessarily an interesting economic hypothesis, but it will 
serve to illustrate the statistical procedure. The test statistic in this case can 
be written as

	
( )

2 3

2 3

ˆ ˆ

ˆ ˆ
t

se

b b
b b
+

=
+

,� (4.19)

which, under the null hypothesis, follows a t distribution with 52 degrees of 
freedom. From (4.18), we have that
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( ) ( ) ( )2
2 3

ˆ ˆ 0.02074 29.0953 1.1997 2 0.01538

0.0130.

V b b+ = + + ×−

=

Using the parameter values calculated earlier, we therefore have

	
0.7657 0.1006

5.83.
0.0130

t
−

= = � (4.20)

This is distributed as 64t  under the null hypothesis and, since the test statistic 
is greater than the 5% critical value for this distribution, we reject the null 
in this case.

4.3.3	 Testing Several Restrictions Simultaneously

With multivariate regression, we often wish to test several restrictions 
simultaneously. For example, if our model is (4.1), then we might wish to 
test 0 2 2 3 3: ,H b b b b= =  against the alternative 1 2 2 3 3:  and/or H b b b b≠ ≠ .  
Joint hypotheses of this type require the use of an F test. To calculate a 
test statistic, we run separate regressions, one imposing the restrictions 
given in the null hypothesis and one allowing the regression coefficients 
to be freely determined. This generates two values of the residual sum of 
squares. The restricted residual sum of squares is calculated with the restric-

tions imposed, that is, ( )2 2 3 3,RRSS RSS b b b b= = = , and the unrestricted 

residual sum of squares used the OLS estimated values for these coefficients 

( )2 2 3 3
ˆ ˆ,URSS RSS b b b b= = = . The F test is based on a comparison of these 

residual sums of squares. Under the null hypothesis, we have

	
( )

( ) ,

/
~

/ r N k

RRSS URSS r
F F

URSS N k −

−
=

−
,� (4.21)

where r is the number of restrictions we impose. Note that RRSS URSS≥ , 
therefore F must always be positive. We can interpret this test as an appli-
cation of the likelihood ratio approach because it involves a comparison of 
unrestricted and restricted estimates.

EIP.Ch4.2pp.indd   89EIP.Ch4.2pp.indd   89 4/10/2021   5:07:47 PM4/10/2021   5:07:47 PM



90 • Econometrics in Practice

Example: Suppose we wish to test the joint hypotheses 0 2 3: 1, 1H b b= = −  
against 1 2 3: 1 and/or 1H b b≠ ≠ −  for our gasoline demand model. We can 
estimate separate regressions in which first, neither restriction is imposed 
and second, in which both are imposed. The first regression is used to calcu-
late the unrestricted residual sum of squares and the second, to calculate the 
restricted residual sum of squares. The values obtained for the residual sums 
of squares in this case are URSS = 0.02753 and RRSS = 0.7035. Therefore, 
the test statistic is

	
( )0.7035 0.02753 / 2

785.73
0.02753 / 64

F
−

= = .� (4.22)

Under the null hypothesis, this is distributed as 2,64F , and the 5% critical 
value for this distribution is 3.14. As the test statistic is greater than the criti-
cal value, we reject the null at the 5% level.

The joint test of linear restrictions described above has an important 
special case. This is the test of the joint significance of the regression coef-
ficients, that is, a test of 0 2 3: 0kH b b b= = =  against the alternative that 
one or more regression coefficients is different from zero. Under the null 
hypothesis, we have

	
( ) ( )

( ) 1,

/ 1
~

/ k N k

TSS RSS k
F F

RSS N k − −

− −
=

−
,� (4.23)

where TSS is the sum of squared deviations of the y variable from its mean 
and RSS is the residual sum of squares from the regression. This is the F 
test which is frequently reported as part of the regression output in many 
econometrics packages.

4.4	 GOODNESS OF FIT

So far, we have concentrated on the issue of hypothesis testing in the regres-
sion model. A related topic is the extent to which a regression model can be 
said to “explain” the variation in the data. This is the issue of goodness of fit. 
To measure goodness of fit, we first need to introduce the idea of analysis of 
variation. For any variable Y, we can divide up the variation into three parts: 
these are the total variation, the explained variation, and the residual varia-
tion. We define the following sums of squares:
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( )
( )
( )

2

2

2

ˆ

ˆ ,

i

i

i i

TSS Y Y

ESS Y Y

RSS Y Y

= −

= −

= −

∑
∑
∑

� (4.24)

where TSS is the total sum of squares which is defined as the sum of the 
squared deviations of the observations of Y from their sample mean value, 
ESS is the explained sum of squares which equals the sum of the squared 
deviations of the fitted values from the regression equation from the sample 
mean of the data and, finally, RSS is the residual sum of squares which is the 
sum of the squared deviations of the observations of Y from the fitted values. 
Some simple algebra confirms that TSS ESS RSS= + , that is, the total sum 
of squares consists of the sum of the explained and residual sums of squares.

4.4.1	 The Coefficient of Determination – R-squared

A natural way to measure the goodness of fit of an equation is to calculate the 
proportion of the total sum of squares which is accounted for by the regres-
sion. This gives the statistic known as the coefficient of determination or 
R-squared for a regression model. It can be written in two alternative ways 
as shown in equation (4.25), 

	 2 1
ESS RSS

R
TSS TSS

= = − .� (4.25)

The definition of R-squared implies a number of important properties. 
First, it is obvious that this statistic is bounded between zero and one. Since 
ESS and TSS are both positive numbers and ESS TSS≤ . Second, the closer 
R-squared is to one, then the more of the variation of y which is explained by 
the model and therefore the better is the fit of the model.

If R-squared measures goodness of fit, and increasing R-squared means 
an increase in fit, then should we always seek to choose a model which has 
the maximum value for this statistic? There are two reasons why this may be 
an unwise strategy. The first is that R-squared can always be increased by the 
addition of extra variables on the right-hand side of the regression equation –  
even if these are irrelevant to an explanation of the behavior of the variable 
in question. Thus, a strategy of maximizing R-squared will lead to models 
that are “overfitted,” that is, include too many explanatory variables. The 
second reason is that the value of R-squared can depend on the way in which 
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the regression equation is written (see the example which follows) and this 
can lead the inexperienced researcher to judge that one model fits “better” 
than another even when there is no difference between the two.

Example: For the gasoline demand model, we obtain 0.0561TSS =  and 
0.0275RSS = , it follows that the R-squared for this regression can be cal-

culated as 2 1 0.0196 / 0.0391 0.51R = − = . Therefore, just over 50% of the 
variation in the left-hand side variable is being explained by the model. Now, 
consider what happens when we add an unrelated random variable as an 
extra regressor. The regression obtained is given in equation (4.26)

	
( ) ( ) ( ) ( )0.0045 0.1124 0.0226 0.0025

ˆ0.0055 0.7827 0.1008 0.0030

0.0269.

t t t t tg y p z u

RSS

∆ = − + ∆ − ∆ − +

= � (4.26)

Note that the unrelated variable z is statistically insignificant with a t-ratio of 
0.003 / 0.0025 1.2− = − . However, the residual sum of squares is lower than 

calculated previously and therefore, the R-squared increases. In this case, 
we have 2 1 0.0269 / 0.056 0.52R = − = .

Next, consider what happens if we write the regression equation in a 
different form. Rather than regress the change in gasoline demand on the 
right-hand side variables, we regress the level of gasoline demand on the 
same right-hand side variables plus the lagged gasoline demand with a 
restricted coefficient value of one. The results are shown in equation (4.27) 
in which the coefficient estimates are identical to those we calculated ear-
lier. However, the R-squared appears to increase substantially. The reason 
for this is that we now have a different left-hand side variable. The model 
“explains” substantially more of the variation of the level of this series than it 
explains the variation in its growth rate.

	 ( ) ( ) ( )1 0.0044 0.1119 0.0227

2

ˆ0.00397 0.7657 0.1006

9.1357 0.0275 0.997.

t t t t tg g y p u

TSS RSS R

−= − + ∆ − ∆ +

= = =
� (4.27)

Historical Note: The first use of R-squared as a measure of goodness of 
fit is credited to an American geneticist and statistician, Sewell Wright, 
in a paper published in the Journal of Agricultural Research in 1921 
[Wright1921].
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4.4.2	 Other Measures of Goodness of Fit

Although the R-squared statistic is the most frequently quoted measure of 
goodness of fit, most regression packages produce a range of other statistics. 
These are designed to deal with the pitfalls of the R-squared statistic in a 
variety of ways. If we wish to compare the fit of alternative regression mod-
els, the standard error of the regression provides a useful alternative. This is 
calculated as the square root of the residual sum of squares divided by the 
number of degrees of freedom available, that is,

	
( )2ˆ

ˆ i i

u

Y Y

N k
s

−
=

−
∑

.� (4.28)

This statistic cannot provide an absolute measure of goodness of fit since it is 
measured in the same units as the data series itself. However, what it can do 
is provide a basis for comparison of different models which is not sensitive to 
the way in which the models are written. For example, the standard errors of 
the regression for (4.26) remain unchanged when we transform the model 
to get equation (4.27).

Another measure of goodness of fit is the adjusted R-squared statistic or 
R-bar squared. This is designed to deal with the problem that the standard 
R-squared statistic always increases when we add variables to the model –  
even if these are irrelevant and statistically insignificant. The adjusted 
R-squared statistic is defined as

	 ( )2 2 1
1 1

N
R R

N k
−

= − −
−

.� (4.29)

Effectively the adjusted R-squared statistic penalizes the addition of irrel-
evant variables to the model. Unlike the simple R-squared statistic, it will 
fall in value if additional variables are not sufficiently significant. In extreme 
cases, the adjusted R-squared statistic can become negative.

Other goodness of fit statistics are based on transformations of the 
log-likelihood statistic. The log-likelihood is defined as

	 ( )1 ln 2 ln
2
N RSS

LL
N

p  = − + +     
.� (4.30)

Since the log-likelihood is a decreasing function of the residual sum of 
squares, and the residual sum of squares increases as we add extra variables, 
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the value of the log-likelihood must always increase as we expand the num-
ber of explanatory variables. Thus, maximizing the likelihood function is 
likely to lead to overfitted models, in the same way as maximizing the 2R . 
However, a number of statistics based on the log-likelihood have been sug-
gested as ways of selecting one model from a range of alternatives. These 
statistics penalize the addition of irrelevant variables by penalizing the loss 
of degrees of freedom.

Two of the most commonly used transformations of the log-likelihood, 
for the purposes of model selection, are the Akaike Information Criterion 
(AIC) and the Schwartz Information Criterion (SIC). The AIC is defined as

	 ( )2
AIC LL k

N
= − − .� (4.31)

whereas the SIC is defined as

	
( )ln2
2

k N
SIC LL

N
 

= − − 
 

.� (4.32)

Note that in both these cases, the statistics are defined in such a way that a 
lower value implies a model that fits the data better. In each case, the inclu-
sion of the k terms in the definition of the test statistic penalizes the addition 
of irrelevant or insignificant variables. As the number of variables on the 
right-hand side of the regression increases, the residual sum of squares falls 
meaning that the log-likelihood increases. However, this may not be enough 
to offset the increasing effect on the information criteria caused by the direct 
effect of k in equations (4.31) and (4.32). In both cases, the information cri-
terion concerned penalizes the loss of degrees of freedom from the inclusion 
of extra variables and embodies a trade-off between this and the improved fit 
through the increase in the log-likelihood. The SIC penalizes the addition of 
irrelevant variables more than the AIC and will generally lead to the choice 
of a more parsimonious model, that is, one which contains fewer explanatory 
variables.

Example: Consider the following two equations for gasoline consumption 
in the United States. Each is estimated over the period 1951 to 2016. The 
only difference is that the second equation includes the lagged growth rate 
of US GDP as well as the current rate.
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( ) ( ) ( )0.0044 0.1165 0.0227

2 2

ˆ0.0032 0.7305 0.1004

ˆ0.4821 0.4657 0.0207
163.75 4.8714 4.7718

t t t t

u

g y p u

R R

LL AIC SIC

s

∆ = − + ∆ − ∆ +

= = =
= = − = −

� (4.33)

	

( ) ( ) ( ) ( ) 10.0053 0.1202 0.0229 0.1164

2 2

ˆ0.0051 0.7127 0.1020 0.0759

ˆ0.4856 0.4607 0.02081
163.98 4.8479 4.7152

t t t t t

u

g y p y u

R R

LL AIC SIC

s

−∆ = − + ∆ − ∆ + ∆ +

= = =
= = − = −

� (4.34)

If we compare these equations, we see that the additional variable has a 
t ratio of 0.0759 / 0.1164 0.65=  and is therefore insignificant at any stand-
ard level. However, its inclusion in the model produces an increase in both 
R-squared and the log-likelihood. Choosing a model using either of these 
statistics is therefore likely to lead to overfitting. The other goodness of fit 
statistics provide a more reliable basis for model selection. The standard 
error of the regression increases when we add the extra variable because the 
loss of one degree of freedom is more than enough to offset a small fall in 
the residual sum of squares. Similarly, the adjusted R-squared statistic falls 
in (4.34) reflecting the lower degrees of freedom. Finally, both AIC and SIC 
are lower for the simpler or more parsimonious model (4.33) indicating that 
we would choose this model rather than (4.34).

4.4.3	 Goodness of Fit and Significance of the Regressors

The R-squared for a regression equation is closely related to the F statistic for 
the joint significance of the regressors. To see this, recall that the F statistic 
for a regression is defined as (4.23). We can think of this as a test statistic for 
a test of the k − 1 linear restrictions that the slope coefficients are all equal 
to zero 0 2 3: 0kH b b b= = = = . TSS is the restricted sum of squares when 
all the slope coefficients are set to zero, whereas RSS is the unrestricted sum 
of squares when all the slope coefficients are freely estimated. Using the 
relationship between the total, explained, and residuals sums of squares, we 
can also rewrite the F statistic in the form shown in equation (4.35).

	
2

21 1 1
ESS N k R N k

F
TSS ESS k R k

− −   = =   − − − −   
.� (4.35)

Therefore, we can show that the F statistic and R-squared have an exact alge-
braic relationship. Moreover, it is straightforward to show that an increase in 
F will always produce an increase in R-squared.
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4.5	 MISSPECIFICATION

Misspecification refers to any situation in which one of the assumptions we 
make in setting up the regression model is incorrect. There are therefore 
many different ways in which a model can be misspecified, but the most 
basic is when the choice of explanatory variables is either incomplete or 
inappropriate. We now go on to consider both these possibilities and their 
implications for least squares regression. We will demonstrate that when we 
omit a relevant variable from our model, the estimates are typically biased. 
However, when we estimate a model with irrelevant variables, the estimates 
are unbiased, but inefficient.

Consider the case in which the “true” model takes the form 
1 1 2 2 .i i i iY X X ub b= + +  If we omit the 2X  variable from the model, then the 

effect is that the error term becomes 2 2i i iv X ub= + . The OLS estimator of 
the 1b  coefficient takes the form

	 1 1 2 1
1 1 22 2 2

1 1 1

ˆ i i i i i i

i i i

X Y X X X u

X X X
b b b= = + +∑ ∑ ∑

∑ ∑ ∑
.� (4.36)

Taking expectations demonstrates that ( )1 1
ˆE b b≠  unless 2 0b =  (in which 

case X2 should not have been in the model in the first place) or 1 2 0i iX X =∑ ,  

that is, the correlation between the X variables is equal to zero. Therefore, 
except in very special cases, the omission of a relevant variable from the 
regression will lead to biased estimates of the remaining coefficients.

Given that the omission of relevant variables produces bias, it is tempt-
ing to adopt a strategy of including as many variables as possible to reduce 
the chance of accidentally introducing bias into our equation. However, this 
strategy also has its pitfalls. The problem we have is that, when the explan-
atory variables are collinear, the inclusion of extra right-hand side variables 
increases the variance of the OLS estimates, thus leading to inefficiency. 
Inefficiency of this kind is often described as multicollinearity. This can lead 
to problems even when we have a correctly specified model, in that collin-
earity between the right-hand side variables inevitably leads to some loss of 
efficiency.

Variables in a regression equation are said to be collinear if they are cor-
related with each other. A certain degree of collinearity is present in almost 
all econometric models since it is very rarely the case that the right-hand side 
variables of a model are completely uncorrelated (or orthogonal). However, 
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collinearity becomes a serious problem if the extent of it is such that the X 
matrix has rank less than k, where k is the number of columns. Alternatively, 
if the X matrix has rank less than k, then at least one of the eigenvalues of the 
( )′X X  matrix will be zero. Under these circumstances, ( )′X X  is not invert-
ible and we cannot calculate the OLS estimator. Examples of situations in 
which this arises are when one variable is simply a scaled version of another 
( );m nX X m nw= ≠  or when a linear combination of a subset of variables 
equals one of the other variables of the model. If either of these two situa-
tions is the case, then the OLS procedure breaks down.

The situations described in the previous paragraph can be defined as 
perfect collinearity. A less fatal, but still serious situation, could occur if two 
variables were very highly but not perfectly correlated. For example, we 

might have m n tX Xw e= + , where 2
es  was very small. OLS estimates could 

be calculated in this case but the correlation between the X variables would 
render these estimates extremely imprecise. This situation has been termed 
the multicollinearity problem.

Consider the following regression model with two variables on the right-
hand side of the equation

	 1 1 2 2i i i iY X X ub b= + + .� (4.37)

The variance–covariance matrix of the slope coefficients of the OLS estima-
tor can be written as

	

( ) ( )( )
( )( ) ( )

( ) ( )( )
( )( ) ( )

12

1 1 1 1 2 21 2
2

2 1 1 2 2 2 2

2
2

2 2 1 1 2 2

2

1 1 2 2 1 1

ˆ

ˆ

,

i i i
u

i i i

i i iu

i i i

X X X X X X
V

X X X X X X

X X X X X X

X X X X X X

b
s

b

s

−
   − − −
   =

   − − −   

 − − − −
 =
 ∆ − − − − 

∑ ∑
∑ ∑

∑ ∑
∑ ∑

� (4.38)

where ( ) ( ) ( )( )( )22 2

1 1 2 2 1 1 2 2i i i iX X X X X X X X∆ = − − − − −∑ ∑ ∑  is the  

determinant of the crossproduct matrix. Now it is easy to see that 

( ) ( ) ( )2 2 2
1 1 2 2 12

ˆ1i iX X X X r∆ = − − −∑ ∑ , where 12r̂  is the sample corre-

lation coefficient between the 1X  and 2X  variables. It follows that as the 
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correlation coefficient approaches one, then ∆ approaches zero. Since the 
variance–covariance matrix is a multiple of 1 / ∆, it also follows that the vari-
ances of the OLS estimator will increase in size.

To some extent multicollinearity is always present in econometric anal-
ysis. Economic data are rarely experimental and, as a result, different vari-
ables in the same regression model are usually correlated with each other. 
However, multicollinearity only becomes a serious problem when this cor-
relation becomes very high. The main symptoms of a serious multicollinear-
ity problem are individually insignificant variables (low t ratios) coupled with 
a high degree of joint significance (high values of R-squared and the F sta-
tistic). If such symptoms are detected, then examination of the covariance 
matrix of the right-hand side variables can prove useful in identifying which 
variables are most closely related.

Perfect multicollinearity – in which there is an exact linear relationship 
between a subset of right-hand side variables – should not be present in 
correctly specified models but can easily be introduced accidentally into a 
model. For example, if we have four separate quarterly dummy variables in 
a time series regression, then their sum will equal one. If we also include a 
constant, then there is a perfectly collinear relationship between this group 
of variables. Examples like this, in which the introduction of dummy vari-
ables produces perfect collinearity, are remarkably easy to generate acci-
dentally in applied work. Most regression packages will generate an error 
message in cases like this – usually of the form “Near Singular Matrix” – and 
fail to generate any regression estimates.

4.6	� INTERPRETING A MULTIVARIABLE REGRESSION 
EQUATION

We have now developed the statistical tools necessary to conduct a prelimi-
nary evaluation of a regression equation. To complete this chapter, we will 
look at the output from a regression package and discuss how we can inter-
pret the results in a systematic and sensible manner. Figure 4.2 shows a typi-
cal set of regression results. To interpret these results, we need to address 
two separate but related issues – the first is the extent to which the equation 
has a sensible economic interpretation and the second is the extent to which 
the equation exhibits a reasonable statistical fit to the data.
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FIGURE 4.2  Interpreting Regression Output Ð A First Look at the Results.

4.6.1	 Economic Interpretation

The first question we often need to ask, when examining an equation, is 
whether the signs and magnitudes of the coefficient estimates are consistent 
with our expectations from economic theory. In this case, our equation is 
interpreted as a demand relationship, and therefore, we would expect to find 
a positive effect of income (GDP) and a negative effect of price (the ratio of 
gasoline price to the GDP deflator). Both estimated coefficients have their 
expected signs, so our equation is at least sensible from this perspective.

In addition to the signs of the regression coefficients we also need to 
consider their magnitudes. The equation is estimated in log-linear form and 
therefore the coefficient estimates are elasticities. The coefficient estimate 
for DLOG(GDP) of 0.7657 therefore indicates that a 1%-point increase in 
the growth rate of GDP will increase the growth rate of gasoline demand by 
0.77% points. This is a reasonable magnitude in the sense that it does not 
lead to obviously absurd results. For example, a coefficient of 500 would be 
clearly ridiculous, in that it would imply a huge response of demand to a very 
small change in the scale variable. Similarly, a coefficient of 0.01 – although 
positive – would indicate a magnitude of response well below what a pass-
ing knowledge of this market would regard as reasonable. The coefficient 
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estimate for DLOG(PGAS/PDEF) of −0.1006 is also reasonable in that it 
indicates a negative response of demand to relative price with a magnitude 
which is within plausible bounds.

If you have read this far, then you should have realized by now that 
assessment of an econometric equation embodies some of the qualities of 
an art rather than an exact science. It requires some prior knowledge of the 
context of the data, such that the investigator has some idea in advance of 
what constitutes a reasonable model. Models with wildly implausible param-
eter estimates can usually be rejected, either because the underlying the-
ory has been proved inadequate or because there has been some statistical 
flaw in the calculation or estimation of the equation in question. However, 
it is rarely the case that economic theory provides hypotheses that are suffi-
ciently tightly defined for the investigator to accept or reject a model without 
some degree of individual judgment.

4.6.2	 Statistical Assessment of an Equation

When it comes to the statistical assessment of an equation, we are on some-
what safer scientific ground. First, we need to assess whether the coefficient 
estimates are statistically significant, either individually through the t ratios 
or jointly through the F test. Second, we need to assess the goodness of fit 
of the equation through the R-squared and other related statistics. Finally, 
anticipating the discussion of later chapters, we need to examine the residu-
als of the model for any obvious signs of misspecification. In particular, we 
need to assess if the model estimates indicate that it is consistent with the 
assumptions of the classical linear regression model. If this is not the case, 
then the interpretation of the coefficient estimates becomes problematic 
and we may need to look for an alternative specification. Examination of the 
equation in Figure 4.1 suggests a reasonable fit to the data. The coefficients 
appear to be significant and the overall fit is good (an R-squared close to 0.5 
for data in difference form is quite reasonable). 

4.7	 PARTIAL CORRELATION

We have already introduced the correlation coefficient as a measure of the 
association between two variables. When we consider three or more vari-
ables, however, the correlation coefficient becomes harder to interpret. This 
is because the correlation between two variables may be the result of both 
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being correlated with the third rather than a direct relationship. To deal with 
this issue, we introduce the idea of partial correlation and the partial cor-
relation coefficient.

We will first consider the case of three variables 1 2,X X , and 3X  for which 
we have data 1, ,i N=  . This case generalizes very easily to more variables. 
We wish to assess the strength of the relationship between 1X  and 2X  while 
allowing for the possibility that both variables are related to 3X . To do this, 
we first “purge” 1X  and 2X  of the influence of 3X  by regressing each in turn 
on the 3X  variable and then calculating the correlation coefficient of the 
residuals from these regressions. This defines the sample partial correlation 
coefficient for variables 1X  and 2.X  We will write this statistic as 

1 2 3
ˆ

X X Xr . Like 

the standard correlation coefficient, 
1 2 3

ˆ
X X Xr  must always lie in the range −1 

to +1, with values closer to the extremes of the range indicating strong neg-
ative or positive correlation.

Let us consider an example. Suppose we wish to investigate the relation-
ship between prices, output, and income in the market for oranges. We have 
annual data for the United States for the period 1980 to 2016 and, using this, 
we calculate the sample correlation coefficients shown in Table 4.2, where 
LP is the ratio of the price of oranges to the consumer price index, LQ is 
the quantity of oranges produced, and LY is real household income. In each 
case, we have taken the natural logarithm of the variable concerned.

TABLE 4.2  �The Market for Oranges. Sample Correlations Based on Annual US Data for the Period 
1980Ð2016.

LP LQ LY

LP 1.0000

LQ −0.5987 1.0000

LY 0.4539 −0.0543 1.0000

To calculate the sample partial correlations, we follow the procedure for the 
general case. For example, to calculate the partial correlation between price 
and quantity, we first regress each of these variables on income and calcu-
late the residuals. We then calculate the sample correlation between these 
residuals. The result obtained is ,

ˆ 0.64516LP LQ LYr = − . Using this procedure, 
we can now calculate the partial correlations shown in Table 4.3.
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TABLE 4.3  �The Market for Oranges. Sample Partial Correlations Based on Annual US Data for the 
Period 1980Ð2016.

LP LQ LY

LP 1.0000

LQ −0.6416 1.0000

LY 0.5269 0.3047 1.0000

The partial correlations differ from the sample correlations in a number of 
ways. The partial correlations of price with quantity and income indicate a 
somewhat stronger relationship, with the absolute value of the sample par-
tial correlations being higher than the sample correlations. The effect on the 
correlation between quantity and income is even more striking. The uncor-
rected sample correlation shows a weak negative relationship between these 
variables, with a value of −0.0543. The sample partial correlation, however, 
shows a moderately strong positive relationship, with a value of 0.3047. This 
illustrates the value of examination of the partial correlations when we wish 
to assess the relationships between groups of variables rather than simply 
making pairwise comparisons.

The process we have set out for the calculation of sample partial correla-
tions is straightforward enough for small numbers of variables. However, 
when the number of variables increases, an easier method is available which 
uses the method of multiple regression to calculate the partial correlations. 
Suppose we wish to calculate the partial correlations of price with respect to 
output and income in our example. To do this, we first estimate a multiple 
regression equation linking the three variables with price as the dependent 
variable. The results are given in equation (4.39)

	 ( ) ( ) ( )0.4617 4.9236 3.6149

2

ˆ0.5918 0.3566 0.1857

0.5365 37,

t t t tLP LQ LY u

R T

− −
= − − + +

= =

� (4.39)

where t ratios are given in parentheses below coefficients. Let 1,2t  be the t 
ratio for LQ, the partial correlation between the dependent variable LP and 
LQ can be calculated using the formula given in equation (4.40)

	
( ) ( )

12
12 3 22

12

4.9236ˆ 0.6452
4.9236 34

t

t dof
r −

= = = −
+ − +

, � (4.40)

where dof is the degrees of freedom for the regression, that is, the number 
of observations minus the number of estimated coefficients. Note that the 
result is identical to that obtained by our previous method. It can be shown 
that this method generalizes for all multivariable relationships. In practice, 
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it offers an easier way of calculating the sample partial correlations which 
requires fewer regression estimates than the original method we set out.

Historical Note: The first clear definition of partial correlation coeffi-
cients for many variables comes in a paper by George Udny Yule in 1907 
[Yule1907]. However, the ideas behind the approach had been developed 
in earlier work by Yule and others.

EXERCISES 

Excel files containing the data for these exercises are available as companion 
files for this book.

EXERCISE 4.1

An econometrician wishes to estimate the following model for US 
unemployment

1 2 3 ,t t tUN GDP t ub b b∆ = + ∆ + +

where UN is the percentage rate of unemployment, GDP∆  is the annual 
percentage change in Gross Domestic Product, t is a time trend, and u is 
a random error. He/she has annual data for the period 1950–2019 and has 
calculated the following set of sample moments.

Mean Standard Deviation

UN∆ −0.044285 1.051518

GDP∆ 3.223957 2.286201

Trend 37.5 20.351085

Sample Correlation Matrix

UN∆ GDP∆ Trend

UN∆ 1.00000

GDP∆ −0.70579 1.00000

Trend −0.03403 −0.34016 1.00000

Calculate the OLS estimates of the equation parameters.
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HINT: While all the calculations in this exercise are straightforward, they are 
more than a little tedious. You might want to think about using a spreadsheet 
to avoid making avoidable arithmetic errors.

EXERCISE 4.2

An econometrician has estimated the following regression equation relating 
changes in GDP, government consumption, investment, and exports. The 
data are annual UK values for the period 1949–2011 and are measured in £m 
at 2005 prices. Standard errors are given in parentheses below coefficients.

	 ( ) ( ) ( ) ( )1763.84 0.3151 0.1797 0.1258

2

ˆ9071.12 0.3788 1.7523 0.4530

0.7562 63.

t t t t tY G I X u

R T

∆ = + ∆ + ∆ + ∆ +

= =

Use these results to calculate the partial correlations of changes in GDP Y∆  
with changes in government spending G∆ , changes in investment I∆ , and 
changes in exports X∆ .

These exercises use the data in the Excel workfile FM.XLSX. This contains 
annual data for the US economy over the period 1959–2007. The data are 
taken from the Federal Reserve Board of St. Louis database (FRED). The 
expenditure variables are all in constant prices.

EXERCISE 4.3

The following regression results were obtained by regressing the change in 
consumption (DC) on the change in autonomous expenditures (DA) and 
the change in real money balances (DRM). Autonomous expenditures are 
defined as the sum of investment, government consumption, and exports. 
Real money balances consist of broad money (M2) deflated by the consumer 
price index (P). Data are measured in $bn at 2000 prices.

Ordinary least squares regression results
Sample period: 1960–2007
Dependent variable DC
Sample size 48

Variable	 coefficient	 Std Err	 t ratio

C	 50.841678	 10.059046	 5.054323
DA	 0.571294	 0.067305	 8.488065
DRM1	 0.392945	 0.062496	 6.287519

R-squared	 0.7341
SEE	 41.676845
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a.	 Comment on the coefficient estimates. How can these be interpreted 
sensibly?

b.	 Using the information in the table calculate (i) the residual sum of 
squares and (ii) the F statistic for this regression.

c.	 Perform an F test for the joint significance of the two variables on the 
right-hand side of the equation using a 5% level of significance.

EXERCISE 4.4

The following sample moments are calculated using the data set given in the 
file FM.XLSX.

Sample period: 1960–2007 (Annual Data)

Sample moments

Variable	 DC	 DA	 DRM1
Mean	 139.545833	 87.281250	 98.845405
Standard deviation	 79.088721	 90.831278	 97.821303

a.	 Using these sample moments, calculate estimates of the elasticity of 
consumption expenditure with respect to autonomous expenditures and 
with respect to real money balances.

b.	 Reestimate the original equation but this time use percentage changes 
in consumption, autonomous expenditures, and real money balances as 
the equation variables. Compare the coefficient estimates with the elas-
ticities you estimated in part (a) and comment.

EXERCISE 4.5 

Using the data in the workfile FM.XLSX, estimate an equation that allows 
for separate effects of the different components of autonomous expendi-
tures, that is,

1 2 3 4 5 ,t t t t t tDC DI DG DX DRM ub b b b b= + + + + +

where I, G, and X are investment, government spending, and exports, 
respectively. 
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a.	 Examine the coefficients of your estimated model and assess which cat-
egories of autonomous expenditure have the most important effect on 
consumption expenditures.

b.	 Perform an F test for the hypothesis that the coefficients on the three 
categories of autonomous expenditure are equal.
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C H A P T E R  5
Serial Correlation

The second Gauss–Markov assumption concerns the independence of the 
equation errors. The assumption that ( ) 0 fori jE u u i j= ≠  is necessary for 
the OLS estimator to be the best linear unbiased estimator. It is also helpful 
in the derivation of the statistical distribution of the parameter estimates. If 
this assumption does not hold, then the derivation of the distribution of the 
OLS estimator becomes much more difficult which, in turn, makes it harder 
to perform hypothesis tests and to derive confidence intervals for the coef-
ficients of our model. Unfortunately, this assumption can fail in a variety of 
situations and is particularly problematic when we are working with time-
series data. In discussing this assumption, we will therefore concentrate on 
time-series examples.

A data series is classified as a time series when it consists of observations 
of a random variable X made at different points in time. From a statistical 
point of view, however, time series cannot be treated as a random sample 
except under very special circumstances. If a sample of data is truly random, 
then it can be reordered or “shuffled” without loss of information. In the 
case of a time series, however, the ordering of the data contains important 
information. We can see this by simply plotting a data series like GDP. This 
will show a generally increasing trend, although with some random variation 
around the trend path. In other words, the level of GDP in one year is not 
independent of the level of GDP in the previous year. 

Consider a regression model of the form t t tY X ua b= + + , where Y 
and X are time-series variables. Given the nature of the data, it is highly 
likely that u, the error term in this relationship, will also behave like a time 
series variable in the sense that it will depend upon its own past values. In 
such circumstances, we say that there is serial correlation in the errors and 
therefore, because the errors are not independent of each other, we cannot 
assume that the distributional results we have derived under the assumption 
of independent errors are reliable. Serial correlation of the errors is a serious 
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problem when dealing with time series data. In this chapter, we will discuss 
how econometricians deal with this problem. There are three basic stages to 
this as follows:

1.	 First, we discuss the causes and implications of serial correlation for 
least squares regression. We concentrate on the first two moments of 
the distribution of the least-squares regression estimates and show that 
serial correlation does not, in itself, mean that the least squares estimates 
will exhibit bias, although it will mean that the standard formulas for the 
variances of the least-squares coefficients will typically produce biased 
estimates.

2.	 Next, we discuss how we can test for the presence of serial correlation 
in a regression equation and the specific form it takes. This involves the 
construction of statistical tests for the presence of serially correlated 
errors and diagnostic tools that allow us to determine which of a range 
of possible types of serial correlation best describes the errors of our 
model.

3.	 Finally, we consider what to do if serial correlation is present. Although 
mechanical “corrections” are available to deal with the problem, we will 
argue that these are usually not the correct way forward. Serial correla-
tion is often a symptom of a deeper problem with the estimated model 
and a better strategy is usually to consider how we can design models 
that avoid the problem in the first place.

5.1	 CAUSES OF SERIAL CORRELATION

Consider a regression equation of the standard form t t tY X ub= + . We 
assume a model in mean deviation form to simplify the notation and the 
discussion. The errors of this model are said to be serially correlated if 
( ) 0t t kE u u − ≠  for some 0k ≠ . A natural question is why the errors might be 

correlated in this way? For the moment, we will simply assume that this is an 
intrinsic property of the data. That is, we assume that shocks to the equation 
are not random drawings from a distribution but instead depend upon their 
own past values. An alternative would be to assume that correlation in the 
errors arises because the model is misspecified in some way. However, this 
would complicate much of the discussion and we will avoid this assumption 
for the moment, on the understanding that it will be relaxed later.
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There are many different forms that serial correlation might take. For 
example, the errors might follow a first-order autoregressive (AR) process. 
This would mean that the error process could be described by an equation 
of the form 1t t tu ur e−= + , where te  is a truly random disturbance and 0r ≠ .  
This is a very common and important case, but it is not the only form that 
serial correlation can take. An alternative is where the error term in the 
equation is an average over several time periods of the random disturbance 

te . For example, we might have a first-order moving average process of the 
form 1t t tu e le −= + . Both error processes are said to be serially correlated 
but each produces different implications and problems for the modeler. 
However, in both cases, the problem of dealing with serial correlation is sim-
plified because of the assumption that it is an intrinsic feature of the error 
themselves, that is, the problem is one of error dynamics. A more realistic 
conclusion might be that the errors are serially correlated because of some 
fundamental misspecification in the original equation.

The assumption of error dynamics is very convenient because it makes 
the serial problem entirely statistical. If this is assumption is true, then the 
basic equation is correctly specified and all we need to worry about is dealing 
with the serial correlation in the errors. The presence of serial correlation 
in the errors does mean that OLS will not be an efficient estimator and will 
have several other undesirable properties. However, these are essentially 
statistical problems that can be dealt with through mechanical procedures, 
such as the adjustment of the OLS estimator, or the use of alternative esti-
mators. The problem with this approach is that if the serial correlation is the 
result of some other form of misspecification, then we may end up disguising 
the problem and therefore making unjustified claims for the adequacy of our 
original equation.

To illustrate how serial correlation can arise as the result of a misspeci-
fied model consider the case of omitted variables. Suppose the true regres-
sion model takes the form 

	 1 1 2 2t t t tY X X ub b= + + ,� (5.1)

but we estimate a model of the form

	 1 1t t tY X vb= + .� (5.2)

It follows that the error from (5.2) is determined partly by the error from the 
true model and partly by the effects of the omitted variable. That is, we have 

2 2t t tu Xb= +v . If the 2X  variable is itself serially correlated, which is very 
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often the case with economic data, then the effect of omitting this variable 
is to introduce serial correlation into the errors of the misspecified model.

A more subtle form of the omitted variable problem is that of dynamic 
misspecification. This arises when the regression model contains the correct 
variables, but the true model allows for dynamic adjustment processes that 
are not present in the regression specification. Dynamic misspecification can 
arise for a variety of reasons. For example, consider the following model:

	 t t tY X ub∗ = + � (5.3)

	 ( )1t t tY Y Yg ∗
−∆ = − .� (5.4)

The first equation (5.3) specifies the determination of an equilibrium or 
desired value of Y, which we label Y∗, whereas the second (5.4) describes 
how Y adjusts toward that desired value. Combining equations (5.3) and 
(5.4) gives a single equation of the form

	 ( ) 11t t t tY X Y ubg g g−= + − + .� (5.5)

This is the partial adjustment model, which has featured heavily in applied 
econometric research. From (5.5), it is clear that a simple regression of Y on 
X will be misspecified as it omits the lagged Y term. Moreover, because it is 
highly likely that Y will be serially correlated, it follows that a simple regres-
sion is likely to suffer from serial correlation in the errors.

5.2	 CONSEQUENCES OF SERIAL CORRELATION

Now that we have established some of the reasons why serial correlation may 
arise in regression models, let us consider the implications for least squares 
regression analysis. Suppose we have a model in which the errors follow a 
first-order AR process as set out in (5.6)

	
1 ,

t t t

t t t

Y X u

u u

b
r e−

= +
= +

� (5.6)

where , 1, ,t t Te =   are independent, identically distributed random dis-
turbances with mean zero and constant variance. As we have seen, this is 
not the only possible type of serial correlation which may arise, but the 
results we derive for this model apply more generally to other forms of serial 
correlation.
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The AR process defined in (5.6) can be written in moving average form. 
Using the method of backward substitution, we have

	 2
1 2

0

... j
t t t t t j

j

u e re r e r e
∞

− − −
=

= + + =∑ .� (5.7)

This is an infinite moving average process. Providing 1r < , then the 
sequence defined in (5.7) will converge, in the sense that it will have a finite 
variance. To see this note that

	 ( ) ( )
2

2 22 2 2
2

0 0 1
j j

t t j
j j

E u E e
e

sr e r s
r

∞ ∞

−
= =

= = =
−∑ ∑  � (5.8)

Therefore, for the variance of the error term to be finite and positive, we 
need 1r < . If this condition holds, then the process is said to be weakly 
stationary and it can be shown that a general feature of stationary, finite AR 
processes is that they can be written as infinite moving average processes. 
Moreover, since ( ) 0t jE e − =  for all values of j, it follows that ( ) 0tE u = . This is 
a useful property because we have already seen that the expected value of the 
OLS estimator can be written as follows: ( ) ( ) 2

1 1
ˆ /

T T

t t tt t
E X E u Xb b

= =
= +∑ ∑ .  

It therefore follows that ( )ˆE b b=  and that the OLS estimator is unbiased 
even when the errors are serially correlated.

Our results so far indicate that the presence of serial correlation does 
not in itself indicate that the OLS estimator is unbiased. The phrase “in 
itself” needs to be emphasized, since the unbiasedness of the OLS estima-
tor has only been demonstrated in the case where the serial correlation is 
due to pure error dynamics. More generally, if serial correlation is a symp-
tom of some other misspecification, then we cannot rely on OLS remaining 
unbiased. For example, if we omit a serially correlated variable 2X  from the 
model, then it is straightforward to show that the OLS estimator will be 
biased, except in the special case, where 2X  is uncorrelated with the explan-
atory variables included.

The other important point to note is that even if the OLS estimator is 
unbiased, it will be inefficient. This follows from the fact that efficiency of 
the OLS estimator depends on all the Gauss–Markov assumptions holding. 
If the assumption of serially independent errors fails, then we can, in princi-
ple, design a more efficient estimator that takes into account this property. 
Therefore, in models with serially correlated errors, it is always possible, 
in principle, to design an estimator with a lower variance than the OLS 
estimator. 

EIP.Ch5.2pp.indd   111EIP.Ch5.2pp.indd   111 4/10/2021   12:42:27 PM4/10/2021   12:42:27 PM



112 • Econometrics in Practice

Perhaps, the most serious implication of serial correlation is that the 
OLS estimator of the standard errors of the coefficient estimates will be 
biased. From our earlier treatment of the OLS estimator, we have

	 ( ) ( )( ) ( )
2

2 2
1

2
1

ˆ ˆ ˆ ˆ
T

t tt
T

tt

X u
V E E E E

X
b b b b b =

=

 
 = − = − =
 
 

∑
∑

.� (5.9)

In our earlier treatment of this problem, we made use of the Gauss–
Markov assumption that ( ) 0t t kE u u − =  for all values of k not equal to zero. 
When (5.9) is expanded, then the resulting expression contains crossprod-
uct terms including expressions of the form t t ku u − , if the errors are seri-
ally independent, then these have zero expectation and can be eliminated. 
This allows us to derive the standard OLS expression for the variance of 
the parameter estimate ( ) 2 2

1
ˆ /

T

u tt
V Xb s

=
= ∑ . If the errors are not serially 

independent, then this is no longer possible and the standard formula for 
the variance of the OLS estimator is biased. Both the sign and the magni-
tude of the bias will depend on the nature of the serial correlation process 
for the errors.

A very common scenario in applied econometric work is to find posi-
tive serial correlation in the errors of the equation in conjunction with an X 
variable which is itself positively correlated. Under these circumstances, the 
OLS variance is biased downward. To demonstrate this, consider the follow-
ing three equation models:

	 1

1 ,

t t t

t t t

t t t

Y X u

u u

X X

b
r e
j n

−

−

= +
= +
= +

� (5.10)

where e  and n  are uncorrelated error processes, where each process consists 
of independent, identically distributed random variables with zero mean and 
constant variance. If we maintain Gauss–Markov Assumption 4, which the X 
variables are fixed in repeated samples, then the variance of the OLS estima-
tor can be written as

	 ( )
( )

( )2

2 12
1

1ˆ T

t ttT

tt

V E X u
X

b
=

=

= ∑
∑

.� (5.11)
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In large samples, the denominator of this expression can be written as 

( )2
2 2 4

1

T

t Xt
X T s

=
=∑ . Expanding the numerator of (5.11) yields

	
2

2 2
1 1 2 2

1 1 2 3

2 2
T T T T

t t t t t t t t t t t t
t t t t

E X u E X u X X u u X X u u− − − −
= = = =

   
= + + +  

   
∑ ∑ ∑ ∑  .� (5.12)

We now assume that the sample size becomes sufficiently large such that the 
change in the lower limit of the summations becomes unimportant. Taking 
expectations yields

	 ( )
2

2 2 2 2 3 3

1

1 2 2 2
T

t t X u
t

E X u Ts s jr j r j r
=

 
= + + + + 

 
∑  .� (5.13)

The expression in parentheses on the right-hand side of (5.13) is equal to 1 
plus the sum of an infinite geometric progression, with initial term 2, and 
common ratio jr. If both the error process and the X process are stationary, 
that is, 1r <  and 1j < , then the common ratio is <1 in absolute value, and 
this converges to the expression shown in (5.14)

	
2

2 2 2 2

1

1
1 2

1 1

T

t t X u X u
t

E X u T T
jr jrs s s s

jr jr=

   + 
= + =     − −     

∑ .� (5.14)

Combining this with the expression, we have already derived for the denom-
inator of (5.11) means that we can write

	 ( )
2

2

1ˆ
1

u

X

V
T
s rjb
s rj

 +
=  − 

.� (5.15)

The standard formula for the OLS variance would give us an expression of 
the form ( )2 2/ .u XTs s  Therefore, the presence of autocorrelation in both the 
errors and the X variable leads to bias in the standard OLS formula with the 
size of the bias being determined by the expression in parentheses. If r  and 
j are both positive and <1, then the true variance of the OLS estimator will 
be larger than the estimated variance. Moreover, the closer r  and j are to 
1, then the larger will be the bias. In general, if r  and j have the same sign, 
then the OLS formula will underestimate the true variance of the estimator. 
If r  and j have opposite signs, then the OLS formula will overestimate the 
true variance.
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Historical Note: George Udny Yule [Yule1921 and Yule1926] provides 
an early warning to economists about the dangers of treating time-series 
data as it they were randomly sampled observations.

Example: To illustrate the implications of serial correlation, we have 
described; 1,000 regressions were run using artificially generated data for 
the model given below:

	 1

1

0.9
0.9 ,

t t t

t t t

t t t

Y X u

u u

X X

e−

−

= +
= +
= + v

� (5.16)

where e and v are independent white noise errors. A typical regression taken 
from this simulation looks like this

	 ( ) ( )0.27 0.12

2

ˆ 2.3872 0.7603

ˆ0.31 2.22 100.

t tY X

R Ts

= − +

= = =
� (5.17)

The test statistic for the null hypothesis that the slope coefficient is equal 
to 1 is ( )0.7603 1 / 0.12 2.0t = − = − , and under the null hypothesis, this is 
distributed as 98t . Since the 5% critical value for a two-tailed test is ±1.96, we 
therefore reject the null at the 5% level. This result is typical for this simula-
tion. Out of 1,000 regressions, we reject the null that the slope coefficient is 
equal to 1 in 491 cases.

The reason why we reject the null so often is not because of any bias in 
the coefficient estimates. The distribution of the slope coefficient estimates 
from our simulation is illustrated in the histogram shown in Figure 5.1. The 
average slope coefficient estimate is 0.9955 which is very close to the true 
value of 1. Instead, the reason lies in the underestimate of the standard error 
of the slope coefficient which has resulted from the fact that both the errors 
and the X variable are serially correlated. To see this, compare the standard 
error of the slope coefficient from the regression equation (5.17) with the 
standard error of the slope coefficients from the simulation exercise shown 
in Figure 5.1. The latter provides an unbiased estimate of the standard error 
and, if we had used this to calculate our test statistic, we would not have 
rejected the null. 

EIP.Ch5.2pp.indd   114EIP.Ch5.2pp.indd   114 4/10/2021   12:42:30 PM4/10/2021   12:42:30 PM



Serial Correlation • 115

FIGURE 5.1  Distribution of Slope Coefficients from Monte Carlo Simulation with Positive Autocorrelation in 
Both the Errors and the X Variable

5.3	 DETECTION OF SERIAL CORRELATION

Since serial correlation of the errors has been shown to have important impli-
cations for our interpretation of regression results, it becomes important to 
develop tests for whether it is present in the models we estimate. It will be 
helpful to have an example in mind as we develop such tests. Consider the 
following estimated consumption function for the US economy based on 
annual data from 1970 to 2019.

	

( )
( ) ( )

( )
0.0466 0.0052

2

ˆln 0.2898 1.0174 ln

ˆ0.9987 0.0154 50
0.5389,

t t t

u

C YD u

R T

DW

s

= − + +

= = =
=

� (5.18)

where C is total consumers’ expenditure and YD is real personal disposable 
income. Both variables are measured in millions of dollars at 2012 prices.

On first inspection, this equation appears to have reasonable proper-
ties. The slope coefficient is statistically significantly different from zero 
and the coefficient of determination indicates a good fit. In this case, how-
ever, it is more interesting to test the null hypothesis that the slope coeffi-
cient is equal to 1. This is because the slope coefficient in this relationship 
measures the income elasticity of consumption expenditure. However, this 
null hypothesis is also rejected by our model. The t statistic for this test is 
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( )1.0174 1 / 0.0052−  3.35=  which leads us to reject the null at the 5% level. 
This conclusion is, however, may be unreliable if the errors in this model 
are serially correlated. Therefore, in order to assess the robustness of our 
estimates of the model parameters, we need to test for the presence of serial 
correlation in the residuals û  from equation (5.18). 

5.3.1	 Informal Tests for Serial Correlation

We can look for serial correlation informally by simply inspecting a plot of 
the residuals. If runs of positive or negative residuals are obvious, then this 
is a sign that serial correlation is present. For example, Figure 5.2 shows 
the residuals for our consumption function equation and it is obvious that 
there are periods during which the residuals are consistently either positive 
or negative. This is a clear indication that the equation suffers from serial 
correlation. There are, however, forms of serial correlation, such as moving 
average errors, which are not so easily detected. Therefore, it is important to 
develop more formal tests as well as procedures for identifying the specific 
form of serial correlation that is relevant for this equation.

FIGURE 5.2  Residuals for Equation (5.18)

The correlogram1 provides a more formal statistical method for the 
investigation of serial correlation. The correlogram is a table, or plot, of the 

1  We will return to the topic of the correlogram and discuss its construction in more detail 
in Chapter 9 on ARIMA modeling.
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sample autocorrelations of the regression residuals. The sample autocorrela-
tions are defined in equation (5.19), and Figure 5.3 gives both a table and a 
graph of the autocorrelations of the residuals from equation (5.18).

	 2
1 1

ˆ ˆ ˆ ˆ/
T T

k t t k tt k t
u u ur −= + =

=∑ ∑ .� (5.19)

The correlogram output in Figure 5.3 also shows the partial autocorrela-
tions. These allow for the presence of intermediate lags in the AR process in 
the same way that the partial correlations, which we discussed in Chapter 4,  
factor out the effects of other variables when calculating the correlation 
between two variables. The partial autocorrelations are helpful in identifying 
the nature of the serial correlation process in the residuals. Both the sample 
autocorrelations and the sample partial autocorrelations are constrained to 
lie on the interval ] [1,1−  for 0k ≠ . Under the null of no autocorrelation, 
both the autocorrelations and partial autocorrelations have expected value 
zero and variance 1 / T. This allows us to calculate the broken standard error 
bands shown in Figure 5.3, which define an approximate 95% confidence 
interval, and therefore allow us to judge the significance of the autocorrela-
tions. Experienced modellers can identify the nature of the serial correlation 
process by inspection of the sample correlogram. In this case, the pattern of 
autocorrelations shows an initial positive value that declines quickly toward 
0 and there is a single significant partial autocorrelation at lag 1. This is con-
sistent with a first-order AR process.

FIGURE 5.3  Correlogram of Residuals from Equation.
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Historical Note: The term “correlogram” was first used by Herman Wold 
[Wold1938]. However, although he does not use the term, [Yule1926] 
provides a plot of the sample autocorrelations for an index of wheat prices 
based on annual data for the period 1545–1844.

5.3.2	 Formal Tests for Serial Correlation

The Durbin–Watson (DW) test provides a formal test in which the null 
hypothesis is that the equation errors are serially uncorrelated and the alter-
native is that they follow a first-order autocorrelation process. This test was 
first introduced by Durbin and Watson in two papers published in Biometrika 
in 1950 and 1951 [Durbin1950] and [Durbin1951]. It is a standard part of 
the regression output for most econometrics packages. The DW test builds 
on a previous test developed by Von Neumann [VonNeumann1941] who 
developed a test for autocorrelation in a series of random variables with the 
null that the variables are independent random numbers. Unfortunately, 
this is not suitable when the series under examination comprises regres-
sion residuals, which are not independent by construction. Although Von 
Neumann’s statistic has a relatively simple distribution, that is, the stand-
ard normal distribution, Durbin and Watson showed that the distribution 
of their test statistic was necessarily more complex. The nature of the test 
statistic means that it is not possible to derive unique critical values for a test 
of the null of no autocorrelation against the alternative of first-order autocor-
relation. However, they did demonstrate that the critical values for their test 
were bounded and were able to tabulate the bounds for small sample sizes. 

The DW test is concerned with a specific form of serial correlation, 
that is, first-order autocorrelation but is arguably sensitive to other forms. 
Consider the following regression model with an error that follows an AR 
process of order one:

	
1 .

t t t

t t t

Y X u

u u

b
r e−

= +
= +

� (5.20)

Taking the residuals from an OLS regression of Y on X, we can construct the 
test statistic

	 ( )2 2
12 1

ˆ ˆ ˆ/
T T

t t tt t
DW u u u−= =

= −∑ ∑ .� (5.21)
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DW can be seen as a test for the null hypothesis that 0r =  in (5.20). To see 
this, expand the numerator of (5.21) to obtain

	
2 2

1 12 2 2

2
1

ˆ ˆ ˆ ˆ2

ˆ

T T T

t t t tt t t
T

tt

u u u u
DW

u

− −= = =

=

+ −
= ∑ ∑ ∑

∑
.� (5.22)

Now for large T, we have 2 2 2
12 2 1

ˆ ˆ ˆT T T

t t tt t t
u u u−= = =

≈ ≈∑ ∑ ∑  and 
2

12 1
ˆˆ ˆ ˆ/

T T

t t tt t
u u u r−= =

≈∑ ∑ , where r̂  is the first autocorrelation of the least 

squares residuals. It follows that ( )ˆ2 1DW r≈ − . Therefore, if there is no 
autocorrelation, then ( ) 2E DW = , if there is positive autocorrelation ( 0r > ),  
then ( ) 2E DW < , and if there is negative autocorrelation ( 0r < ), then 
( ) 2.E DW >  Note that the DW statistic is bounded between 0 and 4.

To use the DW statistic to conduct a test for autocorrelation, we need 
appropriate critical values. Unfortunately, there is a problem here in that 
the distribution of this statistic does not us to calculate unique critical val-
ues. Instead, the distribution gives us upper and lower bounds for the test 
statistic under the null. For example, consider the case in which we wish 
to test 0 : 0H r =  against the alternative 1 : 0H r > . That is, we wish to test 
the null that there is no autocorrelation against the alternative that there 
is positive first-order autocorrelation. If the test statistic is greater than Ud ,  
then we can accept the null, if it less than Ld , then we reject the null but if 

L Ud DW d< < , then we are in a region of indeterminacy that allows us to 
neither accept nor reject the null. If the DW statistic is >2, then the relevant 
upper and lower critical values become 4 Ud−  and 4 Ld− . Thus, the decision 
part of the testing procedure becomes rather more complicated than is usu-
ally the case. Figure 5.4 summarizes the possible situations that can arise 
when conducting the DW test.

FIGURE 5.4  Possible Decisions with the DW Test.
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In the case of our consumption function, we note that the DW statistic is 
0.5389. From the DW tables, we find that the upper and lower bounds at the 
5% level are 1.59Ud =  and 1.50Ld = , respectively, for 50T = . Since LDW d< ,  
we conclude that there is evidence of significant positive first-order autocor-
relation at the 5% level. Tables of critical values, which give upper and lower 
critical bounds for different sample sizes and numbers of right-hand side 
variables, are included in most books of tables for econometric applications. 
The typical format of these tables is to give the critical bounds for a one-
tailed test of 0 : 0H r =  against 1 : 0H r >  for different numbers of right-hand 
side variables. For example, the critical bounds for a 30 observations and one 
explanatory variable are 1.35Ld =  and 1.49.Ud =  If we wish to test for neg-
ative autocorrelation, then the null hypothesis remains the same while the 
alternative becomes 1 : 0H r < . In these circumstances, we must calculate the 
critical bounds by subtracting the numbers reported in the tables from four. 
Thus, in our example, with one explanatory variable and 30 observations, the 
critical bounds become 4 1.35 2.65Ud = − =  and 4 1.49 2.51Ld = − = .

The DW test becomes problematic in regressions that include lagged 
endogenous variables. For example, consider a regression equation of the 
form

	 1 2 1t t t tY X Y ub b −= + + .� (5.23)

Models of this kind are very common in time-series econometrics, where the 
lagged Y variable is included to capture dynamic adjustment of Y toward an 
equilibrium relationship with the X variable. The inclusion of the lagged Y 
variable will often reduce any residual autocorrelation. However, there is no 
guarantee that autocorrelation will be eliminated, and it is still important to 
test for its presence. This does, however, create a problem, in that the DW 
statistic can be shown to be biased toward acceptance of the null hypoth-
esis when the equation estimated contains a lagged endogenous variable. 
An alternative test therefore becomes necessary under these circumstances. 
Such a test has been suggested by Durbin (1970), who proposes a test sta-
tistic of the form

	
( )1

2

ˆ
ˆ1

T
h

T V
r

b
=

− ×
,� (5.24)

Critical values for the DW test are widely available in books of statistical 
tables for economics. They are also available through numerous online 
sources.
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where 2
1 12 2

ˆ ˆ ˆ ˆ/
T T

t t tt t
u u ur −= =

=∑ ∑  is the first-order autocorrelation coefficient, 

and ( )2
ˆV b  is the estimated variance of the coefficient on the lagged endog-

enous variable obtained by estimation of (5.23) by least squares. Note that 
some presentations of this test use an approximation for the first-order auto-
correlation coefficient in terms of the DW statistic which is given by the fol-
lowing expression: ( )1

ˆ 1 / 2DWr = − . Durbin [Durbin1970] shows that this 
statistic is asymptotically distributed as normal with mean 0 and variance 1.

Example: To illustrate the use of Durbin’s h test, let us consider a modified 
version of equation (5.18) in which we include a lagged endogenous variable. 
Estimation by least squares yields the following:

	

( )
( ) ( )

( )
( )

( )10.0537 0.0937 0.0913

2

1

ˆln 0.1059 0.5571ln 0.4479 ln

ˆ0.9991 0.0127 49
ˆ0.7758 0.5985.

t t t t

u

C YD CN u

R T

DW

s
r

−= − + + +

= = =

= =

� (5.25)

To apply, Durbin’s h test, we construct the test statistic

	 2

49
0.5985 5.45

1 49 0.091276
h = =

− ×
.� (5.26)

The 5% critical value for a test of the null hypothesis that the errors are 
uncorrelated against a one-sided alternative of positive autocorrelation is 
equal to 1.645. Thus, we conclude that there the inclusion of a lagged endog-
enous variable has not eliminated the autocorrelation for this model. Note 
that, in this case, the DW test would have sufficed. This is because the prob-
lem is that the DW test statistic is biased toward two due to the inclusion of 
the lagged endogenous variable. Even so, the test statistic is equal to 0.7758, 
which is less than the value of the lower critical bound (~1.46 in this case).

A more general test for serial correlation is provided by the Q statistic, 
also known as the Box-Ljung test statistic. The advantage of this test is that it 
allows for tests of higher-order serial correlation processes than the DW test. 
It is also designed to test for more general serial correlation processes such 
as moving average errors. This test statistic is defined as

	 ( )
2

1

ˆ
2

J
j

j

Q T T
T J

r

=

= +
−∑ .� (5.27)
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Using this test statistic, we can test for general forms of serial correlation up 
to order J. We can show that the Q statistic is asymptotically distributed as 

2c  with J degrees of freedom under the null that 0, 1,...,j j Jr = = . Note that 
this test can have low power when a large value of J is chosen.

Example: Suppose we wish to test for autocorrelation of either first or 
second order from the estimates of equation (5.18). The sample autocor-
relations for this equation are equal to 1

ˆ 0.7067r =  and 2
ˆ 0.5373.r =  The 2Q  

statistic is therefore calculated as

	
2 2

2

0.7067 0.5373
50 52 42.14

49 48
Q

 
= × × + = 

 
.� (5.28)

Under the null hypothesis, this statistic is distributed as chi-squared with two 
degrees of freedom, and the 5% critical value is therefore equal to 5.991. It 
follows that we reject the null at the 5% level and conclude that autocorrela-
tion of either first or second order is present.

Another test for serial correlation, which has become standard in the 
econometrics literature, is the Breusch-Godfrey test [Breusch1978] and 
[Godfrey1978]. The advantages of this test are (1) it is more general than the 
DW test, or Durbin’s h test, in that it allows for higher-order serial correla-
tion processes and is applicable to both autocorrelated and moving average 
error processes and (2) it can focus more easily on specific processes than 
the Box-Ljung test. The Breusch–Godfrey test is constructed by performing 
a regression of the least-squares residuals on their own lagged values plus 
the original regressors. We then test for serial correlation by testing the joint 
significance of the lags in this second-stage regression. This gives us a very 
flexible test for serial correlation.

To construct the Breusch–Godfrey test, let ˆ , 1, ,tu t T=   be the residuals 
from a regression equation. If we now estimate an auxiliary regression of the 
form

	 0
1 1

ˆ ˆ
p q

t j t j p j jt t
i j

u u Xg g g e− +
= =

= + + +∑ ∑ ,� (5.29)

where , 1, ,jX j q=   are the original regressors. Let 2Z TR= , where 2R  is the 
coefficient of determination following estimation of (5.29), it can be shown 
that under the assumption of serially uncorrelated errors, Z is asymptotically 
distributed as chi-squared with degrees of freedom equal to p, the order of 
serial correlation for which we wish to test. The null hypothesis for this test is 

0 1 2: 0pH g g g= = = = , and the X variables are included purely as controls 
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with so that their coefficient values do not form part of the test. Although 
this is an asymptotic test, some authors have suggested using an F test on the 
grounds that it improves its performance in practice cf. [Kiviet1986]

Example: Suppose we wish to test for fourth-order autocorrelation in our 
consumption function equation (5.18). Having generated the residuals for 
this equation, we next estimate the auxiliary regression shown in equation 
(5.30)

	
( ) ( )

( )
( ) ( )

( ) ( )

1 20.0383 0.0042 0.1543 0.1847

3 40.15670.1817

2

ˆ ˆ ˆ0.0369 0.0041ln 0.6659 0.2108

ˆ ˆ0.1227 0.0529

0.5573.

t t t t

t t t

u YD u u

u u

R

e

− −

− −

= − + +

− − +

=

� (5.30)

To perform the chi-squared test, we calculate 2 46 0.5573 25.63TR = × = . 
Note that T is lower than the full sample size because we lose four observa-
tions by taking lags. The 5% critical value for a chi-squared distribution with 
four degrees of freedom is equal to 9.488, and therefore, we reject the null 
hypothesis at the 5% level. One advantage of this test is that, because we can 
inspect the individual t ratios for the coefficients on the lags in the auxiliary 
regression, we can more easily identify the of order of the serial correlation 
process. In this case, we see that it is only the first lagged residual that has a t 
ratio greater than the 5% critical value. This suggests that a first-order serial 
correlation process may be more appropriate than the fourth-order process 
we have assumed. Finally, we note that an F test for the joint significance of 
the lagged residuals in (5.30) also leads us to reject the null since it produces 
a test statistic of 12.16 which is greater than the 5% critical value of 2.606. 
In practice, the chi-squared and F versions of this test generally produce the 
same outcome.

5.4	 DEALING WITH SERIAL CORRELATION

If serial correlation is present, then there are several ways to deal with 
the issue. Of course, the priority is to identify the nature, and hopefully 
the cause, of the serial correlation. If the root cause of the problem is the 
omission of a relevant variable from the model, then the natural solution 
is to include that variable. If it is determined that modeling of the serial 
correlation process is appropriate, then we have several different methods 
available for the estimation of such models by adjusting for the presence of 
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serially correlation errors. It should be noted that mechanical adjustments, 
of the type we will describe in this section, are potentially dangerous. This 
process has been much criticized on the grounds that there is a risk that 
these methods disguise an underlying problem rather than dealing with it. 
McGuirk and Spanos [McGuirk2009] are particularly critical of mechani-
cal adjustments to deal with autocorrelated arguments. In this paper, they 
show that unless we can assume that the regress and does not Granger-cause 
the regressors, adjusting for autocorrelation means that least squares yield 
biased and inconsistent estimates. However, these methods are still used and 
reported in applied work and it is therefore important that we consider how 
they work.

The first method we will consider is that of Cochrane–Orcutt estima-
tion. This uses an iterative algorithm proposed by Cochrane and Orcutt 
[Cochrane1949] in which we use the structure of the problem to separate 
out the estimation of the behavioral parameters of the main equation from 
those of the AR process that describes the errors. Let us consider the case of 
an AR(1) error process as an example. Suppose we wish to estimate a model 
of the form (5.6). The two equations can be combined to give a single equa-
tion of the form

	 ( )1 1t t t t tY Y X Xr b r e− −− = − + ,� (5.31)

that is, an equation in “quasi-differences” of the data. If r  was known, then it 
would be straightforward to construct these quasi-differences and estimate 
the behavioral parameter b  by least squares. In the absence of such knowl-
edge, we make a guess at r  and construct an estimate of b  on this basis. We 
then generate the residuals ˆ t t tu Y Xb= −  on this basis and calculate an esti-

mate of r  of the form 2
12 1

ˆ ˆ ˆ ˆ/
T T

t t tt t
u u ur −= =

=∑ ∑ . If, by some lucky chance, 
this estimate coincides with our assumption, then we stop. Otherwise, we 
use our estimate to recalculate the quasi-differences, reestimate b, and con-
tinue until our estimates of b  and r  converge. If a solution exists, then this 
provides a robust algorithm for estimation. 

Example: Applying the Cochrane–Orcutt procedure to our consumption 
function data yields the following results:

	

( )
( ) ( )

( )
0.1013 0.0112

1

2

ˆln 0.1778 1.0050 ln

ˆˆ ˆ0.7519

ˆ0.9993 0.0107 2.2277.

t t t

t t t

u

C YD u

u u

R DW

e

s
−

= − + +

= +

= = =

� (5.32)
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The first thing to note is that convergence of the iterative process for this 
model is quite fast. Figure 5.5 shows the estimate of the AR parameter at 
each stage of the process, beginning with an initial guess of zero and stopping 
when the change in the parameter is < 910− . From Figure 5.5, we see that 
the solution has very nearly converged after only three iterations, though it 
takes 13 in total for the convergence criterion to be achieved.

FIGURE 5.5  Convergence of the Autoregressive Parameter Using the CochraneÐOrcutt  
Procedure (Convergence Criterion = 10−9).

Turning to the coefficient estimates we see that, in comparison with the 
simple OLS model, the point estimate of the slope coefficient has changed 
very little. Of course, we had established earlier that the presence of serial 
correlation did not lead to bias in coefficient estimates, and so this is not sur-
prising. However, the standard error of the slope coefficient has increased, 
more than doubling from 0.0052 to 0.0112. This is because the simple OLS 
estimate of the standard error was biased by the combination of positive 
autocorrelation in the errors and in the right-hand side variable. By cor-
recting for serial correlation, we have obtained a more realistic estimate of 
the standard error of the coefficient. The t test for the null hypothesis that 
the income elasticity of consumption is equal to one now gives a value of 
( )1.005 1 / 0.0112 0.45− = , and we no longer reject the null hypothesis. It 
is also worth noting that despite the increase in the standard errors of the 
coefficients, the standard error of the regression has fallen from 0.0154 to 
0.0107, indicating an improvement in fit relative to the original model.
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The Cochrane–Orcutt procedure looks for a minimum of the residual 
sum of squares by using the iterative method described earlier. An itera-
tive method becomes necessary in this scenario because we must solve a 
pair of nonlinear equations in b̂  and r̂  in contrast with the linear equa-
tions for the standard least-squares model. A potential problem here is that 
iterative methods like this can lead to convergence to a local, rather than 
global, minimum point. An alternative method of solving for the regression 
parameters, which avoids this problem, is provided by the Hildreth and Lu 
[Hildreth1960] method. This adopts a grid search approach in which the 
algorithm explores the whole of the parameter space rather than a local 
search. Using this method, we start with a coarse grid search in which we 
estimate the model for widely spaced values of the AR parameter. We then 
locate the value with the lowest residual sum of squares and conduct a local 
search around this value with a lower interval value. This continues with 
smaller and smaller interval values until we find a solution with the chosen 
degree of accuracy.

Example: Table 5.1 shows the results of applying the Hildreth–Lu method 
to our consumption function example. It is evident that, in this case, the 
solution obtained is identical to that of the Cochrane–Orcutt method. This 
indicates that this solution is consistent with both a local and a global mini-
mum of the residual sum of squares function.

TABLE 5.1:  HildrethÐLu Estimation of the Autoregressive Parameter.

Grid 
Search

Interval Value of ρ̂  that 
minimizes RSS

Minimum of RSS 
function (× 310− )

1 110− 0.8 5.320922

2 210− 0.75 5.299408

3 310− 0.752 5.299374

4 410− 0.7519 5.299374

5 510− 0.75187 5.299374

6 610− 0.751868 5.299374

7 710− 0.751868 5.299374
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Example: As a final example, we will consider the estimation of a demand 
curve for oranges for the United States. The form of the equation esti-
mated is 1 2t t tP Q ub b∆ = + ∆ + , and we allow for an AR error of the form 

1t t tu ur e−= + . The data for this exercise consist of annual observations for 
the United States from 1980 to 2016. The data were expressed as percentage 
changes of the original data, and the price was adjusted for general inflation 
by dividing by the consumer price index prior to estimation. In Table 5.2, we 
give the results of estimating this equation by OLS, by autoregressive least 
squares (ARLS) using the Cochrane–Orcutt method and ARLS using the 
Hildreth–Lu method.

TABLE 5.2  Estimation of Demand for Oranges by Alternative Methods.

r̂ 2R ˆ
us

Least squares Intercept 
slope

1.0169 (1.9688)
−0.6014 (0.1273)

0 0.3961 11.7966

ARLS with 
Cochrane–Orcutt

Intercept 
slope

1.1196 (1.3749)
−0.5843 (0.1271)

−0.3663 0.4739 11.1762

ARLS with 
Hildreth–Lu

Intercept 
slope

1.1196 (1.3749)
−0.5843 (0.1271)

−0.3663 0.4739 11.1762

Standard errors are given in parentheses next to coefficients

As was the case with the consumption function, the choice of estimation 
method for ARLS makes no difference, and the results for the Cochrane–
Orcutt and Hildreth–Lu methods are identical. In both cases, the estimated 
AR coefficient is negative. However, the right-hand side variable is also 
negatively autocorrelated, so the bias in the coefficient standard errors will 
be positive. The coefficient estimates change slightly relative to the OLS 
estimates.

Historical Note: The possibility of misleading relationships or “spurious 
regressions” arising because of autocorrelation in time series has been 
known for many years. In an early paper, “Student” [Gosset1914] pro-
posed the “variate difference method” as a means of transforming the 
data so that correlations between variables reflect genuine relationships.
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5.5	� SERIAL CORRELATION AS A SIMPLIFYING 
ASSUMPTION

In Section 5.4, we saw that a regression equation with an AR error could be 
written as a single equation with lags of both the right-hand side variable and 
the endogenous variable. For example, suppose we have t t tY X ub= +  and 

1t t tu ur e−= + . From the error process, we have ( )1 1t t t tu Y Xr b e− −= − + ,  
and therefore, the equations can be combined to write

	 1 1t t t t tY X X Yb br r e− −= − + + .� (5.33)

Hendry and Mizon [Hendry1978] have pointed out that this is a restricted 
version of a more general autoregressive-distributed lag model (ARDL) of 
the form

	 1 2 1 3 1t t t t tY X X Yb b b e− −= + + + ,� (5.34)

where there is a nonlinear parameter restriction of the form 2 1 3b b b= − . 
Thus, (5.33) can be viewed as a simplified version of (5.34) because it has 
fewer estimated parameters. Like any restriction, however, this should be 
tested before it is imposed.

Dynamic models such as equation (5.34) can conveniently be written 
using lag polynomial notation. We define L such that k

t t kL X X −=  and write 
(5.34) as

	 ( ) 2
3 1

1

1 1t t tY L L X
bb b e
b

 
− = + + 

 
.� (5.35)

If the restriction 2 1 3b b b= −  is valid, then there is a common factor in the lag 
polynomials and tests of this restriction are therefore often referred to as 
common factor tests. The problem we have in testing this restriction is that 
the restriction imposed is nonlinear in the parameters. This means that the 
tests for linear restrictions we discussed in Chapter 4 are not appropriate 
here. However, Sargan [Hart1964] has demonstrated that this restriction can 
be tested using the following test statistic:

	 2
1ln ~

a
R

U

RSS
T

RSS
c

 
 
 

,� (5.36)

where T is the sample size and RRSS  and URSS  are the restricted and unre-
stricted residual sums of squares, respectively. Sargan shows that this statistic 
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is asymptotically distributed as chi-squared with degrees of freedom equal to 
the number of restrictions.

Example: Consider the consumption function model we estimated earlier. 
Estimation of a general model including lags of both disposable income and 
consumption yields the following results:

	

( )
( ) ( )

( )
( )

( )

( )
( )

10.0473 0.0991 0.1313

10.1024

ln 0.0314 0.8434 ln 0.6120 ln

ˆ0.7691ln

0.004996,

t t t

t t

U

C YD YD

C u

RSS

−

−

= − + −

               + +

=

� (5.37)

where standard errors are given in parentheses below coefficients and the 
model is estimated over the period 1971–2019. Estimation of the restricted 
model using the Cochrane–Orcutt method have already been reported 
in equation (5.32), and the residual sum of squares for this equation is 

0.005299RRSS = . To test if the restriction is valid, we construct the test 
statistic ( )ln /R UT RSS RSS  ( )49 ln 0.005299 / 0.004996= ×  2.885= . Under 
the null, this statistic is distributed as chi-squared with one degree of free-
dom and the 5% critical value is equal to 3.841. In this case, therefore, we 
cannot reject the null hypothesis at the 5% level, and we conclude that the 
model with a first-order AR error is an acceptable simplification of the more 
general ARDL model.

The common factor approach generalizes straightforwardly to more 
complex ARDL processes. Consider the general ARDL model of the form

	 ( ) ( )t t tA L Y B L X e= + ,� (5.38)

where ( )A L  is a polynomial of order p, ( )B L  is a polynomial of order q, and 
, 1, ,t t Te =   are independent random errors. If these polynomials are fac-

torized, then we can write

	
( )( ) ( ) ( )( )

( )
1 2 1 21 1 1 1 1

1 .

p t

q t t

L L L Y L L

L X

q q q w w

w e

+ + + = + +

                                                        + +





� (5.39)

Now, suppose we can identify a subset of the factors that are common to 
both polynomials, for example, 1 1q w=  and 2 2q w= . We can then use this 
property to write a restricted model of the form

	 ( ) ( )t t tD L Y E L X u= + ,� (5.40)
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where ( )D L  and ( )E L  are lower-order polynomials than ( )A L  and ( )B L  and 
the error process now takes the form,

	 ( )( )
( )

1 2

1 2 1 1 2 2

1 1

.
t t

t t t t

u L L

u u u

q q e

q q q q e− −

+ + =

= − + − +
� (5.41)

That is, the model becomes one in which there are two fewer lags of both X 
and Y in the estimating equation, but the error now follows a second-order 
AR process. As with our example, the common factor restrictions necessary to 
move from (5.38) to (5.40) can be tested using Sargan’s common factor test.

EXERCISES 

Excel files containing the data for these exercises are available as companion 
files for this book.

EXERCISE 5.1

Consider the following model in with Y depends on its own lagged value and 
the error follows an AR(1) process

1

1

t t t

t t t

Y Y u

u u

b
r e

−

−

= +
= +

where 1b < , 1r < , and , 1, ,t t Te =   are independent random distur-
bances. Show that ( ) ( )2

1 / 1t t uE u Y rs rb− = −  and hence show that OLS esti-
mation of the equation for Y will give a biased estimate of the b  parameter.

EXERCISE 5.2

Consider a model in which the errors follow a fourth-order autocorrelation 
process of the form

4t t tu ur e−= + ,

where , 1, ,t t Te =   are independent, identically distributed random errors 
with mean zero and variance 2

es . Note that models like this might arise when 
estimating using quarterly data.

a.	 Derive an expression for the variance of u in terms of 2
es  and r.

b.	 Show that the fourth-order autocorrelation is equal to r.

c.	 Show that the first, second, and third autocorrelations are all equal to zero.
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EXERCISE 5.3

An econometrician has estimated the following model that relates UK 
investment expenditure I to GDP Y. The data are annual, measured in £m at 
constant prices and the estimation period is 1948 to 2005.

	

( ) ( )2301.7 0.00339

2 9
1

ˆ24046.7 0.1810

0.9807 0.2844 43.3401 2.293349 10 .

t t tI Y u

R DW Q RSS

= − + +

= = = = ×

Standard errors are given in parentheses below coefficients and 1Q  is the 
Box–Ljung test statistic for first-order autocorrelation.

a.	 The econometrician then claims that this is an excellent model because 
it has a high 2R  and the t statistic for the slope coefficient is very large. 
Explain to him (firmly but politely!) why he is wrong.

b.	 Using the information given, perform two tests for the presence of first-
order autocorrelation in the residuals.

EXERCISE 5.4

Following your explanation of his result, the econometrician is sufficiently 
worried about his model to perform a further test for autocorrelation. This 
involves running the following regression in which ˆ tu  are the regression 
residuals from the first regression.

	

( ) ( ) ( )11237.53 0.0711 0.0018

2 8

ˆˆ ˆ398.6258 0.8682 0.0009

0.7340 1.44823 6.0760 10 .

t t t tu u Y

R DW RSS

e−= − + + +

= = = ×

a.	 Using these results, calculate the Breusch–Godfrey test statistic for the 
presence of first-order autocorrelation.

b.	 Set out the null and alternative hypotheses for the Breusch–Godfrey 
test, state the distribution for the test statistic under the null, and per-
form the test by comparing the test statistic with the 5% critical value 
under the null.

EXERCISE 5.5

Using the data in the INVESTMENT.XLSX spreadsheet, estimate a model 
of the following form

1 2 .t t tI Y ub b∆ = + ∆ +
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a.	 Examine the residuals from this model. Is there any visual evidence of 
serial correlation?

b.	 Perform the DW, Box–Ljung, and Breusch–Godfrey tests for first-order 
autocorrelation. Do these tests produce the same result?

c.	 What does your analysis of the residuals of this model suggest about the 
properties of the OLS estimator? How does your answer differ from the 
conclusions you reached regarding the model estimated in question 3?
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C H A P T E R  6
Heteroscedasticity, Functional 
Form, and Structural Breaks

Heteroscedasticity describes any situation in which the variance of the errors 
is not constant. In this chapter, we will discuss how heteroscedasticity arises 
in econometric models, how it can be detected, and how we can deal with 
it. We will also discuss the close relationship between heteroscedasticity and 
functional form. For example, we will show that if the functional form cho-
sen for a model is incorrect, then this may result in heteroscedastic errors. 
Similarly, if heteroscedasticity is detected, then one of the ways in which we 
can deal with the problem is by modifying the functional form. It therefore 
makes sense to consider these topics together.

The presence of heteroscedasticity in the errors of a regression model is 
a failure of the third assumption of the Classical Linear Regression Model 
(CLRM). It does not, in itself, mean that least-squares estimates will be 
biased but it does mean that they will be inefficient and that the estimates of 
the standard errors of the OLS estimates will typically be biased. Although 
heteroscedasticity can be found in models estimated using time-series data, 
it is more commonly a problem that is associated with cross-section analysis. 
In many ways, the presence of heteroscedasticity in cross-section models 
creates problems similar to those found when serial correlation is present in 
time-series models.

In the following sections, we will investigate the causes and implica-
tions of heteroscedasticity in detail. We will begin by investigating situa-
tions in which the phenomenon can arise followed by a discussion of its 
consequences. This is followed by discussions of methods through which 
the presence of heteroscedasticity can be detected and how it can be dealt 
with. Although much of the discussion will be in the context of cross-section 
data, we will also discuss the autoregressive conditional heteroscedastic-
ity (ARCH) model which is applicable to time-series data and which has 
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featured prominently in the financial econometrics literature in recent years. 
Our discussion of heteroscedasticity is followed by a discussion of functional 
form specification. We consider how we can test for the correctness of the 
functional form chosen and show how an incorrect choice is linked to het-
eroscedasticity in the errors. This leads naturally to a detailed discussion of 
the choice between linear and log-linear functional forms.

Historical Note: The terms heteroscedasticity, for situations in which 
the variance is not constant, and homoscedasticity, for situations in which 
in which it is constant, were first used by Karl Pearson [Pearson1905].

6.1	 CAUSES OF HETEROSCEDASTICITY

Consider a regression model of the standard form i i iY X ub= + . 
Heteroscedasticity is said to occur in any situation in which ( )2

iE u  varies 
with the value of i. This is a very broad definition, and it is therefore useful 
to consider some more specific cases that may arise in practice. One case 
that frequently arises is where the variance of the error term is a function of 
the exogenous variable ( ) ( )2

i iE u f X= . This naturally arises in many cross-
section regression models. For example, suppose we wish to model of con-
sumption expenditure for a cross section of households. Although we would 
reasonably expect the level of consumption to vary with the level of income, 
we might also expect the variability of consumption to depend on income 
levels. For example, we may observe a situation in which the variance of 
the error term is proportional to the square of the exogenous variable. This 
generates a model of the form

	
( )2 2 2 .

i i i

i u i

Y X u

E u X

b

s

= +

=
� (6.1)

This model is a particularly easy case to deal with because it suggests a natu-
ral rescaling of the data which would eliminate heteroscedasticity. If divide 
both sides of (6.1) by iX , then the model can be rewritten as /i i iY X vb= + ,  
where /i i iv u X=  and the heteroscedasticity is effectively eliminated. To see 
this, take expectations of the squared error term in the new form of the 
model to obtain ( ) ( )2 2 2 2/i i i uE v E u X s= = . This shows that the errors of the 
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revised model have constant variance (i.e., are homoscedastic) and therefore 
that heteroscedasticity is no longer a problem.

Historical Note: The spelling of the word heteroscedasticity is quite 
controversial. Some authors have argued that, because the word derives 
from the Greek word skedatos (capable of being scattered), it should be 
spelled heteroskedasticity. I have retained the established spelling with a 
“c” in this book, but you will frequently see the alternative in other texts.

Unfortunately, there is no guarantee that the heteroscedasticity we 
encounter will be of the convenient form found in equation (6.1). More 
generally, we might find a relationship between the error variance and the 
exogenous variable of the form ( )2 2 h

i u iE u Xs= . If such a relationship exists, 
then we can still rescale the data by dividing through by /2h

iX . This yields a 
relationship of the form

	 /2 /2
i

ih h
i i

Y
v

X X
b

= + .� (6.2)

/2h
i i iv u X−=  now has the desired properties for OLS estimation since 

( )2 2
i uE v s= , but this now leads to a potential complication in that the param-

eter h is likely to be itself unknown and must therefore be estimated.

6.2	 CONSEQUENCES OF HETEROSCEDASTICITY

Heteroscedasticity does not, in itself, imply that OLS estimation will lead 
to biased coefficient estimates. To demonstrate this, we note that the OLS 
estimator can be written as

	
( )1 1 1

2 2 2
1 1 1

ˆ
N N N

i i i i i ii i i
N N N

i i ii i i

X Y X X u X u

X X X

b
b b= = =

= = =

+
= = = +∑ ∑ ∑
∑ ∑ ∑

.� (6.3)

The fourth Gauss–Markov assumption allows us to write the expected value 
of this expression as

	 ( ) ( )1

2
1

ˆ
N

i ii
N

ii

X E u
E

X
b b =

=

= + ∑
∑

,� (6.4)
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and this, in turn, yields ( )ˆE b b= , provided that the first Gauss–Markov 
assumption also holds. Therefore, providing that we can maintain Assumptions 
1 and 4 of the CLRM, we can demonstrate unbiasedness. Since we have not 
had to invoke the assumption of homoscedastic errors, this assumption is not 
necessary for the proof. It therefore follows that heteroscedasticity is not in 
itself a reason to believe that OLS will produce biased estimates.

The derivation of the conditions under which heteroscedasticity does 
not lead to biased estimates parallels that in the previous chapter, where we 
showed that serial correlation does not, in itself, lead to bias in the coeffi-
cient estimates. However, a similar caveat applies in this case. As with serial 
correlation, heteroscedasticity may be the result of some other form of mis-
specification. For example, it may be the result of omitting a relevant vari-
able from the model. If this is the case, then OLS estimates will be biased. 
This bias, however, is the result of omitting the variable not the heterosce-
dasticity which arises as a symptom of the underlying misspecification.

Although heteroscedasticity does not imply that OLS will be biased, 
it does imply that OLS will be inefficient. Consider the regression model 
expressed in matrix form

	
( ) 2 .uE s

+

′ =

y= X u

uu V

β
� (6.5)

where V is a positive-definite matrix. This model is very general since it 
can allow for both heteroscedasticity and serial correlation in the errors. 
As a result, this framework is referred to as the Generalized Least Squares 
(GLS) Model. By virtue of the assumption that V is positive definite, it can 
be expressed as ′=V LL , where L is a nonsingular matrix. If we premultiply 
(6.5) by the matrix 1−L , then we obtain a model of the form

	 1 1 1 .− − −L y= L X + L uβ � (6.6)

Now considering the properties of the error term from this transformed 
model, we have

	 ( ) ( )1 1 2 1 1 2 .u uE s s− − − − ′ ′′ = = 
 
L uu L L V L I � (6.7)

What this shows is that an appropriate transformation of the data can pro-
duce a model which satisfies the CLRM assumptions of serial independence 
and homoscedasticity in the errors. It follows that application of OLS to 
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the transformed data will produce the best linear unbiased estimates of the 
parameters of interest. In particular, OLS estimates of the parameters of 
interest based on the transformed model will have lower variance than OLS 
estimates based on the original data. Therefore, OLS estimates based on 
model (6.5) will be inefficient. 

The GLS estimator appears an attractive methodology but it does suf-
fer from the problem that the matrix V is typically unknown. However, it is 
often enough to know that such a matrix exists in principle to develop the 
theoretical properties of the estimator. There are also empirical methods 
by which the parameters of the V matrix can be estimated along with the β  
parameters.

In addition to the problem of inefficiency, we can also show that the 
use of OLS estimation in conjunction with heteroscedastic errors leads to 
problems for statistical inference, in that the estimates of the standard errors 
of the regression parameters are biased. If the variance of the error term is 
positively correlated that of the exogenous variable(s), then we can also show 
that these standard errors are biased downward, leading to incorrect size of 
tests based on t ratios. To show this, let us consider the regression model of 
the form i i iY X ub= + . The sampling variance of the OLS estimator is

	
( )

2

1
42

1

N

i ii
N

Xii

X u V Xu
E

NX s
=

=

 
  =
 
 

∑
∑

.� (6.8)

The numerator of this expression is the variance of the product of two zero-
mean random variables X and u. By a standard result, we have 

	 ( ) ( ) ( ) ( ) ( ){ }22 2cov , cov ,V Xu X u V X V u X u= + − .� (6.9)

We assume that ( )cov , 0X u = , the X variable is uncorrelated with the equa-

tion error, but ( )2 2cov , 0X u ≠ , the errors are heteroscedastic. Therefore, we 
can write the sampling variance of the OLS estimator as

	 ( ) ( )2 2 2 2 2 2 2

4 4 2

cov , cov ,X u u

X X X

X u X u

N N N

s s s
s s s

+
= + .� (6.10)

The second part of the expression on the right-hand side is just the standard 
formula for the OLS variance. It therefore follows immediately that the OLS 
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formula underestimates the true sample variance if ( )2 2cov , 0X u > , that is, 
if there is a positive correlation between the variance of the error and the 
variance of the X variable.

Example: The following example illustrates the problem of bias in the stand-
ard error of coefficient estimates when the equation errors are heteroscedas-
tic. In this example, we have conducted 1,000 simulations of model (6.1) 
with b set equal to 1. The model estimated takes the form i i iY X ua b= + + . 
The distribution of the slope coefficient estimates obtained is illustrated by 
the histogram shown in Figure 6.1.

FIGURE 6.1  Distribution of Coefficient Estimates of Model with Heteroscedastic Errors.

From the information given in Figure 6.1, we can see that the OLS esti-
mator is not biased. The average coefficient estimate is extremely close to 
the true value of 1. However, out of the 1,000 regressions we estimate, the 
null hypothesis is rejected in 265 cases in favor of the two-sided alternative 

1 : 1H b ≠  when 5% critical values for the t test were used. If the test had 
the correct size, then we should observe rejection in about 50 cases for this 
simulation. The reason for this is that the standard error of the parameter 
estimate is typically underestimated. From Figure 6.1, we see that an unbi-
ased estimate of this standard error is 0.17. However, the average standard 
error of the individual regression estimates was 0.098.

Now consider a transformed model of the form / / /i i i i iY X X u Xa b= + +  
in which the parameter of interest is the intercept b. We again ran 1,000 
simulations of this model and obtained the histogram of OLS parameter 
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estimates shown in Figure 6.2. This shows that the OLS estimator is again 
unbiased with an average value which is very close to the true value of 1. The 
difference here is that estimates of the standard error of the parameter are 
now much more reliable. The average standard error from 1,000 regressions 
is 0.100 which is close to the standard error of the estimated coefficients of 
0.101 shown in Figure 6.2. Moreover, we reject the null hypothesis 0 : 1H b =  
in favor of the alternative 1 : 1H b ≠  only 59 times in this case. This is much 
closer to the 50 rejections predicted by the size of the test we have chosen.

FIGURE 6.2  Coefficient Estimates Based on Transformed Model.

6.3	 DETECTION OF HETEROSCEDASTICITY

The easiest case to deal with when testing for heteroscedasticity is the case 
in which the variance of the error term is known to be related to a one of the 
right-hand side variables of the model. In simple cases, this can be identified 
by plotting the data. For example, Figure 6.3 shows a scatter of points relat-
ing consumption per head and GDP per head for a sample of 182 countries. 
The data are taken from the Penn World Tables1 and are measured in US 
dollars.

1  https://cid.econ.ucdavis.edu/pwt.html
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FIGURE 6.3  Scatter Diagram of Consumption per Head against GDP per Head.

Figure 6.3 shows that there is a clear, positive relationship between these 
variables. If we estimate a bivariate regression equation based on this data, 
then we obtain the results shown in equation (6.11)

	 ( ) ( )512.59 0.0198

2 9

ˆ3805.88 0.4842

0.7692 4.6308 10 .

i i iCONS GDP u

R RSS

= + +

= = ×

� (6.11)

It is also obvious from Figure 6.3 that the regression line we fit through 
this scatter of points will exhibit heteroscedasticity. This is evident because 
the scatter of points clearly becomes much wider as the size of the exog-
enous variable increases. This affects how we interpret our regression results 
because we know that the standard errors of the coefficient estimates will be 
biased under these circumstances. It therefore becomes important for us to 
test if heteroscedasticity is present in our regression models and deal with it 
appropriately if it is detected.

An early suggestion for a formal heteroscedasticity test is provided 
by Goldfeld and Quandt [Golfeld1965]. Their testing procedure works as 
follows:

1.	 Order the data according to the size of the exogenous variable.

2.	 Divide the sample into three sections of size , 2 ,n N n n− , respectively, 
where n should be approximately equal to ( )3 / 8 N.
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3.	 Estimate separate regressions for the first and last n observations and 
generate the residual sum of squares. Then use the following F statistic: 

2 1/F RSS RSS=  as the test statistic. Under the null hypothesis that the 
errors are homoscedastic, this statistic will be distributed as ,n k n kF − − .

Note that we have assumed that the variance increases with the size of the 
exogenous variable. It is also possible that the variance might decrease as x 
increases, in which case we would find 2 1RSS RSS< . If this is the case, then 
the appropriate test statistic would be 1 2/F RSS RSS= .

Example: If we apply the Goldfeld–Quandt test to our model, then we set 
the size of the subsamples at ( )182 3 / 8 68n = × ≈ . We then order the data 
according to the size of GDP per capita and estimate separate regressions for 
the lowest and highest values. This gives us residual sums of squares equal to 

7
1 2.83167 10RSS = ×  and 9

2 2.37795 10RSS = × . The test statistic is therefore 
equal to 82.92F =  and the 5% critical value is equal to 5%

66,66 1.504F = . We 
therefore reject the null hypothesis that the variances in the subsamples are 
equal. The p value for this test statistic is effectively zero.

The Goldfeld–Quandt test is simple to apply in bivariate regression 
models because there is only one right-hand side variable and therefore, 
only one way in which we can order the data for the purposes of the test. 
In small samples, dividing the observations up in this way, and excluding a 
quarter of them, may produce a test with low degrees of freedom. A variety 
of tests have therefore been developed which avoid these problems. These 
all have the common feature that they are based on auxiliary regressions 
using the least squares regression residuals. These tests are listed in Table 
6.1 with the form of the auxiliary regression. In each case, the test is based 
on the null of homoscedasticity which holds if the slope coefficients in the 
auxiliary regressions are equal to zero.

TABLE 6.1  Residual Based Tests for Heteroscedasticity.

Test Form of Auxiliary Regression

Breusch–Pagan [Breusch1979] 2
0 1ˆ i i iu Xg g e= + +

Harvey [Harvey1976] ( )2
0 1ˆln i i iu Xg g e= + +

Glejser [Glejser1969] 0 1ˆ i i iu Xg g e= + +

White [White1980] 2 2
0 1 2ˆ i i i iu X Xg g g e= + + +
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The tests shown in Table 6.1 are all asymptotic in the sense that we can 
only derive large sample distributions for the test statistics. The test statistic 
in each case is 2NR , where N is the sample size and 2R  is the coefficient of 
determination for the auxiliary regression. The degrees of freedom is given 
by the number of slope coefficients in the auxiliary regression. Although it is 
not possible to derive small sample tests, it is also common practice to report 
F tests for the auxiliary regression. This is similar to the practice we noted for 
the Breusch–Godfrey test for serial correlation, which was justified by the 
Monte Carlo analysis of Kiviet [Kiviet1986] who showed that the small sam-
ple test had better properties than the asymptotic test. In practice, however, 
these tests usually produce the same results. To illustrate this testing proce-
dure, Table 6.2 reports both chi-squared and F tests for the four procedures 
set out in Table 6.1. In each case, the distribution of the statistic under the 
null hypothesis is given below the statistic. Not surprisingly, given the results 
of the Goldfeld–Quandt test earlier, all the tests in this table give very strong 
evidence of the presence of heteroscedasticity in our estimating equation.

TABLE 6.2  Residual-Based Tests for Heteroscedasticity Based on Equation (6.11).

Test Chi-Square Test Statistic F Test Statistic
Breusch and 
Pagan (1979)

57.14
Distribution under 2

0 1~H c
5% critical value = 3.841

82.37
Distribution under 0 1,180~H F
5% critical value = 3.894

Harvey (1976) 42.99
Distribution under 2

0 1~H c
5% critical value = 3.841

55.67
Distribution under 0 1,180~H F
5% critical value = 3.894

Glejser (1969) 96.08
Distribution under 2

0 1~H c
5% critical value = 3.841

201.29
Distribution under 0 1,180~H F
5% critical value = 3.894

White (1980) 138.23
Distribution under 2

0 2~H c
5% critical value = 5.991

282.66
Distribution under 0 2,180~H F
5% critical value = 3.046

6.4	 DEALING WITH HETEROSCEDASTICITY

We can deal with heteroscedasticity in several ways. We have already seen 
that it does not, in itself, imply that OLS will produce biased coefficient 
estimates, but that the estimates of the standard errors of the coefficients 
will typically be biased. Therefore, one method of allowing for the effects 
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of heteroscedasticity is to adjust the coefficient standard errors to allow for 
this. Consider the general model (6.5), it is straightforward to show that 

( ) 1ˆ −′ ′− = X X X uβ β  and therefore,

	

( )( ) ( ) ( ) ( )

( ) ( )

1 1

1 12

ˆ ˆ

.u

E E

s

− −

− −

′ ′ ′ ′ ′− − =

′ ′ ′=

X X X uu X X X

X X X VX X X

β β β β

� (6.12)

If V is known, then we could calculate the variance–covariance matrix of the 
parameter estimates using this formula rather than the OLS formula. This is 
not typically the case. However, White (1980) shows that

	
2

1

ˆ
N

i i i
i

u
=

′∑ x x � (6.13)

is a consistent estimator of 2
us ′X VX, where xi is a 1k×  vector of observa-

tions for the right-hand side variables corresponding to observation i. This 
is the formula used to calculate the White standard errors reported by many 
regression packages. Adjusting the standard errors to allow for the presence 
of heteroscedasticity means that statistical inference will be more reliable 
than if we were to rely on the OLS standard errors. However, it does not 
deal with the problem of the inefficiency of the OLS estimator. This problem 
requires a reformulation of the model itself.

Example: Consider estimates of the model (6.11) but with White standard 
errors replacing the OLS standard errors. This yields the following results:

	 ( ) ( )924.79 0.0635

2 9

ˆ3805.88 0.4842

0.7692 4.6308 10 .

i i iCONS GDP u

R RSS

= + +

= = ×
� (6.14)

Note that the coefficient estimates and all the statistics other than the stand-
ard errors in (6.14) are unchanged relative to (6.11). The White standard 
errors for both the coefficients are higher than the OLS standard errors. 
This means that, in this case, confidence intervals based on the White stand-
ard errors will be wider and hypothesis tests will be less likely to reject any 
given null hypothesis. For example, using the OLS standard errors, the 95% 
confidence interval for the slope coefficient is (0.4454, 0.5230) but, using the 
White standard errors, the interval is (0.3597, 0.6087).
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6.5	 TESTING THE FUNCTIONAL FORM

So far, we have maintained the assumption of a linear functional form for our 
regression equation. However, there is no guarantee that linearity is appro-
priate in all cases and, like any other assumption, this should be tested and, 
if necessary, the equation should be adjusted to allow for nonlinear effects. 
As we will show, there is also a very close link between the presence of non-
linear effects in the model and heteroscedasticity when we estimate a linear 
specification.

One way to think about the assumption of linearity is in terms of a Taylor 
series approximation to a more general functional form. Consider a general 
model of the form ( )i i iY f X e= + , where ( )if X  is a general nonlinear func-
tion and , 1, ,i i Ne =   are independent random errors. If we take a first-
order Taylor series approximation to this relationship, then we can write

	 ( )i x i iY Y f X X u= + − + .� (6.15)

The errors , 1, ,iu i N=   include both the original random errors and the 
higher-order terms from the Taylor series expansion. For example, suppose 
the true relationship is quadratic, so that the true relationship is

	 ( ) ( )2

1 2 3i i i iY X X X Xb b b e= + − + − + ,� (6.16)

then the errors in the linear specification would take the form 

( )2

3i i iu X Xe b= + − . This demonstrates the relationship with heteroscedas-
ticity since the incorrect adoption of a linear functional form has generated 
an error process which is heteroscedastic.

This approach suggests a method for testing for functional form. We can 
think of the linear specification as a first-order Taylor series representation 
of a general functional form. Adding higher-order powers to the equation 
allows us to test if the first-order approximation is adequate by testing the 
significance of quadratic and possibly higher-order terms. This is reasonably 
straightforward for the case described here because it simply involves add-
ing one extra regressor. However, it becomes progressively more difficult as 
we add extra variables to the model. Suppose we have two explanatory vari-
ables, so that the model takes the form ( )2 3,i i i iY f X X e= + . A second-order 
Taylor series for this function gives an equation of the form

	 2 2
1 2 2 3 3 4 2 5 3 6 2 3i i i i i i i iY X X X X X Xb b b b b b e= + + + + + + .� (6.17)
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Testing for the null of linearity now involves testing three restrictions, that 
is, 0 4 5 6: 0H b b b= = = . If k is the number of regressors, then the number 
of extra parameters necessary to test for linearity increases rapidly as we add 
extra regressors to the model. For 2k = , the number of extra parameters 
equals three, for 3k = , it is equal to six, for 4k = , it is equal to ten and so 
on. Every time we expand the model by adding an extra variable, we lose 
degrees of freedom and we add extra variables to the model which are likely 
to be highly collinear with the existing variables. The problem becomes even 
worse if we consider higher order expansions such as cubic equations.

Ramsey [Ramsey1969] suggests a neat way of avoiding the problems 
of loss of degrees of freedom and collinearity when testing for linearity. 
This test has been named as Regression Equation Specification Error Test 
(RESET). Consider estimates of the linear specification of the two-variable 
model. We have

	 2 2 2 2 2
2 2 3 3 2 2 3 3 2 3 2 3

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ 2i i i i i i i iY X X Y X X X Xb b b b b b= + ⇒ = + + ,� (6.18)

that is, the square of the fitted values is a weighted average of the squared 
values of the explanatory variable and their cross product. Thus, we can test 
for the significance of nonlinear elements in our regression model by add-
ing the squared fitted values from the linear specification to our regression 
equation and testing the restriction that the coefficient on this term is equal 
to zero. This has obvious economies in terms of limiting the loss of degrees 
of freedom from the inclusion of extra right-hand side variables as well as 
reducing the loss of efficiency in the estimates due to multicollinearity. The 
method also generalizes easily to test for cubic and higher-order nonlinear 
terms in the equation.

Example: Suppose we wish to test for nonlinearity in our cross-country con-
sumption model. The linear specification is given in equation (6.11). Adding 
the squared fitted values from this equation to the model and reestimating 
yields

	 ( ) ( ) ( )
( )

6

25

347.98 0.0308 1.399 10

2 9

ˆ262.338 1.0428 2.7 10

0.9258 1.4876 10 .

i i i iCONS GDP CONS u

R RSS

−

−

×
= + − × +

= = ×

� (6.19)

The significance of the additional variable can be tested using the following 
F statistic
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( ) 4.6308 1.4876 179

378.2
1 1.4876 1

RRSS URSS N k
F

URSS

− − −
= = × = .

Under the null hypothesis, this statistic is distributed as F with (1, 179) 
degrees of freedom. The 5% critical value for this test is 3.894, and therefore, 
we reject the null hypothesis at the 5% level. Our conclusion is therefore 
that there is significant evidence that a linear specification is not appropriate 
for this model.

6.6	 CHANGING THE FUNCTIONAL FORM

In the previous sections of this chapter, we noted the close relationship 
between the choice of functional form and the presence of heteroscedastic-
ity. It should come as no surprise that adjustment of the functional form can 
potentially address both these issues simultaneously. For example, we have 
noted that our cross-country consumption equation fails tests for heterosce-
dasticity and the RESET test for functional form. The question therefore 
arises whether a change in the functional form can deal with either, or both, 
of these problems. One possibility is to scale the data by dividing through by 
GDP. This generates a regression equation of the form

	
( ) ( )45.80 0.0165

2

1 ˆ300.66 0.7611

0.1932 1.44 18.32.

i
i i

CONS
u

GDP GDP

R WHITE RESET

   = + +   
   

= = =

� (6.20)

The slope coefficient in equation (6.11), now becomes the intercept in this 
regression. The question is whether this specification has dealt with the 
problems we identified in our previous estimates. The White test is dis-
tributed as chi-squared with two degrees of freedom under the null and 
therefore, comparing the test statistic with the 5% critical value of 5.991, we 
conclude that there is no longer evidence of heteroscedasticity. This means 
that we do not need to adjust the standard error of the coefficient estimate 
to account for heteroscedasticity, which means that we can generate a tighter 
95% confidence interval than the original regression permitted. In this case, 
our 95% confidence interval becomes ( )0.7288,0.7934 . The RESET test is 
distributed as F with (1, 179) degrees of freedom, under the null. Given 
the 5% critical value of 3.841, we therefore conclude that there remains 
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significant evidence of nonlinearity. This equation is therefore a definite 
improvement on (6.11) in that it no longer fails the heteroscedasticity test 
but there remains a problem of nonlinearity.

The log-linear functional form provides another option when looking to 
deal with problems of heteroscedasticity and functional form misspecifica-
tion. The general form for a bivariate regression is written ( )2 expi i iY BX ub= . 
Taking natural logarithms of this expression yields ( ) ( )1 2ln lni i iY X ub b= + + ,  
where ( )1 ln Bb = . This specification has the advantage that the slope coeffi-
cient gives us a direct estimate of the elasticity of Y with respect to X, which 
is constant when this functional form is used. This transformation can only 
be used when the data are always positive, but this is very common with 
economics data and, in some circumstances, is an advantage. For example, 
when modeling consumption expenditures, we would naturally wish to avoid 
models that could potentially generate negative predictions. In the context of 
the issues discussed in this chapter, we often find that models, which exhibit 
heteroscedasticity or fail the RESET test when estimated in linear form, are 
significantly improved by a transformation to a log-linear specification.

Before we present estimates of the log-linear version of our consumption 
model, it is interesting to examine a scatter plot of the log of consumption 
per year against log GDP per head. This is given in Figure 6.4. If we contrast 
this with Figure 6.3, which shows the levels data, we see immediately that 
there is no longer an obvious increase in the spread of the data as the size of 
the variable on the horizontal axis increases. The relationship also looks to be 
better approximated by a linear function.

FIGURE 6.4  Scatter Diagram of Log Consumption per Head against Log GDP per Head.
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Least-squares estimates of the log-linear model are given in equation (6.21). 
Both the White heteroscedasticity and the RESET tests indicate that the 
transformation has not completely removed these problems. The White test 
is asymptotically distributed as chi-squared with two degrees of freedom and 
the RESET test is distributed as F with 1 and 179 degrees of freedom. The 
critical values are therefore 5.991 and 3.894 and, therefore, we still reject 
the null in both cases. However, the absolute values of both test statistics 
are very much lower than was the case for the linear regression. This at least 
indicates that the test statistics are not as far out in the tails of the distribu-
tions than was the case for the linear model, which suggests that the perfor-
mance of the model has at least improved relative to the earlier version.

	

( )
( ) ( )

( )
0.1317 0.0142

2

ˆln 1.0164 0.8649 ln

0.9539 9.6173
6.6715 17.56.

i i iCONS GDP u

R RSS

WHITE RESET

= + +

= =
= =

� (6.21)

Finally, let us consider how we might test a hypothesis of interest using this 
model. Suppose we wish to test the null hypothesis that the elasticity of con-
sumption with respect to GDP is equal to one. This can be tested using a t 
test of the form ( ) ( )2 2

ˆ ˆ1 / SE .t b b= −  We have 2b̂  from equation (6.21) but 
the standard error reported will be biased because of the presence of hetero-
scedasticity. Using the White standard errors, we estimate ( )2

ˆSE 0.0155b = ,  
which is slightly higher than the OLS standard error. The test statistic is 
therefore 0.1351 / 0.0155 8.72t = − = − . This is higher than the 5% critical 
value of −1.645 for a one-tailed test, so we reject the null hypothesis that the 
elasticity is equal to one in favor of the alternative that it is <1.

6.7	� TESTING LINEAR VS LOG-LINEAR 
FUNCTIONAL FORMS

We have seen that both linear and log-linear functional forms are widely 
used in econometric research. Theory does not always give us definite guid-
ance as to which of these is most appropriate and it is therefore useful to test 
alternative specifications empirically. A number of alternative methods for 
doing this have been suggested, which we will discuss briefly in this section.

The first method we will discuss is described in a paper by Bera and 
McAleer [Bera1989]. They propose treating each specification in turn as 
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the maintained hypothesis with the other as the alternative. We then test if 
information from the alternative model is sufficient to reject the null that 
the maintained hypothesis is true. This becomes clearer if we present the 
mechanics of the construction of the test. Suppose we wish to test the null 
of a log-linear specification against the alternative of a linear model. We can 
write the two functional forms as follows:

	 ( ) ( )1 2 0ln lni i iY X ub b= + + ,� (6.22)

	 1 2 1i i iY X ug g= + + .� (6.23)

Let ( )ln iY  and iY  be the fitted values from these regressions, using these fit-
ted values, we estimate two artificial regressions of the form

	 ( )( ) 1 2 1exp ln ,i i iY Xg g h= + + � (6.24)

	 ( ) ( )1 2 0ln ln .i i iY Xb b h= + + � (6.25)

Finally, we estimate two further regressions of the form

	 ( ) ( )1 2 0 1 0
ˆln lni i i iY X ub b q h= + + + ,� (6.26)

1 2 1 0 1i i i iY X ug g q h= + + + .� (6.27)

The residuals from the artificial regressions are included in these regres-
sions to test if the alternative functional form can contribute any explanatory 
power to the dependent variable in each case. For example, if 0q  is significant 
in (6.26), then it indicates that a linear combination of the variables contrib-
utes to an explanation of the log of the dependent variable. Similarly, if 1q  is 
significant in (6.27), it indicates that a log-linear combination of the variables 
contributes to an explanation of the level of Y. The test statistic, in each case, 
is the t ratio for the coefficient of the residuals from the artificial regressions, 
which, as Bera and McAleer argue, follows a conventional t distribution.

Example: If we apply the Bera and McAleer test to our cross-country model 
of consumers’ expenditure per head, then we obtain the following results. 
First, the t ratio for 0 0: 0H q =  in (6.26) is equal to 7.00, indicating that we 
reject the null of a log-linear specification. Second, the t ratio for 0 1: 0H q =  
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in (6.27) is equal to −3.32, indicating that we also reject the null of a lin-
ear specification. This highlights a problem with this approach. Because the 
hypotheses here are nonnested, that is, neither is a restricted version of the 
other, it is possible for the procedure to result in both hypotheses being 
rejected. Alternatively, there are circumstances in which neither hypothesis 
will be rejected. It is therefore possible that the testing procedure will leave 
us unable to make a choice between competing models.

An alternative approach, which goes back to the work of Box and Cox 
[Box1964], is to construct a model in which both the linear and the log-linear 
specifications are embedded as special cases. Given this, we can then test 
if either of these special cases is an acceptable simplification of the more 
general model. To construct such a model, consider the following function:

	 ( )
( )

1
if 0

ln if 0.

i

i

i

z
z

z

l

l
l l

l

 −
≠= 

 ≠

� (6.28)

This function is continuous since ( ) ( )
0

lim 1 / lni iz zl

l
l

→
− = . Using this func-

tion, we define a regression model of the form

	 ( ) ( )1 2i i iY X ul b b l= + + .� (6.29)

It is straightforward to estimate (6.29) for given values of l but this is, of 
course, an unknown parameter. However, we can estimate (6.29) over a grid 
of values for l and choose the value that matches some criterion, for exam-
ple, maximizing the log-likelihood or minimizing the residual sum of squares.

Example: Application of the Box–Cox method to our model of consumer 
expenditure gives an estimated equation of the form

	 ( ) ( )

0.77 0.77

56.64 0.0192

2

1 1 ˆ426.82 0.5823
0.77 0.77
0.8353.

i i
i

CONS GDP
u

R

− −
= + +

=

� (6.30)

Note that the parameter estimate ˆ 0.77l =  lies some way between the 
extreme values of its possible range. This indicates that neither the linear 
nor the log-linear functional form provides an adequate approximation here 
which is consistent with the results of the Bera–McAleer test in which each 
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specification rejected the alternative. The standard errors for the other coef-
ficients are reported in parentheses below coefficients but these will be 
underestimated because the estimation method treats l as a fixed parameter 
when, in fact, it is estimated through the grid search procedure.

It is interesting to compare the three functions we have estimated on 
the same graph. Figure 6.5 shows the three alternative functional forms with 
consumers’ expenditure per capita on the vertical axis and GDP per capita 
on the horizontal axis. The curvature of the log-linear and Box–Cox func-
tions is most noticeable for lower values of GDP. As expected, the Box–Cox 
function lies between the linear and the log-linear specifications.

FIGURE 6.5  Consumption GDP Relationship Ð Alternative Functional Forms.

Historical Note: The Box–Cox transformation paper came about because 
George Box and David Cox were both serving on the committee of the 
Royal Statistical Society, and fellow committee members thought it would 
be amusing for them to write a paper together, given the similarity of their 
names. George Box also claims that it was inspired by the 19th Century 
comic opera Cox and Box or The Long Lost Brothers.
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6.8	� AUTOREGRESSIVE CONDITIONAL 
HETEROSCEDASTICITY

The discussion of heteroscedasticity in the previous sections has assumed 
that the model is estimated using cross-section data. This is because het-
eroscedasticity is often seen as a purely cross-section problem. Since the 
1980s, however, there has been a developing literature concerning a type of 
heteroscedasticity which is relevant for time-series applications – this is the 
case of Autoregressive Conditional Heteroscedasticity or ARCH, which was 
first introduced by Engle [Engle1982]. ARCH modifies the error process of 
the regression model in an interesting way. Consider the standard2 regres-
sion model t t tY Xb e= + . The error can be thought of as t t tze s= , where 

, 1, ,tz t T=   are independent, white noise disturbances with mean zero 
variance one, and ts  is a time-varying standard deviation. Our main interest 
here is in the process that determines this standard deviation. For example, 
we might have

	 2 2
0 1 1 ,t ts a a e −= + � (6.31)

which is an example of a first-order ARCH process. In this case, the condi-
tional variance at date t depends on the squared value of the random distur-
bance at date t − 1. This process generalizes straightforwardly to the ARCH 
(q) model, where we have

	 2 2
0

1

q

t i t i
i

s a a e −
=

= +∑ .� (6.32)

Testing for ARCH follows the Lagrange multiplier methodology we 
used earlier to construct tests for serial correlation and heteroscedasticity. 
Taking the residuals from a regression estimate, we estimate an auxiliary 
regression based on the squared residuals which takes the form

	 2 2
0

1

ˆ ˆ
q

t i t i t
i

e a a e n−
=

= + +∑ .� (6.33)

We can then test for the joint significance of the lagged squared regres-
sion residuals using either TR2 from the auxiliary regression, which is 

2  Note that we have changed to use the subscript t for observation, since we this is a time-
series model and that we have changed to the symbol e for the equation error for consist-
ency with the ARCH literature where this is the most commonly used notation.
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asymptotically distributed as 
2
qc  under the null, or by using an F test for the 

joint restrictions 0 1 2: 0qH a a a= = = = . The F test is not strictly valid here, 
since it is a small sample test, and we do not know the small sample distribu-
tion. However, as with the Breusch–Godfrey test for serial correlation and 
the White test for heteroscedasticity, the F form of the test appears to per-
form well in practice and is commonly used in applied work.

Historical Note: Robert Engle (1942-) won the Nobel prize for 
Economics in 2003 (awarded jointly to Engle and Clive Granger) for his 
work on ARCH processes.

Example: Consider the following OLS regression in which we have regressed 
the daily returns3 from holding Cadbury Schweppes equity on a constant and 
the daily returns on the overall market index as measured by the FTSE100.

	 ( )
( ) ( )

( )
4

5

0.0444.6 10

2

ˆln 9.78 10 0.58 ln

ˆ0.12 0.016 1.98.

t t tCS FT

R DW

e

s

−

−

×
∆ = × + ∆ +

= = =

� (6.34)

To test for a first-order ARCH process in the errors, we estimate the 
following  regression based on the squared regression residuals from 
equation (6.34)

	 ( ) ( )5

2 4 2
10.0271.9 10

2

ˆ ˆ ˆ2.22 10 0.19

48.32 50.11.

t t tv

TR F

e e
−

−
−

×
= × + +

= =
� (6.35)

Under the null of homoscedastic errors, the test statistic TR2 follows a chi-
square distribution with one degree of freedom and, since the 5% criti-
cal value for the 

2
1c  distribution is 3.84, we reject the null using this test. 

Similarly, the F statistic follows an F distribution with 1 and 1,300 degrees of 
freedom under the null, and the 5% critical value for 1,1300F  is 3.84, meaning 
that this test also implies rejection of the null. In both cases, the test statistic 
is much larger than the 5% critical value, and therefore, it appears that there 
is strong evidence of ARCH effects in the residuals.

3  The data are daily from 26/10/1995 to 23/10/2000 which gives a total of 1,303 observations 
when weekends and holidays during which no trading takes place are eliminated from the 
sample.
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It is relatively straightforward to estimate models with a low-order ARCH 
process. As the number of lags increases, however, this becomes more dif-
ficult. For example, suppose we have a process of the form (6.32), where 
q is large. Unconstrained estimation of equations like this is problematic, 
because of the loss of degrees of freedom, and because the lagged squared 
residuals are likely to be highly correlated with each other, leading to impre-
cise estimates. As a response to these problems, Bollerslev [Bollserslev1986] 
introduced the Generalized Autoregressive Conditional Heteroscedasticity 
model (GARCH). This takes the form

	 2 2 2
0

1 1

q p

t i t i i t i
i i

s a a e b s− −
= =

= + +∑ ∑ ,� (6.36)

where ts  is the conditional standard deviation at date t. This is the 
GARCH(p,q) model. In general, the order of the polynomial functions p 
and q will be quite low. For example, Hansen and Lunde [Hansen1965] 
have shown that the GARCH(1,1) fits very well in a wide variety of different 
models. The GARCH(1,1) model takes the form

	 2 2 2
0 1 1 1 1t t ts a a e b s− −= + + .� (6.37)

The key feature of the GARCH model is that the conditional variance 
evolves through time. Thus, the assumption of homoscedastic (constant vari-
ance) error terms is no longer valid. The conditional variance 2

ts  in (6.37) 
depends on the squared lag of the unconditional variance 2

1te −  and its own 
lagged value 2

1ts − . Backward substitution in the expression for the conditional 
variance allows us to write it as

	 2 1 20
1 1

111
i

t t i
i

as a b e
b

∞
−

−
=

= +
− ∑ .� (6.38)

Equation (6.38) shows that the conditional variance can be written as an infi-
nite moving average of past values of the unconditional variance. Note that 
a necessary, but not sufficient, condition for this sum to converge is 1 1b < .  
The fact that this is not sufficient can be seen by examination of the behav-
ior of the unconditional variance. Note that we can write 2 2 ,t t tve s= +  that 
is, the unconditional variance is equal to the conditional variance 2

ts  plus a 
residual vt. Using this expression and substituting into (6.37), we can write 
the following equation for the unconditional variance:

	 ( )2 2
0 1 1 1 1 1t t t tv ve a a b e b− −= + + + − .� (6.39)
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Equation (6.39) indicates that the unconditional variance follows an 
ARMA(1,1) process. Moreover, it also demonstrates that, for this process to 
be stationary, we require 1 1 1a b+ < .

We can deal with ARCH effects in two ways: we can either adjust the 
standard errors to allow for their presence or we estimate a model that 
explicitly allows for ARCH effects. We will consider each method in turn. 
First, we present a model with adjusted standard errors for the coefficients.

	
( )

( ) ( )
( )

4

5

0.0554.25 10

2

ˆln 9.78 10 0.58 ln

ˆ0.12 0.016 1.98.

t t tCS FT

R DW

e

s

−

−

×
∆ = × + ∆ +

= = =

� (6.40)

The results for equation (6.40) are very similar to those shown in equation 
(6.34). The parameter estimates are identical – the only difference is that 
the standard errors have been adjusted using the Newey–West [Newey1987] 
procedure. This has increased the standard error for the slope coefficient 
somewhat which, in turn, means that the confidence interval for the beta 
parameter will be somewhat wider.

An alternative approach to dealing with ARCH effects in the errors is to 
estimate a model that explicitly allows for their presence. To do this, we will 
need to assume a specific functional form for the ARCH effects. For exam-
ple, the assumption of a GARCH(1,1) process allows us to estimate both the 
mean and the conditional variance equations given in 

	
( )

( ) ( )
( )

( ) ( ) ( )

4

7

5

0.0353.86 10

2 6 2 2
1 10.0065 0.006494.52 10

ˆln 3.98 10 0.62 ln

ˆˆ ˆ2.09 10 0.04484 0.94906 .

t t t

t t t

CS FT e

s e s

−

−

−

×

−
− −

×

∆ = × + ∆ +

= × + +
� (6.41)

When we estimate the model with a GARCH error, the parameter estimates 
for the mean equation do change, though the effects are small. If we exam-
ine the variance equation, then we see that the sum of the coefficients on 
the lagged squared residual and the lagged variance term is quite close to 1 
(which would make the equation unstable). However, this is quite a common 
result in models with GARCH errors.

6.9	 STRUCTURAL BREAKS

So far, we have assumed that the parameters of the regression model are 
constants. However, this is an assumption which we may wish to test under 
certain circumstances. For example, suppose there is a significant change in 
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the economic environment, such as a major banking crisis, the outbreak of 
war, or a disease pandemic. It would be sensible to test whether such events 
have an effect on the parameters of the models which we estimate. A num-
ber of tests exist which allow us to do this, and we will consider some of the 
more commonly used tests here.

Tests for structural breaks, or parameter instability, differ according to 
whether or not we are aware of the nature of the division of the sample 
prior to estimation. The easier case to deal with is when we can identify the 
sample division in advance. When using cross-section data, we might wish 
to divide the sample into different subgroups and test if the parameters are 
constant across these groups. For example, if we have a sample of hours 
worked and wages paid, we could partition the sample according to some 
broad characteristics, say male and female workers, and test if the elasticity 
of hours worked with respect to the wage is the same for both groups. When 
working with time-series data, we might be aware of the date at which a 
major event occurred, which is the potential cause of parameter instability. 
Hence, we would divide the sample into observations prior to, and after, this 
date and test if the parameters are the same across subperiods.

The most commonly used tests for parameter instability, when the 
sample division is known in advance, are the Chow Tests. These are based 
on the work of Gregory Chow [Chow1960] who proposes two tests for 
the null hypothesis that parameters are constant across subsamples of the 
data. Suppose we wish to estimate a linear regression model of the form 

t t tY X ua b= + +  based on a sample 1, ,t T=   and that we believe a struc-
tural break may have occurred at date T1. The first Chow test, known as 
Chow’s Breakpoint test, is constructed by estimating separate regressions 
prior to the date of the break 11, ,t T=   and after the break 1 1, , .t T T= +   
From these, we calculate residual sums of squares RSS1 and RSS2. This allows 
both the intercept and the slope coefficients to differ in the two subperiods. 
We then estimate a single regression based on the whole sample and gener-
ate the residual sum of squares RSS. This imposes the restrictions that the 
intercept and the slope coefficients are equal across the whole sample. The 
test statistic for the null hypothesis that these restrictions are valid is given by

	
( )

( )
1 2

1 2

4
2

RSS RSS RSS T
F

RSS RSS

− + −
=

+
.� (6.42)

Under the null hypothesis, this test statistic is distributed as F with two and 
4T −  degrees of freedom. The degrees of freedom for the numerator is 

equal to two, that is, the number of restrictions, and the degrees of freedom 
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for the denominator is equal to 4T − , that is, the number of parameters 
in the unrestricted model. In more general models, with k parameters, the 
degrees of freedom would be equal to k and 2T k− .

Example: Although we have set out the Chow Breakpoint test in terms of 
time-series data, it can just as easily be used in cross-section models where 
the sample is divided into subsets and we wish to test for parameter con-
stancy across this division. To emphasize this, we will use a cross-section 
application to illustrate this test. The sample here is the cross-section con-
sumption relationship we examined earlier in this chapter. Here, we wish 
to test if the parameters of the consumption relationship are different for 
low- and high-income economies. Therefore, we order the data by the size 
of income per capita and estimate separate regressions for low- and high-
income countries. There are 182 data points in total, so we divide the sample 
in half and estimate separate regressions for the lowest 91, and highest 91, 
income economies. The results are given in Table 6.3 where ci is consump-
tion per head and yi is GDP per head.

TABLE 6.3  Consumption Relationship Estimates 182 Economies.

Whole sample,  
N = 182 ( ) ( )0.01420.1317

2

ˆln 1.0164 0.8649 ln

ˆ0.9539 0.2311 9.6173

i i i

u

c y u

R RSSs

= + +

= = =

Low-income 
economies,  
N = 91

( ) ( )0.1962 0.0238

2

ˆln 0.4062 0.9401 ln

ˆ0.9462 0.1817 2.9378

i i i

u

c y u

R RSSs

= + +

= = =

High-income 
economies,  
N = 91

( ) ( )0.05130.5248

2

ˆln 2.1999 0.7503 ln

ˆ0.7062 0.2597 6.0003

i i i

u

c y u

R RSSs

= + +

= = =

From Table 6.3, we see that the parameters certainly look quite different 
for the two subsamples. The intercept is much higher for the high-income 
economies, whereas the slope coefficient is much lower. If this difference 
significant? To test this, we compute the Chow Breakpoint test statistic as

	
( )9.6173 2.9378 6.0003 182 4

6.763
2.9378 6.0003 2

F
− + −

= × =
+

.� (6.43)
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Since the 5% critical value for an F statistic with 2 and 178 degrees of free-
dom is equal to 3.047, we conclude that there is a significant difference in 
the parameters across this division of the sample. We note that this may be 
related to the functional form misspecification we detected earlier for this 
model.

The Chow Breakpoint test works well in situations where each subsam-
ple has sufficient observations to estimate the regression equation. In many 
situations, however, there may be very few observations in one of the sub-
samples, and we may be unable to estimate a regression equation in both 
cases. Even if we technically have enough observations for the regression 
equation to be computed, the degrees of freedom may be so low that the 
results are unreliable. In these cases, we can use Chow’s second test which 
is described alternatively as Chow’s Forecast test or the Predictive Failure 
test. This can be understood easily by examination of the test statistic which 
takes the form

	 1 1

1

RSS RSS T k
F

RSS n
− −

= .� (6.44)

This test statistic is distributed as 
1,n T kF −  under the null hypothesis that the 

parameters are constant. To implement this test, we estimate a regression 
for a subsample of data based on T1 observations, where k is the number of 
regression parameters. We then compute the residual sum of squares for this 
sample RSS1 and the residual sum of squares for the full sample of data RSS. 
The full sample differs from the subsample by the addition of n extra data 
points. The objective here is to test if the addition of the extra n data points 
increases the residual sum of squares by more than we would expect if the 
parameters are constant. This test works well in situations where the number 
of extra data points n is too small to permit estimation of a separate equation.

Example: Table 6.4 provides an example of Chow’s Forecast test. Here, 
we estimate an Okun’s law relationship between the change in percent-
age unemployment (DU) and the percentage change in GDP (DY), for the 
United States over the period 1950–2016. We then test, if the addition of 
three extra observations for the period 2017–2019, indicates a change in the 
parameters of this equation. The test statistic is calculated as 

	
1.312 65

0.7689
36.9761 3

F = × = .� (6.45)
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The 5% critical value for an F test with 3 and 65 degrees of freedom is 2.746. 
Therefore, there is little evidence here of parameter instability from adding 
the extra three observations to the sample.

TABLE 6.4  OkunÕs Law Relationship Estimates for the United States.

Period 1950–2016
( ) ( )0.1591 0.0398

2

ˆ1.0434 0.3291

ˆ0.5123 0.7542 36.9761
1.7776

t t t

u

DU DY u

R RSS

DW

s

= − +

= = =
=

Period 1950–2019
( ) ( )0.1558 0.0395

2

ˆ1.0023 0.3246

ˆ0.4981 0.7504 38.2881
1.7272

t t t

u

DU DY u

R RSS

DW

s

= − +

= = =
=

The two Chow tests are most useful when we can identify the nature of 
the structural break prior to estimation. However, there may be situations in 
which this is not possible, and we would like to search for possible structural 
breaks without prespecification. A similar approach to the Chow Forecast 
test can be used here, by computing the one-step ahead prediction errors and 
using these to identify possible candidates for structural breaks. Consider 
the standard regression model in mean difference form, t t tY X ub= + , the 
one-step ahead prediction error is defined as

	 1
ˆv Y Xt t t tb −= − ,� (6.46)

where 1
ˆ
tb −  is the estimated parameter based on data up to period 1t − . The 

variance of the prediction error can be shown to be

	
2

2
1 2
1

1u

tt

X

X
t

ts −

=

 
 +
  ∑

,� (6.47)

and the scaled prediction errors are defined as

	
12 2
1

/ tt

v

X Xt

t
t

t

w
−

=

=
 
 ∑

.� (6.48)

Under the null hypothesis that the parameters are constant, the prediction 
errors follow a normal distribution with mean zero and variance 2

us . By esti-
mating a succession of regression models, adding one observation to the 
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sample in each case, we can compute the scaled prediction errors and assess 
if they indicate a significant deviation from their expected value. By doing, 
we identify possible periods in which there has been a change in the value of 
the regression parameters. Figure 6.6 shows the results of these calculation 
for our Okun’s law relationship.

FIGURE 6.6  One-Step Ahead Prediction Errors for the OkunÕs Law Model

The broken lines in Figure 6.6 shown a 95% confidence interval for the 
prediction errors. Cases in which the prediction error falls outside these 
bounds are a potential indicator of parameter instability. The graph also 
gives the p values for such cases, indicating which are the most statistically 
significant. From the graph, we see that there are four cases in which the 
prediction error lies outside the confidence interval bands. However, with 
prediction errors in total, we would expect 65 0.05 3.25× =  to fall outside the 
confidence interval, simply due to our choice of interval. Therefore, there is 
very little evidence here of parameter instability.

EXERCISES 

Excel files containing the data for these exercises are available as companion 
files for this book.

EXERCISE 6.1

Consider the regression model i i iY X ua b= + + , where ( )2 2
i u iE u Xs= , 

and 0iX >  for all values of i. Find a transformation of the model which has 
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homoscedastic errors and therefore will permit efficient estimation by least 
squares.

EXERCISE 6.2

Consider a regression model of the form lni i iY X ua b= + + , where the 
errors are homoscedastic. An econometrician estimates a linear model of 
the form i i iY X ua b= + + . Using a second-order Taylor series approximation 
around 1X = , show that this will have heteroscedastic errors.

EXERCISE 6.3

An econometrician has estimated the following model that relates infla-
tion to money growth for a sample of 83 economies. The data are average 
annual values for the period 1980–1993 and are taken from the 1995 World 
Development Report.

Ordinary Least Squares Regression Results
Sample period: 1 to 83
Dependent Variable INF
Sample Size 83

Variable	 Coefficient	 Std Err	 T Ratio

C	 -5.681642	 0.704442	 -8.065443
MG	 1.046654	 0.011553	 90.589950

R-squared	 0.9902	 F statistic	 8206.5392
SEE	 5.657356	 RSS	 2592.460070
Durbin–Watson	 1.7031	 LogL	 -260.595058
ARCH(1) test	 3.3716	 AIC	 6.327591
Jarque-Bera	 56.2514	 SIC	 6.385877

a.	 Comment on the regression results and say why the econometrician 
might argue that the model is both a good statistical fit and consistent 
with economic theory.

b.	 The data, which are stored in the Excel data file INF.XLSX, are ordered 
according to the rate of money growth. Given this you should easily be 
able to perform the Goldfeld–Quandt test for heteroscedasticity. Con-
struct the test statistic and compare it with an appropriate critical value. 
What do the results show?
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c.	 Perform the White test for heteroscedasticity. Are the results consistent 
with the Goldfeld–Quandt test.

d.	 Set out the implications of your test results for the interpretation of the 
OLS regression results given above.

EXERCISE 6.4

The regression output below gives the results of estimating a market model 
that relates the daily returns from holding shares in the Tesco company to 
the daily returns for the overall FTSE 100 index for the period January 2003 
to May 2008.

Ordinary Least Squares Regression Results
Sample period: 2 to 1359
Dependent Variable RET_TESCO
Sample Size 1358

Variable	 Coefficient	 Std Err	 T Ratio

C	 0.045903	 0.031952	 1.436634
RET_MARKET	 0.736342	 0.032957	 22.342221

R-squared	 0.2690	 F statistic	 499.1748
SEE	 1.176692	 RSS	 1877.524340
Durbin–Watson	 2.0885	 LogL	 -2146.874490
ARCH(1) test	 21.0253	 AIC	 3.164763
Jarque-Bera	 532.8067	 SIC	 3.172442

a.	 Comment on the values taken by the slope coefficient and the R2 for this 
regression.

b.	 Is there any evidence for an ARCH process in the residuals? Perform 
a formal test for the null hypothesis that the residuals do NOT exhibit 
ARCH.

c.	 Using the data in the Excel workfile SHARES.XLSX, estimate market 
models for the following companies: AstraZeneca, Lloyds Bank, and 
Vodafone. In each case, perform a test for the presence of ARCH in the 
residuals.

d.	 What are the implications of your results for the OLS estimates of the 
market model? 
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C H A P T E R  7
Binary Dependent Variables

Consider the standard regression model i i iY X ua b= + + . If we assume that 
the error follows a normal distribution, in which any real value is possible, 
then it follows that iY  should also be able to take on any real value. However, 
the data we deal are often not consistent with this. In many cases, the 
dependent variable can only take on a limited number of values. One com-
mon example of this is when it is binary in nature. An example of this is sur-
vey data in which individuals are asked if they are employed or unemployed. 
Alternatively, we might observe a sample of companies some of which go 
into liquidation during a given period and some of which do not. In both 
these cases, the data can be coded so that the variable to be explained takes 
on only two possible values – 0 or 1.

There is nothing to prevent us from calculating a least squares regres-
sion equation even if the variable to be explained is coded as a 0–1 variable. 
However, the interpretation of such an equation becomes somewhat prob-
lematic. To illustrate this, let us consider a specific example. Suppose we 
have data for the share price of a company which is coded as 1 for days on 
which the share price rises, and 0 for days on which it remains constant or 
falls. We wish to examine whether there is a relationship between move-
ments in the share price (coded in this way) and movements in the overall 
stock market index. As a first attempt, we estimate a least squares regression 
of the share price change variable (in our example, this is the price of British 
Airways (BA) shares) on a constant and the change in the Financial Times 
Stock Exchange (FTSE) market index. The results are given in equation 
(7.1),

	 ( ) ( )0.0121 1.2499

2

0.4959 23.3086

0.2032 2.0407.

t t tBA FT u

R DW

= + +

= =
� (7.1)
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The results in equation (7.1) are consistent with what we might expect in 
that they show an apparently significant relationship between the change in 
the BA share price and the % change in the stock market index. This is indi-
cated by the fact that the t ratio for the independent variable, which can be 
calculated as 23.3086 / 1.2499 18.65= , is above the 5% critical value of 1.96 
by some margin. However, it is not immediately obvious how the coefficient 
estimate should be interpreted in this case. The FT variable in this case is the 
first difference of the logarithm of the stock market index. As such, a value 
of 0.01 for this variable is equivalent to a rise of 1% in the market index. 
Therefore, the coefficient of 23.3 indicates that a 1% rise in the overall stock 
market increases the expected value of the left-hand side variable by 0.233 – 
but what does this mean in economic terms when the dependent variable is 
binary?

We are used to thinking of regression coefficients as marginal responses 
and one way of interpreting the coefficients in models like this is as marginal 
probabilities. We can interpret the coefficient b as giving the increase in 
( )1iP BA =  associated with a unit increase in the value of iX . In our example, 

the coefficient of 23.3 indicates that a rise of 1% in the overall stock market 
increases the probability of there being an increase in the value of BA shares 
by 0.233. This interpretation of the regression model is referred to as the 
linear probability model because it assumes a linear relationship between 
the probability of an event occurring and the set of explanatory variables on 
the right-hand side of the estimated equation.

The linear probability model is intuitively appealing, but it should quickly 
become apparent that this interpretation has a number of logical problems. 
The first concerns the nature of the probabilities estimated by the model. 
Since the left-hand side variable only takes on the values 0 or 1, the natural 
way to think of the data is as the outcomes of a series of Bernoulli trials or 
experiments which can either be successes ( 1tBA = ) or failures ( 0tBA = ). 
If we adopt the linear probability model interpretation of our regression, 
then the fitted values ˆ ˆ� �� FTt are the estimated conditional probabilities 
of a success. Probability theory requires that these conditional probabilities 
should lie in the range 0–1 since negative probabilities, or probabilities >1, 
make no sense. However, there is nothing in the linear probability model 
that constrains the conditional probabilities to lie within this range. Thus, 
the linear probability model may easily produce results in which the pre-
dicted values are inconsistent with probabilities.
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Examination of the actual and fitted values from our estimated model of 
BA share prices illustrates the inconsistency of the linear probability model. 
In Figure 7.1, we show the scatter of actual values against those of the right-
hand side variable as well as the fitted values from the estimated regression 
equation. The actual values lie on two horizontal lines passing through 0 and 
1, respectively. The fitted values lie on the line with a positive slope illus-
trated in the diagram. For a considerable number of values of X, the fitted 
values fall outside the range 0–1. Out of 1,366 fitted values, 30 are <0 and 
29 are >1, meaning that 4.3% of the cases have fitted probabilities that lie 
outside the permissible range.

Another problem with the linear probability model is that the errors are 
heteroscedastic by construction. For simplicity, let us consider the model in 
mean deviation form i i iY X ub= + . This means that there is a single unknown 
parameter, allowing the algebra to be simplified. Given the binary nature of 
the Y variable, the error can take on only two possible values for given X.

FIGURE 7.1  Actual and Fitted Values for the BA Share Price Model.
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if 0

1 if 1
i i

i
i i

X Y
u

X Y

b
b

− =
=  − =

.� (7.2)

The variance can be written

	
( ) ( ) ( ) ( )( )

( )

2 22 1 1

1 .

i i i i i i

i i

V u E u X X X X

X X

b b b b

b b

= = − + − −

= −
� (7.3)

The error variance is a function of the X variable and therefore, heterosce-
dasticity is present. If this was the only problem with the linear probability 
model, then we could use the methods described in Chapter 6 to deal with 
this. For example, we could adjust the coefficient standard errors to allow for 
more reliable statistical inference, or we could try scaling the data to make 
the errors homoscedastic. However, the fact that we have both heterosce-
dasticity, and the problem of model predictions that lie outside the possibly 
range of values for the dependent variable, means that it becomes necessary 
to look for alternative models in this case.

7.1	 LOGIT ESTIMATION

The linear probability model has been shown to be inconsistent in that the 
fitted values can often fall outside the range of theoretically feasible values. 
However, the principle of interpreting the regression results as giving esti-
mates of probabilities remains a promising approach. What we need is to 
find an alternative formulation which does not suffer from the inconsisten-
cies of the linear probability framework. Fortunately, there are several pos-
sible solutions to this problem which we will now consider.

Our problem is one in which we wish to model the effects of a variable X 
on the probability that a binary variable Y takes the value 1. Let us begin by 
assuming that this function takes the form ( ) ( )1i i ig X P Y X= = . Note that it 
immediately follows that ( ) ( )0 1i i iP Y X g X= = − . This function should have 
the following properties:

1.	 The probability should always lie between the values 0 and 1 for any 
value of X.

2.	 The probability that Y = 1 should approach 0 for very small values of X.

3.	 The probability that Y = 1 should approach 1 for very large values of X. 
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Now, assuming that we can find a function that has these properties, we can 
write down the joint probability of observing any particular set of values of 
Y as

	 ( ) ( )( )1

1

1 ii
N

YY
i i

i

g X g X
−

=

−∏ .� (7.4)

The function ( )ig X  will typically depend on a number of unknown param-
eters. For example, if we take the linear probability function, then we would 
have ( )i ig X Xa b= + . More generally, suppose we write the function in 
terms of its parameters as ( ),ig X a b , then we can substitute this into the 
joint probability function to obtain the likelihood function

	 ( ) ( ) ( )( )1

1

, , 1 ,
ii

N YY

i i
i

L g X g Xa b a b a b
−

=

= −∏ ,� (7.5)

or taking logarithms of (7.5), we have the log-likelihood function

	 ( ) ( )( ) ( ) ( )( ){ }
1

, ln , 1 ln 1 ,
N

i i i i
i

LL Y g X Y g Xa b a b a b
=

= + − −∑ .� (7.6)

The method of maximum likelihood involves choosing estimated values 
of the parameters α̂ and β̂, which maximize the function defined above in 
equation (7.6). In many cases, it will not be possible to find an analytical solu-
tion for the maximum-likelihood estimator. However, it will usually be possi-
ble to use numerical methods to find estimates of the unknown parameters. 

Now, let us consider a particular functional form for the probability as 
shown in equation (7.7). This is known as the logistic function and is given 
in equation (7.7). This function has a characteristic sigmoid shape while is 
illustrated in Figure 7.2 for parameter values 0a =  and 1b = ,

	 ( ) ( )
( )

exp

1 exp
i

i
i

X
g X

X

a b
a b
+

=
+ +

.� (7.7)

Historical Note: The term “logit” was first used in 1944 by Joseph 
Berkson [Berkson1944] (1899–1982) to parallel that of “probit” previ-
ously used by Chester Bliss [Bliss1934]. Both authors were concerned 
with mapping variables that were limited to the range [ ]0,1  to ] [,−∞ ∞  so 
they could be analyzed using the normal distribution.
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Does (7.7) satisfy the properties we have set out for a probability function? 
The plot of equation (7.7) shown in Figure 7.2 indicates that this is the case. 
First, ( ) 0ig X >  for any value of X, second, we have ( )lim 0

X
g X

→−∞
= , and third, 

we have ( )lim 1iX
g X

→∞
= . Thus (7.7) satisfies all the criteria for a probability 

function. Using this function, we derive the maximum likelihood as

	
� �
� � � � � �1

ˆˆexp 1
arg max ln 1 ln

ˆ ˆˆ ˆ1 exp 1 exp

N i

i i
i i i

X
Y Y

X X

� �

� � � ��

� �� � � ��� �� � � �� �� �� � � �� � � �� �� � � �
 �
� .� (7.8)

Although we cannot find an analytical solution to this problem, it is relatively 
easy to find a numerical solution. For example, using our data set for the 
returns on British Airways shares, we obtain the results shown in Table 7.1.

TABLE 7.1  Logit Regression Results Ð British Airways Share Model.

Coefficient Standard error T Ratio
α̂ −0.0426 0.0618 −0.6901

b̂ 148.9207 10.1124 14.7265

Mean of independent variable 0.000301

FIGURE 7.2  The Logistic Function.
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The estimates in Table 7.1 indicate that the percentage change in the FTSE 
index has a significant effect on the probability of a rise in the value of British 
Airways shares. Moreover, this effect is positive, with a rise in the market as a 
whole increasing the probability of a rise in BA shares. It is difficult, however, 
to interpret the regression results in more detail without more work. This is 
because the estimated slope coefficient does not measure a marginal effect 
in the same way as that for the linear probability model. In the case of the 
linear probability model, the slope coefficient gives us a direct estimate of 
the marginal effect. Unfortunately, such a straightforward interpretation of 
the slope coefficient is not possible when we consider the logistic regression.

To interpret the slope coefficient of the logistic regression, let us con-
sider once again the interpretation of the equation we have estimated. The 
parameters of the estimated equation determine the shape of the probability 
function. That is, the estimated probability of the variable Y being equal to 1 
and is given by the formula

	 P Y
X

X
i

i

i

�� � �
�� �

� �� �
1

1

ˆ ˆ

exp ˆ ˆ

� �

� �
.� (7.9)

How does the value of b̂  affect this probability? If we differentiate (7.9) with 
respect to b̂ , then we have

	 � �� �
�

�
� �� �� �

P Y

X

i

i

1

1
2ˆ

ˆ

exp ˆ ˆ�
�

� �
.� (7.10)

This shows that the marginal effect on the probability is a decreasing func-
tion of the right-hand side variable X. In order to get some idea of the size of 
the marginal effect, we can evaluate (7.10) at the sample mean of X. In this 
case, we have 

	
ˆ

exp ˆ ˆ

.

exp . . .

�

� �1

148 92

1 0 0426 148 92 0 000301
2 2

� �� �� �
�

� � � �� �� �X
�� 37 15. .� (7.11)

Again, we can express this in more intuitive terms by considering the effect 
of a 1% rise in the value of stock market. In this case, such a shock would 
increase the probability of an increase in the BA share price by an amount 
given by 37.15 0.01 0.3715× = .

exp
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It is interesting to see how the marginal probability varies with the inde-
pendent variable by plotting the relationship between them over the range 
of values taken by the right-hand side variables. This is shown in Figure 7.3. 
It is clear that the size of the marginal effect is greatest close to the mean. As 
the value of the independent variable approaches either extreme of its range 
then the slope of the probability function, and hence the marginal effect on 
probability, approaches 0. The shape of the function shown in Figure 7.3 
looks remarkably similar to that of the normal probability density function. 
This is not a coincidence since the logistic probability function is a cumula-
tive probability function for a distribution which has a similar shape to that of 
the normal. Hence, its derivative will yield a function which resembles that 
of the normal probability density. The main difference is that the logistic 
function has somewhat heavier tails than those of the normal function. Thus, 
its shape more closely resembles that of a t distribution with a low number 
of degrees of freedom.

7.2	� GOODNESS OF FIT IN LIMITED DEPENDENT  
VARIABLE MODELS

The assessment of goodness of fit is difficult in models with binary depend-
ent variables. For example, how do we compare a fitted value from such a 

FIGURE 7.3  Marginal Probability as a Function of the Independent  
Variable.
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regression with the actual values which can only take on the values 0 or 1? 
One method of calculating goodness of fit is to compare the value of the log-
likelihood when the parameter b  is fixed at 0 with that obtained when b is a 
free parameter. These values are then used to define a measure of goodness 
of fit known as McFadden’s 2R . This is calculated as one minus the ratio of 
these two likelihoods.

	
( )

( )
2 ,

McFadden 1
0

LL
R

LL

a b
a b

= −
=

� (7.12)

Example: For the BA share price model, we have ( )0 946.8156LL a b = = −  
and ( ), 770.4887LL a b = − .

	 2 770.4487
McFadden 1 0.1863

946.8156
R = − = � (7.13)

McFadden’s 2R  has similar properties to that of the coefficient of determina-
tion in more conventional models. In particular, it has an expected value of 
0 when the X variable has no predictive value and is bounded above by 1, at 
which value the X variable would become a perfect predictor of the Y vari-
able. The value of 0.1863 which we obtain in this case indicates that while 
the change in the FTSE index does provide some explanatory power, it is far 
from a perfect predictor and that there are likely to be other, company spe-
cific, factors that are responsible for movements in the price of BA shares.

Another possible way to assess goodness of fit is to calculate the per-
centage of correct predictions. For example, suppose we predict that BA 
share prices will rise if the fitted probability from our logit model is >0.5 
and will fall if it <0.5. On this basis, we can assess the percentages of correct 
and incorrect predictions as shown in Table 7.2. From these results, we see 
that our model predicts the direction of the share price movement in 71% 
of cases. This is calculated by taking the sum of the diagonal elements in the 
table. The off-diagonal elements show the percentages of cases in which the 
model is incorrect. This is divided evenly between cases in which the model 
predicts a fall in share prices but prices rise (14%) and cases in which the 
model predicts a rise in share prices that are then observed to fall (15%). It 
is clear from these results that while our model is far from perfect, it does 
perform better than a naïve model in which we simply set the probabilities 
for share price movements equal to the marginal probabilities.
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TABLE 7.2  Percentage Predictions and Outcomes for the Logit Model.

Share price rises Share price falls Total (%)
p > 0.5 36 15 51

p < 0.5 14 35 49

Total (%) 50 50 100

7.3	 AN ASIDE ON MAXIMUM LIKELIHOOD

We have already introduced the method of maximum likelihood in an ear-
lier chapter. However, this method is of particular value when dealing with 
limited dependent variable models, and this is therefore, a good time to 
look at it in more detail. In doing so, we will introduce the idea of the Fisher 
Information Matrix and discuss how numerical methods can be used to cal-
culate estimators when analytical solutions are not possible.

Maximum likelihood begins with assumption that we can write down 
the joint probability of observing a particular sample of data conditional on a 
set of parameters. For example, suppose we conduct a set of N independent 
Bernouilli trials. We observe k successes and N − k failures. If the probability 
of a success is equal to p, then the joint probability of observing this outcome 

is given by the binomial distribution ( )1
N kkp p
−

− . Let us define the likeli-
hood function for this case as

	 ( ) ( )1
N kkL p p p
−

= − .� (7.14)

This is a particularly easy likelihood function to work with because it depends 
on a single parameter p. It is usually easier to deal with a monotonic transfor-
mation of the likelihood function in the form of its logarithm which, in this 
case, we write as

	 ( ) ( ) ( ) ( )ln ln 1LL p k p N k p= + − − .� (7.15)

The score is defined as the derivative of the log-likelihood with respect to its 
parameter(s). In this case, we have

	 ( )
( )1

dLL p k N k
dp p p

−
= −

−
.� (7.16)
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Assuming an interior solution, we can solve for the maximum-likelihood esti-
mator by solving for the value of p which makes the score equal to 0. More 
generally, we will have a vector of parameters, meaning that we will have a 
set of first-order conditions which must be solved jointly for the solution. In 
this case, however, we have a single parameter solution of the form

	 ˆ ML

k
p

N
= .� (7.17)

The Fisher information (or just the information) is defined as the 
expected value of the second derivative of the log-likelihood, that is,

	 ( ) ( ) 2
dLL p

I p E
dp

  
 =      

.� (7.18)

Again, this is simplified by considering a case in which we have a single 
parameter. In more general cases, the information will be defined as the 
outer product of the score vector with itself. This means that the information 
will be a square matrix with dimension equal to the number of parameters. 
If the log-likelihood function is twice differentiable, and if certain regularity 
conditions hold, then we can write the information as

	 ( ) ( )2

2

d LL p
I p E

dp

 
= −  

  
.� (7.19)

If the number of parameters is >1, then this will be a matrix containing the 
second-order partial derivatives of the log-likelihood function on its diagonal 
and the cross-partial derivatives off the diagonal.

The information is useful because it allows us to calculate the variance 
of the maximum likelihood parameter estimates. In our example, we have

	 ( ) ( )
( )

2

22 2 1

d LL p k N k
I p

dp p p

−
= − = +

−
.� (7.20)

The variance of the maximum-likelihood estimator is defined as the inverse 
of the information evaluated at the maximum-likelihood parameter, that is, 

( )ˆ1 / MLI p . In this case, we have

	 ( ) ( )
3

ˆ ML

k N k
V p

N

−
= .� (7.21)
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More generally, for more than one parameter, the variance–covariance 
matrix of the maximum-likelihood estimator is defined as the inverse of the 
Fisher information matrix.

An advantage of this approach is that it lends itself naturally to numerical 
methods when analytical solutions are either not possible or prove intracta-
ble. Once we have determined the log-likelihood function, then it is straight-
forward to use numerical methods to solve for both the maximum-likelihood 
parameter estimates and their variances. This is particularly useful for prob-
lems involving limited dependent variables, where the log-likelihood func-
tion often has these characteristics, depending on the nature of the function 
relating the probabilities to the explanatory variables. In numerical analysis, 
the vector of first-order partial derivatives is referred to as the Jacobian vec-
tor, and the matrix of second-order partial and cross-partial derivatives is 
known as the Hessian matrix. These can often be calculated numerically 
and used to solve for a maximum of the likelihood function when analytical 
solutions are not available. 

7.4	� SOME ALTERNATIVE LIMITED DEPENDENT  
VARIABLE MODELS

So far, we have used the logit model to estimate conditional probabilities 
in a model with limited dependent variables. To do this, we have assumed 
that the probability that the right-hand side variable is equal to 1 can be 
written in terms of the formula ( ) ( ) ( )1 exp / 1 expi i iP Y X Xa b a b= = + + + .  
The problem is then one of using an appropriate estimation technique to 
estimate the unknown parameters a and b. The choice of the logit function 
was made simply on the basis that it has the necessary properties. In particu-
lar, it is always positive, always lies between 0 and 1, approaches 0 as X →−∞ 
and approaches 1 as X →∞. However, the logit function is by no means the 
only functional form which has these properties and there are other candi-
date functions we might consider. We will consider two alternatives. These 
are the probit model and the extreme value model.

The probit model is based on the cumulative distribution function for 
the normal distribution. Consider the function 

	 ( ) ( )
iX

iX s ds
a b

a b j
+

−∞

Φ + = ∫ ,� (7.22)
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where ( )j  is the probability density function of the normal distribution, 
then it is easy to see that (7.22) has all the necessary properties for a function 
that describes ( )1iP Y = . Moreover, although (7.22) looks quite forbidding, 
the normal distribution is such a well-known distribution that calculation 
of the probabilities implied by it are quite straightforward (though again 
will require numerical methods.) Therefore, we can again use maximum-
likelihood methods to obtain estimates of the unknown parameters a and b. 
If we apply the probit model to our data set for British Airways share prices, 
then we obtain the following results.

TABLE 7.3  Probit Regression Results Ð British Airways Share Model.

Coefficient Standard error T Ratio
α̂ −0.0250 0.0371 −0.673

b̂ 88.0622 5.5352 15.9095

Mean of independent variable 0.000301

McFadden R-squared 0.1858

Share price rises Share price falls Total (%)
p > 0.5 36 15 51

p < 0.5 14 35 49

Total (%) 50 50 100

Although the individual coefficient estimates of the probit model look very 
different from those of the logit model, the models are, in fact, very similar. 
This is because these coefficients are parameters of the relevant likelihood 
functions and the functional forms for these are quite different. However, in 
terms of the accuracy with which the models fit the data, they are remark-
ably similar. This can be seen through the McFadden 2R  values which in 
both cases take a value of just over 0.18. This indicates that each model 
increases the value of the log-likelihood by a factor of about 18% relative to 
the naive model. Moreover, we can again evaluate the marginal effect of the 
right-hand side variable on ( )1iP Y =  at its mean value as

	
� �� �

�
� � � �

P Y

X
Xi

i

1
35 136� � � �ˆ, ˆ, ˆ . .� (7.23)
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This is very close to the value of 37.15 which we obtained for the logit model. 
Therefore, both the goodness of fit statistics and the marginal effects indi-
cate that both models tell essentially the same story. This can be confirmed 
by examination of the extent to which these models accurately predict the 
direction of movements of BA shares as shown in Table 7.3. We see from this 
that the logit and probit models produce identical results. In each case, the 
proportion of correct predictions is 70% which compares with 50% from the 
naive model.1

The similarity of the logit and probit models can also be seen by plotting 
probability functions for the values of the estimated parameters. These func-
tions are shown in Figure 7.4 that illustrates how similar are the results of 
the two models. For values of X in the middle of its range, there is virtually 
no difference between the two functions. The difference between the two 
functions tends to get a little larger for more extreme values of X.

1  The 50% success rate of the naive model reflects the roughly even distribution of 
increases and decreases in the value of BA shares over the sample period. Prediction with 
the naive model is more or less equivalent to deciding whether the share value will rise or 
fall on the basis of the toss of a coin.

FIGURE 7.4  Logit and Probit Functions for Estimated Models.
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Historical Note: The term “Probit” is first recorded as being used in a 
paper by Chester Bliss (1899–1979) in a paper in 1934 [Bliss1934]. The 
word is used as an abbreviation for “Probability Units.” However, Bliss 
refers to the term as already being in use. If this is the case, then its previ-
ous use has not been found.

A third function that has been applied to the analysis of limited depen-
dent variables is the extreme value which is also known as the Gompit or 
Weibull distribution. The functional form for the probability in this case can 
be written as

	 ( ) ( )( )( )1 exp expi iP Y Xa b= = − − + .� (7.24)

This can also be shown to have the desirable properties for a probability 
distribution that ( )1iP Y = > for all values of X, that ( )1 0iP Y = →  as X →−∞,  
and that ( )1 1iP Y = →  as X →∞. However, this function differs from 
the logit and probit functions in being asymmetric. Consider the case in 
which 0iXa b+ = , in the case of the logit and probit functions, we have 
( ) ( )1 0 0 0 0.5i i i iP Y X P Y Xa b a b= + = = = + = = . That is, the probabili-

ties are evenly distributed around 0iXa b+ = . However, this is not the case 
for the extreme value function where ( )1 0i iP Y Xa b= + = = 0.3679. This 
indicates that “successes” (Y = 1) are less likely than “failures” (Y = 0) with 
the extreme value model. When we estimate our model for BA share prices 
using the extreme value distribution, then we obtain the results shown in 
Table 7.4.

TABLE 7.4  Extreme Value Regression Results Ð British Airways Share Model.

Coefficient Standard error T Ratio

α̂ 0.4024 0.0433 9.3029

b̂ 94.8987 5.8179 16.3115

Mean of independent variable 0.000301

McFadden R-Squared 0.1819

Share price rises Share price falls Total (%)
p > 0.5 38 17 55

p < 0.5 12 33 45

Total (%) 50 50 100
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The marginal effect for the extreme value regression can be calculated as

	 ˆ exp ˆ ˆ� � �� �� �� �2 Xi ,� (7.25)

and evaluating this expression at the mean value of the right-hand side vari-
able gives a value of 40.08. Therefore, an increase of 1% in the FTSE at the 
mean value will increase the probability of a rise in the BA share price by 0.4, 
close to the values obtained for the logit and probit models.

7.5	 ANOTHER EXAMPLE: THE MARKET FOR ORANGES

Understanding the mechanics of the limited dependent variable model 
can be tricky. With this in mind, the following is another example of how 
this methodology might be applied in practice. We do not present any new 
results in this section. However, it does help bring together the important 
results we have derived already and, hopefully, it will help interested stu-
dents understand the methodology better.

The example we consider concerns the market for oranges in the United 
States. Using the US Department of Agriculture Website (www.usda.gov), 
we have obtained data on total orange production in the United States as 
well as the price of oranges. This data have then been transformed into per-
centage changes with the price data being adjusted for general price move-
ments by dividing by the consumer price index. The price data are then 
coded as 1 for a price increase and 0 for a price fall. The question we wish to 
address is whether an increase in orange production increases the probabil-
ity that the price will fall. To do this, we estimate limited dependent variable 
models using the three methods we have discussion in the previous sections. 
The results are given in Table 7.5. Each method involves the estimate of an 
intercept a and a slope coefficient b  for the probability function. Estimates 
of these coefficients are reported with their standard errors in parentheses 
below the estimate. ∗∗ indicates significance at the 1% level, that is, a p 
value <0.01, which is the case for the slope coefficient in all three cases. The 
McFadden 2R  is close to 0.22 in all three cases and, while the marginal effect 
evaluated at the mean is similar for the logit and probit regressions with a 
value close to 0.02− , it is somewhat higher for the extreme value regression 
at −0.05.
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TABLE 7.5  �Comparative Limited Dependent Variable Regression Results US Market for Oranges 
1981–2016.

Logit Probit Extreme value

â −0.3115 −0.1931 0.2338

(0.3980) (0.2376) (0.2614)

b̂ −0.0883∗∗ −0.0554∗∗ −0.0627∗∗

(0.0332) (0.0196) (0.0228)

McFadden 2R 0.2188 0.2252 0.2256

Marginal effect at 
mean

−0.0208 −0.0220 −0.0509

The comparison of results in Table 7.5 indicates that if our purpose is sim-
ply to assess if a given variable has a significant effect in the probability func-
tion, then it may not matter much which probability function we choose. All 
three functions show a significant effect of the change in quantity on the prob-
ability that prices will change. If we wish to calculate marginal effects on the 
probability, then the choice of functional form may be important. While the 
logit and probit models give very similar marginal effects when evaluated at 
the mean, the estimate from the extreme value model is noticeably different.

EXERCISES 

Excel files containing the data for these exercises are available as companion 
files for this book.

EXERCISE 7.1

The probability distribution function for the Poisson distribution is given by 
the following expression:

( ) ( )exp
; 1,2,

!
xf x

x

q
q q

−
= = 

where q is the parameter. An investigator has obtained a sample , 1, ,ix i N= 

a.	 Show that the maximum-likelihood estimator of the parameter is 

1
ˆ /

N

ML ii
x Nq

=
=∑ .

b.	 Show that the maximum-likelihood estimator of the variance of the 
parameter is  ( ) 2

1
ˆ /

N

ML ii
V x Nq

=
=∑ .
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EXERCISE 7.2

An investigator tosses a coin ten times and observes eight heads and two 
tails. Using the method of maximum likelihood, test the hypothesis that this 
coin is fair (heads and tails equally likely) or biased (heads more likely than 
tails).

EXERCISE 7.3

An econometrician estimates two models for the US market for potatoes. 
The first is a linear regression of DP on DQ, where DP is coded as 1 when 
prices increase and 0 otherwise and DQ is the percentage change in produc-
tion. The results are given in the table below:

OLS Regression Results
Sample period: 1976–2017
Dependent Variable DP
Sample Size 42

Variable	 Coefficient	 Std Err	 T Ratio

C	 0.457332	 0.060100	 7.609500
DQ	 -0.052495	 0.009826	 -5.342234

R-squared	 0.4164	 F statistic	 28.5395
SEE	 0.384237	 RSS	 5.905530
Durbin-Watson	 2.1209	 LogL	 -18.398031
ARCH(1) test	 0.2323	 AIC	 0.971335

Jarque-Bera	 1.1716	 SIC	 1.054081

He/she then estimates a logit model using the same data and obtains the 
following results:

Logit Estimates
Newton-Raphson Method
Dependent Variable DP
Sample Size 42
Iterations 4
Variable	 Coefficient	 Std Err	 T Ratio

Constant	 -0.239086	 0.421524	 -0.567195
DQ	 -0.342064	 0.102714	 -3.330263

Mean of RHS variable       1.0014
SD of RHS variable         1.0136
Log-likelihood           -17.7023
Restricted LogL          -28.3456
McFadden R-squared       0.375483
Marginal effect          -0.085287
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a.	 Plot the probability function ( )0t tP DP DQ>  over the range 14 14−   
(the approximate range for DQ).

b.	 Plot the marginal effect of changes in DQ for the logit model over the 
same range.

EXERCISE 7.4

Using the data in the Excel data file CADB.XLSX, estimate the linear prob-
ability model and the logit model relating the direction of movement of 
Cadbury–Schweppes shares to the change in the value of the stock market. 
Explain the meaning of the slope coefficient in each case and interpret your 
results.

EXERCISE 7.5

Using the data in the Excel data file CADB.XLSX, estimate logit, probit, and 
extreme value models for the direction of movement of Cadbury–Schweppes 
shares. Assess which of these provides the best predictor of the endogenous 
variable.
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C H A P T E R  8
Stochastic Regressors

The term “stochastic regressors” refers to any situation in which the right-
hand side variables of the regression equation are themselves random vari-
ables. This is more consistent with the realities of econometric analysis than 
the classical assumption of regressors that are “fixed in repeated samples.” 
Much of the discussion of stochastic regressors concerns the circumstances 
under which the right-hand side variable(s) in the regression can be treated 
as exogenous. Since the conditions for exogeneity tend to be more demand-
ing for time-series data, we will, therefore, use time series notation in this 
section. So far, we have maintained the assumption that the only source of 
randomness in the regression model is the error term u. This is reasonable 
in the experimental sciences where the X variable consists of an input that 
is fixed by the person carrying out the experiment. However, it is unrealistic 
for most economic models in which the X variable is more likely to be a ran-
dom variable which lies outside the control of the econometrician estimating 
the equation. The purpose of this chapter is to investigate the implications 
of working with stochastic regressors and to discuss some methods through 
which problems associated with this issue can be resolved.

8.1	 EXOGENOUS REGRESSORS

Our first task is to define what we mean by the term exogeneity in 
the context of stochastic regressors. Consider the regression model 

; 1, ,t t tY X u t Tb= + =  ; Koopmans [Koopmans1950] defines exogeneity of 
the X variable as ( ) 0 for all values of t t iE X u i+ = . That is, the current value of 
the X variable is uncorrelated with all values of the error term – past, present, 
and future. This condition has since been given the term strict exogeneity to 
distinguish it from other concepts of exogeneity that have been introduced 
into the econometrics literature. It is a very demanding condition, and it 
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was quickly realized that it was not necessary for the purposes of estima-
tion. A rather weaker condition is that the X variable is uncorrelated with 
the current and future values of the error, that is, ( ) 0 0t t iE X u i+ = ≥ . If X 
satisfies this condition, then it is said to be predetermined. Even this may 
be stronger than necessary for the purposes of estimation and some authors 
prefer to employ the assumption of contemporaneous exogeneity, which 
simply requires ( ) 0t tE X u = .

The clearest, and the most rigorous, definitions of exogeneity are pro-
vided by Engle, Hendry, and Richard [Engle1983]. In this paper, they argue 
that exogeneity cannot be defined independently of the purpose for which 
the assumption is being made. A variable may be exogenous for the purposes 
of estimation but may not be so when it comes to simulating a model for the 
purposes of forecasting. For this reason, they do not provide a unique defi-
nition of exogeneity, but rather a series of definitions that are applicable in 
different circumstances.

In the context of estimation, the Engle-Hendry-Richard (EHR) con-
cept of exogeneity is termed weak exogeneity. It can be stated as follows. 
Consider the regression model t t tY X ub= +  where tY  and tX  are jointly dis-
tributed random variables. The variable tX  can be considered weakly exoge-
nous for the purpose of estimating the parameter b, if the parameters of the 
conditional distribution of tY  given tX  do not depend on the marginal distri-
bution of tX . Note that weak exogeneity is defined in terms of a parameter 
of interest. In this situation described, we can always find a decomposition 
of the joint distribution into conditional and marginal distributions where 
the tX  variable is weakly exogenous for some parameter. The question is 
whether or not this is the parameter we wish to estimate, that is, the param-
eter of interest.

EHR introduces two other concepts of exogeneity that are relevant in 
other circumstances. The first is strong exogeneity. This is applicable when 
we wish to use the model we estimate for the purposes of forecasting. For 
this, we need the X variable to be weakly exogenous for the purpose of esti-
mating the parameter(s) of interest and we also require that there be no feed-
back effects from lagged values of Y on the current value of X. This is often 
stated as the requirement that the X variable must not be Granger caused 
by Y. The concept of Granger causality will be discussed in more detail in 
a later chapter. Finally, there is the concept of super exogeneity which is 
relevant when the model is to be used for policy analysis. This requires that 
the parameters of the conditional distribution should be constant when the 
stochastic process determining the X variable changes. This is a demanding 
condition for which it is very difficult to test. 
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8.2	� IMPLICATIONS FOR ORDINARY LEAST SQUARES 
ESTIMATION

Having discussed the concept of exogeneity, we now turn to the properties of 
the least- squares estimator when the right-hand side variable is stochastic. Let 
us consider the OLS estimator derived in an earlier chapter. Using the stand-
ard model in mean deviation form t t tY X ub= +  we have shown that the OLS 
estimator of the slope coefficient can be written 2

1 1
ˆ /

T T

t t it t
X u Xb b

= =
= +∑ ∑ .  

To prove unbiasedness, we then applied the expectations operator to this 
expression using two of the standard Gauss-Markov assumptions – that 
( ) 0tE u =  and that X is non-stochastic. The combination of these two assump-

tions allows us to write ( ) ( )1 1
0

T T

t t t tt t
E X u X E u

= =
= =∑ ∑ , thus demonstrat-

ing unbiasedness under the Gauss-Markov conditions. When the X variable 
is itself stochastic, it is extremely difficult, and in most cases impossible, to 
prove unbiasedness in this way. This is because, when X is stochastic, it is not 
generally true that ( ) ( ) ( )t t t tE X u E X E u≠ . Consider, for example, the case 
in which X and u both have expectation zero but are correlated with cor-
relation coefficient r. In this case, we have ( )i i x uE X u rs s=  which is clearly 
non-zero except for the special case 0r = .

Since it is no longer practical to prove unbiasedness when we relax the 
fourth Gauss-Markov condition, we instead make use of an alternative con-
cept – that of consistency. Consistency is a large sample property and can be 
thought of as the requirement that the estimator b̂  should converge toward 
the true value b  as the sample size becomes large. Convergence is defined 
in terms of the probability limit of the estimator. The definition of a prob-
ability limit can be stated as follows. Let ˆ

Tb  be an estimator of an unknown 
parameter based on a sample of size T. ˆ

Tb  converges in probability to b  if 
for any 0e >  there exists a sample size T which is sufficiently large that the 
probability that the absolute difference between ˆ

Tb  and b  exceeds e  is equal 
to zero. That is, we require

	 ( )ˆlim 0TT
P b b e

→∞
− > = .� (8.1)

A more concise notation for this is to write ˆplim b b=  and to note that con-
sistency requires ˆplim b b=  where b  is the true value of the coefficient.

It is easy to demonstrate that, if an estimator is asymptotically unbiased, 
and if its variance has a limiting value of zero, then the estimator is consis-
tent. These are often useful conditions for demonstrating the consistency of 
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any estimator but it should be noted that they are sufficient, but not neces-
sary, for this to be true. The behavior of the probability density function for 
a consistent estimator is illustrated in Figure 8.1. This shows the PDF for 
an estimator of a coefficient whose true value is 0.5. Small sample estimates 
are biased as shown by the peak of the PDF which lies to the left of the true 
value. However, as the sample size increases, the peak shifts toward the true 
value and the variance falls. In the limit, the PDF collapses onto a vertical 
line passing through the true value of the parameter.

FIGURE 8.1  Behavior of the PDF for a Biased but Consistent Estimator.

The main advantage of working with probability limits is that they allow 
a number of mathematical operations that are not possible with the expec-
tations operator. Assuming that a and b are random variables, we have the 
following

( ) ( ) ( )
( ) ( ) ( )

( )
( )

( )

( )( ) ( )

plim plim plim

plim plim plim

plim
plim for plim 0

plim

plim plim ,

a b a b

ab a b

aa
b

b b

g a g a

± = +

=

  = ≠ 
 

=

where g is a continuous function that does not involve the sample size. These 
properties allow us to demonstrate the consistency of the OLS estimator 
under a modified set of Gauss-Markov assumptions. We begin by assuming 
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that the sample moments of the joint distribution of X and u converge to 
their true values, that is,

( )

( )
1

2 2

1

1
plim cov ,

1
plim var .

T

t t t t Xu
t

T

t t X
t

X u X u
T

X X
T

s

s

=

=

= =

= =

∑

∑

It is now possible to show that, if we replace Gauss-Markov assumption 4, 
that the X variable is non-stochastic, with the alternative assumption that it 
is stochastic but uncorrelated with the random disturbance, then the OLS 
estimator is consistent. Using the standard formula for the OLS estimator 
and taking probability limits gives

	
( )
( )

1
22

1

plim 1 /ˆplim
plim 1 / X

T

t tt Xu
T

tt

T X u

T X

sb b b
s

=

=

= + = +∑
∑

.� (8.2)

Next, using the modified Gauss-Markov assumption 4, we have 
2 ˆ0, 0 plimXu Xs s b b= > ⇒ = , which shows that OLS is a consistent estimator. 

This demonstration generalizes easily to the multivariate case.
When considering the properties of models with stochastic regressors 

we tend to rely on large sample properties, such as consistency, rather than 
exact small sample results. However, this creates a problem when it comes 
to comparing the distributions of alternative estimators since the variance of 
a consistent estimator goes to zero as the sample size gets large. The usual 
method for dealing with this problem is to consider the following a scaling of 
the distribution which gives a finite positive variance. Under the assumption 
that the sample variances and covariances converge in probability on the 
population values, we have

	 ( )
2

2
ˆ ~ 0,

a
u

X

T N
sb b
s

 
−  

 
.� (8.3)

The asymptotic normality of this variable can be demonstrated using the 
central limit theorem (see the discussion in Greene [Greene1993] for more 
detail). The property that the variance is non-zero and finite means that 
this transformation can be used as the basis for a comparison of alternative 
estimators.

There are many estimators that are biased but nevertheless consistent. 
For example, consider the following estimator of the slope coefficient from 
a regression equation
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	 1

2
1

1ˆ
T

t tt
T T

tt

X Y

TX
b =

=

= +∑
∑

.� (8.4)

This is clearly biased since ( ) ( )2
1 1

/ 1 / 1 /
T T

t t tt t
E X Y X T Tb

= =
+ = +∑ ∑ .  

However, we can easily demonstrate that ˆplim Tb b=  meaning that the 
estimator is consistent. First, we have ( )ˆ 1 /TE Tb b= + , and thus the 
limit of the expectation as T tends to infinity is clearly b. Second, we have 

( ) 2 2
1

ˆ /
T

T u tt
V Xb s

=
= ∑ , which tends to zero as T tends to infinity. Thus, this 

estimator meets sufficient conditions for consistency even though it is biased 
in small samples.

It is tempting to think that, because consistency is a large-sample prop-
erty, that it is a weaker condition than unbiasedness, which holds in small 
samples. This is not true, however, since it is possible for an estimator to be 
unbiased but inconsistent. For example, consider the OLS estimator of the 
slope coefficient in the following regression model

	
1

t tY u
t

b  = + 
 

.� (8.5)

The OLS estimator is unbiased by virtue of the fact that 1 / t is non-stochastic, 
and therefore, ( )/ 0tE u t = . However, it is inconsistent since the variance 
does not tend to zero as T tends to infinity. This is because ( )2

1
1 /

T

t
t

=∑  con-
verges to a finite limit as T tends to infinity. This case is admittedly very 
unusual, and in most circumstances, an unbiased estimator will also be con-
sistent. However, the two concepts are logically separate and, as our exam-
ples show, there is no guarantee that either one implies the other.

8.3	 ASYMPTOTIC DISTRIBUTION THEORY

Large-sample or asymptotic results are extremely important in econometrics 
because of the nature of economic data. This is because the stochastic nature 
of the regressors precludes the derivation of exact small sample results and 
we are forced to rely on large sample properties of our estimators. However, 
the use of large-sample properties creates a number of problems which we 
discuss below.

It is generally desirable that parameter estimates should “converge” on 
the true value of the parameter of interest as the sample size gets large. 
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However, there are several possible definitions of what constitutes such con-
vergence. Let T̂q  be an estimator of an unknown parameter q based on a 
sample size T. There are three possible definitions of convergence which we 
list below.

1.	 ( )ˆlim TT
E q q

→∞
=

2.	 ( )( )ˆ 0 as TE T Tq q− = →∞

3.	 ( )ˆplim Tq q=

The first of these simply states that the limit of the expected value of the esti-
mator should equal the true value as the sample size gets large, the second 
states that the mean of the limiting distribution of ( )T̂T q q−  should be 
zero, while the third states that the probability limit of the estimator should 
equal the true value. An estimator that satisfies either definition 1 or 2 is 
described as asymptotically unbiased, while an estimator that satisfies defini-
tion 3 is described as consistent. For many well-behaved estimators, all three 
of these properties will hold. However, it is not difficult to think of examples 
in which one or more of them fails. For example, there are cases in which 
the limit of the expected value simply does not exist. In practice, consistency 
is often the easiest concept to work with, but this does require very strong 
assumptions.

A second problem is that the asymptotic distribution of estimators 
is often degenerate. By this, we mean that the variance of the estimator 
goes to zero as the sample size becomes large. Indeed, this is a defining 
property of a consistent estimator. This creates a problem when it comes 
to comparing one consistent estimator with another since both have zero 
variance in large samples. The usual method of dealing with this problem is 
to work with a transformation of the distribution of the parameter in ques-
tion which is not degenerate. For example, consider the sample mean as an 
estimator of the population mean. Assuming a normal distribution, we have 

( )2~ , /T X XX N Tm s . This is a degenerate distribution since the variance of the 
sample mean goes to zero as T →∞. However, if we consider the transformed 
variable ( )T XT X m− , then we can show that ( ) ( )2~ 0,T X XT X Nm s−  has 
a non-degenerate distribution. We could, therefore, base efficiency compar-
isons of alternative estimators on the distribution of transformations of this 
kind rather than on the distribution of the estimator itself.
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8.4	 THE ERRORS IN VARIABLES MODEL

We have established that correlation between the right-hand side variables 
of the regression equation and the error term means that ordinary least 
squares estimates are inconsistent. In this section, we consider an important 
case in which such correlation naturally arises. This is the errors in variables 
model which arises when the right-hand side variables are measured with 
error. Consider the following model

	 t t tY X ub ∗= + � (8.6)

	 t t tX X e∗ = + ,� (8.7)

where we assume 0, 0uX u es s∗ = = . We would like to be able to estimate the 
parameter b  from equation (8.6), but we do not observe X∗ directly. Instead, 
we observe a proxy variable X which deviates from X∗ by measurement error 
e. The measurement error is uncorrelated with the error in the regression 
model and the error in the regression model is uncorrelated with X∗.

What happens if we estimate a regression equation in which the proxy 
variable is substituted for X∗? This situation arises frequently in applied 
econometrics when economic theory suggests the inclusion of variables 
for which no data is available, and we are forced, in such circumstances, to 
rely on proxy variables. Consider the regression equation (8.6), if we substi-
tute for the right-hand side variable using (8.7), then we have the following 
equation

	 t t t tY X ub be= + + .� (8.8)

The error term in (8.8) now comprises the original error term plus an 
additional component that depends on the measurement error from (8.7). 
Moreover, the X variable and the composite error are now correlated since 

2
Xe es s= − . This means that OLS will generate inconsistent estimates of the 

parameter of interest.
We can say more about the nature of the inconsistency of the OLS esti-

mates by considering the probability limit of the OLS estimator. Substituting 
(8.8) into the standard formula for the OLS estimator yields the following 
expression.

	
( )
( )

( )
( )

1 1

2 2
1 1

1 / 1 /ˆ
1 / 1 /

T T

t t t tt t
T T

t tt t

T X u T X

T X T X

e
b b b= =

= =

= + +∑ ∑
∑ ∑

.� (8.9)
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Taking probability limits means that the second term in (8.9) can be dis-
carded since ( )

1
plim 1 / 0

T

t tt
T X u

=
=∑  by assumption. However, the third 

term does not go to zero because of the correlation between X and e. We 
have

	
2

2
ˆplim 1

X

esb b
s

 
= − 

 
.� (8.10)

This illustrates several important points. The first is that the OLS estima-
tor will underestimate the true regression parameter when the exogenous 
variable is measured with error. It also illustrates the point that the size of 
the inconsistency depends on the size of the variance of the measurement 
error relative to that of the variance of the explanatory variable X∗ (since 

2 2 2
X X es s s∗= + ). Thus, the more “noise” we introduce into the system in terms 

of measurement errors, the more inconsistent our estimate becomes. This 
gives us some insight into the circumstances in which the use of proxy vari-
ables may be acceptable and those in which they are likely to produce highly 
misleading results.

Example: The following model was used to generate artificial data sets using 
a random number generator.

( ) ( ) ( )
( ) ( )
~ 0,1 ; ~ 0,1 ; ~ 0,0.25

cov , 0; cov , 0

1.0 .5

t t t

t t t t

t t t

t t t

X N u N N

X u u

X X

Y X u

e

e

e

∗

∗

∗

∗

= =

= +

= + 0 +

1,000 regressions of Y on X were then estimated using the data generated 
(in each case using a large sample of 1,000 observations). The distribution of 
the slope coefficient estimates was then examined. The result was an aver-
age slope estimate of 0.393. This is extremely close to the theoretically pre-
dicted value of the plim of the slope coefficient which can be calculated  
as ( ) ( )( )2 2ˆplim 1 / 0.5 1 0.25 / 1 0.25 0.4Xeb b s s= − = − + = .

Historical Note: Adcock [Adcock1877] is often referenced as the first 
to discuss the errors in variables problem. However, Wald [Wald1940] 
provides the first treatment of the problem as we recognize it in modern 
econometrics.
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8.5	 THE INSTRUMENTAL VARIABLES ESTIMATOR

We have seen that the OLS estimator is inconsistent when a variable on the 
right-hand side of the equation is correlated with the error term. It, there-
fore, becomes important to find alternative estimators with superior proper-
ties. One possible alternative estimator is the Instrumental Variables (IV) 
estimator. To construct this estimator, we need to find a variable Z which has 
the properties that it is not correlated with the error but is correlated with 
the X variable, that is, ( )cov , 0t tZ u =  but ( )cov , 0t tZ X ≠ . It may not be obvi-
ous where such a variable can be found but, if we proceed for the moment 
on the assumption that we have a suitable Z available, then we can demon-
strate the properties of an estimator based around it. The issue of how to 
find, or construct, such a variable will be considered later.

The estimation problem we have is the standard one of finding an esti-
mator of the unknown slope coefficient of an equation t t tY X ub= + . An 
estimator can be constructed using the variable Z which is defined as the 
instrument and the estimator itself is referred to as the instrumental variable 
estimator. It takes the form

	 1

1

ˆ
T

t tt
IV T

t tt

Z Y

Z X
b =

=

= ∑
∑

.� (8.11)

Substituting for iY  and expanding yields

	
( ) ( )

( )
1 1

1 1

1 /ˆ
1 /

T T

t t t t tt t
IV T T

t t t tt t

Z X u T Z u

Z X T Z X

b
b b= =

= =

+
= = +∑ ∑

∑ ∑
.� (8.12)

Taking probability limits of the expression for the IV estimator in (8.12) 
yields ˆplim /IV Zu ZXb b s s b= + =  since 0Zus =  and 0ZXs ≠  by assumption. 
Therefore, the instrumental variable estimator can be shown to be consist-
ent under the assumption that the instrument is uncorrelated with the equa-
tion error.

Next, consider the variance of the instrumental variable estimator. We have

	 ( )
2

2
1

1

ˆ
T

t tt
IV T

t tt

Z u

Z X
b b =

=

 
 − =
 
 

∑
∑

.� (8.13)

Taking probability limits yields ( )2ˆplim IVb b−  ( )2 2 2 2 2 2
1

/
T

u t XZ Z Xt
Z Ts r s s

=
= =∑  

( )2 2 2/u XZ XTs r s , where XZr  is the correlation coefficient between X and Z and 
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can be written as /XZ XZ X Zr s s s= . This shows that the distribution of the 
instrumental variable estimator is degenerate since its variance goes to zero 
as the sample size becomes large. However, multiplication by T  produces 
a distribution that is not degenerate. Assuming that the errors are normally 
distributed, means that we can write an asymptotic distribution of the form

	 ( )
2

2 2
ˆ ~ 0,

a
u

IV
XZ X

T N
sb b

r s
 

−  
 

.� (8.14)

It is clear from (8.14) that the instrumental variable estimator is less efficient 
than the OLS estimator since the asymptotic variance of ( )ˆ

OLST b b−  is 
2 2/u Xs s . The presence of the correlation coefficient in the denominator of 

the variance term in (8.14) determines the degree of inefficiency. Note that 
20 1XZr< < , and therefore, the variance of the IV estimator exceeds that of 

the OLS estimator. The lower the correlation between X and Z (i.e., the 
closer 2

XZr  is to zero), then the less efficient is the IV estimator.
The sample variance of the OLS estimator is calculated as

	 ( )
( )

2 2
2 1

2 2 2
11

ˆˆˆ ˆ .
ˆ

T

tt u
IV u TT

XZ ttt tt

Z
V

XZ X

sb s
r

=

==

= =∑
∑∑

� (8.15)

Therefore, the sample variance of the instrumental variable estimator is 
always higher than the sample variance of the OLS estimator. The differ-
ence between the two depends on the correlation between the instrument 
and the X variable. A high correlation between these variables will lessen the 
loss of efficiency associated with the instrumental variable method. Ideally, 
therefore, instruments should be uncorrelated with the regression error, to 
ensure consistency, but as closely correlated with the right-hand side vari-
able as possible, to ensure efficiency. Instruments that are only weakly corre-
lated with the right-hand side variable are referred to as “weak instruments.” 

Historical Note: The first use of the term “instrumental variable” comes 
in the dissertation by Olav Reiersøl [Reiersøl1945]. However, the first 
recorded use of the technique is in a book by Phillip Wright (father of 
Sewell Wright) in 1928.

Example: To illustrate the use of the instrumental variable estimator, we 
repeat the exercise for the errors in variables model. However, in this case, 
we assume the existence of a variable that has the desired properties for the 
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instrumental variable estimator. In practice we define a new random variable 
t t tZ X n∗= +  where ( )~ 0,1t Nn . Given the existence of this variable, we then 

estimate 1,000 regressions using the OLS estimator and the IV estimator 
and compare the distribution of the parameter estimates obtained.

The results of this experiment are shown in Figure 8.2, which shows the 
distributions of the parameter estimates. Once again, the OLS estimator is 
clearly inconsistent. Even in a large sample of 1,000 observations the aver-
age slope coefficient is 0.4018. If we compare this with the distribution of 
the instrumental variable estimator, then we see that the mean value here is 
0.4967 which is much closer to the true value of 0.5. However, this reduction 
in bias comes at a cost. The standard deviation of the OLS estimator is 0.029 
which compares with 0.047 for the IV estimator. Thus the mean square error 
of the OLS estimator is 2 20.1 0.029 0.0108+ =  whereas that of the IV estima-
tor is 20.047 0.0022= . Therefore, we would still prefer the IV estimator on 
the mean square error criterion. If the correlation between the X and the Z 
variables were lower, however, then it is possible that this could be reversed 
and we might choose the OLS estimator on the MSE criterion, even though 
it remains inconsistent.

FIGURE 8.2  Comparison of OLS and Instrumental Variables Estimators in the Errors in Variables Model.
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8.6	 SIMULTANEOUS EQUATIONS

Another case in which stochastic regressors create problems for estimation is 
when the equation comprises one equation drawn from a system of simulta-
neously determined endogenous variables. For models of this kind, we must 
first establish whether it is even possible to estimate the parameters of inter-
est. This is the issue of identification. It is useful to consider an example here 
before we attempt to look at the general case. Let us consider the system of 
equations defined by (8.16)

	 1 11 2 11 1 12 2 1

2 21 1 21 1 22 2 2

t t t t t

t t t t t

Y Y X X u

Y Y X X u

b g g
b g g

= + + +
= + + +

� (8.16)

1X  and 2X  are weakly exogenous variables, 1u  and 2u  are independent errors, 
and 1Y  and 2Y  are jointly determined endogenous variables. This is typical of 
the type of structure derived from economic theory and is referred to as the 
structural form of the model. An example could be the demand and supply 
model in which 1Y  and 2Y  are price and quantity while 1X  and 2X  are inde-
pendent variables such as incomes and weather conditions. The parameters 
of this system are referred to as the structural parameters of the model. 
These consist of the slope coefficients for other endogenous variables (the b  
coefficients), the slope coefficients for the independent variables (the g coef-
ficients), and the variances of the equation errors. It is usual to assume that 
the errors in the structural form are uncorrelated. However, this assump-
tion can be relaxed if necessary. In general, the structural parameters of the 
model will be the parameters of interest for the purposes of estimation.

We can solve (8.16) to obtain equations each of which contains only one 
endogenous variable. This is referred to as the reduced form of the model. 
In this case, we have

	
( ) ( )

( ) ( )

( ) ( )

( )

1 11 1 12 2 1

2 21 1 22 2 2

11 11 11 21 12 12 11 22

21 21 11 21 22 21 12 22

1 1 11 2 2 21 1 1

11 21

1 1

1 1

1 1

1

t t t t

t t t t

t t t t t t

Y X X v

Y X X v

v u u v u u

p p
p p

p g b g p g b g

p b g g p b g g

b b

b b

= + +
= + +

= + = +
∆ ∆

= + = +
∆ ∆

= + = +
∆ ∆

∆ = −

� (8.17)
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The p  parameters are referred to as the reduced form parameters. Since the 
right-hand side variables in (8.17) are weakly exogenous, it follows that we can 
obtain consistent estimates of the reduced form parameters by least-squares. 
However, these are not the parameters of interest. The question, therefore, 
becomes whether we can use the consistent estimates of the reduced form 
parameters to obtain consistent estimates of the structural parameters.

It is immediately obvious from (8.16) and (8.17) that it will not be pos-
sible to obtain estimates of all the structural parameter from the reduced 
form without some restrictions on the structural form. There are eight struc-
tural parameters in (8.16), in the form of the six slope coefficients, and the 
variances of the two errors. Allowing for a non-zero covariance between the 
two errors would increase the number of structural parameters to nine. In 
contrast, the reduced form contains only seven pieces of information in the 
form of the four slope coefficients plus the variances and covariance of the 
reduced form errors 1v  and 2v . It, therefore, becomes necessary to place 
restrictions on the structural form to get estimates of the parameters of 
interest. These restrictions can take the following forms:

1.	 Exclusion restrictions. For example, 11 0g =  which excludes 1X  from the 
first structural equation.

2.	 Specific parameter values. For example, 11 1g =  which ensures that 1X  
enters the first structural equation with a unit coefficient.

3.	 Cross variable restrictions. For example, 11 12 0g g+ =  which ensures that 
1X  and 2X  have equal magnitude but opposite sign in the first structural 

equation.

It is the imposition of restrictions which identifies the structural parameters. 
That is, restrictions make it possible to find a mapping from the reduced 
form parameter estimates to the parameters of interest.

As an example, consider the case in which we impose the restriction 
12 0g = . This acts to exclude the 2X  variable from the first structural equation. 

The relationship between the reduced form and structural form coefficients 
now becomes

	

( )

( )

( )

11 11 11 21 12 11 22

21 21 11 21 22 22

11 21

1 1

1 1

1 .

p g b g p b g

p b g g p g

b b

= + =
∆ ∆

= + =
∆ ∆

∆ = −

� (8.18)
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It is now possible to solve for the structural parameters of the first  
equation as 

	 11 11 22 11 11 11 21/ andb p p g p b p= = − .� (8.19)

Thus, the first structural equation is identified by the imposition of this 
restriction. Note, however, that the second structural equation remains uni-
dentified without the imposition of further restrictions. 

The process of solving for the structural parameters in terms of the 
reduced form parameters is referred to as the method of indirect least-
squares. The estimates of the structural form parameters generated by this 
approach are consistent because the estimators of the reduced form are con-
sistent. Even when this method is possible, however, it is difficult to apply 
and there are more straightforward methods to recover the parameters of 
interest. Our concern, at present, is simply to establish the conditions under 
which estimation of the structural parameters is possible rather than deter-
mining a method for actually computing the estimates.

Having established the nature of the problem, let us now consider the 
more general case. We can write the following expression for a general sys-
tem of linear structural equations

	 t t t+By x = uΓ ,� (8.20)

where y is a G × 1 vector of endogenous variables, x is a K × 1 vector of 
weakly exogenous variables and u is a G × 1 vector of random errors. The 
matrices B and Γ  are G × G and G × K matrices of structural parameters. 
The reduced form of the system can be derived as

	 1 1 1
t t t t t

− − −− + = +y = B x B u x B uΓ Π .� (8.21)

Thus, the relationship between the structural and reduced form coefficients 
can be written as �� ��� � �B 1  or B + =�� �� 0G K� , where Π  is the G × K matrix 
containing the reduced form coefficients and G K×0  is a G × K matrix of zeros. 
Alternatively, we can write 

	 ,G G K
k

+

 
=   

 
0B

I

Π
Γ ,� (8.22)

where KI  is the K × K identity matrix. Let iα  be the ith row of   B Γ . This 
contains the structural parameters of the ith equation of the model. We have

	 i K
k

 
= 

 
0

I

Π
α ,� (8.23)
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which is a K × 1 vector of linear equations. This defines K equations in a pos-
sible G + K −1 unknown structural parameters. For a solution to be possible, 
we need the number of equations to be at least as many as the number of 
unknown parameters. Let g be the number of included endogenous vari-
ables and k be the number of included exogenous variables. For a solution 
to be possible we, therefore, need 1g k K− + ≤  or 1g K k− ≤ − , that is, the 
number of included endogenous variables minus one in equation i must be 
less than or equal to the number of excluded exogenous variables. This is 
the order condition for identification. We have assumed here, that the only 
restrictions possible are exclusion restrictions. However, the framework is 
easily extended to deal with other forms of restriction.

The order condition is a convenient and quick way of assessing if a given 
equation is identified. In most situations, it will give us the correct answer. 
However, the order condition is necessary for identification but not sufficient. 
A more definitive answer to the question of whether an equation is identified 
is given by the rank condition. In practice, however, this is much more diffi-
cult to derive and is beyond the scope of this book. Using the order condition, 
and, assuming that it gives us the correct answer, we state the following

1.	 If the number of excluded exogenous variables is equal to the number of 
included endogenous variables is equal to one, 1g K k− = − , then we say 
that the equation is just identified. In this case, there is a unique solution 
for the structural parameters in terms of the reduced form parameters.

2.	 If the number of excluded exogenous variables is greater than the num-
ber of included endogenous variables minus one, 1g K k− < − , then 
we say that the equation is over identified. In this case, there are many 
solutions for the structural parameters in terms of the reduced form 
parameters.

3.	 If the number of excluded exogenous variables is less than the number 
of included endogenous variables minus one, 1g K k− > − , then we say 
that the equation is under identified. In this case, there is no solution for 
the structural parameters in terms of the reduced form parameters.

8.7	� ESTIMATION OF SIMULTANEOUS EQUATIONS 
MODELS

We have already seen two possible methods by which we can obtain consistent 
estimates of structural parameters in simultaneous equations models in the 
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form of indirect least squares and instrumental variables. In this section, 
we will look at an example of these methods in practice and discuss how 
these relate to OLS estimation. The example we will consider is the Cobweb 
model, which is familiar from basic microeconomics modules. The structural 
form of this model can be written as follows

	 11 12 1

21 22 1 2 ,
t t t

t t t

p q u

q p u

b b
b b −

∆ = + ∆ +
∆ = + ∆ +

� (8.24)

where p∆  and q∆  are percentage changes in price and quantity and 1u  and 
2u  are random errors. The first equation here is the demand curve and 

the second is the supply curve. The model assumes a lagged response of 
quantity produced to the lagged price change which therefore acts as a pre-
determined, or exogenous, variable in the supply curve.

From the order condition, we see that both equations in this model are 
just identified. For the demand curve we have 1 1g K k− = − =  and, for the 
supply curve, we have 1 0g K k− = − = . This model is an example of a partic-
ular kind of simultaneous equations model known as a recursive model. This 
is because the supply curve features only one endogenous variable. More 
generally recursive models are structured so that we can order them so that 
each equation, in turn, contains one fewer endogenous variables, with the 
final equation containing a single such variable. We can show that it is pos-
sible to obtain consistent estimates of the structural parameters by OLS in 
models of this type. However, this does not stop us from using such a model 
to illustrate and discuss alternative estimators.

Let us first consider the relationship between the reduced form and 
structural form for this model. The reduced form of (8.24) can be written

	

11 12 1 1

21 22 1 2

11 11 12 21 12 12 22

21 21 22 22

1 1 12 2 2 2 .

t t t

t t t

t t t t t

p p v

q p v

v u u v u

p p
p p

p b b b p b b
p b p b

b

−

−

∆ = + ∆ +
∆ = + ∆ +

= + =
= =
= + =

� (8.25)

We, therefore, have a straightforward one-to-one mapping from the structural 
form to the reduced form parameters. The reduced form can be estimated 
consistently by least squares, and therefore, we can obtain consistent esti-
mates of the structural parameters by the method of indirect least squares.
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Example: Using annual data for the market for oranges in the United States 
for the years 1983–2016, we estimate the following pair of reduced form 
equations.

	 1 1

1 2

ˆ2.2363 0.3723
ˆ0.3377 0.3389 .

t t t

t t t

p p v

q p v
−

−

∆ = − ∆ +
∆ = − + ∆ +

� (8.26)

We have not reported standard errors or diagnostic tests for these equations 
because we are simply interested in these equations as a means of estimating 
the structural parameters. From (8.25) we can derive our structural form 
parameter estimates as follows

	

( )

21 21

22 22

12
12

22

11 11 12 21

ˆ ˆ 0.3377
ˆ ˆ 0.3389

ˆ 0.3723ˆ 1.0986
ˆ 0.3389

ˆ ˆ ˆˆ 2.2363 1.0986 0.3377 1.8653.

b p

b p
pb
p

b p b b

= = −

= =

= = − = −

= − = − − ×− =

� (8.27)

Note that these parameter estimates are consistent but not efficient. This is 
because the recursive nature of the model means that OLS will also generate 
consistent estimates with lower variance in this case.

The example above makes clear that the method of indirect least squares 
(ILS) has a number of drawbacks. The algebra necessary to derive the rela-
tionship between the reduced form and the structural form is potentially 
difficult and this is something that will vary from one problem to another. 
Moreover, it is not easy to derive standard errors and other relevant statistics 
for the ILS estimates. This means that it is difficult to use the ILS method to 
conduct hypothesis tests. Finally, in the example given here, both equations 
are just identified. This means that the ILS method gives a unique solu-
tion. In cases where the equation is over-identified, there will be multiple 
solutions.

The method of instrumental variables provides an alternative method for 
estimation of the structural parameters with significant advantages relative 
to the indirect least-squares method. For our example, if we wish to estimate 
the demand curve, then we first need to find an appropriate instrument. 
This should have the properties that it is uncorrelated with the equation 
error but is correlated with the current right-hand side variable. An obvious 
candidate exists for just identified equations, in the form of the excluded 
exogenous variable. In the case of our demand curve 1tp −∆  is a candidate 
instrument with the necessary properties. This is a general property of just 
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identified equations because excluded exogenous variables are uncorrelated 
with the equation error by assumption but are correlated with the endoge-
nous variables because the reduced form equations contain all the exoge-
nous variables in the model. 

Example: Using 1tp −∆  as an instrument for tq∆  in the demand curve equation 
we obtain the following instrumental variables estimates for the demand 
curve.

	 ( ) ( ) 12.3209 0.4526
ˆ1.8652 1.0988

ˆ 13.5117 2.6843.

t t t

u

p q u

DWs

∆ = − ∆ +

= =
� (8.28)

An interesting property of this equation is that the parameter estimates are 
equal to those obtained using the ILS method (to the fourth decimal place). 
This is not a coincidence but rather, a standard property of IV estimates, 
when we use the excluded exogenous variables as the instruments in a just 
identified model. In this context, the IV method offers a much easier method 
of constructing consistent parameter estimates than the ILS method, with 
the added advantage that it allows us to calculate standard errors for the 
coefficient estimates, and therefore, to use the equation estimates for statis-
tical inference.

We noted earlier that this system of equations is recursive. This means 
that it is not necessary to use ILS or IV to obtain consistent estimates in this 
case. Even though tq∆  is one of the endogenous variables of the model, it 
is uncorrelated with the error in the demand curve, and therefore, we can 
obtain consistent parameter estimates by the method of OLS. It is interest-
ing to compare these with the IV estimates since this will illustrate the loss of 
efficiency from using IV in this context. Estimating the model by OLS yields 
the following results

	 ( ) ( ) 12.0096 0.1334
ˆ1.7408 0.6653

ˆ 11.7157 2.7814.

t t t

u

p q u

DWs

∆ = − ∆ +

= =
� (8.29)

Note that the coefficient standard errors are lower for the OLS estimates in 
(8.29), particularly that for the slope coefficient. This illustrates the value of 
using the most efficient estimator available. The overall fit of the OLS model 
is also better than that of the IV model, as evidenced by the lower value of ˆ

us .  
This provides a better way of comparing the fit when we estimate the model 
by instrumental variables because the R-squared statistic is not a reliable 
measure of goodness of fit for the instrumental variable estimator and can 
fall outside the range zero to one.
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Historical Note: The problem of estimating structural parameters in 
simultaneous equations demand and supply models was first articulated 
clearly in papers by Holbrook Working [Working1925] and his brother 
Elmer Working [Working1927].

8.8	 ESTIMATION OF OVER IDENTIFIED EQUATIONS

So far, we have assumed that the equation we wish to estimate is just identi-
fied. This simplifies things considerably because the number of instruments 
available to us is exactly equal to the number of right-hand side endogenous 
variables in the equation. There is, therefore, only one IV estimator available 
to us. Problems arise when we consider over identified equations because 
there are more excluded exogenous variables than right-hand side endog-
enous variables, and therefore, there is no longer a unique IV estimator.

Consider again, the simultaneous equations system defined in (8.16). 
Recall that the first equation of this system takes the form

	 1 11 2 11 1 12 2 1t t t t tY Y X X ub g g= + + + .� (8.30)

If we assume 11 12 0g g= = , then this excludes both 1X  and 2X  from the 
first equation. The equation is now over identified because there are two 
excluded exogenous variables and the number of included endogenous vari-
ables minus one is equal to one. Now both 1X  and 2X  are candidates to be 
instruments in the estimation of the remaining parameter 11b . Therefore, 

both ( )1
11 1 1 1 21 1

ˆ /
T T

t t t tt t
X Y X Yb

= =
=∑ ∑  and ( )2

11 2 1 2 21 1
ˆ /

T T

t t t tt t
X Y X Yb

= =
=∑ ∑  will 

yield consistent estimates of 11b . Moreover, these are not the only alterna-
tives. 1X  and 2X  are suitable instruments because they have the property that 
( ) ( )1 1 2 1 0E X u E X u= =  but, if this is the case, then any linear combination 

of these two variables 1 1 2 2X X Xq q= +  will also have the property that it will 
be uncorrelated with the error since ( )E Xu = ( ) ( )1 1 1 2 2 1E X u E X uq q+ 0.=  
It, therefore, follows that, for an over identified equation, there exists an 
infinite number of possible IV estimators corresponding to different linear 
combinations of the instruments.

The problem facing us is to choose between alternative consistent 
estimators. In these circumstances, we choose the most efficient, that is, 
we choose the estimator with the lowest asymptotic variance. Given the 
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standard assumptions about convergence in probability of sample moments 
to population moments, the asymptotic distribution of the IV estimator can 
be derived as

	 ( )
2 2

2

11 11 2 2
ˆ ~ 0,

a
u

ZY Y

T N
sb b

r s
 

−   
 

,� (8.31)

where Z is the instrument and 
2

2
ZYr  is the squared correlation between the 

instrument and the right-hand side endogenous variable. We, therefore, 
need to choose the instrument which maximizes this correlation in order to 
minimize the asymptotic variance. Assuming that 1X  and 2X  are candidate 
instruments, we regress 2Y  on the two instruments and calculate the fitted 
values, that is,

	 2 1 1 2 2
ˆ ˆŶ X Xq q= + .� (8.32)

This is a linear combination of the candidate instruments and is therefore 
itself a possible instrument. Moreover, it will have a higher correlation with 
the 2Y  variable than any other linear combination of 1X  and 2X  because the 
regression process acts to minimize the residual sum of squares from the 
regression of 2Y  on the two instruments. 2Y  is, therefore, the most efficient 
instrument we can use in this context.

The method described in the previous paragraph defines the two-stage 
least-squares estimator (TSLS). The terminology here is obvious. When we 
have an over-identified equation, we construct instruments through a first-
stage regression in which we regress the right-hand side endogenous variable 
on all the possible instruments available to us. We then take the fitted values 
from this first stage regression, which constitute a linear combination of the 
available instruments, and use these as the instrument for a second stage IV 
regression. This will generate the most efficient possible IV estimator.

Example: As an example of the TSLS method, we will attempt to reproduce 
the results from the first simultaneous econometric model to be published. 
This is the classic paper by Girshick and Haavelmo [Girshick1947] in which 
they present a model of the demand and supply for food in the United States 
between 1922 and 1941. This paper contains the first statement of many 
of the principles of simultaneous equation estimation that we now take for 
granted, and provides an interesting example, which we now attempt to 
reproduce. Their model consists of five equations linking five endogenous 
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variables to four exogenous or predetermined variables. The equation we 
will examine is their supply curve. This takes the form

	 ( ) ( ) ( ) ( ) ( )1 22 2 24 4 28 8 20 2y t y t y t z t u ta a g a= + + + + .� (8.33)

The notation is that of Girshick and Haavelmo. y variables are endogenous 
while z variables are exogenous. a coefficients are used for the intercept and 
endogenous variables while g coefficients are used for exogenous variables. 
This is typical of the notation used for simultaneous equations models in 
much of the early literature on the topic. ( )1y t  is the consumption of food 
per capita; ( )2y t  is the retail price of food deflated by a general price index; 
( )4y t  is production of agricultural food products per capita and ( )8z t  is a 

time trend. The exogenous variables not included in this equation are ( )6z t  
lagged price received by farmers for food products; ( )7z t  net investment per 
capita and ( )9z t  lagged disposable income per capita. The equation is over 
identified because 1 2g − =  and 3K k− = .

TABLE 8.1  Estimates of Supply Curve for Food US Data 1921Ð1941.

Ordinary Least Squares Estimates

( )
( )

( )
( )

( )
( )

( )
( )

( )1 2 4 8 20.0508 0.0599 0.0492 7.9447
ˆ0.1388 0.5589 0.3076 24.9841

ˆ 1.1106 1.7759u

y t y t y t z t u t

DWs

= + + + +

= =

Two-Stage Least Squares Estimates

( )
( )

( )
( )

( )
( )

( )
( )

( )1 2 4 8 20.0613 0.0877 0.0556 10.1809
ˆ0.1311 0.6689 0.3332 13.9982

ˆ 1.2218 1.9564u

y t y t y t z t u t

DWs

= + + + +

= =

Girshick and Haavelmo’s Estimates (Limited Information Maximum Likelihood)

( ) ( ) ( ) ( ) ( )1 2 4 8 2ˆ0.157 0.653 0.339 13.319y t y t y t z t u t= + + + +

Table 8.1 presents three sets of regression results based on Girshick and 
Haavelmo’s data, the first are the OLS estimates of (8.33), the second gives 
estimates obtained using two-stage least squares estimates using all available 
instruments and the third gives the estimates reported in the original paper, 
obtained using the method of Limited Information Maximum Likelihood 
(LIML). There is a clear difference between the OLS and TSLS estimates. 
In particular, the coefficient on ( )4y t  is noticeably larger. There is also a 
loss of efficiency with the standard errors for all the slope coefficients being 
larger for all three slope coefficients. It is also interesting to compare the 
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TSLS results with those reported in the original paper. The LIML estimator 
is closely related to the TSLS estimator and the values of the coefficients 
reported are very close to those we obtain. In the original paper, Girshick 
and Haavelmo state that “A theory of confidence intervals for the parameters 
has not yet been worked out. Such a theory is essential in order to judge 
the reliability of the estimates.” Thankfully, such methods are now available 
and, therefore, we are able to report the standard errors given for our TSLS 
estimates.

Historical Note: Girshick and Haavelmo [Girshick1947] is the first pub-
lished empirical simultaneous equations model. However, it builds on 
theoretical work published earlier by Haavelmo [Haavelmo1944]. This 
latter paper is arguably the key paper that established econometrics as a 
distinct branch of statistical theory.

EXERCISES 

Excel files containing the data for these exercises are available as companion 
files for this book.

EXERCISE 8.1

An econometrician has estimated the following equation which relates the 
growth rate of consumption expenditures to the growth rate of GDP. The 
data are annual values for the UK economy for the period 1949–2005

( ) ( )0.3202 0.1043

2

ˆ0.5103 0.8478

ˆ0.548 1.3933.

t t t

u

c y u

R s

∆ = + ∆ +

= =

a.	 Explain to your econometrician why the slope coefficient estimate may 
suffer from the problem of simultaneous equations bias.

b.	 Using your knowledge of the simple Keynesian income-expenditure 
model, suggest possible instruments that might be used to construct an 
instrument variable estimator for the same equation.

EXERCISE 8.2

Using the data set contained in the Excel workfile NAC.XLSX obtain the instru-
mental variable estimator of the relationship given in the equation for Exercise 
8.1, using the change in investment expenditure as an instrument for the change 
in GDP. What effect does this have on the parameter estimates you obtain?
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EXERCISE 8.3

Consider the following pair of simultaneous equations

1 11 2 11 1 1

2 21 1 22 2 2 ,
t t t t

t t t t

Y Y X u

Y Y X u

b g
b g

= + +
= + +

where 1Y  and 2Y  are endogenous variables, 1X  and 2X  are exogenous variables 
and 1u  and 2u  are independent random errors.

a.	 Using the order condition, show that both equations are just identified.

b.	 Write down the reduced form of the system and solve for the structural 
parameters as functions of the reduced form parameters.

EXERCISE 8.4

Consider the following system of three equations

1 11 2 12 3 11 1 1

2 22 3 21 2 2

3 31 3 3

t t t t t

t t t t

t t t

Y Y Y X u

Y Y X u

Y X u

b b g
b g
g

= + + +
= + +
= +

where 1 2,Y Y  and 3Y  are endogenous variables, 1 2,X X  and 3X  are exogenous 
variables and 1 2,u u  and 3u  are independent random errors. Show that the 
parameters of all three equations can be estimated consistently by ordinary 
least-squares.
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C H A P T E R  9
Dynamic Models

In this chapter, we consider the estimation of dynamic econometric models. 
These are concerned with modeling relationships in which there is adjust-
ment over time and fall into two main categories. Distributed lag models 
mean that the response of a variable Y to another variable X is spread out 
over a number of time periods while autoregressive models allow Y to be 
affected by its own past values. In practice, we may wish to allow both ele-
ments to be present in the same equation.

There are two types of distributed lag model we need to consider. Finite 
distributed lag models include a limited number of past values of the explan-
atory variable on the right-hand side of the equation. For example, we might 
have a relationship of the form

	 1 2 1 2 2t t t t tY X X X ub b b− −= + + + .� (9.1)

Equations like this do not, in principle, create any new problems for us since 
they involve the estimation of a limited number of parameters. In practice, 
however, the current and lagged values of the X variable are likely to be 
highly correlated, meaning that multicollinearity may become an issue. An 
early attempt to deal with this was provided by Almon [Almon1965], who set 
out a method that involves constraining the coefficients in finite distributed 
lag models to lie on a specific polynomial function. This method was fre-
quently used during the 1960s and 1970s but has fallen out of use since then. 
The reasons for this are that econometricians have tended to concentrate 
more on infinite distributed lag models and have found more flexible ways of 
modeling the distributed lag relationships that these imply.

An infinite distributed lag relationship takes the form

	
0

t i t i t
i

Y X ub
∞

−
=

= +∑ .� (9.2)
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Clearly, it is impossible to estimate such a model with a finite data set. Even 
if we had infinite data, the model would be problematic because of the likely 
high degree of collinearity of X with its own lags. It follows that some restric-
tions on the lag coefficients become necessary before we can even attempt to 
estimate a relationship of the form (9.2). One popular method is to assume 
that the ib  coefficients in (9.2) can be modeled as a geometric progression 
with a constant ratio less than one. Thus, we have � ��i

i�  where 0 1l< < .  
We now only need to estimate two parameters, an initial coefficient on the 
current X value b, and the rate at which the parameters decline l. This 
leads naturally to models with the Koyck lag structure – named for Koyck 
[Koyck1954] who first used this structure to model the aggregate invest-
ment function. Consider the infinite distributed lag model with exponen-
tially declining weights. We have

	 Y X ut
i

t i
i

t� ��
�

�

���
0

.� (9.3)

Lagging everything in (9.3) by one period and multiplying by l gives 1tYl − =

�� i

i t iX
�

�
�� 1 1tul −+ . We can use this to replace all the lagged X terms in (9.3) 

and write the model as

	 Y X Yt t t t� � ��� � 1 v ,� (9.4)

where 1t t tv u ul −= + . This is the familiar Koyck lag specification. We now 
have an equation with only two unknown parameters. However, the error now 
follows a first-order moving average process. Moreover, since ( )1 1 0t tE Y u− − ≠ ,  
it follows that OLS estimates of the parameters of (9.4) will be both biased 
and inconsistent.

In practice, the Koyck lag structure may sometimes be overly restrictive. 
The distributed lag relationship it implies is one in which the coefficients 
decline exponentially to zero. However, this does not allow for the possibility 
that the weights on past values of X may plausibly increase for a number of 
time periods before starting to decline. A method for dealing with general 
models like this was suggested by Jorgenson [Jorgenson1966] in the form of 
the Rational Distributed Lag Model. Let us assume that the coefficients in 
the general model (9.2) lie on a possibly infinite polynomial function written 
in terms of the lag operator, that is,

	 ( )t t tY A L X u= + .� (9.5)
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We assume that the roots of this polynomial function lie within the unit cir-
cle. The rational distributed lag model uses the fact that we can approximate 
any polynomial function of this type as the ratio of two lower-order polyno-
mial functions. We can, therefore, write ( ) ( ) ( )/A L B L C L= , and this allows 
us to write (9.5) as

	
( )
( )t t t

B L
Y X u

C L
= + ,� (9.6)

or, multiplying through by ( )C L  yields

	 ( ) ( )t t tC L Y D L X v= + .� (9.7)

As with the Koyck lag, the errors in (9.7) will no longer be independent. 
Instead, we have ( )t tv C L u= , and therefore, the errors in the transformed 
equation will follow a moving average process. The order of the process 
depends on the order of the polynomial function ( )C L . This creates a prob-
lem because the OLS estimator will be biased and inconsistent due to the 
correlation of the error with the lagged Y terms in (9.7).

For both equation (9.4) and equation (9.7) we obtain an autoregressive 
equation in Y as the result of a transformation used to simplify the distrib-
uted lag relationship between Y and X. However, it is possible that autore-
gressive elements enter the relationship independently of the distributed lag 
relationship. This would be the case, for example, if the adjustment of the Y 
variable is costly and is therefore spread over a number of time periods. In 
such cases, it makes sense to begin with a specification that allows for both 
autoregressive and distributed lag components. This is the Autoregressive 
Distributed Lag Model or ARDL model. For example, we might begin with 
a specification of the form

	 ( ) ( )t t tA L Y B L X u= + .� (9.8)

Another advantage of this approach is that, by choosing sufficiently general 
lag polynomials ( )A L  and ( )B L , it is normally possible to ensure that the 
error u is serially uncorrelated. It may be possible to reduce the order of 
these polynomials in cases where they contain common factors. For example, 
if both ( )A L  and ( )B L  contain a common factor ( )1 Lj− , then we can write 
(9.8) as ( ) ( )t t tC L Y D L X v= +  where 1t t tv v uj −= +  and ( )C L  and ( )D L  are 
polynomials which are one degree lower than ( )A L  and ( )B L , respectively. 
This is the COMFAC restriction which Hendry and Mizon [Hendry1978] 
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put forward as a possible rationale for estimation with autocorrelated errors. 
While this approach offers a potential efficiency gain because it involves 
fewer parameters to be estimated, there is no guarantee that the restrictions 
involved are valid, and the added complication of estimation means that it is 
rarely used in practice.

9.1	 MODELS WITH EXPECTATIONS

Distributed lag relationships arise naturally in models with adaptive expec-
tations. This is because the adaptive expectations hypothesis is that agents 
form expectations about variables of interest by taking a weighted average 
of past values of the variable in question. This approach has been criticized 
because it implies (1) that agents ignore relevant information when forming 
expectations and (2) that agents make predictable, and easily correctable, 
errors in expectations. However, this is not the time or place to enter this 
debate, and we will simply consider the implications of the hypothesis for 
econometric modeling. First, consider a simple model in which expectations 
play a role. Suppose we wish to estimate an equation of the form

	 1
e

t t tY X ub += + ,� (9.9)

where the e superscript indicates an expectation. Equations like this can 
be found in many areas of economics, particularly in macroeconomics. For 
example, consumption expenditure is often argued to depend on expecta-
tions of income rather than actual income. Another example is the case of 
price adjustment where the expectations of future inflation enter as one of 
the determinants of the current rate of inflation in the Phillips curve.

Historical Note: Adaptive expectation is a key assumption in generat-
ing the price and quantity dynamics of the cobweb model of agricultural 
markets and in the wage-price dynamics of Milton Friedman’s analysis of 
the Phillips curve. However, the approach has fallen out of favor since the 
introduction of the rational expectations hypothesis in an important paper 
by Muth [Muth1961]. This paper was neglected for over a decade but 
was later rediscovered and formed the basis of the rational expectations 
revolution of the 1970s.

The problem facing the econometrician is that the expectations term 
in (9.9) is not usually observable directly. Instead, we must make use of an 
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auxiliary model for the determination of expectations. One such model is pro-
vided by the adaptive expectations hypothesis. This states that agents revise 
their expectations based on past errors made in forecasting the variable in ques-
tion. Expectations, therefore, adjust according to the following relationship

	 ( )1
e e e
t t t tX X X Xg+ − = − .� (9.10)

Using the lag operator, we can write (9.10) as

	
( )

( ) ( )( )2 2
1 1 1 1

1 1
e t
t t

X
X X L L

L
g g g g

g+ = = + − + − +
− −

 ,� (9.11)

that is, the expected future value of X is an infinite distributed lag of current 
and past values of X with geometrically declining weights (assuming 0 1g< < ).  
Substituting for 1

e
tX +  and solving means that we can derive the following rep-

resentation of the model

	 ( ) ( )1 11 1t t t t tY X Y u ubg g g− −= + − + − − .� (9.12)

The two variables on the right-hand side of (9.12) ( tX  and 1tY − ) are both 
observable, and therefore, (9.12) can, in principle, be estimated. Thus, the 
adaptive expectations model leads naturally to a Koyck lag specification in 
which the estimating equation contains a lagged endogenous variable and 
the equation error follows a first-order moving average process.

Example: Turner and Benavides [Turner2001] estimate a version of this 
model for the demand for money in Mexico using quarterly data for the 
period 1980 to 1999. The model consists of two equations

	 ( )
( )

1 2 1

1 11 ,

e
t t tt

e e
t t t

m p y ub b p

p g p gp− −

− = − +

= − +
� (9.13)

where m, p, and y are narrow money, the price level and output all in the 
form of natural logarithms, pp = ∆  and the superscript e denotes an expecta-
tion. This pair of equations is solved to eliminate the expectation from the 
first equation which gives a single equation of the form

	 ( ) ( ) ( )( )1 1 1 2 1 1 1 11
1 1t t t t tt t

m p y y m p u ub g b b gp g m− − −−
− = − − − + − − + + .� (9.14)

Equation (9.14) allows for an unrestricted moving average error but the 
restriction implied by the model, 1 1m g= − , can be tested using an F-test 
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comparison of the residual sums of squares from restricted and unrestricted 
versions of the model. The model was estimated using an iterative search rou-
tine for the moving average coefficient (details can be found in the paper) and 
the results shown in Table 9.1 were obtained. The income and interest rate 
elasticities were both significant with the correct sign, but the moving average 
coefficient was insignificantly different from zero. Moreover, the F-test for 
the restriction 0 1: 1H m g= −  strongly rejected the null. Thus, the inclusion 
of a moving average error in this model appears to introduce an unnecessary 
complication in a model that otherwise fits the data reasonably well1.

TABLE 9.1  Demand for Narrow Money in Mexico 1982q1 to 1999q1.

β1 β2 γ µ1

Coefficient Estimate 0.5094 −7.6289 0.0688 0.1073

Absolute Value of t-ratio 1.67 2.77 2.52 0.70

9.2	 COSTS OF ADJUSTMENT

Consider a model of the form

	 t t tY X ub∗ = + .� (9.15)

The variable tY∗ is the equilibrium or desired value of Y for a given value of 
X. Let us suppose we are interested in estimating the parameter b which 
determines the equilibrium response of Y to changes in X. The problem 
is that equation (9.15) cannot be estimated directly because it contains an 
unobserved variable tY∗.

To enable us to estimate we need to develop a theory of the adjustment 
process. There are many reasons why agents might not immediately adjust 
the actual value of Y to its equilibrium value. If adjustment is costly (which it 
almost always will be) then it pays agents to make the adjustment gradually 

1  In the same paper, we estimated and tested a similar Koyck lag model of the Phillips 
curve relationship between inflation and the output gap, with very similar results. Our con-
clusion is that the moving average term adds nothing to the empirical fit of the model.
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rather than all in one go. As an example, think of the case of a firm adjust-
ing its capital stock in response to an increase in demand for its product. It 
takes time and resources to install new machinery and it will pay the firm to 
spread this process out over a period of time rather than attempt to do this 
immediately. Let us suppose that the agent responds to a gap between the 
actual and equilibrium values of Y by changing this variable by some fraction 
of the difference, that is,

	 ( )1 1t t t tY Y Y Yg ∗
− −− = − ,� (9.16)

where 0 1g< <  measures the fraction of any disequilibrium which is elimi-
nated within one time period. Again, we can think of g as measuring the 
speed of adjustment. Values of g close to zero indicate slow adjustment while 
values of g close to 1 indicate fast adjustment. This specification can be moti-
vated by the assumption of a quadratic cost function in which agents trade 
off the costs of being away from the equilibrium against the cost of changing 
the decision variable.

If we substitute our equation for the equilibrium value of Y into (9.16) 
then we obtain

	 ( ) 11t t t tY X Y ubg g −= + − + ,� (9.17)

which only contains observable variables, and which can, therefore, be 
estimated. The specification in (9.17), and the Koyck lag model we derived 
earlier in equation (9.12) for the expectations model, are very similar in 
that both include the current value of X and the lagged value of Y on 
the right-hand side. However, they have been developed from different 
theoretical models of the relationship between the two variables. In the 
first case, the distributed lag relationship arose because Y depended on 
the expectation of X rather than its actual value, while in the second case, 
it arose because the adjustment of Y towards its equilibrium value was 
not instantaneous. In principle we might be able to distinguish between 
the two models by looking at the autocorrelation properties of the residu-
als – equation (9.12) has a moving average error while equation (9.17) 
does not. This is not always easy, however, particularly in cases where the 
parameter g is close to one, and therefore, the coefficient on the mov-
ing average term in (9.12) (i.e., 1 g− ) is close to zero. This illustrates an 
important feature of dynamic economic modeling in that it shows that it 
is often hard to pin down the exact causes of distributed lag relationships 
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between variables. In real-world applications, we may observe a distrib-
uted lag response, but this may be due to a mixture of causes rather than 
one particular explanation.

Example: Suppose we wish to model the demand for US exports. Two plau-
sible explanatory variables are the overall level of trade in the world economy 
and the real exchange rate for the US relative to other currencies. Therefore, 
we can write an equilibrium relationship of the form

	 0 1 2ln ln lnt t t tX W E ub b b∗ = + + + ,� (9.18)

where X∗ is equilibrium US exports, W is the level of world trade and E is 
the real effective exchange rate. u is a random error that we assume has the 
normal classical properties. The equation is written in the log-linear form 
so that the coefficients can be interpreted as elasticities. Estimation of this 
model by OLS using quarterly data for the United States for the period 
1975q1–2008q2 yields the results shown in equation (9.19)

	
( )

( ) ( )
( )

( )
( )

0.8407 0.0375 0.0856

2
1

ˆln 9.0624 1.1343 ln 0.2086 ln

ˆˆ0.9532 0.0908 0.5880 0.70.

t t t t

u

X W E u

R DWs r

= − + + +

= = = =
� (9.19)

Equation (9.19) clearly suffers from serial correlation. This is confirmed 
by the value of the Durbin-Watson statistic which, at 0.59, is well below 
the 5% lower bound of 1.63. There is, therefore, strong evidence of 
first-order serial correlation. The implications of this are that, while the 
coefficient estimates may not be biased, they are certainly inefficient. 
Moreover, the estimates of the standard errors are most likely biased 
downwards, meaning that we cannot rely on t-tests for the significance 
of the individual coefficients or the F-test for their joint significance. 
We should also note that the estimates reported in equation (9.19) are 
problematic from the point of view of economic theory as well as their 
statistical properties. The coefficient for world trade is plausible – it indi-
cates that a 1% rise in world trade is associated with a 1.13% rise in US 
exports. However, the sign of the coefficient for the real exchange rate 
runs counter to our expectations. We would expect that an appreciation 
of the real exchange rate for the dollar should lead to a fall in US exports. 
Our coefficient estimate is positive indicating that the direction of the 
effect is counter to the predictions of theory. We should not, however, 
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read anything into the apparent significance of this coefficient since this 
is most likely a product of the underestimation of the standard error due 
to the presence of serial correlation.

We can attempt to deal with both the economic and statistical prob-
lems of our equation by allowing for a dynamic relationship between the 
variables. In other words, we acknowledge that the effects on US exports 
of changes in world trade and the real exchange rate are not instantaneous 
and we seek to model these explicitly. Let us modify our estimating equation 
to include the lagged endogenous variable. This means that the coefficient 
estimates for world trade and the real exchange rate will no longer provide 
direct estimates of the equilibrium elasticities. Estimates of the model with 
a lagged endogenous variable are given in equation (9.20)

	
( )

( ) ( )
( )

( )
( )

( )
( )10.2564 0.0220 0.0200 0.0175

2
1

ˆln 0.8044 0.1467 ln 0.0388 ln 0.8620 ln

ˆˆ0.9976 0.0204 1.4562 0.26.

t t t t t

u

X W E X u

R DWs r

−= − + − + +

= = = =
� (9.20)

This equation can be interpreted as a partial adjustment model. It shows 
a noticeable improvement in statistical terms. Note, for example, that the 
Durbin-Watson statistic has risen from 0.59 for the simple regression to 1.46 
in this case. This indicates that the extent of the serial correlation has fallen 
noticeably. This is confirmed by the estimate of the first-order autocorrela-
tion coefficient which has fallen from 0.70 to 0.26. Although there is still 
significant first-order autocorrelation, the reduction in the magnitude of 
the autocorrelation coefficient means that the bias in the standard errors of 
the coefficients will have been reduced. Moreover, this equation has better 
properties in terms of economic theory, in that the coefficient on the real 
exchange rate now has the correct (negative) sign. We will see later that it 
is possible to improve on this equation further. However, for the moment 
it does reflect a significant improvement on the simple regression model 
and emphasizes the importance of allowing for a distributed lag relationship 
between the variables.

9.3	 ASSESSING THE DYNAMICS

The coefficient estimates in equation (9.20) give the impact effects of 
changes in the right-hand side variables on US exports. For example, the 
coefficient for LW indicates that a 1% rise in world trade immediately 
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increases US exports by just under 0.15%. Similarly, the coefficient on 
LE tells us that a 1% appreciation of the real exchange rate immediately 
reduces US exports by about 0.04%. However, we are often more inter-
ested in the dynamic path of US exports in response to changes in world 
trade and the exchange rate and in the long-run or equilibrium effects 
of changes in these variables rather than the impact effects. From our 
estimated equation, we can calculate the effects of sustained increases in 
the explanatory variables as � � �i i

t

t
t� � �

�

�� 30
 where 1,2i =  are the impact 

coefficients for the two variables and 3b  is the coefficient on the lagged 
endogenous variable. These, in turn, allow us to calculate the long-run 
elasticities as � � �i i� �� �/ 1 3 . Thus, an equilibrium solution is only pos-
sible if 3 1b ≠ .

The dynamic paths of US exports in response to sustained changes 
in world exports and the real exchange rate are illustrated in Figures 9.1 
and 9.2. From Figure 9.1, we see that there is a positive impact effect 
of the increase in world trade which grows over time, until eventually 
reaching a new equilibrium value determined by the long-run multiplier 
which is calculated as ( )0.1467 / 1 0.862 1.063− = . From Figure 9.2, we 
see that a 1% real exchange rate appreciation has a long-run effect equal 
to ( )0.0388 / 1 0.862 0.2812− − = − . In both cases, we have assumed a sus-
tained increase in the value of the explanatory variable. If the increase 
had been temporary, then the effects of any change would eventually die 
out and US exports would return to the original equilibrium. It should 
also be noted that we have assumed that there is no feedback from US 
exports to the variable in question. To borrow a piece of terminology that 
we will discuss later, we have assumed that US exports do not “Granger 
cause” world exports or the US real exchange rate. Relaxation of this 
assumption requires a multi-equation approach such as that of Vector 
Autoregression. 

One way of assessing the speed of adjustment in dynamic models is 
to calculate the half-life of a shock. This is the length of time it takes for 
half the adjustment process to be completed. From standard results for 
geometric progressions, we can find the half-life of a shock by finding the 
value of t such that 3 0.5tb =  or 3ln0.5 / lnt b=  which, in this case, yields 
t = ( ) ( )ln 0.5 / ln 0.862 4.667= . Since the data here are quarterly, this 
indicates that 50% of the adjustment process is completed in just over  
one year.
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FIGURE 9.1  Dynamic Path of US Exports in Response to a 1% Increase in the Exports 
of Other Industrialized Economies.

FIGURE 9.2  Dynamic Path of US Exports in Response to a 1% Appreciation in the 
Real Exchange Rate.
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9.4	 MODELING DYNAMIC RELATIONSHIPS

In the example considered in the previous section, we showed that the 
dynamic misspecification identified in a simple regression model could be 
reduced through the introduction of a lagged endogenous variable into the 
model. This could be interpreted in economic terms as arising from either 
the effects of expectations or costs of adjustment. The procedure adopted 
was, therefore, to estimate a regression model based on an equilibrium 
economic model, investigate that model for any evidence of statistical mis-
specification, and then revise the model if necessary. There is an obvious 
temptation to proceed in this way generally when fitting models to the data, 
but this is a dangerous strategy for several reasons which we now go on to 
discuss.

The methodology described above is that of specific to general model-
ing. It is attractive to the economist because it begins with a model that is 
closely linked to equilibrium economic theory. However, it runs into the 
problem that most such models will be statistically misspecified. This is 
because economic theory rarely offers a complete description of all the fac-
tors which can lead to distributed lag relationships between the variables of 
the model. Therefore, the specific to general methodology implies that we 
almost always begin with a misspecified model which creates statistical prob-
lems for the investigator. The reason why this is problematic is that all sta-
tistical tests begin with the assumption that we have a well-specified model 
as the basis of our tests. If this is not the case, then any tests based on mis-
specified models are unreliable. A second problem is that misspecification of 
one form can produce multiple types of failure in misspecification tests. For 
example, a structural break (change in the parameters of the model during 
the sample period) can produce results that appear to show the presence 
of serial correlation in the model residuals. Finally, we note that there is no 
unique way of modifying a misspecified model to produce a well-specified 
model. Different investigators using the specific to general approach can 
begin with the same model but end up with very different looking models as 
they attempt to patch up misspecifications that are detected.

For all the reasons described earlier, the specific to general method-
ology is not regarded as a good practice among modern econometricians. 
Instead, the general to specific methodology is widely regarded as providing 
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a sounder basis for empirical work. This approach was pioneered by David 
Hendry in the 1970s and can be summarized as follows:

1.	 Use economic theory to determine the nature of the equilibrium rela-
tionship between a set of variables of interest.

2.	 Estimate the most general model possible, including many lags of the 
regression variables to maximize the chances of obtaining a statistically 
well-specified model.

3.	 Test if it is possible to simplify the model by eliminating irrelevant varia-
bles. If the restrictions involved in eliminating variables from the general 
model are not rejected, then proceed to the simpler model or parsimo-
nious specification, as it is often referred to in this literature.

4.	 At all stages of the analysis test for evidence of misspecification in the 
model by examination of the residuals for evidence of serial correlation, 
heteroscedasticity, and other signs that the model does not provide an 
adequate statistical description of the data.

5.	 When a parsimonious specification has been identified, test restrictions 
on the equilibrium relationship between the variables and write the 
model in a way that can easily be interpreted.

The approach described above sounds simple. However, it still requires 
judgment and skill on the part of the modeler. What it does do is ensure that 
the final model will be statistically well specified and this in turn will mean 
that tests of economic restrictions based on the final model will be more reli-
able than tests based on misspecified models.

Example: As an example of the general to specific approach to mode-
ling, we will re-examine our model for US exports. Since our model is esti-
mated using quarterly data we take, as our most general model, an equation 
that includes the current and four lagged values of the world trade variable 
and the real exchange rate, as well as four lags of the endogenous variable. 
When we estimate this general model, we obtain the results reported in 
Table 9.2. 
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TABLE 9.2  General Dynamic Equation for US Exports 1976q1Ð2008q2.

Coefficient Standard error T-Ratio
Constant −0.5054 0.3483 −1.4512

( )ln tW 0.2737 0.0583 4.6971

( )1ln tW − −0.0353 0.0567 −0.6233

( )2ln tW − −0.0211 0.0542 −0.3902

( )3ln tW − −0.0288 0.0550 −0.5245

( )4ln tW − −0.0719 0.0565 −1.2729

( )ln tE 0.1469 0.0844 1.7406

( )1ln tE − −0.0983 0.1073 −0.9165

( )2ln tE − −0.0697 0.1054 −0.6609

( )3ln tE − 0.0235 0.1063 0.2214

( )4ln tE − −0.0534 0.0784 −0.6805

( )1ln tX − 1.0515 0.0984 10.6836

( )2ln tX − −0.3635 0.1337 −2.7187

( )3ln tX − 0.2339 0.1341 1.7440

( )4ln tX − −0.0380 0.0862 −0.4406

2

4

ˆ0.9980 0.0191 1.8949
0.1726 9.1480 6.3615

uR DW

ARCH Q JB

s= = =
∗= = =

ARCH is the chi-square test for a first-order ARCH process in the residuals, 
distributed as 

2
1c under the null. 4Q  is the Ljung-Box test for fourth-order 

autocorrelation, distributed as 
2
4c  under the null). JB is the Jarque-Bera test 

for normality of the residuals, distributed as 
2
2c  under the null. ∗ indicates 

significance at the 5% level. 
Table 9.2 indicates a model that is reasonably well specified in a sta-

tistical sense. The first-order serial correlation which was present even in 
the model with a lagged endogenous variable is no longer evident here. 
The diagnostic test statistics reported below do not indicate significant mis-
specification at the 5% level except for the normality test. The Jarque-Bera 
test does indicate significant non-normality of the residuals, but this can be 
shown to depend on a few outlying observations.
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The problem with the equation reported in Table 9.2 is that it contains 
too many insignificant variables, that is, this is not a parsimonious specifica-
tion. The next stage of the general to specific process is, therefore, to con-
duct a specification search in which we eliminate insignificant variables until 
all variables in the equation are significant at some predetermined level. In 
doing this it is dangerous to eliminate too many variables at one time because 
variables that are insignificant in the general model may become significant 
when other variables are eliminated. It is, therefore, good practice to elim-
inate only a few variables at any one time and proceed cautiously until the 
final specification is obtained. There is no set procedure for the order in 
which insignificant variables are eliminated but a reasonable rule of thumb is 
to eliminate the least significant variables first. Gilbert [Gilbert1986] argues 
that this is where the judgment and art of econometric model building is 
introduced. However, significance is not the only criterion, we also need to 
check if the elimination of variables introduces misspecification problems 
such as serial correlation.

Historical Note: Pagan [Pagan1987] argues that the general to specific 
approach developed from a long oral tradition on the correct way to prac-
tice econometrics which developed at the London School of Economics 
from the 1960s onwards. Hence the approach is often described as the 
“LSE approach.”

Following a specification search using the general equation as a starting 
point, the final specification for the US export function reported in (9.21) 
was obtained. The stopping criterion for the search was that all variables 
included should be significant at the 5% level. Note that, although the 
lagged world trade and exchange rate variables are not significant at the 5% 
level, they are retained in the final specification because eliminating these 
variables produced significant serial correlation in the model residuals.

	

( )
( ) ( )

( )
( )

( )
( )

( )

( )
( )

( )
( )

1 20.2322 0.0262 0.0317 0.0185

1 20.0852 0.0751

2

4

ln 0.6388 0.1656 ln 0.0456 ln 0.0339 ln

ˆ1.1153 ln 0.2297 ln

ˆ0.9979 0.0192 1.9442
1.1376 8.9008 11.1745

t t t t

t t t

u

X W W E

X X u

R DW

ARCH Q JB

s

− −

− −

= − + − −

+ − +

= = =
= = =

� (9.21)

The final specification contains only six estimated coefficients rather than 
the fifteen in the general model. This is, therefore, considerably more 
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parsimonious in terms of the variables included. However, the exclusion of 
nine of the original variables has not reduced the fit of the equation to any 
noticeable extent. This can be seen by the fact that the 2R  and the stand-
ard error of the regression are virtually unchanged. A formal test of all the 
restrictions involved in moving from the general model to the specific model 
can be conducted using an F test based on the residual sums of squares of 
the two equations reported. The test statistic can be calculated as

( ) ( )0.045488 0.041846 130 15
1.1121.

0.041846 9
F

− −
= × =

The 5% critical value for an F-test with 9 and 115 degrees of freedom is 
5%

9,115 1.963F = . Therefore, the restrictions involved in moving from the gen-
eral to the specific model are not rejected.

General to specific analysis has given us a final equation that fits the 
data well statistically. However, it is less easy to assess whether the equation 
makes sense from the perspective of economics because of the complex lag 
structure of the final specification. One solution to this problem is to rewrite 
the equation in a form in which the parameters can be given a meaningful 
economic interpretation. A natural format for this is the error correction 
model. This is essentially just a different way of parameterizing (or writing) 
an equation that combines differences and levels of variables so that the 
investigator can separate out long and short-run dynamic effects.

Let us begin by considering the final equation we have estimated. This 
can be written in the form

	 1 2 3 1 4 2 5 1 6 2ln ln ln ln ln lnt t t t t t tX W W E X X ub b b b b b− − − −= + + + + + + .� (9.22)

We can rewrite this equation as:

	 1 2 3 1 4 1 5 1 6 2ln ln ln ln ln lnt t t t t t tX W X X W E ug g g g g g− − − −∆ = + ∆ + ∆ + + + + .� (9.23)

Equations (9.22) and (9.23) are formally identical. They are in fact just two 
different ways of writing the same linear combination of the set of varia-
bles that are included in the final specification of our model. This can be 
seen by the fact that there is a unique mapping from the coefficients of 
(9.22) to those of (9.23), that is, 1 1 2 2, ,g b g b= =  3 6g b= −  4 5 6 1,g b b= + −

5 2 3 6 4,g b b g b= + = . More importantly, the coefficient of (9.23) have natu-
ral economic interpretations. In particular, we can interpret the coefficients 
on the different terms as representing short-run dynamics. For example, 2g  
describes the impact effect of an increase in world trade on US exports. The 
coefficients on the level terms describe the long-run relationship between 
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the variables. The long-run effect of an increase in world trade is given by the 
ratio 5 4/g g− . The coefficient on the lagged endogenous variable 4g  measures 
the speed of adjustment when the relationship between the variables is dif-
ferent from the equilibrium relationship, that is, it measures the speed with 
which errors (deviations from equilibrium) are corrected (by adjustment of 
the endogenous variable). At the risk of over emphasizing this point, it is 
worth representing our equation diagrammatically as shown in Figure 9.3.

Historical Note: Error correction models have their origin in the paper 
by Sargan [Hart1964]. This paper emphasized the importance of retain-
ing levels terms in a first difference regression to allow for the existence 
of a long-run relationship between the variables.

FIGURE 9.3  Interpretation of the Error-Correction Parameters.

Estimates of the final specification of the model in error-correction form 
are given in equation (9.24). Inspection of these results confirms that this is 
the same equation as presented in equation (9.21). This can be seen by the 
fact that the residual sums of squares are identical for the two equations, 
indicating that these are just two different ways of writing the same linear 
combination of variables. In fact, many of the equation statistics which are 
based on the residual sum of squares are identical, including the Durbin-
Watson statistic, the standard error of the regression, and the Jarque-Bera 
statistic. However, there are some differences. In particular, the 2R  is much 
lower for the error-correction representation. This reflects the fact that the 
re-parameterization of the equation has changed the left-hand side variable 
from the (log) level of exports to its first difference. Thus the 2R in (9.23) 
measures the fraction of the variance of the quarter on quarter growth rate 
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of exports which is explained by the model rather than that of the level of 
exports. This gives a much more realistic guide as to the goodness of fit of 
the model since it is not artificially increased by the presence of a trend in 
the series.

	

( )
( ) ( )

( )
( )

( )
( )

( )

( )
( )

( )
( )

1 10.2322 0.0262 0.0751 0.0203

1 20.0234 0.0185

2

4

ln 0.6388 0.1656 ln 0.2297 ln 0.1144 ln

ˆ0.1200 ln 0.0339 ln

ˆ0.4656 0.0192 1.9442
1.1376 8.9008 11.1745

t t t t

t t t

u

X W X X

X E u

R DW

ARCH Q JB

s

− −

− −

∆ = − + ∆ + ∆ −

+ − +

= = =
= = =

� (9.24)

If we consider the parameter estimates in equation (9.24), then we see that 
it provides an economically plausible model of exports. The impact elasticity 
with respect to world trade is 0.165 which rises to 0.120011 / 0.1144 1.049=  
in the long run. The impact elasticity with respect to the real exchange rate 
is zero because the contemporaneous real exchange rate variable was elim-
inated during the specification search but there is a long-run effect which 
is given by 0.033868 / 0.1144 0.296− = − . The model explains just under half 
the variation of the quarter on quarter growth rate of exports, which is rea-
sonably impressive when we consider that this is a highly variable series with 
no trend. Finally, as we have already confirmed for the model in levels, there 
is no evidence of misspecification other than a significant Jarque-Bera test 
statistic which indicates some non-normality in the equation residuals.

Pagan [Pagan1987] provides an interesting comparison of the general to 
specific methodology with two alternative approaches to econometric mod-
eling. These are the “Extreme Bounds” approach of Leamer [Leamer1978] 
and the Vector Autoregression approach of Sims (1980). Although he is 
generally approving of the approach, Pagan expresses some concerns about 
the specification search approach of the general to specific methodology. In 
particular, he argues that there is a danger that the final specification of the 
model may be “path dependent.” This arises because there is always the risk 
of making a Type I error during the search process and eliminating a variable 
that should be in the final specification. This means that other variables tend 
to be included in the final specification because they are correlated with the 
erroneously excluded variable. In more recent work, Krolzig and Hendry 
[Krolzig2001] have addressed this issue through the use of multiple search 
paths which are implemented in computer automated modeling software.
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9.5	� STATISTICAL PROBLEMS WITH LAGGED  
DEPENDENT VARIABLES

One problem encountered with dynamic econometric models is that least-
squares estimates will be inconsistent when we have a combination of an 
equation including a lagged dependent variable and an autocorrelated error. 
To understand this, we will consider a simple example. Suppose we have a 
model in which Y is related to its own past value and the equation error u is 
also autocorrelated. This can be written

	 1

1 .
t t t

t t t

Y Y u

u u

b
r e

−

−

= +
= +

� (9.25)

Both processes are assumed to be stationary, that is, 1b <  and 1r < . 
; 1, ,t t Te =   are independent random errors, with mean zero and constant 

variance. The OLS estimator of b is consistent if ( )1cov 0t tY u− = . However, 
this condition is not satisfied in this case. We have

	
E u Y E u Y u

E u Y u Y

t t t t t t

t t t t

� � � �

� � �

� � � �� � �� �� �
� � �

1 1 2 1

1 2 1
2

� � �

�� � � �� ��� �2 1� �t t tu .
� (9.26)

By the assumption that the te disturbances are serially uncorrelated, we have 
E Yt t� ��� �2 � � ��E ut t1� 0= and, by the assumption of stationarity, we have 
( ) ( )1 1 2t t t tE u Y E u Y− − −= ( )1cov t tY u−= . It follows that

	 cov Y ut t u�� � �
�

�1
2

1
0

�
��

� ,� (9.27)

and therefore, OLS estimation of the autoregressive equation in Y will pro-
duce biased and inconsistent estimates. It is possible to derive the inconsist-
ency in the OLS estimator explicitly and we can show that

	
( )21ˆplim
1

r b
b b

rb
−

= +
+

.� (9.28)

We can also show that the probability limit of the first-order sample autocor-
relation is given by the expression

( )21
ˆplim

1

r b
r r

rb
−

= −
+

.
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The inconsistencies in these estimates are, therefore, offsetting in that 

( )ˆ ˆplim b r b r+ = + . Alternatively, if we over-estimate b  then we under-

estimate r by the same amount. Both these results are not intrinsically  
difficult to prove but require a lot of rather tedious algebra. They are, there-
fore, left as exercises for the interested student. One interesting property 
that follows from this is that, in cases where b  and r are both positive, the 
Durbin-Watson statistic tends to be biased towards acceptance of the null 
hypothesis of no autocorrelation. To prove this note that ( )ˆ2 1DW r≈ − in 
large samples and ˆplim r r<  in these circumstances. It is, therefore, better 
to use tests such as the Durbin h-test or the Breusch-Godfrey test if the 
regression contains a lagged endogenous variable.

EXERCISES 

Excel files containing the data for these exercises are available as companion 
files for this book.

EXERCISE 9.1

Consider the following model

	

( )

1

1

are independent identically-distri1; 1;  buted iid  random 

variables with zero m constant variaean and nce.

t t t

t t t

t

Y Y u

u u

b
r e

b r e

−

−

= +
= +

< <

If 2
1 12 2

ˆ /
T T

t t tt t
Y Y Yb − −= =

=∑ ∑ , show that

( )21ˆplim
1

r b
b b

rb
−

= +
+

EXERCISE 9.2

Consider the following model

	

( )

1

1

are independent identically-distri1; 1;  buted iid  random 

variables with zero m constant variaean and nce.

t t t

t t t

t

Y Y u

u u

b
r e

b r e

−

−

= +
= +

< <
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If 2
12 2

ˆ ˆ ˆ ˆ/
T T

t t tt t
u u ur −= =

=∑ ∑ , show that

( )21
ˆplim

1

r b
r r

rb
−

= −
+

EXERCISE 9.3

An econometrician has estimated the following model which relates the 
demand for airline travel A to real personal disposable income Y and the rel-
ative price of airline travel P for the US economy. The data are annual from 
1929 to 2003, the demand for airline travel is defined as revenue passenger 
miles per head of population and all variables are in natural logarithms.

( )
( ) ( )

( )
( )

( )
1.5269 0.3197 0.5460

2

ˆln 24.3371 1.7508 ln 1.2691ln

ˆ0.9494 0.5461 0.1013

t t t t

u

A Y P u

R DWs

= − + − +

= = =

a.	 Explain how the slope coefficients for this model can be interpreted as 
income and price elasticities of demand, respectively.

b.	 Explain why the standard errors of the coefficient estimates are prob-
ably too low and suggest an alternative specification that might be less 
susceptible to this problem.

Following your advice, the econometrician estimates a partial adjustment 
model for the demand for air travel. He obtains the following results:

	

( )
( ) ( )

( )
( )

( )
( )

( )
0.8429 0.1067 0.1345 0.0255

2

ˆln 3.3034 0.3633 ln 0.2623 ln 0.8749 ln

ˆ0.9980 0.1044 1.5210

t t t t t

u

A Y P Y u

R DWs

= − + + + +

= = =

c.	 Calculate the long-run income and price elasticities of demand implied 
by this model. Are these consistent with economic theory?

d.	 Explain why the use of the Durbin-Watson test for serial correlation is 
problematic in this case. Using the data in the Excel workfile AIRLINE.
XLSX, check the Ljung-Box tests for serial correlation and perform the 
Breusch-Godfrey test. Do the results change your conclusions?
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EXERCISE 9.4

Another econometrician argues that the model should include a time trend 
to capture the long-term growth of this industry during the estimation 
period. Re-estimate the partial adjustment model and include a time trend 
as an additional variable. Does this affect the results noticeably?
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C H A P T E R  10
Time Series Analysis and Arima 
Modeling

So far, our analysis has been framed in terms of the relationships between 
random variables. Time series analysis marks a subtle difference in that the 
focus of interest now moves to random, or stochastic, processes. A stochastic 
process can be thought of as a random process that evolves over time. It 
consists of a variable or set of variables that move together over time subject 
to some degree of random variation. Our interest is now in the parameters 
which determine the process. For example, the random variable X observed 
at date t may depend on its own past value lagged one period plus a random 
disturbance

	 1 .t t tX Xq e−= + � (10.1)

This is an example of an autoregressive process because X depends on its 
own past value plus an additive random disturbance e. For the purposes of 
this chapter, we assume that te  is a purely random disturbance in that it has 
no relationship to either its own past values or the past values of the X vari-
able. We will also assume that the probability distribution of te  is independ-
ent of time so that we can think of : 1, ,t t Te =   as a set of independent draws 
from a fixed distribution. These properties are often summarized by stating 
that e is assumed to be a white-noise stochastic process. The parameters of 
interest in (10.1) are the autoregressive parameter q and the variance of the 
disturbance 2

es .
Equation (10.1) is an example of a discrete time stochastic process 

because we only observe X at fixed points in time 1, ,t T=  . Discrete time 
stochastic processes are characterized by a set of moments, that is, the mean 
or expected value, the variance, and the covariances of the random variable 
X. These moments depend on the nature of the random disturbance e and 
the structure of the relationship between X and its own past values. As a triv-
ial example consider a very simple stochastic process in which t tX e= . In this 
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case, the distribution of X is characterized by two parameters, the mean, and 
the variance. If ( )2~ 0,t N ee s  then ( )2~ 0,t XX N s  where 2 2

X es s= .
Let us return to a more interesting example in the form of our first-order 

autoregressive process defined by equation (10.1). As an alternative to this 
form, we can write this as a moving average process in which X depends on 
a weighted average of past random disturbances. By a process of backward 
substitution, (10.1) in moving average form,

	 2 3
1 2 3

0

.i
t t t t t t i

i

X e qe q e q e q e
∞

− − − −
=

= + + + =∑ � (10.2)

If ( )2~ 0,t N ee s  then we can determine the mean of X very easily as

	 ( ) ( )
0

0.t t
i

E X E e
∞

=

= =∑ � (10.3)

The variance is a little trickier but we note that ( )2 2
tE ee s=  and ( ) 0t t kE e e − =

for all 0k ≠  by assumption and therefore,

	
( ) ( ) ( ) ( )

( )

2 2 2 2 4 2
1 2

2
2 2

2
0

.
1

t t t t

i
t i

i

E X E E E

E e

e q e q e

sq e
q

− −

∞

−
=

= + + +

= =
−∑



� (10.4)

Note that, for autoregressive processes like this, the autocovariances are not 
equal to zero, that is, ( ) 0t t kE X X − ≠ . For example

	
( ) ( ) ( ) ( ) ( )2 3 2 5 2 2 2

1 1 2 3 1
0

2

2 ,
1

i
t t t t t t i

i

E X X E E E E

e

q e q e q e q q e

qs
q

∞

− − − − − −
=

= + + + =

=
−

∑

� (10.5)

and, in general, we can show that

	 ( ) ( )
2

2 .
1

k
k

t t k tE X X V Xeq s q
q− = =

−
� (10.6)

For the variance to be a finite positive number we need 1 1q− < < . This is the 
assumption of stationarity which we will return to later. If this condition fails 
then the variance is either not defined, when 1q = , or negative, when 1q > .

Let us define ( )k t t kE X Xg −=  to be the k’th order autocovariance for X. 
Next, we define 0/k kr g g=  to be the k’th order autocorrelation where 0g  
is the variance of X. This defines the autocorrelation function, or correlo-
gram, for the random variable ; 1, ,tX t T=  , generated by the autoregres-
sive process 1t t tX Xq e−= + , where te  are independent random disturbances 
with mean zero and constant variance. Note that 0 1r =  by definition. In our 
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example the autocorrelations are geometrically declining, that is, k
kr q= , 

but this will not be true for more general stochastic processes. A sample plot 
of the correlogram for a first-order autoregressive process with positive q  is 
given in Figure 10.1. This shows a sequence of autocorrelations that decline 
exponentially to zero.

FIGURE 10.1  Correlogram for an AR(1) Process With Positive Autocorrelation Coefficient.

If the parameter 1 0q− < < , then the autocorrelations 0/k
kr q q=  will still 

decline exponentially to zero. However, they will change sign depending 
on whether k is odd, which will generate negative kr , or k is even, which 
will generate positive kr . An example of the sort of correlogram we might 
observe for this case is given in Figure 10.2.

FIGURE 10.2  Correlogram for an AR(1) Process With Negative Autocorrelation Coefficient.

EIP.Ch10.2pp.indd   237EIP.Ch10.2pp.indd   237 4/19/2021   5:42:04 PM4/19/2021   5:42:04 PM



238 • Econometrics in Practice

When we observe a time series, we are effectively observing only one 
possible realization of the process in question. For example, if we have 

1t t tX Xq e−= +  then there is an infinite number of possible outcomes of this 
process depending on the particular values of e  observed. The question we 
must ask is whether it is possible to estimate the parameters of the process 
given that we observe only one realization. To do this, we must assume that 
the process is ergodic. This means that sample moments of a particular real-
ization approach the population moments of the process as the length of the 
realization becomes large. Unfortunately, it is not possible to test for ergo-
dicity and therefore we rely on the rather weaker property of stationarity.

Historical Note: The term “stationary stochastic process” was first used 
by Khintchine [Khintchine1934] in paper written in German. It was 
translated as “stationary random process” by Wold [Wold1938].

A stochastic process is said to be strictly stationary if its moments are 
not affected by the choice of origin. Thus ( ) ( ) ( )2 3, ,t t tE X E X E X  are all 
unaffected by the choice of t. Even this, however, can be difficult to prove 
and we often fall back on the property of weak stationarity. A process is said 
to be weakly stationary if the first two moments of the distribution are unaf-
fected by the choice of origin. This means that the mean and variance of the 
series are constants. This assumption is also referred to as the assumption 
of second-order or covariance stationarity. It is usually much easier to prove 
that a process is weakly stationary than to prove that it is strictly stationary. 
Finally, we note that, if the disturbances follow a normal distribution, then 
weak and strict stationarity are equivalent.

Example: Consider the AR(1) process 1t t tX Xq e−= +  where te  are white-
noise Gaussian disturbances. We have already shown that ( ) 0tE X =  and 

( )2 2 2/ 1X es s q= − . Providing 1 1q− < < , both the mean and the variance of 
X exist and do not depend on the particular time interval chosen. Hence, 
this process is weakly stationary. Moreover, since the disturbances follow a 
normal distribution, this is enough to demonstrate that the process is also 
strictly stationary.

Counter Examples: Two counter examples are of interest here. First, if 
t tX ta b e= + + , then X is not stationary since ( )tE X ta b= + . However, there 

is a straightforward transformation that will produce a stationary series 
since t tZ X ta b= − −  will have the properties that ( ) 0tE Z =  and 2 2

Z es s= .  
Another example of a non-stationary process that can be transformed to 
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create a stationary series is the random walk 1t t tX X e−= + . This fails the con-
dition for weak stationarity because its variance is not defined. However, if we 
define 1t t tZ X X −= − , then we again have ( ) 0tE Z =  and 2 2

Z es s= . Therefore, 
differencing is an appropriate transformation here to produce a stationary 
series.

10.1	 IDENTIFICATION OF ARIMA PROCESSES

In the previous section, we defined the theoretical correlogram for a stochastic 
process. However, what we often wish to do is to identify the sort of process 
which might have generated an observed time series. To do this we can com-
pute sample statistics corresponding to the unknown population parameters 
to obtain the sample correlogram. Suppose we have a set of observations 

; 1, ,tx t T=  , the k’th order sample autocorrelation is defined as

	
( )( )

( )2
ˆ .t t k

k

t

x x x x

x x
r −− −

=
−

∑
∑

� (10.7)

Examination of the sample correlogram is often very informative about the 
nature of the sort of stochastic process which might have generated the data.

Example: The data shown in Figure 10.3 have been artificially generated 
using a stochastic process of the form 10.7t t tX X e−= +  where , 1, ,100t te =   
are independent drawings from a normal distribution with mean zero and 
variance one.

FIGURE 10.3  Realization of an AR(1) Stochastic Process.
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The sample correlogram for this realization is shown in Figure 10.4. This 
shows the classic pattern for a stationary AR process with a positive auto-
correlation coefficient in that the sample autocorrelations die down to zero 
exponentially. If the process was non-stationary, for example, if 1q = , then 
the autocorrelations would still die down to zero, but the rate of decline 
would be slower and be a linear, rather than an exponential, function of the 
lag length.

FIGURE 10.4  Sample Correlogram for the Time-Series Shown in Figure 10.3.

Up until now, we have only considered the sample autocorrelations 
defined in (10.7). These are not always helpful in determining the order of 
an autoregressive process, since the sample autocorrelations remain differ-
ent from zero for lags longer than the order of the process itself. However, 
you will note that the correlogram output from EViews also includes a set of 
numbers labeled as PAC or partial autocorrelations. These are designed to 
capture the correlation between the series in question and its k’th lag while 
allowing for the intermediate effects of lags 1,2, , 1k − . This allows us to 
identify the order of the process of interest. We can think of the k’th order 
partial autocorrelation as the k’th coefficient in a relationship of the form

	 1 1 2 2 .t t t k t k tX X X Xq q q e− − −= + + + + � (10.8)

Note that the coefficients ; 1, , 1i i kq = −  do not give the first k−1 partial 
autocorrelations. It is only the k’th coefficient which is relevant here. One 
method of estimating the k’th order partial autocorrelation would be to esti-
mate (10.8) by least squares in order to obtain ˆ

kq . In practice, however, this is 
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not the method used to calculate the partial autocorrelations in most econo-
metric packages. Instead, the method used is to solve for the partial autocor-
relations using the Yule-Walker equations.

The Yule-Walker equations use a method of moments approach in that 
we derive expressions for the theoretical moments and then substitute the 
values of the sample moments into the resulting expression to create a set 
of equations that can be used to solve for the partial autocorrelations. The 
first-order partial autocorrelation is identical to the first-order sample auto-
correlation because we begin with the assumption of a first-order autore-
gressive process 1 1t t tX Xq e−= + . Multiplying by 1tX −  and taking expectations 
we have ( )1 1t tE X Xg −=  which gives the first-order autocovariance. The first-
order partial autocorrelation is obtained by substituting the sample autocova-
riance in this expression and then dividing by the sample variance. This gives 

1 1 0
ˆ ˆ ˆ/q g g=  which is the same formula we use to calculate the first-order sam-
ple autocorrelation. For the second-order partial autocorrelation, we begin 
by assuming a second-order autocorrelation process 1 1 2 2t t t tX X Xq q e− −= + + .  
Multiplying first by 1tX − , then by 2tX − , and taking expectations yields the 
relationships between the autocovariances given in (10.9)

	 1 1 0 2 1

2 1 1 2 0

g q g q g
g q g q g

= +
= +

� (10.9)

We can now substitute the sample autocorrelations 1ĝ  and 2ĝ  along with the 
sample variance into (10.9) and solve for the second-order partial autocor-
relation 2q̂ . Note also that the estimates of ˆ ; 1,2i iq =  obtained in this way 
will not be identical to OLS estimates but the two methods should converge 
as the sample size becomes large since both approaches provide consistent 
estimates. We can generalize this process to solve for the k’th order partial 
autocorrelation by assuming a k’th order autoregressive process which allows 
us to write down the relationships between the autocovariances and the q 
parameters given in (10.10). We then replace the theoretical autocovari-
ances with their sample equivalents and solve for ˆ

kq

	

1 0 1 1 1

2 1 0 2 2

1 2 0

,

k

k

k k k k

g g g g q
g g g g q

g g g g q

−

−

− −

     
     
     =
     
     
     





     



� (10.10)
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Historical Note: This method of solving for the partial autocorrelations 
derives from papers by George Udny Yule [Yule1927] and Gilbert Walker 
[Walker1931]. Yule uses the method to analyze the properties of time 
series data for sunspots.

The sample partial autocorrelations are useful when identifying the 
order of an autoregressive process. Consider the case of an AR(1) process 

1 1t t tX Xq e−= +  in which 2 0q =  by definition. We have seen that 2
2 1r q=  and 

the second-order sample autocorrelation will typically be non-zero. It is 
therefore difficult to distinguish a first-order autoregressive process from 
a second-order process by simply examining the regular autocorrelations 
because the regular autocorrelations do not “cut off ” at the lag length of the 
process. However, the partial autocorrelations do cut off at this lag length 
and therefore values of ˆ

kq  close to zero for 2k ≥  would indicate that a first-
order process is appropriate.

Example: Consider the following stochastic process

1 21.2 0.35 .t t t tX X X e− −= − +

where te  are independent identically distributed random variables with the 
standard normal distribution. A realization of this process was created using 
the EViews random number generator as shown in the graph below:

FIGURE 10.5  Realization of an AR(2) Stochastic Process.

Suppose we are given the data series shown in Figure 10.5 and asked to fit 
a model that captures its important features. The first question we need to 
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ask is what sort of model should we estimate? To answer this, we turn to the 
sample correlogram as shown in Figure 10.6.

FIGURE 10.6  Sample Correlogram for the Time-Series Shown in Figure 10.5.

This correlogram indicates that a second-order autoregressive process is 
appropriate. This is indicated by the fact that the sample autocorrelations 
approach zero exponentially while only the first two sample partial autocor-
relations lie outside the standard error bands. The next stage in estimating 
the parameters of our model is to calculate the relevant sample moments. In 
this case, we have the following

( )

( )( )

( )( )

100
2

0
1

100

1 1
2

100

2 2
3

ˆ 632.193224

ˆ 522.823809

ˆ 357.189171.

t
t

t t
t

t t
t

x x

x x x x

x x x x

g

g

g

=

−
=

−
=

= − =

= − − =

= − − =

∑

∑

∑

The sample autocorrelations can then be calculated straightforwardly as

1 1 0

2 2 0

ˆ ˆ ˆ/ 0.8270
ˆ ˆ ˆ/ 0.5649.

r g g
r g g

= =

= =

Let iq  be the partial autocorrelation of order i. The first-order sample partial 
autocorrelation can be calculated straightforwardly as 1 1

ˆ ˆ 0.8270q r= = . We 
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can then calculate the second-order partial autocorrelation using the Yule-
Walker equations

1 1 0 2 1

2 1 1 2 0

ˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ .

g q g q g

g q g q g

= +

= +

These equations can be solved to yield 2
ˆ 0.3778q = −  which gives our esti-

mate of the second-order partial autocorrelation. Higher-order autocorrela-
tions and partial autocorrelations can then be estimated using the method 
we have set out, thus generating the correlogram and partial correlogram 
shown in Figure 10.6.

To identify the type of stochastic process generating the data, we must 
form an assessment of whether the autocorrelations are significantly differ-
ent from zero. The basic tool here is the 95% confidence interval for the 
autocorrelations under the assumption of no serial correlation shown by the 
broken lines in Figure 10.6. These are calculated as 2 / T±  which can be 
shown to generate a 95% confidence interval under the null hypothesis that 
the process is white noise. The standard error bands for both the regular and 
partial autocorrelations can be calculated in this way. This allows us to iden-
tify the order of the AR process generating the data by assessing how many 
of the partial autocorrelations lie outside the confidence interval.

The correlogram shown in Figure 10.6 indicates the presence of some 
form of autoregressive process since it shows sample autocorrelations that 
are consistently positive, but which decline exponentially to zero. However, 
the regular autocorrelations do not allow us to identify the order of this pro-
cess since this pattern is consistent with either an AR(1) or a higher-order 
process. To identify the order of the process, we turn to the partial autocor-
relations. Here we see two significant partial autocorrelations, which con-
firms that an AR(2) process is most appropriate in this case. We can therefore 
proceed on the basis that the process generating the data is likely to be an 
autoregressive process of order 2 and seek to estimate its parameters.

Examination of the correlogram also allows us to distinguish autore-
gressive processes from moving average processes. This is because the 
correlogram for a moving average process behaves differently from that 
of an autoregressive process. To see this, we will contrast an AR(1) pro-
cess with an MA(1) process. We have seen that for a stationary AR(1) pro-
cess the autocorrelations die down exponentially to zero, that is, .k

kr r=  
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However, the partial autocorrelations cut out immediately after lag 1, that is, 
0; 2, ,k kq = = ∞ . Now consider an MA(1) process of the form

	 1,t t tX e ae −= + � (10.11)

where te  are independent identically distributed random variables. We have

	

( ) ( )
( )
( )

2 2 2

2
1

1

0 2.

t

t t

t t k

E X

E X X

E X X k

e

e

s a

as−

−

= +

=

= ∀ ≥

� (10.12)

It follows that the first-order autocorrelation ( )2
1 / 1r a a= +  is not zero, 

but all subsequent autocorrelations are equal to zero. Therefore, the regu-
lar correlogram cuts off abruptly after the first lag. The partial autocorrela-
tions, however, do not cut off in this case. Consider the second-order partial 
autocorrelation. We can scale the Yule-Walker equations by dividing by the 
variance to obtain

1 1 1 2

2 1 1 2 .
r q r q
r q r q

= +
= +

The second-order partial autocorrelation is given by 2q  where 2q  is the solu-
tion from this pair of equations for given 1r  and 2r . We have already shown 
that for an MA(1) process ( )2

1 / 1r a a= +  and 2 0r = . Therefore, the second 
equation above gives

2 1 1 0.q q r= − ≠

This result generalizes and we can show that, for a k’th order moving aver-
age process, the regular autocorrelations cut off after k lags. However, the 
partial autocorrelations continue to be non-zero for higher-order lags. This is 
a reversal of the pattern for an autoregressive process and allows us to distin-
guish between these alternatives by examination of the sample correlogram 
and the sample partial correlogram.

Example: Consider the following realization of a first-order moving average 
process 10.75t t tX e e −= + .
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FIGURE 10.7  Realization of First-Order Moving Average Process.

The correlogram of this process takes the form shown in Figure 10.8. This 
has one significant first-order sample autocorrelation, but all the higher-order 
sample autocorrelations lie within the standard error bands. In contrast, both 
the first- and second-order partial autocorrelations lie outside the standard 
error bands. This is the characteristic pattern of a first-order moving average 
process and therefore we would fit a model of this type to the data.

FIGURE 10.8  Correlogram of  Time Series Shown in Figure 10.7.

10.2	 ARIMA MODELING

So far, we have discussed the theory of stochastic processes and the dif-
ferences between the correlograms of autoregressive and moving average 
processes. In this section, we will discuss how to use this knowledge to fit 
an ARIMA model to real-world data. Note that the acronym ARIMA means 
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Autoregressive Integrated Moving Average. The “autoregressive” and “mov-
ing average” parts of this acronym are self-explanatory, but we need to spend 
a little time discussing the meaning of “integrated” in this context before we 
use this model on actual data.

Historical Note: The method of ARIMA modeling was first set out sys-
tematically in the classic book by Box and Jenkins [Box1970] entitled Time 
Series Analysis: Forecasting and Control. This book has been immensely 
influential for both theorists and practitioners.

Let us suppose we have data : 1, ,tx t T=   that is a realization of some 
stochastic process. We wish to identify the nature of the stochastic process 
which has generated the data and to estimate the relevant parameters. The 
most important first stage of any investigation is to examine the data by plot-
ting it against time. This will often reveal important features of the data 
generation process immediately. 

Example: To illustrate the process of fitting an ARIMA model to data, we 
will use the example of United States unemployment data. The series shown 
below in Figure 10.9 has been downloaded from the Federal Reserve Board 
of St. Louis (FRED) database and consists of quarterly figures for the per-
centage of the workforce unemployed for the period 1948 to 2019. 

FIGURE 10.9  Percentage Unemployed US Economy.

The first thing we need to decide when constructing an ARIMA model 
is whether to difference the data. Formally, we need to decide whether the 
series in question is an integrated series, in the sense that it must be differ-
enced in order to make it stationary. Recall that stationarity is an essential 
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property if we are to be able to use standard statistical methods to estimate 
and interpret our model. Differencing the data in time-series modeling is 
often interpreted as “taking out the trend” in the data prior to estimation. 
However, the reasons for differencing are more general than this. A sto-
chastic process may be non-stationary even when no trend is present. This 
applies in our example. Examination of Figure 10.9 would suggest that there 
is no long-run trend in unemployment. However, if we examine the correlo-
gram of log unemployment,1 as shown in Figure 10.10, then we see that the 
autocorrelations behave as we would expect from a series generated by a 
non-stationary stochastic process. In particular, we see that the autocorrela-
tions that die down very slowly to zero according to a linear relationship with 
the lag length rather than the exponential relationship we would expect to 
see from a stationary process. This suggests that the data is generated by an 
integrated process and should be differenced prior to fitting a model.

FIGURE 10.10  Correlograms for Log Unemployment (upper) and its First Difference (lower).

1  Why take the log transformation here? The answer is that without this transformation it 
would be possible for the model to generate negative predictions for unemployment which 
is clearly inconsistent with the nature of the series.
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Turning to the lower panel of Figure 10.10, we see that the first dif-
ference of log unemployment has a correlogram which suggests that it is 
plausible that this data has been generated by a stationary stochastic process. 
Unlike the case of the undifferenced series, the autocorrelations appear to 
decline exponentially rather than linearly. The first partial autocorrelation 
clearly lies outside the standard error bands and a number of subsequent 
partial autocorrelations are very close. To avoid overfitting, our first model 
includes just two autocorrelations. That is, we estimate an ARIMA(2,1,0) 
model where the numbers in parentheses represent the order of the autore-
gressive process for the variable itself, the number of time the data has been 
differenced and the order of the moving average process in the errors of the 
model. When this model is applied to the data, we obtain the results shown 
in equation (10.13)

	
( )

( ) ( )
( )

( )
( )1 20.0080 0.0411 0.0464

2

ˆln 0.0004 0.7049 ln 0.1274 ln

ˆ0.40 0.0528 2.0271.

t t t tu u u

R DW

e

s

− −∆ = − + ∆ − ∆ +

= = =
� (10.13)

Both autoregressive coefficients are significant at the 5% level and the model 
is a reasonable fit, explaining 40% of the variation of the dependent variable. 
To assess whether any further autoregressive or moving average terms would 
improve the fit of the model, we examine the correlogram of the residuals 
from equation (10.13), which is shown in Figure 10.11. This correlogram is 
reasonably flat but some of the remaining autocorrelations are just about 
significant. However, to avoid overfitting the model, we chose not to make 
further adjustments.

FIGURE 10.11  Correlogram of Residuals from ARIMA(2,1,0) Model for Log US Unemployment Series.
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So far, we have used an informal method to identify the nature of 
the  stochastic process generating the data. This has involved examination 
of the correlogram to see if we can match the pattern we observe with one 
of the standard patterns for known stochastic processes. Basically, we look 
for linear damped autocorrelations as evidence for non-stationarity, which 
requires differencing, or for exponentially damped autocorrelations which 
indicates a stationary process. The partial autocorrelations allow us to deter-
mine the order of a stationary autoregressive process. If we observe sample 
autocorrelations that cut off abruptly, then this is interpreted as evidence of 
a moving average process. In many situations, this informal approach will 
allow us to quickly identify a reasonable model. However, it does suffer 
from the problem that different investigators might choose different models 
based on the same data.

Another, more systematic approach, to ARIMA modeling, is to estimate 
a comprehensive set of possible models and compare them using one of the 
model selection criteria available. The two most commonly used selection 
criteria are the Akaike and Schwartz criteria. These criteria balance the extra 
explanatory power provided by adding AR or MA terms against the loss of 
degrees of freedom this involves. Consider the model

	
1 1

ˆˆ ˆ .
p q

t i t i j t j t
i j

X Xr q e e− −
= =

= + +∑ ∑ � (10.14)

The standard error of the regression is calculated as ( )2
1

ˆˆ /
T

tt
T p qs e

=
= − −∑ .  

Using this we can calculate several possible information criteria that can 
be used to compare alternative models. Each of these criteria represents 
a trade-off between the reduction in the residual sum of squares obtained 
by including extra autoregressive or moving average terms and the loss of 
degrees of freedom in doing so. We have a variety of possible information 
criteria that perform this function and there is no clear consensus on which 
performs the best. The two most often used are the Akaike and the Schwartz 
criteria. The Akaike criterion is defined as

	
( )2 2

ˆln .
p q

AIC
T

s
+

= + � (10.15)

while the Schwartz criterion is defined as

	
( )2ˆln ln .
p q

SC T
T

s
+

= + � (10.16)
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If we add either AR or MA terms to a model, then this will tend to reduce 
the standard error of the equation ŝ. However, these criteria put a penalty 
of the loss of degrees of freedom from doing this in the form of the second 
terms in (10.15) and (10.16). In both cases, we would look for the “best” 
model as the one that contains the combination of AR and MA terms that 
minimize the relevant criterion. The Schwartz criterion can be shown to be 
more parsimonious in that it will typically include fewer AR and MA terms 
than the Akaike criterion.

Example: Using the EViews random number generator a realization of the 
stochastic process 10.7t t tX X e−= +  was generated with random number seed 
200. We estimated all possible models with p and q up to order 3. This gen-
erates the following Schwartz criteria:

MA Lags

AR Lags

0 1 2 3

0 3.26322 2.84021 2.82190 2.86138

1 2.86965 2.82798 2.86476 2.90074

2 2.81503 2.86094 2.90705 2.94626

3 2.85903 2.87860 2.92157 2.87150

Note that this process picks out the “wrong” model in that the lowest 
Schwartz criterion corresponds to an AR(2) model, rather than an AR(1) 
model. The model chosen here is

( ) ( ) ( )1 20.1785 0.0959 0.0943

2

ˆ0.9080 0.7775 0.3023

ˆ0.4174 1.97 0.9368.

t t t tX X X

R DW

e

s

− −= − + − +

= = =

The roots of this process are complex with modulus equal to 0.55.

10.3	 FORECASTING WITH AN ARIMA MODEL

One of the big advantages of the ARIMA modeling approach is that it can 
be used to generate a forecasting model much more quickly and easily than 
other approaches. For example, if we compare the time and effort needed to 
construct even a small econometric model, then the ARIMA approach wins 
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hands down. Even more encouragingly, studies have shown that ARIMA 
models outperform structural econometric models in forecasting exercises, 
at least over relatively short horizons. However, the factors that give ARIMA 
models the competitive edge in the short term can lead to problems when 
it comes to longer-term forecasting. By focusing on one variable at a time, 
the ARIMA approach neglects the interactions between variables which can 
become important over time. It is also possible to argue that forecasts are 
about more than providing a central estimate. Structural econometric mod-
els allow the forecaster to tell a story about how the variable(s) in question 
are likely to develop and to experiment with alternative scenarios. Having 
said that, however, there is a certainly a big role for ARIMA modeling as part 
of the toolbox of the professional forecaster. If nothing else, it can provide a 
useful benchmark against which more structural approaches can be judged. 
Therefore, in this section, we will examine the properties of forecasts gener-
ated by a time series approach.

Let us start with an example, consider the AR(1) model 1t t tX Xq e−= +  
for which we have data for 1, ,t T=  . For the moment we will assume that 
q  is a known parameter. The one period ahead forecast is

	 ( ) ( )1 1 ,T T T T T TE X E X X Xq e q+ +Ω = + = � (10.17)

and the one period ahead forecast error is

	 ( )1 1 1 ,T T T TX E X e+ + +− Ω = � (10.18)

with the one step ahead variance being

	 ( ){ }2 2
1 1 .T T TE X E X es+ +− Ω = � (10.19)

Now consider the k step ahead forecast
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The k step ahead forecast is ( ) k
T k T TE X Xq+ Ω =  and the k step ahead fore-

cast variance is
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As k→∞, this converges to ( )2 2/ 1es q− . This establishes an important 
principle of forecasting with a time series model – as the forecast horizon 
increases the forecast error variance increases. However, providing the pro-
cess is stationary, the forecast error variance will converge to a constant value 
in the long run. 

FIGURE 10.12  Forecasting with an ARIMA Model.

Example: For 1, ,10t =   the data shown by the solid line in Figure 10.12 
has been generated artificially using an equation of the form 10.5t t tX X e−= +  
where te  are Gaussian white-noise disturbances with mean zero and variance 
1. For 11, ,20t =   the solid line shows the central forecast calculated as 10

k Xq .  
The broken lines show a 95% confidence interval for a k step ahead forecast. 

This is calculated as 10 2k X SEq ± ×  where ( ) ( )2 21 / 1kSE q q= − − .
Our discussion of forecasting so far has assumed that the stochastic pro-

cess is stationary. However, when constructing a forecasting model using 
the ARIMA approach, stationarity is often only achieved by differencing 
the data prior to estimation. For example, when constructing the model of 
unemployment given by equation (10.13), we found that the unemployment 
percentage was not stationary and we, therefore, differenced the data before 
estimating our final model. If our original series is not stationary, and the 
data is, therefore, differenced prior to estimation, it follows that the forecast 
confidence interval will not converge in the way described for stationary 
data. To demonstrate this result, consider a special case in which the random 
variable X is generated by a simple random walk, that is, 1t t tX X e−= + . If we 
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have data up to date T, then the forecast value of X for all future periods is 
simply TX . It is easy to see that the forecast error is

	 ( )
1

,
k

T k T k T T i
i

X E X e+ + +
=

− Ω =∑ � (10.22)

and the forecast error variance is

	
2

2

1

,
k

T i
i

E k ee s+
=

 
= 

 
∑ � (10.23)

and therefore, the forecast error variance does not converge as k→∞. 
Instead, the standard error bands around the central forecast will increase 
proportionally with k as the forecast horizon increases. 

Example: The divergence of the forecast error bands can be using our 
model of unemployment. Using equation (10.13) to forecast unemploy-
ment over the period 2018.1 to 2019.4 we obtain the results shown in Figure 
10.13. The solid line shows actual unemployment, and the broken line shows 
the central forecast generated by our model. The lines with circles give the 
95% confidence interval around the central forecast. This shows the stand-
ard error bands increasing because of the differencing operator employed to 
transform the series to stationarity prior to estimation.

FIGURE 10.13  Forecasting Unemployment with an ARIMA Model.
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In summary, we note that ARIMA models provide a very quick and 
convenient method for the construction of a forecasting model. These are 
especially useful for generating short horizon forecasts when we do not have 
any strong theoretical priors about the process generating the data. For lon-
ger forecast horizons, the forecast error variance will increase for all types 
of ARIMA model. However, if the original series is stationary, then this 
increase is limited, and the forecast error variance will eventually converge 
to a constant value. In contrast, if the original series is not stationary, and the 
data is differenced prior to estimation, then the forecast error variance will 
continue to increase indefinitely as the forecast horizon increases.

10.4	 IMPULSE RESPONSES

We now turn to the analysis of the effects of shocks, or disturbances, in 
ARIMA models. These are measured in what we call the impulse response. 
The impulse response shows the effect on the variable X of a shock to the dis-
turbance term e. Note that sometimes the shock considered is a unit impulse 
and, in other cases, it is one standard deviation of the disturbance, but this 
is just a matter of scaling. Consider the example of a stationary AR(1) process 
of the form 1t t tX Xq e−= + . The impulse response can be derived from a 
process of backward substitution. This yields the moving average represen-

tation given by 
0

i
t t i

i

X q e
∞

−
=

=∑ . To calculate the impulse response we assume 

a one-off innovation, for example, 0 1e =  and then assume all future e‘s are 
zero. Setting 0.7q =  we can then calculate the impulse response as:

Time Impulse Effect on X
0 1 1

1 0 0.7

2 0 0.49

3 0 0.343

4 0 0.2401

5 0 0.16807

6 0 0.117649
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Since the stochastic process here is stationary, it follows that the impulse 
response eventually converges on zero. If the stochastic process is not sta-
tionary, and therefore the data have been differenced prior to estimation, 
then the impulse response will not converge to zero. 

Example: In this section, we consider a real-world example. We fit an ARIMA 
model to annual data for US consumption of gasoline and then use this to 
construct impulse responses. The series itself is shown in Figure 10.14.

FIGURE 10.14  US Consumption of Gasoline 1949Ð2016 (Millions of Barrels Log Scale).

The presence of a trend makes it unlikely that this is a stationary series, and 
this proves to be the case when we look at the correlogram shown in the 
upper panel of Figure 10.15. The correlogram of the level is characteristic of a 
non-stationary series in that it shows the autocorrelations dying down linearly 
to zero. The correlogram of the differenced series, shown in the lower panel 
of Figure 10.15, is characteristic of an AR(1) process, in that it shows a sig-
nificant first-order autocorrelation, but this dies down fairly quickly to zero. 
Although it is possible for this to arise from a higher-order autoregressive 
process, none of the higher-order partial autocorrelations are significant. The 
correlogram, therefore, suggests fitting an ARIMA(1,1,0) model to the data.
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FIGURE 10.15  Correlogram of Log Gasoline Consumption Series.

Based on an examination of the correlograms in Figure 10.15, an AR(1) 
model in first differences (i.e., an ARIMA(1,1,0) model), appears to be an 
appropriate model for this time series. Estimation of such a model yields the 
results shown in equation (10.24)

	 ( ) ( ) 10.0039 0.1090

2

ˆ0.0109 0.4138

ˆ0.1839 2.14 0.0258.

t t tX X

R DW

e

s

−∆ = + ∆ +

= = =
� (10.24)

We have seen that, in models with unit roots, a one-off disturbance will have 
a temporary effect on the growth rate of the series but a permanent effect 
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on its level. This can be demonstrated, in this case, by writing the model in 
levels rather than first differences

	 1 20.0109 1.4138 0.4138 .t t t tX X X e− −= + − + � (10.25)

Thus, a first-order equation in first differences becomes a second-order equa-
tion in the levels of the series. Moreover the difference equation defined 
in equation (10.25) contains a unit root. Consider a one standard deviation 
shock to the series, that is, an increase in e of 0.0219 in the first period. This 
produces the dynamic response shown in Figure 10.16 which shows that 
demand continues to rise after the initial shock but eventually levels off at a 
new equilibrium value.

FIGURE 10.16  Impulse Response of Gasoline Demand to a One Standard Deviation Shock.

Figure 10.16 shows the accumulated response or the reaction of the level 
of the series to a one-off disturbance. We can also consider the response of 
the change in the series, that is, that determined by the original first-order 
difference equation that we estimated in equation (10.24). This produces 
the impulse response function shown in Figure 10.17.
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FIGURE 10.17  Impulse Response of the Change in Gasoline Demand to 
a One Standard Deviation Shock.

10.5	 MOVING AVERAGE PROCESSES

We saw earlier through model (10.11) that the correlogram of a moving aver-
age process has very different characteristics from that of an autoregres-
sive process. However, there are several other properties of moving average 
processes which it is important to consider when modeling time series. This 
first is that, except for one special case, the moving average process is not 
uniquely identified by the correlogram. We have ( )2

1 / 1r a a= + , suppose 
we know 1r  and wish to solve for a. We have

	 2
1 1 0.r a a r− + = � (10.26)

It is easy to see that, for any a which is a solution of this equation, 1 / a will 
also be a solution. Hence, the correlogram of an MA(1) process does not 
allow us to uniquely identify the parameter of that process. This result gen-
eralizes to higher-order moving average processes.

Example: A set of Gaussian white-noise disturbances was generated using 
the EViews random number generator. These were then used to con-
struct two random series following moving average processes of the form 

10.5t t tX e e −= −  and 12t t tX e e −= − . The correlograms of these series were  
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then calculated and are shown in Figure 10.18. The correlograms for these 
two processes are virtually identical. There is no way in which we can choose 
between the processes on this basis.

FIGURE 10.18  Correlograms for Alternative Moving Average Processes e e −= −t t tX 10.5  (upper) and 
e e −= −t t tX 12  (lower).

In practice, when faced with the choice illustrated by Figure 10.18, we 
normally choose the solution in which 1a < . Why is this the case? The answer 
lies in an alternative representation of the moving average process. Using the 
lag operator we can write 1t t tX e a e −= −  as ( )1t tX La e= − . Dividing by the 
lag polynomial now allows us to write this process as

	
1

.
1 t tX

L
e

a
=

−
� (10.27)

Expanding the expression on the left-hand side allows us to write this as
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a e
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−
=

+ + + + =

=∑



� (10.28)

This is a general result – any finite moving average process can be written 
as an infinite autoregressive process. Now, if we chose the solution in which 

1a > , the weights on past values of X would increase exponentially the fur-
ther back into the past is the value of X. On the other hand, if 1a < , then 
the weights on past values of X decline. It, therefore, makes more sense to 
choose this second option. Moving average processes in which 1a <  are said 
to be invertible processes. Invertibility refers to the feature that the weights 
on past X values decline as the lag increases.

There is one special case that we have not yet considered. Suppose we 
have 1a = . In the case the moving average parameter is uniquely identified 
by the correlogram. If 1a =  then the first-order autocorrelation is equal to ½, 
while if 1a = −  it is equal to –½. However, this process is non-invertible since 
the weights in the moving average process will either always be equal to one 
(in the case 1a = − ) or will alternate between +1 and −1 in the case 1a = . In 
either of these situations, however, the weights do not decline to zero which 
is the required condition for invertibility. This special case can arise naturally 
when we difference a series that is already stationary. For example, consider 
a series that consists of Gaussian white-noise errors around a determinis-
tic trend, that is, t tX ta b e= + + . Now suppose we difference, this series to 
remove the trend. This is a common procedure in time-series analysis. The 
resulting series takes the form

	 1.t t tX b e e −∆ = + − � (10.29)

The effect of differencing this series is to create a new series with a distur-
bance which is a non-invertible moving average process. Such a situation is 
described as “over-differencing.”

Example: Using the EViews random number generator, we generate a 
realization of the following stochastic process 0.05t tX t e= +  where te  are 
Gaussian white-noise disturbances. Note that this is a trend-stationary pro-
cess. The sample correlograms of the level and the first difference of this 
series are shown in Figure 10.19. The upper panel shows the correlogram 
for the level and the lower panel shows that for the first difference.
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FIGURE 10.19  Correlograms Generated by a Trend Stationary Stochastic Process.

The correlogram of the level of the series is consistent with a unit root process 
in that the autocorrelations die down linearly. However, when we difference 
the series, we obtain an MA(1) process, with a first-order autocorrelation 
which is close to −0.5. This is consistent with a series that has been over-
differenced. Finally, the correlogram in Figure 10.20 is that of the residuals 
from a regression of the series on a time trend. This is consistent with a white-
noise process which indicates that this is the preferred method in this case.

FIGURE 10.20  Correlogram of Residuals from a Regression of a Trend Stationary  
Series on a Time Trend.
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EXERCISES 

Excel files containing the data for these exercises are available as companion 
files for this book.

EXERCISE 10.1

Consider the following moving average process

1 1 2 2t t t tX e a e a e− −= + +

where ; 1, ,t t Te =   are independent, identically distributed Gaussian dis-
turbances with mean zero and variance 2

es .

a.	 Derive the variance and the first two autocovariances of X.

b.	 Show that all autocovariances of order three and higher are zero.

EXERCISE 10.2

Consider the following autoregressive process

4 4t t tX Xq e−= +

where ; 1, ,t t Te =   are independent, identically distributed Gaussian distur-
bances with mean zero and variance 2

es  and we assume 4 1q < .

a.	 Derive the variance and the fourth-order autocovariance of X.

b.	 Show the first, second, and third autocovariances of X are zero.

EXERCISE 10.3

This exercise uses the data in the Excel worksheet EXERCISE 10.3.XLSX.

a.	 Plot the data series and assess its most important features.

b.	 Using the correlogram approach, identify an appropriate ARIMA model 
for this data series.

c.	 Estimate the ARIMA model you have identified and assess how well it 
fits the data by checking the correlogram of the residuals.

EXERCISE 10.4

Consider the model for unemployment given by equation (10.13). This can 
be written as a second-order difference equation in first differences:

	 1 2ln 0.0066 0.4832 ln 0.3094 lnt t t tu u u e− −∆ = − + ∆ + ∆ +
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a.	 Solve for the roots of this equation and show that they lie within the unit 
circle.

b.	 Show that this can be written as third-order difference equation in the 
log of unemployment.

c.	 Using a spreadsheet, solve for the impulse response function of unem-
ployment to a one standard deviation shock.
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C H A P T E R  11
Unit Roots and Seasonality

The assumption of stationarity is important in ARIMA modeling. By station-
arity, we mean that the moments (mean, variance and autocovariances) of the 
series in question both exist, and are constant, through time. This is not auto-
matically the case. Consider, for example, the AR(1) process 1t t tX Xq e−= + . 
We have shown that the variance is equal to ( )2 2 2/ 1 .X es s q= −  Therefore, we 
require the assumption 1 1q− < <  for the variance to exist and to be positive. 
This is clearly not satisfied when the series follows a random walk, that is, 

1q = , and many real-world time series appear to either follow such a process 
or contain a random walk element as part of a more complex dynamic speci-
fication. In Chapter 10, we showed that differencing the data can often act to 
remove a random walk element from a stochastic process. In this chapter, we 
will explore the implications of the random walk in more detail. We will start 
with the most basic random walk specification, in which the random variable 
X is equal to its value in the previous period plus a white-noise disturbance. 
We can write this in moving average form as shown in equation (11.1)

	 1
0

t t t t i
i

X X e e
∞

− −
=

= + =∑ .� (11.1)

Since ( ) 0t kE e − =  for all values of k, we have ( ) 0tE X = . However, this is an 
infinite sum of random disturbances in which the weights on past errors do 
not decline. It follows that the variance of this process is not defined.

Non-stationary time series like the random walk can be transformed into 
stationary series by a process of differencing. In the case of the random walk, 
we have

	 1t t t tX X X e−∆ = − = ,� (11.2)

which is stationary. This is obvious in this case but can also be 
applied to more complex models. For example, suppose we have 
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1 21.5 0.5t t t tX X X e− −= − + . Using the lag operator, we can write this as 
( ) ( )( )21 1.5 0.5 1 1 0.5t t tL L X L L X e− + = − − = , which, in turn, can be writ-
ten as 10.5t t tX X e−∆ = ∆ + . Taking first differences has therefore produced 
a stationary stochastic process. Note that the behavior of the original sto-
chastic process is driven by the roots of the polynomial in the lag operator. 
A process that contains one or more roots equal to one is non-stationary and 
is often described as a unit root process. The process of differencing effec-
tively transforms the series to remove the unit root. Stochastic processes that 
contain a unit root are also referred to as integrated processes. This refers 
to the property that they must be differenced to make them stationary. The 
processes we have discussed above are said to be integrated of order one 
since they must be differenced once to remove the unit root.

Historical Note: Karl Pearson [Pearson1905] coined the term “random 
walk” in a short letter in Nature (Vol 72 p. 294) in which he requests 
help with an interesting statistical problem. It is doubtful that he would 
have anticipated just how much ink would be spilled on the subject in the 
following century.

Stochastic processes may contain more than one unit root, or have a 
higher order of integration, than those we have considered above. Consider, 
for example, a process of the form 1 2 32.5 2 0.5t t t t tX X X X e− − −= − + + .  
This can be written ( )2 31 2.5 2 0.5 tL L L X− + − ( ) ( )21 1 0.5 tL L e= − −  or 

2 2
10.5t t tX X e−∆ = ∆ + . Therefore, this is an example of a stochastic process 

that is integrated of order two, that is, must be differenced twice to produce 
a transformed series with moments that are both finite and constant. Another 
way of describing this process is to say that it contains a double unit root.

Any process whose moments are not constant through time is non-
stationary. In principle, this applies to all the moments of the process but, 
in practice, we normally restrict our attention to the first two moments (the 
mean and the variance). Processes for which the first two moments are con-
stant through time are described as being covariance stationary. The reason 
why we confine our interest to such processes is that it is relatively easy to 
derive conditions for covariance stationarity. However, we note that, if the 
disturbances follow a normal distribution, then covariance stationarity is suf-
ficient to guarantee that all higher-order moments are also constant. 

There are many different reasons why a process might be non-stationary 
and we list some of the more common below:
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1.	 A deterministic trend process

Suppose we have t tX ta b e= + +  where te  is a Gaussian white noise process. 
This is non-stationary since ( )tE X ta b= +  which is a function of time. 
However, it is very easy to make this process stationary through the transfor-
mation t tZ X ta b= − − . We often describe this process as being stationary 
around a deterministic trend.

2.	 A simple random walk

This process takes the form 1t t tX X e−= + . This is non-stationary because the 
unit root in this process means that the variance is not defined. It can be 
made stationary by applying the first difference operator.

3.	 A random walk with drift

Let 1t t tX Xb e−= + + . The presence of the b  term in this equation produces 
a trend or drift in the series. In this case, the series is non-stationary, both 
because the variance is not defined and because ( ) 0tE X X tb= + , which 
demonstrates that the mean is not constant. In this case, differencing will 
again result in a stationary process since t tX b e∆ = +  Nelson and Plosser 
[Nelson1982] have shown that the random walk with drift provides a good 
fit to many macroeconomic time series.

4.	 More general unit root processes

Any autoregressive process can be written in the form ( ) t tA L X e=  where 
( )A L  is the lag polynomial. If any of the roots of this lag polynomial are 

equal to one, then the process is not stationary. The number of unit roots 
determines the order of integration of the process or the number of times it 
must be differenced to make it stationary.

11.1	 TESTING FOR UNIT ROOTS

How do we determine if a stochastic process contains a unit root based on 
a given realization? One method is to examine the sample correlogram. If 
a process generating the data is stationary, then the autocorrelations should 
decline to zero exponentially. For example, the AR(1) process has autocor-
relations .kkr q=  Therefore, for a stationary AR(1) process, we should expect 
to see sample autocorrelations that decline to zero exponentially. For a 
non-stationary function, it is harder to derive a theoretical correlogram, since 
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the theoretical moments, derived on the basis of an infinite moving average 
representation, are not defined. However, we do not have infinite samples 
in practice, and it is possible to derive a theoretical correlogram for a finite 
sample. Consider, for example, the random walk process 1t t tX X e−= + . If 
the sample size T is large, but finite, then the variance of X will be approxi-
mately equal ( )2 2

1

T

tt
E X T es

=
=∑  and the covariance of X and its k’th lag will 

be approximately equal to ( ) ( ) 2
1

T

t t kt k
E X X T k es−= +

= −∑ . Therefore, the k’th 

order autocorrelation will be 1 /k k Tr = − . The autocorrelations will still 
decline to zero, but now according to a linear function of the lag, rather 
than an exponential function. The rate of decline depends on the sample 
size with larger samples being associated with a slower decline. Thus, a sam-
ple correlogram in which the autocorrelations decline linearly to zero is an 
indicator that the underlying stochastic process contains a unit root. The dif-
ference between the two is illustrated in the correlograms shown in Figure 
11.1 which are based on simulated data created using the EViews random 
number generator.

FIGURE 11.1  Correlograms for Stationary (Upper) and Unit Root (Lower) Processes.

In cases like those shown in Figure 11.1, the distinction between a stationary 
and a unit root process is obvious. However, the difference may not be so 
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clear in practice, and it may be hard to make a definite choice based simply 
on visual inspection of the correlogram. It, therefore, becomes necessary to 
develop formal tests for the presence of a unit root. Consider, for example, 
the general AR(2) process

	 0 1 1 2 2t t t tX X Xq q q e− −= + + + .� (11.3)

This can be parameterized as

	 0 1 1 2 1t t t tX X Xb b b e− −∆ = + + ∆ + ,� (11.4)

where 0 0b q= , 1 1 2 1b q q= + −  and 2 2b q= − . Alternatively, (11.3) can be 
factorized as ( )( )1 21 1 t tL L Xj j e− − = . If 1 1j = , then the process can be 
written as 2 1t t tX Xj e−∆ = ∆ + . It follows that the restriction of a unit root in 
the stochastic process is equivalent to the restriction that 1 0b =  in (11.4). 

We can therefore test for the unit root hypothesis by estimating (11.4) 
and testing 0 1: 0H b =  against the alternative that 1 1: 0H b < .1 If we cannot 
reject the null hypothesis, then we conclude that the process contains a unit 
root. A natural method for testing this hypothesis would be to estimate the 
model above and then use the t-statistic ( )1 1

ˆ ˆ/ seb b  as the basis for our test. 
The problem is that, if the null hypothesis is true, then this statistic does not 
follow the t distribution. This is because the distribution theory underlying 
the derivation of the t-statistic depends on the assumption that the process 
generating the data is stationary. This does not mean that we cannot use the 
statistic, but it does mean that the critical values from the Student’s t tables 
are not appropriate. Instead, we need to use critical values determined by 
Monte Carlo methods. These were first calculated in a pioneering paper by 
Dickey and Fuller [Dickey1979] and are shown in Table 11.1.
TABLE 11.1  Dickey-Fuller Critical Values for Unit Root Test.

Without trend With trend

Sample size 1% 5% 1% 5%
T = 25 −3.75 −3.00 −4.38 −3.60

T = 50 −3.58 −2.93 −4.15 −3.50

T = 100 −3.51 −2.89 −4.04 −3.45

T = 250 −3.46 −2.88 −3.99 −3.43

T = 500 −3.44 −2.87 −3.98 −3.42

T = ∞ −3.43 −2.86 −3.96 −3.41

1  The alternative hypothesis provides a necessary but not a sufficient condition for station-
arity in a second-order process – see Exercise 1 for a proof of this statement.
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It should be noted that the critical values for the Dickey-Fuller unit root test 
are sensitive to the choice of deterministic variables (constant and trend) 
to be included in the test equation. For example, if we add a deterministic 
trend to equation (11.4) then this changes the critical values. From Table 
11.1, we note that the critical values for the cases when a deterministic trend 
is included are noticeably higher than those calculated when it is not pre-
sent. Therefore, if we estimate a model of the form

	 1 1 2 1t t t tX t X Xa b b b e− −∆ = + + + ∆ + ,� (11.5)

rather than (11.4), then we must adjust the decision rule for the test to take 
account of the change in the distribution of the test statistic. We note, how-
ever, that the critical values for these tests are not sensitive to the inclusion of 
lagged differences on the right-hand side of our test equation. For example, 
equation (11.5) includes 1tX −∆  as an extra regressor but the critical values 
remain unchanged by this. This is important because it is often necessary 
to include lagged differences in the test equation so that the residuals are 
serially uncorrelated. If the residuals are serially correlated, then the test 
becomes unreliable. Unit root tests which include lagged differences for this 
purpose are referred to as augmented Dickey-Fuller (ADF) tests. The num-
ber of lagged difference terms that are included on the right-hand side is 
chosen to ensure that serial correlation is not present in the test equation. 
Econometric software such as EViews will automatically choose the number 
of lagged difference terms to include according to one of the information 
criteria which were discussed in Chapter 10.

Historical Note: Tables of critical values for unit root tests were first set 
out in a paper by David Dickey and Wayne Fuller in the Journal of the 
American Statistical Association in 1979.

Although the Dickey-Fuller (or more generally ADF) critical values 
were originally presented in table form as shown in Table 11.1, they are 
now more generally calculated using the response surfaces calculated in 
MacKinnon et al [MacKinnon1999]. These are functional relationships that 
allow the calculation of critical values for different test sizes and numbers of 
observations and take the form

	 ( ) 1 2
2

ˆ ˆ
ˆ,C p T

T T
b bb∞= + + ,� (11.6)
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where is p is the size of the test and T is the sample size. MacKinnon et al 
give values of the b̂  coefficients for these equations based on Monte Carlo 
studies using artificially generated data. For example, the 5% critical value 
for a unit root test using a test equation that included a constant and a deter-
ministic trend is given by the following equation

( ) 2

4.039 17.83
0.05, 3.4126 .C T

T T
= − − −

These response surfaces provide a convenient way of calculating accurate 
critical values and are built into many econometric packages as a standard 
feature.

Example: Suppose we wish to test for the presence of a unit root in the 
unemployment series shown we analyzed in Chapter 10. There is no obvious 
trend in the series and so we estimate an augmented Dickey-Fuller equation 
which includes a constant but no trend. This produces the following results

( ) ( ) ( ) ( )1 1 20.0449 0.006 0.080 0.080

2

ˆ0.0782 0.0118 0.6066 0.2085

0.56 1.83.

t t t t tu u u u

R DW

e− − −∆ = − + ∆ + ∆ +

= =

The choice of two lagged differenced terms in this equation was made auto-
matically by EViews as the lag length which minimizes the Schwartz crite-
rion. The test statistic here is:

0.0118
1.97.

0.006
t = − = −

Using the standard t-critical values we would reject the null hypothesis that 
the coefficient on lagged unemployment was equal to zero in favor of the 
alternative that it is less than zero, because, with 182T = , the 5% critical 
value for a one-tailed t-test is −1.645. However, this is not the appropriate 
critical value here. Using the MacKinnon response surfaces we can calculate 
the correct 5% critical value as

( ) 2

2.738 8.36
0.05, 2.8621 2.87.C T

T T
= − − − = −

Therefore, since the test statistic is less than the critical value in absolute 
terms, we are unable to reject the null hypothesis and we conclude that the 
unemployment series does contain a unit root.
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11.2	 FORECASTING WITH UNIT ROOT PROCESSES

We often wish to forecast future values of a trending variable and the random 
walk with drift model often provides a good model of such processes. In this 
section, we wish to consider the properties of forecasts based on such a model. 
Suppose we have a model of the form 1t t tX Xb e−= + + . It is easy to show that

	
1

k

T k T T i
i

X X kb e+ +
=

= + +∑ .� (11.7)

The expected value of T kX +  based on information up to date T is given by

	 ( )T k T TE X X kb+ Ω = + ,� (11.8)

and the variance is given by

	 ( )( ){ }2 2
T k T k T TE X E X k es+ +− Ω Ω = .� (11.9)

Forecasts based on this model, therefore, have the property that the vari-
ance increases the further in the future we wish to forecast. This is intuitively 
plausible in the sense that it indicates that our confidence in our forecast 
declines for values further into the future.

Example: An artificial data set was generated with the following properties 
10.05t t tX X e−= + +  where te  are iid disturbances with ( )~ 0,0.01t Ne . Data 

was generated for the period 1, ,100t =   and then forecasts were calculated 
for the period 101, ,110t =  . The results are shown in Figure 11.2 along 
with the 95% confidence interval for the forecast. As you can see, the fore-
cast error bands widen very quickly.

FIGURE 11.2  Forecasting Using a Random Walk with Drift Model.
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Now let us contrast this case with one in which we can model the series 
as a trend stationary process. Let the process generating the data be 

t tX ta b e= + +  where te  are Gaussian white-noise disturbances. The central 
forecast for T kX + , on the basis of information up to date T, is given by

	 ( ) ( ) ( )T k T T TE X T k X ka b e b+ Ω = + + = − + .� (11.10)

This is very similar to the central forecast produced by the difference 
stationary model in that the expected value of the variable increases by b 
in each time period. In this case, however, the current disturbance Te  is not 
built into future forecasts.

Now consider the forecast variance. This is given by

	 ( )( ){ }2 2
T k TE X T k ea b s+ − − + Ω = .� (11.11)

In this case, the forecast variance does not increase further into the future 
we wish to forecast. To illustrate the effects of this we again generate a ran-
dom series, this time assuming a trend stationary process, and plot the cen-
tral forecast plus the 95% confidence interval. The results are shown below. 
Note that the standard error bands do not widen as they do for the difference 
stationary process. It follows that there are considerable advantages if we can 
legitimately model a series as being trend, rather than difference, stationary.

FIGURE 11.3  Forecasting with a Trend-Stationary Model.

11.3	 SEASONALITY

So far, we have identified unit root behavior as being associated with the 
first lag of the stochastic process under consideration. However, there is 
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an alternative form of non-stationarity which is relevant for economic time 
series. This arises because of the highly seasonal nature of many such series. 
Many economic variables are associated with a regular interval of publica-
tion, for example, annual, quarterly or monthly. For such series, we often 
observe a regular pattern of fluctuations within any given year. For exam-
ple, household consumption expenditures regularly increase sharply in the 
fourth quarter of the year and subsequently fall back in the next quarter. 
Government statistical agencies frequently treat such within year movements 
as a nuisance and seasonally adjust data prior to publication. In some situa-
tions, however, this variation is of interest in itself and it is useful to capture 
it during the modeling process, rather than eliminate it prior to estimation.

For modeling purposes, the presence of seasonality means that correla-
tions between observations made during the same period in the previous 
year are more important than correlations with the immediately preceding 
observations. A simple stochastic process with this property is provided by 
the fourth order autocorrelation process in equation (11.12)

	 4 4t t tX Xq e−= + .� (11.12)

This model is appropriate for quarterly data. If 4 1q < , then this is a sta-
tionary process in which the autocorrelations decline exponentially to zero 
as the lag length increases. The difference between this and the correlo-
gram for a first-order autocorrelation process, is that the autocorrelations 
only differ from zero at lags corresponding to the seasonal frequency. For 
the case of quarterly data, we would observe non-zero autocorrelations at the 
fourth, eighth, twelfth, etc., lags. This is illustrated in Figure 11.4 for the case 

4 0.7q = .

FIGURE 11.4   Correlogram for e
−

= +
t t t

X X
4

0.7 .

EIP.Ch11.2pp.indd   274EIP.Ch11.2pp.indd   274 4/17/2021   2:09:52 PM4/17/2021   2:09:52 PM



Unit Roots and Seasonality • 275

If 4 1q =  then the process is no longer stationary and is characterized by a 
seasonal unit root. In such cases, the correlogram will still have the property 
that only the autocorrelations corresponding to the seasonal frequency differ 
from zero. In this case, however, they will decline linearly to zero rather than 
following the exponential path shown in Figure 11.4. This is similar to the 
patterns for the first-order autocorrelation process and the simple random 
walk processes which we derived earlier. In practice, the correlogram of 
most seasonal processes will reflect both seasonal and non-seasonal effects. 
The problem facing the modeler is to disentangle these effects to formulate 
a model that captures the stochastic process generating the data.

Testing for a seasonal unit root is less straightforward than testing 
for a nonseasonal unit root. Hylleberg, Engle, Granger and Yoo (HEGY) 
[Hylleberg1990] have set out a testing procedure that allows for simulta-
neous testing for either or both types of non-stationarity. Let us assume a 
stochastic process of the form ( ) t tA L X e= , where ( )A L  is a fourth-order 
polynomial function. This polynomial function can be factorized as shown in 
equation (11.13)

	 ( ) ( )( )( )( )1 2 3 41 1 1 1A L L L iL iLg g g g= − + − − ,� (11.13)

where 1i = − . This function contains several special cases of interest. In 
particular, if 1 1g =  and 2 3 4 0g g g= = = , there is a nonseasonal unit root, 
while if 1g = 2g = 3g = 4 1g = , then there is a seasonal unit root. Before we 
can turn this into an operational procedure for testing, however, we need 
to deal with the presence of complex numbers in (11.13). HEGY do this by 
defining transformed variables that generate a testing equation that is free 
from complex numbers. These transformed variables are as follows

	 ( )

4

1 1
1

4
1

2 1
1

3 1 1 3

1

.

t t k
k

k
t t k

k

t t t

X X

X X

X X X

− −
=

−
− −

=

− − −

=

= −

= −

∑

∑ � (11.14)

The testing equation then becomes 

	 4
1 1 1 2 2 1 3 3 1 4 3 1t t t t t tX X X X Xj j j j e− − − −∆ = − + − + .� (11.15)

This equation will also typically include deterministic regressors such as 
a constant, a time trend and/or seasonal dummy variables, depending on 
the nature of the process under consideration. The testing procedure then 
involves sequential tests for (1) 0 1: 0H j = , which is equivalent to 1 1g =  in 
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(11.13), and therefore indicates the presence of a nonseasonal unit root; (2) 
0 2: 0H j =  which is equivalent to 2 1g =  in (11.13), and therefore indicates 

the presence of a unit root with a semi-annual frequency, and, finally (3) 
0 3 4: 0 or 0H j j= = , which is equivalent to 1g = 2g = 3g = 4 1g =  in (11.13), 

and therefore indicates the presence of a seasonal unit root. The test statistics 
for the first two tests are the t-ratios, while that for the third test, is the F-test 
statistic. The distributions, however, are non-standard and HEGY report 
Monte Carlo critical values for a 5% test based on one hundred observations 
in each case. These are given in Table 11.2. Note that, as with most unit 
root tests, the critical values differ according to the deterministic variables 
included in the testing equation.

TABLE 11.2  Monte Carlo 5% Critical Values for the HEGY Test (100 Observations).

Nonseasonal 
unit root

Semi-annual 
unit root

Seasonal unit 
root

Intercept −2.88 −1.95 3.08

Intercept and trend −2.95 −2.94 6.57

Intercept, trend and seasonal 
dummy variables

−3.53 −2.94 6.60

As an example of testing for a seasonal unit root, we will consider sea-
sonally unadjusted UK Household Consumers’ Expenditure data for the 
period 1955q1–2019q4. This is a highly seasonal time series as illustrated 
in Figure 11.5 which shows the logarithm of the original series. There is a 
strong upward trend throughout the period with strong visual evidence of a 
regular seasonal pattern.

FIGURE 11.5  UK Household ConsumerÕs Expenditure (Log Scale) 1955q1 to 2019q4.
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To perform the HEGY tests, we must first make a decision as to what 
deterministic regressors to include in the equation. From the results in 
Table  11.3, we see that this is important for our conclusions. When we 
include just a constant, or a constant and a linear trend, then we are unable 
to reject any of the null hypotheses, and would therefore conclude that the 
series contains a simple unit root, a seasonal unit root and a unit root at the 
semi-annual frequency. If we include seasonal dummy variables, then we 
can reject the null of a seasonal unit root. This indicates that the inclusion of 
seasonal dummy variables is an adequate method for dealing with the sea-
sonality in this series and there is no need to take seasonal differences prior 
to modeling this series.

TABLE 11.3  HEGY Test Results UK Household ConsumersÕ Expenditure.

Nonseasonal 
unit root

Semi-annual 
unit root

Seasonal unit 
root

Intercept 1.68 −1.28 2.58

Intercept and trend 1.49 1.33 3.48

Intercept, trend and seasonal 
dummy variables

1.59 1.41 12.10*

*indicates rejection of the null hypothesis at the 5% level.

11.4	 STRUCTURAL BREAKS AND UNIT ROOTS

We saw earlier that the distinction between difference and trend station-
ary processes can have important implications for how we interpret the 
behavior of economic time series. In particular, the fact that trend stationary 
processes exhibit to return to a stable trend means that the standard error 
bands around long term forecasts remain relatively narrow. In contrast, dif-
ference stationary processes generate forecasts in which the standard error 
bands rapidly become very wide. This means that Nelson and Plosser’s 
[Nelson1982] claim, that most economic time series are difference station-
ary, has important implications for how we interpret and think about long 
term trends in economics. However, as we have also already noted, tests for 
unit roots often have low power against alternatives close to the null and, as 
Perron [Perron1989] has noted, allowing for a limited number of structural 
breaks in either the intercept or trend often produces outcomes which are 
more likely to be trend stationary.
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Testing for trend stationarity when we have structural breaks follows 
the same procedure as standard unit root tests. The null hypothesis is that 
the process is difference stationary, and the alternative is that it is trend sta-
tionary. In this case, however, the test equation includes dummy variables 
that capture structural shifts in either the intercept or the trend. Suppose, 
for example, we wish to test for trend stationarity of a stochastic process X 
while allowing for both an intercept and a trend change as some date t∗ in 
the interval 1, ,t T=  . The first stage, is to estimate an equation of the form

	 0 1 3 4t L T tX t D Db b b b e= + + + + ,� (11.16)

where 0  for 1, ,LD t t∗= =   and 1 for 1, ,t t T∗= +  ; and 0TD =  for 1, ,t t∗=   
and ( )t t∗−  for 1, ,t t T∗= +  . The residuals from this equation then provide 
the basis for a second stage regression of the form 

	 0 1 1 1
1

ˆ ˆ
p

t t j t j t
j

ve a a e a e− + −
=

= + + ∆ +∑ ,� (11.17)

which we use to test 0 1: 1H a =  against the alternative 1 1: 1H a < . Rejection 
of the null leads to the conclusion that the process is trend stationary. Of 
course, the addition of extra deterministic regressors in (11.16) changes 
the critical values, meaning that they are higher than the standard Dickey-
Fuller values and, as Perron shows, the timing of the structural break is also 
important. Let /t Tl ∗= , Perron shows that values of l  close to 0.5, that is, 
a structural break in the middle of the sample period, will have the largest 
critical values. In contrast, values of l  close to the extremes, either zero or 
one, have relatively little effect and the critical values are close to the stand-
ard Dickey-Fuller values. His paper also provides formulae that allow us to 
generate appropriate critical values for such tests.

While Perron’s paper is important for its methodological innovations, it 
is also important for the application which he provides. His conclusion is that 
many of the economic time series, which Nelson and Plosser had found to 
be difference stationary, could be shown to be trend stationary when allow-
ance was made for a limited number of structural breaks. As an illustration 
of this, we will consider an application of his method to UK time series data 
for Gross Domestic Product. Our time series consists of an index of real UK 
GDP constructed by splicing Feinstein’s [Feinstein1972] historical series 
for 1855 to 1965 to the Office for National Statistics data for later periods. 
When we apply the standard Dickey-Fuller test for trend stationarity, we 
are unable to reject the null of a difference stationary process. However, 
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the results are different when we allow for a structural break in 1921. This is 
an important year in British economic history because, from then, the data 
no longer include what would later become the Irish Republic in national 
income calculations. Not surprisingly, there is an immediate fall in the level 
of GDP, which we can model using an intercept dummy variable. At the 
same time, we see a modest increase in the long-term growth rate which, in 
the longer term, has even more significant effects on the series. We, there-
fore, adjust our test equation to allow for a structural break in both the inter-
cept and trend in 1921, yielding the results shown in equation (11.18)

	
( )

( ) ( ) ( ) ( )0.0134 0.0003 0.0162 0.0004

2

ˆln 3.4926 0.0189 0.3307 0.0058

ˆ0.9972 0.0507 0.3805.

t L T t

u

y t D D v

R DWs

= + − + +

= = =
� (11.18)

Equation (11.18) shows a downward intercept shift in 1921 and an increase 
in the equilibrium growth rate. Not surprisingly, there is still a high degree of 
autocorrelation in the residuals, as indicated by the low value of the Durbin-
Watson statistic. This, of course, means that the standard errors of the coef-
ficient estimates are probably underestimated.

Historical Note: The inclusion of dummy variables to capture a struc-
tural break in the series can also provide an alternative method for the 
construction of the Chow [Chow1960] test for parameter constancy. 
Rather than estimating separate regressions for sub-periods and then 
comparing the residual sums of squares, we can base the Chow test on 
a test for the joint significance of the dummy variables in an equation of 
the form (11.18).

To test for trend stationarity around the equilibrium defined by (11.18), 
we next estimate the auxiliary regression

	 ( ) ( ) ( )1 10.0022 0.0474 0.0758

2

ˆˆ ˆ ˆ0.0003 0.7520 0.3175

0.681 1.9612

t t t tv v v

R DW

h− −= − + + ∆ +

= =
� (11.19)

The test statistic for the null hypothesis that the coefficient on the lagged 
residual is equal to zero is ( )0.7520 1 / 0.0474 5.23− = − . Calculating Perron’s 
critical value, we first calculate 68 / 165 0.4121l = = . This, in turn, gives a 5% 
critical value of −4.22 for the test, allowing for both an intercept and trend 
change. We, therefore, reject the null hypothesis and conclude that this pro-
cess is stationary around a linear trend with a structural break in 1921.
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FIGURE 11.6  UK GDP (Log Scale) Plus Trend with Break in 1921.

Figure 11.6 illustrates why the conclusion of the Perron test has import-
ant implications here. Stationarity around a linear trend indicates a stable 
growth path, to which the economy returns in the long run following a dis-
turbance. Without allowance for a structural break in 1921, we would have 
rejected this as a null hypothesis. The presence of such a structural break is 
clear from a simple visual inspection of the graph of the series. Allowance 
for this break changes the conclusion of the unit root test, producing an 
equilibrium trend growth path as shown by the trend line in Figure 11.6. A 
conclusion like this has the potential to radically change our interpretation 
of the economic history of the period.

EXERCISES 

Excel files containing the data for these exercises are available as companion 
files for this book.

EXERCISE 11.1

Consider the second-order stochastic process 1 1 2 2t t t tX X Xq q e− −= + +  where 
te ; 1, ,t T=   are independent, identically distributed random errors. Derive 

the roots of this process as a function of the parameters 1q  and 2q  and hence, 
show that the condition 1 2 1 0q q+ − <  is necessary, but not sufficient, for this 
process to be stationary.
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EXERCISE 11.2

Consider the stochastic process 1 2 30.85 0.25 0.1t t t t tX X X X e− − −= + − + , where  
te ; 1, ,t T=   are independent, identically distributed random errors. Show 

that this process contains a single unit root but is stationary in first differences.

EXERCISE 11.3

Using the data in the file UK EXCHANGE RATES.XLSX, carry out tests for 
the null hypothesis that the stochastic process which determines the loga-
rithm of the sterling-dollar exchange rate (EXRATE) is difference stationary.

EXERCISE 11.4

Quarterly data for new registrations of motor vehicles in the UK is given in 
the spreadsheet file NEWREG.XLSX. Use this data to fit an ARIMA model 
to the series and comment on your results.
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C H A P T E R  12
Cointegration

In Chapter 11, we introduced the idea of unit root stochastic processes. 
Processes that contain one or more unit roots are often described as 
integrated processes. An integrated process is defined to be a process that 
must be differenced to create a stationary process. In such cases we write 

( )~X I d , that is, the stochastic process which determines the random 
variable X must be differenced d times to create a stationary process. We 
can describe such a process as being integrated of order d or as containing 
d unit roots. Since integrated processes are non-stationary it follows that 
the standard statistical distributions and hypothesis tests, which assume 
stationarity, do not apply. An implication of this is that the estimation 
of models using integrated data runs the risk of generating spurious 
regressions. That is, there is a danger that these regressions may appear 
to detect a significant relationship between variables, even when no such 
relationship exists.

Given the possibility of spurious regressions, the question arises as to 
whether it is ever sensible to estimate models involving integrated data. 
One argument is that the data should be differenced prior to estimation 
with the object of eliminating unit roots so as to avoid the spurious regres-
sion problem. There is a danger, however, that, by differencing the data, 
we eliminate valuable long-run information from the model. To under-
stand this, we must introduce the idea of cointegration. In this chapter, 
we will show that there are circumstances in which it is possible, and 
indeed valuable, to estimate models using non-stationary data. In such 
circumstances, however, the econometrician needs to act with caution 
and to test the models estimated rigorously to avoid the danger of spuri-
ous regression.
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Historical Note: Statisticians have long been aware of the danger of spu-
rious regressions. George Udny Yule provides an early, and very thor-
ough, account of this problem in his 1926 paper [Yule1926]. Granger and 
Newbold [Granger1974] were the first to link the problem of spurious 
regressions with the presence of unit roots in the processes determining 
the regression variables.

In general, any linear combination of integrated processes will itself be 
integrated with the order of integration being equal to that of the highest 
order variable in the relationship. For example, if ( )~ 1X I  and ( )~ 1Y I  then 
Z Y Xb= −  will also be ( )1I . However, in some cases, it is possible to find a  
b such that ( )~ 0Z Y X Ib= − . In such cases, we say that there is a cointe­
grating relationship between Y and X, and that b is the cointegrating param-
eter. What this indicates is that, even if X and Y both contain unit roots, they 
are linked in such a way that they do not move too far from each other. An 
example from economics could be the relationship between consumption 
and disposable income. In both cases, a random walk with drift provides a 
good description of the behavior of the variable in question. It is plausible, 
however, to argue that consumption and income should not move too far 
from each other even in the very long run. Thus, it is possible, or even likely, 
that consumption and income will be cointegrated.

Example: Consider the joint process defined by (12.1) where 1e  and 2e  are 
independent Gaussian white-noise errors,

	 1 1

1 2

0.05
0.5 0.5 .

t t t

t t t t

X X

Y X Y

e
e

−

−

= + +
= + +

� (12.1)

Now consider the realization of this process shown in Figure 12.1. The 
X variable is integrated of order one and, since the Y variable is a linear 
combination of its own lagged value and the current X and a stationary 
random variable 2e , it follows that Y is also integrated of order one. However, 
the variables are linked so that they move together over time.

Let us define t t tZ Y X= − , this can be shown to yield a stationary series 
by rewriting the second equation of our system as

	 1 20.5t t tY Z e−∆ = − + .� (12.2)
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Since Y is integrated of order one, it follows that Y∆  is ( )0I  and, by assump-
tion, 2e  is stationary. Since 1tZ −  is a linear combination of ( )0I variables, it 
follows that Z is also ( )0I . This result is illustrated in Figure 12.2 which 
shows that, unlike the Y and X series, the Z series is mean-reverting, that is 
deviations from the average value are “corrected” over time. Therefore, the 
Z series appears to be stationary in that there is no obvious trend and devia-
tions from the average value appear to dissipate quickly. It should be noted, 

FIGURE 12.1  Linked Unit Root Processes.

FIGURE 12.2  Difference of Y and X Series.
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however, that this is the result of a somewhat arbitrary transformation and 
that our “test” for stationarity of the resulting variable involves a subjective 
visual examination of the data. We will need to develop more formal tests for 
cointegration which allow for more general transformations of the data and 
which are grounded in formal statistical inference.

Historical Note: The term “cointegration” was first used in the paper 
by Engle and Granger in their 1987 paper in Econometrica [Engle1987].

12.1	 TESTING FOR COINTEGRATION

Cointegration is defined as the existence of a cointegrating parameter b 
which means that a linear combination of two stochastic processes that are 
integrated of order d is integrated of a lower order. More generally, when 
there are more than two series b becomes a cointegrating vector rather than 
a cointegrating parameter. In our previous example, t t tZ Y Xb= −  is stationary 
for 1b =  even though the processes generating the Y and X series are non-
stationary. if the value of the cointegrating parameter is unknown, then it 
can be estimated using a simple least squares regression of one variable on 
the other. If the variables Y and X are cointegrated, then we can show that 
the OLS estimator b̂  is a super-consistent estimator of the cointegrating 
parameter b. This means that the probability limit of b̂  converges on the 
true value b even in circumstances where the small sample estimator is 
biased and, moreover, converges more quickly than when the Y and X series 
are stationary. The residuals from such a regression ˆˆ t t tu Y Xb= −  form the 
basis for a test for cointegration. 

Consider the simple model in which t t tY X ub= +  where Y and X are 
both integrated of order 1 and b is a cointegrating parameter. If we perform 
an OLS regression of Y on X, then we obtain

	 1 1

2 2
1 1

/ˆ
/

T T

t t t tt t
T T

t tt t

X Y X u T

X X T
b b= =

= =

= = +∑ ∑
∑ ∑

.� (12.3)

Sufficient conditions for this estimator to be consistent are (1) that the 
expected value tends to true value as T →∞ and (2) that its variance tends 
zero as zero as T →∞. In the case where X is generated by a stationary 
process, we assume 

1
plim1 /

T

t t Xut
T X u s

=
=∑  and 2 2

1
plim1 /

T

t Xt
T X s

=
=∑ . 
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That is, the sample moments converge on the fixed population moments in 
probability. We assume that the variance of X is positive 2 0Xs >  and there-
fore the first condition for consistency is met if the covariance of X and 
u is zero, that is, 0Xus = . Turning to the second condition for consistency 

we have ( ) 2 2
1

ˆ /
T

u tt
V Xb s

=
= ∑  and, from our second assumption, we have 

( ) 2 2ˆplim /u XV Tb s s= . As T →∞, this expression clearly tends to zero, and 

therefore the estimator is consistent under these assumptions.
Now let us consider the rate at which the variance approaches zero as 

the sample size gets large. Consider the following expression

	
2

2

1 1

1T T
t

t
t t

X
X

TT= =

  = 
 

∑ ∑ .� (12.4)

This converges on a finite limit by assumption. This demonstrates that the 
sum of squared values of X is stochastically bounded and that it is root T 
convergent. We can think of this as determining the rate at which the sam-
ple variance of X converges to its population value. Under the assumption 
that X is generated by a stationary process, this rate depends on the square 
root of T. 

Now, if X is generated by a unit root process, we can show that 
2

1
plim /

T

tt
X T

=∑ does not converge to a finite positive value. Instead, it 
becomes infinitely large as T →∞. There are two implications of this. First, 

even if 
1

plim / 0
T

t t Xut
X u T s

=
= ≠∑ , then the OLS estimator may still be con-

sistent. Second, we can show that the rate at which the variance of the OLS 
estimator tends to zero depends on the level of T rather than its square root. 
This is because the variance of the OLS estimator tends to zero faster in 
probability limit when X data is generated by a unit root process. These two 
properties are summarized in the description of the OLS estimator as being 
super-consistent. Thus, OLS estimation, when the data is non-stationary, can 
still generate consistent estimates of the unknown b coefficient and the esti-
mator will converge to the population value faster than would be the case 
with stationary data.

Historical Note: The property of super-consistency was first discussed in 
a paper by Stock in Econometrica in 1987 [Stock1987].
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We have now established that, if the data series Y and X are cointegrated, 
then the OLS estimator is super-consistent, and that the linear combina-
tion ˆˆ t t tu Y Xb= −  is stationary. This forms the basis of a test for stationarity 
known as the Engle-Granger Test. This test is carried out using the following 
procedure:

1.	 If the model is t t tY X ub= + , estimate by OLS to obtain 
2

1 1
ˆ /

T T

t t tt t
X Y Xb

= =
=∑ ∑  and construct the regression residuals 

ˆˆ t t tu Y Xb= − .

2.	 Perform a second regression using the regression residuals. The model 
for the second regression takes the form 0 1 1 1

ˆ ˆ ˆp

t t t i ti
u u ug g e− −=

∆ = + + ∆ +∑ .  

The lag length p in this second regression should be chosen so that the 
residuals ˆ

te  are free of serial correlation.

3.	 Test 0 1: 0H g =  against the alternative 1 1: 0H g <  using the test statistic 
( )1 1

ˆ ˆ/ .SEt g g=  Note that this test statistic does not follow the stand-
ard t distribution under the null hypothesis, and the critical values used 
to perform this test are empirically determined values. The critical val-
ues we use for this test are given by the MacKinnon [MacKinnon1991] 
response surfaces.

It is also important to note that the critical values here will be higher, in 
absolute value, than those used when testing for the presence of a unit root 
in an individual time-series. The inclusion of more variables in the cointe-
grating equation will also increase the critical value for the unit root test. 
For example, the 5% critical value for a unit root test based on the residuals 
from a bivariate regression, which includes a constant but no time trend, is 
given by the following equation ( ) 20.05, 3.3377 5.967 / 8.98 /C T T T= − − − . 
Therefore, with 100 observations, the 5% critical value for an Engle-Granger 
test for a cointegrating relationship between two variables is −3.39. In con-
trast, the 5% critical value for a unit root test for a single series with 100 
observations is −2.89. If more variables are added to the cointegrating equa-
tion, or if a deterministic time trend is included, then the critical value will 
increase further.

Example: Using the stochastic process defined in (12.1) (but with different 
random shocks) we create the series shown in Figure 12.3.
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The unit root test statistics for the X and Y variables are 1.249Xt = −  and 
1.332Yt = − , and the critical value is −2.89. We therefore cannot reject the 

null hypothesis of a unit root for either series. Next, we test for the presence 
of a cointegrating relationship linking the two series. In the first stage, we 
estimate the following bivariate regression equation

	 ˆ0.0071 0.9561t t tY X u= + + .� (12.5)

We note that, if the variables are cointegrated, then the slope coefficient 
here is a super consistent estimator of the long-run or equilibrium param-
eter linking the two variables. Note that we do not report standard errors or 
other statistics for this equation because they will be biased and are irrel-
evant for our purposes anyway. The purpose of equation (12.5) is simply 
to allow us to calculate the residuals ˆ tu  so that we can perform a unit root 
test on this series. Since the data has been generated using the equation 

10.5 0.5t t t tY X Y u−= + + , we can solve for the long-run relationship by remov-
ing the time subscripts and setting the equation error equal to its expected 
value of zero. This means that the long-run effect of an increase in X on Y is 
equal to one and our estimated value of 0.96 is reasonably close to this value.

Next, we construct the residuals for this equation and perform a unit 
root test on the resulting series. The residual series is shown in Figure 12.4.

FIGURE 12.3  Simulated Cointegrated Variables.
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Finally, we use the Dickey-Fuller approach to perform a unit root test on the 
residuals. The equation estimated to construct the test takes the form

	
( ) ( ) 10.0775 0.0889

ˆˆ ˆ0.0076 0.5096t t tu u e−∆ = − + ,� (12.6)

which gives us a test statistic 0.5096 / 0.0889 5.73t = − = − . This is greater 
than the 5% critical value of −3.39 in absolute value and so we reject the 
null hypothesis that the residual series contains a unit root at the 5% level. 
In other words, there is evidence here that, although the series in question 
are individually non-stationary, there exists a cointegrating relationship that 
links them.

In practice, the simple Dickey-Fuller test is rarely appropriate when 
dealing with economic data. This is because the process generating the data 
will often involve higher-order autocorrelations than the first-order process 
assumed in the example above. Therefore, the most usual way to apply this 
test is to use the Augmented Dickey Fuller (ADF) test on the residuals, 
where the second stage regression is augmented by the addition of lagged 
difference terms to capture the higher-order autocorrelations. Another 
alternative is to use the Phillips-Perron [Phillips1987] procedure for the sec-
ond stage regression, in which a standard Dickey-Fuller regression is esti-
mated, but the standard errors are adjusted for the presence of higher-order 
autocorrelations.

Sargan and Bhargava [Sargan1983] suggest an alternative test for cointe-
gration in the form of the cointegrating regression Durbin-Watson (CRDW) 

FIGURE 12.4  Residuals from the Cointegrating Regression (12.5).
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test. Consider, the standard regression model t t tY X ub= + . We have already 
seen that there is an approximate relationship between the DW statistic 
and the first-order autocorrelation coefficient of the form ( )ˆ2 1DW r≈ − .  
Therefore, if we wish to test the null hypothesis that the first-order autocor-
relation coefficient is equal to one, then we can use DW as a test statistic 
since 0 : 1H r =  should imply a value of the DW statistic close to zero. It is 
again necessary to generate critical values for this test using Monte Carlo 
methods because the process generating the data is non-stationary under the 
null. For a bivariate regression and 100 observations, Sargan and Bhargava 
report a 5% critical value for the CRDW test equal to 0.386.

In practice, the Engle-Granger two step test is still very commonly used 
in econometric analysis, while the CRDW is not often applied. Normally, 
the choice between competing tests is based on relative power. However, 
this is not necessarily the case here. Engle and Granger (1987) provide a 
comparison of the relative power of a variety of different cointegration tests 
which shows that the CRDW does relatively well in terms of its ability to 
reject a false null hypothesis. In a simple comparison with the two-step test 
based on an ADF test of the residuals from a cointegrating regression, it 
has marginally higher power. However, the difference is very slight. Where 
the CRDW test does badly, is that it is very closely tied to a particular data 
generation process. The Monte Carlo DGP used to compare relative power 
assumes that the series in the bivariate regression are independent random 
walks. The CRDW test does well in this context, but less well when the DGP 
involves more complex autoregressive processes, which is likely to be the 
case for economic data. In contrast, the Engle-Granger test handles these 
cases rather better. For this reason, the Engle-Granger test is now the pre-
ferred option.

12.2	 COINTEGRATION WITH MULTIPLE VARIABLES

So far, we have only considered bivariate cointegration. However, it is 
straightforward to extend this framework to deal with cases in which there 
are more than two variables in the cointegrating relationship. In such cases, 
the cointegrating parameter becomes a cointegrating vector.

Example: Consider the case of the aggregate production function which 
relates output to inputs of labor and capital. The Cobb-Douglas production 
function takes the form
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	 ( ) ( ) ( )1 2 3ln ln lnt t t tY N K ub b b= + + + ,� (12.7)

where Y, N, and K are output, labor input and capital input respectively. 
When we estimate relationships like this using time series data, these series 
often contain unit roots. However, it is possible that there is a cointegrat-
ing relationship such that the equation error (or total factor productivity in 
this case) is stationary. Having established that the individual series contain 
unit roots using the Dickey-Fuller test, we can test for a possible cointegrat-
ing relationship using the Engle-Granger approach. The equation reported 
below uses a data set for US GDP and factor inputs given in Maddala 
[Maddala1989] which contains annual data for the period 1929–1967,

	 ( ) ( ) ( ) ˆln 3.9377 1.4508 ln 0.3838 lnt t t tY N K u= − + + + .� (12.8)

We then take the residuals from this equation and estimate the auxiliary 
regression shown in equation (12.9)

	
( ) ( ) ( )1 10.0041 0.135 0.144

ˆˆ ˆ ˆ0.0013 0.6838 0.5411t t t tu u u e− −∆ = − + ∆ + .� (12.9)

The test statistic is 0.6838 / 0.135 5.07t = − = − . We can then calculate the 
appropriate critical value using the MacKinnon response surface as

	 5%
2

8.352 13.41
3.7429 3.98

36 36
t = − − − = − .� (12.10)

Since the test statistic is greater than the critical value at the 5% level, this 
means that we can reject the null hypothesis at the 5% level and conclude 
that there is a cointegrating vector linking these three variables. In this case, 
it has a natural interpretation as a measure of total factor productivity, that is, 
the part of output that is unexplained by measured factor inputs.

In adopting the Engle-Granger approach, we start with the null hypothe-
sis that the variables in our relationship are not cointegrated. We then test this 
against the alternative that there is a cointegrating relationship. Therefore, 
we must reject the null hypothesis if we are to conclude that a long-run 
(cointegrating) relationship exists. A problem with this approach is that the 
tests we use, including the Engle-Granger test, often have low power. This 
means that it is difficult to reject the null hypothesis even when it is false, and 
we, therefore, run the risk of making a Type II error. The Engle-Granger 
test is based on the idea that the residuals for the cointegrating regression 
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should be stationary. Effectively we are looking for evidence that the coeffi-
cient on the lagged residual is less than one in a regression of the form

	 0 1 1 1
1

ˆ ˆ ˆ
p

t t i t i t
i

u u ud d d e− + −
=

= + + ∆ +∑ .� (12.11)

The problem is that the alternative hypothesis includes values that are very 
close to the null hypothesis. In practice, it may be difficult to reject 0 1: 1H d =  
if the true value of 1d  is equal to 0.95 for example, even though this would 
correspond to a stationary process (albeit one in which the return to the 
equilibrium relationship was quite slow). Simulation studies have shown 
that Engle-Granger test suffers from low power in these circumstances. 
Therefore, although the Engle-Granger approach provides a very intuitive 
way of testing for cointegration, it becomes necessary to look for alternative 
tests that may be more powerful in identifying cointegrating relationships.

12.3	 COINTEGRATION AND ERROR CORRECTION

There is a close relationship between the ideas of cointegration and error 
correction which we can illustrate using the following example. Consider a 
general autoregressive distributed lag model of the form

	 1 2 1 3 1t t t t tY X X Y ub b b− −= + + + .� (12.12)

This could be a straightforward dynamic regression model in which both Y 
and X are ( )0I  variables. However, it could also be a dynamic cointegrating 
relationship in which Y and X are ( )1I  but u is ( )0I . We can transform this 
equation and write it in the form

	 1 2 1 3 1t t t t tY X X Y ug g g− −∆ = ∆ + + + ,� (12.13) 

where 1 1 2 2 1;g b g b g= = +  and 3 3 1g b= − . Note that this does not change the 
equation in any way. It simply reflects a reparameterization of the original 
equation. If, however, the variables are integrated of order one, then this 
transformation means that the new form of the equation contains variables 
which are ( )0I  (the ∆ terms) and variables which are ( )1I  (the lagged X and Y 
terms). In the absence of cointegration, mixing orders of integration in a sin-
gle equation will lead to very poor results. For example, regressing an ( )0I
variable on an ( )1I  variable will normally produce an insignificant result. 
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However, if the variables are cointegrated then there is a linear combination 
which is ( )0I  and therefore the ( )1I  variables on the RHS will be significant. 
Therefore, testing for the significance of the levels variables in an error cor-
rection equation provides us with an alternative test for cointegration.

Historical Note: The error correction model was first introduced by 
Sargan [Hart1964] and became popular in applied econometric work 
after its use by Davidson et al [Davidson1978]. Its link to the cointegra-
tion problem was first noted by Engle and Granger [Engle1987].

Another reparameterization of this equation can be obtained by writing 
it as

	 ( )1 3 1 1 1t t t t tY X Y X ug g d− −∆ = ∆ + − + ,� (12.14)

where ( ) ( )1 2 3 1 2 3/ / 1d g g b b b= − = + − . Here, we can interpret 1d  as the 
“long-run” or cointegrating parameter which links Y and X. Therefore, 

1 1 1t tY Xd− −−  represents the lagged disequilibrium or “error” in the relation-
ship between Y and X. This is where the term “error correction” originates. 
However, as Hendry has pointed out, the term “equilibrium correction” is 
probably more appropriate, since the parameter 3g  determines the extent to 
which Y changes in response to disequilibrium. This version of the model 
suggests an alternative approach to testing for cointegration in which we 
estimate the error correction model and test 0 3: 0H g =  against the alterna-
tive, 1 3: 0H g < . The test statistic here is the t-ratio or ( )3 3

ˆ ˆ/ SEg g  but, as 
we would expect given the non-stationary nature of the levels of Y and X, 
this does not follow the t-distribution. Empirically determined critical val-
ues and response surfaces for this test are given in Ericsson and MacKinnon 
[Ericsson2002]. 

Example: Let us consider again our artificial example (12.1). We can com-
bine the two equations of this example into a single error-correction equa-
tion which takes the form

	 ( )1 10.025 0.5 1.0t t t tY Y X u− −∆ = − − + , � (12.15)

where 1 20.5t t tu e e= + . We can again generate artificial data based on this 
model and then test for cointegration by estimating the error correction 
equation shown in equation (12.16)
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	 ( ) ( ) ( ) ( )1 10.406 0.121 0.081 0.091

2

ˆ0.0213 0.5663 0.4394 0.4536

0.39.

t t t t tY X Y X u

R

− −∆ = − + ∆ − + +

=
� (12.16)

The Ericsson and MacKinnon test statistic can then be constructed as 
0.4394 / 0.081t = − 5.42= − . Using their response surfaces, we find a 5% 

critical value of −3.246. Therefore, we reject the null at the 5% level in this 
case. Note that the advantage of this approach is that the error correction 
model provides a better dynamic specification than the static regression 
used to generate the residuals in the Engle-Granger test. This means that 
this test tends to be more powerful and we are less likely to make a Type 
II error when we adopt this testing procedure. A variation on this theme is 
suggested by Turner [Turner2006], which proceeds by performing an F-test 
for the joint significance of the lags on the RHS of the test equation. In this 
case, we obtain a test statistic 16.37. Using Turner’s response surfaces we 
find a 5% critical value of 5.88. Therefore, this also confirms the existence of 
a cointegrating relationship between the two variables in our example.

12.4	 THE JOHANSEN TEST FOR COINTEGRATION

Consider again, our artificial example (12.1). We have seen that we can write 
this as a single ECM as in (12.15). However, a third option is to write it 
as a Vector Error Correction Model or VECM. We will discuss models of 
this type in more detail in Chapter 13. However, we introduce some of the 
ideas here so that we can develop a third testing procedure, known as the 
Johansen [Johansen1988] cointegration test, and compare it with the other 
cointegration tests. Solving the system of equations defined by (12.1) gives a 
matrix system of the form

	 1 1 2

1 1

0.025 0.5 0.5 0.5
0.05 0 0

t t t t

t t t

Y Y

X X

e e
e

−

−

∆ − +         
= + +         ∆         

.� (12.17)

Consider the matrix linking the changes in Y and X to their lagged levels. 
It can be shown that there is a relationship between the rank of this matrix 
and cointegration. This matrix has rank one because of the existence of the 
cointegrating vector linking Y and X. If there was no cointegrating vector, 
then all the elements of this matrix would be zero, and it would have rank 
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zero. We could therefore test for cointegration by testing for the rank of this 
matrix. This forms the basis of the Johansen test for cointegration.

We can think of the Johansen test as a multivariate version of the error 
correction test. Essentially, this test is based on the idea that, if a cointegrat-
ing vector or vectors exist, then there should be detectable feedback from 
the lagged levels of the variables in the system to their rates of change. Let 
us consider a more general definition of the system under consideration. Let

	 1
1

p

t t t i t i t
i

− −
=

∆ = + + ∆ +∑y Bx y y vΠ Γ ,� (12.18)

where ty  is a vector of random variables, tx  is a vector of deterministic and 
exogenous variables and tv  is a vector of random errors. The matrices B, Π  
and ; , ,i i p=Γ  are matrices of parameters. We are interested in the param-
eters of the Π  matrix which capture the error-correction property of the 
system. The Johansen testing procedure is based on the properties of the 
Π  matrix. However, it does not use this matrix directly. Instead, it works 
through a process of “concentrating out” the nuisance parameters contained 
in the B and Γ  matrices, by regressing t∆y  and 1t−y  on the tx  and t i−∆y
variables first and then working with the residuals from these regressions. 
A full description of the procedures used can be found in Davidson and 
MacKinnon [Davidson2004].

A rigorous derivation of the Johansen test is beyond the scope of this 
book. However, we provide a very brief account of the procedure here to 
give the reader an idea of how this works. Let 1ˆ tv  and 2ˆ tv  be the residuals 
from regressions of t∆y  and 1t−y  on the tx  and t i−∆y variables respectively. 
Next, define the matrices sample covariance matrices of these residuals as

	
1

1ˆ ˆ ˆ ; 1,2, 1,2
T

T
ij jt lt

t

j l
T =

= = =∑ v vΣ .� (12.19)

The Johansen testing procedure is based on the eigenvalues il  of the matrix

	 1
22 21 11 12 22

ˆ ˆ ˆˆ ˆT −=A ψ Σ Σ Σ ψ ,� (12.20)

where 1
22 22 22

ˆˆ ˆ T −=ψ ψ Σ . The interested reader is referred to Davidson and 
MacKinnon [Davidson2004] for a fuller treatment of this procedure.

The purpose of the transformations outlined in the previous paragraph 
is to calculate a set of eigenvalues ; 1, ,i i kl =   where k is the dimension of 
the y vector. These eigenvalues allow us to test for the rank of the Π  matrix 
which captures the error correction properties of the system. If no error 
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correction is present, that is, if there are no cointegrating vectors in the sys-
tem, then this matrix will have rank zero. If there is a single cointegrating 
vector, then the matrix will have rank one, if there are two then it will have 
rank two, and so on. Thus, the Johansen procedure has the advantage of 
allowing for the possibility of multiple cointegrating relationships between 
the set of variables of interest. There are two test statistics used to assess the 
number of cointegrating vectors in the system. Suppose we wish to test the 
null hypothesis that there are 1r  cointegrating vectors against the alternative 
that there are 2r . The trace test statistic which is defined as

	 ( )
2

1 1

ln 1
r

i
i r

T l
= +

− −∑ ,� (12.21)

and, if we wish to test the null hypothesis that there are r cointegrating vec-
tors against the alternative that there are r+1, then we define the maximum 
eigenvalue test statistic as

	 ( )maxln 1T l− − ,� (12.22)

where maxl  is the largest eigenvalue in the remaining set, after we have per-
formed the first r tests.

Finally, we note that the distributions of both these test statistics are 
non-standard because of the assumption that the data generation process is 
not stationary under the null hypothesis. It, therefore, becomes necessary to 
use Monte Carlo methods to generate empirical critical values and response 
surfaces. As with most unit root testing procedures, the distributions, and 
critical values change according to the nature of the deterministic and/or 
exogenous variables included in the system. This is discussed in the paper by 
Pesaran, Shin and Smith [Pesaran2000].

It should have become obvious by now that the Johansen testing proce-
dure is technically very demanding. However, it does offer some significant 
advantages over single equation testing procedures such as the Engle-
Granger test or the error-correction test. The first of these is that it allows 
for the presence of multiple cointegrating vectors in the system. This is of 
obvious interest to economists who generally work with systems in which 
multiple equilibrium relationships are possible. Secondly, the Johansen pro-
cedure is not sensitive to the ordering of the variables in the system. One of 
the problems single equation methods, such as the Engle-Granger approach, 
is that the result of the test can differ depending on which variable is defined 
as the dependent variable and which is the regressor. This is not the case for 
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the Johansen method. Finally, the Johansen method appears to offer a more 
powerful test that the single equation methods we have considered. This is 
important because cointegration tests notoriously lack power against alter-
natives close to the null.

It may be helpful at this stage to look at an example of the implementation 
of the Johansen procedure in practice. Figure 12.5 shows the EViews output 
for the Johansen test based on a sample realization of the stochastic process 
defined in (12.17). To interpret these results, we start with the null hypothesis 
that there are no cointegrating vectors and test this against the alternative that 
there is at least one. In this case, we reject this null hypothesis using both the 
trace and the maximum eigenvalue tests. Note that EViews automatically sup-
plies the 5% critical values and p-values for these tests based on the response 
surfaces given in MacKinnon et al. (1999). Once we have established that there 
is at least one cointegrating vector, we redefine the null as the hypothesis that 
there is a single cointegrating vector and test this against the alternative that 
there is more than one. In this case, we cannot reject the second null hypothe-
sis using either test. These conclusions are consistent with the DGP set out in 
(12.17) in which, by design, there is a single cointegrating vector.

FIGURE 12.5  EViews Output for the Johansen Cointegration Test.
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Example: To conclude our discussion of the Johansen method, let us consider 
an example using real-world data, rather than an artificial data set. Suppose 
we are interested in the relationship between interest rates on assets with dif-
ferent maturities. We have data on three such interest rates: Bankrate,1 the 
Treasury Bill rate and the yield on government bonds. Figure 12.6 plots each 
of these series using monthly UK data for the period 1993.12–2006.12.

Applying augmented Dickey-Fuller tests indicates that each of these 
series contains a unit root. However, our interest is in whether these inter-
est rates are cointegrated. We also note that it is possible that there may be 
multiple cointegrating vectors in this case. For example, in the long run, the 
Bankrate and Treasury Bill rate might move together, while there is a separate 
relationship between the Treasury Bill rate and the bond yield. Therefore, 
two separate cointegrating relationships might exist. The Johansen testing 
approach lends itself to situations like this as shown Figure 12.7 which gives 
the EViews output for this test. We begin with the null hypothesis that there 
are no cointegrating vectors and we test this against the alternative that there 
is at least one cointegrating vector. Both the trace test and the maximum 
eigenvalue test indicate that we should reject this null hypothesis at the 5% 

1  Bankrate is the rate at which the clearing banks can borrow from the Bank of England. It 
is used as one of the main tools of monetary policy.

FIGURE 12.6  UK Interest Rate Data 1994.05Ð2006.12.
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level. We, therefore, move onto the second null hypothesis that there is at 
most one cointegrating vector which we test against the alternative that more 
than one cointegrating vector is present. Inspection of Figure 12.7 indicates 
that we cannot reject this null using either test, and therefore, we conclude 
that there is a single cointegrating vector present. Note that it is possible, but 
rare, for the trace and maximum eigenvalue tests to give contradictory results. 

FIGURE 12.7  Johansen Tests for Cointegration in a Model of Interest 
Rate Determination.

EXERCISES 

Excel files containing the data for these exercises are available as companion 
files for this book.

EXERCISE 12.1

Consider the following pair of equations which describe the joint behavior 
of variables X and Y

1 1

1 2

0.05
0.25 0.75

t t t

t t t t

X X

Y X Y

e
e

−

−

= + +
= + +
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where 1e and 2e  are independent Gaussian white-noise variables.

a.	 Derive the stochastic process which determines the Y variable and shows 
that it contains a unit root.

b.	 Derive an error correction model for Y and use this to show that there is 
a cointegrating relationship linking Y and X.

c.	 Derive the cointegrating parameter which links the Y and X variables and 
find the coefficient which determines the speed of adjustment towards 
the equilibrium relationship.

EXERCISE 12.2

An econometrician estimates a model relating the logarithm of the exchange 
rate for the US dollar and the pound to the logarithms of the UK price level 
and the US price level. The results obtained are as follows:

Ordinary Least Squares Regression Results
Sample period: 1975 to 2019
Dependent Variable LOG(EX)        
Sample Size 45

Variable	 Coefficient	 Std Err	 T-Ratio

C	 0.504781	 0.288324	 1.750744
LOG(PUK)	 -1.436992	 0.500604	 -2.870513
LOG(PUS)	 1.712601	 0.655450	 2.612863

R-squared	 0.3761	 F-statistic	 12.6612
SEE	 0.113053	 RSS	 0.536805
Durbin-Watson	 0.5832	 LogL	 35.795363
ARCH(1) Test	 8.7812	 AIC	 -1.457572
Jarque-Bera	 0.2445	 SIC	 -1.337128

The econometrician claims that this model is a success! A rise in UK prices 
causes the pound to depreciate and a rise in US price causes the pound to 
appreciate. Moreover, the coefficients are reasonably close to being equal 
and opposite in sign which indicates that it is the relative price level that 
matters.

You are given the task of breaking it gently to our econometrician that 
his results may not be as good as he thinks they are. Explain carefully why 
this regression equation may suffer from the spurious regression problem 
and point out any evidence from the estimated equation which supports 
your argument.
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EXERCISE 12.3

The Excel workfile UK INTEREST RATES.XLSX contains data for the 
yield on 20-year government bonds (R) and the Treasury Bill Rate (TBR).

a.	 Test each series individually to decide if they contain a unit root.

b.	 If the series are individually non-stationary, then use the Engle-Granger 
test to determine if there is a cointegrating relationship between the two 
series.

c.	 Estimate an error-correction model for the bond rate (with the Treasury 
Bill rate on the right-hand side) and use this to construct the Ericsson 
and MacKinnon t-test and the F-test for cointegration.
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C H A P T E R  13
Vector Autoregressions

The stochastic processes discussed in Chapter 11 were designed to capture 
the important features of the behavior of a single time series. In many situ-
ations, however, we wish to describe the joint behavior of series which are 
linked in some way. One way of doing this is to build an econometric model 
that makes specific assumptions about the causal linkages between the vari-
ables in question. Models like this are, however, potentially open to mis-
specification, as the result of invalid theoretical restrictions. An alternative 
approach is to analyze the inter-relationships between variables using a vec-
tor autoregression (or VAR). This class of model was introduced by Sims 
[Sims1980] to capture the linear interdependencies between multiple time 
series while imposing as few theoretical restrictions as possible. VARs are 
particularly useful in capturing the dynamic linkages between variables. For 
example, the dynamic relationship between two variables 1X  and 2X  might be 
described by the following pair of equations, which we write in matrix form,

	 1 11 12 1 1 1

21 2 21 22 2 1 2

1 0
,

1
t t t

t t t

X b b X u

a X b b X u
−

−

         
= +         

         
� (13.1)

where the u’s are independent Gaussian white-noise disturbances. This form 
of the system is referred to as the structural form of the VAR because it 
allows interdependencies between the current values of the variables. The 
specification given in (13.1) does not place any restrictions on the dynamic 
relationship between the variables. However, it does make the assumption 
that the coefficient in the top right-hand corner of the matrix on the left-
hand side of the system is equal to zero. This acts to identify the system. 
Without this assumption, or something similar, the equations in the system 
both consist of linear combinations of the same set of variables, and it would 
not be possible to separately identify them. The solution taken here is to 
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restrict the contemporaneous relationship between the variables by assum-
ing a particular causal ordering, that is, the variable 2X  has no immediate 
impact on 1X . This restriction is typical in VAR analysis. However, there are 
alternative identifying restrictions which we will discuss later.

The reduced form of the VAR is obtained by pre-multiplying by the 
inverse of the matrix of contemporaneous coefficients, so that each equation 
in the VAR contains only one variable dated in the current period. In this 
case, we obtain the following

	

1 1
1 11 12 1 1 1

2 21 21 22 2 1 21 2

11 12 1 1 1

21 22 2 1 2

1 0 1 0
1 1

.

t t t

t t t

t t

t t

X b b X u

X a b b X a u

c c X

c c X

e
e

− −
−

−

−

−

           
= +           

           

     
= +     
     

� (13.2)

This provides a convenient way to estimate the VAR because each equation 
can be estimated individually by least squares. We can then combine the 
parameter estimates into the matrix system shown in (13.2). If necessary, we 
can use this system to recover estimates of the structural form parameters, 
but this is not always necessary. It should also be noted that, if the original 
structural disturbances 1u  and 2u  are independent, the reduced form distur-
bances will normally be correlated.

Example: Suppose we wish to describe the relationship between the Bank 
of England’s base interest rate (BRT) and the yield on 3-month Treasury 
Bills (TBR). Using monthly data for the period 1994.1 to 2006.12, we obtain 
the following reduced form VAR estimates.

	 1 1 1

1 1 2

ˆ0.0248 0.5090 0.5098
ˆ0.0935 0.1597 1.1466

t t t t

t t t t

BRT BRT TBR

TBR BRT TBR

e
e

− −

− −

= − + + +

= − + +
� (13.3)

The covariance matrix of the residuals is given by

BRT TBR
BRT 0.015476 0.013333

TBR 0.013333 0.033519
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We can recover estimates of the structural parameters as follows. From 
(13.1), we can derive the relationship between the structural and reduced 
form disturbances as

	 1 1

2 21 2

1 0
,

1
t t

t t

u

a u

e
e
     

=     −     
� (13.4)

and, since ( )1 2cov , 0u u = , it follows that

	

2 2
1 1

2 2 2 2
2 21 1 2

2
1, 2 21 1.

u

u u

u

a

a

e

e

e e

s s

s s s

s s

=

= +

= −

� (13.5)

We can now use a method of moments approach to solve for the unknown 
parameters. Substituting sample moments for the population moments, we 
have three equations in three unknown parameters which can be written

	

2
1

2 2 2
21 1 2

2
21 1

ˆ0.015476

ˆ ˆˆ0.033519

ˆˆ0.013333 .

u

u u

u

a

a

s

s s

s

=

= +

= −

� (13.6)

Using the first equation in (13.6), we can solve for 2
1ˆ

us  as 0.015476. Next, 
using the third equation, we have 21ˆ 0.013333 / 0.015476 0.8615a = − = − .  
Finally, substituting these estimates into the second equation yields 

2 2
2ˆ 0.033519 0.8615 0.015476 0.02203us = − × = . Once we have solved (13.6) 

to obtain the parameters of the contemporaneous relationships, it is straight-
forward to solve for the other structural parameters. To do this we would use 
the relationship 1C A B−=  where C is the matrix of reduced form coefficients 
on the lags, A is the matrix of contemporaneous structural coefficients and B 
is the matrix of structural coefficients on the lags. In practice, however, we 
rarely need to do this since these parameters are generally not of interest in 
themselves.

To identify this system, we made the assumption a particular causal 
ordering, that is, 1X  is not affected by 2X  in the current period, but we allow 

2X  to be affected by 1X . This is a very common way of identifying the struc-
ture. It means that we assume that the matrix of contemporaneous coef-
ficients has a lower triangular structure. The mathematical term for this 
assumption is that we apply a Cholesky decomposition to the system. This 
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method generalizes to higher-order systems. Suppose, for example, we have 
three variables in the VAR. The VAR can be identified by the assumption 
that the matrix of contemporaneous coefficients has the triangular structure 
shown in equation (13.7).

	 21

31 32

1 0 0
1 0

1
A a

a a

 
 =  
  

� (13.7)

The variance–covariance matrix of the residuals from a VAR of order three 
will yield six sample moments, that is, three variances and three covariances. 
If the matrix of contemporaneous relationships has the structure shown in 
(13.7) then there are six unknown parameters that determine the relation-
ship between the structural and reduced form disturbances. These are the 
three variances of the structural disturbances and the three a coefficients. 
Therefore, this satisfies the order condition for identification. More gener-
ally, if there are p variables in the VAR, then we have ( )1 / 2p p+  sample 
moments corresponding to the reduced form parameters, and there is the 
same number of unknown structural parameters describing the relationship 
between the structural and reduced form disturbances in a lower triangular 
system. Hence, the assumption of a triangular structure for the matrix of 
contemporaneous relationships ensures that the order condition for iden-
tification is exactly satisfied. As with the two-variable system, the Cholesky 
decomposition in the general case can be thought of a causal ordering 
between the variables. For example, in our 3 3×  example above, variable 1 
is not affected by variable 2 or variable 3, variable 2 is affected by variable 
1 but not variable 3 while variable 3 is affected by both the other variables. 

It is also interesting to calculate the equilibrium of this system. First, we 
note that equation (13.3) can be written in matrix form as

	 1 1

1 2

ˆ0.0248 0.5090 0.5098
ˆ0.0935 0.1597 1.1466

t t t

t tt

BRT BRT

TBR TBR

e
e

−

−

−       
= + +       −       

� (13.8)

The eigenvalues of the matrix on the right-hand side are 0.69 and 0.97 and 
therefore, since both lie within the unit circle, this is a stable system that will 
converge to an equilibrium, or steady-state, following a random disturbance. 
Setting the disturbance terms to zero and solving for the equilibrium yields
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11 0.5090 0.5098 0.0248 5.4377

0.1597 1 1.1466 0.0935 5.2858
BRT

TBR

−− − −       
= =       −       

� (13.9)

The system, therefore, has a sensible long-run solution with equilibrium 
interest rates between 5% and 6%. This is consistent with the average val-
ues of interest rates during the period used for estimation. However, since 
then, there has been a structural change which has meant that equilibrium 
interest rates have fallen quite dramatically. This does illustrate one of the 
weaknesses of the VAR approach in that shocks to the system can lead to 
changes in either the parameter values or the equilibrium properties of the 
system. Of course, the same criticism can be applied to standard economet-
ric models. We should also note that we would normally expect the equilib-
rium Treasury Bill rate to be slightly higher than the equilibrium Bankrate 
but this ordering is reversed in equation (13.9).

13.1	 SOME GENERAL RESULTS FOR VARS

We can write a very general form of a VAR as

	 0 1 1 2 2 ,t t t k t k t− − −= + + + +A x A x A x A x u � (13.10)

where tx  is a vector of  p variables and therefore the iA  matrices have dimen-
sions p p× . tu  is a vector of  p independent random disturbances. The reduced 
form of the VAR can be written as

	
1

,
k

t i t i t
i

−
=

= +∑x B x Cu � (13.11)

where 1
0i i
−=B A A  and 1

0 .−=C A
We can also write any k’th order VAR in its companion form, that is, as 

a first-order VAR, by appropriate definitions of variables. For example, con-
sider a single variable AR(2) process

	 1 1 2 2 .t t t tX X Xa a e− −= + + � (13.12)
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Now define 1t tY X −=  and .
T

t t tZ X Y=     We can write our equation as

	 1 2 1

1

,
1 0 0

t t t

t t

X X

Y Y

a a e−

−

       
= +       

       
� (13.13)

or 1t t t−= +Z BZ ν  where B and ν  are defined appropriately. This has advan-
tages because it is easier to analyze the properties of a first-order system than 
one with longer lags.

Consider the system 1t t t−= +x Bx ε . Using the method of backward sub-
stitution, we can write any finite order VAR as an infinite moving average 
process. 

	

2 3
1 2 3

0

.

t t t t t

i
t i

i

− − −

∞

−
=

= + + + +

=∑

x B B B

B

ε ε ε ε

ε
� (13.14)

If the transition matrix B has unit roots, then iB  will not tend to zero as i 
tends to infinity. It follows that random disturbances will continue to affect 
the current value of X no matter how far back in the past they occurred. In 
addition, the variance of the elements of X will not be finite. It is therefore 
important that all the roots of the transition matrix B should lie within the 
unit circle.

Example: Monetary policy is often analyzed using VAR models. To replicate 
a famous model by Bernanke and Gertler [Bernanke1995], we estimate a 
VAR linking the log of GDP, the log of the price level, the Federal Funds 
Rate and the log of the price of crude oil. This was estimated using US 
quarterly data for the period 1965.1 to 1993.4 and the lag length was set at 4 
because of the data frequency. The roots of the transition matrix are shown 
in Figure 13.1. Although all the roots fall within the unit circle, there is one 
root that is very close to one.
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FIGURE 13.1  Roots of a Monetary Policy VAR Estimated Using US data (EViews Output).

13.2	 IMPULSE RESPONSES

So far, we have simply discussed how to estimate a VAR. In this and the 
following section, we show how the main outputs of the VAR methodology 
can be constructed. These outputs include impulse responses and variance 
decompositions. Using the interest rate example given in (13.3), we have 
already shown how we can calculate the matrix of contemporaneous coef-
ficients from the variance-covariance matrix of the residuals of the reduced 
form VAR. In this case, this yields a matrix of contemporaneous coefficients 
of the form shown in equation (13.15)

	 0

1 0
.

0.8615 1
 

=  − 
A � (13.15)

The relationship between the reduced and structural form disturbances is 
therefore given by

	 1 1 11
0

2 2 2

1 0
.

0.8615 1
t t t

t t t

u u

u u

e
e

−       
= =       

       
A � (13.16)

From equation (13.16) we see that a shock to the Bank Rate affects both 
the Bank Rate and the Treasury Bill Rate in the current period but a shock 
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to the Treasury Bill Rate has no immediate effect on the Bank Rate. Over 
time, however, shocks to either variable will affect both variables as shown by 
the moving average representation of the VAR. The coefficients of the mov-
ing average representation give the impulse responses as shown in equation 
(13.17) where 1

0 1=B A A .

	 1
0

0

i
t t i

i

∞
−

−
=

=∑x B A u � (13.17)

The impulse responses for the interest rate model are shown in Figure 13.2. 
These are typical of the sort of impulse response functions we observe in 
VAR models. Each variable has its own associated shock which produces 
an initial impact effect that eventually dies down to zero, providing that the 
roots of the model lie within the unit circle. In addition, the shocks to each 
variable have dynamic effects on the other variables of the model. For exam-
ple, an increase in bank rate feeds through into an increase in the Treasury 
Bill rate and vice versa. Note that the causal ordering we assume will affect 
the impulse responses. It is therefore important that the decision of what 
causal ordering to adopt is carefully considered, prior to the simulation of 
the model to create the impulse responses.

FIGURE 13.2  Impulse Responses for the Interest Rate Model (EViews Output).
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The solid lines in Figure 13.2 show the impulse responses of the system 
to shocks to individual variables. These are equal to the coefficients of the 
moving average representation of the system. If the variables in the VAR are 
stationary, then the impulse responses will eventually converge to zero. The 
broken lines show the 95% confidence interval for the impulse responses.

13.3	 VARIANCE DECOMPOSITIONS

Since the structural disturbances (the u’s) are orthogonal, the moving aver-
age form of the model also allows us to perform a variance decomposition. 
Consider the moving average representation (13.17), we can use this to 
derive the k step ahead forecast variance matrix for the vector x. We have

	 ( ) ( ) ( )1 1
0 0

0

,
k T TT i i

k
i

E − −

=

=∑x x B A A BΩ � (13.18)

where ( )TE= uuΩ . This allows us to calculate the contribution of each of 
the orthogonal disturbance in the vector u to the variance of each of the vari-
ables in the vector x after k periods of time.

Example: An example might help make the concept of variance decompo-
sition a little easier to understand. Consider our model of the relationship 
between Bankrate and the Treasury Bill rate, as set out in equation (13.8). 
From this model, we have the following

1
0

1 0 0.5090 0.5098 0.0155 0
.

0.8615 1 0.1597 1.1466 0 0.0220
−      
= = =     −     

A B Ω

Now consider the variances of Bankrate and the Treasury Bill rate in period 
0. We can write this as

( )1 1
0 0

0.0155 0.0134
.

0.0134 0.0335
T− −  
=  
 

A AΩ

Next, consider an alternative scenario in which the variance of 2u  is set equal 
to zero, that is, let

0.0155 0
,

0 0
 ∗ =  
 

Ω
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and recalculate, this yields

( )1 1
0 0

0.0155 0.0134
.

0.0134 0.0115
T− −  ∗ =  

 
A AΩ

This gives the variances and covariances of Bankrate and the Treasury Bill 
rate under the assumption that 1u  is the only source of variation. From 
this, we can calculate the contribution of 1u  to the variance of Bankrate 
(which in this case is 100%) and the Treasury Bill rate (which in this case 
is 100% 0.0115 / 0.0335 34.3%× = ). The contribution of 2u  is then given by 
the remainder in each case. For Bankrate, the contribution is zero, reflect-
ing the causal ordering assumption made to estimate the VAR, while for the 
Treasury Bill rate it is 65.7%.

Now consider the one-step ahead forecast variance. We have

( ) ( )1 1 1 1
0 0 0 0

0.0352 0.0384
.

0.0384 0.0731
T T T− − − −  
+ =  

 
A A BA A BΩ Ω

Again, setting the variance of 2u  to zero and recalculating yields:

	
( ) ( )1 1 1 1

0 0 0 0

0.0294 0.0255
.

0.0255 0.0221
T T T− ∗ − − ∗ −  
+ =  

 
A A BA A BΩ Ω

Therefore the contribution of 1u  to the variance of Bankrate for a one-
step ahead forecast is 100% 0.0294 / 0.0352 83.5%× =  and that of 2u  is 
16.5%. The contribution of 1u  to the variance of the Treasury Bill rate is 
100% 0.0221 / 0.0731 30.2%× =  and that of 2u  is 69.8%. Note that all these 
calculations are carried out to four decimal places, and the results calculated 
by the EViews package will be more accurate, as shown in Table 13.1 which 
gives variance decompositions up to a 12-step ahead forecast horizon.
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TABLE 13.1  Variance Decomposition for the Interest Rate Model.

We can assess the variance decomposition shown in Table 13.1 as fol-
lows. First, the variance of Bankrate is largely driven by shocks to Bankrate 
in the short run. However, this is partly the result of the causal ordering we 
imposed on the model for estimation purposes which necessarily implies 
that 100% of the variance is due to the shock associated with the variable 
itself in period 1. In contrast, the causal ordering permits shocks to Bankrate 
to affect the variance of the Treasury Bill rate in the short run and, from 
Table 13.1, we see that this means that 34.3% of the variance of the Treasury 
Bill rate is estimated as being caused by shocks to Bankrate in period 1. Over 
time, we see that the impact of shocks to Bankrate on both itself, and the 
Treasury Bill rate, declines. By the end of 1 year, only 26.8% of the variance 
of Bankrate is caused by its own associated shock. A similar effect can be 
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seen in the variance decomposition for the Treasury Bill rate which shows 
the effect of shocks to Bankrate declining to 19.8% by the end of one year.

13.4	 STRUCTURAL VARS

We have seen that it is necessary to impose some restrictions on the joint 
relationship between variables to identify and estimate a VAR. The approach 
taken in the previous sections was to assume a particular causal ordering or 
Cholesky decomposition. However, we have seen that this can have impli-
cations for the impulse responses and the variance decompositions which 
the VAR generates. Thus, untested, and somewhat arbitrary restrictions, can 
have significant effects on the results generated by VAR analysis. An alterna-
tive is to use restrictions derived from economic theory to identify the VAR. 
This at least has the benefit of ensuring that the results can be justified and 
interpreted in the context of theory. At the simplest level, this might involve 
choosing the ordering of the Cholesky decomposition according to economic 
theory. However, it potentially involves more interesting restrictions such as 
those involving the long-run relationship between the variables. For exam-
ple, suppose we start with the VAR given in equation (13.19)

	 12 1 11 12 1 1 1

21 2 21 22 2 1 2

1
.

1
t t t

t t t

a X b b X u

a X b b X u
−

−

         
= +         

         
� (13.19)

This cannot be estimated as it stands because there are more parameters 
than there are sample moments – hence the need for restrictions prior to 
estimation. In the case of the Cholesky decomposition this is achieved by 
either setting 12 0a =  or setting 21 0a = . 

Suppose instead we specify that the variable 2X  has no long-run effect 
on 1X . From the first equation in the VAR we can derive the equilibrium 
relationship

	 12 12
1 2

111
b a

X X
b
−

=
−

� (13.20)

Therefore, an alternative restriction is to impose 12 12b a= , which will be 
enough to identify the VAR and permit estimation. This is not a standard 
procedure in EViews (or other regression packages) but can be done with a 
certain amount of manipulation.
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13.5	 VECTOR ERROR CORRECTION MODELS (VECMS)

When we estimate a VAR, the series included should be stationary so that 
the eigenvalues of the system lie within the unit circle. If they are not sta-
tionary, then the impulse responses will not converge, and the variances will 
not be defined. The normal recommendation is, therefore, that the data 
should be differenced prior to estimation, unless there exists a cointegrating 
relationship, in which case it is possible to estimate a vector error-correction 
model or VECM.

Consider a simple 2 × 2 VAR of the form given by equation (13.21). Note 
that we have assumed no contemporaneous interactions to simplify the nota-
tion. This means that, if such interactions were important, then the errors in 
this system would be correlated.

	 1 11 12 1 1 1

2 21 22 2 1 2

t t t

t t t

X a a X v

X a a X v
−

−

       
= +       

       
� (13.21)

It is always possible to write this in the following form

	 1 11 12 1 1 1

2 21 22 2 1 2

.t t t

t t t

X d d X v

X d d X v
−

−

∆       
= +       ∆       

� (13.22)

Consider the matrix on the right-hand side of equation (13.22). This links 
the changes in X and Y to their lagged values. It is therefore analogous to the 
error-correction coefficients in a single equation model. Let us assume that 
there is a single cointegrating vector linking X and Y which has parameters 

1 2b b  . We can then decompose the matrix on the right-hand side of our 
equation as shown in (13.23)

	 11 12 1 1 1 1 2
1 2

21 22 2 2 1 2 2

,
d d

d d

a a b a b
b b

a a b a b
     

= =       
     

� (13.23)

where the b  coefficients are the cointegrating parameters, and the a coef-
ficients are adjustment parameters that determine how the system responds 
to disequilibrium. For example, 1a  captures the speed at which 1X  changes 
when there is a deviation from the equilibrium relationship between 1X  and 

2X . Another way of writing our model is
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( )
( )

1 11 1 1 1 2 2 1

2 22 1 1 1 2 2 1

.t tt t

t tt t

X vX X
X vX X

a b b
a b b

− −

− −

∆ +    
= +    ∆ +    

� (13.24)

Note that the linear combinations ( )1 1 1 1 2 2 1t tX Xa b b− −+  and 

( )2 1 1 1 2 2 1t tX Xa b b− −+  are both stationary because of the existence of a coin-
tegrating vector linking X and Y. Estimation of systems like (13.24) can be 
tricky because it is non-linear in its parameters. However, standard estima-
tion routines are built into programs like EViews. Once we have estimated 
the VECM, then it is straightforward to calculate impulse responses and 
variance decompositions in the same way that we did for the simple vector 
autoregression. The main difference is that the impulse responses will not 
converge to zero for a VECM because of the presence of a unit root in the 
system. This means that shocks to variables have permanent effects on their 
levels in VECM models.

Example: Suppose we estimate a VECM linking the bank rate to the 
Treasury Bill rate. The results are shown below.

( ) ( ) ( )

( ) ( ) ( )

1 10.0099 0.0473 0.0180 1

2
1 10.0147 0.0700 0.0180

0.0024 0.4865 0.1117 1.0511 ˆ
ˆ

0.0014 0.1448 0.1117 1.0511

t t
t t

t t
t t

BTR TBRBTR v

TBR v
BTR TRB

− −

− −

  − − + −  ∆     = +    ∆      − + −    

The cointegrating vector, or equilibrium relationship, therefore, takes the 
form:

0.1117 1.0511BTR TBR= − +  

Note that shocks in this system will have permanent effects on the varia-
bles in the system. This is because there is a unit root in the system. This is 
evident from the impulse responses shown in Figure 13.3.
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FIGURE 13.3  Impulse Response from VAR Model of Interest Rates.

Note also that the coefficient on the Treasury Bill rate is close to one (but 
significantly different from one if we accept the estimates of the standard 
error). We can impose the restriction that this coefficient is equal to one if 
we wish. This gives us the following results.

	

( ) ( )
( )

( ) ( )
( )

1 10.010 0.0480 1

21 10.0147 0.0700

0.0024 0.4811 0.1532 ˆ
ˆ0.0014 0.1664 0.1532

t t
t t

t tt t

BTR TBRBTR v

TBR vBTR TBR

− −

− −

− − − + − ∆     = +     ∆ − − + −    

EXERCISES 

Excel files containing the data for these exercises are available as companion 
files for this book.

EXERCISE 13.1

Consider the third-order difference stochastic difference equation

1 1 2 2 3 3 .t t t t tX a X a X a X u− − −= + + +
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Show that this can be written as a vector autoregression in companion form 
and show that the eigenvalues of the transition matrix have the same solu-
tions as the characteristic equation of the original equation.

EXERCISE 13.2

An econometrician has estimated a VECM model with the following results

	

1 1 1 1 1

12 2 1 2 2

ˆ0.5 0.5 ˆ
ˆ0.25 0.25

p
t t t i t

i
it t t i t

X X X v

X X X v
− −

=− −

∆ − ∆        
= + +        ∆ − ∆        

∑Γ

a.	 Show that this is consistent with the presence of a single cointegrating 
vector.

b.	 Solve for the decomposition of the matrix linking the difference to the 
levels terms into cointegrating parameters and adjustment parameters, 
that is, T=Π αβ  where α  is the vector of adjustment parameters and β  
is the vector of cointegrating parameters.

For Exercises 3 and 4 you will need an econometrics package such as EViews, 
which allows for the analysis of vector autoregression models.

EXERCISE 13.3

The Excel workfile POTATO.XLSX contains Henry Ludwell Moore’s 
[Moore1914] data on prices and output for the market for potatoes in the 
United States between 1866 and 1911. The data are expressed as annual 
percentage changes. Using this data

a.	 Estimate a vector autoregression model linking these two variables.

b.	 Calculate, and interpret, the impulse response functions.

c.	 Calculate, and interpret, the variance decomposition for this model.

EXERCISE 13.4

The Excel workfile US EXPORTS.XLSX contains quarterly data on exports 
for the United States USEXP and exports of other industrialized economies 
IEXP2 for the period 1975 to 2003. Using this data

a.	 Estimate a Vector Error Correction Model linking US exports to those 
of other industrialized economies.
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b.	 Calculate, and interpret, the impulse response function.

c.	 Calculate, and interpret, the variance decompositions.
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A P P E N D I X

Answers to Odd Numbered 
Exercises

CHAPTER 1: PROBABILITY AND THE STATISTICAL 
FOUNDATIONS OF ECONOMETRICS

EXERCISE 1.1

The purpose of this question is for students to become familiar with using 
sample data to calculate probabilities and to construct a contingency table. 
In order to answer the question let us first define the following notation M 
denotes a state in which an individual is male, F denotes a state in which 
the individual is female, E denotes a state in which they are employed, SE a 
state in which they are self-employed, U in which they are unemployed and 
finally, NE a state in which they are not economically active. Hence, ( )p M  
gives the (marginal) probability that an individual is male, ( )p F SE∩  is the 
joint probability that any individual is both female and self-employed and 
( )p NE M  is the conditional probability that an individual is not economically 

active given that he is male.
Part (a) First, we need to calculate the total population as the sum of 

males plus females this gives us 29916 31059 60975+ = . Note that the unit 
of measurement here is thousands of people and so this gives an estimate of 
the 2007 population of just under 61 million people.

We can now use this figure to calculate the joint probabilities as the ratio 
of the number falling into each category to the total population. For exam-
ple, the probability that an individual is both male and employed is given by 
12950 / 60975 0.2124= . The complete table is given below:
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Male Female

Employed 0.2124 0.2010

Self-Employed  0.0453 0.0173

Unemployed 0.0155 0.0116

Not Economically Active 0.2175 0.2795

Part (b) Next, we can calculate the marginal probabilities by taking the sums 
of the rows and the columns. For example, the probability that an individual 
is employed is found by taking the sum of the probability that they are male 
and employed plus the probability that they are female and employed. We, 
therefore, have

( ) ( ) ( )
0.2124 0.2010 0.4134.

p E p M E p F E= ∩ + ∩
= + =

We can use this to calculate the marginal probabilities as shown in the table 
below:

Male Female

Employed 0.2124 0.2010 0.4134

Self-Employed  0.0453 0.0173 0.0626

Unemployed 0.0155 0.0116 0.0271

Not Economically Active 0.2175 0.2795 0.4970

0.4907 0.5094

The numbers in italics are the sums of the rows and columns and give the 
marginal probabilities of the different events. It is straightforward to confirm 
that these probabilities sum to one when we add the row/column sums apart 
from rounding errors in the fourth decimal place, that is,

( ) ( )
( ) ( ) ( ) ( )

0.4907 0.5094 1.001

0.4134 0.0626 0.0271 0.4970 1.001.

p M p F

p E p SE p UE p NE

+ = + =

+ + + = + + + =
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Part (c) To answer this question, we need to make use of Bayes’ formula. 
This gives us the relationship between the joint, conditional and marginal 
probabilities of the relevant events. In this case, we have

( ) ( ) ( ),p M SE p M SE p SE∩ =

that is, the joint probability that an individual is both male and self-employed 
is the product of the conditional probability that the individual is male given 
that he/she is self-employed multiplied by the marginal probability that he/
she is self-employed. From the numbers in the table we, therefore, have

( ) ( )0.0453 0.0626 0.7236.p M SE p M SE= × ⇒ =

Part (d) We again use Bayes’ formula to calculate the conditional probability 
that an individual is unemployed given that they are male. We have

( ) ( )
( )

0.0155
0.0316.

0.4906
p UE M

p UE M
p M

∩
= = =

EXERCISE 1.3

The purpose of this question is for students to become familiar with some 
important properties of the normal distribution. We have ( )2~ ,X XX N m s  and 

( )2~ ,Y YY N m s . By a standard result any linear combination of normally dis-
tributed random variables is itself normally distributed. The mean of X Y+  
is given by

( ) .X Y X YE X Ym m m+ = + = +

The variance is given by

	

( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( ){ }

2 2 22

2 2
2 ,

X Y E X Y E X Y E X E X Y E Y

E X E X E Y E Y E X E X Y E Y

s + = + − + = − + −

= − + − + − −

we are told that these variables are independent and therefore

( )( ) ( )( ){ } 0,E X E X Y E Y− − =
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which leaves us with

( )( ) ( )( )2 22 2 2 .X Y X YE X E X E Y E Ys s s+ = − + − = +

For the case of X Y−  we have

( )X Y X YE X Ym m m− = − = −

and

	

( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( ){ }

2 2 22

2 2
2 .

X Y E X Y E X Y E X E X Y E Y

E X E X E Y E Y E X E X Y E Y

s − = − − − = − − −

= − + − − − −

Using the assumption that the two variables are independent then allows us 
to write

2 2 2 .X Y X Ys s s− = +

CHAPTER 2: STATISTICAL INFERENCE

These questions are concerned with hypothesis testing. This requires the 
following:

1.	 A hypothesis to be tested (the “null hypothesis”) and an alternative 
hypothesis with which is to be compared.

2.	 A test statistic whose distribution is known under the assumption that 
the null hypothesis is true.

3.	 A decision rule, that is, a statement of the circumstances under which 
the null hypothesis will be “accepted” and those under which it will be 
rejected.

We will consider each of the exercises set within this framework.

EXERCISE 2.1

For this question we are asked to test the null hypothesis that the population 
mean is 55 against the alternative that it is greater than 55. Thus, we can 
state the hypothesis to be tested formally as
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0

1

: 55
: 55.

H

H

m
m
=
>

We are not told the distribution of the variable itself but, under the central 
limit theorem, we know that the distribution of the sample mean will con-
verge onto the normal distribution for a sufficiently large sample. Here, we 
have 50 observations, so it is reasonable to assume that this will be the case 
and we can, therefore, write

( )
2

~ , ~ 0,1 ,
/

X
X N N

N N
s mm

s
  −

⇒ 
 

where 2s  is the population variance and N is the sample size.
We do not know the population variance but we can substitute the fol-

lowing unbiased estimator

( )2

2ˆ .
1

iX X

N
s

−
=

−
∑

This produces a test statistic that has a t distribution with N – 1 degrees of 
freedom. That is

1~ .
ˆ / N

X
t

N
m

s −
−

We are now in a position to calculate the test statistic for this particular prob-
lem. We have

60.9253 55
2.0025.

ˆ / 20.9229 / 50
X

N
m

s
− −

= =

Should we accept or reject the null hypothesis in this case? The decision 
depends on what we consider to be an acceptable probability of making a 
Type 1 error. A Type 1 error is the case in which we reject a null hypothesis 
that is true. This is a case in which we have a one-sided alternative – that is, 
a “one-tailed” test – and, therefore, we can find the probability of making a 
Type 1 error by looking at the area in the tail of the probability density func-
tion to the right of the value given by the test statistic.
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This area gives the p-value for the test statistic. Assuming that the null 
hypothesis is true, it gives us the probability of obtaining a test statistic 
at  least  as extreme as the value observed. In this case, the probability is 
quite low.

The most usual decision rule is to fix an acceptably low value p-value and 
then to reject the null hypothesis only if the actual p-value falls below this 
level. This defines the “significance level” for the test. Usually, we set the 
significance level at either 10% (0.1) or 5% (0.05). In this case, the p-value 
for the test falls below either of these levels and so we would choose to reject 
the null hypothesis.

Another way of looking at the testing procedure is to ask what value of 
the test statistic would be consistent with our chosen significance level. This 
defines the critical value for the test statistic, and we reject the null if the 
actual test statistic is more extreme than the critical value. In this case, the 
10% critical value is 1.299 and the 5% critical value is 1.677. The actual test 
statistic is more extreme than either of these values and, therefore, we reject 
the null at both the 10% and 5% significance levels. (Note that if we reject 
the null at the 5% level it follows immediately that we reject it at the 10% 
and all lower levels of significance levels).

EXERCISE 2.3

The test statistic for normality is the Jarque-Bera test statistic, which is cal-
culated using the skewness and kurtosis coefficients. It is defined as
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( )22
1 2

1ˆ ˆ 3 ,
6 4
N

JB g g = + −  

where N is the sample size, 1ĝ  is the coefficient of skewness and 2ĝ  is the 
coefficient of skewness. Under the null hypothesis of normality this follows 
a chi-square distribution with two degrees of freedom. In this case, we have

( ) ( )2 250 1
0.027204 2.394301 3 0.7705.

6 4
JB  = − + − =  

The 5% critical value for the chi-square distribution with two degrees of 
freedom is 5.99. Therefore, we cannot reject the null hypothesis at the 5% 
level using this test. Alternatively, we note that the p-value for a test statistic 
of 0.7705 for this distribution is equal to 0.68. This confirms that we cannot 
reject the null hypothesis at any reasonable level of significance.

CHAPTER 3: THE BIVARIATE REGRESSION MODEL

EXERCISE 3.1

The purpose of this exercise is for students to develop a deeper under-
standing of the relationship between the OLS regression estimates and the 
residual sum of squares. It also demonstrates a result that proves useful in 
other derivations and proofs. We are asked to prove that the residual sum of 
squares is equal to ( )1N −  multiplied by the difference between the sample 
variance of Y minus the ratio of the squared sample covariance of X and Y 
divided by the sample variance of X. The algebra of the proof is given below.

( )

( )( )

( ) ( ) ( )( )

( )
( )( )

( )

( )( )

( )

2

1

2

1

2 22

1 1 1

2

2 1 1

2 21

1 1

ˆˆ

ˆ ˆˆ  since 

ˆ ˆ2

ˆ  since  

N

i i
i

N

i i
i

N N N

i i i i
i i i

N N

i i i iN
i i

i N N
i

i i
i i

RSS Y X

Y Y X X Y X

Y Y X X Y Y X X

Y Y X X Y Y X X
Y Y

X X X X

a b

b a b

b b

b

=

=

= = =

= =

=

= =

= − −

= − − − = +

= − + − − − −

 
− − − − 

 = − − =
− −

∑

∑

∑ ∑ ∑

∑ ∑
∑

∑ ∑
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( )

( ) ( )

( )( )

2
2

2

2 22 2

1 1

1

ˆ
ˆ1   

ˆ

1 1ˆ ˆsince  ,  
1 1

1ˆand 
1

XY
Y

X

N N

Y i X i
i i

N

XY i i
i

N

Y Y X X
N N

Y Y X X
N

QED

ss
s

s s

s

= =

=

 
= − − 

 

= − = −
− −

= − −
−

∑ ∑

∑

EXERCISE 3.3

The purpose of this exercise is to familiarize students with the relationship 
between correlation, OLS regression and the sample moments of the data.

Part (a) The correlation coefficient can be calculated as

	
2 2

ˆ 145.3071ˆ 0.6363
211.5094 246.5624ˆ ˆ

XY
XY

X Y

sr
s s

−
= = = −

×

Part (b) The slope coefficient and the intercept for a regression of price 
changes on quantity changes can be calculated as

	 ( ) ( )

2

ˆ 145.3071ˆ 0.5893
ˆ 246.5624

ˆˆ 0.44115 0.5893 2.034617 0.7578

XY

X

Y X

sb
s

a b

−
= = = −

= − = − − × − = −

Part (c) The slope coefficient and the intercept for a regression of quantity 
changes on price changes can be calculated as:

	 ( ) ( )

2

ˆ 145.3071ˆ 0.6870
ˆ 211.5094

ˆˆ 2.034617 0.6870 0.44115 1.7315

XY

Y

X Y

sd
s

g d

−
= = = −

= − = − − − × = −

Part (d) The correlation coefficient and the regression slope coefficients 
differ because, although the numerator, that is, the covariance of the two 
variables, is the same, the denominator differs. However, they are related 
in that the product of the two regression slope coefficients is equal to the 
square of the correlation coefficient.

2
2

2 2

ˆˆ ˆˆ
ˆ ˆ

XY
XY

X Y

sr b d
s s

= × =
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CHAPTER 4: THE MULTIVARIATE REGRESSION MODEL

EXERCISE 4.1

The purpose of this exercise is to ensure that students understand the con-
struction of the least-squares estimator and its relationship to the sample 
moments of the data.

Recall that the definition of the sample standard deviation of a variable is

( )2

1

1ˆ .
1

N

X i
i

X X
N

s
=

= −
− ∑

For each of the variables, we can calculate the sum of squared deviations 
from the mean using the definition of the standard deviation. We have the 
following:

Change in Unemployment 269 1.051518 76.292617× =

% Change in GDP 269 2.286201 360.643336× =

Time Trend 269 20.351085 28577.499587× =

Recall that the definition of the sample correlation of two variables is

( )( )

( ) ( )
1

2 2

1 1

ˆ
ˆ

ˆ ˆ

N

i i
i XY

XY N N
X Y

i i
i i

X X Y Y

X X Y Y

sr
s s

=

= =

− −
= =

− −

∑

∑ ∑

and therefore

( )( ) ( )
1

ˆ ˆ ˆ1 .
N

i i XY X Y
i

X X Y Y Nr s s
=

− − = × − × ×∑

Therefore, from the correlation matrix, we can calculate the sums of the 
cross-products of deviations from the mean:

 and UN GDP∆ ∆ −117.072721

 and GDP t∆ −1092.029353

 and UN t∆ −50.2476

We can now calculate estimates of the slope coefficients using the matrix 
formulation

EIP.Ch14_App.2pp.indd   331EIP.Ch14_App.2pp.indd   331 4/19/2021   5:47:54 PM4/19/2021   5:47:54 PM



332 • Appendix: Answers to Odd Numbered Exercises

	

1
2

3

ˆ 360.643336
ˆ 28577.49958

1092.029353 117.072721
1092.029353 50.7

0.373119
0.

2

016

476

016

b

b

−     
  =          

− 
=  −

−
− −



−

The intercept can then be calculated by using the property that the regres-
sion line passes through the sample means of the data. This yields

	 1
ˆ 0.044285 0.373119 3.223957 0.016016 37.5 1.759235b = − + × + × =

Please note that that regression estimates using the original data set may give 
slightly different results because of rounding errors in the above calculations.

EXERCISE 4.3

Part (a) The data are measured in $bn at 2000 prices. It follows that we can 
think of the coefficient estimates as marginal effects, that is, a $lbn increase 
in autonomous expenditures results in a $0.57bn increase in consumer 
expenditure while a $1bn increase in the money supply results in an increase 
of $0.39bn. Given that the equation is expressed in difference form, it is best 
to think of this as a short-run or impact effect. That is, it tells us what the 
immediate effect of changes in the exogenous variables will be but does not 
really give us a guide as to their long-run impact. 

We can think of the link between consumer spending, autonomous 
expenditure and the money supply using the IS-LM model. An increase in 
autonomous expenditure produces a rightwards shift of the IS curve, GDP 
and disposable income both increase and consumption rises because con-
sumption and income are linked through the consumption function. An 
increase in the money stock produces a rightwards shift of the LM curve with 
similar effects on GDP, disposable income and consumption. The IS-LM 
model predicts positive effects of both changes in autonomous expenditure 
and the money stock and therefore the fact that both estimated coefficients 
are positive and significant is consistent with the theory.

The coefficients in our estimated equation are functions of the whole set 
of structural parameters that define the IS-LM system and therefore depend 
on the marginal propensity to consume, the marginal tax rate, the interest 
sensitivity of investment, etc. It is, therefore, highly likely that these param-
eters would change if the structure of the economy changed – for example, 
if there were changes to the marginal tax rate. The best way to think about 
these estimates is therefore as an average over the sample period rather than 
fixed values which would remain unchanged into the future.
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Part (b) We can calculate the residual sum of squares (RSS) using the rela-
tionship between the standard error of the regression and the RSS. We have

( )2 .
RSS

SEE RSS SEE T k
T k

= ⇒ = × −
−

Therefore, in this case, we have

( )241.676845 48 3 78,163.17.RSS = × − =

Part (c) We can use the relationship between the coefficient of determina-
tion and the F statistic to answer this question. We have

2

2

0.7341 45
62.12.

1 1 1 0.7341 2
R T k

F
R k

−
= = × =

− − −

Under the null hypothesis that both slope coefficients are zero, this statistic is 
distributed as F with 2 and 45 degrees of freedom. The 5% critical value for 
this distribution is 3.204. Therefore, we can reject the null hypothesis, in this 
case, in favor of the alternative that one or both of the coefficients is not zero.

EXERCISE 4.5

Part (a) Estimation of the equation allowing for separate effects of the differ-
ent autonomous expenditure categories yields the following results:

Ordinary Least Squares Regression Results
Sample period: 1960 to 2007
Dependent Variable DC1
Sample Size 48

Variable	 Coefficient	 Std Err	 T-Ratio

C	 -27.008916	 17.449870	 -1.547800
DI	 0.600674	 0.086876	 6.914146
DG	 0.585015	 0.240838	 2.429079
DX	 -0.120358	 0.211238	 -0.569776
DRM1	 0.038503	 0.005691	 6.765150

R-squared	 0.7758	 F-statistic	 37.1994
SEE	 39.150912	 RSS	 65910.136739
Durbin-Watson	 1.4573	 LogL	 -241.505366
ARCH(1) Test	 0.2433	 AIC	 10.271057
Jarque-Bera	 0.9363	 SIC	 10.465974
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Note that the investment and government consumption variables are both 
positive and significant whereas the exports variable has the wrong (nega-
tive) sign and is statistically insignificant.

Part (b) To test the restriction that the coefficients on the three expendi-
ture categories are equal we first note that the restricted version of the equa-
tion is given in exercise 4.1. The residual sum of squares for the restricted 
regression is calculated in Exercise 1 part (b) as 78163.17. We can, there-
fore, calculate the F-statistic for a test of the null hypothesis as

78163.17 65910.14 48 5
3.997.

65910.14 2
F

− −
= × =

Under the null hypothesis this statistic is distributed as 2,43F . The 5% critical 
value for an F-test with these degrees of freedom is 3.214. Therefore, we 
reject the null hypothesis, in this case, in favor of the alternative that the 
coefficients are not equal.

CHAPTER 5: SERIAL CORRELATION

EXERCISE 5.1

The purpose of this exercise is to demonstrate an important property of 
autoregressive models. This property is that the errors in such equations will 
be correlated with the lagged values of the variable concerned if the errors 
are themselves autocorrelated. This, in turn, means that OLS estimation of 
models with lagged dependent variables and autocorrelated errors will yield 
biased results. We have

1

1 .
t t t

t t t

Y Y u

u u

b
r e

−

−

= +
= +

From the second equation, we note that, in general ( ) 2k
t t k uE u u r s− = . Next, 

using backward substitution, we can write the first equation as
2 3

1 1 3 ,t t t t tY u u u ub b b− − −= + + + +

and therefore
2 3

1 1 2 3 4t t t t tY u u u ub b b− − − − −= + + + +

Multiplying this expression by tu , and taking expectations, yields
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( ) ( ) ( ) ( )

( )

2
1 1 2 3

2 2 2 2 3 2

2 2 2

2

1

,
1

t t t t t t t t

u u u

u

u

E u Y E u u E u u E u ub b

rs br s b r s

rs br b r

rs
br

− − − −= + + +

= + + +

= + + +

=
−







which is the required result. Finally, we note that ( )1 0t tE u Y − =  is a necessary 
condition for OLS to be an unbiased estimator. Therefore, OLS estimation 
of the first equation will yield a biased estimate of the b  parameter.

EXERCISE 5.3

The purpose of this exercise is to reinforce students’ understanding of the 
property that a regression with a high R2 is not necessarily a good model. It 
also requires them to construct two formal tests for serial correlation.

Part (a) The problem with this regression is that there is evidence of 
significant serial correlation. Even without a formal test, we can see that 
the Durbin-Watson statistic is much lower than the expected value of two 
under the null hypothesis that there is no serial correlation. The fact that the 
Durbin-Watson statistic is less than two indicates that there is likely to be 
positive serial correlation. This means that we cannot rely on the t-test for 
significance of the right-hand side variable because the standard error of the 
estimate will typically be biased downwards in cases like this. The high value 
of the R2 statistic may simply indicate that the variables each contain a trend 
rather than the existence of any genuine relationship between them.

Part (b) Suppose the error process is of the form:

1t t tu ur e−= +

where te  is a white-noise error process. Tests for first-order autocorrelation 
are tests for the null hypothesis 0 : 0H r =  against the alternative 1 : 0H r ≠ .  
Two tests are directly available to us using the information given in the 
table. The first is the Durbin-Watson (DW) test. The DW test statistic is 
defined as:

( )2
1

2

ˆ ˆ

ˆ
t t

t

u u
DW

u
−−

= ∑
∑

where ˆ ; 1,...,tu t T=  are the regression residuals. Under the null the expected 
value of DW is 2 and tables for critical bounds are available in most books 
of statistical tables. Here we have 58 observations and one right-hand side 
variable. The tables we use do not give critical bounds for the exact number 
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of observations but we can interpolated from those for T = 55 and T = 60 to 
obtain dL = 1.54 and dU = 1.61. The test statistic is 0.28 which lies below the 
lower bound, indicating that there is significant positive autocorrelation. 

The other test available to us is the Box-Ljung test. For first-order serial 
correlation, the test statistic is calculated as:

( ) 2 22 58 60ˆ 0.8425 43.34
1 57

T T
Q

T
r

+ ×
= = × =

−

Under the null hypothesis, this follows a chi-squared distribution with one 
degree of freedom. The 5% critical value for the 

2
1c  distribution is 3.841. 

Therefore, using this test, we again reject the null hypothesis that there is no 
serial correlation.

EXERCISE 5.5

The purpose of this exercise is to give students hands-on experience of esti-
mating, and interpreting, a regression equation. The data will be provided in 
spreadsheet form as a download so that they can use the software provided 
by the course organizer. The results reported below have been calculated 
using the program I-REG.

Part (a) If we estimate the model in first differences, then we obtain the 
following results:

Ordinary Least Squares Regression Results
Sample period: 1949 to 2005
Dependent Variable D(I)
Sample Size 57

Variable	 Coefficient	 Std Err	 T-Ratio

C	 -1336.827410	 679.375168	 -1.967730
D(Y)	 0.279684	 0.034312	 8.151172

R-squared	 0.5471	 F-statistic	 66.4416
SEE	 3205.596423	 RSS	 5.651717 E8
Durbin-Watson	 1.7610	 LogL	 -540.002777
ARCH(1) Test	 0.1528	 AIC	 19.017641
Jarque-Bera	 17.8359	 SIC	 19.089327

Autocorrelations

	 AR Coeff	 Q-stat	 5% crit val
Order 1	 0.1176	 0.8315	 3.841
Order 2	 -0.2064	 3.4372	 5.991
Order 3	 -0.0940	 3.9875	 7.815
Order 4	 0.0852	 4.4491	 9.488
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The following is a graph of the residuals. There is no obvious visual evidence 
of serial correlation.

Part (b) The Durbin-Watson statistic is 1.761 and the critical bounds 
are 1.53 and 1.60. Since the DW statistic is above the upper bound (and less 
than 2) we conclude that there is no evidence of first-order autocorrelation. 
The Box-Ljung test for first-order serial correlation yields a test statistic of 
0.83 which is less than the critical value of 3.841, therefore, again we find 
no evidence of first-order serial correlation. Calculation of the Breusch-
Godfrey test yields a test statistic of 0.76 which is well below the critical 
value for the appropriate F-distribution. Hence, again we cannot reject the 
null hypothesis that there is no autocorrelation.

Part (c) The fact that there is no evidence of serial correlation, in this 
case, makes us more confident about our hypothesis tests on the coefficients 
than in the case of the model estimated in levels.
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CHAPTER 6: HETEROSCEDASTICITY, FUNCTIONAL FORM, 
AND STRUCTURAL BREAKS

EXERCISE 6.1

The purpose of this exercise is for students to become aware of how models 
can be transformed to produce homoscedastic errors.

Let / h
i i iv u X= . We look for h such that

( )
2

2 2 ,i
i uh

i

u
E v E

X
s

 
= = 

 

that is, the error variance is constant. We have

( )
2

2 2
2 2

1 1
.i

i u ih h h
i i i

u
E E u X

X X X
s

 
= = 

 

Therefore, we need 2 1/2h
i iX X=  or 1 / 4h = . The transformed model is 

therefore

3/4

4 4
.i

i i
i i

Y
X v

X X
a b= + +

EXERCISE 6.3

The purpose of this exercise is to give students practice in the construction 
and interpretation of tests for heteroscedasticity. The data set can be down-
loaded from the webpage for this book.

Part (a) The coefficient of determination for this regression is very close 
to one. By itself, this would indicate a good fit for the data. The coefficient 
for money growth is close to one which is consistent with the quantity theory 
of money.

Part (b) To apply the Goldfeld-Quandt test we first divide the sample 
into three groups. The first group contains the observations corresponding 
to the smallest values of the exogenous variable and should contain about 
3/8 of the total sample, the third group contains the observations with the 
largest value of the exogenous variable and also contains 3/8 of the sample. 
In this case, 3/8 of the full sample is approximately equal to 31 observations. 
We then estimate separate regressions for each of these groups. The middle 
group, which contains 1/4 of the sample is discarded.

The two regressions estimated are shown as follows:
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Ordinary Least Squares Regression Results
Sample period: 1 to 31
Dependent Variable INF
Sample Size 31

Variable	 Coefficient	 Std Err	 T-Ratio

C	 0.846703	 1.263791	 0.669970
MG	 0.373297	 0.168090	 2.220807

R-squared	 0.1453	 F-statistic	 4.9320
SEE	 2.408052	 RSS	 168.162752
Durbin-Watson	 2.2790	 LogL	 -70.196743
ARCH(1) Test	 0.8706 E-1	 AIC	 4.657854
Jarque-Bera	 6.2976	 SIC	 4.750370

Ordinary Least Squares Regression Results
Sample period: 53 to 83
Dependent Variable INF
Sample Size 31

Variable	 Coefficient	 Std Err	 T-Ratio

C	 -8.454817	 1.761125	 -4.800803
MG	 1.062356	 0.017858	 59.489085

R-squared	 0.9919	 F-statistic	 3538.9513
SEE	 7.832127	 RSS	 1778.924011
Durbin-Watson	 2.0161	 LogL	 -106.758634
ARCH(1) Test	 0.4753 E-3	 AIC	 7.016686
Jarque-Bera	 8.2601	 SIC	 7.109201

The test statistic for the null hypothesis that the error variance is constant 
throughout the sample is given by:

1778.9
10.6

168.2
U

L

RSS
F

RSS
= = =

 

Under the null hypothesis, this statistic is distributed as 31,31F  and the 5% 
critical value for such as statistic is approximately 1.84. We, therefore, reject 
the null hypothesis at the 5% level in favor of the alternative that heterosce-
dasticity is present in this model.

EIP.Ch14_App.2pp.indd   339EIP.Ch14_App.2pp.indd   339 4/19/2021   5:47:57 PM4/19/2021   5:47:57 PM



340 • Appendix: Answers to Odd Numbered Exercises

Part (c) To perform the White test, we regress the squared residuals 
from the full sample regression on the original regressor plus its square. This 
gives us the following results:

Ordinary Least Squares Regression Results
Sample period: 1 to 83
Dependent Variable RSQ
Sample Size 83

Variable	 Coefficient	 Std Err	 T-Ratio

C	 -12.489376	 10.009077	 -1.247804
MG	 2.187250	 0.424890	 5.147795
MGSQ	 -0.005176	 0.001322	 -3.915132

R-squared	 0.3309	 F-statistic	 19.7806
SEE	 58.855564	 RSS	 277118.192244
Durbin-Watson	 1.9077	 LogL	 -454.476287
ARCH(1) Test	 0.5287	 AIC	 11.023525
Jarque-Bera	 1038.1744	 SIC	 11.110953

The F-test for the joint-significance of the right-hand variables here is 19.8. 
Under the null hypothesis, this is distributed as F with 2 and 80 degrees of 
freedom. The 5% critical value here is 3.11. Therefore, we reject the null 
hypothesis in favor of the alternative that there is heteroscedasticity. This is 
consistent with the results of the Goldfeld-Quandt test which also indicated 
the presence of heteroscedasticity.

Note that a small sample test, such as the F-test, is not strictly appropri-
ate here because the White test is an asymptotic test. However, it is often 
applied in practice. An alternative would have been to apply a Chi-squared 
test in which the test statistic is given by:

2 83 0.3309 27.5TR = × =  

Under the null hypothesis, this is distributed as chi-squared with two degrees 
of freedom in large samples. The 5% critical value for a chi-squared distribu-
tion with two degrees of freedom is 5.991 and therefore we would reject the 
null using this test statistic also.

Part (d) The presence of heteroscedasticity does not necessarily indicate 
bias in the coefficient estimates. However, it does indicate that the OLS 
estimator will be inefficient. In principle, there is an estimator that has the 
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lower variance than the OLS estimator. Also, the estimates of the standard 
errors will be biased when there is heteroscedasticity which means that con-
ventional t-tests are not reliable. It is more difficult to determine the direc-
tion of the bias in the case of heteroscedastic errors (in comparison with the 
case of serially correlated errors). However, if the variance of the error term 
is positively related to the value of the exogenous variable, then it is likely 
that the standard errors will be biased downwards. This is the case here as 
indicated in the regression we used to calculate the White test. Therefore, 
we should treat hypothesis tests based on this regression with caution as it is 
likely that we will tend to reject the null hypothesis too often on the basis of 
the t-statistics generated by an OLS regression.

An alternative would be to use the White variance-covariance matrix 
for the coefficient estimates as discussed in the main text. This procedure 
adjusts the standard errors of the coefficient estimates to allow for the pres-
ence of heteroscedasticity in the residuals. However, the coefficient esti-
mates remain the same. The equation estimates with White standard errors 
are given in the table below:

Dependent Variable INF
Sample Size 83
White Heteroscedasticity Consistent Standard Errors

Variable	 Coefficient	 Std Err	 T-Ratio

C	 -5.681642	 0.670408	 -8.474893
MG	 1.046654	 0.024176	 43.291358

R-squared	 0.9902	 F-statistic	 8206.5392
SEE	 5.657356	 RSS	 2592.460073
Durbin-Watson	 1.7031	 LogL	 -260.595058
ARCH(1) Test	 3.3717	 AIC	 6.327592
Jarque-Bera	 56.2515	 SIC	 6.385877

Note that, in this case, we would not reject the null hypothesis that the 
slope coefficient is equal to one using a t-test. The t-test statistic is equal to 
0.046654/0.024176 = 1.93. This is less than the 5% critical value of 1.99 for a 
two-tailed t-test with 80 degrees of freedom. The hypothesis that the coeffi-
cient for money growth is equal to one is generated by the quantity theory of 
money and therefore the model above generates results that are consistent 
with the quantity theory. If we had used the OLS regression results, then we 
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would have rejected the null and we would have had a result that was incon-
sistent with the quantity theory.

CHAPTER 7: BINARY DEPENDENT VARIABLES

EXERCISE 7.1

The purpose of this exercise is for students to practice deriving the estima-
tor for a parameter of a function using the method of maximum likelihood. 

Part (a) The probability distribution function for the Poisson distribution 
is given by the following expression

( ) ( )exp
; 1,2, .

!
xf x

x

q
q q

−
= = 

The likelihood function therefore takes the form

( ) ( ) ( )
1

exp
; 1, , ,

!
i

N
x

i
i i

L x i N f
x

q
q q q

=

−
= = =∏

which means that the log-likelihood takes the form

( ) ( ){ }1
1

; 1, , ln ln ,
N

N

i i ii
i

LL x i N x x iq q q
=

=

= = − − −∑ ∑

where ( ) ( )1
ln ! lnix

i ii
x x i

=
= −∑  is the trickiest part of finding the log-

likelihood. However, since this latter term does not involve q, it can safely be 
ignored since it will drop out when we take derivatives. To find the maximum 
likelihood estimator of q, we find the derivative of the log-likelihood func-
tion, set it to zero and solve for ˆ

MLq . We have

( ) 1 ,
N

ii
xdLL

N
d

q
q q

== −∑

setting this equal to zero and solving yields

1ˆ
N

ii
ML

x

N
q == ∑
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Part (b) The maximum likelihood estimator of the variance is equal to minus 
the inverse of the information evaluated at the maximum likelihood estima-
tor of the parameter. We have 

( )
2

1
2 ,

N

ii
xd LL

I
d

q
q q

== = −∑

and therefore, 

( )
( )

2

1

1
.N

ii

V
I x

qq
q

=

= − =
∑

Substituting ˆ
MLq  for q yields

( )
2ˆ ˆ

ˆ .ˆ
ML ML

ML

ML

V
NN

q qq
q

= =

EXERCISE 7.3

The purpose of this exercise is to make students aware of the different 
shapes  of the probability function implied by the linear model and the 
logistic model.

Part (a) For part (a), we obtain the following results. These were calcu-
lated using Mathcad but they could easily be done using a spreadsheet.
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Part (b) The marginal effects for the two functions are plotted below. The 
marginal effect for the linear probability function is constant but that of the 
logistic model varies across the range of the exogenous variable. The marginal 
effect for the linear model can be thought of as an approximate average of 
the marginal effect from the logistic model across the range of values taken 
by the exogenous variable. Note that the derivatives here are calculated as 
approximate values using a small increment h in the right-hand side variable.

EXERCISE 7.5

The results of estimating the model using the logit, probit, and extreme 
value functions are given below. To assess which provides the best predictor, 
we look at either the McFadden R-squared or the percentage of correct pre-
dictions. All three models are very similar but the Logit model is marginally 
better. It has a higher McFadden R-squared than the other two models and 
the percentage of correct predictions is just higher, at 68%, than the other 
two models, for which it is 67%.

Logit Estimates

Newton-Raphson Method
Dependent Variable CADB
Sample Size 1358
Iterations 5
Variable	 Coefficient	 Std Err	 T-Ratio

Constant	 -0.142114	 0.059470	 -2.389679
FTSE	 110.504091	 8.580861	 12.877972
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Mean of RHS Variable	 0.30746548e-3
SDev of RHS Variable	 0.30757875e-3
Log Likelihood	 -821.7302
Restricted LogL	 -940.0549
McFadden R-Squared	 0.125870
Marginal Effect	 27.412968

Percentage distribution of outcomes

	 y=1	 y=0

P> 0.50	 0.31	 0.15
	 ( 0.31)	 ( 0.15)
P< 0.50	 0.17	 0.37
	 ( 0.17)	 ( 0.37)

�Figures in parentheses are deviations from 'naive' probabilities

Probit Estimates

Newton-Raphson Method
Dependent Variable CADB
Sample Size 1358
Iterations 5
Variable	 Coefficient	 Std Err	 T-Ratio

Constant	 -0.087058	 0.036089	 -2.412349
FTSE	 63.954677	 4.684762	 13.651639

Mean of RHS Variable	 0.30746548e-3
SDev of RHS Variable	 0.30757875e-3
Log Likelihood	 -824.0568
Restricted LogL	 -940.0549
McFadden R-Squared	 0.123395
Marginal Effect	 25.456347

Percentage distribution of outcomes

	 y=1	 y=0

P> 0.50	 0.30	 0.15
	 ( 0.30)	 ( 0.15)
P< 0.50	 0.17	 0.37
	 ( 0.17)	 ( 0.37)
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�Figures in parentheses are deviations from 'naive' probabilities

Extreme Value Estimates

Newton-Raphson Method
Dependent Variable CADB
Sample Size 1358
Iterations 5
Variable	 Coefficient	 Std Err	 T-Ratio

Constant	 0.313167	 0.040954	 7.646741
FTSE	 71.758555	 5.158511	 13.910712

Mean of RHS Variable	 0.30746548e-3
SDev of RHS Variable	 0.30757875e-3
Log Likelihood	 -822.7478
Restricted LogL	 -940.0549
McFadden R-Squared	 0.124788
Marginal Effect	 1778.600760

Percentage distribution of outcomes

	 y=1	 y=0

P> 0.50	 0.32	 0.17
	 ( 0.32)	 ( 0.17)
P< 0.50	 0.16	 0.35
	 ( 0.16)	 ( 0.35)

�Figures in parentheses are deviations from 'naive' probabilities

CHAPTER 8: STOCHASTIC REGRESSORS

EXERCISE 8.1

Part (a) The changes in consumption expenditures and GDP are linked 
through the national income accounting identity. Consider a simple model 
of the form

1 2t t t

t t t t

c y u

y c i g

b b∆ = + ∆ +
∆ = ∆ + ∆ + ∆
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The reduced form equation for the change in GDP is

( )1
2

1
.

1t t t ty u i gb
b

∆ = + + ∆ + ∆
−

It follows that

( ) 2

2

1
cov , ,

1 uy u s
b

∆ =
−

and therefore

( )
( )2 2 2

cov ,ˆplim ,
var

y u

y
b b b

∆
= + ≠

∆

that is, OLS is inconsistent for this model.
Part (b) From the model presented in part (a), changes in investment 

spending and changes in government spending are possible instrument, 
in this case. Both are assumed to be exogenous in the simple Keynesian 
income-expenditure model. Of course, these assumptions may not be 
correct. 

EXERCISE 8.3

Part (a) Each equation contains two endogenous variables and one of the 
two exogenous variables. Therefore, in both cases, we have 1 1g K k− = − =  
and, by the order condition, both equations are just identified.

Part (b) The easiest way to solve for the reduced form is to write the 
system down in matrix form. We have

	

( )

( )

11 1 11 1 1

12 2 22 2 2

1 11 11 1 1

2 12 22 2 211 12

1 11 1 11 22 2 1 11 2

2 21 11 1 22 2 21 1 2

11 21

1
1

11
11

1

1

1

t t t

t t t

t t t

t t t

t t t t t

t t t t t

Y X u

Y X u

Y X u

Y X u

Y X X u u

Y X X u u

b g
b g

b g
b gb b

g b g b

b g g b

b b

− +     
=     − +     

+     
=     +−     

= + + +
∆

= + + +
∆

∆ = −
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We, therefore, have

11 11 22 21 11 22
11 12 21 22; ; ; .

g b g b g gp p p p= = = =
∆ ∆ ∆ ∆

Solving for the structural parameters yields

( ) ( )

12 21
11 21

22 11

11 11 11 21 22 22 11 211 1 .

p pb b
p p

g p b b g p b b

= =

= − = −

CHAPTER 9: DYNAMIC MODELS

EXERCISE 9.1

The purpose of this exercise is for students to work through an important 
result in dynamic modeling which generates too much tedious algebra to be 
put in the main text. We have the following

( )1 1 1 12 2 2

2 2 2
1 1 12 2 2

ˆ .
T T T

t t t t t t tt t t
T T T

t t tt t t

Y Y Y Y u Y u

Y Y Y

b
b b− − − −= = =

− − −= = =

+
= = = +∑ ∑ ∑
∑ ∑ ∑

Therefore,

( )
( )

12

2
12

plim 1 /ˆplim .
plim 1 /

T

t tt
T

tt

T Y u

T Y
b b −=

−=

= + ∑
∑

By the assumption of stationarity and, using the result derived in the main 
text, we have

( ) 2
1 1

2

1
plim cov

1

T

t t t t u
t

Y u Y u
T

r s
rb− −

=

= =
−∑

Now let us consider ( ) 2
12

plim 1 /
T

tt
T Y −=∑ . By the assumption of stationarity, 

this will be equal to the variance of Y. This can be derived as follows

	 ( ) ( ) ( )22 2 2 2
1 1 12 cov .Y t t t t t uE Y u E Y Y us b b b s− − −= + = + +
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Again, by stationarity we have ( )2 2
1t YE Y s− = , and we have already derived an 

expression for ( )1cov t tY u− . Substituting into our expression yields

	 ( ) ( )
2 2 2 2

1 2 2
2

1 1 2 1 1
plim 1 .

1 11 1

T

t Y u u
t

Y
T

br brs s s
rb brb b−

=

   +
= = + =   − −− −   

∑

Substituting both these probability limits into the expression for ˆplimb  yields

( )
( )

21ˆplim .
1

r b
b b

br
−

= +
+

This gives us an explicit expression for the size of the inconsistency in the 
OLS estimator for b. For example, if 0.9b r= =  then the inconsistency will 
equal 0.094. The OLS estimator converges on the value 0.994 in probability 
limit which, despite the fact that the underlying process is stationary, looks 
very much like a random walk. Since most tests for random walk processes 
lack power for values of b close to, but less than, one, this has potentially 
important implications when it comes to testing for unit roots.

EXERCISE 9.3

The purpose of this exercise is for students to be aware of the effects of alter-
ing the dynamic structure on regression estimates of parameters of interest.

Part (a) In this case, the parameters of interest are the elasticities for air 
travel with respect to income and price. The log-linear form of the regres-
sion equations means that the coefficients are of the form ( ) ( )ln / lnd A d Y
or ( )/ /Y A dA dY, that is, the elasticity. In this case, we have an elasticity of 
air travel with respect to income of 1.75, and with respect to price of −1.26. 
The signs and magnitudes are reasonable from the point of view of economic 
theory.

Part (b) The problem with this regression is that there is significant auto-
correlation as evidenced by the Durbin-Watson statistic of 0.10. From the 
tables, we see that the 5% lower bound for this test is 1.57 and therefore, 
there is significant positive autocorrelation. If the explanatory variables are 
positively autocorrelated, then this will lead to downward bias in the equa-
tion standard errors. We don’t have any direct evidence that the explanatory 
variables are positively autocorrelated, but this is very common for time-
series economic data and therefore downward bias in the standard errors is 
very likely.
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A possible strategy for dealing with these problems is to respecify the 
equation to allow for a more plausible dynamic structure. For example, the 
partial adjustment model might provide more reliable statistical results. This 
is illustrated in part (c).

Part (c) The long-run elasticities can be calculated as

0.3633
2.9041

1 0.8749

0.2623
2.0967

1 0.8749

Y

P

h

h

= =
−

= =
−

The income elasticity is still positive but has increased in magnitude. Is 
an income elasticity of 2.9 plausible? Arguably yes, since the demand for 
air travel is likely to be a luxury good and therefore, likely to increase sig-
nificantly  as income rises. The price elasticity, however, is no longer con-
sistent with any economic theory, since it is now positive and quite large 
in magnitude.

Part (d) Using the data in the workfile, we calculate the following Ljung-
Box test statistics

	 AR Coeff	 Q-stat	 5% crit val
Order 1	 0.2312	 4.1724	 3.841
Order 2	 -0.3087	 11.7147	 5.991
Order 3	 -0.2972	 18.7996	 7.815
Order 4	 -0.2246	 22.9033	 9.488

These confirm our conclusion from the Durbin-Watson test, that is, 
there is significant first-order autocorrelation in this equation. The Breusch-
Godfrey test statistic for first-order autocorrelation is calculated as 4.80. This 
is asymptotically distributed as chi-squared with 1 degree of freedom, so we 
again reject the null hypothesis at the 5% level.
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CHAPTER 10: TIME SERIES ANALYSIS AND ARIMA 
MODELING

EXERCISE 10.1

The purpose of this exercise is for students to see a more general moving 
average process than is discussed in the text and to see that the results stated 
in the text generalize to this (and other) cases.

Part (a) We have 1 1 2 2t t t tX e a e a e− −= + +  and therefore

( ) ( )
( ) ( ) ( )

2
1 1 2 2

2 2 2 2 2
1 1 2 2 ,

t t t t

t t t

V X E

E E E

e a e a e

e a e a e
− −

− −

= + +

= + +

since all cross-product terms involving ( ) 0; 0t t jE je e − = ≠ . Thus, we have

( ) ( )2 2 2
1 21tV X ea a s= + +

The first-order autocovariance is given by

( ) ( )( ){ }1 1 1 2 2 1 1 2 2 3

2
1 ,

t t t t t t t tE X X E

e

e a e a e e a e a e

a s
− − − − − −= + + + +

=

and the second-order autocovariance is given by

( ) ( )( ){ }2 1 1 2 2 2 1 3 2 4

2
2 .

t t t t t t t tE X X E

e

e a e a e e a e a e

a s
− − − − − −= + + + +

=

In both cases, we make use of the property that ( ) 0; 0t t jE je e − = ≠  to sim-
plify these expressions.

Part (b) For all higher-order autocovariances we have 

	
( ) ( )( ){ }1 1 2 2 1 1 2 2 .t t j t t t t j t j t jE X X E e a e a e e a e a e− − − − − − − −= + + + +

Since 3j ≥ , there are no cases in which the values of e are contemporaneous. 
Hence, all the expectations will be zero and all higher-order autocovariances 
will be zero.
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EXERCISE 10.3

The purpose of this exercise is to give students practice in identifying and 
estimating an ARIMA model. The data for this exercise has been generated 
artificially and is a realization of an ARIMA(1,1,0) stochastic process. It was 
generated using the EViews regression package using the following code.

create u 1 200
smpl 1 1
series x = 0
series u = 0
smpl 2 200
rndseed 100
series u = 0.7*u(-1)+@qnorm(rnd)
series x = 0.5+x(-1)+u
smpl 101 200

Part (a) 

If we plot the series, then we see that it has a strong upward trend. This 
suggests that differencing may be appropriate, either to remove the trend or 
to deal with possibly non-stationarity of the process.
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Part (b) 

This is typical of the correlogram of a non-stationary time series. The 
autocorrelations die down linearly to zero and there is a single partial auto-
correlation outside the standard error bounds. If we examine the correlo-
gram of the first differenced series then we obtain the following results.
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The autocorrelations now decline exponentially and there is a single par-
tial autocorrelation outside the standard error bands. This is consistent with 
stationary AR(1) process.

Part (c)

If we estimate an ARIMA(1,1,0) model then we obtain the results shown 
above. We now check the correlogram of the residuals to see if there is any 
information left that we can incorporate into our model. The correlogram, 
shown below, is very flat. This indicates that our model has incorporated all 
the systematic information in the data and there is no gain to including more 
autoregressive or moving average terms.
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CHAPTER 11: UNIT ROOTS AND SEASONALITY

EXERCISE 11.1

The purpose of this exercise is to expand on the treatment of stationarity 
testing in the main text and to demonstrate that the test normally applied is 
not a sufficient, condition.

PROPOSITION: Consider the process 1 1 2 2t t t tX X Xq q e− −= + + . The 
conditions for stability are 2 1q− < , 1 21 0q q− − >  and 1 21 0q q+ − > . (These 
are standard stability conditions for a second-order linear difference equa-
tion with constant coefficients.)

PROOF: This has characteristic equation
2

1 2 0,l q l q− − =

and therefore, the roots can be derived as

2
1 1 2

1,2

4
.

2
q q q

l
± +

=

We, therefore, have

1 2 1

1 2 2

l l q
l l q
+ =
= −

From the second condition, if the roots are real then 2 1q >  immediately 
establishes that the equation is unstable because at least one root must be 
greater than one in absolute value. If the roots are complex, then their prod-
uct is equal to the square of the modulus and, again, 2 1q− >  immediately 
establishes that the equation is unstable.

Now, considering only cases in which 2 1q < , and assuming that the roots 
are real, we have instability if ( )( )1 21 1 0l l− − < , since at least one root must 
be greater than one. We can write this condition as

( )( ) ( )1 2 1 2 1 2

1 1

1 1 1 0

1 0.

l l l l l l
q q

− − = − + + <

⇔ − − <

Hence, the equation is unstable if 1 21 0q q− − > . The equation is also unsta-
ble if ( )( )1 21 1 0l l+ + < , since at least one root must be less than −1. We can 
write this condition as
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( )( ) ( )1 2 1 2 1 2

2 1

1 1 1 0

1 0

l l l l l l
q q
+ + = + + + <

⇔ − + + <

Hence, the equation is also unstable if 1 21 0q q+ − < . Thus, if we consider 
the plane defined by the coefficients 1q  and 2q , we can use these conditions 
to define boundaries between regions in which the values of the coefficients 
yield stable and unstable solutions when the roots are real.

Finally, we return to the case of complex roots. These can only occur 
when 2 0q <  since we need 2

1 24 0q q+ < . This condition also defines the 
boundary between regions of complex and real roots in the ( )1 2,q q  plane.

The possible types of solution are illustrated in the following diagram. 
All stable solutions lie somewhere in the interval 21 1q− < < . The curved 
lines indicate the dividing lines between the regions of stable and unstable 
real roots, with the region of stability lying below the line 1 2 1q q= −  and 
above the line 1 21q q= − . Within this region, the stable solutions may have 
real roots, which are both less than one in absolute value, or complex roots, 
with a modulus less than one. The boundary between these regions is given 
by the curve 1 22 .q q=  Note that this curve is tangent to the line 1 2 1q q= −
at ( )1,2−  and to the line 1 2 1q q= −  at ( )1, 2− − . Stable regions with real roots 
are given by the darker shaded regions and stable regions with complex roots 
are given by the lighter shaded regions.

Returning to our question, we see, from the results that we have derived, 
that 1 1 1 0q q+ − <  is only one of the stability conditions. We also need 2 1q <  
and 1 21 0q q+ − > . It follows that the alternative in the standard Dickey-
Fuller test is a necessary, but not sufficient, condition for stability in second 
(and higher-order) difference equations.
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EXERCISE 11.3

If we plot the series EXRATE, then there is no obvious time trend.

However, it is still possible for a process to have a unit root, even if it is 
not trended. If we estimate the Dickey-Fuller test equation, then we obtain 
the following results.

Ordinary Least Squares Regression Results
Sample period: 1957.3 to 2009.3
Dependent Variable D(LE)
Sample Size 209

Variable	 Coefficient	 Std Err	 T-Ratio

C	 0.014352	 0.009538	 1.504721
LE(-1)	 -0.024421	 0.013227	 -1.846206
D(LE(-1))	 0.161327	 0.068559	 2.353106

R-squared	 0.3883 E-1	 F-statistic	 4.1608
SEE	 0.458720 E-1	 RSS	 0.433474
Durbin-Watson	 1.9351	 LogL	 349.069817
ARCH(1) Test	 2.5638	 AIC	 -3.311673
Jarque-Bera	 62.9765	 SIC	 -3.263697
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The test statistic is therefore −1.84. If we were to use a conventional 
t-test then this would be significant at the 5% level (since this is a one-tailed 
test). However, we need to use the Dickey-Fuller critical values. In this case, 
we find that the 5% critical value is −2.87 and therefore, we cannot reject the 
null hypothesis that the series contains a unit root at the 5% level.

Although the graph did not show any obvious time trend, we will also 
test for stationarity around a linear trend in order to illustrate the testing 
procedure. The test regression in this case, takes the form

Ordinary Least Squares Regression Results
Sample period: 1957.3 to 2009.3
Dependent Variable D(LE)
Sample Size 209

Variable	 Coefficient	 Std Err	 T-Ratio

C	 0.054763	 0.023099	 2.370760
TREND	 -0.000166	 0.000086	 -1.918296
LE(-1)	 -0.057699	 0.021764	 -2.651139
D(LE(-1))	 0.181232	 0.068903	 2.630232

R-squared	 0.5578 E-1	 F-statistic	 4.0365
SEE	 0.455765 E-1	 RSS	 0.425830
Durbin-Watson	 1.9352	 LogL	 350.929012
ARCH(1) Test	 1.7551	 AIC	 -3.319895
Jarque-Bera	 46.3765	 SIC	 -3.255927

In this case, the test statistic is equal to −2.65 but the critical value is 
now −3.43. Therefore, it is still not possible to reject the null of a unit root 
at the 5% level.

Does this process contain more than one unit root? To test for this, we 
difference the series again and test the null hypothesis that the differenced 
series contains a unit root. This gives the following results

EIP.Ch14_App.2pp.indd   358EIP.Ch14_App.2pp.indd   358 4/19/2021   5:48:06 PM4/19/2021   5:48:06 PM



Appendix: Answers to Odd Numbered Exercises • 359

Ordinary Least Squares Regression Results
Sample period: 1957.4 to 2009.3
Dependent Variable D(DE)
Sample Size 208

Variable	 Coefficient	 Std Err	 T-Ratio

C	 -0.002839	 0.003161	 -0.898205
DE(-1)	 -1.020084	 0.089877	 -11.349723
D(DE(-1))	 0.204139	 0.070332	 2.902486

R-squared	 0.4467	 F-statistic	 82.7420
SEE	 0.045438	 RSS	 0.423240
Durbin-Watson	 1.9272	 LogL	 349.385611
ARCH(1) Test	 3.3136	 AIC	 -3.330631
Jarque-Bera	 46.0260	 SIC	 -3.282493

The test statistic here is −11.35 and the 5% critical value is again −2.87. 
Therefore, in this case, we can reject the null hypothesis at the 5 level. We, 
therefore, conclude that this process contains a single unit root.

CHAPTER 12: COINTEGRATION

EXERCISE 12.1

The purpose of this exercise is to help students understand how a multi-
variable stochastic system can be solved so that it is expressed in terms of a 
single variable. In doing so, a first-order system in two variables becomes a 
second-order system in a single variable.

Part (a) We have

1 1

1 2

0.05
0.25 0.75 .

t t t

t t t t

X X

Y X Y

e
e

−

−

= + +
= + +

Using the lag operator, we can write this as

( )
( )

1

2

1 0.05

1 0.75 0.25 ,
t t

t t t

X L

Y L X

e
e

− = +

− = +
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and therefore

( )

( )( ) ( )

1
2

1 2

0.05
1 0.75 0.25

1
1 1 0.75 0.0125 0.25 1 .

t
t t

t t t

L Y
L

L L Y L

e e

e e

+
− = × +

−
− − = + + −

Note, the presence of the unit root in Y. We now have an ARIMA(1,1,1) 
model in the Y variable.

Part (b) We can derive an error correction form for this model by first 
substituting for the current value of the X variable in the second equation 
to obtain

( )1 1 1 20.25 0.05 0.75 .t t t t tY X Ye e− −= + + + +

Now, subtract 1tY −  from both sides and multiply out to obtain.

( )
1 1 1 2

1 1 1 2

0.0125 0.25 0.25 0.25

0.0125 0.25 0.25
t t t t t

t t t t

Y X Y

Y X

e e
e e

− −

− −

∆ = + + − +

= − − + +

This is an error correction equation. Note that it is not the only way of writ-
ing an error correction equation. An exactly equivalent alternative is given by

( )1 1 20.25 0.25t t t t tY X Y X e− −∆ = ∆ − − +

In both cases the error correction model contains a mixture of differenced 
and levels terms. Let us take the first version, given that the Y series contains 
a single unit root, it follows that tY∆  is ( )0I . On the right-hand side we have 

10.25 te  and 2 te  which are both ( )0I  by assumption. Therefore, ( )1 1t tY X− −−  
must also be ( )0I  for the equality between the RHS and the LHS to hold. It 
follows that there is a cointegrating relationship.

Part (c) Given the equation we have derived, the cointegrating param-
eter is equal to one and the speed of adjustment is equal to 0.25. That is, 
Y adjusts such that one-quarter of any deviation from equilibrium is elimi-
nated in each time period.

EXERCISE 12.3

The purpose of this exercise is for students to practice implementing unit 
root tests and to use the information acquired to specify a regression model.

EIP.Ch14_App.2pp.indd   360EIP.Ch14_App.2pp.indd   360 4/19/2021   5:48:07 PM4/19/2021   5:48:07 PM



Appendix: Answers to Odd Numbered Exercises • 361

Part (a) Using the data set provided, we can carry out augmented Dickey-
Fuller unit root tests for both the Treasury Bill Rate and the Government 
Bond Yield. The equations take the form

0 1 1 2 1t t t tX X Xg g g e− −∆ = + + ∆ +

The test statistic is ( )1 1
ˆ ˆ/ SEt g g= . The test did not include a trend in the 

test equation since neither series is trended. For the Treasury Bill rate, we 
obtain a test statistic of −1.99 and, for the bond yield, we obtain a test statis-
tic of −2.65. The 5% critical value from the MacKinnon response surfaces 
is −2.89 so neither statistic is significant at this level. However, that for the 
bond yield is not too far from the 5% critical value, and this would be signifi-
cant at the 10% level, where the critical value is −2.58.

Part (b) Next, we regress the bond yield on the Treasury Bill rate and 
obtain the following results.

Ordinary Least Squares Regression Results
Sample period: 1980.2 to 2001.4
Dependent Variable R
Sample Size 87

Variable	 Coefficient	 Std Err	 T-Ratio

C	 0.352717	 0.420809	 0.838187
TBR	 1.122105	 0.044478	 25.228217

R-squared	 0.8822	 F-statistic	 636.4630
SEE	 1.317364	 RSS	 147.513082
Durbin-Watson	 0.5434	 LogL	 -146.416033
ARCH(1) Test	 20.1744	 AIC	 3.411863
Jarque-Bera	 1.1832	 SIC	 3.468550

We would expect a cointegrating parameter close to one, and this is con-
sistent with the results. However, is there evidence here that this is a cointe-
grating relationship and not a spurious regression? To assess this, we can 
use the Engle-Granger test, that is, perform an ADF test on the equation 
residuals. The results obtained are as follows.
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Ordinary Least Squares Regression Results
Sample period: 1980.4 to 2001.4
Dependent Variable D(RES)
Sample Size 85

Variable	 Coefficient	 Std Err	 T-Ratio

C	 0.005935	 0.092766	 0.063978
RES(-1)	 -0.341956	 0.076501	 -4.469924
D(RES(-1))	 0.289033	 0.102169	 2.828966

R-squared	 0.2099	 F-statistic	 10.8922
SEE	 0.854957	 RSS	 59.938005
Durbin-Watson	 2.0324	 LogL	 -105.762805
ARCH(1) Test	 0.5990 E-2	 AIC	 2.559125
Jarque-Bera	 19.1717	 SIC	 2.645336

The test statistic is, therefore, −4.47. The 5% critical value from 
MacKinnon’s response surface is −3.41. We can, therefore, conclude that 
there is evidence that this is a genuine cointegrating relationship rather than 
a spurious regression.

Part (c) Finally, we estimate an error correction model for the govern-
ment bond yield and obtain the following results.

Ordinary Least Squares Regression Results
Sample period: 1980.3 to 2001.4
Dependent Variable D(R)           
Sample Size 86

Variable	 Coefficient	 Std Err	 T-Ratio

C	 -0.452007	 0.097280	 -4.646435
D(TBR)	 0.250152	 0.035772	 6.992848
R(-1)	 -0.374256	 0.024494	 -15.279456
TBR(-1)	 0.474524	 0.029120	 16.295425

R-squared	 0.8032	 F-statistic	 111.5433
SEE	 0.294323	 RSS	 7.103340
Durbin-Watson	 0.8160	 LogL	 -14.796080
ARCH(1) Test	 18.9630	 AIC	 0.437118
Jarque-Bera	 9.0223	 SIC	 0.551274
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The Ericsson and MacKinnon cointegration test statistic is given by the 
t-ratio for the lagged government bond yield, that is, −15.27. The 5% critical 
value for this test is −3.25, so we again reject the null of no cointegration, 
confirming the earlier result from the Engle-Granger test. As a final check, 
we can use an F-test for the joint significance of the two lagged levels vari-
ables in this equation. The test statistic was equal to 146.75 and the 5% crit-
ical value is 5.91. There is, therefore, some reasonably strong evidence that 
this is a genuine cointegrating relationship.

CHAPTER 13: VECTOR AUTOREGRESSIONS

EXERCISE 13.1

The purpose of this exercise is for students to practice writing higher-order 
systems in companion form.

Consider the equation 1 1 2 2 3 3t t t t tX a X a X a X u− − −= + + + . We define 
1 1t tZ X −=  and 2 1 1 2t t tZ Z X− −= = . This means that we can write the original 

equation as

1 2 3 1

1 1 1

2 2 1

1 0 0 0
0 1 0 0

t t t

t t

t t

X a a a X u

Z Z

Z Z

−

−

−

      
      = +      
      
      

This is the companion form of the system. The eigenvalues of the transition 
matrix are defined as

( )

1 2 3

1 2 3

3 2
1 2 3

1 0 0
0 1

0 1 0 1
0

0 0 0 1

0.

a a a

a a a

a a a

l
l

l

l l
l

l l

l l l

−
− =

−

− −
− − + =

− −

− + + + =

The characteristic equation for the original equation takes the form
3 2

1 2 3 0.a a al l l− − − =
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Therefore, the solutions for l are the same. These are just alternative ways 
of solving for the roots of the system.

EXERCISE 13.3

The purpose of this exercise is for students to gain some hands-on experi-
ence in estimating and interpreting a vector autoregression. The example 
chosen is deliberately simple so that they are not distracted by excessive 
complications or a VAR which is difficult to interpret.

Part (a) Since this is annual data, the lag length has been set at one. The 
estimates of the VAR are as follows

Note that, in both equations, the lagged price variable is significant, but 
the lagged quantity variable is not. In VAR modeling, however, we retain all 
lags, whether they are significant or not.

Part (b) For the impulse responses, we choose an horizon length of five 
years. This is sufficient for the dynamics of the system to work themselves 
out and the model to reach an equilibrium solution following a shock. We 
present the results in graphical form because this is the easiest way to inter-
pret impulse responses.
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The solid lines here indicate the central estimate of the impulse response, 
while the broken lines show a 95% confidence interval. Note that we have 
chosen a causal ordering here by entering the variables in a particular order. 
This causal ordering means that price changes do not affect quantity con-
temporaneously, but changes in quantity do have an immediate effect on 
price. What we see is that a shock to quantity reduces price in the short run. 
The dynamics here are consistent with the cobweb model which is often 
applied to agricultural markets.

Part (c) The variance decomposition is presented in table form because 
this is the easiest way to read and interpret this output. The results are shown 
below
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Note that the causal ordering we have assumed means that all the varia-
tion in output in the first period is due to output disturbances. However, the 
variance of price depends more on output shocks than shocks to the price 
variable itself. There is some movement in these ratios over time, with price 
shocks becoming more important for both quantity and price itself. Note 
that the results here depend on the causal ordering we have assumed and 
would change if we adopted a different ordering. It is, therefore, important 
that we choose a causal ordering for a reason rather than just randomly. If we 
do not have a good reason for a particular causal ordering, then alternatives 
should be investigated and the sensitivity of the results to the final choice 
should be assessed.
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distributed lag relationships, 216–218
Koyck lag specification, 217

Adcock, R.J., 195
Akaike Information Criterion (AIC), 94
ARIMA modeling

advantages, 251–252
autocorrelation function, 236–237
autoregressive integrated moving 

average, 247
correlogram, 236
first-order autoregressive process, 237
forecasting with, 251–255
general stochastic processes, 237
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partial autocorrelations, 240
sample correlogram, 239–240
Yule-Walker equations, 241

impulse response, 255–259
moving average process, 236, 259–264
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non-stationary stochastic process, 248
positive autocorrelation coefficient, 237
stationary random process, 238
stochastic process

second-order or covariance 
stationarity, 238
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weakly stationary, 238

weak stationarity, 238
systematic approach, 250
white-noise stochastic process, 235

Asymptotic distribution theory, 192–193
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290, 291
Autocorrelated error

Durbin-Watson statistic, 232
OLS estimation, 231

Autoregressive Conditional 
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Autoregressive Distributed Lag Model 
(ARDL) model, 215

Autoregressive models, 213

B

Base interest rate (BRT), 306
Bayes’ Law, 5
Benavides, G., 217
Bera, A., 150
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Binary dependent variables
extreme value model, 181–182
goodness of fit

calculation method, 175
McFadden’s R2, 175
percentage predictions, 175–176

linear probability model, 168–170
logit estimation

British Airways Share Model, 172
logistic function, 171, 172
properties, 170

maximum likelihood method
Fisher Information Matrix, 176
Jacobian vector and Hessian matrix, 

178
score, 176
variance-covariance matrix, 177–178

probit model, 178–180
US market for oranges, 182–183

Bivariate regression model
CLRM, assumptions of, 58–59
Gauss-Markov theorem, 68–70
marginal effects and elasticities, 53–56
OLS estimator

least-squares normal equations, 50
slope coefficient, 51–52

reverse regression, 56–58
Bliss, Chester, 171, 181
Bollerslev, T., 156
Box, G.E.P., 152
Breusch-Godfrey test, 232, 233

C

Central Limit Theorem, 11
Chi-squared distribution, 15–16
Chi-square test, 226
Cholesky decomposition, 307, 316
Chow, G.C., 158, 279
Chow Breakpoint test, 158–160
Chow’s Forecast test, 160
Chow test, 158, 279
Classical and bayesian statistics, 20

Classical Linear Regression Model 
(CLRM), 58–59

assumptions, 83
Cochrane, D., 124
Cointegrating regression Durbin-Watson 

(CRDW) test, 290–291
Cointegration

error correction, 293–295
independent Gaussian white-noise 

errors, 284
integrated processes, 283
Johansen test, 295–302
maximum eigenvalue test statistic, 297
Monte Carlo methods, 297
multiple variables, 291–293
spurious regressions, 283
testing, 286–291 (see also Testing)

higher-order autocorrelations, 290
OLS regression, 286
root T convergent, 287
slope coefficient, 289
super-consistent estimator, 286–287

trace test statistic, 297
Coin toss experiment, 1
COMFAC restriction, 215
Conditional probability, 4
Confidence intervals, 36–38
Contingency table, 5
Continuous distributions, 12
Continuous random variables, 12
Correlogram, 116, 117
Cox, D.R., 152
Cumulative probability distribution function 

(CDF), 9

D

Davidson, J.E.H., 294, 296
de Fermat, Pierre, 3
De Moivre, Abraham, 12, 14
Dickey, D.A., 269, 270
Dickey-Fuller test, 271, 278, 290, 292, 299
Dickey-Fuller unit root test, 270
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Discrete random variables, 8
Distributed lag relationships

adaptive expectations hypothesis,  
216–218

autoregressive elements, 215
finite distributed lag models, 213
infinite distributed lag relationship, 

213–214
Durbin h-test, 232
Durbin-Watson statistic, 221
Durbin-Watson test, 233
Dynamic econometric models

adaptive expectations hypothesis,  
216–218

adjustment process, 218–221
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