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PREFACE

Optics is known as the branch of science and engineering surrounding
the physical phenomena and technologies connected with the genera-
tion, transmission, manipulation, detection, and utilization of light. It has
acquired newer dimensions with the advent of lasers, fibers, and sensors
which occupy a major position among the outstanding achievements of
science and engineering in the present era. Optics has many applications in
areas of information technology and telecommunications, health care and
biotechnology, sensing, lighting, energy, and manufacturing. This book is a
definitive guide to the fundamental principles and techniques of optics as
well as their effective usage. Primarily intended as a textbook for courses in
electrical engineering and physics, the book also serves as a basic reference
and refresher for professionals in these areas. Mainly this book is organized
into the thirteen chapters and two appendices.

Sarhan M. Musa
April 2020
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1.0 INTRODUCTION

Due to the importance of light in optics, we illustrate a brief review of the
historical theory of light, the speed of light, classification, units and measures,
a basic review of scientific notation, light pressure, and optics.

1.1 HISTORICAL THEORIES ABOUT LIGHT

1.1.1 Hindu Theories

Around the fifth or sixth century BC, the Hindu schools of Samkhya and
Vaisheshika developed theories on light. According to the Samkhya school,
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light is one of the five fundamental “subtle” elements out of which emerge
the gross elements.

The Vaisheshika school gives an atomic theory. The basic atoms are those
of earth, water, fire, and air. These atoms are taken to form binary molecules
that combine further to form larger molecules. Light rays are taken to be a
high-velocity stream of fire atoms.

In 499 CE, Aryabhata, who proposed a heliocentric solar system of grav-
itation in his Aryabhatiya, wrote that the planets and the moon do not have
their own light but reflect the light of the sun.

The Indian Buddhists viewed light as being an atomic entity equivalent
to energy, similar to the modern concept of photons, and viewed all matter as
being composed of these light/energy particles.

Greek and Hellenistic Theories

In the fifth century BC, Empedocles postulated that everything was com-
posed of four elements: fire, air, earth, and water. He believed that Aphrodite
made the human eye out of the four elements, and that she lit the fire in
the eye which shone out from the eye, making sight possible. If this were
true, then one could see during the night just as well as during the day; so,
Empedocles postulated an interaction between rays from the eyes and rays
from a source such as the sun.

In about 300 BC, Euclid wrote Optica, in which he studied the prop-
erties of light. Euclid postulated that light traveled in straight lines, and he
described the laws of reflection and studied them mathematically. He ques-
tioned whether sight was the result of a beam from the eye, for he asked how
if one closed one’s eyes, then opened them at night, one saw the stars imme-
diately. Of course, if the beam from the eye traveled infinitely fast, this was
not a problem.

In 55 BC, Lucretius, a Roman who carried on the ideas of earlier Greek
atomists, wrote in On the Nature of the Universe: “The light & heat of the sun;
these are composed of minute atoms which, when they are shoved off, lose no
time in shooting right across the interspace of air in the direction imparted by
the shove.” Despite being similar to later particle theories, Lucretius’s views
were not generally accepted, and light was still theorized as emanating from
the eye.

Ptolemy (c. second century) wrote about the refraction of light in his book
Optics and developed a theory of vision whereby objects are seen by rays of
light emanating from the eyes.
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1.1.3 Optical Theory

The Muslim scientist Ibn Al-Haytham (965-1040) developed a broad theory
of vision based on geometry and anatomy in Book of Optics. Al-Haytham pos-
tulated that every point on an illuminated surface radiates light rays in all
directions, but the only one that can be seen is the ray that strikes the eye
perpendicularly. The other rays strike at different angles and are not seen. He
described the pinhole camera and invented the camera obscura, which pro-
duces an inverted image, using it as an example to support his argument. This
contradicted Ptolemy’s theory of vision that objects are seen by rays of light
emanating from the eyes. Ibn Al-Haytham held light rays to be streams of
minute energy particles that traveled at a finite speed. He improved Ptolemy’s
theory of the refraction of light and went on to discover the laws of refraction.

He carried out the first experiments on the dispersion of light into its con-
stituent colors. His major work, Kitab al-Manazir (Book of Optics) was trans-
lated into Latin in the Middle Ages, although his book dealt with the colors of
the sunset. He dealt at length with the theory of various physical phenomena
like shadows, eclipses, and rainbows. He attempted to explain binocular vision
and gave an explanation of the apparent increase in size of the sun and the
moon when near the horizon, known as the moon illusion. Because of his
extensive experimental research on optics, Ibn Al-Haytham is considered the
“father of modern optics.”

Ibn Al-Haytham also correctly argued that we see objects because the
sun’s rays of light, which he believed to be streams of tiny energy particles
traveling in straight lines, are reflected from objects into our eyes. He under-
stood that light must travel at a large but finite velocity and that refraction is
caused by the velocity being different in different substances. He also studied
spherical and parabolic mirrors and understood how refraction by a lens will
allow images to be focused and magnification to take place.

Abu Rayhan Al-Biruni (973-1048) also agreed that light has a finite speed,
and he was the first to discover that the speed of light is much faster than the
speed of sound. In the late thirteenth and early fourteenth centuries, Qutb
Al-Din Al-Shirazi (1236-1311) and his student Kamal Al-Din Al-Farisi (1260—
1320) continued the work of Ibn Al-Haytham, and they were the first to give
the correct explanations for the rainbow phenomenon.

1.1.4 The “Plenum”

René Descartes (1596-1650) held that light was a disturbance of the ple-
num, the continuous substance of which the universe was composed. In 1637
he published a theory of the refraction of light that assumed, incorrectly,
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that light traveled faster in a denser medium than in a less dense medium.
Descartes arrived at this conclusion by analogy with the behavior of sound
waves. Although Descartes was incorrect about the relative speeds, he was
correct in assuming that light behaved like a wave and in concluding that
refraction could be explained by the speed of light in different media. As
a result, Descartes’s theory is often regarded as the forerunner of the wave

theory of light.

Particle Theory

Ibn Al-Haytham proposed a particle theory of light in his Book of Optics. He
held light rays to be streams of minute energy particles that travel in straight
lines at a finite speed. He states in his Optics that “the smallest parts of light,”
as he calls them, retain only properties that can be treated by geometry and
verified by experiment; they lack all sensible qualities except energy. Avicenna
(980-1037) also proposed that “the perception of light is due to the emission
of some sort of particles by a luminous source.”

Pierre Gassendi (1592-1655), an atomist, proposed a particle theory of
light which was published posthumously in the 1660s. Isaac Newton studied
Gassendi’s work at an early age and preferred his view to Descartes’s theory of
the plenum. He stated in his Hypothesis of Light of 1675 that light was com-
posed of corpuscles (particles of matter) which were emitted in all directions
from a source. One of Newton’s arguments against the wave nature of light
was that waves were known to bend around obstacles, while light traveled only
in straight lines. He did, however, explain the phenomenon of the diffraction
of light (which had been observed by Francesco Grimaldi) by allowing that a
light particle could create a localized wave in the ether.

Newton’s theory could be used to predict the reflection of light, but it
could only explain refraction by incorrectly assuming that light accelerated
upon entering a denser medium because the gravitational pull was greater.
Newton published the final version of his theory in Opticks (Optics) in 1704.
His reputation helped the particle theory of light to hold sway during the
eighteenth century. The particle theory of light led Laplace to argue that a
body could be so massive that light could not escape from it. In other words,
it would become what is now called a black hole.

1.1.6 Wave Theory

In the 1660s, Robert Hooke published a wave theory of light. Christiaan
Huygens worked out his own wave theory of light in 1678 and published it
in his Treatise on Light in 1690. He proposed that light was emitted in all
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directions as a series of waves in a medium called the luminiferous ether. As
waves are not affected by gravity, it was assumed that they slowed down upon
entering a denser medium.

Thomas Young’s sketches of the two-slit experiment showed the diffrac-
tion of light. Young’s experiments supported the theory that light consists of
waves.

Wave theory predicted that light waves could interfere with each other
like sound waves (as noted around 1800 by Thomas Young), and that light
could be polarized, if it were a transverse wave. Young showed by means of a
diffraction experiment that light behaved as waves. He also proposed that dif-
ferent colors were caused by different wavelengths of light, and he explained
color vision in terms of three-colored receptors in the eye.

Another supporter of wave theory was Leonhard Euler. He argued in
Nova theoria lucis et colorum (1746) that diffraction could more easily be
explained by wave theory.

Later, Augustin-Jean Fresnel independently worked out his own wave
theory of light and presented it to the Académie des Sciences in 1817. Simeon
Denis Poisson added to Fresnel's mathematical work to produce a convincing
argument in favor of wave theory, helping to overturn Newton’s corpuscular
theory. By the year 1821, Fresnel was able to show via mathematical methods
that polarization could be explained only by the wave theory of light and only
if light was entirely transverse, with no longitudinal vibration whatsoever.

The weakness of wave theory was that light waves, like sound waves,
would need a medium for transmission. A hypothetical substance called the
luminiferous ether was proposed, but its existence was cast into strong doubt
in the late nineteenth century by the Michelson-Morley experiment.

Newton’s corpuscular theory implied that light would travel faster in a
denser medium, while the wave theory of Huygens and others implied the
opposite. At that time, the speed of light could not be measured accurately
enough to decide which theory was correct. The first to make a sufficiently
accurate measurement was Léon Foucault, in 1850. His result supported
wave theory, and the classical particle theory was finally abandoned.

Electromagnetic Theory

A linearly polarized light wave frozen in time and showing the two oscillating
components of light, an electric field and a magnetic field perpendicular to
each other and to the direction of motion (a transverse wave), are shown in
Figure 1.1, where A is the wavelength, E is the amplitude of the electric field,
and M is the amplitude of the magnetic field.
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FIGURE 1.1. Alinearly polarized light wave frozen in time.

In 1845, Michael Faraday discovered that the plane of polarization of
linearly polarized light is rotated when the light rays travel along the mag-
netic field direction in the presence of a transparent dielectric, an effect now
known as Faraday rotation. This was the first evidence that light was related
to electromagnetism. In 1846, he speculated that light might be some form of
disturbance propagating along magnetic field lines. Faraday proposed in 1847
that light was a high-frequency electromagnetic vibration that could propa-
gate even in the absence of a medium such as the ether.

Faraday’s work inspired James Clerk Maxwell to study electromagnetic
radiation and light. Maxwell discovered that self-propagating electromagnetic
waves would travel through space at a constant speed, equal to the speed of
light. From this, Maxwell concluded that light was a form of electromagnetic
radiation, first stated in 1862 in On Physical Lines of Force. In 1873, he pub-
lished A Treatise on Electricity and Magnetism, which contained a full mathe-
matical description of the behavior of electric and magnetic fields, still known
as Maxwell’s equations. Soon after, Heinrich Hertz confirmed Maxwell’s the-
ory experimentally by generating and detecting radio waves in the laboratory
and demonstrating that these waves behaved exactly like visible light, exhib-
iting properties such as reflection, refraction, diffraction, and interference.
Maxwell’s theory and Hertz's experiments led directly to the development
of modern radio, radar, television, electromagnetic imaging, and wireless
communications.

1.1.8 The Special Theory of Relativity

Wave theory was widely successful in explaining nearly all optical and elec-
tromagnetic phenomena. However, a handful of experimental anomalies
remained that could not be explained by or were in direct conflict with wave
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theory. One of these anomalies involved a controversy over the speed of light.
The constant speed of light predicted by Maxwell’s equations and confirmed
by the Michelson-Morley experiment contradicted the mechanical laws of
motion that had been unchallenged since the time of Galileo, which stated
that all speeds were relative to the speed of the observer. In 1905, Albert
Einstein resolved this paradox by revising the Galilean model of space and
time to account for the constancy of the speed of light. Einstein formulated
his ideas in his special theory of relativity, which advanced humankind’s under-
standing of space and time. Einstein also demonstrated a previously unknown
fundamental equivalence between energy and mass with his famous equation

E =mc’ (1.1)

where E is energy (in Joules, ]), m is rest mass (in kilograms, kg), and ¢ is the
speed of light in a vacuum (2.998 x 10° meter/second (m/s)).

Particle Theory Revisited

Another experimental anomaly was the photoelectric effect, by which light
striking a metal surface ejected electrons from the surface, causing an electric
current to flow across an applied voltage. Experimental measurements dem-
onstrated that the energy of individual ejected electrons was proportional to
the frequency, rather than the intensity, of the light. Furthermore, below a
certain minimum frequency, which depended on the particular metal, no cur-
rent would flow regardless of the intensity. These observations appeared to
contradict wave theory, and for years physicists tried in vain to find an expla-
nation. In 1905, Einstein solved this puzzle as well, this time by resurrect-
ing the particle theory of light to explain the observed effect. Because of the
preponderance of evidence in favor of wave theory, however, Einstein’s ideas
were met initially by great skepticism among established physicists. But even-
tually Einstein’s explanation of the photoelectric effect would triumph, and it
ultimately formed the basis for wave-particle duality and much of quantum
mechanics.

1.1.10 Quantum Theory

A third anomaly that arose in the late nineteenth century involved a contra-
diction between the wave theory of light and measurements of the electro-
magnetic spectrum emitted by thermal radiators, or so-called black bodies.
Physicists struggled with this problem, which later became known as the
ultraviolet catastrophe, unsuccessfully for many years. In 1900, Max Planck
developed a new theory of black-body radiation that explained the observed
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spectrum correctly. Planck’s theory was based on the idea that black bodies
emit light (and other electromagnetic radiation) only as discrete bundles or
packets of energy. These packets were called quanta, and the particle of light
was given the name photon to correspond with other particles being described
around this time, such as the electron and proton. A photon has an energy, E
(in joules), proportional to its frequency, f (in hertz), by

E=hf=h70 (1.2)

where h is Planck’s constant (6.625 x 107 joule-second (J.s)), A is the wave-

length, and c is the speed of light. f :% , where T is the period (in seconds),

and 1 =<,
f

Often energy is given in terms of electron volts (eV). One €V is equal to
1.6 x 107" joules.

Likewise, the momentum p of a photon is also proportional to its fre-
quency and inversely proportional to its wavelength:

_E_hf h

c ¢ A

As it originally stood, this theory did not explain the simultaneous wave-

and particle-like natures of light, though Planck would later work on theories

that did. In 1918, Planck received the Nobel Prize in Physics for his part in the
founding of quantum theory.

(1.3)

Example 1.1

Determine the frequency and period of a visible light at free space wavelength
400 x 10 m (400 nm). Consider the speed of light in free space 3 x 10° m/s.

Solution:

A=£—>f=—

f
f=

c
A

3x10°
400x107™

=750x10"* Hz.

Example 1.2

Determine the energy of a photon from an Nd:YAG laser (A = 1.064 x 10°m)
in joules and in terms of electron volts (eV).
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Solution:

he (6.625x10™].5)(2.988 x 10" m/s)

= — =1.87x107"]
A 1.064 x10°m
E=187x10"] le—Vw =1.17eV.
1.6x107"]

1.1.11 Wave-Particle Duality

The modern theory that explains the nature of light includes the notion of
wave-particle duality, described by Albert Einstein in the early 1900s, based
on his study of the photoelectric effect and Planck’s results. Einstein asserted
that the energy of a photon is proportional to its frequency. The theory states
that everything has both a particle nature and a wave nature, and various
experiments can be done to bring out one or the other. It was not until 1924
that Louis de Broglie proposed to the scientific community that electrons also
exhibited wave-particle duality. The wave nature of electrons was experimen-
tally demonstrated by Davisson and Germer in 1927. Einstein received the
Nobel Prize in 1921 for his work with wave-particle duality on photons (espe-
cially explaining the photoelectric effect thereby), and de Broglie followed in
1929 with his extension to other particles.

1.1.12 Quantum Electrodynamics

1.2

The quantum mechanical theory of light and electromagnetic radiation con-
tinued to evolve through the 1920s and 1930s, and it culminated with the
development during the 1940s of the theory of quantum electrodynamics,
or QED. This so-called quantum field theory is among the most comprehen-
sive and experimentally successful theories ever formulated to explain a set
of natural phenomena. QED was developed primarily by physicists Richard
Feynman, Freeman Dyson, Julian Schwinger, and Shin-Ichiro Tomonaga.
Feynman, Schwinger, and Tomonaga shared the 1965 Nobel Prize in Physics
for their contributions.

SPEED OF LIGHT

The speed of light in a vacuum is presently defined to be exactly 299,792,458
m/s (about 186,282 miles per second). This definition for the speed of light
means that the distance light in meter can travel in second of time through
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a given substance is now defined in terms of the speed of light. Light always
travels at a constant speed, even between particles of a substance through
which it is shining. Photons excite the adjoining particles that in turn trans-
fer the energy to their neighbors. This may appear to slow the beam down
through its trajectory in real time. The time lost between entry and exit is
accounted for by the displacement of energy through the substance between
each particle that is excited.

Different physicists have attempted to measure the speed of light
throughout history. Galileo attempted to measure the speed of light in the
seventeenth century. An early experiment to measure the speed of light was
conducted by Ole Rgmer, a Danish physicist, in 1676. Using a telescope, Ole
observed the motions of Jupiter and one of its moons, Io. Noting discrepan-
cies in the apparent period of Io’s orbit, Rgmer calculated that light takes
about 22 minutes to traverse the diameter of Earth’s orbit. Unfortunately, its
size was not known at that time. If Ole had known the diameter of the Earth’s
orbit, he would have calculated a speed of 227,000,000 m/s.

Another, more accurate, measurement of the speed of light was per-
formed in Europe by Hippolyte Fizeau in 1849. Fizeau directed a beam of
light at a mirror several kilometers away. A rotating cog wheel was placed in
the path of the light beam as it traveled from the source to the mirror and then
returned to its origin. Fizeau found that at a certain rate of rotation, the beam
would pass through one gap in the wheel on the way out and the next gap on
the way back. Knowing the distance to the mirror, the number of teeth on the
wheel, and the rate of rotation, Fizeau was able to calculate the speed of light
as 313,000,000 m/s.

Léon Foucault used an experiment which used rotating mirrors to obtain
a value of 298,000,000 m/s in 1862. Albert A. Michelson conducted exper-
iments on the speed of light from 1877 until his death in 1931. He refined
Foucault’s methods in 1926 using improved rotating mirrors to measure the
time it took light to make a round trip from Mt. Wilson to Mt. San Antonio
in California. The precise measurements yielded a speed of 299,796,000 m/s.

CLASSIFICATION

All the known properties of light are described in terms of the experiments
by which they were discovered and the many and varied demonstrations by
which they are frequently illustrated. Numerous though these properties are,
their demonstrations can be grouped together and classified under one of
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three heads: geometrical optics, wave optics, and quantum optics, each of
which may be subdivided as follows:

Geometrical Optics

Rectilinear propagation
Finite speed
Reflection

Refraction

Dispersion

Wave Optics

Interference

Diffraction
Electromagnetic character
Polarization

Double refraction

Quantum Optics

Atomic orbits
Probability densities
Energy levels
Quanta

Lasers

1.4 UNITS AND MEASURES

Light is measured with two main alternative sets of units: radiometry consists
of measurements of light power at all wavelengths, while photometry meas-
ures light with wavelength weighted with respect to a standardized model of
human brightness perception. Photometry is useful, for example, to quantify
illumination intended for human use. The ST units for both systems are sum-
marized in Tables 1.1 and 1.2.

Table 1.1. Sl radiometry units.

Quantity | Symbol | Sl unit Abbreviation Remark
Radiant Q Joule ] energy
energy

(continued)
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(continued)
Quantity | Symbol | Sl unit Abbreviation Remark
Radiant ) Watt w radiant energy
flux per unit time, also
called radiant
power
Radiant 1 watt per W.Sr! power per unit
intensity steradian solid angle
Radiance L watt per W.Srt.m™ power per unit
steradian per solid angle per
square meter unit pmjected
source area,
called intensity in
some other fields
of study
Irradiance E,I watt per W.m~ power incident
square meter on a surface,
sometimes
confusingly called
“intensity”
Radiant M watt per W.m~” power emitted
exitance / square meter from a surface
Radiant
emittance
Radiosity Jor], | wattper W.m™ emitted plus
square meter reflected power
leaving a surface
Spectral L,orL, | wattper W.Sr'.m?or | commonly
radiance steradian per W.Sr'. m> measured in
meter’ Hz W. ?r‘1~ m>.
or nm-
watt per
steradian per
square meter
per hertz

(continued)
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Quantity | Symbol | Sl unit Abbreviation Remark
Spectral E,orE, | Watt per W.m™ or commonly
irradiance meter’ W.m=2. Hz measuged in )
or W.m™-nm"
watt per
square meter
per hertz

Table 1.2. The SI photometry units.

Quantity | Symbol | Sl unit Abbreviation | Notes
Luminous energy 0, lumen Im . s units are
second sometimes
called talbots
Luminous flux F lumen Im also called
(= cd.sr) luminous
power
Luminous I, candela cd an SI base
intensity (= Im/st) unit
Luminance L, candela per cd/m” units are
square meter sometimes
called “nits”
MNluminance E, lux (= Im/m®) Ix used for light
incident on a
surface
Luminous M, lux (= Im/m?) Ix used for light
emittance emitted from
a surface
Luminous K lumen per Lm/W ratio of
efficacy watt luminous flux
to radiant flux

The photometry units are different from most systems of physical units
in that they take into account how the human eye responds to light. The cone
cells in the human eye are of three types which respond differently across
the visible spectrum, and the cumulative response peaks at a wavelength
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of around 555 nm. Therefore, two sources of light which produce the same
intensity (W/m”) of visible light do not necessarily appear equally bright. The
photometry units are designed to take this into account and therefore are a
better representation of how “bright” a light appears to be, rather than raw
intensity. Photometry units relate to raw power by a quantity called lumi-
nous efficacy, which is used for purposes like determining how to best achieve
sufficient illumination for various tasks in indoor and outdoor settings. The
illumination measured by a photocell sensor does not necessarily correspond
to what is perceived by the human eye without filters, which may be costly.
Photocells and charge-coupled devices (CCDs) tend to respond to some light
that is infrared, ultraviolet, or both.

BASIC REVIEW OF SCIENTIFIC NOTATION

Scientists, engineers, and technicians often use scientific notation in their
work. Scientific notation makes a convenient way to write small or large num-
bers by usmg powers of ten. For example, the number 0.000234 becomes
2.34 x 10~ and the number 234,000 becomes 2.34 x 10°. Scientific notation
involves a prefix, a decimal point, the number 10, and an exponent (or power).
For example, the scientific notation 2.34 x 10° has the prefix = 2.34, the deci-
mal point = the dot (.), base number = 10, and the exponent or power = 5.
Each of the numbers in the prefix, 2, 3, or 4, is referred to as a digit. We can
write any number as a prefix times a string of tens using scientific notation.
For example:

300 = 3 x 100 = 3 x (10 x 10) = 3 x 10
4650 = 4.65 x 1000 = 4.65 x (10 x 10 x 10) = 4.65 x 10°

02=2x3-:2»3T=2xuﬂ
10 10

0.02:2x—l-=2x-%=2x10*2
100 10
1 1 S
0.037=3.7x——=3.7x—=3.7x10
100 10

Scientific notation uses the power of ten. In scientific notation, a number
is usually expressed as x.yz x 10". Engineering notation expresses a number by
using the power of 10 as shown in Table 1.3.
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Table 1.3. The SI (metric) prefixes.

Power of 10 | Prefix | Symbol
10* yotta Y
10* zetta Z
10" exa E
10" peta P
10" tera T
10° giga G
10° mega M
10° kilo k
107 milli m
10° micro i
107 nano n
107" pico p
107" femto f
107" atto a
107 zepto z
10 yocto y
Example 1.3

Express each of the following numbers in scientific notation:

a.

b.

d.

Solution:

a.

832,704
0.00000659
58,012,0000
0.0000365

The decimal point (not shown) is after 4, that is, 832,704.0. If we shift
the decimal point to five places to the left, we obtain

832,704.0 = 8.32704 x 10°, which is in scientific notation.
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b. If we shift the decimal point six places to the right, we get
0.00000659 = 6.59 x 10°, which is in scientific notation.

c. The decimal point (not shown) is after 0, that is, 58,012,0000.0. If we
shift the decimal point to eight places to the left, we obtain

58,012,0000 = 5.8012 x 10°, which is in scientific notation.
d. If we shift the decimal point five places to the right, we get
0.0000365 = 3.65 x 10°, which is in scientific notation.

Example 1.4

Express each of the following numbers in scientific notation:

a. 68,300,000,000 m
b. 894,000,000 m
c. 0.0054s

d. 0.0000932 s

Solution:

1.6

a. 68,300,000,000 m = 68.3 x 10° = 68.3Gm
b. 894,000,000 = 894 x 10°m = 894 Mm
0.0054s = 5.4 x 10™°s = 5.4ms
0.0000932s = 93.2 x 10™% = 93.2 ps

gl

a

LIGHT PRESSURE

Light pushes on objects in its path, just as the wind would do. This pressure is
most easily explainable in particle theory: photons hit and transfer their momen-
tum. Light pressure can cause asteroids to spin faster, acting on their irregular
shapes as wind would on the vanes of a windmill. The possibility to make solar
sails that could accelerate spaceships in space is also under investigation.
Although the motion of the Crookes radiometer was originally attributed
to light pressure, this interpretation is incorrect; the characteristic Crookes
rotation is the result of a partial vacuum. This should not be confused with the
Nichols radiometer, in which the motion is directly caused by light pressure.
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1.7 OPTICS

Optics is the study of light and the phenomena associated with its gen-
eration, transmission, and detection. In a broader sense, optics includes all
the phenomena associated with visible, infrared, and ultraviolet radiation.
Geometrical optics assumes that light travels in straight lines and is concerned
with the laws controlling the reflection and refraction of rays of light. Physical
optics deals with phenomena that depend on the wave nature of light, for
example, diffraction, interference, and polarization.

1.8 EXERCISES

1.

10.
11.
12.

13.
14.

According to the Samkhya School, what is one of the five fundamental
“subtle” elements?

Who wrote that the planets and the moon do not have their own light,
but reflect the light of the sun?

Empedocles postulated that everything was composed of what four
elements?

Muslim scientist Ibn Al-Haytham developed a broad theory of vision
based on and in Book of

Who is considered the father of modern optics?

Qutb Al-Din Al-Shirazi and his student Kamal Al-Din Al-Farisi were
the first to do what?

According to Descartes, what is plenum?

Descartes’s theory is often regarded as the forerunner of the wave

theory of

What did Isaac Newton state in his Hypothesis of Light?
What are corpuscles?

Who published the wave theory of light in the 1600s?

Who was the first scientist to make a sufficiently accurate measurement

about the speed of light?
What is Albert Einstein’s famous equation?
According to Planck’s theory, what name was the particle of light given?
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15. The momentum p of a photon is also to its and
to its

16. In what year did Planck receive a Nobel Prize in Physics for his part in
the founding of quantum theory?

17. How is the speed of light in a vacuum defined?
18. ___ includes all the phenomena associated with visible,

infrared, and ultraviolet radiation.

In exercises 19-28, express the following numbers in scientific notation.

19. 73,400

20. 163,500

21. 800,000,000
22. 363

23. 0.0042

24. 0.831

25. 0.000036
26. 0.009

27. 3452 m

28. 72.5 ps

In exercises 29-34, express the following scientific notation in decimal notation.
29. 3.16x 10"

30. 84.35x 107"

31. 2958x 10"

32. 7.321 x 10

33. 645x 107

34. 9x10°

In exercises 35-38, express the following numbers in engineering notation.

35. 280 x 1077



36.
37.
38.
39.

40.

41.

42,

43.

44,

45.

46.
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70 x 10*
9.2 %107
0.7 x 107

Determine the frequency and period of a visible light at free space
wavelength 750 x 10~ m (750 nm). Consider the speed of light in free
space 3 x 10° m/s.

Determine the frequency and period of a visible light at free space
wavelength 570 x 10 m (570 nm). Consider the speed of light in free
space 3 x 10° m/s.

Determine the frequency, vacuum wavelength, and energy in joules of
a photon havmg energy of 2.5 eV. Consider the speed of light in free
space 3 x 10° m/s.

Determine the frequency, vacuum wavelength, and energy in joules of
a photon havmg energy of 1.65 eV. Consider the speed of light in free
space 3 x 10° m/s.

Find the momentum of a single photon of blue light ( f = 606 THz)
moving through free space.

Find the momentum of a single photon of yellow light ( f = 508 THz)
moving through free space.

Determine the photon energy and momentum values for a visible light
at free space deelength 590 x 10" m (590 nm). Consider the speed of
light in free space 3 x 10° m/s.

Determine the photon energy and momentum values for a visible light
at free space wavelength 620 x 10~ m (620 nm). Consider the speed of
light in free space 3 x 10° m/s.
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INTRODUCTION

The term light in common phraseology is used to denote that aspect of radi-
ant energy by which objects are made visible, due to stimulation of the retina
of the eye. Nowadays it has become customary to include in this term certain
other kinds of radiation called ultraviolet and infrared which, although inca-
pable of exciting the sense of sight, nevertheless show other effects similar to
those of visible light. For example, the radiation in the near ultraviolet region
affects the photographic plate even more markedly than that in the visible
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region. The ultraviolet region lies beyond the violet end of the visible spec-
trum, while the infrared region lies beyond the red one.

The study of nature and properties of light forms a subject in physics
called optics, which can be conveniently divided into three distinct branches:
(a) geometrical optics, in which many facts concerning light can be investi-
gated from the standpoint of the ray theory, that is, on the supposition that
light travels in straight lines or rays, while no assumptions are made in it
regarding the nature of light; (b) physical optics, in which certain phenomena
like propagation, reflection, refraction, interference, diffraction, and polar-
ization exhibited by light are studied from the standpoint of the wave theory;
and (c) quantum optics, in which one studies the interaction of light with the
atomic entities of matter.

Geometrical optics mainly deals with image formation by mirrors, lenses,
and prisms. The whole subject can be developed on the basis of the following
four fundamental properties of light and with the aid of geometrical or trigo-
nometrical calculations:

1. In a homogeneous medium, light travels in straight lines.

2. Rays of light are independent, and any two of them can intersect each
other without in any way affecting their future paths, which are the same
as if each ray existed separately.

3. A beam of light is reflected from any optical surface in accordance with
the following laws:

a. The reflected ray lies in the plane of incidence, which is the plane
containing the incident ray and the normal at the point of incidence.

b. The angles of incidence and reflection are equal, the reflected ray and
the incident ray being on the opposite sides of the normal.

4. The refraction of light from one medium to another is governed according
to the following laws:

a. The refracted ray lies in the plane of incidence.

b. The sine of the angle of incidence bears a constant ratio to the sine of
the angle of refraction.

The value of this ratio depends upon the media involved and on the wave-
length of light. This law is called Snell’s law, and in symbols it is expressed in
the form
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sini 'V,
R N Y (2.1)

sinr 'V,

where V, is the velocity of light in the medium in which incident ray travels
while V;, is the velocity of light in the medium into which the light is refracted;
u, and p,, the indices of refraction of the first and the second medium with
respect to a vacuum, respectively, are defined as

3 Velocity of light in vacuum
= Velocity of light in first medium

Velocity of light in vacuum

2 Velocity of light in second medium

With the help of these fundamental laws it is possible to trace the path
of light rays through any optical system and the formation of images studied.
Accordingly, this branch of optics has important applications in the design,
manufacture, selection, and use of excellent optical instruments.

Ray theory, however, fails to explain interference and diffraction phe-
nomena. Moreover, a closer examination of the fact reveals that the rec-
tilinear propagation of light is only approximate. These phenomena are
explained on the basis of the wave nature of light. But owing to the small
wavelength of visible light, the approximate limits being 4 x 107 ¢m and
7.5 x 10 cm, the rectilinear propagation of light is observed under nor-
mal circumstances, and hence assumptions made in geometrical optics are
nearly true. Geometrical optics can therefore be regarded as an asymptotic
form of wave optics when the wavelength of light is taken to be negligibly
small, and under this limitation many results of wave optics pass over into
those of ray optics.

The laws of geometrical optics, which have all been experimentally verified,
can be derived from one basic principle called Fermat’s principle of least time.

FERMAT’S PRINCIPLE

It states that “when light travels from one point to another it always follows
the path along which the time taken is the least.” In other words, the path of
light between two given points is determined by the condition that the varia-
tion in the optical path is zero, that is
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5y (u-1)=0

for any infinitesimal deviation from the actual path.

Stated in this form the law holds even if, in going from one point to
another, light suffers one or more reflections or refractions. Moreover, it is
only the optical path and not the direction of the propagation of light which
is involved. The principle that the path of light is reversible as long as the
media and the order in which light passes through these remains unchanged
is, therefore, also included in this statement.

If we consider a ray of light traveling from one point to another in a homo-
geneous medium, Fermat’s law implies that the length of its path between
the two points should be the least. This path is clearly a straight line. It is
therefore obvious that in an isotropic medium, light always travels in straight
lines, and the law of rectilinear propagation results as a direct consequence of
Fermat’s principle.

Let us now apply the principle to deduce the laws of reflection and
refraction.

2.1.1 Laws of Reflection

Let PQ in Figure 2.1 be a plane mirror. Suppose a ray of light starting from A
reaches D after reflection from the mirror along the path ABD.

D

FIGURE 2.1. Law of reflection.

Draw AO normal to the mirror and produce it to A’ such that AO = OA".
It follows, therefore, that whatever the position of B is we shall always have
AB = A'B, and hence the length of the path ABD is always equal to A'BD,
that is, ABD = A’'BD.
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Since the light is traveling in the same medium, the time taken by the
light in going from A to D via the mirror will be the least if the length of the
path itself is at a minimum.

If the light goes along ABD, the length of the path (as seen previously) is
A’'BD. It is clear from the triangle A’BD that

A'B+BD >A'D

or in other words, the minimum length from A’ to D is A’CD. Hence,
according to Fermat’s principle, the light must follow the path ACD (since
AC=A'C).

Now the triangles ACO and A’ CO are congruent because

(i) AO =A'0, (ii) ZAOC = ZA’OC, and (iii) OC is common to both.

It follows, therefore, that

ZAOC = ZOCA' (2.2)

Since the straight lines PCQ and A’ CD intersect at C,
ZPCA' = ZDCQ (2.3)

So that the combination of Equations (2.2) and (2.3) give
ZACO = /DCQ

which is the law of reflection.

Example 2.1

Light is incident on a flat surface, making an angle of 20° with that surface, as
shown in Figure 2.2. (a) What is the angle of incidence? (b) What is the angle
of reflection? (c) Sketch the path of the reflected beam on the diagram.

20

FIGURE 2.2. For Example 2.1.

Solution:

a. When the light makes an angle of 20° with the surface, it makes an angle of
70° with the normal to the surface. Thus, the angle of incidence (6,) is 70°.
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b. Based on the law of reflection, the angle of reflection equals the angle
of incidence. So the angle of reflection, 6, (measured to the normal),
is 70°.

c. The path of the light is shown in Figure 2.3 as follows:

FIGURE 2.3. For solution to (c) of Example 2.1.

Example 2.2

A light ray strikes a reflective plane surface at an angle of 52° with that
surface. (a) What is the angle of incidence? (b) What is the angle of reflec-
tion? (c) What is the angle made by the reflected ray and the surface? (d)
What is the angle made by the incident and reflected rays?

Sketch the path of the reflected beam on the diagram.

Solution:
a. The angle of incidence is 6, = 90° - 52° = 38°.
b. The angle of reflection is 0, = 6, = 38° (by the law of reflection).
The angle made by the reflected ray and the surface is 6, = 90° - 38° = 52°.

o

o

The angle made by the incident and reflected rays is 6, + 6, = 38° -
38° = 76°.

2.1.2 Laws of Refraction

Suppose a ray of light starting from a point A in the first medium arrives at a
point B in the second after suffering refraction at the plane surface of separa-
tion PQ as shown in Figure 2.4. If D is a point on PQ very near C, it follows
from Fermat’s principle that the time taken by the ray of light along the path
ADB will, in the limit, be equal to that taken along ACB.
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Medium 1

o
Q

ip)

Medium IT

FIGURE 2.4. Law of refraction.

Draw CE perpendicular to AD and DF perpendicular to CB. Then as D
approaches C, the length AE will approach AC, and similarly BD becomes
more and more equal to BF. Hence, according to Fermat’s principle, the time
taken by light in covering the distance DE with a velocity V, will be the same
as that taken by it in covering the distance CF with a velocity V,. Therefore

ED _CF (2.4)

ED_Vi _#
CF V,

where p, and p, are the refractive indices of media I and II respectively. This
equation can be written as

ED/CD p,
CF/CD u,
Or
sin ECD _ M (2.5)
sinCDF  p,

Since
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/ECD = g — ZRCE =i the angle of incidence and

/CDF = % — ZDCF = r the angle of refraction.

Equation (2.5) gives

sini

sinr U,

If the first medium is air y, = 1, the previous equation reduces to

sini

sinr

which is Snell’s law. Here p refers to the refractive index of the second medium
with respect to air.

It has been experimentally observed that when light passes from a rarer
medium to a denser medium, for example, from air to water, the refracted ray

bends toward the normal, or the angle of refraction “r” is less than the angle
of incidence i as shown in Figure 2.5, and hence p is greater than 1.

A

Air

N
: Water
N

C
FIGURE 2.5. Refracted ray from air to water.

It has also been proven that the refractive index p is the ratio of the veloc-
ities of light in the two media. Thus
sini Velocity of light in air V.

air

w o Velocity of light in water Y

water

sinr

If instead of air the first medium is a vacuum, then



REFLECTION AND REFRACTION © 29

v

My =

water

where “V” is the velocity of light in a vacuum and p,, is the absolute refractive
index of water. Also,

air V V :uu;
Hyw = = - =
‘/wmfer anter Vm’r :un
In practice p, is taken as unity, and hence p,, does not appreciably differ
from p,,.
It can be readily seen that
1
M(IUJ =
or
e X Hiy =1

In general, for more than two media

o X oy X gy X gy =1

Example 2.3
Light travels from air into an optical fiber with an index of refraction of
1.40. If the angle of incidence on the end of the fiber is 25°, what is the angle
of refraction inside the fiber?
Solution:
We know that p, sini = y, sinr; so
(1)sin25° =(1.40)sinr
(1)sin25 e sin (0.4226) 176
(1.40) 0

The angle of refraction inside the fiber = 17.6°.

sinr =

2.1.3 Breakdown of Snell’s Law - Total Internal Reflection

It has been seen previously that sini = usinr, where p is the refractive index of
the denser medium with respect to air and is greater than unity. If light is now
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2.2

considered to be traveling from water to air as shown in Figure 2.6, the angle
of incidence i will be less than the angle of refraction r and, consequently, u,,
will be less than unity. As the angle of incidence i is increased, the refracted
ray traveling in the rarer medium bends more and more away from the nor-
mal NN, till at a particular angle of incidence C, the refracted ray travels along
the surface of separation of air and water or the angle of refraction r = 90°.

5
(]
3

FIGURE 2.6. Critical angle.

In that case,

:—smC =sinC
sinz /2

wa

The angle of incidence given by p,,, = sin C is known as the critical angle.
If this angle is increased further, “sinr” must be greater than unity, which
is impossible. Consequently, there can be no refracted ray, and Snell’s law
breaks down. In this case light is reflected back in the (denser) medium, and
the phenomenon is known as total internal reflection.

APLANATIC SURFACES

In the foregoing discussion the reflecting and refracting surfaces were consid-
ered plane. But if the surfaces are curved, it is no longer necessary that the
length of the path followed by the light always be a minimum; it may some-
times be maximum as well. In such cases Fermat’s principle of least time is
not applicable. A consideration of aplanatic surfaces throws further light on
such situations.

An aplanatic surface is such that from any point on it, the sum of the opti-
cal paths to any two points is a constant quantity. If P is any point such that
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W, AP + 1, BP = constant (2.6)

then the locus of the point P will be an aplanatic surface.
The curve represented by Equation (2.6) in one plane is called a Cartesian
oval and is shown in Figure 2.7.

FIGURE 2.7. Definition of aplanatic surface.

If the figure is rotated about the axis AB, the corresponding aplanatic
surface is obtained.

In the case of reflection, light is confined to a single medium, and
Equation (2.6) reduces to

AP + BP = constant (2.7)

which is an ellipsoid of revolution with points A and B as foci as shown in
Figure 2.8.

R

FIGURE 2.8. Aplanatic surface.

Ellipsoidal and Paraboloidal Mirrors

Let PQR as in Figure 2.8 be an arc of the ellipse whose major axis is MN and
whose foci are A and B. If the arc is rotated about the major axis, a trace of
the surface called the ellipsoid of revolution is obtained. The arc PQR may,
therefore, be considered as the principal section of an ellipsoidal mirror.
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Now, it is the property of an ellipse that the sum of the distances from any
point on the ellipse to the two foci is a constant quantity:

i.e., AP + BP = constant

Hence, if a point source of light is placed at A, all the rays starting from A
will, after reflection from PQR, pass through the point B. PQR is then an apla-
natic surface, and the two conjugate points A and B are called aplanatic foci.

As the distance between the foci of the ellipse increases, it approximates
more and more to a parabola. If, therefore, it is desired to converge all the
rays coming from infinity to one single point, the mirror to be used must have
a principal section which is a parabola. The mirror itself is called a paraboloi-
dal mirror, as shown in Figure 2.9.

P

o
[N
7

<

<
/
<

<

FIGURE 2.9. Paraboloidal mirror.

It may be mentioned here that a spherical mirror cannot be used for
bringing a parallel beam of light to a point focus.

2.3 REFLECTION AT CURVED SURFACES - LAW OF
EXTREME PATHS

Suppose the rays of light starting from a point object at A arrive at B after
reflection from the mirror MM, as shown in Figure 2.10.

FIGURE 2.10. Law of extreme paths.
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If an aplanatic surface is drawn with points A and B as its foci, its equation

will be
AP + BP = constant.

Such a surface will be tangential to the mirror at the point P. Take any
point N on MM which is very near P. Join AN and produce it to meet the sur-
face PQR at N'. Since N' lies on PQR, it must satisfy the condition

AN'+ N'B= AP+ BP (2.8)
According to Fermat’s principle
AN+ NB< AP + BP
Now,
AN'+N'B=AN+NN'+N'B (2.9)

Also, in the triangle N'NB
NN'+N'B>NB (2.10)

Hence, it follows that
AP+ BP=AN+NN'+N'B> AN + NB

It is thus seen that the time taken by light along the path APB, instead of
being a minimum, is maximum.

It may be pointed out that if the curvature of MM is less than that of the
aplanatic surface PQR, Fermat’s principle of least time will hold.

Similarly, it can be shown that if a convex refracting surface is more convex
than the corresponding aplanatic surface, the path followed by light in going
from a less-refracting medium to a more-refracting medium is a maximum.
On the other hand, if it is less convex or concave, the path is a minimum.

But whether the total optical path is a maximum or a minimum, its first
derivative will always vanish, and hence the law can be written in a modified
form, that is

Bls )
— = max., min. or constant
AV
where “ds” is a small element of a path between any two points A and B, and
“V” is the velocity of light in the medium. Since pu=c/V, where “c” is the
velocity of light in a vacuum, the previous equation may be written as
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B
I U ds =max., min. or constant
A

or

5qu ds=0

Fermat’s law modified in this form is known as the law of extreme paths
and may be stated as follows:

Whenever light travels from one point to another (it may reach the second
point directly or after one or more reflections and refractions) it always
follows the path which is extreme, i.e., either maximum or minimum.

2.4 REFRACTION AT CURVED SURFACES

Let RR, as shown in Figure 2.11, be a curved refracting surface of radius r and
center of curvature C. Suppose a ray of light OP starting from O placed at a
distance “u” from V reaches I after suffering refraction at the surface.

FIGURE 2.11. Refraction at curved surface.

Let VI = v. In the triangle OPC
oP? =2 -i—(u-i—r)2 —2r(u+r)cosf (2.11)
Similarly, in the triangle PCI
PI* =r> +(v—r) +2r(v—r)cosO (2.12)

According to the law of extreme paths, the first derivative of the total
optical path should vanish, and hence

6(1,0P + 1,PI)=0 (2.13)
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Equation (2.13) when combined with (2.11) and (2.12) yields

Lo [ —

Slu, {r* +(u+r)* =2r(u+r)cos b}
(2.14)

—

+ 1 {r* +(v—1)* +2r(v—r)cos 0)21=0

Differentiating partially with respect to 6 (because 6 varies if the path is
changed), it is seen that

pr(u+r)sing

[1’2 +(u+ry —2ru+ r)cos@}w2

. (2.15)

. tol—r(v—r)sin6] 0
[rz +(w=r)y+2rlv- r)cos@]l/2

If the angle 6is small, cos 8 will be nearly unity, and Equation (2.15) gives

putr)  py(o—r)

u (¥
or
i_’_& Hy — Hy (2.16)

u v r
In this case, however, “v” and “r” are positive and, therefore,
H B _ KK (2.17)
vou r
If the medium to the left of the refracting surface is air, the previous

equation simplifies to

p_1_p-1
(V) u r

2.5 REFRACTION AT A LENS

Suppose LAB is a convex lens whose refractive index is p. Let P be a point
object placed on the axis of the lens at a distance u from the optical center,
that is, OP = u, as seen in Figure 2.12.
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FIGURE 2.12. Refraction at a lens.

OVYc

>
Y5
0

Any ray PL striking the lens at L will after refraction converge at the point
Q. Similarly, another ray PA directed along the axis of the lens will go undevi-
ated after refraction and cut the first refracted ray LQ at Q such that OQ = v.
Then Q is the image of P.

Since the rays starting from P intersect at Q, the optical paths along the
two directions according to the law of extreme paths must be the same, and
hence

PL+LQ =PA+ pAB+ BQ = max., min. or constant. (2.18)

Since the ray PA travels a distance AB in glass, its equivalent optical path
in air will be pAB. Also, in the triangle PLO

PI? = PO* + OI?

and if OL is small as compared to OP

PIZ = PO’ (1 L oL J
0

P2
or
2
pL=po+ 2L (2.19)
20P
Similarly, the triangle OLQ gives
2
OL=QO0 + OL (2.20)
200
If these values of PL and QL are introduced in Equation (2.18), the latter
reduces to
2
PO+QO + oL L+L =PA+ uAB+ BQ
OP  0Q
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or
PO+Q0+ Lol L+ L |-po-0B+00-0A+pu(a0+0B)
OP O
or
Lo L+ L |-(u-1)(a0+B0)
2 OP 0OQ
Therefore,
1 1 AO+ BO
—4—=9 _ 2.21
vou (u=1) or’ < )
For the surface whose radius of curvature is r, and center is C, it can be
seen that
OL’ =OB(2r, —OB)
If OB is small as compared to r,, that is, if the lens is thin,
OL* =OB(2r,) (222)

Similarly, it can be shown that for the surface of the radius of curvature
r, and center C,

OL* =OA(2r,) (2.23)

On introducing the values of OL’ from Equations (2.22) and (2.23) in
Equation (2.21), it becomes

1+1:(u_1)(1+1] 224)

v ou "o

where the proper signs are to be inserted.

2.6 EXERCISES

1. What are the three branches of optics?
2. Inahomogenous medium, light travelsin___ lines.

3. Write the equation for Snell’s law.
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4. State Fermat’s principle and use it to establish the laws of reflection
and refraction of light.

5. State and explain Fermat’s law of extreme paths and analyze a case
where the actual path of light may be at a maximum. Use Fermat’s law
to deduce Snell’s law of refraction.

6. Find angle 6° made by the system of the two mirrors (M, and M,)
shown in Figure 2.13 so that the incident ray at P, and the reflected ray
at P, are parallel.

FIGURE 2.13. For Exercise 6.

7. Find angle 0 of reflection at the point of incidence P, when a ray of
light is reflected by the system of the two parallel mirrors (M, and M,)
at points P, and P,, as shown in the following figure. The ray makes an
angle of 30° with the axis of the two mirrors.

FIGURE 2.14. For Exercise 7.
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Show that if the refracting angle of a glass prism is larger than twice
the critical angle of refraction, no light can be passed through it by
refraction.

Discuss the variation of deviation with the angle of incidence for a
prism of lower refractive index than the surrounding medium.

Calculate the angle of minimum deviation for a 60° prism (u = 1.5) and
the angle of incidence i at which it occurs. Hence, find the deviation
for rays at incident angles i + 15° and i + 10° and then calculate the
angular separation between the pair of rays on emergence. Also
calculate the angular separation of rays on emergence which struck the
prism at i — 15° and i — 10°. Hence, explain Schuster’s method of focus-
ing the spectrometer.

Write notes on the following:
a. Fermat’s principle
b. Dispersive power of a medium

c. Irrationality of prismatic dispersion
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3.0

INTRODUCTION

341

The study of refraction of light through a single spherical surface separating
two media of different indices of refraction is of great fundamental importance
in geometrical optics. Therefore, we begin the study of this branch of optics
by developing the theory of image formation by a single spherical refracting
surface. In addition, the detailed discussion will be limited to paraxial rays,
that is, rays inclined at small angles to the axes, for the reason that the results
of paraxial theory also hold in the optics of “corrected” systems.

CONVENTION OF SIGNS

The derivations of various formulae in this branch of optics are based upon
the measurement of angles and distances from a suitably chosen axis and ori-
gin in every optical system. It is therefore essential to adopt a convention of
signs for distances and angles in order to ensure consistency in the derivations
and use of various formulae. We shall adopt the following set of conventions
which agree with the usual convention of the Cartesian system of coordinates
used in coordinate geometry.

3.1.1 Convention of Distances

Real part of Virtual part of

- object space j/—\ object space

——
Direction of light

Y

Y

/ Real part of
Virtual part of \ i image space
image space

FIGURE 3.1. Object space and image space exist through all space.

A
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Draw all figures with light advancing from left to right.

2. Consider all distances measured to the right of a suitably chosen ori-

gin positive and all distances to the left negative. Thus, all longitudinal
distances measured from some origin will be considered positive when
they are along the initial direction of the propagation of light, which is
assumed to be always from left to right. In other words, according to
this convention, the object distance u of a real object point is negative,
whereas it is positive for a virtual object point. Similarly, the image dis-
tance v is positive for a real image point and negative for a virtual image
point.

Consider a distance transverse to the axis positive when measured upward
from it and negative when measured downward.

3.1.2 Convention for Angles

3.2

1.

Consider the slope angle that a ray makes with the axis to be positive when
an anticlockwise turn through this acute angle will bring a ruler from the
principle axis direction into coincidence with that of the ray.

Consider angles of incidence and refraction positive when a ruler from a
normal direction at the point of incidence on the surface must be rotated
in the anticlockwise direction through this angle to bring it into coinci-
dence with the ray.

It is advisable that this convention of signs should be memorized at this

very stage, because this would make it easier to grasp and to derive consistent
relations in this branch of optics.

REFRACTION AT A SPHERICAL SURFACE

Let us suppose that in Figure 3.2., the common boundary of two transparent
homogeneous media of refractive indices p, and p, (where p, < ) is spheri-
cal in form, being convex toward the medium of index p,, in which is situated
a luminous object point P.
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Medium 1

Medium 2

FIGURE 3.2. Refraction at convex surface forming a real image.

A line joining P and the center C of the spherical surface is called the axis
of the system, and its intersect O with the refracting surface is called the pole
of the surface. We shall consider this point O as the origin of the system. A ray
PS from the axial object point P, inclined at an angle 6, with the axis, is incident
on the surface at an angle i with the normal SC. Since p, < p,, the incident ray
PS on refraction at S bends toward the normal in accordance with the funda-
mental laws of refraction and pursues the path inclined at an angle r with the
normal. The slope angle of the refracted ray SP' with the axis is 6,. Another ray
PO, which is coincident with the axis and therefore incident normally on the
surface, enters undeviated in the second medium. The point of intersection P’
of the ray SP’ and the axial ray is, therefore, the image of the object point P.
For some object positions with respect to the refracting surface, as illustrated
in Figure 3.3, the refracted ray intersects the axial ray only when the former is
produced backward. Accordingly, in such cases a virtual image is formed.

Medium 1 Medium 2

FIGURE 3.3. Refraction at convex surface forming a virtual image.
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We can proceed to derive a relation between u and v, the distances of
the object point P and its image P’ from O, involving the constants of the sys-
tem, namely p,, 1, and R, the radius of curvature of the refracting surface. It
should be noticed that according to the convention of signs, in Figure 3.2 u
is negative while v and R are positive, the pole O being the origin. The slope
angle 0, of incident ray PS with the axis is positive, whereas the slope angle 6,
of the refracted ray SP' is negative.

Now, in triangle PSC the law of sines gives
sin@, sin(r—1)  sini

R  R+(-u) R-u

Solving for i,

Y sin®, (3.1)

sini =

The angle of refraction r, conjugate to the angle of incidence i, may be
found with Snell’s law.

sini _ My
sinr  H,
Solve for r,
sinr = (ijsim’ (3.2)
Hy

Slope angle 6, of the refracted ray should now be computed. In triangle
PSP’ the sum of the angles is 7 radians, that is

0, +(r—i)+r+(-6,)=n
since 6, by convention is negative. On solving for 6,

0,=r+0,—i (3.3)

The image distance v from the pole O should now be computed. In trian-
gle P'SC, the law of sines gives

sinr_ sin(-6,)
v—r R

sin92=( R jsinr (3.4)
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3.21

Solving for v,

b=R— [ R sinr J
sin6,
and with the help of Equations (3.1), (3.2), and (3.3), the previous equation
can be easily given as

oR-| M (R—u)sinf,
w, )\ sin(r+6, —i)
Equations (3.1), (3.2), (3.3), and (3.4) are quite sufficient to determine

the image distance v and the slope angle 6, conjugate to quantities v and 6,
respectively. In general, the image distance v will be different for different

sin 6,
sin(r+6, —1i)
stant for a spherical surface. Therefore, the image of the object point will not
be a point image. This departure from the ideal point image of the axial object
point is called spherical aberration.

slope angle 6, of the incident ray, because the ratio is not con-

First Order Theory

The sine of any angle can be expanded by Maclaurin’s theorem into a power
series in the angle, for example

For incident rays restricted to the region close to the axis, called the parax-
ial region, the slope angle 6, becomes very small, and as a consequence the
slope angle 6, of the conjugate refracted ray, the angles i and r also become
small to the same order of approximation. Rays which satisty these restrictions
are called paraxial rays, and for the refraction of these rays a very simple rela-
tionship between v, u, p,, t,, and R can be obtained by replacing, to a close
approximation, the sine of the angle in Equations (3.1), (3.2), and (3.3) with
the angle (in radians) itself. To assume sin 6, = 6, is to neglect in the series
all terms of higher order in 6, beyond the first order term and, therefore, the
theory based on this approximation is called the first order theory.

Equations (3.1), (3.2), and (3.3) under paraxial conditions become

z':(P““]el (3.5)

R
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rzvi} (3.6)
Hy

92=( R jr (3.7)

R-v

Substituting the values of 6,, , and 6, in Equation (3.3), after canceling i
and rearranging it becomes

wo(R—u)=pu(R-v)
Dividing by vuR and rearranging, we get
H B _H—

3.8
v U R (38)
or
I r, (3.9)
v u
where
R u,R
f:_L and f'=—t2"
(,uz _/"1) (/"2 _:ul)

Since the slope angles 6, and 6, do not appear in Equation (3.8), it fol-
lows that all rays diverging from an axial point P making small angles with the
axis, after refraction at a spherical surface, cross the axis at a common point
P’ which is, therefore, the image corresponding to object point P. This equa-
tion, therefore, applies only to rays in the paraxial region, but it does apply
to rays making large angles with the axis in optical systems which have been
corrected for spherical aberration.

Medium 1 \ Medium 2

FIGURE 3.4. Refraction at convex surface forming a virtual image.
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Although we have derived Equation (3.8) for the case of a convex refract-
ing surface (R positive) when the object distance is such that a real image is
formed, it holds equally well unchanged for object distance, as illustrated in
Figure 3.3, which gives a virtual image, and also for the formation of a virtual
image by a concave refracting surface (R negative), provided a consistent sign
convention for u, v, and R is employed, that is, the correct sign is attached
to the numerical values on the substitution for the symbols. Further, Equa-
tion (3.8) is of fundamental importance in geometrical optics, because it can
be applied successively to each of the number of coaxial refracting surfaces,
treating the image formed by the first surface as an object for the second and
so on, in order to locate the final image of a given object.

In most of the practical cases of image formation, object point P is in air
or a vacuum, that is, i, = 1 and the index of refraction of the second medium

with respect to the first is 4= &. Therefore, Equation (3.8) applied to this

case becomes H
1 -1
£ (3.10)
vou R

The conditions governing the object distance u for the formation of a real
or virtual image due to refraction at a convex refracting surface may be very
easily derived. Let u’ be some object distance from the pole of the refracting
surface. Putting u = u’ in Equation (3.8) and keeping the sign of R positive,

we get
&:u’(uQ‘_ul)_HIR (3 11>
v u'R '
Therefore, v is positive when
u'> MR
Hy = Hy

which is consequently the condition for the object distance for the formation of
a real image. This condition corresponds to the case illustrated in Figure 3.2.
The image distance v is negative and indicates a virtual image when

u/ < :ulR

Hy —

This condition corresponds to the case illustrated in Figure 3.3. However,
when the object distance is



3.3

REFRACTION AT A SPHERICAL SURFACE * 49

R
UZ_UIZ_ lul
Hy — Hy

Equation (3.2 k) gives v = oo, that is, the refracted rays are parallel to the
axis and the image is formed at infinity.

PRINCIPAL FOCAL POINTS AND PRINCIPAL
FOCAL LENGTHS

The axial object point which is imaged at infinity by a refracting surface is
called the principal focal point of the object space or the first principal focal
point F of the refracting surface. The distance of F from the pole of the sur-
face is called the first principal focal length of the surface and is denoted by f.
Therefore, f is the value of u conjugate to v =0, and hence its substitution in
Equation (3.8) yields

Rl (3.12)

Hy —

The axial image point conjugate to an infinitely distant axial object point
is called the principal focal point of the image space or simply the second
principal focal point F' of the system. Its distance from the pole of the sur-
face is called the second principal focal length of the refracting surface and
is denoted by f'. Accordingly, f" is the value of v conjugate to u = —oo and its
substitution in Equation (3.8) gives

= (3.13)

Whence
AT f

or ——=u

f om f

Since p, the index of refraction of the second medium with respect to the
first, is always positive, it follows that the two focal lengths of the refracting
surface are always of opposite signs.

This discussion obviously explains the physical significance of the symbols
fand f" introduced in Equation (3.8).
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3.4 LINEAR LATERAL MAGNIFICATION

Figure 3.5 illustrates linear lateral magnification. Let PQ be a small object
of height y, placed transversely to the axis in front of the convex refracting
surface. Ray PS from the foot of the object suffers refraction at S and follows
the path SP" and intersects the axial ray PO, which suffers no deviation, at P".
Thus, P’ is the image of P. Ray QS' is directed toward the center of curvature
C and, therefore, it is incident at S’ normally to the surface; as a consequence,
it passes undeviated. Now a line drawn at P', perpendicular to the principal
axis, intersects the ray QS’ at the point Q', which is consequently the image of
Q. Thus, P'Q’ is the image of PQ.

b —— — ——— = ()} == —— — B~ —————— - S =

Medium 1 Medium 2

FIGURE 3.5. Linear lateral magnification.

Linear lateral magnification is defined by

P' A
m=l2 b (3.14)
PQ y
where y, is the image height P'Q’. From similar triangles CP'Q’" and CPQ, we

write

(—yg)_C_P’ v—-R  v-R

y,  PC :R+(—u)_R—u

Z—2=—Z:§ (3.15)
1
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Now, Equation (3.8) can be rewritten as

TR
Hy o R H w R

or

(“—Rj_ﬁ
u—-R) wu

whence, Equation (3.15) becomes

Yo _ Y
Y KU

m= (3.16)

This relation determines the height y, of an image conjugate to height y,
of the object formed by refraction at a single spherical surface, whether con-
vex or concave, provided a consistent sign convention is used. This relation
shows that if v and u are of opposite signs, y, and y, are also of opposite signs;
that is, an inverted image of the object is formed, and magnification m is neg-
ative. On the other hand, if v and u have the same signs, the image is upright
with respect to the object, and magnification m is positive.

Incidentally, we may derive the Abbe sine condition even at this stage very
easily. From Equations (3.2 a), (3.2 b), and (3.2 d), we have the relation

v—R [ sin6, X(sinrj_ B, sin6,
u—R \sin6, sini U sin@,

Whence Equation (3.14) becomes

Wy, sin@, = 1y, sin6, (3.17)

which is known as the Abbe sine condition, and it holds good for all rays,
whether paraxial or not.

LAGRANGE’S LAW AND HELMHOLTZ’S LAW

An important relation exists in the paraxial region between the object and
image heights and the angles at which the conjugate rays are inclined to the
principal axis. Let the incident ray PS in Figure 3.4 be inclined at an angle 6,
with the axis and the conjugate refracted ray SP’ inclined at 6, with the axis.
According to sign convention, 6, is negative. Then, referring to Figure 3.4 and
using Equation (3.16), we have
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()

In the paraxial region, the point S in Figure 3.4 is close to the pole O. We
therefore write

-0s
tan0, \ u
tan (_02 ) (OSJ
v
tan 0 )
On multiplying [ﬂl x (&] _H
Y, tan6, A
or
Hy, tan 0, = p,y, tan 0, (3.18)

This equation was first given by Lagrange and is frequently called
Lagrange’s Law. For the paraxial region, since 6, and 6, are small, Equation
(3.18) reduces to a more familiar form

1,6, = wyy,0, (3.19)

Now consider (n-1) coaxial refracting surfaces separating n media of indi-
ces fy, Ly, ty,..., 4, in succession. Then the image formed by the first surface
becomes the object for the second surface and so on. Therefore, applying
Equation (3.18) successively to each of (n-1) refracting surfaces, we get

My, tan 6, = 1y, tan 6,
HsYs tan 0, = py; tan 6,

:un—lyn—l tan 9:1—1 = :unyn tan 91)
Hence, on addition,
wy, tan6, = py, tano,

This equation, therefore, holds good for a system of coaxial refracting sur-
faces. In this form it was first investigated by Helmholtz. Accordingly, it is now
called Helmholtz’s law of magnification.
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3.6 REFLECTION AS A SPECIAL CASE OF REFRACTION

The only mathematical difference between the phenomena of refraction and
reflection of light is that Snell’s Law

sini u,
sinr U,

replaces the law of reflection i = r (here r is the angle of reflection). If we
employ a consistent sign convention for angles, as stated in Section 3.1, in
both the phenomena, the law of reflection should be written as

i=-r (3.20)
where r is the angle of reflection as shown in Figure 3.6.

Reflected ray
P r

Mirror

FIGURE 3.6. Reflection at a mirror.

It is therefore evident that the law of reflection represented by Equation
(3.20) can be derived from Snell’s law by using the artifice of replacing u, by
-, that is, g, = —p,, and interpreting the angle r as the angle of reflection.
The steps of this procedure are

My sini =, sinrz(—ul)sinr
Sini =—sinr

i=-r

As a consequence, all formulae for reflection of paraxial rays at a spherical
mirror can be obtained from those for refraction of paraxial rays at a spherical
refracting surface simply by putting p, = -, in the formulae. Thus, Equation
(3.8) becomes
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or

1 1 2
—+—=— (3.21)
u v R
which is therefore the relation between the conjugate object and image dis-
tances for a spherical mirror. Similarly, Equation (3.16) becomes

~h__A0 1Y (3.22)

gy (mu
where y, is the image height conjugate to height y, of the object. This expres-
sion for the magnification shows that if v and u are of the same sign, as in the
case of a real image formed by reflection at a concave mirror, y, and y, are of
opposite signs, that is, an inverted image of the object is formed. On the other
hand, if v and u are opposite signs, as in the case of reflection at a convex mir-
ror, y, and y, are of the same sign, that is, the image is upright with respect
to the object.
Equations (3.21) and (3.22) are sufficient to locate the position and deter-
mine the size of the image of an object due to reflection at a spherical reflect-
ing mirror.

LENSES

A lens is a portion of a refracting medium bounded by two curved surfaces
which themselves may either be spherical or cylindrical. If both the bound-
ing surfaces are spherical, the lens is said to be spherical. Similarly, if both
the surfaces are cylindrical, the lens goes by the corresponding name. If one
surface is spherical and the other cylindrical, the lens is said to be spherocy-
lindrical. The spherical lenses are more commonly used, and hence they will
be discussed in detail in this chapter.

In the case of spherical lenses, both the bounding surfaces may be curved,
or one may be plane and the other curved (a plane surface may be taken as a
curved surface of infinite radius of curvature). A straight line passing through
the centers of curvature of the two surfaces is called the principal axis of the
lens. The points of intersection of the two surfaces with this axis are called the
poles of the lens. In thin lenses the distance between the poles is negligible as
compared to the object and image distances, while in thick lenses this is not so.
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If the periphery of the lens is circular in contour, its diameter is known as
the aperture of the lens. Some of the more common types of lenses and their
names are given in Figure 3.7.

Biconvex Plano-convex  Convexo- Biconcave Plano- Concavo-
concave concave Convex

FIGURE 3.7. Spherical lenses.

3.8 REFRACTION THROUGH A THICK LENS

[T

Suppose an object O is placed on the axis of a thick lens at a distance “u” from
the first surface as in shown in Figure 3.8.

[/
\\

FIGURE 3.8. Thick lens.

Rays of light starting from O are refracted through the first surface and form
an image, say at a distance v’ from it. If p1 is the refractive index of the lens and
r, is the radius of curvature of the first surface, then
1 -1
£ -2 (3.23)

vou on
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n

(u-1)
If this value of u is denoted by f,, then f; is called the first focal distance of
the first surface of the lens and is given by

1 (k-1

If in this expression v' = o, then u =—

=t (3.24)
h n
The combination of equations (3.23) and (3.24) give
1 1
£2_Z (3.25)

o' u:_z

This image at a distance v’ from the first surface serves as an object for the
second refracting surface of the lens. The distance of this object as measured
from the second surface will be (v’ +¢ ), where t is the thickness of the lens. If
the final image is formed in air at a distance v from the second surface of the
radius of curvature r,, then

o

- R

n)_ 1 _\H (since light travels from glass to air in this case)
v U+t 1,

This equation may be written as

1 1-
SR (3.26)
v U+t 7y

As before, if f, is the value of v for v' = oo, f, is the second focal distance of
the second surface and is given by

1 _(1-u)

—= (3.27)
fz &
It can be seen from Equations (3.26) and (3.27) that
1 1
S - (3.28)
v v+t f,
Eliminating v’ from Equations (3.25) and (3.28) we get

fi—u fi-v
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which on simplification gives
,uufl(fz—v)+t(fl—u)(f2 —v)—/wfz(fl —u)zO
u(ﬂflfz _fzt)_v(ﬂflfz +f1t)+uv[,u(f2 _f1)+t:|+f1f2t =0
Dividing throughout by [ u(fa—f)+t ] , it can be seen that
wo pfifs = fit "w— pfifs - fit o fuft _
{u(fz—ﬁw} (um —f])+tJ Culh-gye B
Equation (3.30) is of the form

ERVERE o
v—p3 u—o) F

for on multiplying both the sides of Equation (3.31) by F(u—a)(v—f8) and

rearranging we get

w—(F+p)u+(F-a)v—F(B-a)+aB =0 (3.32)

For Equations (3.30) and (3.32) to be identical, the following identities
must hold

_ pfifs = fot
DG o
_ M+ St
_(F_a)_u(fz—fl)” .
and
_ hfit
aﬁ—Fﬁ+Fa—#(](2_ﬁ)+t (3.35)

The values of a, B, and F can be obtained by multiplying Equations (3.33)
and (3.34) and adding the product to Equation (3.35). Thus

(uifo+ f)uhifu = £1)
[#(fz _f1)+t:|2

F*—~af -Fa+Fp = (3.36)

and

po (ALY ufift(fi =)= f8 . fifit
[u(fi-f)+t] u(fs-fi)+t
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(hf) +ufifit(fi—f) = Aft+ it u(fo - £)+t]
[.u(fz _fl)+t:|2

:( mhfs J
,u(fz_fl)"'t
Cpop ML
,U(fz_fl)+t

Now it has to be decided as to which of the two signs is admissible. It is
clear that this equation will hold for all values of ¢, including ¢ = 0, which is
the case of a thin lens. In such a lens if a luminous object is placed at a dis-
tance f, from the first surface, the rays after refraction from the surface will
be rendered parallel, and hence after refraction at the second surface of the
lens they will come to a focus at a distance f, from the latter. Moreover, in
the case of a thin lens, both a and B are zero. Thus, on putting o = f =0 and
v =f, and u =f, in Equation (3.31), it reduces to

1 1 1

fi f F
F=—fif,#(f.~f) (3.39)

It can at once be seen that the values of F obtained by putting ¢ = 0 in
Equation (3.37) will agree with that given by Equation (3.38) only when the
negative sign is taken into account. As such the positive sign becomes inad-
missible, and Equation (3.37) becomes

o B
H (f 2~ h ) +i
The values of o and B can now be easily obtained from Equations (3.33),

(3.34), and (3.39).
Thus,

(3.37)

(3.39)

o=—— (3.40)

(3.41)
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such that,
af,=Bf (3.42)

a relation which is of great importance.

If V is measured from a point at a distance f in the positive direction from
the second surface and U from a point at a distance o in the positive direction
from the first surface, thenu—a =U and v—- B =V.

Equation (3.31) may then be written as

1 1 1

=== (3.43)
V U F

a relation which is similar to that used in the case of a thin lens.

PRINCIPAL POINTS AND PRINCIPAL PLANES

In the case of thin lenses, the distance is always measured from the center
of the lens. The distance from the center of the lens to either focus gives the
focal length. But if a thick lens is used, the distance from its center to one
focus is different from the distance to the other focus, and neither distance
equals the focal length of the lens. Also, if an attempt is made to determine
the focal length by, say, the U, V method, there is no fixed point from which
these distances can be measured.

However, it has been shown previously that there are two points or planes
from which the distances may be measured in all cases, and the simple for-
mula for the lens may be applied as usual. These points are called principal
points. Thus, the point at a distance a from the first surface is called the first
principal point and, similarly, the point at a distance B from the second sur-
face is called the second principal point. Planes drawn perpendicular to the
axis and passing through these points are called principal planes.

In Equation (3.43) it is seen that if V=00, U= —F so that - F is the first focal
distance of the lens. Its magnitude is given by Equation (3.39) and is measured
from the first principal point. Similarly, if U= oo, V= F and then F is the second
focal distance of the lens and is measured from the second principal point. A
point at a distance F from the first principal point, as defined in Section 3.3, is
called the first focal point of the lens. Similarly, the point at a distance F from
the second principal point is termed as the second focal point of the lens.

If the lens is placed in a medium of a uniform refractive index, the first
and second focal distances are found to be equal in magnitude but opposite
in sign.
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3.10 PROPERTIES OF PRINCIPAL PLANES AND
PRINCIPAL POINTS

a.

Principal points are conjugate foci. Equation (3.31) may be written as
Fu—a)
F+(u—-a)

v-PB=

If u = o, whatever the value of F is, v = f3, so that if an object is placed at
a distance a from the first surface or at the first principal point, its image
will be formed at a distance B from the second surface, that is, at the sec-
ond principal point, and vice versa. If the first principal point is outside
the lens on the positive side, a real object can be placed, and if it is on the
negative side, a virtual object must be placed.

In general, the two principal planes of a thick lens are conjugate planes.

Principal planes are planes of unit magnification. Let O as shown in Fig-
ure 3.9 be an object placed on the axis of a thick lens at a distance u from
the first surface, and let AB be any ray passing through the first principal
focus A of the first surface.

FIGURE 3.9. Planes of unit magnification.

This ray which touches the upper extremity of the object will after refrac-

tion from the first surface travel parallel to the axis inside the lens. After
refraction from the second surface, this ray will pass through D, the second
principal focus of the second surface. This ray, it is clear, will pass through
the extremity of the image whose position is given by Equation (3.31). Let
I be this image. Drop perpendiculars are BE and CF on the axis. When the
rays AB and CD are nearly parallel to the axis, the points E and F coincide
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with the poles of the curved surfaces. Let the object distance EO = —u and
the image distance v =+ FI. Also, let EA=— f, and FD =+f,. If BE=CF =h,

then (ﬁjz( h j from the similar triangles ABE and AB'O and
Y (fl - u)

EEJ = [LJ from similar triangles CFD and DID' so that the mag-
yz + (U - fz)

nification m is given by

mzﬁzfl(fz_v) (3.44)

v f (f] - “)

This is the expression for magnification in any case. If the value of m is
positive, the image I will be upright; if negative, the image I will be inverted.
If now the object O is supposed to lie in the first principal plane u = o, the
image will lie in the second principal plane for which v = . With these values
the magnification becomes

AL-B)_fif—fiB
L(fi-a) fife-fe
since f, 8 = f,a from Equation (3.42).
Thus, the dimensions of the image seen in the second principal plane are
equal to those of the object in the first principal plane, and also the lateral
magnification is unity and positive.

m

=+1 (3.45)

LATERAL MAGNIFICATION REFERRED TO THE
FOCAL POINTS

Figure 3.10 shows the lateral magnification. Let Q,R, and Q,R, be the prin-
cipal planes of a thick lens, and let P,, P, be the two principal points. Let an
object A,B, of size y, be placed at a distance x, from the first focal point F,.
If A,B, is a plane conjugate to A,B,, then the former will be the image of
the latter.
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3.12

Bl Q_1 _______ Qz
A
Y1 - Xy
P, P; A
Ay F, F.
Yz
— R ______ R:
B

FIGURE 3.10. lLateral magnification.

Suppose the first and second focal distances P|F| and P,F, are respectively
f1 and f,. Any ray B,R, passing through F, and striking QR at R, will emerge
in the same direction of the axis at the point R, such that PR, = P,R, (lateral
magnification is unity and positive for principal planes) and will be rendered
parallel to the axis. Similarly, a ray B,Q, parallel to the axis and striking Q R,
at Q, will emerge on the same side of the axis at Q, such that P,Q, = P,Q,. It
is evident from the figure that the triangles A,B,F, and P,F\R, are similar and
so are the triangles P,Q,F, and F,A,B,. Therefore

Hn g Y %
-BR, f, " BR, f,
Since y, =PQ, =PF,Q, and y, = R, =B, R,, Equation (3.46) gives
PO, _x d -PR, «x,

and ———=
_PIRI fl PzQz fz

(3.46)

or
PO, % bR, _ %
PR, BO, ffs

S, =i (3.47)

This is known as Newton’s formula.

LATERAL MAGNIFICATION REFERRED TO PRINCIPAL
POINTS

In the preceding section, the distances of the image and object were meas-
ured from the focal points. Sometimes it is convenient to measure the dis-
tances from the principal points P, and P, as in Figure 3.9.
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Let A, =u and P,A, = v. Then, according to our convention of signs

v =—(u—f,)and x, =+(v- f;)
Substituting these values of x, and x, in Equation (3.47) and remembering
that f, is negative, it is seen that

(u_fl)(v_fz)zflfz
which on simplification yields

£+£:1

u (¥

(3.48)

and the expression for lateral magnification becomes

me_h__ v=f (3.49)

u-= fl f 2
A more useful expression for lateral magnification can be obtained by
applying Lagrange’s law to the principal planes. If 6, and 6, are the slope
angles in the object and image spaces respectively, then

0
B_% (3.50)
Hy 91

since lateral magnification is unity in principal planes. If 6, and 6, are small,
as shown in Figure 3.11.

B1 M1 K2
v - v »
0, Az
Aq < u 5 P1 P2 02
Y2
Bo

FIGURE 3.11. Lateral magnification referred to principal points.

-0, = and -0, =72
—u +v
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313

so that
G
Y u 01 Hy J\U

because of Equation (3.50).

It will be found, on comparison, that Equations (3.16) and (3.51) are of
the same form. It may be recalled that the distances « and v as in Equation
(3.16) were measured from the vertex, while here these distances have been
measured from the principal points. It is therefore inferred that the principal
points of a single refracting surface coincide with its vertex.

DETERMINATION OF THE PRINCIPAL AND
FOCAL POINTS

Equations (3.39) to (3.41) are used to determine the positions of the principal
and focal points. According to Equation (3.39)

F: ”ﬁfz
u(fo=fi)+t
Where f, = 4 , fa= %
u—-1 u—1
If ©=1.5, then
Fe 1511,

0.25{1.5 x (o@(“ —n)+ t}

6r 1,
F=——12 3.52
t+3(r,—1n) ( )

Similarly,

ey
u(fo-f)+t 1.5x((:5j(ﬂ—6)”

And if t is small,

—2nt
o0=—"— (3.53)
3("1 - )
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and
=21t
3 (rl -1, )

Let us calculate the values of a, B, and F for a biconvex lens.
Let 1, =, =r for simplicity. If f and f" are the first and second focal
distances

f=-f=r

if ¢ is small as compared to r,

B= (3.54)

2

6rt

t t

oa=—— and P =— iftis small.
3 3

Thus, if the thickness of the lens is known, the principal and focal points of

a lens can be calculated. Further, if the lens is placed in air, the nodal points

coincide with the principal points. Some typical cases are shown in Figure 3.12.

FIGURE 3.12. Positions of principal points in thick lenses.
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3.14

GRAPHICAL CONSTRUCTION OF IMAGES

315

Let LL' be a thick lens whose principal points are P, and P,, as shown in
Figure 3.13. These points can be calculated with the help of the previously
given formula. Through these points, draw planes perpendicular to the axis.
These will be the principal planes of the lens. Suppose an object O is placed
at a certain distance from the lens.

Y

1
1
|
1
1
1
1
1
|
1
1 P2
l
1
1
1
I
|
1
|
I

FIGURE 3.13. Construction of images.

To construct the image, take a ray passing through the upper extremity
of the object and the first focal point F, of the lens. Then this ray will be ren-
dered parallel to the axis after refraction by both surfaces of the lens. Also,
this ray will emerge out of the second principal plane on the same side of the
axis and as far from it as the point in which the incident ray cuts the first prin-
cipal plane. Further, another ray from the object parallel to the axis will after
refraction from the lens pass through F,, the second principal focus. Draw a
ray parallel to the axis through the upper extremity of O. The intersection of
this ray with the first principal plane will be on the same side of the axis and
at the same height as that of the refracted ray passing through F,. Hence, the
latter ray can be drawn. The point of intersection of both these rays gives the
image I of the object O. The image can be constructed in a similar manner
for a concave lens.

NODAL POINTS

Until now it has been assumed that the lens is placed in air or in one medium,
but if the medium on one side of the lens is different from that on the other, it
becomes necessary to consider two more points on the axis. These points are
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such that a ray of light directed from the positive side of the lens toward one of
these points will after refraction from the lens appear to proceed in a parallel
direction from the second. These points are respectively called the first and
second nodal points.

Let A and B as in Figure 3.14 (a) be the centers of curvature of the two
surfaces of a thick lens. From A draw a radius AQ of the front surface. From
B draw a radius BR of the second surface parallel to AQ. Then it is clear
that small elements of the surface at Q and RA will be parallel to each other
(because the normal to these surfaces are parallel). Hence, a ray of light PQ
directed toward N,, which is incident at Q, will after refraction through the
lens proceed along RS in a direction parallel to that of PQ. Produce SR back
to cut the axis at N,. Then N, and N, are the two nodal points.

In the previous construction, the media on both sides of the lens were the
same. However, if the two media are different, two nodal points exist in this
case as well.

(a) (b)

FIGURE 3.14. (a) Nodal points, (b) Nodal points.

Let P,B and P,G be the principal planes of a lens and let F, and F, be the
first and the second principal focus respectively. Let a ray of light AC directed

toward the first nodal point N, cut the first principal plane at C, as shown in
Figure 3.15.
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Y

P4| Nz Pz Fs

FIGURE 3.15. Nodal points.

It will then emerge at the second principal plane on the same side and at
the same distance from the axis along DE such that P,C = P,D. Also, the ray
DE will be parallel to the incident ray AC and will appear to proceed from the
second nodal point N, (obtained by producing DE backward).

The two parallelograms N,N,DC and P,P,DC stand on the common base
CD and between the two parallel lines P,P, and CD, and hence they are equal
in area.

Thus, Area P,P,DC = Area N\N,DC. Therefore, N,P, = N,P,.

According to the previous equation, it is clear that the first nodal point is
as much in advance of the first principal point as the second nodal point is in
advance of the second principal point.

Again, draw a perpendicular F|A cutting the incident ray AC in A. From
A draw a ray AB parallel to the axis. This ray will emerge out at G such that
P\B = P,G and will after refraction through the lens pass through F,. Since
A is in the first focal plane, all the rays starting from A will after refraction
through the lens be rendered parallel to each other. The rays DE and GF, will
therefore be parallel, with the result that the triangles AF,\N, and GP,F, will
be equal in all respects.

PF, =N,F,

Pze :PlFl _PINI
or

PN, =n=PF -PF, Z_(FI +F2)
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which gives the distance between the nodal points and the corresponding
principal points.

If the medium on both sides of the lens is air, -F, = +F,, and in that case
n = 0 or, in other words, the nodal points coincide with the principal points
when the lens is placed in air. In the case of a thin lens, these points are evi-
dently coincident with the center of the lens.

3.16 OPTICAL CENTER

In Figure 3.13 (a) the ray PQ after refraction by the surface follows the path
QR and cuts the axis at O. This point O is called the optical center of the lens.

Since QN is parallel to RN, and AQ is parallel to BR, the triangles AQN,
and BRN, are similar and hence

0Q _AQ
OR RB

If only the paraxial rays are considered

OQ =0V, and OR =0V, approximately

and if the radii of curvature AQ and RB are r; and r,, then

i _n

ov,
which gives the position of the optical center.

It will be noticed that the position of the optical center simply depends
upon the radii of curvature of the surfaces and is independent of the refractive
index of the lens. Hence, all the rays irrespective of their wavelengths or color
pass through the optical center.

Since the ray PQ directed toward N, is refracted by the first surface along
QR cutting the axis at O, it is clear that O is the image of N,. Similarly, it can
be seen that N, is the image of O formed by refraction at the second surface.

3.17 CARDINAL POINTS

Thus, it has been seen that there are certain points for a thick lens which sim-
plify the consideration of its problem to a great extent. There are three pairs of
these points: (a) principal points or Gauss points, (b) focal points, and (c) nodal
points. These sets of points are called the cardinal points of a lens system.
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A comparatively less important set of points is also occasionally encoun-
tered in literature. These points simplify the problems in rare cases. They are
as follows:

1. Anti-principal points: They are conjugate points for which lateral magni-
fication is unity and negative. They lie as far from the focal points as the
corresponding principal points but on the negative side.

2. Anti-nodal points: They are points for which the angular magnification is
unity and negative. They lie as far from the focal points as the correspond-
ing nodal points but on the negative side.

3. Bravais points: They are self-conjugate points. These points do not exist
at all in some cases. In some cases, one or even two pairs may exist.

3.18 THE THIN LENS

The focal length of a thick lens placed in air is given by Equation (3.39)

__ pfifs
-

where
1 _ p-1 1 1-u
fi n 1o £}

With these values of f; and f,, F becomes

f=F=-

nr

(y—1)[ﬁ—@+“‘1t}

u
In a thin lens the thickness ¢ is negligible. Hence, Equation (3.55) gives

lz(”_l)(l_lj (3.56)

Also, when ¢ is small, it can be seen from Equations (3.40) and (3.41) that
a=p=0,

(3.55)

that is, in the case of a thin lens placed in air, the principal points as well
as the nodal points coincide with the vertices of the surface, whose mutual
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separation can be neglected. As a consequence, a thin lens may be repre-
sented by a straight line perpendicular to the axis.

FOCAL LENGTHS OF THIN LENSES IN SPECIAL CASES

1. Biconvex lens. The radius of curvature r, of the surface facing the incident
ray is positive, that of the other surface r, is negative, and hence

ol

1 2
The focal length of a biconvex lens is therefore positive.

2. Plano-convex lens. If the plane surface faces the incident light , = o0 and

1 (u-1)

[ A A
f T
If the convex surface faces the incident light, r, is positive. Even then the
focal length is positive.

3. Concavo-convex lens. Here both the radii of curvature are on the same

side so that if r, > r,, the focal length will be negative, and if r, > r, it will
be positive.

4. Biconvex lens. In this case the radius of curvature r, of the surface facing
the incident ray is negative while r, is positive so that

o

5. Plano-concave lens. If the plane surface faces the incident ray, r, = oo,
while r, is positive. Consequently

1))
f )

It can be shown that if the concave surface faces the incident light, the
focal length will remain negative.

In general, if the thickness of a lens increases toward its periphery, the
focal length is negative, and if it increases toward its central region, the focal
length is positive, as shown in Figure 3.16.
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f2 r r2 n

r{ > rs, f negative r{ <rs, [ positive

FIGURE 3.16. Thickness of a lens.

3.19.1 Power of a Lens

The reciprocal of the focal length of a lens expressed in meters is called its
power and is expressed in diopters. A diopter is defined as the power of a con-
vex lens whose focal length is one meter, that is

+1D = —i—L cm

Thus, the power of a convergent lens is positive, while that of a divergent
lens is negative.

3.19.2 Principal Foci
Putting ¢ = 0 in Equation (3.8 g), one gets

puf, _ Hofy
fl —u fz -0
where
" )
= — d 5 = —

fl n—1 an f‘ u—1

With these values the previous equation becomes
1 1 1 1 1
———:(,u—l)(———]=— (3.57)
v ou n o n) f

This is the general equation for the conjugate distances in the case of a
thin lens placed in air. The distances u and v are measured from the optical
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center of the lens, which coincides with the two principal points for all prac-
tical purposes.
If in Equation (3.57) v = o, then

1 1 1 1
i) o

Expressed in words it means that if rays starting from an object are ren-
dered parallel after refraction through the lens, the particular object distance
given by Equation (3.58) is termed as the first principal focal distance of the
lens and is given by

ol

The point on the axis at a distance f, or, in other words, the point at which
the object is placed in this particular case, is called the first principal focus of
the lens.

If u = oo, that is, parallel rays are incident on the lens, the image distance
v is given by

1_201_1%g__.lj (3.59)
v U Ty

This particular value of v at which parallel rays converge or appear to
converge after refraction through the lens is called the second principal focal
length of the lens and is given by

-

The point at which the parallel rays converge or appear to converge after
refraction is called the second principal focus of the lens. Thus, for a thin lens
placed in air

fi==1;

3.20 THE CARDINAL POINTS OF THIN LENSES

A method for locating the cardinal points of a combination of lenses may also
be given. Before considering the combination of two lenses, we shall show that
the deviation of any ray due to refraction through a thin lens is independent of
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the angle of incidence and depends upon the height h of the point where total
deviation occurs above the principal axis and the value of the second princi-
pal focal length. In Figure 3.17, I is the real image of the axial point object
O. A ray OA on refraction through the lens undergoes a deviation, which is
evidently given by

§=a+(-p)

FIGURE 3.17. Cardinal points of a thin lens, where / is the real image of the
axial point object O.

In the paraxial region, since inclinations of the incident and refracted rays
to the principal axis are small, we can write

h h
o= (_u) and (—ﬂ)—;
Hence, 0 =h(l—l)=]i, (3.60)
v u) f

We therefore conclude that all rays incident at the same point of the lens,
from whatever directions, undergo the same deviation on refraction through
it. This statement is true for a divergent lens also.

Consider now two thin convergent lenses 1 and 2, as shown in Figure 3.18
separated by a distance d. Let f, and f," be the first and the second principal
focal lengths of the first lens, and let f; and f," denote the same quantities for
the second lens.
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FIGURE 3.18. Location of second principal plane P'H' of the combination of two lenses.

A ray of monochromatic light, parallel to the principal axis, is shown inci-
dent at the height h, above the axis of the first lens. Due to refraction through
the first lens, it is deviated toward the second principal focal point F," of this
lens. The deviation 8, thus produced is given by

_h
ﬁf
The emergent ray from the first lens, before reaching the focal point F’,
meets the second lens at height h, above the principal axis and undergoes
deviation &, in refraction through it, and finally crosses the principal axis at
point F’. Evidently, the deviation 8,, for reasons similar to those used in deriv-
ing Equation (3.60), is given by

f;

The total deviation 6 of the incident ray due to refraction through the
combination of lenses is equal to the sum of §, and J,, because the deviations
are in the same direction.

The ray AB incident on the optical system is parallel to the principal axis;
hence, F', the point where the emergent ray CF' intersects the principal axis,
is termed as the second principal focus of the optical system. The conjugate
rays AB and CF’ when produced intersect at the point P’. As a consequence,

61
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it would appear that the combination of lenses functions as if the deviation of
the incident ray occurs at P'. We may therefore replace the optical system by
a single lens of second principal focal length equal to H'F’, placed in position
P'H’, where P'H'" is a plane through P’ transverse to the principal axis. Under
this condition rays parallel to the principal axis, after refraction through this
hypothetical lens, would also come to focus at F'. Accordingly, this lens is
called the equivalent lens for parallel rays incident on lens 1. However, for
parallel rays incident or emergent from the second lens, we shall have another
equivalent lens in another position. H'F" is called the equivalent focal length
of the combination and P'H' is called the second principal plane of the optical
system.
Now

6=6,+6,
Substituting the values of 8, &, and 6,, we get
h, h N h,

— = —”, (3.61)
A
From the similar triangles CH,F, and BH,F,’, we conclude
hy, f/—-d
2= (3.62)
hy  f,
or
hz = h’l - hl_c,l
fi
Substituting the value of h, from Equation (3.61), we get
i,:lﬁi’__’d' (3.63)
A A
or

___ N A
f'= rr A (3.64)

where, we have written here
A=d-f-f, (3.65)

or

A=d+ fi+f, (3.66)
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To derive the first principal focal length f of the combination of lenses, we
proceed as shown in Figure 3.19.

FIGURE 3.19. Location of first principal plane PH.

A ray of light from an axial point F after suffering deviations 6, and 6, due to
refraction through the first and the second lens respectively is rendered paral-
lel to the principal axis. As a consequence, F is the first principal focal point of
the optical system. The total deviation & is the sum of 6, and J,, and the point
where the deviation appears to have occurred is P, the intersection of the
emergent ray parallel to the principal axis and its conjugate incident ray on the
optical system. PH is called the first principal plane, and HF is called the first
principal focal length of the optical system. By convention of signs it is nega-
tive, since F is to the left of H, the first principal point of the optical system.
Now

0=0,+9, (3.67)
But

__ Y __N __ Y%
TR TR

On substituting the values of 6, §,, and 6, in Equation (3.67), we get

Yo_% Y (3.68)
o h
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From the similar triangles DH, F, and EH,F,, we have

s (_fZ)_d:f2+d

= (3.69)
Y, (_fz) £
or
Y=Yty (ij
1 2 2 f2
Substituting the value of y, in Equation (3.68), we get
1 1 1 d
—=—+—+ (3.70)
f L L L
or
o fHfs S 3.71)

fi+fi+d A

where we have written here

A=d+ f,+f,

3.20.1 Situation of Principal Points

Let p denote the distance of the first principal plane PH from the first lens
and let p" denote that of the second principal plane P'H' from the second lens.
Owing to the reason that the principal planes are located from the given posi-
tion of the lens, we should assign signs to p and p’ according to our sign con-
vention, with reference to lens positions as origins. Accordingly, the numerical
value of H,H' is assigned a negative sign, since H' is to the left of H,. But H is
to the right of H,, and hence we have shown H H as (+p).

To evaluate the distance of the second principal plane from the second
lens, we refer to Figure 3.18. Now, from similar triangles P’"H'F" and CH,F",

we have
hy _f _(,_P )_f tp 3.72)
h, f f
Equating the value of h—gj as given by Equation (3.62) and Equation
(3.72), we get 1
! ! V_ l !
AL il LI i) (3.73)

!

f i fi
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Substituting the value of f* from Equation (3.64) in Equation (3.73),

pr =124 (3.74)
A

To evaluate p we refer to Figure 3.19, in which from similar triangles PHF
and DH | F we have

y_l_(_f)_P:f+P (3.75)

Ys (=f) f

Equating the value of [ﬂj as given by Equations (3.69) and (3.75),
we get Yo
f+p :f2+d(d)

/ I

or
p=+i(d)=+%(d) (3.76)
2 2
Substituting the value of f from Equation (3.71) in Equation (3.76), we get
fid
=— 3.77
p=Lt 3.7
Example 3.1

Two convex lenses each of 20 cm focal length are placed 5 cm apart. A tower
of height 100 meters and 200 meters distant is viewed through them. Find the
position and the size of the image.

Solution:

Suppose light from the tower is incident on the given optical system from the
left. The lenses are situated in air.

Here, fl' =420 cm, fz' =420 cm, and d =5 cm
Hence
1 1 1 d 2 5 7

_ =4 = —— = —
£ ff frf) 20 20x20 80

or
f':@(:m

7
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Similarly, f= % cm
and
’z_ﬂz_wz_@cm
fl’ 207 7
and
P = +i = +? cm.

ftz,
Thus, the first principal point H is (2—70) cm to the right of the first lens,

and the second principal point H' is (%j cm to the left of the second lens. The

20

tower is 20000 cm in front of the first lens or 20000 + (7) _ 140020

cm 1m

front of the first principal plane. Hence, for the tower, u = —( 140020) when
referred to principal points. 7

Now,
L+i=1_> [ 80 j+( 807 j:l—>v=+11.4cm
v U 7xv 7 x 140020
The positive sign indicates that the image of the tower is formed at 11.4

20
cm to the right of the second principal point H' or at 11.4 — [7j =8.54cmto

the right of the second lens. Also, since the lenses are situated in air, we have

y_v_ Max7 o, 1L4x7Tx10000 o o9

y u 140020 Y 140020

The image of the tower is of height 5.699 cm and the negative sign indi-
cates that the image is inverted with respect to the object.

Example 3.2

Obtain an expression for the focal length of the combination of two thin coax-
ial lenses of focal lengths f; and f, separated by a distance “a,” the refractive
index of the medium enclosed between the lenses being “n.”
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Solution:

It will be recalled, as proved in Section 3.3, that the ratio of the second prin-
cipal focal length to the first principal focal length of a thin lens is numerically
equal to the ratio of the refractive index of the real image space to the index
of the real object space, that is,

£\ =nf,
where n is the refractive index of the real image space with respect to the
index of the real object space. Since we assume n > 1, hence fl' > f,. Areverse
of this holds good if the refractive index of the real object space with respect
to that of the real image space is n, that is, in this case the second principal
focal length will be smaller than the first principal focal length.

In our problem of two lenses separated by a medium of index “n,” we
assume light to be incident on the combination from the left in air. Then, for
the first lens, the real object space is an air medium, while for the second lens,
the real image space is an air medium. We further assume that the given focal
lengths f, and f, are the numerical values of the smaller focal lengths of the
two lenses. Accordingly, the second principal focal length, f,', of the first lens
is given by

flr = '”fl
and the second principal focal length of the second lens is given by

and its first principal focal length is given by
1, =nf, =nf,
Now, the optical separation, A, between the two lenses is given by
A=a-f' + f, =a—nf, —nf,
Therefore, the second principal focal length f* of the combination is
fro- fify _ nf,f, _ ff,
A a—nf, —nf, fl+f2_(aj

n
and the first principal focal length of the combination is given by

_ flf2 _ (_fl)(_nf2) _ flf2
=4 -

“a-nf, —nf, £

)
n
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3.21 EXERCISES

1. The study of the refraction of light through a single spherical surface is
of great fundamental importance in what?
2. What are the derivations of various formulae in this branch of optics
based upon?
3. What is the equation of the angle of refraction r conjugate to the angle
of incidence i according to Snell’s Law?
4. The theory based upon the approximation that sin, = 6, beyond the
first order term is referred to as what?
5. The axial object point which is imaged at infinity by a refracting surface
is called the point F.
6. What is the distance of F from the pole of the surface called?
7. What variable represents the first principle focal length of the surface?
8. What is the principal focal point of the image space?
9. The principal focal point of the image space is also referred to as what?
10. The two focal lengths of the refracting surface are always of opposite
signs.
True or False
11. What does the Abbe sine condition do for all rays?
12. What is the equation given by Lagrange called?
13. If one surface is spherical and the other cylindrical, the lens is said to
be spherical.
True or False
Fill in the Blanks:
14. A passing through the centers of curvature of the two
surfaces is called the principal axis of the lens.
15. The distance from the center of the lens to either focus gives the
16. Planes drawn perpendicular to the axis and passing through these

points are called what?
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17. The first and second focal distances are foundtobe ____in

magnitudebut ___ in sign.

18. What are the three cardinal points of a lens system referred to as?

Match the following points to their meanings:

19. Anti-Principle Points self-conjugate points

20. Bravais Points angular magnification

21. Anti-Nodal Points lateral magnification

Fill in the Blanks:

22. The focal length of a biconvex lens is

23. If the convex surface faces the incident light, r, is ; the
focal length is

24. In general if the _ increases toward
its periphery, the is negative, and if it
increases towards its central region, the focal length is

25. PH s called the and HF is called the

of the

optical system.

26. Define the cardinal points of a system of coaxial lenses. Describe how
you would determine the principal planes of a combination of two thin
lenses separated by a distance.

27. What are the properties of the cardinal points of a coaxial lens system?
Plot the cardinal points of a Huygens eyepiece. How can they be deter-
mined experimentally?

28. Show that for a coaxial lens system, xx’ = ff" where x and x” are the
respective distances of the object and image from the first and second
focal points, and f and f” are two focal lengths. What form does the
expression take when the media on the two sides of the system are the
same?

29. Find the expression for the equivalent focal length of two thin lenses
separated coaxially by a finite distance.
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30.

31.

32.

33.

34.

35.

36.

37.

38.

How would you determine experimentally the positions of the focal
and principal points of a coaxial lens system? Explain and illustrate how
to trace the image of an object formed by a lens system, given the posi-
tions of the cardinal points.

Give the graphical construction of the formation of an image by a
system of lenses. How are the nodal points of a system of lenses deter-
mined experimentally?

Two thin lenses of focal lengths 12 ¢cm and 4 cm are kept separated
by a distance of 8 cm. Plot the positions of the cardinal points for the
combination. Derive the formula used.

A telephoto lens consists of a convergent lens of focal length 12 cm
facing the object and a divergent lens of focal length 5 cm placed 8 cm
behind the former. Find the position where the plate should be placed
to photograph a distant object.

What are different kinds of magnifications associated with a pair of
conjugate positions of a coaxial optical system? Establish a relation
between them.

Two thin convergent lenses each of 20 cm focal length are set coaxi-
ally 5 cm apart. An image of an upright pole 200 meters distant and

10 meters high is formed by the combination. Find the position of
the unit and focal planes and the image. Also find the size of the image.

Prove for a combination of two thin lenses of focal lengths f, and f,
separated by a distance d that the focal length of the combination is
given by

11,1 d
fh Ak

Two convex lenses of focal lengths 20 cm and 5 cm are 10 cm apart.
Calculate the power of such a combination.

Derive an expression for the focal length of a system of two thin lenses
separated by a distance and calculate the position of the principal
points. A thin converging lens and a thin diverging lens are placed
coaxially in air at a distance of 5 cm. If the focal length of each is 10 cm,
find for the combination (a) the focal length, (b) the power, and (c) the
position of the principal points.
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40.

41.

42.

43.

44.

45.

46.

47.
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Derive an expression for the equivalent focal length of two thin lenses
of focal lengths f, and f, arranged coaxially at a distance apart.

Two thin convex lenses of focal lengths 12 ¢cm and 6 cm are placed
coaxially 8 cm apart. Determine the position of the cardinal points of
the system.

An object is placed at a distance 60 cm from a thin convex lens of focal
length 20 cm. There is a second thin convex lens of focal length 30 cm
that is 10 cm away from the first. Calculate the distance of the final
image from the second lens.

Two plano-concave lenses of refractive index 1.50 have radii of curva-
ture of 20 cm and 30 cm respectively. They are placed in contact with
the curved surfaces facing each other, and the space between them is
filled with a liquid of refractive index 1.33. What is the focal length of
the combination?

A concavo-convex lens has an index of refraction 1.5, and the radii of
curvature of its surface are 10 cm and 20 em. The concave surface is
upward and filled with an oil of refractive index 1.60. Calculate the
focal length of the oil-glass combination.

What do you mean by conjugate planes? How many conjugate planes
are there for an optical system?

Define principal planes. Where do these principal points lie in the case
of a glass sphere?

Define nodal planes. Where do the nodal planes lie in the case of a
glass hemisphere?

A refracting surface separates two media, one called an incident
medium having (r)(i)(n, ), the other having (r)(i)(n, ). If f, and f, are
image side focal length and object side focal length respectively, then
prove

(2
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4.0

INTRODUCTION

The theory of image formation by mirrors and lenses, developed in the previ-
ous chapters, was based on two fundamental assumptions: (a) the object and
the image points were considered as if they were situated on or very close
to the principal axis, and (b) the rays of light diverging from the object point
were assumed to be confined to a narrow cone of a small angular opening so
as to allow us to replace the sine of the slope angle 0 of the ray by the angle
0. These paraxial conditions lead to a point image of a point object in the first
order theory, so called because of the inclusion of the first order of the slope
angle only.

In reality objects have finite dimensions and, moreover, considerations of
the brightness of the image demand the use of reflecting and refracting sys-
tems having large apertures. In actual practice, therefore, the rays from object
points are confined not simply to a region close to the principal axis, termed
the paraxial region, but they form a cone of such a wide angular opening that
in the expansion of the sine of the slope angle 0 into a series,

3 5 7
sinf :0—0—+0——0—+
31 51 71

and it becomes essential to take into account, in our discussions of the image
formation, at least the first two terms of this series. This theory, called the
third order theory due to the inclusion of the third order term in 6, was devel-
oped by Ludwig Von Seidal in 1855 and gives various departures of the actual
image from the one predicted by the first order theory. These departures, the
so-called Seidal aberrations, may be classified as (a) spherical aberration, (b)
coma, (c) astigmatism, (d) curvature, and (e) distortion. These aberrations are
present in the images formed by ordinary lenses, even when the light of only
one wavelength is employed. They are, therefore, also known as monochro-
matic aberrations (monos is a Greek word for single, and chroma is a Greek
word for color). Each of the five monochromatic aberrations depends upon
the wavelength of light but, leaving aside spherical aberration, the variation is
always negligibly small in the others.

Furthermore, the focal length of the lens depends upon its index of refrac-
tion, which varies with wavelength of light. Therefore, even in the first order
theory, if the light diverging from the object is not monochromatic, a lens will
form a number of colored images of different sizes and at different positions.
Thus, we shall encounter two new aberrations known as the lateral chromatic
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aberration and the longitudinal chromatic aberration. These aberrations are,
however, absent in the images formed by mirrors.

A rigorous mathematical study of these aberrations is beyond the scope
of this book but, wherever possible, simple mathematical deductions will be
given while describing them in detail.

SPHERICAL ABERRATION OF A LENS

When the ratio of the aperture to the focal length of the lens is relatively large,
a cone of rays from any axial object point P, after refraction, is not focused at
a single point in a manner demanded by the first order theory, but produces
an image as illustrated in Figure 4.1.

A
|
f. —_—
; x T
Pt
B

FIGURE 4.1. Spherical aberration of a convergent lens for an axial point object.

This effect is known as spherical aberration and arises due to the fact
that the different annular zones of the lens have different focal lengths—the
greater the radius of the zone, the smaller the focal length along the axis. Con-
sequently, in Figure 4.1 the marginal rays, that is, those which are refracted
at the boundary of the lens, converge to an image point P, which is consid-
erably closer to the lens than the point P, the focus of the paraxial rays. In
general, the rays which are refracted at any other circular zone cross the axis
at one image point between P,, and P,. However, a different axial image point
corresponds to each annular zone. There is evidently no plane in which a
sharp image of P is formed. The cross-section of the refracted beam is circular
everywhere, and it will be seen from the figure that there is one plane, AB, at
which the cross-section has the least diameter. This smallest cross-section is
known as the circle of least confusion, and the best image of P is obtained if a
screen is placed perpendicular to the lens axis at this point.
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The spherical aberration of a biconcave lens for a parallel incident beam is
illustrated in Figure 4.2, while that for a virtual object is shown in Figure 4.3.

FIGURE 4.3. The spherical aberration of a biconcave lens for a virtual object.

The separation between the marginal focus P,, and the paraxial focus P, is
taken as a measure of the longitudinal spherical aberration of the lens, while
the radius of the circle of least confusion is taken as a measure of the lateral
or transverse spherical aberration. The spherical aberration varies approx-
imately as the square of the height of the incident ray above the axis, and it
also depends upon the distance of the object point. The longitudinal spherical
aberration is considered positive or negative according to whether the mar-
ginal ray’s focus P, lies on the left or on the right of the paraxial ray’s focus
P,. A convergent lens produces a positive aberration, while a divergent lens
produces a negative aberration.
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4.1.1 Reduction or Elimination of Spherical Aberration

The following devices are usually employed for reducing spherical aberration
in images:

1.

The spherical aberration of a given lens depends on the radius of the
lens aperture. Therefore, it may be reduced by stopping down the lens
aperture with the help of a coaxial aperture stop, thus using only the cen-
tral portion of the lens. Of course, this would reduce the amount of light
transmitted by the lens.

A single lens of a given focal length can also be designed so that the spher-
ical aberration is at a minimum. The longitudinal spherical aberration (x)
of a thin lens for parallel incident rays is given by

x=+k—

f 2u(u-1y (1-BY

where h is the radius of the lens aperture, f" is its second principal focal

2| BPu’ + o —2u’ )+ —2u” + 2
B | B+ B(u+2p — 20 )+ i’ —2p ] )

length to be substituted with proper sign, and = % is called the

2
shape factor of the lens. For a given value of h, f', and p, the condition for

dk
minimum spherical aberration is l_ﬁ =0, which leads to
a

:2y2—y—4

4.2
p(l+2u) (42

Since B has only one turning value, it obviously gives a minimum value of
spherical aberration k, because when f =1, k becomes infinite. If p1=1.5,

R 1

Equation (4.2) gives f :(R_]J:_(EJ Thus, the form of a lens giving
2

minimum spherical aberration is biconvex or biconcave, and the radius of

curvature R, of the surface facing the object is about one sixth of that of

the other face. In general, the more curved face of the lens should face

toward the incident or emergent rays, whichever are more nearly parallel

R, 6
as shown in Figure 4.4, and this process of changing the shape of the lens

to the lens axis. A lens having (&J - _[l] is termed as the crossed lens
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without a change of focal length is known as bending the lens for min-
imum spherical aberration. It should be emphasized that the spherical
aberration cannot be completely removed by any bending of the lens with
spherical surfaces.

FIGURE 4.4. Crossed lens.

Spherical aberration can also be reduced in a single lens of a given focal
length by constructing it from material of a high refractive index. For
example, suppose f* = 100 cm, h = 10 cm, and p = 1.5. For minimum

spherical aberration =—(éj and from Equation (4.1), k = 1.07 cm.
Similarly, with p=2, g = +(%j , and k is diminished to 0.44 cm.

3. In some optical instruments, plano-convex lenses are employed because
they are cheaper to make, and when their curved side faces the parallel
incident (or emergent) light, the spherical aberration is very nearly the
same as that of a crossed lens. However, if the plane side is turned toward
the object, the spherical aberration is very large. The spherical aberration
being the result of the greater deviation of the marginal rays as compared
to that of the paraxial rays, it is obvious that if the deviation of the mar-
ginal rays are made minimum, the marginal focal point P, will be at its far-
thest to the right, and thus the least value of the spherical aberration will
result. Just as in the case of a prism, the deviation is at a minimum when
the incident and emergent rays make equal angles with its faces; similarly,
in the case of a lens, the deviation of the marginal rays will be at a mini-
mum when they enter the first lens surface and leave the second surface
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at more or less equal angles. Thus, as a general rule, spherical aberration
will be minimized when a lens is so designed or used that the total devia-
tion of a given ray is divided equally between the two refractions. In a
plano-convex lens with plane side toward the distant object, as shown in
Figure 4.5, the deviation of a given ray is simply produced at the curved
surface, and therefore the condition of minimum spherical aberration is
violated, thus accounting for the presence of a large spherical aberration.
But when the convex side faces the distant object, as shown in Figure 4.5,
the deviation is divided between the two surfaces, thus accounting for the
presence of minimum spherical aberration.

Y

Minimum
spherical aberration

FIGURE 4.5. Spherical aberration is minimized if the deviation is equally shared between the surfaces.

The previous principle can be applied for finding the distance apart of

two convergent lenses so that the resultant spherical aberration is a at a
minimum. Consider a ray PQ, parallel to the principal axis, incident on
the lens L, and traversing the optical system as shown in Figure 4.6.

P Q

FIGURE 4.6. Distance apart of two convergent lenses so that the resultant spherical aberration
isaata minimum.
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It will be seen from Figure 4.6 that the deviation produced in the ray by
L, is 8, while that produced by L, is 6,. Hence, the spherical aberration
will be at a minimum when

6,=0,

or
by (43)
fif

also, from similar triangles QL,F," and R,L,F,’, we have
hy M (4.4)

Equating the values of (%j as given by Equations (4.3) and (4.4), we get

x=f - f (4.5)

Thus, the spherical aberration of a combination of two convergent lenses
is at a minimum when their distance apart is equal to the difference of
their principal focal lengths. It is essential in this case that the incident
ray should suffer refraction first through the lens of the larger focal length
and then through the one of the smaller focal length.

4. The spherical aberration of a single convergent lens for object positions
beyond the first principal focus is positive, the marginal focus P, being
nearer to the lens than the paraxial focus P, A concave lens exhibits
negative spherical aberration for a virtual object as shown in Figure 4.2,
the paraxial focus P, being nearer to the lens than the marginal focus
P, . Therefore, by combining a convergent and a divergent lens of proper
shapes, it is possible to compensate the spherical aberration of a single
zone of one lens with that of the other. If the two components are in
contact and the combination is to act as a convergent lens, the principal
focal length of the convergent component should be smaller than that of
the divergent one. Since the spherical aberration increases with decrease
in focal length, it is obvious that the spherical aberration of the conver-
gent lens will be greater than that of the divergent one. Consequently,
the convergent lens should be so shaped as to have minimum spherical
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aberration, while the shape of the divergent one should be such as to have
increased aberration by an amount just to make the resultant aberration
zero. Thus, the system is said to be corrected if the aberration is zero for
one zone and negligible for others. Figure 4.7 gives a graph and the spher-
ical aberration of a cemented doublet corrected for marginal zone. For
other zones the focal length is slightly less than the paraxial focal length.
Combinations of lenses of this type are usually made in such a way as to
eliminate both the spherical aberration and the chromatic aberration.

FIGURE 4.7. Spherical aberration of a cemented doublet corrected for the marginal zone.

5. Although spherical aberration cannot be eliminated, in general, from a
single lens, it is absent for one pair of conjugate points called the aplanatic
points of the lens. For this pair of points, the lens is also free from another
aberration called coma. We shall refer to this point in the next section.

4.2 COMA

The aberration known as coma affects rays that come from object points even
if located very close to the axis of the lens. It arises from the fact that for these
non-axial point objects, there is either an increase as shown in Figure 4.8 (a)
or a decrease as in Figure 4.8 (b) of lateral magnification with the height of
the narrow circular zone of the lens through which the rays are refracted. In
order to discuss the comatic defect in the image, it would be assumed that the
lens system is free from other aberrations.
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Sy Principal ray

FIGURE 4.8 (a). |llustrating the formation of “positive coma” in the meridional plane.

FIGURE 4.8 (b). lllustrating the formation of “negative coma” in the meridional plane.

Figure 4.8 (a) illustrates, in a lens, the effect of coma in the image of an
object point situated close to the axis but at infinity. It would be observed that
the ray below the optical center strikes the equivalent prism in any zone of the
lens approximately in a symmetrical condition of refraction (equal angles of
incidence and emergence) when compared to the ray above it; therefore, the
former ray has nearly minimum deviation, while the latter has comparatively
greater deviation. As a consequence, the rays from the upper and the lower
portions of the same zone, after refraction, intersect below the principal ray,
and thus the lateral magnification for the outer zone is greater than that for
the central zone, and as explained in the sequence, the “coma™ is said to be
positive.

For the non-axial object point P at a finite distance from the lens, it would
be observed, as shown in Figure 4.8 (b), that the ray above the optical center
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strikes the equivalent prism in any zone of the lens approximately in the sym-
metrical condition of refraction than the ray below it.

As a consequence, the rays from the upper and lower portions of the same
zone, after refraction, intersect above the principal ray, and thus the lateral
magnification for outer zones is less than that for the central zone. The coma
under this condition, as explained in the sequence, is said to be negative. In
reality, a cone of rays diverges from the point P. Therefore, we should also
consider the refraction of rays not lying in the meridional plane. This is illus-
trated by Figure 4.9, which shows the refraction of rays through different

points of a single zone.
a \

| —1

—t

Comatic]
Toc circle

1Q

0
—0
Cc P
o

Comatic circle
Meridional section

FIGURE 4.9. Each zone of the lens forms a ring-shaped image called a comatic circle.

By tracing the rays it is found that the meridional rays P,, after refraction
through the points a, i of the lens zone, come in focus at a point a of the image
plane, while the rays P, in a plane perpendicular to the meridional plane,
after refraction through the points ¢, ¢ of the lens zone come in focus at the
point ¢ of the image plane, and so on. The annular cone of rays from P, which
is refracted through the lens zone, thus comes to a focus in a circle a, b, ¢, d,
called H. In the image plane, there will be such a comatic circle correspond-
ing to each zone of the lens. The radius and the distance of the center of the
comatic circle from the paraxial image point is proportional to the square of
the radius of the lens zone. The image of the non-axial point P, therefore, con-
sists of an expanding series of overlapping comatic circles. The totality of these
circles produces an image having a balloon type of flare of light like a comet,
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with a bright nucleus at P’ and with the tail becoming fainter and fainter as it
grows, as shown in Figure 4.10—hence the name coma.

A\ [
v
i ,’l
iy
ep’
FIGURE 4.10. Comatic flare.

If the lateral magnification for outer zones is smaller than that for the
central zone, as shown is Figure 4.8 (b), the tail of the comatic image extends
inward toward the principal axis, and the coma is said to be negative. But if the
lateral magnification for outer zones is greater than that for the central zone,
as illustrated in Figure 4.8 (a), the tail of the comatic image extends outward
from the principal axis, and the coma is said to be positive.

4.2.1 Reduction or Elimination of Coma

We see that a coma is the result of the variation of the lateral magnification
for rays passing through different zones of a lens. Therefore, to eliminate the

coma the lens should be so designed that the lateral magnification (lj is the
Y

same for all zones. The Abbe sine condition is shown in Figure 4.11.

FIGURE 4.11. Abbe sine condition.
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From the Abbe sine condition, which is presented in Equation (3.4),
uysin® = p'y'sin@’, it follows that an optical system is free from coma when
the ratio

sin@ 'y’

— = = Constant (4.6)
sin@"  uy

for all values of 6, where 8 in the previous relation is the angle subtended by
the zone radius at the axial point in the object plane.

For avery distant object near the axis, sin 8 is proportional to h, the height
of the incident ray. In this case, the condition for freedom from coma is then

_h -= Constant (4.7)
sin

From Figure 4.12 it is evident that the ratio ( j is the effective focal

sin@’
length f." of the zone, which is the distance measured along the ray from the
focal point F' to the point A where the ray deviation appears to occur.

Second principal
surface

FIGURE 4.12. lllustrating the ratio ( h j is the effective focal length f'x of the zone.
sin@’

To eliminate the coma, the effective focal lengths of the zones must be
identical. This condition demands that for a lens to be free of coma, the prin-
cipal surface of the lens should be a spherical one with a center at F' and a
radius f,'. This ideal condition also ensures that the marginal focal length is
the same as the paraxial focal length, and so spherical aberration is also absent.
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The coma, like spherical aberration, may be minimized by the proper
choice of radii of curvature of the lens surface, and this is investigated by the
ray tracing method. But a lens designed for a minimum spherical aberration,
however, cannot be free from coma, because the necessary shape of the lens
for a minimum spherical aberration is not the same as required for zero coma.
However, the so-called aplanatic lens, as illustrated in Figure 4.13, is simul-
taneously free from coma and spherical aberration for one particular pair of
object and image points called the aplanatic points of the lens.

FIGURE 4.13. Aplanatic lens.

All rays diverging from an object placed at the center of curvature of the
first surface, after refraction at the second surface, appear to diverge from the
image point P’ with coma and spherical aberration missing. This also holds
good for a small element of object perpendicular to the lens axis at the apla-
natic point.

Alens is free from spherical aberration for two neighboring axial points if
the condition

(3)
usin 5
——= = Constant (4.8)

’sin(Q'J
H 2

is satisfied. Evidently, this condition and the Abbe sine condition cannot be
satisfied simultaneously. Therefore, a lens system can be corrected to form
a true image of either a small element along the axis (absence of spherical
aberration) or a small element perpendicular to the principal axis (absence of
coma), but not both simultaneously.
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4.3 ASTIGMATISM

Even if the lens system is corrected for spherical aberration and coma, the
image of an object point situated at an appreciable distance from the lens axis
is not a point but a pair of mutually perpendicular lines some distance apart.
This aberration is therefore known as astigmatism, as shown in Figure 4.14.

- -

FIGURE 4.14. Astigmatism.

To explain the cause of astigmatism, we shall first express the focal length
of a thin convergent lens

—=+(#—1)[—+—] (4.9)

in terms of the diameter d of the lens aperture and the axial thickness t of the
lens. By elementary geometrical considerations applied to Figure 4.14, we
have

OE® =(0A)x(0C)

1 .. 2R

Zdz =t (2R, -t )==—*

1

Hence,
dz

t, =
8K,

Similarly,

d? ]
t, =
>8R,
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where
t=0A+0OB=t, +t,
whence

1 1 8t
_ = —

R, R, d
Hence,

d2
fos (4.10)
8(u-1)t

Thus, the focal length of a thin convergent lens is proportional to (%) )

Now, in Figure 4.15, Q' is the image formed by a convergent lens of an axial

object point Q.
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FIGURE 4.15. lllustration of the origin of astigmatism.
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Owing to the symmetry of the lens with respect to Q, every section of
the lens through its axis presents the same diameter to the axial point Q, and
so the focal length is the same in all sections through the axis, and hence
the refracted beam converges to one point. However, for the object point P,
far away from the axis, the lens is not perfectly symmetrical. In the meridi-
onal section, the lens diameter presented to P is less than d. Moreover, the
principal ray now passes inclined to the principal axis of the lens and there-
fore traverses a thickness greater than the axial thickness ¢ of the lens. As a
consequence of both the foregoing reasons, the focal length of lens in the
meridional section is decreased for an off axial object point. Consequently,
the image of P in this section is at P/, nearer to the lens than the image point,
which would be obtained by assuming the focal length in this section to be
the same as along the axis. In the sagittal section of the lens, that is, the sec-
tion by a plane through the principal ray and perpendicular to the meridional
section, the lens diameter presented to non-axial object point P is the same
as for the axial point, but the principal ray traverses greater thickness of the
lens. The focal length in the sagittal section is therefore smaller than the axial
focal length, but the decrease is not so much as in the meridional section,
because in the former section the lens diameter presented to P remains d.
The image of P, due to the refraction of rays in this section, is formed at P. '
which is slightly farther away from the lens than P," but closer to the lens than
the image point, which would be given by the axial focal length. These consid-
erations show that for an off-axial object point, the focal length of any narrow
coaxial circular lens zone is not the same at every point of it, being least in the
meridional section and maximum in the sagittal, but in each case less than the
axial focal length.

The effect of astigmatism in the image of an off-axial object point P is illus-
trated in Figure 4.16, where it is assumed that other aberrations are absent.

The meridional section and the sagittal section of the cone of rays diverg-
ing from P are shown by vertical and horizontal shading respectively, before
and after refraction through the lens. The rays in the meridional plane GHQ,
owing to shorter focal length of the lens in this section, after refraction come
to focus at P, while those in the sagitta plane PAB come to focus at another
point P, farther away from the lens than P,". Similar considerations also show
that all rays diverging from P, after refraction through the lens, do not pass
through a single point but pass through a horizontal line ST, which is perpen-
dicular to the principal ray PP'P,, and later on pass through a vertical line
UW. Thus, a small refracted beam is, in general, not stigmatic but astigmatic.
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FIGURE 4.16. A diagram that shows two focal lines which constitute the image of an off-axial object
point P.

The meridional line focus SP,'T, which is perpendicular to the meridional
plane, is called the primary image, and the sagittal line focus UP,' W, which
is vertical in the meridional plane, is called the secondary image. The cross-
section of the refracted beam is, in general, elliptical, the ellipse degenerating
into straight lines at positions of the primary and secondary foci and into a
circle somewhere between these positions, where the major and minor axes
of the ellipse are equal. This circle is known as the circle of least confusion and
gives the best focus of the astigmatic pencil. For a simple convergent lens, the
meridional focus P,’ is nearer to the lens than the sagittal focus P, as shown in
Figure 4.16, and the astigmatism is said to be positive. But for a simple diver-
gent lens as shown in Figure 4.17 (which illustrates only the refracted rays
when produced backward) the sagittal focus P, is nearer to the lens than the
meridional focus P, and astigmatism is said to be negative.
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Secondary image

Primary image

Meridional plane

FIGURE 4.17. Divergent lens produces negative astigmatism.

Each point on the extended object, in an exactly similar manner, gives rise
to its corresponding primary image, secondary image, and the circle of least
confusion. Their respective loci are surfaces of revolution about the lens axis,
paraboloidal in form, and are called the primary image surface, the secondary
image surface, and the surface of best focus. These surfaces are tangential to
one another at a point Q' on the lens axis, the point being the paraxial image
of the conjugate axial point Q in the object space. The amount of astigma-
tism present corresponding to any object point is measured by the difference
between the primary and the secondary image surfaces measured along the
principal ray through that point, and in an uncorrected system it increases
approximately as tan’0 where 0 is the obliquity of the point object.

Reduction or Elimination of Astigmatism

1. Figure 4.18 illustrates the positions of the primary and the secondary
images for a convergent as well as for a divergent lens.
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FIGURE 4.18. Positions of the primary and the secondary images for a convergent as well as for a
divergent lens.
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By proper spacing of convergent and divergent lenses, a combination
may be designed in which the astigmatic differences compensate for one
another to some extent and the images are formed on a single paraboloid
surface, shown by a thick line. There is thus present another aberration
called the curvature of field, which must be independently corrected for
in the lens design. We shall discuss this aberration in detail in the next
section.

2. With asingle lens, astigmatism may be reduced by cutting out the oblique
rays by means of coaxial apertures called stops, placed judiciously. The
essential condition for complete elimination of astigmatism is that the pri-
mary and the secondary image surfaces must have the same curvature.
The principal ray will now pass eccentrically through the lens, and the
astigmatism is markedly reduced. Moreover, with lens shape, as shown in
Figure 4.19, astigmatism may be eliminated completely.

Principal ray

|

Paraxial focus

™

Petzval surface

FIGURE 4.19. Correction for astigmatism.

4.4 CURVATURE OF FIELD

Even if the lens system is free from spherical aberration, coma, and astig-
matism, that is, the zonal focal length of the system does not vary from its
axial focal length for off-axial object points, the image of an object plane is, in
general, a curved surface. This is due to the reason that since off-axial object
points are farther away from the lens system than the axial point, in the case
of a convergent lens forming a real image, the image of an off-axial object
point is formed closer to the lens than the image of the axial object point, thus
accounting for the curvature of the image shown in Figure 4.20.
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FIGURE 4.20. Curvature of field.

In a convergent system the radius of curvature of the image surface is neg-
ative, and hence the curvature is designated as negative, while the converse of
this holds true in a divergent system, the concave side being toward the object
in the former system while away from the object in the latter system. As a
result, by their suitable combination, as explained later on, the image can be
flattened. The curved image surface due to single lens refraction is called the
Petzval surface, and the aberration is known as curvature of field.

4.4.1 Reduction or Elimination of Curvature of Field

1. For asystem of thin lenses, the curvature in the final image is given by
l = Z(L] (4.11)
R nf

1
Hence, for no curvature the condition is that Z(—J =0. In the case of
two lenses, this condition reduces to H

pfi+ s f =0 (4.12)

where p, and f| are the refractive index and focal length of one lens, and
U, and f, are the refractive index and focal length of the second lens. This
condition for no curvature is known as the Petzval condition, and it holds
whether the lenses are in contact or separated. Since p, and i, are pos-
itive, hence f, and f, must be of opposite signs. Thus, by employing a
convergent and a divergent lens of different materials and satisfying the
Petzval condition, the curvature of the image can be eliminated, resulting
in a flat field. If f; refers to the convergent component, then for the com-
bination to also be convergent, it is essential that f, must be greater than
f1- Therefore, in order that Equation (4.4b) may be satisfied, it is essential
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4.5

that p, must be less than g,. This condition cannot be satisfied in the ordi-
nary achromatic doublet consisting of a crown convergent lens in contact
with a divergent lens of flint glass, because the flint glass has a higher
refractive index and a higher dispersion, the latter condition being essen-
tial for the elimination of chromatic aberration. However, certain kinds of
glasses were developed by Abbe at Jena, so that in a given pair one having
a lower index had a higher dispersive power. Therefore, the achromatic
doublets constructed of these glasses can be made free from curvature
simply by choosing the focal lengths of the components so as to satisfy
the Petzval condition. It should be emphasized that under this condition,
astigmatism is also simultaneously minimized. High-quality photographic
objectives are designed on the principles discussed previously and are
known as an astigmat.

2. The Petzval condition is also satisfied by forming a combination of conver-
gent and divergent lenses of equal focal lengths, made of the same glass
and separated by a distance less than their individual focal lengths. Under
such conditions, their combined focal length fis negative, that is, the com-
bination is convergent free from astigmatism and curvature.

3. With a single lens, it is possible to minimize either curvature of field or
astigmatism, by proper location of stops on the lens axis. To eliminate
curvature, the lenses are usually of meniscus type, and the position of
the front stop is adjusted so that the ray can be made to pass through the
lens in such a manner that the primary and the secondary image surfaces
have equal and opposite curvatures. As the surface of least confusion lies
approximately midway between them, this results in the flattening of the
image. Under these conditions astigmatism is, however, much more pro-
nounced in the outer parts of the field.

DISTORTION

Even if the optical system has been corrected for spherical aberration, astig-
matism, coma, and curvature of image so that the image of a transverse plane,
like square, is a transverse plane in the image space, there can be present
another aberration termed distortion in the image. This aberration refers to
the departure from the strict geometrical relationship to each other of points
in the image plane as their corresponding object points have in the transverse
object plane. This departure arises due to a variation of magnification with
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the lateral distance of an object point from the lens axis. If the magnification
increases with an increase in the lateral distance, then the image of a square-
like object situated transverse to the principal axis, owing to the dispropor-
tionately high magnification of the corners as compared with other points, is
of the form resembling a pincushion. This distortion, shown in Figure 4.21, is
termed pincushion distortion.

Pin-cushion distortion

Barrel distortion

Distorted image

FIGURE 4.21. lllustration of two possible distortions in the images.

On the other hand, if the magnification decreases with increasing axial
distance, the images of the diagonal are shortened relatively more than the
images of the side of the square; that is, the opposite effect is produced, and
therefore the resulting image of the square is of the form resembling a barrel.
This distortion shown in Figure 4.21 is therefore termed barrel distortion.
The ideal image in each case is shown by a dotted square. Distortion is mea-
sured by the distance between the actual image point P” from the ideal image
point P’ of an off-axial object point P, the latter image being obtained by the
paraxial condition. It would be observed from Figure 4.21 that the pincushion
distortion and the barrel distortion are of opposite signs.

Before explaining the manner in which the barrel distortion or the pin-
cushion distortion arises, we shall derive the conditions which any optical sys-
tem must satisfy for freedom from distortion. A converging system with an
aperture stop in front of it is shown in Figure 4.22, forming an image at Q'
of a plane normal to the axis at Q), where it is assumed that the lens system is
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corrected for the first four aberrations with respect to the points Q and Q' so
that the image at Q' is also a plane normal to the axis.

m\w i Q' w7

Entrance Exit
pupil pupil
FIGURE 4.22. Condition for no distortion.

The aperture stop serves as an entrance pupil W in the object space, and
in Figure 4.22 it is shown to the left of the first focal point so that the exit pupil
W, which is the image of the entrance pupil W for paraxial rays, is real. Con-
sider a ray from an object point R passing through the center of the entrance
pupil W and, after refraction, through the center of the exit pupil W'. This ray
is known as the chief ray. It cuts the image plane at R’, which is consequently
the paraxial image of R. The magnification produced by the optical system is
given by

- QIRI B W/QI (tang'j
QR WQ )\ tan0
From Figure 4.22 it is quite evident that the magnification of all object
points will be constant, that is, the image will be free from distortion if

m — C t t
WO onstan
and
(tan@'j
= Constant
tan@

for all values of 6. The first condition simply means that all rays through the
center of entrance pupil W must also on emergence pass through the center
of the exit pupil. This demands that the system be corrected for spherical
aberration with respect to the entrance and exit pupils. This constancy of
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(tan@’

. j for all chief ray inclinations requires that the points of intersection
an

of the entrant and the emergent chief rays must lie on a plane normal to the
principal axis.

Now, to explain the manner in which barrel distortion arises, we shall con-
sider two object points R and P, near and remote respectively from the axis.
Since the point R lies in the paraxial region, the incident chief ray RW, after
refraction, will pass through the center W’ of the exit pupil. But the principal
ray PW, being more steeply inclined to the axis, after refraction will not cross
the axis at W', unless the system is corrected for spherical aberration with
respect to W and W, but will cross the axis at W,, which is closer to the lens
than W, the paraxial image of W. If the system were corrected for spherical
aberration with respect to W and W7, that is, if the magnification were con-
stant, the chief ray PW on emergence would have pursued the path shown by
dotted line P'W" in Figure 4.23 and would have crossed the image plane at P'".
Hence, in such a case, we would have the relation

QIP/ QIR!
QP QR
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FIGURE 4.23. |llustrates the origin of barrel shaped distortion.

Now, it is quite evident that in virtue of the system not being correct for
spherical aberration with respect to W and W', the relation

Q!P” < QIP!
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holds. As a consequence, we have another relation
IP!I VRI
QP _Q
QP  OR
that is, the magnification decreases with increase in the axial distance of the
object point, and hence barrel distortion arises in the image.
The manner in which pincushion distortion arises is shown in Figure 4.24,

where the aperture stop is in the rear of the system so that it becomes the exit
pupil W', the entrance pupil W being its paraxial image in the object space.
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Exit pupil pr

Object plane Image plane

FIGURE 4.24. lllustration of the origin of pincushion distortion.

By reasoning along the lines similar to that given in the case of barrel
distortion, it is quite evident that since Q'P" is greater than Q'P’, we have the
relation

QIP!I QIRV

—_— > —_—
QP  OR

that is, the magnification increases with increase in the axial distance, and

hence pincushion distortion arises in the image. The behavior of a divergent

lens is exactly opposite of the behavior of the convergent lens in both the cases

discussed previously.

Reduction or Elimination of Distortion

A single thin lens without any stops to limit the rays is free from distortion
practically for all object distances. However, it cannot be free from all other
aberrations.
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A method of minimizing distortion, illustrated by Figure 4.25, consists in
employing two lens systems well corrected for other aberrations and placed
symmetrically on opposite sides of a central aperture.

Exit pupil for L

R Entrance pupil for L4 Exit pupil for L

Entrance pupil for L

FIGURE 4.25. A symmetrical doublet is relatively free from distortion.

This system is quite distortionless at unit magnification; otherwise, it must
of course be corrected for spherical aberration with respect to the center of
the aperture stop. In effect, the pincushion distortion introduced by the first
lens system is compensated by the barrel distortion produced by the second.
Many camera and projection lenses are constructed in this way.

It should be emphasized that the combination of lenses sketched in
Figure 4.25 cannot be simultaneously corrected for spherical aberration
with respect to the object and image positions as well as with respect to the
entrance and exit pupils. Therefore, the lens system, if free from distortion,
will suffer with spherical aberration and astigmatism.

CHROMATIC ABERRATION

Even if the lens system is somehow corrected simultaneously for spherical
aberration, coma, curvature, astigmatism, and distortion, there will be pre-
sent another aberration called chromatic aberration in the images formed
by lenses, when, instead of monochromatic light, the light diverging from an
object is a heterogeneous one. Light waves of different colors have different
velocities in a refracting medium. Every refracting medium, therefore, has a
different refractive index for each color or wavelength of the spectrum, the
index being least for the red and maximum for the violet color. Now, the focal



114 ° Orrics

length of a thin lens is related to the refractive index of the optical material, of
which the lens is composed by the relation.

i:(u_l)(i_ij (4.13)

f, Rl RZ

As a consequence of this relationship it follows that since pu, > pt,, hence
f.) < f4. Thus, the focal length decreases as we pass from red to the violet
end of the spectrum. A single lens, therefore, forms not merely one image of
an object point but a series of colored images at varying distances from the
lens, one for each of the colors constituting the incident beam. Such a series
of colored images of an axial point object P are shown in Figure 4.26.

White light

FIGURE 4.26. Longitudinal chromatic aberration.

Furthermore, as a consequence of the dependence of magnification on the
focal length and, therefore, on the color of light, the size of the image of the
extended object varies with the wavelength. This is illustrated in Figure 4.27,
which shows for simplicity of the diagram only the red and violet images of an
extended white object PQ. Since f," < f;;’, the violet rays are focused nearest
the lens, and therefore the violet image is smallest, while the red rays are
focused farthest away, and therefore the red image is the largest.

Q
x i Lateral
? chromatic

Fr Py Pr

-]

aberration
Longitudinal
chromatic aberration

O g o
'h\

FIGURE 4.27. Two types of chromatic aberration of an image.

The images of other colors, although not shown in the diagram, are formed
at the intermediate positions and are of intermediate sizes. Evidently there is
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no one plane in which all images are simultaneously in good focus. Therefore,
on a screen we shall get a blurred image due to superposition of numerous
colored images out of focus.

The variation of image distance along the axis of lens due to change in

wavelength, (j—;j is called the axial or longitudinal chromatic aberration,

d
while the variation in the image size with wavelength, (ﬁ] is called the

lateral chromatic aberration. The former is measured by the linear distance
along the axis between the extreme images and is said to be positive when the
violet image is situated to the left of the red image, while the latter is mea-
sured by the difference in the lateral sizes of extreme images and is said to be
positive when the red image is more magnified than the violet. A divergent
lens, as shown in Figure 4.28, produces a negative longitudinal chromatic
aberration but a positive lateral chromatic aberration.

. VioIEl/' A

Red

 J

- Le” |

R»ac’il"r A \

Violet

FIGURE 4.28. Divergent lens.

AXIAL CHROMATIC ABERRATION FOR OBJECT AT
INFINITY

The refractive indices of glass are usually given for Fraunhofer lines, that is,
C-Red (A, = 6563 A.U.), D-Yellow (1, = 5893 A.U.), and F-Blue (1, = 4862 A.U.).
Let f,, f,, and f, be the focal length of the lens for C, D, and F lines.

Then we write for a thin lens

(4.14)
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and similar expressions for [L and 1 may be easily written,
fe fr

L s

or
Pl AN I S
o “C)[Rl PJ e

. r. . . . ! ! .
Since f,, is intermediate in value between f. and f;, we may write as an
approximation

2
(fl) ) = fc f F
in the preceding equation which, therefore, reduces to

fC’_fF' e —w

fD' Hp—1

or

f—fi =of, (4.16)

The axial separation ( fo - fF') between the foci for red and violet rays is

called the longitudinal chromatic aberration of the lens for parallel rays, and
it is equal to the product of the geometric mean of the extreme focal lengths
and the dispersive power, o, of the material of which the lens is composed.

Example 4.1

The focal lengths of a thin convex lens are 100 cm and 96.8 ¢m for red and blue
rays respectively. Calculate the dispersive power of the material of the lens.

Solution:

The dispersive power of the material of the lens in terms of its principal focal
lengths is given by the expression

(fc’ _fF')

O=—"""

f
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In the given problem, f./ =100 cm, the focal length for red rays, and
fr =96.8 cm, the focal length for blue rays. Since £, is intermediate in value
between f. and f,, we write

fo =L xS =J100x96.8 =98.38 cm

Hence

o 100-968) ) oox
9838

ACHROMATISM

An optical instrument free from chromatic aberrations is called an achro-
matic instrument. This simply means that the lens system of the achromatic
instrument should form images of the same size and at one position for all
wavelengths, not only for any one specified object position but for all posi-
tions of the object. This complete achromatism demands that not only focal
points must be made the same, but also the principal planes must be made
to coincide for different wavelengths. However, this ideal achromatism is
extremely difficult to accomplish in the case of any actual lens system. Only
partial achromatism can be accomplished, namely, either longitudinal chro-
matic aberration or lateral chromatic aberration can be eliminated, but not
both simultaneously. Moreover, this too is possible only for two or three wave-
lengths at one time. Therefore, in making the lens system of the optical instru-
ment partially achromatic, it is essential to keep in view the aperture and field
of view of the optical system in deciding the kind of chromatic aberration to
be eliminated, because the kind of achromatism which is advantageous in one
type of instrument may be entirely disadvantageous in the other. For exam-
ple, a telescope objective, which has a large aperture but a small field of view,
should be corrected for longitudinal chromatic aberration. In this case correc-
tion would bring rays of all wavelengths in focus in the same plane, that is, the
achromatism is with respect to the position of its focal point, but as the princi-
pal points of the lens are different for different wavelengths, the focal length
would not be equal, with the result that magnification would not be constant.
But owing to the close proximity of images to the principal axis, the variation
in their sizes is not annoying and is consequently comparatively unimportant.
On the other hand, if the optical system has a small aperture and a large
field of view, it should be corrected for lateral chromatic aberration. Here
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4.9

the correction would make the focal length the same for all wavelengths, and
hence magnification would be constant, but the images would lie in different
planes. It should be emphasized that no lens composed only of two kinds of
glass can be achromatic for light of all colors. The achromatism in eyepieces
is such that the colored virtual images subtend the same angle at the eye, no
matter whether their actual sizes and positions are different or not, and thus
the eye fails to detect any color effect in the image.

CONDITION OF ACHROMATISM FOR TWO LENSES IN
CONTACT

The index of refraction of glass is usually specified for the following Fraunhofer
lines.

Color ‘ Wavelength

C-Red 6563 A.
D-Yellow 5893 A.
F-Blue 4862 A.
G-Violet 4308 A.

For accurate work, the yellow D line is disadvantageous because it is a
doublet line. Therefore, for accurate work the yellow d line 4, = 5875.6 A. of
the helium spectrum is employed as an intermediate wavelength between the
C and F lines.

An achromatic doublet consisting of two thin lenses in contact, one made
of crown glass and the other of flint glass, may be designed so as to make the
resultant focal length of the combination the same for any two wavelengths
of the spectrum. We shall now derive the condition to be satisfied by two thin
lenses in contact so as to be achromatic for two wavelengths, namely the C
and the F lines, the combination being itself considered as a thin lens.

Let f, and f, be the mean focal lengths of two thin lenses placed coaxially
in contact with each other. If F is the focal length of the combination, then

1 1 1

1 1.1 (4.17)
F fi f
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which on partial differentiation leads to

ar %, % (4.18)
Fofm L

Since [iJ = o, the dispersive power of the lens, the previous equation

can be written as
oF o, w,

) +
L T
where o, and o, are the dispersive powers of the two lenses. For no chromatic
aberration, F = 0, hence

(4.19)

G2 (4.20)
fi
. . o _ Hy —H¢
As the dispersive power o, and w, are always positive a)——1 ,
l«t —

[ty > pe, and p>1 p> 1], in order that Equation (4.9a) is satisfied, the focal
lengths f,, f, must have opposite signs. In practice a convergent lens of crown
glass and a divergent lens of flint glass are used. The convergent lens is more
strongly convergent for the blue rays than for the red rays, while divergent
lens is more strongly divergent for the blue rays than for the red rays. Hence,
if a doublet is made of these lenses which satisfies Equation (4.20), the col-
ored image formed by a single lens will fold on itself and the effects of chro-
matic aberration will be absent.

If o, = w,, Equation (4.20) simplifies to (L + S = O] which means that

1 2

the focal length of the combination is infinite. Thus, it will be obvious that the
removal of chromatic aberration is impracticable if the lenses are made of the
same material. To eliminate chromatic aberration, the two lenses must be so
chosen that:

1. One is convergent and the other divergent.
2. The lenses should be made of different materials.

3. The choice of the dispersive power and focal length is governed by Equa-
tion (4.20).
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It may be mentioned that if a combination is designed such that

[ﬂJr& = OJ for two colors, the images formed by lights of these colors
Lo L

coincide in size and position. Such a combination is said to be achromatic
for these colors. The amount of chromatic aberration remaining after a com-
bination has been made achromatic for two colors is called the secondary
spectrum. This defect, however, has been considerably reduced by the intro-
duction of Jena glass, which is nowadays generally used for this purpose.

4.9.1 Achromatic Doublet

Since the removal of chromatic aberration only restricts the choice of focal
lengths and not the radii of curvature of the lenses, the latter may be chosen to
make spherical aberration at a minimum. If loss of light is to be avoided, two
surfaces of the lens should be cemented together by Canada balsam, and thus
the radii of curvature of these surfaces should be the same. Only two surfaces
are thus left free to be manipulated.

In practice a convergent lens of crown glass and a divergent lens of flint
glass are connected together by Canada balsam as shown in Figure 4.29.

FIGURE 4.29. Achromatic doublet.

To minimize spherical aberration, the free surface of the crown glass lens
is more curved than the free surface of the flint glass lens, both being convex
outward. The free surface of the crown glass lens is made to face the beam.
Such a combination is called an achromatic doublet.

If instead of two, three lenses are combined together, the combination
will be achromatic for three colors.

The condition in that case is

() ) .
_1+_2+_3:O

L f s
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This device is made use of in achieving visual or optical achromatism.
Such achromatism is necessary for instruments which are to be used as
adjuncts to the eye. In these cases, therefore, chromatic aberration should
be removed with respect to the brightest part of the spectrum. This part is
the yellowish green region lying between the blue and red rays. The images
formed by the red and blue rays are made to coincide with that formed by the
yellowish-green region. Thus, chromatic aberration should be removed for
three colors. This can be done by taking three lenses satisfying the previous
equation.

Even when the combination has been made achromatic for three colors,
there is still some chromatic aberration present due to the remaining colors.
The remaining aberration is termed as a tertiary spectrum. As mentioned pre-
viously, glasses have been developed which reduce the tertiary and remaining
dispersion without increasing the number of lenses. This higher kind of ach-
romatism is called “apochromatism.”

Example 4.2

An achromatic objective of focal length 50 cm is to be made of different kinds
of glass shown as follows. Find the focal length of each lens, stating whether
it is convergent or divergent.

‘ Glass A ‘ Glass B

Ty 1.51 1.64

T 1.52 1.66

Solution:

The mean ray in glass A will have a refractive index

1.51+1.52
y, = USLHL52) ) s
’ 2
The dispersive power o, of glass A is given by
= My — My _ 1.52-1.51 00194
w, -1 1515-1
Similarly,

Now, for the combination of two lenses in contact to be achromatic for

red and blue light,
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o
f2l @,

where symbols have their usual meaning. Also, the focal length f* of the com-
bination is given by

1 1 1
IR
VAR A
or

DI -

f' fzr @

or

PRSI (00307-00194) o
o, 0.0307

and

ROy (0.0194-00307) oo

o, 0.0194

Thus, the lens of focal length 18.4 cm is convergent while that of focal
length 29.12 cm is a divergent one.

Example 4.3

A convex lens of crown glass is perfectly cemented to a plano-concave lens
of flint glass to form an achromatic combination of power +5D. Calculate the
radii of curvature of the convex lens from the following data:

| Refractive Index | Dispersive Power

Crown glass 1.50 0.01

Flint glass 1.60 0.02

Solution:

The power of the achromatic lens is +5D. Hence, it is a convergent lens of
focal length 20 cm formed by cementing two lenses together.
Let £, be the focal length of the crown glass and f,’ the focal length of

the flint glass lens. Then, as explained in Example (4.2), if the combination is
achromatic, we have
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C o,—o . (002001
£ = sz l(f)z( 002 )><20=100m
and

o, (0.01-0.02)

- _ 20=-20
) o, () 001 o

Let the concave surface of the plano-concave divergent lens be of radius
of curvature R,’; we write
1 160-1
20 R/

or
R,/ =-20x0.6=-12 cm

Let R, and R, be the radii of curvature of the surfaces of the crown glass
convergent lens. Since the lenses are perfectly cemented together, we have

R,=R,/ =-12cm

Now,

1 1 1
Ly af i)
£ R, R,
Substituting the values with the proper sign, we get

i=(1.5—1) i+i —> R, =857 cm
10 12
The radii of curvature of surfaces of the convex lens are 8.57 cm and 12 cm.

4.10 CONDITION OF ACHROMATISM OF A SEPARATED
DOUBLET

If two lenses of mean focal lengths f, and f, are separated by a certain distance
“d,” the focal length of the equivalent lens is given by

1 1.1 d
LR
Ffi fi hk
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The condition for achromatism can then be obtained by a partial differen-
tiation of the previous equation which gives

oF_of o d(fidh+ )
N A A

S0 4 (421)

AT

where o, and o, are the dispersive powers of the two lenses. For no chromatic
aberration, JF =0, hence

O, o, d
L2y ®, + o,
fi b flfQ( @)
Therefore,
dosOft @ (4.22)

(0, +,)

Thus, in order that the combination be achromatic, the distance between
the two lenses must be determined by Equation (4.22). If the lenses are made
of the same material, ®,= ®,= ©, and the condition simplifies to

1
d=2(fi+1.) (4.23)

Hence, if the lenses are made of the same material, chromatic aberration
can be eliminated by keeping them separated by half the sum of their focal
lengths. The combination will then be achromatic for all the colors near those
for which the mean focal lengths f, and f, have been calculated.

It may be noted that both the errors of chromatic aberration cannot be
removed in the case of two coaxial lenses not in contact with each other.

Such a system of lenses whose distance apart is given by Equation (4.23)
is generally used in the construction of eyepieces or oculars. It has been men-
tioned before that an eyepiece should be achromatic in the sense that dif-
ferent colored images should subtend equal angles at the eye. This is very
easily achieved in the case of a separated doublet, since the lateral chromatic
aberration is highly corrected through constancy in focal length. However, the
longitudinal chromatic aberration is relatively large, because the equivalent
planes are not in the same position in different colors.
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4.11 THE BALANCING OF ABERRATIONS

We have seen in the preceding pages that a single lens, in general, is afflicted
with seven major aberrations—five monochromatic aberrations and two chro-
matic aberrations. It is quite evident from the discussion of these aberrations
that it is not possible to eliminate or even to minimize simultaneously all seven
aberrations for a single lens. However, it is possible to design a compound
lens from a number of lenses in such a way that the aberrations of one part
of the field are balanced against those of the other. The greater the number
of component lenses in the compound lens, the greater the degree of accu-
racy which may be secured. Even then, no compound lens can ever contain a
sufficient number of elements permitting the simultaneous elimination of all
seven aberrations, even for a single position of the object. In practice, there-
fore, the attention of a lens designer is always directed towars minimizing
those aberrations in the lens system which are likely to be most detrimental
to the work for which the lens system is designed. For example, a telescope
objective, which is required to cover only a small angular field, should always
be so designed as to minimize spherical aberration. On the other hand, a
photographic objective, which is always required to cover large angular field,
should be so designed as to minimize astigmatism, coma, and distortion while
other aberrations should be partly corrected, and so on.

4.12 EXERCISES

1. What does the focal length of a lens depend on?

2. Describe and explain with the help of suitable diagrams (a) longitudi-
nal spherical aberration and (b) lateral spherical aberration. How can the
spherical aberration be minimized in the case of an ordinary lens?

3. Describe astigmatism, coma, curvature, and distortion. How may they be
reduced to a minimum?

4. What is spherical aberration? How is it minimized when two thin lenses of
the same medium are placed at a distance from each other? Show that a
Huygens eyepiece satisfies the condition of minimum spherical aberration.

5. What is spherical aberration? How is it minimized in a microscope objec-
tive and an eyepiece?

6. Explain chromatic aberration and derive an expression for the axial chro-
matic error for a thin lens.
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7.

10.

11.
12.

13.

14.

15.

A combination of two thin lenses, one of crown and the other of flint
glass, has the same focal length for a given pair of wavelengths. Derive
expressions for the powers of the crown and flint lenses in terms of the
combination and dispersive powers of glasses. What do you understand by
the term achromatism? Derive and discuss the conditions of achromatism
for two thin lenses of focal lengths f, and f, (a) when they are made of dif-
ferent materials but placed in contact and (b) when they are made of the
same material but separated by a distance.

A thin crown glass lens is in contact with a thin flint glass lens, the radius
of curvature of the common surface being 25 cm. If the combination
forms an achromatic combination of 40 cm focal length, find the radii of
curvature of the second face of the two lenses.

w for crown glass = 1.50

u for flint glass = 1.60

Dispersive power of crown glass = 0.021
Dispersive power of flint glass = 0.045

Show that a combination of two lenses separated by a distance cannot be
achromatic in the same sense as a telescope objective is achromatic.

Describe and explain chromatic aberration. Deduce a condition for the
achromatism of two lenses separated by a distance. Explain what is meant
by an achromatic system.

Write a brief essay on aberrations of optical images.

Calculate the focal length of a lens of flint glass of dispersive power 0.45

which will render achromatic a converging lens of crown glass of focal
length 75 ¢cm and of dispersive power 0.21.

Calculate the focal lengths of the components of an achromatic telescope
objective having a focal length of 50 cm made from components of crown
and flint glasses. Dispersive power of crown glass = 0.01654. Dispersive
power of flint glass = 0.02766.

A convex lens of focal length 35 cm, achromatic for the C and F lines, is to
be made from the two glasses, data for which are as follows:

Hard crown: p,=1.5175; u, — p. = 0.00856
Dense flint: p,,=1.6264; p,. — p, = 0.01722

Find the focal lengths of the components.

It is required to make a converging combination of focal length 100 cm
for the D lines, consisting of a crown glass convex lens in contact with a



16.

17.

18.

19.
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flint glass plano-concave lens, so as to be achromatic for the C and F lines.
If the faces of the lenses in contact have the same radii of curvature, find
the radii of curvature of the two surfaces of the convex lens, assuming the
data of refractive indices given as follows:

s | e | o
Crown glass 1.531 1.534 1.540

Flint glass 1.583 1.587 1.597

An achromatic object glass is to be made with a thin crown glass equi-
convex lens and a thin flint glass equi-concave lens. Calculate the focal
length of the achromat.

| y’red | y’blue
Crown glass 1.480 1.500

Flint glass 1.610 1.670

Radius of curvature of concave lens = 30 cm.

An achromatic doublet is to be made of two thin lenses cemented together,
and the focal length of the combination for D lines is to be 25 cm. The first
lens is a symmetric convex lens of glass A, and the other lens is a concave
lens of glass B. Find the radii of the surfaces on the supposition that it is
achromatic for the C and F colors.

| omo | omemme
Glass A 1.6112 0.01747

Glass B 1.5205 0.01957

Two thin lenses of the same kind of glass, one convex and the other
concave, and both of focal length 4 cm, are adjusted on the same axis until
the colored images of a white object placed 12 c¢m in front of the convex
lens are formed at the same place. Show that the interval between the
lenses must be 12 em.

It is required to obtain a system, achromatic for the focal length, of two
lenses of the same material. The focal length of the achromatic lens is to
be 30 cm. If the focal length of one lens is 20 cm, calculate the focal length
of the other lens. How far apart should they be mounted?
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20.

21.

22.

23.

24,

25.
26.

27.

28.

29.
30.

31.
32.

A crown glass convergent lens is cemented to a flint glass plano-concave
lens to form an achromatic doublet. The radius of curvature of the free
surface of the convergent lens is 1 meter. Compute the radius of curvature
of the spherical surface separating the two lenses, using the requirement
that the doublet should have the same focal length for two C and F lines.
Values of ., pp, py for crown glass and flint glass may be used from
question number 15.

Explain chromatic aberration and achromatism. Discuss the achromatism
of thin lenses (a) made of the same material and (b) made of different
materials.

Calculate the focal length of the components of an achromatic telescope
objective of 30 cm focal length made from crown and flint glass. Dispersive
powers for crown and flint glasses are 0.012 and 0.02 respectively.

Derive the condition for the achromatism of two lenses in contact. A
convergent lens of 40 cm focal length is to be made out of thin crown
and flint glass lenses, the surfaces in contact having a common radius
of curvature of 25 cm. Calculate the radius of curvature of the second
face of each lens, given that the values of the dispersive power and mean
refractive index are respectively 0.017 and 1.5 for crown glass and 0.034
and 1.7 for flint glass.

Explain the meaning of chromatic aberration in lenses. Derive the
condition for the achromatism of two thin lenses separated by a distance.

What is a crossed lens? What is its utility?

What is meant by shape factor and position factor? How are they to be
related so as to minimize spherical aberration?

Find the positions of the aplanatic points of a glass-sphere of (r)(i)(n,)
surrounded by a medium of (r)(i)(n,). Where do you find the application
of this to remove spherical aberration?

What is dispersion? What it is due to?
What is the normal dispersive medium?

Does the focal length of a lens depend on color of the light? In case of a
glass lens, which is greater, f, or f,?

What is a normal spectrum? Is a prismatic spectrum normal?

In an achromatic doublet, what type of lenses are to be used?
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INTRODUCTION

Optical instruments may be conveniently divided into two general classes:
(a) the image forming instruments, and (b) the analyzing instruments.
Telescopes, microscopes, prismatic binoculars, and so on come under the first
class, because these instruments are employed to examine objects by form-
ing their images, much magnified in size as compared with those formed by
the unaided eye. Prism-spectrometers, grating spectrometers, and interfer-
ometers belong to the second class, because these instruments are primarily
employed to discover what wavelengths are present in a given beam of light,
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incident on the instrument, thereby analyzing the given light. The function
of most of the image-forming instruments is to enable us to see better, and
consequently the eye should be regarded as an essential part of every visual
optical instrument. Before describing the optical system of any visual instru-
ment, therefore, it is best to describe the essential parts constituting the eye
and discuss its image-forming properties, limiting our discussion only to the
physical principles involved in the process of image formation.

THE EYE

The essential parts of the human eye, considered as an optical instrument, are
illustrated by the sectional Figure 5.1 of the eye.

Principal
axis

R—

FIGURE 5.1. The eye.

The eye is roughly spherical in shape, the front part being slightly more
curved, and is covered with a tough transparent membrane C, called the cor-
nea. Behind the cornea is a weak salt solution known as the aqueous humor A,
backed by a crystalline lens L of varying optical density. The lens is of fibrous
jelly, harder at the center and then gradually becoming softer toward the sur-
face, the refractive index varying between 1.38 and 1.41. It is held in position
by the suspensory ligaments I through which it is connected to the ciliary
muscle M, which is spread all around the lens. The remainder of the eyeball
is filled with a thin, transparent jelly consisting largely of viscous liquid called
the vitreous humor V. The refractive index of both the vitreous humor and the
aqueous humor is 1.336. The cornea and the crystalline lens essentially con-
stitute a compound convergent lens system which forms on sensitive nerve
fibers and cells, called the retina R, inverted images of objects, situated near
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or far away in front of the eye. The nerve fibers constituting the retina are
in fact the branches of the optic nerve O and terminate in minute structures
called rods and cones. In and about them circulates a bluish liquid known as
visual purple. The optic nerve is connected to the mind, and thus the image
formed on the retina is transmitted via the optic nerve to the mind. The point
at which optic nerve enters the eye is called the blind spot B, because it is not
possible to see an object if its image is formed at this point.

Immediately in front of the crystalline lens is the Iris I, having the central
hole called the pupil P, and this serves the purpose of a diaphragm in admit-
ting light into the eye. The size of the pupil automatically increases if the
intensity of the object is low and decreases if the intensity is high. The crystal-
line lens is also flexible; its shape and hence its focal length can be varied by
a change in the tension of the suspensory ligaments by the ciliary muscles. As
a consequence, focal length of the compound lens changes, and the eye can
be made to focus on objects at different distances. This process is known as
accommodation, and the extremes of the range of vision over which the eye
can bring objects in focus are called the far point and the near point of the
eye. The object is said to be at the far point when it can be seen by the com-
pletely relaxed eye. The second focal point of the normal eye under relaxed
ciliary muscles is at the retina. The object is said to be at the near point when
the lens acquires maximum curvature by the appropriate contraction of the
muscles in accommodation. The focal length of the lens decreases to focus the
near object. For the normal eye, the far point is at infinity while the near point
is at 25 cm and is called the least distance of distinct vision. However, the
far point and the near point depend upon age. The range of accommodation
gradually diminishes with advancing age on account of the lens becoming less
flexible. This loss of accommodation is known as presbyopia. There are three
other common defects of vision, namely, (a) myopia or shortsightedness, (b)
hyperopia or farsightedness, and (c) astigmatism. These defects are corrected
by the use of appropriate spectacle lenses. It is needless to describe these
defects in detail at this time, for it can be easily presumed that the students
already possess a working knowledge of them.

THE COMPOUND MICROSCOPE

The compound microscope was invented by Galileo in 1610. The optical parts
of a compound microscope, illustrated by Figure 5.2, are (a) an objective and
(b) an eyepiece.
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Entrance pupil Eye-piece
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Exit pupil:

Objective Q !

FIGURE 5.2. The compound microscope.

The focal length of the objective is very small, while that of the eyepiece
is somewhat larger. Figure 5.2 shows the objective as well as the eyepiece
as a single lens, but in reality they are highly corrected compound lenses; in
the former spherical aberration, coma and chromatic aberrations are specially
corrected for object positions at a very close distance.

The object PQ to be examined is placed just outside the first principal
focal point F, of the objective, which therefore forms a real magnified image
P'Q’ either within the first principal focal distance of the eyepiece or exactly
at the first principal focal point F, of the eyepiece. The eyepiece is therefore
positioned as a simple magnifier with respect to the image P'Q". As a conse-
quence, the eyepiece forms a large virtual image either somewhere between
infinity and the least distance of distinct vision from the eye or at infinity,
depending upon whether the image P'Q’ is within the first principal focal
distance or at the first principal focal point of the eyepiece. The ray construc-
tion illustrating the formation of the final image at infinity by two thin lenses,
constituting the objective and the eyepiece, is shown in Figure 5.2. When a
microscope is to be used for making some measurements on the image, we
must employ Ramsden’s eyepiece.

The magnifying power of a compound microscope, like the angular mag-
nification of a simple magnifier, is defined by

_ tan@’
tan@

(5.1)

where 0 is the angle subtended at the unaided eye by the object situated at
a distance of 25 c¢m, the least distance of distinct vision, and 6’ is the angle
subtended at the eye by the final magnified image. We can very easily evaluate
the magnifying power when the image formed by the objective is at the first
principal focal point F, of the eyepiece. Let the height of the object under
examination be y while that of its image formed by the objective be ¢'. From
the triangle O,RF,’ in Figure 5.2, we get
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Also, tan0 = A
25

Where f,' is the second principal focal length of the eyepiece.

Hence,
7
M= tan 0" _ i = [ljx {§] (5.2)
y) Uf)

" tanf y
25

In the previous equation, (i} is the lateral magnification produced by
Yy
the objective and [— is the angular magnification of the eyepiece. There-
f‘el
fore, we have the following general relation
[Magnifying power J (Lateml magnification j (Angular magnification J
2 _ o 2

of microscope by objective by eye-piece

Lateral magnification produced by the objective is given by

! !
Yy X

vy f

where 1’ is the distance of the image y' from the second principal focal point
of the objective. When the final image is formed at infinity, the angular
magnification produced by the eyepiece is

>
Iz

Hence, in this case, the magnifying power of the compound microscope

is given by
M=m,xy,=— x_, x[2—5'] (5.3)
1) UL

Ve
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But when the final image is formed at the least distance of distinct vision,
25 c¢m from the eye, then the angular magnification of the eyepiece is

n=[1+2—5,J
I.

Hence, in this case, the magnifying power of the compound microscope

is given by
M=m,xy, :—(i'}{l+2—5& (5.4)
f;) f;,’

Itis evident from Equations (5.3) and (5.4) that the compound microscope
must comprise a short focus objective and a short focus eyepiece in order to
have high magnifying power. The magnifying power can also be increased
by increasing x’, in other words, by increasing the separation of the objective
and the eyepiece. The distance between the first principal focal point F, of
the eyepiece and the second principal focal point F," of the objective is called
the optical length of the microscope tube, and this distance is standardized to
18 ¢m by the makers of this instrument. This helps in correcting the micro-
scope objective for aberrations for only a single image distance. In the stan-
dard microscope, when the final image is formed at infinity, x’ = 18 cm and
the magnifying power by Equation (5.3) becomes

M =—{§]x(§] (5.5)
1) L

where f," and f," are expressed in centimeters.

In every microscope, the periphery of the objective limits the cone of
rays entering the instrument, and therefore it also functions as the entrance
pupil of the instrument. Consequently, the exit pupil of the instrument is
simply the image of its objective formed by the eyepiece. To have a full field
of view, all the rays emerging from the microscope must enter the pupil of the
eye. Therefore, it is evident from Figure 5.2 that the eye must be placed at
the position of the exit pupil, because all the rays entering the objective and
emerging from the eyepiece also pass through the exit pupil of the instrument.
Moreover, the diameter of the exit pupil should be equal to that of the pupil
of the eye. Under these conditions the magnifying power of the microscope is
called the normal magnifying power. In order to make full use of the available
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resolving power of the microscope objective, the overall magnification must
be at least equal to the normal magnifying power.

MICROSCOPE OBJECTIVE

We have seen that the objects examined by the microscope, are to be very close
to the objective, and considerations of the brightness of the image and the limit
of resolution of the microscope objective demand that a wider cone of rays
should enter the objective. Consequently, if a single lens is employed as an
objective, the spherical aberration and the coma will be much more pronounced
in the image formed by it. Moreover, as the objects are usually illuminated by
white light, a single lens objective will also exhibit chromatic aberrations. The
microscope objectives must therefore be carefully designed to eliminate, as far
as possible, the chromatic aberrations, the spherical aberration, and the coma.
In a low-power microscope, the objective is a doublet achromatized for
two wavelengths and corrected for spherical aberration and coma as shown in
Figure (5.3 a). A high-power microscope objective consists of a number of ach-
romatic doublets, and the deviation of any ray is distributed into small amounts
at each surface; thus, the spherical aberration is eliminated. One such objec-
tive, called apochromat, sketched in Figure (5.3 b), is achromatized for three
wavelengths and is corrected for spherical aberration at two wavelengths. The
spherical aberration and the chromatic aberrations introduced by the front
hemispherical lens must be corrected by the latter lenses in the objective.

.,/////////////////////,,,

——
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db
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FIGURE 5.3. Microscope objectives: (a) low-power and (b) high-power apochromatic.
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High-quality microscope objectives are of an oil immersion type. One
such objective, designed by Amici about the middle of the last century, is
illustrated by Figure 5.4.

Surface
for
aplanatic
refraction
v 7
\ \\ (7 1)
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FIGURE 5.4. High-power oil immersion objective.

The space between the cover glass and the front lens is filled with a drop
of cedarwood oil which has a refractive index p = 1.51414 and a dispersive
power very nearly the same as for the glass. The front lens and the cover glass
have the same refractive index as the oil. As a consequence, the object is vir-
tually imbedded within the first lens, and therefore the first refraction occurs
only at the spherical surface of the front lens. The movement of the objective
in focusing brings the object at the nearest aplanatic point L, of the spherical
surface of the front lens. The rays of light after refraction by this hemispher-
ical surface are rendered less divergent, and whatever may be the inclination
of the incident rays to the axis after refraction appear to come from the conju-
gate second aplanatic point L,. The second lens in the objective is a meniscus
lens, the center of curvature of its first surface being at L,. Therefore, the rays
enter the meniscus lens without any deviation. The second surface of this lens
is of such a curvature that L, becomes the first aplanatic point for it. The rays
after refraction through the second surface, therefore, appear to come from
the conjugate aplanatic point L. The rays are rendered still less divergent
and finally convergent by the other achromatic lenses, which also serve to
eliminate the chromatic aberrations introduced by the first two lenses.

The numerical aperture of the objective is defined as psin a, where p is
the refractive index of the object space and o is the semivertical angle of the
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cone of rays entering the objective. Oil immersion-type objectives, therefore,
have a large numerical aperture as compared with that of objectives having air
in the object space. As a consequence, the least distance between two close
points resolvable by the microscope objective, defined by

1.224 .

s =———, (NA is numerical aperture)

2NA
decreases by employing an oil immersion objective. For the sake of conveni-
ence, we may postpone the derivation of the previous expression and its dis-
cussion to the chapter on resolving power.

DARK FIELD ILLUMINATION

For observing ultra-microscopic particles, some sort of dark field illumination
is used, of which one type employing a paraboloidal mirror as a condenser is
illustrated by Figure 5.5.

#

Oil

Paraboloid condenser

FIGURE 5.5. llluminating system of the ultra-microscope.

Dark field illumination is accomplished by illuminating the particles at
an angle which is larger than the angular aperture of the objective. Thus, no
direct light can enter the microscope objective, but the particles scatter the
light from the condenser in all directions, and a part of this scattered beam
enters the objective. The particles can therefore be regarded as self-luminous,
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and they are seen as bright points against the dark background. Hence, this
method of illumination is known as dark field illumination, and the micro-
scope with such a condenser is called the ultra-microscope.

5.5 TELESCOPES

Telescopes are generally employed to form an image at infinity of an infi-
nitely distant object like a star. They may also be employed, for example, for
simple laboratory experiments, to form an image at a finite distance of an
object located at a finite distance from it. Telescopes may be conveniently
divided into two general classes: (a) those employing lenses as objectives,
called refracting telescopes; and (b) those employing mirrors as objectives,
called reflecting telescopes. These are further subdivided into the astronomi-
cal class and the terrestrial class, depending upon whether the final magnified
image as seen by the eye is inverted or erect with respect to the object under
examination.

5.6 THE ASTRONOMICAL REFRACTING TELESCOPE

The optical system of the astronomical refracting telescope is illustrated by
Figure 5.6.

Objective

Eye-piece

Exit pupil

________________________

Entrance pupil

FIGURE 5.6. The astronomical telescope.

0,0, is the objective of a long focal length on which is incident a par-
allel beam of light from an off-axial distant object point, making an angle
0 with the axis of the instrument. The objective refracts this beam so that
the refracted beam converges at Q' in the second principal focal plane
of the objective. This image, which is real and inverted with respect to
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the distant object, acts as a real object for the eyepiece, and if the first
principal focal plane of the eyepiece coincides with the second principal
focal plane of the objective, the so-called normal adjustment, then after
refraction by the eyepiece, rays emerge as a parallel beam. The direction
of the emergent beam is parallel to the line joining the point Q' to O,, the
optical center of the eyepiece, because if we imagine the ray Q'Q, to exist,
it would emerge from the eyepiece without any deviation from its path.
Thus, a virtual magnified image is formed at infinity of the real image
P'Q’, the latter being the image of an object and formed due to the refrac-
tion through the objective.

The objective is at one end of a large tube, while the eyepiece is usually
fixed in a smaller tube which is inserted in the larger one at its other end.
Thus, the focus can be adjusted to suit any eye. The rim of the objective limits
the width of the beam incident on the telescope. As a consequence, the objec-
tive itself serves as an entrance pupil of the instrument. A real image of the
objective formed by the eyepiece is therefore the exit pupil of the instrument.
The ray entering the telescope through the optical center of the objective,
which is also the center of the entrance pupil, is called the chief ray, and this
ray must finally pass through the center of the exit pupil. Rays entering at the
rim of the objective must pass through the conjugate points on the rim of the
exit pupil, as illustrated by Figure 5.6. The pupil of the eye should be placed at
the exit pupil position of the instrument to receive all the emergent rays, and
this incidentally leads us to the conclusion that in order that all rays emerging
from the telescope may enter the eye, the diameter of the exit pupil should
not be greater than that of the eye pupil.

The angular magnifying power of a telescope is defined as the ratio of the
tangent of the angle subtended at the eye by the final image to the tangent of
the angle subtended at the unaided eye by the object itself. A distant object
subtends an angle 0 at the objective and would subtend essentially the same
angle at the unaided eye. Also, since the pupil of the eye is at the exit pupil,
the angle subtended at the eye by the final magnified image is 6'. Accordingly,
the angular magnifying power is

_ tan® (5.6)
tan@
Let the height of the real image P'Q" at F, be denoted by y’, which
according to our sign convention is negative. From the right triangle O,F,'Q’,
since 0 and y' are negative and O,F," = f,"is positive, we get
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tanf' = [i,]
1.

From the right triangle O F,/Q’, since y’ and f, are negative and 6" is
positive, we get

tan0@' = (iJ = —L,
L) f
Since f, =—f,, the medium is air on both sides of the eyepiece. Substitu-
tion in Equation (5.6) yields

_y'
_tand’ _[f_J __ L (5.7)

r= tan6 _L_y'j_ f.
fe,

where it will be recalled that £, and f," are the second principal focal lengths
of the objective and the eyepiece respectively. From Equation (5.7) it follows
that a short focal length eyepiece and a long focal length objective are essential
to impart a large angular magnifying power to the instrument. Since f," and
£,/ are positive, hence yis negative. Therefore, the final image is inverted with
respect to the object under examination.

We may also express the angular magnifying power yin terms of the diam-
eter of the entrance pupil (objective) and that of the exit pupil of the instru-

ment. Applying the lens equation,
1 1 1

o u [
to the image formation of the objective (the entrance pupil) by the eyepiece,
we have

v f

Also, if D and d represent the diameters of the objective (entrance pupil)
and its image (exit pupil), we have from similar triangles O,'0,0," and 0,0,0,,
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u_D (5.9)
v d

From Equations (5.8) and (5.9), it follows that

2 =1+ i

d ﬂ'

According to sign convention, u is negative, and its magnitude is
! i !
u=f, —f.=f, +1.

Substituting the value of u with a negative sign in the preceding equation,
we have

Qzl_ﬂ;,fcz_f_,,, (5.10)
d f. f.

As a consequence of Equations (5.7) and (5.10), we get

== 5.11

y =3 (5.11)
as an alternative expression for the angular magnifying power of a telescope.
Equation (5.11) offers a convenient method of determining the angular mag-
nifying power simply by measuring the diameters of the entrance pupil (objec-
tive) and of the exit pupil, the image of the objective formed by the eyepiece.
When the diameter, d, of the exit pupil becomes equal to the diameter, d;, of
the eye pupil, the magnification is called normal magnification and is denoted
by 7y

== (5.12)
VN dE

In order to make full use of the available resolving power of the objective,
the overall magnification must be the normal angular magnification.

OCULARS OR EYEPIECES

An ocular or eyepiece is employed to magnify an image formed by a lens or
lenses preceding it in any optical instrument. For example, a microscope or
telescope objective forms a real image of an object under examination, and an



142 * Orrics

ocular functions as a simple magnifier in enlarging this image. This final mag-
nified image, as seen by the eye placed behind the ocular, must be free from
the various aberrations. It is impossible for a single lens magnifier to satisfy
this requirement. Moreover, there is another disadvantage in employing a sin-
gle lens as an eyepiece, arising from an entirely different cause. A real object
diverges rays in all directions, whereas when an image is used as an object,
rays from any point of it are simply confined to a narrow cone. As a conse-
quence, each point of the image is seen through a single lens, only by a limited
cone of rays. The full image can therefore be seen only when all such cones
simultaneously enter the pupil of the eye in any given position for it. It is quite
evident from Figure 5.7 that the whole image can be visible only when the
eye is at a point A, which of course is at a considerable distance from the lens.

From objective

Eye-piece
FIGURE 5.7. Single lens eyepiece.

However, to shield the eye from the light not coming through the tele-
scope, it is desirable to place it immediately behind the magnifier. In this
position of the eye the field of view becomes limited, simply due to the
reason that rays from every point of the real image cannot enter the pupil
of the eye.

To overcome these defects, it is usual to employ in every optical instru-
ment a compound system of lenses, instead of a single lens, as an eyepiece.
The most popular eyepieces consists of two convergent lenses, constructed
from the same glass and separated by a distance so chosen that the spherical
aberration and the chromatic aberrations are minimized. For spherical aber-
ration to be at a minimum, the separation between the component lenses

should be
d — f\ll _ftz,

and for chromatic aberration to be at a minimum, the separation should be
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The spherical aberration can also be further reduced by adjusting the four
radii of curvature of the surfaces of the lenses constituting the eyepiece.

In the eyepiece, the lens nearest to the eye is called the eye-lens, and its
principal function is to magnify the image formed by the objective. The lens
which faces the objective is called the field-lens, and its principal function is to
enlarge the field of view, simply by deviating toward the axis the cone of rays
from each point of the real image so that these cones pass through the central
region of the eye-lens. Thus, the pupil of the eye placed close to the eye-lens
receives every cone of rays simultaneously, thereby making the whole field of
view visible simultaneously.

The function of the field lens in enlarging the field of view, which can be
seen by an eye-lens of a given diameter, may be further explained with refer-
ence to Figure 5.8.

Field lens Eye lens
= Exit pupil
— 0 Ty =
T~ Y .’
| IR
Objective Singlg lens
Image formed eye-piece
by objective K Exit
\ pupil
9 . /

FIGURE 5.8. Field lens enlarges the field of view.

The image formed by the objective coincides with the field lens in the
upper figure while the field lens is absent in the lower figure. Only the chief
ray of the pencil transmitted by the objective is shown in each figure. In the
lower figure, it would be observed that the chief ray passing through the
boundary of the eye-lens limits the object field to a narrow cone of semiverti-
cal angle 6. In the upper figure, owing to the deviation of the same chief ray
toward the axis by the field lens, it is incident, nearer to the axis on the eye-
lens. As a consequence, the semi-angular field can be increased to 8’ by the
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field lens because the chief ray inclined at 6' to the axis and shown by dotted
line in the upper figure now passes through the periphery of the eye-lens.

In addition to increasing the field of view, the eyepiece should be so
designed as to make full use of resolution due to the telescope or microscope
objective. This simply means that the power of the eyepiece should be so
chosen that the resultant magnifying power of the instrument satisfies the
relation.

Note that (Limit of resolution of objective) x (Normal magnifying
power) = (Limit of resolution of eye). This statement will be fully discussed
and derived in the chapter on resolving power.

5.7.1 The Kellner Eyepiece

In the Kellner eyepiece, as shown in Figure 5.9, the field lens and the eye-
lens are plano-convex lenses of equal focal lengths f separated by a distance
numerically equal to the focal length of either.

o
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Field _--~~ Eye lens

lens ~
FIGURE 5.9. The Kellner eyepiece.

The condition of achromatism, in other words,

-Y5res)s

is therefore satisfied in the case of this eyepiece. This condition simply means
that the red and the blue images, although of different sizes and formed at
different positions, subtend an equal angle at the eye. Thus, the color effect
in the retinal image almost vanishes. This achromatism may be improved by
making the eye-lens an achromatic combination of a convergent lens of crown
glass in contact with a divergent lens of flint glass.
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In order to locate the point where a telescope or microscope objective
must form a real image of the object under examination if the final image is to
be at infinity, we have to trace backward a set of parallel rays emerging from
the eye-lens. This set of rays must have come from a point in the first principal
focal plane of the eye-lens. But the separation of the field lens from the eye-
lens is numerically £, the focal length of either lens. Hence, the principal plane
of the field-lens is coincident with the first principal focal plane of the eye-
lens. Therefore, the objective must form a real image in the principal plane
of the field lens. As a consequence, the field lens produces no magnification
but only deflects toward the axis the incoming rays from the objective, every
point of the real image being the origin about which deflection occurs. Thus,
Kellner’s eyepiece has a very wide field of view, but since the magnification is
entirely produced by the eye-lens, the final magnified image will suffer from
spherical aberration.

A serious disadvantage in Kellner’s eyepiece lies in the circumstance that
any dust particles or scratches present on the field-lens would be also magni-
fied by the eye-lens along with the real image. To remedy this drawback, two
other main classes of eyepieces, the Huygens and the Ramsden types, have
been designed, and they are in wide use.

5.7.2 The Ramsden Eyepiece
Ramsden’s eyepiece is illustrated by Figure 5.10.

L4 L /
P4 FZ Fe| P /
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Q""" T Field lens Eye lens

FIGURE 5.10. The Ramsden eyepiece.

It consists of two plano-convex lenses of equal focal length, separated by a
distance equal to two-thirds of their common focal length f, with their curved
surfaces turned toward each other. The cardinal points of this eyepiece may
be located as shown in Figure 5.11.



146 ° Ortics

Field lens Eye lens

-\

)
M
o
\
\
\
\
\
\
\
r_
\ N

-
-

_ C

F= Q X 1F B
A== A

FIGURE 5.11. Cardinal points of Ramsden’s eyepiece.
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In Chapter 3, it is shown that the optical separation A between the two
lenses constituting a compound lens, having the same medium on either side
of the component lenses, is expressed by Equation (3.65), which is

N

where f,"and f," are the second principal focal lengths of the lenses, and d is
the actual separation between them. In Ramsden’s eyepiece,

A=(2) g =g g1

since the second principal focal lengths f,"and f,’, according to our sign con-
vention, are positive. f is the numerical value of the focal length.
Hence, the optical separation A of lenses in Ramsden’s eyepiece is

given by

(s

The second principal focal length f,' of the eyepiece, according to Equa-
tion (3.64), is

P S
‘ A (_ 4 fj 4
3
Since the medium is the same (air) on either side of the component lenses,

the first principal focal length f, of the eyepiece is
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5==5 =3}

The distance of the first principal plane from the field lens L, according
to Equation (3.77) is

LS -n(2s)

where f,, the first principal focal length of L,, according to our sign conven-

1

2
field lens in the rear of it. The first principal focal length is measured from the
first principal point. Therefore, the first principal focal point F, is situated at a

tion, is negative. The first principal point H, is, therefore, at ( j f from the

distance (%j f from the first principal point and in front of it.

Also, the distance of the first principal focal point from the field lens is

L =gn-Li () -(3]r=(3 ) e =(3)s

i.e., F, is numerically at (i) f in front of the field lens.

The distance between the eye-lens and the second principal plane of the
eyepiece, according to Equation (3.74), is

T NI

N TN T:
(3]
Thus, the second principal point H,' is at (Ejf in front of the eye-lens.

The second principal focal length of the eyepiece is measured from the sec-
ond principal plane. Therefore, the second principal focal point F,'is situated

at a distance (gj f from the second principal point H," and in the rear of it. It
4
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can be easily shown that the distance of the second principal focal point from
1
4

The nodal points of the eyepiece obviously coincide with its principal
points, since the medium is the same on both sides of the eyepiece. The focal
points and its principal points are shown in Figure 5.11.

We may now explain image formation by the Ramsden eyepiece on the
basis of the properties of cardinal points. In order that the final magnified
image may be formed at infinity, it follows from the property of the principal
focal points that the objective of any instrument must form a real image in the
first principal focal plane of the eyepiece. The real image P'Q’ is, therefore,

the eye-lens is ( j fin the rear of it.

at a distance (ij f in front of the field lens. Three rays, Q'A, Q'B, and Q'C,

through the tip Q' of the real image are shown in Figure 5.10, intersecting the
first principal plane at points A, B, C respectively. The path of the ray conju-
gate to Q'A must be drawn through the point A’ in the second principal plane
at the same distance from the principal axis as A, because of the unit positive
lateral magnification characterizing the principal planes of the optical system;
similar consideration also applies to rays conjugate to Q'B and Q'C. Rays con-
jugate to Q'A, Q'B, and Q'C must form a parallel beam, since the real image
P'Q’" which serves as an object for the eyepiece is situated in its first principal
focal plane. Moreover, the direction of this parallel beam must be parallel to
the line joining Q' to H,, the first principal point, because if we imagine the
ray Q'H, to exist, its conjugate ray would emerge parallel to it from H, by
virtue of H, and H,' also being the nodal points of the eyepiece. This explains
the ray construction in Figure 5.11.

In reality the final image is obtained by two steps. The real image P'Q’
formed in the first principal focal plane of the eyepiece by the objective serves

as a real object for the field lens and, as obtained above, L\F, =u = —(lj f.
In the lens equation 4

1 1 1
v ou ff
f f

if we substitute u = 3 and f, "= f, it is easy to deduce v= -3 In other

words, the field lens forms a virtual image P,Q, of P'Q’, and the former is

situated at [i) in front of the field lens or at (ﬂ.}-i = fj in front of the
3 3 3
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eye-lens. The virtual image P,Q, which lies in the first principal focal plane
of the eye-lens serves as an object for it. Hence, P,Q), is imaged at infinity by
the eye-lens.

The first principal focal point F, of the Ramsden eyepiece, as explained
previously, lies in front of the field lens. As a consequence, it is more
convenient to introduce a micrometer scale or cross wires, movable by
a fine calibrated screw, in the plane in which the objective forms a real
image P'Q’ of an object under examination. Accordingly, the cross wires
or micrometer scale will be magnified by the eyepiece to the same extent
as the real image P'Q’. Hence, it becomes practicable to take micrometer
measurements of the image with sufficient accuracy with the help of this
eyepiece. This is the main reason which led to the designing of Ramsden’s
eyepiece.

Various aberrations in the final image are minimized to a great extent as
follows: since the final image is seen by refraction at four surfaces, the spher-
ical aberration and the coma are reduced by providing total deviation, as far
as possible, in four equal increments at the four refracting surfaces. Spherical
aberration is further reduced by employing plano-convex lenses as the field
lens and the eye-lens. The circle of least confusion due to spherical aberration
and astigmatism is also very small, owing to the narrow pencil of rays trans-
mitted through the eyepiece. Finally, in order to correct for lateral chromatic
aberration, the eye-lens and the field lens must be separated numerically by
the distance

d=5(#+£)=r=1

This condition of achromatism would, however, bring the field lens in
the plane of the real image formed by the objective. Thus, the combination
would simply be Kellner’s eyepiece associated with the undesirable feature
of bringing into focus dust particles and scratches, if any, on the field lens.

2
As a consequence, in Ramsden’s eyepiece, lenses are separated by (gj f

instead of f, thus sacrificing some lateral achromatism in order to eliminate
the undesirable features of Kellner’s eyepiece. Moreover, this sacrifice has
the additional advantage of making the first principal focal plane of the eye-
piece real, associated with the convenience of introducing cross wires in this
focal plane.

The first principal focal point F, lies on the negative side of field lens, and
hence this eyepiece is often called a negative eyepiece.
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5.7.3 The Huygens Eyepiece

The kind of eyepiece which enjoys the widest use is the one designed by
Huygens in order to improve the corrections for the spherical aberration as
well as for the chromatic aberrations present in the Ramsden eyepiece. This
eyepiece is constructed of two plano-convex lenses, made of the same mate-
rial, the focal length of the field-lens being three times that of the eye-lens.
The two lenses are coaxially mounted with their curved faces turned towards
the incident light and separated by a distance of 2f, where fis the focal length
of the eye-lens. The combination of lenses in this eyepiece satisfies the condi-
tion of achromatism as follows

d=S(f+ £)=5 S+ f)=2f

as well as it satisfies the condition of minimum spherical aberration as
follows

d=(f - )=(af - f)=2f

The cardinal points of the Huygens eyepiece may be located as follows:
The optical separation between the field lens and the eye-lens can be
obtained by Equation (3.65), which is

A=d-f'-f)

and by substituting in it d = 2f, f,;' =3f, and f, = f» according to our sign
convention the second principal focal length of the convergent lens is positive.
Accordingly, the optical separation A of lenses in Huygens eyepiece is

A=2f-3f-f==2f
The second principal focal length of the eyepiece, according to Equa-
tion (3.64), is

f’ z_fl'f2, :_(Sf)(f) :(gjf
T A 2f (2
Since the medium is the same (air) on either side of the component lenses,
the first principal focal length f, of the eyepiece is
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The distance of the first principal plane from the field lens L, according
to Equation (3.77), is

=31)(2
L bd_(30CH
A (=2f)
Thus, the first principal point H, is at 3f from the field-lens and in the rear
of it. The separation between the field-lens and the eye-lens is 2f; hence, H,

lies at a distance f from the eye-lens in the rear of it. The first principal focal
length is measured from the first principal point. Therefore, the first principal

focal point F, is situated at a distance (gj f from H, and in front of it or at a
distance (éj f in front of the eye-lens. Thus, the first principal focal point F,

lies in between the two lenses.
The distance between the eye-lens and the second principal plane of the
eyepiece, according to Equation (3.74), is

_Ld_()Ef)
L,H/ = =—f
A (-2f)
Thus, the second principal point H,'is at fin front of the eye-lens. There-
fore, the second principal focal point F,' lies at a distance

LZE; :leFe' _He'Lz :gf_f:%f

from the eye-lens; that is, F'is at (%j f in the rear of the eye-lens.

The nodal points of the eyepiece obviously coincide with the correspond-
ing principal points, since the medium is the same on both sides of the eye-
piece. The principal points and the focal points of this eyepiece are shown in

Figure 5.12.
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FIGURE 5.12. Cardinal points of Huygens’s eyepiece.

We may now explain the image formation by this eyepiece utilizing the
properties of the cardinal points of the optical system. The first principal focal

point F, as explained previously lies in between the two lenses at (%j in front

of the eye-lens. In order that the final magnified image may be formed at
infinity by the eyepiece, it follows from the property of the principal focal
planes that the objective of an instrument must form an image P'Q’ in the
first principal focal plane of the eyepiece. Two rays Q'B and Q'A are shown
through the tip Q" of the image P'Q’; Q'B is parallel to the principal axis of the
lens system and intersects the first principal plane at B while the second ray
intersects this plane at A. By virtue of the positive unit lateral magnification,
the property characterizing the principal planes, the ray conjugate to Q'A is
drawn through a point A" in the second principal plane so that (H A=H L,’A'),
and a similar consideration applies to the ray conjugate to Q'B. Rays emerging
from the eyepiece must form a parallel beam; since P'Q" is in the first princi-
pal focal plane, it must be imaged at infinity by the eyepiece. The direction of
this beam must be parallel to the line joining Q' to H,, the first principal point
of the eyepiece, because if we imagine the ray Q'H, to exist, its conjugate
ray would emerge parallel to it through H," by virtue of H, and H," also being
the nodal points of the eyepiece. This explains the ray construction shown in
Figure 5.12.

In reality the final image is obtained by two steps. The image P'Q’, which
the objective would form if the field lens were absent in the first principal
focal plane of the eyepiece, serves as a virtual object for the field lens, and

, 3
according to our sign convention, (LIP su=3 f j since F, is in the rear of
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the field-lens. In the lens equation (l _1_ i} if we substitute u = (gj 1,

v ou ff 2
f =+3f, it is easy to deduce v = f. In other words, the field lens forms, at f
in the rear of it, a real image P,Q, of P'Q’. Since the separation between the
field-lens and eye-lens is 2f, therefore the real image P,Q, is situated in the
first principal focal plane of the eye-lens. Consequently, P,Q, is imaged at
infinity by the eye-lens. A field stop should be placed in the plane of the image
P,Q, to bring into effect a well-defined final image.

In order to carry out the measurements of the image, a micrometer
scale or cross wires should be employed between the eye-lens and the field-
lens, and it must be mounted in the plane of the real image P ,Q, of the
object under examination. The eye-lens alone magnifies the scale, so there
would be present some distortion and other aberrations in the image of
the scale or cross wires. The reason for this is that although the eyepiece
is corrected for lateral chromatic aberration and it satisfies the condition
for minimum spherical aberration, the eye-lens alone is not corrected. The
accurate measurements of any object cannot be made by the help of this
eyepiece.

The Huygens eyepiece, as illustrated in Figure 5.13, exhibits some spher-
ical aberration, astigmatism, and curvature of field but is free from lateral
chromatic aberration, although longitudinal chromatic aberration is not com-
pletely absent. The image is of a pincushion distortion type.

Field lens

e i o e i 5 AT
la—==-f--—-» Q Eye lens
f----- 3f2 ----»
R 2f ------ >

FIGURE 5.13. The Huygens eyepiece.

The first principal focal point F, lies on the positive side of the field lens,
and hence this eyepiece is often called a positive eyepiece.
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5.7.4 Comparison of Ramsden’s Eyepiece and Huygens’s Eyepiece

The chief advantage of Ramsden’s eyepiece over Huygens’s type lies in the
fact that in the former, the first principal focal plane lies in front of the field
lens, while in the latter, the principal focal plane lies between the two lenses.
As a consequence of this, Ramsden’s eyepiece can be used to carry out accu-
rate measurements of an image with the help of a micrometer scale or mov-
able cross wires. Moreover, it can also be employed as a simple magnifier to
examine real objects, while Huygens’s eyepiece can only examine images. On
the other hand, the chief advantage of Huygens’s eyepiece is the elimination
of the lateral chromatic aberration, but other aberrations are more satisfac-
torily reduced in Ramsden’s eyepiece. Of the two types, Huygens’s eyepiece
is chosen where the object to be examined is illuminated by white light and
the residual lateral chromatic aberration, if Ramsden’s eyepiece were used,
would be objectionable, which is, however, specially the case while examining
biological slides. Thus, Huygens’s eyepiece is invariably employed in micro-
scopes used in biological work. In telescopes fitted in spectrometers and in
other kinds of spectroscopes, Ramsden’s eyepiece is employed. Since only one
wavelength region is viewed at a time in such instruments, the residual lateral
chromatic aberration becomes unimportant. Huygens’s eyepiece also gives a
slightly higher field than that given by Ramsden’s type.

In the case of Ramsden’s eyepiece, the final magnified image is almost
flat, but so far as Huygens'’s eyepiece is concerned, it is convex toward the eye.

5.7.5 The Gauss Eyepiece

Ina telescope used in a spectrometer, it is sometimes convenient to employ
the Gauss eyepiece. This eyepiece is illustrated by Figure 5.14.

Glass plate
Cross

wires

Y

7.

FIGURE 5.14. The Gauss eyepiece.
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It is merely a Ramsden eyepiece, except that between the two lenses a
thin transparent glass plate is mounted at 45° to the axis of the tube, and there
is an opening in the side of the tube carrying the lenses through which light
can be admitted within the eyepiece. This eyepiece is used to set the optical
axis of the spectrometer telescope at right angles to its axis of rotation in the
spectrometer.

THE SPECTROMETER

The spectrometer is one of the most important optical instruments. It is
usually employed for the study of a spectrum produced by the transmis-
sion of light through dispersion-producing devices like a prism or a grating.
Quantitatively, it is always employed for the measurement of an angle, for
example, the angle of a prism, the angle of minimum deviation, and the angle
of the diffraction of light due to transmission of light through a plane diffrac-
tion grating.
The essential parts of the spectrometer, illustrated by Figure 5.15, are

1. A collimating device or collimator, which serves the purpose of rendering
parallel the rays of light to be examined by the spectrometer.

2. A turntable on which a dispersion-producing device, like a prism or a grat-
ing, can be conveniently mounted.

3. A telescope for examining the spectrum.

Vernier
~>

Ramsden’s
eye-piece

FIGURE 5.15. The spectrometer.
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The collimator simply employs a well-constructed achromatic lens at one
end of a tube, and sliding within it at its other end is another tube carrying
a vertical slit of adjustable width. The relative position of the two tubes can
be adjusted by a rack and pinion arrangement, and in this way the slit can be
adjusted in the first principal focal plane of the collimating lens. In this setting
of the collimator, the rays of light under examination, after passing through
the slit, are rendered parallel by the collimator lens. The collimator tube is
usually fixed in the instrument with its axis horizontal and intersecting the
vertical axis, which passes through the center of the circular scale, graduated
in half-degree, fixed at the base of the instrument.

The parallel beam of light emerging from the collimator falls on the prism
resting on a table which can be rotated, independently of the collimator and
the telescope, about a vertical axis which passes through its center as well as
through the center of the circular scale. The rotation of the table can be read
by the help of the diametrically positioned verniers sliding over the circu-
lar scale. The turntable as shown in Figure 5.16 can also be adjusted to any

desired height and clamped.

pJe)
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/ B N\
/ N \
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FIGURE 5.16. Turntable.

L

The slow rotation can be now given with a tangent screw provided at the
base of the instrument. The table is provided with three screws P, Q, and R,
which form the three corners of an equilateral triangle. By the help of these
screws, the plane of the table can be made as nearly horizontal as possible.
The surface of the table is usually ruled with straight lines parallel to the line
joining two of the leveling screws. These lines assist in setting the prism with
one of its faces normal to them.

The refracted beam from the prism is examined by an astronomical telescope
described in Section 5.6 and provided with a Ramsden eyepiece. The tube carry-
ing the lenses which constitute the Ramsden eyepiece can slide within the tube
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carrying the cross wires. The two tubes are fixed to the third tube, which slides
within the tube carrying the objective. Thus, the distance between the plane
of cross wires and the objective can be varied by the help of a rack and pinion
arrangement. The telescope tube with its axis horizontal and pointing toward
the axis of the spectrometer is fixed in an arm which can be rotated about the
vertical axis of the instrument. This rotation can also be read with the help of
another pair of diametrically positioned verniers which slide, with the telescope
arm, on the circular scale. The telescope arm can be clamped, and slow rotation
can be accomplished with the help of a tangent screw. The collimator and the
telescope are provided with leveling as well as locking screws.

Adjustment of the Spectrometer

Before using the spectrometer for any experiment, the following adjustments
must be made in the instrument:

1. The axis of the telescope and that of the collimator must intersect the
principal vertical axis of rotation of the telescope.

2. The telescope must be focused for parallel rays and the collimator must be
adjusted for rendering the rays of light from the illuminated slit parallel.

3. The optical axis of the telescope and that of the collimator must be
perpendicular to the principal axis of the instrument.

4. The refracting edge of the prism, if one is employed, must be made paral-
lel to the vertical axis of the rotation of the prism table and the telescope.

EXERCISES

1. What is an eyepiece? What are its advantages over a single lens?
Describe Huygens’s eyepiece and show why it is free from both spheri-
cal and chromatic aberrations.

2. An ocular consists of two identical positive thin lenses, each of focal
length 2 in. separated by a distance of one inch. Determine the posi-
tions of the focal points and principal points of the combination.

3. The lenses in a Huygens eyepiece have focal lengths of 2 and 4 cm.
Find the distance between them and locate the cardinal points.

4. Describe the construction of a higher-power microscope and discuss
the relation between magnifying and resolving powers.
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10.

11.

12.

The focal length of the more convergent lens of a Huygens eyepiece
is 0.5 cm. Calculate the focal length of the eyepiece and locate on a
diagram the positions of its focal points.

Prove that when two lenses are separated by the algebraic sum of their
focal lengths, the linear magnification is independent of the position of
the object and is equal to the reciprocal of the angular magnification
for the case of an object at infinity.

A telescope with an objective of focal length F and an eyepiece of focal
length f'is focused on an object at a finite distance d from the objective.
Calculate its magnifying power and show that it varies up to the limit-
ing value.

A distant star is seen with relaxed accommodation through an astro-
nomical telescope fitted with Huygens’s eyepiece. Draw a neat diagram
of the path of the rays from the star to the eye. Use the diagram to
explain that the eyepiece is negative. (Hint: According to our sign con-
vention, it is positive. )

Mention the characteristic features of the Ramsden’s eyepiece. Draw
a neat diagram of the path of rays through a telescope fitted with this
eyepiece when the telescope is focused with relaxed accommodation
on a distant point source of light on its axis.

‘Write notes on:

Oil immersion objectives

o P

. Eyepieces

Huygens’s eyepiece and its achromatism

a o

. Ultra-microscope
e. Ramsden’s eyepiece

f. Numerical aperture

Explain the function of an eyepiece in an optical instrument. Explain
the construction and theory of Ramsden’s and Huygens’s eyepieces.
Discuss their respective merits.

Describe fully the construction and workings of Huygens’s eyepiece.
Show that this eyepiece is achromatic in the same sense as an ordinary
magnifier. Why is Huygens’s eyepiece also called a negative eyepiece?
(Hint: According to our sign convention, it is positive.)
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6.0

INTRODUCTION

In the preceding chapters we have studied the image-forming property of
lenses and mirrors, the aberrations of optical images, and the action of many
optical instruments. We have based our arguments on the theory that light
is propagated accurately in straight lines without, however, concerning our-
selves with the actual nature of light. After this long study, the question would
naturally arise to an inquisitive reader as to what is light. The answer to this
question and experimental evidence in support of it constitute what is called
physical optics.

Speculations about the true nature of light have gone on through the cen-
turies. The Pythagoreans believed light to consist of minute particles shot out
at high speed from luminous objects. Plato and his peers regarded light as some
kind of emanation from the eye by means of which objects are scanned and
made visible when struck by it. Aristotle thought of light as something non-
material occurring in the space intervening the eye and the object examined.

Light is really a form of energy, and so it is regarded as the transfer of
energy from the luminous source to the eye, either directly or through the
object seen. Energy can be transferred from one point to the other either by
means of a wave disturbance traveling through the intervening medium or
by the motion of material particles between the two points. Accordingly, two
different theories as to the nature of light were brought forward in the seven-
teenth century, that is, wave (or undulatory) theory and emission (or corpus-
cular) theory. Huygens, Hooke, and Descartes championed the wave theory.
The emission theory was upheld by Huygens’s great contemporary Newton,
although Young, who in 1801 developed further wave theory, gave credit of
his ideas to Newton’s writings, which contained some basic notions pointing
toward the wave picture of light.

This chapter shows that the phenomena of interference, diffraction, and
polarization of light can be satisfactorily explained only by postulating that
light is a form of wave motion. The physicists concerned with the earlier devel-
opment of such a concept indeed thought that light was a form of mechani-
cal energy transported through space and matter very much like the flow of
acoustic energy. Although this concept turned out to be erroneous, inasmuch
as the light waves were subsequently shown to be associated with the trans-
port of electromagnetic energy, it still went a long way in our understanding
of the previous phenomena and many more. For a subsequent understanding
of the transport of electromagnetic energy, it is therefore worthwhile to study
wave motion in general terms and see how far the parallelism mentioned pre-
viously takes us along in this chapter.
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THE CORPUSCULAR THEORY OF LIGHT

In 1675, Newton sent to the Royal Society a paper in which he presented
the fundamental postulates of his corpuscular (emission) theory of the nature
of light. According to this theory, light consists of a stream of minute invis-
ible particles, called corpuscles, moving at a great speed. These corpuscles
were emitted in straight lines from a luminous source, and their mechanical
impact on the retina stimulated the sensation of vision. Different colors were
ascribed to different sized corpuscles. Newton also postulated “an ethereal
medium much of the same constitution with air but far rarer, subtler and
more strongly elastic.” Ether “pervades the pores of all material bodies but
with a greater degree of rarity in these pores than in the free ethereal spaces.”
When corpuscles “impinge on any refracting or reflecting superficies (a sur-
face layer), must as necessarily excite vibrations in the ether, as stones do in
water when thrown into it.” Nevertheless, Newton rejected the theory that
vibrations of the ether should be regarded in themselves to constitute light,
since it appeared to him to conflict with the fact of the rectilinear propagation
of light. He arrived at these conclusions from considerations which are best
expressed in his own words:

If it (light) consisted in pression (pressure in ether) or motion, propagated
either in an instant or in time, it would bend into the shadow. But light
is never known to follow crooked passages nor to bend into the shadows.
For the fixed stars by the interposition of any of the planets cease to be
seen. The rays of light are very small bodies emitted every way from shining
substances. For such bodies will pass through uniform mediums in right
lines without bending into the shadows, which is the nature of rays of light.
Pellucid (transparent) substances act upon the rays of light at a distance
in refracting, reflecting, and inflecting them, and the rays mutually agitate
the parts of those substances at a distance for heating them; and this action
and reaction at a distance very much resemble an attractive force between
bodies. If refraction be performed by attraction of the rays, the sines of
incidence must be to the sines of refraction in a given proportion.

By effecting the prismatic decomposition of white light into its constitu-
ent colors, Newton recognized that color is an important characteristic of light
and it must be associated with the definite quality of the corpuscles or the
ether vibrations. He writes “the most refrangible rays excite the shortest vibra-
tions for making a sensation of deep violet, the least refrangible the largest for
making a sensation of deep red, and the several intermediate sorts of rays
vibrations of intermediate bigness to make sensation of the several interme-
diate colors.” This is the first statement of the principle that monochromatic
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light is essentially periodic in its nature and that different periods correspond
to different colors. It appears that Newton had also in his mind some form of
wave theory regarding the nature of light, but he was not committed to it, as
he never computed the wavelength of ether vibrations.

In the latter part of his life, Newton enunciated the law of gravitation,
which involves no reference to ether hypothesis, and he also developed the
mechanics of the motion of heavenly bodies and concluded that the ether
hypothesis was totally superfluous, for he writes: “Against filling the Heaven
with fluid medium, unless they be exceedingly rare, a great objection arises
from the regular and very lasting motion of the Planets and Comets. For
thence it is manifest, that Heavens are void of all sensible resistance, and
by consequence of all sensible matter.” Thus, in the latter part of his life, he
was definitely inclined to a purely corpuscular conception as to the nature

of light.

WAVE THEORY OF LIGHT

In 1690, Dutch Physicist Christian Huygens published a Treatise on Light
in which he presented a theory, which was first developed in a definite form
in 1678, bringing out clearly the necessity of wave conception, instead of
corpuscular conception, regarding the nature of light. According to his ideas,
a beam of light consists of a large number of longitudinal pulses which are
propagated as condensations and rarefactions, like sound waves, from the
point of origin to the point of observation of light. He totally rejected the the-
ory that light consists of the motion of small corpuscles emitted from lumi-
nous sources.

Huygens arrived at these conclusions from the following considerations,
which are best expressed in his own words:

When we consider the very great speed with which light is propagated in
all directions, and the fact that when rays come from different directions,
even those directly opposite, they cross without disturbing each other, it
must be evident that we do not see luminous objects by means of matter
translated from the object to us, as a shot or an arrow travels through the
air. For certainly this would be in contradiction to the two properties of
light which we have just mentioned and especially to the latter. Light is
then propagated in some other manner, like that in which sound travels
through the air. Now there can be no doubt that light also comes from the
luminous body to us by means of some motion impressed upon the matter
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which lies in the intervening space: for we have already seen that this can-
not occur through the translation of matter from one point to another. If,
in addition, light requires time for its passage—a point we shall presently
consider—it will then follow that this motion is impressed upon the mat-
ter gradually, and hence is propagated, as that of sound, by surfaces and
spherical waves.

For the propagation of every wave, we require some medium as a vehicle.
As, however, the propagation of light also occurs in a vacuum, Huygens postu-
lated as a vehicle for these waves an omnipresent, all pervading, universal, and
continuous medium called luminiferous ether, which according to him was
composed structurally of tiny elastic particles. According to Huygens, every
luminous body is a source of disturbance in ether particles whose mutual
impacts transmitted from one particle to the next in continuous succession
are propagated with tremendous velocity to the point of observation. Thus, he
thought of light as consisting of longitudinal waves in ether. We must empha-
size here that the conception of a transverse wave motion, which is the true
nature of light waves, had not then occurred to Huygens. Different colors of
light are attributed to light waves of different wavelengths.

CORPUSCULAR THEORY VERSUS WAVE THEORY

Obviously, the test of the adequacy of any theory consists in its ability to
account for the known experimental facts with a minimum of postulates. In
this light we must admit that the corpuscular theory triumphs above all prej-
udices, as it can explain many experimental facts like rectilinear propagation,
reflection, and refraction at the plane boundary separating two media, of
course, with a minimum of hypothesis.

Twelve years after the presentation of his wave theory, Huygens was also
successful in explaining reflection and refraction, and he arrived at the con-
clusion theoretically that the speed of light should be greater in an optically
rarer medium, whereas the theory of Newton gave the opposite result. Obvi-
ously, a measurement of the speed of light in water and air would decide
the nature of light. Huygens also gave a suitable explanation of the phenom-
enon of double refraction, discovered in 1669 by Erasmus Bertholinus in
uniaxial crystals like calcite, by attributing to ether present in the surface
layer of uniaxial crystals the property of sending out two waves propagated
with different speeds, within the crystal, under the influence of incident light
waves. The corpuscular theory was found to be totally inadequate to explain
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double refraction. But Huygens’s discovery in 1690 of the phenomenon of
the polarization of light, namely that the two beams of light emerging from
calcite crystal have sides, that is, they are not perfectly symmetrical about the
direction of propagation, presented an unsurmountable difficulty in respect
of the then-prevalent nature of light waves. Of course, it is inconceivable for
a longitudinal wave, which is perfectly symmetrical about the direction of
propagation (due to vibration of the medium along the direction of the prop-
agation), to acquire one-sidedness or a symmetry on transmission through a
calcite crystal. Besides this, Huygens could not give any satisfactory expla-
nation of the rectilinear propagation of light, as another phenomenon called
interference of light had not yet been discovered. Polarization was first
interpreted by Newton on the supposition that the corpuscles were not per-
fectly spherical. Accordingly, they would present different sides depending
on their orientation to the direction of propagation. As a consequence, the
new wave theory could not receive immediate acceptance. In fact, Newton
argued that we should compare the properties of light with those of sound,
which is definitely a wave motion and has the property of bending around
corners and other obstacles in its path. This sideway spreading of the waves
or their bending around the corners is called diffraction. But up to 1821 no
significant diffraction effects were observed with light, although it should be
pointed out that the phenomenon of diffraction of light was first observed
by Grimaldi as early as 1665. But the true significance of his observations
was not realized at that time, presumably due to our inability to repeat his
observations. It should be emphasized that diffraction effects arise only when
the dimensions of the obstacle become comparable with the wavelength of
the wave, but in Huygens time the smallness of the wavelength of light was
not known. Newton, therefore, argued: “I know sound is waves, how then
can light be waves if it is so different from sound in this matter of diffrac-
tion.” Later, Newton also succeeded in observing diffraction fringes outside
the geometrical shadow of the obstacle in the path of light. He argued that
it arises due to the deflection of light corpuscles from their straight path in
passing the region of variable ether density close to the edges of an opaque
body. Had he not fatefully overlooked the diffraction fringes within the geo-
metrical shadow, first noticed by Grimaldi, they would have set him on the
right path. Furthermore, Newton considered rectilinear propagation as an
essential property of light, and since he was successful in explaining it by the
emission theory, he criticized the wave theory on these grounds also. His
views were, unfortunately, interpreted by his followers with a much narrower
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significance than he intended to attach to them, and they rejected the wave
theory in favor of the corpuscular theory.

Nevertheless, by the end of eighteenth century, the theories of light pro-
pounded by Newton and Huygens had acquired a following in the scientific
world, although there was still a controversy about whether a corpuscular or
a wave picture best fit in the experimental facts. Then came the discovery
of the phenomenon of the interference of light in 1801 by Thomas Young
(1773-1829). He championed the wave theory to explain the observed
uneven distribution of light on a screen placed in front of another screen with
two extremely close pinholes, when the sunlight was allowed to fall on these
holes after traversing through another pinhole. The corpuscular theory was
found to be totally inadequate to explain the observed uneven distribution of
light because, on this conception, the intersection of two rays at a point could
only produce an increased brightness equal to twice the intensity of each one
separately but never a partial or complete darkening. In fact, the observed
intensity in bright regions was found to be four times the intensity caused by
each beam acting separately. According to wave theory, since the intensity
at any point is proportional to the square of the amplitude of the light wave,
the addition of two light waves of equal amplitude, originating from the same
source as found in Young’s experiment, could produce under suitable condi-
tions (arriving in equal phase) a wave of twice the amplitude, and hence the
intensity would be four times that due to component waves alone. In Young’s
own words, “When two undulations from different origins coincide their joint
effect is a combination of motion belonging to each.” Young’s experiment
was thus a crucial one at that time, because it added further evidence to the
growing belief in the wave nature of light. Besides, he also explained colors
of thin films, a phenomenon discovered by Newton himself, by attributing it
to the interference between light waves reflected from the upper and lower
surfaces of thin films.

Owing to Newton’s great authority, even Young’s experiment and his
explanation of the interference of light could not lead to the triumph of
the wave theory. It was, however, left to the brilliant contribution of young
French engineer Augustin Fresnel (1788-1827) to bring about the general
conversion of the scientific world to the wave nature of light. He employed
Huygens’s wave theory together with the principles of the interference of
light waves and succeeded not only in giving a satisfactory quantitative expla-
nation of the uneven distribution of light in all diffraction phenomenon then
known to scientists, but above all he also explained the rectilinear propagation
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(approximate) of light, thereby refuting one of the chief arguments against the
wave nature of light.

Although Fresnel’s explanation of interference and diffraction effects
paved the way for the success of the wave theory, still there were scientists
who were hesitating to accept this theory, chiefly on account of its inabil-
ity to account for the phenomenon of the polarization of light waves on
the prevalent nature (viz. longitudinal) of light waves. Credit again goes to
Fresnel, who in 1816, after studying the interference of polarized light, put
forward the highly revolutionary hypothesis that light must be regarded as
a transverse wave motion in ether analogous to those in an elastic solid, in
contradiction to Huygens’s conception of the longitudinal nature of light
waves. In the case of transverse waves, vibrations of the medium are exe-
cuted at right angles to the direction of propagation, but if the vibrations
are confined to one place, then this kind of wave would definitely exhibit
one-sidedness. Thus, the phenomenon of the polarization of light could be
easily explained by Fresnel’s hypothesis. There is no doubt that this revo-
lutionary hypothesis proved to be a great triumph for wave theory over the
corpuscular theory.

The death blow to the corpuscular theory and the universal acceptance of
wave theory were, however, achieved simultaneously when Leon Foucault,
in 1850, showed experimentally that the speed of light is less in water than
in the outside atmosphere. The wave theory of Huygens, although radically
modified by Fresnel, finally triumphed over the rival emission theory of
Newton.

ELECTROMAGNETIC THEORY OF LIGHT

Huygens and Fresnel regarded light as simply the propagation of mechanical
energy. A completely different conception regarding the nature of light waves
developed in 1873 chiefly due to the theoretical researches of a Scottish scien-
tist, James Clerk Maxwell, Professor of Physics in Cambridge University. He
put forward the hypothesis that light must be thought essentially as an electro-
magnetic wave propagation, so that a beam of light propagates not mechanical
but electromagnetic energy.

Maxwell explained by theoretical reasoning that the oscillatory electric
circuit must produce, in the medium occupying the space, the periodic varia-
tions of electric and magnetic intensities having all the characteristics of trans-
verse waves. The vectors representing electric and magnetic field strengths
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are mutually perpendicular and also at right angles to the direction of the
propagation of the waves.

Furthermore, he deduced that the velocity of propagation of electromag-
netic waves through this medium (electric ether) is numerically equal to the
number of electrostatic units of electric charge, which are equivalent to one
electromagnetic unit of charge. Light travels as a wave motion in luminiferous
ether. To the inquisitive mind of Maxwell, the question naturally arose: were
light waves and electromagnetic waves identical? The problem and method
of solution were stated by Maxwell himself in his Treatise on Electricity and
Magnetism, as follows:

In several parts of this treatise an attempt has been made to explain elec-
tromagnetic phenomenon by means of mechanical action transmitted from
one body to another by means of medium occupying the space between
them. The undulatory theory of light also assumes the existence of a
medium. We have now to show that the properties of the electromagnetic
medium are identical with those of the luminiferous ether.

But the properties of bodies are capable of quantitative measurement. We
therefore obtain the numerical value of some property propagated through
it which can be calculated from electromagnetic experiments, and also
directly in the case of light. If it should be found that the velocity of prop-
agation of electromagnetic disturbance is the same as the velocity of light,
we shall have strong reasons for believing that light is an electromagnetic
phenomenon.

Maxwell’s predictions were remarkably confirmed in 1888 by Helmholtz's
brilliant pupil Heinrich Hertz. He experimentally detected electromagnetic
waves in space, generated by the rapidly accelerated charges in an oscillatory
spark discharge. At the same time, he also demonstrated that these waves
could be reflected, refracted focused by a lens, polarized, and so on. In short,
they exhibited properties similar to those of light. In addition to this, it was
found experimentally that electromagnetic waves are propagated precisely
with the same velocity as those of light in a vacuum. The evidence went far to
show that the light consisted of electromagnetic waves. Fresnel’s ideas did not
meet any opposition, but they were interpreted not in terms of mechanics but
in terms of electrodynamics.

By electromagnetic theory, light is regarded as the propagation of a vibra-
tion of an electric vector E coupled with the propagation of a vibration of a
magnetic vector H. Figure 6.1 shows the fields E and H in a plane transverse
electromagnetic wave.



168 ° Orrics

6.5

N 20]

FIGURE 6.1. Fields E and H in a plane transverse electromagnetic wave.

Both vectors in synchronism are to be always in equal phase, mutually
at right angles, and at right angles to the direction of the velocity vector V of
the wave. Wiener’s experiment on stationary light waves has shown that the
electric vector plays the role of the light vector. The experimental confirma-
tion of the electromagnetic nature of light waves has since then accumulated,
for example, the magnetic splitting of spectral lines (Zeeman effect) and the
rotation of the plane of polarization under the influence of the magnetic field
(Faraday effect). The electromagnetic theory completely obliterated the cor-
puscular conception of light, and the former reigned supreme in the domain
of optics, of course, only up to the end of the nineteenth century, when the
corpuscular conception was revived to explain new discoveries, for example,
the photoelectric effect, Compton’s scattering of X-rays, and the emission

of light.

QUANTUM THEORY OF LIGHT

By a strange irony of fate, Hertz, who provided an experimental confirmation
of Maxwell’s electromagnetic theory of light, discovered another phenomenon
called the photoelectric effect, which was destined to provide the greatest set-
back to the established supremacy of wave theory and which, ultimately again,
brought into light the corpuscular picture of radiant energy but in slightly
modified form. This phenomenon consists of the instantaneous ejection of
loosely bound electrons—valence electrons—from alkali atoms (Na, K, Li,
etc.) under the stimulus of light, X-rays, and y-rays. An expulsion of an elec-
tron requires absorption of energy by the atom, equal to the binding energy of
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the electron. According to wave conception, it would take several days for the
atom to absorb the requisite amount of energy from a beam of light of moder-
ate intensity to bring about its expulsion. Actually, the expulsion of electrons
starts the moment light strikes the metal surface. Einstein in 1905 suggested
that in order to give an adequate explanation of these experimental observa-
tions, it is essential to postulate that energy in a beam of light is not uniformly
distributed over the whole wave-front, but is made up of localized centers
of energy traveling through free space, and each of them is capable of being
absorbed by the atoms as a whole. The localized concentrations of energy,
which he called photons, are propagated like particles with the speed of light.
The prestige of the wave picture was retained inasmuch as the energy of the
photon was assumed to be proportional to the frequency, v, of the associated
light wave, that is,

E=hv (6.1)

where h is the universal constant known as Planck’s constant, and its value is
6.624 x 107 ergs-sec. In reality, Einstein took his cue from the epoch-making
hypothesis put forward on December 11, 1900 by Max Planck, Professor of
Mathematical Physics at Berlin, in connection with the explanation of the
energy distribution in black body radiation. Planck’s hypothesis, which was
destined to represent one of the outstanding achievements in physics and to
win for him the Nobel Prize in 1918, may be stated as follows: Every atom,
usually called the oscillator, absorbs or gives off energy in intermittent and
discontinuous amounts equal to an integral multiple of a certain energy unit,
hv, which he called quanta (or energy), where v is the oscillation frequency of
the oscillator. According to wave theory, the process of absorption or radiation
of energy is a continuous one.

Planck’s quantum hypothesis, which constitutes a clear break with the
doctrines of classical physics, along with Einstein’s ideas of the photon char-
acter of light, constitutes what is now called the quantum theory of light.
Another striking confirmation of the photon character of light is provided by
the interpretation of emission and absorption line spectra in 1913 by Neils
Bohr, and Compton’s experimental observation and interpretation in 1921 of
the scattering of X-rays.

Our present view is that light has a dual character. In experiments on
propagation, reflection, refraction, interference, diffraction, and polarization,
light exhibits those properties which are definitely attributable to waves, while
in experiments on interaction with matter (photoelectric effect), in the process
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of emission, absorption, and scattering, it exhibits those properties which are
definitely of a particle or photon character. The far-reaching consequences of
this dual character of radiant energy were, however, not fully recognized until
de-Broglie announced his new view on the subject, which is best expressed in
his own words as follows:

A consideration of these problems led me, in 1923, to the conviction that in
the theory of matter as in the theory of radiation it was essential to consider
corpuscles and waves simultaneously, if it were desired to reach a single
theory, permitting of the simultaneous interpretation of the properties of
light and those of matter. It then became clear at once that, in order to pre-
dict the motion of a corpuscle it is necessary to construct a new mechanics,
a theory closely related to that dealing with wave phenomenon, and one in
which motion of corpuscle is inferred from the motion in space of a wave.
In this way, there will be, for example, light corpuscles, photons but their
motion will be connected with that of Fresnel’s waves, and will provide an
explanation of the phenomena of interference and diffraction, Meanwhile,
it will no longer be possible to consider the material corpuscles or electrons
as discrete isolated entities, it will on the contrary, have to be assumed in
each case that they are accompanied by a wave which is bound up with
their own motion.

Thus, in this unified theory known as quantum mechanics, a photon is
not to be thought of as a mere concentration of energy but is to be associ-
ated with a periodic phenomenon extended over the space. We can conclude
that the photon and wave ideas are in reality complementary rather than rival
conceptions.

MOTION ABOUT A CENTRAL POINT

We start with one of the simplest and most useful concepts of physics, namely
the linear to and fro motion of a particle about a central point. So long as the
maximum displacement of the vibrating particle as measured from its mean
position is small, its motion is termed as simple harmonic. The motion of a sim-
ple pendulum and the vibrations of a flat spiral spring and a stretched string
are a few examples of simple harmonic motion encountered in everyday life.

Consider a particle P moving along the circumference of a circle with a
constant velocity v as in Figure 6.2.
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FIGURE 6.2. A particle P moving along the circumference of a circle with a constant velocity v.

Suppose we get interested in studying its dynamics the moment it crosses
the position x (¢ = 0). At this instant its displacement from that “center O”
measured along the horizontal direction is equal to the radius “a” of the circle,
while that measured along the vertical direction is zero. When it arrives at P,
after a lapse of a few seconds, its respective displacements along the X and
Y axes, measured from the central point O, are acoswt and asinwt, where
o is the angular frequency of rotation and is defined as the angle traced by
the radius vector in unit time. On arrival at “Y” the horizontal displacement
vanishes, but the vertical displacement attains its maximum value, namely
“a.” In the second quadrant of the circle, the vertical displacement gradu-
ally decreases, vanishing completely when the particle arrives at X', but the
horizontal displacement simultaneously increases, becoming a maximum at
X'. This maximum is nevertheless in the negative X-direction. Thus, we find
that as the particle completes one half-cycle from X to X', to the displacement
measured along the Y-axis, it starts from zero, rises to a maximum, and falls
back to zero. In the next half-cycle (from X' to X) the vertical displacement
again increases (though in the negative direction), becoming maximum when
the particle reaches Y’, and starts decreasing till it becomes zero when the
particle arrives at X. At each instant the displacement in the Y-direction as
measured from the central point O is given by

Y =asinwt (6.2a)

where “t” is measured from the instant we become interested in following this
motion. A plot of Y against “¢#” gives the sine curve expressed in Equation (6.2a)
and has been shown to the right in Figure 6.2.

Similarly, the displacement measured along the X-axis is given by

X =acoswt (6.2b)
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and has been shown by the dotted curve to the right of Figure 6.2 and can be
T
obtained by displacing the continuous curve to the left by an interval (Zj

where “T” is the time required by the particle to complete one full cycle along
the circumference.

Thus, we find that as P moves along the circumference of the circle, its coor-
dinates along the X and Y directions execute a vibratory motion along the two
axes about the central point O. Moreover, it can be seen from a double differen-
tiation of Equations (6.2a) and (6.2b) with respect to time that the accelerations
along the two axes are directly proportional to the instantaneous displacements
of the coordinates along those directions. Thus, from Equation (6.2a)

2
y = ZZZ_Z =awcosot and y" = flit?"/ =—ao’ sin ot (6.3)
or dzy
ynzﬁz_a)zy <64>
Similarly,
o Lx o 6.5
== (6.5)

The negative sign in Equations (6.3) and (6.5) indicates that the instan-
taneous accelerations are directed along directions opposite to that of the
increasing displacements from the central point O.

These then are the necessary and sufficient conditions for a motion to be
called simple harmonic. The motion of a particle along the circumference of a
circle can thus be resolved into two mutually perpendicular simple harmonic
motions of the same amplitude obeying certain conditions. So long as these
conditions are satisfied, the converse of this statement is also true.

VARIABLES OF A SIMPLE HARMONIC MOTION

The most general equation of a simple harmonic motion is given by
y=asin(ot —5) (6.6)

where a is the amplitude of vibration, o the angular frequency, and (@t — &)
the phase of the vibration. It may be mentioned that dis a constant depending
upon the particular motion under study and may be evaluated with the help of
certain known conditions satisfied by it.
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The maximum value of displacement y [obtained by putting sin(wt — &) =1]
is called amplitude. The quantity

A

is called the frequency and is defined as the number of vibrations executed
by the particle in one second. The angular frequency  is the number of
vibrations completed by the particle in 27 seconds. If ¢ in Equation (6.6) is
replaced by ¢ + T, we find that

y:asin[a)(H—T)—é‘]

=asin{w(t+%)—5}
=asin[2n’ +(a)t—5)]
y=asin[ot -5

The nature of the function thus remains unaltered and, consequently, T is
called the periodic time of the simple harmonic motion. The phase of the vibra-
tion, which is the argument of the sine (or cosine) function in Equation (6.6),
can be expressed in terms of

1. the time (fraction of T) elapsed since the vibrating particle passed through
its mean position,
or
2. the angle through which the particle has turned after passing through its
mean position.
Thus, when the vibrating particle is at its extreme position in the positive
direction, it has turned through an angle of (E) radians and the time

T
expressed as a function of T is (Zj seconds, both being reckoned with refer-

ence to its mean position. If there are two particles vibrating along the same
straight line with the same frequency, the following possibilities may arise:

1. They pass through their mean positions simultaneously moving in the same
direction. They are then said to be in the same phase. Their phase differ-
ence may be 0, 27, 47, etc., since the function expressed in Equation (6.6)
repeats itself after every 27 radians.
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2. They pass through their mean positions simultaneously moving in oppo-
site directions. They are then said to be in opposite phase, and their phase
difference may be 7, 37, etc.

3. They pass through their mean positions at different times, either in the
same or opposite directions. Their phase difference will then be deter-
mined according to the conditions of the problem and may have a value
lying between 0 and 27 radians.

6.8 PARTICLE VELOCITY, ACCELERATION, AND ENERGY IN
A SIMPLE HARMONIC MOTION

We have seen that the instantaneous displacement of a particle executing
simple harmonic motion is given by

y=asin(cot—6) (6.8)

A differentiation of this equation with respect to time gives the particle
velocity at any instant. Thus

Velocity =y’ = awcos(wt — &) (6.9)

The particle velocity therefore undergoes a sinusoidal variation with
respect to time. The frequency of this variation, however, remains unchanged,
but the amplitude, that is, the maximum value of velocity, is (@) times the

amplitude of displacement. Moreover, there is a phase difference of (%]

between the two functions represented by Equations (6.8) and (6.9). Thus,
when one becomes a maximum, the other is a minimum and vice versa.

A second differentiation of Equation (6.9) with respect to time gives
particle acceleration. Thus

y"=—ao’sin(wt —5)=-0"y (6.10)

The acceleration of the particle also undergoes periodic variations of
the same frequency as its displacement, but its amplitude is (@) times the
amplitude of displacement. Moreover, the negative sign in Equation (6.10)
indicates that the two variations are in opposite phase. The graphs of these
variations are shown in Figure 6.3.
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FIGURE 6.3. Particle velocity, displacement, and acceleration in a simple harmonic motion.

Thus, we find from Equation (6.9) that as the particle passes through
o

1) )
its mean position (—,T +—,2T +—, etc. |, its velocity has a maximum value
0} 10} 0}

1
(aw). Its kinetic energy [5 mo’ j will therefore also have a maximum value. Its

acceleration while passing through the mean position is zero, Equation (6.10),
and will go on increasing as it moves farther and farther away but is directed
toward the central point (hence deceleration). On reaching the extreme posi-
tion, the particle loses all its kinetic energy, the deceleration attains its maxi-
mum value, and the particle starts its journey back toward its mean position,
experiencing all the time an ever-decreasing acceleration till it arrives at its
mean position once again, where its kinetic energy becomes maximum. It
overshoots this position and starts experiencing an ever-increasing decelera-
tion till its other extreme position, and so on.
At any instant the energy of the vibrating particle is made up of

1. its kinetic energy
2. its potential energy

If m is the mass of the vibrating particle, its kinetic energy at any instant
(assume & = 0 for simplicity) is

1 2 1 2
E. =—|mv =|—-|m
kin (2) (2) y
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E. = (%j ma’®’ cos® ot (6.11)

It will be always experiencing a force my" trying to bring it back to its
mean position. If the displacement of the particle at any instant is y, it will
have a certain energy by virtue of its position in the field of this restoring
force. The local potential energy can thus be found out in terms of the work
done in displacing the particle through a further distance dy against this
restoring force. Hence,

dW =Force x distance
dw = ma)zydy

Therefore, the total work done in displacing the body through a distance
y from its mean position is

Y
W= Ehot = Imwzydy = (é) ma)2y2
0

W= (é)maza)z sin” wt (6.12)

Hence, the total energy of the particle is
E=E, +E

pot

E= (ljmach (sin2 ot + cos” wt)
2
1 2 2
E= 5 ma o (6.13)

Thus, the total energy of the particle executing a simple harmonic motion
remains independent of its coordinates and depends only on its angular
frequency and amplitude of vibration. It also follows from Equations (6.11)
and (6.12) that when the kinetic energy is maximum, the potential energy is
zero and vice versa. But the individual energies, kinetic and potential, are
seen to be functions of time and hence the position of the vibrating particle.

. 1 : .
Their average values however are (Z ma’*®® each (since the average values

of sin? @ and cos® 0 are each equal to half).
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6.9 DIFFERENTIAL EQUATION OF SIMPLE HARMONIC
MOTION AND ITS SOLUTION

Equation (6.10) gives the differential equation of simple harmonic motion e
obtained from the definition f of such a motion. We know that the restoring
force acting on the vibrating particle is directly proportional to the instanta-
neous displacement from its mean position and is always directed toward this
central point. Hence, according to Newton’s second law for linear motion
7ny/l — _uy

where pis the constant of proportionality and gives the restoring force for unit
displacement. On putting (ﬂj =o® wm = -2, this equation can be reduced
m

to Equation (6.14), that is,
y'=-0"y (6.14)
The easiest method of solving such equations is by substitution. We
suppose that the solution is of the form
y=Ae”
Hence,
y'=Aae” and y"=Aa’e™ (6.15)
Substituting the value of " in Equation (6.14), we get
Aa’e™ + o’ Ae™ =0
Since y = Ae”" is not equal to zero, we get
a’+w* =0
So that, & = * i, where i =v-1
The possible solution of Equation (6.14) is therefore

iot

y=Ae"" ory=A,e

It is the property of linear differential equations that the algebraic sum of
all admissible solutions is also one of its solutions. Hence, the most general
solution of Equation (6.14) is of the form

y=Ae" +A,e (6.16)
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It can be shown that

tiot

e =coswt Tisinwt
so that Equation (6.5¢) can be written as
y=(A, +A,)cosot +i(A, —A,)sinot
y = Acoswt + Bsin ot (6.17)

Where A = A, + A, and B=i(A, — A, ). Equation (6.17) can be written in
another form by putting A = Rsin6 and B =Rcos6, where R =+vA” + B> and

tan@ = (é)
B

With these values Equation (6.17) becomes
ystin(a)t+9) (6.18)

Equations (6.17) and (6.18) are the most general solutions of Equa-
tion (6.16). The pairs of constants A and B or R and 0 can be evaluated from
the conditions of the problem under study. For instance, if for a motion

y=y,andy’ =0att=0,i.e., initially
then it can be shown that B = 0, 6 = [%) and R = A =y, This can be easily

recognized as the case of a simple pendulum.

6.10 COMPOSITION OF SIMPLE HARMONIC MOTION

Very often problems are encountered in physics where the same particle is
under the simultaneous action of two or more simple harmonic motions act-
ing either along the same straight line or at right angles to each other. There
are two general methods for solving such problems based on (a) a graphical
treatment and (b) analytical treatment of the dynamics of the particle. The
graphical treatment is based on the rectilinear projection of uniform circu-
lar motion, while the analytical treatment is based on finding the vector sum
of the individual motions either with the help of trigonometric functions or
writing them as complex quantities. The last of these methods is usually the
easiest to handle and is at the same time more informative. It will nevertheless
be worthwhile to understand the general outline of the other two.
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1. Composition of simple harmonic Motions (Graphical Method). Let the
vector x; as shown in Figure 6.4 represent the amplitude of a simple har-
monic motion.

N

wt+ a

X = Xq cos (ot + o)

FIGURE 6.4. Amplitude of a simple harmonic motion.

By convention of such representation, the vector is assumed to rotate
counterclockwise with an angular frequency . Its projection along the X-axis
will give the displacement equation of the simple harmonic motion.

x=x, cos(wt +a)

Where a is the starting angle at ¢ = 0. If there are several collinear simple har-
monic motions of different amplitude, frequency, and phase acting simultane-
ously on a particle, each of these can be represented by an appropriate rotating
vector like x;. The projections of all these vectors will give the individual dis-
placements as previously. Suppose the amplitude vectors of two simple har-
monic motions at say ¢ = 0 are represented by x, and x, as shown in Figure 6.5.

Y

Ol 7
X1
01

X

FIGURE 6.5. Amplitude vectors of two simple harmonic motions.



180 ° Orrics

Resolving them along two mutually perpendicular directions X and Y,
we get
X, =x,cosa, +x,cosa,
and (6.19)
X, =xsinq, +x,sina,

Hence, if the amplitude vector of the resultant is represented by x,, we
have

X, = \/sz +X,' = \/x12 +x,° +2x,x, cos (o, — ;) (6.20)
The phase of the resultant at ¢ = 0 will therefore be

-1 X(j
o, =tan” | — (6.21)
Xx
In general, the magnitude of the resultant vector can be obtained from
the parallelogram law as in Equation (6.21), which is given by

X =(ZX) +(ZX,) (622)

(Xx,)
(Xx)

where X, and X, are respectively the sums of the x and y components of the
amplitude vectors at ¢ = 0. The resultant motion is then given by

and

(6.23)

tana, =

x=x, cos(wt +a,) (6.24)

Thus, we find that the resultant of a number of simple harmonic motions is
always another simple harmonic motion. If the two motions are at right angles
to each other, the resultant motion of the particle executing them simulta-
neously is no longer simple but depends upon their difference of phase and
frequency. Let us consider two simple harmonic motions, one along the direc-
tion AB and the other along A'B’ as in Figure 6.6 and suppose that by the time
the rotating amplitude vector completes one revolution along the lower circle,
that of the upper circle completes two rotations so that their time periods
are in the ratio 2:1. Let the two motions start in the same phase (positions
marked 0, 0). We can divide the circumference of the two circles into parts
such that the two vectors reach the points 0, 1, 2, 3, . . . 8 at the same time.
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The points of intersection of the perpendiculars drawn from correspond-
ing points (1, 1), (2, 2), . . . (8, 8) will then give the locus of the vibrating
particle if it were under the simultaneous action of the two simple harmonic
motions. This is seen to be a figure of eight in this particular case. If the initial
conditions of the two vibrations are changed, the resulting curve may have a
different shape. Such curves are called Lissajou’s figures.

FIGURE 6.6. Composition of simple harmonic motions at right angles.
2. Analytical Method. Let a particle execute two collinear simple harmonic
motions of the same frequency
x, =Acos(wt +a,) and x, = Beos(ot +a, )

The resultant displacement of the particle will be given by the vector sum
of the individual motions, so that

x=x,+7,

Therefore,

X = Acos(ot + o) + Beos(ot +a,)

X = A[coswt cosa, —sinot sina, |+ Bcoswt cosa, —sinwt sina, |
X =(Acosa, +Bcosa2)cosa)t—(Asina1 +Bsina, )sinot

If we put

RcosO = Acosa, + Beosa, and Rsinf = Asina, + Bsina,
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the resultant motion can be written as
X =R(coswt cosf —sinwt sin0)

X =Rcos(wt +0) (6.25)

This is the equation of a simple harmonic motion of amplitude

tan6 = /A? + B> + 2ABcos(a, ~at,) (6.26)
and initial phase angle at ¢ = 0 given by

Asina, + Bsina.
tan0 = ! 2

(6.27)
Acosa, + Bceosa,

whose period is the same as that of the two individual motions. If the two sim-
ple harmonic motions superposed on a particle are mutually perpendicular,
they can be represented by equations of the form

X =acoswt (6.28)
y=bcos(nowt +a) (6.29)

whose periods are in the ratio n:1 and initial phase difference is a. For find-
ing the resultant motion, we proceed as follows: from Equation (6.28), we get

X
(—) =Ccoswt
a

and hence

2
X

1-| — | =sinwt
o

These values of the sine and cosine functions can be substituted in the
expansion of cos(nwt +a) on the right-hand side of Equation (6.6k) to get
the equation of the resultant motion. For instance, if n = 2, we have from
Equation (6.29)

[%j = cos2mt coso — sin 20t sin o
(%j = (20052 ot — l)cosa —2sin wt coswt sina

or
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which on simplification gives

(y—jj + 4(%) - 4(%)(1 + (gjcosaJ + 2(zj cosa+cossa=0  (6.30)
b a a b b

This is the general equation of the resultant motion of a particle under
the simultaneous action of two mutually perpendicular simple harmonic
motions whose periods are in the ratio 2 : 1. Depending upon the value
of the phase difference a between the two motions, the curve will be a
figure of eight, parabola, and so on.

We can obtain the locus of the particle vibrating under the simultane-
ous action of two mutually perpendicular simple harmonic motions of any
other frequency ratio in a similar manner.

Use of Complex Quantities. Calculations with harmonic motions are sim-
plified by the use of complex quantities instead of the usual trigonometric
functions. Thus, if a simple harmonic motion is represented by the dis-
placement equation

y=bcos(wt+5) (6.31)

we can also represent it in the form
y=R(be ) (6.32)

where i=+~-1, R is the real part of the exponential function, and
cosx —isinx =¢ . If the operations on “y” are linear, we may drop the
symbol R in Equation (6.31) and work with the exponential function, only
providing we extract out the real part from the final expression, which will
give the result under study. But if the operations on “y” are nonlinear, such
as squaring, and so on, we should be careful to take the real part first and
then operate with these alone. It may be mentioned that such represen-
tations of harmonic motions cause considerable simplicity in calculations

and have other advantages which shall be discussed in a different context.
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(i) Composition of Collinear Simple Harmonic Motions: Let two simple har-
monic motions be represented by

x, =acos(ot +a,) (6.33)
x, =bcos(ot +a,) (6.34)

These motions have the same period but different amplitudes and phase;
(o, ~a,) is called the phase difference between the two motions.
As outlined previously, we can write

X, = R(ae_i(wt+a’))
X, = R(bef"(“’”%))

It may be mentioned that the amplitudes “¢” and “b” here are not com-
plex quantities. Since the resultant motion is the vector sum of individual
motions, we can write

x=x +x,=¢ (ae_“"l +Dbe™ ) (6.35)

Since the operation performed here has been linear, we can afford to
drop the symbol R on the understanding that only the real part of the final
expression will give the desired result. Equation (6.35) can now be written as

x=e¢"" [(acosoa1 +bcosa,)—i(asina, +bsina, )]
x=e [A(COS¢—iSiH¢+bCOSO£2 )] (6.36)

where

A= \/(acosal +bcosa, )2 +(asina, +bsina, )2

A= \/02 +b* +2abcos(a, —a,) (6.37)

and
asina, +bsina,

tang = (6.38)

acosa, +bcosa,

Hence, the resultant motion can be derived from

x :Ae—imte—m& — Ae—i(wt+¢)
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Taking the real part of this expression, we get
x=Acos(ot +¢) (6.39)
This is in accordance with Equation (6.25) and the remarks following it.

(it) Composition of Rectangular Simple Harmonic Motions: Let the two
motions be represented by

X = acoswt (6.40a)
x=bcos(not +a) (6.40b)

Equation (6.40a) represents a vibratory motion of amplitude “a” along the
X-axis while Equation (6.40b) is another similar motion of amplitude “b”
along the Y-axis. The periods of the two motions are in the ratio n: 1. In terms
of complex quantities, we can write these motions as

[2Jnte)
( % j _R (efi@m))
(3t

(%J:R[(cosa —isina)e"'”“”] (6.41)

According to De Moivre’s theorem, if “n” is real, one value of (cos¢ £ ising)"
is cosng +isinng. Hence, the real part of Equation (6.41) will be

cos o cos nwt — sin o sin nwt

So that
(%j = cosa cosnmt — sina sin nwt
or
t
[Z/j — oS @ COSh@t = —sin o sin not (6.42)

We had to extract the real part, because the next operation is going to be
nonlinear. Squaring both sides of Equation (6.42) and simplifying, we get

2
(%] - 2(%jcosa cosnot + cos” not = sin® a (6.43)
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where the value of cosnwt has to be found with the help of Equation (6.43).
This is the general equation of the locus of the particle under the simultane-
ous action of two rectangular simple harmonic motions.

Special Cases: (i) Frequency ratio 1:1
If the time periods of the two simple harmonic motions are equal, n = 1
and Equation (6.43) can be written as

2
Ey—J - 2(%) cosa cos ot + cos” ot =sin” a

x ) )
coswt =| = |,cos” ot =| = | , and we get
a

2 2
y—2 —2(ijcosa+ x_7 =sin’ o (6.44)
b ab a-

as the equation of the locus in this case. This is the general equation of a conic
whose shape will depend upon the value of the phase difference a between
the two motions.

a. If a = 0 the equation of Lissajou’s figure is seen to be

2
y_x\_,
b a

. . . . T (b
which is a pair of coincident straight lines inclined at an angle tan™ | —

to the X-axis. a

the equation of the curve becomes

b. Ifaz(z), sinazcosazi,
4 V2

(5ol ()5

This is the equation of an ellipse inscribed in a rectangle whose length
parallel to the X-axis is 2a and breadth. The ellipse touches this rectangle

at points (ia,i%j and (i%,ibj

c. Ifa= (%j Equation (6.44) reduces to

5
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which is the familiar equation of an ellipse whose center coincides with
the origin and whose axes are parallel to the coordinate axes X and Y.
If the two simple harmonic motions have the same amplitude, the locus
of the particle becomes a circle (a = b, hence, O+ yz =a’).

d Ifa= (%j , Lissajou’s figure is represented by the equation

Fa@)(5)3

which is again an ellipse with its axes rotated by (%) with respect to that
of case (b).

e. If a =r, we again get a pair of coincident straight lines given by

| 2
[2 + 1) =0
b a
But this time they are inclined at an angle, tan™ (—éj to the axis of X.
a

All these cases have been summarized in Figure 6.7.

a=0 /4 /2 Infd T

FIGURE 6.7. Lissajou’s figures (period ratio 1:1).

(it) Frequency Ratio 1:2
The general equation of Lissajou’s figure when the time periods are in the
ratio 2 : 1 can be obtained by putting n = 2 in Equation (6.43). Thus, we get

2
(Z—zj - 2(%)0030( cos 2wt + cos” 2wt = sin® o (6.45)

where

x
coswt =— . Now,
a

cos2wt =2cos” ot —1
2

cos2mt = (2x_ - 1]

2
a
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6.11

and

4 2
cos” 20t = 4[1j - 4[1j +1
a a

Substituting these values in Equation (6.45), we get

2 xz xz 2
(%}—2(%](2—2—1}0505 +(2—2—1J =sin’a
a a

which on rearranging gives

2 4 2
L (1+ / ]{ 2y +c052aJ =0 (6.46)
b a bcosa bcosa

An inspection of this equation shows that the general conic is symmetrical
about the X-axis only; the actual shape of the curve will of course depend upon
the phase difference “a” between the two motions. The resulting Lissajou
figures for different values of _ are shown in Figure. 6.8.

—

N )

o=0 n/4 /2 3nl4 T
FIGURE 6.8. Lissajou’s figures (period ratio 2:1).

It may be mentioned that these figures can be demonstrated on the screen
of a cathode ray oscillograph by applying audio-frequency voltage signals on the
X and Y plates. Stable figures can be obtained only if the two frequencies bear
awhole number ratio. As this ratio goes on increasing, the figures get more and
more crowded but always remain closed curves. These figures provide a very
sensitive test for determining any unknown frequency by combining it with a
known frequency in a perpendicular direction. It may be mentioned that the
composition of simple harmonic motions is an important problem in physics
and is encountered very frequently in wave optics and acoustics.

DAMPED VIBRATIONS OF A PARTICLE

Until now we have considered the linear vibratory motions of a particle under
the long action of a restoring force trying perpetually to bring it back to its
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mean position. A little reflection will show that this situation is an ideal case
of the general phenomenon. In actual practice the vibratory motion is also
opposed by frictional or dissipative forces generated in the fluid in which
the motion is taking place. Such dissipative forces are usually proportional
to some power of the velocity of the particle; for small values of velocity, the
power can be taken as unity without loss of any significant accuracy. With this
restriction in view, the dissipative forces can be written as

F=-ry

where the constant of proportionality r is the dissipative force per unit veloc-
ity of the particle, and the negative sign signifies a restraining influence on the
vibration of the particle.

According to Newton’s second law, the equation of motion in this case

will be

my" = y! — uy
or

Y+ [LJ Y+ (ﬂjy =0 (6.47)
m m

The motion of the particle defined by Equation (6.47) is called damped
harmonic motion. Such equations arise many times in different branches of
physics, the most important being that describing the transient behavior of
an LCR circuit. It may be added that the solution to Equation (6.47) in the
present context is of a similar nature as that encountered for an LCR circuit,
but in order to obtain any meaningful results from its application to the circuit
theory, the similarity conditions or analogy between the two cases must be
closely studied. Moreover, there are very many equations in electrodynamics
which have a close parallel in mechanics, and a solution of the former leads
to solution of the latter provided due attention is paid to the analogy between
the two fields. In fact, this has led to the development of analog computers.

Coming back to Equation (6.47), we find that it can be reduced to a sim-
pler form by proper substitutions. Let

y=xe” (6.48)
where “b” is an arbitrary constant, then
yr — x/e—ht _ bxe—hz and !/" — xue—hz _ bxfe—bt _bxye—br + bzxe—bt

Substituting these values in Equation (6.47), we get
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x~+(i_zbjx'+(ﬂ+b2 —ﬂjx 0 (6.49)

m m m

Since b is an arbitrary constant, we can take it equal to (Lj so that the coef-
2m

ficient of " may vanish. Hence, Equation (6.49) becomes

x”+(a)2 - bz)x =0 (6.50)
an equation of the type we have solved before. Knowing the solution to

Equation (6.50), we can write down the value of y with the help of Equation (6.48).
There are, however, three important cases Whi(:h are discussed as follows.

Case I: Suppose o” <b?, i.e., [ﬁj <( ,,—9
m 4m”

In the case of large frictional losses, the difference (a)2 - bg) is negative,

say (—K2 ) Then Equation (6.50) can be written

(D*-K*)x=0 or (D-K)(D+K)x=0
where

5
Dzi and D? =d—2
dt dt

The solution of this differential equation is of the form

K -K
x=Ae™+A,e™

Hence,

(4”@) t (—b—\/ﬁ) t

y=Ae +Aye (6.51)

where A, and A, are the constants of integration to be determined from the
conditions of each problem.

It will be noticed that b > +b* —®?*, and hence the powers of the expo-
nential will be negative in both terms of Equation (6.51). Consequently, the
displacement of the particle will fall exponentially to zero from its initial value
of (A, + A,) at the start of its damped motion as in Figure 6.9. How soon the
motion dies out will depend upon the magnitude of difference between “b”
and “0.”
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A1+ Az

=y

—>»t
FIGURE 6.9. Damped motion of a particle.

Case II: Suppose o =bor (ﬁj :[ r j

2
m 4m

This is the condition of a critically damped motion. In this case
Equation (7.50) reduces to x” = 0, which is the equation of the straight line
x=At+A, where A and A, are again the constants of integration, both
assumed positive as before.

Hence,

y= e (Alt + Az)
A plot of this equation has been shown in Figure 6.10.

t—»
FIGURE 6.10. Critically damped motion.
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But for an initial increase (provided A, > A,), the amplitude of motion
goes on decreasing as time progresses. This case is of significance in the
design of scientific equipment.

Case III: Suppose o»® > b*
Or

()]

In this case where the dissipative forces are small, Equation (7.50) reduces
to the form of a simple harmonic motion.

x”z—(a)2 —bz)x

The solution of such an equation has been seen to be of the form
x= Acos(\/oo2 -b*t +0)

where A and 0 are the two constants of integration. Therefore, the displace-
ment of the damped vibration will be given by

yer’b’ cos(\/w2 -b* t+9) (6.52)

From Equation (6.52) we find that the effective amplitude (Ae™™) of
a damped motion dies out exponentially with time. The rate at which this
happens is of course governed by “b.” If the dissipative forces increase, the
exponential decay becomes much more rapid. In addition to this the dissipa-
tive forces also affect the time period of the vibrations of the particle. Whereas

in the case of free vibrations the periodic time is (—) in the case of damped
1)

2
vibrations this is increased to [ﬁ} The frequency of the oscillations
o —b?

is therefore lowered. As “b” increases, this oscillation frequency approaches
zero as b tends to “w.”

The damped oscillations are shown in Figure 6.11. The dotted curve
represents the exponential decay of the amplitude. These damped
vibrations are of importance in musical instruments, where it is necessary
that they die out quickly. This is accomplished by arranging for a large
value of “b.”
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y =Acos 0 —»)\

FIGURE 6.11. Damped oscillations of a particle.

6.12 FORCED VIBRATIONS

It has been discussed that in practical cases, the natural vibrations of a particle
die out with the lapse of time. If it is desired to maintain its vibrations, extra
force has to be supplied from outside. If this force is periodic, the particle
begins to vibrate with a frequency equal to that of the applied force. Such
oscillations are called forced oscillations. Let the externally applied force be

Fcospt = R(Fe’i”’ )
The equation of motion of the particle then becomes

my'' +ry'+ py = Fcos pt (6.53)
There are several methods of solving this equation, but we shall try to

solve it with the help of complex quantities. The solution to such equations
consists of two parts:

1. The complementary function: This is obtained by putting the right-hand
side equal to zero and solving. This solution is of course exactly the same
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as that of Equation (6.47) and has two arbitrary constants. This part of the
solution is called the transient term.

2. The particular integral: This is obtained by solving Equation (6.53) as it
is and does not contain any arbitrary constants. This is called the steady
state solution.

To obtain the steady state solution, we shall replace the right-hand side
of Equation (6.53) by the complex quantity Fe " and solve the equation with
the understanding that the real part of the solution will be of relevance to us.
Thus, we write

my" +ry'+ py = Fe ™ (6.54)

Let us assume that the solution of this equation is of the form

y=Ae "

where A is in general complex. Then
y' =—iApe™

and
y'=—ApZe™

Substituting these values in Equation (6.54), we get

(Apzm —iApr+ A,u)ef"’” =Fe ™

For this equation to be satisfied at all values of ¢, A must be given by
( n—mp ) —ipr

The complex displacement will then be
F e—i;’}t
(u —1np2)—ipr

iF i

y:
p|:r+ i(mp—uj ipr}
P

(6.55)
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Suppose we put

Zy, =r+i(mp—ﬁjzr+iS=ZOei¢ (6.56)
p

where
Z, =Nr’+§°

and

tan¢ = (gj

then Equation (6.56) becomes
iF

Y (r—9)

- pZOefi
The solution to Equation (6.53) is the real part of the previous solution.
Thus, we find that

B F
y= pZ, sin(pt - q’))
F

y= - sin(pt—¢)
p frz +(mp—‘uj
P

is the steady state solution of the problem under study.

An examination of Equation (6.57) reveals that the steady state displace-
ment of the particle executing forced oscillations is not in step with the driving
force; there is a phase difference of between the two. The amplitude of these
forced vibrations is less than that of the driving force but depends upon F.
The frequency of forced vibrations is equal to that of the externally applied
force, which is different from either that of its free vibrations or that of its
damped vibrations. These are given as follows:

(6.57)

(0]

v=—o (Free vibrations)
2
2 bz
v=]2 (Damped vibrations)
%4
v="" (Forced vibrations)
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The complete solution of Equation (6.53) is therefore
y=Ae™" cos((\/co2 -b* )t+0)+%sin(7ot—¢) (6.58)
P4,

where

Z, =,|r +(mp—ﬁj
P

The constants of integration A and 6 in the transient term of Equa-
tion (6.58) are determined from the initial conditions of the problem.

When a particle is subjected to “forced vibrations,” its displacement in the
beginning is made up of the transient as well as the steady state components.
After a certain time “¢” such that bt >>1, the transient term rapidly fades
away, leaving only the steady state components in action. Before proceed-
ing with a discussion of forced vibrations, it is interesting to note the striking
analogy of Equation (6.53) with that for an LCR circuit under an impressed
alternating voltage. If a voltage E, cospt is impressed on a circuit containing
an inductance L, capacity C, and resistance R, the current i satisfies the fol-
lowing equation:

Lﬂﬁ-Riﬁ-lJ‘idt =E, cospt
dt C

And the charge g = Iidt. The equation then can be reduced to

Lq"+Rq'+i=EU cospt (6.59)
Cq
Comparison of Equations (6.53) and (6.59) leads to the solution
E .
q= = 5 s1n(pt—¢)
p| R* + [L -
p
Hence
E
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where

1
{5
tan¢ = Tp

3
By analogy with the electrical impedance \/RZ +(Lp—CiJ , the
p

quantity under the square root sign in Equation (6.57) is called the mechani-
cal impedance. The analogy can be carried still further: the mechanical resis-
tance r is analogous to electrical resistance R, the mass m to the electrical
inductance L, and the restoring force per unit displacement p is called the
stiffness factor to the reciprocal of capacitance. Hence, we can call the quan-

tity (mp - ﬁj as mechanical reactance.
p

RESONANCE

We have seen that the steady state displacement of a particle undergoing
forced vibrations is given by

F

-t

Hence, the particle velocity under this condition is

F

y'= - cos(pt —¢)
p\/r2 +[mp—’uj

P

y= = sin(pt—q))

The power dissipated in working against dissipative forces will be

rF*

e

forcexvelocity = ry”* =

2JCOSQ (pt _¢)
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The average value of this power dissipation over one complete cycle is

(since the average value cos® 0 = %)

2
P, =ry”= rF 2} cos® (pt —¢) (6.60)

{r(r-)

We can say that the amplitude and phase of the particle adjust themselves
so that the average power being supplied by the driving force is just equal to
that being dissipated in overcoming the frictional forces. The maximum power
transfer will therefore take place when the denominator of Equation (6.60)
has a minimum value or when

mpzﬂ or p= (ﬂj =w (6.61)

p m

Hence, we find that when the natural frequency of the vibrating particle

is equal to that of the externally applied force, the former will pick up maxi-

mum power from the latter. Under this condition the mechanical reactance
vanishes and the equation for displacement becomes

y= (ijsina)t (6.62)
or
since
tand):—pzo or p=0
r

This phenomenon is known as resonance. This resonance displacement

amplitude is therefore (ij and the resonance velocity amplitude is sim-

or
ply [Ej But the resonance displacement amplitude should not be mixed
r

up with the maximum displacement amplitude of the forced vibrations. This
can be obtained by finding the condition under which the denominator of
Equation (6.57) has a minimum value. For this

2
4 p r2+[mp—ﬁJ =0
dp P
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which gives
p=vVo’ -2b> where b =2L
2m
It may be verified that for this value of p, the second differential of the
quantity inside the curved brackets previously leads to a positive value.

The maximum displacement amplitude of the forced vibrations will
therefore be

F  F
r\/p2+b2 ro® - b

Sharpness of Resonance. It has been seen previously that the average
power supplied to the vibrating particle by the external force is given by

rF?

2
2| r? +£mp—’uj
P
[

At resonance, maximum power transfer takes place, that is, at @ = p =—,
m

!/ max =

(6.63)

av

FQ
the average power taken up by the particle is [z—j . Thus, it is seen that the
r

power transfer is primarily determined by the value of the mechanical resis-
tance “r.” This has been shown in Figure 6.12, which gives the resonance
curves for two values of “r.”

Pav

o=p —»p

FIGURE 6.12. Resonance curves.
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It is seen that for low values of “r,” the resonance curve has a sharp peak.
Increasing “r” by a factor of three considerably broadens the resonance peak.

In the former case resonance is said to be sharp, while in the latter case it is
said to be flat.

Example 6.1

A particle has a mass of 2gms. It is free to vibrate under the action of an elastic
force of 128 dyne—cm'1 and a damping force of § dyne—cm_1 sec. A periodically
varying outside force of maximum value 256 dynes is applied to the particle.
Find the frequency for displacement resonance, the frequency for velocity
resonance, and the approximate amplitude at resonance.

Solution:

For displacement resonance,

Frequency = P i\/a)2 -2b*

2r  2m
where
128 dyne-cm™
o =H —645ec? = 220 Symeem
m 2gm
and
po " 8 dyne-cm™ sec 9gec?
2m 2x2gm
Therefore,

Frequency = zi V64 -8 =1.19sec™”
T

For the velocity resonance,

Frequency = 2i (ﬂj =1.27sec™”
T \/ m

Amplitude at resonance = 256 _

or 8x8

4 cm

Example 6.2

A particle of mass 3gm is subject to an elastic force of 48 dyne—cn[fl and a
damping force of 12 dyne—cm_1 sec. If the motion is oscillatory, find its period.
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and
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-1
o= (ﬁj = \/(—48 dyne-cm J =4 sec”
m 3 gm

r 12 3
=—= =2sec
2m 2x3

Since @ > b, the motion is oscillatory.

Period time = 2r 27 =~1.18 sec

\/a, _ J(16-4) \/(12)

6.14 EXERCISES

1.

Discuss: “Photon and wave ideas are in reality complementary rather
than rival conceptions.”

Write a short essay on the nature of light.

Two collinear harmonic motions of the same frequency have
amplitudes of 2 cm and 3 ¢cm respectively and corresponding phase
angles of +10° and +30°. Find (a) the amplitude and (b) the phase angle
of the resultant vibration.

Obtain an expression for the resultant motion of a particle under the
simultaneous action of two rectangular motions of the same period.

What is sharpness of resonance? Obtain an expression for the sharp-
ness of resonance for a mechanical system and discuss its variation with
mechanical resistance.

Distinguish between forced vibrations and resonance. Discuss the
oscillatory motion of a particle subjected to an external periodic force.

A certain mass is acted upon by an elastic force.

(i) Find its period of motion.
(ii) How will this period be modified if the vibrating particle also
experiences a dissipative force?
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8. A particle has a mass of 3gms. It is free to vibrate under the
action of an elastic force of 135 (ilyne—cm*1 and a damping force of
10 dyne—cmflsec‘ A periodically varying outside force of maximum
value 262 dynes is applied to the particle. Find the frequency for
displacement resonance, the frequency for velocity resonance, and the
approximate amplitude at resonance.

9. A particle of mass 4gm. is subject to an elastic force of 52 dy]fle-cmf1
and a damping force of 14 dyne—cnfl sec. If the motion is oscillatory,

find its period.
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7.0

INTRODUCTION

71

When a particle executes simple harmonic motion in an elastic fluid, the
energy and phase changes are not confined to its immediate vicinity but are
progressively communicated to distant parts of the medium. Such distur-
bances propagating in the medium are called waves. We are familiar with
many types of waves, for example, the water waves traveling outward when a
pebble is dropped into a pond, the sound waves spreading through concert or
cinema halls, or the electromagnetic waves comprising the entire solar spec-
trum traveling through space. Then there are waves of larger amplitudes like
sonic bangs or shock waves, detonations, and earthquake waves. All the waves
of small amplitude have certain properties in common irrespective of their
nature: they travel with finite velocities, are reflected and refracted, show
interference and diffraction effects, and exhibit the phenomenon of beats
and Doppler shift; only the scale of these properties is different for different
type of waves. It is not surprising, therefore, that they can be represented by
the same general type of equation subject to conditions that differ in each
field. The importance of wave motion, therefore, cannot be overemphasized
by pointing out other common properties like dispersion and the existence
of phase and group velocities, as for example in water and light waves, or the
significance of longitudinal and transverse waves in determining the specific
heats of solids. The study of any wave motion involves an understanding of
the phenomena of its emission, propagation, and absorption. This becomes a
simple matter if the nature of wave motion is known.

DIFFERENTIAL EQUATION OF WAVE MOTION

Consider the propagation of pressure waves in a homogeneous isotropic fluid
medium which is perfectly elastic (i.e., there are no dissipative forces such as
those due to viscosity). Suppose the mean density p and mean pressure “p”
have uniform values in the medium. In the presence of a wave propagating
from left to right, the instantaneous values of pressure and density at any point
will, in general, be different from their mean values; let them be “p"” and p’
respectively. These variables, instantaneous pressure and density, will have
reasonably constant values over an elementary volume of the fluid. We can
call such volume elements particles. On account of the changes in pressure
and density, these particles will have instantaneous velocities. Let u, v, and w
be the components of the velocity of any such particle in the x, y, and z direc-
tions respectively, as illustrated in Figure 7.1.
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dz

dy

dx
W

FIGURE 7.1. The components of velocity of a particle.

Consider a volume element of the medium dxdydz. The rate of change of
the mass inside dxdydz will be given by the difference between rates of influx
and efflux of fluid from this element. For the X-direction, this flow is given by

(p'u - (p’u + %(p’u)dxndydz = —%(p’u)dxdydz (7.1)

Similar expressions can be written for flow along the other two directions
so that the net influx in the volume element will be

0 ' 0 ) g ! . z
_(a(p u)+@(,0 u)+az(p w)dedyd~ (7.2)

According to the law of conservation of mass, this expression must be
equal to the rate of change of mass of fluid inside the volume dxdydz.
Hence

800 D D
8t+&x(pu)+8y(pv)+6z(pw) 0 (7.3)

This is usually known as the equation of continuity.
Since p’ is changing, we like to express Equation (7.3) in terms of the
mean density p. Suppose we write

[EJ=1+S (7.4)
p

where s is called the condensation, then

o0\ (@
(at ]_p(&j (73)
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Substituting Equation (7.5) into Equation (7.3) we therefore get

P(@)+P(l+s) %+@+% +plu as‘”’@"' & =0 (7.6)
o o oy on a o

If we consider waves of small amplitude, for example, acoustic waves,
the condensation “s” has a negligible value as compared to unity (for speech
it is of the order of 107). Moreover, the acoustic wavelengths for the audible
range are so long that all the quantities u, v, and w along with their derivatives
change very slowly with x, y, and z. Hence, all the terms in Equation (7.6)
involving the products of these small quantities can also be neglected so that
we have

+—t+—+—

& ou dv aw)_, -
ot o oy o

in place of Equation (7.6) on taking these factors into account.
We shall now write «, v, and w in terms of the derivatives of a scalar quan-
tity “¢”called the velocity potential. Suppose ¢ = qﬁ(xy z,t)
b, 08 00
Ox Oy 0z
then the gradients of “¢” along the three axes are all vector quantities,
although “¢” itself is scalar. The introduction of velocity potential at this stage

will considerably simplify matters as we proceed. From Equation (7.7), we
therefore get

& vip=0 (7.8)

where the symbol V? is called the Laplacian operator (V is pronounced
as del and V? as del square) and has been written in place of

62 82 82
(”C Y,z ) 6x2 W + g .
There is an unbalanced force acting along each of the three directions x,

y, and z. From the definition of force (pressure x area), the net force acting in
the positive X-direction is given by

(p [p +@ j]dydz— apdxdycb
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This must be equal to the rate of change of momentum.
0

—(p'u)dxdydz

e (p'u)dxdyd=

so that the equation of motion becomes

! a ’
CURCICAD (7.9)
ox ot
under the conditions mentioned in connection with the continuity equation
d(p'u) ( ou j
—<=p| — 7.10
Py Pl % (7.10)

Hence, we have from Equations (7.9) and (7.10)

LN e TPC N (A NP N (A
ax+p(6t)—0,ay+p(6tj—0,az+p(atj—0 (7.11)

We can then write
%dx+%(ly+%dz+pg(udx+vdy+wdz)=0 (7.12)
Ox Oy 0z ot

or

, 0
dp’+ Pa(dﬁb) 0

where
=P s gy P g and dp=L e+ 2 ay+ 22 -
Ox Oy 0z Ox oy oz
An integration of Equation (7.12) gives
,, 09
- =C 7.13
p+p o ( )

where the constant of integration C can be evaluated from the conditions of
the problem. Thus, when no waves are propagating through the medium

(% = Oj and (p' = p) so that we get

_p(%j:p'_p (7.14)
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7.2

where the right-hand side of Equation (7.14) is called the excess pressure (p,).
On account of the excess pressure acting upon the volume element, the
medium will be under volume strain given by
av__dp"__p'-p_

—s (7.15)
\4 P P

Hence, the right-hand side of Equation (8.14) can be expressed in terms
of the negative condensation and bulk modulus of elasticity K of the medium.

dv

"-p=dp=——-=Ks 7.16
p—p=dp KV (7.16)
So that
0 K 2
9 _ Ks_ (o (7.17)
o p
where
, K
C =— (7.18)
p
Combining Equations (7.17) and (7.8), we get
o 9
at—f =C’V?p (7.19)
and the access pressure
p, =pC’s (7.20)

Equation (7.19) is the three-dimensional acoustic wave equation applica-
ble to fluids. Its solutions give the propagation of the velocity potential ¢, the
velocity of propagation C being given by

oo /Bulk quulus (7.21)
Density

PLANE WAVE EQUATION

If the deformations in the medium are a function of one Cartesian coordinate,
the wave is said to be plane. In such waves, conditions are uniform over a
plane specified by the previous space coordinate. Thus, the differential equa-
tion of a plane wave of infinite width propagating in the X-direction can be
written as
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P9 _ 2 06
o o

(7.22)

The general solution of this wave equation may be written in the form
¢=f(ct—x)+ f,(ct +x) (7.23)

It can be seen by substitution that irrespective of the nature of functions
f1and f,, Equation (8.23) is always a solution of Equation (8.22). Thus, a single
scalar quantity ¢ is sufficient to represent the propagation of a longitudinal
disturbance in any fluid medium. If this disturbance is harmonic, the solution
is written in the form

¢ — Ae*l‘(wf*k,\") + Be*i(a)H»kx) <7.24>

where A is the complex amplitude of a plane wave traveling in the positive
X-direction and B that of a wave traveling in the negative X-direction, both

propagating with the velocity C = (%j )

In the case of acoustic waves where A and B are real, we take the real part
of Equation (7.24). Thus, we have

¢ = Acos(ot —kx)+ Beos(ot + kx) (7.25)
o¢ ) .
P, :—pg:pAa)sm(a)t—kx)+pBa)sm(a)t+kx) (7.26)
o . .
u:azKAs1n(a)t—kx)+KBsm(a)t+kx) (7.27)

The particle displacement & defined by the equation il—f =u is thus seen
to be
g =Iudt=IKAsin(wt—kx) dt — KBsin (ot + kx)dt (7.28)
or

g=—%cos(a)t—kx)+gcos(a)t+kx) (7.29)

A wave traveling in the positive X-direction has been seen to be repre-
sented by the equation

¢ = Acos(owt —kx) (7.30)
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The time taken by one complete wave to pass any point is called its peri-
odic time T. Thus
r-2% (7.31)
1)
The frequency v is the number of waves passing a stationary observer in
one second, so that

1

p=—=2 (7.32)

T 2r&

The wave profile repeats itself at regular intervals A given by
2 2

A= id = LC (7.33)

k 10}

which on combination with the expression for frequency gives

C=0vl (7.34)

All these relations can be used in writing down alternative forms of the
wave equation (7.30). These are summarized as follows

¢ =Acos2r (%—%j (7.35a)
1) =Acos([27ﬂj((3t—x)j (7.35b)
¢ =Acos2r (vt - %) (7.35¢)

An inspection of Equations (7.30) and (7.35 a, b, c) reveals that at any
time ¢ different particles of the medium (different x°s) are in different states of
disturbance. As time passes every single particle of the medium goes through
the same cycle of change of state. Such waves are called progressive waves. A
few features of plane progressive waves have been shown in Figure 7.2.

The analytical expressions for these variations have already been derived.
Figure 7.2 indicates that the particle velocity, the excess pressure, and the

pid
condensation are all in phase. But all these quantities are (EJ out of phase

with the displacement of the particle. Accordingly, particle velocity, conden-
sation, and excess pressure shall attain their maximum values only when the
local cross-section of the medium is passing through its central position.



7.3

WAVE MOTION AND LIGHT Waves © 211

f Displacement 't' as
function of position

Particle velocity ‘U’
as function of position

-« <« <« ¢« > —> P> ot

v

v

Pressure and condensation
as function of position

FIGURE 7.2. Features of plane progressive waves.

ENERGY DENSITY OF PLANE WAVES

When a progressive wave travels through a fluid, successive particles of the
medium possess local velocities at any instant. In addition, the medium is in
a state of compression or expansion due to the passage of the acoustic wave.
The energy involved in wave propagation is therefore of two forms—kinetic
and potential. The kinetic energy of the moving particles is

1
AE, == piAV (7.36)
where AV is the volume element which can be treated effectively as a particle.
The potential energy of this volume element is

AEpot = _J‘ podv (737>

where the negative sign indicates an increase in potential energy due to com-
pression and decrease due to expansion. In this expression the excess pressure
p, has been seen to be

p, = pC’s (7.38)
and the condensation s is defined as

. Cha.nige in volume _ J.dV (739)
Original volume AV

Hence, the expression for potential energy becomes

pot

AE,, =+[pC’sds(AV) = %pCZSZ (AV) (7.40)
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where dV has been written as

dV =ds(AV)

The total acoustic energy of the volume element is therefore

AE=AE,, +AE,, =AE,, = %pAV(u2 +C%s” ) (7.41)
and the energy density per unit volume is
AE 1 2 2.2
e=——=—plu”+C>s”) ergs./c.c. 7.42
N ) erg (7.42)

It can be shown that

u=Cs for positive traveling waves, and u=-Cs for negative traveling
waves.

The instantaneous energy density corresponding to the presence of both
waves is accordingly

e=e, +e. =p(uf+u%) (7.43)

where the subscripts + and — refer to the two waves traveling in opposite
directions.

According to Equation (7.43), the particle velocity of either wave is a func-
tion of both space and time. The energy density of either wave is therefore
not constant throughout the medium. We can nevertheless calculate either
the time average of energy density at any point or the space average of energy
density at any time due to the motion of either wave. Thus, for example, the
time average density at a point is given by

1 pr

emd = ?J‘O e dt (744)
where the integration on the right-hand side is to be performed over one com-
plete cycle. Substituting the value of e, we get

oy = %JOT(kA sin(ot — kx))2 dt = %(pk2A2 ) (7.45)
Similarly, it can be shown that the time average of energy density due to

a negatively traveling wave is given by
1 99
emd = E(psz— ) (746>
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If we obtain the space average densities at any time due to individ-
ual waves, we find that these averages are the same as the respective time
averages.

There are alternative expressions for space and time averages of energy
densities at a point in terms of the velocity amplitude (kA), pressure ampli-

A

tude (P=kApC), and displacement amplitude (8 = k—j which readily follow
1)

from Equations (7.45) and (8.46).

ACOUSTIC INTENSITY

The acoustic intensity of a pressure wave is defined as the average amount of
energy flowing per second through a unit area held normal to the direction
of propagation. It is evident that all the energy contained in a length C of the
medium will pass through a unit area in one second and, consequently, sound
intensity can be written as

1=Ce,, = %( pCk*A*) or I = é( pCk*B’) (7.47)

as the case may be. This intensity can be measured in ergs per second per
square cm or watts per sq. cm. But it is usual to measure it with reference to
some acoustic intensity standard. Since the range of sound intensities encoun-
tered in practice is rather large, it is more convenient to use a logarithmic
scale. An added reason for this is the fact that the response of human ears to
sound intensity follows an approximately logarithmic scale.

Thus, the intensity level of a sound of intensity I is defined as

n= IOlog( d J (7.48)

I{)
where I is the reference intensity and n is measured decibels (db). Intensity
levels are also sometimes expressed in terms of pressure amplitude of the

sound wave

n=20 1og[§] (7.49)

[
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7.5

where P, is some reference pressure. This definition is usually followed in
recording and reproduction of sound.

The intensity of a 1000 cps pure note just audible to human ears is some-
times taken as reference intensity I, for plane waves propagating in air. This
works out to be 10™"® watt/cm®. But the commonly used standard for underwa-
ter measurements is a root mean square pressure of 1 dyne/cm2. This has also
been adopted for airborne sound. A reference pressure of 1 dyne/cm” corre-
sponds to a reference intensity of 6.75x 10" watts/sec. in fresh water and
2.41x10 > watts/sec. in air.

SPECIFIC ACOUSTIC IMPEDANCE

The ratio of acoustic pressure in a medium to the associated particle velocity
is called the specific acoustic impedance Z of the medium. Thus

%)
—-p
AR, (750)

(%)

These derivatives can be calculated for the positively or negatively travel-
ing plane waves with the help of Equation (7.24). For plane waves traveling in
the positive X-direction

Z, =pC (7.51)
and for those traveling in the opposite direction
Z =—pC (7.52)

while the specific acoustic impedance is seen to be a real quantity. In the case
of plane waves, it is in general a complex quantity of the form

Z=r+is (7.53)
where r is the specific acoustic resistance and s is the specific acoustic reac-

tance of the medium for the wave motion under study. Thus, for plane waves,
speciﬁc acoustic reactance is seen to be zero.
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7.6 SPHERICAL ACOUSTIC WAVES, TELEGRAPHY, AND
COMPLEX QUANTITIES

The wave Equation (7.19) can be expressed in coordinate systems other
than Cartesian. Each of these systems is suitable under different situations.
We have already seen how a rectangular coordinate system can be used for
describing plane progressive waves. If there is a long cylindrical source of
sound, it is usually more advantageous to express Equation (7.19) in cylin-
drical coordinates. On the other hand, if the source approximates a point, we
should choose spherical coordinates. All that needs to be done is the express-
ing of V¢ in either cylindrical coordinates (1; 0, z) or spherical coordinates
(1, 6, y) . For example, Figure 7.3 shows the spherical system where
Z

P(x, v, z)

i
i
i
i
i
i
|
I
i
i
- i
i
i
il
i
i
i
i
i
i

FIGURE 7.3. Spherical coordinates.

x =rsinf cosy (7.54a)
y=rsinfsiny (7.54b)
z=rcosf (7.54c¢)
and
r=4x"+ yQ +2z* (7.55a)
N
6 = tan™ (—MJ (7.55b)
zZ
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v =tan (zJ (7.55¢)

X

If ¢ is a function of  and ¢ only, the system is said to have spherical sym-
metry. We shall then have

2 2
vig 00,200, 1 i(sm%} — 2% (150
ot r ot r°sinf 00 00 ) rsin”0 oy~

and

vig=09,200 10 (. (757)

o ror ror

and Equation (7.57) reduces to

16° C?* o*
;g(“ﬁ)—jﬁ(ﬂb) (7.58)

where the factor “r” on the left-hand side of this equation is not a function of
time so that

1 6? o’¢
;g(m)zy (7.59)
The differential equation of spherical waves is therefore
0° , 0°
=2 (10)=C"—5(r9) (7.60)

The solution of Equation (7.60) can be written at once if we consider “r¢”
as a single variable so that

rg = f,(ct—r)+ f,(ct+r) or
1
¢:;(f1 (ct=r)+ fy(ct+1)) (7.61)
where the first term of the right-hand side represents a wave diverging from

a central point and the other another wave converging on this point. A har-
monic solution of the wave equation can be written as

1 —i(ot—kr —i(wt+kr
¢:—(Ae (@k) 4 Be (”‘)) (7.62)

r
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As before we can derive expressions for energy density, specific acous-
tic impedance, and so on for spherical waves. It may be mentioned that
spherical waves tend to behave like plane waves at considerable distances
from the source.

In the derivation and discussions of the wave equations and (7.61) we had
assumed that there were no dissipative forces present in the medium. In the
presence of such dissipative forces, we have to take into account the effect of

damping by introducing a term [1” Ej in the wave equation. Thus, we write

g L[, 3
v¢_CQ(6t2+ &J (7.63)

An equation similar in form to Equation (7.63) is of great importance in
electromagnetic theory. This equation can be solved by proper substitutions
and gives an amplitude factor decaying exponentially with time. Thus, the
solution for a one-dimensional equation is of the form

rt

¢ = e'(?J fi(x—ct) (7.64)

We shall be dealing mostly with harmonic waves, and therefore it is
appropriate at this stage to understand a notation used for representing such
waves. We have seen in Equation (7.30) that a plane progressive wave may be
represented by

¢ = acos(wt —kx) (7.65)

where the velocity potential ¢ has an amplitude “a.” If we also introduce a
phase & we can write

¢=acos((a)t—kx)+5) (7.66)

The trigonometric function on the right-hand side is seen to be the real
part of the complex quantity

¢ _ aeii((a)t—k.\‘)+5) (767)

It is more convenient to use the negative sign in the previous expression.
We can also write Equation (7.67) as

¢ _ ae_ib‘e—i(cat—kx) (7683)
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7.7

or
¢ =Ac " (7.68b)
where the apparent amplitude “A” is a complex quantity defined by
A=ae™® (7.69)

So that the true amplitude is |A| = a, and the negative argument of A i.e.,
d gives the phase. The intensity which is proportional to a” can be obtained by
finding the product of A and its complex conjugate A*. Thus

AA* = (ae_i‘S )(ae”‘S ) =a’ (7.70)

The scalar quantity ¢ expressed as in Equation (7.67) is itself a solution of
the one dimensional wave equation (this we can easily verify by direct substi-
tution). Hence, in any equation in which ¢ appears in the first degree, we can
use Equation (7.68), as it is without reference to its real or imaginary parts,
and later on extract the part of the final result of interest to us.

The great advantage of using Equation (7.68) is that if we want to compose a
large number of coherent disturbances (disturbances in the same phase or hav-
ing a constant phase difference), we have simply to add up the complex ampli-
tude, because the other term ¢ ™ will be common to all of them. But for
composing incoherent disturbances, we shall have to add individual intensities.

REFLECTION AND REFRACTION OF WAVES

Normal Incidence. When a plane progressive wave propagating in a fluid
medium strikes its boundary with a second medium, a reflected wave is pro-
duced in the first medium and a transmitted or refracted wave is produced
in the second. The ratio of the intensities of the reflected and transmitted
waves is determined by the properties (say acoustic impedance in the case of
pressure waves) of the two media and the angle of incidence at the boundary.
Figure 7.4 illustrates reflection at normal incidence. Suppose BB’ represents
the boundary between two media I and II at which an acoustic plane wave is
incident normally.
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I B 1
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FIGURE 7.4. Reflection at normal incidence.

This wave may be represented in terms of the acoustic pressure p, (rather
than velocity potential) by an equation of the form

p, = Ae (7.71a)

1

where k, is the reduced wave number and A, the pressure amplitude in the
first medium. The reflected and transmitted waves will then be given by

P, = A e—i(wt+k1.\') (771b>

and
po=Ae (7.71c)
where k, is the reduced wave number in the second medium, and the sub-

scripts r and ¢ stand for the reflected and transmitted waves. It may be noted
that the frequency of the transmitted wave is the same as that of incident

2
wave; it is only the wavelength 4 = 77[ which undergoes a change with the

change in medium.
Let us suppose that the boundary coincides with the coordinate x =0. The
conditions at the boundary can then be written as

p,=Ae™ (7.72a)
p, =A™ (7.72b)
p,=Ae ™ (7.72¢)

Since there cannot exist any discontinuity of pressure in a fluid medium,
the pressure in the first medium must be equal to that in the second medium
at the surface of separation between the two. We thus have
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pi+p.=p, (7.73a)
or
A +A =A, (7.73b)

Also, if the two media are to remain in contact with each other, the resul-
tant particle velocity in the first medium should be equal to that in the second.
Thus

utu, =u, (7.74a)

or

(pi _pr) !

= P (7.74b)
pi¢ PaCy

where p,c, and p,c, are respectively the specific acoustic impedances in media
I and II. Equation (7.74b) can also be written as
e =(A,-4,)=4, (7.75)
161

where 1, = P is the relative impedance of the second medium with
PsCy

respect to the first. Combining Equations (7.73b) and (7.75), we get
A ny—1

L= (7.76a)
A, ny,+l
and
A 2
Lo Zhe (7.76b)
A n,+1

1

If , >1, the reflected wave at the boundary is in the same phase as
the incident wave, but if r, <1, the two waves will be in opposite phase.
Expressed differently, it means that if the characteristic impedance of the sec-
ond medium is greater than that of the first, reflection will take place without
any change of phase at the boundary. This condition is encountered when a
wave is reflected at the boundary while going from a rarer to a denser medium
(e.g., air and water). On the contrary, if reflection takes place when a wave
traveling from a denser to a rarer medium encounters the boundary, a 180°
change of phase is introduced.

There are a few special cases of the phenomenon. If r,, — 0, the ampli-
tudes of the incident and reflected waves tend to be the same, and the two
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waves will be 180° out of phase. If 1, — oo, as for example in the case of reflec-
tion at a very rigid boundary, the two waves will again have the same ampli-
tude and will be in the same phase as well. In both these cases standing waves
will be produced, but the state of disturbance at the boundary will not be
the same. If r,=1, that is, the two media have the same acoustic impedance,
there is no reflection at all. Under this condition all the incident energy will
be totally transmitted into the second medium. This important result is often
made use of, for example, in developing special rubbers for protecting the
surface of transducers against the corrosive action of water in the equipment
for underwater sounding. The transmitted wave, however, remains always in
the same phase as the incident wave, and its amplitude may range from 2A to
zero depending upon the value of r,.

OBLIQUE INCIDENCE

Let us now take the general case. Suppose AO is the direction of the propaga-
tion of plane waves which lies in the XY plane as shown in Figure 7.5.

’
O

}}

-

o} s ’
T
-e-
>

I

e}

-u
T TTT7777,

FIGURE 7.5. Reflection at oblique incidence.

A plane such as PP’, perpendicular to AO, will then give the locus of all
points in the same phase of vibration; this is called a wavefront. The equation
of this plane is

d =xcosB +ysinb (7.77)

where d is the distance of the plane from the Z-axis measured in the direction
of the propagation of the waves. The excess pressure in the wavefront can
then be written as

Pi — Aie—i(wt—kld) (7783)
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or

Pi _ Ave—i(wt—kl.\‘cosO—klysiuG) (778b>

1

where k is the reduced wave number in the first medium. This plane wave-
front on striking the boundary between the two media will be reflected and

transmitted.
Let the excess pressure p, and p, in the reflected and transmitted waves
be represented by
po=Ae et (7.780)
and
po=Ae (7.78d)
where the reflected and the transmitted plane wavefronts have the equations
d, =lx+my+nz (7.79a)
and
d, =lLx+myy+n,z (7.79b)

respectively. We then have

—i(wt—kl (llxﬂnlyﬂllz))

p,=Ae (7.80a)
and

p, = A, ¢~ e llremays) (7.80b)
for the reflected and transmitted components.

Applying the condition for continuity of pressure at the boundary (x = 0),
we have

A e*i(wtfklysine) +AKefi(cotfkl(rlllyﬂll:)) A e*i(a)tsz(mgyﬂzg:)) (781)

i t

This identity can only be satisfied if the indices of all three terms are
identical, that is:

ot —kysinf = ot -k, (mly + n]z) =wt —k, (mzy + nzz) (7.82)
or

k, sin@ =k m, =k,m, (7.83)
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or
0=kn, =kyn, (7.84)

Equation (7.84) shows that n,=n,=0, so the reflected and transmitted
rays are found to be in the plane of incidence XY. The first part of Equation
(7.83) shows that

m, =sinf (7.85)

Hence, the angles of incidence and reflection are seen to be equal. The
second of Equation (7.83) reveals that
k, sin@ =k, sing (7.86)
which is the well-known Snell’s law of refraction.
Under these conditions, Equation (7.81) reduces to
A+A =A (7.87)
As before we can write the condition for continuity of the X-component
of velocity at the boundary
U, cosO+U, cos(nr—0)=U, cos¢ (7.88)
where the particle velocities can be written in terms of the acoustic imped-

ances of the media. Equations (7.87) and (7.88) may then be combined to give
the reflected and transmitted fractions of the incident pressure amplitude.

SUPERPOSITION OF WAVES

It is the property of linear differential equations that the algebraic sum of all
its solutions is also one of its solutions. We shall prove this interesting result
for harmonic waves. Such waves satisfy the differential equation

fo =’V (7.89)

which is linear, as it does not contain any powers higher than unity of the

op 3¢ op 3¢
- > _2 b Or’ - b _2 b)
ot ot Oox Ox
and so on. In addition, it is a homogeneous equation, as it does not contain any
term independent of ¢. If ¢,, ¢,, and so forth are the solutions of this equation,

we can write

velocity potential ¢ or any of its derivatives, namely
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¢, = Ale’i(“’lt’kl") (7.90a)
¢, = Aze_i(%t_km (7.90b)

If the individual harmonic disturbances ¢,, ¢,, and so on travel through
the medium with the same velocity

o _o_ 0

k k :...:k":C (791)
1 2 n
Equation (7.90) can then be written as
¢, =AM (7.92a)
¢2 — A2€7ikz (ct—x) (792b>

and so on. Therefore, the algebraic sum of all the individual solutions may be
written as

¢l +¢2 b= Ale—ikl(ct—x) + Aze—ikz(ct—x) T (793>

If the left-hand side of this equation is represented by y and the right-
hand side by a function F(ct-x), we can write

v =F(ct—x) (7.94)
We now have to show that given by Equation (7.94) is a solution of the

classical wave Equation (7.89). Successive partial differentiations of Equation
(7.94) lead to the following results.

oy dF o(ct—x)  dF
o d(ct—x) * ot - ¢ d(ct—x) (7.95)
2 2 olct - , 2
Oy _, dF _od=x)_» dF (7.96)
ot d(ct—x) ot d(ct—x)
Similarly,
oy _ dF X@(ct—x)z_ dF (797)
ox  d(ct—x) Ox d(ct—x) '
and
9 9 _ 2
oy dF ><8(ct x)  d°F (7.98)

o’ d(ct—x)2 o d(ct—:c)2
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We thus find that

2 2
%tf = a@;’; (7.99)
so that y satisfies the wave Equation (7.89). Hence, we arrive at the interesting
result that if two or more disturbances propagate through the same medium
simultaneously with the same velocity, the algebraic sum of the individual
disturbances shall also travel through the medium with the same velocity, and
hence may be taken as the resultant disturbance. This is the general enunci-
ation of the principle of superposition first propounded by Young. In other
words, when a non-dispersive medium is disturbed simultaneously by any
number of waves, the instantaneous resultant displacement of the medium
at every point at every instant is the algebraic sum of the displacements taken

independently.

710 SUPERPOSITION OF WAVES OF THE SAME FREQUENCY

(i) Traveling along the same direction. Consider two plane progressive
waves of the same frequency and wavelength traveling approximately along
the same direction in a medium as shown in Figure 7.6. Let their plane wave
fronts be located at any instance at A and B.

P
Xq

A X2

FIGURE 7.6. Superposition of waves traveling along the same direction.

For reaching P, they have to travel distances x, and x,, and hence the dis-
turbance at P due to the individual waves may be written as

& =Acos(a)t—kxl) (7.100a)
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and
&, = Acos(ot —kx,) (7.100b)

Where & represents the instantaneous displacement at any point of the
medium whose maximum value A has been taken to be the same for both
waves for the sake of simplicity. According to the principle of superposition,
the resultant displacement at P is given by

5 _ 51 +§2 ZR(Ae—i((ut—kxl) +Ae—i(wt—kx2)) ZB(Ae—ia)t (e—ikx, +e—ikx2 )) <7101>

1
If x= E(x1 +1, ), Equation (7.101) reduces to

. : +i£k Xo ) 7ill< Xp —X]
E= R(Ae"‘(m_k")[e M) | o )B (7.102)

or

£ :REZAcosék(:c2 —x )ei(wikx)j (7.103)

The resultant displacement at P is therefore obtained by extracting the
real part from Equation (7.103), and may be written as

§=2Acosék(x2 —x, )cos (ot —kx) (7.104)

Equation (7.104) represents a plane harmonic wave of the same frequency
and wavelength as the individual waves. Its amplitude, however, varies peri-
odically due to the cosine term. The resultant amplitude at P, given by

Resultant Amplitude =2A cos%k(x2 -x,) (7.105)
will therefore depend upon the two path lengths which the wave trains cover
to reach P.

If k (n)(x x) nr x, —x; =niA, wh 0,1,2
—_ = = |(x,—x, )= or X, —x, =nA, where n=0,1,2,...
2(x, —x,) A ) S

the amplitude of disturbance will be a maximum. But if

ﬁ:(%j(x, —x1)=(2n+1)(%} or X, — X, =(n+éjﬂ«,
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the amplitude of disturbance will be zero at the point under reference.

Thus, we find that under certain conditions, two disturbances traveling
through a medium can completely destroy each other. This is a very important
property of all wave motions and is frequently encountered in acoustics and
optics.

(ii) Stationary Waves. Another important example of the superposition
principle is that of two waves traveling in the same medium simultaneously
but in opposite directions. This may be the case when a direct wave is reflected
at either a rigid surface (closed end) or a free surface (open end). In terms of
the particle displacement, these waves may be represented as

gl = R(ae_i(mt_kx) ) (71063)
and

& =1R (ae*"(“”'“)) (7.106b)

where the positive sign in Equation (7.106b) is to be taken in the case of
reflection at an open end and negative in the case of reflection at a closed
end. It may be recalled that while acoustic pressure in the direct and reflected
waves remains in the same phase on reflection at a rigid surface, the particle
displacement becomes 180° out of phase. We shall take the case of reflection
at a rigid surface. The displacement at any point in front of the surface under
the simultaneous action of the two waves will be given by

§=6+6&,
E=R {(ae”"‘” )(eik‘ —e ™ )} =R {(2ia sinkx)e™™ }
& =+2asinkx sin wt (7.107)

The particle velocity u and condensation s will then be given by

u=_¢&"=2awsin kx cos ot (7.108)
and
dé .
s= 0 = —2ak cos kx sin wt (7.109)
x

It is thus seen from Equations (7.107, 7.108, 7.109) that the displacement,
particle velocity, and condensation at various points of the medium change
harmonically with time. Also, at any instant, these physical properties have
different values at different points and repeat themselves at regular intervals.
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Whatever the value of ¢, the particle velocity “u” is always zero for points at

which
sinkx =0 or coskx =1
or
kx =+nm, where n=0,1,2,3,...

That is, x = O,i&,il,i%,...
2 2
Figure 7.7 illustrates the phase relationship for plane waves traveling in

the positive and negative X-directions respectively.

d e
dx u, &

& ¢ o, &
P:. s, u p, S

(a) (b)

FIGURE 7.7. Phase relationship for plane waves traveling in (a) positive and (b) negative X-directions.

If the distance x is to be measured from the rigid surface, the particle
velocity u and also the displacement & will be zero at the surface itself and at

points [—%) in front of the surface. These values and positions are indepen-
dent of time; such points are called nodes, and the planes passing through

them in a direction perpendicular to the direction of propagation of the inci-
dent wave are called nodal planes.

711 _WAVE PACKETS

Let consider an oscillator switched on at any instant. It takes some time, how-
ever small, in building up to constant amplitude. Suppose it is allowed to
oscillate for some time and is then switched off so that the oscillations die out.
This process is illustrated in Figure 7.8.
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FIGURE 7.8. The process of an oscillator switched on at any instant then switched off.

It is seen that the steady angular frequency “o = ®,” predominates. This
can be determined by counting the number of cycles “n” during the period
“At” for which the oscillator was on.

Thus,

o, n

():D

, =— (7.110)
21 At

Nevertheless, there is an inherent uncertainty in the determination of “n.”
Looking at Figure 7.8, it is seen that the uncertainty in the determination of

1
“n” amounts to (iaj cycles at each end of the pulse. Thus, an uncertainty

bandwidth “Av” creeps in, and this is given by

Av=20 (7.111)
At
and because “Anv” is of the order of one cycle, we have
1
Av~— (7.112)
At

The traveling waves propagating in the medium in consequence of the
pulse shown in Figure 7.8 are said to form a wave packet. Such wave packets
travel with the group velocity “U.” Due to the presence of a band of frequen-
cies “Aw” emitted by the source, the wave packet will contain a band of wave
numbers “Ak” if the medium is dispersing. This band is centered about “k,,”
the wave number corresponding to the dominant frequency “w,,” and has a

width

Ak = 22 (7.113)
%

g

A wave packet of length “Ax” moves across a stationary observer in time “At”
such that
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Ax=V,At (7.114)
It is thus seen that
(Ak)(Ax) = (Aw)(At) (7.115)
or
A(%)(M):A(%j(m‘) (7.116)
or
AGJ(M):A(@)(Ny 1 (7.117)

We once again get the uncertainty relation; this is seen with a wave packet
in space.

ELECTROMAGNETIC WAVES

Prior to the birth of electromagnetic theory, light waves were thought to be
associated with transport of mechanical energy through an all-pervading
medium called luminiferous ether endowed with (properties of) inertia, den-
sity, and elasticity. Maxwell’s theory brought out for the first time the proba-
ble nature of light. But even he tried at first to explain his theory in terms of
mechanical models. Subsequently, it was discovered that in fact no medium
is necessary for the propagation of the type of waves postulated by Maxwell.
Indeed, his electromagnetic waves can travel through empty space or a vac-
uum, and the velocity of their propagation is found to be identical with the
velocity of light in a vacuum.

Maxwell formulated his theory for a homogeneous, isotropic medium on
the basis of four physical laws known in his time. These are:

1. Gauss’s theorem of total normal induction.
2. The non-existence of isolated magnetic poles.

3. Ampere’s rule about the work done in taking a unit pole around a closed
circuit carrying current.

4. Lenz’s law of electromagnetic induction.

Each of these laws can be written down in the form of mathematical
equations. On combination with constitutive relations giving certain physical
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properties of a dielectric medium, the set of equations leads to the following
results:

1. In an electromagnetic field, the strengths of the electric and magnetic

fields are given by
)=
Vﬁj:(%’)[i:j (7.118)
Vzﬁz(i—g)[é;?J (7.119)

where E and H are respectively measured in electrostatic and electromag-
netic units, and “c¢” is the ratio between the two sets of units.

An electromagnetic wave propagates in a homogeneous, isotropic, dielec-
c
cp
dielectric constant and permeability of the medium. For free space or a
vacuum, & = u = 1; hence, the velocity of propagation of electromagnetic
waves in free space should just equal the ratio of, say, the “e.m.” and
“e.s.” units of charge. On determination, this ratio in fact comes out to
be 2.998 x10" cms / sec, which is also the velocity of light in free space.
It was this fact that led Maxwell to believe that light was a form of elec-
tromagnetic radiation. This belief has since been confirmed in many
ways, and it is now known that X-rays, y-rays, ultraviolet and infra-red
rays, and radio waves are all electromagnetic in character; the entire
electromagnetic spectrum is propagated with the same velocity, namely
3x10" cms/ sec through free space; only their wavelengths are different.
For other dielectric media, € is not equal to unity; also, u depends upon
the frequency of waves. For the visible region, however, j1 may be taken

tric medium with a velocity ( ] where € and p are respectively the

to be unity. Hence, the velocity of light in these media is (2) and, there-
g

fore, the refractive index of such media should be &. Many substances

exhibit this relationship, but many others don’t. The breakdown of this
relation occurs because the electromagnetic theory does not take into
account the detailed atomic structure of the dielectric.

2. Inan electromagnetic field, the rate of flow of energy per unit area is rep-
resented by a vector, called a Poynting vector, perpendicular to the area
under reference. The magnitude and direction of this vector is given by
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— C — —
N=—/|ExH 7.120
- (ExH) (7.120)
Equation (7.120) shows that if there is a flow of electromagnetic energy, the
X-direction as in Figure 7.9, it is always accompanied by an electric as well as
a magnetic field perpendicular to the direction of energy flow as well as per-

pendicular to each other.

E
A

(000 —

H

FIGURE 7.9. The X-direction for magnitude and direction of a Poynting vector.

In fact the three mutually perpendicular vectors are so oriented that if a
right-handed screw is turned from the direction E to H, it will advance
in the direction of the Poynting vector. We shall see from the follow-
ing pages that E and H are quantities varying rapidly in magnitude as
well direction, but the angles between the three vectors are each equal to
ninety degrees at all times.

3. The electric vector of electromagnetic radiation is responsible for all
observed optic phenomena. Since this vector is always directed perpen-
dicular to the direction of the propagation of energy, it is inferred that
light waves are transverse in nature. The differential equation of inter-
est in Optics, equation (7.118), may also be written in another form by
substituting

E=--2— (7.121)
c ot

Thus, the quantity analogous to the velocity potential ¢ s the electric inten-
sity E, and that analogous to particle displacement & is the vector poten-
tial A defined by Equation (7.121). We may therefore use the equations
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developed in that chapter with this understanding, keeping in mind the
transverse nature of electromagnetic waves. In addition, if the electro-
magnetic wave encounters a boundary between two dielectric media at
which it may undergo reflection or refraction, due attention also has to be
paid to the conditions at the interface called boundary conditions.

4. The electromagnetic field stores energy, and the density of this energy per
unit volume is given by

i(sEZ +uH?) (7.122)
8w
Thus, the classical electromagnetic theory of light yields a definite expres-

sion for the energy density of such waves.

IMPLICATIONS OF MAXWELL’S THEORY

If, as predicted by the classical electromagnetic theory (Maxwell’s), light is
indeed a form of electromagnetic radiation, the following consequences would
seem to follow from the assumptions implied in the derivation of the theory.

1. The propagation of light through dielectric media should be affected on
the application of electric and magnetic fields across them. Such effects
(e.g., Kerr effect, Faraday effect) have been observed for a large number
of media.

2. The electromagnetic waves carry a continuous energy flux of density
given by Equation (7.120). The classical theory therefore does not permit
the propagation of any packets or lumps of energy through a dielectric
medium. On the contrary, the modern quantum theory postulates the
existence of “quanta” or packets of energy. The concept of energy quanta
has also been borne out by experimental observations (e.g., Raman effect,
photoelectric effect, and compton effect).

This apparent difficulty has been removed by reinterpreting the expres-
sion for energy flux in the light of quantum theory. At the same time, the
results of the two theories may be reconciled if it is recognized that the clas-
sical theory leads to results depicting the average effects associated with wave
propagation through dielectric media. As soon as we start examining the
details of the phenomena, for example, the emission and absorption of elec-
tromagnetic radiations, the classical theory is found wanting in many ways.
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7.14 PRACTICAL CONSIDERATIONS REGARDING LIGHT
WAVES

Let us consider the phenomenon of emission of light as postulated by the
classical theory on the understanding that it gives only the overall picture
and is found wanting in finer details. Consider an electron bound to a heavy
nucleus emitting electromagnetic radiations by way of oscillations induced
by forces external to the atom. This is of course a very coarse picture of the
probable state of affairs, but since at this stage we are not interested in the
actual processes of the emission of light, we may as well omit the details.
These oscillations do not build up instantaneously but take a finite inter-
val of time to attain constant amplitude. This interval may nevertheless be
very small as compared to the time for which the electron keeps oscillat-
ing and emitting electromagnetic radiations. Since an oscillating electron
continuously loses energy by radiation, the amplitude of oscillations goes
on decreasing till a stage arises when it becomes hardly detectable; subse-
quently, the oscillations die out completely with the amplitude of oscillation.
This variation of amplitude with time can be depicted by a curve of the form
shown in Figure 7.10.

AN AN AN ANYANY AN NI
A \jUVUUU t—»=0

Amp.

FIGURE 7.10. The curve for variation of amplitude with time.

If we wish to determine the frequency of these oscillations, we are imme-
diately faced with a difficulty. If we knew the precise instants at which the
oscillations had started and died out, the determination of frequency would
have been an easy matter. We would then have been in a position to locate
points A and B accurately and then to count the number of waves during the
time interval AB and obtain the desired result. But due to the inherent uncer-
tainty in locating the onset and dying out of the oscillations, their frequency
cannot be determined accurately. Conversely, if the time interval somehow
could be determined precisely, the number of waves during this period could
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not be counted accurately from the graph. No matter what we do we can
never do better than counting the number of waves to within an accuracy of
(£ ') waves at each end of the pulse. Thus, if AT is the time for which the
electron had emitted radiations, the uncertainty in determining the frequency
v is given by
Av ~ (i) (7.123)
At
In view of this uncertainty, we should be naturally curious about know-
ing the frequency of oscillations. Of course, there is no exact value for this
frequency. The best we can do is to count the number of waves “n” without
bothering about the uncertainties at the two extremes and define a dominant
frequency, “v,,” by the equation

n
v, = (A—tj (7.124)

Thus, we find that the radiation emitted out is not strictly monochromatic
but contains a band of width Av centered about the dominant frequency v,.
This bandwidth may be estimated by determining the time interval A¢ for
which the radiating electron remains in the incited state. An order of magni-
tude calculation is usually made by expressing At in terms of the mean life 7
of the excited electron. Thus, if we suppose that the amplitude of oscillations

0’

1
falls to P of its steady value in time 7, it may be reasonable to assume that
e

these oscillations die out for all practical purposes in a time which is a small
multiple of 7. In other words, the orders of magnitude of At and 7 may be
taken to be the same. Equation (7.123) then yields a measure of the band-
width. Thus, we find that

Av~ [l) (7.125)

T

The actual state of affairs, however, does not even correspond to this
highly simplified picture. This is on account of several complicating factors
which may be mentioned to indicate the complexity of the phenomenon of
emission. Firs, it never happens that atoms take their turn in emitting radia-
tions. In fact, there may be several atoms in the excited state simultaneously,
and hence many electrons undergoing oscillations leading to the generation
of electromagnetic radiations. Second, none of these atoms are at rest in
gaseous discharge tubes—the most commonly used sources of



236 -

715

OrTICS

electromagnetic radiations. They in fact travel with velocities which may be
as high as 10°cm / sec. On account of this motion of the radiating source, the
bandwidth may be broadened by at least two orders of magnitude. The Dop-
pler broadening is usually accompanied by another type called “Collision
broadening.” This is brought about when the radiating atom suffers a colli-
sion with others in the discharge tube. The combined effect of all these
factors and a few more amounts to considerable frequency broadening of
the emitted radiations. In real sources, therefore, the bandwidth is no longer

1
of the order of (—) but has a much greater value. If Av, is the actual band-
T
width of a spectral line with a dominant frequency v,, Equation (7.125) has

to be replaced by the expression

A, ~ (%) (7.126)

coh

where the mean life “T” has been replaced by a much smaller time interval
“t,on called coherence time. The importance of this time interval becomes
apparent from the alternative expression

oA, ~ 2% (7.127)

coh

or

(Aa)o)(twh) ~ 27 (7128)

Hence, coherence time may be defined as the time interval needed for
the extreme frequencies of a band to get out of phase by 27.

It may be mentioned that in the foregoing discussion regarding band-
width and coherence time, the emission has been assumed to be spontaneous
rather than stimulated.

COHERENCE TIME AND INTERFERENCE OF LIGHT

We thus find that the so-called line spectrum spontaneously emitted from
practical light sources does not consist of a series of strictly monochromatic
lines. On the contrary, each line has an unavoidable bandwidth which plays a
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significant role in determining the properties of the emitted radiation. For a
discussion of these, let us consider one such line of dominant frequency v, and

A
bandwidth Av,. Further, let us suppose that (&J >>1.

o

Such line sources are called quasi-monochromatic. Therefore, during

1 Av
the time interval (AU(,) , that is, the coherence time, there will be (—”J
v

oscillations, a number which is quite large in view of the previous inequal-
ity. Let us now consider two independent point sources illuminated by light
of the dominant frequency v,. These independent sources may either be
two pinholes in a screen surrounding a laboratory source or even two loca-
tions within this source at which the atoms are emitting radiations indepen-
dent of each other. This is usually true if they are separated by a distance
d larger than the wavelength under discussion. If a screen is placed at a
distance much larger than d, the observed intensity distribution will be
determined by the relative phases of the wave trains arriving at various
points. For any point P as in Figure (7.11), the path difference between the
waves arriving from A and B can be shown to be “dsin6,” and hence the
phase difference will be

(%”jdsme (7.129)

In view of the finite bandwidth of the spectral frequency, this phase dif-
ference between the waves arriving at P will change with time. If at any instant
the phase difference

(%jdsin@z?mﬂ, n=0,12,... (7.130)

then within the time interval “t,,” this value will be essentially constant.
After a greater time, the value of phase difference, however, undergoes a
change (the geometry of the setup remaining unaltered). Thus, if initially
the intensity distribution on the screen was as shown at Figure (7.11a), after
a time larger than “¢_,” it may change to that shown in Figure (7.11b), for
which

coh

(%jdsin9:(2n+l)ﬂ, n=0,12,... (7.131)
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FIGURE 7.11. The path difference between the waves arriving from A and B and the phase difference
of (a) the intensity distribution on the screen (b) after a time larger than “t_,.”

Under this situation the initial maxima intensity gives place to minima and
vice versa. We therefore find that if our period of observation is larger than
the coherence time of the quasi-monochromatic light, the intensity distribu-
tion on the screen will on the average be uniform. But if this period is shorter
than “¢,,,” the interference pattern exhibiting maxima and minima will be
observed. Thus, the probability that the sources A and B will be coherent (i.e.,
maintain a constant phase difference at an external point) or incoherent will
be entirely determined by the time taken by the receptor for recording the
distribution of intensity on the screen. Since for usual laboratory sources “¢,,,”
is of the order of 10~ or 10™° seconds, the human eye with a much slower response
always observes incoherent (i.e., uniform) illumination on the screen, even if the
two independent sources are quasi-monochromatic. Thus, there are in fact no
coherent or incoherent sources intrinsically; the distinction becomes necessary
only due to the limitations of the tools of observation.

COHERENCE TIME AND POLARIZATION

The frequency bandwidth and coherence time also play a significant role in
determining the state of polarization of electromagnetic radiations. Suppose
an electron at a given location in the source of light is thrown into vibrations.
Confining our attention to the radiation propagating along the direction X, we
have to consider only the Y and Z components of the electrons” motion for
determining the nature of the radiation. These components of motion retain
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a constant relative phase only for the radiating lifetime of the excited electron.
After some time, this same electron may suffer a second collision, again be
excited, and start emitting radiations. The amplitudes and phase constants of
the Y and Z motions of the electron will, as before, depend upon the circum-
stances of the collision. Invariably, as in the case of gaseous discharge tubes,
these variables of electron motion are in no way correlated between succes-
sive collisions.

In actual practice, however, we should consider not one but many excited
electrons for getting an insight into the nature of the emitted radiation the Y
and Z components describing the radiation proceeding along. The direction X
will now be the resultants of the corresponding motions of all electrons in the
excited state. In practice, the components ¢, and e, associated with the vibra-
tions of every excited electron may be combined to give the resultants E, and
E_, whose amplitudes and phase constants depend upon those of the contrib-
uting atoms; of course, their frequencies will be the same. During a time
interval shorter than the coherence time, “¢,,,” the amplitude or phase of
either E, or E_ does not change appreciably in spite of the very large number
of oscillations taking place during the period. Technically, this state of affairs
means that the polarization state of the emitted electromagnetic wave remains
unchanged during a time interval shorter than the coherence time.

If we examine the situation after some time, we shall find a new set of
atoms in the excited state. The resultants E, and E_ associated with the excited
electron vibrations in the new set of atoms will, on the average, have the same
amplitudes as before, but the phase constants will in no way be related to their
corresponding values earlier on. Thus, we find that although the polarization
state of the emitted radiation (described in terms of the relative phase con-
stants of E, and E.) remains unchanged during a time interval shorter than the
coherence time, it drifts in an entirely unpredictable manner over periods of
observation larger than it. Therefore, coherence time is seen to be a funda-
mental property of light waves.

717 EXERCISES

1. Write the alternative forms of a wave equation.

2. Write the formula for energy contained in a length C of the medium
that passes through a unit area in one second and its consequential
sound intensity.
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3. Derive an expression for the intensity of a spherical wave at a distance
2 m from its center in terms of the optical power of 150 W.

. . = t+x | .
4. An electromagnetic wave in free space has E = f (—j a., where a_is
CU
(1)
a unit vector in the x direction, f(¢)=e"" ¢! ”]L“f), where 7is a constant.

What is the physical nature of the wave, and find an equation for the
magnetic field vector.

5. Determine the velocity of propagation C in the form of bulk modulus
and density.

6. Define a Poynting vector.
7. What is a wavefront?

8. What is collision broadening?
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INTRODUCTION

One of the greatest difficulties encountered in the early development of the
wave theory of light lay in its inability to explain the rectilinear propagation
of light—a fact which obviously follows on the basis of the corpuscular con-
ception of light. To overcome this difficulty in the progress of wave theory,
Huygens in his work on light enunciated a principle for explaining wave prop-
agation, which was later used by Fresnel in conjunction with the principles of
interference to provide a satisfactory explanation of the rectilinear propaga-
tion of light, but at the same time he also showed that this propagation is only
approximately rectilinear.



242 ¢ OrTiCs

8.1

HUYGENS’S PRINCIPLE

One of the most important contributions of Huygens to the theory of light and
to wave motion in general lies in his enunciation of a principle, known by his
name, which governs the wave propagation in any medium. He declares in his
work on light as follows:

In considering the propagation of waves, we must remember that each par-
ticle of the medium through which the wave spreads does not communicate
its motion only to that neighbor which lies in a straight line drawn from the
luminous point but shares it also with all particles which touch it and resist
its motion. Each particle is thus to be considered as the centre of a wave.

This statement, known as Huygens’s principle, affords a geometrical con-
struction for determining, from the given shape and position of the wavefront
at any instant, the subsequent position and form of the new wavefront at
some later instant. According to Huygens, every point of a wavefront may be
regarded as the origin of a new disturbance, which in its turn emits small sec-
ondary wavelets, propagated in all directions from their respective origins with
a speed equal to the speed of propagation of the wave in that medium. The
new wavefront at a later stage is obtained by drawing a surface tangential to
then-existing positions of these elementary secondary wavelets or, as it is often
described, the new wavefront is simply the envelope of these wavefronts. He
arrived at this principle of wave propagation from the following considerations:

It will be recalled that Huygens’s conception of a beam of light was simply
a succession of a great number of longitudinal pulses propagated at high veloc-
ity as condensations and rarefactions. Now, suppose that a luminous point
emits a light pulse at a given instant. In a homogeneous isotropic medium,
this pulse will spread in all directions with a constant velocity, so that after
an interval of time ¢ it will have reached a spherical surface ABC...N of radius
V., where V represents the velocity of the propagation of light in the medium
under consideration. Thus, at this instant, the form of the wavefront is spher-
ical. A wavefront, it will be recalled, is a surface in which all points are always
in an equal phase of vibration. After a lapse of time ¢ from this moment,
the light pulse will have reached the spherical surface A’'B'C'...N" of radius
V(t + t'). Huygens now argued that by virtue of ether on the wavefront
ABC...N being disturbed by the light pulse originating from O, one finds a
disturbance at every point of this wavefront exactly similar to that which orig-
inated ¢ seconds earlier at O. Accordingly, every point of this wavefront can
be regarded as the origin of ether disturbance, exactly similar to that which
originated at O. Thus, around every point, after a time ¢', a new elementary
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wavefront commonly called a secondary spherical wavelet will have formed
with a radius V,". The resultant effect of these secondary wavelets must be that
the wavefront ABC...N has moved to a position A'B'C"...N" in time ¢'. Now, it
is easy to see that the new wavefront is simply the envelope of the individual
secondary wavelets. This explanation clearly establishes the Huygens princi-
ple of wave propagation. We therefore conclude that in the space in front of
the wavefront ABC...N, everything takes place in an exactly similar manner
as though the original light source were absent but only a sheet of secondary
sources were present in the surface ABC...N. Kirchhoff has shown that this
new interpretation of Huygens’s principle helps us to discuss quantitatively
diffraction and interference phenomena.

Figure 8.1 illustrates Huygens’s principle of the propagation of wave-
fronts, while Figure 8.2 illustrates the application of the Huygens principle
for the propagation of the wavefront from the luminous point at infinity. In
this case, the wavefronts are plane. The lines AA’, BB', and so forth joining
the corresponding points of two wavefronts can be taken as the path traversed
by the light or ray of light. In a homogeneous medium, rays are normal to the
wavefront. If the medium is not homogeneous, the velocity of propagation is
different in different directions. Consequently, the appropriate velocity must
be used at every point of the wavefront to find the new position and shape of
the wavefront. The velocity of light, V, has been assumed to be the same at all
points and in all directions in Figures 8.1 and 8.2.

FIGURE 8.1. Huygens’s principle of the propagation of wavefronts.
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(t+t")

FIGURE 8.2. The application of Huygens’s principle for the propagation of the wavefront
from the luminous point at infinity.

In its simple form, the principle discussed previously is, however, not
fully satisfactory. The reasons are not far to seek. In the first place, the sec-
ondary wavelets, if they spread out in all directions, should also combine to
form a backward wave moving towards the source O. This, of course, is never
observed experimentally. Second, the secondary wavelet which originates
from A also reaches the points B', C’, D'....., and accordingly light would be
present at these points, which had traveled via A, contrary to the rectilinear
propagation of light. Last, according to this principle, only one point of the
secondary wavelet is effective, namely the point at which they touch their
envelope in the forward direction of propagation. There is no direct physical
or mathematical explanation in Huygens’s original presentation of the theory
for this arbitrary decision to ignore all the unwanted parts of the secondary
wavelets.

We will give a satisfactory explanation of the absence of the back wave in
the chapter on Diffraction of Light—Fresnel Class by following Fresnel’s mod-
ification of Huygens’s idea of secondary wavelets based on the principles of
interference and superposition of wave motions applied to secondary wavelets.



HuvGens’s PrincipLeE © 245

8.2 REFLECTION OF A PLANE WAVE AT A PLANE
REFLECTING SURFACE

Consider a plane wavefront ABC advancing in the direction depicted by
arrows. Its position is marked in Figure 8.3 at an instant, say ¢ = 0, at which
its lower edge just meets a plane reflecting surface MM along a line through
A perpendicular to the plane of the diagram. The planes of the wavefront
and the reflecting surface are also supposed to be at right angles to the plane
of the figure. At this instant, the point A and all points of the surface on the
line through A normal to Figure 8.3, according to Huygens, will just become
origins of secondary wavelets. But as the wavefront ABC advances further, the
points of the reflecting surface between A and E, successively struck by corre-
sponding points on the advancing wavefront, become the origins of secondary
wavelets which spread out in the upper medium with a speed V. Let us find
the shape of the reflected wavefront after a time interval t—the time taken by
the end C of the incident wavefront to advance a distance CE, where CE = V,.

T j A\
Plane mirror A \ D / E
Incident wavefront Reflected wavefront

FIGURE 8.3. The laws of reflection by means of Huygens’s undulation theory.

At this moment, when the point E of the reflecting surface just becomes
the origin of the secondary wavelet, the radius acquired by the secondary
wavelet which originated ¢ seconds earlier from A would be

AG=Vt=CE (8.1)

and the radius of the secondary wavelet which originated from the point D

would be
DF = V' = HE (8.2)
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where ¢' is the time interval in which the end H of the incident wavefront
from the position DH would just reach E. With points A,D as centers, the
hemispheres of radii AG = CE and DF = HE are drawn in the upper medium,
which consequently represent the spread of the secondary wavelets which
originated from A and D respectively, by the time the end C of the incident
wave has reached E. A plane drawn though E, normally to the plane of the
diagram so as to be tangential to the secondary wavelet from A at G, can be
easily shown to touch all the secondary wavelets which originated from the
points of the surface between A and E. The proof is as follows:

It is easy to see that triangles ACE and DHE are similar. Hence, we have

AE _ CE

DE HE
Also, by the help of Equations (8.1) and (8.2), the previous relation can be
easily written as

(8.3)

AE/DE = AG/DF (8.4)
or

AE = AG =sinr (8.5)

DE DF

Hence, in triangle DEF the angle DFE must be 90°. But the radius of the
secondary wavelet from D, at the moment when E just becomes the origin of
the secondary wavelet, is DF. Thus, the wavelet from D will touch the line
GE at F. The plane GE normal to the plane of the diagram is, therefore, the
envelope of all secondary wavelets generated from A to E by the time the inci-
dent wave has reached E. The plane GE, therefore, represents the reflected
wavefront.

The angle i between the incident wavefront and the reflecting surface is
called the angle of incidence; the angle between the reflected wavefront and
the reflecting surface r is called the angle of reflection. The relation between
them can be easily obtained as follows:

AG

sini = CE and sinr = — (8.6)
AE AE

But as proven previously, AG = CE, and hence we have
sini = sinr or i=r (8.7)

Equation (8.7) is the law of reflection. Thus, a plane wave is reflected from
a plane surface with an angle of reflection equal to the angle of incidence.
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8.3 REFRACTION OF A PLANE WAVE THROUGH A PLANE
REFRACTING SURFACE

Consider a plane wavefront ABC advancing in the direction depicted by
arrows. Its position is marked in Figure 8.4 at the instant, say ¢ = 0, at which its
lower edge just meets a plane surface MM separating two transparent media
(e.g., air and glass), along a line through A perpendicular to the diagram. The
speeds of propagation in the two media are V, and V, respectively, and the

Lo c c ,
refractive indices are p, = — and p, = v respectively.

a g

Incident \\\

wavefront
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FIGURE 8.4. Explanation of Snell’s Laws by means of Huygens’s wave theory.

The plane of the wavefront and that of the refracting surface are also
supposed to be perpendicular to the plane of the diagram. At this instant,
according to Huygens’s principle, two secondary wavelets just originate from
the point A of the interface; one, above the interface spreads into the original
medium with speed V,, and the second, below the interface, spreads into the
second medium with speed V,, as the incident wavefront advances further.
The direction of the reflected wavefront can be obtained by the law of reflec-
tion. We now proceed to find the direction of propagation of the refracted
wavefront, it being assumed that V, > V, and pi, > pt,.. In what follows we shall
simply confine ourselves to wavelets in the lower medium.

Now, as the incident wavefront ABC proceeds further, the points A..D..E
of the interface are successively disturbed by the advancing wavefront. As
a consequence, they successively become the origins of secondary wavelets.
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Obviously, the point A is the first to act as such and E the last. Let us find the
shape of the wavefront after a time interval ¢, the time taken by the end C of
the incident wavefront to advance a distance CE where

CE=V, t (8.8)

At the end of this time interval, when the point E of the refracting surface
is just struck by the incident wavefront and therefore just becomes the origin
of secondary wavelets, the radius acquired by the wavelet, which originated ¢
seconds earlier from A in the lower medium, would be

AG =V, ¢ (8.9)

By the use of Equation (8.9), this reduces to

Vv,
AG = ( ] CE (8.10)
V[l
Similarly, the radius of the secondary wavelet which originated from D
would be

DF = [Zj HE (8.11)
\4
Since the secondary wavelets from points intermediate between A and E
originate at successively somewhat later times than that which originated at
A, their radii, at the instant when E just becomes the origin of wavelets, are
successively smaller than that of the wavelet which originated at A.

With points A and D as centers, hemispheres of radius AG given by Equa-
tion (8.10) and radius DF given by Equation (8.11) are drawn in the lower
medium, which consequently represent the spread of the secondary wavelets
which originated from A and D respectively, by the time the end C of the inci-
dent wave has reached E. A plane drawn through E normally to the plane of
the diagram so as to be tangential to the secondary wavelet from A at G can be
easily shown to touch all secondary wavelets, which originated from the points
of the refracting surface between A and E. The proof may be given as follows:

It is easy to see that triangles ACE and DHE are similar, and hence we get

i _ce -
DE HE

By the help of Equations (8.10) and (8.11), the previous relation can be

easily expressed as
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AE  AG
—_— = — (8.13)
DE DF

or
DF AG
—_—=— (8.14)
DE AE

From this relation it is obvious that ZDFE =90°. But DF is the radius
of the secondary wavelet from D; thus, the line EG just touches the wavelet
form D at F. We therefore conclude that the plane through EG, normal to the
plane of the diagram, is the envelope of all secondary wavelets generated from
A to E by the time the incident wave has reached E. The plane EG therefore
represents the refracted wavefront in the lower medium.

Snell’s law of refraction can now be easily derived as follows:

cE
sini  \ AE _@

—_— == 8.15

sinr ( AG j AG ( )
AE

By the help of Equation (8.10), the previous equation becomes

C
sini _V, V, M,

= =—= 8.16
sinr 'V, (c] H, H (5.16)

v

a

Equation (8.16) is called Snell’s law. With the help of wave theory, we have
proven that the refractive index of glass with respect to air must be equal to

v,
(ﬁl . The result differs fundamentally from that obtained with Newton’s

glass

glass

v

air

corpuscular theory of light, which gives ,u: =( j . As a consequence,
according to wave theory, the speed of light propagation in a denser medium
must be less as compared to its value in the rarer medium. The corpuscular
theory, however, claims just the reverse effect. In 1850 Foucault experimen-
tally showed that the speed of light in water is indeed smaller than its speed in
air. This resulted in a resounding victory for Huygens’s wave theory.
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8.4 TOTAL REFLECTION

Huygens’s principle can be very easily applied to give a physical explanation
of the phenomenon of total reflection. We may first briefly describe this phe-
nomenon on the basis of the ray theory. Figure 8.5 shows a number of rays
diverging from a monochromatic point source P in glass and striking the inter-
face separating it from air, the refractive index of glass with respect to air

being p.
i i l
i A Rarer i WK ! goul
medium | ™ 13
1

Denser
medium

FIGURE 8.5. The number of rays diverging from a monochromatic point source P in glass and
striking the interface separating it from air.

From Snell’s law, since light is refracted from glass in air, is follows that

sini Y 1
t=}

(8.17)

a

. K
sinr My
or

sinr =y sini (8.18)

Since uy >1, the angle of refraction r in the case under discussion is
always greater than the angle of incidence i. Therefore, for some value of i
less than 90°, the angle of refraction r becomes equal to 90°. In the latter case,
as illustrated, the refracted ray 3 just goes grazing the interface and separating
the two media. The particular angle of incidence corresponding to r = 90° is
called the critical angle for the pair of media under consideration, and it is
usually denoted by i... Equation (8.17) or (8.18), therefore, gives

1
sini, = — (8.19)

g
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If the angle of incidence is greater than i, then it follows from Equation
(8.17) or (8.18) that the sine of the angle of refraction becomes greater than 1,
which is obviously impossible. This is interpreted as meaning that for an angle
of incidence greater than the critical angle i, the refracted ray does not exist;
only the incident ray is reflected back in the same medium. This is known as
the phenomenon of total reflection.

We now give the explanation of the previous phenomena according to
wave theory. In Figure 8.6, A,C, represents a plane wavefront in a denser
medium (glass), just incident at A, on the interface separating it from the rarer
medium (air). According to Huygens’s principle, the points A,...C, become
the origins of two secondary wavelets which spread out respectively in the
upper and the lower medium as the incident wavefront sweeps the interface.
The secondary wavelet which originated from A, would acquire a radius A A’,
in the upper medium, given by the relation

’ V{l a
AA; = (_JC] C, =n1,C\C, (8.20)
Ve
at the instant when C, just becomes the origin of secondary wavelets.
But

C,C, =A,C,sini (8.21)

and hence, Equation (8.20) may be written as
AA; = pgA G, sini (8.22)
Now, if we vary the angle of incidence i, keeping A,C, constant, three
possible cases arise:
1. The angle of incidence i is such that we have an inequality,

py sini <1 (8.23)

Hence, Equation (8.23) yields an inequality
AAL<AC, (8.24)

In this case, the radius of the secondary wavelet which originated at A, in
the upper medium is less than A,C, at the instant when C, just becomes
the origin of secondary wavelets as shown in Figure 8.6. The refracted
wavefront and the ray A|A’,, normal to A,C’,, is the refracted ray.
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FIGURE 8.6. Reflected and refracted wavefronts.

2. If the angle of incidence increases to i, so that we have
Hy sini; =1, then A|A) <A|C,

In this case, the secondary wavelet which originates from A, will pass
through C, at the instant when the latter just becomes the origin of sec-
ondary wavelets, and this obviously holds good for all wavelets generated
between A, and C,. In other words, all the secondary wavelets which orig-
inate at various points touch each other at C, and therefore reinforce each
other at C,. As a consequence, the resultant disturbance is propagated just
grazing the interface of the two media. Thus, the refracted ray goes just
grazing the interface, and the angle i, is the critical angle for the two media.

Refracted
ray
Rarer
medium Ay A5
p - -
Denser medium R LA Co
"«.‘\_, \‘\ \.
i s P .
. LA ~
-
o
Incident S Reflected
- A?"
wavefront .~ C1 "2°~, wavefront
-~ s
v A

-

FIGURE 8.7. Refracted ray grazing the refracting surface.
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3. If the angle of incidence, say i', is greater than i, so that we have an
inequality

Mg sind’ >1
then it follows from Equation (8.22) that
AAL<AC,

This simply means that the point C, will lie within the secondary wave-
let which originated from A,, and this property holds for all other wave-
lets which originated from points intermediate between A, and C, at the
instant when the end C, of the incident wavefront just strikes C,. Obvi-
ously, it is impossible to draw a plane through C, tangential to these wave-
lets. Thus, the refracted wavefront does not exist in this case; only the
reflected wavefront exists. In other words, light is totally reflected within
the same medium.

Rarer

medium Aq Cy AL
Incident N ~S Reﬂelf:tf;:r:!L
wavefront -~ Cy Az ~~_  Wwaveiron

=

,"'F Denser medium

FIGURE 8.8. Total internal reflection.

8.5 REFRACTION THROUGH A SPHERICAL SURFACE

Suppose in Figure 8.9 that the circular arc AOA’ represents the trace, in the
plane of paper, of the spherical refracting surface convex toward the rarer
medium.
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medium

FIGURE 8.9. Formation of a virtual image by a convex refracting surface.

Let BOB' represent the trace of spherical wavefront diverging from the
monochromatic luminous point source P. Now, if P is so close to the refracting
surface that at the instant when A and A’ become the origins of wavelets, the
radius OD of the wavelet which originated at O (when BOB' was the posi-
tion of the incident wavefront) becomes greater than OG, then the refracted
wavefront ADA’ will be a spherical surface apparently diverging from the axial
point Q. Thus, the image Q of the real axial point P is virtual.

The optical path from O to D must be equal to that from B to A. Thus, the
refracted wavefront ADA’ satisfies the condition

1,0OD = 1, BA (8.25)

where y, is the refractive index of the rarer medium and g, that of the denser
medium. In the paraxial region, BA = FG approximately, hence

1,0D = 1, FG (8.26)

or
Mo (OD+GD):p1(FO+OG) (8.27)

or
mFO = ,GD =(p1y = 11, )OG (8.28)

Since P and Q are to the left of O while C is to the right of O, according
to our sign convention, we have OP = -u, OQ = -v, and OC = R. Therefore,
to a close approximation we write
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FOzngu) (8.29)
GD:GZ@ (8.30)
0G =% (8.31)

where we have written AG = y = BF approximately. Substituting the values of
FO, GD, and OG in Equation (8.28)

H A _H— (8.32)
vu R
Dividing Equation (8.32) by u, and writing ﬂ; for %, the refractive index
1

of the second medium (denser) with respect to the first (rarer) medium, we get

1 1
. -1
ﬁ_ﬁz'u2_ (&33)

v u R

8.6 REFRACTION THROUGH A THIN LENS

1. Spherical Waves Incident on a Thin Convex Lens

Let C,BC, and C,DC, in Figure (8.10) represent two spherical surfaces
of a thin convex lens, the radii of curvature of the surfaces being R, and
R, respectively.

Incident wavefront Refracted wavefront

FIGURE 8.10. Refraction through a convex lens.
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We suppose the lens material to be denser than the surrounding medium.
Let B,BB, represent a spherical wavefront, shown diverging from a lumi-
nous axial point P emitting light of one wavelength only, and to have
reached a position so as to just touch the pole B of the surface C,BC, of
the lens. According to Huygens’s principle, at this instant, the pole B just
becomes the origin of a secondary wavelet, and this wavelet traverses an
axial thickness BD within the lens medium in the time interval ¢. On the
other hand, by Huygens’s principle of propagation of the wavefront, the
ends B, and B, in this interval ¢ practically travel in a rarer medium (air)
via C, and C, respectively to respective positions D, and D,. Therefore
Optical path B,C D, = Optical path BD

ie.,
B,C,+C,D, =uBD (8.34)

where j1 is the refractive index of the lens material with respect to the
surrounding medium.

In reality, in order to trace the formation of the image, we should regard
every point of the back surface of the lens as new origins of secondary
wavelets which are generated when the points are successively struck by
the advancing wavefronts from the left. Figure 8.11 represents a particu-
lar case where wavefronts in the lens medium are plane.

A
RFL'R/\E 501

-

| /; A1 P2
Incident wavefront C, Refracted wavefront

FIGURE 8.11. Refraction of waves through a convex lens.

This has been assumed for simplicity of the figure; nevertheless, the con-
clusions which will be drawn are quite general and apply to account for the
formation of the real image by the lens. If we now confine our attention to
the advancing wavefront when in the position C,CC, within the lens as in
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Figure 8.10, then by the time interval in which this wavefront reaches D,
the secondary wavelets from C, and C, would acquire the radii, to a close
approximation, given by

C,D, =C,D, = uCD (8.35)

The lens is denser than the surrounding medium, thatis, u > 1, and there-
fore it follows from the previous relation that C,D, as well as C,D, both
are greater than CD. Therefore, in the paraxial region, the points D, and
D, of the secondary wavelets from C, and C, lie to the right of D, and this
applies to every secondary wavelet originated at the back surface except
the point D, which has just become the origin of the secondary wave-
lets. The envelope of these secondary wavelets in the paraxial region is a
spherical surface, converging toward the axial point Q. Thus, a real image
of P is formed at Q, due to refraction of monochromatic waves through
the lens. In short, the action of the lens is to retard the central portion of
the incident wavefront relative to its peripheral parts, thereby producing
a change in its curvature.

The refracted spherical wavefront D DD, as explained earlier, satisfies
the condition

B,C, +C,D, = uBD (8.36)
For a sufficiently small aperture of the lens, we may put
B,C, =AC and C,D, =CE (8.37)
With this approximation, Equation (8.36) becomes
AC +CE = uBD (8.38)
or
AB+BC+CD+DE=/J(BC+CD) (8.39)
or
AB+DE=(u—1)(BC+CD) (8.40)

The object point P is to the left of B, while the image point Q is to the
right of D. Therefore, we write

BP =-u and DQ =+v (8.41)



258 ¢ Orrics

Further, the radius of curvature R, of the surface C,BC, is positive, while
R,, the radius of curvature of C,DC,, is negative. Then we write to a first
approximation

let AB1=CCl=ED1=y, then

2 2 2 2
AB=— . pE=Y Bc=—Y _ andDpC=—Y
(—2u) 20 (+2R,) (—2R,)
Substitution of these values in Equation (8.40) gives
1 1 1 1
S (u-1)| —m— 8.42
o= )( R R J (8.42)

which is called the thin lens equation. The usual sign convention applies
to this equation.

2. Spherical Waves Incident on a Thin Concave Lens

Let B,BB, represent a spherical wavefront, shown diverging from a mono-
chromatic luminous point P, and having reached a position just incident
on a concave lens as illustrated in Figure 8.12.

Refracted
wavefront

FIGURE 8.12. Refraction through a concave lens.

Since the lens is thin in the middle as compared to its peripheral parts, it
therefore retards the peripheral parts of the incident wavefront relative to
its central portion provided the lens material is denser than the surround-
ing medium, which we assume to be the case under consideration. As a
consequence, the emergent spherical wavefront C,GC, is a divergent one
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with a curvature greater than that of the incident wavefront B,BB,. The
emergent wavefront appears to diverge from an axial point Q, situated
on the same side of the lens as luminous object point P and at a distance
from the lens less than that of P. Thus, a virtual image Q of P is formed
by a concave lens.

The optical path from B, to C, must be equal to that between B and G, i.e.,

BC+ uCD+ DG = uB,C, (8.43)
or
(AC-AB)+ uCD+DE+EF u(AC+CD+DE) (8.44)
or
EG-AB=(u-1)(AC+ DE) (8.45)
Let AB, = EC, =y. We therefore write to a close approximation,
2 2 1 2 2
EG=—-L— AB=— _ Ac=—L _ and DE=-
(—2v) (—2u) (—2R,) 2R,

Substituting these values in Equation (8.45), we get the familiar relation,

l_l:(y_l)(i_ij

vou R, R,

8.7 FOCAL LENGTH OF THE COMBINATION OF TWO THIN
LENSES IN CONTACT

When two thin lenses of focal lengths f," and f," are placed in close contact,
the focal length f” of this combination, as obtained by the ray theory, is given
by the relation
1 1.1 (8.46)
WA I '
We shall now derive this formula according to wave theory.
Consider a plane wavefront B,AB, of monochromatic light, just incident
on a combination formed of two convergent lenses L, and L,, placed in con-
tact as in Figure 8.13.
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FIGURE 8.13. Refraction through two lenses in contact.

The first lens retards the central part of the incident wavefront rela-
tive to its peripheral portions, thereby changing it to a spherical wavefront
E,CE,, converging toward the second principal focal point F | of the first lens.
The second lens further retards the central portion of E,CE, with respect to
the peripheral parts. As a consequence, the emergent wavefront D,ED, from
the combination is spherical (in the paraxial region), this time, however, con-
verging toward the axial point F', which is called the second principal focal
point of the combination of lenses in contact. It is now easy to see that light
disturbance from B, must traverse the path (B,L, + L,L, + L,D,) in air, in the
time interval required for the light disturbance from A to reach E, traveling
through the lens material.

Therefore, if u is the refractive index of the first lens and p’ that of the
second lens, both with respect to the surrounding medium, we can easily get

B,L, +L,L, +L,D, = uAC + /CE (8.47)
For a sufficiently small aperture of the combination, we may put to a close
approximation,
L,.L, =BD andL,D, = DG (8.48)
With this approximation, Equation (8.47) becomes
AB+BD+ DG = uAC + u'CE (8.49)
or
AB+BC+CD + DE+EG = u(AB+BC)+ u'(CD + DE) (8.50)
or

EG=(u-1)(AB+BC)+(u'~1)(CD+DE) (8.51)
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Let the radii of curvature of the surfaces of the first lens be denoted by

R, and R, with that of the second lens by r, and r,. Also, suppose EF’ = f".
Further, we write to a close approximation,

Let BL, = DL, =GD, =y.
Now, considering the spherical wavefront D,ED, of radius of curvature f’

and centered at F’, we have

or

or

(GD,)" =EG(2f'~EG) (8.52)

2
EG= Zy_f’ approximately
Similarly, to a close approximation, we have

2 2 2 2
AB= 4. pc="Y.cp=Y. pp="L
2R, 2R, or, 2r,

Substituting these values in Equation (8.51), we get

ool e
1 1 1
- =+
VAN

8.8 EXERCISES

1.

Explain clearly Huygens’s principle of wave propagation. Deduce the
laws of reflection with the help of Huygens’s wave theory.

(a) State Huygens’s principle. Explain on its basis the phenomenon of
refraction and obtain the law of refraction. Give the physical signifi-
cance of refractive index.

(b) Explain total internal reflection on the basis of wave theory and
obtain the value of the critical angle.

Apply Huygens’s theory of light to obtain an expression for refraction of
a spherical wave at a spherical surface.

Account for the formation of images by refraction through lenses on
wave theory and prove the relation

1 1 1 1
= (u-1) ———
vou (1 )[R] jo

where the symbols have their usual meanings.
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INTRODUCTION

It is a matter of common experience that two trains of ripples on the surface
of water cross each other and proceed onward in their directions undisturbed.
In the same way, two beams of light cross each other and proceed without
being influenced by each other in any way. For example, different observers



264 * OrTiCs

9.1

can view at the same instant different objects through the same narrow aper-
ture with perfect clarity, the beams of light having crossed at the aperture in
reaching the observers. However, in the region of crossing where both the
beams are acting simultaneously, a modification in their intensity is expected,
which should be either less or greater than that which would be given by
one beam alone. This modification of intensity due to superposition of two or
more beams of light is spoken of as interference of light. This phenomenon
demands for its explanation that light must be a wave motion.

PRINCIPLE OF SUPERPOSITION

The fundamental basis of the explanation of the phenomenon of interference
of light is the principle of superposition of wave motions first enunciated by
Thomas Young in 1801. This principle states that when a medium is disturbed
simultaneously by any number of waves, the instantaneous resultant displace-
ment of the medium at every point at every instant is the algebraic sum of the
displacements of the medium due to individual waves, in the absence of the
others. In Young’s own words: “When two undulations from different origins
coincide, either perfectly or very nearly, in direction, their joint effect is a
combination of the motions belonging to each.” Suppose due to a single wave
train the displacement of the medium at a certain point at any instant is ¢, in a
given direction and that due to another wave train, in the absence of the first,
the displacement is y,. According to the previous principle, the instantaneous
resultant displacement R of the medium at that point due to two waves acting
together is expressed by

R=y, +y, (9.1)

when the two separate displacements y, and y,, as depicted in Figure 9.1 (a),
are in the same direction. However, when the two individual displacements
y, and y, are in opposite directions, the instantaneous resultant displacement
due to two waves acting together is now given by

R=y, —vy, (9.2)

In Figure 9.1 (b), y, is greater than y,, but the two are directed in opposite
directions. Hence, their algebraic sum is (y, - y,), and this is plotted in the
direction of y,. The reverse of this case is depicted in Figure 9.1 (c).
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- Y2

(a) (b) (c)

FIGURE 9.1. lllustrates the principle of the superposition of wave motions.

9.2 DISCOVERY OF INTERFERENCE OF LIGHT

Young’s Experiment. Historically, the phenomenon of interference of light

was first discovered by Thomas Young in 1801, when he announced an experi-

ment capable of exhibiting an interference pattern due to the superposition

of two beams of light. This experiment was regarded as a crucial one at that

time, since it definitely established the wave nature of light. The corpuscular

theory was found to be totally inadequate to explain the experimental results.
The apparatus is shown schematically in Figure 9.2.

FIGURE 9.2. Young’s double-slit experiment.
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Young allowed the sunlight to pass through a pinhole S and then at some
distance through two sufficiently close pinholes S, and S, in an opaque screen.
Finally, the light was received on a screen on which he observed an uneven
distribution of light intensity. Young found that the illumination on the screen
consisted of many alternate bright and dark spots. In accordance with modern
laboratory technique, narrow parallel slits replace pinholes, and the slit S is
illuminated with the monochromatic light of wavelength A. Light is received
on a screen placed at a certain distance to the right and parallel to the plane
containing the slits S, and S,. According to Huygens’s principle, cylindrical
wavelets spread out from slit S and, as the path SS, = SS,, the wavelets reach
slits S, and S, at the same instant. A train of Huygens’s wavelets, therefore,
diverges to the right from both of these slits which have precisely equal
phases at the start. Furthermore, their amplitude, wavelength, and velocity
are also equal. Suppose in two dimensions, as in Figure 9.2, continuous cir-
cular arcs represent the wave crests while dotted circular arcs represent the
wave troughs in each wave. At points marked by 0’s, a crest of one wave is
superposed on a crest of the other or a trough of one is superposed on a
trough of the other. In other words, at these points the two waves meet in the
same phase. Therefore, according to the principle of superposition, at these
points the resultant amplitude is twice that of each component wave. On the
other hand, at points marked by x’s, the crest of one wave is superposed on
the trough of the other and vice versa; that is, the two waves meet in oppo-
site phase. Hence, according to the principle of superposition, at these points
they neutralize each other, and the resultant intensity is zero. The solid lines
intersecting the screen at P, and P, connect the points marked o’s, and there-
fore along these lines the resultant intensity is always maximum (constructive
interference), while the dotted lines intersecting the screen at D, are the loci
of points marked x’s, and therefore along these lines the resultant intensity is
zero (destructive interference). Actually, the loci of points marked x’s or o’s
are confocal hyperbolae. Thus, on the screen a number of alternate bright and
dark regions of equal width, called interference fringes, are observed parallel
to the slits.

That the observed pattern is truly due to interference of two waves of light
can be demonstrated by covering one of the double slits. The well-defined
dark and bright fringes are replaced by a new pattern much coarser due to the
diffraction of light by the uncovered single slit. A comparison of the two pat-
terns indicates that a point on the screen, bright when only one slit is covered,
changes to dark when both slits are exposed. A corpuscular theory is totally
inadequate to account for this fact, which can be easily explained in terms of
the wave nature of light.
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The interference effects can be conveniently demonstrated in the lab-
oratory with ripples on the surface of water. Two pins are attached to the
same prong of an electrically maintained tuning fork and adjusted so that the
pins just touch the surface of water placed underneath, while the prongs are
capable of vibrating in a vertical plane. The periodic vibratory motion of the
prong is also taken up by the attached pins, which are therefore always in
equal phase. This periodic, vibratory, up-and-down motion of the pins on the
surface of the water generates two waves or ripple systems of equal ampli-
tude, equal wavelength, and equal velocity. The ripples spread out with their
centers at the points of action of the two pins. In Figure 9.2, S, and S, may be
now imagined as the points of action of two vibrating pins, and the continuous
and dotted circular arcs are the traces of crests and troughs respectively of the
ripple systems. It will be observed that along the dotted straight lines water
remains permanently calm, while along the solid straight lines it permanently
vibrates up and down with double the amplitude of the component waves.

THEORY OF INTERFERENCE

We shall now derive an expression for the resultant intensity an any point P of
the screen due to superposition of two waves of light having the same ampli-
tude, frequency, and wave number. Suppose that these waves are emitted
from two point sources A and B separated by a distance 2d, as in Figure 9.3,
which is of the order of several wavelengths.

S —»T

FIGURE 9.3. Interference effects.
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The distribution of light intensity on a screen placed at a large distance
from the sources A and B can then be determined as follows.

If the two point sources are locked in phase or have a constant phase dif-
ference, this intensity distribution will be independent of time. Further, if the
distance D is large, the two waves reaching any field point P will have nearly
the same amplitude, and the corresponding “rays” will be effectively parallel
and inclined at the same angle 6 to the axis (6 = 0) of the system. This ampli-

1
tude, nevertheless, depends upon the average distance x = E(x1 +1x, ), which

the waves cover to reach the point P. With these reservations, we suppose that
the waves reaching P are represented by

¢ = ae @R (9.3a)
and
¢, = ae” @'k (9.3b)
where the amplitude is @ = a(x). The resultant wave at P is then given by
¢=¢ +0,
¢ =ae"™ {eikxl +e' } (9.4)

Both the distances x, and x, may be expressed in terms of the average distance
x. In this manner, Equation (9.4) may be written as

¢ = de—i(wf—kx) {ez‘k(xl—x) " eik(xg—x)}

. » lik X=Xy 711'/( x) =Xy
o= ae @) {82 (i) +e? ( )} (9.5)

The factor (x, - x,) occurring as the exponential power in Equation (9.5)
is the path difference BG between the waves reaching P from the sources A
and B. This is given by

Path difference: BG =2d sin0 (9.6)

Combining Equations (9.5) and (9.6), we find that the equation of the
resultant disturbance at P is

¢ — ae—i(wt—k.\") {eik[lsine + e*ik(lsinG}

or

¢=2a COS(kd Sin@)e—i(wt—kx)
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¢ :2@005(277[dsin9]e_i(m_kx) (9.7)

This equation of the resultant disturbance at any field point P is in fact
true for all wave motions, provided we extract the real part from the R.H.S. It
will then be equally applicable to acoustic waves or water waves under corre-
sponding situations. Also, the treatment shall be valid even if the point sources
A and B are replaced by line or slit sources of light. Thus

= 2acos(27ﬂdsin9jcos(a)t —kx) (9.8)

is, in fact, the disturbance which leads to a definite intensity distribution pat-
tern on the screen in the case of light waves. The amplitude of the resultant
disturbance is now a function of both x and 6 and may be written as

a(x,@)zQacos(%dsin@j (9.9)

where twice the argument of the cosine is the difference of phase between the
waves reaching P from A and B. The resultant intensity at P is proportional to
the square of this amplitude, and hence we write

Ia4a” cos® %5 (9.10)
where

2o

With k as constant of proportionality, we can also write
. 5 1
I = 4ka® 003‘55 (9.11)

1=2ka*(1+cosd) (9.12)

which varies with the magnitude of 6.

Constructive Interference

When 6 =0, 27,47, and so on, then cosd =+1, which is the maximum value
of the cosine function. As a consequence, it follows from Equation (9.12) that

I =4ka® [Maximum] (9.13)
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which is, obviously, greater than what is to be expected from the separate
intensities. The two waves reinforce each other completely, and the resultant
intensity is thus maximum when

0=2nmr [Maxima] (9.14)

where n = 0,1,2,3,4, and so forth. Using this value of 8, we easily get the con-
dition for maximum intensity in terms of the optical path difference, which is

A
AP—-BP = 27{5) [Maxima] (9.15)

The two waves are said to be in the same phase at any point where their
phases differ exactly by even multiples of 7, and their interference is called
constructive interference.

9.3.2 Destructive Interference

When 6 =7,37,57,77, and so on, then cosé =—1, which is the least value of
the cosine function. As a consequence, the Equation (9.12) yields

I=0 [Minimum] (9.15)

which is obviously less than what is to be expected from the separate intensi-
ties. Two waves interfere destructively when

§=(2n+1)7r  [Minima] (9.16)

where n = 0,1,2,3,4, and so forth. In terms of the optical path difference, the
condition for minimum intensity is

AP—BP =(2n+ 1)[%) [Minima] (9.17)

where n = 0,1,2,3,4, etc.

Two waves are said to be in opposite phases at any point where their
phases differ exactly by odd multiples of 7, and their interference is called
destructive interference.

It can be concluded that when two waves having a constant phase differ-
ence initially reunite after traversing difference optical paths, they interfere
constructively or destructively according to how their phases, at the point of
observation, differ exactly by even or odd multiples of 7. This condition, it
should be remarked, is the general one and applies for locating the regions
of constructive and destructive interference in all experimental arrangements
exhibiting interference effects.
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9.3.3 Spacing of Interference Fringes—Fringe Width

In order to plot the intensity distribution in the interference pattern arising
from the interference of light waves from two coherent sources S, and S,,
it is essential to investigate the spacing of these fringes on a screen placed
parallel to the line joining S, and S,. It will be recalled that at any point P on
the screen, the resultant intensity is maximum or minimum according to its
distance from the two coherent sources S, and S,, which are always in equal
A
phase and differ exactly by even or odd multiples of (Ej where A is the
wavelength of the light emitted by the sources. In symbols the conditions are
expressed as:

AP-BP = (2n)(%j [Bright fingers] (9.18)
and
AP—-BP =(2n+ 1)(%} [Dark fingers] (9.19)

where n = 0,1,2,3,4, etc.

In Figure 9.3, in the plane of the diagram, let X be the distance of the
point P from the central Point P,, a point where the perpendicular bisector of

02

AB intersects the screen. We can see that

(AP)’ =D +(X +d)’ (9.20)

which can be rearranged as

(9.21)

.
AP=D 1+(X+dj

On expanding the right side of the previous relation by the binomial theo-
x +d)

2
rem and neglecting powers of ( J higher than one, which of course

is permissible since, in general, D is some thousand times larger than d and

x, we get
AP:D(H%[X”ZH (9.22)

D
Similarly,
(BP)' =D +(X-d)’ (9.23)
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from which, as previously, BP can be easily approximated,

BP:D{1+1(X—_djd] (9.24)
2\ D

Whence,

1 2 2\ 2Xd
AP—BP:E((XM) ~(X-d) )=? (9.25)

This is the value of the path difference to be substituted in Equation
(9.18) or Equation (9.19), and according to the point P, a bright or dark fringe
is formed. Thus, we have for bright fringes,

ﬁ =nA
D
or
D . .
X=nk (ﬁ) [Bright fringes] (9.26)

and for dark fringes, we have the relation
X _ o0+ 1)@)
D 2

or

X=(n+ l)l(%j [Dark fringes] (9.27)

The separation on the screen between the n™ and (n + 1™ order bright
fringes may now be easily computed, using Equation (9.26) as follows:

< D D\ DA
= —_ = 1 —_— —_— — = —
X=X, -X, ((n+ );dej [Mzdj o (9.27)

which is also the separation between any two consecutive dark fringes. Since
the separation between two consecutive bright or dark fringes is independent
of n, for given values of A, 2d, and D the spacing of the fringes is constant.
The distance between any two consecutive bright or dark fringes, denoted by
X, is called the fringe width, which varies directly with slit-screen separation
D, inversely with the separation of slits 2d, and directly with the wavelength
A of the light employed. These conclusions are in perfect agreement with the
observed interference pattern on the screen.
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9.3.4 Shape of the Interference Fringes

We now very easily form an idea regarding the shape of the interference
fringes by deriving the equation of the locus of points having a given path dif-
ference from two slits S, and S,. Let O, the middle point of S,S,, be chosen as
the origin of coordinates of the axis of x along OX and the axis of z perpendicu-
lar to the plane of slits. Let P be any point with coordinates (z, x), and then
from Figure 9.4, we get

(S,P) =22 +(x=d)’ and (S,P) =" +(x+d)’ (9.28)

where 2d is the separation of the slits.

X
(2, x)
P
________ > Z
FIGURE 9.4. Shape of fringes.
The path difference A s,
A=8,P=SP=\[2+(x+d) =z +(x—d) (9.29)

On rearranging,

A+\/z2 +(9C—d)2 =\/z2 +(3c+d)2
On squaring both sides,

A +2A4/7* Jr(x—d)2 +22 -I—(x—d)2 =z +(3c+d)2
Az +(x—d) =4xd - A? (9.30)

or
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On squaring both sides, this equation easily reduces to

4(4(122 —Aﬁ)x2 — 4N = A (4d2 —AZ)

or , ,
X~ z
rau (4d2 _Az) =1 (9.31)
4 4

This is the equation of hyperbola in a standard form with the foci S, and S,
on the x axis. The loci of points of constant path difference in the XZ plane are
thus hyperbolae. Furthermore, if instead of slits we have two coherent point
sources S, and S,, then the loci of points of constant path difference (hence
fringes) are concentric circles in any plane parallel to the YZ plane. The loci of
maxima and minima in space form a system of confocal hyperboloids.

It is left as an exercise for students to establish this statement analytically.

The eccentricities of the hyperbolae are given by

A’ N 4d”> — A
o=t 4 4 _2d (9.32)

S

In an optical experiment, the path difference A, corresponding to the con-
dition of constructive or destructive interference, is of the order of 10 ¢cm
and 2d of the order of 10 cm. The eccentricity is, therefore, very large. As a
consequence, hyperbolae are practically straight lines.

9.3.5 Interference Fringes on Screen

Figure 9.5 illustrates the interference fringes on screen. The conditions of
constructive and destructive interference of two waves derived from a single
source, it will be recalled, are respectively

6 =2nr  [Maxima] (9.33)

§=(2n+1)7  [Minima] (9.34)
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\ \ m Wavelength

FIGURE 9.5. Interference fringes on screen.

Furthermore, it will be recalled that Huygens’s wavelets from the source
S reach slits S, and S, at the same instant, when both are equidistant from
S. Therefore, the light sources (S, and S,) will have precisely equal phases
at all times. The phase difference between two waves on reaching any point
P, therefore, depends only on the optical path difference (S,P-S,P) in this
experimental arrangement. At the point P, on the screen, equidistant from
S, and S,, the path difference and hence the phase difference 6 between the
two waves is zero. A bright fringe is, therefore, formed at P,. This is the cen-
tral fringe of the pattern, and since 8 = 0 can be obtained by putting » = 0
in Equation (9.33), this interference is spoken of as zero order. On either
side of P, on the screen, the optical path difference gradually increases, and

1
we arrive at points D,, for which the relation (SQD1 -S,D, = EJ and hence
(6 = m) hold. The first dark fringe, on either side of the central bright fringe is,
21
therefore, formed at D,. At P, the optical path difference increases to (7j

and hence (6 = 27). A bright fringe is, therefore, formed at P,. Since (6 = 27)

can be obtained by putting (z = 1) in Equation (9.33), this bright fringe is spo-
ken of as a first order bright fringe, and the interference is spoken of as first
order. In this way it is possible to locate points P, P, P,, P,, and so forth on
the screen in such a way that their distances from S, and S, differ exactly by

24 41 64
0, o o o in order, and the phases of the two waves at these points
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differ exactly by 0,27,47,67, ..., in order. Therefore, at P, P,, P,, P;, and so on
are formed bright fringes of zero order, 1st order, 2nd order, 3rd order,.....,
respectively. In between these points are other points D,, D,, D, D,, and so
A 34 54

27 27 277"
in order. Therefore at D, D,, D, D,, and so on, waves interfere destructively,
thereby producing dark fringes at these points.

The interference fringes on the screen are practically straight, alternate
bright and dark bands. The integer n, it should be emphasized, characterizes
the order of interference and, therefore, the order of bright fringe. The bright
fringes with n =0,1,2,3,... are of zero, first, second,..., order.

forth so that the distance from the two slits differs exactly by

9.3.6 Intensity Distribution Curve

We are now in a position to plot the intensity distribution for interference
fringes from coherent monochromatic beams with the knowledge that the
intensity at any point of the screen is expressed by (with k taken as unity)

1=2a*(1+cosS) (9.35)

where 0 is the phase difference between the two waves at P. If a bright fringe
of nth order is formed at P, then 6 = 2n7. For the sustained fringes, the value
of & at P must at all times remain 6 = 2n7, with further additional knowledge
that the spacing of the fringes on the screen is constant for given values of A,
2d, and D. Along a horizontal line, the values of &, which are 0,7,27,37,...,
and so on are marked at equidistant points, and the axis of I is taken along the
normal line through 6 = 0. For 6 =0,+27,+47,+67, and soon, I = 44*, and for
0 =0,£7,+37,457, and so forth, I = 0. In fact, as 6 gradually increases from 0
to 7, coso gradually decreases from +1 through 0 to —1 and, as a consequence,
I gradually diminishes from 4a” to 0. Hence, the shape of the intensity distri-
bution curve is as depicted in Figure 9.6.

I=2a% (1 + cos 3)

4a?

§— =bn =Hn =4n =3n=2n =n 0 g 2x 3x 4n 5 6=n

FIGURE 9.6. Intensity distribution for the interference fringes from two beams.
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Before concluding our discussion, it should be emphasized that no
destruction of light energy occurs in the phenomenon of the interference of
light. Interference does not transform light energy into any other form of
energy, so the total amount of light energy must remain constant. What has
happened is merely a redistribution of energy; the energy which apparently
disappears at the dark fringes is actually present in the bright fringes, where
the energy is 44°. However, the average value of the energy over any number
of fringes is the same as if the interference effects were absent. For example,
the average value of the intensity on the screen over the range 6 = 0 to 6 = 2x

is given by
12ﬂ1d5 ‘ j2”(1+cos5)d5 »
Average = 0271 =z aZ 0 on =2a2 (936)
. do . do

and this justifies the statement made previously as illustrated in Figure 9.7.
There is no violation of the law of conservation of energy in the interference

phenomenon.
)

6—>0 ds @ 2

FIGURE 9.7. Average value of the intensity on the screen over the range 6 =0to § = 27.

9.4 CONDITIONS FOR INTERFERENCE

In a well-defined interference pattern, the intensity at regions corresponding
to destructive interference must remain zero, while at regions corresponding
to constructive interference, it must remain maximum for all values of time.
To accomplish this, it is essential that in every experimental arrangement, the
following conditions are fulfilled:
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9.4.1

A. The two beams of light which interfere must originally originate in the
same source of light.

B. The waves must have the same period and wavelength. Also, their ampli-
tudes must be equal or very nearly equal.

C. The original source must emit light of a single wavelength or be very
nearly monochromatic. On the other hand, if the light source is hetero-
geneous, the optical path difference between the two interfering beams
must be very small.

D. The two interfering waves must be propagated in almost the same direc-
tions or the two interfering wavefronts must intersect at a very small
angle.

E. In addition to the previous conditions, the following condition must also
be satisfied if we are dealing with the interference phenomenon pro-
duced by polarized light: The two interfering waves must be in the same
state of polarization.

Condition A is Fundamental for the Production of Stationary
Maxima and Minima

This can be seen from the following considerations. It will be recalled that the
resultant intensity I at any point P due to the superposition of light waves from
two sources is given by the expression in Equation (9.35). This total phase dif-
ference depends on two factors:

(i.) Initial phase difference 6, between the two sources.
(ii.) Phase difference due to optical path difference (S,P—S,P), namely,

5.=2—ﬂ S,P-S,P).
’ (AJ(Z P)

Obviously, 6, remains constant at P throughout the experiment. Hence,
in order to keep 6 constant at P, the initial phase difference 6, between the
two vibrating sources must remain constant. To satisfy this requirement,
the vibrating sources must be identical in all respects. That is, if there is any
sudden phase change in one, there must simultaneously be a corresponding
phase change in the other, with the result that the phase difference between
the two interfering waves is not changing with time. Such two sources having
a point-to-point phase relationship are said to be coherent. This is only possi-
ble when both become the sources of light under the influence of light waves
originating from the same source.
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Two coherent sources can be accomplished experimentally by either mak-
ing one source image of the other by reflection (Lloyd’s single mirror) or by
dividing the light waves into two parts by reflection (Fresnel’s double mirror)
or by refraction (Fresnel’s biprism) or by partial reflection (Newton’s rings,
Michelson’s interferometer). In these circumstances, any change of phase
which the original light wave undergoes is shared by its two parts instanta-
neously, with the result that the fringes remain stationary.

Sustained interference effects can never be accomplished with two inde-
pendent sources due to the fact that any two arbitrary beams of light are
always incoherent.

Condition B follows from the previous mathematical analysis. Even with
nearly unequal amplitudes, the intensity in the region of destructive interfer-
ence would be very small so as to render it dark as compared with the maxi-
mum intensity in the constructive interference region.

Condition C is essential in order to avoid the complete masking of inter-
ference patterns due to the presence of different wavelengths in the light
emitted by light sources. We shall again refer to this point when discussing
white light fringes.

The necessity of Condition D being satisfied can be clearly seen by a
comparison of the two systems of plane wavefronts originating from the same
source and traveling to the right, as shown in Figure 9.8. The solid lines in the
figure represent the regions of maximum positive displacement, while dot-
ted lines represent the regions of maximum negative displacement in these
waves. As in Figure 9.2, the regions of constructive and destructive interfer-
ences are marked in the present figure as well. Then angle 6 between the two
wavefronts is small in Figure 9.8 (a) as compared with that in Figure 9.8 (b).

FIGURE 9.8. Superposition of two plane waves (a) at a small angle, (b) at a large angle.
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9.5

A comparison of these figures clearly illustrates that the larger the angle
0, the smaller the spacing between interference fringes. Although, for a larger
angle 6, interference effects are sustained, yet the fringes may become indis-
tinguishable even under high magnification. Therefore, the condition that
the interfering wavefronts must intersect at a small angle with each other, in
mathematical language, 2d, the separation between the two coherent sources
must be small so as to produce widely spaced fringes, essentially applies to the
observation rather than to the production of sustained interference effects.

CLASSIFICATION OF INTERFERENCE PHENOMENON

The experimental devices for producing two interfering beams of light from
the same source may be conveniently classified under the following two main

heads:

A. Division of Wavefront. The devices which divide the incident wave-
front into two parts by utilizing the phenomena of reflection, refraction,
or diffraction in such a way that after traversing different optical paths
they eventually reunite at a small angle to produce interference bands
come under this class of interference phenomenon. In every experiment
employing such devices it is absolutely essential to employ either a point
source or a line source, for example, a narrow illuminated slit parallel
to the line of division of the incident wavefront. The Fresnel biprism
and mirrors and Lloyd’s mirror described in this chapter are examples of
this class. In all such devices, since limited portions of the wavefront are
employed, diffraction effects will also be present along with the interfer-
ence effects.

B. Division of Amplitude. Devices which divide the amplitude of the
incoming wave of light into two or more parts by partial reflection and
refraction, and thereby give rise to two or more beams which are later
made to reunite to produce the interference effects, come under this
class. In the case of instruments employing such devices, it is not essen-
tial to employ a point source or a narrow line source, but a broad light
source may be employed to produce brighter bands. Since a large section
of the wavefront is employed, diffraction effects are minimized.
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FRESNEL’S EXPERIMENTAL ARRANGEMENTS

9.6.1

Soon after Thomas Young announced his crucial double slit experiment on
the interference of light and explained the results with reference to wave
nature, critics raised the objection that the bright and dark fringes which he
had observed were not due to true interference of two beams of lights. On
the other hand, they were inclined to attribute them to some complicated
modification of light, possibly owing to diffraction at the edges of the double
slit (or pinholes). In order to overcome this objection, Fresnel designed sev-
eral novel experimental arrangements, in which diffraction was either largely
eliminated or distinctly separated. Thus, he demonstrated the interference of
two beams of light to the satisfaction of all, and thereby placed wave theory on
a firm footing. The first of these arrangements is known as Fresnel’s biprism
experiment.

Fresnel’s Biprism Interference Fringes

The apparatus employed in Fresnel’s biprism experiment is shown schemati-
cally in Figure 9.9.

Screen

e

e F

(] Biprism

FIGURE 9.9. Fresnel biprism.

A biprism is essentially two prisms, each of very small refracting angle
0, placed base to base. In reality, the biprism is constructed from a single
plate of glass by suitable grinding and polishing; the obtuse angle of the prism
is only slightly less than 180°, and the other angles of the order of 30° are
equal. In the experimental arrangement, described in sequence, this prism
is so adjusted in relation to the source slit that the two halves of the incident
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wavefront suffer separate simultaneous refraction through the prism; hence,
even this single prism is termed as a biprism. The essential idea is to divide
the incident beam into two coherent interfering beams by utilizing the phe-
nomenon of refraction.

Light from a narrow slit S, illuminated with monochromatic light of wave-
length 2, is allowed to fall symmetrically on a biprism. The intersection of
the two inclined faces forming the obtuse angle must be adjusted accurately
parallel to the length of the slit. In Figure 9.9, the slit passes through S in a
perpendicular direction to the plane of the diagram. Under this condition, this
edge B divides the incident wavefront into two parts. First is the one which
in passing through the upper half ABD of the biprism is deviated through a
small angle toward the lower half of the diagram and appears to diverge from
the virtual image S,. Second is the one which in passing through the lower half
CBD is deviated through a small angle toward the upper half of the diagram
and appears to diverge from the virtual image S,. The two emergent wave-
fronts, which intersect at a small angle, are derived from the same wavefront,
and hence the fundamental condition of interference is satisfied. The virtual
images S, and S,, being the image of the slit S, obviously function as coherent
sources in this experiment. Since the angles BAC and BCA are small and
equal, these images are coplanar with, extremely close to, and equidistant
from the source slit S, that is, 2d = S,S, is extremely small. As a consequence,
interference fringes are observed on the screen in the overlapping region EF
of the two emergent beams of light. Interference patterns can also be seen
through a powerful eyepiece in its principal focal plane. The fringes extend
into space and are thus non-localized.

Determination of the Wavelength of Light

In order to determine the wavelength of monochromatic light with the help
of biprism fringes, we employ the formula

A= [ﬁ))‘( (9.37)
D

The value of fringe width X, the distance 2d between the virtual coherent
sources S, and S,, and the normal distance D of the plane of observation of
the fringes from the slit should be measured after making a few adjustments
in the apparatus.

The experiment is performed on a heavy metallic optical bench about
2 meters in length and is supported on four leveling screws at the base. The
bench is provided with a scale on one side, graduated in mm on corrodible
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material. The bench carries four uprights for supporting the adjustable slit,
the biprism, a high-power micrometer Ramsden’s eyepiece, and a convergent
lens. These uprights are capable of movement along and also perpendicular
to the length of the bench and may be adjusted to any desired height. The slit
and the biprism may be rotated in their own plane with the help of tangent
screws provided in the uprights. Each upright carries a vernier at the base,
and thus its position on the bench can be accurately ascertained.

Adjustments. Before carrying out the measurement of the fringe-width,

it is essential to obtain correct fringes in which the spacing is uniform on the
entire field by carrying out the following adjustments in the apparatus:

1.

The bed of the optical bench is first leveled with the help of a spirit level
and leveling screws.

The eyepiece is focused on the cross-wires by moving the tube contain-
ing the lenses in the cross-wires tube until they are distinctly visible. One
of the two wires in the cross is then made exactly vertical by observing a
plumb line through the eyepiece and rotating the latter about its own axis
until one wire exactly coincides with the image of the plumb line, which
of course is vertical.

The slit and the eyepiece are adjusted to the same height above the
bench. A real image of the illuminated slit is then formed in the plane
of cross-wires by the help of a convex lens of small aperture. The slit is
now rotated in its own plane by the help of a tangent screw until its image
exactly coincides with the vertical wire in the eyepiece. The slit is then
exactly vertical.

The biprism is mounted, keeping its refracting edge nearly vertical in
its upright between the eyepiece and the slit, which is made quite nar-
row and illuminated with light whose wavelength is to be determined, as
shown in Figure 9.10.

The edge formed by the intersection of inclined faces enclosing the obtuse
angle in the biprism must be now adjusted exactly parallel to the vertical
slit. To make this adjustment, two real images of the coherent sources S,
and S, are formed in the focal plane of the eyepiece with the help of a
convergent lens. By lateral movement of the prism, the images are made
equally bright, that is, equally well focused and of equal height by rota-
tion of the biprism in the vertical plane with the help of tangent screw. On
removing the lens, this edge can now be made exactly parallel to the slit
by giving finer rotation to the prism until the interference fringes become
perfectly distinct and well defined.
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FIGURE 9.10. The biprism is mounted, keeping its refracting edge nearly vertical in its upright
between the eyepiece and the slit.

6. The axis of the experiment should be parallel to the length of the
optical bench. In other words, the line joining the obtuse edge of the
biprism and the slit must be adjusted exactly parallel to the length of the
bench.

It will be recalled that the expression for the fringe width X, which is

_ (D2
& (Qj (9.37)

was derived and shown uniform over the entire field for a given D, A, and
2d on the supposition that the plane of observation of the fringes is exactly
parallel to the plane containing the virtual coherent sources S, and S,. It is
absolutely essential that this condition should be satisfied in the experimental
arrangement based on the division of the wavefront to obtain correct fringes.
In our experiment, the plane of cross-wires is transverse to the length of the
bench. Furthermore, a comparative study of diagrams sketched in Figure
9.11 leads us to the conclusion that the plane S,S, will be transverse to the
bench, as in the lower diagram, only when the line joining the obtuse edge of
the prism and the slit is adjusted exactly parallel to the length of the bench.
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FIGURE 9.11. A Comparative study of diagrams.

If this adjustment is not perfect then, as shown in the upper diagram,
the fringes would shift laterally relative to the cross-wires as the eyepiece is
moved backward (or forward) along the bench. To remove this lateral shift,
the biprism is moved to a small distance transversely to the bench in a direc-
tion opposite to the direction of the shift, and again the fringes are tested for
lateral shift by taking back the eyepiece. When the position of the biprism
relative to the slit is so adjusted as shown in the lower diagram in Figure 9.11,
the lateral shift of the fringes would vanish.

Measurements. After making the previous adjustment in the apparatus,
the following measurements are taken in sequence.

Measurement of X. The eyepiece is fixed at a suitable distance from the
biprism so that the fringes are fairly short and fairly wide in its principal
focal plane. The cross-wire is set accurately at the center of the first bright
fringe, and the reading of the micrometer screw is taken. The cross-wire
is then moved in the same direction by the help of the micrometer screw,
stopping at the center of every successive bright fringe, and the corre-
sponding readings of the screw are noted. From these observations, the
fringe width X may be easily deduced.

Measurement of D. The distance between the eyepiece and the slit can
be directly found out by reading the positions of their uprights on the
optical bench and taking the difference of the two readings. However,
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this distance is subject to the bench correction in order to obtain correct
D. This is due to the fact that the slit and the cross-wires are not exactly
at the zero mark of the vernier of their respective uprights, while D is
the separation between the slit and the cross-wires. The bench correction
should be determined after 2d has been measured.

Measurement of 2d. A convex lens is introduced between the biprism
and the eyepiece, and the latter is fixed at a distance from the slit which is
greater than four times the focal length of the lens. As in the displacement
method of measuring the focal length, the lens is adjusted to a position,
marked 1st position in Figure 9.14, so that the magnified, distinct, and
real images of the virtual coherent sources are formed in the plane of the
cross-wires. The separation d, between these images is then measured
with the help of cross-wires by giving it a lateral displacement from one
image to the other. The lens is then moved to the conjugate position,
marked 2nd position in Figure 9.12, so that distinct diminished images
are formed in the plane of the cross-wires.

Plane of cross-wires [
fg————- (=u)—- g ————- v ——————————:}1

v

JPamsden's
eye-piece

1st position 2nd position

FIGURE 9.12. The lens moved to the conjugate position marked 2nd position.

The separation d, between these images is also measured. Since the mag-
nification m, in the first position of the lens is just the inverse of the mag-
nification m, in its conjugate position, we have

s

2d = Jdd, (9.38)

or
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Evaluation of Bench Error. The biprism and the lens are removed. A
rod of known length is held horizontally with its one end just touching the
slit and the other in the plane of the cross-wires. The difference between
the length of the rod and the separation between the two uprights is the
bench error, which should be applied with proper sign to obtain correct D.

The measured values of X, 2d, and D are substituted in Equation (9.37) to
give the wavelength 4 of the light employed in the experiment. The unit
of wavelength is Angstrom. Angstrom = 10°%cm.

9.6.2 Fresnel’s Double Mirror

The second device of Fresnel for obtaining the sustained interference effects
essentially consists of dividing the incident wavefront into two coherent
interfering wavefronts by utilizing the phenomenon of reflection. It is illus-
trated schematically in Figure 9.13 and is known as the Fresnel double-mirror
experiment.

FIGURE 9.13. Fresnel double-mirror experiment.

Two optically plane mirrors OM, and OM,, highly silvered on their front
surfaces or blackened at the back to avoid multiple internal reflections, are
mounted vertically inclined at a very small acute angle 6. Light from a narrow
slit S, illuminated with monochromatic light of wavelength A, is allowed to fall
on the mirrors, whose line of intersection through O must be adjusted parallel
to the length of the vertical slit through S. One half of the incident wavefront
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is reflected from OM, and appears to diverge from the point S, which is
consequently the virtual image of the source slit S in OM,. The other half of
the incident wavefront is reflected from OM,, giving rise to an image S, of
the source slit S. Obviously, S, and S, are the virtual coherent sources in this
experiment, since both are the images of the same source slit S. Thus, the fun-
damental condition of interference is satisfied. Furthermore, since the angle
0 between the mirrors is very small, the separation 2d between the coherent
sources S, and S,, expressed by

2d =246 (9.39)

(where OS = a) is also very small. Thus, the condition for the observation of
widely spaced interference fringes is also satisfied. The light on the screen AB
appears to come from two virtual coherent sources S, and S,, and in the region
EF where the two beams overlap, interference fringes are observed parallel to
the slit. That these bands were actually produced by interference and not by
diffraction was demonstrated by Fresnel by covering one of the two mirrors,
when all traces of equally spaced fringes disappeared. Therefore, this experi-
ment gives a device evidence in favor of the wave theory of light. However,
since the source slit S is employed at a position for almost grazing incidence
of the light on the mirrors OM, and OM,, the angle subtended by each mirror
at the slit is very small. In other words, the incident wavefront is very narrow,
and mirrors offer limitation to the wavefront. This results in the production of
diffraction fringes, which have approximately the same spacing as the inter-
ference fringes. Therefore, the two systems are superposed on each other and
cannot be easily distinguished.

INTERFERENCE WITH WHITE LIGHT

In Young’s double slit and Fresnel’s biprism and double mirror experiments,
we have employed monochromatic light of a single wavelength to obtain a large
number of bright and dark fringes. Let us now study the changes produced
in the fringes when a monochromatic light source is replaced by white light
in these experiments. White light consists of wavelengths varying between
4000 A to 7500 A, from the violet to the red end of the white light spectrum.

At any point P, situated on the perpendicular bisector of coherent sources
S, and S,, the geometrical path difference is zero for the interfering light
waves of all wavelengths. At this point, therefore, the condition of construc-
tive interference is satisfied for all the wavelengths present in the white light.
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Here we get the light of every color in exactly the same proportion as it exists
in white light. As a consequence, the resultant illumination at P, due to the
superposition of zero order (or central) bright fringes of all the wavelengths
(color), is white.
The spacing between the consecutive bright or dark fringes,
DA

x=P* .
o (9.40)

is a function of the wavelength. Obviously, the smaller the wavelength, the
closer will be corresponding fringes. The fringes of different wavelengths are,
therefore, in step only at the central fringe but soon get out of step. On either
side of the central white fringe, we shall have a dark fringe tinged with a violet
color. Since 4, the wavelength of the violet end of the visible spectrum is the
least, therefore the condition of constructive interference which is

Path difference = A

will be first satisfied for the violet color and then for other colors, in the spec-
tral order, as we move away from the central fringe. As a consequence, the
bright fringe nearer to the central fringe shall have a strong violet tinge, fol-
lowed by other bright fringes having a strong tinge of colors in the spectral
order. In reality, no bright fringe is of saturated spectral color.

After eight or ten fringes, the path difference becomes so large that the
condition of constructive interference, which is

Path difference = nA

may be simultaneously satisfied for the number of wavelengths; for example,
we may have the relation

Path difference =51, =74, =94,

and also at the same point the condition of destructive interference, which is,

Path difference =(2n+ 1)%

may be simultaneously satisfied for many colors. As a consequence, for large
optical path difference, the dark fringes of some wavelengths are completely
masked by the bright fringes of other wavelengths.

Furthermore, at some points of the screen so many colors are present that
the resultant illumination cannot be distinguished from white light with an
unaided eye, and so the field appears essentially white. It should be noted that
the interference is still occurring in this region but is not visible in ordinary
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9.8

circumstances. However, it can be clearly demonstrated by spectroscopic
analysis of this region.

It can be concluded that for observable white light fringes, the optical
path difference between the two interfering waves of light must be very small,
and we observe eight or ten colored fringes on either side of the central white
fringe.

DISPLACEMENT OF THE FRINGES

Let us now investigate the effect on the interference fringes of introducing
a thin transparent plate in the path of one of the two interfering beams of
monochromatic light. Let e be the thickness of the plate and p its refractive
index for the monochromatic light employed. From Figure 9.14 it is clear that
a light wave in traveling from S, to P has to traverse a distance e in the plate
while the rest (S, P —¢) it traverses in air.

FIGURE 9.14. Displacement of fringes.

The time required for this journey is, therefore, given by

— SP+(pu-1
p=fe e+£:l[81P—e+Vie]=M (9.41)

c V, ¢ f c
1=} t=]
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The physical interpretation of the previous relation is that due to the intro-
duction of the plate, the effective path from S, to P becomes (SlP +(u- 1)6)
in air. Similarly, the effective path from S, to P, the point equidistant from S,
and S,, becomes (SlPO +(u— l)e) in air; and since

S,P +(u—1)e>S,P, (9.42)

the central bright fringe of zero order is not formed at P, which, of course, is
the normal position of the central fringe in the absence of the plate.

To locate the new position of the central fringe we should travel along
the screen in such a direction that the left side of the previous inequality
may decrease while the right side may increase, and eventually the two may
become equal at some point. Suppose that in the presence of the plate, the
central fringe of zero optical path difference is formed at O; we therefore
write

$,0=8,0+(u—-1)e
or
$,0-8,0=(u-1)e (9.43)
If PO =x,, we can easily obtain the geometrical path difference

2x,d

0’

S,0-5,0=

(9.44)

This value of the path difference is to be substituted in Equation (9.43) to
get the distance through which the fringe system has been displaced. Thus,
we get

D X
= — _— 1 = — - 1 B <
x, =5 (u-le==(u-1)e (9.45)

Furthermore, if the central fringe shifts to the nth bright fringe of the
original system obtained without the plate, then

5,0-5,0=nl (9.46)
Hence,
(u—1)e=nA (9.47)

It can be easily seen that the spacing of the interference fringes remains
unaffected due to the introduction of the plate. If at the point P, in presence
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of the plate, bright fringe of the nth order is formed, then we must have the
relation

S,P—[S,P+(u-1)e]=na

or
S,P—S,P=ni+(u—-1)e (9.48)
If PP =x,, then the geometrical path difference,
S,P—S,P=2x (ij (9.49)
D
where
X, =%(nl+(u—l)6) (9.50)

Similarly, for the (n+1) t bright fringe, we write

D

X, 2%((714-1))«4-(/1—1)6) (9.51)

Hence,
)_< = xn+1 _xn = D_ﬂ/
2d
a relation independent of the thickness of the thin plate and exactly similar to

that which was derived in the absence of the plate.

On putting n = 0 in Equation (9.50) we may again get x,, the distance
through which fringes have been displaced. We conclude that the entire

(9.52)

fringe system shifts laterally through a distance [W] toward the side

on which the plate is placed, while the general shape and the spacing of the
fringes remain unaffected provided, of course, the plate is thin.

By the measurement of the fringe shift, it is possible to employ Equation
(9.45) to evaluate pu of the plate if we know its thickness or to evaluate its
thickness if u is known.

LLOYD’S SINGLE MIRROR

Lloyd (1837) has devised a very simple arrangement for satisfying the funda-
mental condition of interference, in which one part of the incident wavefront
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reaches the screen after suffering reflection while the other part reaches it
directly. In addition to simplicity, it has another importance due to the fact
that this experiment provides an experimental confirmation of the fact that
a sudden phase change of 7 occurs on reflection in a rarer medium, that is,
from the surface backed by a denser medium. Lloyd’s arrangement is shown
schematically in Figure 9.15.

FIGURE 9.15. Lloyd’s arrangement.

Light from a narrow slit S,, illuminated with monochromatic light, is partly
incident at a grazing angle on the surface of an optically plane front-surfaced
mirror M,M,, while the rest reaches the screen directly. The reflected light
appears to diverge from S,, the virtual image of the source slit S, formed by
reflection at the mirror. Accordingly, the virtual image S, acts as a coherent
source with the slit S, itself in producing the interference fringes, and thus the
fundamental condition of interference is satisfied. In the region of the over-
lapping of the direct and the reflected beams, shown shaded, interference
occurs, and equally spaced interference fringes can be observed in the region
EF of the screen. The mirror employed is one having silvering on its front sur-
face to avoid multiple internal reflections, and its surface should be adjusted
so as to make it exactly parallel to the vertical source slit S,.

It will be observed that the point P of the screen, equidistant from S, and
S,, receives only the direct light from S, and not that reaching the screen after
reflection. Therefore, the central fringe of zero geometrical path difference
is not visible. Not only this, even less than half the interference pattern is vis-
ible with the arrangement sketched in Figure 9.15. However, half the central
fringe can be brought into view by displacing the screen to the position A'B’ so
that it just touches the edge M, of the mirror. When this is done, the edge M,,
which is equidistant from S, and S,, passes through the center of the fringe of
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zero geometrical path difference. This fringe is dark instead of being a bright
one. This can only occur at a point equidistant from S, and S,, provided one of
the two interfering beams suffers a sudden phase change of 7. Since the direct
beam could not suffer a sudden phase change, it must be the reflected beam
which should suffer a sudden phase change of 7, and the only possibility of
this is on reflection from the surface backed by the denser medium. This may
be interpreted as meaning that the coherent sources S, and S, differ in phase
by  at all times instead of being in equal phase as in the double slit, Fresnel’s
biprism, and the double mirror experiments. As a consequence, the two waves
on reaching any point P of the screen interfere constructively or destructively
according to whether the geometrical path difference is an odd or even mul-

A
tiple of (E) In symbols, the conditions can be expressed as:

S,P-S,P= Zn(%j [Dark fringe] (9.52)

S,P—SP=2(n+ 1)[%) [Bright fringe] (9.53)

It will be observed that these conditions are just the reverse of the
conditions of the constructive and destructive interference in the biprism
arrangement.

Complete central fringe can also be brought into view by introducing a
thin lamina of glass or mica in the path of the directly transmitted beam, keep-
ing the screen fixed in the original position. Owing to the retardation of the
directly transmitted waves, the complete fringe system shifts in the direction
in which the plate is introduced, in Figure 9.15, in the upward direction. If the
lamina is of suitable thickness, there can be one point O on the screen in the
region of the overlapping of the two beams so that the condition

S,0=5,0+(u—1)e (9.54)

is fulfilled. The central fringe of zero geometrical path difference will appear
at O. But with monochromatic light, say sodium light, the fringes being alter-
nately dark and bright, having one color it is not possible to distinguish the
central fringe from the other bright fringes. Therefore, it is customary to
employ a white light source when the fringes are to be displaced for locating
the central fringe. With white light, the central fringe of zero geometrical path
difference will be black while the other fringes will have other colors. At the
central fringe, not only is the geometrical path difference zero, but also the
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phase difference is 7 for all the wavelengths due to an initial phase difference
of  between the coherent sources S, and S,. As a consequence, the central
dark fringes corresponding to all the wavelengths are superposed at this point.
This is also shown in Figure 9.16, in which the intensity distribution curves
for the violet and the yellow colors are shown with ordinary and dotted curves
respectively, while curves of other colors are not shown for the simplicity of
the diagram.

Violet

dark fringe

FIGURE 9.16. The origin of white light fringes with a dark fringe at the center.

It should be remarked that owing to grazing incidence of light on the mir-
ror, the effective aperture on viewing from P is extremely small. The mirror,
therefore, appears like a slit, giving rise to diffraction fringes due to the narrow
slit. But, in this experiment, diffraction effects are of secondary importance.

Determination of the Wavelength

The wavelength of light can also be determined by the measurement of the
fringe width X of the fringes produced by Lloyd’s single mirror arrangement.
For the validity of the formula

A= [%))‘( (9.55)
D

it should be again emphasized that the plane containing the coherent sources
S, and S, must be exactly parallel to the plane of the observation of the fringes.
Since the line joining the object and its image, formed due to reflection in a
plane mirror, is always perpendicular to the reflecting surface, for the valid-
ity of the previous equation, this reflecting surface must be adjusted exactly
perpendicular to the plane of cross-wires of the eyepiece. Furthermore, the
reflecting surface must be adjusted exactly parallel to the length of the vertical
source slit. We now give the following experimental details to achieve this end.
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The experiment is performed on a leveled optical bench. Lloyd’s mirror
is mounted vertically on an upright, which is provided with screws to effect
the rotation of the mirror about a vertical as well as about a horizontal axis.
A vertical slit, illuminated with light whose wavelength is to be determined,
is mounted on another upright and adjusted close to the line of the mirror
so that the light may be reflected as far as possible at grazing incidence. The
fringes are observed in the focal plane of the focused micrometer eyepiece.

It is absolutely essential, as explained previously, that M,M, should be
normal to AB. To achieve this, a convergent lens is introduced between the
mirror and the eyepiece, and it is adjusted so that its center lies opposite the
edge M, of the mirror and on a level with the center of the source slit S,.
Finally, the lens is fixed in a position so as to form the real images of S, and S,
in the plane of cross-wires. Both images will be in focus in the plane of cross-
wires for one setting of the lens, provided S8, is parallel to plane (AB) of the
cross-wires. In other words, M;M, is normal to AB. We therefore rotate M, M,
slightly about the vertical axis of rotation until the two images are exactly in
focus simultaneously.

The reflecting surface of the mirror may be easily adjusted parallel to the
vertical slit. On removing the lens, fringes are observed through the eyepiece.
Mirror M, M, is rotated about its horizontal axis to get the position when the
fringes become well defined and brightest. The adjustment of M,M, normal
to the plane of cross-wires may be now tested by the absence of the lateral
shift in the fringes as the eyepiece is moved backward (or forward) along the
optical bench. Now the measurement of X, 2d, and D may be carried out as in
the biprism experiment.

9.10 ACHROMATIC INTERFERENCE FRINGES

An achromatic fringe is defined as one which shall result due to superposition
of the same order fringes of light of all wavelengths emitted by the hetero-
geneous source. If it were possible to devise an experimental arrangement
in which the geometrical path difference for the two coherent interfering
waves from the source to a point of observation is different for different wave-
lengths, then the geometrical path difference can also be made proportional
to the wavelength. As a consequence, the phase difference expressed as

o= 277[ x Path difference
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becomes the same for all wavelengths at the point. In other words, the phase
difference is independent of the wavelength over the whole region of the
observation. The physical conception of this conclusion is that the first order
fringes of all wavelengths are superposed on each other, and obviously the
same is true for 2nd order fringes, 3rd order fringes, and so on; that is, the
fringe width X becomes independent of the wavelength. We then have a sys-
tem of achromatic fringes.

In Young’s experiment and Fresnel’s biprism and double mirror experi-
ments, there is only one point in the plane of observation, which is the point
equidistant from the coherent sources, where the phase difference is the same
(zero) for all wavelengths. At this point zero order fringes of all wavelengths
coincide, giving rise to an achromatic fringe. But the spacing between two
consecutive bright or dark fringes is a function of the wavelength,

(2

being greatest for the red and least for the violet end of the spectrum. As a
consequence, the same order fringes of different wavelengths, excluding zero
order, do not coincide. All three arrangements are thus perfectly achromatic
only for the central fringe, provided we neglect the secondary effects due to
finite slit width. This is also true for Lloyd’s interference fringes but of course
independent of the slit width. The fringe of zero geometrical path difference
in Lloyd’s mirror is not formed under ordinary arrangements. But the central
fringe when brought into view by introducing a thin lamina of mica or glass
in the path of direct light is found to be black even with a white light source.
The other fringes are strongly colored, as in Figure 9.16. However, if by some
device we render the fringe-width X the same for fringes of all wavelengths,
even with white light, the bright fringes of a given order of different wave-
lengths will be perfectly superposed. Figure 9.17 illustrates the origin of white
light fringes with central achromatic white fringe. The solid curve represents
the intensity distribution for violet light and the dotted curve that for the yel-
low light, drawn with central fringes superposed on each other. In the region
near the central fringe, it should be emphasized, the optical path difference
between the two interfering waves is small. The same is also true for dark
fringes, thereby giving rise to alternately white and dark fringes, according to
our definition the achromatic fringes, illustrated in Figure 9.18.
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FIGURE 9.17. The origin of white light fringes with central achromatic white fringe.
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FIGURE 9.18. The origin of achromatic white fringes.

- DA
The inspection of the expression for the fringe width (X = gj gives us a

clue toward designing an experimental arrangement for achieving our object.
It is obvious that D will be the same for all the wavelengths in any arrange-
ment. Hence, for the constancy of X, it follows from the previous expression

2d
same for all wavelengths. Physically, this means that the coherent sources for
different wavelengths should be situated at different points in one plane and
arranged in such a way that as A increases, the separation 2d between the cor-
responding coherent sources should also increase in the same proportion. For
example, we should satisfy the relation, like
2d, A,

o ZA_ (9.56)

v v

A
for the fringe width that by some device the ratio [—) must be made the

for every possible pair of different lzvavelengths emitted by the white light
source. Obviously, the fringe width X becomes the same for all wavelengths,
and truly achromatic fringes may be obtained.
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BILLET SPLIT LENS

9.12

In 1858, Billet obtained two coherent sources by forming two real images S,
and S, of the illuminated slit S with the help of two halves of a lens, obtained
by splitting a convergent lens into two parts along a diameter of its circular
periphery as shown in Figure 9.19. The two halves of the lens can be sepa-
rated or brought closer together by means of a micrometer screw, the motion
being along the line perpendicular to the optical axis. The positions of the two
halves can thus be very accurately regulated in relation to each other. In other
words, the separation 2d between the coherent sources S, and S, can be suit-
ably adjusted as seen with the naked eye. Fringes may be seen on the screen
or with the aid of an eyepiece in the overlapping region EF of the two beams
of monochromatic light.

A

| ~ - — &
S >

| > F

S, B

FIGURE 9.19. Billet’s split lens for producing interference fringes.

We may also arrange the split lens with respect to the illuminated slit S so
as to form two virtual images S, and S, which shall function as two coherent
sources for the production of interference fringes.

PRODUCTION OF CIRCULAR INTERFERENCE FRINGES—
MESLIN’S SPLIT LENS

It will be recalled that the loci of constant path difference in space, from two
coherent monochromatic point sources S, and S,, are hyperboloids of revolu-
tion surfaces generated by revolving hyperbolae about S,S, as an axis. The
intersections of these hyperboloids with a screen arranged perpendicularly to
S.S, are, therefore, concentric circular fringes with a common center on the
prolongation of the line joining the coherent sources S, and S,. The real point
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sources emit light in all directions; hence, we expect full concentric circular
fringes on the screen in the previous stated position.

But it is impossible to have two real point coherent sources. However,
Meslin (1893), by an ingenious modification of the Billet split lens, practically
demonstrated alternate bright and dark semicircular concentric fringes on the
screen. His arrangement is sketched in Figure 9.20.

A
Sl P"l{“ho\'e > S1 E___:::::::F‘Sg
| T
B

FIGURE 9.20. Meslin’s split lens for producing circular fringes.

The two halves of the Billet split lens are placed a short distance apart on
the optical axis. Two real point images S, and S, of a pinhole illuminated with
monochromatic light are then formed on the optical axis. The real images
function as coherent point sources which are not real point sources, because
the images do not radiate light in all directions but only in the shape of a nar-
row cone. In the region of the overlapping of the two beams shown shaded in
Figure 9.20, interference effects occur. A system of fringes, concentric semi-
circular arcs in shape, may be then obtained on a screen arranged between S,
and S,, normally to the optic axis.

In Meslin’s arrangement, interference is in reality between the waves
radiating from a source S, with waves converging to a similar source S,. It
should be emphasized that here circular fringes are obtained by the division
of the wave-front in contrast to Newton’s rings, which arise as a result of an
interference phenomenon due to the division of amplitude.

Example 9.1

In an experiment with a biprism, the readings on the optical bench of the
position of the eyepiece and the two positions of the lens were respectively
100.00, 67.00, and 34.00 cm. The distances between the two images for the
two positions of the lens were respectively 0.3000 and 1.2000 mm, and the
width of 10 fringes was 9.720 mm. Assuming that there is no index error, cal-
culate (a) the distance between the focal plane of the eyepiece and the plane
of interfering sources and (b) the wavelength of the light used.
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Solution:

(a)

The distance between the eyepiece and the second position of the lens is
given by

v, =100-67=33 cm =u
Hence,
(1st position of lens) —u=34-33=1cm.

Therefore, the distance between the focal plane of the eyepiece and the plane
of interfering sources is

D=100-1=99cm

(b)
2d =[/d, xd, =41.2x0.3 =0.6 mm = 0.06 cm

X = gf%mm =0.09720 ¢cm

Now,
3= Xad _ 0.0972x0.06 —5891x10cm.
D 99
Example 9.2

Using sodium light with a Fresnel’s biprism, the fringes were found to have
a width of 0.0196 cm when observed at a distance of 100.0 cm from the slit.
When a convex lens was placed between the biprism and the observer to give
an image of the source at 100.0 cm from the slit, the distance apart of the
images was found to be 0.70 cm; calculate the wavelength. The given distance
from slit to lens was 30.0 cm.

Solution:

In the given problem, X =0.0196 cm and D =100 cm. To evaluate 2d, we
observe that the distance of the lens from the slit is 30 cm, and the images of
the coherent sources are formed by the lens in a plane at (100 - 30) =70 cm
from the lens. Distance apart of the images of coherent sources is 0.70 cm.
For lens in air p, = p, =1 for magnification, we have
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(-0.70) 70

= — 2d =0.30 cm
2d (—30)
Hence,
P Xad _ 0.0196x0.30 5880 x 10 em
D 100
Example 9.3

When a thin monochromatic source of light was placed at a distance of 50 cm
from a Fresnel biprism of p=1.5, the distance between two consecutive
bands formed on a screen placed at a distance of 100 cm from biprism was
found to be 0.012 cm. If the wavelength of light was 5893 x 10~ cm, find the
magnitude of the obtuse angle of the biprism.

Solution:
We know
= (a+b)2 . : . .
X'=————"— where, it should be emphasized, o is the refracting angle
2a(u-1)a

(acute angle) of the biprism in radian measure.

In the given problem, a=50cm, b=100cm, pu=1.5, X =0.012 cm, and
A =5893x10"cm .

Hence,

e (50+100)x5893x10°°
2x50x(1.5-1)x0.012

radian

But, 7 radian = 180". Thus, « in degree measure is given by

oo (50) x5893x107° x 180
- 2x50x(1.5-1)x0.012x 7

Therefore, the obtuse angle of the biprism =180 -20 =178°31.

=0°.844

Example 9.4

Fringes are produced with monochromatic light of wavelength 5.45 x 107 em.
A thin plate of glass of refractive index 1.5 is placed normally in the path of
one of the interfering beams, and the central bright band of the fringes system
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is found to move to a position occupied by the third band from the center.
Calculate the thickness of the glass plate.

Solution:

The central fringe shifts to the 3rd bright fringe from the center of the original
system obtained without the plate. Hence, (u—1)e =nA.
We have (1.5—-1)e =3x5.45x 107°. Thus, e = 3.27.

9.13 EXERCISES

1.

Consider the superposition of two simple harmonic disturbances and
show that the resultant intensity is not just the sum of the intensities
due to the separate disturbances. On the basis of this result, explain
why coherent disturbances interfere and incoherent disturbances

do not.

Discuss the important conditions for the interference of light.

Describe, giving experimental details, Fresnel’s biprism method for
determining the wavelength of light. Derive the formula used.

Describe an experimental arrangement for the observation and meas-
urement of Lloyd’s mirror fringes. Show how you would use it to
determine the wavelength of monochromatic light, and how would
you modify the arrangement to obtain achromatic fringes using a white
light source.

Calculate the displacement of fringes when a thin transparent lamina
is introduced in the path of one of the interfering beams in a biprism.
Show how this method is used for finding the thickness of a mica sheet.

What are coherent sources? Discuss why two independent sources
of light of the same wavelength cannot produce interference fringes.
Give diagrams showing clearly how coherent sources are produced in
(i) Newton’s rings arrangement, (ii) biprism arrangement. Derive the
formula for fringe width in the biprism experiment.

In an experiment with Fresnel’s biprism bands, 0.196 mm in width are
observed at a distance of 100 cm from the slit. A convex lens is then
put between the observer and the biprism so as to give an image of
the sources at a distance of 100 cm from the slit. The distance apart of
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10.

11.

12.

13.

14.

1S.

the images is found to be 0.70 cm, the lens being 30 cm from the slit.
Calculate the wavelength of light used.

A thin sheet of glass (p = 1.5) of 6 microns thickness introduced in the
path of one of the interfering beams in a biprism arrangement shifts
the central fringe to a position normally occupied by the fifth. Find the
wavelength of light use.

The central fringe of the interference pattern produced by light of
wavelength 6000 A.U. is shifted to the position of the fifth bright fringe
by introducing a thin glass plate ( p= 1.5). What is the thickness of the
plate?

Interference fringes are formed using a biprism having base angles of
4° each and refractive index 1.5. The slit is kept at a distance of 10 cm
from the biprism and is illuminated with light of wavelength 5890 A.U.
Calculate the fringe width at 100 cm from the biprism.

Interference fringes are being formed by a source of light 1=6000 A.U.
It is found that by introducing a transparent plate in one of the paths,
the central fringe is shifted to a position occupied by the 6th bright
fringe. Find the refractive index of the plate if its thickness is 6 microns.
Establish the formula used.

Two straight and narrow parallel slits 3 mm apart are illuminated with
a monochromatic source (A =5.9x107 cm). Fringes are obtained at a
distance of 30 cm from the slits. Find the width of fringes.

The distance between the slit and the biprism and that between the
biprism and the screen are each 50 cm. The angle of the biprism is 179°
and its refractive index is 1.5. If the distance between the successive
bright fringes is 0.0135 c¢m, calculate the wavelength of light.

The inclined faces of a biprism of refractive index 1.5 make angles of 2°
with its base. A slit illuminated by a monochromatic light is placed at a
distance of 10 cm from the biprism. If the distance between two dark
fringes, observed at a distance of 1 meter from the biprism, is 0.18 mm,
find the wavelength of the light used. Derive the formula used.

Fringes are produced by a Fresnel’s biprism in the focal plane of a
reading microscope, which is 100 cm from the slit. A lens inserted
between the biprism and microscope gives two images of the slit in two
positions. In one case the two images of the slit are 4.05 mm and in the
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other are 2.9 mm apart. If sodium light (1 = 5893 A.) is used, find the
distance between the interfering bands.

Interference fringes of yellow light (A= 5800 A) are formed by a Billet
split lens. The distance from the source S to the lens L is 25 cm.

The focal length of the lens is 15 cm. The lens halves are separated
by 0.08 mm, and the source to screen distance is 200 cm. Find the
fringe separation.

A Lloyd’s mirror of length 5 cm is illuminated with monochromatic
light, A = 5460 A, from a narrow slit 0.1 cm from its plane, and 5 cm,
measured in that plane, from its near edge. Find the separation of the
fringes at a distance of 120 cm from the slit, and the total width of the
pattern produced there.
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10.0 INTRODUCTION

The wave theory of light in its original form as proposed by Huygens
was not successful in explaining the observed phenomenon that light
appears to travel in straight lines. The phenomenon is easily borne
out by corpuscular theory. A minute investigation of the fact, however,
reveals that light suffers some deviation from its straight path in
passing close to the edges of opaque obstacles and narrow slits. Some
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of the light does bend into the region of geometrical shadow, and its inten-
sity falls off rapidly. This deviation, moreover, is extremely small when the
wavelength of the waves of light is small in comparison to the dimensions of
the obstacle or aperture. But the deviation becomes much more pronounced,
though never of the same order as the bending of sound waves around cor-
ners, when the dimensions of the aperture or the boundary of the obstacle are
comparable with the wavelength of light. Even then, only a careful examina-
tion of the screen on which the geometrical shadow of the obstacle is received
reveals this deviation of light from its rectilinear path.

For example, let us suppose, with reference to Figure 10.1, that waves of
light diverging from a narrow slit S, which acts as a secondary source under
the influence of light from the monochromatic source O, pass an obstacle
AB with a straight edge A parallel to the slit. If the shadow of the obstacle is
received at C on a screen, it is observed that the boundary of the shadow is
never sharp. A small portion of light has “bent” around the edge into the geo-
metrical shadow; outside the shadow parallel to its edge are observed several
bright and comparatively dark bands.

Screen
Straight
edge
19 é """"""""""""""""""" C
Geometrical
shadow
B

FIGURE 10.1. Geometrical shadow of a straight edge.

The term diffraction is applied to all phenomena like this which are pro-
duced whenever there is any limitation on the width of the beam of light.
Since in most diffraction patterns some light penetrates within the region of
geometrical shadow, diffraction is sometimes defined as “the bending of light
around an obstacle.” This phenomenon was first discovered in 1665 by an
Italian scientist named Grimaldi, and was later on studied by Newton. In the
days when corpuscular theory was prevalent, attempts were made by Newton
to interpret diffraction effects as due to attractive or repulsive forces exerted
by the edges of obstacles on flying corpuscles, so as to deflect them from
their rectilinear path. In terms of wave theory, the first attempt to explain
the diffraction phenomenon was made by Dr. Young, who attributed it to the
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interference between the direct light waves which pass near the edge of the
obstacle and the wave of light reflected at grazing incidence from the edge.
This explanation could scarcely be applied to explain the penetration of light
within the region of geometrical shadow. Moreover, the maxima and min-
ima regions are not equally spaced as demanded by the mode of interference
imagined by Young. Even then if we accept Young’s explanation to be correct,
the intensity distribution on the screen should depend upon (a) the sharpness
of the edge, (b) its degree of polish, and (c) its material. But in 1818 Fresnel,
after a series of experiments, proved that the details of the diffraction pattern
were independent of the previously mentioned factors so long as the material
of the obstacle was opaque.

We owe the correct interpretation of diffraction to the brilliant work of
Fresnel, who attributed this phenomenon to the mutual interference of sec-
ondary wavelets originating from various points of a wavefront which were not
blocked off by an obstacle or were allowed to pass by a slit. That is, instead of
finding the new wavefront by constructing the envelope of these secondary
wavelets, we must find, by the principle of superposition, their resultant at
every point of the screen, taking due account of their relative amplitudes and
phases. Fresnel thus applied Huygens’s principle of secondary wavelets in
conjunction with the principle of interference and calculated the position of
fringes in general agreement with the observed diffraction pattern.

It should be emphasized, however, that the process responsible for the
production of the diffraction phenomenon is going on continuously during
the propagation of every wavefront. But the diffraction effects are observed
only when a portion of the wavefront is cut off by some obstacle. Every opti-
cal instrument, in fact, makes use of only a limited portion of the wavefront.
A telescope or a microscope, for example, utilizes only a limited portion of
a wavefront transmitted by the objective lens. Therefore, some diffraction
is always present in the image. Hence, a clear comprehension of the nature
of diffraction is of fundamental importance for a complete understanding of
practically all the optical phenomena.

FRESNEL’S EXPLANATION OF THE RECTILINEAR
PROPAGATION OF LIGHT

One of the greatest difficulties encountered by the supporters of the wave
theory of light in its early days was the explanation of the observed fact that
light appears to be propagated in straight lines. The correct interpretation in
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terms of wave theory was given by Fresnel in 1815 by applying principles of
interference in conjunction with Huygens’s principle of secondary wavelets,
but at the same time he showed that the rectilinear propagation of light is only
approximate. To explain this let us first discuss Fresnel’s method of finding the
effect of a plane wavefront at a point ahead of it.

10.1.1 Fresnel’s Half-Period Zones

In Figure 10.2, let ABCD represent a plane wavefront of monochromatic light
of wavelength A, traveling from left to right. According to Huygens’s principle,
every point in this plane may be regarded as the origin of the secondary wave-
lets, and at any given instant, every one of these secondary wavelets passes

through the point P.
B
3A
b +T
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FIGURE 10.2. Half-period zones on a plane wavefront.

The resultant effect at P due to the whole wavefront will simply be equal to
the resultant of all these secondary wavelets. To find this resultant, we divide
the entire wavefront into concentric zones by the following construction. We
drop a perpendicular from P on ABCD. The point O, the foot of perpendicu-
lar from P, is called the pole of the wave with respect to P. Let PO = b and A

be the wavelength of the light waves. With P as center and radius (b + %j we

construct a sphere which intersects the wavefront in a circle M,. Then

PM, =b+(%) and PM, —PO:(%) (10.1)
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This simply means that the secondary wavelets originating from O and
from the points on the circumference of the circle M,, on reaching P simulta-
neously, will differ in their phase by

2Tﬂ-(PM1 —PO) = 7 radians (10.2)

2
the area enclosed by the M, is called Fresnel’s first half-period zone. Similarly,
we construct other spheres of radii

b+(%j,]g+(ﬂj,b+(ﬂj, etc. (10.3)
2 2 2

which intersect the wavefront in circles M,, M,, M,, and so on. This con-
struction divides the entire wavefront into a number of Fresnels half-
period zones. These zones are so situated that the distance of the point P

But 7 radians is equivalent to the phase difference of [—j Consequently,

) A .
increases by (Ej as we pass from the inner to the outer boundary of each

zone. The first half-period zone, as explained previously, is a circle, while
the second half-period zone is an annular space between the circles M, and
M, and so on.

The area A,, of the nth zone is from Figure 10.3,

A, =r(r} =) =x{(PM] =)~ (PM}, - 1*)} (10.4)
A, = n{(b + %) —(b (n- 1)(%)) } (105)

12
A, =7rb/l+7r(2n—1)[ZJ (10.6)

On neglecting the term in A% as b is large in comparison with A, we get
A, =7bi (10.7)

The approximate value of A, is independent of n, and hence all zones are
approximately equal in area. Actually, the area will increase with the order n
of the zone according to Equation (10.6).
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FIGURE 10.3. Geometry of the nth half-period zone.

10.1.2 Phase of the Resultant of Secondary Wavelets from Each Zone

Consider an instant at which the phase at P of the secondary wavelet from O
is zero. At this instant, the phase at P of the wavelets from the points on the

outer edge of the first zone will be 7, since PM, —PO = (%) , and the wavelets

start from the wavefront in the same phase. Consequently, the phase of the
resultant at P of all the wavelets from the first zone, at this instant, will be
approximately the mean of the phases of these wavelets and may be taken to

T
be (E) At this same instant, the phases at P of the secondary wavelets from

the inner and outer boundaries of the second zone are 7 and 27 respectively,

3
so the mean phase of the resultant due to this zone is (?j . Thus, the mean

phases of the resultants of wavelets from the successive outer zones are

n\(3n\(brn\(Trn\ (97
— Ul —=1|—= | = || = |, and so on. Let R,, R,, R;, R,,..., R, be the
2 2 2 2 2 '

resultant amplitudes at P of wavelets reaching P from the first, second, third . . .
and nth zones. Calling the resultant amplitude due to the entire wavefront as R,
this may now be expressed, by the principle of superposition, as the sum of the

series,

R=R,—R, +R, —R,(-1)+--+(-1)""R, (10.8)
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10.1.3 Factors Governing the Magnitude of R,

The magnitudes of successive terms of the previous series depend upon the
following three factors:

(i.) The area of each zone determines the number of secondary wavelets
reaching P from that zone, and the magnitude of R, depends on the num-
ber of wavelets from the nth zone.

RaA, (10.9)

(ii.) The magnitude of R, is inversely proportional to the average distance d,,
from the point P of the nth zone.

(ifi.) Last, R,o (1 +cos®, ), where 6, is the angle which the direction of P from
the nth zone makes with OP. It is assumed that the obliquity factor varies
slowly and that it may be regarded as constant over a single half-period
zone. But

ﬂl(b+(2n—l)llj
A, - 4 =7 (10.10)
(b+2n/l+b+(n—1)2/l)

1
2

The amplitudes of successive zones, therefore, depend on the obliquity
factor (1+cos0). As @ increases from zero, cos6 decreases very slowly at first,
but more rapidly for larger values of 6. Therefore, the successive amplitudes
R,, R,, R, R,... at first decrease slowly but then more rapidly for higher
values of n.

10.1.4 Summing up of the Series

We have seen previously that the successive terms in the series

R=R,-R,+R,—R,+---+(-1)"'R (10.11)

n

are in decreasing order of magnitude. With this knowledge we will try to sum
the previous series by a method given by Schuster. Let n be an odd integer.
The terms in the previous series can then be grouped in the following two
alternate ways:

1 1 1 1 1 1
R=§R1 +(§R1 -R, +§R3j+(§R3 -R, +§R5)+~~+§Rn (10.12)

or
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1 1 1
R:R_ERZ _(ERQ —33 +§R4]

(10.13)
1 1 1
- (§R4 _RS +§R6)_.”_§Rn—l +Rn

Suppose first that each term of the original series is greater than the arith-
metic mean of two adjacent terms, that is,

Rz>%(1~’l1+1~23),1%3 >%(R2+R4),R4>%(R3+R5) (10.14)

then the bracketed terms are all negative. Therefore, the previous equations
may be written as

R :%(B1 +R,)-a (10.15)
and
Rle—%(RerRn_l)Jar +p (10.16)

where a and f represent the sum of all terms within brackets. It is now obvi-
ous that the following inequalities must hold
é(ﬁl+B”)>R>Rl—§(1{2+Rn_1)+Rn (10.17)

If the original series is such that each term is less than the mean of two
adjacent terms, the bracketed terms are all positive. Now the following
inequalities must hold,

Rl—%(R2+RH)+Rn >R>%(RI+BH) (10.18)

But, R, = R, and R, =R,_,, approximately. Making these substitutions in
the previous inequalities, we get the equality

1 1 1
Ip+ir =r=1r +1g, (10.19)
2 2 2 2

Similarly, when n is even, we get
1p _Lp —p=Lp _1g (10.20)
2 2 2 2
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If n becomes very large, the amplitude due to the nth zone, on account
of the obliquity factor (1+cos8, ), becomes negligibly small. The resultant
amplitude at P due to the whole wave, whether n is odd or even, is therefore

merely éRl, that is, one half of that which could be produced by the first

Fresnel zone alone.

10.1.5 Rectilinear Propagation of Light

Let us now apply the previous theory to explain the rectilinear propagation of
light. Let us suppose a plane wavefront of monochromatic light to be incident
normally on a square aperture EFGH in a screen as illustrated in Figure 10.4
(a). Let A be the pole of the wavefront with respect to the point P, at which
it is desired to find the resultant intensity due to the entire wavefront. The
pole A is within the aperture, sufficiently far away from its edges. Suppose
the wavefront is now divided into zones around A. By the time these intersect
the edges, their number will be fairly large, and all the effective zones will be
exposed. The resultant amplitude at P, according to the previous theory, will

1
be ERl, that is, it will be just the same as with the screen with the aperture

removed as in Figure 10.4 (b).
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FIGURE 10.4. (a) Explanation of rectilinear (approximate) propagation, (b) Screen with aperture.

In the same way, if the point P, is so far inside the geometrical shadow
of the aperture that the pole A, corresponding to it is outside the aperture,
far from its edges, the effect at P, reduces to that of one-half of the Fresnel
first zone around A, which is obviously zero. The point P, will be just as dark
as if light traveled strictly in straight lines. It is only when the pole is in the
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region enclosed by dotted squares that the previous theory does not apply.
This is simply due to the reason that for points like P, and P,, only some of the
effective zones are exposed and the rest blocked. Therefore, Fresnel’s the-
ory becomes inadequate in deciding the intensity at these points. The wave-
length of light being extremely small, the sides of the two dotted squares lie
extremely close to the edges of the aperture.

We have thus arrived at the law of rectilinear propagation for all points
whose poles lie within the dotted square E,F,G,H, and for all points whose
poles lie outside E,F,G,H,. The law fails in the case of those points whose
poles lie between the two dotted squares—in fact when light passes close to
the edges of obstacles, there is some deviation from its rectilinear path. Thus,
the propagation of light is approximately linear.

We can see in another way how rectilinear propagation (approximate) fol-
lows from Fresnel’s theory of half-period zones. Let us first find out the radius
of the first zone of the plane wave for a point, P, 20 cm ahead of it, taking 4
as 5000x 10 %cm.

Radius of first zone =vbA =+/20x5000x 10~ =0.0316 cm, and

Radius of 10,000th zone
=4/10,000 x bA = \/10,000 x20%x5000x107° =3.16 cm.

The diameter of the first zone is therefore less than a mm and that of the
10,000th zone is less than 10 ¢cm, which is quite a normal width of the wavefront.
Therefore, the outermost zone for this case will be of an order even greater
than 10,000, and its amplitude R, at P will be quite negligible. The resultant

amplitude at P is simply ?1; that is, the portion of the wavefront within about

0.3 mm (radius of first zone) around the point O, the pole of the wavefront with
respect to P. In other words, only secondary wavelets from the first half-period
zone are effective at P; the remainder of the wavefront simply destroys at P half
the amplitude of the first zone so that light travels to P from a region 0.3 mm in
radius around O. Thus, it travels approximately in a straight line.

10.2 ELIMINATION OF REVERSE WAVE IN HUYGENS’S
PRINCIPLE

An early objection to Huygens’s principle of wave propagation, it will be
recalled, lies in the fact that it also gave the propagation of a wave in the
backward direction toward the source. This principle, of course, correctly
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postulated the propagation of a wave in the forward direction. By the help of
Fresnel’s idea of interference of Huygens’s secondary wavelets in conjunction
with the inclination factor (1+ cos 6) governing the amplitudes of secondary
wavelets which was introduced ad hoc by Fresnel, it is possible to give a sim-
ple explanation of the absence of a backward wave. The method of dividing
the wavefront into Fresnel half-period zones with respect to a point ahead
of it may be also applied to divide the wavefront into zones with respect to a
point behind it. An analysis on the lines shows that the amplitude of a reverse
wave at any given point is half of the amplitude which would be produced by
the secondary wavelets from Fresnel’s first zone alone. The inclination 6 for
the wave traveling in the backward direction for the first zone is 7 and, accord-
ingly, the inclination factor (1+ cos 0) of the amplitude for this wave is zero.
Hence, the amplitude of the reverse wave is zero.

We may also explain the absence of a reverse wave on the basis of the
electromagnetic theory of light. According to this theory, light is a propagation
of the vibration of an electric vector E coupled with the propagation of the
vibration of a magnetic vector H, with both vectors in synchronism to always
be in equal phase, mutually at right angles, and at right angles to the direction
of the velocity vector V. Conversely, if the instantaneous values of E and H
are known, the direction of the velocity V of the wave motion can be uniquely
determined analytically. This analysis always gives the velocity in the forward
direction, and thus there is no possibility of a reverse wave.

10.3 TWO CLASSES OF DIFFRACTION PHENOMENA

Diffraction phenomena, which arise as a result of some limitation on the width
of a wavefront, are divided into two classes known for historical reasons as
Fraunhofer diffraction and Fresnel diffraction. In the former class, the source
of the light and the screen are effectively at infinite distance from the obstacle
of aperture causing the diffraction. This means that the wavefront incident
on the obstacle or aperture is plane and the secondary wavelets, which we
consider as originating from the unblocked portion of the wavefront at the
moment it just touches the aperture, all start at the same time. In other words,
the phase of secondary wavelets is the same at every point of the aperture.
The screen is at infinity. Therefore, we have to consider the interference as
taking place between parallel diffracted rays which can be brought into focus
by placing a convergent lens behind the aperture. Thus, it is very conveniently
observed by employing two convergent lenses: one to render the light from
the source parallel before its incidence on the aperture, and the other to unite
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parallel diffracted rays in focus on the screen—an arrangement which effec-
tively removes the source and screen at infinity.

In the Fresnel class of diffraction, the source of light or the screen or
both are at finite distances from the obstacle or aperture, but no lenses are
employed for rendering the rays parallel or convergent. Therefore, the inci-
dent wavefront is spherical or cylindrical instead of being plane. As a conse-
quence of this, the phase of secondary wavelets is not the same at all points
in the plane of aperture causing the diffraction. The resultant amplitude at
any point of the screen, however, is obtained by the mutual interference of
secondary wavelets from different elements of the unblocked portion of the
wavefront.

10.4 DIVISION OF A CYLINDRICAL WAVEFRONT INTO HALF-
PERIOD STRIPS

The envelope of secondary wavelets diverging from a long narrow slit SS’, illu-
minated by the monochromatic light of wavelength 4, is a cylindrical surface
WW" as in Figure 10.5.

T
SI
; W
f Cylindrical
E wave-front
Q: _
: My P
g W'
L

FIGURE 10.5. Half-period strips on a cylindrical wavefront.

It is essential first to find its effect at a point P situated ahead of the wave-
front, by dividing it into a number of elementary half-period strips by a con-
struction closely similar to that of the division of a plane wavefront into zones.
We draw a perpendicular PQ from P on SS'. In Figure 10.5, the point of inter-
section, M, of PQ with the wavefront is the pole of the wave with respect to P.
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Let us now consider an equatorial section AA’ through the line PMQ of
the wave surface as in Figure 10.6. Let QM = a and M, P = b. With P as center
and radii

b+&,b+—,b+—, etc. (10.21)
2 2 2

we draw arcs so as to cut the section AA’ into points (M, M,"), (M,,M,'),
(M M,'),..., and so on.

FIGURE 10.6. Equatorial section of cylindrical wavefront.

1
Let PM, = b+—nA, and then with the triangle PM,Q, we have by the law
of cosine, 2

PM: =QM: + PQ* —2PQ x QM, cos0, (10.22)

(b+én/1)d =a®*+(a+b) —2(a+b)acosh, (10.23)

4

in comparison with other quantities. Also, if 6, is small, we consider only the
first two terms in the expression

2 4 6
0059,1=1—0—"+0” —9—"+--- (10.24)
21 4! 6!

With these considerations, Equation (10.23) reduces to
bni=a(a+b)06,} (10.25)

2172
As Ais small, the term {” A j in the previous equation can be neglected
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R L (10.26)
a(a+Db)
where K is a constant, as @, b and A are constants for a given arrangement.

Hence
Replacing n by 1, 2, 3, 4, etc. we have respectively,

arc M\M, = aK
arc M,M, = aK (<2 ~1) = 0.414 aK
arc M,M, =aK

No
V3 -+/2)=0.318 aK | Rapid change
)=0.268 aK

arc My;M,, = aK(v/16 ~/15) = 0.127 aK

(
(

arc M,M, = aK(\/Z V3
E Small change

arc MM, =aK(N17 -/16) = 0.123 aK

Therefore, the lengths of arcs M M,, M\M,, M,M;, and so on
decrease rapidly at first but rather slowly afterward. Through the points
M,, M,, M';, M,, M',, and so forth, lines are drawn parallel to the slit, thus
dividing the wavefront into strips of equal lengths. The widths of these strips
decrease rapidly at first but more slowly later on as one considers these in
either direction from the central line through M. The areas of strips are,
therefore, in decreasing order, and the lower order strips have larger areas
as compared to higher order ones. Such strips are called half-period zones or
elements.

The resultant effect of the whole wavefront at P is therefore the sum of
the resultants of individual strips. Consider one such strip EE' which is at an
average distance ¢ from P. This strip can be divided into half-period zones by
drawing lines, as shown in Figure 10.7, so that the middle points N,, N,, N,
and so forth of these lines are respectively at distances

c+%/l,c+/l,c+%, etc. (10.27)

From P. In the right triangle PON,

m?> m

we have (C+%mj =c*+ON?

1 :
and neglecting Zmzlz, the previous equation reduces to ONZ, =cmA, or
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(10.28)

Er

FIGURE 10.7. Half-period elements on a single strip.

where K’ is a constant. The same analysis as before will show that the widths
and, therefore, the areas of these half-period elements decrease at first rapidly
but more slowly afterward. Consequently, the resultants at P of the higher order
elements, being alternately in and out of phase with the first element, annul
each other’s effect. Thus, the resultant effect of the whole strip at P is due to a
few half-period elements of lower order. These conclusions can be applied to all
strips of the wavefront. Therefore, the resultant effect at P of the entire cylindri-
cal wavefront is merely due to a narrow equatorial band surrounding the section
AMA', which is divided into half-period elements by the strips. This is shown
in Figure 10.8, which represents the equatorial band spread out in a plane.

3 02 1 1 2 3
A’ MM MINM MNEEM, A
=7 N=

FIGURE 10.8. Equatorial band of cylindrical wavefront spread out in a plane.
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Let R, R,, R,,...,R, be the resultant amplitudes at the point P due to
secondary wavelets reaching P from the first, second, third, . . . and nth zone on
either side of the central line through M. Therefore, the resultant amplitude
R at P due to either half of the wave, by the principle of superposition, is

R=R,-R,+R,-R, + ..+ (-1)'R (10.29)

n

where the alternate plus and minus signs occur because the resultants of suc-
cessive zones are alternately out of and in phase. The summation of this series
is given in Section 10.1, and the result is

Rzﬁ/i R, (10.30)
2 2

The plus sign corresponds to n odd while the negative sign corresponds to

n even. And when n is large, then
R- % (10.31)

Obviously, the resultant amplitude at P of the entire wavefront is R;.

10.5 DIFFRACTION AT A STRAIGHT EDGE

Let A be the sharp straight edge of an obstacle placed perpendicular to paper
and exactly parallel to the long narrow slit S, which is illuminated with a
monochromatic light source. A train of cylindrical waves is incident on the
edge A from the left. A careful examination of the screen reveals that imme-
diately above C there are series of maxima and minima regions, parallel to
the straight edge, called diffraction fringes. The intensity of maxima gradu-
ally decreases while that of minima increases as we move above the point C
along the screen. At a short distance from this point, the fringes merge into
a uniform illumination. It should be emphasized that minima regions are not
absolute. The fringes, moreover, are not equidistant but gradually become
closer as we move away from C. Some of the light also penetrates within the
geometrical shadow, and the illumination falls off continuously and rapidly to
zero, without showing any maxima and minima.

To explain these characteristics of a diffraction pattern due to a straight
edge, we divide the incident cylindrical wavefront into Fresnel’s half-period
elements. In Figure 10.9 WW" represents the section of the wavefront, when
it just touches the edge A, by the plane of paper.



DirFrACTION OF LigHT © 323

s

S<
—~a___
___________ e e e e e e .’.
Cylindrical
wave-front
Screen|,.

FIGURE 10.9. Fresnel diffraction of a cylindrical wavefront by a straight edge.

Let P be any point on the screen. A straight line joining P to S intersects
the wavefront at O, its pole with respect to P. With F as the center and radii

PO+%/’L,PO+A,PO+%1, etc. (10.32)

we draw circles intersecting the section WW’ in different points. By draw-
ing lines parallel to the straight edge through these points, the wavefront is
divided into half-period zones. Then the resultant effect at P due to whole
wavefront is equal to the sum of the effect of the upper half OW and that of
the lower half OW” of the wavefront. The resultant amplitude at P due to each
half of the wave is given by

R:RI—RQ+R3—R4+---:%R1

where R, is the amplitude at P due to first zone in either half of the wave and
S0 on.

10.5.1 Uniform lllumination at Points Far above C

Let us suppose that the point P is sufficiently far above C so that the portion
OA contains all the effective half-period zones of the lower half of the wave.
In other words, the obstacle AB imposes no limitation on the zones effec-
tively contributing to the resultant amplitude at P. The intensity at P will be,
therefore,
éRl + éRl =R

i.e., as if the entire wave is unobstructed. This explains the uniform illumina-
tion on the screen beyond the diffraction fringes.
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10.5.2 Maxima and Minima Diffraction Fringes on the Screen

Let us consider a point P, on the screen for which the pole of the wavefront is
O,, as shown in Figure 10.10(a), in such a position that the following relation

1
RA-RO, =22 (10.33)

is satisfied. O A contains only the first half-period zone of the lower half of the
wave. Therefore, the resultant amplitude D, at P, will simply be equal to the
sum of the resultant amplitude due to the upper half of the wave and that of
the first zone of the lower half; that is,

1 3

D, =(R,~R,+R,~R, +-)+R =-R +R =_R (10.34)
. . . . 9 5o 1 .
and the intensity at P, is proportional to 1 R,” |, which is 2.25 times as great

as that which would be produced by the unobstructed wave.
As we move above P,, we come across a point P, as shown in Figure 10.10 (b)

so that
PA-P,0, =4 (10.35)
—| Upper half <
s\
Oy % M{ M, M3
A C \\\&b U] T‘*ifz
B “%é\\\\ proscd
—| Lower half =

(a)
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FIGURE 10.10. (a) A point P, on the screen with the pole of the wavefront is O,, and (b) a point P, on
the screen with the pole of the wavefront is O,.
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Then O,A contains, for this point, the first and the second half-period

zones of the lower half of the wave. The resultant amplitude at P, is, therefore,

1 3
D2 :ERl +R1 _R2 :ERI —Rz (1036)

This is less than the magnitude of R, so that bright band just outside the
shadow is followed by a darker one. However, the minima is not absolute, as
D, has some positive value.

Further above, we come across a point P, so that

3
PA-PO; =7 (10.37)
Then O,A exposes the first three half-period zones. Therefore, the resul-
tant amplitude at P, is
1
D, :ERl +R, —R, +R, (10.38)
For a point P, such that PA-PO, =24, O,A exposes the first four
half-period zones, and the resultant amplitude is

1
D,==R,+R,-R,+R, R, (10.39)

We can form some idea about the relative magnitudes of D,, D,, D, D,,
and so forth by writing in the previous expressions the approximate relations

R, :é(Rl +R;), R, =%(R3 +Ry), etc.

Then we get,
D, =§Rl
2

1
D, =R, —ERS

1
D, =R, +§R3

1
D, =R, _ERS

1
D, =R, +§R5

Since R}, R,, R;, R-, and so on are in decreasing order of magnitude, hence
D, > D,and D, > D; Dy > D, and D5 > Dg; and so forth. Thus, D,, D,, D, D-,
and so on correspond to regions of maximum illumination, while D,, D,, Dy,
and so on correspond to regions of minima illumination of the screen. More-
over, it is obvious that D, > D, > D5 > D and D, < D, < D,, and so forth. Thus,
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the amplitude and therefore the intensity of the maxima decreases gradually
while that of the minimum increases gradually as we move along the screen
above the point C, until finally the fringes merge into a uniform illumination.

From the previous analysis, it should be obvious that the intensity at any
point P of the screen is maximum or minimum as OA exposes an odd or even
number of zones of the lower half of the wave. Mathematically, the condition
for maxima and minima can be expressed as

(2n+1)4
Maximum Brightness: PA—-PO =-———— (10.40)
and
.. . 2nA
Minimum Brightness: PA—PO = > (10.41)

The positions of the maxima and minima on the screen can be easily cal-
culated. Let SA =a, AC =b and CP =x, then

PA* =D" +x°

2 1 2
PA=D 1+(£j =h+—|
b 20 b

Similarly,

)
PS=by(a+b) +x* z(a+b)+%( z b}
2\ a +
Hence,
) ope i X (10.42)
a+b 2 a+b '
Therefore,

1( a7 1( «® ax®
PA_PO_E{Zj_§(a+b]_(2b(a+b)J (1043)

From Equations (10.40) and (10.43), we have for maxima,
ax® (2n+1)2

max

2b(a+Db) 2

1

PO=PS-SO=(a+b)+

or

=KV2n+1 (10.44)

X

“Ymax
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b(a+b)A

where K= , a constant for a given experimental arrangement

a
and wavelength. Similarly, from Equations (10.41) and (10.43), we have for

minima,
b(a+b)2ni
Xy = Marbyzmd (10.45)
a
2
where K' = M a constant.
a

For Ist Max at P;, n = 0 in Equation (10.44), therefore, x, =K
For 2nd Max at P;, n = 1 in Equation (10.44), therefore, x, = K3
For 3nd Max at P;, n = 2 in Equation (10.44), therefore, x; = K5

But x,, x,, x5, x,, and so on are the distances from the point C of the first,
second, third, and fourth maxima. Hence, the separation between the first
and second maxima, and between second and third maxima, and so forth, is
as follows

x, —x, =K3-K=0.732 K
x, —x, = K</5 - K8/3=0.504 K
x, —x, = KT - K«/5=0.430 K

Thus, the diffraction fringes are not equidistant as in the case of two small
coherent sources of light but get closer and closer as we move above the edge
of the geometrical shadow. Also, these diffraction fringes are parallel to the
edge of the geometrical shadow.

10.5.3 Intensity at the Edge of the Geometrical Shadow

The edge A of the obstacle itself is the pole of the wave for the point C. Thus,
the upper half of the wave is only exposed while the lower half is completely
obstructed by the obstacle. The resultant amplitude at C is, therefore,

C=R -R,+R,—R,
2
and the intensity at C is proportional to Tl’ which is simply one-fourth of the

intensity produced by the full wave. Also, the intensity at C is less than that at
the first maxima point P,.
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10.5.4 Penetration of Light within the Geometrical Shadow

Having explained the diffraction pattern above the point C, let us now explain
the penetration of light to a certain distance within the geometrical shadow of
the obstacle as shown in Figure 10.11.
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FIGURE 10.11. Penetration of light within the geometrical shadow.
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.

Let us suppose a point P,’ on the screen below C so that

, A
FA-PO; =7
Then for this point, the obstacle not only cuts off completely the lower
half of the wave but also the first zone of the upper half. Therefore, the resul-
tant amplitude at P," due to the exposed portion of the upper half is

D, :RZ—RS+R4—R5+---:R—

N[\')

2
and the intensity at P,' is proportional to ZZ which is evidently less than the
intensity at C.

For the point P,’ below C so that

PIA—PlO} = A

the obstacle obstructs, in addition to the lower half, the first two zones of the
upper half of the wave also. The resultant amplitude at P,’ is
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R
D; =R, -R,+R; - R, +"':?3
2
and the intensity is proportional to =3 which is evidently less than the inten-

sities at the points P," and C. Thus, as the positions below C are taken to
be farther and farther into the geometrical shadow, the number of zones
contributing to the resultant amplitude on the screen will be smaller.
Therefore, the intensity falls off continuously but rapidly without showing any
maxima or minima, till all the effective zones are cut off and the higher order
ones in the upper half AW of the wavefront simply annul the effects of one
another. Thus, the resultant intensity becomes zero.

The graphs of amplitude and intensity of illumination on the screen
against the distance from the edge of the geometrical shadow can now be
plotted. These graphs are depicted in Figures 10.12 and 10.13 respectively.
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FIGURE 10.13. Intensity contour.
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10.5.5 Measurement of Wavelength

To carry out the measurement of wavelength of light by diffraction at a straight
edge, a narrow slit is mounted vertically in one of the uprights of the optical
bench. In another upright a tin plate is mounted, with its straight edge paral-
lel to the slit, which is illuminated with monochromatic light. The parallelism
of the straight edge and the slit is adjusted first with the naked eye. The finer
adjustment is, however, done by observing the diffraction bands through the
micrometer traveling eyepiece and rotating the edge in its own plane by the
help of the tangent screw of the holder until the bands are most distinct. Now
the distance between the first or second bright band and one of the most
distant that can be seen distinctly is measured by the help of the microm-
eter eyepiece. If the former be mth and the latter nth, we have by the use of
Equation (10.44)

. z\/bl(Zn—l)(a+b) and x, :\/bl(27n—l)(a+b)

a a

Hence,

bl(a+b)(

on—1-Jam— 1) (10.46)
a

10.6 DIFFRACTION AT A NARROW WIRE

Let AB represent, in Figure 10.14, a long narrow wire perpendicular to the
plane of the paper and placed exactly parallel to a long narrow slit S, which is
illuminated by a source of monochromatic light. The cylindrical waves diverg-
ing from the slit are incident on the wire from the left. The lines joining the
slit S with the extremities of the wire when produced meet the screen EF
at points C and C'. Therefore, CC’ is the region, on the screen, of the geo-
metrical shadow of the wire. The wire offers some limitation to the incident
wave. Therefore, what is actually observed on the screen on both sides of the
geometrical shadow CC' is a diffraction pattern characterized by diffraction
fringes exactly similar to those in the case of the straight edge. These fringes
gradually get closer and closer, independent of the width of the wire, finally
merging into uniform illumination. Within the geometrical shadow are found
some dark and bright fringes which are equidistant and narrow, their width
being inversely proportional to the width of the wire.
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FIGURE 10.14. Fresnel diffraction of a cylindrical wavefront by a narrow wire.

To explain the origin of this diffraction pattern, we should consider sepa-
rately the portions CE, CC’, and C'F of the screen. The intensity at any point
P in the portion CE of the screen is the resultant effect of half-period zones
in one-half of the wave above the pole O" and the exposed half-period zones
between O’ and A of the lower half of the wave. It is assumed that the width
AB of the wire is such that the portion BW’ of the wave contains, for the
point P', higher order half-period zones which mutually cancel each other’s
effect at P and hence are quite ineffective. Thus, the diffraction fringes in the
portion CE of the screen arise due to diffraction of the portion AW of the
incident wave by the extremity A of the wire, and fringes are independent of
the portion BW' of the wave. Exactly in a similar way, the diffraction fringes in
the portion C'F arise on account of the diffraction of the portion BW’ by the
extremity B of the wire, and these are independent of the portion AW.

It now remains to interpret the system of equidistant fringes within the
geometrical shadow of the wire. Suppose X is a point within the shadow. A
straight line joining S and X cuts BA at some point between A and B. The wire
cuts off a few half-period zones from the upper and the lower half of the wave
for this point. The resultant intensity at X is, therefore, due to the combined
effect of the resultant of the half-period zones contained in AW and the resul-
tant of zones in the portion BW' of the wave. The resultant amplitude at X
of the portion AW is simply equal to half the amplitude of the zone adjacent
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to A. Therefore, the phase of this resultant will be almost the same as that of
the optical disturbance from the zone adjacent to A. Similarly, the phase of
the resultant at X of the portion BW' will almost be the same as that of distur-
bances from the zone adjacent to B. The figure on both sides of the line SO
is symmetrical in the plane of the paper. Hence, it is obvious that the distur-
bances start from A and B in the same phase. Therefore, on reaching X they
will mutually interfere constructively or destructively, according to whether

1
the difference of their paths BX and AX is an even or odd multiple of 3 A. This

set of fringes is, therefore, simply the interference fringes arising as if waves
of light from two coherent sources, situated at A and B, interfere in the region
of the geometrical shadow of the wire. Let the diameter AB of the wire be 2d
and the perpendicular distance between the wire and the screen be D. The
fringe width of the interference fringes is given by

x-DPA_,00 (10.47)

2d AB

where A is the wavelength of the light waves incident on the wire. The fringe
width is the same for all internal fringes and is inversely proportional to the
diameter of the wire.

The explanation of the origin of internal fringes was experimentally ver-
ified by Young. He showed that when the light which passed through one
edge was intercepted by an opaque screen, fringes within the geometrical
shadow as well as diffraction fringes on the side of the opaque screen van-
ished. Therefore, it is clear that the internal fringes arise on account of the
combined action of the portions AW and BW', according to the principles of
interference of light.

10.7 DIFFRACTION AT A CIRCULAR APERTURE

Fresnel diffraction at a circular aperture is characterized by alternate con-
centric circular maxima and minima as shown in Figure 10.15. The intensity
at minima regions, however, is not absolutely zero. Moreover, as the screen
is moved toward or away from the aperture, the intensity of the central ring
alternately becomes maximum and minimum.
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FIGURE 10.15. Fresnel diffraction of a spherical wavefront by a circular aperture.

The same effect is observable by increasing or decreasing the diameter of
the aperture. We shall now explain the origin of this diffraction pattern with
the aid of Fresnel’s half-period zones.

Let AB represent a section, in the plane of paper, of the spherical wave-
front diverging from a point source S situated on the axis of the circular aper-
ture. Let A be the wavelength of the light waves. P is an axial point on the
observing screen. The amplitude at P is the resultant of a large number of
secondary wavelets, which we consider as originating from various points of
the spherical wavefront at the instant they just touch the periphery of the
circular aperture. To find this resultant, we divide the spherical wavefront
into Fresnel’s half-period zones around the point O, the pole of the wave with
respect to the point P. The Fresnel zones are shown in Figure 10.16 where

PO =b,PM, =b+(%), PM, d”(%)

Spherical
wavefront

FIGURE 10.16. Half-period zones on a spherical wavefront.
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The segment of the spherical wavefront by the first circle is the first
half-period zone, the annular space between circles M, and M, is the second
half-period zone, and so on. The area of Fresnel zones, that is, of rings between
successive circles, can be very easily obtained. Let the radius of the spherical
wavefront at a moment it just touches the periphery of the aperture be a,
and let us consider a segment of the wavefront which subtends an angle 2a
at the point source S. Then, from the geometry of Figure 10.17, EG = asina.
The width of the annular ring, shown in Figure 10.17, is EF = a da. Hence,
the area of the elementary ring is given by

dA =2rasina xa da =2rna* sina da (10.48)

FIGURE 10.17. lllustrating the geometry for finding the area of Fresnel zones.

Integrating this elementary area between the limits 0 and o, we get the
area of the segment which subtends 2 at S,

A =2ﬂazf: sinada =2ma*(1-cosa) (10.49)

The angles a, for the boundary of the zones are determined by the
condition

PM, =b+ (%) (10.50)
If the point E is on the boundary of nth zone, then

EP=PM, =b+(%j and a =q,
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Hence,
2
(a+b) +d —(b+n;j

2a(a+Db)
Substituting this value in Equation (10.49), we get

cosa, =

212
Area of first n zones = 27a® — ra 942 +2ab—bnl -1 2
(a + b) 4

Replacing n by (n — 1) in the previous expression, we have

Area of first (n — 1) zones
) ) —1)° A
=ora® -2 2a‘+2ab—b(n—1)ﬂ,—u
(a+D) 4
To obtain the area A, of the nth zone, we subtract the area of the first
(n — 1) zones from that of the first n zones. Thus, we get

Ta 2*
A = bA+(2n-1)— 10.51
= b/ 1051
In practice, b is always large as compared to the wavelength A. Therefore,

(2n-1)2°
the term ———— may be neglected. Hence
a

A = ba 10.52
)P (10.52)

This area is independent of n, and hence all zones are approximately equal
in area. To be more accurate, the areas will increase slowly with n according
to Equation (10.51).

The average distance d, of the nth zone from P is

d, =l(b+(ﬂj+b+—(n_l)/lJ=b+—(2n_1))b
2 2 2 4

Hence,
A, mak
d, (a+b)

This ratio, being independent of n, is the same for all zones. The resul-
tant amplitudes of successive zones starting from the first, owing to obliquity
factor (1+cos), will decrease slowly at first but more rapidly afterward as 6
increases. The resultant amplitude at P is given by
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R j Rl _Rz +R3 _R4 +R5 .”+(_1)"71 Rﬂ

where the alternate plus and minus signs occur, because at P the effects of the
zones are alternately out of and in phase.

10.7.1 Maxima and Minima lllumination of the Central Ring

Let the screen be at such a distance from the aperture that for the axial point
P,, the aperture exposes only the first Fresnel zone. The amplitude at P, is
simply R,, which is twice the amplitude if the entire wavefront were exposed.
The intensity at P, is, therefore, four times as great as the intensity obtainable
if the entire wave were exposed. Hence, the point P, is extremely bright.

For the light of given wavelength, the area of Fresnel zone

A = mTal

decreases with a decrease in the value of b. Hence, the aperture exposes a
greater number of zones as the screen is moved toward it. Let the screen be
moved until it arrives at the point P, for which the aperture exposes the first
and the second Fresnel zones. The amplitude at P, is therefore R, - R, which
since R, and R are nearly equal, is very small. The intensity is approximately
zero. Thus, the center of the diffraction pattern is practically dark in contrast
to the Fraunhofer diffraction pattern where the central disc is always bright. If
the screen is moved still nearer to the aperture, it arrives at P, for which the
first three zones are exposed. The amplitude at P, becomes

1
R, —R, +R, ;E(}R1 +R;)

which is again large. Thus, the axial point alternately becomes bright and dark
as the screen is moved toward the aperture.

If the position of the screen is kept fixed while the aperture is gradu-
ally increased, it successively exposes one, two, three, or four zones or more.
Therefore, again, the intensity at the axial point is alternately maximum and
minimum. The illumination at the axial point P of the screen is, therefore,
maximum or minimum according to whether the aperture exposes odd or
even numbers of Fresnel zones.

We can now easily calculate the position of the screen for the maximum or
minimum brightness of the axial point P. Let SQ = ¢, QP =d, AQ =r where Q
is the center of the circular aperture.
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SA*=¢* +7r°
Hence,

r 1(r*
SA=c\|l+—5=c+—=| —
c” 2\ ¢

r
on expanding by binomial theorem and neglecting powers of —, since r is
very small in comparison with ¢ and d. ¢

Similarly,

2
AP = d+(r—j
2d

Hence,

2

211
SA+AP=(c+d)+—| =+~
+ (c+ )+2(c+d)

Therefore, the path difference between the extreme ray SAP relative to
the axial ray SQP is

2 2
SAP—SQP:(c+d)+%(%+$j—(c+d):%(%+$j

For the maximum at P, the aperture contains an odd number of Fresnel
zones. Therefore, the path difference (SAP — SQP) must be an odd multiple

A
of —, that is,
2

(1 1 A
Maxima: %[;+3j=(2n+1)5 (10.53)
Similarly, for the minimum at P, we have
(1 1 A
Minima: %[; + gj = (271)5 (10.54)

Equation (10.53) is a general equation connecting the distance ¢ of the
source and d of the axial point P, both measured from Q, the center of the
aperture, when intensity is maximum at P.

10.7.2 Intensity at Non-Axial Points

The mathematical treatment for finding the intensity at points a short distance
off the axis is more complicated, but we can form an idea about the result by a
simplified treatment. For concreteness, let us suppose that the aperture is of
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such a size as to expose three zones for an axial point P;, so the center of the
pattern is bright.

The Fresnel zones that should be used to find the amplitude at non-axial
point P’ have their center on the point O’, the intersection of the wavefront
with the line joining S and P'. As seen from P’, the aperture and the half-
period zones appear as in Figure 10.18, where it would be seen that the first
and the second zones are still entirely exposed, together with about half of the
third and fourth zones. The resultant amplitude at P' due to exposed zones is
equal to

1 1 1
Rl —RQ +ER«5 —§R4 :Rl —E(R] +Rg)+§Rg ——R4 EE(RI —R4)

FIGURE 10.18. Fresnel zones exposed by a circular aperture for a non-axial point.

which is a minimum value as compared to the amplitude at the axial point P;.
The intensity at P’ is, therefore, less than that at the center. The aperture is
perfectly symmetrical about its axis. Therefore, the central bright spot in this
case is surrounded with an approximately dark ring. In a similar way it can be
shown that there are other bright and dark rings surrounding the central spot.

10.7.3 Penetration of Light within the Geometrical Shadow

Let us consider a point on the screen just above the edge of the geometrical
shadow of the aperture. The exposed zones are shown in Figure 10.19.
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FIGURE 10.19. Fresnel zones exposed by a circular aperture for a point within the
geometrical shadow.

About one-third of the first zone, a somewhat larger portion of the sec-
ond, and varying parts of many more zones are exposed. There is, therefore,
a small but definite amount of intensity within the geometrical shadow. But if
the point is so well within the geometrical shadow that the first few zones and
the last few zones are entirely cut off, then the contributions of the exposed
portions of different zones mutually cancel, with the result that the intensity
is zero.

10.8 DIFFRACTION AT AN OPAQUE DISC

A surprising result was deduced by Poisson in 1815, that is, that a bright
spot should always be formed at the center of the shadow of a small cir-
cular disc. He concluded that this seemingly absurd prediction was so far
at variance with the recognized properties of light that it disproved wave
theory. The experiment was tried by Argo, who employed a circular disc of
2 mm in diameter. He showed that the geometrical shadow had a central
bright spot. The complete diffraction pattern, besides the central spot and
faint rings in the shadow, consists of bright circular fringes bordering the
outside of the shadow. We shall show, by the help of Fresnel’s half-period
zones, that the center of the shadow should always be bright, irrespective
of distance of the screen from the disc.
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Suppose a spherical wavefront WW of monochromatic light is incident on
the circular disc AB, from the left as shown in Figure 10.20. We divide this
wavefront into Fresnel zones for an axial point in the usual manner. The areas
of these zones depend on the distance b of the axial point from the disc. Let
us suppose that for the point P,, the disc covers up the first zone. The second
zone is then the first exposed zone, sending light to P,. Therefore, to find the
resultant amplitude at P, due to the entire exposed zones, we should perform
the summation beginning with R,.

Circular T

opaque obstacle e Tl
W Screen

F

FIGURE 10.20. Fresnel diffraction of a spherical wavefront by a circular opaque obstacle.

We get for the amplitude at P,,

D, :RQ—RS+R4—RS+---:%

2
and the intensity at P, is proportional to R—Z, which is approximately the same
2

as —L, the intensity obtainable if the entire wave were exposed. The center of

shadow, therefore, is nearly as bright as when the disc was absent.

When the screen is moved toward the disc, the area of each zone dimin-
ishes and the disc, therefore, covers up a large number of zones. Let us sup-
pose that the disc covers up the first two zones when the screen is at P,, a point
nearer to the disc than P|. The resultant amplitude at P, is therefore given by

R
Dy =Ry =R, + By =R+ =2

and the intensity at P, is proportional to (%j . Similarly, the intensity at

R 2 R 2 R 2
any point P is proportional to (—4) , (—Sj , [—6] , and so on, according to
2 2 2



DirFrACTION OF LiGHT © 341

when the first three, four, five . . . zones are intercepted. Thus, the center of
the geometrical shadow is always bright. The central spot becomes smaller in
diameter as the disc becomes large.

The rings in the shadow are similar in origin to the interference fringes
within the shadow of the narrow wire, while the bright and comparatively
dark fringes bordering the outside of the shadow are similar in origin to the
diffraction fringes due to a straight edge.

10.9 ZONE PLATE

A remarkable experimental confirmation of Fresnel’s theory of half-period
zones is provided by an optical device known as a zone plate. The zone plate is
so called because it is constructed following the Fresnel zone law. It is simply
a plane parallel glass plate, having concentric circles of radii accurately pro-
portional to the square roots of the consecutive natural numbers 1, 2, 3, and so
on. The even or odd order annular spaces between the circles are completely
dark. Let us suppose that a plane monochromatic light wave, for which the
plate is constructed, is incident normally on it. On the other side on its axis we
shall encounter a series of maxima points having intensities in increasing order,
as the distance of the points from the plate increases. The zone plate acts,
therefore, like a convergent lens but, unlike the lens, it has a series of foci and
associated focal lengths. There are also series of virtual foci on the side of the
source. In other words, the zone plate is capable of acting as a divergent lens
also. The theory of the zone plate and its properties are discussed as follows.

Let AB in Figure 10.21 represent a plane parallel transparent screen per-
pendicular to the plane of paper, and let S be a point source of monochro-
matic light of wavelength A.

FIGURE 10.21. Theory of the zone plate.
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We have to find the resultant amplitude at a point P, due to secondary
wavelets diverging from the various points of the screen under the influence
of spherical waves diverging from S. We must, of course, consider that the
screen is not a wave surface, and so the virtual secondary sources are not
in phase. The resultant amplitude can be determined by dividing the entire
screen into half-period zones. We mark off points M, M,, and so forth on the
screen so that

SM,P, - SOP, = él
SM,P, —SOP, = A

1
SM, P, ~SOP, = _nA

A circle of radius OM, drawn on the transparent screen constitutes what is
known as Fresnel’s first half-period zone; the annular space between the con-
centric circles of radii OM, and OM, constitutes the second half-period zone,
and so on. In this way the entire screen can be divided into a large number of
half-period zones.

Let r, be the radius OM,, of the outer boundary of the nth zone, and let
OS =u and OP, =v. Then, from the right-angled triangle SOM,, we have

SM,*>=SO>+OM> =u> +r’

Hence,

2 2
SM, =u1/1+r—"_,=u+lri
u” 2 u

since r, is small in comparison with . Similarly

1r
PM, =v+——+
2 v 5
r(1 1
SM, +M P, =(u+v)+—=| —+—
2\v wu
2
r(1 1
SM, P, =SOP, +L(—+—]
2\v wu
) ni
But by construction SM, P, —SOP, = o

Hence,

1’5(1 lj ni
—_— _J’__ [ pp—
2\v u 2
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» A
=0 (10.55)
(u+v)
rl=nr! (10.56)
The value of r for the first, second, . . . zones can be obtained by substitut-

ing 1,2, 3, ... for n in Equation (10.55). Thus, the external radii of Fresnels
half-period zones, for given values of u, v, and A, are proportional to square
roots of natural numbers.

The area of the nth half-period zone is given by

ToA

@

This being independent of n, all zones are equal in area (approximately).
If u becomes infinite, we shall have plane waves falling on the screen. The
area of each half-period zone reduces to mA.

Let R,, Ry, R,,..., R, be the resultant amplitudes at P, due to secondary
wavelets from the 1st, 2nd, 3rd, . . . and the nth zone. Owing to the obliquity
factor, the magnitudes of R, R,, R,, and so on are in decreasing order. There-
fore, the resultant amplitude at P, due to entire zones is given by

D=R, —R,+R,—R, ++(-1)""R,

1

A =

D= E(RI *R, )
where n is finite and small. But when n is very large, then
p-1g
2

The resultant amplitude at P, due to either the odd-numbered zones or
due to the even-numbered zones alone would be clearly much greater than
that of the entire wave. This may by tested experimentally by blocking off by
some means the even numbered zones, for example. The resultant amplitude
at P, in this case becomes

1
D1:RI+BS+RS+R7+"'E§NRI (10.57)
where N is the total number of zones in the screen and 5 zones are exposed.

1 912
The intensity at P, is, therefore, proportional to ZN R}, which is N* times
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2
greater than the resultant intensity Il due to all zones. For example, if the

only alternate exposed zones are 10 in number, that is N =20, even then the
intensity is 400 times as great as that obtained when all zones are exposed.
Under this condition, P, will be a point of maximum intensity. In other words,
most of the light from S will be concentrated at P,. If odd zones are blocked,
the resultant amplitude at P, becomes

D =R,+R,+R;+-

and again P, will be a point of maximum intensity. We can therefore say that
under these conditions, P, is the image of S, and its distance from the zone
plate satisfies the relation Equation (10.55), which can be expressed in the form

1 1 n
_+_=”_2 (10.58)
u

(Y T

n

a result similar to the lens equation.

A zone plate can be very conveniently prepared by the following method:

On a sheet of white paper, we first draw concentric circles of radii accu-
rately proportional to the square roots of consecutive integers 1, 2, 3, 4, and
so on. The alternate zones are then blackened, and a much-reduced copy of
the same is obtained by photographing it on a plane parallel glass negative.
When the plate has been fixed, the negative is a zone plate. Because of the
difficulty of drawing a large number of circles accurately, another method for
constructing the zone plate may be employed. Dark rings of a Newton rings
interference pattern, it will be recalled, have radii proportional to the square
roots of consecutive integers 1, 2, 3, 4, and so forth. The dark and bright rings
have equal areas when parallel monochromatic light is employed. Thus, it is
possible to construct a zone plate by photographing Newton’s rings as seen by
the reflected light.

The zone plate acts as a convergent lens not only for axial points but also
for small extended objects. Let us suppose that a small object PQ is situated
at a distance u from the plate on its axis. Let PQ =x and P'Q’=y. It is easy to
see from Figure 10.22 that
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Zone plate

FIGURE 10.22. |llustration of image formation by zone plate.

PR= uz+(01%—x)2=u+lM
2 u
. OR+yY
PR=/v* +(OR+y)’ =U+%—( +y)
U
Hence,
—x} 1(OR+y)
PRP’=(u+U)+l(OR x) , 1(OR+y)
u 2 v
Similarly,
'—x) 1(OR +y)
PR'P'=(u+u)+l(OR ©) +l( +y)
2 u 2 v
Thus,
' pr 1 2 12 2 1 1 | X ?/
PRP'—PR'P'=—=(OR* ~OR"”) | =+~ |-RR'| === (10.59)
2 v ou u v

Let R and R’ be the two corresponding points on two successive transpar-
ent zones. For concreteness, let R be on the outer boundary of the nth zone
and R’ on that of the (n-2)th zone, the (n-1)th zone being opaque. Therefore,
by the help of Equation (10.55), we have
2uvi

(u+v)

, uvi
OR* -OR” “Taro (n-(n-2))=
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Hence, Equation (10.59) assumes the form

PRP'— PR'P' = A —RR'(f —Qj
u v
If the path difference between the waves through corresponding points
of the zone plate is 4, the waves reinforce each other at P’. Then, the second
term of the previous equation vanishes and gives the relation

Yy v

xou
Under these conditions P’ is the image of P. The zone plate, therefore,
also forms well-defined images of small extended objects, and the magnifica-
tion < follows the same law as in the case of a lens.
x

10.9.1 Multiple Foci of a Zone Plate

The focal length of the zone plate can be easily obtained by making u infinite
in Equation (10.58)

f =l (10.60)

Forn=1,

f-
YA

The point P, given by the previous relation is called the primary focus
or the first order focal point and is the most intense. Here one Fresnel zone
coincides with each actual zone of the plate. f, is known as the primary focal
length of the plate.

There are a series of foci, unlike in a convergent lens, of diminishing
intensity as we go along the axis towards the plate. The existence of these foci
is simply because the area of each zone diminishes as points nearer to the
plate are considered. Thus, for a point P, on the axis at one-third the distance
from the plate to the first focus, the actual first zone contains 1st, 2nd, and
3rd half-period zones. The second black zone intercepts the 4th, 5th, and 6th
new Fresnel zones, while the wavelets from the 7th, S8th, and 9th new zones,
contained in the original 3rd zone, are transmitted, and so on.

Therefore, the resultant amplitude at P, is given by

(10.61)
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, =(R, —R,+R;)+(R. —Ry +Ry)+(Ry; —R,, +R;5) +
Dsz(R ;R+R j ( R_+R)+jo+

D,=R,+R,+R.+R, +--

The intensity at P, is a maximum which is, therefore, the second focal
point, but it is much less intense than first one. The light rays transmitted
through each successive transparent zone have a path difference of 31. Hence,
P, is also called the third-order focal point. The first original zone exposes
three new zones, all of equal area. Therefore, we have the relation

3na’ =nr]

ot

J3
where a, is the radius of the new first zone. Therefore, replacing r, by @, in
Equation (10.61), the focal length associated with the second focal point P; is
obtained as

a

=y

The fifth-order focal point Py occurs at a position in which Fresnel zones
are alternately passed and blocked off in sets of five. The resultant amplitude
at Py is given by

D;=(R,-R,+R,-R,+R;)+(R,, -R,, +R,; — R, +R}; )+
D, ;%(R1 +R;+R,, +R;5+-)

Thus, P; is still a less bright focus, and the corresponding focal length is
given by
bZ 1/_2 1

f5 55

where b, is the radius of the first new zone.
1
A zone plate has multiple foci at flg flg fl? f1» and so on, and their

intensity is in decreasing order. Generalizing the result we can say that if, for
any point on the axis, an odd number of Fresnel zones are alternately passed
and blocked off, the point under consideration is a focal point. The focal
length associated with various foci can be obtained by putting m =0,1,2,3, and
so forth in the expression
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n

,onH—l = m

Similar reasoning shows that there should be no even-order focal points.
However, all the zone plates tested had a second-order focal point at approx-

1
imately Py fi. This was caused partly due to unequal areas of opaque and

transparent zones. Owing to this reason, the two Fresnel zones, which should
coincide with each actual zone of the plate at the second-order focal point, do
not completely cancel each other but a partial reinforcement of light occurs.

The zone plate also acts simultaneously as a concave lens but, unlike the
lens, it has multiple virtual foci on the side of the source.

Example 10.1

A very narrow vertical slit illuminated with sodium light of wavelength
5.9x107 c¢m casts a shadow of a vertical copper wire 1 mm in diameter and
2 meters away, on a screen 3 meters away from the wire as shown in Figure
10.23. Calculate the distance apart of the bands inside the shadow and the
total number of bands which can be seen.

FIGURE 10.23. Example 10.1.

Solution:

In Figure 10.23, AB represents the region of geometrical shadow of the wire
O. In this region of the screen, equidistant bright and dark bands are observed.

Their distance apart is expressed by
g DA
2d

In the given problem, D=0C =300 cm, 2d=S,S,=0.1 cm,and A= 5.9x107° cm



DIFFRACTION OF LiGHT * 349

Hence,
52300x59x107 o
0.1
Also, from similar triangles SS,S, and SAB, we have the relation
AB S8,
sC SO

With the given data, AB = % =0.25cm

At the point C is equidistant from S, and S,, a bright fringe will be observed.
The separation between the two bright interference fringes, each of the order
1, would be 2x0.177 cm, that is, 0.354 cm (if formed). This separation exceeds
the width of the geometrical shadow AB. Hence, only 2 dark bands will be
seen within the geometrical shadow.

Example 10.2

A strong parallel beam of monochromatic light is incident normally on a thin
plate having a small circular hole of diameter 1 mm. If the screen is moved
through a distance of 12.5 cm from the first position where the center is black
to the second similar position, what is the wavelength of light used?

Solution:

From the theory of Fresnel diffraction due to circular aperture, it follows
that for the first position of the screen where the center of diffraction is black
(not absolute), the aperture should expose two Fresnel’s half-period zones of
the wavefront. Accordingly, the distance of the center of the diffraction pat-
tern from the edge of the aperture must be (x+1), where x is the separation
between the screen and the aperture. It is now easy to write the relation

(QH—/”L)2 =2’ 477

Neglecting the term 2 being extremely small as compared with the other
terms, the previous equation reduces to

2 =1’

The second similar position of the screen is closer to the aperture. For this
setting of the screen, the aperture should expose four half-period zones of the
wavefront. Accordingly, the distance of the center of the diffraction pattern
from the edge of the aperture would be (x — 12.5 + 21). It is now easy to write
the relation
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(x=125+21) =(x—12.5)" +1°

Neglecting the term involving 2%, the previous equation reduces to the

form
4x) - 504 =1*
Hence,
2
o 0.05x0.05 —5%107 e,
50 50
Example 10.3

A zone plate is made by arranging that the radii of the circles which define
the zones are the same as the radii of Newton’s rings formed between a plane
surface and surface whose radii of curvature is 2 meters. Find the primary
focal length of the zone plate.

Solution:

The square of the radii of dark Newton’s rings for the case of air film (u=1)
reduces to

r?=nAR
where n=1, 2, 3, 4, and so on for the first, second, third . . . dark rings respec-
tively, and R is the radius of curvature of the curved surface of the film.

According to the condition of the problem, the previous equation also
expresses the square of the radii of the circles which define the zones of the
zone plate. The primary focal length of the zone plate, expressed by Equation
(10.61), therefore reduces to

£, =R =200 cm,

10.10 EXERCISES

1. (a) Explain the phenomenon of the diffraction of light.
(b) Explain the difference between the Fresnel and Fraunhofer classes of
diffraction phenomena.
(c) Distinguish clearly between interference and diffraction.

2. What are half-period zones? Show that the amplitude due to a large wave-
front at a point in front is just half that due to the first half-period zone
acting alone. Hence, explain the rectilinear propagation of light on the
basis of wave theory.
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12.
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What is a zone plate? How is it constructed? Show that a zone plate has
multiple foci. Compare the zone plate with a convex lens.

Describe giving necessary theory the Fresnel type of diffraction produced
by a straight edge. Explain how you would obtain the wavelength of light
in this case, stating precisely what observations you would make. Draw
a diagram to indicate the intensity distribution of light in the diffraction
pattern.

Describe and explain the diffraction pattern formed by a narrow wire illu-
minated by a monochromatic light from a narrow slit parallel to the wire.
How would you use the pattern to measure the thickness of the wire?

Give Fresnels theory of diffraction and explain with its help why the
center of the shadow of a small disc is bright.

A narrow circular aperture is held on one side of a fine hole and a screen
is placed at some distance on the opposite side. Explain the illumination
observed on the screen when a beam of monochromatic light is made to
pass normally.

What is the radius of the first zone in a zone plate of focal length 20 cm for
light of wavelength 5000 A.U.?

A zone plate has the radius of the first ring 0.05 cm. If plane waves
(AL = 5000 A.U.) fall on the plate, where should the screen be placed so
that light is focused to a bright spot?

A zone plate gives a series of images of a point source on its axis. If the
strongest and the second strongest images are at 30 cm and 6 cm respec-
tively from the plate, both on the same side remote from the source, cal-
culate the distance of the source from the zone plate.

If the diameter of a wire is 0.2 mm, calculate the separation between
the fringes formed on a screen placed at 50 cm from the wire. The light
source used has a wavelength of 5000 A.U. and is placed at a finite dis-
tance from the wire.

A narrow slit illuminated by light of wavelength 6.4x 107 em s placed at
a distance of 3 meters from a straight edge. If the distance between the
straight edge and the screen is 6 meters, calculate the distance between

the first and the fourth dark bands.
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13.

14.

15.

16.

17.

Light of wavelength 6x 10°cm passes through a narrow circular aperture
of radius 0.09 cm. At what distance along the axis will the first maximum
intensity be observed?

A circular aperture of 1.2 mm diameter is illuminated by plane waves of
monochromatic light. The diffracted light is received on a distant screen
which is gradually moved toward the aperture. The center of the circular
path of light first becomes dark when the screen is 30 cm from the aper-
ture. Find the wavelength of light used.

A monochromatic beam of light, on passing through a slit 1.6 mm wide,
falls on a screen held close to the slit. The screen is then gradually moved
away, and the middle of the patch of light on it becomes dark when the
screen is 50 cm from the slit. Calculate the wavelength of light used.

A very narrow vertical slit is illuminated with monochromatic light of
wavelength 5461 A.U. A vertical wire of 0.1 cm diameter is placed in front
of the slit, parallel to it. A screen is placed 3 meters from the wire. Calcu-
late the bandwidth within the geometrical shadow.

The diameter of the central zone of the zone plate is 0.23 cm. If a point
source emitting light of wavelength 6000 A.U. is placed 600 cm from
the zone plate, find the position of the primary image and that of other
weaker images.
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11.0 INTRODUCTION

The successful interpretation of the phenomena of interference and diffrac-
tion of light on the basis of wave theory established conclusively that, like
sound, light is also a wave motion. It was, however, not at all essential at that
stage to raise the question whether light waves are longitudinal or transverse,
owing to the fact that these phenomena occur for all types of waves. With the
help of experiments illustrating these phenomena, we are able to measure
accurately the wavelength of light, but we fail to obtain any information on
the nature of light waves. In this connection we may ask whether light waves
are transverse or longitudinal, or whether the vibrations are linear, circular,
elliptical, or torsional. In order to get correct answers to these questions, we
have to take recourse to another group of experiments which bring into evi-
dence another property of light called the polarization of light. This phenom-
enon demands for its explanation that light must be a transverse wave motion
in contradistinction to Huygens’s conception of longitudinal wave motion.
Before discussing the phenomenon of the polarization of light, we will first try
to explain the meaning of the phrase “polarization of a wave.”
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Plane polarized light represents a special and relatively simple type of
polarization. The light vector varies harmonically along a fixed straight line
perpendicularly to the direction of propagation. By the superposition of two
plane polarized beams of monochromatic light under suitable conditions,
the resultant light vector so produced rotates in a plane perpendicular to the
direction of propagation, and if its magnitude remains constant, the resulting
light is spoken of as circularly polarized. If, however, the magnitude of the
resultant light vector varies periodically between its maximum and minimum
values during its rotation, its tip would trace out an ellipse, and the resulting
light is known as elliptically polarized.

POLARIZATION OF A WAVE

In a longitudinal wave, the vibrations of the medium are parallel to the direc-
tion of the propagation. As a consequence, vibrations are exactly similar in all
planes drawn through the direction of propagation. To be more precise, the
appearance of a longitudinal wave is the same when viewed from different
angles around this direction. This is expressed by saying that the longitudi-
nal wave is perfectly symmetrical about the direction of propagation. On the
other hand, in the case of a transverse wave, particles of the medium execute
simple periodic vibrations in a direction at right angles to the direction of
propagation. For example, in Figure 11.1 in a transverse wave progressing
along the X-axis, the vibrations of the medium are confined to the XY plane.
There are no vibrations in the XZ plane.

FIGURE 11.1. Linearly polarized wave.
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As a consequence, the transverse wave would appear quite differently when
viewed from different angles around the direction of propagation; that is, this
wave is not symmetrical around the axis of X. This want of symmetry is the dis-
tinguishing feature of every transverse wave and is spoken of as the polarization
of the wave. However, it is only so if we observe a limited portion of the wave or
observe it momentarily, for it may happen that the displacement of the medium
may be changing its direction continuously, although always remaining per-
pendicular to the direction of propagation to preserve its transverse character.
Besides this, these changes may become too rapid to be perceived by the eye
or photographic plate, both of which are capable of registering only the average
effect. As a consequence, the resultant effect perceived by the eye may show it
to be perfectly symmetrical about its direction of propagation, although there is
no doubt about its transverse character. Such a wave is said to be unpolarized.

Ordinary or natural light behaves in this manner and is said to be unpolar-
ized. To elaborate this statement we may add that the electric vector, transverse
to the direction of propagation in the ordinary light wave, undergoes such rapid
and random changes of direction that if it were possible to view the vibrations
physically, then due to the persistence of vision the eye would observe the wave
to be quite symmetrical about the direction of propagation. This is due to the
fact that ordinary light contains millions of transverse waves about a meter in
length and confined in all possible planes through the direction of propagation.
Each wave is radiated out for 107 sec from one of the millions of excited atoms
or molecules in random orientations in the source of light, and it is impossible
for the electric vector to have all possible orientations simultaneously at any
moment. It is assumed that the constituent transverse waves follow one another
in such rapid succession that, during the minimum period required by the eye or
photographic plate to register the effect, all possible orientations of the electric
vector are equally represented. In other words, vibrations in any one direction
cannot be isolated in the analysis of ordinary light. This accounts for the symmet-
rical character of ordinary or natural light around the direction of propagation.

To this change in the direction of vibration in the transverse waves we
add another possibility of change in the character of vibration, namely, it may
somehow undergo many random changes of shape, say from linear to circular
and from circular to elliptical. Accordingly, we define the polarized wave as
follows: a transverse wave is said to be polarized when the vibrations of the
medium do not change in direction or form.

By suitable devices described later, the electric vector may be constrained to
describe by the same locus linear, circular, or elliptical rays of fixed orientation
transverse to the direction of propagation of the wave. Accordingly, we shall
have linearly polarized, circularly polarized, or elliptically polarized waves.
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11.2 MECHANICAL EXPERIMENT TO DEMONSTRATE THE
POLARIZATION OF A WAVE

A very simple mechanical experiment may be arranged to demonstrate the
polarization of a wave. Suppose a narrow loosely stretched string AB passes
through two narrow rectangular slits N, and N,, each a little wider than the
diameter of the string. Its one end B is fixed while transverse waves are gener-
ated in it by shaking its free end A and changing the direction of shaking in
a random fashion from one instant to the next. In the portion AN, the vibra-
tion of every element of the string is changing arbitrarily; accordingly, in this
portion we have an unpolarized wave. The slit N, being only slightly wider
than the string, will allow only those transverse waves to pass through it freely
whose vibration planes are parallel to its length. The transmitted vibrations
are thus confined to a single fixed plane; therefore, the wave between two
slits is symmetrical and is spoken of as a plane polarized or linearly polarized
wave, while the slit N, is spoken of as the polarizer in this experiment. This
polarized wave will be transmitted by the second slit N, only if the lengths of
N, and N, are mutually parallel as in Figure 11.2 (a), but it will be completely
stopped if N, is rotated to a position perpendicular to the slit N, as shown in
Figure 11.2 (b). The string beyond N, in the latter case will show no vibrations
at all. The slit N, which functions as the analyzer or detector of polarization of
incoming waves is spoken of as an analyzer.

HH‘"'H\.J N;

)

FIGURE 11.2. Mechanical experiment to demonstrate polarization of a wave.
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If, however, the string were replaced by a spiral spring, longitudinal waves
created in it would pass freely from one end to the other, unaffected by the
presence of slits or their relative orientation. Polarization is thus the char-
acteristic of transverse waves only. Figure 11.3 illustrates that the vertical
disturbance in a rubber tube is transmitted freely through a vertical slit, in a
horizontal disturbance it is not transmitted, and in a disturbance in an inter-
mediate plane it is partially transmitted.

(a)

()

FIGURE 11.3. (a) A vertical disturbance in a rubber tube is transmitted freely through a vertical
slit; (b) a horizontal disturbance is not transmitted; (c) a disturbance in an intermediate plane
is partially transmitted.

11.3 OPTICAL EXPERIMENT TO ILLUSTRATE THE
POLARIZATION OF A WAVE

A similar experiment in optics throws considerable light on the nature of vibra-
tions in light. Tourmaline is a naturally occurring crystal, originally obtained
from Tourmali in Ceylon. When a beam of ordinary light is allowed to pass
through a plate N, of this crystal, cut with faces parallel to its vertical axis,
only a part of the incident light is transmitted and is found to be plane polar-
ized. The phrase plane polarized means that the electric vector in the beam is
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confined in one definite plane or parallel to it, through the direction of propa-
gation. But to an eye which is incapable of detecting polarization of light, the
transmitted beam appears to be only slightly colored due to the natural color
of the crystal. If this beam is further allowed to pass through a second similar
crystal plate N,, placed with its axis parallel to N, as depicted in Figure 11.4
(a), the only observable effect is increased coloration of the emergent light,
owing to two crystals in the path of the incoming light. But if N, is rotated with
respect to N, in its own plane, the light transmitted through the combination
gradually becomes dimmer and dimmer as in Figure 11.4 (b) and is finally cut
off after a rotation of 90°—the axes of N, and N, are now crossed as in Figure
11.4 (c). On further rotation of N, through 90°, the transmitted light gradually
attains full brightness; the axes of N; and N, are now again mutually parallel.
Thus, brightness and darkness continue to alternate at settings of N, which
are 90° apart.

This experiment clearly shows that the light wave emerging from N, is
asymmetric, for had it been symmetrical, it would have passed freely through
N, in all its orientations. Obviously, tourmaline crystals possess some prop-
erty analogous to that of slits. This simple experiment, which illustrates the
polarization of light, demands for its explanation, as first advanced by Fresnel,
that the light wave must be transverse. For if it had been a longitudinal wave,
it would have passed freely through the crystal plates irrespective of their
mutual orientation. Accordingly, the intensity of transmitted light would have
remained constant. After traversing N,, the vibrations in the light wave are
executed in one single direction, parallel to the crystallographic axis of N,.
Thus, the emergent light is plane polarized. The crystal plate N, is spoken of
as the polarizer and N, as the analyzer because it enables us to observe the
polarization of light. The plane of polarization is defined as the plane perpen-
dicular to the plane of vibration in the light wave.

N, N,

—

- Toumali;;\//
(a) (b) (c)

FIGURE 11.4. Optical experiment to demonstrate polarization of light.
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11.4 DISCOVERY OF POLARIZATION OF LIGHT

11.5

The history of polarization began in 1669 with the discovery of the phenom-
enon of double refraction by a Dutch philosopher, Erasmus Bertholinus, while
experimenting with a calcite crystal. This phenomenon was further studied by
Huygens in 1690 who found that calcite forms two images of equal brightness,
except when light traversed it in a direction parallel to the crystallographic axis.
Furthermore, he discovered that each of the emergent beams from the calcite
can be further subdivided, by its passage through a second crystal, into two
beams of equal or unequal intensities or not decomposed at all, depending upon
the orientation of the second crystal with respect to the first. This experiment
clearly established that natural light is perfectly symmetrical, while the emer-
gent beams from calcite are asymmetrical and therefore polarized. Although
Huygens became the discoverer of polarization of light, he remained ignorant
of its true nature and could not explain this phenomenon according to the prev-
alent longitudinal conception of light waves. Newton recognized the essential
features of polarization when he said that a ray of light might have sides.

In 1808, Malus discovered that light reflected from glass possessed partly the
characteristics (asymmetry) of beams of light emerging from calcite, but at one
particular angle of reflection, it is completely polarized. He could not explain this
asymmetry on the basis of Young’s longitudinal vibration theory. Accordingly, he
suggested that this phenomenon must be caused by some induced property of
light corpuscles like that of the magnetic pole or an electric charge, giving rise
to definite bias or polarity in the light beam. This suggestion gave birth to the
title polarization for this new phenomenon. The interpretation of polarization
in terms of the transverse nature of light waves was, however, given by Fresnel.

PICTORIAL REPRESENTATION OF LIGHT

For further study of polarization of light, we shall have to represent light
waves on paper. Accordingly, we should adopt some convention for their
proper representation. According to the electromagnetic theory of light, it
will be recalled that light is nothing but the propagation of mutually per-
pendicular vibrating electric and magnetic vectors, and the electric vector
functions as the light vector. A beam of ordinary or natural light, therefore,
consists of millions of electromagnetic waves, the light vector of each having
its own plane of vibration in arbitrary orientation due to random orientations
of excited atoms or molecules in the source. Vectors of light are, therefore,
arranged symmetrically about the direction of propagation, in all planes with
equal probability, and its end on view is represented by Figure 11.5.
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Y
FIGURE 11.5. End on view of unpolarized beam of light.

The mode of vibration of a light vector in any one light wave may be rep-
resented as shown in Figures 11.6 (a) and 11.6 (c), depending upon the plane
of vibration. Figure 11.6 (a) is a representation of a wave of light traveling
from left to right with vibrations confined to the plane of paper or parallel
to it. The vibrations are represented by short vertical lines. Accordingly, this
is the representation of a plane polarized light beam with its plane of polar-
ization perpendicular to the plane of the page. Figure 11.6 (c) is a represen-
tation of a light wave in which vibrations are executed perpendicular to the
plane of the page; accordingly, they are represented by dots on the direction
of propagation. End on views of the same waves are shown respectively in
Figures 11.6 (b) and 11.6 (d).

A A A A A A A
@44 Lo

O 4o

FIGURE 11.6. Pictorial representations of plane polarized and ordinary light beams.

In ordinary light, light vectors are in random orientations and all the ampli-
tudes of light vectors may be resolved into components along any two trans-
verse and mutually perpendicular directions, say in the Y and Z directions.
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Figure 11.7 shows components OAY and OAZ of the light vector OA of one
constituent wave, where

OAZ = OAcos8 and OAY = OAsin0 (11.1)

0 A,

FIGURE 11.7. Components OAY and OAZ of the light vector OA of one constituent wave.

If this resolution of amplitude is continued for all light vectors, then owing
to all vibration directions being equally probable, the average of the amplitude
components along the axis of Y will be just equal to the average along the Z
axis. Consequently, for theoretical discussion, we may replace an ordinary beam
of light by two waves of equal amplitudes, vibrating in mutually perpendicular
planes, of course, having no permanent phase relations to each other, due to the
arbitrary phase changes in waves constituting the ordinary light. Figures 11.6 (e)
and 11.6 (f) may be taken as the theoretical representation of ordinary light.

11.6 PRODUCTION OF PLANE POLARIZED LIGHT

The extreme importance of the discovery of the polarization of light lies in the
fact that the transverse nature of the waves constituting the light was thereby
established, in contradistinction to Huygens’s conception of longitudinal waves.
The common methods for the production and analysis of plane polarized light
may be grouped under the following heads: polarization by (a) reflection,
(b) refraction, (c) double refraction, (d) selective absorption, and (e) scattering.

11.7 POLARIZATION BY REFLECTION

In 1808, the French physicist Malus discovered that when a beam of ordinary
light is incident at a particular angle of about 57° on a glass plate, the reflected
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light possesses properties similar to those found in light obtained by transmis-
sion of natural light through tourmaline or calcite; that is, reflected light is
plane polarized light. The phrase plane polarized means that the light vector
in the reflected light is vibrating transversely to the direction of transmission,
in a fixed plane through this direction. Pursuing the enquiry further, he found
that the same phenomenon occurs when light is reflected from water and
other transparent substances.

The polarization of reflected light can be easily demonstrated by an
experimental arrangement sketched in Figure 11.8 in which N, and N, are
two plane parallel glass plates blackened on their back surfaces so as to absorb
the refracted beam.

Z
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FIGURE 11.8. Polarization by reflection from glass surface.

A beam of unpolarized light AB consisting of parallel rays is incident at an
angle 57° on N at B, and the reflected beam BC is again reflected at the same
angle from the plate N,, placed exactly parallel to N,. The plate N, is now
rotated about BC as an axis through one complete rotation; this ensures the
angle of incidence on N, to be the same in all its orientations. The intensity of
twice the reflected beam is found to be maximum when N, and N, are parallel
as in Figure 11.8 (a) or antiparallel as in Figure 11.8 (c), that is the planes of
incidence are mutually parallel. The intensity is zero when they are crossed as
in Figure 11.8 (b), that is, the planes of incidence are mutually perpendicular;
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11.8

and in passing from the parallel to crossed position, the intensity diminishes
from maximum to zero value. The variation in intensity of twice the reflected
beam due to the rotation of N, clearly proves that when light is reflected at
57°, the reflected beam consists of waves in which vibrations are confined to
a certain definite direction transverse to the ray; that is, it is a plane polarized
beam. The lower plate N, is called the polarizer while the upper plate N, is
called the analyzer.

If we rotate the lower plate N, about the incident beam as an axis, we get
the reflected beam BC of the same intensity, thereby showing that the inci-
dent light is perfectly symmetrical about the direction of propagation.

If, however, the angle of incidence on the upper or lower plate is not 57°,
the twice-reflected beam will exhibit maximum and minimum intensities as
before, but the minimum intensity will not be zero. In other words, there will
always be a reflected beam from N,. At angles other than 57°, the reflected
beam BC is not completely plane polarized, while at 57° the polarization is
most complete.

The angle of reflection i, at which the polarization of reflected light is
most complete is called the polarizing angle, and it varies with the nature of
glass and also with the wavelength of light. Malus defined the plane of polar-
ization as the plane of incidence of polarized light when the reflected light was
of maximum intensity. We shall explain in Section 11.9 that the vibration in
the reflected plane polarized light BC is perpendicular to this plane.

BREWSTER’S LAW

Brewster made a remarkable discovery that at the polarizing angle, the
reflected and refracted rays are just 90° apart. The angle of refraction r, is,
therefore, equal (90 -, ) and we have for the refractive index,

sini

a P

My =——— =tani, (11.2)
sinr,

The tangent of the angle of polarization is equal to the refractive index
of the reflecting substance; this is called Brewster’s law. As a consequence of
this law, it follows that the angle of polarization depends upon the wavelength
A of light employed.

Brewster’s law also applies to reflection at the second surface of the glass
plate in the denser medium. In this case, it states that the refractive index is
equal to the cotangent of the polarizing angle. For a polished metallic reflec-
tor, this law does not hold.



PoLARIZATION OF LigHT © 365

11.9 EXPLANATION OF POLARIZATION BY REFLECTION

We may now explain the action of the reflecting surface in producing plane
polarized light. The light vectors in the unpolarized light may be resolved at the
point of incidence B into two components, one perpendicular and the other par-
allel to the plane of incidence. At the polarizing angle, since the reflected and the
refracted rays are just 90° apart, at the point of incidence B in Figure 11.9, the
vibrations which are in the plane of incidence become parallel to the direction of
the reflected ray BC, and so they can generate only longitudinal waves along BC.

%

FIGURE 11.9. lllustrates Brewster’s law at the polarizing angle.

Since the waves of light are transverse and not longitudinal, we conclude
that the wave with vibrations in the plane of incidence is not at all reflected at a
polarizing angle but totally (100%) transmitted as a refracted beam. The other
wave, in which vibrations are perpendicular to the plane of incidence, is partly
reflected (15%) and partly transmitted (85%). The refracted beam is, therefore,
strong but only partially polarized, as it always contains both kinds of vibrations,
while the reflected beam is weak but completely plane polarized, as it contains
only vibrations which are executed perpendicular to the plane of incidence.

We may now explain the variation of the intensity of twice the reflected
beam at the polarizing angle owing to the rotation of the glass plate N, in the
experiment. The plane polarized reflected beam BC contains only those vibra-
tions which are perpendicular to the plane of the page, which for the lower
plate N, is the plane of incidence. When N, and N, are crossed, the vibrations in
BC which are perpendicular to the plane of incidence for N, will be in the plane
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of incidence of the ray incident on N,, and as explained earlier, they are totally
transmitted within N, thereby making the reflected intensity as zero. But when
N, and N, are parallel, the vibrations in BC are also perpendicular to the plane
of incidence of N, and so partly transmitted within N, and partly reflected along
CD. The intensity of the reflected beam is maximum. For the intermediate ori-
entation of N,, the intensity of twice the reflected beam varies as the square of
the cosine of the angle between the two planes of reflections, and so the inten-
sity is intermediate of maximum (cos6 =1) and minimum (cos6 = 0) values.

11.10 POLARIZATION BY REFRACTION

Brewster’s law applies not only for reflection in a rarer medium but also for
reflection in a denser medium. In other words, it can be easily shown that if ordi-
nary light is incident at a polarizing angle on the upper surface of a plane paral-
lel glass plate, the refracted ray will be incident also at a polarizing angle at the
lower surface. This remarkable fact is used in producing polarization by refrac-
tion through a pile of a large number of glass plates as shown in Figure 11.10.

T

Transmitted light
partially plane polarized

-

v

‘ \

Pile ofpl

N Reflected light plane polarized

v
N

Normal

Incident natural light

FIGURE 11.10. Polarization of light by a pile of glass plates.

At each reflection, the reflected ray contains 15% of vibrations which
are perpendicular to the plane of incidence, while the refracted ray contains
vibrations which are parallel (100%) and perpendicular (85%) to the plane of
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incidence, assuming the p of glass as 1.5. The larger the number of plates in
the pile, the more nearly plane polarized is the transmitted beam, and so in
the limit we expect that vibrations which are perpendicular to the plane of
incidence will be completely quenched from the transmitted beam, and the
vibrations of light in it will be only parallel to the plane of incidence.

The pile of plates when used as a polarizer is mounted in a tube in such
a way that the unpolarized light, along the axis of the tube, is incident at the
polarizing angle i, on the pile. The second pile of plates, placed parallel to the
first as shown in Figure 11.11, functions as the analyzer.

Polarizer Analyzer

FIGURE 11.11. Pile of glass plates as polarizer and analyzer.

11.11 LAW OF MALUS

In 1809, Etienne Louis Malus experimentally discovered a relation which indi-
cates that the intensity of light transmitted by the analyzer depends upon the
inclination of its plane of transmission with that of the polarizer. To derive the
relation let us suppose that the angle between the two planes of transmission
is 0 at any instant. The light vector AP = «a in the plane polarized light emerg-
ing from the polarizer may be resolved into two components,

AE=acos0 and AO =asin0 (11.3)

respectively, along and perpendicular to the plane of transmission of the
analyzer as shown in Figure 11.12. The perpendicular component is elim-
inated in the analyzer while the parallel component is freely transmitted
through it. Therefore, the intensity I of light that emerges from the analyzer
is given by

I=a"cos’0=1,cos” 0 (11.4)
where I is the intensity of the plane polarized light incident on the analyzer.

This relation, called Malus’s law, states that the transmitted intensity varies
as the square of the cosine of the angle between the planes of transmission
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FIGURE 11.12. Resolution of the amplitude of plane-polarized light.

of the analyzer and the polarizer. It may be emphasized that this law holds
only when light incident on the analyzer is completely plane polarized,
which is true of the combination of glass plates sketched in Figure 11.8,
a combination of polaroids, or Nicol’s prism, but it is only partially true
for the pile of plates. For Equation 11.4 to hold true, it is further assumed
that there is no loss of light due to absorption in the analyzer. It should
be pointed out that even in the case of absorption, the transmitted inten-
sity depends on cos” 0, and the only effect is the change in the constant in
Equation (11.4). The transmitted light is a maximum when 6 =0" and is
zero (if the polarization is complete) when 8 =90 or when the polarizer
and analyzer are crossed.

11.12 DOUBLE REFRACTION

In the year 1669, a Dutch philosopher, Erasmus Bartholinus, discovered
that when a ray of ordinary light is incident on a crystal, called Iceland spar
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or calcite, it splits into two refracted rays, one of which always obeys ordi-
nary laws of refraction and the other, in general, which may not obey them.
This phenomenon known as double refraction was called by Huygens as the
“strange refraction” of calcite. A slab of calcite and a slab of glass lift the
printing underneath; but while the glass lifts only one image, calcite lifts two
images. Calcite thus has the peculiar property of exhibiting double refraction.
Huygens in 1690 studied this phenomenon more closely and found that both
the refracted rays were linearly polarized in mutually perpendicular planes.
This phenomenon is also exhibited by other crystals like quartz, except those
belonging to the cubic system which are optically anistropic, that is, their opti-
cal properties are the same in all directions like glass.

We shall chiefly study this phenomenon in Iceland spar, in which double
refraction is very marked and easy to study experimentally.

11.13 GEOMETRY OF CALCITE CRYSTAL

Iceland spar as shown in Figure 11.13, which chemically is hydrated calcium
carbonate, CaCOj, was found in large quantities in times gone by in Iceland.
CaCOy crystalizes in a large, colorless, clear hexagonal prism with a blunt
pyramid at each end.

%

Crystaliaxis

FIGURE 11.13. Iceland spar crystal.
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When struck, it easily cleaves obliquely in three definite planes forming a
rhombohedral body whose six rhombic sides make an angle of 45°23" with the
lines joining the vertices of the pyramids, the crystallographic axis of the crys-
tal. A spar rhombohedran of this kind is bounded by six faces, each of which
is a parallelogram whose angles are o =101°55" and f =78°5". At the two
opposite corners A and H, as shown in Figure 11.14, there are three obtuse
angles o, but at the other six corners there are two acute angles, each equal
to B, and one obtuse angle a. The length of the edges is not important, with
those in the figure being meant to be of equal length.

FIGURE 11.14. Rhombohedran of calcite.

11.14 ORDINARY AND EXTRAORDINARY RAYS

The phenomenon of double refraction can be easily demonstrated by allowing
a narrow beam of unpolarized light to be incident normally on calcite crystal.
The incident beam (in general) splits up into two refracted beams. Double
refraction does not occur at all at the second face, and since the two opposite
faces of crystal are parallel, the two refracted beams emerge parallel to the
incident beam, but they are relatively displaced by a distance which is propor-
tional to the thickness of the crystal as shown in Figure 11.15.
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FIGURE 11.15. A narrow beam of natural light can be split into two beams by a doubly
refracting crystal.

On a screen, two images, O and E, of the pinhole are thus obtained. One
image O lies in the direction of the incident beam. Therefore, it must have
been formed in accordance with the ordinary laws of refraction. The other
image E is found to be separated from the O image despite perpendicular inci-
dence, in contrast to the ordinary phenomenon. The corresponding refracted
beam, therefore, does not, in general, obey the ordinary laws of refraction. On
rotating the crystal about the incident beam as an axis, it is observed that the
O image remains stationary while the E image revolves in a circular path with
its center at the O image, but the line joining the two images is always parallel
to the shorter diagonal of the end face of the crystal.

Of the two refracted rays, the one which always obeys ordinary laws
of refraction is called the ordinary ray or the O ray while the other, which
behaves in quite an extraordinary manner, is called the extraordinary ray or
the E ray. The ratio sin i/sin r physically represents the ratio of the velocity of
light within a vacuum to that in the refracting medium. It is therefore obvious
that the velocity of the O ray is the same in all directions within the crystal. In

the case of an extraordinary ray, since the ratio (S'ml

sinr
of incidence, its velocity is different in different directions within the crystal.
The O ray is always in the plane of incidence, but in general this is not true

of the E ray.

] varies with the angle
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11.15 CRYSTALLOGRAPHIC AXIS AND OPTIC AXIS

It will be recalled that two diagonally opposite solid angles of calcite are formed
by the junction of three obtuse angles of three faces. A line into the crystal at
one of these corners and equally inclined to the three faces is called a crystal-
lographic axis. For a crystal having equal edges, as shown in Figure 11.14, its
shortest diagonal AH is the crystallographic axis.

One important peculiarity of the calcite crystal lies in the fact that there
is one and only one direction through it so that when a ray of light is incident
along this direction, the O ray and E ray do not separate and also traverse
the crystal with the same velocity along this direction. Hence, this particular
direction is called the optic axis and is determined by the crystallographic
axis. Any direction in the crystal parallel to the crystallographic axis is called
an optic axis. It may be emphasized that the optic axis is a direction and not a
line. Through any given point P within the crystal, only one line, YY, can be
drawn parallel to the crystallographic axis. This line gives the direction of the
optic axis for this point and for all points lying on it.

11.16 PRINCIPAL SECTION OF THE CRYSTAL AND PRINCIPAL
PLANE OF THE O RAY AND E RAY

Any plane which contains the optic axis and is perpendicular to two opposite
faces is called a principal section. This cuts the surfaces of the crystal in a par-
allelogram with angles of 109° and 71°, as illustrated in Figure 11.16, which
represents the principal section through the blunt edges of the crystal. All
sections parallel to the principal section depicted in Figure 11.16 are principal
sections for points lying on it.

101°55"

pt‘gc ay;
[Ay

FIGURE 11.16. Principal section in a calcite crystal.



PoLarizaTION OF LigHT © 373

Through every point three principal sections can be drawn corresponding
to three pairs of opposite crystal surfaces. An end on view of any principal
section is a straight line (shown dotted) in the crystal surface parallel to its
shorter diagonal FH, which is the end on view of the principal section through
the blunt edges.

The principal plane of the ordinary ray is defined as a plane in the crystal
drawn so as to contain the optic axis and the ordinary ray. The principal plane
of the extraordinary ray is defined as a plane in the crystal drawn through the
optic axis and extraordinary ray. The principal planes of the two refracted
rays, in general, do not coincide. They do coincide, however, under special
circumstances when the plane of incidence is the principal section of the crys-
tal. In a case like this, as illustrated in Figure 11.16, the plane of incidence
and the principal planes are all coincident. The line joining the O image and
the E image of the same point is in the principal section. This accounts for the
rotation of the E image in a circle around the O image as the crystal is rotated
about the ordinary ray as an axis.

11.17 POLARIZATION BY DOUBLE REFRACTION

When the O ray and the E ray from the calcite crystal, in the experimental
arrangement sketched in Figure 11.15, are examined by a polaroid or tourma-
line, it is found that as the analyzer is rotated in its own plane, the intensity of
one of the two images, say, the O image, gradually increases while that of the
E image gradually diminishes. It is possible to get a position of tourmaline in
which the O image acquires maximum intensity while the E image completely
disappears. In this setting of tourmaline, it will be observed that its longer axis
(crystallographic axis), which determines the plane of transmission in it, is
exactly parallel to the longer diagonal of the end face of the crystal as shown
in Figure 11.17 (a). A rotation of tourmaline from this setting to a position
obtained on a 90° rotation will render the intensity of the E image maximum
while the O image will completely vanish. In this setting of tourmaline, it will
be observed, its longer axis is parallel to the shorter diagonal of the crystal
face as shown in Figure 11.17 (b), which determines the trace of the princi-
pal section in the end on view. We therefore conclude that the rays by which
the ordinary and extraordinary images are seen must be polarized. Since
the E ray is intercepted by the tourmaline when its plane of transmission is
perpendicular to the principal section of crystal while the O ray is intercepted
on a 90° rotation, it follows that the vibrations in the E ray and the O ray are
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executed respectively along and at right angels to the principal section; that
is, the O ray is polarized in the principal section while the E ray is polarized
perpendicularly to the principal section.

101°55°

Calcite

Tourmaline

(@ (®)

FIGURE 11.17. Polarization by double refraction.

In general, when the plane of incidence is not parallel to the principal sec-
tion, the vibrations in the wavefront of the E ray are executed in the principal
plane of the E ray while those in the wavefront of the O ray are executed at
right angles to the principal plane of the O ray. Figure 11.17 fully illustrates
this case.

11.18 PARALLEL AND CROSSED NICOLS

Nicol’s prism can be used both as a polarizer and an analyzer. When two
Nicols are mounted coaxially as shown in Figure 11.18, then the first Nicol
N,, which produces plane polarized light, is called the polarizer. The second
Nicol N,, which analyzes the incoming light, is called the analyzer. When the
principal sections of the two Nicols are parallel, then the vibrations in the E
ray, which are in the principal section of the polarizer, are also in the principal
section of the analyzer. Consequently, the E ray from N, is freely transmitted
by N, just as it was freely transmitted by the first as shown in Figure 11.18 (a).
In this setting of the combination—technically known as parallel Nicols—the
intensity of the field of view is maximum.

When the analyzer is rotated about its axis through 90° from this position,
the principal sections of the Nicols are mutually perpendicular as shown in
Figure 11.19.
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FIGURE 11.18. (a) Parallel Nicols (b) Crossed Nicols.
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FIGURE 11.19. Analyzer is rotated about its axis through 90° from this position.

Therefore, the vibrations in the E ray, which are in the principal section
of Ny, become perpendicular to the principal section of N,. The E ray from
the polarizer, consequently, enters the analyzer as an O ray and, therefore, is
totally reflected from the balsam, exactly in the same way as the O vibrations
were totally reflected in the polarizer. Thus, no light is transmitted by this
setting of the combination, which is technically known as crossed Nicols.
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After a rotation of 180° from the first position of the analyzer, the princi-
pal sections are again parallel, and E vibrations are again transmitted by the
analyzer. After a rotation of 270°, Nicols are again crossed, and no light is
transmitted by the combination.

In the intermediate position between the crossed and parallel settings
of the combination, some light is transmitted through the analyzer. The E
vibrations from the polarizer are resolved, just on entering the analyzer, into
two component vibrations—the ordinary component asin@, which is perpen-
dicular to the principal section of the analyzer, is totally reflected while the
extraordinary component acos@, which is in the principal section, is freely
transmitted by the analyzer. Thus, for intermediate positions, the intensity
of light is proportional to the square of the cosine of the angle 6 between the
principal section of the analyzer and the polarizer.

11.19 POLARIZATION BY SELECTIVE ABSORPTION

The production of plane polarized light by selective absorption is exhibited
by a certain class of doubly refracting crystals, which not only produce two
internal beams polarized at right angles to each other but also absorb one
of the polarized components much more strongly than the other. Hence, if
crystal is cut of the proper thickness, one of the components is completely
extinguished by absorption while the other is transmitted in an appreciable
amount as shown in Figure 11.20.

Incident
atural light L L
natural g Vertical vibrations
partially absorbed

\

P

P
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Horizontal vibrations
completely absorbed

Plane polarized
transmitted light

Optic axis

FIGURE 11.20. Plane polarized light transmitted by a dichroic crystal.
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This phenomenon is known by the name dichroism, and crystals exhib-
iting this property are said to be dichroic. The best known dichroic mineral
crystal is tourmaline, and Figure 11.20 illustrates its action. A beam of ordi-
nary light incident normally on a thin crystal of tourmaline, cut with its faces
parallel to the optic axis, is broken up into O and E rays, traversing the crystal
in the same direction but with vibrations respectively in and perpendicular
to the plane of incidence. The O beam is completely absorbed in the crystal,
while the E beam, only slightly absorbed, is transmitted, as far as the green
region of the spectrum is concerned. The emergent polarized light can be
analyzed by the second tourmaline as shown in Figure 11.21.

FIGURE 11.21. Tourmaline as polarizer and analyzer.

The use of tourmaline as polarizer is limited, as the plane polarized
transmitted light is colored due to unequal absorption of E rays of various
wavelengths.

11.20 POLAROID

In 1852, the English physician W. H. Herapath succeeded in producing small
crystals of idosulphate of quinine, called herapathite after its discoverer, which
exhibit strong dichroism—they absorb completely one component of polari-
zation while transmitting the other with little loss. These crystals are ultra-
microscopic, pulverizing easily when subjected to relatively small stress, and
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so they are quite useless as such. In 1932, E. H. Land developed a process
which arranges herapathite crystals side by side, oriented with their optic axis
all parallel, so that they function as a single crystal of large dimensions. This
is achieved by preparing a paste of crystals in nitrocellulose, which is then
squeezed out through a fine slit. Obviously, only those crystals pass whose axes
are parallel to the length of the slit, thereby producing a fine sheet of millions of
tiny crystals, with their optic axes parallel to one another. This is then mounted
between two thin sheets of glass, forming what is now called Polaroid.

Another variety called H Polaroid is formed by stretching Polyvinyl alco-
hol films so as to orient the complex molecules in the direction of stress, which
thereby become doubly refracting and when impregnated with iodine exhibit
dichroism. This is entirely colorless, transmitting 33% more light than the
herapathite polaroid, while light is 99.99% polarized. Land and Rogers later
discovered that when the stretched polyvinyl alcohol film is heated with a
dehydrating catalyst, for example, HCL, it slightly darkens but exhibits strong
dichroism. This is called K polaroid and is extensively employed in automo-
bile headlights and screens.

Polaroids find wide applications in everyday life. The most common use of
polaroid is in sunglasses, where it plays the role of the analyzer. We have seen
that when unpolarized light is reflected, vibrations perpendicular to plane of
incidence are predominantly reflected. Accordingly, when sunlight is reflected
from horizontal surfaces such as wet pavement, the plane of incidence is
vertical, and in the reflected light horizontal vibrations predominate the verti-
cal vibrations. The direction of the transmission of polaroid is, therefore, kept
vertical to cut off completely the horizontal reflected vibrations, while objects
are seen by diffusely reflected light which is, however, unpolarized.

Polaroids are fitted in car headlights and windshields, with their planes of
transmission inclined at 45° to vertical. The driver can see the light of his own
headlight while that from oncoming automobiles is cut off. However, the road
and other objects are visible by light scattered by them, which is unpolarized,
and a part of it can pass through the windshield polaroid.

Polaroids are used in windows of trains, airplanes, and so on in which
there is a fixed outer and rotatable inner polaroid disc for controlling the
amount of light entering it from outside.

Polaroids are employed to view stereoscopic motion pictures in which the
three-dimensional effect is obtained by first taking two pictures of the same
view from slightly different angles—one showing the scene exactly as viewed
by the right eye and the other as viewed by the left eye. These pictures are
projected side by side on the screen, but light in the two pictures is polarized
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at right angles to each other. Pictures are now viewed by polarized glasses so
that each eye views only the picture which had been taken from its own angle.
Polaroid has now largely replaced the Nicol prism for producing and analyz-

ing plane polarized light in the laboratory.

11.21 POLARIZATION BY SCATTERING

The sky is blue while sunset and sunrise are red. Skylight is partially plane
polarized. Maximum polarization is observed in a direction perpendicular to
the incident light. This can be easily verified by looking at part of the sky
overhead through a Nicol prism or a polaroid. All three effects are due to the
scattering of sunlight by obstacles such as dust particles, free water molecules,
and even by oxygen molecules present in the atmosphere. The process of scat-
tering is simply the absorption and reradiation of energy.

The process of the scattering of light can be easily explained on the basis
of electromagnetic theory according to which, in a light wave, periodic electric
and magnetic vibrations are executed in mutually perpendicular planes. Fur-
thermore, according to Wiener’s experiment, the electric vector is responsible
for all optical phenomena. Referring to Figure 11.22, suppose the natural
sunlight (unpolarized) is incident on one of the molecules of earth’s atmo-
sphere, situated at O just over the observer.

Oscillating
molecular

dipole
Incident sunlight
unpolarized
/'{%T% Vibrations
X \

Scattered blue light plane
polarized by dipole component
along Y axis

Transmitted red light
partially polarized

Linear light scattered
horizontally by dipole
component along Z axis

FIGURE 11.22. Polarization by scattering of light by an oscillating molecular dipole.
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Every molecule consists of an aggregate of electrically charged particles
of opposite signs. Owing to the electric field in the incident light beam, posi-
tive charges experience a force in the direction of the field, while on negative
charges force is in the opposite direction. Since charges are not rigidly bound
in a molecule, a relative displacement of the charges occurs first in one direc-
tion and is then periodically reversed, owing to the periodical reversal of the
electric field in the light wave. In Figure 11.22, these directions necessarily lie
in the YZ plane. An oscillating electric dipole, according to electromagnetic
theory, itself radiates electromagnetic waves which form the scattered light.
We may here also employ the equivalent components E, and E, for the entire
E vector in the incident beam. The result is that the light incident on the mol-
ecule at O produces the equivalent two oscillating molecules along the Y axis
and the Z axis, and the frequency of oscillation is the same as that of the inci-
dent light, since the oscillations of electric charges in a molecule are (nearly)
in unison with the oscillating electric field. The observer looking along the Z
axis receives light only from the Y component of incident vibration. This light
is, therefore, plane polarized with vibrations parallel to the Y axis. In fact, the
light scattered in any direction in a plane transverse to the direction of propa-
gation of the incident light is plane polarized. In all other directions, scattered

light will be only partially polarized.

11.22 BLUE COLOR OF SKY

To explain the blue color of sky, we observe that the vibration of electric
charges in a molecule under the influence of the electric field in the incident
light is a forced vibration. Its amplitude is greater and as a consequence the
intensity of scattered light is greater and the frequency of the incident light
is closer to the natural frequency of the oscillation of electric charges which,
however, is the same as that of a wavelength in the ultraviolet region of the
spectrum. The frequencies of light waves in the visible region of the spectrum
are less than the natural frequency of a molecule, but the frequency of blue
light is very close to it. Therefore, the blue color in sunlight is scattered more
than the red by the molecules in the atmosphere.

The exact theory of the scattering process has been worked out by Lord
Rayleigh, who showed that the percentage of light scattered is inversely pro-
portional to the 4th power of the wavelength when the size of the particles
is of the order of magnitude of the wavelength of a light wave. This is almost
16 times greater for the violet end of the spectrum as compared with the
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scattering of red light. Consequently, the blue contained in the sunlight is
scattered to a much greater extent and more intensely than the red.

In reality, looking at the sky overhead, the blue light due to scattering of
incident sunlight from molecules in the neighborhood of O will be only par-
tially plane polarized, with maximum vibrations perpendicular to the plane
XOZ. This is due to the fact that the incident light waves are scattered several
times by the molecules of the atmosphere before reaching the observer, thus
accounting for the blue color of unclouded sky in all directions. Blue color
is more brilliant when the atmosphere is free from dust particles and water
molecules, so scattering from molecules of gases is to a considerable extent
responsible for the blue color of the sky.

If the earth had no atmosphere, we could receive no skylight at the earth’s
surface. The sky would be perfectly black even in day. This may be proved by
flying at high altitudes, where there is less atmosphere above the observer.

The sun and the neighboring sky appear red at sunrise and at sunset. We
observe them directly, referring to Figure 11.23, by placing our eye at E.

The rays coming from the sun have to traverse a greater distance approx-
imately horizontally through the earth’s atmosphere before reaching the
observer. A large proportion of blue is scattered to the side and lost by fine
dust and smoke particles near the earth’s surface. White light, when blue is
removed, is yellow or red in hue. When such light is incident on the cloud
near sunset or sunrise, the light reflected from the cloud has the yellow or red
hue. Red light is only partially plane polarized.

Scattered -
blue light

FIGURE 11.23. Blue color of sky.
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11.23 SUPERPOSITION OF TWO PLANE POLARIZED WAVES
VIBRATING IN TWO MUTUALLY PERPENDICULAR
PLANES

Let a beam of plane polarized monochromatic light from a polarizer be inci-
dent normally on a calcite plate, cut with faces parallel to the optic axis but
oriented in such a way that the linear vibrations make an arbitrary angle 0
with the optic axis. Figure 11.24 illustrates a plane polarized light incident
normally on a crystal plate cut parallel to the optic axis.

Optic axis

Polarizer ‘
Calcite plate

FIGURE 11.24. Plane polarized light incident normally on a crystal plate cut parallel to optic axis.

The amplitude a of the incident wave is resolved by the doubly refract-
ing calcite, as shown in Figure 11.25, into two components: (i) AE =a cos
along the optic axis forming the extraordinary vibrations, and (ii) AO = asin6
perpendicular to optic axis forming the ordinary vibrations.
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FIGURE 11.25. A beam of plane polarized monochromatic light from a polarizer that is incident
normally on a calcite plate.
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As they enter the plate, the incident wave and its two components have
the same phase. Therefore, they may be expressed by the following equations.

S=a sinot;x=acos@sinwt; y=asinfsinwt (11.5)

From the wave surface diagram for the normal incidence of plane polar-
ized light, it follows that the O and E vibrations traverse the crystal plate with-
out separation, that is, they traverse the same path but, in calcite, the E wave
travels faster than the O wave (p, > p, ) Therefore, the wavelength of the E

wave [lE = ij in the crystal is greater than that of the O wave (/10 = i]
Hg Ho

where A is the wavelength in a vacuum. Due to this inequality in their wave-
lengths, the O wave is retarded behind the E wave. The two waves, therefore,
emerge from the crystal with a certain relative phase difference, say 8, for a
given wavelength, depending upon the thickness of the plate and the magni-
tudes of u, and ;.

Therefore, as the two waves leave the plate, they may be represented by
the following equations:

E Wave : x =a cosOsin(ow t +5) (11.6)
O Wave : y=a sinOsinw t (11.7)
The resultant vibration may be readily found by eliminating t between the

previous two equations. For this purpose, we proceed as follows:
Equation (11.6) may be written in the form

=sinw ¢ cosO ++1—sin’ ¢ sind (11.8)

acosf

Substituting the value of (sinw t) from Equation (11.7) in the previous
equation and rearranging, we get

X

- cosd = 1—%sin5 (11.9)
acosf asin® a”sin” 0
Squaring and simplifying, we get
2 2 ? _
- Y cosd+—2——=sin>5 (11.10)

2 25 2 ; ;
a cos 0 a cosOsin0 a sin” 0
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This is an equation of the central conic, and since we know from the
condition of the problem that x and y are never infinite, the conic is an ellipse.
Equations (11.6) and (11.7) show that x varies from +acos6 to —acos and
that y varies from +asin6 to —asin6. Hence, the ellipse represented by these
equations or Equation (11.10) is inscribed in a rectangle with sides of length
2acos@ and 2asin@ and whose diagonal represents the rectilinear vibrations
of the incident wave. Thus, during the passage of the wave, the vibrating par-
ticle describes, in general, an ellipse about its position of rest in the plane per-
pendicular to the direction of propagation. The exact nature of the resultant
motion and therefore of the light emerging from calcite, however, depends
upon the value of 8. We consider the following special cases:

1. Resultant Vibration Rectilinear—Emergent Light Plane Polarized.
a. If 8 =2nmwheren =0, 1,2, 3, etc. Equation (11.10) reduces to

2 2
S I A—" (11.11)
a*cos’@ a’cosOsin® a’sin’0

which easily simplifies to the form
y=(tan 0)x (11.12)

Thus, when the two mutually perpendicular superposed plane polar-
ized waves are in phase, the ellipse degenerates into a straight segment,
inclined at an angle 0 to the axis of x, coinciding with the diagonal of the
rectangle that lies in the first and third quadrants as shown Figure 11.26.

PQ P Q
Y Y
“-—x E_mergent_,
vibrations
0 a
X A X X —g X
Y Y
a (8 (b
P 8= 2nn Q S=(2n+1)n P

FIGURE 11.26. Emergent light plane polarized corresponding to 6 = 2nmand 6 = (2n + 1)m.

We express this fact by saying that the light emerging from the crystal is
plane polarized, vibrating in the same plane as that of the plane polarized
light as shown for QAQ in Figure 11.26 (a) incident on the plate.
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b. If § = (2n + 1)m where n = 0, 1, 2, 3, etc. Equation (11.10) easily
reduces to the form

y=—(tan0)x = tan(-0)x (11.13)

The light emerging from the crystal plate is again linearly polarized,
but now the vibration PAP is parallel to the diagonal of the rectangle
that lies in the second and fourth quadrants as shown in Figure 11.26
(b). It is, therefore, inclined at an angle 260 with the plane of vibration
as shown for QAQ in Figure 11.26 (b) in the plane polarized light inci-
dent on the calcite plate.

. Resultant Motion Elliptical —Emergent Light Elliptically Polarized. If
6 is an odd multiple of [%j thatis, § = (Zn + 1)(%) , the product term

in Equation (11.10) vanishes and the equation reduces to

2

2
x Yy

a® cos® 0 +412 sin” 0 ! (11.14)
This is an equation for an ellipse, and its principal axes 2acos® and
2asin@ are parallel and perpendicular to the optic axis of the crystal
plate as shown for XAX in Figure 11.27 (a). The light emerging from the
crystal plate is, therefore, elliptically polarized; the tip of the resulting
light vector continuously sweeps out an ellipse in a plane perpendicu-
lar to the direction of propagation. At any one time the direction of the
resultant varies from point to point along the direction of propagation.
It has a space-periodicity A.

57 9
Ifé = %?ﬂ?ﬂ and so forth, the components of the elliptic motion along

the major and minor axes are obtained by putting this value in Equations
(11.6) and (11.7).

x=acosOcoswt and y = asin @ sin wt (11.15)

The ellipse is described counterclockwise with respect to an observer
toward whom the wave travels, and the light is described as left-handed
elliptically polarized light, as shown in Figure 11.27 (a). This statement
can be easily verified by plotting the previous equation on graph paper.
For example, we proceed as follows:

(i) When ot =0, x =acosf and y =0
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.0
, Xx=acos—= and y = asin—
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>
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But, if 6 = ?”,7”,7”, and so forth, the components of elliptical motion
along the major and minor axis are

x=-acosfcosm t and y=asinfsinw t (11.16)

the ellipse, however, is now described in the clockwise direction, and the
light is described as right-handed elliptically polarized light, as shown in
Figure 11.27 (b).

Q Q
Y Y
- Emergent
vibrations
X A X X A X
Y (a) (b) Y
Q 3 =mn2 Q 3=3n/2

FIGURE 11.27. Emergent light elliptically polarized with principal axes along and perpendicular
to optic axis.

For every value of 6, other than nz and (2n+1)7
the ellipse are inclined to the x and y axis. ~ 2

, the principal axes of

3. Resultant Motion Circular — Emergent Light Circularly Polarized.

2n+1
In the special case when 6 =45" in addition to 6 = (n—)ﬂ the ellipse
reduces to a circle,
2
24y =% (11.17)

and the emergent light is said to be circularly polarized. In this case, the
optical vector representing the optical disturbance at a given point in
space rotates with uniform angular speed without change of magnitude.



PoLArizATION OF LigHT © 387

57 9
When 6 :5,7,?7[, and so on, the circle is described counterclock-
wise with respect to an observer toward whom the wave travels as shown in
3r T 11
Figure 11.28 (a). Butif 6 = ?ﬂ,?ﬂ,%, and so on, the circle is described in
the clockwise direction as shown in Figure 11.28 (b).
Q Q
Y Y
™~ Emergent |
45° vibrations 45°
X A X X A X
Y (@ (b Y
Q 5=mnf2 Q 5 = 3n/2
@2n+N)m

FIGURE 11.28. Emergent light circularly polarized when 6 = 45" in addition to § = 5

It is now easy to discuss the change in the polarization of the plane polar-
ized beam as it penetrates deeper and deeper normally to the optic axis within
the crystal plate, cut with faces parallel to the optic axis. This is illustrated in
Figure 11.29 for a special case when the plane of vibration of the incident linear
light is inclined at 45° to the principal plane of the crystal. At the point of inci-
dence (¢t = 0), the components E and O of the incident vibration are in phase
(0 = 0), hence equivalent to the original linear vibration. In the second figure as
shown Figure 11.29, the thickness traversed by the incident beam is such that a

phase difference of (5 = %j is introduced between the two components.

Hence, at this point of the crystal, the two components combine to form an
elliptically polarized light. In the third figure, the phase difference advances

to (%) and since 6 = 45°, at this point of the crystal the light is circularly polar-

ized. Thus, as the beam penetrates deeper and deeper, & gradually increases
until in the fifth figure 6 = 7is reached, and again we get plane polarized light,
but the plane of vibration is coincident with the diagonal of the square that
lies in the second and fourth quadrants. As the beam penetrates further, the
resultant vibrations go through the same cycle of figures, but the figures are
now described in the clockwise direction with respect to an observer toward
whom the light travels, and ultimately when & = 27, the resultant vibration is
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linear in the same plane as that of the incident beam. Beyond this thickness,
the figures go through the same cycle and again the first figure is repeated
when 8 = 47 radians and so on.

In concluding our discussion of the superposition of two plane polarized
coherent light waves vibrating in two mutually perpendicular planes, it should
be emphasized that they never produce destructive interference, whatever
the phase difference.
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FIGURE 11.29. States of polarization corresponding to different values of the phase difference from 0
to 2wand 6 =45".
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11.24 RETARDATION PLATES

A plate cut from a doubly refracting crystal by sections parallel to the optic
axis and employed to introduce a given phase difference between the ordinary
and extraordinary waves in transmission normally through it is called a retar-
dation plate. This phase difference may be deduced as follows:

Let the thickness of the plate be ¢ in the direction of propagation, let u,
be the index for the O ray, and let u; be the index of the plate for the E ray.
Within the plate, the optical path for the E ray is simply p,¢ and that for the
O ray is u,t. The path difference is therefore
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A:(l’to_l’tE)t’ Z’LO>F’E <1118>

The corresponding phase difference between the two waves is, therefore,
expressed by

2
A

Half-wave plate—There are two most useful retardation plates are called (a)
a half-wave plate and (b) a quarter-wave plate. The former is of such a thick-
ness that in traveling through the plate, a relative phase difference of 7 comes
in between the O and E waves, and accordingly one wave drops behind the
other by just one-half a wavelength. This action is illustrated in more detail
in Figure 11.30. In a schematic cutaway view of the half-wave plate, shown
in part (c) of Figure 11.30, two and a half E waves and three full O waves
are marked, thereby indicating that the O wave is just one-half a wavelength
behind the E wave on emergence. The two waves on emergence are shown in
parts (d) and (e) of Figure 11.30.

5 (1, —pp)t (11.19)

Plane polarized

light

Retardation
plate

A 0
Plane polarized light

FIGURE 11.30. A half-wave plate rotates the direction of polarization of linear light by 26 when light is
incident on the plate at an angle 0 with the optic axis.
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Evidently, they combine to form a linearly polarized light with vibra-
tion direction inclined at 20 to that in the incident wave, where 0 is the
angle between the plane of vibration of the incident wave and the prin-
cipal section of the plate. Owing to this property of rotating the plane of
vibration of plane polarized light by 26, this plate is employed in Laurent’s
polarimeter to divide the field of view into two halves presented side
by side.

This thickness of the half-wave plate may be computed by substituting
6 = min Equation (11.19), and thus, we get

. A
Calcite plate: = (11.20)
2( 1, — )

In particular, a plate whose thickness satisfies the equation

t(p, =y )=(2n+ 1)% behaves like a half-~wave plate.

Quarter-wave plate—It is of such a thickness that a relative phase difference

pis . . . .
of B comes in between the O and E waves in transmission through its full

length. The physical conception of this is that one wave lags behind the other
by just one quarter of a wavelength on emergence. The quarter-wave plate
is obviously only half as thick as the half-wave plate. For a given wavelength,
thickness of this plate may be computed from the relation

Calcite plate: t= A (11.21)

4(“0 _uE)
In particular, a plate whose thickness satisfies the equation

t(p, — pg ) =(4n+ 1)% behaves like a quarter-wave plate.

The ordinary and extraordinary waves on emergence from this plate are
shown in Figures 11.31 and 11.32, while the action within the plate may be
imagined by considering the retardation plate in Figure 11.30, only half as
thick as that actually shown in Figure 11.30. The O wave, therefore, lags
behind by just one-quarter of a wavelength. The nature of the resultant wave
is circular as shown in Figure 11.32 for a special case, that is, 6 = 45° for other
angles, it is an ellipse.
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FIGURE 11.31. Emergent waves from % plate.

FIGURE 11.32. A quarter-wave plate converts linear light to circular light, when linear light is incident
on the plate at an angle of 45° with the optic axis.

The quarter-wave plate is commonly employed for the production and
detection of circularly and elliptically polarized light.
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A quarter-wave plate for sodium light is not a quarter-wave plate for light
of any other wavelength, and the same holds for a half-wave plate.

Quarter- and half-wave plates are often made of thin sheets of split mica
or of quartz cut parallel to the optic axis. In quartz the O ray travels faster
than the E ray, hence p, < pi;,. The thickness of the quartz half-wave plate is,
therefore, computed from the relation

2t (py —p, ) =2 (11.22)
and that of the quarter-wave plate from the relation
At (g —p,)= 2 (11.23)

Mica is a negative biaxial crystal; that is, it has two optic axes. Nevertheless,
there are some forms of mica for which the angle between the two axes is
small. Mica has the advantage of having a natural cleavage plane, and so a thin
sheet of any desired thickness with optically flat faces can be easily cut from
a thick sheet. Quartz has no natural cleavage planes and has to be cut and the
faces polished to optical flatness.

11.25 PRODUCTION OF CIRCULARLY POLARIZED LIGHT

We are now in a position to describe the experimental technique employed for
the production of circularly polarized light. It would be recalled that a circular
motion results when two mutually perpendicular coherent linear vibrations

of equal amplitude and period but differing in phase by % are compounded

together. For example, consider two mutually perpendicular coherent linear
vibrations,

x:(%jsin(a)t+%):[%jcoswt (11.24)

y:(%jsinwt (11.25)
which, on squaring and adding yield

2
2+ =% (11.26)

an equation to a circle.
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Two such mutually perpendicular vibrations can be very easily obtained
by allowing a beam of plane polarized monochromatic light to be incident
normally on a quarter-wave plate, the vibration direction in the incident light
being inclined at 45° to the direction of optic axis of the plate. The incident
vibration is resolved into two equal components—the E and O vibration—
respectively along and perpendicular to the optic axis. Initially both are in
the same phase, but on emergence, the O wave drops behind the E wave by

one quarter of a wavelength (if the % plate is of calcite), which is equivalent
to a phase difference of % between the O and E waves. Since the amplitudes

of the E and O waves are equal, on emergence from the quarter-wave plate
they compound into a circular wave; that is, the emergent light is circularly
polarized.

The physical picture of the formation of a circularly polarized wave can
be very easily seen by referring to Figure 11.32, in which the E and O waves
are shown on emergence from the plate for the sake of explaining the rotation
of the resultant light vector representing the optical disturbance at a given
point. At points A,C,E,G,I, and K, the magnitude of the horizontal compo-
nent is a positive or negative maximum, while that of the vertical component
is a zero. The resultant light vector at these points is therefore shown by a
horizontal arrow, and its magnitude is equal to the maximum of the O wave.
At points B,D,F,H, and ], the magnitude of the horizontal component is zero,
and hence the resultant light vector is vertical, equal in magnitude to the
maximum of the E wave, and hence equal in magnitude to the maximum
of the O wave (0 =45°). At a point midway between the points A and B, the
magnitude of each component is 0.707 times the maximum of each wave; that

is, it is equal to 0'7070, where « is the amplitude of the incident vibration.

Obviously, the resultant light vector at this point is inclined at 45° to the hor-

izontal and vertical planes and its magnitude is %, the maximum of the E

and O waves. Hence, it is equal to the resultant at the points A and B. In a
similar way, it is easy to see that the resultant light vector at a point midway
between B and C is equal in magnitude to that at A, B, and C, but inclined at
45° to the vertical plane on the opposite side of it. It is now obvious that the
magnitude of the resultant light vector is the same at all points, and it rotates
continuously around the direction of propagation, completing one revolution
in the interval in which the wave advances one wavelength. In a plane per-
pendicular to the direction of propagation, through any point in this direction,
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the light vector rotates with uniform angular velocity as the wave advances,
the tip of the vector describing a circular path. The light is therefore said to
be circularly polarized.

11.26 PRODUCTION OF ELLIPTICALLY POLARIZED LIGHT

It will be recalled that the elliptically polarized light arises when two mutu-
ally perpendicular plane polarized coherent light waves of unequal ampli-
tudes but differing in phase by a value other than nz are compounded
together. We are, however, more interested in the special case arising when

s=".
2
For example, consider coherent linear vibrations,
. b X
x=a005951n[a)t+—j or =coswt (11.25)
acosf
y=asin@sinw t or y =sinwt (11.26)
asin

which on squaring and adding yield
2 2

LY (11.27)

< c 9 . ¢ -
a*cos’0 a’sin’0

an equation to ellipse.

Elliptically polarized light can be, therefore, conveniently produced by
passing a beam of plane polarized monochromatic light through a quarter-wave
plate, its optic axis being inclined at about @ =30° to the plane of vibration of
the incident light.

The physical picture of the formation of an elliptically polarized wave can
be obtained by referring to Figure 11.33, in which the E and O waves of
unequal amplitudes are shown on emergence from a quarter-wave plate.

When the light vectors at every point in the E and O waves are added
up it will be found, as with circular light, that while the resultant light vector
rotates around the direction of the propagation of the ray, its magnitude varies
periodically. If we imagine a plane perpendicular to the ray, then as the wave
advances, the resultant light vector in this plane rotates, the tip of the vec-
tor describing an ellipse, its principal axes being along and perpendicular to
the principal section of the plate. Thus, a quarter-wave plate converts plane
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/

~

Elliptically polarized light

FIGURE 11.33. A quarter-wave plate converts linear light into elliptic light, when linear light is incident
on the plate at an angle (excluding 0°, 45°, and 90°) with the optic axis.

polarized light to elliptically polarized light when the vibration direction in
the incident light is inclined at an angle other than 0°, 45°, and 90° with the
optic axis. The principal axes of the ellipse are parallel and perpendicular to

the optic axis of the % - plate.

11.27 ANALYSIS OF LIGHT

Let us suppose that as a result of some experiment we have a beam of light,
and it is desired to ascertain its nature from the following seven possibilities.

(i) Unpolarized light
(ii) Plane polarized light
(iii) Elliptically polarized light
(iv) Circularly polarized light
(v) Mixture of unpolarized and plane polarized light
(vi) Mixture of unpolarized and elliptically polarized light
(vii) Mixture of unpolarized and circularly polarized light
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Before giving a systematic qualitative investigation to ascertain the nature
of a given beam, we shall first give the characteristics exhibited by every one
of the previously listed kinds when examined by the analyzer, if one knows
beforehand the nature of light.

Unpolarized Light

The unpolarized light on entering the Nicol prism is decomposed into ordinary
and extraordinary beams of equal intensity. The E vibration is freely transmit-
ted and the O vibration is totally reflected at the balsam surface, whatever
may be the orientation of Nicol, which is, however, rotated about the direction
of the incoming beam as an axis. Thus, whatever may be the orientation of
Nicol, the transmitted intensity is the same.

Plane Polarized Light

The plane polarized light when examined by the Nicol can be completely
extinguished for one setting of the analyzer. In this setting, the direction of
vibration of the incident light is perpendicular to the principal section of the
analyzer—that is to the shorter diagonal of its end face. For each complete
rotation of the analyzer, there are two positions (180° from each other) at
which the incoming beam is completely extinguished and two positions (90°
from the former) at which the transmitted intensity is a maximum.

Elliptically Polarized Light

The elliptically polarized wave may be regarded as the resultant of two mutu-
ally orthogonal plane polarized waves. The amplitudes and the phase dif-
ference, however, depend on the choice of these planes of vibration. In the

. . . T . .
special case when the phase difference is P the major and minor axes of the

ellipse are along the planes of vibration of the component waves as shown in
Figure 11.34.

N
E-—>P Y X
Y " \\
: b CB'._\\
X A Py JX X A a X
NS

FIGURE 11.34. Analysis of elliptically polarized light.
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Conversely, a given elliptically polarized wave can be resolved into two
linearly polarized waves of unequal amplitudes, vibrating in planes paral-

lel to the major and minor axes of the ellipse and differing in phase by %

The amplitude of one wave is equal to the semi-minor axis b, and that of the
other equal to the semi-major axis a of the elliptic vibration. Let the principal
section NN of the analyzing Nicol make an angle 6 with the major axis of the
ellipse as shown in Figure 11.34. The resolved components along NN of the
amplitudes of component waves, namely, AB=a cos6 and AC = b sin6, are

freely transmitted as extraordinary vibrations, but they differ in phase by —
The transmitted intensity by Nicol is, therefore, given by

IoR* = a* cos® 0 + b” sin” 0 + 2ab cos SichosZ
2 (11.28)
= (a2 -b? )cos2 0 +b*

when0=0,I =a andwhen@—2 I =b

> T max > Tmin

Thus, for each complete rotation of the analyzer about an axis parallel to
the incident beam, there are two positions of NN (180° from each other) at
which the transmitted intensity is a minimum and two positions (at 90° from
the former) at which the transmitted intensity is maximum; the beam is never
completely extinguished as with plane polarized light.

Circularly Polarized Light

Circular polarization is a special case of elliptic polarization, that is, when
a = b, the ellipse degenerates into a circle. Therefore, when circularly polar-
ized light is examined by a Nicol, the transmitted intensity is

I=a’ (11.29)
which is the same whatever may be the orientation of the analyzer. In this
respect the circularly polarized light resembles the unpolarized light.

It should be remarked that the circularly polarized wave is equivalent to
two mutually perpendicular plane polarized waves of equal amplitude and dif-

fering in phase by T Because of symmetry of the circular wave about the

direction of propagation, all mutually perpendicular directions of resolution
are equivalent.



398 ¢ Orrics

Mixture of Unpolarized and Plane Polarized Light

We have explained above that when unpolarized light is examined by Nicol,
the transmitted intensity is the same for all orientations of the analyzer, but
linear light is extinguished for two settings (180° from each other) of the
analyzer. Consequently, when a mixture of these lights is examined by the ana-
lyzer, the transmitted intensity will never become zero, but it will periodically
fluctuate between a maximum and a minimum. In this respect this mixture

resembles elliptically polarized light.

Mixture of Unpolarized and Circularly Polarized Light

It will be recalled that unpolarized and circularly polarized light when
examined separately by the analyzing Nicol exhibit no variation in intensity.
Obviously, when the mixture of these lights is examined by the Nicol, the
transmitted intensity is the same in all orientations of the analyzer.

Mixture of Unpolarized and Elliptically Polarized Light

For one complete rotation of the analyzer, there are two settings at which
the transmitted intensity is a maximum and two settings at which the
transmitted intensity is a minimum. In this respect this mixture resem-
bles elliptically polarized light and also a mixture of unpolarized and plane

polarized light.

Systematic Analysis of Light

We are now in a position to give a scheme for the systematic analysis of
the nature of a given light. The first step is to examine the oncoming beam
of light by the Nicol prism. Any of the following three phenomena will be
observed:

a. Light can be completely extinguished for one setting of the analyzer.
This indicates that light is plane polarized.

b. The transmitted intensity is the same for all settings of the analyzer.
This indicates that light is either (i) unpolarized or (ii) circularly polar-
ized or (iii) a mixture of circularly polarized and unpolarized light. To
distinguish between these lights, we make use of a quarter-wave plate in
a manner given later.

c. The transmitted intensity varies as the Nicol is rotated, and for each
complete rotation of the analyzer we get two positions (180° from each



PoLARIZATION OF LigHT © 399

other) at which the transmitted intensity is a maximum and two positions
at which the transmitted intensity is a minimum. This indicates that the
light is either (i) elliptically polarized or (ii) a mixture of unpolarized
and plane polarized light or (iii) a mixture of unpolarized and ellipti-
cally polarized light. To distinguish between these lights, we employ a
quarter-wave plate in the manner described later.

Distinction between Unpolarized, Circularly Polarized, and a Mixture of
Unpolarized and Circularly Polarized Light

To accomplish this identification a quarter-wave plate is inserted in the path of
an oncoming beam of light, and the light emerging from the plate is examined
by the Nicol prism, rotating it about the direction of propagation of the beam.
Any of the following three phenomena will be observed:

(i) The light emerging from the %—plate can be completely extinguished

for two settings (180° from each other) of the analyzer in its one
complete rotation. This indicates that the original light is circularly
polarized. The reason for this conclusion is as follows: Circularly polar-

ized light, just on entering the %—plate, can be resolved into two compo-
nents of equal amplitudes—one along and other perpendicular to the

optic axis—differing in phase by% radians. In transmission through the

%—plate, a further phase difference of % is introduced so that on emer-
gence the resultant phase difference between the phases of two com-
ponents becomes %+ % = rr if the original light circle is described in

the counterclockwise direction as shown in Figure 11.35 (a), and if
the circle is described in the clockwise direction with respect to an
observer toward whom the wave travels, the resultant phase differ-

ence will be %—g =0. Consequently, in either case they compound

into rectilinear vibrations PAP, that is, the emergent light is plane
polarized. This may be completely extinguished by the Nicol prism
when its principal section NN is at 45° with the optic axis of the quar-
ter-wave plate as shown in Figure 11.35 (a).
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FIGURE 11.35. (a) Analysis of circularly polarized light (b) Analysis of a mixture of circularly and

unpolarized light.

(ii) The light emerging from the quarter-wave plate exhibits no varia-

tion in intensity as the analyzing Nicol is rotated about its axis. This
indicates that the original light is unpolarized. The reason for this
conclusion is as follows: unpolarized light is theoretically equivalent
to two mutually perpendicular linear lights having no constant phase
relation to each other. That is, incoherent O and E disturbances are

propagated through the crystal. Hence, the %—plate cannot intro-
duce any constant phase difference between the two components

of unpolarized light. No matter what phase difference is introduced
between the two components of unpolarized light, if the components
recombine, the resultant will always be unpolarized light. One can, in
fact, be said to have unpolarized light at all points through the plate.
Hence, we conclude that unpolarized light is not at all changed in
transmission through the quarter-wave plate. Hence, we observe no
variation in the intensity of emergent light when examined by the
analyzer.

(iii) The emergent light exhibits two maxima and two minima in one

complete rotation of the analyzer. This indicates that the original
beam is a mixture of unpolarized and circularly polarized light. The
reason for this conclusion is as follows: the circularly polarized part of

the original beam on transmission through the %—plate, as explained

earlier, is converted into plane polarized light PAP as shown in
Figure 11.35 (b), while the unpolarized part is transmitted without
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any modification. Thus, the light emerging from the %—plate is a mix-

ture of unpolarized and plane polarized light. Obviously, when the
principal section NN of the Nicol prism is at right angles to PAP,
shown in Figure 11.35 (b), the transmitted intensity is a minimum.
For, while the linear vibration PAP is completely extinguished, the
unpolarized part gives rise to E vibrations as shown for AE in Figure
11.35 (b) in transmission through the analyzer. Hence, we observe
the variation in the intensity as stated earlier.

Distinction between Elliptically Polarized Light, Mixture of Elliptically Polarized
and Unpolarized Light, and Mixture of Plane Polarized and Unpolarized Light

We insert a quarter-wave plate between the analyzer and the incoming beam
of light. The quarter-wave plate is rotated gradually in steps of 1° or so, and
for each setting of the plate the analyzer is given one rotation. Then any of the
following three phenomena will be observed:

a.

It is possible to get one setting of the %—plate with respect to the original

light so that the emergent light can be completely extinguished for one
setting of the analyzer. The principal section of the analyzer, in other
words, the shorter diagonal of the end face of Nicol, is inclined to the
optic axis of the plate. This indicates that the original beam is ellipti-
cally polarized, and the axes of the ellipse are respectively parallel and
perpendicular to the optic axis when the emergent light is extinguished.
The reason of this conclusion is as follows:

Suppose the optical vector in the elliptically polarized wave rotates
in the counterclockwise direction with respect to an observer toward
whom the wave travels, and that the optic axis (say the x-axis) of the
plate is parallel to the major axis of the ellipse as shown in Figure 11.36
(a). The incident wave, just on entering the plate, is resolved into two
linearly polarized waves, vibrating in the x (major axis) and y (minor axis)
directions, that is, along and perpendicular to the optic axis of the plate,

differing in phase by % radians. The equations of component vibrations

are respectively,

EWave: x=a coswt=asin(wt+%) (11.30)

O Wave : y=bsino t (11.31)
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. . T ! .
There is a relative phase advancement of = of the first wave with respect

(24

to the second. If we assume that p, <p,, that is, V, >V the quarter

. . T
waveplate produces an additional relative phase advancement of — of the
first wave with respect to the second. Therefore, as the waves emerge

from the plate, they have a relative phase difference of % + % =7, and so

they combine into a plane polarized wave. Therefore, the light emerging
from the plate can be completely extinguished when the principal section
of the analyzer is perpendicular to the plane of vibration of the emergent
light.

If in the original beam, the ellipse is described in the clockwise direction,
then the resolved plane polarized vibrations along the major and minor
axes are

E Wave : x=—a cosa)tzasin[a)t—%) (11.32)

O Wave : y=bsinw t (11.33)

The first wave lags behind the second by a phase angle % If we assume
as before that V, >V the i-plate produces a relative phase advance of
4

% of the first wave with respect to the second. Therefore, the two waves

1 1
emerging from the plate have a phase difference of — ——=0. Conse-
2r 2w

quently, they combine into a plane polarized wave, the plane of vibration
being parallel to the diagonal of the rectangle that lies in the first and third
quadrants, and so the emergent light can be completely extinguished for
the setting of the analyzer marked in Figure 11.36 (b).

Transmitted plane

N . T—
P // of analyzer ‘J Q

Y Y
L — Incident —_|
0 90 -0 vibration 90—0 0
. Optic axis -~
X A X} ofa-plate [\X A X
Y Y
Emergent
N/ P vibration Q \ N
(a) (b)

FIGURE 11.36. Detection of elliptically polarized light.
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b. For one complete rotation of the analyzer, there are two settings (180°
from each other) at which the transmitted intensity is minimum (not
equal to zero), and in this setting its principal section (transmission plane)

is inclined to the optic axis of the i—plate as shown in Figure 11.36 (a).
4

This indicates that the original light is a mixture of unpolarized light and
elliptically polarized light. The reason of this conclusion is as follows:

When the optic axis of the i—plate is parallel to the major or minor axis
4

of the elliptically polarized part of the mixture, then on transmission
through the plate, as explained earlier, the elliptic vibration degenerates
into a linear vibration. The plane of vibration as PAP in Figure 11.37 (a)
is inclined to the optic axis of the plate. On the other hand, the unpolar-
ized part of the mixture is transmitted without any modification. Obvi-
ously, when the principal section of the analyzer is at right angles to the

plane of vibration of plane polarized part of the mixture emerging from
%—plate and therefore inclined to the optic axis of the %—plate, the trans-

mitted intensity is a minimum. For, while the plane polarized vibration
PAP is completely extinguished but the unpolarized part gives rise to
plane polarized light as for E vibrations, AE in Figure 11.37 (a) in trans-
mission through the analyzer.

c. The principal section of the analyzer in the setting for a minimum of
transmitted intensity (not equal to zero) is either parallel to or perpen-
dicular as shown in Figure 11.37 (b) to the optic axis of the quarter-wave
plate. This indicates that the original light is a mixture of unpolarized
light and plane polarized light. The reason for this conclusion is as fol-
lows: The plane polarized part labeled as QAQ in Figure 11.37 (b) of the

mixture is converted into an elliptically polarized wave on emergence

from the &—plate while the unpolarized part is transmitted without any

modification. The principal axes of the ellipse are respectively parallel
and perpendicular to the optic axis of the %—plate. It will be recalled
that when the elliptically polarized light is separately examined by the
Nicol prism, the transmitted intensity is a minimum when the principal

section is parallel to the minor axis of the ellipse, while the unpolarized
light exhibits no variation in intensity. It is now obvious that the mixture

emerging from the &—plate will exhibit the variation in the intensity in

the manner stated earlier.
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FIGURE 11.37. (a) Detection of mixture of unpolarized light and elliptically polarized light
(b) Detection of mixture of unpolarized light and plane polarized light.
The analysis given previously may be summarized as follows:
Detection:
® Ordinary No variation
light in intensity
Partially Two maxima and
(b) - - &' two minima during
Polarized light a complete rotation
Plane Two maxima and two
(¢) o extinctions during
Polarized light one rotation

Circularly
(d)
polarized light

Elliptically

()

polarized light

FIGURE 11.38. Detection analysis.

No variation in intensity
same as in (a)

Two maxima and two
minima during one
complete rotation
same as in (b)
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Distinction:

(i) Between circularly polarized and unpolarized light.

Circulai
larly Two maxima and

polarized polarized o two extinctions
i alyzer
light )/4-Plate ¥z
Unpolarized No change
Light in intensity
Analyzer
)J4-Plate vz

FIGURE 11.39. Distinction analysis between circularly polarized and unpolarized light.

(ii) Between elliptically polarized and partially polarized light.

Elliptically Two maxima and two

complete extinctions

polarized polarized

light M4-Plate Analyzer
Partially Two maxima and two
minima during one
polarized light rotation
M4-Plate Analyzer

FIGURE 11.40. Distinction analysis between elliptically polarized and partially polarized light.

11.28 BABINET COMPENSATOR

In the production and analysis of elliptically polarized light, the use of a given
quarter-wave plate is limited only to a narrow range of wavelengths for which
the path difference between the E and O rays on transmission through it is

M, where m =0,1,2,3, and so on. The Babinet compensator is an

apparatus which has no such limitation of wavelength when in use, and it has



406 ° OrTics

been successfully employed by Jamin for accurate measurement of constants
of elliptic vibration in elliptically polarized light. In reality, it measures only
the phase difference between the two components transmitted by any aniso-
tropic plate.

The Babinet compensator consists of two quartz wedges of equal acute
angles. The optic axis in one wedge is parallel to while the other perpendicular
to the longer edge of their free rectangular faces. The optic axes are mutu-
ally perpendicular when the wedges are placed in contact with each other
as shown in Figure 11.41 so as to form a thin plate of the rectangular cross-
section ABCD. The wedge angles are much exaggerated in Figure 11.41 for
the sake of convenience in drawing the figure. As modified by Jamin, the
instrument has fixed cross-wires in front of the upper wedge and a microme-
ter screw to displace the lower wedge relative to the upper fixed wedge along
their plane of contact, thus forming a plane parallel plate whose thickness can
be varied.

{

Optic axis

FIGURE 11.41. Babinet-Jamin compensator.

11.28.1 Calibration of Micrometer Screw of Babinet Compensator

It is first essential to calibrate the micrometer screw in terms of phase dif-
ference or path difference between the E and O rays originating from the
monochromatic light which is to be employed in the experiment. The analyzer
and polarizer are crossed, and the compensator is placed between them, ori-
ented so that a parallel beam of plane polarized monochromatic light incident
normally on the compensator has its plane of vibration at 45° to the optic
axes of the wedges. Just on entering the first wedge, the incident vibration
is resolved into two components, namely, the E vibration along the optic axis
and the O vibration perpendicular to it. The O ray travels faster than the E ray
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since quartz is a positive uniaxial crystal. The acute angles of the wedges are
so small that we can neglect the separation of the E and O rays. Since the
optic axis of the second wedge is perpendicular to that of the first, the O and
E rays in the first wedge are transmitted as E and O rays respectively in the
second wedge, that is, the two rays exchange their character and so change
their velocities on passing from one wedge into the other. Now let n; and n,
be the refractive indices of quartz for the E and O rays respectively. Let us
consider a point on the compensator where the upper wedge is of thickness h,
and the lower wedge of thickness h,. The optical path difference introduced
between the E and O rays in the transmission through the first wedge at this
point is i, (n; —n, ) and that introduced by the second wedge is ~h, (n, —n, ).
The negative sign arises because the rays that are E rays and O rays in the first
wedge become, respectively, O rays and E rays in the second wedge. Hence,
the total optical path difference is

A=(h, —hy)(n; —n,) (11.34)
and the resultant phase difference is
5:[2%)@1_;12)(%_”0) (11.35)

Due to the increasing thickness of one component wedge and the decreas-
ing thickness of the other, A and & increase linearly on one side of the center
(h, = h,) and decrease on the other side; that is, the retardation is of opposite
signs on the two sides of the zero point.

The compensator has constant thickness along lines perpendicular to the
longer edge of the wedge. For the central ray h, = h, and 6 = 0; that is, in effect
the plate is of zero optical thickness at the center. The emergent light at the
central line is plane polarized with its plane of vibration parallel to that of the
incident light—in effect the original vibration is transmitted. This is also true
for the emergent light at equidistant parallel lines, on either side of the central
ray, where 6 = +27,+47,467,... = 22mmn. Therefore, the light is extinguished
as if no birefringence medium were present between the crossed analyzer and
polarizer. At intermediate parallel lines where § = +(2m +1) 7, the emergent

T
light is plane polarized, but its plane of vibration is inclined at 3 to that of the
incident light; that is, the emergent vibrations are along the principal section

of the analyzer, and so they are freely transmitted through it. At other parallel
lines the emergent light is either circularly polarized or elliptically polarized.
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The polarization of emergent light varies along the length of the compensa-
tor. When the compensator is viewed through the analyzer (crossed) by the
help of a low-power microscope focused on the fixed cross-wires, a series of
equally spaced alternate dark and bright bands, perpendicular to the long
edge, are seen in the field of view. If the plane of vibration of the incident
light is not exactly at 45° to the optic axes, the emergent vibration at points
where 6 =+2mm will not be exactly perpendicular to the principal section of
the analyzing nicol. The fringes will be dark but not black, and the contrast in
the fringes will be reduced.

When the lower wedge is displaced with respect to the other by rotat-
ing the micrometer screw, the position of zero optical thickness moves
across the wedge. Therefore, the fringes move laterally across the field of
view. Thus, any desired dark fringe can be brought under the wire. The
movable wedge is adjusted until one of these dark bands is on the cross-
wires. The movement 2c¢ of the quartz wedge as read on the micrometer
screw or its angular rotation ¢ necessary to produce a shift of one fringe
spacing is that which corresponds to a change of phase difference by 27 or
a change of path difference of one wavelength. The screw is thus calibrated
in terms of phase difference or path difference. Now, the central differ-
ence of path can be altered by a known amount by displacing the wedge by
the known amount.

In order to locate the central black band corresponding to 6 =0, it is only
necessary to illuminate the compensator with plane polarized white light.
Only the central fringe at i, = h, is dark, and on either side of it the Newtonian
colors of the thin plate appear.

11.28.2 Measurement of the Birefringence (n, —n,)

The experimental arrangement is the same as sketched in Figure 11.42, and
monochromatic light is employed.

By moving the lower wedge, a dark fringe is brought under the cross-wires.
A doubly refracting plate cut from the given crystal, with its faces parallel to
the optic axis, is introduced between the compensator and one of the nicols.
The plate is oriented so that its optic axis is inclined at 45° with the principal
sections of the nicols. Thus, its optic axis is parallel and perpendicular to the
optic axis of the wedges. An extra phase difference

5'=(27ﬂj(nE—no)h (11.36)
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FIGURE 11.42. Calibration experiment.

11.28.3 Determination of Constants of Elliptic Vibration in Elliptically
Polarized Light

We shall now describe the use of the Babinet compensator to determine the
constants of elliptic vibration.

Phase Difference

When an elliptically polarized monochromatic light is incident normally on
the compensator, we may consider the elliptic vibration as resolved at the
surface into two components, namely

x=Asin(wt+a); y=Bsin(ot + ) (11.37)
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along and perpendicular to the optic axis of the first quartz wedge. The phase
difference between the two components is (& — ). Transmission through the
compensator changes this phase difference by

5 :(27”](;11 hy)(n—n,) (1138)

The total phase difference a — 8 + 6 will be integral multiples of 7 along
a system of equally spaced lines. The light emerging along these lines will
be plane polarized. Therefore, when the compensator is observed through a
properly oriented Nicol, bright and dark bands will be seen in the field of
view, and the central band again corresponds to a = +6 =0.

To begin with we employ a plane polarized light, and the wedge is moved
to bring the central band at the cross-wires. The phase difference between
the E and O rays at this point is zero. On substituting the elliptically polar-
ized light, the central band shifts to a point where the initial phase difference
a — B between the components of elliptic vibration is exactly neutralized by
the phase difference & introduced by the compensator. The lower wedge is
now displaced by turning the micrometer screw until the central dark band is
again under the cross-wires. If the displacement is x, we have

a-B «x X

=~ ora-f=— (11.39)
P c c

where 2¢ is the distance through which the wedge must be moved to intro-
duce a phase difference of 27 at the cross-wires. The value of 2¢ has been
previously determined in the calibration experiment.

Position and Ratio of Axes

The components of elliptic vibrations along the major and minor axes differ in

phase by % With this knowledge we proceed to determine the position and

the ratio of the axes as follows:

The analyzer and polarizer are crossed and adjusted with their princi-
pal sections at 45° to the optic axes of the quartz wedges. A dark band is
brought at the cross-wires by moving the lower wedge. In this setting, the
phase difference between the ordinary ray and the extraordinary ray, emerg-
ing under the cross-wires, is 2mn. The micrometer screw is turned through

¢

T
" turn to introduce a phase difference of ) at the cross-wires so that the

1
total phase difference becomes 2m7r—4— and, therefore, there results a
Vs
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displacement of fringes in the field of view. The polarizing nicol is removed, and
the elliptically polarized light under examination is allowed to fall normally on the
compensator, which is now rotated in its own plane about the line of vision until
the same dark band again moves on to the cross-wires. This will happen when the
phase difference at the cross-wires again becomes 2mm. The analyzer must be
adjusted to make this dark band as black as possible, that is, to achieve the extinc-
tion perfectly at the cross-wires. The situation is now shown in Figure 11.43.

Principal section
of Analyzer

FIGURE 11.43. Analyzer of elliptically polarized light.

The optic axes of the two quartz wedges now give the directions of the
axes of the elliptic vibration. The reason of this conclusion is as follows: when
the major and minor axes of the elliptic vibration are along the optic axes of
the quartz wedges, the components of the elliptic vibration along the optic

. ) T .
axes differ in phase by 3 all over the surface of the compensator. In traversing

1
the compensator, a further phase difference 2mm — o is introduced between
T

these components at cross-wires so that the resultant phase difference
becomes 2mm. Thus, the light emerging under the cross-wires is plane polar-
ized. Hence, the same dark fringe should appear under the cross-wires.
Suppose the analyzing Nicol is in the setting of complete extinction of the
dark fringe under the cross-wires. Its principal section is perpendicular to the
direction of the resultant of the (emerging) two components of the elliptic
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vibration whose phase difference has been compensated by the compensator
at the cross-wires. The tangent of the angle which the principal section by the
analyzer makes with the optic axis of the quartz wedge gives the ratio of the
axis of the elliptic vibration, which is

a
t‘ = —
an¢ )

11.29 DETERMINATION OF DIRECTIONS AND RATIO OF

THE MAJOR AND MINOR AXES OF ELLIPTICALLY
POLARIZED LIGHT

The elliptically polarized light is examined by a Nicol prism, which is rotated
until the transmitted intensity is a maximum. In this setting of the analyzer,
its principal section is parallel to the major axis of the ellipse. Accordingly, the
shorter diagonal of the end face of the Nicol is parallel to the major axis of the
ellipse. Obviously, its minor axis is parallel to the longer diagonal of the end
face. This setting of the analyzer is left undisturbed, and a quarter-wave plate
is placed in front of it in such a way that the optic axis is parallel to the shorter
diagonal of the end face of Nicol and therefore parallel to the major axis of
the ellipse. Suppose, for example, that the optical vector of the elliptically
polarized light rotates in the anticlockwise direction. Then, the light emerging
from the quarter-wave plate is a plane polarized wave. The plane of vibration
of this wave is parallel to the diagonal of the rectangle that lies in the second
and fourth quadrants as in Figure 11.36 (a). The shorter diagonal of the end
face of Nicol (which determines the transmission axis of the analyzer) is ini-
tially parallel to the optic axis of the quarter-wave plate. The transmitted light
is extinguished by rotating the analyzer in the anticlockwise direction through
an angle equal to (90 —6), where 0 is the angle which the plane of vibration
of the plane polarized emergent wave makes with the optic axis of the plate.
If the rotation of Nicol is 8 as measured by the help of a graduated circle and
vernier, then

B=90-00r0=90-p0

The tangent of the angle 6 so determined gives the ratio of the minor axis
to the major axis of the ellipse.

tanf = —
a
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11.30 CHARACTER OF NATURAL LIGHT

We have explained that vibrations in unpolarized light can be resolved into
transverse linear components in any two arbitrary mutually perpendicular
directions. The average amplitudes of two components are equal, and these
components have no definite mutual phase relationship. So, they must be
considered to be incoherent—the phase difference between them is con-
stantly changing in quite random fashion. Therefore, at any given instant,
these components correspond to a particular elliptically polarized light. Due
to incoherent components of unpolarized light, we can regard it as elliptically
polarized light, in which the shape of the ellipse as well as positions of its axes
change rapidly and irregularly with time, circularly polarized and plane polar-
ized light being included as special cases.

Example 11.1

A beam of linearly polarized light is changed into circularly polarized light by
passing it through a slice of crystal 0.003 cm thick. Calculate the difference in the
refractive index of the two rays in the crystal assuming this to be the minimum
thickness that will produce the effect and that the wavelength is 6 x 107 em.

Solution:

It will be recalled that when the least phase difference between the O and E
waves on emergence from the doubly refracting plate is T and the incident

linear vibrations are inclined at 45° to the optic axis, then the O and E waves
recombine to form circularly polarized light. Obviously, the crystal plate is
a quarter-wave plate, and its thickness is computed from Equation (11.21),
which when solved for (1, — p;)

A 6x107°

:ua_/‘lE:_

=——=0.005.
4 4x0.003

Example 11.2

Plane polarized light is incident on a piece of quartz cut parallel to the axis.
Find the least thickness for which the ordinary and extraordinary rays com-
bine to form plane polarized light given that

Solution:

p, =1.5442, p, =1.5533, A =5x107 cm.
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It will be recalled that if the least phase difference between the ordinary
and extraordinary waves in transmission through the quartz plate is A, they
combine to form plane polarized light. Obviously, the quartz plate is a half-
wave plate, and its thickness is computed from Equation (11.22).

A 5x107°

= =0.00274 cm.
Q(yE - ,uo) 2(1.5533 - 1.5442)

t=

Example 11.3

Quartz has a refractive index of 1.554 for the ordinary ray and 1.553 for the
extraordinary ray when measured with sodium light. What thickness of quartz
between a crossed polarizer and analyzer will produce annulment of the light,
the quartz being cut parallel to the optic axis?

Solution:

It will be recalled that no light is transmitted when the principal section of the
analyzer is perpendicular to that of the polarizer. If the quartz is of such a thick-
ness that the phase difference between the O and E waves is 27 in transmission
through the plate, then on emergence they combine to form linearly polarized
light, the plane of vibration coinciding with that of the incident linearly polar-
ized light. Obviously, this light will be again extinguished by the analyzer. To
compute the thickness of the quartz plate, we substitute § = 27 in the equation

o= (27”)(/4,5 — p, )t and solve it for .

A 5896x10°
uy —u, 1.553-1.544

[

t= =0.0065 cm.

Example 11.4

A quartz plate is a half-wave plate for light whose wavelength is A. Assuming
that the variations in the indices of refraction with wavelength can be
neglected, how would this behave with respect to light of wavelength A, =247

Solution:

The thickness of the half-wave plate is computed from Equation (11.20)
A

2(”0 _ﬂb)

which can be easily rewritten as

t:
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22 A

4(”0 _uE) 4(”0 _yE)

which is identical to Equation (11.21). The given plate, therefore, behaves
like a quarter-wave plate for light of wavelength A,.

11.31 EXERCISES

1.

(a) What is meant by the term “polarization of light”?
(b) Comment on the statement “polarization requires that vibrations
are transverse.”

(a) What is Brewster’s law? Show that at Brewster’s angle, the reflected
ray is perpendicular to the refracted ray.

(b) Explain how you would obtain and detect a beam of plane polarized
light by reflection. How does this prove the transverse character of
light vibrations?

Describe the construction and use of a Nicol’s prism and explain how
it produces plane polarized light. Would a similar prism prepared from
quartz serve a similar purpose?

Describe the polarization of light by scattering. Explain:

(a) Blue of the sky.
(b) Red color of sunset.

Describe different methods for producing plane polarized light.

A ray of light is incident on the surface of a glass plate of refractive
index 1.5 at the polarizing angle. Calculate the angle of refraction of
the ray.

When the angle of incidence on a certain material is 60°, the reflected light
is almost completely polarized. Find the refractive index of the material.

Discuss the phenomenon of superposition of two rectangular S.H.
wave Vibrations of the same period and show how it may be used for
the production of linearly, circularly, and elliptically polarized lights.

(a) What is meant by plane polarized, circularly polarized, and
elliptically polarized lights?
(b) Show that plane and circularly polarized lights are special cases of

elliptically polarized light.
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10.

11.

12.

13.

14.

1S.

16.

17.

18.

19.

Describe, giving relevant theory, how linearly, circularly, and elliptically
polarized lights are produced and detected.

How will you find whether a beam of light is plane polarized, circularly
polarized, or elliptically polarized?

What is circularly polarized light? How is it produced? How can you
distinguish between circularly polarized and unpolarized lights?

What is elliptically polarized light? How is it produced? How will you
distinguish between elliptically polarized light and a mixture of plane
and unpolarized lights?

(a) Explain the construction and use of a quarter-wave plate and a
half-wave plate.

(b) If a quarter-wave plate and a half-wave plate are given to you, how
would you proceed to distinguish them from each other?

Give the construction of the Babinet’s compensator and explain how
you would use it to analyze elliptically polarized light.

Calculate the thickness of a quarter-wave plate of quartz for sodium
light (2 =5893 A.U.). The refractive indices of quartz for the E and O
waves are 1.5533 and 1.5442 respectively.

Calculate the thickness of a doubly refracting crystal required
to introduce a path difference of % between the ordinary and
extraordinary rays when A —6000 A.U., p, =1.55, and p, = 1.54.

Calculate the thickness of a calcite plate which would convert plane polar-
ized light into circularly polarized light, given p1, =1.658, i, =1.486, and
A =5890 A.U.

(a) Plane polarized light falls normally on a quarter-wave plate. Explain
what the nature of the emergent light will be if the plane of polari-
zation of the incident light makes the following angles with the
principal plane of the quarter wave plate:
0°,30°,45°,90°

(b) Elliptically polarized light falls normally on a quarter-wave plate.
Explain the nature of the emergent light if the major axis of the
ellipse makes the following angles with the principal plane of the
quarter-wave plate:

0°,30°,90°



20.

21.

22.

23.

24.
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Show that the resultant of two coherent beams of elliptically polarized
light is in general another beam of elliptically polarized light.

How may a quarter-wave plate by made to produce a

(a) right-handed and (b) left-handed circularly polarized light.

How may a Nicol prism and a quarter-wave plate be used to distinguish
between right-handed and left-handed circularly polarized lights?

How may a doubly refracting plate be made to change (a) a right-
handed elliptically polarized beam into a left-handed beam (b) a
right-handed circularly polarized light into left-handed beam?

(a) How will you produce right-handed circularly polarized light?

(b) How will you distinguish between elliptically polarized light and
partially polarized light?

(c) Two nicols are oriented with their principal planes making an angle
of 30°. What percentage of incident polarized light will pass through
the system?

A parallel beam of plane polarized light of wavelength 5890 A.U.
(in a vacuum) is incident on a quartz crystal. Find the wavelengths
of the ordinary and extraordinary waves in the crystal (1, =1.5418,
11 =1.5508).
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12.0 INTRODUCTION

As we know light is an electromagnetic wave consisting of electric
(E) and magnetic (B) fields oscillating at right angles to each other and
to the direction of propagation of the wave traveling at a velocity of
3x10° m/sec. Vectors E and B are of equal significance to the wave.
However, photochemical, photoelectrical, and several other effects
are mainly due to the electric component. The actual light wave may
be treated as a collection of plane monochromatic polarized waves of
various frequencies, direction of propagation, and polarization planes.
Light is defined as a stream of tiny parcels (quantum) of energy, called
“photons” while explaining quantum phenomena. Photons have zero
rest mass and zero electric charge. Photons cannot be pasteurized,



420 * OrTiCs

121

and they can only be defined by knowing their energy (E) and direction of
motion or, in other words, their momentum p. The direction of p indicates the
direction of travel of the photon and the modulus of p gives the energy of the
photon divided by the velocity of light in vacuum, that is

p==2 (12.1)
C

In addition, polarization of the photon should also be specified. The pho-
ton energy

e=hv (12.2)

in terms of its frequency v where h is Plancks constant having value
6.626 x10™* Js. Putting Equation (12.2) in (12.1) we get
hv h

Py (12.3)

where A is the wavelength of light. Equations (12.2) and (12.3) reflect the
dual nature of radiation, that is, energy € and momentum p of a quantum, and
frequency v and wavelength A4 of a wave. Both the descriptions of light are
complementary to each other and are connected mathematically by Planck’s
constant h.

The more photons are in a given state, the higher the probability that new
photons will occupy this particular state. The boson nature of the photon sta-
tistics is of extreme importance for optical phenomena.

QUANTUM TRANSITIONS IN ABSORPTION AND
EMISSION OF LIGHT

The energy of an atom or molecule can take on only definite (discrete) values
E,, E,, E,, ..., E,. These are the energy levels of the atom (molecule). Any
species cannot remain in an excited state for an indefinitely long time. Sooner
or later, it inevitably comes down to a less excited state. This time is called the
“lifetime” of the energy level. The transition of an atom or molecule from one
energy level to another occurs in a jump and is called the quantum transition.
Quantum transitions may be induced by various causes. In particular, they can
occur when atoms interact with optical radiation.
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Absorption of Light

Consider two energy levels of an atom. Let the energy of the lower level be E,
and that of the upper level E,. Assume that the atom is in the lower level, and
a photon of energy (E,-E,) is incident on the atom. The atom can absorb this
photon and rise from level E, to E,, thus making a transition by absorption of
a quantum of light.

Stimulated Emission of Light

When the atom lies in the upper energy level, then the same incident photon
may play the role of a trigger (stimulus) and induce the transition from E, to
E|, and the atom falls into the lower level. The transition causes an emission of
a photon. Both the stimulating and stimulated photons have the same energy
(E,~E,).

Moreover, both of them have identical direction of their momenta and
identical polarization. In other words, the secondary photon finds itself in
the same state as the primary photon. This result is a sequel of the bosonic
behavior of photons—they tend to accumulate in the same state. This is the
phenomenon of stimulated emission. Stimulated emission is illustrated in

Figure 12.1.
Before emission During emission After emission
Excited Level ——— E, S g W—
Incident photon AVATAVAY, o
MAVAVAVAY, hv
Iy E,-E P
NN\
hv
Ground Level —0nw X F _O_
Atom in excited state Atom in ground state
E-E =M

FIGURE 12.1. Stimulated emission.

The more the primary photons incident, the higher the probability that
the atom lying in level E, will be forced to undergo a transition to E,. Thus,
there is a certain similarity between the stimulated emission and absorption
processes, namely, the probabilities of both processes are proportional to the
number of primary photons.

Thus, if the atom is in ground state E,, a photon of energy (E,-E,) leads
to the absorption process, whereas if the atom is in the higher level E,, the
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same photon, with the same probability as in the absorption process, stimu-
lates the atom to fall from E, to E, with the emission of another photon.

If there are many atoms in level E, of the material, an e.m. wave of the
energy (E,-E,) is capable of stimulating E, — E,, transitions in many atoms;
that is, the primary photon may initiate an avalanche of secondary photons. All
of them will be emitted in the same state as the stimulating primary photon.

Spontaneous Emission

An atom lying in level E, will tend to decay to level E, spontaneously, that
is, without any stimulus, say, in the form of a photon applied to it from out-
side. The photon emitted in the spontaneous E, — E, emission has the energy
(E,-E,), while its other characteristics—momentum direction, polarization—
are arbitrary.

The unpredictable release of photon energy by an atom is called sponta-
neous emission. Spontaneous emission is illustrated in Figure 12.2.

ES
E,

E,

[9A9] AS1duy

Time

(Ez 7El)>(E37E2)

FIGURE 12.2. Spontaneous emission.

The probability of the spontaneous emission of a photon is determined
only by the properties of the transition. Thus, there are two types of emission
of light, namely, stimulated and spontaneous emission. The former may be
viewed as a controllable process, as it is stimulated by the primary photon,
which not only induces the transition but also governs the characteristics of
the new emitted photon. The second process proceeds spontaneously and is
random in nature. The instant of transition and direction of the emitted pho-
ton are both random. Strictly speaking, an element of chance is present in the
process of stimulated emission too, as the primary photon may or may not ini-
tiate the transition. Therefore, the probability of transition processes are the
quantities which are considered for writing an equation related to transitions.
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Generation of Coherent Light Waves

Any light wave is characterized by a certain degree of coherence, however
small it may be. Coherent waves can be obtained by division of amplitude or
division of wavefront as seen earlier.

The pertinent questions are how can sufficiently coherent waves be gen-
erated and how can the degree of coherence of a wave be increased. The
answer lies in the necessity of the photons to occupy only selected states. It
means that the photon population is a controlled characteristic.

Such control is possible owing to the “boson nature” of photons, that is,
their tendency to populate predominantly just those states that already have a

sufficiently high population density.

Competition between Absorption and Stimulated Emission

Earlier we have seen that two different and competitive processes of absorp-
tion and stimulated emission are possible when photons with energy (E,-E)
interact with active centers. An active medium is a solid, liquid, or gas con-
taining atoms, ions, or molecules which are capable of decaying from their
higher energy states in a radiative manner, that is, by emitting electromag-
netic waves. These atoms (ions or molecules) are sometimes called “active
species,” or “active centers.” The active medium is the heart of any laser. The
greater the number of active centers in the appropriate initial state, the higher
the probability of each of these two processes. If the number of active centers
on level 1 is greater than that on level 2, absorption becomes a more probable
process. If on the contrary there are more active centers on level 2, stimulated
emission becomes more probable.

Consequently, population inversion between levels 1 and 2 is a necessary
condition for stimulated emission to exceed absorption.

Each photon emitted by inevitable spontaneous transitions 2 — 1 may
be absorbed or may stimulate the emission of new photons. The emission of
new photons predominates in a medium with an inverted population of levels
1 and 2. Thus, spontaneously emitted photons trigger numerous stimulated
emissions. “Spontaneous” photons are independently emitted and therefore
have arbitrary direction of their momenta and therefore produce correspond-
ing stimulate emissions. Directional selectivity can be achieved by preparing
the active medium in the shape of long rod (in the case of a solid medium)
or a long tube (in the case of a gaseous medium) with a comparatively small
cross-section. Spontaneous photons with momentum parallel to the rod’s axis
are favored, since they can interact with a higher number of active centers
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and therefore stimulate an intensive avalanche of stimulated photons. On the
other hand, those spontaneous photons with momenta at an angle to the rod’s
axis will soon leave the active medium. The path within the active medium
traveled by favored photons may be increased still further by placing partially
reflecting mirrors at the end faces of the rods. The mirrors reflect the radia-
tion back and therefore enhance the effect of stimulated emission. From here
originates the idea of an optical resonator, an essential element of a laser. The
selectivity of photon energies can also be facilitated by appropriate optics.

12.2 THE LASER

A Light Amplification by Stimulated Emission of Radiation (laser) is a device
that emits light through a process of optical amplification based on the stimu-
lated emission of electromagnetic radiation. A laser is triggered by initiating
its pumping system. This system provides excitation of active centers, and an
inverted population of lasing level builds up. The optical resonator (together
with some additional elements, namely, the frequency selective element) pro-
vides selectivity of direction, polarization, energy, and so forth. As a result, a
highly coherent radiation, called laser radiation, appears along the axis xx'.

The active medium and the additional elements are located inside the
optical resonator. Due to the resonator, the emitted radiation propagates
along the axis xx'. Note that a laser can emit radiation both in a single direc-
tion and in two opposite directions along the resonator axis.

(i.) Active Medium and Methods of Excitation
The following active media are used in lasers:

a. gases and mixture of gases (gas lasers).

b. crystal and glasses doped by special ions (solid-state lasers).

c. liquids, e.g., dyes (dye-laser).

d. semiconductors (semiconductor laser).

Normally, the active medium of a gas laser is a mixture of several gases;
atoms or molecules of one of them are active centers, while other gaseous
components serve to produce population inversion on the lasing levels of
the active centers. One possible mixture, for example, is helium and neon.
Neon atoms are active centers. Helium helps in excitation and thus popu-

lation inversion in Ne. The mixture is placed in a gas discharge tube at low
pressure: neon at a pressure of about 10 Pa and helium at about 100 Pa.
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The active medium of a solid-state laser is normally a rod with circular
cross-section doped with special ions that play the role of active centers.
A classical example of a solid lasing medium is a ruby rod, 3 to 20 mm in
diameter and 5 to 30 cm long. Ruby is crystalline alumina (Al,O,) doped
with chromium ions (from 0.05 to 0.5%). Note that it is this impurity
(dopant) that gives ruby its typical color (from pink to deep red).

Systems of pumping vary and to a large extent depend on the type of
active medium. Excitation in gas lasers is realized in the simplest man-
ner by means of electric discharge in the active medium. In this case the
energy of excitation is transferred to active centers as a result of collisions
with particles in the gas discharge plasma.

Excitation in solid-state lasers is carried out by irradiating the lasing rod
with light from a sufficiently powerful light source such as an optical flash
lamp. In this case active centers are excited owing to the absorption of pho-
tons emitted by the pump lamp. Thus, lasers with optical pumping can be
considered as converters of optical radiation, converting, for instance, the
incoherent radiation of a pulsed lamp into a highly coherent laser emission.

(ii.) Optical Resonator

An optical resonator is realized as a system of mirrors. Figure 12.3 shows
(a) a linear resonator, (b) a confocal resonator, and (c) a resonator consist-
ing of a plane mirror and a concave mirror. Mirrors may be coated with
dielectric or metal layers. At least one of the mirrors must be partially
transparent with respect to the emitted radiation. Resonator mirrors of
gas lasers are usually mounted at both ends of the gas discharge tube and
are not linked to it in a rigid manner. Mirrors in solid-state lasers are typ-
ically formed on specially prepared end faces of the active medium rod.
An optical resonator defines the direction in which radiation is emitted.

Acti
e - } D}
(b) (c)

(a)

FIGURE 12.3. (a) a linear resonator, (b) a confocal resonator, and (c) a resonator consisting of a
plane mirror and a concave mirror.

When radiation inside a real laser is considered, it is necessary to take into
account not only stimulated emission and photon absorption processes caus-
ing radiation losses such as scattering, diffraction, and so on. Laser oscilla-
tion is sustained only if stimulated emission by active centers compensates
not only for the absorption by these centers but for all other losses as well.
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The planes of the end faces of gas-laser discharge tubes are usually tilted
at an angle so that the normal to the end face and the optical axis are at
the Brewster angle corresponding to the refractive index of the material
of which the end face window is made, as shown in Figure 12.4.

Brewster window

o

FIGURE 12.4. A typical He-Ne-Laser with external mirrors. The ends of the discharge tube are fitted
with Brewster windows.

The end face of the discharge tube is oriented at the Brewster angle in
order to realize the conditions of polarization selectivity of emission.
We should recall that when an unpolarized light wave is incident on the
plane-parallel window (end face) of the tube.

The light polarized in the plane perpendicular to the plane of incidence
is reflected, while that with parallel polarization is transmitted. Thus, the
former is lost, and the latter is repeatedly reflected by the resonator mir-
rors and therefore passes repeatedly through the active medium and gets
amplified. Thus, we obtain plane-polarized laser emissions.

(iii) Basic Modes of Laser Oscillation
The three basic modes of laser oscillation are continuous oscillation,
pulsed mode of free oscillation, and pulsed mode with controlled losses
(e.g., Q- switching). The continuous mode is typical for gas lasers, and
pulsed mode is mostly employed in solid-state lasers. However, if neces-
sary, any type of laser can be made to operate in any of these modes of
oscillation.

(iv) The Wonderful Laser Beam
Imagine a helium-neon laser operating in a dark room. The rich red color
of the beam is a wonderful sight in the semidarkness of the room. There
is no divergence (widening), and intensity is practically constant. One can
place a number of reflecting mirrors in its way and make the beam trace
a zig-zag path in the room, and the look is magnificent. If the beam diam-
eter is magnified using a lens and then it falls on a screen such as a sheet
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of paper, an unusual light spot is observed which “speckles,” and dark and
bright spots appear and vanish. Such a behavior of the laser beam is exclu-
sively due to its high degree of coherence. Light and dark specks appear
because of the interference of coherent beams reflected to the observer’s
eyes from different points of the spot. Slight unconscious motions of the
observer’s head change the angle at the parts of the spot which are seen
and modify the conditions of interference, changing the bright spots into
dark ones and vice versa.

Characteristics of a Laser

The significant feature of a laser is the enormous difference between the char-
acter of its light and the light from other sources such as the sun, a flame, or an
incandescent lamp. The characteristic features of lasers are (a) directionality,
(b) high intensity, (c) monochromaticity, and (d) high degree of coherence.

Directionality

A directional beam from any conventional light source can be obtained with
the help of an aperture. Lasers emit in one direction only. The directionality is
expressed as “full angle beam divergence.” It is twice the angle that the outer
edge of the beam makes with the axis of the beam. The outer edge of a beam

is defined as a point at which the strength of the beam has dropped to (l)

e
times its value at the center. For a typical laser, the beam divergence is less
than 1 milli-radian.

Intensity

From an ordinary incandescent lamp, light spreads more or less uniformly
in all directions. The laser gives a narrow light beam of very small diameter,
1 mm or less. Thus, energy is concentrated in a small region. This concentra-
tion of energy, both spatially and spectrally, accounts for the high intensity of
lasers. Even a 1 mW laser can damage the eyes if one looks directly into it.
The emission of photons/sec in lasers is around 10" —10%, whereas in thermal
sources it is ~ 10",

Monochromaticity

The light emitted by a laser is far more monochromatic than that by any con-
ventional monochromatic source. However, no light source including lasers is
perfectly monochromatic. Only better and better approximation to the ideal
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can be sought. Figure 12.5 shows an ideal monochromatic source of light with
a group of photons in exactly one frequency, while Figure 12.6 shows the
linewidth of the light emitted from a laser and a conventional light source.

A

A4

Monochromatic

FIGURE 12.5. |deal monochromatic source of light with a group of photons in exactly one frequency.

Intensity

Conventional

Vo
Frequency—»

FIGURE 12.6. Linewidth of the light emitted from a laser and a conventional light source.
The degree of non-monochromaticity of a wave may be defined as relative

bandwidth (&j where v, is the central frequency of emission and Av is full
Yo

width at half maximum (FWHM) of the laser line describing the spread of

frequencies about the mean value.

Coherence

Laser radiation has a high degree of coherence, and therefore laser radiation
can be focused to a very small spot creating high power density, namely 10*
watts in aspotof 1 um diameter. This facilitates cutting of metals, microwelding,
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microdrilling through diamond crystals, and so on. The coherence time 7 of
laser radiation may be as high as 10~ sec. Therefore, the coherence length zc
may be as long as 10°m up to 100 km. This value is seven orders of magnitude
higher than the coherence length of ordinary light sources. Interference pat-
terns in experiments such as the Fresnel biprism, Michelson interferometer,
Newton’s ring, and thin film could be observed in the pre-laser era, because
the path length difference was very small—in the order of a millimeter at
most. Figure 12.7 shows an ideal monochromatic source of light with a group
of photons in the same relative phase.

Coherent

FIGURE 12.7. Ideal monochromatic source of light with a group of photons in the same
relative phase.

The Einstein Coefficients

We consider two levels of an atomic system as shown in Figure 12.8, and let
N, and N, be the number of atoms per unit volume present in the energy lev-
els E, and E, respectively.

E, © © 06000000 ,

N e

g, _O00000000000000000 N,

FIGURE 12.8. Two states of an atom with energies £, and E,; their corresponding population densities
(6-6)
are N, and N, respectively. At thermal equilibrium, N,<N, and =2 =¢ &' .
1
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If radiation at a frequency corresponding to the energy difference (E, - E,)

falls on the atomic system, it can interact in three distinct ways:

1.

An atom in the lower energy level E, can absorb the incident radiation
and be excited to E,. This excitation process requires the presence of
radiation. The rate at which absorption takes place from level 1 to level 2
will be proportional to the number of atoms present in level E| and also
E,-E

the energy density of the radiation at the frequency © = % . Thus,
if u(w) represents the radiation energy per unit volume between ® and
o + do, then we may write the number of atoms undergoing absorptions
per unit time per unit volume from level 1 to level 2 as

T, =B,u(o)N, (12.4)

where B, is a constant of proportionality and depends on the energy lev-
els E, and E,. Notice here that u(®) has the units of energy density per
frequency interval.

For the reverse process, namely the deexcitation of the atom from E, to
E,, Einstein postulated that an atom can make a transition from E, to E,
through two distinct processes, namely stimulated emission and sponta-
neous emission. In the case of stimulated emission, the radiation which
is incident on the atom stimulates it to emit radiation, and the rate of
transition to the lower energy level is proportional to the energy density
of radiation at the frequency . Thus, the number of stimulated emissions
per unit time per unit volume will be

I, =B, u(®)N, (12.5)

where B,, is the coefficient of proportionality and depends on the energy
levels.

An atom which is in the upper energy level E, can also make a spontane-
ous emission; this rate will be proportional to N, only, and thus we have
for the number of atoms making spontaneous emissions per unit time per
unit volume

U, =A,N, (12.6)

At thermal equilibrium between the atomic system and the radiation
field, the number of upward transitions must be equal to the number of
downward transitions. Hence, at thermal equilibrium
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N, B, u(®)=N,A, +N,By,u(o)
or

AZ]
Nl

NZ]BM - le

(12.7)

u(w)=
(

Using Boltzmann’s law, the ratio of the equilibrium populations of levels
1 and 2 at temperature T is

(Ey-E) ho

N T 2
-'2 _ e kT - eI\BT (128)
Nl

Where k, =1.38x107 J/K is the Boltzmann’s constant. Hence

w(w)=— 2 (12.9)

T
B,e™ —B,y

Now according to Planck’s law, the radiation energy density per unit fre-
quency interval is given by

h 3 3 1
u(w)= :’;‘0 = (12.10)
e —1

where c is the velocity of light in free space and n, is the refractive index
of the medium.
Comparing Equations (12.9) and (12.10), we obtain

B, =B, =B (12.11)
and

A,  ho’n)

Zu 100 (12.12)

B, =©'c

Thus, the stimulated emission rate per atom is the same as the absorption
rate per atom, and the ratio of spontaneous to stimulated emission coeffi-
cients is given by Equation (12.12). The coefficients A and B are referred
to as the Einstein A and B coefficients.



432 « OrTics

At thermal equilibrium, the ratio of the number of spontaneous to stimu-
lated emissions is given by

__ ANy r g (12.13)
B, N,u(w)

Thus, at thermal equilibrium at a temperature T, for frequencies
kT

(a) > BT , the number of spontaneous emissions far exceeds the num-

ber of stimulated emissions.

Example 12.1

Let us consider an optical source at T = 1000 K. Determine the ratio of the
number of spontaneous to stimulated emissions.

Solution:
At this temperature,

k,I  1.38x107(]J/K)x10°(K)
ho 1054x107(Js)

~1.3x10" Hy

Thus for @ > 1.3x10" Hz, the radiation would be mostly due to sponta-
neous emissions.

For A =5000A°, © ~3.8x10" Hz and R = ¢®* ~ 5.0x10".

Thus, at optical frequencies the emission is predominantly due to sponta-
neous transitions, and hence the light from usual light sources is incoherent.

12.3 TYPES OF LASERS

Different types of lasers can be classified into solid, liquid, gas, and semicon-
ductor lasers, depending on the laser medium. The solid laser was the first
one to be designed, that is, the ruby laser. Next came the He-Ne laser, a gas
laser. Then came the diode laser, dye laser, chemical lasers, excimer lasers,
gas dynamic lasers, free electron lasers, and so on, which have importance
owing to their characteristics in terms of wavelengths, method of excitation,
tunability, power levels, cost, and so forth. The frequency of a laser can also be
“up-converted” or “down-converted” using standard techniques.

The following tables summarize different types of lasers and their charac-
teristic wavelengths.
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Name of the Laser Active Medium Operating Wavelength
Ruby ALO,: Cr™ 694.3 nm

Calcium fluoride Uranium | CaF, : u®* 2.49 pm

laser

Nd-YAG laser Y,ALO,, : Nd* 1.064 pm

Nd-glass laser

BeALO, : Cr”*

701 to 818 nm

Titanium Sapphire laser ALO, : Ti 660 to 1180 nm
Color Center lasers KF 1.06 pm
KCl 1.06
KCl: Tl 1.06 pm
KCl: Li 0.514 jm
KCl : Na 0.514 jm
LiF 0.647 jm
NaCl 1.06 pm
Fiber glass laser Glass fiber: Er 1.53 pm
Dye laser (tunable) Dicyanomethylene 610-705 nm
Coumarin 102 460-515 nm
Coumarin 6 506-558 nm
Coumarin 30 485-535 nm
Polyphenyl -2 363410 nm
Stilbene 1 391435 nm
Fluoroscein 500-550 nm
Carbazines 600-700 nm

2. Gas lasers:

Name of the Laser

Active Medium | Operating Wavelength

He-Ne laser He-Ne 0.633 pm (most popular)
1.15 pm and 3.39 pm
Argon ion laser Ar 1.15 pm and 3.39 pm

About 25 different wavelengths in visible
region between 408.9 to 686.1 nm

(continued)
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(continued)

Name of the Laser

Active Medium | Operating Wavelength

Krypton in laser Kr 406.7 to 676.4 nm
He-Cd laser He-Cd 441.6, 352, 354 nm
Copper vapor laser Cu 510.5 and 578.2 nm
Lead vapor laser Pb 722.9 nm
Gold vapor laser Au 627.8 nm
CO, laser CO, + N, + He |10.6 and 9.5 pm
Excimer laser F, 153 nm
Ar-F 193 mm
Kr-F 248 mm
Xe - Cl 308 mm
Xe-F 353 nm
Nitrogen laser N, 337 nm
Far infrared laser Water vapor 30 pm to 1.8 mm
Hydrogen
cyanide and
others

3. Chemical lasers:

Name of the Laser Active Medium Operating
Wavelength
Hydrogen chloride laser H + Cl, > HCI* 3.77 pm
+Cl
+ heat
Hydrogen fluoride laser H+F,>HF*+F 2.7-2.9 pm

4. X-ray lasers:

Name of the Laser

Active Medium

Operating

X-ray lasers

Pumping laser and a solid
target (like Se)

Wavelength

Discrete wavelengths
from 3.56 to 46.9 nm




Lasers © 435

5. Free electron laser:

Name of the Laser | Active Medium Operating Wavelength
Free electron laser Free electrons moving Tunable continuously
at relativistic speed and from X-rays to sub-
undergoing acceleration and | millimeter range
deceleration

12.4 THE HELIUM-NEON LASER

The first continuously operated gas laser was the He-Ne laser. The main prob-
lem in a gas laser is how the atoms can be selectively excited to proper lev-
els in quantities sufficient to achieve the required population inversion. The
primary mechanism for excitation used in gas lasers is by electron impact.
Suppose atoms of a kind A are exited in a discharge tube, by this method, to
a metastable state. Such a state can be populated appreciably at moderate
electron densities. If the discharge tube also contains atoms of another kind
B, whose excited state lies very close to that of the metastable state of A, a
resonant energy transfer may take place and the atoms B will be lifted from
their ground state to the excited state. If the rate of transfer of excitation is
larger than the rate of radiative decay of the excited state, the population of
the excited state of the atom B will steadily increase, and the state will be so
populated that inversion may exist between it and another level.

This process was used in the He-Ne laser, the first continuously operated
gas laser. The energy level schemes of He and Ne are shown in Figure 12.9.

1
2's +
1
1
2% T
1 1
1 1
1 1
1 1
1 1
: ! Relaxation via
| I META 1s spontaneous emission
1 1 —
' ! Relaxation via
1s 1 wall collision
Helium Neon

FIGURE 12.9. Energy levels of the He-Ne system.
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He atoms are found to be much more readily excited by electron impact
than Ne atoms. The atoms can be excited by d.c. or a.c. power supply. The 2's
and 2°S levels of He have a relatively long lifetime, that is, they are metastable
levels. Laser action, however, occurs between energy levels of Ne. The role of
the He atoms is to assist in the pumping process.

The metastable levels 2'S at ~ 20.5 eV and 2°S at ~ 19.81 eV of helium
coincide in energy with sets of excited levels 3s and 2s respectively of neon.
The notation used here to represent Ne levels is Paschen’s notation. The 2s
group comprises four levels denoted by 2s,,2s,,2s,, and 2s,. They may also
be represented using the Russell-Saunders terminology as 1P,,3F,,3P,,3P,
respectively. However, L - S coupling is not suitable for the description of the
Ne system, as many transitions which are forbidden by the selection rules for
L - S coupling are actually observed.

When a helium atom in the metastable state collides with a neon atom in
the ground state, an exchange of energy takes place, and a neon atom is lifted
to the 2s or 3s level, and the helium atom drops back to the ground state. This
provides a selective population mechanism which supplies continuously Ne
atoms to 2s and 3s levels, increasing their population. The possible transitions
allowed by selection rules are those to the ground state and to the 2p states.
The decay time of s levels (r,=100 nsec) is an order of magnitude longer than
the decay time of the p states (rpz 10 nsec). Population inversion, therefore,
can be produced between s and p states, thus satisfying the condition for
operation as a four-level laser system.

Since 2s states are also radiatively connected to the ground state, they
would decay quickly to the ground state. Is this not a disadvantage as far as
the population inversion between s and p levels is concerned? It is indeed so
at very low pressures, when the probability of decay to the ground state vastly
exceeds that to the 2p levels. However, at a high pressure of the order of a
mm Hg, transitions to the ground state undergo complete resonance trap-
ping; that is, every time a photon is emitted, instead of escaping from the gas,
it is absorbed by another atom in the ground state, which thereby ends up in
the excited state 2s, and since the population of the ground state is large, the
process is continuous. Thus, the high population in the 2s levels is maintained.
The lifetime of s levels, therefore, is determined primarily by the radiative
decay to the 2p levels.

Figure 12.9 shows the transitions on which laser oscillations can be
expected. Of the various transitions from the component levels of the 3s and
2s groups to the levels of 3p and 2p groups, the following are more prominent:
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(a) 382 - 3p4 A =3.39 pm
(b) 3s, —> 2p, A=0.633 pm
(c) 2s, > 2p, A =115 pm

For effective working of the laser, certain conditions will have to be sat-
isfied which put severe restrictions on the values of some operational param-
eters. For instance, one has to ensure that (i) 2p levels are not excited by
inelastic collisions between electrons and the atoms in the metastable level 1s;
and (ii) the atoms in the 2s levels are not de-excited to the ground state. Both
these processes, namely

e+ Ne (ls) >Ne(2p) +e (12.14)

and

e + Ne (2s) > Ne + e (12.15)

become prominent at high current densities and upset the population inver-
sion between 2s and 2p levels. One cannot ignore the possibility of these pro-
cesses occurring, because 1s levels have no allowed downward transition and
may also be radiation trapped on the transition 2p— 1s. Consequently, they
tend to build up a sizable population on the 2p level. The current density,
therefore, must be adjusted to its optimum value. The population of the 1s
level also must be kept at a minimum value, and this necessitates the adjust-
ment of the total and partial pressures of the gas mixture and also the size of
the tube. The Ne pressure is usually kept much below that of He (P, ~0.1
Torr, P,, ~1 Torr) and the diameter of the tube is small (~2 mm) so that 1s
atoms may collide with the wall and depopulate the level. There was enough
evidence to show that the measures, as previously, maximize the performance
of lasers. Thus, when the discharge was switched off, the 2s levels were found
to decay with the time variation identical to that of 2°S states, and the ampli-
fication was found to be higher during the afterglow than during the current
pulse. This is obviously because during the afterglow, no electrons are avail-
able for the excitation of 1s atoms to 2p levels.

The continuous wave laser oscillations in a discharge tube containing Ne
and He at pressures 0.1 Torr and 1 Torr respectively were observed. The
chamber consisted of a long quartz tube of length 80 cm and inside diameter
1.5 ¢m, as shown in Figure 12.10.
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FIGURE 12.10. Schematic diagram of the first He-Ne laser.

At each end of the tube, there was a metal chamber containing high
reflection plates. Flexible bellows were used in the end chambers to allow
external mechanical tuning of the Fabry-Perot plates. This enabled them to
align the reflectors for parallelism to within 6 seconds of arc. Two optically
flat windows were provided at the ends of the system, which allowed the laser
beam to be transmitted without any distortion. The end plates were separated
by a distance of 100 cm. The discharge was excited by means of external elec-
trodes using a 28 Mc/sec generator. The input power was around 50 watts.
The flat plates were of fused silica and were flat to a hundredth of a wave-
length. The high reflectance was achieved by means of 13-layer evaporated
dielectric films. The reflectance was 98.9% in the wavelength range 11000
A-12000 A.

Javan et al. found that five different infrared wavelengths, namely
1.118, 1.153, 1.160, 1.199, and 1.207 pm, corresponding to the different
25— 2p transitions, could be made to oscillate. The strongest oscillation was
found to occur at 1.153 pm corresponding to 2s, — 2p, transition, with an
output power of 15 mW. The beam divergence was about one minute of
arc, which is close to the theoretical diffraction limited value. A screen con-
taining nine slits with spacing of 0.125 cm and each with slit width 0.005 cm
was placed across the full 1.125 cm aperture of the beam. The resulting dif-
fraction pattern indicated that there was a very small phase variation over
the aperture, which means that the beam consisted of perfectly spatially
coherent light.

The difficulty of aligning the F.P. interferometer with a spacing of 100 cm
is not small. Hence, an alternative system is now adopted in which spherical

mirrors are employed in a confocal or near confocal configuration, as shown
in Figure 12.11.
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FIGURE 12.11. Confocal mirror system with Brewster angle window.

In a confocal resonator, the radius of curvature of each mirror is equal to
the cavity length. The diffraction losses of such a configuration are low, and
the alignment is much less critical. The divergence, however, is large, but
can be reduced by placing a circular aperture in front of the exit mirror. The
mirrors are placed external to the discharge tube. With such an arrangement,
it is necessary to minimize unwanted reflections from the windows at the end
of the discharge tube. This was found to be possible by the use of Brewster
angle windows, as shown in Figure 12.11.

The Brewster angle is given by

tan6, =1 (12.16)

where 1 is the refractive index. An unpolarized wave incident on a plate can
be considered as a resultant of two superposed plane polarized waves, one of
which is polarized in the plane drawn through the normal to the window and
the tube axis (plane of oscillation) and the other normal to this plane. The
wave polarized normal to the “plane of oscillations” is completely reflected
by the window plate and, hence, is shut out of the picture; whereas the wave
polarized in the plane of oscillation is transmitted in the same direction and is
repeatedly reflected by the mirrors without causing any losses. An additional
advantage of this arrangement is that one obtains a plane polarized laser emis-
sion. The spectral purity of the output of such a laser is remarkably high. For
brief periods, the oscillation frequency, which is around 3 x 10" ¢/sec, does
not vary by more than 1 c/sec.

It can be seen from Figure 12.9 that depending on certain factors, laser
oscillation can also be achieved on the transitions of the types “a” and “b,” and
with the rapid development in the field, laser action was discovered at 3.39 pm
(a) 6328 A (b). The 6328 A He-Ne laser is one of the most popular and most
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widely used lasers. The commercial model of this type of laser requires 5 to
10 W of excitation power and produces 0.5 to 50 mW of cw laser output.

The He-Ne laser is made to oscillate on a particular transition by making
the multilayer dielectric mirrors in such a way that they have a maximum
reflectivity at the desired wavelength. Another interesting way of obtaining
laser oscillations at a particular wavelength is to use a dispersion prism, as
shown in Figure 12.12.

A2

FIGURE 12.12. Wavelength selection.

A prism placed inside the resonator provides wavelength selectivity. The
light waves of different frequencies emitted by the active medium are spatially
separated by the prism. If the right-hand mirror of the resonator is perpendic-
ular to the propagation direction of, say, a 4, wave, then 4, is incident on the
mirror obliquely and is not returned into the active medium after reflection.
One can change the wavelength by rotating the mirror about an axis perpen-
dicular to the plane.

Application of Lasers

Studies of interaction of laser radiation with matter are of extreme scientific
significance. Lasers are widely used for fundamental studies in physics, chem-
istry, and biology and also in engineering sciences.

High power laser radiation can alter, in a reversible manner, the physical
behavior of material leading to diverse nonlinear optical phenomena.

Lasers facilitate high concentration of light power within narrow band-
widths and frequency tuning over considerable ranges. Therefore, they are
useful light sources in investigations of optical spectra of materials.

Tunable lasers facilitate selective excitation of atoms or molecules or for
selective rapture of chemical bonds. This opens up the possibility for initiating
the desired chemical reactions, controlling these reactions, and studying their
kinetics.

Picosecond pulses available from lasers render possible the study of ultra-
fast processes, namely biomedicals, photosynthesis, and so forth.
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The numerous fields of laser applications may be broadly categorized into
two groups. One involves applications where laser beams—as a rule of high
power—are exploited to produce a targeted effect on material such as weld-
ing, cutting, and so on. The other group involves data transmission and pro-
cessing, measurements, and quality control.

EFFECTS OF STRONG LASER RADIATION ON
MATERIALS

Using optical lenses, a laser beam can be focused into a light spot of 10-100
pm diameter on the surface of a material, thereby leading to a very high irradi-
ance. If 1 kW output of a CO, laser is focused in a spot of 100 pm diameter, the
resultant irradiance will be 10" W/em?. Around 10° W/m® the material starts
melting. At still higher levels of irradiance, it starts boiling and an intense
evaporation occurs. As the beam irradiance grows further, vapor is ionized by
the light to produce high temperature plasma. The plasma may be absorptive
and prevent the beam from entering the material. Accordingly, power densi-
ties realized in material working systems are decided.

For welding applications relatively low peak power but longer dura-

tion pulses (107 to 10%sec) are suitable. For perforation and hole drilling
where intense evaporation is essential, intense and short pulses (~ 107~ sec)
are required. The wavelength of the laser is also important, as it governs the
portion of light absorbed by the surface of the material. However, a beam of
shorter wavelength may be focused into a smaller light spot.

Laser Welding

The welding is contactless, thereby precluding any possibility of impurity in the
weldment. Unlike electron-beam welding running in a vacuum, laser welding
is performed in the atmosphere. It offers a possibility to weld in inaccessible
regions too. Laser welding is capable of a fast and accurate local melting at a
given point or along a line. The heat affected area is very small, and this is very
useful where welding is to be made in the vicinity of heat-sensitive compo-
nents, namely in micro-electronics. Lasers used are Nd: YAG, Nd: glass, ruby,
and CO,. Laser welding lends itself well to automatic processes in automotive
production lines, for joining titanium and aluminum sheets in ship building,
for trunk pipeline construction, and so forth. Welding of nonmetallic solids
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is also an interesting application of lasers; for example, glasses are welded by
lasers of 100 W output while quartz needs 300 W.

Laser heat treatment of surfaces enhances the strength of the treated
area, for example, in the automotive industry: cylinder blocks, valves, gears,
and so on. Most commonly used is a 1 kW CO, laser operating in continuous
wave mode.

Laser Cutting

Lasers can be used to cut paper, cloth, plywood, glass, asbestos sheets, ceram-
ics, sheet metals, and so forth in two as well as three dimensions, according to
a complicated profile with easy automation of the process and high produc-
tion rates. For example, 50 mm thick board may be cut with a 200 W CO,
laser, width of the cut being 0.7 mm; sheets of plywood require a 8§ kW CO,
laser; glass of 10 mm thickness requires 20 kW lasers. Metals can be cut with
100 to 500 W power, provided the beam-heated material is blown with a jet of
oxygen so that gas-laser cutting results.

Drilling and Perforating Holes

Hole perforation by lasers relies on intense evaporation of material heated
by powerful light pulses of 10~ to 107 sec duration and power density ~ 107
W/em® at the material surface. Nd :YAG lasers are suited for metallic tar-
gets only. CO, lasers are equally suited to metallic and non-metallic (plastic,
ceramic, glass) targets. Very large aspect ratios (length/diameter) are possible;
for example, lasers can perforate very small diameter (0.2 mm) holes to large
values of depths. Further, the advantage is the possibility of drilling holes in
close vicinity with each other and near the item edge.

Lasers in Medicine

The focused laser beam proves to be a unique scalpel, capable of bloodless
surgery, since the beam not only cuts but also “welds” blood vessels being
cut. Such surgery is sterile because it is contact-less. It is also painless as it is
very fast. It finds use in ophthalmology in treating the detachment of retinas,
cataracts, and glaucoma.

Isotope Separation

Several applications in the medicine and research industries require sub-
stances enriched in a particular isotope, namely deuterium against hydrogen.
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Laser separation of isotopes exploits the fact that various isotopes of an ele-
ment exhibit different absorption bands in their spectra. These absorption
bands are fairly narrow and lie close to each other in the spectrum. To excite
one isotope without disturbing the other, one has to irradiate their mixture
by a source of narrow bandwidth centered on the wavelength of the required
isotope. It is desirable that this source be tunable so that the radiation may
be tuned to the desired wavelength. This facility is offered by tunable lasers.
Thus, the excited atoms of the required isotope are raised to the upper level,
while the other isotope remains in the ground state. The mixture of isotopes is
then irradiated by another radiation, which is absorbed by the excited atoms
only to ionize them. As a result, the desired isotope is obtained in the form of
ions easily separable by applying a dc electric field. This is essentially the idea
of one of the laser separation techniques, called two-step photo-ionization.

Optical Communication

Besides using optical waveguides (optical fibers), laser communication in
open space can be established between satellites, satellites and aircraft, and
satellites and stations on the ground. Unguided communications can exist also
between stations on the earth’s surface and underwater.

Ranging and Measurement

Similar to conventional microwave radar, the optical radar using lasers, also
called “rangefinder” by militaries, has been designed to detect distant objects
and retrieve information about these objects from the radar signal reflected
from these objects. High carrier frequency, possibility of extremely narrow
directionality of the radiation, operation in the range of nanosecond and pico-
second pulses—all these features predetermine a number of advantages of
optical radar systems over ordinary radars. The high resolution of the method
makes possible the determination of the size and shape of the object and its
orientation.

For velocity measurements, laser rangefinders measure Doppler shift in
the signal frequency due to the velocity of the ranging object collinear with
the laser beam. The higher the carrier frequency, the greater the detected
Doppler shift and the accuracy of velocity evaluation.

The disadvantage is that the laser wavefront is degraded and attenuated
in the medium where it propagates, and then an adaptive optics method has
to be used to cope with this drawback.
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Interferometric distance measurements are performed using a frequency-
stabilized He-Ne laser operating in the central longitudinal mode. This tech-
nique controls tool motions, automatically compensating for errors due to
wear, precisely aligns fixtures in aircraft engine manufacturing, and so forth.
Flow velocity measurements are also allowed using a 10 mW He-Ne laser.

The Laser Gyroscope

Such a gyroscope measures angular velocity with a precision of 107 degree/
hour and is capable of tracking very small angular velocities. This precision
is comparable with that available using the most sophisticated and expensive
conventional gyroscopes. The laser gyros are useful for altitude control of sat-
ellites orbiting spacecrafts and aircrafts.

It involves a co-propagating and a counter-propagating laser beam which
interfere, and a shift in interference fringes is used to detect the angular
rotation.

Laser Monitoring of the Environment

Laser properties of directionality and monochromaticity are put to good use
for measurement of the concentration of various atmospheric pollutants.
These include oxides of nitrogen, carbon monoxide, sulphur dioxide, and a
variety of particulate matter such as dust, smoke, and fly ash. The laser tech-
niques perform these measurements by remotely sensing the composition of
the atmosphere with a light beam without the necessity of sample collection or
any chemical processing. The results of the measurements are available read-
ily, and there is no distortion of the quantities being measured. Consequently,
these techniques yield real-time data and are extremely suitable for sounding
time variations of the atmosphere, that is, for environmental monitoring.

12.6 EXERCISES

1. Calculate the energy of a photon that has a wavelength of 500 nm.

2. What is the energy of a photon at the He-Ne output wavelength
A =546.8 nm?

Define a laser.

4. What is the active medium?
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What are the active media used in lasers?
What is the difference between stimulated and spontaneous emissions?

What is the energy of the photon that is spontaneously emitted
between the two states E, =2.40 eV and E, =1.0 eV? What is the wave-
length of the photon?

What are the four active media used in lasers?

Let two energy states, E, =2.30 eV and E, =1.0 eV, and there are
1x10" electrons/cm’ in E,. At a temperature of 1000 K, how many
electrons are in state E,?

If the energy difference between the ground state and an excited state
in an atom is 4 eV at a temperature of 300 K, determine the fraction of
the atoms in the excited state.

What are the four different types of lasers?

Why are lasers useful light sources in investigations of optical spectra of
materials?
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13.0 INTRODUCTION

Optical fiber is the medium to transmit light as a carrier for commu-
nicating signals between the two ends of the fiber. Furthermore, opti-
cal fiber is the waveguide for light. The light can be guided through
thin fibers of glass or plastic. Fiber optic cables transmit data through
very small cores at the speed of light. Fiber optic cables provide high
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13.1

bandwidths and low losses, which allow high data-transmission rates over long
distances. There are three common types of fiber optic cables: single-mode,
multimode, and graded-index.

ADVANTAGES OF OPTICAL FIBERS

The following are the main advantages of optical fibers:

1.

Attenuation in a fiber is markedly lower than that of coaxial cable or
twisted pairs and is constant over a very wide range. So, transmission
within a wide range of distance is possible without repeaters, etc.

Smaller size and lighter weight. Optical fibers are considerably thinner
than coaxial cable or bundled twisted-pair cable. So, they occupy much
less space.

Electromagnetic isolation. Electromagnetic waves generated from elec-
trical disturbances or electrical noises do not interfere with light signals.
As a result, the system is not vulnerable to interference, impulse noise, or
cross-talk.

No physical electrical connection is required between the sender and the
receiver.

The fiber is much more reliable, because it can better withstand environ-
mental conditions such as pollution and radiation, and salt produces no
corrosion. Moreover, it is nominally affected by nuclear radiation. Its life
is longer in comparison to copper wire.

There is almost no cross-talk in optical fibers, and hence transmission is
more secure and private, as it is very difficult to tap into a fiber.

Greater bandwidth. Bandwidth of the optical fiber is higher than that of

an equivalent wire transmission line.
As fibers are very good dielectrics, isolation coating is not required.

Data rate is much higher in a fiber, and hence much more information can
be carried by each fiber than by equivalent copper cables. For example:
at the immensely high frequencies of an optical fiber, data rates of 2 Gbps
over tens of kilometers have been demonstrated. Compare this to the
practical maximum of hundreds of Mbps over about 1km for coaxial cable
and just a few Mbps over 1 km for twisted pairs.
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10. The cost per channel is lower than that of an equivalent wire cable system.
It is expected that in the near future, the optical fiber communication
system will be more economical than any communication system of other

types.
11. Due to the non-inductive and non-conductive nature of a fiber, there is no
radiation and interference on other circuits and systems.

12. Greater repeater spacing: Fewer repeaters indicate lower cost and fewer
sources of error. It has been observed that a fiber transmission system can
achieve a data rate of 5 Gbps over a distance of 111 km without repeaters,
whereas coaxial and twisted-pair systems generally have repeaters every
few kilometers.

13. The raw material is available in plenty.

as a Guiding Medium

Optical frequencies are extremely large (~10" Hz) as compared to conven-
tional radio waves (~10° Hz) and microwaves (~10'" Hz), and a light beam act-
ing as a carrier wave is capable of carrying far more information in comparison
to radio waves and microwaves.

With the discovery of the laser, some experiments on the propagation of
information-carrying light waves through the open atmosphere were carried
out, but it was realized that because of the vagaries of the terrestrial atmo-
sphere, for example, rain, fog, and so forth, in order to have an efficient and
dependable communication system, one would require a guiding medium in
which the information-carrying light waves could be transmitted. This guiding
medium is the optical fiber, which is hair-thin and guides the light beam from
one place to another.

In addition to the capability of carrying a huge amount of information,
fibers fabricated with recently developed technology are characterized
by extremely low losses (~0.2 dB/km), and as a consequence, the distance
between two consecutive repeaters (used for revamping the attenuated sig-
nals) can be as large as 250 km. In a recently developed fiber optic system,
it has been possible to send 140 Mbit/s information through a 220 km link
of one optical fiber; this is equivalent to about 450,000 voice channels. In
comparison, the copper cables used today have repeaters spaced every few
kilometers or so.

In addition to the long-distance communication systems, optical fibers
are also being extensively used for Local Area Networks (LANs)—networks
that wire up telephones, televisions, computers, or robots in offices and cities.
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13.2 TYPES OF FIBER

An optical fiber is a dielectric waveguide that operates at optical frequencies.
This fiber wave guide is normally cylindrical in form. It confines electromag-
netic energy in the form of light to within its surface and guides the light in a
direction parallel to its axis. The transmission properties of an optical wave-
guide are dictated by its structural characteristics, which have a major effect
in determining how an optical signal is affected as it propagates along the
fiber. The structure basically establishes the information-carrying capacity of
the fiber and also influences the response of the waveguide to environmental
perturbation.

The propagation of light along a waveguide can be described in terms of
a set of guided electromagnetic waves called the modes of the waveguide.
These guided modes are referred to as the bound or trapped modes of the
waveguide. Each guided mode is a pattern of electric and magnetic field lines
that is repeated along the fiber at intervals equal to the wavelength. Only a
certain discrete number of modes are capable of propagating along the guide;
these modes are those electromagnetic waves that satisfy the homogeneous
wave equation in the fiber and the boundary condition at the waveguide
surfaces.

A circular solid core of refractive index n, is surrounded by a cladding hav-
ing a refractive index n, <n,. In principle, a cladding is not necessary for light
to propagate along the core of the fiber, but it serves several purposes. The
cladding reduces scattering loss resulting from dielectric discontinuities at the
core surface, it adds mechanical strength to the fiber, and it protects the core
from absorbing surface contaminants with which it could come in contact.

In low- and medium-loss fibers, the core material is generally glass which
is surrounded by either a glass or a plastic cladding. Higher-loss plastic core
fibers with plastic claddings are also widely in use. In addition, most fibers
are encapsulated in an elastic, abrasion-resistant plastic material. This mate-
rial adds further strength to the fiber and mechanically isolates or buffers
the fibers from small geometrical irregularities, distortions, or roughness
of adjacent surfaces. These perturbations could otherwise cause scattering
losses induced by random microscopic bends that can arise when the fibers
are incorporated into cables or supported by other structures.

Variations in the material composition of the core give rise to the two
commonly used fiber types. In the first case, the refractive index of the core is
uniform throughout and undergoes an abrupt change (or step) at the cladding
boundary. This is called a step-index fiber.
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In the second case, the core refractive index is made to vary as a function
of the radial distance from the center of the fiber. This type is a graded-index
fiber.

Both the step and the graded index fibers can be further divided into
single-mode and multimode classes. As the name implies, a single-mode fiber
sustains only one mode of propagation, whereas multimode fibers contain
many hundreds of modes. Multimode fibers offer several advantages com-
pared to single-mode fibers. The larger core radii of multimode fibers make
it easier to launch optical power into the fiber and facilitate the connecting
together of similar fibers.

A disadvantage of multimode fibers is that they suffer from intermodal
dispersion. When an optical pulse is launched into a fiber, the optical power in
the pulse is distributed over all (or most) of the modes of the fiber. Each of the
modes that can propagate in a multimode fiber travels at a slightly different
velocity. This means that the modes in a given optical pulse arrive at the fiber
end at slightly different times, thus causing the pulse to spread out in times as
it travels along the fiber. This effect, which is known as intermodal dispersion,
can be reduced by using a graded-index profile in the fiber core: this allows
graded-index fibers to have much larger bandwidths (data rate transmission
capabilities) than step-index fibers.

Refractive Index Profiles

Figure 13.1 illustrates the fiber cross-section and ray paths for step-index fib-
ers, graded-index fibers, and single-mode fibers.
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FIGURE 13.1. Fiber cross-section and ray paths.
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Total Internal Reflection

A ray of light travels more slowly in an optically dense medium than in one
that is less dense, and the refractive index gives a measure of this effect. When
a ray is incident on the interface between two dielectrics of differing refrac-
tive indices (e.g., glass-air), refraction occurs, as illustrated in Figure 13.2(a).
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FIGURE 13.2. Internal reflection.

It may be observed that the ray approaching the interface is propagating
in a dielectric of refractive index n, and is at an angle ¢, to the normal at the
surface of the interface. If the dielectric on the other side of the interface has
a refractive index n, which is less than n,, then the refraction is such that the
ray path in this lower index medium is at an angle ¢, to the normal, where
¢, is greater than ¢,. The angles of incidence ¢, and refraction ¢, are related
to each other and to the refractive indices of the dielectrics by Snell’s law of
refraction, which states that

. . sing, n,
(n,sing, =n,sing, ) > —+=—= (13.1)
sing, n,

It may also be observed in Figure 13.2 (a) that a small amount of light is
reflected back into the originating dielectric medium (partial internal reflec-
tion). As n, is greater than n,, the angle of refraction is always greater than the
angle of incidence. Thus, when the angle of refraction is 90° and the refracted
ray emerges parallel to the interface between the dielectric, the angle of inci-
dence must be less than 90°. This is the limiting case of refraction, and the angle
of incidence is now known as the critical angle ¢, as shown in Figure 13.2 (b).

From Equation (13.1) the value of the critical angle is given by

sing, =2 (13.2)

ny
At angles of incidence greater than the critical angle, the light is reflected
back into the originating dielectric medium (TIR) with high efficiency (around
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99.9%). Hence, it may be observed in Figure 13.2 (c¢) that total internal reflec-
tion occurs at the interface between two dielectrics of differing refractive indi-
ces when light is incident on the dielectric of lower index from the dielectric of
higher index, and the angle of incidence of the ray exceeds the critical value.
This is the mechanism by which light at a sufficient shallow angle (less than
90° —¢,) may be considered to propagate down an optical fiber with low loss.

Acceptance Angle

The geometry concerned with launching a light ray into an optical fiber is
shown in Figure 13.3, which illustrates a meridional ray A at the critical angle
¢, within the fiber at the core-cladding interface.

|
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1
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FIGURE 13.3. Acceptance angle.

It may be observed that this ray enters the fiber core at an angle 6, to the
fiber axis and is refracted at the air-core interface before transmission to the
core-cladding interface at the critical angle. Hence, any rays which are inci-
dent into the fiber core at an angle greater than 6, will be transmitted to the
core-cladding interface at an angle less than ¢, and will not be totally inter-
nally reflected. This situation is shown in Fig. 13.3, where the incident ray B
at an angle greater than 0, is refracted into the cladding and eventually lost by
radiation. Thus, for rays to be transmitted by total internal reflection within
the fiber core, they must be incident on the fiber core within an acceptance
core defined by the conical half angle 6,. Hence, 6, is the maximum angle to
the axis at which light may enter the fiber in order to be propagated, and is
often referred to as the acceptance angle for the fiber.

Numerical Aperture

A light ray is incident on the fiber core at an angle 6, to the fiber axis, which is
less than the acceptance angle for the fiber 6,. The ray enters the fiber from a



454 + Orrics

medium (air) of refractive index n, and the fiber core has a refractive index n,,
which is slightly greater than the cladding refractive index n,. Assuming the
entrance face at the fiber core to be normal to the axis, then considering the
refraction at the air-core interface and using Snell’s law

n,sinf, =n,sin6, (13.3)

considering the right-angled triangle ABC indicated in Figure 13.4,

FIGURE 13.4. Snell’s law and numerical aperture.

then
p==-0, (13.4)
2
where ¢is greater than the critical angle at the core-cladding interface. Hence,
Equation (13.3) becomes
n,sin0, =n, sin(—¢+gj =n, cos¢ (13.5)

using the trigonometrical relationship sin¢+cos”p=1, Equation (13.5) may
be written in the form

nysin6, =n,J(1-sin® ¢) (13.6)

when the limiting case for total internal reflection is considered, ¢ becomes
equal to the critical angle for the core-cladding interface and is given by

, n,
sinf, =—=
n,

Also in this limiting case, 6, becomes the acceptance angle for the fiber 0,.
Combining these limiting cases gives

n,sin@, = (nl2 —ni) (13.7)
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Equation (13.7), apart from relating the acceptance angle to the refractive
indices, serves as the basis for the definition of the important optical fiber
parameter, the numerical aperture (NA). Hence, the NA is defined as:

NA =n,sin6, = J(n} —nj) (13.8)

Since the NA is often used with the fiber in air where n, is unity, it is sim-
ply equal to sinf,. It may also be noted that incident meridional rays over the
range 0 <0, <0, a will be propagated within the fiber.

The numerical aperture may also be given in terms of the relative refrac-
tive index difference A between the core and the cladding, which is defined as

_nm-ng _(nmng)(n +ny) (n—ny)2n,

A=l 2 . T T e A< (13.9)
2n, 2n; 2n, n,

Hence, combining Equation (13.8) with Equation (13.9), we can write
NA =n,+2A (13.10)

The relationships given in Equation (13.8) and Equation (13.10) for the
numerical aperture are a very useful measure of the light-collecting ability of
a fiber.

They are independent of the fiber core diameter and will hold for diame-
ters as small as 8 um. However, for smaller diameters they break down, as the
geometric optics approach is invalid. This is because the ray theory model is
only a partial description of the character of light.

Example 13.1

A silica optical fiber with a core diameter large enough to be considered by
ray theory analysis has a core refractive index of 1.50 and a cladding refractive
index of 1.47. Determine (a) the critical angle at the core cladding interface,
(b) the NA for the fiber, and (c) the acceptance angle in air for the fiber.

Solution:

a. The critical angle ¢, at the core cladding interface is given by

¢, =sin”' B |=sin™ (—1'47) =785
} n, 1.50

b. The numerical aperture NA = \/(n]2 - ni) = \/(1.50)2 - (1.47)2 =0.30
c. The acceptance angle in air 6, =sin™ (NA) =sin"' (0.30) =17.4°
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Example 13.2

A typical relative refractive index difference for an optical fiber designed for
long distance transmission is 1%. Estimate the NA and the solid acceptance
angle in air for the fiber when the core index is 1.46. Further, calculate the
critical angle at the core cladding interface within the fiber. It may be assumed
that the concepts of geometric optics hold for the fiber.

Solution:

With A =0.01 the numerical aperture is

NA = n,+/2A =1.46./0.02 =0.21

For small angles the solid acceptance angle in air G is given by
G=r0? =rsin® 0, =7 (NA)" = (0.04) =0.13 rad

The relative refractive index difference A;

ny _”2)

L

—1-

n ny

Hence

B 1 A=1-0.01=0.99
ny

The critical angle at the core cladding interface is

¢, =sin”" [”—J —sin” (0.99) =819’

n

13.3 CONCEPT OF MODES

The electromagnetic light field that is guided along an optical fiber can be
represented by a superposition of bound or trapped modes. Each of these
guided modes is composed of a set of simple electromagnetic field configura-
tions which form a standing wave pattern in the transverse direction, that is,
transverse to the waveguide axis.

Maxwell’s Equations

Maxwell’s equations that give the relationships between the electric and mag-
netic fields are:

VxE=—— (13.11)
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_ D
VxH="— 13.12
Py ( )
VeD=0 (13.13)
VeB=0 (13.14)

where,

D=¢E and B=uH

¢ is the permittivity (or dielectric constant),  is the permeability of the
medium,

E is electric field, B is magnetic flux density, H is magnetic field, and D
is electric displacement field

Taking the curl of Equation (13.11) and making use of Equation (13.12)

yields
Vx(VxE)=-v @Z—Q(VXB)Z——(VX/JH)
" 0 oD O’E 1545
——y—(VfoI)z—,u—Ez—ue P

Using the vector identity V x (V X E) = —V(V . E) ~V’E=-V’ we get

0

- 0
V’E =eH—s (13.16)
Similarly, by taking the curl of Equation (13.12), it can be shown that
.z
V’H=¢ 13.17
H—s ( )

Equations (13.16) and (13.17) are the standard wave equations.

Field Components in Optical Waveguides

Now consider electromagnetic waves propagating along a cylindrical fiber
shown in Figure 13.5. For this fiber a cylindrical coordinate system (r,¢,z) is
defined with the z-axis lying along the axis of the waveguide.
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FIGURE 13.5. Electromagnetic waves propagating along a cylindrical fiber.

If the electromagnetic waves are to propagate along the z-axis, they will
have a functional dependence of the form

E=E,(r.¢)e " (13.18)

H=H,(r,¢)e"" " (13.19)

For the curl in cylindrical coordinates refer to

- 0A
VM:(;%_J}” o[ o), 1( 5 (W)_@Arja: (15.20)

rop o= o or r\or o

which are harmonic in time ¢ and coordinate z. The parameter is the

z-component of the propagation vector and will be determined by the bound-

ary conditions on the electromagnetic fields at the core-cladding interface.
When Equations (13.18) and (13.19) are substituted into Maxwell’s curl

equations, we have, from Equation (13.11),

VxFE= _% — _%uﬁoej(wtﬁz) _ _]-a)'uﬁoej(wffﬂ:) — —]a),uﬁ (13.21)

On transforming Maxwell’s field equation in the polar coordinate system

(r, ¢, z) we get in the cylindrical system of coordinates, we have

1. (/j lg
r r
VXEZ——:—]@HFI:E i g
or 0¢ Oz
E, E¢ E: (13.22)
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Thus,

~ 10E .
—iouH ==—224+ iBE 13.23

. OE -
JjouH, =—+ jBE, (13.24)

or
- 18, = 10E

—jouH. ==—(rE, ) - ——= 2
JOR: rar(r ¢) r O¢ (13.25)

and from Equation (13.12),

- 10H -
jweE, =——=+ jpH 13.26
]0)8 r r a¢ ]B ¢ ( )
- O0H _
—joek, =—=+ jBH, (13.27)
or
o 19, -\ leoH, ‘
josk, =;E(TH¢)—; Py (13.28)

By ehmmatmg variables these equations can be rewritten such that when

E: and H_ are known, the remaining transverse components E E H and
H, can be determined.
E = —i[ aaE Ho ag; (13.29)
q r r
. j E H_
E, =—i2[ﬁ%—¢;—u aa (13.30)
g\r r
_ OH  &w OE
78 :—;—2([3?—7% (13.31)
_ oH OF
, —iz(éaT;mwa—l (13.32)
g\r r

where
The substitution of Equations (13.31) and (13.32) into Equation (13.28)
results in the wave equation in cylindrical coordinates as
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OE. 10E. 1 OE,
sttt 53
or* ror r®o¢’

and substitution of Equations (13.28) and (13.29) into Equation (13.25)
leads to

+¢’E. =0 (13.33)

H. 106H. 1 6*H. -
S+ ——+— +q H.=0 (13.34)
or* ror r a¢

Equations (13.33) and (13.34) contact either E or H: only. This appears
to imply that the longitudinal components of E and H are uncoupled and can
be chosen arbitrarily provided that they satisty Equations (13.33) and (13.34).

If the boundary conditions do not lead to coupling between the field com-
ponents, mode solutions can be obtained in which either E.=0or H =0.
When E_. =0, the mode is called transverse electric or TE mode and when
H_ =0, a transverse magnetic or TM mode results. Hybrid modes exist if both
E_and H. are nonzero. These are designated as HE or EH modes, depending
on whether H._ or E_, respectively, makes a larger contribution to the trans-
verse field.

Wave Equations for Step-Index Fibers

A standard mathematical procedure for solving equations such as Equation
(13.33) is to use the separation of variables method, which assumes a solution
of the form

E. = AF, (r)F,(9)F () F, (¢) (13.35)
The time and z-dependent factors are given by
F,(2)E, (t) =) (13.36)

since the wave is sinusoidal in time and propagates in the z-direction. The cir-
cular symmetry of the waveguide and each field component must not change
when the coordinate ¢ is increased by 277. We thus assume a periodic function
of the form.

F(¢)=¢"" (13.37)

The constant v can be positive or negative, but it must be an integer, since
the fields must be periodic if ¢ with a period of 27.
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§ubstituting Equation (13.36) into Equation (13.35), the wave equations
for E_, Equation (13.33) becomes

0°F  10F
L +__1+(q2 _”_2]1:1 =0 (13.38)
r

or* ror

Equation (13.38) is a well-known differential equation for Bessel func-
tions. An identical equation can be derived for H .- Equation (13.38) is solved
for the regions inside and outside the core.

For the inside region the solutions for the guided modes must remain
finite as r — 0, whereas on the outside the solutions must decay to zero as
r — o,

Thus for r<a the solutions are Bessel functions of the first kind of
order v. For these functions we use the common designation |, = (ur). Here

. 2nn . ..
u® =k} — B*with k, = Tl n, is the refractive index of the core.
The expressions for E. and H_ inside the core are thus

E.(r<a)=A], (ur)e"e! ) (13.39)

H_(r<a)=BJ, (ur)e™ e/ ") (13.40)

where A and B are arbitrary constants.
Outside of the core the solutions of Equation (13.38) are given by mod-

ified Bessel functions of the second kind K, (wr), where o = B* —k; with

k, = 27;”2 , n, = refractive index of cladding.

The expressions for E_ and H. outside the core are, therefore,

E_(r>a)=CK, (a)r)ej“‘ﬁej("”*ﬁ:) (13.39)

H.(r>a)=DK, (wr)e™ ") (13.40)

where C and D are arbitrary constants.

From the definition of the modified Bessel functions, it is seen that
K, (or)— e as or — . Since K, (r) must go to zero as r — o, it follows
that @ > 0. This, in turn, implies that 8 > k,, which represents a cutoff condi-
tion. The cutoff condition is the point at which a mode is no longer bound to
the core region. A second condition on f can be deduced from the behavior
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of J (ur). Inside the core the parameter u must be real for F| to be real, from
which it follows that k, > B.
The permissible range of f for bound solutions is, therefore,

nk=k, <p <k =nk (13.41)

21
Where k= — is the free-space-propagation constant.

Modal Equation

The solutions for f must be determined from the boundary conditions. The
boundary conditions require that the tangential components E and E of E
inside and outside of the dielectric interface at r = @ must be the same and,
similarly, for the tangential components H s and H

Consider first the tangential components of E. For the z- components

from Equation (13.39) at the inner core-cladding boundary (E —E:] ) and
from Eqn. (13.39) at the outside of the boundary (E = EZ ), that is

E. _E:Z = AJ, (ur)e’e’ ) —CK, (wr)e!?e ")

- (13.42)
=AJ, (ur)CK, (or)=0
Inside the core the factor ¢* is given by ¢° =u’ =k} - B> where
k= 27n, oz
1 2 1M

Outside the core the factor w” is given by w’=p*-k; where

k, 227;“&:(0\/52,“ :

Substituting Equations (13.39) and (13.40) into Equation (13.30) to find
E¢, and similarly using Equations (13.39) and (13.40) to determine E , yield
atr=a.

L . 0B ,
E, —E, =—§(A]7 . (ua)—Bopu]! (ua)j

- %(CMKL (wa)— DouwK! (wa)) =0
w

a

(13.43)

where prime indicates differentiation with respect to the argument. Similarly,
for the tangential components of H, it is readily shown that at r = a.

H, -H_ =BJ,(ua)-DK,(wa)=0 (13.44)
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and

- - j ) ,

H, -H, =—§(B%]U(ua)+Awglu]E(ua)j
. . (13.45)
—LZ(DMKt (wa)+Cw82wK;(wa)]=0

w a

Equations (13.44) to (13.45) are a set of four equations with four unknown
coefficients A, B, C, and D. A solution to these equations exists only if the
determinant of these coefficients is zero:

J. (ua) 0 K, (wa) 0]
Ly ey LB ) Lok (ua) LK (wa)

0 ] (ua) 0 —K,(wa) =0 (1346)
L ey L (wa) 2K ) LRk (wa)

Evaluation of this determinant yields the following eigen value equation

for B:

(J.+K)(K ], +k§K0)=(&T(%+ 12) (13.47)

a uwoow
where

_J) e Kl (wa)

L. uf, (ua) e wK, (wa) (13.48)

Solving Equation (13.47) for 3, it will be found that only discrete values
restricted to the range given by Equation (13.41) will be allowed. Equation
(13.47) is a complicated transcendental equation which is generally solved by
numerical techniques; its solution for any particular mode will provide all the
characteristics of that mode.

TE(Transverse Electric) modes
For v=0— )
TM(Transverse magnetic) modes

For v # 0 — hybrid modes (HE, EH)

TE, TM modes correspond to meridional rays, hybrid modes correspond
to skew rays.
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Normalized Frequency (V) or V-number or V-parameter

An important parameter connected with the cutoff condition is the normal-
ized frequency V or V-number defined by

2
Vv? =(u2 +L02)61,2 =(2ﬂj (nf —ni) (13.49)

vz%”a, - =27ﬂcm1\/2A (13.50)

A is the free space wavelength of the light beam.

V is a dimensionless number that determines how many modes a fiber
can support. The number of modes that can exist in a waveguide as a function
of V may be conveniently represented in terms of a normalized propagation

constant b defined by
5
2w (ij - n;

b= = (13.51)

2 2 2
\'% n, —n,

Figure 13.6 shows that each mode can exist only for values of V that

exceed a certain limiting value. The modes are cut off when E =n,.

1.0

12

FIGURE 13.6. The curve number v, designates the HE,,, , and EH,_, , for v=1, the curve number v,
gives the HE,,, TE,,, TM,,,.

The HE,, mode has no cutoff and ceases to exist only when the core diam-
eter is zero. This is the principle on which the single-mode fiber is based.
By appropriately choosing @, n,, and n, so that

2ma (n? —n2) 22.405
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which is the value at which the lowest-order Bessel function ], is zero, all
modes except the HE|; mode are cut off.

The parameter V can also be related to the number of modes M in a
multimode fiber when M is large. An approximate relationship for step-index
fibers can be derived from ray theory.

The numerical aperture is given as

NA =sinf = (nf —ni)

For practical numerical aperture sin8 is small so that sin = 6. The solid
acceptance angle for the fiber is therefore

Q=76" =7 (n; —nj) (13.52)
For electromagnetic radiation of wavelength A emanating from a laser or
a waveguide, the number of modes per unit solid angle is given by = where

A is the area the mode is leaving or entering. The area A in this case is the core
cross-section wa’. The factor 2 comes from the fact that the plane wave can
have two polarization orientations.

The total number of modes M entering the fiber is thus given by

2A _271'202( 9 Z)ZV_Z

MZFQ_ P n; —n, 3 (13.53)
Example 13.4
Let n, =1.53,n, =1.50,A =1um,a =50pum. Find the total number of modes
M entering the fiber.
Solution:
Vo0472, M= V? . —(94'27 2 _4as6

13.4 PULSE DISPERSION IN STEP-INDEX FIBERS

The simplest type of optical fiber consists of a thin cylindrical structure of
transparent glassy material of uniform refractive index n, surrounded by a
cladding of another material of uniform but slightly lower refractive index n,.
These fibers are referred to as step-index fibers due to the step discontinuity
of the index profile at the core-cladding interface.
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In digital communication systems, information to be sent is first coded
in the form of pulses, and then these pulses of light are transmitted from
the transmitter to the receiver where the information is decoded. The larger
the number of pulses that can be sent per unit time and still be resolvable
at the receiver end, the larger is the transmission capacity of the system. A
pulse of light sent into a fiber broadens in time as it propagates through the
fiber; this phenomenon is known as pulse dispersion and happens because of
the different times taken by different rays to propagate through the fiber, as
shown in Figure 13.7.

Cladding

nq

A 2

Cladding c

nz

FIGURE 13.7. Pulse dispersion in step-index fiber.

Rays making larger angles with the axis take a longer time to traverse the
length of the fiber. Consequently, the pulse broadens as it propagates through
the fiber. Hence, even though two pulses may be well resolved at the input
end, because of broadening of the pulses they may not be so at the output end.
Where the output pulses are not resolvable, no information can be retrieved.
Thus, the smaller the pulse dispersion, the greater the information-carrying
capacity of the system.

Calculate the amount of dispersion in a step-index fiber as follows:

For a ray making an angle 6 with the axis, the distance AB is traversed

in time.
AC+CB AB
¢~ ACHCB _m (AB) (13.54)
(9 Ccos0
n,
where | — | represents the speed of light in a medium of refractive index n,,

C being tllle speed of light in free space. Since the ray path will repeat itself,
the time taken by a ray to traverse a length L of the fiber will be
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_ nL
Ccos6

(13.55)

The previous expression shows that the time taken by a ray is a function of
the angle made by the ray with the z-axis, which leads to pulse dispersion. If

we assume that all rays between O and 6, are present, then the time taken by
rays corresponding respectively to 6 =0 and 6 =60, = cos™ [&] will be given
n
= E shortest ray congruence paths (the fundamental mode).
C

min

. n,L n’L
Since cos0° =1, ¢, =—+—=——, longest ray congruence paths (the

max C & Cn2
n

highest-order mode).
Hence, if all the input rays were excited simultaneously, the rays would
occupy a time interval at the output end of duration.

2 2 2
6T = tmw( - tmin = nlL - (E] = nl L 1 _& = nlL A, (1356)
Cn, C Cn, n, ) Cn,

n—ny

A= (13.57)

ny
where A is the relative refractive index difference.
This derivation considers only pulse broadening owing to meridional rays
and does not take into account skew rays.
Where A <« 1, then the relative refractive index difference may also be given
approximately by:

A= (13.58)
ny
Hence, Equation (13.56) becomes
2 f— —_—
T =ML mzns ) mLfn—n, ) mLA (13.59)
T Cny,\ ny C n, C
Also, NA =n,v2A the previous expression becomes
L (NA)’
oT = —u (13.60)

T C 2n,



468 ° Orrics

where NA is the numerical aperture for the fiber.

The approximate expressions for the delay difference given in Equations
(13.59) and (13.60) are usually employed to estimate the maximum pulse
broadening in time due to intermodal dispersion in multimode step-index
fibers.

The previous time delay is the characteristic of the fiber and independent
of the wavelength of the light. It is of the order of nanoseconds per km. How-
ever, this type of delay is absent in single-mode fibers, as it has only one mode.

This phenomenon in graded-index fibers is at a minimum when profile
shape parameter o is close to the value 2(1 - 1.2A) =a

Using a ray theory approach,

opt*

4

_ LnA*  (NA)

ST, = (13.61)
£ 9C sn’C
Using electromagnetic mode theory,
Ln,A®
5T, == (13.62)
8C

It is observed that the graded-index fibers have much lower intermodal
dispersion than that of the step-index fiber.

Graded-index-a-profiles

a

n(r)=n,(1-2A) =n_ for r>a (13.64)

Refractive-index profiles ranging from the triangular profile, a =1.0,
to the step-index profile, oo = o0, are shown in Figure 13.8, with profiles for
a=1.7,2.0,2.3, and 6.0 lying in between. The profile parameter, a, may take
on values between zero and infinity.

It may be expected that a light pulse with a given width and amplitude
injected into one end of a fiber should arrive at its other end with the shape
and width unchanged, and only its amplitude is reduced by losses. If the losses
are extremely large, the pulse amplitude at the receiving end will be too small
to be detected, and a repeater has to be included to boost up the signal level
before it enters into the next section.

n(r)=n, (1_%(3)“} for r<a (13.63)
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FIGURE 13.8. Refractive-index profiles ranging from the triangular profile, oc=1.0, to the step-index

profile, o= co.

Several dispersion effects are encountered by the pulse of light propagat-
ing through a fiber, and these act to spread out the pulse in the time domain,
changing the shape of the pulse. As a result, the pulses may become merged,
with the previous or the succeeding pulses becoming indistinguishable at the
receiver, as shown in Figure 13.9. This effect is known as inter symbol inter-
ference (ISI). The pulses may be separated by increasing the time interval
between pulses, but thereby the maximum bit rate will be reduced.

1 0 1 1

4 1 0 1 1
&
Amplitude A ﬂ ﬂ Amphtude
! L

Dislinguishable pulses

!

Amplitude

0

fime fime Ly

Indistinguishable
pulses

Inter symbal Interference (IS1) tirrier
La=L4

FIGURE 13.9. The pulse merged in the previous or in the succeeding pulses becoming
indistinguishable at the receiver.
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Dispersion Effect of Dispersion on Pulse Transmission

There are three kinds of dispersion due to three separate mechanisms existing
in the fiber. These are:

1. Intermodal Dispersion or multi-path dispersion
2. Material or chromatic dispersion

3. Waveguide dispersion

13.5 MATERIAL DISPERSION

The refractive index of a core glass of fiber is not the same for lights of differ-
ent wavelengths, but it depends on the wavelength of light in a complicated
way. A pulse of light transmitted contains components of several wavelengths
centered about a center wavelength A, as shown in Figure (13.10).

Ip

707 1,

Ao

— ;\.0

A
Y

Aads

FIGURE 13.10. A pulse of light transmitted contains components of several wavelengths centered
about a center wavelength A,.

The pulse component having shorter wavelengths will experience more
delay that those of larger wavelengths. As a result, there is an effective time
dispersion At of the pulse at the receiving end of the fiber.

Material dispersion depends only on the composition of the material, as
shown in Figure 13.11. The material dispersion is given by

Z o d’n, [ AX
At, 2250 20 (13.65)
A\ A
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Pure SiO»

13.5% GeO,
86.5% SiO2

0.8

T T
1.2 1.4 1.6
Wavelength (um)

FIGURE 13.11. Material dispersion and wavelengths of different composite materials.

13.6 WAVEGUIDE DISPERSION

The effect of waveguide dispersion on pulse spreading can be approximated
by assuming that the refractive index of the material is independent of wave-
length, as shown in Figure 13.12.

—_—
[=]

Dispersion
(ps/nm. km)

Waveguide

1
1200

1 1 1 1
1300 1400 1500 1600
Wavelength (nm)

FIGURE 13.12. The effect of waveguide dispersion on pulse spreading.

When a light pulse is launched into a fiber, it is distributed among many
guided modes. These various modes arrive at the fiber end at different times
depending on their group delay, so that a pulse spreading results.
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For multimode fibers the waveguide dispersion is generally very small
compared with material dispersion and can therefore be neglected.

Waveguide dispersion depends on the core radius, the refractive-index
difference, and the shape of the refractive-index profile. Thus, the waveguide
dispersion can vary dramatically with the fiber design parameters.

The waveguide dispersion is given by

2
At, =—L n,A( A, v d (bY)
c\a ) av

(13.66)

where

&
poskom) mmny g (n? - n2) ~ kan,2A

n, —n, n,

13.7 DISPERSION SHIFTED AND DISPERSION
FLATTENED FIBERS

The loss of signal through the fiber due to dispersion is reduced by two impor-
tant methods.
i. Dispersion Shifted Fiber

The dispersion shifted fibers are made by increasing the negative wave-
guide dispersion as shown in Figure 13.13. This negative waveguide dis-
persion is exactly canceled by positive material dispersion, and the result
is given by dispersion shifted fiber.

40 4
Material dispersion
l 20 o
£ LT
v -
“% e Total dispersion
S o Ao (pm) —
S Ottt I I
g 1.0 1.1 12" R3-14_15 1.6 1.7 1.8
o ’ e -l
g ~ 7~ - Waveguide dispersion
—-20—
—-40

FIGURE 13.13. The dispersion shifted fiber.
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Since for the single mode fiber the V-parameter should be

0<V<2,408.0
and the cutoff wavelength for the single mode fiber should be such that

2ra (nl2 —nZ)
2.4048

when 4, is the cutoff wavelength in the step index fiber.
The material dispersion is given by

Ay > /1% =

o, dn, [ AA
At, =—2 20 20 (13.67)
C " di \ A
,
i.e., proportional to d;l and spectral width A4, .
0

Also, the waveguide dispersion is given by Equation (13.68).
Now we take the operated wavelength A, = 1.3 pm and we calculate the
material dispersion. Hence

d’n PR
Ay =1.3 pm, d_/'toz =-5.5%x10" um™,

So that,

Tm
LAJ,
Again, we consider a step-index single-mode fiber for
a=56um,A=0.00117,n, =145

=24 ps/km nm

So, V-parameter is so chosen that
V=19 at 4, =1.3um
Hence,
AT
T 294 pykm um
LAA,

Thus, the waveguide dispersion and the material dispersion cancel each
other to give zero dispersion. The explanation is shown by Figure 13.14.
The same calculation done by the wavelength is A, =1.55 pm.
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(i)

ii.

Step index Triangular Triangular with Gaussian
profile annular ring profile

FIGURE 13.14. The refractive index profile for the dispersion shifted fiber.

Dispersion Flattened Fiber

This is the second method by which we reduce the loss of the fiber. In this
method, we show that by reducing the core radius, the zero-dispersion
wavelength can be shifted to the minimum loss wavelength window.
This can also be done by suitably grading the refractive index profile of
the core.

Figure 13.15 shows the variation of total dispersion as a function of 4, in
the step-index fiber.

b

3 20 —

c

£

<

w
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o
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FIGURE 13.15. The variation of total dispersion as a function of A, in the step-index fiber.

The solid line is for A =0.0027,a = 4.1um, 4, =1.13um, while the dashed
curve is for A=0.0075,a =2.3um, 4, =1.06um.

The variation of total dispersion for different classes is shown in Figure
13.16. Curve (i) corresponds to conventional fiber. Curve (ii) corresponds
to the dispersion shifted fiber. Curves (iii) and (iv) correspond to disper-
sion flattened fiber.
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FIGURE 13.16. The variation of total dispersion for different classes.

The refractive index profile for the flattened fiber for corresponding (i),
(ii), (iii), and (iv) are illustrated in Figure 13.17.

0] (ii)

Or

(iii) W)

UL

FIGURE 13.17. The refractive index profile for the flattened fiber for
corresponding (i), (ii), (iii), and (iv).

13.8 ATTENUATION IN OPTICAL FIBERS

Attenuation in fibers means “loss of optical power” in the fiber itself. This loss
may arise from different sources, for example,
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Material absorption (or impurity losses)
Rayleigh scattering loss

Absorption loss

Leaky modes

Bending losses

Radiation induced losses

Defective construction losses

Inverse square law losses

Transmission losses

Temperature dependence of fiber losses

S e 0 e NGy R WD

-— )

Core and cladding losses

Decibel (dB)

The decibel is referred to as ratios or relative power units:
. PZ
Attenuation =10log > dB
1
Attenuation in fibers means loss of optical power in the fiber itself or in
a pair of connectors or splice. It is expressed in “decibels” or “dB,” where
—10dB means a reduction in the power by 10 times, —20dB means another
10 times, or 100 times overall, obviously —30dB means 1000 times loss overall,
and so on. Doubling the power means a 3dB gain.

The dBm

Decibel (dB) gives no indication of the absolute power level. The derived unit
for doing this in optical communications is the dBm. dBm is decibel measure
of power relative to Imw. The power in dBm is an absolute value of power
and it is given by
P
Power level (in dBm) = IOIOg(—)

Imw

In this relationship 0dBm = 1 mw.
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Losses are expressed in decibels per kilometer (dB/km). The normal
range of attenuation is from 0.154 dB/km at operating wavelength 1550 nm
for a single-mode fiber to over 10 dB/m for plastic fiber.

The loss is expressed as in terms of a particular length L for a fiber.

al

P,=P,10 1 (13.68)

where
P, = power at a distance L from the input
P,, = amount of power coupled into the fiber
a = fiber attenuation in dB/km
Hence, attenuation in the fiber is defined as the ratio of the optical power
output P, obtained from a fiber of length L to the optical power P,, fed to the

input of the fiber.

o= %bg(i] in dB/km (13.69)

out

In the case of an ideal fiber, there is no loss of optical power and P,, = P,,.

In other words, for an ideal fiber, the attenuation is 0dB. But practically this
is not possible, because all fiber has a certain amount of loss.

L alL
F =
0

010 0 P =P, 10 1
P

in

in

P,(dBm)= 1010g(1L
e

watt

oL
j+ IOlog[IO“’J (13.70)

The Equation (13.68) can also be written in decibels,

_al
P,(dBm)= lOlog(le + IOlog{IO 10 J =P, (dBm)-aL (13.71)

m watt "

Material or Impurity Losses

Material absorption is a loss mechanism related to the material composition
and the fabrication process for the fiber, which results in the dissipation of
some of the transmitted optical power as heat in the waveguide. The absorp-
tion of the light may be intrinsic (caused by the interaction with one or more
of the major components of the glass) or extrinsic (caused by impurities within

the glass).
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In the fabrication of various types of fibers, we use GeO,, P,O;, B,0,,
and so on as dopants in silica, in order to modity the refractive index. While
B,0, produces strong absorption peaks at 3.2 pm, P,O; produces the same at
3.8 pm. However, in both these cases, absorption-tails extend below 1.3 um.
That is why Boron- and Phosphorous-based dopants are not used in the low
loss, single-mode fiber. The introduction of P,O; serves as a channel for the
gradual buildup of OH- ions over time. In fiber using a high dose of P,O,,
loss increases up to 0.9 dB/km at 1.3 jim over a period of 3 years. For zero-P
single-mode fiber, the loss is less than 0.007 dB/km over a period of 25 years.
Low-P multimode fiber has a projected loss of 0.07 dB/km over the same span
of time.

Experiments have shown that the loss increases considerably when the
operating wavelength is beyond 1.55 pm. This is an inherent property of all
silica-based fiber. This is due to vibrational resonances of the silica tetrahe-
dron molecules.

Rayleigh Scattering Loss

The glass which is used in the fabrication of fibers has many microscopic inho-
mogeneities and material density fluctuations of the silica material contents.
As a result, a portion of light passing through the glass fiber gets scattered.
This phenomenon is called Rayleigh scattering. The losses due to this scat-
tering effect vary inversely with the fourth power of the wavelength. These
inhomogeneities are frozen into the silica matrix when the fiber is formed and
depend on the glass-forming temperature. The lower the glass-forming tem-
perature, the lower the density fluctuation, and hence scattering. This scat-
tering is most prominent between the wavelength range 500 nm to 1550 nm.

The expected minimum loss at 1550 nm is approximately 0.13 dB/km. It

1
produces a e attenuation dependence; it is also a function of glass-forming

temperature.
The scattering loss due to density fluctuation can be expressed as:
359.094 3
Opg ==—5— (1" = 1) KKK, (13.72)

where A = operating wavelength, K = Boltzmann constant, T}, = temperature
at which the density fluctuations are frozen into the glass as it solidifies, K, =
Isothermal compressibility of the material. This is also can be expressed as

359,094

Ops = 2 1K, KK, K, (13.73)
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where K, = Photoelastic coefficient.
The Rayleigh scattering coefficient is related to the transmission loss fac-
tor (transmissivity) of the fiber (P)

P=¢ " (13.74)
where L is the length of the fiber.

Absorption Loss

This form of loss is caused by the very nature of the core material and varies
inversely to the transparency of the material. Absorption losses are not uni-
form across the light spectrum, and are regarded to be wavelength-sensitive,
as shown in Figure 13.18.

TIon-resonance absorption, ultra-violet absorption, and infrared absorp-
tion are the three separate mechanisms which contribute to total absorption
losses in glass fibers.

In pure fused silica, valence electrons can be ionized into conduction
electrons by light with energy about 9 eV, and then uv absorption takes place.
Thus, there is a loss of light energy due to this ionization.

Loss in dB/km

0.7 1.0 1.3

Wavelength &, (um) —>

FIGURE 13.18. Absorption loss.

When photons of light energy are absorbed by the atoms within the glass
molecules, infrared absorption takes place and is converted to the random
mechanical vibrations typical of heating.

The nearest vibrational resonance of the S, — O bond is in the IR region at
9 um. Some oxides which are doped in silica for changing the refractive index
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in the core (e.g., GeO,, P,O;, B,0,) have similar resonances in IR. The tails
of these absorption bands in IR may contribute in the wavelength region of
interest 1.4-1.6 um, depending on the doping materials.

Leaky Modes

The losses due to leaky modes arise due to irregularities in waveguide geom-
etry, so these can be regarded as waveguide scattering. These leaky modes
have radiative components that result in cladding power losses. So, these can
be minimized by surrounding the thin cladding layer on the fiber-core by a
third layer of pure silica, which has an index of refraction higher than that of
the cladding but lower than that of the core. This third additional silica coat-
ing will not only give additional strength to the fiber, but side-by-side also
removes the partial refraction rays from the leaky modes, as well as removes
the passed rays from cutoff modes by total refraction.

Bending Losses

Whenever a fiber deviates from a straight-line path, radiative losses occur.
These losses are prominent for improperly installed single-mode optical
cable. Micro-bending and macro-bending are two types of bending losses.

Micro-bending Losses

Micro-bends have small random deviations about a nominal straight-line posi-
tion. The micro-bending losses occur due to the fact that the small bends act
as scattering, which causes mode-coupling to take place. The energy of the
guided mode is cross-coupled into leaky modes. This cross-coupling leads to
the loss through cladding.

Micro-bend loss for single mode fiber is expressed as

s K (Fd)" (NA)'

a

amic = O'O5am:u (1375)

2
where a,, = attenuation constant, K = wave vector =7, a = core radius,
Fd = half of mode field diameter in the single mode fiber.
Figure (26.19) represents the spectral attenuation of a single-mode fiber
with evidence of excessive micro-bending loss.
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FIGURE 13.19. Spectral attenuation of a single-mode fiber with evidence of excessive
micro-bending loss.

Macro-bending Losses

The larger the fiber-core radius and the smaller the bend radius, the greater
the macro-bend loss. Macro-bend loss for multimode graded index fiber is
given by the following expression:

. ;
o, =—10log| 1-LF2[2a [_3 dB (13.76)
2pA| R | 2nRK

where p = index profile parameter for graded index fiber.

R = radius of curvature of bend, a = core radius,

Am—n

2 n, = refractive index of the core, n, = refractive index of the
n

cladding,
2
K = wave vector = —ﬂ.
Figure 13.20 represents the variation of macro-bend loss for multimode

step-index fiber with core radius in the range 200 pzm to 800 gm. Figure 13.21
shows the fundamental mode field in a curved optical wave guide.
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FIGURE 13.20. Variation of macro-bend loss for multimode step-index fiber with
core radius in the range 200 ym to 800 ym.

Evanescent field tail

Curved fiber

FIGURE 13.21. Fundamental mode field in a curved optical wave guide.

Radiation Induced Losses

When the glass molecular matrix interacts with electrons, neutrons, gamma
rays, and X-rays, the structure of the glass molecules is altered and the fiber
darkens. This introduces additional losses which increase with amount, type,
dose, and exposure time of the radiation.
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Inherent Defect Losses

Figure 13.22 shows several possible sources of loss due to defects in the fiber
itself. First, in unclad fibers, surface defects (nicks or scratches) that breach
the integrity of the surface allow light to escape. In other words, not all of the
light is propagated along the fiber. Second (also in unclad fiber), grease, oil, or
other contaminants on the surface of the fiber may form an area with an index
of refraction different from what is expected and cause the light direction to
change. There is always the possibility of inclusions, that is, objects, specks,
or voids in the material making up the optical fiber. Inclusions can affect both
clad and unclad fibers. When light hits the inclusion, it tends to scatter in all
directions, causing a loss. Some of the light rays scattered from the inclusion
may recombine either destructively or constructively with the main ray, but
most do not.

Scratched v Lost light Scattered light
surface LT /

Grease, oil etc.

\ Inclusion

FIGURE 13.22. Several possible sources of loss due to defects in the fiber itself.

Inverse Square Law Losses

In all light systems, there is the possibility of losses caused by spreading (diver-
gence) of the beam. If we take a flashlight and point it at a wall, measure the
illuminance per unit area at the wall at a distance of, say, one meter, and then
back off to twice the distance (two meters) and then measure again, we will
find that the illuminance had dropped to one-fourth. In other words, the illu-
minance per unit area is inversely proportional to the square of the distance.

Transmission Losses

These losses are caused by light which is caught in the cladding material
of clad optical fibers. This light is either lost to the outside or is trapped in
the cladding layer and is thus not available for propagation in the core of

the fiber.
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Temperature Dependence of Fiber Losses

Temperature extremes have an adverse effect on fiber losses. Tight tube
designs and clad made of plastic are normally usable down to -10°C. If the
temperature is below -10°C, differential, thermal expansion between poly-
mer coatings and glass causes stresses which cause microbending losses. Loose
tube and glass-clad are used between -10 to -50°C. The central element of
the fiber determines the amount of cable contraction with temperature and

is called stiffering.

Core and Cladding Losses

In a fiber the core and cladding have different refractive indices, as they have
different compositions. So the core and the cladding have different attenua-
tion coefficients (c, and o). If we neglect the modal coupling, then the loss
associated with a mode (v, m) in SI fiber is expressed as:

P P
& :ac_c+a(] = (1377>
PP
. F B , .
where the fraction of powers P—‘, i P, is the total power in the mode (n).
T T

Misalignment Losses

In any optical fiber telecommunication link, one or more splices/joints in the
fiber cable is required. The predominant method for connecting optical fibers
involves a butt-joint connection. Any butt-joint requires three fundamental
operations: fiber and preparation, fiber alignment to micron precision, and
alignment retention. Demountable connections retain alignment mechani-
cally while permanent connections retain alignment through melting and
fusing of the fiber ends in a fusion-splicing machine. In any fiber joint, the
fiber ends must be prepared smooth and perpendicular to the fiber axis. The
next step of aligning the fiber ends is very crucial, because any kind of mis-
alignment would lead to a transmission loss. Loss at a fiber splice could origi-
nate from either or a combination of the following possible misalignments, as
shown in Figure 13.23:

1. Transverse offset between the fiber ends.
2. Angular tilt between the fiber ends.
3. Longitudinal end-separation between the fiber end faces.
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Transverse offset (lateral Angular offset R
misalignment)

(End separation) Longitudinal misalignment

FIGURE 13.23. Possible misalignment losses of fiber.

Loss,,, =—10log,n,,,dB (13.78)
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n

A is the refractive index difference for the fiber, n, is the core refractive index,
and n is the refractive index of the medium between the fibers.

Angular Offset
Loss,, =—10log,,n,,dB (13.80)

16(711). . -
M = 2 T—| 2cos™ \/(ij —(zj(l —(l) } (13.81)
(1 N nlj T 2a a 2a

for the step-index fibers.
Loss,,,, =—10log,,n,dB (13.82)

Miong = [1 - f%(sin’l (NA)—NA1- (NA)2 )J for 2 <1 (13.83)
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Either or a combination of the following may also result in a joint loss, and
these are sources of intrinsic loss:

i. Fresnel loss due to Fresnel reflection, as shown in Figure 13.24:

FIGURE 13.24. Fresnel loss due to Fresnel reflection.

A major consideration with all types of fiber—fiber connection is the opti-
cal loss encountered at the interface. Even when the two jointed fiber
ends are smooth and perpendicular to the fiber axes, and the two fiber
axes are perfectly aligned, a small proportion of the light may be reflected
back into the transmitting fiber causing attenuation at the joint. This phe-
nomenon is known as Fresnel reflection. The magnitude of this partial
reflection of the light transmitted through the interface may be given by

r:[”l _")d (13.84)

n, +n

where r is the fraction of the light reflected at a single interface, n, is
the refractive index of the fiber core, and n is the refractive index of the
medium between the two jointed fibers.

The loss in decibels due to Fresnel reflection at a single interface is given by

Loss;,,..q =—10log,, (1 —7r) (13.85)

This loss can be reduced to a very low level through the use of an index match-
ing fluid in the gap between the jointed fibers, as shown in Figure 13.25.

Index matching fluid decreases fiber separation
loss by reducing the beam divergence.

— — T S

N

FIGURE 13.25. Loss through the use of an index matching fluid due to Fresnel reflection
at a single interface.

In addition to mechanical misalignment,
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Any deviations in the geometrical and optical parameters of the two opti-
cal fibers which are jointed will affect the optical attenuation (insertion
loss) through the connection. It is not possible within any particular con-
nection technique to allow for all these variations. Hence, there are inher-
ent connection problems when jointing fibers with, for instance:

Different core and/or cladding diameters

Different numerical apertures and/or relative refractive index
differences

c. Different refractive index profiles
d. Fiber faults (core ellipticity, core cocentricity, etc.)

The losses caused by the previous factors together with those of Fresnel
reflection are usually referred to as intrinsic joint losses.
Figure 13.26 illustrates the core diameter mismatch.

2
Loss., = _IOgIO[Z_ZJ (dB) a,<a,

1

(13.86)
Lossg, =0 (dB) a,2a,

2ay i 2as

FIGURE 13.26. Core diameter mismatch.

Figure 13.27 shows the numerical aperture mismatch.

2
Lossy, =—log,, (%] (dB) NA, <NA,

1

(13.87)
Lossy, =0 (dB) NA, >NA,

TS

FIGURE 13.27. Numerical aperture mismatch.
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Figure 13.28 illustrates refractive of index profile difference

a, (o, +2 ’
Lossy, = —log,, (ﬁ] (dB) o, <a (13.88)
1%y '

Loss,, =0 dB) a,>a
RI ( 2 1

a, = Profile parameters for the transmitting fibers
a, = Profile parameters for the receiving fibers

4 nir)

FIGURE 13.28. Refractive of index profile difference.

Typical results of splice losses due to various offsets between two fibers

are shown in Figure 13.29.
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FIGURE 13.29. Splice losses due to various offsets between two fibers.
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13.9 ERBIUM DOPED FIBER FOR OPTICAL AMPLIFIER

The expanding bandwidth demand in telecommunication networks which
arises due to tremendous growth in the Internet and other communication
services is being met by an erbium doped fiber optical amplifier (EDFA) in a
WDM network. Er-ions when doped in low concentration in the core of the
fiber are found to boost optical signal at the wavelength of 1550 nm when
pumped by 980 nm light.

The advantage of EDFA is that it can simultaneously amplify all incoming
wavelength (1530 to 1565 nm) channels to nearly the same output power.
With additional care in dispersion compensation and nonlinear effects, the
broadband gain flattering can be extended up to 1620 nm for dense wave-
length division multiplexing (DWDM) applications. An energy band transi-
tion diagram shows the pump band as well as the metastable level of erbium
ion in a silica host, as shown in Figure 13.30.

A

Mp | E
c
2 Fast non radiative decay
E 2 T=1ps Decay to lower state
G ®
£2 c
° S
5 Hyap ‘E T=10ms
o g w ol
- o
g 5 gclc 2l5|E 35| 1550 nm
° E o o [l b ©
5 3 §a2|g 2ls|8® =
o a TE Ela E
% 2ol 2 B
2 ™

Hys2

FIGURE 13.30. Energy level diagram of Er in silica host.

13.10 FIBER OPTIC SENSORS

In many industrial processes there is a need to monitor (such quantities as)
displacement, pressure, temperature, flow rate, liquid level, chemical com-
position, and so on. Ideally, the measurement technique should be reliable,
robust, corrosion-resistant, intrinsically safe, and free from external interfer-
ence. Optical fibers have the potential for making a significant contribution
in this area.
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Generally, a transducer (or sensor) is used to convert one physical variable
into another. Mostly these sensors are electrical in construction and provide
convenient and controllable electrical signals for (a) amplifying weak signal,
(b) measuring a process, (c) automatically recording these measurements and
using them when needed, and (d) providing a signal that can be used to con-
trol another system or circuit. Thus, a transducer is an essential component of
automation, wherever introduced.

In the case of optical fibers, these characteristics themselves provide an
innovative approach to the design of an optical transducer/sensor.

The optical fibers have following characteristics:

1. Optical fibers are non-conducting, immune to electromagnetic and radio-
frequency interference, and safe, even in explosive environments.

2. Their low attenuation coefficient allows the monitoring station to be
located at a safe place, away from the hazardous environments (but where
sensitizing has to be done)

3. Fiber optic sensors are not so sensitive to temperature changes.

4. Optical fibers are easily available to suit any design. (Thus, design-
engineers naturally prefer to use optical fibers as the basic material for
their sensor design.) Optical fiber sensors themselves can be divided into
two main categories, namely: active (intrinsic) and passive (or extrinsic).

In the passive, the modulation takes place outside the optical fiber, which
acts merely as a convenient transmission channel for the radiation.

In the active sensors, the quantity to be measured acts directly on the
fiber itself to modify the radiation passing down the fiber. It is possible to
modulate either the amplitude (or intensity), the phase, or the state of polar-
ization of the radiation in the fiber.

In multimode fibers, however, mode coupling and the usually random
relationships between the phases and polarization states of the propagating
modes generally preclude the use of either phase or polarization modula-
tion. Thus, active multimode fiber sensors almost invariably involve ampli-
tude modulation. On the other hand, with single-mode fibers, both phase and
polarization modulation become possible. Phase modulation opens up the
possibility of fiber-based interferometric sensors that can offer exceptionally
high sensitivities.

The extrinsic (passive) type sensors configured to allow the measurements
to change the coupling characteristics between the feed and return fiber are
shown in Figure 13.31:
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Optical Feed fiber Modulation Return fiber Optical

source zone detector

FIGURE 13.31. The extrinsic type sensors allow the measurements to change the coupling
characteristics between the feed and return fiber.

Intrinsic (Active) Fiber Sensors

A popular technique for the realization of an intrinsic multimode fiber sensor
involves micro-bending of the fiber in the modulation region. The sensing
mechanism for this technique is shown in the following figure. Deformation
of the fiber on a small-scale causes light to be coupled from the guided optical
modes propagating in the fiber core into the cladding region where they are
lost through radiation into the surrounding region. When the spatial wave-
length of the deformation L is correctly chosen, the power coupled from the
fiber into radiation modes is high, providing a very high sensitivity to pressure
applied to the deformer in a direction perpendicular to the fiber core axis as
shown in Figure 13.32.

Deformer

FIGURE 13.32. Intrinsic multimode fiber sensor involves micro-bending of the fiber
in the modulation region.

Furthermore, if the deformation is caused by the measurand (e.g. pres-
sure, vibration, sound, etc.), then the fluctuation in intensity of either the core
or cladding light is directly proportional to the measurand for small deforma-
tions. Thus, monitoring the intensity of either the fiber core or cladding allows
detection of the measurand.

Also, as is common with all fiber intensity modulation sensors, inaccu-
racies may occur due to source, detector, and fiber cable instabilities. These
so-called common-mode variations usually necessitate the transmission of a
separate optical reference signal which is not modulated by the measurand.
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In this way, any optical intensity variations can be removed from the returned
measurand signal by comparison with the returned reference signal at the
receive terminal.

Flow Sensor

Figure 13.33 shows an intrinsic (Active) optical fiber flow sensor mechanism.
In this device a multimode optical fiber is inserted across a pipe such that the
liquid flows past the transversely stretched fiber. The turbulence resulting
from the fiber’s presence causes it to oscillate at a frequency roughly propor-
tional to the flow rate. This results in a corresponding oscillation in the mode
power distribution within the fiber, giving a similarly modulated intensity pro-
file at the optical receiver. The technique has been used to measure flow rates
from 0.3 to 3 m/sec.

Fiber clamp
Optical fiber
Oscillation

Flow pipe
(cross-section)

® | ® | Weight to tension fiber

FIGURE 13.33. Intrinsic optical fiber flow sensor mechanism.

Extrinsic (Passive) Fiber Sensors

Numerous extrinsic optical fiber sensor mechanisms have been proposed
and investigated, but to date relatively few practical commercial devices have
emerged. A technique which has been realized as a commercial product is
shown in Figure 13.34. This shows the operation of a simple optical fluid
level switch—when the fluid, which has a refractive index greater than the
glass forming the optical dipstick, reaches the chamfered end, total internal
reflection ceases and the light is transmitted into the fluid. Hence, an indica-
tion of the fluid level is obtained at the optical detector. Although this system
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is somewhat crude and will not provide a continuous measurement of a fluid
level, it is simple and safe for use with flammable liquids.

oser] [sowee

Optical fluid level detector

FIGURE 13.34. Extrinsic optical fiber sensor mechanisms.

Intensity modulation of the transmitted light beam is utilized in the
extrinsic reflective or fotonic optical sensor, as shown in Figure 13.35, to give
a measurement of displacement. Light reflected from the target is collected
by a return fiber and is a function of the distance between the fiber ends and
the target. Hence, the position or displacement of the target may be regis-
tered at the optical detector.

Source
N — 7 N
H Displacement
Fiber |
Detector ! d 7
=
|
Target

FIGURE 13.35. Intensity modulation of the transmitted light beam is utilized in the extrinsic reflective
or fotonic optical sensor.

Furthermore, the sensitivity of this sensor may be improved by placing
the axes of the feed and return fibers at an angle to one another and to the
target. Unfortunately, this technique exhibits the drawback mentioned previ-
ously with regard to the stability of the optical components, which is a feature
of intensity modulated fiber sensors.

A multimode fiber sensor which provides measurement of pressure is
illustrated in Figure 13.36.
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FIGURE 13.36. A multimode fiber sensor which provides measurement of pressure.

In this device the photoelastic effect induced by mechanical stress on
a photoelastic material (e.g. piezo-optic glass, polyurethane, epoxy resin) is
utilized to rotate the optical polarization between a pair of crossed polar-
izers. This phenomenon known as birefringence occurs with the applica-
tion of mechanical stress to the transparent isotropic material, whereby it
becomes optically anisotropic, giving a variation in transmitted light through
the sensor. An advantage of this technique is that the stress may be induced
directly without the need for an intermediate mechanism. A drawback, how-
ever, is that the fine fringence exhibited by photoelectric materials is often
temperature-dependent, making measurement of a single parameter difficult.

Phase Modulated Sensors

In single-mode fiber sensors, we are mainly dealing with the effect of the
external quantities to be measured on the phase (or mode velocity) of the light
within the fiber.

One way in which we may detect phase changes is to construct an inter-
ferometric system where the phase of the beam through a sensing fiber is
compared with that of a reference beam, as shown in Figure 13.37.

Beam splitter
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FIGURE 13.37. Interferometric system with He-Ne laser.
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A beam splitter is used to divide a laser beam into two parts that are then
launched into the sensing and reference fibers respectively. The outputs from
these fibers meet at another beam splitter, and the two resulting beams are
then allowed to fall onto suitable photo detectors. It is not strictly necessary to
use both output beams, but there are advantages to be gained from doing so.

A more compact practical version may be constructed where the He-Ne
laser is replaced by a semiconductor laser, and the beam splitters by “3 dB
couplers,” as shown in Figure 13.38.

Semiconductor

laser Output, Ry
% Sensing arm E
All fiber version based on
Reference a semiconductor laser
3dB coupler
P arm  3dB Outout. R
coupler put, Rz

FIGURE 13.38. Interferometric system with a semiconductor laser.

Let us consider the form of the output expected from the interferome-
ter. We write the electric fields of the two beams at one of the detectors as
A and A ™', where A¢ represents the phase difference between the
two. In general, A¢ will be made up of a static differential phase term A¢
and a signal term, A¢,, where A¢ =Ag, + Ad,. The total signal amplitude is
the sum of the two fields, and the detector output (R,) is proportional to the
product of this sum and its own complex conjugate, that is,

Rla (Asei(wHAa)) +Areiwf)(ASe*i(w[+A¢) +Are—iwt)
ie.
RoA’+AS +AAe™ +e™aA’” + A +2A A cosAd
Assuming for simplicity that A, = A; = A, then
R,02A*(1+cosAd) (13.89)

Figure 13.39 illustrates the relative output of the interferometer as a func-
tion of the phase difference between the two arms (A¢).
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FIGURE 13.39. Relative output of interferometer as a function of the phase difference between the
two arms (A¢).

This response as a function of A¢ is shown in the figure, illustrating the
basic problem with any interferometric sensor, that its output is periodic in
the phase difference. It is also evident that the greatest sensitivity to small
variations in signal is obtained when the system is operating at points halfway
between the maximum and minimum values of R. These are known as the
quadrature points. Midway between these maximum sensitivity points, the
sensitivity falls off to zero.

Thus, even if we could ensure that we started off operating at a quadra-
ture point, it is quite likely that changes in ambient conditions around the
reference arm would cause A¢ to change and hence cause a drift away from
the quadrature point.

So far, we have considered the output from only one of the signal detec-
tors (R,). It may be shown that there is a phase difference between the beams
falling on the two detectors of 7. Thus, the response of the second detector
(R,) may be written as:

R,a2A% (1+cos(Ap+ 7))
or
Ra2A® (l - cos(A¢))
Thus,
(R, —R,)a4A® cos(A¢d) (13.90)

In effect, therefore, by taking the difference between the two output sig-
nals, we double the sensitivity of the interferometer. There are also advan-
tages to be gained when the amplitudes of the beams from the signal and
reference arms are not equal.
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Fiber Optic Gyroscope

Another common single-mode fiber interferometric sensor which is find-
ing wide-scale application is the fiber gyroscope. This device is based on
the classical sagnac ring interferometer, a fiber version of which is given in
Figure 13.40.

The sagnac effect is the phase shift induced between two light beams trav-
eling in opposite directions around a fiber coil when the coil is rotating about
an axis perpendicular to the plane of the coil.

In this device light entering the multi turn fiber coil is divided into two
counter propagating waves which will return in phase after traveling along
the same path in opposite directions. When the fiber coil is rotating about
an axis perpendicular to the plane of the coil, however, then the path lengths
between the counter propagating waves differ. This difference produces a
phase shift which in turn can be measured by interferometric techniques in
order to obtain the rotation.

T I

Interferences

Laser (

%

Fiber
coil

FIGURE 13.40. Fiber gyroscope.

To calculate the phase shift expected, we assume we have a single circular
turn of fiber of radius R. It turns out that we must also assume that both light
beams are effectively traveling in a vacuum. If there is no rotation, then both

27 R
beams will return to their starting point in a time ¢, where ¢ = % If, how-

ever, the ring is rotating in a clockwise direction at a rate of Q rad/sec, then
the counterclockwise beam will arrive at its starting point sooner.
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The effective velocity of the beam will be C + RQ and the time taken, ¢,

will be given by
2R
t=—" (13.91)
C+RQ
Similar arguments for the clockwise beam give a transit time of t”, where
., 27R
t" = (13.92)
C -RQ
The difference between the two transit times Aty =t"—t' is then
41 QR’
At =277R( L 1 j: e (13.93)
C-RQ C+RQ) C*-(RQ)
Since C* > R*Q)?
Thus,
40A
Aty = o (13.94)
where A = 7R? is the ring area.
In terms of a phase shift
Ad, = 2mAL, (13.95)

where f is the frequency of the light, or putting the value of At from the
previous equation we get

2w QA
A¢S =
4,C

(13.96)

This expression is independent of the medium in which the light is trav-
eling. Most optical fiber sagnac interferometers are constructed with many
turns (N ray), wrapped around a circular form. We then have

87 QAN

o5 = 7C (13.97)

The basic arrangement of the sagnac fiber interferometer is shown in Fig-
ure 13.41. The form of the output signal from the detector as a function of the
rotation rate (the phase change) will also be as shown in Figure 13.41.
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FIGURE 13.41. Basic arrangement of the sagnac fiber interferometer.

At low rotation rates, the sensitivity will be very low and will reach maxi-
T
mum values at the quadrature point (i.e., when ¢ =2n + I(ED

Another problem to be surmounted involves what is known as reciproc-
ity. This concerns the necessity to ensure that the two counter-propagating
beams travel absolutely identical paths, since any path difference is a potential
source of phase noise.

In fact, the simple arrangement shown in Figure 13.41 is not reciprocal;
the clockwise beam is reflected twice at the beam splitter, whereas the counter-
clockwise beam is transmitted twice through it. The reciprocity requirements
can be very stringent. For example, in a system capable of measuring rotation
rates as low as 10 deg’1 h, the paths must be reciprocal to 1 part in 10",

Thus, although the two counter-propagating beams with identical polar-
izations may be launched in the fibers, energy may be coupled from one
polarization mode into the orthogonal one as the beams traverse the fiber.
The energy in the orthogonal modes will not be able to interfere with the
original beams and a reduction in output will result, which may be interpreted
as a phase signal.

Polarization Fiber Sensors

Modulation of the polarization state of light within a fiber may also be uti-
lized to take a physical measurement. A successful implementation of this
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technique is displayed in the Faraday rotation current monitor as shown in
Figure 13.42. This device consists of a single polarization maintaining fiber
which passes up from the earth to loop around the current-carrying conductor
before passing back to the earth.

Cadding mode

stripper Polarizer
AT
LJ laser
Microscope objectives % ,EL - Eloctronics
~a ~
> ﬂl ___ | ____ 7 Detector = li-1
) ' . \}8\ B — - ]1 + [2
Single-mode optical fiber -
Wollaston
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O

Detector output

0o

Current

FIGURE 13.42. Single-mode optical fiber sensor for current measurement.

A He-Ne laser beam is linearly polarized and launched into the fiber,
which is then stripped of any cladding modes. The direction of polarization of
the light in the fiber core is rotated by the longitudinal magnetic field around
the loop via the action of the Faraday magneto-optic effect. A Wollaston
prism is used to sense the resulting rotation and resolves the emerging light
into two orthogonal components. These components are separately detected
with a photodiode prior to generation of a sum and difference signal of the
two intensities (I, and I,). The difference signal normalized to the sum gives a
parameter which is proportional to the polarization rotation P.

k=b=l (13.98)
I +1,
where K is a constant which is dependent on the properties of the fiber.

Hence, a current measurement (either d.c. or a.c.) may be obtained which
is independent of the received light power. One area where such a sensor has
proved valuable is in the monitoring of large currents in electricity generat-
ing stations. Currents up to 5000 A have been measured with an accuracy of
about +1%. Consider a single turn of fiber of radius  which passes around a
wire carrying a current of I Amp.
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1
Ampere’s circuital theorem gives H x27r =1 and hence B = M. The
amount of polarization rotation is given by r

0. =VB2rr (13.99)
or
0, = u,u IV (13.100)

where p, is the relative permeability of the fiber and V is its verdict constant.
For n turns of fiber, the amount of rotation will be n times greater, thus:

0. =u,unlV (13.101)

This result is independent of r, and indeed in general 6, is independent
of the size or shape of the loop and the position of the conductor within the
loop. This is a useful result, since it indicates that the device will be insensitive
to any vibrations.

13.11_EXERCISES

Define fiber optic?

How do optical fibers carry light from end to end?
What are the three common types of fiber optic cables?
What are the advantages of optical fibers?

What are the three kinds of dispersion in fiber?

o » k¥ Db =

What are the three separate mechanisms that contribute to total absorp-
tion losses in glass fibers?

7. Consider a fiber with n=1.48 in the core and n=1.46 in the cladding.
Determine the critical angle for reflections on the inner surface of the
core.

8. A fiber has a core index of 1.455, and the cladding has an index of 1.483.
Determine the NA.

9. Find the numerical aperture NA of a step-index fiber having n, =1.46 and
n, =1.43.
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10.

11.

12.

13.

14.

15.
16.

17.
18.
19.

20.

21.

22.

An optical fiber 600 m long has an input power 9.7 uyW and an output
power of 8.6 uW. Find the fiber loss.

An optical fiber with an input power of 8.7 uW has a loss of -1.45 dB/km.
If the fiber is 2600 m long, find the output power.

What determines the wavelengths that can be amplified in an optical fiber
amplifier?

A light source for a fiber optic system has an output power -12 dBm.
Determine the power in watts.

A power of 0.36 mW is launched into a fiber with an overall loss of 13 dB.
What is the output power?

What causes the absorption loss in optical fiber?

What are the three kinds of dispersion due to three separate mechanisms
existing in fiber?

What is the meaning of attenuation in fiber?
Provide five reasons for loss of power in fiber optics.

Find the minimum core diameter of a multimode fiber designed to carry
IR signals at a wavelength A = 1600 nm.

A fiber with n, =1.45 and A =0.02 has NA = 0.29. Let 4, =0.87 pym and
the core radius a = 23 pm. Determine the V-parameter.

A fiber has an attenuation of 3.2 dB/km at 820 nm. Let 0.4 mW of optical
power be launched into the fiber. Determine the power level after 5km.

A fiber has lost 80% of its power after traversing 400 m of fiber. Find the
loss in dB/km of fiber.
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The Greek Alphabet

Names | Upper Case | Lower Case | Names | Upper Case | Lower Case
Letters Letters Letters Letters

Alpha A o Nu N v
Beta B 5} Xi =
Gamma r y Omicron 0] o
Delta A 1) Pi I T
Epsilon E € Rho P o
Zeta V4 ¢ Sigma )y c
Eta H n Tau T T
Theta C] 0 Upsilon Y v
Tota 1 1 Phi () )
Kappa K K Chi X 2
Lambda A Psi ¥ v
Mu M i Omega Q ®

The International System of Units (SI) Prefixes
Power | Prefix | Symbol | Power | Prefix | Symbol
107 deci d 10* yotta Y
107 centi c 10" zetta Z
107° milli m 10" exa E
10° micro n 10" peta P
107° nano n 10" tera T

(continued)
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(continued)

Power | Prefix | Symbol | Power | Prefix | Symbol
107" pico P 10° giga G
107 femto f 10° mega M
107" atto a 10° kilo k
107 zepto z 10° hecto h
107 yocto y 10' deka da
10°7% stringo - 10° - -

Logarithmic Identities
log, a =Ina (natural logarithm)
log,, @ =loga (common logarithm)
logab =loga +1logh
log% =loga—logh

loga" =nloga

Vector Derivatives and Coordinates:

1. Cartesian Coordinates

Coordinates

Vector =Ad, +Ad,+Ad,
Gradient oA, OAS
—ad, +—ad,
" E"
Divergence 0A, A
. L4 =4 —=
Oy
Curl a, a,
o °
oy Oz
A, A
oA, ) (aA\ aA.) A, A, )
— |a + - = TS |%
P x o o y O ay -
Laplacian A FA &

<
R,




2. Cylindrical Coordinates
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(p, ¢, 2)

Coordinates

Vector A= Ay, +A,a,+Ad,
Gradient VAZ%a l%@ﬁ G_Aq~
op " pog 0z
i - 0A
Divergence V~A:li A) 104, 0A
pop " pop oz
Curl i, pd, a.
Vxi-tl0 0 9
plop 09 Oz
A, pA, A
0A 0A 0A
= 10A, 94 i + o4, oA, ad)_,_l ﬁ<pA¢)__P a
pop o=)” e ap ol or o9 )
. 2 2
opicn [T TNV
pop\" op) p 0p Oz
3. Spherical Coordinates
Coordinates RO
Vector A=AG, + A,y + A,
Gradient - O0A. 10A. 1 0A_
VA=—d, +——dy+—————4q,
or r 00 rsin® O0¢
i - 0A
Divergence [l SRENUNIYY NN SN IG W uy:) P
r- or rsin@ 060 rsin@ 0O¢
Curl a, rd, (rsin0)a,
paiol |2 o 2
r-sinf |(or 060 o¢
A 1A, (rsinf)A,
L [ % asine)- Pz W1 LA 0,
rsin@\ 00 o¢ r\sin@ 0¢ Or
1( o 0A
+= ZrA,) -2 a
r(6r<r 2 00 J%
. 2
Laplacian V2A—%i(rza—AJ+ : 1 i(sine%}r : 1 : 6_?
r° or or) r°sinf 060 00 ) r7sin” 0 0¢
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Vector ldentity
A-(BxC)=B-(CxA)=C-(AxB)
Ax(BxC)=B(A-C)-C(A-B)
V(fg) = f(Vg)+g(Vf)
V(A-B)= Ax(VxB)+Bx(VxA)+(A-V)B+(B-V)A
V-(fA) = f(V-A)+A-(Vf)
V-(AxB)=B-(VxA)—A-(VxB)
Vx(fA) = f(VxA)—Ax(Vf) = Vx(fA) = f(VxA)+(Vf)x
Vx(AxB)=(B-V)A—(A-V)B+A(V-B)-B(V-A)

(VxA) =0
(V) =0
vf) :vzf

Vf" =nf""'Vf (n = integer)
Divergence Theorem: J- A)dv = cﬁ A-ds
surface

3. Curl (Stokes) Theorem: j (VxA)-ds = gSA -dl
surface line
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Approximate Common Optical Wavelengths Ranges of Light

Color

Wavelength, 4

Ultraviolet Region 10-380 nm
Visible Region 380-750 nm
violate 380-450 nm
blue 450-495 nm
green 495-570 nm
yellow 570-590 nm
orange 590-620 nm
red 620-750 nm
Infrared 750 nm—1mm

Common Optical Wavelengths Conversions

Wave- Angstrom, Nano- Micro- Centi-

length, A A meter, nm | meter, gm | meter, cm

1A 1 107 107 107 107"
1 nm 10 1 107 107 107
1 pm 10 10° 1 107 10°
1cem 10° 10 10* 1 107
Im 10" 10 10° 107 1

Index of Refraction for Common Substances

Substance | Index of Refraction, n
Air 1.000293
Diamond 2.24

(continued)
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(continued)
Substance | Index of Refraction, n
Ethyl alcohol 1.36
Fluorite 1.43
Fused quartz 1.46
Crown Glass 1.52
Flint Glass 1.66
Glycerin 1.47
Ice 1.31
Polystyrene 1.49
Rock salt 1.54
Water 1.33

Physical Constants

Best Experimental Approximate Value
Value for Problem Work

Speed of light (m/s) 2.9997x10° 3x10°
Electron charge (C) -1.6022x107" ~1.6x107"
Electron mass (kg) 9.1066x 107 9.1x107*
Proton mass (kg) 1.67248x107" 1.67x107
Neutron mass (kg) 1.6749x107 1.67x107
Planck’s constant (J. s) 6.6261x107 6.62x107
Boltzmann constant (J/k) 1.38047x 107 1.38x107%
Permeability of free Az x107 19.6%107
space (H/m)
Intrinsic impedance of 376.6 1207
free space (Q)
Speed of light in vacuum 9.9979x 10° 3%10°
(m/s)

(continued)
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(continued)

Quantity Best Experimental Approximate Value
Value for Problem Work

Acce.leratlorzl due to 9.8066 9.8

gravity (m/s”)

Avogadro’s number " "

(/kg-mole) 6.0228 x10° 6x10

Universal constant of o o

gravitation (mz/kg . 52) 6.658x10 6.66x10

Electron-volt (]) 1.6030x107" 1.6x107"

Gas constant (J/mol K) 8.3145 8.3
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A

Aberrations of optical images, 87-125

Absorption loss, 479480

Absorption of light, 421

Acceptance angle, 453

Achromatic doublet, 120-121

Achromatic interference fringes, 206-298

Achromatism, 117-118

Acoustic intensity, 213-214

Active medium and methods of
excitation, 424425

Adjustment of the spectrometer, 157

Advantages of optical fibers, 448-449

Analysis of light, 395405

Angular offset, 485-488

Aplanatic surfaces, 30-32

Application of lasers, 440-441

Astigmatism, 101-106

Astronomical refracting telescope, 138-141

Attenuation in optical fibers, 475-488

Axial chromatic aberration for object at
infinity, 115-116

B

Babinet compensator, 405412
Balancing of aberrations, 125

Basic modes of laser oscillation, 426
Basic review of scientific notation, 1415
Bending losses, 480

Billet split lens, 299

Blue color of sky, 381-381
Breakdown of Snell’s law, 29-30
Brewster’s law, 364

C

Calibration of micrometer screw of Babinet
compensator, 406—408

Cardinal points, 69-70

Cardinal points of thin lenses, 73-79

Characteristics of a laser, 427

Chromatic aberration, 113-115

Circularly polarized light, 397

Classification of interference
phenomenon, 280

Coherence, 428—429

Coherence time and interference of
light, 236-238

Coherence time and polarization, 238-239

Coma, 95-100

Comparison of Ramsden’s eye-piece and
Huygen’s eye, 154

Competition between absorption and
stimulated emission, 423-424

Complex quantities, 215-218

Composition of S.H. motions, 178188

Compound microscope, 131-135

Concept of modes, 456-465

Condition of achromatism for two lenses in
contact, 118-121
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Condition of achromatism of separated
doublet, 123-124

Conditions for interference, 277-280

Constructive interference, 269—270

Convention for angles, 43

Convention of distances, 4243

Convention of signs, 42-43

Core and cladding losses, 484

Corpuscular theory of light, 161-162

Corpuscular theory versus wave
theory, 163-166

Crystallographic axis, 372

Curvature of field, 106-108

D

Damped vibrations of a particle, 188-193
Dark field illumination, 137-138
Decibel (dB), 476
Destructive interference, 270
Determination of constants of elliptic
vibration, 409—412
Determination of the principal and focal
points, 64-65
Determination of the wavelength of
light, 282-287, 295-296
Differential equation of S.H.M. and its
solution, 177-178
Differential equation of wave
motion, 204—-208
Diffraction at a circular aperture, 332-339
Diffraction at a narrow wire, 330-332
Diffraction at an opaque disc, 339-341
Diffraction at a straight edge, 322-330
Diffraction of light, 307-350
Directionality, 427
Discovery of interference of light, 265-267
Discovery of polarization of light, 360
Dispersion shifted and dispersion flattened
fibers, 472-475
Displacement of the fringes, 290292

Distinction between elliptically
polarized, unpolarized, plane polarized
light, 401-404

Distinction between unpolarized, circularly
polarized light, 399401

Distortion, 108-113

Division of a cylindrical wave-front,
318-322

Division of amplitude, 280

Division of wavefront, 280

Double refraction, 368-369

Drilling and perforating holes, 442

E

Effects of strong laser radiation on
materials, 441-444
Einstein coefficients, 429-432
Electromagnetic theory, 5-6
Electromagnetic theory of light, 166-168
Electromagnetic waves, 230-233
Elimination of reverse wave in Huygens’
principle, 316-317
Ellipsoidal and paraboloidal mirrors, 31-32
Elliptically polarized light, 396-397
Energy density of plane waves, 211-213
Erbium doped fiber for optical
amplifier, 489
Explanation of polarization by
reflection, 365-366
Extrinsic (passive) fiber sensors, 492—494
Eye, 130-131

F

Fermat’s principle, 23-30

Fiber as a guiding medium, 449

Fiber optic gyroscope, 497499

Fiber optic sensors, 489-501

Field components in optical
waveguides, 457460

First order theory, 46-49

Flow sensor, 492



Focal length of the combination of two thin
lenses in contact, 259-261

Focal lengths of thin lenses in special
cases, 71-73

Forced vibrations, 193-197

Fresnel class, 318

Fresnel’s biprism interference
fringes, 281-282

Fresnel’s double mirror, 287-288

Fresnel’s experimental arrangements,
281-288

Fresnel’s explanation of the rectilinear
propagation of light, 309-316

Fresnel’s half-period zones, 310-312

G

Gauss eye-piece, 154-155

Generation of coherent light waves, 423
Geometrical optics, 22

Geometry of calcite crystal, 369-370
Graded-index-a-profiles, 468469
Graphical construction of images, 60
Greek theory, 2

H

Half-wave plate, 389-390

Helium-Neon laser, 435-441

Hellenistic theory, 2

Hindu theories, 1-2

Historical theories about light, 1-9
Huygens eye-piece, 150-154

Huygens’ principle, 242-244

Huygens’ theory of double refraction, 369

Implications of Maxwell’s theory, 233

Inherent defect losses, 483

Intensity, 427

Intensity at edge of the geometrical
shadow, 327

Intensity at non-axial points, 337-338
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Intensity distribution curve, 276-277
Interference fringes on screen, 274-276
Interference of light, 236-238, 263
Interference with white light, 288-290
Intrinsic (active) fiber sensors, 491-492
Inverse square law losses, 483

Isotope separation, 442443

K
Kellner eye-piece, 144-145

L

Lagrange’s law and Helmholtz’s law, 51

Laser, 424-432

Laser beam, 426-427

Laser cutting, 442

Laser gyroscope, 444

Laser monitoring of the environment, 444

Lasers in medicine, 442

Laser welding, 441-442

Lateral magnification referred to principal
points, 62—-64

Lateral magnification referred to the focal
points, 61-62

Law of extreme paths, 32-34

Law of Malus, 367-368

Laws of reflection, 24-25

Laws of refraction, 26-29

Leaky modes, 480

Lenses, 54-55

Light pressure, 16

linear lateral magnification, 50-51

Lissajou’s figures, 181, 187, 188

Lloyd’s single mirror, 292296

M
Macro-bending losses, 481-482
Magnifying power, 132
Material dispersion, 470471
Material or impurity losses, 477-478



514 ° INDEx

Maxima and minima diffraction {ringes on
the screen, 324-327

Maxima and minima illumination of central
ring, 336-337

Maxwell’s equations, 456457

Measurement of the birefringence, 408

Measurement of wavelength, 330

Mechanical experiment to demonstrate
polarization, 357-358

Micro-bending losses, 480481

Microscope objective, 135-137

Misalignment losses, 484485

Mixture of unpolarized and circularly
polarized light, 398

Mixture of unpolarized and elliptically
polarized light, 398

Mixture of unpolarized and plane polarized
light, 398

Modal equation, 462—463

Monochromaticity, 427-428

Motion about a central point, 170-172

Multiple foci of a zone plate, 346-348

N

Nicol prism, 379, 396, 398, 399, 403, 412
Nodal points, 66-69

Normal incidence, 218, 219

Normalized frequency (V), 464-465
Numerical aperture, 453-455

o

Oblique incidence, 221-223

Oculars or eye-pieces, 141-155

Optical center, 69

Optical communication, 443

Optical experiment to illustrate the
polarization, 358-359

Optical instruments, 129

Optical resonator, 425-426

Optical theory, 3

Optic axis, 372

Optics, 17
Ordinary and extraordinary rays, 370-371

P

Parallel and crossed Nicols, 374-376

Particle theory, 4

Particle theory revisited, 7

Particle velocity, acceleration and energy,
174-176

Penetration of light within geometrical
shadow, 328-329, 338-339

Phase difference, 409-410

Phase modulated sensors, 494-496

Physical optics, 22, 160

Pictorial representation of light, 360-362

Plane polarized light, 396

Plane wave equation, 208-211

Plenum, 3—4

Polarization by double refraction, 373-374

Polarization by reflection, 362364

Polarization by refraction, 365-366

Polarization by scattering, 379-380

Polarization by selective absorption,
376-377

Polarization fiber sensors, 499-501

Polarization of a wave, 355-356

Polarization of light, 354

Polaroid, 377-379

Position and ratio of axes, 410412

Power of a lens, 72

Practical considerations regarding light
waves, 234-236

Principal focal points and principal focal
lengths, 49

Principal foci, 72

Principal plane of O ray and E ray, 372-373

Principal points and principal planes, 59

Principal section of the crystal, 372-373

Principle of superposition, 264-265

Production of circular interference
fringes—M eslin’s split lens, 299-300



Production of circularly polarized light,
392-394

Production of elliptically polarized light,
394-395

Production of plane polarized light, 362

Properties of principal planes and principal
point, 60-61

Pulse dispersion in step index fiber, 465-470

Q

Quantum electrodynamics, 9

Quantum optics, 22

Quantum theory, 7-8

Quantum theory of light, 7-8, 168-170

Quantum transitions in absorption and
emission of light, 420-424

Quarter-wave plate, 390-392

R

Radiation induced losses, 482

Ramsden eye-piece, 145-149, 154

Ranging and measurement, 443-444

Rayleigh scattering loss, 478-479

Rectilinear propagation of light, 315-316

Reduction or elimination of astigmatism,
105-106

Reduction or elimination of coma, 98—-100

Reduction or elimination of curvature of
field, 107-108

Reduction or elimination of distortion,
112-113

Reduction or elimination of spherical
aberration, 91-95

Reflection and refraction of waves, 218-221

Reflection as a special case of refraction,
53-54

Refraction at a lens, 35-37

Refraction at a spherical surface, 43-49

Refraction at curved surfaces, 34-35

Refraction of a plane wave at a plane
refracting surface, 245-246
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Refraction of a plane wave through a plane
refracting surface, 247-249

Refraction through a spherical surface,
253-255

Refraction through a thick lens, 55-59

Refraction through a thin lens, 255-259

Refractive index profiles, 451, 468

Resonance, 197-200

Retardation plates, 388-392

S

Shape of the interference fringes, 273-274

Sharpness of resonance, 199

Simple harmonic motion, 172

Situation of principal points, 78-79

Snell’s law, 22

Spacing of interference fringes—fringe
width, 271-272

Special theory of relativity, 6-7

Specific acoustic impedance, 214

Spectrometer, 155-157

Speed of light, 9-10

Spherical aberration of a lens, 89-95

Spherical acoustic waves, 215-218

Spherical waves incident on a thin concave
lens, 258-259

Spherical waves incident on a thin convex
lens, 255-258

Spontaneous emission, 422

Stationary waves, 227-228

Stimulated emission of light, 421-422

Superposition of many harmonic waves,
223-225

Superposition of two plane polarized waves
vibration, 382-388

Superposition of waves, 223-225

Superposition of waves of the same
frequency, 225-228

Systematic analysis of light, 398-399
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T

Telegraphy, 215-218

Telescopes, 138

Temperature dependence of fiber
losses, 484

Theory of interference, 267-277

Thin lens, 70-71

Total internal reflection, 29-30, 452-453

Total reflection, 250-253

Transmission losses, 483

Two classes of diffraction phenomena,
317-318

Types of fiber, 450455

Types of lasers, 432435

U

Uniform illumination at points far
above C, 323

Units and measures, 11-14

Unpolarized light, 396

v

Variables of a S.H.M., 172-174
V-number, 464-465
V-parameter, 464465

w

Wave equations for step-index fibers,
460-462

Waveguide dispersion, 471-472

Wave packets, 228-230

Wave-particle duality, 9

Wave theory of light, 4-5, 162-163

Y
Young’s experiment, 265-267

z

Zeeman effect, 168
Zone plate, 341-348
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