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PREFACE

This book is principally intended as a basic introduction to 
the topic of Solid State Physics for undergraduate students. While 
aimed primarily as an introductory text for Physics students, it will 
also be of use to undergraduates who require an understanding of 
solid state physics for chemistry, materials science and engineering 
based courses. The project began as a work for the Pantaneto Intro-
ductory Physics Series and has leant heavily on my teaching of many 
topics related to the subject. Over the past 13 years, I have lectured 
in the Department of Physics and Astronomy at the University of 
Porto (Portugal), where I have taught undergraduate, Masters, and 
postgraduate courses in such diverse topics as: Magnetic Materials 
and Applications, Semiconductors and Devices, Materials Science, 
Introduction to Modern Physics, Functional Materials and Applica-
tions, Nanotechnologies, Characterization Techniques for Materials, 
and several others, including a range of laboratory classes. Many of 
the topics in the current textbook have been broadly based on some 
of my lectures notes for these courses.

My own personal interest in the solid state physics began over 20 
years ago when I began my doctoral studies at the University of York 
(UK), where I researched structural and spin wave resonance prop-
erties in magnetic multilayers. I have since worked in many aspects 
of the preparation, characterization, and study of magnetic and 
spin dynamic properties of low dimensional magnetic systems. This 
experience has allowed me to develop my interest in many areas of 
solid state physics. Solid state physics is a popular and enormously 
rewarding area of research and one which has provided the basis for 
a huge number of devices and applications and interestingly, many 
Nobel Prize winners in Physics have worked in the field.

The book is organized in a chapter sequence that I find logical to 
the introduction of the various topics of solid state physics. As such, 
I start by exposing some basics concepts of quantum mechanics and 
the bonding mechanisms between atoms. This is fundamental to 
the formation of solids and rightly belongs at the beginning. The 
next chapter deals with the all important subject of crystalline struc-
tures. This follows on nicely from the introduction; since once the 
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bonds are formed between atoms, they can condense into the solid 
structures. These will naturally occur in ordered arrays of atoms, 
i.e., crystals, depending on the ambient conditions for equilibrium 
structures. Rapid quenching from the melt, for example, can pro-
duce non-equilibrium solid structures, such as found in amorphous 
materials. Chapter 3 deals with some fundamental aspects of crystal 
structure determination and is an essential topic for the budding 
experimentalist. This mainly treats some of the basic concepts of 
crystal diffraction theory as well as outlining some of the main exper-
imental techniques available. Sadly, nothing is perfect and Chap-
ter 4 approaches the subject of crystalline impurities; defects and 
imperfections which I have dealt with in terms of the solids dimen-
sionality. The motion of atoms in the form of vibrations or phonons 
forms the subject of Chapters 5. In Chapter 6, the subject of metallic 
behavior and how the free electrons in such materials are so impor-
tant to their unique properties is introduced. The formal crystalline 
properties of materials has a profound effect on the way electrons 
and charge carriers move. In Chapter 7, some theoretical aspects 
which allow us to treat the complex behavior of charge carriers in 
solids in a simple manner are discussed. Also included, are some 
extended introductions to some of the simpler models for the calcu-
lation of energy bands in solids. I have here tried to demystify the 
origin of the complicated looking band structures. The specifics of 
how electrons move in energy bands are dealt with in the follow-
ing chapter (Chapter 8). Here, we introduce some further concepts 
which aid our description of the movement of charge carriers and 
some of the simpler transport phenomena encountered in materi-
als. Of particular importance are the reaction of charge carriers to 
the application of electric and magnetic fields. The remaining five 
chapters deal with specific properties of solids. In Chapter 9, semi-
conductors are introduced. Semiconducting materials form such an 
important class of materials in the electronics industry. Introduced 
are the basic concepts that are necessary to understand the principal 
behavior and the different types of semiconductor. Also introduced, 
in some detail, is the p-n junction, which forms the fundamental unit 
of a majority of semiconducting devices as well as approaching the 
more recent works based heterostructures and quantum wells. In 
Chapter 10, I tried to bring together the principal elements required 
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for a reasonable understanding of magnetic materials and how solids 
behave under the influence of a magnetic field. Magnetic materials 
have a number of important technological applications. My aim was 
to give a broad overview of its fundamentals, as well as introduc-
ing the different classes of magnetic material. An introduction to 
some more modern aspects of the subject, such as spintronics and 
spin dynamics, is provided. Superconductivity is a complex subject 
and forms the topic of Chapter 11. The topic is approached so as to 
highlight the basic phenomena associated with such behavior, while 
giving an in-depth account of the fundamental theories of supercon-
ductivity. Also included in this chapter, is a fundamental outline of 
some of the applications, which are mainly based on the Josephson 
effects and junction. The chapter is completed with an overview of 
some of the more important concepts of high-temperature super-
conductors. In Chapter 12, the subject of dielectric properties of sol-
ids is dealt with, including some general introductions to the oxide 
materials with ferroelectric, piezoelectric, and multiferroic proper-
ties, which have important applications. Additionally, an outline of 
the principal optical properties of insulating materials is given. (The 
optical properties of metallic materials are discussed in Chapter 6.) 
The final chapter consists of a detailed overview of some of the more 
recent work in Nanotechnologies. I am of the opinion that this sub-
ject belongs as an integral part of solid state science. This is a rather 
long chapter and includes some extended discussions on the more 
recent works based on the electronic, optical, and magnetic proper-
ties of nanostructured materials. I have discussed this subject under 
a personal perspective, relating it to the modification of the fun-
damental properties of solids in low dimensional systems, broadly 
classing these as the effects of surfaces and confinement effects. 
Integral with this description, is the introduction to the fundamental 
length scales of different physical properties. A brief introduction to 
surface physics and low dimensionality is given. It is hoped that this 
chapter will serve as an introduction to this important development 
in modern solid state science. Of course, it could be no more than 
an introduction, since Nanotechnologies as a subject encompasses 
many other areas of scientific study and research, such as chemistry, 
biology, and medicine. My discussion is limited only to the pertinent 
areas of condensed matter physics. In each of the chapters, a general 
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introduction to the specific topic discussed is provided as well as an 
extended summary at the end to highlight the main points. At the 
end of each chapter, I list some of the references used while also 
indicating others in the text, which are generally primary sources. 
Finally, a number of exercises are included for the student to test 
their grasp of each subject area.

There are a large number of excellent textbooks available that 
deal with solid state physics, from basic introductions to advanced 
texts. Probably the best known are those by Kittel, probably known 
to all students who have some across the subject, and Ashcroft and 
Mermin. The former is an excellent book, which provides a broad 
overview of the subject, while the latter gives a more in depth study 
of the subject, particularly on subjects related to the electronic prop-
erties of solids. I believe the current book provides a broad general 
introduction to the subject, covering all the major topics that most 
undergraduate courses require. The book is intended to provide a 
text which is both approachable to the newcomer and provides some 
deeper insights to the student who has some basic knowledge of 
the subject. In particular, the final chapter on Nanotechnology and 
Nanophysics should allow the interested reader to see how the exten-
sion to the main topics of solid state physics have developed in to this 
enormously important area of study with its plethora of applications. 
Indeed, this is a subject rarely dealt with in textbooks on solid state 
physics and I hope it will provide a stimulating introduction.

I am very grateful to my colleague Dr. David Navas for proof-
reading the whole text, highlighting some areas that were unclear 
and needed some clarification. I, of course, take full responsibility 
for any errors that remain. I would also like to acknowledge many of 
my students, who over the years have helped me to become a bet-
ter teacher. I have been very lucky to have made the acquaintance 
of some very talented and distinguished scientists, who have helped 
shape my thoughts on many areas of my research and those related 
to some of the subjects in this book. I am privileged to be able to call 
them colleagues and friends. Among them, I would like to mention 
the following: Austin Chambers, Jeremy Whiting, Bret Heinrich, 
Bob Stamps, Marcel Guyot, Niels Keller, Hamid Kachkachi, José 
Javier Sáiz Garitaonandia. I have many colleagues at the University 
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of Porto and I would like to thank them all for the professional and 
pleasant working environment and many fond memories. In par-
ticular, I would like to mention: João Bessa Sousa, Helder Crespo, 
Orfeu Bertolami, and João Lopes dos Santos. I should add to this list 
some people who were also fundamentally important in my develop-
ment. I am forever indebted to Hank and Alex Kahney, Alex West, 
and Peter Kenny, as well as many others. An enormous “Merci” to 
François Vernay. I would like to extend my deep appreciation to my 
partner Ana, who has had to put up with me while this book was 
being written: I hope I can make it up to you. I am sad that both 
my parents are not alive to have seen this book in print; I know they 
would have been proud.

D. S. Schmool
Porto and Perpignan
July 2016





CHAPTER 1
INTRODUCTION TO 
SOLID STATE PHYSICS 

“The future is unwritten”

—Joe Strummer

1.1  INTRODUCTION

All substances that we observe in our daily lives are made up 
of atoms. These are assemblies of smaller, fundamental, particles: 
protons, neutrons and electrons. The protons, which have a posi-
tive charge (by convention) and neutrons form what we call the 
nucleus, which concentrates at the center of the atom and contains 
a vast majority of its mass. The electrons, which have a negative 
charge equal in magnitude to that of the proton, orbit the nucleus, 
occupy specific shells and are in equal numbers to the protons. This 
means that an isolated atom with be electrically neutral since the 
neutrons do not have electrical charge. Each element (atom) is dis-
tinguished by the number of protons it has in its nucleus, i.e., the 
atomic number. The nucleus for a certain atomic species can have 
differing numbers of neutrons, these are called isotopes, and occur 
in specific abundances, where there is usually a dominant isotope. 
For example, there are two principal or primordial isotopes for ura-
nium; 235U and 238U, both have 92 protons, but the latter has three 
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more neutrons than the former and has a larger natural abundance 
(around 99.2%). Atoms can be isolated in gaseous form or joined to 
other atoms to form a molecule, which can also exist in the gaseous 
phase. The phase or state of matter depends largely on the ambi-
ent conditions of temperature and pressure. In general conditions of 
high pressure and low temperature favor the condensation of a gas 
to form a liquid, and with further increase of pressure or reduction 
in temperature, a solid will by formed. The specifics of the changes 
of phase are crucially dependent on the atomic species and the num-
ber of electrons it contains.

Solid state physics is a broad area of modern physics which deals 
with the fundamental physical properties of materials in their frozen 
phase. Materials come in a variety of forms and the way we clas-
sify substances depends on what properties we are interested in. 
For example, when we discuss electrical properties of materials, we 
separate them into groups depending on whether they conduct well 
(e.g. metals), poorly (insulators) or somewhere in between (semi-
conductors). In terms of magnetism, we divide materials into those 
with differing magnetic order; ferromagnetic, ferrimagnetic, para-
magnetic etc. It is one of the main concerns of this book to outline 
this differentiation of material solids, as well as to give an overview of 
the relation between atomic species, atomic ordering and the physi-
cal phenomena and properties of solid matter.

At the root of all solid state physics are two basic aspects: chemi-
cal composition and their spatial arrangement. In simple terms, 
what we have and how they arrange themselves with respect to one 
another. Atomic species will determine how they bond together (if 
at all). The bonding mechanism will frequently determine the spa-
tial arrangement of atoms, thus giving a specific crystalline structure 
(taken under equilibrium conditions). The resulting physical proper-
ties are principally determined by these two factors. For example, 
in metals, atoms are held together by the interaction between the 
ionic cores and free electrons, typically in some form of close packed 
structure. The mechanical properties are directly related to the bond 
strength between the atoms, which in turn depends on the type of 
atom (number of electrons). The structure will determine how the 
mechanical properties vary with direction, i.e., the anisotropy in the 
elastic constants of the material. It is worth noting, for example, that 
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the melting temperature of a solid is a good measure of the inter-
atomic bond strength, but will also depend on the number of nearest 
neighbor (nn) bonds or coordination number. The electronic proper-
ties of a solid will generally depend on the number of free electrons 
per unit volume (electron density) and the physical structure of the 
material. Magnetic phenomena in solids similarly depend on the 
atomic species and the distribution of electrons around the atoms as 
well as the way in which the electron orbits interact, and will in the 
case of ordered magnetic materials, govern the magnetic anisotro-
pies that are evident in these solids. The properties we are discussing 
here are referred to as intrinsic properties, and depend strictly on the 
atomic species and their arrangement. On the other hand, extrinsic 
properties can arise from other factors, such as the shape of a solid, 
which can also affect the physical response of a materials to an exter-
nal stimulus, such as an applied field or mechanical force.

As a general note, the measurement of physical properties typi-
cally follows the basic principle of observing the reaction of a mate-
rial to the application of an external force or stimulus. This can be 
a mechanical force (compressive, tensile, or shear) and measuring 
the change in shape of the solid. Alternatively, if we are interested 
in electronic properties, we may apply an electric field (potential) to 
the material and measure the flow of current (i.e., number of elec-
trons passing per unit time), which will allow us to assess important 
parameters such as electrical resistance etc. In a similar way, if we 
want to assess the magnetic properties of a substance, we generally 
see how it behaves in a magnetic field. Another important class of 
measurement consists in subjecting the material or sample to some 
form of radiation, such as x-ray, electron and neutron beams. The 
intensity and spatial distribution of the transmitted or reflected radi-
ation can provide valuable information on a broad range of physi-
cal characteristics, such as crystalline order, electronic structure and 
magnetic properties. Some of these measurement techniques will be 
outlined in later chapters. In particular we shall discuss some aspects 
of diffraction techniques in the assessment of the crystalline proper-
ties of materials (Chapter 3).

In this chapter, we will outline some of the basic concepts which 
are necessary to understand what atoms are and how they form sol-
ids. We will touch on the basic ideas of the structure of the atom, 
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mainly concerning the Bohr atomic model. We will then discuss 
some basic principles of quantum theory, which enables us to build 
up a picture of how electrons are ordered in orbitals, which ulti-
mately determines their chemical and bonding properties. Finally 
in this chapter, we will introduce the fundamental principles of the 
bonding mechanism between atoms, which form the basis of the 
crystallization or condensation of atoms in a solid.

1.2  ELECTRONIC STRUCTURE OF THE ATOM

Since all solid matter is comprised of atoms frozen in some 
form of three-dimensional order, we will commence by considering 
the basic internal structure of the atom and see how this structure 
affects the chemical properties of the element. We will consider the 
atom to be a stable entity or building block for our solid. This is of 
course not entirely true, but once our atom in the solid has found 
its equilibrium, it is will not generally change its internal structure. 
Of course it may be mobile inside the solid, but the basic structure 
(atom) will, in general, be considered as a stable body. Since we are 
not considering radioactive phenomena, this is a valid assumption.

Atoms are agglomerates of more elemental particles; protons 
and neutrons, which make up the massive nucleus and surrounded 
by an electron cloud. It is this latter which is essentially responsible 
for the chemical properties of the atom and will determine how it 
interacts with other atoms in its vicinity. Despite this, the nucleus 
of the atom makes up virtually all the atomic mass. The number of 
electrons in an atom is equal to that of the protons, thus maintaining 
charge neutrality. The positive charge of the nucleus balances that 
of the negative electrons, where the unit of this charge is equal to 
1.60219 × 10−19 C. As we have stated above, the chemical behavior 
of an atom depends on the number of electrons it contains, which is 
a direct consequence of the number of protons in its nucleus. How-
ever, this is only part of the story and to really understand the chemi-
cal behavior of the atom we need to consider how the electrons are 
held in place. We will now review some basic concepts of quantum 
theory which describe electronic states in atoms, from which we can 
then infer the basic chemical properties of atoms.
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1.2.1  Electron Orbits
One of the early models of the atom was envisaged by Ernest 

Rutherford (1911), and is based on the experimental study of the 
scattering of alpha and beta particles, though it has its origins in the 
Nagaoka planetary model (1904). This model describes the atom as 
having a tiny but massive positively charged nucleus around which 
electrons move in dynamically stable orbits. The simplest case is 
that of the hydrogen atom (atomic number Z = 1), having a single 
proton in the nucleus and orbited by one electron. The centripetal 
force for the electron in a stable circular orbit (though an elliptical 
orbit would also be acceptable) with mass, me, and velocity, v, can 
be written as:

	 F
m v

r
c

e
2

= � (1.1)

where r represents the radius of the orbit, i.e., the distance between 
the electron and the nucleus. The electron is held in its orbit by the 
electrostatic force between itself and the proton and is given by:

	
π

=F
e

r4
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Here e0 is the permittivity of free space (or vacuum), having a 
numerical value of 8.854 × 10−12 Fm−1 and e is the electronic charge. 
We can obtain the condition for this dynamically stable orbit by set-
ting these two forces equal, from which we write:
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Rearranging Equation (1.3) we can obtain an expression for the 
electron velocity:

	

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Thus the kinetic energy of the electron will take the form:
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The total energy of the electron will be the sum of both kinetic 
(K) and potential (V) energies and takes the form:

	
  π π π

= + = − = −T K V
e

r
e

r
e

r8 4 8
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0

2

0

2

0

� (1.6)

The negative value is interpreted as being the binding energy of 
the electron to the proton (in the formation of an atom). In the case 
of the hydrogen atom, experiments show that the energy required to 
separate the electron and the proton is 13.6 eV1 (2.179 × 10−18 J = 
2.179 aJ). It is then a simple matter to estimate the orbital radius of 
the hydrogen atom from Equation (1.6), which gives a value of 5.29 × 
10−11 m or 0.53 Å. This quantity is known as the Bohr radius. Such an 
electron in this orbit would, according to Equation (1.4), have a cor-
responding orbital velocity of 2.19 × 106 ms−1.

1.2.2  The Bohr Model of the Atom
The principal weakness of the Rutherford model of the 

atom is the fact that from classical electromagnetic theory, mov-
ing charges will emit electromagnetic radiation. In doing so the 
kinetic energy of the orbiting electron will diminish in an amount 
equal to the energy of the electromagnetic radiation produced. 
Such a reduction of kinetic energy will mean that the orbital 
radius will gradually reduce and the electron will eventually spi-
ral down and collapse into the nucleus. Since this is not experi-
mentally observed, we must conclude that the model is deficient 
and provides no explanation of the orbital stability of the elec-
trons. To be fair, neither does the Bohr model, which introduces 
this as a supposition to the model.

The model of the atom, postulated in 1913 by Niels Bohr, pro-
vides a stunning early success for the old quantum theory and is 
based on some basic premises, which are given without justification. 
While this may seem a little unsatisfactory, the agreement between 
the Bohr theory and spectroscopic data was astoundingly good and 
gave much support for the model and is worth adding here since it 
gives a simple manner in which to think of the atom. In fact, the Bohr 
model is one that is still frequently used to envisage the structure of 
atoms. (Later some support for the Bohr model was provided, as we 
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shall shortly see, by the de Broglie hypothesis.) The postulates of the 
Bohr theory can be expressed as follows:

1.	The electrons in an atom can only have certain specific 
orbits, termed stationary orbits, with discrete values of their 
radius and hence energy.

2.	The energy of the orbit is related to its size. The lowest 
energy is found in the smallest orbit, i.e., that closest to the 
nucleus.

3.	These discrete orbital energies are the only ones the elec-
trons can exist in. Therefore to change orbit and thus energy, 
the electron must gain or emit discrete energies which cor-
respond to the following rule:

	 E E E hf iδ ν= − = � (1.7)

where Ei and Ef represent the initial and final energies, h is 
Planck’s constant (h = 6.626 × 10−34 Js) and ν is the frequen-
cy of the emitted/absorbed electromagnetic radiation.

There are a number of consequences to these postulates. Since 
we now have discrete electron orbits, the angular momentum will 
also be discrete and is given by:

	 

π
= = =L

m v
r

n
h

n
2

e n

n

q r � (1.8)

where we see that we have labelled the orbital velocity and radius 
with n, to denote the discreteness of the electron orbits. We note that 
n is an important quantity, termed the principal quantum number, 
whose significance will be seen shortly. The quantization of orbital 
angular momentum here is seen as n, an integer, multiplied by the 
Planck constant divided by 2p. From Equation (1.3) we can relate 
the velocity and radius of the orbits and further divide by Equation 
(1.8) and obtain the velocity of the electron in the nth orbit as:
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Z being the atomic number. It is then a simple matter to obtain the 
corresponding radius:

	

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m Ze
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This then leads to the energy associated with this nth orbit as:
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The negative sign here is interpreted as the binding energy of 
the electron by the positive potential of the nucleus and that work 
must be done to remove it. We note that as n increases, En becomes 
less negative. We therefore understand that the orbit closest to the 
nucleus (n = 1) has a larger binding energy. This is logical, since it 
feels a stronger Coulomb (attractive) force from the nucleus. We 
can now calculate the energy associated with the discrete jumps 
between the different orbits (which are labelled as i and j) with the 
corresponding frequency of the radiation, νij:
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(1.12)

This process is schematically illustrated in Figure 1.1. A negative 
value corresponds to absorption, while a positive value to emission, 
N.B. Eij = −Eji.

While being enormously successful as a scientific model, the 
Bohr theory suffers from some shortcomings. The main success of 
the Bohr atom is its ability to accurately predict the frequencies of 
the emission spectra of the hydrogen atom, giving a theoretical basis 
for the previously empirical Balmer formula and giving the correct 
value for its Rydberg constant. Further support came in the form of 
the de Broglie’s hypothesis (1924), which proposed a wave formula-
tion to quantum theory, where electrons and particles in general are 
seen as wave-like entities. Central to this hypothesis is the relation 
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between the electron (particle) wavelength and its linear momen-
tum (p), which is expressed as:

	
h
p

h
m ve

λ= = � (1.13)

The Bohr radii are then simply generated by the use of the prin-
ciple of wave interference and the fact that allowed standing waves 
occur for integral half wavelengths in the permitted orbits, as given by:

	 r n2 nπ λ= � (1.14)

We note that any other condition will produce a destructive interfer-
ence of the wave and would therefore not be a stable state for the 
electron-wave. Substituting (1.14) in Equation (1.13) we find:

	 r n
h

m v
2 n

e

π = � (1.15)

FIGURE 1.1:  Bohr orbits.
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From which we obtain:
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which is the same as given by Equation (1.10). This thus provides 
a rationale for the existence of the stable Bohr orbits. A schematic 
illustration shows how this works, see Figure 1.2. From the figure, 
we see that the number of nodes is equal the the orbital number. It 
will be noted that for the case of the hydrogen atom (Z = 1), in the 
ground state (n = 1), the above equation gives a value for the radius 
equal to the Bohr radius, as given above.

Despite this, the model is ultimately unsatisfactory; its failings to 
fulfill some important physical principles mean that it is somewhat 
limited in its potential use. We can outline the main shortcomings 
as follows:

●● The model fails to predict the ground state orbital angular 
momentum.

●● It violates the Heisenberg uncertainty principle since the 
electrons have a known radius and orbit.

FIGURE 1.2:  de Broglie matter waves in Bohr orbits (n =1 −5).
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●● The relative intensities of the spectral are not accounted for.

●● The Bohr atom does not explain the fine structure and hyper-
fine structure in spectral lines.

●● The model can only be used for the hydrogen atom.

●● No explanation is given for the Zeeman effect.

1.2.3 � Electron Filling, Quantum Theory  
and Quantum Numbers

A more precise description of the electronic behavior in atoms 
is provided by quantum mechanics, which takes into account the 
Heisenberg uncertainty principle as well as the probabilistic and 
wave natures of particles. While being a rather complex many-body 
problem, which is beyond the scope of our description, we can learn 
much with a brief overview.

The Heisenberg uncertainty principle is a quantum phenom-
enon which reflects the probabilistic nature of fine particulate 
behavior. Essentially it states that the position and momentum of 
a particle (such as an electron) cannot be explicitly known. This is 
often expressed mathematically with the relation:

	


x p
2

δ δ ≥ � (1.17)

where  h 2 .π= /  The uncertainty relation can also be expressed in 
terms of time and energy as:

	


E t
2

δ δ ≥ � (1.18)

Both forms express the limit of determinism that can be attrib-
uted to the physical quantities which define the electron states in 
an atom, for example. A full discussion of the consequences of the 
Heisenberg uncertainty principle are beyond the scope of this sec-
tion, for further information the reader is referred to texts on quan-
tum theory, see for example Bransden and Joachain (2003 2e).

The wave nature of particles can be conveniently expressed in 
terms of the Schrödinger equation, which expressed in the time 
independent form can be written as:
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This is a very important mathematical representation of the total 
energy of the electron. The first term in brackets corresponds to a 
mathematical operator of the kinetic energy, while the second term 
represents the potential in which the electron finds itself. The overall 
form the the equation is called an eigenvalue equation, where the 
operator represented in the square brackets operates on the (wave)
function, r( ),ψ  thus returning the eigen or characteristic energy val-
ues, which the electron can take given the energy constraints. We will 
further consider this equation when we discuss the electron energies 
in a solid, which will be the subject of Chapter 7. The form of the 
wave function is important since it will also limit the way in which 
the electron can behave. It is instructive to consider a very simple 
example. Consider a free electron which is moving in the x-direction 
of our coordinate system. We note that the mathematical represen-
tation of free, means that we can write V r( ) 0,=  where there is no 
potential to restrict the electron motion, as described by the kinetic 
energy. The form of the wave function is that of a plane wave, which 
can be represented in the form: Ae .ikxψ=  Since the second partial 
derivative of this can be written as k ,2ψ−  we obtain the free electron 
energy as a parabolic function of the wave vector, k, as:

	


E
k

m2 e

2 2

= � (1.20)

We note that the wave vector is related to the momentum of the 
electron through the expression: p k,=  and can also be expressed 
in vectorial form as: p k.=  This comes from the realization that the 
de Broglie relation for the wavelength of a particle can be written as: 
λ= /h p,  from which we can express the wave vector as: π λ= /k 2 .  
An electron in an atom is subject to the Coulomb potential of the 
nucleus and thus will be very different from this result. The nuclear 
potential will severely restrict the movement of the electron. In atoms 
with more that one electron, the potential will be further compli-
cated by their charges, shifting the movement and energies available 
to them due to the combination of electronic and nuclear charges.

At this point we can state that the wave function for an electron in 
an atom is called an atomic orbital. This atomic orbital will describe 
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the region of space, in the vicinity of the atomic nucleus, where it 
is most probable to find the electron. The mathematical probabil-
ity of finding the electron, with wave function, ψ r( ),  at a position 
r, is given by the probability density function, P r r( ) | ( )| .n n

2ψ=  The 
subscript n refers to the specific electron orbit in question. We can 
picture the change of energy of an electron in the atom as a shift in 
the wave pattern, and is typically associated with the absorption or 
emission of radiation, as discussed in the Bohr model.

Since electrons can only occupy restricted energies in the 
atom, we are presented with the problem of defining how this 
occurs. We must of course always bear in mind that the electron 
is subject to forces or potentials which limit how they can move in 
the atom itself. This is a complex situation and we will limit our-
selves to the basic rules which govern the way electrons occupy 
the available energy levels in the atom. We saw earlier that we 
can define the basic energy levels based on the quantization given  
by n, see Equation (1.11). This quantity is called the principal 
quantum number, taking discrete values; 1, 2, 3, … and defines 
the energy (shell) of the electron. In fact, the electron states in 
an atom are described by four quantum numbers, three associ-
ated with the orbit (n, l, ml), with the fourth, (ms), specifying how 
many electrons can occupy that particular orbital. We can list the 
four quantum numbers as follows:

1.	Principle quantum number, n : n = 1, 2, 3, …. This deter-
mines the energy of the electron as well as defining its orbital 
size or radial probability distribution. All electrons with the 
same value of n are said to occupy the same shell or level and 
have the same energy. Such energies (of different electrons 
in the same shell) are said to be degenerate. In the case of 
the hydrogen atom, n = 1 defines the so-called ground state 
of the atom, and for n > 1, the atom is said to be excited. The 
total number of orbitals for any given n is n2. Shells are usu-
ally labelled as: K (n = 1), L (n = 2), M (n = 3), …

2.	Angular momentum quantum number, l : l = 0, 1, …,  
n − 1. This quantity specifies the orbital shape and essential-
ly divides the shells into sub-shells or sublevels. The designa-
tion of the sub-levels derives from spectroscopic nomencla-
ture, given as follows: s: l = 0; p: l = 1; d: l = 2; f: l = 3; g: l = 4;  
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h: l = 5; … The meanings for the first designations are,  
s - sharp, p - principal, d - diffuse, f - fundamental.

3.	Magnetic quantum number, ml : ml = − l, …, 0, …, + l. 
The magnetic quantum number specifies the spatial orienta-
tion of an orbital for a given energy (n) and shape (l). This 
quantum number divides the sub-shell into the electron or-
bits, of which there will be 2l + 1 in each sub-shell. With the 
application of a magnetic field, these ordinarily degenerate 
levels can be separated (i.e., degeneracy is lifted), giving rise 
to further spectral lines in emission spectra. This is known as 
the Zeeman effect.

4.	Spin quantum number, ms : ms = +1/2 or −1/2. The final 
quantum number indicates the orientation of the spin axis for 
that particular electron. So for each electron configuration 
of n, l and ml, there are two possible states; +1/2 (spin-up) or 
−1/2 (spin-down).

Electrons are particles with spin half (as indicated above) and 
are labelled as fermions, particles which obey Fermi - Dirac statis-
tics. We will briefly touch on this in Chapter 6. Fermions are also 
subject to the Pauli exclusion principle, which states that no two 
fermions in the same system (atom) can have the exact same set of 
quantum numbers. This means that within an atom, there is only 
space for a maximum of two electron in any given combination of 
(n, l, ml). These must have opposite spin to be accommodated. The 
Pauli exclusion principle can be thought to arise due to the Coulomb 
repulsion between the electrons, hence the opposite spin keeps the 
electrons as far away from each other as much as possible in any 
particular orbital, since they move in opposite senses around the 
nucleus. The Pauli exclusion principle has a number of important 
consequences and in effect brings about very specific properties of 
the elements. For example, for two electrons in the same orbital, 
the spins must be opposite to each other; the spins are said to be 
paired. Substances in which all the electrons occur in such pairs 
are not attracted by magnets and are said to be diamagnetic. Atoms 
with more electrons that spin in one direction than another contain 
unpaired electrons. These substances are weakly attracted to mag-
nets and are said to be paramagnetic. We will have more to say about 
these and other magnetic properties in Chapter 10.
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It is useful to see some of the patterns emerging from this pic-
ture of the electronic states in an atom as governed by the quantum 
numbers. Table 1.1 above shows this to good effect.

For a particular atom in its ground state, the distribution of elec-
trons in their orbitals is referred to as the electronic configuration. 
The order of filling of electrons generally occurs according to the 
aufbau principle (“building-up”). This is illustrated in Figure 1.3. 
The arrows show the order of filling of the various orbitals.

TABLE 1.1:  Allowed quantum numbers and orbital designations

n l ml
No. of  
orbitals

Orbital  
name

No. of 
electrons

1 0 0 1 1s 2

2 0
1

0
-1, 0, +1

1
3

2s
2p

2
6

3 0
1
2

0
-1, 0, +1

-2, -1, 0, +1, +2

1
3
5

3s
3p
3d

2
6

10

4 0
1
2
3

0
-1, 0, +1

-2, -1, 0, +1, +2
-3, -2, -1, 0, +1, +2, +3

1
3
5
7

4s
4p
4d
4f

2
6

10
14

FIGURE 1.3:  The Aufbau principle, showing the order of filling of the electronic shells.



16  •  Solid State Physics

1.3  THE PERIODIC TABLE

Once we have understood the basics of quantum numbers and 
the electronic configurations of the various atoms, we are in a posi-
tion to understand the shape and structure of the periodic table of 
elements. As previously noted, the number of electrons in an atom 
must be equal to the number of protons in its nucleus, thus in its 
atomic elemental form, the atom maintains charge neutrality. For 
example, the He atom has two protons and two electrons, while 
beryllium has four of each. Once we have established the number 
of electrons in an element/atom, we can use the aufbau principle to 
determine its electronic configuration. So for the case of beryllium, 
its four electrons are distributed with 2 electrons in the 1s state and 
two in the 2s. In each of these sub-shells the electrons are accom-
modated with opposite spin, as dictated by the Pauli exclusion prin-
ciple. We can write this electronic configuration as follows: 1s22s2. A 
more complex example would be sodium, which has 11 electrons; its 
ground state electronic configuration is: 1s22s22p63s1. We should add 
a word of warning here that the aufbau principle is a rough rule of 
thumb and there are important exceptions to the rule, which occur 
in the heavier elements. Each atom in elemental order will have 
one more electron than the previous, thus gradually filling up the 
available electronic orbitals and being designated with the sequen-
tial order of quantum numbers. This is reflected in the the periodic 
table of elements, as shown in Figure 1.4.

This particular example of the periodic table indicates the elec-
tronic configurations for the outer electron shells, the inner shells 
being full. There are a number of things that should be pointed out 
from the general structure of this table and its relation to chemical 
properties and position. Firstly, we note that the noble gases have 
completely full electronic shells and are located in the right most 
column of the periodic table. These are chemically inert and do not 
form chemical bonds under normal conditions of temperature and 
pressure, and are hence gases. Elements to the left hand side are 
more reactive chemically. This can be conveniently seen if we group 
the elements in terms of the shells and orbitals, see Figure 1.5.

Here we clearly see that the s-block of elements correspond to 
the alkali metals, the d-block corresponds to the transition metals. 
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The p-block terminate in the noble gases and the f-blocks corre-
spond to the lanthanides (rare-earths) and actinide series. While the 
final column in the p-block corresponds to the noble (inert) gases, 
the previous column are known as halogens, and are also chemically 
active. There are many other properties to this table and we will be 
referring to some of these later in the book. What is essential to note 
is the similarity of the electronic configurations in any one group 

FIGURE 1.4:  The periodic table of elements indicating the outer electron configurations.

FIGURE 1.5:  The periodic table of elements showing the electronic configurations and 
outer shell groupings.
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(column) of the periodic table. It is from this relation that elements 
in a particular column have similar chemical properties, as indicated 
in their name groupings; e.g. alkalis, halogens etc. For example, they 
have the same valence electron states and can form very similar 
types of compounds as a result. We will consider the example of 
group 6A (16), to illustrate the point. The electronic configurations 
of this group of elements is shown in Table 1.2 below.

TABLE 1.2:  Electronic configurations for the group 6A elements

Element Configuration
O [He] 2s22p4

S [Ne] 3s23p4

Se [Ar] 3d104s24p4

Te [Kr] 4d105s25p4

Po [Xe] 4f145d106s26p4

Here we note that the electronic configurations are indicated in 
terms of those after the preceding noble gas element. In all cases the 
outer shells have two s-electrons and four p-electrons. They display 
very similar chemical and physical properties. Unfortunately a full 
description of the periodic table would be the subject of a book in 
itself, though we get a flavour for the relation between the position 
of an element in the periodic table and the electronic structure or 
configuration.

1.4  INTERATOMIC BONDING

The manner in which the different elements interact and bond 
together to form molecules and solids is intimately related to their 
electronic structure. Of course to form any type of molecule or solid, 
there must exist an attractive force between atoms. However, there 
are also repulsive forces which prevent the atoms from getting too 
close together. It is the balance of these attractive and repulsive 
forces that give rise to an equilibrium configuration between a con-
glomerate of atoms in the formation of a three dimensional spatial 
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arrangement of the atoms in the solid. For simplicity we can con-
sider two identical atoms that are gradually brought closer together. 
For large separations the forces between the atoms will be negligible 
(i.e., the interaction potential energy can be said to be zero). As the 
atoms draw closer together, the interaction potential will increase 
and attractive forces come into play drawing them closer together. 
We note that in mathematical terms, this energy is negative, as with 
the binding energies of the electrons in the atoms, and work must be 
done on the atoms to separate them. When the atomic separation is 
of the order of a few atomic diameters, repulsive short range forces 
come into play, which prevent crystals collapsing in on themselves. 
The potential energy here is positive meaning that work must be 
done to bring the atoms even closer. It is the balance between these 
opposing forces which leads to a final equilibrium. As a matter of 
fact, the attractive forces between the atoms draw them together 
until the electron clouds begin to overlap and then strong repul-
sive forces arise to comply with the Pauli exclusion principle. The 
equilibrium separation, r0, between the atoms occurs where the 
two forces are of equal magnitude, giving a stable configuration of 
minimum potential energy. We can represent this situation in math-
ematical form as a simple sum of attractive and repulsive forces as 
expressed by the relation:

	 U r
A
r

B
r

( )
n m

= − + � (1.21)

where r is the distance between the atom centers and A, B, n and 
m are constants characteristic for these particular atoms. The form 
of this equation is known as the Mie potential. The interaction force 
between the atoms can be obtained from:

	 F
U r

r
nA
r

mB
r

d ( )
d n m1 1

= − = − +
+ +

� (1.22)

This situation is illustrated in Figure 1.6.

We note that the equilibrium occurs at the point where the poten-
tial energy is a minimum and the interatomic force passes through 
zero. Furthermore, noting that at equilibrium (r = r0) F = 0 and  
U(r) = min., we can obtain the equilibrium separation of the atoms as:
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	 r
mB
nA

m n

0

1 ( )

=
/ −

q r � (1.23)

Substituting this into the potential energy, we can find the equi-
librium state potential as:

	 U r
A
r

n
m

( ) 1
n0

0

= − −q r � (1.24)

This value is negative as appropriate to a bound state. This would 
be the energy required to separate the two atoms. We can see that 
while at equilibrium the attractive and repulsive forces must be equal, 
however, their corresponding energies are not; m ≠ n. In fact, stable 
aggregations of atoms can only occur for the condition m > n. This is 
another way of saying that repulsive forces must be of shorter range 
than attractive ones. We can show this by employing the condition:

	 U r
r

d ( )
d

0
r r

2

2
0

>
=

s t � (1.25)

FIGURE 1.6:  Variation of (a) potential energy and (b) force as a function of the  
interatomic separation. Attractive and repulsive regions are shown. The depth  

of the minimum of the potential energy corresponds to the total binding  
energy between the atoms. The equilibrium separation is indicated with r0.
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This condition leads directly to m > n. Of course this should be evi-
dent from the form of Equation (1.24), since only then would U(r0) 
remain negative for the bound state condition. A very specific and 
well known example of the above uses m = 12 and n = 6 and is 
known as the Lennard - Jones (6 - 12) potential.

Chemists are concerned with the way in which small numbers 
of atoms bind together to form a molecule, in solid state physics we 
are concerned with essentially the same problem, though with more 
atoms involved. In the remainder of this section we will outline the 
main physical mechanism by which this occurs. Here we will draw on 
our knowledge of physical forces and the periodic table. Before dis-
cussing these mechanisms, we note an important distinction in types 
of bonding: strong bonds occur when electrons are exchanged in 
some form (as in ionic, covalent and metal bonds), while weak bond-
ing occurs when electrons are unevenly distributed in atoms to form 
dipole moment which interact via electrostatic forces (hydrogen and 
van der Waals bonds). The former are termed chemical bonds while 
the latter are called physical bonds. A similar distinction is made for 
atoms on a surface, which can chemisorb or physisorb depending on 
whether there is an exchange of electrons or not.

1.4.1  Ionic Bonding
This is probably the simplest form of bonding. This occurs in 

compounds whose elements readily form ions, which is an excess or 
deficiency of electrons from their normal neutral state. A common 
example is for rock salt, NaCl. It will be seen from their positions in 
the periodic table, that Na and Cl either have one electron in the 
outer shell (Na) or one missing in the outer shell (Cl). Once these 
atoms are close enough, it becomes energetically favorable for the 
excess electron in the Na to fill the outer shell of the Cl, thus leaving 
both in an ionic state; Na+, Cl−, and in much more stable configu-
rations since they both now have filled outer electron shells. The 
pair of atoms have the same number of excess/deficient electrons 
in their outer shell, so pure ionic bonding will only occur in these 
cases. Other examples of such pairs are NaF, KCl, CsCl. This type 
of bonding cannot occur between atoms of the same type for this 
reason. A consequence of the electron exchange is that the atoms are 
no longer neutral entities and attract one another via the Coulomb 
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interaction. This process of electron transfer can be otherwise seen 
as the effect of the small ionization potential of the alkali metal (Na) 
and the large electron affinity of the halogen (Cl). The Coulomb 
potential has the form:

	


ν
π

= −U r
e

r
( )

4Coul

2

0

� (1.26)

where ν =1  for singly ionized species as is the case for NaCl. The 
energy associated with repulsion is frequently given in the form of 
an exponential, which is an alternative form of the repulsion energy 
given above. This can be written as: B exp − (r/r). Here r plays the 
role of a repulsion exponent (having the units of length) and deter-
mines the distance at which the repulsive forces become important. 
The total energy per molecule of an ionic crystal can be written as:

	


αν
π

ρ= − + − /U r
e
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2

0

� (1.27)

The additional constant here, α, is known as the Madelung con-
stant and depends on the geometrical arrangement of the ions. (We 
note here that for the NaCl structure this has a value of 1.74756, while 
for zincblende it is 1.63805 and for the CsCl type structure we have 
a value of 1.76267.) We can eliminate one of the unknowns in the 
Equation (1.27) by recognizing that the first derivative with respect 
to r will be zero at the equilibrium separation, r0. From this we find:
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We can now rewrite the energy as:

	

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From this it is a simple task to evaluate the cohesive energy 
(potential energy at equilibrium):

	

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Typically r is only a small percentage of r0 and the cohesive energy 
will be dominated by the Madelung term. The ionic bonding mecha-
nism can be visualized as shown schematically in Figure 1.7.

1.4.2  Covalent Bonding
Elements in the more central region of the periodic table are not 

so easily reduced to closed electron shell structures since it would 
require excessive energies to transfer electrons between species and 
therefore the ionic type bonding is unlikely. Instead bonding can 
occur via the sharing of valence electrons, where each atom contrib-
utes one of more electron in the sharing. The mechanism of elec-
tron sharing is termed covalent bonding. In its simplest form, for the 
hydrogen molecule, H2, the two hydrogen atoms each contribute 
their 1s1 electron to form an electron-pair covalent bond.

The proximity of the two H atoms will cause an interaction 
between their respective electrons, and split into two states of differ-
ing energy. One is referred to as the bonding state and has an even 
(symmetric) orbital wave function, whose overall energy is lowered 
from the isolated electron energy, thus bringing about the bond. The 
symmetric solution requires the electron charge density, e | | ,2ψ−  to 

FIGURE 1.7:  The ionic bond: An Na+ cation (left) and Cl− anion (right) are formed by the 
electron transfer from the Na to Cl atom and are held together by Coulomb forces.
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be concentrated in the region between the nuclei. A requirement 
of the Pauli exclusion principle is that the total wave function be 
anti-symmetric, and will be satisfied for the 1s state with the elec-
trons aligning with anti-parallel spins. The other state, called the 
anti-bonding state, has the two electrons with parallel spins and is a 
purely repulsive. Since this latter state has a higher energy and the 
two electrons can be accommodated in the 1s state, it is the formed, 
bonding state which will be realized and a strong bong is formed. It 
will be noted that this situation could not occur for example with two 
He atoms, since all the s - states are occupied and would only result 
in an increase of the overall total energy.

It is clear that for the covalent bonding to exist, the valence elec-
tron shells cannot be fully occupied, as in He. For heavier atoms, 
higher orbitals are occupied. These orbitals, unlike the s-orbitals have 
a very directional character, as illustrated in Figure 1.9. This direc-
tional character of the orbitals arises from energy considerations and 
the Pauli principle which means that the electrons try to avoid each 
other forming orbitals which are symmetrically distributed in space. 
The consequence of this is that covalent bonds formed by the overlap 
of partially vacant orbitals are also highly directional. For example, 
the covalent bonds of carbon atoms gives rise to the tetrahedral unit 
of the diamond structure, which will be discussed in Chapter 2. The 
electronic configuration for C is 1s 2s 2p 2p 2p .x y z

2 1 1 1 1  In this ground 
state configuration we have four unpaired electrons, which are hybrid-
ized to form the four equally spaced lobes (tetrahedron) of the sp3  
hybrid orbitals with angles of 109.5o between them, see Figure 1.10. 
We note here that the hybridization of states (in this particular case 

FIGURE 1.8:  The covalent bond in its simplest form between a pair  
of H atoms to form the H2 molecule.
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we are considering s and p states) involves a mixing of the electronic 
states between more than one atom. This gives rise to different energy 
levels which are more favorable since there are more states available 
for the electrons and bind the atoms together. The combination will 
have a lower overall energy compared to the isolated atoms. A full 
discussion of hybridization is beyond the scope of the current chap-
ter, see for example Sutton (1996) for further details.

The covalent mechanism is responsible for the bonds in most 
of the organic compounds. It is also the dominant pairing for halo-
gen atoms. The covalent bond is also very important in a majority 
of semiconducting materials. The sp hybridization (whether type 
2 or 3) are important in the formation not only of diamond (sp3), 

FIGURE 1.9:  Lower level orbitals showing the directional character of the p-orbitals and the 
symmetric distribution of the s-orbitals

FIGURE 1.10:  Spatial distribution of the sp3 - orbitals forming the basis of a tetrahedron.
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but also in the much more common allotrope graphite form, which 
results from sp2 type bonds, forming an atomically thin carbon sheet 
(graphene). This structure is essentially a 2D hexagonal formation, 
where in graphite the van der Waals interaction between the gra-
phene sheets forms the 3D structure. The difference between the 
diamond and graphite forms of carbon illustrate the importance of 
structure on physical properties: while diamond is an electrical insu-
lator, graphite is a good conductor. The weak interlayer bonds in 
graphite allow it to be flaked or even to produce graphene sheets 
using sticky tape. The covalent bond can be extremely strong and 
is responsible for the legendary hardness of diamond, for example.

1.4.3  Mixed Covalent and Lonic Bonding
Exclusively covalent or ionic bonding is not always possible, and 

the two mechanism compete for dominance. In such cases, mixed 
bonds can result. In fact, there is a continuous progression from a 
purely ionic character to a purely covalent one as we consider com-
pounds in which the electronegativity gradually changes. The partial 
tendency towards electron sharing arises from a resonance between 
the ionic and covalent configurations. The time-averaged wave func-
tion for a bonding electron can be expressed as:

	 cov ionψ ψ λψ= + � (1.31)

where ψcov  and ψion  are the normalized electron bonding wave func-
tions for covalent and ionic forms, l is a parameter which expresses 
the degree of ionicity, defined as:

	
λ
λ

=
+

percent ionicity
100
1

2

2
q r � (1.32)

The appropriate value of l will be determined by quantum-
mechanical calculations based on the most stable (i.e., equilibrium) 
configuration.

1.4.4  Metallic Bonding
The metallic bond is a more complex mechanism and we need 

to consider the solid as a whole instead of the individual interactions 
between atoms. The atoms in a metal readily release their valence 
electrons which are then shared in the solid. The easiest way of 
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thinking about the metallic bond is by considering the positive ions 
(i.e., the atoms which have released their valence electrons) as being 
held together by the “free” electrons, which move around in the 
spaces between the ions. This is a rather crude image and in reality 
the situation is somewhat more complex. The electrons are partially 
or weakly attached to the atoms and move from one atom to another, 
and as such are delocalized, as opposed to the localized electrons in 
the ionic or covalent bonding mechanisms. The materials most com-
monly formed by the metallic bonds fall into the d-block elements 
(see Figure 1.5), though this is not exclusively the case. It is these 
outer d-electrons which form the “cloud” or “sea” of electrons which 
act as the ‘‘glue” for the positive ions. This picture is illustrated in 
Figure 1.11. The core electrons are still localized on the atoms.

The description of the free electrons will be via wave functions, 
which have more in common with free electrons in a weak peri-
odic potential (formed by the positive ions). This will be discussed 
in more detail when we consider the electronic properties of solids 
and we will introduce the concepts related to the periodic potential, 
see Chapter 7). It would be incorrect not to mention that while there 
is a net attractive force at play, the positive ions also exert repulsive 
forces between themselves. We end this section by noting that the 

FIGURE 1.11:  The metallic bond results from the attraction between the ‘‘free” electrons 
and the ion cores of the atoms.
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metallic bond gives rise to some of the most important close-packed 
structures (face-centered cubic and hexagonal close-packed), which 
is a consequence of the lack of directionality of the metallic bond.

1.4.5  Hydrogen Bonding
Since the hydrogen atom has only one electron, it can only be 

covalently bonded to one other atom. In forming the covalent bond, 
the electron distribution can be very asymmetric, giving rise to an 
electric dipole moment. An example of this is the water molecule, 
where two hydrogen atoms covalently bond to an oxygen atom (H2O). 
The directionality of these covalent bonds then gives rise to the polar 
water molecule, which can now, via electrostatic forces, attract and 
bond to other such molecules. This is illustrated in Figure 1.12, 
which shows the formation of ice crystals, which can take on a struc-
ture similar to wurtzite (see Chapter 2), having hexagon symmetry.

The relatively weak H-bonding provided by this type of elec-
trostatic force allows the ice structure to flip into a variety of forms, 
depending on the prevailing conditions of pressure and temperature. 
In addition to water, the H-bonds are also responsible for the forma-
tion of many molecules, such as HF, HCN and NH4F. The hydro-
gen bond plays an enormously important role in biological materials, 
such being the forces holding together the two strands of the dou-
ble helix of the DNA molecule. It is the relatively weak H-bonds 
between the polynucleotide chains which allow it to ‘‘unzip” for gene 
replication. While the individual bonds between the base pairs is 

FIGURE 1.12:  Hydrogen bonds between water molecules.
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relatively weak, the structure as a whole is very stable since there 
are many such base pairs and hence bonds in the DNA molecule. It 
is important that this bond strength is significantly weaker than the 
interatomic bonds between the atoms within the bases, otherwise 
the molecule could not function biologically.

1.4.6  Van der Waals Bonding
The dipole bonds as found in hydrogen bonding are directional. 

However, weak dipole bonds that are nondirectional can also be 
formed between neutral atoms and molecules. These fluctuating 
bonds are termed van der Waals bonds and are due to the weak 
attractive forces that can exist when there are (temporarily) more 
electrons on one side of an atom than another. The centers of posi-
tive and negative change momentarily have different positions giving 
a weak net dipole moment. Interactions can thus take place between 
such atoms or molecules in a gas, leading to deviations from the 
ideal gas equation. It is also this force which allows inert gas atoms 
to condense a very low temperatures and give rise to structures of a 
close-packed type, typically face-centered cubic.

1.5  SUMMARY

The internal structure of an atom plays a crucial role in how atoms 
interact with other atoms. This ultimately depends on how many pro-
tons it has. Since the charges on the proton and electron are of the 
same magnitude, the nucleus essentially attracts an equal number 
of electrons to make the atom a neutral and stable entity. However, 
the complex behavior of electrons in their interaction with both the 
nucleus and other electrons, means they form shell structures. Inner 
(core) electrons being more tightly bound than outer (valence) elec-
trons, which are shielded from the full nuclear charge by the core 
electrons. While the Bohr model of the atom improved on the pre-
vious Rutherford picture, quantum mechanics was ultimately more 
successful in bringing out a more detailed and accurate picture of 
how the electrons behave in the presence of the nuclear potential, 
binding them to it. We designate four (quantum) numbers to each 
electron, which fundamentally determine how the are located in the 
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atom. The realization that the physical and chemical properties of the 
elements depends directly on the electronic structure of atoms was a 
major advance in modern science. It is from here that we can under-
stand the shape and structure of the periodic table of elements. From 
the electron filling of the available states, which importantly adheres 
to the Pauli exclusion principle, we can determine how atoms, via 
electron sharing and electrostatic forces, interact with one another 
allowing molecules and solids to form. Directionality, in many cases, 
will determine the physical distribution of these atoms into three-
dimensional structures. We will discuss the arrangement of these 
atoms in the next chapter. In Table (1.3), we can summarize the main 
properties of the bonding mechanisms that we have outlined in this 
chapter. Although this is not an exhaustive comparison, it does pro-
vide a good indication of the strengths and properties of bonding 
types giving some examples.

REFERENCES AND FURTHER READING

Basic Texts

●● B. H. Bransden and C. J. Joachain, Quantum Mechanics, 2e 
Prentice-Hall, Essex (2000)

●● H. M. Rosenberg, The Solid State: An Introduction to the 
Physics of Crystals for Students of Physics, Materials Science 
and Engineering, Oxford University Press, Oxford (1978)

●● J. S. Blakemore, Solid State Physics, Cambridge University 
Press, Cambridge (1985)

●● H. P. Myers, Introductory Solid State Physics, Taylor and 
Francis, London (1998)

Advanced Texts

●● A. P. Sutton, Electronic Structure of Materials, Oxford  
University Press, Oxford (1996)

●● B. H. Bransden and C. J. Joachain, Physics of Atoms and  
Molecules, Longman, London (1986)



32  •  Solid State Physics

●● M. A. Wahab, Solid State Physics: Structure and 
Properties of Materials, Alpha Science International Ltd., 
Harrow (2007)

●● N. W. Ashcroft and N. D. Mermin, Solid State Physics,  
Saunders College, Philadelphia (1976)

EXERCISES

Q1.	 Derive Equations (1.9) through (1.11).

Q2.	 Calculate the first four lines (wavelengths and frequen-
cies) of the emission spectrum for atomic hydrogen.

Q3.	 Determine the radii of the first four electronic orbits for 
the hydrogen atom. Quote your answers in terms of the 
Bohr radius.

Q4.	 What are the orbital periods and frequencies of electrons 
in the n =1, 2 and 3 states of a hydrogen atom?

Q5.	 What is the binding energy of an electron in the 1s state 
of singly ionized helium?

Q6.	 What are the ground state electronic configurations of P, 
Ga 3+, and Cl 2−?

Q7.	 Show that for the potential given by Equation (1.21), it is 
necessary for the condition m > n to have a stable binding 
state.

Q8.	 Use the Lennard - Jones (6 - 12) potential to evaluate the 
binding energy between a K and a Cl ion. (A = 1.78).

Q9.	 The potential energy for an ionic crystal of the rock  
salt structure containing N ions of each type can be  
expressed as:

	


q rα
π

= − −U r N
e

r
B
r

( )
4 n

2

0

� (1.33)
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	 where α is the Madelung constant and B a constant. 
Derive an expression for the bulk modulus of compress-
ibility, V (d V/d P).

Q10.	 Prove Equation (1.30)

NOTES

1 Note, the energy unit eV is equivalent to the numerical value of the fundamental 
electronic charge in Joules; i.e., 1 eV = 1.60219 × 10−19 J





CHAPTER 2
CRYSTALLINITY  
IN SOLIDS

“The person who never made mistakes, never tried anything new ”

—Albert Einstein

2.1  INTRODUCTION

In the previous chapter, we discussed the various mechanisms 
for atomic bonding. In doing so we noted that in certain cases this 
bonding has a directional character, while in others it does not. 
The consequence of directionality, or not, has a profound effect on 
the way solids are formed. This gives rise to the variety of crystalline 
order found in solids. For example, in the case of the covalent bond-
ing in carbon, the directionality of the sp hybridization produces a 
tetragonal sub-unit (sp3) in the diamond structure, or a three-fold 
symmetry (sp2) in the bond directions, as is observed in graphite or 
graphene. The prevailing structure will depend on the crystallization 
conditions of temperature and pressure. In the case of metals, the 
homogeneous nature of the bond and the delocalized nature of the 
electrons frequently gives rise to some form of close packed struc-
ture, for example Ni, which has a face-centered cubic (fcc) structure.

In this chapter, we will be concerned with the description of the 
solid formation into regular periodic structures which result from 
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the interatomic bonding between various atomic species. In solid 
state physics, we aim to describe the material properties in terms of 
the crystalline structures of the constituent elements. Therefore we 
need a rigorous way in which to characterize the three-dimensional 
spatial distribution of atoms. We do this by describing the symmetry 
relations of the particular crystalline arrangement. By this we mean 
the long range periodicity of the atomic array. Clearly, real struc-
tures are never perfect and defects in this ordering can result from 
a number of origins. Defects are an extremely important part of the 
description of real crystals and materials and can have a profound 
effect on the overall properties of the solid, a discussion of imper-
fections to the crystalline order will be given in Chapter 4. In this 
chapter, we will consider only perfect arrays of atoms or molecules, 
which produces the principal physical properties in solid materials. 
The description of crystalline symmetries allows us to describe very 
large collections of atoms (of the order of 1024 in a typical solid crys-
tal), which would be impossible otherwise. It is this regular structure 
which allows us to reduce the material to its basic constituent com-
ponents (which could be an atom, a molecule or a group of atoms 
or molecules). This is repeated many times through the solid and 
related by some form of symmetry operation. By reducing the prob-
lem to the minimum repeat structure, with appropriate boundary 
condition, we can simplify the description of the solid and model 
the physical properties of the crystal. It is therefore essential for us 
to describe the symmetry and crystalline structure in a formal way, 
which will then allow us to consider the specific physical properties 
of the material.

2.2 � ASPECTS OF SYMMETRY IN CRYSTALLINE 
MATERIALS

An ideal single crystal will have an infinite three-dimensional 
repetition of the fundamental constituents or building blocks, each 
with the same spatial orientation. This building block is called the 
basis, and is made of an atom or a group of atoms. The basis is there-
fore the smallest repeat unit, which makes up the primitive unit cell, 
(we will return to discuss the choice of unit cells shortly). This is a 3D 
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geometrical form that is then spatially translated in discrete steps in 
three-dimensional space to fill all our crystal. We will not consider 
the surfaces of the crystal, which will have different coordinations 
of atoms and neighbors, resulting in different physical properties. 
Usually the surface region is a very small fraction of the crystal which 
has a negligible effect on the bulk properties. Cases where this is 
not the case concern ultrathin films and nanocrystals, and will be 
discussed in the final chapter of this book, when we consider aspects 
of nanotechnologies.

2.2.1  Translational Symmetry
The translational symmetry is the simplest form of symmetry 

operation which is required to describe the crystalline structure of a 
solid. We define this quantity in terms of three basic translation vec-
tors, a1, a2 and a3. The importance of this translation vector is that 
when the operation is made inside the solid, the atomic environment 
remains unchanged (or invariant), and any number of repeats of this 
operation leave us in identical positions inside the crystal. We define 
the translation operation as:

	 n n n nT a a a ai i
i

1 1 2 2 3 3 ∑= + + = � (2.1)

where the ni are integers and ai define the edges of a parallelo-
piped of the unit cell. We note that the ai vectors are not neces-
sarily orthogonal and are chosen, depending on the type of crystal-
line order, for convenience. The vector T, as defined above, is also 
known as a lattice vector. It is important to note that the transla-
tional symmetry extends beyond just describing the atomic environ-
ment and refers to any location in the crystal, which may or may not 
coincide with the atomic positions. Thus any point described by a 
general vector r, in the crystal, can be translated by the vector T and 
the local environment will be identical. This means that any physi-
cal environment, such as charge density or local internal magnetic 
field, will remain the same under the action of this operation, i.e., 
invariant. We thus write:

	 r r T′ = + � (2.2)
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where r′  is a general vector and r is a vector within the unit 
cell. The set of operations described by T define the space lattice or 
Bravais lattice of the crystal. These are geometrical concepts which 
aid our classification of crystal symmetries. The real crystal results 
when we define a basis around any geometric point in the Bravais 
lattice. There are five possible Bravais lattices in two dimensions and 
fourteen in three-dimensional space. These latter will be defined in 
the next section.

Only in special cases can lattices be defined in which the three 
primitive vectors, ai, be chosen to be of equal length and more rarely 
as being mutually perpendicular. We note that the term primitive 
in our context means that the vector must be the smallest possi-
ble vector to satisfy the repeat unit. These vectors can be used to 
define  the primitive unit cell. Other unit cells (i.e., non-primitive 
cells) can be defined using other non-primitive vectors to define a 
convenient form of repeat unit.

2.2.2  The Basis and the Unit Cell
In order to correctly define a lattice, we must define the basis, 

or repeat unit, as well as the symmetry of that repeat unit. In the 
case of a primitive unit cell, we usually need less atoms in the basis 
than a non-primitive choice of unit cell. For some simple monoa-
tomic crystals, this will be a single atom, e.g. Na and Fe, which 
form body-centered cubic lattices. Other more complex structure 
require more than one atom in the basis, such as Si, which crys-
tallizes in the diamond structure and has two atoms in the basis. 
More complex bases are required for diatomic crystals where the 
basis must contain at least one atom of each type, such as GaAs, 
which has an atom of each type in the basis, forming a zinc-blende 
like crystal. Crystals of organic compounds can have many atoms 
in the basis.

The choice of unit cell can be quite arbitrary and is frequently 
made as a matter of convenience. In Figure 2.1 below, we show a 
2D lattice with different, and importantly, equally valid examples 
of unit cells for the same crystalline structure. It would be more 
common to choose the simplest unit cell, such as choice (i). In 
cases where the primitive vectors can be drawn at right angles, 
these would be the most convenient and more common choice. 
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In some cases where  the primitive vectors are not orthogonal, 
the choice of unit cell vectors can be made to define a unit cell 
which is different from the primitive case. Note that choice (iii) 
in Figure 2.1 is still a valid unit cell, though it is not a primitive 
unit cell.

It is useful to distinguish between the unit cell and the primi-
tive unit cell. This is usually done by using using a different nota-
tion. In the above we have use the symbol ai(i = 1, 2, 3) for the 
primitive vectors, which define the primitive unit cell. It is con-
vention to use a, b and c to define the vectors of the conventional 
unit cell.

We can define the volume of a unit cell, in three dimensions, 
using the lattice vectors which define the unit cell. We note that this 
volume is called the primitive unit cell volume if the vectors used are 
those of the primitive vectors, as defined by the three vectors, a1, a2 
and a3. Otherwise it is simply referred to as the volume of the unit 
cell, as defined by the three vectors a, b and c. The volume for the 
primitive unit cell is expressed as:

	 V a a a( )puc 1 2 3= × ⋅ � (2.3)

The volume of the conventional unit cell can be similarly 
expressed in terms of the unit cell vectors as:

	 V a b c( )uc = × ⋅ � (2.4)

FIGURE 2.1:  Some examples of units cells in a 2D lattice.



40  •  Solid State Physics

FIGURE 2.2:  Construction of the primitive unit cell using the Wigner - Seitz method.

One special way of choosing a primitive unit cell was suggested 
by E. P. Wigner and F. Seitz in 1933. The construction of the so-
called Wigner-Seitz cell has its origin in a lattice point, see Figure 2.2. 
The method of construction is as follows: (i) Select a lattice point in 
the crystalline structure and draw lines to the nearest lattice points. 
(ii) Bisect each of the lines from the origin to the nearest lattice 
points with a plane such that they overlap. The Wigner-Seitz cell is 
the defined as the smallest area (in two dimensions) or volume (in 
three dimensions) that is enclosed by these planes. Figure 2.2 shows 
this for a 2D lattice array.

Some three-dimensional Wigner-Seitz structures are shown in 
Figure 2.3. These constructions turn out to be very useful in the 
description of electronic states in solids and we will have recourse 
to their use in Chapter 7, when we describe electron dynamics 
in solids. Despite the usefulness of the Wigner-Seitz method in 
electronic structure calculations, it is frequently more convenient 
to choose a unit cell which has orthogonal axes, as illustrated in 
Figure 2.4 for the fcc structure. The main difference between the 
formal choice of the unit cell is that the primitive unit cell will con-
tain a single basis unit per unit cell, while other unit cell choices 
may have more. Note, for the fcc structure illustrated in Figure 2.4, 
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FIGURE 2.3:  Wigner - Seitz cell for the bcc (left) and fcc (right) structures.

(a) (b)

FIGURE 2.4:  The face-centered cubic (fcc) structure illustrating the conventional unit cell 
and the primitive unit cell (inner structure).

the primitive unit cell has only one atom, while the conventional 
unit cell has four atoms.

2.2.3  Elements of Symmetry
Symmetry operations are of fundamental importance when we 

consider crystalline structures. The symmetry of a crystal dictates 
the number of allotropic forms that can exist for a specific substance, 
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though often only one exists. This results from the symmetry of the 
basis itself (point group) having to be consistent with the specific 
lattice (Bravais). A rigorous treatment of lattice symmetry opera-
tions uses group theory1. However, we will only give a brief overview 
of some of the main symmetry operations that occur in crystalline 
solids. Further to the translational symmetry that we have already 
discussed, there are other symmetry operations that leave the origi-
nal point of consideration in the crystal invariant. These symmetry 
operations can be summarized as: i) Reflection or mirror symmetry, 
ii) Rotation about an axis (this can be 1, 2, 3, 4 or 6-fold), iii) Inver-
sion through a point, iv) Glide (reflection plus translation), v) Screw 
(rotation plus translation). The latter two are compound operations, 
which require the application of more than one of the previous oper-
ations. Inversion symmetry is also a complex operation, which can 
also be represented as a compound operation, being equivalent to 
a reflection followed by a rotation of 180°. The degree of rotational 
symmetry can be expressed as follows: a crystal has an n-fold axis of 
rotation if we can rotate it through an angle of 2π/n and leave the 
crystal lattice invariant. In Figure 2.5, we illustrate some of the main 
symmetry operations.

By considering the combinations of symmetries we can generate 
the various point groups and space groups that can be used to define 
the specific crystal type. A full description of the three-dimensional 
forms leads to seven crystal systems, 32 point groups and 230 space 

FIGURE 2.5:  Main symmetry operations.
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groups. The full set of 230 space groups and their relation to the 
32 point groups are given in Appendix A.

2.3  BRAVAIS LATTICES

The Bravais lattice is a designation of crystal types, which take 
into account the specific symmetry of the crystalline structure. In all 
Bravais lattices, the lattice points are generated by the discrete set 
of translation vectors, as defined in Equation (2.1), where the ai are 
primitive unit vectors of the crystalline array. It is important to note 
that the Bravais lattice is closed under the addition and subtraction 
of the lattice vectors. The designation of the Bravais lattice will be 
unique and two Bravais lattices are often considered equivalent if 
they have isomorphic symmetry groups. In two dimensions all peri-
odic structures of lattice points can be reduced to one of the five 
possible Bravais lattices, while in three dimensions there turn out to 
be 14 possible Bravais lattices (see Section 13.2.1 for a discussion of 
surface structures). Since we are concerned here with three dimen-
sional solids, we will only consider these.

It is important that we reconcile the fourteen lattice structures 
with the 32 point groups and the 230 space groups. This can be 
understood in that while there are various permutations of the 
symmetry operations within the crystal structure, the way in which 
we repeat the periodic structure in three-dimensional space can 
be reduced to just fourteen lattices. This is illustrated in Appendix A, 
where we see how the seven crystal systems are divided into the 
various symmetry groups. Clearly there is much more that can be 
said of the different notations and divisions in this scheme, but 
this would involve a disproportionate discussion on crystallogra-
phy. It is sufficient for the purposes of this book to only take into 
account the Bravais lattices in three dimensions since it allows us 
to provide a concise and accurate description of three-dimensional 
crystal lattices. The quantities a1, a2 and a3 are called the lattice 
parameters. In the case of cubic structures there is just one lattice 
parameter; a1 = a2 = a3 = a. In the Figure (2.6) and Table (2.1) 
below we illustrate and define these fourteen lattices (with the 
seven crystal systems).
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FIGURE 2.6:  Conventional unit cells for the fourteen Bravais lattices in three dimensions.

2.4 � CRYSTAL PLANES AND AXES:  
THE MILLER INDICES

It is often necessary to define a particular lattice direction or 
plane in a three-dimensional crystal. It is therefore important that 
we follow a specific definition to make sure we know exactly what 
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TABLE 2.1:  The seven crystal systems and fourteen Bravais lattices in three-
dimensional structures.

Crystal  
system

Axial 
distances

Axial angles Bravais lattices 
in system

Triclinic a1 ≠ a2 ≠ a3 α ≠ β ≠ γ ≠ 90° Primitive (P)

Monoclinic a1 ≠ a2 ≠ a3 α = γ = 90° ≠ β Primitive (P)
Base centered (C)

Orthorhombic a1 ≠ a2 ≠ a3 α = β = γ = 90° Primitive (P)
Base-centered (C)
Body-centered (I)
Face-centered (F)

Tetragonal a1 = a2 ≠ a3 α = β = γ = 90°
Primitive (P)
Body-centered (I)

Trigonal
(Rhombohedral)

a1 = a2 = a3 120° > α = β = γ ≠ 
90°

Primitive (P)

Hexagonal a1 = a2 ≠ a3 α = β = 90°, = 120° Primitive (P)

Cubic a1 = a2 = a3 α = β = γ = 90° Primitive (P)
Body-centered (I)
Face-centered (F)

we mean. This is extremely important in solid state physics, since 
many physical properties are dependent on the direction in the crys-
tal lattice that we are considering. Very rarely are physical proper-
ties homogeneous or isotropic, in scientific terms, we say that the 
properties of the crystal are anisotropic. The internationally agreed 
system for defining crystal directions and planes are using the Miller 
indices, which are obtained in the following manner:

●● Consider a three-dimensional crystal lattice with primitive 
translation vectors a1, a2 and a3, which are not necessarily of 
the same length and not necessarily orthogonal. This is illus-
trated in Figure 2.7.

●● The positions of O, A, B and C coincide with lattice points.

●● Then vectors OA, OB and OC correspond to the directions of 
the primitive vectors.

●● Distances |OA|, |OB| and |OC| will be multiples of n1, n2 and n3 
for the respective primitive unit vector lengths.
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FIGURE 2.7:  Intersection of the (hkl) plane with the x, y, and z axes.

In this way we have defined the plane corresponding to ABC 
as (n1|a1|, n2|a2|, n3|a3|). However, for purposes of conciseness and 
convenience and without loss of generality, this can be written as 
(n1n2n3). The generally accepted convention for expressing crystal-
line planes is in the format (hkl), where the hkl are integer related 
to n1, n2, n3 as:

	 h k l n n n: : : :1
1

2
1

3
1= − − − � (2.5)

This reciprocal relationship has important implications which 
will become apparent when we discuss the reciprocal lattice and 
reciprocal space in the next chapter. A plane satisfying Equation 
(2.5) is said to have Miller indices (hkl), where the choice of h, k 
and l are such that they are the smallest numerical integer values 
which satisfy this equation. Figure 2.8 illustrates the Miller indices 
for some low index planes for cubic lattices. In addition to describing 
crystal planes, the Miller indices are also used to express directions 
in a crystal, as shown in Figure 2.9.
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FIGURE 2.8:  Low index planes for cubic lattices showing the Miller indices.
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FIGURE 2.9:  Miller indices for some principal axes in a cubic crystal.

TABLE 2.2:  Convention for brackets in the use of Miller indices

Bracket notation Meaning
(hkl) Planes

[hkl] Directions

{hkl} Family of planes

〈hkl〉 Family of directions

The convention for the designation of planes and directions in 
crystallography are given in Table 2.2. When we refer to families 
of planes and directions, we mean the equivalent types of planes 
of directions. For example, the (100) plane is equivalent to the 
(010) and (001) planes in a cubic system, thus we can write this as 
{100} family. In terms of directions, we can say that the directions 
[100], [010], [001], [100] , [010]  and [001]  are equivalent and can 
be jointly represented as 〈100〉. We note that there is no need to des-
ignate bar signs for the planes since the (100) and (100)  planes are 
essentially the same, however the directions [100] and [100]  point in 
opposite directions.

We should add a word of caution here, as it would be easy to 
assume that a particular direction [hkl] is normal to the corresponding 
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plane (hkl). While this may be the case for materials which crystal-
lize in the cubic system, this is not the general case and can cause 
considerable confusion if care is not taken. A crystal direction is 
expressed as the smallest set of integers which are proportional to 
the magnitudes of the vectors between lattice points of a specific ori-
entation. Any two planes which are parallel will have the same set of 
Miller indices.

In addition to the three parameter notation (hkl) used for the 
Miller indices in three-dimensional crystals, the trigonal and hexago-
nal crystal classes are frequently quoted using four Miller indices. 
In this convention, the first three indices refer to the three coplanar 
directions in the basal plane and the fourth indicates the uniaxial axis 
or c-axis, as illustrated in Figure 2.10.

Once we have a knowledge of the crystalline planes and direc-
tions we can derive the interplanar spacings for specific consecutive 
parallel planes in the crystal. These are useful for evaluating the lat-
tice parameters from diffraction patterns. We will consider here the 

FIGURE 2.10:  Conventional unit cell for a simple hexagonal structure
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simplest case for crystal systems with orthogonal principal axes and 
assume that the plane (hkl) passing through the origin is parallel to 
the plane with intercepts at a1/h, a2/k and a3/l, see Figure 2.7. The 
nearest distance between two planes (hkl), which we write as dhkl, 
will be along the line which is perpendicular to the planes.

From the triangle made up or the line from the origin to the 
central point in the plane then to the intersect on the x-axis back to 
the origin, we can establish the relation:

	 α=
/

d
a h

cos
( )

hkl

1

� (2.6)

Similar equations can be written analogous triangles from the 
corresponding to those taken from the origin to the central point 
of plane (hkl) and the intersects on the y and z axes. From this we 
can write:

	 β γ=
/

=
/

d
a k

d
a l

cos
( )

;cos
( )

hkl hkl

2 3

� (2.7)

Making use of the cosine rule:

	 cos cos cos 12 2 2α β γ+ + = � (2.8)

and substituting in Equations (2.6) and (2.7) we obtain:
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It is now possible to for us to write the general interplanar spac-
ing for crystalline systems with orthogonal axes (orthorhombic), as:

	 d
h
a

k
a

l
a

hkl

2

1
2

2

2
2

2

3
2

1 2

q r= + +
− /

� (2.10)

It is a simple matter to show that from this, the correspond-
ing relation for the tetragonal system; a1 = a2 ≠ a3, Equation (2.9) 
reduces to:

	 d
h k

a
l
a

hkl

2 2

1
2

2

3
2

1 2

q r=
+

+
− /

� (2.11)
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and for the cubic system; a1 = a2 = a3 = a, this simplifies to:

	 d
a

h k l
hkl

2 2 2
=

+ +
� (2.12)

Crystalline structures with non-orthonormal principal axes will 
have more complex mathematical relations between the interplanar 
spacing and the Miller indices.

2.5  COMMON CRYSTALLINE STRUCTURES

In this section, we shall review some of the more common crys-
talline structures as well as the important close-packed structures. 
These are of particular significance for metallic solids. If we consider 
a two dimensional atomic plane in a monatomic solid, then we may 
expect that the “hard-sphere” depiction would be of a close-packed 
hexagonal array of touching spheres, as shown in Figure 2.11. Such 
hexagonal close-packed arrays of atoms can stack to form the closest 
possible packing structures of all solids. There are two important 
structures that are formed in this way: (i) hexagonal close-packed 
(hcp), which arises from stacking sequence ABAB... and (ii) face-
centered cubic (fcc), which is formed from the stacking sequence 
ABCABC... These are illustrated in Figure 2.12, note that the rela-
tive positions of A, B and C are shown in Figure 2.11 (right). In the 

FIGURE 2.11:  Close-packed hard spheres in a single atomic plane.
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case of the hcp crystal, the close packed plane corresponds to the 
(0001) plane, while for the fcc structure, the close packed plane is a 
(111) type plane. Examples of the hcp crystal structure can be found 
in various elements of the periodic table, such as Be, Mg, Zn and Cd. 
The fcc structures are common in the transition metals, such as Cu, 
Ag, Au, Ni, Al and Pb. The more conventional views of the hcp and 
fcc unit cells are shown in Figure 2.13. It can be seen that the primi-
tive vectors for the fcc lattice can be expressed as:

	
a a a

a y z a z x a x y
2

( ˆ ˆ );
2

( ˆ ˆ );
2

( ˆ ˆ ).1 2 3= + = + = + � (2.13)

Another common crystal in metallic systems is the body-centered 
cubic (bcc) structure, which is also illustrated in Figure 2.13, with 
examples being Fe, Cr, Cs and Na. The bcc structure is not a close 

FIGURE 2.12:  Stacking sequences for the close-packed structures hcp (b) and fcc (c).

FIGURE 2.13:  The most common elemental crystal structures. Body-centered cubic or 
BCG (left), face-centered cubic or FCC (center) and hexagonal close-packed or HCP (right).
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packed crystal, having a more open crystal lattice. Atomic packing 
will be discussed in the following section for some of the main crystal 
structures. The primitive vectors for the bcc lattice can be written 
in the form:

	
a a a

a y z x a z x y a x y z
2

( ˆ ˆ ˆ );
2

( ˆ ˆ ˆ );
2

( ˆ ˆ ˆ ).1 2 3= + − = + − = + − � (2.14)

The cubic systems, apart from being simpler to visualize, form a 
very important class of structures. Other common crystal systems which 
form cubic lattices are the rocksalt (NaCl) and CsCl, see Figure 2.14. 
In the former, the basis has one atom of both Na and Cl at positions (0, 
0, 0) and (1/2, 1/2, 1/2), respectively and form an fcc lattice. The for-
mation of this crystal is a result of the anion - cation ratios in the ionic 
bonding process. There are various alkali halides which form this type 
of crystal as well as silver halides and lead chalcogenides. The CsCl 
structure appears to form a bcc like structure, but actually it is based 
on the simple cubic structure, with the Cs atom at (0, 0, 0) and the Cl 
at (1/2, 1/2, 1/2), forming the basis of the structure.

In addition to the fcc and bcc structures discussed above, the 
diamond and zinc-blende crystals are very relevant in the p-block 
elements, where many of the semiconducting materials are to be 
found. The cubic unit cells for these two crystals are very similar and 
are shown in Figure 2.15. The diamond crystal structure is related 
to the fcc Bravais lattice, in which the basis is formed of two atoms 
of the same type, with atomic positions (0, 0, 0) and (1/4, 1/4, 1/4). 

FIGURE 2.14:  The NaCl (left) and CsCl (right) crystal structures.
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The basic unit of the diamond structure can be found in addition 
to diamond (carbon), in silicon and germanium and derives from 
the covalent bonding we discussed in Chapter 1. The fundamental 
unit can be seen to be a tetragonal block from the four equivalent 
nearest neighbor atoms. The main difference between the diamond 
and zinc-blende structures is that the basis has two different atomic 
species in the latter. Materials which crystallize in this structure are 
GaAs and a broad range of the III - V semiconductors. This forms 
the main structure of the binaries, ternaries, and even quarternies 
so common in band structure engineering (see Chapter 9). Still in 
the cubic system, the perovskite structure is quite common, espe-
cially with oxides of the ABO3 type. As the formula unit shows there 
are three oxygen atoms and one of each type A and B per unit cell, 
which is clearly seen from the schematic in Figure 2.16.

FIGURE 2.15:  The diamond (left) and zincblende (right) crystal structures.

FIGURE 2.16:  The perovskite (left) and wurtzite (right) crystal structures.
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What diamond is to fcc, wurtzite is to hcp. The wurtzite struc-
ture, illustrated in Figure 2.16 (right), is again based on the tetrago-
nal unit with two different atomic species in the basis.

2.6  ATOMIC PACKING

Atomic packing in crystals is based on using a hard-sphere 
model of atoms and is a useful concept in the consideration of the 
spatial arrangement of atoms. Central to this concept is the so-called 
packing fraction, which is defined as the ratio of the volume of the 
atoms (hard-spheres) in the unit cell to the volume of the unit cell 
itself. This is best demonstrated with an example. Consider the sim-
ple cubic structure, which has just one atom per unit cell. For the 
hard-sphere model, in which the spheres are envisaged to touch, we 
can calculate the packing fraction as:

	
π

= =
/

PF
Volume of atom

Volume of unit cell
r

a
( )

(4 3)
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3

3
� (2.15)

Now, since a = 2r, see Figure 2.17, we obtain
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Alternatively, we say that there is a packing efficiency of 52.4% 
for the simple cubic structure. We will now consider the fcc unit 
cell. The conventional unit cell for this structure has four atoms and 
in the hard-sphere model, the spheres will touch along the 〈110〉 
directions, as illustrated in Figure 2.17. From this we can establish 
the relation: a r2 4 ,.=  The packing fraction in this case can be 
expressed as:
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As a final example we will look at the hcp structure. For our 
purposes, it is sufficient to consider one-third of the conventional 
unit cell, which is a parallelopiped, with an atom at each apex and 
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one atom at a position (1/3, 1/3, 1/2). The area of the base is a ¥ a 
sin (60°) = a 3 2.2 /  The ideal (c/a) ratio is simple to calculate for 
the hcp crystal and has a value of 1.633. Since there are two atoms 
per cell unit, we can calculate the packing fraction as:

	
π π

=
/

/
=PF

r

ca

r

a
( )

2(4 3)

3 2

8

3 2
hcp

3

2

3

3
� (2.18)

Since a = 2r, we obtain:
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This is exactly the same value we obtained for the fcc struc-
ture. In fact, this represents the maximum packing fraction for hard 
spheres in any arrangement, and are hence referred to as close 
packed. All other structures have a lower PF.

In addition to the three-dimensional structures, we have consid-
ered, we can also consider the packing in particular atomic planes 
of the crystalline lattices. This turns out to be important when con-
sidering defects in solids, where slipping generally occurs along the 
planes of highest atomic density. We will consider this and other 
defects in solids in Chapter 4. As an example we will consider the 
principal planes; (100), (110) and (111), for the simple cubic struc-
ture. The density of atoms in a particular plane can be defined as:

	
Number of atoms in unit cell of plane hkl

Area of unit cell in hkl
( )

( )structure
hkl( )δ = � (2.20)

FIGURE 2.17:  Hard sphere models for simple cubic, body-centered cubic and face-centered 
cubic crystalline structures.
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From this definition and a projection of each of the planes we 
can find for the simple cubic structure:

	
a
1

sc
(100)

2
δ = � (2.21)
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2 2
δ = = � (2.23)

Thus we conclude that for the sc structure, the {100} planes have 
the highest atomic density. Furthermore, the close packed direction 
in this structure will be the 〈100〉 directions. Other cubics structures 
have different close packed planes and directions, as will be seen 
from Table 2.3.

2.7  SUMMARY

In this chapter, we have outlined some of the principal concepts 
of crystallography and reviewed some of the more important crystal-
line structures that occur frequently in solids. This is far from an 
exhaustive study and the interested reader is referred to the texts 
outlined in the References given below. Many physical properties 
depend strongly on the arrangement of atoms in a solid. We com-
menced this chapter with the consideration of perfectly ordered sys-
tems, called crystals. However, not all solids are crystalline. We can 

TABLE 2.3:  Atomic packing in some common crystal types.

Crystal 
structure

Atomic 
coordination

Packing 
fraction

Close packed 
planes

Close packed 
directions

sc

fcc

bcc

hcp

diamond

6

12

8

12

4

0.524

0.7405

0.680

0.7405

0.340

〈100〉

〈111〉

〈110〉

〈0001〉

〈111〉

{100}

{111}

{110}

{1120}

{111}
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distinguish between materials with perfect order (crystals) and those 
in which there are small regions of perfect order (polycrystalline 
materials), where there is no correlation to other regions and finally 
solids in which there is no long range order. In this latter case, such a 
solid with no long range atomic order, is said to be amorphous. Both 
amorphous and polycrystalline systems generally exhibit homoge-
neous or isotropic physical properties due to the randomness inher-
ent in their structure. Crystals, however, frequently show anisotropy 
in many of their physical properties. It is therefore very important 
that we consider the physical arrangement of atoms in a solid when 
we discuss their physical properties.

We define crystalline structures in terms of their symmetries and 
using symmetry operations we can define up to 230 space lattices, 
which can then be subdivided into 32 point groups, fourteen Bravais 
lattices and seven crystal systems. The complex inter-relationships 
being defined by symmetry operations, such as translation, rotation, 
reflection and inversion. As an aid to our understanding and as a 
useful tool when considering crystals, we define a unit cell, which is 
made up of a basis and is attached to each lattice point. Each basis 
has an identical composition and orientation in the crystalline struc-
ture, of which the unit cell defines a sub-unit, which is chosen for 
convenience. A primitive unit cell should have only one basis or lat-
tice point. It is worth noting that since there is no limit on how large 
a basis can be, there can be many more crystal structures than space 
groups; the known crystal structures run into thousands.

When discussing the specifics of crystals, it is useful to be able to 
refer to certain directions and planes in a given structure. To do this 
we define planes and directions in terms of the Miller indices, which 
are three integers specifying these orientations and directions in the 
crystal and are distinguished by the type of brackets that are used; 
(hkl) for a plane, [hkl] for a direction, {hkl} for a family of planes and 
〈hkl〉 for a family of directions.

Specific types of crystal structure are commonly found in nature 
and we have reviewed some of the more important of these, such as 
face-centered cubic, body-centered cubic, hexagonal close-packed. 
These structures are widely found in monatomic metallic systems. 
Alloys and compounds are also frequently found in cubic phases, 
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though generally with more complex crystal structures. The ques-
tion of atomic packing can be a useful concept in discussing certain 
physical properties and we have defined this in terms of directions, 
plane and three-dimensional structures. The table below (2.3) 
reviews some of the more important crystal types, giving some of the 
packing parameters.
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EXERCISES

Q1.	 Calculate the volume of the primitive unit cell as a pro-
portion of the conventional unit cell for the fcc and bcc 
crystalline structures.

Q2.	 Consider the perovskite structure, which is illustrated in 
Figure 2. What is its crystal type and what is the basis for 
the structure?

Q3.	 Prove that the Wigner-Seitz cell for a 2D hexagonal ar-
ray has the same area as the primitive unit cell for this 
structure.
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Q4.	 Show that the ideal c/a ratio in the hcp crystal is 

8 3 1.633./ =

Q5.	 Demonstrate that the inversion symmetry operation can 
be produced by the compound operation of reflection 
and rotation. Describe the screw and glide as compound 
operations.

Q6.	 Illustrate the following planes for a cubic crystal:  
a) (110), b) (120), c) (112)

Q7.	 Explain why, in general, the direction [hkl] is not 
perpendicular to the plane (hkl). In what cases might this 
be true?

Q8.	 Calculate the interplanar separation in copper for the 
planes (100), (110) and (111). Note, Cu has fcc structure 
and has a lattice parameter of 3.61 Å.

Q9.	 Evaluate the primitive vectors for the hcp and diamond 
lattices and show the form of their primitive unit cells.

Q10.	 Repeat the above exercise for the NaCl and CsCl 
structures.

Q11.	 Calculate the packing fraction of the diamond lattice.

NOTE

1See for example, M. M. Woolfson, An Introduction to X-ray Crystallography, 
Cambridge University Press (1997); M. Buerger, Elementary Crystallography: An 
Introduction to the Fundamental Geometric Features of Crystals, MIT Press, (1978)



CHAPTER 3
CRYSTAL STRUCTURE 
DETERMINATION

“Nothing is ever as good or as bad as it first appears ”

—La Rochefoucauld

3.1  INTRODUCTION

As has been stated in previous chapters, the crystalline order 
in solids has an enormous impact on the physical properties of the 
material. It is therefore of crucial importance that we are able to 
relate this structure to the physical properties of interest. It is the 
principal aim of this chapter to discuss how we can do this. One of 
the most powerful tools for elucidating crystalline structures is by the 
diffraction of waves. This is most commonly performed using x-rays 
and to some extent with electrons, the use of neutrons is also not 
uncommon for specific cases. These have appropriate wavelengths 
for diffraction effects to be observed in crystals; i.e., the wavelength 
of the radiation used is of the order of the atomic separations in sol-
ids. We will begin by looking at the basic diffraction phenomenon, 
which can be viewed as a scattering process due to conditions of 
constructive and destructive interference of waves. We will not dis-
cuss it here, but the student will be aware of the wave - particle dual-
ity phenomenon famous from the early progress of quantum theory. 
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Suffice it to say, all radiation will here be treated as a wave and one 
of the proofs of the wave-like nature of electrons was found from 
the diffraction of electrons by NiO crystals (credit for which goes to 
Davisson and Germer, 1925).

The usefulness of diffraction as a technique for the characteriza-
tion of materials cannot be overestimated. This was recognized quite 
early on by Max von Laue in 1912 and independently in 1913 by 
W. L. Bragg, who independently formulated the basic conditions for 
diffraction by crystals. Some of the earliest studies from around this 
time were performed using x-ray radiation, with photon energies in a 
range from 10 - 100 keV. Such energies are required for diffraction to 
occur from atoms with separations in the few Å range. Also such radi-
ation can penetrate sufficiently well into the crystal to allow a determi-
nation of the bulk structure. More detailed descriptions of diffraction 
by electrons and x-rays will be discussed in Section 3.7. We will also  
briefly discuss the use of neutrons in diffraction experiments, since 
they can provide further information about the ordering in crystals.

The theory of diffraction is outlined in Section 3.3, where we 
will discuss the approaches to this problem by Bragg and von Laue. 
It will become clear that these two important models actually come 
down to the same thing. However, before we do that, it is useful to 
introduce the concept of the reciprocal lattice, which is essentially 
a geometric construction, but one which significantly aids the inter-
pretation of diffraction patterns and also will be of interest to later 
discussions of the electronic structure of materials. A further tool in 
the interpretation of diffraction patterns is provided by the Ewald 
sphere construction and is used in conjunction with the reciprocal 
lattice. We will also introduce the so-called structure factor, which 
provides a simple to use tool for constructing reciprocal space. Actu-
ally we will be working mostly in reciprocal space. This may seem 
a strange concept to the uninitiated, however, it nothing to be con-
cerned about. It is simply a geometric construction or mathematical 
tool. It is widely used in diffraction physics, so we will introduce 
it here. It is simplest just to think of at as normal space, with the 
proviso that all lengths in reciprocal space have the dimensions 
of inverse length (1/m), hence the name. To be honest, we have 
already introduced something in the previous chapter that is related 
to the reciprocal lattice; the Miller indices, see Equation (2.4).
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3.2  THE RECIPROCAL LATTICE

The reciprocal lattice for a real space lattice structure can be 
fairly easily generated by applying a mathematical procedure. The 
relation between the real and reciprocal space lattice is analogous 
to that between frequency and time. This is best described in terms 
of the sum of the Fourier components. For a time varying quantity, 
the Fourier components will give the frequency domain spectrum, 
which will reveal oscillatory-like motion in terms of its frequency. For 
the case of spatial quantities, the Fourier transform yields the spatial 
regularities in the form of an inverse separation of reciprocal-space 
varying function. The general Fourier transform for any function is 
shown in Appendix B. We will now outline the reciprocal lattice trans-
formation equations in terms of the lattice vectors of the real space 
lattice. It is worth noting that the reciprocal lattice for a Bravais lat-
tice is also a Bravais lattice. In the definition of the reciprocal lattice, 
we can choose to apply the unit cell lattice vectors or the primitive 
unit cell vectors. In the former case the transformation will provide 
the lattice vectors of the reciprocal lattice and in the latter the primi-
tive vectors of the reciprocal lattice. Thus either one will do. For the 
primitive lattice we define the primitive reciprocal lattice by:
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The analogous expressions for the reciprocal lattice using the 
base vectors a, b and c are expressed as:

	 π π π=
×

⋅ ×
=

×
⋅ ×

=
×

⋅ ×
∗ ∗ ∗a

b c
a b c

b
c a

a b c
c

a b
a b c

2
( )

; 2
( )

; 2
( )

. � (3.2)

The factor 2π is introduced for convenience to match the factors 
used in reciprocal space (also sometimes referred to as momentum 
space).1 Therefore we maintain the same dimensions as the wave-
vector. An important property of the real lattice and reciprocal lat-
tice vectors is that they satisfy:

	 bi ⋅ aj = 2πδij,� (3.3)
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where δij is known as the Kronecker delta, defined as:

	
i j

i j

0, ;

1, .
ijδ =

≠

=
u � (3.4)

This shows the orthogonality between the vectors ai and bj, 
for i ≠ j. For example, b1 ⋅ a1 = 2π, while b ⋅ a2 = b1 ⋅ a3 = 0. This 
means that vectors b1 and a1 are parallel, while b1 and a2 etc. are 
perpendicular.

In the same way we wrote lattice vectors in real space, we can 
write vectors in reciprocal space as linear combinations of the bi:

	 k = k1b1 + k2b2 + k3b3� (3.5)

Using the real space vector T = n1a1 + n2a2 + n3a3, where the ni 
are integers, it will be evident that we have:

	 k ⋅ T = 2π(k1n1 + k2n2 + k3n3)� (3.6)

This is a direct consequence of Equation (3.3). We now consider 
the plane wave ek⋅T, where from the previous discussion in Chapter 2, 
T is a vector describing the Bravais lattice. For a general k, the plane 
wave will not have the periodicity of the Bravais lattice, this will only 
occur for special choices of the wave-vector k. In fact, the set of wave-
vectors K that yield plane waves of the periodicity of a specific Bravais 
lattice is the reciprocal lattice! Consider the plane wave:

	 eK ⋅ (T+r) = eK⋅r,� (3.7)

where there is no restriction on r. For the above to be true, the fol-
lowing condition must be satisfied:

	 eiK ⋅ T = 1� (3.8)

for all T of the Bravais lattice. In relation to Equation (3.6) above, 
the reciprocal lattice would require that all coefficients ki to be 
integers. Therefore we see that the reciprocal lattice is a Bravais 
lattice in which the bi can be taken as the primitive vectors. Now 
given that the reciprocal lattice is a Bravais lattice, it is possible 
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again to construct its reciprocal, which will produce the real space 
or direct lattice. It is convention to term members of the set of 
translation vectors in reciprocal space in terms of the Miller indi-
ces, where we write: 

	 Ghkl = hb1 + kb2 + lb3� (3.9)

in which the plane with Miller indices (hkl) is normal to the recipro-
cal lattice vector, Ghkl. Therefore, any vector, R in the plane (hkl) will 
satisfy the condition:

	 R ⋅ Ghkl = 0� (3.10)

In Chapter 2, we found a simple expression for the interplanar 
spacings for cubic and other crystals with orthogonal principal axes. 
It is possible to construct a compact expression for interplanar dis-
tances, dhkl, in terms of the reciprocal lattice vector, Ghkl, for any 
lattice. This can be derived from the scalar products of Ghkl with 
the vectors ai. From Equation (3.3) we note that a1 ⋅ Ghkl = 2πh, 
etc. Since the vector Ghkl is perpendicular to the plane (hkl), we can 
write the unit vector normal for a plane as:

	 =n
G
G

ˆ
| |hkl

hkl

hkl

� (3.11)

If we take an equation of the plane (hkl), we can write:

	 = ⋅ = ⋅d r n r
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where r can be any vector larger than dhkl taken from the point of 
origin to the plane (hkl), see Figure 3.1. Considering that r can be 
made up from any linear combination of ai, we can now write the 
interplanar spacing as:

	
π

=d
G
2

| |hkl
hkl

� (3.13)

It is useful to demonstrate the construction of the reciprocal lat-
tice from the Bravais lattice. We will do this by considering the fcc 
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lattice, with a lattice constant, a. The primitive vectors ai were given 
in Chapter 2:

	 = + = + = +
a a a

a y z a z x a x y
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Applying the definition of the reciprocal lattice given in Equa-
tion (3.1), we obtain the primitive vectors of the reciprocal lattice as:
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It is thus found that the reciprocal lattice of an fcc lattice takes 
on a bcc form (and vice versa). This will be seen by comparing the 
above result to Equation (3.14), where here the cubic cell has a lat-
tice parameter of 4π/a.

3.3	 DIFFRACTION OF WAVES BY CRYSTALS

Diffraction is a wave phenomenon in which the scattering of an 
incident wave by an object gives rise to destructive and constructive 

FIGURE 3.1:  Schematic diagram of interplanar spacing between two planes (hkl).
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interference. In general, for such effects to be physically observable, 
the wavelength of the incident radiation must be of the same order 
of magnitude as the diffracting object. For our purposes, we are con-
cerned with the diffraction of radiation by the atoms in a solid, which 
typically have separations of the order of a few Å. To be of the cor-
rect order of magnitude, electromagnetic radiation should be in the 
x-ray region of the electromagnetic spectrum. This can be evaluated 
from the following relationship:

	 ν
λ

= =E h
hc

� (3.16)

This gives an energy of about 1.24 MeV (1.9878 × 10−16 J) for a 
wavelength of 1nm, which is in the x-ray region of the electromag-
netic spectrum. For visible light, say green, the wavelength is around 
500 nm, which corresponds to an energy of about 2.5 eV.

For electrons, say in an electron microscope, the relevant ener-
gies are of the order of 100 keV. This corresponds to the accelerating 
voltage for the electrons delivered by an electron gun. The relation 
between the wavelength and the accelerating voltage can be derived 
from the de Broglie expression, λ = h/p and from the kinetic energy 
equated with the accelerating voltage, V : eV = mυ2/2 = p2/2m. 
From these we obtain:

	 λ=
h

meV2
� (3.17)

Relativistic corrections can add a small shift in this wavelength, 
but we shall not concern ourselves with this. From this we can 
evaluate the accelerating potential required for a particular wave-
length. For example, a wavelength of 1 Å corresponds to an energy 
of 150 eV, i.e., an accelerating potential of 150 V. Alternatively, we can  
calculate the wavelength corresponding to an accelerating potential; 
for example, from a 1 kV potential, a wavelength of about 0.4 Å is 
achieved. This corresponds to an electron velocity of around 1.8 × 
107ms−1. Diffraction experiments are frequently performed using 
neutrons, which are about 1000 times heavier than electrons, this 
means to achieve similar wavelengths, they can be much slower. The 
1 Å wavelength will be achieved for neutrons with an energy of only 
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0.08 eV, corresponding to a velocity of just under 4000 ms-1. These 
are hence referred to as slow neutrons. The lack of electrical charge 
of the neutron means that they interact more weakly with atoms and 
can thus penetrate much further into a crystal.

The diffraction of the different types of radiation can differ due 
to the the specific nature of the radiation itself, and will depend 
on the scattering cross-sections of the radiation with the atoms. We 
will discuss this in more detail later in this chapter. To understand 
the diffraction of incident radiation we will consider two important 
approaches which will be dealt with separately in the following sec-
tions. We can note that in both of these approaches, the incident 
radiation is considered to only scatter elastically, which is an essen-
tial condition for constructive interference. Elastic scattering means 
that there is no energy loss (or transfer) in the scattering process, 
and the wavelength of the incident radiation remains unchanged 
after interaction. By contrast inelastic scattering can occur in a 
number of processes, which can excite atoms and produce the emis-
sion of secondary electrons and characteristic radiation from atoms. 
Such processes are the basis of many spectroscopic techniques. The 
inelastically scattered radiation will not contribute to the diffraction 
image and is thus ignored in the first instance.

We can mathematically express the wave-vectors of the incident 
and scattered beams as k and k′, respectively. So for assumption of 
elastic scattering, we can write |k| = |k′| = (2π/λ). The difference in 
k and k′  being only in their direction.

The scattering efficiency depends on a number of factors, 
including the energy of the incident radiation, but also importantly 
on the atomic species. This scattering efficiency is later taken into 
account when we discuss the atomic form factor, being proportional 
to the atomic number.

3.3.1  Bragg’s Law
The Bragg law was developed in 1913 by W. L. Bragg as a way 

to explain the x-rays diffraction patterns observed from crystalline 
samples, which were measured by W. H. and W. L. Bragg (father 
and son). The principal idea derives from the consideration of the 
specular reflection of wavefronts from successive atomic planes 
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in a crystal. The basic construction can be illustrated via the path 
difference between waves reflected by successive atomic planes, 
as shown in Figure 3.2. In this approach the first ray reflects from 
an upper atomic plane (hkl), while a second ray reflects from the 
next plane down in the crystal. The Bragg condition to observe con-
structive interference from these two rays will be that the path dif-
ference (being longer for the ray reflected by the lower plane and 
corresponds to the distance from A to B plus B to C in Figure 3.2) 
between them must be a whole number of wavelengths. This can be 
expressed mathematically as:

	 nλ = 2dhklsinθhkl� (3.18)

The subscript denotes the Miller indices of the atomic plane 
under consideration. The angle θhkl corresponds to the angle 
of incidence of the radiation with respect to the plane (hkl), as 
shown in the figure. The integer n is referred to as the order of 
the corresponding reflection. By changing the angle of incidence, 
it is possible to satisfy a Bragg condition from the same planes by 
increasing the order of reflection. Note that the angle of deflection 

FIGURE 3.2:  Schematic diagram of interplanar spacing between two planes (hkl).
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of the incident beam corresponds to 2θhkl. In this analysis, we have 
considered that the incident beam is monochromatic, which cor-
responds to a single wavelength of radiation. For a beam of x-rays 
which contains a range of wavelengths (“white radiation”), many 
different reflections will be  observed, resulting from the various 
Bragg conditions being satisfied from higher order reflections and 
from different crystal planes.

In a real experiment, the x-ray beam, of finite width, will 
impinge upon many atoms and be scattered by them. It is the scat-
tering from multiple atoms that will give rise to a host of diffrac-
tion spots, where the constructive interference occurs, resulting 
from many Bragg conditions being satisfied by a large number of 
crystalline planes. The dark regions occur due to destructive inter-
ference. Indeed this must be the case since other wise we would 
expect a diffuse background, which occurs from non-ordered 
materials and liquids.

3.3.2  The Von Laue Approach
Max von Laue (1912) used a somewhat different way of looking 

at the problem. There are no assumptions as to the direction of the 
incident beam with respect to the crystalline planes and no restric-
tions as to specular reflections. Indeed it is a more general approach, 
which regards the crystal as an assembly of scattering centers (atoms 
or ions) being positioned at the sites, R, of a Bravais lattice. The 
radiation then scatters from these sites in all directions. The sharp 
(diffraction) spots will occur only for specific directions and at wave-
lengths for which the rays scattered from the lattice sites interfere 
constructively.

The condition for constructive interference can be found by 
considering the two points (scatterers) in the Bravais lattice, see 
Figure 3.3. The incident x-rays of wavelength, λ, have a wave-vector 
of k n2 ˆπ λ= / , while the (elastically) scattered x-rays have a wave-
vector k n2 ˆπ λ′ = ′/ , where n̂ and n̂′ are the vectors that define the 
directions of the incident and scattered rays. As seen in Figure 3.3, 
the path difference between the scattered rays from the two scatter-
ing centers, separated by d can be expressed as:

	 d d d n ncos cos ( ˆ ˆ )θ θ+ ′ = ⋅ − ′ � (3.19)
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Therefore the condition for constructive interference will take 
the form:

	 md n n( ˆ ˆ ) λ⋅ − ′ = � (3.20)

where m must be an integer. Multiplying through by 2π/λ allows 
us to express this condition in terms of the wave-vectors, such that:

	 md k k( ) 2π⋅ − ′ = � (3.21)

or

	 d ⋅ Dk = 2πm� (3.22)

Since our crystal is made up of a large array of such scatterers, in 
its Bravais lattice, we can replace d by the Bravais lattice vectors R. 
The Laue condition is thus expressed as:

	 mR k k( ) 2π⋅ − ′ = � (3.23)

For integral m and all Bravais lattice vectors R. Now since m is 
integer, this can be equally written in the form:

	 e 1i k k R( ) =− ′ ⋅ � (3.24)

FIGURE 3.3:  Illustration of the path difference between two points in the Bravais lattice.
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It should now be clear from our definition of the reciprocal lat-
tice, Equation (3.8), that for the Laue condition will be satisfied if 
the change in wave-vector ∆k, is a vector of the reciprocal lattice. 
We can now express this as:

	 k k Ghkl− ′ = � (3.25)

or

	 k G khkl= + ′ � (3.26)

Squaring both sides yields:

	 G k G+2 02 ′ ⋅ = � (3.27)

This is illustrated in Figure 3.4, where we see that the differ-
ence between the incident and scattered wave-vectors is equal to 
the reciprocal lattice vector, Ghkl. The plane perpendicular to this 
vector is called the Bragg plane. We note that all these vectors are 
represented in reciprocal or k-space.

3.3.3  Reconciling the Bragg and von Laue Approaches
It is a relatively easy task to show the equivalence of the Bragg 

and von Laue formulations. We can start by using the von Laue 

FIGURE 3.4:  The von Laue condition: the difference between the wave-vectors of the inci-
dent and scattered beams is equal to the reciprocal lattice vector for a Bragg plane (hkl).
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formula given in Equation (3.25). We substitute in the following 
expressions: k n k n2 ˆ , 2 ˆπ λ π λ= / ′ = ′/  and dG n2 ˆ .hkl hkl hklπ= /  We 
note that each term includes a unit vector normal to describe its 
direction from the von Laue formulation. However, referring to the 
original expression, we note that the direction of − ′k k| | is parallel 
to Ghkl and corresponds to nothing more than twice the sine of the 
angle θhkl. This should be clear from the illustrations in Figures 3.4 
and 3.5. Writing this out in mathematical form we obtain:

	

k− ′k =Ghkl

⇒| k− ′k |= | Ghkl |

⇒ 2 | k | sinθhkl =
2π
dhkl

� (3.28)

FIGURE 3.5:  The diffraction condition expressed in terms of the wave-vector representation.
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Therefore we can write:
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=q r � (3.29)

or

	 2dhklsinθhkl = λ� (3.30)

Which is the expression of Bragg’s law. Of course the n (not to be 
confused with the unit vector normal) is missing from the right hand 
side, but this is just because we didn’t consider the number of wave-
lengths in the path difference for the constructive interference con-
dition. We can add this in the form, Ghkl = 2πn/dhkl, to give the more 
familiar expression:

	 2dhklsinθhkl = nλ� (3.31)

Thus we see that both the Bragg and von Laue formulations 
are indeed expressions of the same phenomenon and arise from the 
consideration of the condition for the constructive interference of 
scattered rays.

3.3.4  The Ewald Sphere Construction
The Ewald sphere construction for diffraction from a crystal is a 

rather nice way of visualizing the process. It is based on the von Laue 
formulation and effectively considers the compete set of reflections 
possible from the Bravais lattice. The representation is performed in 
k-space, where the origin is taken (arbitrarily) on a reciprocal lattice 
point. The surface of a sphere coincides with this point, the radius 
of which corresponds to the incident wave-vector k. Therefore the 
direction of the incident wave with respect to the lattice is also taken 
into account. Since the Laue condition is for elastic scattering, the 
scattered ray, ′k , with the same magnitude, also coincides with the 
surface of our sphere and with a point in the reciprocal lattice. This 
will mean that the vector from the origin of k-space and this recipro-
cal lattice point will be a reciprocal lattice vector, Ghkl. It should now 
be clear that wherever a reciprocal lattice point coincides with the 
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surface of the Ewald sphere a Laue (that is to say also a Bragg) con-
dition will be satisfied. This is more easily visualized in Figure 3.6.

This construction is a powerful tool in the interpretation of dif-
fraction images, whether that be from x-ray or electron diffraction. We 
can note that a change in the orientation if the incident beam will be 
reflected as a rotation of the Ewald sphere in k-space, with the point 
at the origin being fixed, i.e., the position of the center of the sphere 
will move according to the direction of the incident beam. A change 
in energy of the incident beam will cause the radius to change; the 
larger the energy the larger the radius of the Ewald sphere and thus 
a larger proportion of the reciprocal lattice will be sampled. Only 
a monochromatic beam will produce an infinitesimally thin shelled 
Ewald sphere. Therefore, any energy dispersion of the primary beam 
can have a significant effect on the resulting diffraction pattern.

Furthermore, the degree of perfection of the crystalline struc-
ture will affect the resulting diffraction pattern. For example, only 
an infinitely large perfectly ordered crystal will have infinitesimally 
small reciprocal lattice points. Thermal agitation will cause the points 
to increase in size. The size of crystalline grains will also affect the 

FIGURE 3.6:  The Ewald sphere construction showing the simultaneous satisfaction  
of an array of Laue conditions. The incident k - vector points from the origin to the  

center of the sphere, having radius k. The scattered ray, k′, goes from a point  
simultaneously on the surface of the Ewald sphere and the reciprocal lattice,  

given as a reciprocal lattice vector, Ghkl.
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spot size. This effect is enhanced in the case of diffraction from the 
surface of a crystal, where effectively only a single atomic layer con-
tributes to the diffraction pattern. The reciprocal lattice points in 
this case will be stretched infinitely in k-space in the direction per-
pendicular to the plane. Now the Ewald construction will be of a 
sphere intersection will reciprocal lattice rods and can give a streaked 
image to the diffraction spots. Such a situation is regularly seen in the 
RHEED (reflection high-energy electron diffraction) technique, as 
will be discussed in Section 3.6.2.

3.4  THE ATOMIC FORM FACTOR

In our discussion thus far we have made no assumptions as to the 
strength of the scattering from the atoms in our crystal. Indeed the 
scattering of radiation is different for different atomic species and 
also has an angular dependence. We characterize the scattering of 
x-rays using the atomic form factor, fj, where subscript j denotes the 
atomic species. In general the scattering strength increases with the 
number of electrons in atom, i.e., with the atomic number, Z. There-
fore the scattering will vary drastically as we go through the periodic 
table. The radial dependence of scattering is shown in Figure 3.7 
and can be represented mathematically as:
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Here ψn(r) denotes the radial dependence of the normalized 
wave-function for the nth electron in the atom of atomic number, Z. 
Each term in the summation becomes unity as (sinθ) / λ goes to zero.

The scattering of different types of incident radiation will be 
different because of their intrinsic nature. The above describes the 
scattering of x-rays, which is principally due to their interaction with 
the electrons in the atoms or ions. Electrons also interact strongly 
with the atomic electrons and will have a similar atomic form fac-
tor. Neutrons, on the other hand, are more strongly scattered by 
the nuclei of atoms rather than electrons and the scattering is virtu-
ally isotropic. Furthermore, neutrons have an intrinsic spin and are 
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FIGURE 3.7:  The atomic form factor, f, as a function of (sinθ) / λ, 
showing the response for various elements.

sensitive to the magnetic moment of atoms. This will give additional 
information for magnetically ordered materials.

3.5  THE STRUCTURE FACTOR

In addition to the intensity variation of scattered diffraction 
spots due to atomic species, variations in intensity can also occur 
due to the structure itself. The structure factor allows us to evalu-
ate this important piece of information. We note that for a mona-
tomic structure, i.e., one with only one type of atom, we do not 
need to include the atomic form factor, as it will be the same 
for all atoms. The structure factor indicates how the Bragg peaks 
are formed from the change in wave-vector: − ′ =k k G .hkl  The 
path difference due to scattering from different lattice sites, say 
di and dj can be expressed as Ghk1 ⋅ (di − dj), with a phase differ-
ence of ⋅ ( − )e .iG d dhkl i j  We can incorporate this into a neat concise 
form as:

	 ∑= π + +
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where the summation is over the unit cell of our structure. The 
quantity Shkl in Equation (3.33) is called the structure factor. The 
intensity of diffracted Bragg reflections are given by:

	 ∝I S| |hkl hkl
2 � (3.34)

The form of the structure factor given in Equation (3.33) shows 
the basic Fourier transform relation between the real space lattice 
and that of the reciprocal lattice. The inclusion of the atomic form 
factor in Equation (3.33) permits us to distinguish between different 
atomic scatterers and will introduce an intensity variation into the 
resulting scattered intensity distribution.

The best way to illustrate the usefulness of the structure factor is 
by using an example. We will start by considering the bcc lattice, which 
has a unit cell with just two atoms at positions (000) and (1/2, 1/2, 
1/2). Therefore our summation will give rise to only two terms. In the 
first, centered at (000), the exponential will term will be unity. We can 
now write the structure factor for the bcc structure as:

	 = + π + +S f [1 e ]hkl
bcc i h k l( ) � (3.35)

Now since h, k and l are integers, there can only be two possible 
outcomes; i) when h + k + l is even and ii) when h + k + l is odd. 
Thus we find:
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+ +

+ +
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f h k l
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2 , when is even,

0, when is odd.
hkl
bcc u � (3.36)

To construct the reciprocal lattice from this information we 
should remember that the above analysis is based on using a unit 
cell for the bcc structure as a simple cubic structure with a two atom 
basis. The reciprocal lattice will now be a simple cubic structure with 
points of intensity 0 and 2f. The result of the structure factor calcu-
lation in Equation (3.36) is illustrated in Figure 3.8, where we have 
effectively an fcc reciprocal lattice of side 4π/a, which is the same 
result as obtained from the analysis in Section 3.2, where we saw the 
reciprocal relation between the fcc and bcc structures. It is useful to 
see how the structure factor works for a polyatomic crystal. Here we 
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shall consider the example of the CsCl lattice. This has a basis with 
say the Cs atom at (000) and the Cl atom at (1/2, 1/2, 1/2). We can 
now obtain the structure factor as:

	 = + π + +S f f[ e ]hkl
CsCl

Cs Cl
i h k l( ) � (3.37)

Again the result depends on whether h + k + l is even or odd 
and we can express this as follows:
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u � (3.38)

We note that this result agrees with the bcc lattice above for 
which fCs = fCl. The reciprocal lattice has the form of an NaCl type 
lattice, which consist of an fcc structure with two different type lat-
tice points. In the analogy with the bcc structure, the h + k + l is odd 
condition gives rise to a zero intensity point.

It will now be clear that the structure factor allows us to assess 
the form of the reciprocal lattice with the additional information 
with regards to the relative intensity of the reciprocal lattice points 
due to the periodic structure of the crystal lattice. The atomic forma 
factor is also important in polyatomic crystals. It does not, however, 
provide the full absolute intensity of the Bragg peak. Where it is 

FIGURE 3.8:  Reciprocal lattice for the bcc structure as obtained from the structure factor. 
Open circles have an intensity of zero, while filled circles have an intensity of 2f.
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reliable is when the intensity goes to zero, which occurs from a fully 
destructive interference condition being produced for a particular 
G. In taking the modulus squared of the structure factor:
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we lose any phase information regarding the amplitudes of the rays. 
This means that the intensity does not contain phase, and leads to 
the well-known phase problem in crystallography. There are a num-
ber of solutions to this problem, though it is beyond the scope of the 
present text to deal with this. The interested reader is encouraged to 
consult a textbook on crystallography, see reference section at end of 
chapter for some examples.

3.6 � DIFFRACTION METHODS FOR STRUCTURE 
DETERMINATION

There are a relatively large number of experimental techniques 
based on the diffraction of radiation to elucidate the interior struc-
ture of materials. While we cannot provide an exhaustive review, 
we will discuss the main points of some of the more common tech-
niques, which are based on x-ray, electron and neutron diffraction. 
We have already outlined some of the main differences in the nature 
of these types of radiation, and the important thing to remember is 
that the differences observed in terms of the resulting diffraction 
patterns arises due to the nature of the interaction of the radiation 
with the atoms/ions in the solids. This is principally due to their 
so-called interaction cross-sections, which intimately depend on the 
velocity, charge and mass of the incident radiation.

3.6.1  X-Ray Diffraction
The production of x-rays for experimental use in diffractome-

ters, is mainly achieved via the collision of electrons with a metallic 
target. Characteristic radiation is emitted from the target in the form 
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of Bremsstrahlung and from the de-excitation process in the metallic 
atoms of the metal. The former process arises from the decelera-
tion of the incident electrons, causing the emission of x-radiation, 
which has a short wavelength cut-off of λmin = hc/eV, where V is the 
accelerating potential in volts. This continuous spectrum is of little 
interest for x-ray diffraction. It is the excitation of core (typically 
K - level) electrons, which, in the de-excitation process, give rise to 
characteristic spectra of lines; Kα and Kβ lines. The choice of target 
material is important and is based on good thermal and electrical 
conductivities, in addition to having a relatively high melting point. 
Furthermore, for x-ray diffraction capabilities, the emitted radiation 
should have a wavelength of around 1 Å. The most common choice 
for target is Cu, which has a Kα line at around 1.54 Å. Since the emis-
sion is not monochromatic, filters are applied, usually in the form of 
a crystal monochromator, though this is not always necessary. The 
characteristic emission spectra of a range of materials were studied 
by Moseley in 1913 - 1914, and ultimately led him to provide an 
explanation for the order of elements in the periodic table in the 
expression of what is now known as Moseley’s law2.

A more intense source of x-radiation is the synchrotron. This 
is usually a very large installation where charged particles, usually 
electrons, are accelerated in a circular path using magnets. The laws 
of electrodynamics can show that electromagnetic radiation is emit-
ted when charged particles are accelerated. So by sending electrons 
around a storage ring, a stream of high energy and high intensity 
x-rays can be produced in a direction tangential to the synchrotron 
ring. This is a rather expensive way to do standard diffraction and is 
typically only used for samples which require very specific conditions 
and for dynamic studies for which a high intensity beam is necessary.

X-rays, like most other electromagnetic radiation, mainly inter-
act with the electron clouds of atoms, which occupy the vast majority 
of the atomic size.

The Laue method. This was the first technique to use x-rays 
for diffraction from crystals and dates from 1912, when von Laue 
gave his interpretation of the diffraction phenomenon from crys-
tals. The method is experimentally simple, consisting of a col-
limated beam of white x-rays falling on a single crystal which is 
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mounted on a triple-axis goniometer. Photographic plates can be 
placed in front or behind the sample to record the diffraction pat-
tern, as illustrated in Figure 3.9(a). A typical image is illustrated in 
Figure 3.9(b).

Since the technique does not employ a monochromatic x-ray 
beam, the diffraction pattern consists of the superposition of 
the reciprocal lattice with a range of Ewald spheres, whose ra-
dii are determined by the upper and lower wavelength limits; .  
As such we sample a large area of reciprocal space, as illustrat-
ed in Figure  3.10, as indicated by the shaded region. All the 
spots in this region will therefore give rise to a spot in the dif-
fraction image, providing it falls onto the photographic plate. 
By ensuring there is a sufficiently broad range of wavelengths 
in the incident beam, we can guarantee that diffraction condi-
tions will be satisfied.

The Laue technique is especially well suited to the determina-
tion of the crystalline orientation of a sample whose structure is 
known. This is useful for orienting samples, though is not recom-
mended for the determination of unknown crystalline structures.

The spot distribution can be somewhat complex due to the range 
of wavelengths used, so each set of Bragg planes can give rise to 
a range of spots in the diffraction pattern. For this reason, this 
technique is usually limited to the orientation of known crystal 
structures using the goniometer.

FIGURE 3.9:  (a) A flat Laue camera, where diffraction images can be recorded in both  
the forward and back-reflection geometries. (b) A sample image from a white beam  

diffraction pattern of Silicon single crystal in the (001) orientation.  
Pattern taken with large area 2D detector.
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The rotating crystal method. This method employs a mono-
chromatic beam of x-rays in which the sample is rotated as a 
function of time. The gradual rotation of the sample ensures that 
various Bragg reflections will be recorded. In terms of the Ewald 
construction, the incident k-vector can be considered to be fixed, 
while the reciprocal lattice rotates about the point of origin of 
k-space. The resulting x-ray diffraction pattern is frequently ex-
pressed as the intensity of the exiting x-ray beam as a function 
of the angle, such an image is shown in Figure 3.11. There are 
several variations of the principle of the rotating crystal method, 
which can provide a wealth of information for the study of crys-
talline structures. Further information on these techniques can 
be found in specialist books on crystallography, as indicated in th 
bibliography at the end of this chapter.

The Debye - Scherrer method. This is also known as the pow-
der method, since this is the nature of the samples studied using 
this technique. As such we are presented with a polycrystalline 
sample. Actually, the fact that the sample has multiple crystals 
provides another way of ensuring that Bragg reflections will oc-
cur. In terms of the Ewald construction, we are presented with a 
single sphere of fixed orientation, while the reciprocal lattice will 
be made up of all possible orientations of the Bragg planes. This 

FIGURE 3.10:  Ewald construction relative to the Laue diffraction method,  
where the upper and lower limits of the wavelength of the white x-radiation  

determine the amount of reciprocal space sampled.
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FIGURE 3.11:  Experimental set-up for an x-ray diffractometer. Here we see two positions  
of the apparatus, where the results show the diffracted beam intensity as a function  

of the angle of diffraction, 2θhkl.

will mean that for each particular reflection (hkl), where for a sin-
gle crystal we have a single diffraction spot for diffraction angle 
θhkl, in the polycrystalline sample, we obtain all possible orienta-
tions of this reflection as a cone of corresponding Bragg angle θhkl. 
Figure 3.12(a) shows this situation in schematic form. The final 
diffraction image will then be one of concentric circles with char-
acteristic radii. It is from this that the crystalline structure can be 
deduced to a good degree of accuracy and allowing the lattice pa-
rameters to be evaluated. The photographic film is straightened 
out after adequate exposure and consists of arcs, as shown in Fig-
ure 3.12(b). Measurement is made from the θhkl = 0° position to 
θhkl = 90°. Interpretation is based on the Bragg equation, which 
we can express as:

	 θ
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We can now substitute in an expression for the interplanar sepa-
ration, see Chapter 2. In the case of cubic latices Equation (3.40) 
can be written as:
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For specific structure, certain combinations of h, k, l will be 
absent, as we saw in Section 3.5. Using this fact, we can express the 
values of sin2 θhkl as a function of (h2 + k2 + l2), where, according to 
Equation (3.41), we can evaluate the lattice parameter, a, given that 
the wavelength is of a known and fixed value.

3.6.2  Electron Diffraction
Electron beams can be produced in a number of ways. The most 

common method used for electron diffraction experiments is based 
on thermionic emission of a heated wire. The electrons are then 
accelerated via a potential difference and collimated before imping-
ing on the sample of interest. The energy of the electrons is usu-
ally well defined by this accelerating potential, from which we can 
evaluate the associated wavelength of the electrons, as expressed by 
Equation (3.17). We can substitute in the constants to express this in 
terms of Ångstrom units:

	 λ
V

(Å)
150



� (3.42)

FIGURE 3.12:  Experimental set-up for the Debye-Scherrer technique. The monochromatic 
x-rays impinge on the sample and the diffraction rings are recorded on a strip of film which 
encircles the sample. On the right hand side we see an actual image of a diffraction pattern.
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where V represents the accelerating voltage. For very high energies 
a relativistic correction can be applied.

While the basic theory of diffraction is equivalent to that 
expressed above for x-rays, the experimental conditions and the 
nature of the electrons means that there are some specific limita-
tions to their use. In the first place, electrons will interact strongly 
with atoms and ions due to their electrical charge, and their trans-
mission through samples is limited to around 50 nm. Another way 
of expressing this is to say that electrons have a high cross-section 
for scattering and is about four times greater than that for x-rays. 
The most common place to find electron diffraction experiments is 
generally inside a transmission electron microscope (TEM). In fact, 
the TEM technique relies on the diffraction of the electrons by the 
sample. The electron beam inside a TEM is controlled and focussed 
using electric and magnetic fields. There are many textbooks on this 
important materials characterization technique3. The high scattering 
cross-section means that sample will normally be thinned to allow 
the electrons to pass through it and hence allow the diffraction pat-
tern and the magnified image to be observed.

Electron diffraction is a commonly used tool in the study of 
crystalline surfaces and thin film growth. There are two principal 
techniques used and are defined by the electron energies used 
and the geometry of the experiment. We briefly mentioned one of 
these techniques earlier; reflection high-energy electron diffraction 
(RHEED), the other related technique is called low-energy elec-
tron diffraction (LEED). In the former, the electron beam impinges 
on the sample at grazing incidence (a few degrees from the sample 
plane) and is forward scattered. The scattering obeys the basic rules 
of diffraction outlined above and the Ewald construction is fre-
quently used to aid interpretation of diffraction patterns, which are 
observed on a phosphor screen.

The RHEED experiment is illustrated in Figure 3.13, where we 
see how the Ewald sphere intersects with the extended reciprocal 
lattice spots or rods (for a surface), giving rise to streaked diffraction 
spots, Figure 3.13(a). The diffraction images, Figure 3.13(b) for a 
Si(111) surface along two different directions, show a series of rings 
of diffracted beams. Each ring, known as a Laue zone, arises from a 
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successuverow of reciprocal lattice rods back from the zeroth order. 
Note that for a surface only two Miller indices are required. The 
surface of a crystal may have a special ordering which does not exist 
in the bulk of the crystal. Any restructuring is called a surface recon-
struction, and in the case shown in Figure 3.13(b) corresponds to a 
7 × 7 reconstruction. This refers to the change in periodicity in the 
two directions of the surface with respect to the bulk structure of the 
same atomic plane, which is (111) in this case. Therefore RHEED, 
and for that matter LEED, are excellent tools for investigating the 
structural changes at a crystal surface. Also noted in the diffraction 
pattern are some broad, bright bands and lines, these are called Kiku-
chi bands or lines and arise from multiple scattering and channelling 
processes inside the crystal. These are generally indicative of good 
bulk crystalline order. We note that the grazing incidence provides 
good surface sensitivity since it prevents the electrons penetrating 
to more than a few atomic layers into the crystal. Typical energies 
for electrons beams in RHEED are of the order of 10 - 20 keV,  
corresponding to wavelengths of around 0.09 - 0.12 Å. One of the 
principal applications of the RHEED technique is the study of 

FIGURE 3.13:  Experimental set-up for RHEED. (a) Ewald construction showing the  
intersection of the Ewald sphere and reciprocal lattice rods. (b) RHEED images for  

the Si(111) surface along two different directions of the crystalline surface.
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the dynamics of thin film deposition, which is possible due to the 
experimental geometry. This is usually performed by measuring the 
intensity of the specularly reflected electron beam as a function of 
deposition time, where intensity oscillations are indicative of atomic 
layer type growth.

In a LEED experiment, the electron beam, of energy in the 
range: 10 - 1000 eV (λ  0.4 - 3.9 Å), is incident perpendicularly 
to the crystal surface. Since the electrons have a much lower kinetic 
energy, they penetrate much less, thus making them surface sen-
sitive. The geometry of the set-up means that the diffraction pat-
tern is observed via elastically backscattered electrons, as illustrated 
in Figure 3.14(a). We note that in the experimental set-up a grid 
is placed in front of the phosphor screen, which has an electrical 
potential applied to it. This is to energy filter the scattered electrons 
to ensure only those electrons that are elastically scattered are mea-
sured. Inelastic scattering can arise from a number of processes and 
can give a bright background, which must be eliminated from the 
LEED pattern. The lower electron energy used in LEED results in a 
smaller Ewald sphere, Figure 3.14(b), than in RHEED. The diffrac-
tion pattern for the same surface, Si(111) with a 7 × 7 reconstruc-
tion, as given for the RHEED case above, is shown in Figure 3.14(c).  
Note the shadow in this image is from the electron gun.

3.6.3  Neutron Diffraction
The neutrons used in diffraction experiments are generally 

obtained as a by product in a nuclear reactor. Another common 
source of neutrons is from a so-called spallation source. This pro-
duces intense neutron beams that arise from the the collision of 
(“bunches” of) high-energy protons that collide with a target, typi-
cally liquid mercury. The high energy neutrons can be slowed down 
using a moderator. The energy of neutrons appropriate for diffrac-
tion from crystals, as given by Equation (3.17), is of the order of 
about 0.1 eV. This energy is of the same order of energy as thermal 
neutrons (0.025 eV, which corresponds to a temperature equivalent 
of 300K, as given by the thermal energy: kBT). The output from a 
reactor source requires the neutrons to be wavelength selected, 
which is usually performed using a crystal monochromator. The col-
limated beam of white neutrons are incident on a large crystal, which 
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is oriented to satisfy a Bragg condition for a specific chosen wave-
length. The angular range over which the neutrons are collected will 
determine the degree of monochromaticity of the experiment. The 
neutrons interact with the nuclei of the sample, the cross-section for 
scattering is much smaller than the wavelength and the atomic form 
factor (called scattering length for neutrons) has no angular depen-
dence. The neutron interaction with the nuclei of the sample is such 
that it momentarily forms a compound after which it is re-emitted. If 
the nuclei do not possess spin, then the scattering will be coherent, 
being the same for all nuclei, and the resulting diffraction pattern 
will be the same as for x-rays. Since neutrons only interact with the 
atomic nuclei, the penetration depth will be much larger than that 
of electrons or even x-rays. This is advantageous since less sample 
preparation will be necessary.

For nuclei that possess spin, I, the neutron scattering will be 
fundamentally different, since the compound nucleus, upon inter-
action with the neutrons, will have a spin of I ± 1/2. The scattering 
may be either coherent or incoherent, where the latter results in 
an absence of phase correlation and thus produces no interference 

FIGURE 3.14:  (a) Experimental geometry for LEED. (b) Ewald construction showing  
the intersection of the Ewald sphere and reciprocal lattice rods as well as  

the diffraction condition. (c) LEED image for the Si(111) surface.
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effects. Since neutrons interact with the nucleus, there is no Z cor-
relation to the scattering strength. However, there are strong differ-
ences in scattering between different isotopes of the same element. 
Another important property of the neutron is that it possesses spin 
or a magnetic moment and can therefore interact differently with 
magnetic atoms (i.e., those with a net electron spin) than with to 
non-magnetic atoms. Such a situation means that there can be 
scattering of a purely magnetic nature and neutron diffraction is 
frequently used to assess the long range magnetic order in ferro-
magnetic, ferrimagnetic and antiferromagnetic media. Details of 
magnetic order will be discussed in Chapter 10. Such properties 
makes neutron diffraction an extremely important measurement 
for magnetic materials, particularly in the case of antiferromagnetic 
samples. Since antiferromagnets have no net magnetization, they 
are very difficult to assess by other techniques. Neutron diffraction 
allows a magnetic signal to be obtained from the periodic condition 
of the magnetic structure and purely magnetic diffraction peaks 
can be observed.

3.7  SUMMARY

In this chapter, we have reviewed some of the main principles of 
crystal structure determination. The reciprocal lattice is an impor-
tant geometrical construction which has a special symmetry relation-
ship with its real space counterpart. They both form Bravais lattices 
with related symmetries. The importance of this construction was 
shown when we considered the phenomenon of diffraction in crys-
tals. In fact, we saw that the reciprocal lattice is a Fourier transform 
of the real space lattice and aids in the interpretation of diffrac-
tion patterns, which is a widely used method for the elucidation of 
crystalline structures. Later on, in Chapter 7, we will again use the 
reciprocal lattice as an aid to the description of electronic energy 
states in periodic structures. The theory of diffraction was shown to 
be based on wave interference phenomena, where we considered 
the Bragg and the von Laue approaches. These were shown to be 
essentially equivalent. The von Laue approach is a more general 
condition which allows the consideration of all possible diffraction 
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events using the Ewald sphere construction. This is a powerful tool 
frequently used in the interpretation of diffraction patterns.

The diffraction of waves from a periodic structure allows us to 
infer crystalline order due to the specific constructive interference 
effects that occur. This is due to the scattering of waves by the atoms 
in the crystal, the strength of this scattering depends in most cases 
on the element involved and has a specific form factor. The structure 
factor, which can be seen to be a Fourier transform, permits us to 
assess the form of the reciprocal lattice of a crystal. It has the added 
advantage of giving the relative intensity of the points in reciprocal 
space, which is related to the intensity variations observed in diffrac-
tion patterns.

We described some of the more important experimental diffrac-
tion techniques used. These concerned the use of x-rays, electrons 
and neutrons as incident radiation. The differences between these 
techniques are related to the nature of the radiation and how they 
interact with (and scatter from) the atoms in a crystalline solid. Spe-
cific information can be gleaned from each type of experiment.
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EXERCISES

Q1.	 Use the reciprocal lattice vectors, expressed in Equations 
(3.1) or (3.2), to determine the reciprocal lattice for the 
body-centered tetragonal structure.

Q2.	 Explain why Equations (3.1) and (3.2) are equivalent.

Q3.	 Use Equation (3.13) to derive the general interplanar 
separation for cubic crystals, c.f. Equation (2.11).

Q4.	 Prove that a1 ⋅ (a2 × a3) = a2 ⋅ (a3 × a1) = a3 ⋅ (a1 × a2). 
What do these represent?

Q5.	 Calculate the energies for x-rays, electrons and neutrons 
if they have a wavelength of 0.75 Å.

Q6.	 Calculate the Bragg angles for diffraction from Ag, 
which has fcc structure and a lattice constant of 
4.09Å with x-rays (Cu Kα radiation), for the (111) 
planes. Use n = 1.

Q7.	 How would a a variation in atomic position manifest itself 
in the Ewald sphere construction? (Note this can happen 
due to thermal vibrations of the atoms in a crystal, which 
is a general condition for room temperature diffraction 
experiments.) What does this imply for the resulting dif-
fraction image?

Q8.	 Use the structure factor, Equation (3.33), to evaluate the 
reciprocal lattices for the diamond and the zinc-blende 
structures.

Q9.	 In a Laue diffraction pattern from an fcc crystal, with lat-
tice parameter 3.5 Å, determine the distance from the 
center of the pattern to the reflections which occur from 
planes with maximum spacing. Consider the x-rays to be 
produced from a 50 kV tube and the distance between 
the crystal and the film to be 5.5 cm.

Q10.	 An antiferromagnetic crystal of CoO is subject to a neu-
tron diffraction experiment with neutrons of energy 0.05 
eV. If the lattice parameter for this crystal is 4.2615 Å, 
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evaluate the Bragg angle for a magnetic reflection for an 
angle of incidence of 20° to the (110) plane.

Q11.	 Describe the formation of an x-ray diffractogram using 
the rotating crystal method in terms of the Ewald sphere 
construction.

Q12.	 Explain why electrons are used for surface diffraction 
techniques. Under what conditions can electrons be used 
for bulk crystal diffraction? Explain.

NOTES

1 For a plane wave, which we can represent as: A exp i t A2 ( )x
vπ − =  exp i t2 ( ),xπ ν−λ  

the wavelength can be written as λ = (υ/ν) and angular frequency is defined as ω = 
2πν. We defined the wave-vector as k = (2π/λ) = (ω/υ). As such we can now write 
the instantaneous wave amplitude as: A exp i(kx − ω  t). In three dimensions this is 
more generally expressed in the form: A exp i(k.r − ω  t). The momentum associated 
with a quantized wave of wave-vector k is written as p =  k.
2 Moseley’s law is generally expressed as the square root of the emitted x-ray fre-

quency, ν , being proportional to the atomic number, Z − b, where b is a constant 
depending on the target element in question and is related to nuclear screening. 
Later it was put on a theoretical footing with the Bohr model of the atom.
3 See for example D. B. Williams and C. B. Carter, Transmission Electron Micros-
copy: A Textbook for Materials Science, Plenum Press, New York, (2009)





CHAPTER 4
IMPERFECTIONS IN 
CRYSTALLINE ORDER

“Even imperfection itself may have its ideal or perfect state.”

—Thomas de Quincey

“If someone is too perfect they won’t look good. Imperfection is important.”

—Eric Cantona

4.1  INTRODUCTION

Thus far, we have only considered solids as being a perfectly 
arranged periodic array of atoms. In reality the order in solids is far 
from perfect. The principal properties of solids does indeed come, 
for the most part, from this ordered portion of the sample. However, 
it would be a gross oversight to ignore the effects of imperfections in 
crystalline order. Of particular importance are mechanical and elec-
tronic properties, which are greatly affected by structural disorder. 
The consideration of perfect order is an important aid to the theoret-
ical modelling of physical properties and conceptualisation of solids. 
Many would consider this as a first approximation to the understand-
ing of the physical properties of solids. However, as we have stated, 
we do need to consider the departures from this perfect image of 
the crystal/solid to gain a fuller insight in to their physical properties.
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Structural defects in solids can take a number of forms and 
generally we classify defects as to their dimensionality. That is to 
say, whether they are 0, 1, 2 or 3 dimensional defects. In the fol-
lowing sections, we will follow more or less this order in our over-
view of the defects that can occur in real solids. In the first case, 
zero-dimensional disorder consists of point defects, which pertain 
to single atomic positions. Following this we have one dimen-
sional disorders, which occur along a crystal direction, and are 
called disclocations. Two-dimensional disorder is a planar defect, 
such as a slip plane and even surfaces in a crystal. Finally, a three 
dimensional defect will be some form of volume imperfection 
such as granular structure and foreign particle inclusions. Indeed, 
grains  and grain boundaries play an important role in materials 
and their properties.

It is worth stressing that a perfect solid does not exist in reality. 
Even the most carefully prepared solid crystals have defects. This 
inevitable situation must be taken into account in any consideration 
of a solid. Even lattice vibrations can be considered to be a depar-
ture from perfect crystalline order. This will be treated separately in 
the next chapter.

A complete lack of long range crystalline order can also be con-
sidered as a form of three-dimensional defect. Such materials with 
no crystalline order are called amorphous or non-crystalline materi-
als. Despite this random structure, we can still make some important 
conclusions with regards to these materials. Non-crystalline solids 
will be discussed in the last section of this chapter.

4.2  POINT DEFECTS

4.2.1  Types of Point Defect
The point imperfection is the simplest of structural defects and 

can be as simple as a one or two atom disturbance to the crystalline 
order. There are a number of types of point defect, from a simple lat-
tice vacancy, i.e., missing atom, to a substitutional impurity atom, i.e., 
a foreign atom replacing an atom in a normal lattice site. Atoms can 
also sometimes position themselves in the spaces between regular 
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lattice points and are called interstitial sites. This could be either 
the atoms normally in the crystal (self-interstitial) or impurity atoms 
(impurity-interstitial). In any case, these interstitial atoms can cause 
some local stresses in the lattice. Smaller atoms can occupy intersti-
tial sites with little or no distortion to the crystal lattice. In Figure 4.1. 
we show a schematic view of this and other point defects.

More complex point defects consist of combinations of vacan-
cies, substitutions and interstitials. One such combination can be 

FIGURE 4.1:  Schematic diagram of point defects.
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FIGURE 4.2:  Schematic diagram Frenkel and Schottky defects.

generated by moving an atom from its regular lattice position to an 
interstitial site. Such a combined imperfection in a crystal lattice is 
called a Frenkel defect. This type of disorder can occur in thermal 
equilibrium and can be generated by bombardment, such as radia-
tion damage. A similar type of disorder is called the Schottky defect, 
which occurs in ionic crystals, where the ions of both types (cation 
and anion) migrate to the crystal surface leaving a vacancy on both 
ionic sites and thus maintains charge neutrality of the crystal. We 
note that the vacancies can be separated in the crystal. These defects 
are illustrated in Figure 4.2.

Crystals which are polyatomic should have exact proportions to 
their components, such as NaCl, Fe2O3 etc. This is referred to as 
stoichiometry or chemical stoichiometry. Antisite defects can occur 
in which atoms of one type are located in the position of the other 
component, such defects are illustrated in Figure 4.1(g) and (h). 
Preferential vacancies can lead to off-stoichiometry in a crystal and 
can have an effect on the resulting physical properties of the solid if 
present in significant proportions. Any disorder in the regular struc-
ture of compound solids can give rise to antistructure, where the 
components swap lattice positions, while maintaining stoichiometry. 
Such a situation is likely to occur when the components of the crystal 
are of similar atomic size. The degree of off-stoichiometry depends 
on the preparation conditions of crystals and annealing at relatively 
high temperatures.
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The existence of point defects can be controlled in a number 
of ways and we have already mentioned that heating or annealing 
a sample can introduce vacancies. Impurities can also be intro-
duced in a controlled manner at the growth stage by allowing a 
specific concentration of another atomic species into the melt or in 
deposition. Such impurities can be welcome, such as in the dop-
ing of semiconductors (Chapter 9), which control the charge car-
rier concentrations. Defects will also affect the electrical resistance 
of a material by introducing scattering centers into the solid. More 
defects will essentially mean that the residual resistance of the mate-
rial increases. (We will further discuss this in Chapter 6, where we 
consider the electronic properties of solids.)

4.2.2  Thermodynamics of Defect Density
The formation of the point defects discussed above depend on 

the energy required to move atoms in the crystal lattice. Different 
types of defect will have different activation energies. One of the 
simplest cases we can consider is that of vacancy formation. This 
process can occur due to thermal energy even while at thermal equi-
librium. We will consider a crystal with N atoms in which there are 
n vacancies, randomly distributed over the available lattice sites of 
the crystal. Since we are introducing disorder into the crystal we will 
increase the entropy, S, in the system. A perfect crystal will have zero 
configurational entropy, Sconfig. The entropy due to this disordering 
will thus depend on the possible combinations of our n vacancies 
over the N sites. Since there are N!/n!(N − n)! ways of doing this, 
the configurational entropy can be expressed as:

	 =
−

S k
N

n N n
ln

!
!( )!

con fig
B � (4.1)

here kB is the Boltzmann constant. Now if the energy to remove an 
atom is given as, Eυ, we can evaluate the change in free energy of the 
imperfect crystal in the formation of these vacancies as:

	 = − = −
−
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where T is the temperature of the crystal. The first term is simply 
the energy required to create the n vacancies. We now follow the 
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minimization procedure, using the first derivative of this energy with 
respect to the number of vacancies;

	
F

n
d( )

d
0,=

∆
� (4.3)

This can be evaluated using the Stirling approximation, In 
X!  XInX − X, which is valid for large X. From this it is a simple 
matter to show that:
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−
= − / � (4.4)

Since we have n  N, we can write:

	
n
N

e E k Tv B


− / � (4.5)

The form of the above equation is typical for thermally activated 
processes, where the exponent expresses an activation energy of a 
process divided by the thermal energy, giving the statistical prob-
ability of the process. In the above case, we consider the number of 
atoms which are removed from their equilibrium positions by ran-
dom thermal motion. Therefore the important factor is the relation 
of the energy necessary to remove the atom from its position (which 
will be related to the number of nearest neighbors and the bond 
strength) compared to the energy supplied in the form of thermal 
motion of the atoms. Typically, Eυ is of the order of a few eV, thermal 
energy at room temperature is about 1/40 eV, therefore n/N will 
be small but not zero at room temperature. Clearly an increase of 
temperature will then increase the number of defects according to 
Equation (4.5). Other defect densities can be evaluated in a similar 
manner using the appropriate energies of formation. In the case of 
compound defects, such as Schottky and Frenkel defects, the ener-
gies of each part of the defect must be taken into account.

4.2.3  Diffusion in Crystals
Vacancies and impurities can move in solids via trans-

port mechanisms activated by concentration gradients and ther-
mal activity. Such processes are referred to as diffusion. In either 
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case, the motion requires a specific energy associated with the 
atoms or vacancies. The motion of atoms of the lattice is called 
self-diffusion, while that of different atoms is called impurity dif-
fusion. Let us consider a crystal in which there is a concentra-
tion, c, gradient in the x-direction, such that dc/dx < 0. While 
we have not said what the concentration is, it could be either 
vacancies or impurity atoms for example. There is no difference 
in the physical process of diffusion, only in the activation energies 
involved. If there is a separation of a between atomic planes with 
concentrations c1 and c2, we say that unit areas of these plane will 
have ac1 and ac2 impurities or vacancies. Assuming that all atoms 
vibrate with the same frequency ν, we can expect that in time δt, 
an equal number of atoms move to the right and to the left, which 
in either case would be νδt atoms. If we say that the probability 
of an atom jumping to the left or right is P, then the net flux of 
defects will be:

	 δ νδ −n ta c c P( )1 2 � (4.6)

However, due to the concentration gradient we have:

	 = +c c a
c
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d2 1 � (4.7)

Now we can write:
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where j represents the material current density, which we express as:

	 = −j D
c
x

d
d

� (4.9)

This equation is known as Fick’s first law and can be expressed 
in three-dimensions as:

	 D cj = − ∇ � (4.10)
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The constant D is called the coefficient of diffusion and follows 
an Arrhenius type equation of the form:

	 D D e E k T
0

D B= − / � (4.11)

cf. Equation (4.5). Here ED represents the activation energy for dif-
fusion and D0 is a constant. Typically ED is of the order of a few eV 
per atom while D0 ranges from roughly 0.01 - 3 cm2s-1 in metals. The 
diffuion mechanism acts to reduce and ultimately eliminate concen-
tration gradients. Therefore we can expect the concentration in any 
given volume element to change over time. If our crystal maintains 
the number of vacancies and impurities then we will have:

	 = −
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which in three-dimensions is written:
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Inserting Equation (4.10) we have:
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( ) 2= ⋅ =∇ ∇ ∇ � (4.14)

where we assume D to be a constant. Equation (4.14) is known 
as Fick’s second law. The study of the diffusion process demands 
the use of appropriate boundary conditions, which must be con-
sidered for any specific case. In a crystal the motion of the impu-
rity or vacancy is subject to random motion or random walk. The 
statistical average distance moved in time t of an impurity can be 
found from:

	 < > =x Dt22 � (4.15)

The relevant activation energy for vacancy diffusion must take 
into account the vacancy and migration energy, from which we 
write: ED = Eυ + Em. Diffusion is an extremely important physical 
phenomenon and controls alloy composition and high temperature 
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creep strength in metals. Since diffusion is a thermally activated pro-
cess, sample temperature is critical and the process will depend on 
the ratio of activation to thermal energy.

4.2.4  Color Centers
In the above, we noted that certain compound point defects 

require a charge neutrality, which is maintained by having the same 
number of vacancies on the cation and anion sites (Schottky), or by 
having an equal number of vacancies and interstitials of the same 
constituent (Frenkel). However, it is possible that charge neutrality 
can be maintain by having a localized electron in the vicinity of a 
negative ion vacancy. The missing anion leaves a charged vacancy. 
This acts as a local potential which can attract and bind an electron. 
The bound electron will have characteristic energy levels, similar 
to those of an atom. This will create a spectrum of energy levels 
and excitation between these levels produces a series of optical 
absorption lines analogous to atomic line spectra. Since these optical 
transitions usually occur in a forbidden optical band, they will stand 
out from the rest of the crystal producing striking peaks in optical 
absorption spectra. Such defects are known as color centers for this 
reason. Crystals, such as alkali halides, which are generally transpar-
ent in the optical region, when subject to electron or ion bombard-
ment can be visibly seen to have color in the region of radiation 
damage. This is a direct result of the introduction of vacancies to 
produce these color centers. Annealing can also produce color cen-
ter defects. Different crystals will have different characteristic col-
ors, depending on the binding energy and localized electron spectra 
associated with these point defects.

An electron bound to a single negative ion vacancy is also known 
as an F-center, while two neighboring negative ion vacancies can 
bind two electrons, producing what is called an M-center. An addi-
tional negative ion vacancy (i.e., three negative ion vacancy), can 
bind three electrons and is called an R-center. While these centers 
can be expected to have distinct optical spectra, due to the altered 
electron states available, in reality they are more difficult to observe 
since their spectra are not as sharp as the single negative ion vacancy. 
In fact, the M and R-centers are more strongly coupled to the crystal 
lattice and can lose energy by producing vibrations in the lattice; this 
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process is called phonon emission. We will discuss phonons in the 
next chapter.

The absence of electrons in solids are known as holes. These 
can act as positive charge carriers in the solid, much in the same 
way as an electron is a negative charge carrier. We will discuss this 
subject in more detail when we come to consider the electronic 
properties of semiconductors (Chapter 9). For now it is sufficient 
to consider a hole as simply the absence of an electron, being sub-
ject to similar properties as the electron and is known as a quasi-
particle. The quasi- here indicates that it isn’t a real entity, as is the 
electron, but acts as one in terms of it physical attributes and how 
it can be treated. We have introduced this concept since we may 
expect that holes can be bound, in a similar way to electrons, by 
positive ion vacancies. However, no such cases have been reported. 
Hole centers do exist, but are not associated with vacancies as such. 
The VK-center is one such entity and is produced by the binding of 
a hole to two neighboring negative Cl ions −(Cl ),2  producing a spec-
trum similar to that of −Cl .2  Another hole or H-center results from 
interstitial of −Cl  ions.

4.3  DISLOCATIONS

Dislocations are a one-dimensional defects and have a very dif-
ferent nature to point defects. They are not the same as a line of 
vacancies. Line defects can also be curved inside the crystal, but can 
be associated with specific crystalline directions. The existence of 
line defects has enormous consequences for the mechanical prop-
erties of solids and is a vital component of the description of their 
behavior under the application of tensile, compressional and shear 
forces. We distinguish between two types of line defect in a solid as 
outlined below.

4.3.1  Edge Dislocations
The edge dislocation is defined as the termination of a crystal 

plane within the solid as is illustrated in Figure 4.3. The deforma-
tion of the crystal lattice in the region of the edge dislocation is such 
that in the region above it the lattice is in compression, while in the 



Imperfections in Crystalline Order  •  105

FIGURE 4.3:  End on view of an edge dislocation. 

region below, where the lattice plane is missing, the crystal lattice is 
in tension.

4.3.2   Screw Dislocations
In a screw dislocation, see Figure 4.4(a), part of the crystal 

lattice appears to be displaced in a direction parallel to the disloca-
tion line. The screw and edge defects can combine in a crystal, as 
shown in Figure 4.4(b). The accommodation of the dislocation is 
transformed from one to the other as it changes direction in the 
crystal. The screw dislocation can be revealed by the deposition of 
material on a crystal. Since the screw dislocation produces a partial 
atomic step on the crystal surface, the growth of a deposit on this 
surface will be different at the step region to that on a flat  region 
of the surface. The step is a more stable region for atoms to deposit 
since it offers more bonding sites to an adatom. This preferential 
growth at the step is then revealed as an advance of the step edge 
around the screw dislocation line. This is beautifully demonstrated 
in Figure 4.5.

4.3.3  The Burgers Vector
The Burgers vector is a form of quantification of the line defect 

and is different for the edge and screw dislocation types and was 
first introduced by Dutch physicist Jan Burgers. To calculate the 
Burgers vector, we can make a loop around the defect line (i.e., in 
the plane perpendicular to the line) in steps of lattice vectors. In 
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FIGURE 4.5:  Surface image of a SiC crystal resulting from the existence  
of a screw dislocation on the surface.

FIGURE 4.4:  (a) The screw dislocation. (b) Transition between pure edge and  
pure screw dislocations.
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each direction we move, we count the number of lattice spacings  
to return to the point of origin. The difference gives the magnitude 
and direction of the Burgers vector, which is designated as b. This is 
illustrated in Figure 4.6 for both types of dislocation. We note that 
the Burgers vector for an edge dislocation is perpendicular to the 
direction of the dislocation line, while for the screw dislocation it 
is parallel. We can further note that in the transformation from one 
to the other, as shown in Figure 4.4(b), the Burgers vector remains 
unchanged in direction and magnitude. The Burgers vector is gener-
ally given in terms of the lattice constant of the material. Therefore, 
the magnitude of the Burgers vector may be less than the lattice 
constant and will depend on the plane in which they occur. For the 
case illustrated in Figure 4.6, and assuming a simple cubic structure, 
the Burgers vectors can be written as: = = −a ab [010] [010]  for the 
edge dislocation and = = −a ab [100] [100]  for the screw disloca-
tion. Note that in the evaluation of the edge dislocation, we can start 
at point O, we then move three lattice spacings, in the [001] direc-
tion, to position P. Now we move to point M in the [010] direction 
5 lattice spacings. Then in the [001]  direction we move three spac-
ings to point N. We finally close the loop, moving in the [010]  until 

FIGURE 4 .6:  Illustration of the Burgers vectors for an edge (top)  
and a screw (bottom) dislocation.
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we reach point O again, which is four lattice spacings. Summing the 
number of lattice spacings in each direction we find the difference 
of one lattice spacing in the [010] direction, which corresponds to 
the Burgers vector indicated above for this defect. Clearly for a per-
fect crystal, there is no residual difference. We can compare the per-
fect case on the left of Figure 4.6.

4.3.4  Dislocations and Mechanical Properties of Solids
Dislocations are mobile entities, and can be created and acti-

vated by the application of external forces to the crystal. In fact, 
such processes are important in the mechanical properties of sol-
ids. In general, the mechanical properties of a material depend on 
the internal structure of the sample. This is usually anisotropic, 
meaning that depending on the direction in which the external 
forces are applied, the response of the material will be different. A 
rigorous treatment requires the use of tensor analysis, which can 
resolve how each force acts in the various directions of the crystal. 
Such treatment is beyond the scope of the current text and the 
interested reader is referred to the further reading section at the 
end of this chapter. In the following we shall use a more direct 
and simplified approach, which will bring out the main ideas and 
illustrate the important points of discussion. The most important 
mechanical response that we can consider is how a material reacts 
to mechanical loading. As with most physical properties, we can 
measure the response of the material to the specific action of an 
externally applied force. The classical case would be to load the 
sample gradually with a mass and see how it deforms. This allows 
us to characterize materials in terms of their strength and ductility. 
In many materials, with the initial response to loading, the mate-
rial stretches in an elastic manner. That is, the material returns to 
it original form (shape) when the loading force is removed. We 
generally display this type of behavior in a stress - strain curve. We 
define these quantities as follows: stress is the force per unit area 
(or cross-section) of the sample, which we can write as:

	 σ=
F
A

� (4.16)
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This is expressed in the units of pressure, the Pascal (Pa). The 
strain is defined as the extension of the material per unit length, and 
can be expressed as:

	 
δ

=
x
x

� (4.17)

where x is the original length of the sample. The stress - strain curve 
will then parameterize the response of the material to the applied 
external tensile force, F. By parameterizing we are removing the 
extrinsic factors of the sample dimensions; area, A and length, x. In 
Figure 4.7, we show a typical stress - strain curve, such as observed 
in metals. The initial portion of the curve is linear, corresponding 
to the elastic response of the material. The gradient of this portion 
is defined by the elastic constant or Young’s modulus of the mate-
rial. This can be expressed mathematically using Equations (4.16) 
and (4.17) as:

	 E
stress
strain

F A
x xδ

= =
/
/

� (4.18)

Typical values for metals lie in the range 2 - 50 GPa. Since the 
stress is a dimensionless quantity, the units are again that of pressure.

We note that in Figure 4.7, the linear region ends at what is ref-
ereed to as the yield strength or yield point. Beyond this point the 
material can further extend itself, however, the response is no lon-
ger elastic but plastic. This means that when we remove the applied 
force, the material will no longer return to its original size and shape 
and is said to be plastically deformed. It is this plastic deformation 
that results from the permanent alteration of the internal structure 
of the material and the introduction of dislocations and other defects 
in the solid. As we stretch the material in the plastic zone, the mate-
rial becomes harder, a process called strain or work hardening. This 
is seen by the change of slope of the curve. Work hardening is a 
result of the production of dislocations which become entangled in 
the material and provides additional resistance to deformation since 
they impede the motion of other dislocations. The maximum stress 
that can be attained is called the ultimate strength and the material 
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will then undergo rapid deformation which causes a narrowing or 
necking of the sample and quickly ends with the breaking or frac-
ture of the material. The degree of necking is important, since as 
the sample cross-section thins, the stress further accumulates in this 
region; see Equation (4.16), as A reduces, the stress will increase, 
and therefore the material snaps very soon afterwards. A material, 
such as a metal, which has a visible deformation like this is called 
ductile. The opposite behavior, where the material snaps before 
any visible plastic deformation, is called brittle fracture. Chalk and 
ceramics generally fall into this category. In such materials virtually 
no plastic variation is observed.

Elastic deformation is due the the stretching of interatomic 
bonds along the direction of applied stress. It essentially involves 
all atoms, or interatomic bonds, in the crystal. In plastic defor-
mation, there is a localized structural alteration and involves rela-
tively few atoms, where a slip process occurs. Slip is where there is 
motion of atoms in an atomic plane, and will usually occur between 
close-packed planes. In Figure 4.8(a), we show the schematic pro-
cess of slip, while in Figure 4.8(b) a transmission electron micro-
graph (TEM) of slip planes in a Cd sample. In general the slip 
planes form an angle, φ, with respect to the direction of the applied 
tensile stress.

FIGURE 4.7:  Stress - strain curve for a ductile material.
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Let us consider an applied stress, σ, to a sample of cross-section, 
A. The spacing between atoms is a with an interatomic separation 
of d. The applied stress will be resolved into the slip plane, since 
these will be the weakest points, excluding other defects. This can 
be considered to be a shear stress, which causes the atomic planes to 
slip over one another. For small elastic strain, the shear stress will be 
related to the displacement, x as follows:

	 τ =
µx
d

� (4.19)

where μ represents the shear modulus. Since the atoms in a crystal 
are periodically arranged, we can make the following approximation:

	 K
x

a
sin

2
τ

π
= q r � (4.20)

where K is a constant. Equation (4.20) is interpreted as the stress 
being periodic in x, the displacement, so when the planes move (via 
slip) from its original position to x = a, we essentially return to a 
condition which is the same as that at the start. For very small dis-
placements, x  a, we can now write:

	 τ
π

= =
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a
2

,q r � (4.21)

FIGURE 4.8:  (a) Resolution of tensile stress in a sample showing a slip plane.  
(b) TEM image showing slip planes in a Cd crystal. The lines correspond to the slip planes.
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from which we obtain the constant of proportionality:
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. � (4.22)

We now express Equation (4.20) as:

	 τ
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The critical stress, τc, necessary to produce plastic deformation 
via slip in a perfect crystal can thus be expressed as the maximum 
amplitude of the sinusoidal wave, i.e., the maximum value of τ:

	 τ
π π

=
µ µ



a
d2 2c � (4.24)

If an angle of φ exists between the slip plane normal and the axis 
of tensile stress and an angle λ between the slip direction and the 
tensile stress, the effective stress will be reduced from its maximum 
value. We can resolve to find that the force acting along the slip 
direction is F cos λ, while the area of the slip plane will be A / cos φ. 
The shear stress resolved along the slip plane will now be:

	 τ
λ
φ

φ λ σ φ λ=
/

= =
F
A

F
A

cos
cos

cos cos cos cosq r � (4.25)

The critical stress can now be expressed in the form:

	 τ σ φ λ= cos cosc c � (4.26)

In a sample of Al, the value of shear modulus is about 
3 ×  1010  Nm−2, so according to Equation (4.24) we would expect 
a valus for the critical shear stress to be roughly 4.8 × 109 Nm−2. 
However, measured values of τc turn out to be ~ 107 Nm−2, which is 
around three orders of magnitude smaller than the value expected. 
This discrepancy can only be explained in terms of the existence of 
defects in the crystal in the form of dislocations. It will be these dis-
locations that provide the weak link in the structure from which the 
solid ruptures and in effect no rigid form of slip will take place, i.e., 
the motion of one atomic plane over an adjacent plane.
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The motion of dislocations is provoked by the application of 
stresses on the crystal lattice, where we can think of the displace-
ment occurring in steps equal to the interplanar spacing, as illus-
trated in Figure 4.9. This can be viewed as the effect of a shear 
force on the crystal. If the applied force is sufficient to cause the 
dislocation to move, the slipped area will grow at the expense 
of the unslipped region, where the force per unit length can be 
expressed as:

	 F = τb� (4.27)

This force will be parallel to the direction of motion of the 
slip and perpendicular to the dislocation line. The above equation 
shows that the displacement occurs in portions of the amount, b, the 
Burgers vector in the slip plane. The process of slip will create a step 
at the crystal surface, as illustrated for both edge and screw disloca-
tion, in Figure 4.10.

The motion of dislocations can be impeded by the presence of 
other imperfections in the crystal, where pinning of the dislocation 
can occur. In such a situation, the dislocation can still move, but 
will bow out from the pinning sites. We can consider the dislocation 
pinned between two obstacles a distance, l, apart, such that the an 
applied stress of τ will give a a normal force of τbl on the dislocation 
line. This force is balanced by the tension, T, in the line, such that 
we can write:

	 τbl = 2T sinθ� (4.28)

FIGURE 4.9:  Edge dislocation movement can occur via the slipping of lower portion  
of the crystal with respect to the upper portion.
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The line tension, T, is a vector and has a magnitude given by:

	 T = Gb2� (4.29)

where G is the elastic shear modulus, from which we can obtain:

	 τ
θ

=
Gb

l
2 sin

� (4.30)

Therefore the maximum stress required to cause bowing in 
the dislocation will be when the line forms a semi-circle, i.e., when 
θ = 90°, thus we can write:

	 τ =
Gb
l

2
max � (4.31)

There are other types of motion for dislocations. For example, 
when an edge dislocation moves in a direction which is perpendicu-
lar to its slip plane, the resulting motion is called climb. Such motion 
must be accompanied by the generation or annihilation of vacancies 
or interstitials, depending on whether the motion is in a positive or 

FIGURE 4.10:  Creation of steps by the action of slip for (a) edge  
and (b) screw dislocations.
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negative sense. This is because the number density of defects (inter-
stitials or vacancies) must be maintained in accord with the tem-
perature of the sample. Another form of motion is cross-slip. This 
is where a change of slip plane occurs in the movement of a screw 
dislocation, as shown in Figure 4.11.

4.3.5  Dislocation Energy
The presence of dislocation implies additional energy in the 

crystal and as such they are thermodynamically unstable. We can 
consider the energy associated with the screw dislocation by evalu-
ating the shear strain around the screw line at a radius, r, as shown 
in Figure 4.12. Consider a screw dislocation of length, l, Burgers 
vector, b, along the direction of its axis. The shear strain, γ, of a thin 
annular section, of radius, r and thickness, dr is:

	 γ
π

=
b

r2
� (4.32)

The elastic energy per unit volume, dE / dV, of the annular por-
tion can be expressed as:

	
E
V

G
G b

r
d
d

1
2

1
2 2 2

2

2

τγ γ
π

= = = q r � (4.33)

Given that the volume of the annular ring is: dV = 2πrldr, the 
energy per unit length of the shell is:

	 E
lGb r

r
d

4
d2

q r
π

= � (4.34)

FIGURE 4.11:  The change of slip direction in a screw dislocation is the cross-slip.
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FIGURE 4.12:  Consideration of the elastic strain energy associated  
with a screw dislocation.

From this we can write the total elastic energy per unit length of 
the screw dislocation as:

	  ∫ π π
= = =

E
l

Gb r
r

Gb R
r4

d
4

ln
r

R 2 2

00

q r � (4.35)

where R and r0 are chosen as the upper and lower limits of r. Since 
the energy is relatively insensitive to the ratio R/r, we generally 
express the energy of the screw dislocation as:

	 E lGb2 � (4.36)

The corresponding result for an edge dislocation is:

	 E
lGb R

r
lGb1

1 4
ln

1

2

0

2



ν π ν
=

− −
q r � (4.37)

where ν is called the Poisson ratio and expresses the contraction 
or transversal strain to the extension or axial strain of the mate-
rial. Metals have values typically of the order of ν  1/3. Since the 
energy of dislocations are additional energies in crystals, they will 
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be minimized for smaller b values and this will usually confine the 
dislocations to close-packed directions.

4.3.6  Interactions between Dislocations
We have already seen that dislocations are characterized by 

their Burgers vector. These can be negative or positive since they 
are real vectors. For the case of edge dislocations, a positive (nega-
tive) Burgers vector would correspond to the cases where the extra 
halfplane is above (below) the dislocation line. It is a simple mat-
ter to understand that edge dislocations with opposite sign would 
attract one another while those of the same sign repel. In the for-
mer case, the attraction ultimately leads to the annihilation of the 
dislocations if they lie on the same slip plane, while the repulsion of 
same sign dislocations avoids increasing the local tensions in the lat-
tice. If the dislocation lines lie on different atomic planes they can 
produce a line of vacancies or a line of interstitials if they overlap. In 
certain cases they can give rise to fractional Burgers vectors, called 
a partial dislocation.

We previously illustrated the edge dislocation as a straight line. 
This, however, is not a necessary condition and the line can have 
steps in them, called jogs, such as when two dislocations cross; see 
Figure 4.13(a). The transmission electron microscope (TEM) per-
mits the visualization of dislocations as dark lines. The micrograph in 

FIGURE 4.13:  The crossing of two edge dislocations can introduce jogs in a dislocation, as 
illustrated in (a). In (b) we see a TEM micrograph of a dislocation with jogs along it.
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Figure 4.13(b) shows a dislocation with jogs. Jogs can play an impor-
tant role in the mechanical properties of the solid since they can act 
as an anchor point. Dislocations that cannot move are called sessile.

It is important to note that straight dislocations, while mobile, 
can be pinned by jogs or connections to sessile dislocations. The 
build-up of dislocations in a solid is important in the work-hardening 
process and implies that the working (application of stress) of a solid 
creates more dislocations. Frank and Read suggested the process by 
which this can occur. Consider a dislocation line stretched between 
two anchor points in a solid. If tension is applied to the solid the dis-
location line can bow out. Continuing to apply this tension will cause 
the bowing to increase to the point where the line will eventually 
bow out backwards and meet up to form a closed loop. At this point 
we have a dislocation loop plus a dislocation line between the origi-
nal two anchor points. Therefore we have created a new dislocation 
in the solid. Such a process is known as a Frank - Read source and is 
illustrated in Figure 4.14. Continuing this process can allow further 
dislocations to be produced, giving a series of dislocation lines and 
multiple slip on the same plane.

Since the motion along slip planes requires the least energy, they 
will be the preferred directions of dislocation motion. The combi-
nation of a slip direction and slip plane is called a slip system and 
depends on the lattice type. For example, in the fcc lattice, the slip 
planes are {111}, while the slip direction is < >110 .  Care must be 
taken to define the plane and the particular set of directions that 
exist in that plane. There are 4 × 3 = 12 slip systems in the fcc lattice.

Dislocations can build up in networks and there must be a con-
servation of the Burgers vector when dislocations meet at a node. 
Therefore we can write:

	 b = b1 + b2� (4.38)

where the dislocation of Burgers vector, b, dissociates into two dif-
ferent dislocations, b1 and b2. This is called a dislocation reaction. 
Using the fcc example, we can consider the slip plane (111), see 
Figure 4.15, where from the hard sphere model we can see that 
the Burgers vector = /ab ( 2)[101].  However, given the contour of 
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the spheres, it is possible to see that the slip is more likely to occur in 
two steps; displacement in the [112]  direction followed by the dis-
placement in the [211] direction. This composite motion will have 
a zig-zag form, but means that the lattice plane doesn’t have to go 
directly over an atom and slips in the grooves between them. We can 
write out the Burgers vectors as follows:

	 =
a

b
2

[101] � (4.39)

	 = − =a
a a

b
1
3

[101]
2

[110]
6

[112]1 q r � (4.40)

	 =
a

b
6

[211]2 � (4.41)

From Equation (4.38) we can write:

	 = +
a a a
2

[101]
6

[112]
6

[211] � (4.42)

Here b is said to be a perfect dislocation, while b1 and b2 are 
called partial dislocations. To check whether such a process is likely 
to occur we can consider the energies associated with the dislocation 

FIGURE 4.14:  The Frank - Read source: A straight dislocation line anchored at two points is 
bent by the application of stress causing it to bow and eventually meet up to form a closed 

loop and a new dislocation line between the two pinning points, A and B.
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and the partials, since they are proportional to b2. From this we find 
the following:

	 = = = + =b
a

b b
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b b
a

2
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� (4.43)

From this we note that < +b b b2
1
2

2
2  and is thus energetically 

favorable for a split into the two partials. The two partial dislocations 
may mutually repel to create a region of partial slip called a stacking 
fault. We note that the fcc structure usually has a stacking sequence 
which is given as ABCABC..., which corresponds to the positions of 
the the atoms in successive atomic plane, as shown in Figure 2.12. 
Now supposing that the slip occurs in plane A, then the passage of 
the partial dislocation b1 causes the crystal above the slip plane to 
shift one partial step, such that plane B becomes plane C etc. Thus 
we can see why this partially slipped region is referred to as a stack-
ing fault. Since the stacking fault disturbs the the lattice periodicity, 

FIGURE 4.15:  The (111) plane showing the various principal crystalline directions.  
The Burgers vector b for the perfect dislocation is indicated along with the partials,  

b1 and b2, into which it can dissociate.
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it will have a definite surface energy associated with it and this will 
determine whether the stacking fault can propagate in the crystal. 
The energy criterion for this can be expressed as:

	 b b b2
1
2

2
2< + + ∆ � (4.44)

where ∆ represents the contribution from the stacking fault energy. 
Therefore the stacking fault can hinder the motion of dislocations 
along their slip directions.

It is clear that the motion of dislocations requires work to be done 
on the lattice. Therefore we have an internal resistance to dislocation 
motion called lattice or internal friction and is also known as the Pei-
erls - Nabarro force. We previously mentioned that the intersection 
of dislocations causes this internal friction to increase leading to work 
hardening. Precipitates in the material can also act as pinning sites 
for dislocations and leads to a process called precipitation hardening.

4.4  PLANAR DEFECTS

As the name would suggest, these types of defects occur on sur-
faces and can be a few atomic layers thick. The main planar defects 
are: grain boundaries, tilt boundaries, twin interfaces and stacking 
faults. We have already discussed the latter since it was also relevant to 
our discussion on dislocation motion. While grains are indeed three-
dimensional objects, the grain boundary can be thought of as a surface.

4.4.1  Grain Boundaries
In polycrystalline materials the solid is made up of regions of crys-

talline order with different orientations of the crystalline axes. Such 
regions of crystalline material are called grains. The region (usu-
ally disordered) between the grains is called the grain boundary. In  
Figure 4.16, we show a schematic illustration of grains and grain bound-
aries. Since the physical properties of a material is strongly dependent 
on the local environment and the number of nearest neighbors, the 
existence of grains can have a significant effect on the overall proper-
ties of a polycrystalline solid. Grain size is a crucial factor, since it will 
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determine the proportion of atoms which are in regions that differ 
from the normal bulk crystal; i.e., those on grain surfaces and within 
the grain boundaries themselves. Polycrystallinity can, for example, 
significantly alter the electrical resistance of a metal. The mechanical 
properties will also be strongly dependent on grain structure.

4.4.2  Tilt Boundaries
A tilt boundary is a form of grain boundary in which there is a 

small angle between the crystalline axes of one grain and the adja-
cent grain. In Figure 4.17, we shown a schematic illustration of a tilt 
boundary, which can be viewed as an interface with regular arrays 
of edge dislocations. Since the edge dislocations have the same sign, 
if they are regularly spaced it is possible to evaluate the angle of tilt 
between the two adjacent grains. This can be expressed as:

	 θ=
b
h

tan � (4.45)

where b is the magnitude of the Burgers vector of the edge disloca-
tions and h is the distance between the edge dislocations.

A twist boundary is similar to the tilt boundary, where the 
edge dislocations are replaced by screw dislocations, whose axis is 

FIGURE 4.16:  Crystalline grains are surrounded by grain boundaries, which separate the 
zones of periodic order in the grains. Atoms can find themselves in distinct positions, such 

as inside the grains, at the surface of the grains and within the grain boundary itself.
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perpendicular to the grain boundary. In this case one crystal grain 
will be rotated with respect to the other.

4.4.3  Twin Boundaries
The twin boundary is a very specific interface between grains. 

Essentially it is formed when the misorientation angles are the same 
in both grains and are then joined such that the plane between then 
appears to be a plane of reflection. This situation is illustrated in 
Figure 4.18. Twinning can occur during the growth of a crystal since 

FIGURE 4.17:  The tilt boundary consists of regularly spaced edge dislocations of the same sign.

FIGURE 4.18:  The twin boundary appears to be a plane of reflection for the crystal and cor-
responds to a specific plane, which is equivalent for the normal and twinned portion of the 

sample. A HRTEM (high resolution TEM) image shows a real example of twinning.
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the twin plane represents the same energy for both orientations of 
the crystal in the untwinned and the twinned regions. Plastic defor-
mation can result from the introduction of twinning in a crystal. The 
occurrence of twinning is quite common in metals with the bcc or 
hcp structure.

4.5  NON-CRYSTALLINE MATERIALS

So far we have considered solids to be the result of the regular 
arrangement of atoms in a crystal with the presence of some struc-
tural disorders, as we have discussed above. It is possible, however, for 
solids to be formed under specific conditions which results in no long 
range ordering of the atoms in the solid. Such materials are called 
non-crystalline or amorphous. Common examples are glasses and 
plastics. Typically amorphous solids are produced by rapidly quench-
ing the material from a melt. The rapid cooling is so fast that atoms do 
not have the time to find the position of lowest energy or equilibrium, 
which would occur for a slowly cooled melt. Annealing of amorphous 
materials can lead to the crystallization of the solid in question, though  
it is more likely to result in a polycrystalline solid. In Figure 4.19, we 
show the difference between an ordered solids and a non-crystalline 
one. In a diffraction pattern, we see that while the ordered structure 

FIGURE 4.19:  Illustration of ordered SiO2 and glassy SiO2. In the former, the atoms have 
definite positions and a regular periodic structure. For the glassy state, the atoms have  
no long range regularity, though the interatomic separations are fairly constant. On the  

right hand side we illustrate the form of x-ray diffraction patterns for a crystalline  
material and an amorphous one. In the latter we note a lack of sharp pronounced  

peaks, which are replaced by broad maxima, known as an amorphous halo.
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has well-defined peaks corresponding to the diffraction (constructive 
interference) conditions being satisfied along specific atomic planes, 
in the amorphous sample, the diffraction spectrum consists of broad 
peaks. These broad maxima are called amorphous halos and corre-
spond to the average interatomic spacings in the structure.

Amorphous materials can have significantly different proper-
ties from their crystalline and polycrystalline counterparts and have 
attracted much interest in solid state physics and materials science. 
While glasses tend to be quite brittle in nature, amorphous metals 
can be quite strong and flexible. Also electronic and magnetic prop-
erties can vary appreciably from their normal equilibrium structures. 
In magnetic materials, for example, there has been much interest in 
the partial devitrification from the amorphous state brought about 
by specific annealing. This allows the formation of magnetic nano-
crystals in an amorphous magnetic matrix. The combination of the 
two magnetic phases gives rise to extremely soft magnetic materials, 
with coercive field as low as 0.01 Oe. Such properties do not exist 
in the same materials with a crystalline structure. It is in fact the 
random nature of the material which suppresses magnetic anisot-
ropies which produces such low coercive fields. Amorphous Si and 
SiO2 has also attracted much attention in semiconducting materials, 
which again, due to the lack of atomic periodicity gives rise to altered 
properties and offer new applications. Amorphous Si appears to be a 
good option in the manufacture of solar cells.

The formation of glasses is a well developed area of study with 
many types of glass available. The main principle of glass formation 
is the rapid cooling through the melting temperature, Tm, to the glass 
formation temperature, Tg. A change in slope of the specific volume 
versus temperature is observed at this point. A slow cooling would 
however be accompanied by a sharp drop in the specific volume at 
the melting point, which arises from the crystallization of the melt.

4.6  SUMMARY

While the principal properties of a solid derive from its peri-
odic atomic or crystalline structure, imperfections occur frequently. 
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Crystal imperfections in a solid can have profound consequences 
for material properties. For example, the residual electrical resis-
tance of a solid depends directly on the concentrations of defects 
in the material. The form of defects can be point like, linear, planar 
and three-dimensional. In this chapter, we have described in detail 
these different types of defect. Point defects, for example, come in 
a variety of forms; they can be a simple missing atom, or vacancy, 
to an atom in a non-regular position called an interstitial. Impurity 
atoms can occupy regular or interstitial sites to further complicate 
the situation. The disorder of binary systems also constitutes another 
point defect. The concentration of vacancies and other point defects 
can be calculated in terms of their activation energies of formation, 
generally having an Arrhenius type dependence, as is common for 
thermally driven processes. This was also illustrated for the diffusion 
process, by which defects can move in a solid. Concentration gradi-
ents also provide a driving force in diffusion. In addition to the inter-
ruption of the periodicity in a crystal, point defects can have specific 
properties which can attract charge carries. The transition between 
the eigenstates of these localized charge carriers can give rise to the 
emission of radiation, and hence such structures are referred to as 
color center.

Linear defects come in the form of deformations of the lattice 
structure and are designated as edge and screw dislocations. The 
former can be considered as a missing “halfplane”, while the lat-
ter are formed by a displacement of part of the crystal along a line, 
which appears as a twist in the lattice plane. Dislocations are char-
acterized by their Burgers vector, which gives its direction and mag-
nitude. The edge dislocation has its Burgers vector perpendicular 
the the defect line, while the screw dislocation has a Burgers vector 
parallel to the line defect. The existence of dislocations has a strong 
influence on the mechanical properties of solids, where interac-
tions between dislocations lines can cause a resistance to dislocation 
motion making the material more resistant to applied forces. Such 
a process is called work hardening. The shape of the stress - strain 
curve gives a good idea of the mechanical properties of a solid. The 
linear portion is due to elastic deformation, having a slope equal 
to the Young’s modulus of the material. Plastic deformation occurs 
after the yield point is passes and the material suffers permanent 



Imperfections in Crystalline Order  •  127

damage by the introduction of dislocations into the solid. Motion 
of dislocations takes place according to the slip system (slip-plane 
and slip direction) of the crystal. The movement of a dislocation can 
be dissociated into partial dislocations, where they are energetically 
favorable.

Planar defects occur in solids also in a variety of forms. The most 
common are the region between crystalline portions of a polycrys-
talline solid. These are called grain boundaries and can also have a 
significant effect on the physical properties of a solid. This is because 
the properties depend crucially on the local environment of atoms, 
and when the grains are relatively small, a large proportion of atoms 
can lie at the surface of grains or within the grain boundaries them-
selves. These can have very different symmetries to atoms within 
a crystalline grain. Tilt, twist and twin boundaries are also planar 
defects, which are fairly common. A further linear defect is the 
stacking fault, in which there is a disorder in the normal stacking 
sequence of atomic planes. This situation can occur in atomic planes 
with more than one equivalent minimum energy position.

Three-dimensional defects can occur in solids, such as inclusions 
of foreign atom aggregates. We also outlined the situation where no 
long range order exists in amorphous solids. These can be produced 
by rapidly cooling or quenching a material from its molten state. The 
speed of cooling will determine the degree of disorder. Amorphous 
materials can have significantly different physical properties to their 
crystalline counterparts and has generated much interest among 
material scientists always on the search for new physical properties 
and applications.
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EXERCISES

Q1.	 Derive Equation (4.4)

Q2.	 Use the same procedure to show the corresponding den-
sity of Frenkel defects in a solid.

Q3.	 Determine the density of vacancies in Cu at room 
temperature and just below the melting temperature of 
1356 K. Copper has an energy of vacancy formation of 
1 eV with an fcc structure and lattice parameter of 3.61 Å.

Q4.	 The density of Schottky defects in a specific sample of 
sodium chloride is 5 × 1011 m−3 at room temperature. If 
the interatomic separation is 2.82 Å, determine the aver-
age energy required to create a single Schottky defect in 
this crystal.

Q5.	 Consider the case of 1D diffusion in a medium bounded 
by planes at x = 0 and x = l. In a steady-state solution the 
concentrations at these positions will remain constant, 
with constant diffusion coefficient, D. Show that this 
leads to:

	 =
c

x
d
d

0
2

2
� (4.46)
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Find the form of the solution to this equation and show 
that the steady-state flux can be expressed as:

	 =
−

J D
c c

l
1 2 � (4.47)

Q6.	 If the ratio of diffusion rate of Ag in Si at temperatures 
of 1350 °C and 1100 °C is 8 in a specific doping process, 
calculate the activation energy.

Q7.	 Calculate the diffusion coefficient of Cu in Ag at 550 °C, 
assuming that the energy involved is 121 kJmol−1 and 
D0 = 0.25 × 10−4 m2s−1. Evaluate the approximate dis-
tance of penetration of Cu atoms after 1 hour.

Q8.	 A color center in an NaF crystal has a blue tinge. 
Estimate the effective charge of the negative ion vacancy 
using the Bohr model. Make any assumptions required.

Q9.	 Illustrate graphically and analytically that the first two 
dislocations add to give the third dislocation in the fol-
lowing reaction:

+ =[211] [121] [110]a a a
6 6 2

Determine whether this reaction is energetically 
favorable.

Q10.	 What is the spacing between edge dislocations in a tilt 
boundary in fcc Ni if the tilt angle is 2°? N.B. Ni has a 
lattice parameter of 3.52 Å.

Q11.	 A hexagonal crystal may twin on {1012}  in a < >1011  
direction. Make a sketch of this twin.





CHAPTER 5
LATTICE VIBRATIONS

“If you want to find the secrets of the universe, think in terms of energy, 
frequency and vibration.”

—Nikola Tesla

5.1  INTRODUCTION

We have considered solids, up to now, as an assembly of atoms 
in fixed positions on the sites of a Bravais lattice. In reality atoms 
are not fixed, but have a certain kinetic energy from which they can 
move either to another lattice site, as we saw in the previous chap-
ter, or can undergo elastic vibrations. We will assume, in this latter 
case, that the atoms have a mean equilibrium position which cor-
responds to the Bravais lattice site, about which this vibrations takes 
place. We also assume that the amplitude of vibration is small with 
respect to the lattice spacing. The driving force for the motion of the 
atoms/ions in the solid is from thermal energy. So when we come to 
describe this situation in more detail, we have made the assumptions 
which are necessary for a simple treatment, called the  harmonic 
approximation. Thus we say that atoms vibrate about the position of 
the Bravais lattice sites, though at any one instance, the atoms in a 
solid are not fixed at those points. The average deviation of the atom 
from its corresponding lattice site will depend on the thermal energy 
available. In fact, we equate thermal energy as lattice vibrations, 
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which occur as a series of superposed sound waves with a frequency 
spectrum determined by the elastic properties of the crystal.

The discrete vibration of the lattice is called a phonon, in anal-
ogy to the photon, the quantum energy for electromagnetic radia-
tion. The analogy extends further than just a name, and phonons 
have much in common with photons. Both, in addition to having 
discrete  energies, can be created and destroyed in collisions, and 
they are described by Bose - Einstein statistics, being bosons. The 
phonon, as we shall see, is an extremely important particle (or quasi-
particle), having fundamental roles in thermal properties of solids as 
well as being a form of energy transfer between, for example, elec-
trons and the crystal lattice.

In this chapter, we will outline the fundamental theory of lattice 
vibrations in one-dimension for a monatomic and a diatomic assem-
bly or chain. We will further discuss some of the main properties of 
phonons and how we can describe the thermal properties of materi-
als. Of course this treatment is also pertinent to the propagation of 
waves in a periodic lattice. The limits we have set ourselves is that 
of linearity, within the harmonic theory of solids. Beyond this limit, 
non-linear effects or anharmonicity become important. Such effects 
are relevant for the consideration of the interactions between pho-
tons and phonons.

5.2 � VIBRATIONAL MODES OF A MONATOMIC 
LATTICE

5.2.1  One-Dimensional Chain
We will consider a chain of identical atoms of mass, m, which 

are separated by a distance, a. In this way we can consider the one-
dimensional Bravais lattice as having vectors: R = na, where n is an 
integer. In addition to the harmonic approximation indicated above, 
it is usual to invoke the adiabatic approximation, which states that 
the ion cores move independently of the electrons, being much 
heavier. Furthermore, we consider that the atoms are held together 
via interatomic bonds which can be viewed as being held together by 
a sequence of springs. The simple model we are constructing even 
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considers that the springs obey Hooke’s law. It can be noted that 
while this approach may seem over simplified, actually we could 
consider the same approach for a three-dimensional crystal in which 
a perturbation of a longitudinal vibration is propagated in a crystal, 
where instead of individual atoms, we consider atomic planes, where 
each plane will have mass, M = Nm, where we consider there to be 
N atoms per plane. Let u(na) be the displacement along the line 
from the equilibrium position, of the atom that oscillates about posi-
tion na, where we have assumed that the atomic chain commences 
at x = 0, see Figure 5.1. In terms of our monatomic chain, the force 
on the nth atom will be, given in terms of Hooke’s law:

	 = − − − = + −+ − + −F K u u K u u K u u u( ) ( ) ( 2 )n n n n n n n n1 1 1 1 � (5.1)

where we only consider the interaction between neighboring atoms. 
The equation of motion for the nth atom can be written using New-
ton’s second law:

	 =F m
u
t

d
d

n
n

2

2
� (5.2)

Now since the atoms have harmonic motion we can express the 
displacement as a plane wave of the form:

	 un = Aei[kna−ω  t]� (5.3)

In this equation A represents the amplitude, k is the wave-vector, 
na is the position of the nth atom, ω = 2πν with ν being the frequency 

FIGURE 5.1:  Schematic diagram showing the atomic positions on a monatomic chain.
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of oscillation of the atom. We can now take the second derivative of 
Equation (5.3):

	 ω ω= − = −ω−u
t

Ae u
d
d

n i kna t
n

2

2
2 [ ] 2 � (5.4)

Combining the above equations into Equation (5.2), we obtain:

	

ω− = + −

= + −
+ −

−

m u K u u u

K e e u
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( 2)
n n n n

ika ika
n

2
1 1

� (5.5)

We have used the fact that: un±1 = une±ika,which can be easily 
demonstrated. Eliminating the displacement, un, and recognizing; 
eika + e−ika = 2 cos(ka), we find:

	 m K ka K ka2 [cos( ) 1] 2 [1 cos( )]2ω− = − = − − � (5.6)

This allows us to express the angular frequency, ω = ω(k), as:

	

k
K

m
ka

K
m

ka

( )
2

[1 cos( )]

2 sin
2

1/2

ω = −

=

uq r v

q r � (5.7)

where we have made use of the half-angle formula for the sine func-
tion. This solution, called the dispersion relation, gives the frequency 
of vibration of the atoms/ions as a function of the wave-vector, k, for 
the one-dimensional lattice. Equation (5.7) can be written as:

	 k
ka

( ) sin
2mω ω= q r � (5.8)

where ω = /K m4m  is the maximum value that the frequency can 
take. The dispersion relation, shown in Figure 5.2, is a convenient 
way of presenting the frequency spectrum since the phase velocity, 
(ω/k), and group velocity, (∂ω/∂k) = ∇k[ω(k)], are directly related to 
this curve1. We note from Figure 5.2 that the frequency is periodic 
in k, with a periodicity of 2π/a. Since we have introduced the phase 
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and group velocities and using Equation (5.7), we can now express 
these as follows:

Phase velocity:

	
ω

= = =
/

/
v

k
k k

K
m

ka
a

K
m

ka
ka

( ) 2
sin

2
sin( 2)

( 2)p q r s t � (5.9)

Group velocity:

	 v
k

k
a

K
m

ka( )
cos

2g
ω

=
∂

∂
= q r � (5.10)

In the region of long wavelengths or small k, which corresponds to 
the acoustic wave regime, we can approximate ka  1, for which we 
can write sin(ka/2)  (ka/2). In this case we have  /v a K m v .p g  
This is called the non-dispersive regime, and corresponds to the lin-
ear portion of the dispersion relation, near the origin. This simple 
treatment has already given much insight into the propagation of a 
disturbance in a chain of atoms and has much relevance for a normal 
3D solid. For example sound, or elastic, waves in a solid propagate 
with a velocity given by ρ= /v E ,  so a knowledge of the Young’s 
modulus, E, and density, ρ, of a solid is enough to estimate the speed 
of sound in a solid. For a 3D solid we can write that the density is:  
ρ = m/a3 and E = K/a. Substituting these into the previous expression  
we obtain the same relationship; = /v a K m ,  as indicated above. 
For example, copper has a density of 8960 kg m3 and a Young’s mod-
ulus of 13.4 × 1010 Pa This gives a speed of sound of 3870 ms−1. 

FIGURE 5.2:  Schematic diagram of the dispersion relation for a monatomic chain.
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The low frequency regime is generally valid for ν ≤ 1012 Hz, which 
includes the normal frequencies of acoustic waves. For the Cu exam-
ple above, experimental results at ultrasonic frequencies (> 20 kHz), 
give a good agreement with the theory. Such sound waves will have 
wavelengths of the centimeter range and thus correspond to hun-
dreds of millions of interatomic spacings. Even at the frequencies in 
the GHz range, the wavelength is around 0.4 µm, this corresponds to 
roughly 1500 atomic spacings.

From the form of the dispersion relation, we see that the maxi-
mum permitted frequency occurs at | k | = π/a.Now what will this 
mean in physical terms for the oscillations of the atoms? Firstly, this 
will correspond to the case where the wavelength is equal to two 
atomic spacings (λ = 2a). This must correspond to a natural limit 
for the phonons, so we can limit our attention to the region of k for 
which we have: | k | ≤ π/a, setting the limit to a region of 2π/a, which  
corresponds to the periodicity of Equation (5.7) and interestingly cor-
responds to the primitive reciprocal lattice vector for the monatomic 
chain of lattice parameter a. As we mentioned previously, for low 
frequencies there is no velocity dispersion, however, for larger values 
of ω this is no longer the case and significant velocity dispersion is 
observed. Low frequencies equate to long wavelengths (λ  a), with 
the lower limit being ω = 0, which corresponds to k = 0 and an infi-
nite wavelength, implying that the atoms are at rest (or moving rig-
idly with no relative displacement). As the frequency increases, the 
wavelength decreases until we reach our upper limit, ω = /K m2 .m  
The vibrational states or modes are a property of the lattice and not 
the individual atoms and the dispersion relation expresses this prop-
erty of the crystal lattice. These changes are accompanied by the 
variations of the phase and group velocities. We have already noted 
that for low frequencies υg  υp, however, as the frequency increases 
and dispersion emerges, then υg < υp. At the maximum frequency 
the group velocity falls to zero, while the phase velocity at this point 
is about 64% of its value at zero frequency2. Something very impor-
tant is happening here. We have seen that it makes no sense to con-
sider wavelengths below 2 atomic spacings, but what is happening at 
this limit? Since the frequency spectrum is only repeated outside the 
reciprocal lattice unit cell, we can say that all of the frequency spec-
trum is thus contained within it. In fact, the limit of the reciprocal 



Lattice Vibrations  •  137

lattice unit cell for k = ±(π/2), corresponds to the Wigner-Seitz 
cell, mentioned in Chapter 2, for our 1D lattice. The area within this 
region is called the first Brillouin zone. The second Brillouin zone 
occupies the same area on either side of the first Brillouin zone. 
We will mention Brillouin zones again for other structures when we 
discuss electronic states and band structures in Chapter 7. Any set 
of atomic displacements consistent with Equation (5.3) for a value 
of | k |  >  (π/a) are equally valid with any wave-vector ′ = +k k G,  
where G is a reciprocal lattice vector. Which is precisely what we 
said about all of the spectrum being represented in the first Brillouin 
zone; the primitive unit cell of the reciprocal lattice. Now returning 
to the condition | k | = (π/a); this is equivalent to saying λ = 2a, since 
we can only propagate our waves along the direction of the chain, 
we can see that this is actually the Bragg condition, where we have:

	 λ = 2d sinθ = 2d sin(π/a) = 2a� (5.11)

here we have set θ to π/2, since the direction of propagation of the 
wave (phonon) is perpendicular to the (imagined) planes and d = a. 
Thus we conclude that the phonons are diffracted at the point where 
their wavelength corresponds to a Bragg condition; i.e., at the Brillouin 
zone boundary. The limit value of the wave-vector corresponding to 
the Brillouin zone boundary is a standing wave rather than a travel-
ling wave, and the Bragg condition is through a 180° angle, such that 
it interferes with the incoming wave. This type of condition will also 
occur in two and three-dimensional lattices when the wave-vector 
reaches the Brillouin zone boundary. In such cases, the wave must 
have a zero component of its group velocity in the direction perpen-
dicular to the zone boundary line of plane in k-space.

So far we have only discussed the possibility of the atoms being dis-
placed in the direction of the chain, i.e., longitudinal vibrations. However, 
the linear lattice can also support motion in the lateral directions; these 
are called transversal modes. The forces acting on transversal modes are 
different from those of the longitudinal modes and are thus independent, 
and both sets give rise to different branches on the dispersion curve. 
Actually, since there is more than one transversal direction, these modes 
can be degenerate. This will become more evident when we discuss the 
vibrational modes in three-dimensional lattices in the following section.
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5.2.2  Extension to Three-Dimensions
Much of the physics discussed above remains valid when we 

consider two and three-dimensional lattices. While we will not 
here treat the 3D case mathematically, we will illustrate some of 
the features of normal modes of vibrations in 3D lattices. The types 
of vibrational modes can be both longitudinal and transversal, and 
only in special cases will planes move in unison, as can occur in 
cubic crystals along special crystalline directions. For cubic crystals 
it is possible for there to be purely longitudinal or purely transverse 
modes in [100], [110] or [111] directions. In general, most waves in 
three-dimensions will be a mixture of longitudinal and transverse. 
We note that while in 1D the transverse modes are degenerate, in 
3D this will not necessarily be the case and in most circumstances 
will not be so. Therefore, we may expect to see three branches of 
the dispersion relation, one for longitudinal modes and two for 
transversal modes. In certain directions the transverse vibrations 
will be degenerate.

Experimentally, the phonon spectrum can be measured using 
inelastic scattering of thermal neutrons, since they have the appro-
priate energies for transfer to the crystal lattice. Electrons will not 
have much interaction with neutrons of these energies3, while there 
can be appreciable changes in magnitude and direction of the neu-
trons with phonons. In the scattering process, the neutrons impart 
some of their kinetic energy to the lattice in the form of phonons. 
Given that the initial energy, E, of the neutrons is known and their 
subsequent energy (after collision), ′E , can be measured, we can 
determine the phonon energy as the difference. We note that the 
neutron kinetic energy can be expressed as:

	


=E
k
m2

n

n

2

� (5.12)

and

	


=
m

k
v

n
n n � (5.13)

being the wave-vector of the neutron of velocity υn and mass, mn = 
1836.65 me = 1.675 × 10−27 kg. The energy and wave-vector of the 
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scattered neutron have similar expressions. The conservation of 
energy can be expressed as:

	 ω− ′ = ±E E � (5.14)

While the conservation of momentum takes the form:

	 − ′ = ± +k k k Gn n � (5.15)

where k is the phonon wave-vector generated in the collision and 
G is a reciprocal lattice vector. It is customary to write the crystal 
momentum of a phonon as hk. The change in momentum of the neu-
tron is the momentum gain by the crystal in the form of the phonon 
to within an additive reciprocal lattice vector. The additive recipro-
cal lattice vector can be ignored when we consider the energy con-
servation, which is a periodic function of the reciprocal lattice:

	 ω(k ± G) = ω(k)� (5.16)

In a neutron scattering experiment the energy and momentum 
of the incident neutron will be known. The energy of the scattered 
neutrons will thus reveal the phonon spectrum:

	


ω =
− ′E E

k( ) � (5.17)

In general the measurements are taken as a function of the ori-
entation of the crystal, so that we can fully construct the dispersion 
relation for the material. In Figure 5.3, we show the dispersion rela-
tion for fcc Pd4, which is expressed as the variation of the phonon 
frequency with the wave-vector. In the notation given, this refers to 
the directions in the (real and reciprocal) lattice, where the points of 
high symmetry are expressed as greek capital letters (Γ, K, X, etc.).

5.2.3  Number of Modes: Density of States
Since we have access to the complete dispersive behavior of 

the phonons in the reciprocal lattice unit cell or Brillouin zone, we 
should be able to evaluate the vibrational frequency spectrum. That 
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FIGURE 5.3:  (a) Phonon dispersion for fcc Pd. The symbols on the x-axis represent the 
positions of the Brillouin zone boundary in different orientations of the crystal lattice. 

The experimental data are shown in red dots, while the theoretical calculation is shown 
black. (b) The first Brillouin zone for the fcc structure. The points of high symmetry are 

shown and illustrate how the phonon spectrum is constructed with respect to the  
orientation of the crystal. (Figure 5.3(a) published with permission: D. A Stewart,  

“Ab initio investigation of phonon dispersion and anomalies in palladium”,  
New J. Phys., 10, 043025 (2008); ©IOP Publishing Ltd and Deutsche  
Physikalische Gesellschaft. Published under a CC BY-NC-SA licence.)

is the number of normal modes of vibration as a function of fre-
quency or energy. Since our crystal has finite dimensions, the num-
ber of modes of vibration will also be finite in size due to the discrete 
nature of the crystal lattice. We will start by considering the one-
dimensional monatomic chain with a total of (N + 1) atoms, giving 
the chain a length of Na. If we assume that the atoms at the end of 
the chain are fixed (u1 = uN+1 = 0), then longitudinal or transversal 
vibrations can exist for which there are integral numbers of half-
wavelengths along the length of the chain. Therefore, we can write 
the allowed wave-vectors as:

	 

νπ νπ
ν= = =νk

Na L
N; 1,2,3, , � (5.18)

where we have written that the length of the chain is, L = Na. Since 
the chain is long, the spacing between the allowed modes of vibra-
tion will be very small. It is usual therefore to discuss the number of 
states or modes of vibration between kν and kν + dkν. A simple dif-
ferentiation of Equation (5.18) allows us to give this as (N a/π)dkν. 
Now the number of states per unit length of the chain, in an interval 
dkν, will be:
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where g(k) is referred to as the density of states with respect to k. 
(Note that we have dropped the subscript ν for simplicity.) We note 
that in this 1D case, g(k) doesn’t have a k-dependence, which is not the 
case for higher dimensions. Despite the fact that we imposed the fixed 
boundary conditions on our evaluation of the density of states, actually, 
this has no limitation on the actual density of states for free motion of 
the end atoms in the chain. The only important point is our assump-
tion of large, N, the number of atoms in the chain. Often it is useful to 
express the density of states in terms of the frequency, ω, or energy, E, 
of the phonons. To convert we need to look at the relationship between 
the wave-vector and the other parameters. For example, the density of 
states as a function of frequency can be obtained as follows:
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Using Equation (5.8) we can write:
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Substituting into Equation (5.20) we obtain the frequency den-
sity of states as:
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We see that g(ω) does have a frequency dependence. In terms 
of the number of allowed modes in reciprocal space, the size of the 
lattice is important. Which makes sense since there are more modes 
available if we increase the size of the crystal. For our 1D k-space, 
the spacing between modes is 2π/L.

We can extend our discussion for the 3D case, where now the 
k-space available per mode is now (2π)3/L1L2L3, where the Li are the 
lengths of the crystal along the three Cartesian axes. The volume of 
k-space will be a spherical shell centered on the origin, with a radius 
of k ≡ |k| and a thickness of dk. This volume will be 4πk2dk and the 
corresponding density of states per unit volume can be expressed as:

	

g3D(k)dk=
1
Ωcrystal

s 4πk2dk
(2π)3/L1L2L3

t

=
k2dk
2π2 � (5.23)

where Ωcrystal represents the crystal volume and is equal to L1L2L3. It 
should be evident that the calculation for a 3D lattice is significantly 
more complex than for the 1D case, though for the low frequency 
(non-dispersive) limit, it can be shown that g(ω) varies as ω2. The 

FIGURE 5.4:  Phonon density of states as a function of frequency.The different peaks 
correspond to the transverse and longitudinal vibrational modes.
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total number of vibrational states for a 1D lattice was found to be 
equal to N, the number of atoms. In a three-dimensional solid this 
is 3N. Of these, one-third (N) are longitudinal modes and two-thirds 
(2N) are transverse modes. In Figure 5.3, the transverse (T) and lon-
gitudinal (L) modes are indicated for a Pd fcc lattice. In Figure 5.4, 
we show a phonon density of states as a function of frequency for a 
fcc structure. The sharp peaks are common in such curves and arise 
from abrupt changes in slope, which occur due to the group veloc-
ity of the phonons vanishing at these points. Such critical points are 
known as van Hove singularities. These also occur in the electronic 
spectra of solids for similar reasons and can be of considerable use 
in understanding electronic band structures, which we will discuss 
in Chapter 7.

5.3 � VIBRATIONAL MODES OF A DIATOMIC  
1D LATTICE

We will return to a 1D chain of atoms, which can be considered 
to be a one-dimensional lattice with a basis. Here we will consider 
a chain of alternating atoms of masses, m1 and m2, where for argu-
ment sake we can write m1 > m2 and separated by a distance a. 
We will follow a similar analysis to that given above for the mona-
tomic case. Since the two atoms in our diatomic chain have dif-
ferent masses, we can expect them to have different displacement 
amplitudes, such that:

	 u2n = Aei[2kna−ω t]� (5.24)
	 u2n+1 = Bei[k(2n+1)a−ω t]� (5.25)

We now write the equations of motion for the two atoms as:
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Using the relevant relations given in Equations (5.24) and (5.25) 
and extending for u2n+2 and u2n−1, we obtain:

	 (2K − m1ω2) A = K B (eika + e−ika)� (5.28)
	 (2K − m2ω2) B = K A (eika + e−ika)� (5.29)

We re-arrange these as:

	 (2K − m1ω2) A = 2K Bcos(ka)� (5.30)
	 (2K − m2ω2)B = 2K Acos(ka)� (5.31)

Eliminating the constants A and B, we obtain:

	 (2K − m1ω2)(2K − m2ω2) = 4K2cos(ka)� (5.32)

This dispersion relation is quadratic in ω2, which can be solved as:

	 ω = + ± + −± K
m m
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m m
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1 1 1 1 4sin ( )2

1 2 1 2
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1 2

1/2

q r s q r t �(5.33)

The solution has two distinct parts which are highly significant 
and is shown graphically in Figure 5.5.

The solution we see in Equation (5.33) looks rather more com-
plex than the solution for the monatomic case. However, if we put 
m1 = m2 = m, we find that the solution reduces to:

	 ω = ±±
K

m
kak( )

2
[1 cos( )]2 � (5.34)

This situation is shown by the green line, where α = m2/m1 = 1. 
The negative solution is identical to that given in Equation (5.7). We 
will return to the second solution shortly. The negative solution to 
Equation (5.33) corresponds to the lower branch called the acoustic 
branch. The representation given in Figure 5.5 is restricted to the 
first Brillouin zone (| k | ≤ π/2a). We note that since we have kept 
the atomic separation at a distance, a, the periodicity of the diatomic 
chain is 2a. This means that the upper portion appears to be folded 
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back at the Brillouin zone boundaries. Actually, closer inspection 
will reveal that this upper branch, called the optical branch, arises 
from the positive solution and allows us to represent all frequencies 
within the Brillouin zone. From Figure 5.5 we note that there are 
three critical points indicated by, ω1, ω2 and ω3. The first of these 
corresponds to the frequency of the acoustic branch at the Brillouin 
zone boundary, the second to the solution of the optical branch at 
the Brillouin zone boundary and the last solution corresponds to the 
optical branch for k = 0. It is useful to express our solution in terms 
of these frequencies:
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Now we can express the acoustic (A) and optical (O) branches of 
our longitudinal vibrations for the diatomic chain as:
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FIGURE 5.5:  Dispersion relation for a diatomic 1D lattice for longitudinal wave propagation. 
This representation shows just the first Brillouin zone, which contains all the necessary  

frequency behavior. Here α = m2/m1. The upper branches correspond to the optical modes, 
while the lower branches correspond to the acoustic modes. A schematic representation  

of the acoustic and optical modes are shown in the lower left of the figure.
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The solution for k = 0 gives: ω =k( ) 0A
2  and ω ω=k( ) ,O

2
3
2  while 

at k = π/2a, the Brillouin zone boundary, it is a simple matter to 
show ω ω=k( )A

2
1
2  and ω ω=k( ) .O

2
2
2  (N.B. if you want to try this, use 

Equation (5.33) instead of (5.36) and (5.37)5.) Of great significance 
is the difference in the optical and acoustic frequencies at the zone 
boundary. Effectively we have a frequency region in which no modes 
of vibration can exist. The larger the difference in the two masses, 
the greater this frequency gap will be. The forbidden region will dis-
appear when the masses of the atoms in the basis are equal.

Further insight can be gained in the consideration of the ampli-
tudes of vibration. From Equations (5.30) and (5.31), we can express 
the ratio of amplitudes of the two atoms in the basis as:
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For long wavelength (low frequency) acoustic waves, the ampli-
tude ratio is practically unity and all atoms move in the same way. 
We can evaluate the velocity in this region by considering:
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Under this condition we obtain:
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In this limit we can thus write:

	 ω =
+
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From which we can express the phase and group velocities in 
this region as:
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As the value of k increases from zero, the frequency initially 
increases linearly. The ratio (A/B) will also initially increase from 
unity in a linear fashion. Further increase of k will be followed by 
further increases of frequency and (A/B), but not linearly. The limit-
ing case is when we reach ω ω= = K m2 / ,A 1 1  where k = ±(π/2a). 
At this point the phase and group velocities will be:
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Let us now turn our attention to the optical branch, ωO, which 
is so named since these modes can be excited by light of an appro-
priate frequency. (In fact, the techniques of Brillouin light scatter-
ing and Raman spectroscopy are based on the scattering of light by 
phonons or other quantized excitations in solids.) In these modes 
the solutions are given by the positive sign in Equations (5.33) and 
(5.35). For the long wavelength limit, where k → 0, we have the 
frequency maximum; ωO → ω3. At this point we have the phase and 
group velocities:
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We note that the group velocity tends to zero where the gradi-
ent of the dispersion relation goes to zero. Substituting k = 0 and  
ω = ω3 in Equation (5.38), we find the amplitude ratio takes the form:
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= − � (5.48)

Therefore, we conclude for the long wavelength limit, the 
optical vibrations have neighboring atoms out of phase, such that 
the center of mass remains unmoved. The wave becomes a stand-
ing mode, since υg goes to zero. The (A/B) ratio remains negative  
throughout the entire optical branch, and as we reach the Bril-
louin zone boundary at k = ±(π/2a), we find ω → ω2, its short 
wavelength limit (λ = 4a). Again the phase velocity at this limit 
diverges and the group velocity tends to zero. We note that at 
the Brillouin zone boundary, both optical and acoustic branches 
become standing wave modes, corresponding to the Bragg diffrac-
tion effect through an angle of 180°. The mass ratio (m2/m1) will 
determine the size of the frequency (band) gap between the two 
branches at this point, as illustrated in Figure 5.5. If m1  m2 the 
optical modes will tend to a straight line since ω3 → ω2, and the 
gap will be wide. At this point we can ask, what happens at fre-
quencies in the region of the gap and why they do not excite lat-
tice vibrations? Since the solutions are limited to extremal values 
by the sine function, the only way that we can extend the solution 
into the forbidden region is by making the wave-vector imaginary; 
k = ±(π/2a + iα). In this case we obtain a decaying exponential 
term in our solution, which is an attenuation factor. This factor 
becomes large for the forbidden regions and effectively damps all 
normal modes of vibration.

As with the monatomic case, the vibrational modes can be both 
longitudinal and transverse, which adds further branches to the 
phonon spectrum, one longitudinal and two transversal. Vibrational 
modes in solids are frequently labelled; LO, LA, TO and TA, for 
the various combinations of longitudinal optic (LO) etc. Transverse 
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FIGURE 5.6:  The phonon dispersion curve for GaAs, which is a diatomic material.  
The solid lines are theoretical models and points correspond to experimental data.  

The vertical dashed line in the [0 ζ ζ] direction represents the zone boundary.  
In this direction, points labeled I, II refer to modes whose polarization vectors  

are parallel to the (011)  mirror plane. Other modes are either strictly  
longitudinal (L) or transverse (T). (Reprinted figure with permission from:  

J. L. T. Waugh and G. Dolling, Phys. Rev. 132, 2410, (1963). Copyright 1963  
by the American Physical Society.)

modes can be degenerate in certain cases, as for the monatomic 
case. In Figure 5.6, we show an example of a 3D phonon spectrum 
of a diatomic material (GaAs), which shows the various branches we 
have discussed.

5.4  THERMAL PROPERTIES OF SOLIDS

Since we associate heat in a crystal lattice with the vibrations 
of its atoms, the study of the vibrational modes of atoms in crystals 
should provide much practical insight to the thermal properties of 
solids. It is worth reviewing some of the basic principles of thermal 
properties of solids here since it is related to lattice modes, in other 
words, the vibrational motion of atoms in a solid is directly related to 
the heat content of the system.
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5.4.1  Classical Specific Heat: Dulong and Petit’s Law
The specific heat of a system is defined as the heat energy that 

must be supplied in order to raise its temperature. We can express 
this as:

	 C
U
T

v

v

=
∂
∂
q r � (5.49)

The subscript, v, indicates that this process takes place at con-
stant volume. The motion of an atom in a solid can be expressed in 
classical terms as: E m v x( /2) [ ],mv Kx

2 2
2 2 22 2
ω= + = +  being the sum 

of kinetic and potential energies. Averaging over a Boltzmann (clas-
sical) distribution is made as follows:

	 E
Ee v x
e v x

d d
d d

E k T

E k T

/

/

B

B
< >=

∫ ∫
∫ ∫

−

−
� (5.50)

with the integration over the limits of velocity and position. Using 
the above energy, it can be shown that < E > = kBT. For an assem-
bly of N atoms in a solid with three degrees of freedom will give a lat-
tice energy of U = 3NkBT, which, using Equation (5.49) gives a con-
stant value of the specific heat of 3NAkB = 3R = 24.94 Jmol−1K−1.6 
This is the classical result known as the Dulong and Petit law, dating 
from 1819. It was only superseded in the early 20th century with the 
advent of early quantum theory and the Einstein model, by which 
time it was evident that the classical theory was severely deficient.

5.4.2  Einstein’s Model
The Einstein model is based on the Planck quantum hypothesis 

(1901). In this, Einstein assumed that each atom of the solid vibrates 
about its equilibrium position with an angular frequency, ω and all 
atoms have the same frequency, vibrating independently from the 
other atoms of the solid. The quantum mechanical theory of the har-
monic oscillator gives an energy spectrum of:

	 E n
1
2
ω= +q r � (5.51)

where n = 0, 1, 2, ... The zero point energy (n = 0) has no significant 
role in the specific heat since we are only interested in the change of 
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internal energy due to the increase of temperature, as such it makes 
no difference if we write: En = nhω7. The occupancy or probability 
of this energy state can be expressed as:

	 f E
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then the total energy of the solid can be written:
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Using the following:
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we can write Equation (5.53) as:
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The factor  −ω −e( 1)k T/ 1B  corresponds to the average phonon 
occupancy for the mode of frequency ω, at temperature T. Indeed it 
is a special case of the so-called Bose - Einstein distribution function, 
which applies to particles called bosons, of which phonons and pho-
tons are examples. In his model Einstein assumed that a solid with N 
atoms will have N modes of vibration, with all the atoms having the 
same frequency, ωE. Following Equation (5.49) we evaluate the heat 
specific heat capacity as:

	

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It is customary to define the Einstein temperature as: 
ωΘ = /k ,E E B  such that the above equation takes the form:
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In the high temperature range, � �ω k T,E B  we can write 
� �� ω+ /ωe k T1 ,k T

E B
/E B  or in terms of the Einstein temperature: 
Θ TE  and  +Θ /Θe T1 .T

E
/E  It is evident in this limit that 

Cυ  →  3R, and we recover the Dulong - Petit law. At the other 
extreme, where � �ω k TE B  and ��ωe 1,k T/E B  we find:

	 =
Θ −ΘC R
T

e3v
E T

2
/Eq r � (5.58)

This has a dominant exponential variation at low temperatures 
and while being a reasonable approximation is physically unrealistic 
in expecting all vibrational modes to have the same frequency. Since 
the atoms are coupled, they do not act independently.

5.4.3  The Debye Model
The Debye model overcomes the shortfall of the Einstein 

approach, which while following from his example in maintaining 
the energy and phonon occupancy relations, allowed the angular 
frequency of a vibrational mode to depend on the wave-vector, k. 
The angular frequency must have a maximum value or cut-off fre-
quency, ωm, such that the total number of modes is finite and can be 
expressed as:

	 ∫ ω ω=
ω

N g3 ( )d
0

m

� (5.59)

Where we have considered a 3D solid. The cut-off frequency 
will affect the total vibrational energy, which will now take the form:

	

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To progress we need to evaluate the density of states, g(ω), 
which in fact is the principal correction Debye made to Einstein’s 
approach. To solve this problem, Debye suggested that the phase 
velocity, υp = (ω/k), be chosen as the speed of sound in the solid 
for all modes of vibration. This requires that an upper limit of the 
frequency, called the Debye frequency, ωD, be imposed in the inte-
gral, Equation (5.60). This is necessary to limit the total number of 
modes to 3N. While this cut-off is artificially imposed, it works at 
low temperatures since there are very few high frequency modes in 
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this range. A Debye characteristic temperature is also defined, much 
in the same way as the Einstein temperature, and is expressed as: 

ωΘ = /k .D D B  The density of states for a three-dimensional solid 
was given in Equation (5.23), which when adjusted to include the 
one longitudinal and two transverse modes can be expressed as:

	 ω
ω
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ω= + /g
v v
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which refers to the low temperature acoustic limit. If transverse and 
longitudinal waves are transmitted at the same velocity we obtain:
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In Figure 5.7, we illustrate the form of the density of states for 
the Debye model and is compared to the case for an fcc metal.

This allows us to express the vibrational energy per unit volume 
of the crystal as:
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FIGURE 5.7:  Phonon density of states in the Debye model and that for an fcc metal.  
While there is good agreement for low frequencies, discrepancies emerge  

for the higher temperature regime.
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If we put ω= /x k T,B  we can simplify the above expression to:
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where we have taken into account that the integration over the den-
sity of states gives, ω π/ = /N V v3 2 .D

3 2 3  Now we can evaluate the 
specific heat as:
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We can express the extremes of temperature analytically, but a 
full range evaluation must be done numerically. The value of ΘD is 
obtained as a fitting parameter.

In Figure 5.8, we show the comparison of the Debye and Einstein 
models of the specific heat of a solid as a function of reduced tempera-
ture. We note that both the Einstein and Debye models tend to the 
Dulong - Petit limit at high temperatures, though there is some discrep-
ancy at low temperatures, with the Debye model having a good agree-
ment with experiment over the whole temperature range.

In the high temperature limit, the integral reduces to Θ /T( ) ,D
1
3

3  
and we recover the Dulong - Petit result of Cυ = 3NAkB. For low 

FIGURE 5.8:  The curve for the specific heat of a solid for the Debye and Einstein models. 
The red line corresponds to the Dulong - Petit law.
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temperatures < Θ /T( 10),D  the integral in Equation (5.65) can be 
taken to range up to infinity, giving the integral a value of (π4/15), 
from which we obtain:

	 

π
Θ

C
Nk

V
T12

5v
B

D

4 3

q r � (5.66)

This exhibits the cubic dependence observed experimentally. In 
the case of metals, the specific heat has an additional contribution at 
low temperatures and can be shown to have a variation of the form:

	 = + = +C AT BT C Cv el latt
3 � (5.67)

where the first term is attributed to the specific heat of the free elec-
tron gas in a conductor and the second term is the Debye lattice or 
phonon contribution. (This will be elaborated upon in the following 
chapter, see Section 6.8.) The Debye characteristic temperature is a 
material constant, which is about 100 K in Pb and as high as 732 K 
in LiF. Clearly the value of ΘD will depend on the elastic constant of 
the material and its density through the speed of sound in the solid.

It is evident from Figure 5.7 that the density of states (DOS) is 
more complex than the Debye picture. Corrections can be made by 
considering that the wave-vectors be limited to kD = ωD/υ and not 
just being limited to the first Brillouin zone. The structure of the real 
DOS arises from the consideration that the velocity of propagation 
differs for the longitudinal and two transverse modes.

5.5  ANHARMONIC EFFECTS

In the preceding sections, we have relied on the fact that the 
amplitude of the atomic oscillations about their equilibrium posi-
tions are small and that we are only concerned with a linear har-
monic response. While the first approximation is quite reasonable 
in a majority of cases for temperatures well below the melting tem-
perature of a solid, the second assumption can prove too limiting in 
reality. Deviations from the latter lead to what are termed anhar-
monic effects. Such effects arise due to higher order terms in the 
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potential, which we previously assumed to obey Hooke’s law, see 
Equation (5.1). However, the true potential has a form more akin to 
that illustrated in Figure 1.6, see Chapter 1. We note that for very 
small oscillations about the equilibrium position Hookes law is an 
acceptable approximation, but if the vibrations extend beyond a very 
small amplitude we need to consider higher order terms. Expanding 
the potential energy in terms of the deviation from the equilibrium 
position, gives a relation of the form:

	 = + − ′ − ′′V u U Ku K u K u( )n n n n0
2 3 4 � (5.68)

where the coefficients are positive. Another form of the anhar-
monic potential is given by the Morse potential, which again has an 
asymmetric variation. The general form of anharmonic potential is 
shown in Figure 5.9. One of the consequences of the asymmetry in 
the potential is that the potential energy changes with interatomic 
separation. Therefore for higher temperatures more phonons will 
be excited and anharmonicity effects will be more pronounced. 
Another consequence is that while the harmonic potential has evenly 
spaced modes, as given by Equation (5.51), the anharmonic poten-
tial means that the modes are note regularly spaced and for higher 

FIGURE 5.9:  The asymmetric potential between atoms in a crystal gives rise  
to non-linear effects called anharmonicity.
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order vibrational modes, the energy can be significantly different 
from that given by the harmonic approximation.

5.5.1  Thermal Expansion
An important effect of anharmonicity is thermal expansion. The 

expansion of the crystal lattice with temperature parallels that of the 
heat capacity. It is always important to bear in mind that when con-
sidering the thermal behavior of solids, the energy content of the 
solid resides in the phonons and not in the individual atoms. That 
is, we cannot impart energy to a single atom since its vibrations will 
cause the neighboring atoms to vibrate. Therefore thermal energy is 
manifest as a collective excitation of the solid in the form of a pho-
non. We can make a crude estimation of the thermal expansion as 
follows: Firstly, the classical value of the mean square displacement 
has the form:
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The mean displacement is non-zero due to the cubic term of 
Equation (5.68). This can be assessed by taking ∂V/∂u = 0 and 
neglecting terms higher than cubic and takes the form:
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For high temperatures this is linear in T, while at low tempera-
tures it varies as T4 in the same way < u2 > does. The change in 
volume of the crystal will also affect the frequency of the vibrations, 
which we can express in the form:

	
ω
ω

γ= −
∆ ∆V

V
� (5.71)

where γ is called the Grüneisen constant. This then relates the 
changes in phonon frequency with those of the lattice volume, and 
can be alternatively expressed as:
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In practice, the Grüneisen constant has a value close to unity. 
The coefficient of thermal expansion can be expressed in terms of 
the Grüneisen constant as:

	 α
γ

=
C
E3

v � (5.73)

where E here refers to the Young’s modulus of the solid. Since this is 
relatively independent of temperature, the thermal expansion coef-
ficient should tend to a constant value at large temperatures, while 
as T → 0 it will vary as T3. In metals at low temperature, there will be 
a further contribution to the thermal expansion due to the electronic 
specific heat, as noted above.

5.5.2  Thermal Conduction
In an ideal crystal within the harmonic approximation, two pho-

nons can pass through one another without interacting. They would 
be reflected at the crystal surface and continue to move through the 
solid. In real materials, defects and anharmonicity cause phonons 
to interact, be scattered and decay. Phonons behave much like par-
ticles in a gas which collide and are in thermal equilibrium at a given 
temperature. In non-conducting materials we might expect that the 
heat be transported through the crystal with the speed of sound. 
However, in reality the phonons interact and have a mean free path8, 
which leads to a more diffusive heat conduction, which is a much 
slower process. Of course metallic materials can conduct heat via 
electrons, which can dominate thermal conductivity.

We will now consider the thermal conduction due to a tempera-
ture gradient. We recall that the phonon concentration at tempera-
ture, T, which are excited to a vibrational mode of wave-vector, k, 
and angular frequency, ω(k), is expressed as:

	

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At thermal equilibrium, when no temperature gradient exists, 
we can write: < nk > = < n−k >, i.e there is a an equal flow of phonons  
on any opposite pair of directions, and as such there will be no heat 
flow. If we establish a temperature gradient, ∇T, then the thremal 
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conductivity will be determined by this gradient and a rate of energy 
flow, per unit area, will be produced of the form:

	 κ= − ∇TQ l � (5.75)

where κl is the thermal conductivity. The kinetic theory of gases can 
be used to assess the thermal conductivity, if we assume that pho-
nons behave as gas particles, where the phonon velocity is constant 
(which is true below the Debye energy). This gives the following 
expression for the thermal conductivity:

	 κ = ΛC v
1
3l v � (5.76)

where Λ is the mean free path of the phonons and v their velocity. 
The value of Λ can vary quite strongly with temperature, being as 
low as a few atomic spacings near the melting point and as large as  
1 mm at very low temperatures. The variation of the thermal con-
ductivity as a function of temperature is shown in Figure 5.10 9, 
which from Equation (5.76) depends on the product of the specific 
heat and the mean free path of the phonons.

FIGURE 5.10:  The variation of the thermal conductivity with temperature for  
a p-Ge sample with doping concentrations: 1) 103cm-3, 2) 1015cm-3,  

3) 2.3 × 1016cm-3, 4) 2.0 × 1018cm-3, 5) 1019cm-3.
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5.5.3  Umklapp Processes
When two phonons collide they can produce a third phonon. The 

scattering process is however dependent on the size of the anhar-
monic terms in the potential, Equation (5.68). In our discussion of 
the inelastic scattering of neutrons to produce phonons in a crystal 
lattice we mentioned that this occurs via the conservation of energy 
and momentum. The latter is more strictly the crystal momentum, 
hk, which is physically different from the ordinary sense we have of 
the momentum of a moving particle for example. The wave- vec-
tor here corresponds to that of the phonon. Now, for phonons with 
a wave-vector corresponding to the Brillouin zone boundary, the 
resulting vibration must be a standing wave which has zero momen-
tum. In any case real momentum will be transferred in the inelastic 
scattering of a neutron. The details of the transfer of momentum 
depends on the circumstances of the transition itself, as will be dis-
cussed below.

For what is called a normal process (or N - process), the crystal 
momentum is conserved when two phonons collide to form a third. 
Such a process can be expressed as:

	   + =k k k1 2 3 � (5.77)

	   ω ω ω+ =1 2 3 � (5.78)

which correspond to the conservation of momentum and energy, 
respectively. However, the thermalization process for phonons can 
also occur, which satisfy the conservation of energy, as given above, 
but with the following vector relation:

	 + = +k k k G1 2 3 � (5.79)

where G is a reciprocal lattice vector. This process, pointed out by 
Peierls10, is possible since k3 + G is indistinguishable from k3, as we 
have pointed out in previous discussions on the reciprocal lattice. It 
must therefore be a valid conservation law. Such a scattering event 
is termed an Umklapp process (or U - process)11. The N and U - 
processes are schematically illustrated in Figure 5.11.
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It is a curious aspect of the Umklapp process that it apparently 
“destroys” momentum and changes the direction of energy flow. 
The U - process thus can provide thermal resistance to phonon flow 
and thermalize the phonon distribution.

In the high temperature regime, the mean free path of U - pro-
cesses vary as T−1. When we consider low temperatures, we note that 
the mean free path increases and the wave- vectors will get smaller. 
Now since the U-process requires that k1 + k2 extends beyond the 
first Brillouin zone, these processes will reduce in probability and 
eventually be “frozen out”. The limiting case will obviously be when 
k1 = k2 = G/2, which will just take two aligned phonons to the edge 
of the first Brillouin zone. This can be of critical importance for the 
low temperature thermal conductivity, since only N - processes can 
occur and the total phonon wave-vector will be conserved, Equation 
(5.77). This means, in theory, that for an infinite crystal the thermal 
conductivity for an insulator should be infinite in the absence of the 
Umklapp process. This is similar to Knudsen or Molecular flow in 
gases or ballistic transport, which occur when the mean free path 
between collisions is greater than the dimensions of the supporting 
medium. In reality this doesn’t occur, since there will still be some 
small probability of momentum destroying U - processes. Also we 

FIGURE 5.11:  The N and U processes can be understood in terms of the wave-vectors and 
the first Brillouin zone. In the former, all vectors lie within the first Brillouin zone, while  
in the latter, a reciprocal lattice vector is used to define the scattering process to bring  
it back to within the first Brillouin zone. We note that points A and A’ are equivalent.
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need to consider the scattering of phonons by defects, which will 
cause the mean free path of the phonons to be reduced. This will be 
particularly important in polycrystalline materials, since the mean 
free path will always be limited by the average grain size and not just 
by the dimensions of the sample.

5.6  SUMMARY

A simple monatomic one-dimensional model of lattice vibra-
tions allowed us to determine the dispersion relation for the quan-
tized modes of excitation in the form of phonons. We note that there 
is an upper limit on the frequency of oscillation, which is determined 
by the elastic constants and density of the material. The dispersion 
relation provides a wealth of information on the physical processes 
involved in the production of phonons. Of particular interest is the 
limiting case where the wave-vector of the phonon reaches the edge 
of the first Brillouin zone. Here we saw that this corresponds to the 
lower limit of the phonon wavelength, the speed of propagation of 
the phonons drops to zero and the phonon corresponds to a standing 
wave. We extended this view to consider three-dimensional crystals, 
where the changing periodicity with direction in the crystal means 
that the 3D dispersion relation is more complex in structure, but is 
essentially related to the period and extremal lengths of the wave-
vector to the Brillouin zone boundary.

We further developed the phonon dispersion relation for 
diatomic crystals. We note here that due to the mass difference of 
the component atoms, the dispersion relation has upper and lower 
sections called the optic and acoustic branches. There is generally 
a frequency or energy region in which no phonons can exists called 
a forbidden zone. It exists for a similar reason to the maximum fre-
quency value in the monatomic case, and corresponds to a Bragg 
condition, which produces standing wave modes.

The thermal properties of solids are intimately related to the 
vibrations of atoms in a solid. In general we consider low amplitude 
harmonic oscillations, which serve to describe some of the main 
features of thermal effects. It is essential to understand that the 
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thermal energy exists as a collective excitation in the solid in the 
form of phonons. We reviewed the consequences of the Einstein 
model, which considers all atoms to vibrate at some fixed frequency. 
This provides a simple model in which the variation of the spe-
cific heat varies exponentially at low temperature and saturates to 
the classical (Dulong - Petit) value at high temperatures. This low 
temperature behavior does not agree completely with experiment 
and Debye corrected the Einstein model by allowing a distribu-
tion of frequencies, described by the density of states for phonons, 
up to a cut-off point, called the Debye frequency. This gives the 
experimentally observed low temperature behavior. An additional 
contribution to the specific heat occurs in metals due to free elec-
trons in the solid, which can also transport heat in collisions with  
the lattice.

Finally, we described anharmonic effects, which occur in real 
systems and accounts for the non-symmetric potential. This has a 
number of rather important consequences. It gives rise to thermal 
expansion effects in solids and allows us to account for the thermal 
conductivity of materials. Defect scattering and Umklapp processes 
were also described and take up important roles in the thermal con-
ductivity of real solids.
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EXERCISES

Q1.	 Use the Taylor expansions of un+1 and un−1 about the 
position un(x) in the equation of motion (Equations (5.1) 
and (5.2)) to show that the atomic vibrations adhere to 
the general wave equation:

	
∂

∂
=

∂
∂

u x
t

v
u x
x

( ) ( )n n
2

2
2

2

2
� (5.80)

where =v
K
m

a  is the velocity of sound in a solid medium.
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Q2.	 Find the energy density of states of phonons for a 1D 
monatomic chain.

Q3.	 Show the mean square of the displacement for an atom 
in a solid, in the harmonic approximation can be ex-
pressed as:

	 < >=u
k T
K

1
2

B2 q r � (5.81)

Q4.	 Find the heat capacity for a 2D solid using the Debye 
model.

Q5.	 Show that the restoring forces on transverse vibrations 
are smaller than for longitudinal ones.

Hint: Use a simple elastic spring to argument your 
reasoning.

Q6.	 Since heat and sound are propagated via phonons,  
explain why they travel at such different velocities.
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Q7.	 Calculate the dispersion relation for a diatomic chain of 
atoms with masses m and 2m.

Q8.	 Find the dispersion relation for a linear chain of atoms 
which have alternating spring constants of K1 and K2. 
Compare this with our solution in Equation (5.33).

Q9.	 Show that for a linear chain of atoms, the group velocity 
for phonons goes to zero at the Brillouin zone boundaries 
and tend to the phase velocity at the origin of k-space.

Q10.	 The Debye temperature for diamond is 2230 K. Calcu-
late the maximum vibrational frequency and the heat 
capacity at 10 K.

Q11.	 Estimate the Debye temperature of for copper, which 
has an atomic weight of 63.55, a density of 8.96 g cm−3 
and a speed of sound of 3880 ms−1.

NOTES

1 The group velocity is the velocity with which the waves move, while the phase 
velocity corresponds to the rate at which the phase of the wave propagates through 
the crystal. The quantities can have very different values and one can even be nega-
tive with respect to the other
2 Incidently, we can evaluate the maximum frequency based on typical values for 
metals. Now 

ω π= / = / /K m v k v a2 (2 ) 2m p p
0 0 . where = −v 5000 msp

0 1 is the long wavelength 
limit of the phase velocity. Putting in some typical values = −v 5000 msp

0 1 ; and a = 2 Å, 
we obtain ωm  1014 rads−1, which corresponds to υm  1013 Hz, i.e.,  10 THz.
3 There can be interactions where electrons and phonons couple, though these are 
generally observed to be small deviations from the normal behavior in some metals 
and are known as Kohn anomalies.
4 D. A Stewart, New J. Phys., 10, 043025 (2008)
5 Another way of doing this is to recognize ( )3

2
1
2

2
2ω ω ω= +

6 We have used the Avogadro constant NA = 6.022 × 1023 mol−1 and the gas con-
stant, R = NAkB = 8.314 JK−1mol−1.
7 Keeping the energy as ( )= +E n 1

2
 hω will add a contribution to the distribution 

function which would disappear upon differentiation with respect to temperature 
when we calculate the specific heat.
8 The mean free path is the average distance travelled by a particle without suffering 
a scattering event.
9 Data from J. A. Carruthers et al. Proc. Roy. Soc., 238, 502, (1957).
10 R. Peierls Quantum Theory of Solids, Oxford University Press (1955).
11 The word umklapp derives from the German umklappen, which means to turn over





CHAPTER 6
FREE ELECTRONS  
IN METALS

“Everybody gets so much information all day long that they lose their com-
mon sense”

—Gertrude Stein

“For a successful technology, reality must take precedence over public rela-
tions, for Nature cannot be fooled.”

—Richard P. Feynman

6.1  INTRODUCTION

Metals are relatively common materials and serve many func-
tions in modern society. They are known to be generally strong 
materials, but are overwhelmingly known for their electrical proper-
ties, being excellent conductors. In fact, we generally use metallic 
behavior as a synonym for conducting. Such properties have been 
know for many centuries, but the explanation has emerged relatively 
recently. We have already introduced metals in the first chapter 
when we discussed bonding mechanisms, where we mentioned the 
existence of free electrons in a solid. We now need to restrict this 
comment a little, by which we mean that the electrons are bound to 
the solid, but are delocalized from the individual ions which reside 
near the equilibrium positions, which define the crystal lattice of the 
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metal. The electrons are liberated from the outer electron shells of 
the metal atoms when the solid is formed. These electrons are prin-
cipally responsible for the high electrical and thermal conductivities 
observed in metallic substances. It is fairly common to talk of the 
free electron gas in metals that are responsible for the conductive 
properties. As we will see in the development of the theory of elec-
trons in solids, “free” in this context is rather generous, and we will 
need to make some adaptations when we consider how charge car-
riers, such as electrons move and exist in the periodic potential of a 
crystalline material. The electrons are also confined to the solid by a 
potential barrier, called the work function of the metal. This can be 
measured experimentally through the photoelectric effect.

We have discussed in some detail the periodic nature of crys-
talline solids and soon we will consider the periodic nature of the 
potential of the ion cores, which are situated at the lattice sites of 
crystalline solids. Indeed, the periodic potential has some profound 
effects on the energy and momentum of the electrons in solids. We 
will leave the detailed discussion of this to the next chapter when we 
discuss some of the basic models of the band theory of solids.

In this chapter, we will introduce some of the basic concepts of 
the physical description of electrical conduction and metallic behav-
ior. The early theory of metals was based on the works of Drude and 
Lorentz, who made some basic assumptions, which are summarized 
as follows:

i) Metals consist of positive ion cores with valence electrons, 
which are free to move between the ions as if they form a gas; ii) 
The ion cores are held together in the crystal by electrostatic forces 
between the positive ions and the negatively charged electron gas; 
iii) The Coulomb repulsion expected between the electrons is con-
sidered to be negligible; iv) The potential due to the positive ions is 
assumed to be uniform, such that electrons move in a uniform way 
throughout the crystal; v) The electrons can collide with the positive 
ions at any given temperature and their velocities can be determined 
from the Maxwell -Boltzmann distribution law.

The results of the Drude theory were surprisingly good given 
some of the broad sweeping assumptions that are made, managing to 
explain such properties as the electrical and thermal conductivities, 
thermionic emission, as well as thermoelectric and galvanomagnetic 
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effects. Of course there are serious shortcomings of the theory, which 
mainly concern those aspects that depend on the internal structure 
of the solid. Importantly it could say nothing as to why some materi-
als are conductors while others are insulators.

With the advent of quantum theory in the early 20th century, 
Sommerfeld, Pauli, Fermi and many other began to construct a 
much more solid basis to the theory of metals. In particular, the 
establishment of quantum statistics and the band theory of solids 
aided our understanding to the more sophisticated level that it holds 
today. In this chapter, we will go through some of the early develop-
ments, as they are instructive and will assist further developments in 
subsequent chapters.

6.2  METALLIC BEHAVIOR

Before we consider some of the early theories of metals, it is 
useful to review some of the basic properties of these materials. The 
following list gives some of the most important properties of metals:

1.	Under normal conditions of temperature, metals obey Ohm’s 
law, which is most commonly expressed as:

	 V = IR� (6.1)

where V is the applied voltage, I the current flowing in the 
metal and R the electrical resistance. This form of Ohm’s law 
is, however, better expressed as:

	 σ
ρ

= =
e

J E
E

� (6.2)

which removes any geometric factors inherent in Equation (6.1).  
Here σ is called the conductivity (expressed in units of 
Ω−1m−1), being the inverse of the resistivity, ρe (Ωm). These 
are constants of proportionality between the current density, 
J, (units: Am−2), and the electric field, E (units: Vm−1).

2.	Metals are good conductors electricity, with conductivities 
typically in the range: 106 to 108 Ω−1m−1.
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3.	Metals have large electronic thermal conductivities, κe. The 
relation between good thermal and electrical conductivities 
was noted by Wiedemann and Franz (1853), who noted that 
(κe/σ) in metals is fairly consistent at a given temperature. 
This is referred to as the Wiedemann - Franz law. Later 
Lorenz (1881) observed that the quantity (κe/σT) is virtu-
ally temperature independent and varies very little among 
metals. The numerical value of L ≡ (κe/σT) is known as the 
Lorenz number.

4.	At low temperatures, the conductivity reaches a plateau, 
which depends on the the level of impurities and defects in 
the solid. The electrical resistivity (1/σ), reaches a residual 
value, have a behavior well described by the Matthiessen 
rule, which can be expressed as:

	 ρ ρ ρ ρ= + +T T( ) ( )e e e
defect

e
impurity0 � (6.3)

or

	
σ σ σ σ

= + +
T T
1
( )

1
( )

1 1
defect impurity0

� (6.4)

We note that the defect and impurity contributions are tem-
perature independent and are additive at any given tempera-
ture. The residual value of the conductivity or resistivity will 
therefore be almost entirely due to these contributions.

5.	In ferromagnetic metals, the electrical resistance depends on 
an applied magnetic field. This is called magnetoresistance. 
See Chapter 10.

6.	Many metals become superconducting at very low tempera-
tures. See Chapter 11.

7.	Free electrons add a small contribution to the specific heat  
of a metal. The electrons also add a small paramagnetic  
susceptibility, which is temperature independent.

8.	There exist complex galvano-thermo-magnetic effects  
in metals, which can produce small additional electrical  
currents in the solid.
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9.	There can exist, in pure single crystal metals, complex oscilla-
tory behavior in the presence of strong magnetic fields.

6.3 � THE MAXWELL - BOLTZMANN  
VELOCITY DISTRIBUTION

While we know that the classical treatment is not an accurate 
description of metals, it does provide some insights and was at the 
root of some of the earlier models of metallic behavior. The Maxwell -  
Boltzmann velocity distribution relates the number of electrons 
per unit volume with velocities between υ and a small increment to  
υ + dυ, which is expressed mathematically as:

	
π

= −f n
m
k T

e( )
2MB

B

mv k T/ 2 B
2

v q r � (6.5)

where n = N/V is the number density of electrons. The quantity fMB 
is an equilibrium distribution function, and allows us to evaluate the 
probability function for the speeds in the same range:

	
π

= −P v
m

k T
v e v( )d

2
d

B

mv k T

3/2

2 /2 B
2

v q r � (6.6)

The average kinetic energy of the electrons can be evaluated as:

	 < >=m v k T
1
2

3
2 B

2 � (6.7)

From which we can write the root mean square (rms) velocity as:

	 = < > =v v
k T
m

3
rms

B2 � (6.8)

This gives a value of 1.17 × 105 ms−1 at room temperature.

In our subsequent discussion of the Drude theory of metallic 
conductivity, it is useful to consider the concept of the mean free 
path and relaxation time of the electrons in a solid. The former 
refers to the average distance that the electron moves between elas-
tic collisions with the positive ion cores and is related to the collision 
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cross-section, which gives the probability of a collision event. This 
can be expressed in the form:

	 λ
σ π

=
n r n

1 1
mfp

c i c i
2

� (6.9)

where ni is the number density of ions and rc c
2

σ π  is the scattering 
cross-section. If we know the mean velocity of the electrons, which 
we can take as the thermal velocity, v v ,th rms  we can then define 
the mean free time between collisions or relaxation time as:

	 τ
λ

=
v

m
mfp

th

� (6.10)

Of course we have not taken into account the effect of an applied 
electric field on the velocity of the electron, to produce the drift 
velocity of the electron, but this has only a small effect for small to 
moderate fields.

6.4  THE DRUDE THEORY

The Drude model dates from 1900 and expresses a classical view 
of the electron as a free gas particle inside the metal. At any instant 
in time and in the absence of an applied electric field we can expect 
the electrons to have a velocity distribution given by Equation (6.5) 
and to have a random orientation. As such the net flow of electrons 
will be zero, giving a current density also of zero. If we apply a poten-
tial to the metal an electric force will act on the electronic charges, 
which is expressed as:

	 = −eeF E � (6.11)

where e is the electronic charge (which has a numerical value of 
−1.602 ×10−19 C). The current density in the presence of an elec-
tric field has the form of Equation (6.2). However, macroscopically, 
we can write this as, J = −ρcvd, where vd is the drift velocity of the 
electrons due to the applied electric field and ρc is the charge den-
sity, which we can express as: ρc = −nce, with nc being the number 
density of the charge carriers. Since the instantaneous velocity of the 
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electrons will still have a random nature due to thermal motion, it is 
more customary to express the current density in the form:

	 ∑= − = −
=

e n ei
i

n

c d
1

J v v � (6.12)

with vi being the velocity of the ith electron. From this equation we 
see that the drift velocity expresses the number average of the invdi-
vidual electrons in the metal. In the absence of electric field we have 
E = 0 and v 0ii∑ =  and no net current is apparent. From Equation 
(6.11) it is a simple matter to show that the drift velocity of an elec-
tron in the presence of an electric field can be expressed as:

	
τ

= −
e
m

dv
E

� (6.13)

where τ is the average time the electron has travelled since its last 
collision. Combining Equations (6.12) and (6.13) we obtain:

	

τ
=

n e
m

J Ec
2

� (6.14)

so a comparison with Equation (6.2) yields the conductivity as:

	
σ

τ
=

n e
m

c
2

� (6.15)

where we have assumed the same value of τ for all electrons. The 
value of τ is usually equated with τm given in Equation (6.10). 
Another quantity of interest is the mobility of charge carriers, with 
symbol µm, which is related to the conductivity as:

	 σ= nceµm � (6.16)

such that we can write:

	 µm =
eτm

m
� (6.17)

Furthermore, we can incorporate the mean free path into the 
conductivity in the following way:

	

σ
τ λ λ

= = =
n e

m

ne

mv

ne

mk T3
c mfp

th

mfp

B

2 2 2

� (6.18)
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The variation of conductivity with T1/  in the above goes 
against empirical findings and lead Drude to argue that the colli-
sion of electrons with the fixed ion cores must also have a similar 
dependence to obtain the expected 1/T dependence. As a point of 
interest, the typical values for the mean free path of electrons in 
metals is of the order of around 100 nm, where we consider the typi-
cal relaxation time of 10−14 s and thermal velocities for the electrons 
at room temperature are around 107 ms−1. The Drude model uses 
kinetic theory and this can also be used to show that the electronic 
contribution to the thermal conductivity can be expressed as:

	
κ τ= v C

2
3e m kin

2 � (6.19)

where Ckin is the kinetic or classical specific heat for an electron gas, c.f. 
Equation (5.76), which should have a value of 3kBnc/2. We now obtain:

	 κ τ
τ

= =v k n
n k T

m
3

e m B c
c B m2

2

� (6.20)

where we have used the thermal velocity. If we substitute in for the 
conductivity, Equation (6.15), we can express the Lorenz number as:

	

κ
σ

≡ =L
T

k
e

3e B

2

q r q r � (6.21)

which has a value of 2.23 × 10−8 V2K−2. This is in rather good agree-
ment with experimentally found values for many metals and was 
a major success of the Drude theory since it also agreed with the 
Wiedemann - Franz law. Despite this early success, subsequent work 
by H. A. Lorentz (not to be confused with Lorenz) in 1905 along 
with the Hall effect and magnetoresistance, provided evidence that 
the Drude model had a number of weaknesses. We will return to 
these topics at a later stage (Chapter 8).

6.5 � FERMI - DIRAC STATISTICS  
OF AN ELECTRON GAS

By the mid to late 1920s it was known that electrons were 
particles which have a spin of 1

2  and obeyed the laws of quantum 
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mechanics. Also they adhere to the Pauli exclusion principle, which 
states that no two electrons (or fermions) can possess the same set 
of quantum numbers, see Chapter 1. In 1926 both Fermi and Dirac 
had pointed out, independently, that a perfect gas of electrons would 
behave significantly differently to a perfect classical gas, which can 
be described by the Maxwell - Boltzmann distribution. One of the 
main consequences of the Pauli exclusion principle is that at a tem-
perature of absolute zero, all electrons must be in their ground state, 
but cannot all occupy the same lowest energy state. So if we have a 
system of N electrons, at T = 0 K, the lowest N states will be filled, 
with all higher states being vacant. In a metal, which we are assum-
ing to be our container for the electrons, we assume that the Cou-
lomb interaction between the electrons is negligible and that the 
potential due to the ion cores is uniform. As such, the Fermi - Dirac 
description is that of a perfect non-interacting electron gas.

As we have described the electron energy levels above, at T = 0 
K all states will be occupied up to a certain energy. We say that the 
probability of occupation below this energy is unity, while above this 
energy the probability of occupation is zero. This probability func-
tion is called the Fermi - Dirac distribution function and is denoted 
by fFD (E, T). The upper limit to the energy at zero temperature is 
called the Fermi energy or Fermi level, EF. Our situation at absolute 
zero can thus be more concisely expressed as:

	
=

<
>

f E
E E
E E

( ,0)
1, ;
0, .

FD
F

F

u � (6.22)

The functional form for the Fermi - Dirac distribution can be 
written for any temperature as:

	
fFD(E,T)=

1
e(E−µ)/kBT +1

� (6.23)

The function fFD(E, T) is an equilibrium distribution. We have 
used the chemical potential, µ, in the above equation to distinguish 
it from the Fermi energy, where we note that:

	 lim
T→0
µ= EF � (6.24)
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At higher temperatures they diverge, though they remain fairly 
close in metals up to room temperature and many authors do not 
make this distinction. The functional variation of the Fermi - Dirac 
distribution is illustrated in Figure 6.1. It is noted that the distribu-
tion at 0 K is a step function and spreads out as the temperature 
increases. It will be seen that the curve will alway pass through the 
point of =f E T( , ) .FD

1
2  Summing over all states of the particles in 

the system, we must find:

	
∑ =f E T N( , )FD

n

n

( ) � (6.25)

In the classical limit,  fFD (E, T) must behave as the function fMB(E, T),  
which in terms of energy can be expressed as:

	 = −f E T Ce( , )MB
E k T/ B � (6.26)

and is essentially the same as given in Equation (6.5). The classical 
limit will be reached for the condition: f E T( , ) 1.MB  This means 
we require: (E−µ)/kBT≫1,  for all E. In this case we have:

FIGURE 6.1:  The Fermi - Dirac distribution function for temperatures of 0, 300 and 500 K. 
The energy indicated corresponds to E − µ. For comparison the Maxwell - Boltzmann distri-

butions for 300 and 500 K are also shown.
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	 fFD(E,T)=
1

e(E−µ)/kBT
! e−(E−µ)/kBT = eµ/kBTe−E/kBT � (6.27)

which, since µ is a constant, has the required form of fMB(E, T). 
The Maxwell - Boltzmann distribution is compared with that of the 
Fermi - Dirac function in Figure 6.1.

6.6  THE SOMMERFELD MODEL

As we mentioned earlier, in 1905 Lorentz found some inconsis-
tencies in the Drude model. It was clear that something was missing 
from the theory. With the development of quantum mechanics in 
the 1920s, these inconsistencies were becoming more evident. In 
1928, Sommerfeld used the Fermi - Dirac statistics to evaluate the 
electronic properties of solids. He considered the non-interacting 
electron gas with a uniform positive charge (potential), to maintain 
charge neutrality. Effectively this meant that the electron was con-
sidered to be moving inside an empty box. We note that the effect of 
non-interacting means that the electron is essentially alone and the 
only effect of the other electrons in the gas is to reduce the overall 
positive potential inside the box. While still grossly simplified (and 
we shall look at this problem in more complex ways later), it pro-
vided a much improved model to that of Drude.

We will consider a cube of metal of side, L, and an electron to be 
confined within it. The Schrödinger equation, in the steady - state, 
can be written as:

	


ψ ψ− + =∇e f
m

U E
2

( ) ( )2 r r � (6.28)

where U is the uniform potential inside the box (metal). Appropriate 
boundary conditions must apply to ensure that the wave-functions 
disappear at the limits of the material. Using a general wave-function 
of the form: ψ = ⋅Cer( ) ,ik r  where C is a constant, we obtain:

	

 

= + + =A BE
m

k k k
k
m2 2x y z

2
2 2 2

2 2

� (6.29)
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The components of the wave-vectors conform to:

	
π

= =k
L

n i x y z
2

, where , ,i i � (6.30)

since we have chosen a volume, which is a cube of side, L. The ni are 
real integers. This means we can write Equation (6.29) as:

	

π
= + +A BE

mL
n n n

2
x y z

2 2

2
2 2 2 � (6.31)

The normalization constant C can be found in the usual way, 
by taking ψ ψ ∗ =∫−∞

∞ dVr r( ) ( ) 1.  This will be left as an exercise for 
the student, see Exercise 6.3. It will be noticed that the form of our 
wave-function doesn’t seem to satisfy the condition that it should go 
to zero at the boundaries of the metal. This problem is overcome 
by using the periodic boundary condition, which ensures that at the 
limits of the solid the wave-function in each direction is equal, which 
we can express as: ψ ψ= = =x L x( ) ( 0)  etc. This may seem at first a 
little unconvincing. However, this actually turns out to not be a prob-
lem, since we can consider the electron to be a wave packet described 
by a set of states of the form ⋅e ,ik r  which move through the conduc-
tor. It responds to an applied field much like the classical electron 
we spoke of earlier. Importantly, it will travel only a finite distance 
through the solid, about a mean free path length, before undergoing 
a scattering event. So if the mean free path is much smaller than the 
size of the sample, then it will spend most of its time far from the 
surface anyway and boundary conditions are not of interest to it. In 
the final chapter we will see some of the consequences of consider-
ing very small samples, when we look at nanomaterials.

6.7  THE DENSITY OF STATES

We have already discussed densities of states for the case of pho-
nons and here we shall do the same for electrons, with much the 
same arguments. Using the form of the components of the wave-
vector given in Equation (6.30), we can evaluate the number of pos-
sible values these can take. Maintaining the same notation, we can 
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ask then how many values of ki there are in a range dki. We use the 
expression (6.30) to obtain:

	
π

=n
L

kd
2

di i � (6.32)

In terms of the volume of k-space, we can think of the volume 
d3k = dkxdkydkz, such that the volume element can support:

	
π π

= =a b a bn n n
L

k k k
L

kd d d
2

d d d
2

dx y z x y z

3 3
3 � (6.33)

states. We can consider the ni to be quantum numbers, each of which 
can support two states (corresponding to the two spin states, ± ).1

2  
The total number of states that are available in the volume element 
of k-space, d3k, will be:

	
π

= =N n n n
V

kd 2d d d
4

ds x y z 3
3 � (6.34)

For our free electron model we obtained an energy, which was 
given in Equation (6.29). We can therefore states that all electrons 
of energy, E, can be represented as states that lie on the surface 

of a sphere of radius k mE2 = /  in k-space. Now states with 
energy in the range E to E + dE will have corresponding wave-
vectors k to k + dk and exist inside the shell defined by spheres 
of these radii. This corresponds to a region of k-space of volume: 
4πk2dk. We now define the number of states per unit volume, i.e., 
the density of states, between energies E and E + dE as:

	


π
π π π

= = = = a bg E E
N
V

k k k k m
E E( )d

d 4 d
4

d 1
2

2
ds

2

3

2

2 2 2

3/2
1/2 � (6.35)

We therefore find a variation of the density of states with E.  Of 
course not all states will be occupied. There is a difference between 
this and the phonon density of states. This arises from the differ-
ence in the statistics, where phonons obey the Bose - Einstein rela-
tion, see Equation (5.74), and can take any energy (i.e., do not obey 
the Pauli exclusion principle) with no limit to the number of states. 
In the case of fermions (particles with spin of integral numbers of 
one-half, such as electrons), there is a finite limit to the number of 
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available states, with occupancy also limited to one per allowed state, 
as expressed by the four quantum numbers. The total electron den-
sity can thus be expressed as:

	 n= fFD(E,T)g(E)dE=
1

2π2 a 2m
! 2 b

3/2

0

∞

∫ E1/2dE
e(E−µ)/kBT +10

∞

∫ � (6.36)

Since we know that at T = 0 K, all states are filled up to the Fermi 
energy, EF, we can write:

	
 
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F
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which has a numerical value of = × −n E m4.54 10 ,F
27 3/2 3  where EF is 

expressed in energy units of eV1. Metals typically contain electron 
densities of the order of around 1028 m−3, so the value of EF is of the 
order of a few eV. Alternatively we can write:

	
π

=E
n

m
(3 )

2F

2 2/3 2

� (6.38)

The Fermi wave-vector can be introduced as: = /k mE2 ,F F  
such that from the above we obtain:

	 π=k n(3 )F
2 1/3 � (6.39)

So in k-space, all filled states lie inside a sphere of radius, kF. The 
surface of this sphere is called the Fermi surface. In Figure 6.2, we 
illustrate the density of states, g(E), the Fermi - Dirac function and 
the density of occupied states.

It is worth noting that we can also define other Fermi param-
eters based on the Fermi energy. The Fermi temperature is 
expressed as: TF = EF/kB, while the Fermi velocity is written as: 

= / = /v k m E m2 .F F F

We noted earlier that the Fermi energy, which we defined 
as the half-occupation level given by the Fermi - Dirac distribu-
tion, is temperature dependent and is different from the chemical 
potential. As the temperature increases some of the electrons can 
gain energy to occupy levels above the Fermi level, thus leaving 
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some states below EF unoccupied. This gives the broadening in the 
Fermi - Dirac distribution. Now since the function, g(E) increases 
with energy, the half-occupancy level must decrease as the thermal 
broadening increases. The evaluation of (Fermi - Dirac) integrals 
of the form of (6.36) at non-zero temperatures can be quite com-
plex, expansions can be made or one can numerically determine 
their values. This is a worthwhile venture since it can yield the rela-
tion between the chemical potential and the Fermi energy, which 
as we have note is a function of temperature. Sommerfeld made an 
expansion by noting that integrals of the form: ∫−∞

∞ h E f E E( ) ( )d ,  
only differ from their zero temperature value, ∫−∞

h E E( )d ,EF  by the form 
of h(E) in the region of E = μ. As long as h(E) doesn’t vary rapidly 
within the order of kBT around E = μ, then a Taylor expansion of h(E) 
can be made around E = μ:

	 h(E)= a d n

dEn
h(E)b

n=0

∞

∑
E=µ

(E−µ)n

n!
� (6.40)

FIGURE 6.2:  (a) The density of states function, corresponding to Equation (6.35).  
(b) The Fermi - Dirac distribution function, or probability of occupation.  

(c) Combining the functions fFD(E)g(E) gives the density of occupies states.
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We can now write:

h(E) fFD(E)dE
−∞

∞

∫ = h(E)dE+ (kBT)2 n an

n=0

∞

∑
−∞

EF

∫ a d2 n−1

dE2 n−1
h(E)b

E=µ

� (6.41)

where the an are dimensionless constants of the order of unity. The 
above equation is known as a Sommerfeld expansion. For our pur-
poses, the expansion up to first order is sufficient2. From Equation 
(6.36) we can write, applying the Sommerfeld expansion:

	 n= g(E)dE+
0

µ

∫ π2

6
(kBT)2 d

dE
g(E)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
EF

+… � (6.42)

Now we need to correct for the fact that μ differs from EF, which 
can be done as follows:

	 g(E)dE= g(E)dE+ (µ−EF)g(EF)
0

EF

∫
0

µ

∫ � (6.43)

This gives:

	 n! g(E)dE+ (µ−EF)g(EF)+
π2

60

EF

∫ (kBT)2 d
dE

g(E)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
EF

� (6.44)

The first term is nothing more than n, so we now find:

	 µ= EF−
π2

6
(kBT)2 d

dE
g(E)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
EF

1
g(EF)

� (6.45)

Using Equation (6.35), we obtain:

	 µ= EF 1−
1
3
aπkBT

2EF
b

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ � (6.46)

This gives a very small correction at room temperature, and jus-
tifies the use of EF instead of μ in a majority of cases.

6.8  SPECIFIC HEAT OF AN ELECTRON GAS

As we have already indicated above, Arnold Sommerfeld consid-
ered the use of the Fermi - Dirac rather than the Maxwell - Boltzmann 
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distribution. He was aware that at normal temperature, the scattering 
of electrons changes their energies, but only to within a small window 
of energy states available to them near the Fermi level, since other 
states are occupied. This corresponds to the white area below EF 
being equal to the grey area above EF in Figure 6.2(c). Sommerfeld 
therefore concluded that only electron states near the Fermi level 
control the principal properties of metals. 

The total energy of the electron gas can be expressed as:

U= EfFD
0

∞

∫ (E,T)g(E)dE=
1

2π2 a2m
! 2 b

3/2
E3/2dE

e(E−µ)/kBT +10

∞

∫ � (6.47)

This again contains a complex Fermi integral and we will have to 
use the Sommerfeld expansion again. Now we have:

U= Eg(E)dE+
(πkBT)2

60

µ

∫ µ
d

dE
g(µ)+ g(µ)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ +…

= Eg(E)dE+EF
0

EF

∫ u(µ−EF)g(EF)+
(πkBT)2

6
d

dE
g(E)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
EF

v

+
(πkBT)2

6
g(EF)� (6.48)

We saw earlier that the term in curly brackets cancels, see (6.44), 
and the first term is the ground state energy. Therefore we obtain:

	
π

= +U U
k T

g E
( )

6
( )B

F0

2

� (6.49)

It is now a simple matter to obtain the free electron contribution 
to the specific heat:

	
π

=
∂
∂

=a bC
U
T

k
g E T

( )
3

( )el
n

B
F

2

� (6.50)

Using the expression for g(EF) and n, we can write:

	 π
=C

k T
E

nk
2el

B

F
B

2

� (6.51)

We see that the Fermi - Dirac statistics give a different result to 
the classical value of 3nkB/2 and is said to depress the specific heat 
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by a factor of k T E( 3 ).B F
2π  An electron gas at k T EB F  is called a 

degenerate electron gas. Importantly, the Sommerfeld result is con-
firmed by experiment, where the electronic contribution to the spe-
cific heat has a linear T dependence, though at room temperature it 
is swamped by the phonon or lattice contribution. At low tempera-
ture this is more evident however. Where, as we have already seen in 
the previous chapter, we have a total specific heat of:

	 γ= +C T ATv
3 � (6.52)

or

	 γ= +
C
T

ATv 2 � (6.53)

This relationship is illustrated in Figure 6.3 for PdGa3.

6.9  PAULI PARAMAGNETISM

In 1925, the electron spin was discovered by G. E. Goudsmit 
and S. A. Uhlenbeck4. This lead Pauli to make the point a year later 

FIGURE 6.3:  Variation of Cv/T against T2 for the PdGa alloy at low temperature.  
(Figure published with permission: M. Klanjsek et al., “PdGa intermetallic hydrogenation 

catalyst: an NMR and physical property study”, J. Phys.: Condens. Matter, 24,  
085703 (2012); ©IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.  

Published under a CC BY-NC-SA licence.)
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that the electron’s magnetic moment should align with an applied 
magnetic field, B. Such an alignment of spin moments due to an 
applied magnetic field is referred to as paramagnetism and the para-
magnetic effect of an electron gas, as in metals, is called the Pauli 
paramagnetism. The moment on the electron has a value of one 
Bohr magneton, which is defined as:

	 µB =
e!
2m

� (6.54)

and has a numerical value of 9.274 × 10−24 JT−1, which has a direc-
tion anti-parallel to the spin angular momentum. The spin of an 
electron was introduced in Chapter 1 as a quantum number and 
can take a value of ± .1

2  So when a magnetic field is applied the 
spins align with the field. Electrons that are paired with oppo-
site spins cancel out their magnetic effects, but the alignment of 
unpaired electrons leads to paramagnetic effects in a number of 
solids. We may therefore expect that metals, with all their free 
electrons should have a significant alignment in a magnetic field to 
produce a magnetic moment or induced magnetization, M. If we 
consider that a magnetic field will align the electron spins, then we 
can expect there to be a disparity between the number of electrons 
of each type of spin. The resulting magnetization can then be esti-
mated from:

	 M=−µB[n↑(E)−n↓(E)] � (6.55)

Such an imbalance of the electronic density of states is illus-
trated in Figure 6.4. In this figure, we separate the spin-up +( )1

2  
and spin-down −( )1

2  components of the density of states. When a 
magnetic field, B, is applied each set of states is shifted with respect 
to the origin by ±µBB,  as illustrated in Figure 6.4(b). Thermaliza-
tion of the free electrons will allow that the chemical potential is 
equalize for both spin-up and spin-down electrons, Figure 6.4(c). 
The result is that the occupation of the spin states anti-parallel to 
the applied field will be greater than that parallel and the resulting 
magnetization will be positive as given by Equation (6.55). This will 
mean that to first order, the effect should be temperature indepen-
dent, and we can evaluate the result at absolute zero.
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We can express the paramagnetic response of the electron gas 
as the magnetic susceptibility, χm = M/H, where H = B/μ0. The 
net magnetic moment of the electrons can thus be evaluated as the 
imbalance of the spin-up and spin-down contributions:

	 M=χmH=
µB

2
fFD(E)[g(E+µBB)− g(E−µBB)]dE

−∞

∞

∫ � (6.56)

Since we are evaluating at absolute zero, we can write this as:

	

M=
µB

4π2 a2m
! 2 b

3/2

c E1/2 dE− E1/2 dE
0

EF−µBB

∫
0

EF+µBB

∫ d
=
µB

6π2 a 2m
! 2 b

3/2 S(EF+µBB)3/2−(EF−µBB)3/2 T � (6.57)

In the case where µBB≪ EF ,  which is almost always the case, 
we can write:

	 M=µB
2B

1
2π2 a2m

! 2 b
3/2

EF
1/2 =µB

2Bg(EF) � (6.58)

FIGURE 6.4:  Density of states for up and down spin directions for electrons with:  
(a) equal occupation of the two spin states without an applied magnetic field.  

(b) The density of states are shifted by an amount equal to μBB in opposite  
directions, under the application of field, B. (c) After thermalization the  

occupancy becomes unequal and results in Pauli paramagnetism.
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From which we can express the Pauli paramagnetic susceptibil-
ity as:

	 χm =
M
H
=µ0µB

2 g(EF) � (6.59)

We can now see that the magnetic effect of the free electrons 
lies within an energy of μBB of the Fermi energy, as expected from 
the Sommerfeld theory and as Pauli predicted, the magnetic suscep-
tibility is degenerated from the classical value. The degree of this 
degeneracy can be expressed as:

	 χm =
3nµ0µB

2

2EF

� (6.60)

We will look at the general theory of paramagnetism later in 
Chapter 10, which can be expressed in terms of the Curie - Weiss law, 
having a temperature dependence in agreement with experiment. 
The difference here is that we are discussing the degenerate free elec-
tron gas, whereas the Curie - Weiss law is derived from the unpaired 
(non-degenerate) electrons which reside on the ions of the solid. In 
our discussion above, we have neglected to consider the translational 
motion which a magnetic field has on the free electron. This problem 
was considered by L. Landau in 1930, we will address this problem 
later in Chapter 8, when we consider transport phenomena, see Sec-
tion 8.8. For now we will just mention that Landau was able to show 
that the the magnetic field restricts the electron motion in directions 
perpendicular to the field and produces a susceptibility contribution 
of −nµ0µB

2 2EF, which a third of the Pauli paramagnetism. Since the 
Landau response is negative, it is a diamagnetic effect and the net 
susceptibility of the free electrons will be:

	 ′χm =
nµ0µB

2

EF

� (6.61)

Which is a temperature independent response and is in good agree-
ment with experiment for many simple metals and alkali elements. 
We will also discuss diamagnetism, which is a feature of a majority of 
material solids, in the chapter on Magnetic Materials and Phenom-
ena, see Section 10.3.
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6.10 � HIGH FREQUENCY RESPONSE  
AND OPTICAL PROPERTIES

We have already considered the electrical conductivity of metals 
in the presence of a static applied electric field, which conforms to 
a shift, Δk, of the the Fermi sphere in k-space: ∆ ek E , τ= −  see 
Figure 6.5. The displacement of the Fermi sphere, Δk, is small com-
pared to the Fermi vector, and corresponds to the drift velocity of 
the electrons; vd = −eτE. This will give rise to a small redistribution 
of the occupied electron states in the vicinity of the Fermi level; an 
increase of occupied states near −kF, with a corresponding decrease 
near kF. This imbalance causes a flow of charge or current. Removing 
the applied electric field, the drift of charge will decay back to zero 
via inelastic scattering processes, and the sphere of occupied states 
returns to its position at the origin of k-space. The time taken to 
return back to the stationary state is related to the relaxation time, τ.

We will now consider the effect of an alternating electric field 
of the form:

	 eE E i t
0= ω− � (6.62)

The equation of motion can be expressed as:

	
τ

+ = −m
t

m
e

v v
E

d
d

� (6.63)

FIGURE 6.5:  Displacement of the Fermi sphere from its origin due to the application of an 
electric field, E. The shift is in the opposite direction to that of the applied electric field.
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where we note that the second term on the right hand side is due to 
the relaxation time of the electrons. From the time varying electric 
field, we expect a time varying drift velocity:

	 = ω−ev vd d
i t0 � (6.64)

From which we obtain the drift velocity as:

	
τ
ωτ

=
−

−
e

m i
v

E
(1 )d � (6.65)

Writing the current density as J E( ) ( ) ( ),ω σ ω ω=  leads to the fre-
quency dependent expression for the conductivity:

	 ne
m i i

( )
(1 ) (1 )

2
0σ ω

τ
ωτ

σ
ωτ

=
−

=
−

� (6.66)

where σ0 is the static or dc conductivity, which will take the form of 
Equation (6.15). The frequency response of a metal is dependent 
on the value of the relaxation time, which for most metals is of the 
order of 10−14 s at room temperature. This means, in practice, that 
the conductivity doesn’t change significantly until we are consider-
ing rather high frequencies.

Since electromagnetic radiation has an associated electric field, 
we can consider what the effect of incident radiation is on a metal. 
In doing so we should remember that under normal circumstances 
of the incidence of radiation, current is neither entering nor leaving 
the sample with the electrons responding by moving back and forth 
in the sample5. Also, these induced currents are transverse to the 
wave-vector of the radiation. For wavelengths greater than the mean 
free path of electrons6, we can consider that the response of a metal 
to be governed by Maxwell’s equations. Using the Maxwell version 
of Ampère’s law, we write:

	 σ ω ω

× = +
∂
∂

= −

ε

ε

∇
t
i

H J
E

E E( )

0

0 � (6.67)

Using the Faraday law:
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	 ∇×E=−µ0
∂H
∂t

� (6.68)

we can write:

	

∇×(∇×E)=−∇2E=−µ0
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= ω2µ0ε0 1+ i
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ωε0
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�
(6.69)

This has the form of a wave equation with a complex dielectric 
constant of the form:
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σ ω
ω
ω τ

ω τ

ω τ

ω ω τ

= +
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+
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ε
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1
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2

2 2
� (6.70)

where we have introduced the plasma frequency, ω = εne m ,p
2

0  
and used the frequency dependent conductivity, Equation (6.66). 
The plasma frequency corresponds to a charge density oscillation in 
the electron gas. A quantum of plasma oscillation, called a plasmon, 
has an energy of hωp. For metals, the plasma frequency is of the 
order of 1015 Hz, extending into the ultraviolet region of the elec-
tromagnetic spectrum.7 We have explicitly expressed the form of 
the complex dielectric constant so that it is easy to see the real and 
imaginary components.

For very low frequencies, 1,ωτ  we recover the dc con-
ductivity, ( ) 0σ ω σ  and the effective dielectric constant tends to 
ω τ ω σ ω= εi i .p

2
0 0  This corresponds to the classical skin depth 

region, where the electromagnetic wave entering the metal is atten-
uated over a distance:

	 δ=
2
µ0σ0ω

� (6.71)

The refractive index of a medium is related to the ratio of the 
speed of light in vacuum to the speed of light in the medium; 

ω= = ε c v ( ).  The refractive index is also a complex number 
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 n i( ),0 κ= +  where the imaginary part is related to the absorption 
of electromagnetic radiation.

At high frequencies, 1,ωτ  we have the conductivity being 
dominated by the imaginary part: i( ) 0σ ω σ ωτ  and the effective 
dielectric constant can be expressed as:

	 ω
ω
ω

−ε( ) 1 p
2

a b � (6.72)

When ω ω> >ε, 0p  and the refractive index will be real; = ε 2  
as given in Equation (6.72). However, for ω ω< <ε, 0p  and the 
refractive index will be completely imaginary. The implications of 
this is that for high frequencies ( ),pω ω>  there will be no absorption 
and the metal behaves as a dielectric with a poor reflectivity. How-
ever, when we are in the low frequency regime ( ),pω ω<  we have 
 i ,κ=  and the wave is attenuated as it passes through the electron 
gas8. We can express the reflectivity at the interface of a medium, 
one side of which is the vacuum and the other the metal, as:

	
R

N

N

1
1

2

=
−
+

� (6.73)

where we have assumed normal incidence. So for  i ,κ=  in the 
low frequency regime, we have have  1=  and we have a perfect 
reflective medium. The plasma frequency therefore marks a divid-
ing line between the optically absorbing and transmitting regions of 
the free electron gas. Hence we can understand why metals have 
a mirrored appearance, where we note that the plasma frequency 
for metals is above the frequency range for visible light. For the 
high frequency region the reflectivity falls off rapidly and the metal 
becomes transparent.

The Drude theory gives a reasonable description of metals in 
the low frequency regime up to around the plasma frequency. This 
is also dependent on temperature, since for low temperatures, the 
mean free path of the electrons will be long, and in the above we 
have assumed that the electric field is uniform. At low tempera-
tures, the breakdown of the Drude theory in metals can occur in the 
microwave frequency range. Optical properties of non-conducting 
solids will be discussed in Chapter 12.
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6.11  SUMMARY

Metallic behavior is mainly characterized by the high electrical 
and thermal conductivities that is empirically found in these materi-
als. The former is well described in terms of Ohm’s law. The classical 
theory of electronic conduction in metals was developed by Drude 
at the turn of the 20th century and served to describe some of the 
principal properties of electrical conduction in metals and adheres 
broadly to the Wiedemann - Franz law. However, deficiencies in the 
model emerged in terms of the temperature dependent behavior 
and the specific heat contribution of the free electrons. With the 
progress of the quantum description of materials, the Fermi - Dirac 
statistics was found to be the correct form for electrons and allowed 
many improvements in the description of metallic behavior to be 
made. Much of this was due to the work of Sommerfeld and Lorentz. 
Indeed, the the Fermi - Dirac statistics allowed the electronic states 
to be evaluated and in conjunction with the Pauli exclusion prin-
ciple, Sommerfeld concluded that the majority of the experimentally 
observed behavior is due to the electron distribution in the region of 
the Fermi energy of the metal.

The specific heat of the free electron gas was determined and 
found to agree very well with observation. Furthermore, Pauli was 
able to describe the paramagnetic response of the electron gas when 
an applied magnetic field aligns the electron spins in the region of the 
Fermi level. A further diamagnetic effect of the ions was proposed by 
Landau, being one-third of the Pauli paramagnetism, and gives a net 
paramagnetic response for metals in agreement with measurement.

A consideration of the variation of the electrical conductivity and 
dielectric constants of metals permits us to understand some of the 
basic high frequency and optical properties of metals. Below a fre-
quency defined by the excitation of a plasma oscillation in the elec-
tron gas, the metals appear highly reflective and are reasonably well 
understood in terms of the Drude theory. However, at high frequen-
cies, metals become transparent and the Drude model is inadequate.

There are still some topics which we have not yet described with 
regards to electrical properties, such as the Hall effect and magne-
toresistance. These will be considered in Chapter 8, when we deal 
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with transport phenomena. However, before this it is important to 
consider the effect of the crystal lattice in more detail, which is the 
subject of the next chapter.
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EXERCISES

Q1.	 Prove Equation (6.13). Also find an expression for the 
average distance travelled by the electrons in the direc-
tion of an applied electric field.

Q2.	 Show that the Fermi - Dirac function must always pass 
through the point =f E T( , )FD

1
2  at the Fermi level for all T.

Q3.	 Find the form of the normalization constant for the 
wave-function: Cer( ) .ik rψ = ⋅
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Q4.	 Evaluate the ground state energy and lowest excited state 
energy for an electron in a cubic box of side 2 Å. What 
temperature would be sufficient to excite and electron 
to this state? What is the degeneracy of this first excited 
state?

Q5.	 Consider an electron in a sample of silver, which has a 
Fermi energy of 5.49 eV. Calculate the corresponding 
Fermi velocity and temperature. At what temperature 
can we expect to have a 10% probability of finding an 
electron with an energy which is 1% above the Fermi 
level?

Q6.	 Deduce fully Equation (6.46).

Q7.	 Calculate the temperature at which the electronic  
and lattice contributions to the specific heat capacities 
are equal for Au and Pb. These have Fermi energies  
of 5.53 eV and 9.47 eV, respectively.

Q8.	 What are the paramagnetic susceptibilities of Cu and 
Au? Also evaluate their mean free paths at room tem-
perature. Use the following data: n 8.47 10 cm ,Cu

22 3= × −  
n 5.90 10 cm ,Au

22 3= × −  E 7.0 eV,F
Cu =  E 5.53 eV,F

Au =  
2.7 10 s,Cu

14τ = × −  and 3.0 10 s.Au
14τ = × −

Q9.	 Demonstrate the validity of Equation (6.59).

Q10.	 Calculate the plasma frequency for copper, which has an 
electron density of 8.47×1022 cm−3. What is the energy 
of this quantum excitation in eV? Also evaluate the skin 
depth of copper at this frequency.

Q11.	 Prove Equation (6.70).

NOTES

1 Note that 1 eV = 1.602 ×10−19 J.
2 For the interested reader, several authors have treated this problem in more detail. 
See for example: N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders 
College, Philadelphia (1976) and R. Kim and M. Lundstrom, Notes on Fermi - Dirac 
Integrals, (2008); https://www.nanohub.org/resources/5475/, (arXiv: 0811.0116v4).
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3 Data from M. Klanjsek et al., J. Phys.: Condens. Matter, 24, 085703 (2012).
4 Actually, four years earlier A. H. Compton had also postulated the spin of the 
electron to explain experimental data on the magnetic properties of the electron. 
However, Goudsmit and Uhlenbeck used the spin of the electron to explain atomic 
spectra and despite initial criticism from Pauli, it caught on.
5 In the following analysis, we are ignoring the effect of the time varying magnetic 
field component of the electromagnetic wave since its effects are negligible in 
normal metals compared to that of the electric field.
6 This removes complications due to locally varying fields which differ over the  
trajectory of the electron in between collisions with the ions of the solid. This condi-
tion will be satisfied for metals exposed to visible light.
7 Plasmon frequencies in low dimensional structures, such as nanoparticles, are  
directly related to the size of the entity which confines the electrons. Such consid-
erations has given rise to a field of study called nanoplasmonics
8 Note that since the wave-vector can be written in terms of the refractive index: 

  κ= = =m mc imck v n n( ) ˆ ( ) ˆ ,  the electric field in the medium will become: 
e e e e e i t e eE E E E E ,i t i i t i mc mc i tk r k r n r n r

0
( )

0 0
( ) ˆ

0
( ) ˆ

 ω= = = − =ω ω κ ω⋅ − ⋅ − ⋅ − ⋅ −  which we 
note will decay with distance.





CHAPTER 7
BAND THEORIES  
OF SOLIDS

“Everything happens to everybody sooner or later if there is time enough.”

—George Bernard Shaw

“Bad times have a scientific value. These are occasions a good learner would 
not miss.”

—Ralph Waldo Emerson

7.1  INTRODUCTION

In the previous chapter, we considered the quantum theory for 
a free electron gas to explain the electronic properties of metals. In 
doing so we assumed that the atoms of the metal release a certain 
number of electrons, which are then free to roam around the solid. 
Furthermore, we did not consider the effect of having the positive 
ions in their lattice positions and how this would affect the motion 
of the electrons. Indeed, the positive potential due to these ions was 
assumed to be uniform throughout the metal. Scattering of elec-
trons by the ions was thus considered to be elastic, with a certain 
mean free distance, λmfp, between the average collision event, or a 
mean time between collisions, τ. In reality this model is oversim-
plified and has nothing to say about the electronic properties of 
materials with less charge carriers available. For instance, we know 
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that semiconducting materials have extremely important electronic 
properties and are the working materials for a large majority of elec-
tronic devices. The use of band theories applies to all types of mate-
rial, whether conductor, insulator or semiconductor. The evaluation 
of the electronic band structure of materials is one of the central 
problems in modern solid state physics.

In general, the way we take into account the crystalline structure 
is by permitting the ionic potential to vary within the lattice, such 
that the periodicity of the potential matches that of the position of 
the fixed ions in the solid. Band theory takes this into account by 
imposing the periodic potential within the Schrödinger equation to 
determine the allowed states of the electron within the crystal. A 
majority of the models that describe the electronic states in a solid 
do this by:

1.	Choosing a wave-function, ψ(r), to describe the eigenstates 
of the electron in a perfectly periodic potential, such that the 
eigenenergies, En, of the electron can be determined.

2.	The choice of the form of the periodic potential, V(r), is 
important as it will perturb the electron and change the  
eigenstates for suitable solutions of the Schrödinger equation.

3.	It is customary to use a one-electron approximation, which 
significantly simplifies the form of the Schrödinger equation. 
The eigenstates obtained in this manner must be in agree-
ment with the Fermi - Dirac statistics for occupancy. This 
approach is compatible with self-consistent techniques, as in-
troduced by Hartree and Fock in the late 1920s, early 1930s. 
These remove the need for the dynamic interactions between 
electrons by averaging over the occupied electron states.

In using the Fermi - Dirac statistics, which effectively takes 
care of the Pauli exclusion principle that operates on the elec-
trons, we assume that the electrons should not interact. Taking into 
account the electron - electron scattering is a very complex problem 
and requires the use of so-called many-body techniques. Such an 
approach is beyond the scope of the current text. In this chapter, 
we will introduce some of the more simple techniques for evaluat-
ing the energy states of electrons in solids, which take into account 
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the lattice structure (periodicity). We will start by introducing some 
basic concepts which are necessary for the development of these 
models. As we have mentioned, the models differ essentially in the 
way we represent the periodic potential and how we set up the elec-
tron wave-function. Of the techniques discussed in this chapter, 
the principal difference is in the former, where we can control the 
strength and shape of the periodic potential. Of particular interest 
are the extremes, where we use a weak and a strong potential. These 
correspond to the free and nearly free electron models at the weak 
end of the scale to the tight-binding method, which adopts an almost 
atomic like description of the electron states.

Despite the seemingly simplistic approach we are taking, there 
is much insight that can be derived from these models, and as we 
shall see they approximate quite well to the electronic properties of 
real solids.

7.2  THE PERIODIC POTENTIAL

In describing the periodic potential, it is important that we use 
the lattice periodicity, so that the correct electron states will be 
established once we solve the Schrödinger equation. This is gener-
ally done as follows: The periodic potential will follow the symmetry 
of the lattice by using the Bravais lattice vectors, R, in the periodic 
potential such that we satisfy the condition:

	 V(r) = V(r + R)� (7.1)

where, r, is any vector within the crystal. Equation (7.1) says that if 
we make any displacement from a position, r, with a Bravais lattice 
vector, R, then the potential at the new point, r + R, is indistinguish-
able from the original position. A schematic illustration of the peri-
odic potential in one-dimension is shown in Figure 7.1. Evidently 
the scale of the periodicity conforms to the lattice structure and is of 
the order of Ångstroms.

Once we impose the periodic form of the potential, we can write 
the one-electron Schrödinger equation as:
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	 


ψ ψ ψ= − + =∇
m

V Er r r r( )
2

( ) ( ) ( )
2

2s t � (7.2)

where of course the potential must be consistent with Equation 
(7.1). We can compare this with the free electron Schrödinger Equa-
tion, (6.28), where the potential is constant or zero and offers the 
simplest solution to the electron behavior in a solid.

In writing Equation (7.2), we have made a number of assump-
tions. Apart from the non-interacting electrons, we have also used 
the adiabatic approximation (see Chapter 5), where we consider the 
ions to be fixed as they are much heavier than the electrons. Each of 
the electrons in the solid are then described by Equation (7.2). The 
wave-functions of these electrons must also conform to the periodic 
potential and not to the plane wave solutions we considered in the 
previous chapter. The electrons are referred to as Bloch electrons 
and the corresponding wave-functions as Bloch functions.

Since the Fourier series serve to represent periodic functions, 
we can therefore represent the periodic potential, as given in Equa-
tion (7.1), as:

	 ∑= ⋅V V er( ) i
G

G r

G

� (7.3)

Where the vectors G belong to the reciprocal lattice1 of the crystal 
and VG are the Fourier coefficients. We note that the coefficient, 
V0, will represent the uniform background potential, which we can 
choose such that; V0 ≡ 0.

FIGURE 7.1:  One-dimensional periodic variation of the potential of the ions in a solid.  
We note that the condition given in Equation (7.1) is satisfied.
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7.3  THE BLOCH THEOREM AND FUNCTIONS

Felix Bloch considered the effect of the periodic potential on the 
electron in a solid in 1928. The theorem which carries his name has 
some very important consequences2. It is based on the electrostatic 
potential of the ion cores which are ideally located in the Bravais 
lattice positions, with no defects or phonons, such that the potential 
has the translational periodicity of the lattice. The potential due to 
the other electrons is assumed to have the same average value in 
each unit cell and thus also has the same periodicity of the crystal lat-
tice. In this way, Bloch attempts to account for the electron-electron 
interactions. The eigenstates of the electrons in this periodic struc-
ture, as described by Equations (7.1) and (7.2), form plane waves 
with a multiplying factor, which is a function containing the period-
icity of the Bravais lattice. The wave- or Bloch-function has the form:

	 ψ = ⋅e ur r( ) ( )n
i

nk
k r

k � (7.4)

The function, unk(r), is subject to the periodic condition:

	 = +u ur r R( ) ( )n nk k � (7.5)

where the vector, R, is any Bravais lattice vector. A consequence of 
Equations (7.4) and (7.5) is that we can write:
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� (7.6)

This shows that the effect of the addition of a translation vec-
tor, R, of the real lattice is to introduce a phase factor in the Bloch 
function.

Once again we can make use of the Fourier representation for 
the periodic function. This will involve the Fourier coefficients, Cnk, 
where we will express the wave-vector in terms of a reciprocal lattice 
vector plus a vector in reciprocal space; say, k = q − G. We can now 
write the Bloch function in the form:
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which is identical to Equation (7.4).

We need to make sure the correct boundary conditions are 
applied to the wave-functions. This will inevitably impose some form 
of restriction on the solutions of our eigenvalue Equation, (7.2), and 
thus on the allowed states, k. The most appropriate form of bound-
ary condition is one in which the periodic nature of the solid is taken 
into account. These are generally expressed as the periodic or Born-
von Karman boundary condition and can be expressed as:

	 ψ ψ+ = =N ir a r( ) ( ); where, 1, 2, 3i i � (7.8)

here the ai are the primitive vectors for our Bravais lattice and the 
Ni are integers giving the number of unit cells in the i - direction and 
subject to the condition: N = N1N2N3, which is the total number of 
unit cells in the crystal, and will be a large number. The boundary 
condition implies that

	 =⋅e 1iN k ai i � (7.9)

So when we apply the Bloch theorem we have:

	 ψ ψ+ = ⋅N er a r( ) ( )n i i
iN

nk
k a

k
i i � (7.10)

It is now possible to establish that the allowed Bloch wave-vec-
tors can be expressed in the form:

	 ∑=
=

m
N

k bi

i
i

i 1

3

� (7.11)

the mi are integers and the vectors bi are the primitive reciprocal 
lattice vectors, see Section 3.2. It follows from the above that when 
the mi change by one, we generate a new state. We can therefore 
determine that the volume of k-space occupied by each state will be:

	 = ⋅ × = ⋅ ×∆
N N N N

k
b b b

b b b
1

( )1

1

2

2

3

3
1 2 3q r � (7.12)
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since the volume of the primitive cell of the reciprocal lattice is  
b1 ⋅ (b2 × b3), we can assert that the total number of allowed states is 
equal to the number of unit cells in the crystal lattice. While this may 
appear to be a mere curiosity, it is in fact a very important result and 
can have important consequences on the nature of a material. Since 
the volume of the reciprocal lattice primitive unit cell is (2π)3/v, 
where v = V/N is the volume of the unit cell of the direct lattice, we 
can write (7.12) as:

	
π

=∆
V

k
(2 )3

� (7.13)

This is essentially the same result we obtained for the free elec-
tron model; see Equation (6.34).

7.4 � THE SCHRÖDINGER EQUATION  
IN A PERIODIC POTENTIAL

We can construct the main components of the problem by sub-
stituting the periodic potential along with the Bloch functions of 
the electrons in the Schrödinger equation. To do this we substitute 
equations of the form of (7.3) and (7.7) in Equation (7.2):

	
 ∑∑ ∑ ∑+ =⋅ ⋅ ⋅ ⋅k
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We can rationalize this equation to read:

	
 ∑∑ − + =−
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2 2

u s q r t v � (7.15)

This condition is valid for all r. Therefore, the expression inside 
the { } brackets is independent of r and must vanish for each k. This 
can be shown by multiplying by a plane wave and integrating. We 
can now write:

	
 ∑− + =−

k
m

E C V C
2

0n nk G
G

k G

2 2

s q r t � (7.16)
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A choice of VG = 0 allows us to reproduce the results of the 
Sommerfeld model, which gives: E = 2k2/2m. Equation (7.16) rep-
resents a set of Schrödinger equations in reciprocal space, which 
couple the expansion coefficients, Cnk, of the Bloch functions, ψnk(r), 
whose k values differ from one another by a reciprocal lattice vector 
G. In doing this, we have separated the original problem into a set of 
equations, one for each value of k, of which there will be N.

We have made some general comparisons between the Som-
merfeld model and the Bloch theorem, however, we should be 
careful to note that there is an important difference in terms of the 
wave-vectors. In the Sommerfeld model, k = p/h, the wave vector 
simply defines the momentum, p, of the electron. In the Bloch for-
mulation k will not explicitly relate the momentum of the electron 
in the periodic potential. We can demonstrate this by looking at the 
momentum operator3, p = (h/i)∇, which when acting on the Bloch 
function, ψnk(r) returns:

	
 





ψ ψ= = +⋅ ⋅∇ ∇ ∇
i i

e u e
i

ur r k r r( ) ( ) ( ) ( )n
i

n n
i

nk
k r

k k
k r

kc d � (7.17)

As such, ψnk(r), is not a momentum eigenstate and will only con-
form to being so if unk(r) is not a periodic function but a constant. 
Thus returning us to the Sommerfeld condition. We have already 
met the quantity, hk, which we defined as the crystal momentum; 
see Section 5.2.2. We will see the significance of the wave-vector in 
more detail when we consider the motion of electrons in a crystal 
lattice. This will be met in the following chapter when we discuss 
electron dynamics. For the moment it is sufficient to think of the k’s 
as a state the electron can take, which depends on the translational 
symmetry of the lattice in which it moves.

As we have already discussed, any particular state k, can be rep-
resented in the first Brillouin zone. This is because the translational 
symmetry of the reciprocal lattice permits us to write:

	 ′ = +k k G � (7.18)

where G is a reciprocal lattice vector and k lie outside the first Brillouin 
zone, i.e., invariance under translation symmetry in reciprocal - space. 
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So, given that eiG⋅r = 1 for any reciprocal lattice vector, if the Bloch 
function holds for k′, it must also be true for k.

7.5  BRILLOUIN ZONES AND THE FERMI SURFACE

We have already defined the Brillouin zone when we discussed 
phonons in Chapter 5. However, it is worth extending a little our 
discussion, which is relevant for the consideration of energy states 
in periodic structures. The construction of Brillouin zones is made 
in the same way as the Wigner - Seitz cell, see Section 2.2.2. We 
can simply states that the Wigner - Seitz cell of the reciprocal lattice 
corresponds to the first Brilluoin zone. However, there can be more 
than one Brillouin zone, so we should extend the principle here. The 
simplest way to do this is by example. Consider a two-dimensional 
lattice and sectioning up the reciprocal lattice as we considered ear-
lier using the reciprocal lattice vectors. This is illustrated in Figure 7.2 
for a 2D square array.

We note that each Brillouin zone occupies the same area of recip-
rocal space (or volume in the three-dimensional case). As we noted 
earlier, the Brillouin zone boundaries are particularly important 

FIGURE 7.2:  Construction for Brillouin zones for a two-dimensional square array.
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because they mark the Bragg planes for the diffraction of waves by 
the periodic structure (lattice). The Brillouin zones for three dimen-
sional structures have more complex structures, but are evaluated in 
the same ways as illustrated for two dimensions. In Figure 7.3, we 
illustrate the first, second, and third Brillouin zones for the fcc and 
bcc structures. See also Figure 5.2.

The ground state for a system of N electrons at zero tempera-
ture will be obtained by the occupation of all k-states of allowed 
one-electron levels up to the Fermi energy. In the case of the free 
electrons, they will have energies defined by: E(k) = h2k2/2m. We 
will recall from the previous chapter, that the reciprocal space repre-
sentation for all k-states being occupied is a sphere, which we called 
the Fermi sphere, the surface of which is referred to as the Fermi 
surface. For a system of Bloch electrons, the ground state will be 
obtained in a similar fashion, except that we now need to label the 
states with n as well as k, and the energies, En(k), do not have a 
simple explicit form as for the free electron case. The vector k must 
be confined to the first Brillouin zone so the electrons occupy only 
all the available states and are counted once. In a real solid, a distinct 

FIGURE 7.3:  Brillouin zones for three-dimensional fcc and bcc structures.
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behavior will be found depending on whether bands are filled or 
not. In the case where the uppermost energy band is filled and sepa-
rated by an energy gap to the next empty band, the Fermi level will 
sit in the band gap region. The size of the band gap will determine 
whether the material is an insulator or a semiconductor. For gaps of 
the order of an eV, thermal energies are generally sufficient at room 
temperature to promote some charge carriers and the material is 
semiconducting. For larger band gaps which are well beyond kBT, 
the material is an insulator. The number of states in each band will 
be equal to the number of primitive unit cells in the crystal. Since 
two electrons (one of each spin type) can be accommodated in each 
level, the band gap situation can only arise for materials where there 
is an even number of electrons per primitive unit cell. On the other 
hand, for partially filled bands, the Fermi energy will lie within one 
or more of the bands. Only in the case where this occurs can a Fermi 
surface be said to exist. This latter situation is what happens in met-
als or conductors, see Section 7.11.

The way we represent the Fermi surface depends on the zone 
scheme we choose. Often it is preferable to use the limit of each 
branch of a Fermi surface within a particular Brillouin zone. The 
zone schemes can be repeated or reduced and we will see this in 
action when we show the results of the various band models in the 
following sections. We will illustrate some of the Fermi surfaces for 
certain metals as we proceed, see also Section 8.4.

7.6  THE KRONIG - PENNEY MODEL

The Kronig - Penney model (1930) possibly represents one of the 
greatest simplifications that can be made regarding the form of a non-
zero periodic potential. The one-dimensional periodic potential has two 
values, one of which is usually take as zero for simplification, while the 
other has another fixed value. An example of this is shown in Figure 7.4. 
We can take the upper limit of the potential as V0 and the lower as being 
zero. As such we can consider the solutions of the Schrödinger equation 
in the two regions of potential V(r) = 0 and V(r) = V0. The width of the 
potential being b and the periodicity, or lattice constant, is a.
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The one dimensional Schrödinger equation will have the form:

V(r) = 0:

	
ψ
α ψ− =

x
d
d

0
2

2
2 � (7.19)

and for V(r) = V0:

	 ψ
β ψ+ =

x
d
d

0
2

2
2 � (7.20)

where we have:

	
 

α β= =
−mE m V E2

;
2 ( )2

2
2 0

2
� (7.21)

The solutions to the Schrödinger equation must conform to the 
Bloch theorem and this requires continuity of the wave function and 
its first derivative throughout the lattice. The general form of the 
solutions can be expressed as:

In regions indicated as I (see Figure 7.4), V(x) = 0:

	 ψ = +α α−x Ae Be( )I
i x i x � (7.22)

FIGURE 7.4:  One dimensional periodic potential used in the Kronig - Penney model.
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and in regions indicated as II (Figure 7.4), V(x) = V0:

	 ψ = +β β−x Ce De( )II
x x � (7.23)

where A, B, C and D are constants. We can express the boundary 
conditions as follows: 

At x = 0:

	 ψ ψ=(0) (0)I II � (7.24)
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At x = −b:

	 ψ ψ− = −b b( ) ( )I II � (7.26)
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The Bloch functions can now be expressed as:
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I � (7.28)
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and we obtain the boundary conditions at x = −b as:

	 ψ ψ− = −−e a b b( ) ( )ika
I II � (7.30)
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The application of the boundary conditions and the Bloch func-
tions allow us to evaluate the wave function coefficients as:

	 + = +A B C D � (7.32)
	 β α− = −i A B C D( ) ( ) � (7.33)
	 + = +β β α α− − − − −e Ae Be Ce De[ ]ika i a b i a b b b( ) ( ) � (7.34)
	 β α− = −β β α α− − − − −i e Ae Be Ce De[ ] [ ]ika i a b i a b b b( ) ( ) � (7.35)
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The simultaneous solution of these four equations allows us to 
obtain, from the determinant, the following solution:

α β
αβ

α β α β=
−

− + −ka b a b b a bcos( )
( )

2
sinh( )sin[ ( )] cosh( )cos[ ( )]

2 2

� (7.36)

Simplification of this equation can be obtained using the limiting 
case of →b 0;  → ∞V ,0  such that V0 b remains finite and constant. 
Since we have α β>> ,2 2  we find ( ) 2 2 .2 2α β αβ α β− / → /  In this sit-
uation we have α α α→ →b b bsinh( ) , cosh( ) 1  and [( ) 2 ]2 2α β αβ− /  

b mV a basinh( ) 2 ( ) .2
0

2
αβ α→ / = /  We can now write:

	
β

β β= +ka
p
a

a acos( ) sin( ) cos( ) � (7.37)

where p mV ba .0
2
= /  From this relationship we can numerically 

evaluate the allowed values of the solutions of the Schrödinger equa-
tion, which correspond to values of the right hand side of the above 
equation between ±1, (i.e., when cos(ka) has a solution), where 
we are assuming that k is real. The conversion to the energy can 
easily be made and this reveals the form of the dispersion relation, 
as shown in Figure 7.5. We note that there naturally occur energy 

FIGURE 7.5:  One dimensional solution of the Kronig - Penney model, showing the existence 
of energy bands and band gap regions where no solution of the Schrödinger equations exists.
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bands, (i.e., regions with real solution of the energy) and band gaps 
(in which there do not exist real solutions to Equation (7.37)).

7.7  FREE ELECTRONS IN A PERIODIC POTENTIAL

The free electron or empty lattice model is a special case of the 
periodic potential in that we consider the strength of the potential to 
effectively be vanishing. This means that the electrons are free-like. 
It may be pertinent to ask why bother if the potential is zero, since 
it should just give us the free electron like behavior. Indeed, there is 
some truth to this, however, it can be quite instructive to go through 
this model, since it provides some significant insights into the behav-
ior of electrons in periodic structures. Essentially the electron does 
have a free electron like energy, but with the imposition of the struc-
ture of the lattice. This can be seen through the free-electron like 
energies, using the electron states k = q − G, which we express as:

	

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−E
m

q G( )
2q G
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2 2

� (7.38)

where q is a vector inside the first Brillouin zone. We can substitute 
this condition in Equation (7.16), where to denote a different recip-
rocal lattice vector we write k = q − G′, where G′ is another vector 
of the reciprocal lattice. We can now write:
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which is the same as:
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where we have written: ′′ = + ′G G G .  We can simply rewrite this, 
without any loss of generality, as:

	 ∑− + =− ′ − ′ ′′− ′
′′

− ′′E E C V C( ) 0n nq G q G G G
G

q G
0 � (7.41)
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We can separate the potential into the ′′ = ′G G  and ′′ ≠ ′G G  
terms, such that the above can be expressed as:

	 ∑− + + =− ′ − ′ ′− ′ − ′ ′′− ′
′′≠ ′

− ′′E E C V C V C( ) 0n n nq G q G G G q G G G
G G

q G
0 � (7.42)

As we earlier noted we can take = ≡′− ′V V 0,G G 0  such that 
Equation (7.42) becomes:

	 E E C V C( ) 0n nq G q G G G
G G

q G
0 ∑− + =− ′ − ′ ′′− ′

′′≠ ′
− ′′ � (7.43)

We can now let the potential go to zero intensity, such that we 
have a master equation relating the electronic states given as:

	 E E C( ) 0nq G q G
0 − =− ′ − ′ � (7.44)

The non-trivial solution of which is expressed as:
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We can represent this result for a one-dimensional lattice in 
which the energy varies as the square of the wave-vector, as for the 
free electron. Since we are dealing with a periodic structure, we also 
see that we can include the shift of the parabolic energy dependence 
by any number of reciprocal lattice vectors, G. The intersections of 
the various branches meet at the mid points, which corresponds to 
the Brillouin zone boundaries. This is illustrated in Figure 7.6.

There is of course the solution to Equation (7.44) above in 
which we have C 0,nq G =− ′  for G G .≠ ′  This implies that the sum-
mation term in Equation (7.41) causes only small corrections to 
the electron energy, which should be proportional to the second 
order in the potential, and since the potential is vanishingly small, 
will be very minor corrections. We note that in the one dimen-
sional representation of the band structure, the bands intersect at 
the Brillouin zone boundaries (±nπ/a). It is worthy of note that the 
Brillouin zone boundaries correspond to Bragg conditions, which is 
rather easy to see for the 1D case: kn = ±nπ/a, where we can write  
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|G| = nπ/a, from which we can obtain 2a = nλn, which must have  
θ = 90º. The bands clearly have a parabolic nature and all energy 
states are represented in the first Brillouin zone, which can be 
achieved by a translation of the energy states via the reciprocal lat-
tice vector, G, as illustrated by the shaded region in Figure 7.6. No 
energy gaps exist, and as will be shown in the next section, this is a 
direct result of having a zero magnitude potential.

We can extend the one-dimensional results to that of a three-
dimensional lattice. To do this we must consider the reciprocal lat-
tice vectors for a specific structure. We will do this for the fcc lattice 
since it is an important structure found in solid state physics and is 
the basis of many semiconductor materials, which while being dia-
mond in structure have a similar form of reciprocal lattice and hence 
electronic and band structure. We can remind ourselves that the 
reciprocal lattice for the fcc real space lattice is a bcc structure, see 
Chapter 3. The relevant Brillouin zone is illustrated in Figure 7.3 
and we apply Equation 7.45 using the the three-dimensional recip-
rocal lattice vector of the form:

	 ′ = + +h k lG b b b1 2 3 � (7.46)

FIGURE 7.6:  One dimensional solution of the free electron model, showing the  
band structure which arises from the solution of the Schrödinger equations for zero  

potential. The repeated zone scheme can be represented in a single Brillouin zone using  
the translation reciprocal lattice vectors (±G). Note, the first Brillouin zone corresponds  

to the shaded region.
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where for the fcc structure we have:

a a a
b x y z b x y z b x y z

2
( ˆ ˆ ˆ );

2
( ˆ ˆ ˆ );

2
( ˆ ˆ ˆ );1 2 3

π π π
= − + = + − = − + +

� (7.47)

from which we obtain:

	
a

h k l h k l h k lG x y z
2

[ ˆ ( ) ˆ ( ) ˆ ( )]
π′ = + − + − + + + − + � (7.48)

and using the general vector in reciprocal space of the form:

	
a

q x y z
2

[ ˆ ˆ ˆ ]
π
ξ η ζ= + + � (7.49)

It is possible to generate the various energy bands, where a 
choice of initial and final vector is used to define the band in ques-
tion. Given the form of the energy, these bands are parabolic. The 
lowest energy bands are illustrated in Figure 7.7. We note that the 
dimensionless quantities, ξ, η and ζ can take any value between 
zero and unity. This is made under the provision that the q-vector 
remains inside the first Brillouin zone.

The form of the band structure, at first glance, looks very com-
plex, with a tangle of interweaving lines. We note that each line con-
stitutes an energy band which takes us from one specific point in the 
Brillouin zone to another. For example, the line: Γ − Λ − L takes us 
from the origin of the Brillouin zone (and reciprocal space) to the 
central point on the hexagonal face at the boundary of the first Brill-
ouin zone, see inset of Figure 7.7. The line corresponds to the energy 
on the Λ line joining the end states at these points of high symmetry 
and is parabolic, as indicated by Equation (7.45). Other lines can be 
explained in a similar manner. The numbers in the figure indicate 
the degeneracy of the line, i.e., how many equivalent energy bands 
between the two end states of high symmetry in the first Brillouin 
zone. Since, as we have previously stated, all energy states can be 
represented in any Brillouin zone, we only need consider the first 
Brillouin zone. We note that it is the q vector which move us along 
this line and the extremal points will correspond to reciprocal lat-
tice vectors, which we can represent with a G vector and q = 0.  
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We note that at the points of high symmetry (at the origin and on the 
boundary of the first Brillouin zone, all indicated with a Greek letter, 
see inset of Figure 7.7), various energy bands converge. There is a 
conservation of degeneracy at these points, from the bands leading 
into and out of these points. We further note that at any point of high 
symmetry, there exist a number of discrete states which corresponds 
to the quantization of energies with the periodicity in that particular 
direction of the crystalline structure. It is worth noting that for each 
of the bands we can express a specific wave-function, which engen-
ders the crystal symmetries as expressed from the Bloch functions.

In general, band structure diagrams are represented as energies 
versus the directions in the crystalline structure, where the points 
of high symmetry are indicated with a Greek capital letter. As we 
will note later, at the points of high symmetry at the boundary of the 
Brillouin zone, an energy gap will open up. Some of the band cross-
ings will therefore disappear, while others will be maintained. This 
depends on the symmetry of the wave functions. Crossing between 
bands of different symmetry can lead to hybridization. Away from 
the points of high symmetry in the vicinity of the zone boundar-
ies, there is little deviation from the free electron bands. The free 

FIGURE 7.7:  Empty-lattice or free electron model in three dimensions, showing the band 
structure as a function of the principal directions in the first Brillouin zone. The directions 
on the x-axis refer to the relevant directions in k-space as indicated in the inset. Numbers 

refer to band degeneracy.
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electron model, while being very simple in its mathematical con-
struction, illustrates very well the complexities that arise from the 
crystalline structure.

7.8  THE NEARLY FREE ELECTRON MODEL

The nearly free electron model differs from the free electron 
model by considering a small value for the magnitude of the periodic 
potential in the Schrödinger equation. We can use Equation (7.43) 
which expresses the Schrödinger equation in the relevant form, 
where we can simplify as:

	 E E C V C( )q G G G G
G G

G
0 ∑− =− ′ ′ ′′− ′

′′≠ ′
′′ � (7.50)

We now make the zeroth order approximation and consider the 
case where G′ = 0 and G, which means we are taking the approxi-
mations near to the limits of the G vectors where the changes should 
be largest. We thus obtain the solutions of the form:

	 E E C V C V C( )q G G
0

0 0 0− = + � (7.51)

	 E E C V C V C( )q G G G G
0

0 0− = +− − � (7.52)

We evaluate the eigenstate E from the 2 × 2 matrix defined by the 
simultaneous solution to the above equations, where as we have already 
stated we can take V0 = 0 as a background potential. This yields:

	 E
E E

E E Vq( )
( )

2
1
2

[( ) 4 | | ]q q G
q q G G

0 0
0 0 2 2 1/2=

+
± − +± −

− � (7.53)

(We note that ∗V V .)G G= −  In a one dimensional crystal we can 
represent the band structures in the extended, repeat and reduced 
schemes, as illustrated in Figure 7.8.

The principal difference between the nearly free and the free 
electron models is the existence of the deviations from the para-
bolic form of the bands at the Brillouin zone boundaries. This 
occurs because the nearly free electron model has a small non-zero 
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periodic potential, and these correspond to the Bragg condition. 
The dispersion (diffraction) of the electron waves with energies, 

= /E k m2 ,BZ
2 2  where π= ± /n ak ,BZ  occurs because the electrons 

have the appropriate energies for diffraction (Bragg) conditions to 
be satisfied arising from the periodicity of the lattice in the direction 
of electron motion. The two roots of Equation (7.53) can be more 
explicitly seen when we consider the point where q lies on a Bragg 
plane, where we have = −E E .q q G

0 0  This gives:

	 π= ± / = ±±E q n a E V( ) | |q G
0 � (7.54)

This can be interpreted as meaning that at all points on the 
Bragg plane the two energy solutions correspond to those raised by 
|VG| and those lowered by |VG|, thus producing a band gap at that 
point of Δ = 2|VG|, see inset of Figure 7.8. It is further possible to 
demonstrate that the gradient of the energy at the Bragg planes is 
zero, see Exercise 7.3.

In Figure 7.9, we show the form of the energy bands for the 
nearly free electron model for an fcc crystal. As with the one-dimen-
sional case, we note that the bands separate at positions around the 
Brillouin zone boundary and the size of separation is directly pro-
portional to the magnitude of the periodic potential. We see from 
this that the nearly free electron model produces energy bands that 

FIGURE 7.8:  Repeat zone representation of the nearly free electron energy states as a func-
tion of the wave vector. The existence of the potential produces the appearance of a small 

energy gap (proportional to the magnitude of the potential) at the zone boundaries.
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are perturbations of the free electron states. A comparison between 
Figures 7.7 and 7.9 shows that the general form of the energy bands 
are very similar, where the degeneracy of the free electron model is 
lifted by the lattice potential.

7.9  THE TIGHT - BINDING MODEL

The tight binding approximation represents the other extreme 
to the nearly free electron model. This latter, which was discussed 
in the previous section, essentially treats the electrons as being in an 
almost free state and are thus delocalized from the ions that form 
the crystal lattice. The electronic wave functions thus have a plane 
wave-like character. This means that the kinetic energy of the elec-
trons is much greater than the potential energy. The tight binding 
approach, on the other hand, treats electrons as if they are almost 
entirely bound to these ions, with the electronic wave functions 
being derived from the atomic like orbitals that occur in isolated 
atoms. This can be stated as the potential energy dominating the 
kinetic energy of the electrons.

We will consider a crystal of N atoms located at the Bravais lat-
tice sites. The system is approximated as having atomic like orbitals, 

FIGURE 7.9:  Repeat zone representation of the nearly free electron energy states as a func-
tion of the wave vector. The existence of the potential produces the appearance of a small 

energy gap (proportional to the magnitude of the potential) at the zone boundaries.
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whose wave functions are represented as ψ r( )at  and have discrete 
energy states, E ,n

at  such that we can write the atomic Schrödinger 
equation in the form:

	 Er r( ) ( )at n
at

n
at

n
atψ ψ= � (7.55)

where the atomic Hamiltonian takes the form:

	
 ∇
m

V r
2

( )at at

2
2= − + � (7.56)

The atomic like nature of the wave functions means that they 
become very small for distances greater than the lattice constant of 
the crystal. The Hamiltonian for the tightly bound electron is now 
considered to be a perturbation of the atomic case and will differ from 
Hat only at distances from the atomic site which exceed the range of 
the atomic wave function. Given the above, we can state that the wave 
function ψn(r − R) for all R of the Bravais lattice, will approximate 
the stationary like states of the atomic case since the Hamiltonian is 
mostly atomic like in nature with the imposition of the lattice period-
icity via the periodic potential. We now write the corrections to the 
atomic case in the form of the Hamiltonian for the crystal as:

	 ∆V r( )at= +  � (7.57)

where ΔV(r) contains the necessary corrections to the atomic poten-
tial and can be expressed as: ΔV(r) = V(r) − Vat(r) in which we have 
V(r) = V(r + R) to maintain the correct periodicity conditions of 
the periodic potential, see Figure 7.10. The Schrödinger equation is 
expressed as:

	 ψ ψ= Er r( ) ( )n n nk k k � (7.58)

To use the above equation we need to define the wave function, 
which is expressed in the form of a linear combination of atomic 
orbitals (LCAO), also called a Wannier function. This can be written 
in the form:

	 er r R( ) ( )n
i

n
at

k
k R

R
∑ψ ψ= −⋅ � (7.59)
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This satisfies the Bloch condition, as we can show:
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The energy bands, Enk, are generated via the Schrödinger equa-
tion are expressed in Equation (7.58). If we multiply this by an 
atomic wave function, ∗ r( )m

atψ  and integrate over r, we can write4:

	 ∆∗ ∗E E Vr r r r r r r( ) ( ) ( )d ( ) ( ) ( )dn m
at

m
at

n m
at

nk k k∫∫ ψ ψ ψ ψ− = � (7.61)

We now substitute in the Wannier functions of Equation (7.59) 
to obtain:
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Given that ∗ r r r( ) ( )d ,m
at

n
at

nm∫ ψ ψ δ=  we find:

FIGURE 7.10:  Schematic representation of the periodic potential (1D).
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It is now a simple matter to express our result in the form:

	 E E en m
at i

k R
k R

R 0
∑α β= − − ⋅

≠

� (7.64)

where we have made the following substitutions:
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R � (7.65)

The α constant corresponds to the Coulomb energy and will 
determine the energy shift of the atomic levels, while the β is related to 
the exchange energy and determines the widths of the energy bands. 
We can use the fcc structure as an example to illustrate how we can 
generate the band structure. We refer to the 12 nearest neighbors for 
this structure as shown in Figure 7.11.5 These can be expressed by  
the following position vectors: R x y x z y z( ˆ ˆ ); ( ˆ ˆ ); ( ˆ ˆ ).a a a

2 2 2
= ± ± ± ± ± ±  

We now write k k kk x y zˆ ˆ ˆ ,x y z= + +  such that we have:

FIGURE 7.11:  Illustration of the 12 nearest neighbors in the fcc structure.
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a

k kk R
2

( )i j⋅ = ± ± � (7.66)

where i, j = x, y; y, z; z, x. Substituting into Equation (7.64) we obtain:
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q r q r t� (7.67)

The outcome of this calculation gives the variation of the lowest 
energy band. The energy bands for the fcc structure are illustrated 
in Figure 7.12. We see that the general form of this variation has 
many features in common with the other models we have consid-
ered, compare Figures 7.7 and 7.9 for the bands structures using the 
empty lattice and nearly free electron models.

7.10 � OTHER MODELS: POTENTIALS  
AND WAVE-FUNCTIONS

There are many other models that are more sophisticated than the 
approximations outlined above. In many situations the tight-binding 

FIGURE 7.12:  Energy bands for the fcc structure using LCAO in the tight binding model.
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method is sufficient for the representation of the band structure of 
the ion core levels. The nearly free electron model, as we have seen 
makes a small modification of the free electron description, but does 
not realistically describe the band structure of a real solid. The com-
plex problem of the band structure is an active area of research used 
to explain the electronic properties of solids. A fuller description of 
such methods goes beyond the scope this book. We will here only 
give a brief outline of some of the main principles of some of the 
most common methods.

In reality the question of the band structure of a solid requires 
us to take into account the structure of the solid, the periodic poten-
tial produced by the ions in the solid with positions described by 
the Bravais lattice and the wave functions of all the electrons in the 
material. In addition to this we also need to account for the interac-
tions of the electrons among themselves due to the Coulomb forces. 
It would seem then that this is an almost impossibly difficult prob-
lem to resolve and recourse to simplifying assumptions is necessary 
to make the problem more manageable. Self-consistent methods, 
such as those introduced by Hartree and Fock are often employed 
to find an approximate potential, which requires an iterative method 
to obtain a working potential, often beginning with a guess at the 
potential. This is then inserted into the Schrödinger equation to 
evaluate the wave functions and then the potential is computed. 
This can then be repeated a number of times. When the computed 
potential is sufficiently close to the input potential, one says that 
self-consistency has been achieved. The principal components of the 
Schrödinger equation are the Hamiltonian and the wave-function, 
which must take the required mathematical form to allow us to eval-
uate the form of the energy states in the particular solid.

The models that we outlined above demonstrate the existence 
of energy bands with forbidden regions (energies). These analyti-
cal models, despite giving a reasonable qualitative agreement, are 
not sufficiently precise when compared to experimental results. The 
nearly free electron models, for example, displays an exaggerated 
planar wave aspect to its wave functions, while the tight binding 
model exaggerates the atomic-like character of the electrons. Other 
models use a perturbative expansion near the critical points in the 
Brillouin zone. One such technique is called the k ⋅ p method. This 
model considers a small variation of the wave-vectors around the 
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extrema of the bands to develop the energy dispersion relation, Enk, 
in these regions. This can be expressed in a modified Bloch function 
of the form:

	 ∆
∆e e ur r( ) ( )n

i i
nk

k r k r
k k

0

0
ψ = ⋅ ⋅

+ � (7.68)

where Δk = k − k0, and k0 is an extremal wave-vector. The energy 
dispersion relation is usually expressed as a modification of the 
unperturbed form and allows the introduction of the so-called effec-
tive mass, which we will discuss in more detail in the next chapter.

Another important class of model is the pseudopotential method, 
which accounts for the potential of the ion cores as well as the Coulomb 
repulsion between core electrons. In this model the upper valence 
electrons are evaluated using the nearly free electron model, while the 
inner core electron states are calculated from the atomic core states. 
Thus a distinction between the two types of electron is made. The pseu-
dopotential method requires a certain knowledge of the band structure 
to allow an estimation of the initial potential, which is then refined by 
an iterative evaluation of the band structure which is then compared 
with experimental data until an acceptable agreement is achieved.

To obtain an even more accurate calculation of the band struc-
ture, in addition to the inclusion of the Coulomb energy of the elec-
trons, the exchange and correlation energies should also be taken 
into account in a self-consistent manner. Such terms arise from 
many-body interactions of the electrons. It is possible to show that 
these depend only on the local density. Density functional theory 
uses such an approach and requires the use of sophisticated compu-
tational tools to obtain accurate band structure calculations.

7.11 � METALS, SEMICONDUCTORS,  
AND INSULATORS

The electronic properties of solids are used as a form of classifi-
cation of materials. These properties are a direct result of the avail-
ability of charge carriers in their lattice and electronic structure of 
their bands. The number of charge carriers available will depend on 
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the manner in which electrons are used in the formation of bonds 
between the atoms in the solid (see Chapter 1). Delocalized elec-
trons are available to conduct electricity while localized electrons are 
occupied in bonds, or are bound in atomic core states. Another way 
of envisaging this scenario is in the band structure of the solid and the 
specific energy distribution of the electrons. In the previous chapter, 
we saw that the electrons, which are fermions and subject to the Pauli 
exclusion principle, can have energies up to the Fermi level (EF) at 
zero Kelvin. If the Fermi level falls within the region of the band gap 
region of the band structure, then all energy states in the band below 
the Fermi level, called the valence band, will be filled, while all states 
above the Fermi level, the conduction band, will be empty. In this 
case there will be no electrical conduction in the solid since there are 
no available states in the valence band for electrons to move into and 
no electrons in the conduction band which can contribute to electri-
cal conduction. Such a material, at absolute zero of temperature, will 
be a perfect insulator. In reality and at finite temperatures the situa-
tion will be slightly different. The finite temperatures will allow a cer-
tain number of electrons to move to energies above the Fermi level, 
leaving some empty states available below the Fermi energy and thus 
produce a small distribution of the energy occupancy around the 
Fermi level, (see Figure 6.2). If the forbidden energy region is large 
compared to the distribution of the energy states around the Fermi 
level, then there will be very few electrons which can pass from the 
valence to conduction bands. Such a material is called an insulator. 
If the band gap is relatively small, the material is referred to as a 
semiconductor. In this representation, the only difference between 
an insulator and a semiconductor is the size of the band gap. If the 
Fermi level is within an energy band and/or the conduction and 
valence bands overlap, then there will be energy states and electrons 
available for the conduction of charge, and the material is a conduc-
tor or metal. In Figure 7.13, we illustrate these main points.

In Figure 7.14, we illustrate the band structure for silicon. In 
the figure, the band gap is indicated. The region below the band 
gap is the valence band, while above it is the conduction band. The 
labelling in the figure refers to the positions of high symmetry in 
the Brillouin zone as indicated previously. The band gap itself cor-
responds to the energy between the top (maximum energy) of the 
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valence band and the bottom (minimum energy) of the conduction 
band. It will be seen that these two points, in the case of Si, do not 
correspond to the same points in reciprocal space. Such a feature 
is called an indirect band gap. In the semiconductor GaAs, these 
the top of the valence band and the bottom of the conduction band 
occur at the same position in the Brillouin zone, and this is called a 
direct band gap material or semiconductor.

FIGURE 7.13:  Illustration the classification of materials through the structure of their 
energy bands.

FIGURE 7.14:  Band structure for silicon.
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The promotion of electrons from the valence to the conduc-
tion band is an important process in semiconductor materials and 
we will return to this in Chapter 9. In this case the energy gap is of 
the order of about 1 eV, while that for insulators is several eV. This 
means at normal working temperatures, there will be some electrons 
promoted to the conduction band in semiconductors, while in insu-
lators there will be a negligible change in the electron distributions. 
The potential for shifting electrons from the valence to conduction 
bands is one of the principal reasons why these materials occupy 
such an important role in the electronics industry. In fact, it is not 
only from thermal excitation that electrons can me promoted, but 
also from the incidence of radiation, such as light. This gives rise to 
optoelectronic devices, which will also be discussed in Chapter 9. 
When an electron is promoted in this way, not only do we gain a free 
charge carrier (an electron) in the conduction band, but the empty 
state remaining in the valence band can also act as a charge carrier, 
since an electron in the valence band can now move into this avail-
able energy state. Such a state is referred to as a hole. Holes play an 
important role in semiconductor physics, where electrons and holes 
are charge carriers which are both equally responsible for the elec-
trical conduction in semiconducting devices. We note that the hole 
acts like a particle of positive charge moving in the valence band.

7.12  SUMMARY

The motion of electrons in solids is intimately related to the phys-
ical distribution of the atoms in the solid. For crystalline materials we 
can evaluate the available energy states by considering the symmetry 
of the atomic arrangement of atoms. Of particular importance, as 
we have seen, is the Bragg condition, which we find corresponds to 
the boundaries of the so-called Brillouin zones. At such points, in 
reciprocal space, the Bragg scattering means that the electrons with 
these energies are strongly scattered and thus no stationary energy 
states can be established. This gives rise to forbidden energy gaps 
in the energy spectrum. To be more precise, we need to introduce 
the concept of the periodic potential, which arises from the atomic 
potentials of the regularly spaced atoms in the crystal structure.
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The energy states of the electrons are derived from the con-
sideration of the kinetic and potential energies of the electrons in 
the solid. This is usually obtained via the Schrödinger equation. The 
principal components of this approach are the forms of the periodic 
potential and the wave functions which describe the electrons in the 
solid. In this chapter, we have considered a number of models that 
allowed us to evaluate the allowed energy states for the electrons. 
The empty lattice model considers the electrons to move in a poten-
tial free crystalline structure, where all energy states are available, 
but the band structure is imposed by the lattice of atoms. Once we 
introduce a weak potential, as in the nearly free electron model, there 
appear small energy gaps in the energy spectrum which occur at the 
Brillouin zone boundaries. In fact, the appearance of such band gaps 
is a direct result of the periodic potential, as was confirmed in the 
Kronig - Penney model. While the nearly free electron model over 
estimates the plane wave character of the electrons by allowing an 
excess in the kinetic energy, the tight binding model exaggerates the 
localized or orbital character of the electron wave functions. Despite 
this both models produce a similar band structure with forbidden 
energy regions. A more realistic band structure requires the use 
of more sophisticated approximations. Often such models require 
a knowledge of some of the properties of the materials as a start-
ing point. Frequently recourse to numerical methods is necessary to 
undertake such complex calculations.
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EXERCISES

Q1.	 What is the physical argument behind the adiabatic 
approximation?

Q2.	 Show explicitly the steps involved in obtaining Equation 
(7.15).

Q3.	 Demonstrate that the gradient of the energy bands at the 
Bragg plane are zero. Use the nearly free electron model.

Q4.	 What are the consequences of the above result on the 
form of Fermi surfaces for metals? Why does this not 
apply to the case of semiconductors?

Q5.	 Develop the free electron bands for a 2D square lattice.

Q6.	 Construct the first Brillouin zone for the bcc structure, 
check with Figure 7.3.

Q7.	 Derive the formula for the simplified Kronig - Penney 
model, given by Equation (7.37).
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Q8.	 Use the result of Question 6 to plot the energy bands for 
the 1D Kronig - Penney model.

Q9.	 Consider how the results for the tight-binding model 
would alter from the fcc structure to that for Si and GaAs.

Q10.	 Evaluate the first energy band for the bcc structure using 
the tight-binding model.

NOTES

1 The reciprocal lattice is discussed in detail in Chapter 3.
2 The theorem was first demonstrated by Flouquet and also goes under the name of 
the Flouquet theorem.
3 We notice that the momentum operator forms part of the Hamiltonian operator, 
H, see Equation (7.2), where the kinetic energy portion is: (p)2/2m.
4 We have used the fact that:  ψ ψ ψ ψ∫ = ∫ =∗∗ r r r r r r( ) ( )d ( ( )) ( )dm

at
at n at m

at
nk k  

ψ ψ∫ ∗E r r r( ) ( )dm
at

m
at

nk
5 Note that we only need to use the nearest neighbors, since the wave-functions 
become negligible beyond these distances.



CHAPTER 8
ELECTRON DYNAMICS 
AND TRANSPORT  
PHENOMENA

“Science is built up of facts, as a house is built of stones; but an accumula-
tion of facts is no more a science than a heap of stones is a house.”

—Henri Poincaré

“Physics is mathematical not because we know so much about the physical 
world, but because we know so little; it is only its mathematical properties 
that we can discover.”

—Bertrand Russell

8.1  INTRODUCTION

The motion of charge carriers in solids is governed by the 
restrictions imposed on them by the structure of the solid and the 
interactions between electrons and the ions in the solids as well as 
between the charge carriers themselves. The movement of charge 
carriers under the action of an applied electric or magnetic field will 
therefore depend on the form of the electronic band structure of 
the material in question. This applies to electrons in the conduction 
band and holes in the valence band. The concept of the hole was 
introduced in the previous chapter and arises from the fact that an 
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empty state in the valence band is available for electrons to move 
into. So, for example, under the action of an applied electric field, 
an electron will move in the direction opposed to the direction of the 
electric field, E, due to our sign convention for the electronic charge 
being negative: F = qE = −eE. Applying Newton’s second law to 
this situation leads to

	 = = −m
t

eF
v

E
d
d

� (8.1)

Therefore we see that the direction of the velocity is opposite to 
that of the electric field due to the negative sign:

	
e
m

tv Ed d= − � (8.2)

Since an electron which fills the empty state leaves behind it 
an empty state, the situation is effectively equivalent to the motion 
of the empty state, which we call the hole. The hole then acts like 
a quasi-particle of positive electric charge, since the absence of an 
electron corresponds to a charge, +e. Due to the Pauli exclusion 
principle applicable to fermions, the filled electron states will be 
those of lowest energy, meaning that the empty states will be, on 
average, at the top of the valence bands. In fact, the picture we have 
for holes has a correspondence with that for electrons. The (free) 
electrons in the conduction band occupy the lowest energy states 
available and are hence found at the bottom of the band. We can 
think of the situation as an analogy, in which electrons act like stone 
in water and sink to the bottom (of conduction band), while hole are 
like bubbles which float to the top (of the valence band).

It is interesting to note that the physical significance of the band 
gap between the valence and conduction bands in a solid corresponds 
to the effective binding energy of an electron to an ionic core, or its 
bonding state between atoms. The localized electronic states cor-
respond to electrons in the valence band, which can be freed from 
the localized ionic states by the electron acquiring energy, say from 
a phonon or photon, which will overcome the binding energy and 
free the electron to move in the solid. We then say that the electron 
has “gained” energy and enters the conduction band. Of course the 
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electron is not entirely free since it is still subject to the periodic 
potential of the solid. To become free from the solid it requires addi-
tional energy, which is called the work function of the material.

In this chapter, we will consider the motion of charge carriers in 
solids subject to the restrictions imposed by the solid under the influ-
ence of electric and magnetic fields. The application of these fields 
produce a response by the charge carrier which can be described 
by a force. The charge carriers will then follow specific trajectories 
due to the direction of these forces and the imposition of the band 
structure of the solid. This can give rise to some complex behavior, 
which forms the main subject of this chapter.

8.2  ELECTRON DYNAMICS IN CRYSTALS

As mentioned above, the motion of an electron in a solid will 
depend on the strength and direction of an applied external field 
as well as the restriction to motion which results from the internal 
structure of the solid. The regular disposition of ion cores in a solid 
crystal allows us to find the general rules for scattering due to inter-
ference or diffraction effects; this is the Bragg scattering we met in 
Chapter 3. We take this into account in the wave-like description we 
apply to the charge carrier and more specifically in the form of the 
wave or Bloch function we apply to it. We can see that the effect of 
a crystal on the motion of an electron is more complex than the free 
space situation by applying the quantum mechanical momentum 
operator = − ∇ip( )  to a general Bloch function:

	

ψ ψ

ψ

= − = −

= +

⋅

⋅

 



∇ ∇
∇

i i e u

e u

p r r r

k r r

( ) ( ) [ ( )]

( ) ( )
k

i

k
i

k
k r

k

k r
k � (8.3)

We see that the quantity hk is not an eigenvalue of the operator 
and hence the crystal structure is imposing some further restriction 
on the motion of the charge carrier. To describe the motion of an elec-
tron in a solid we need to define its wave vector. However, in doing so, 
we must recall that a perfectly defined wave-vector implies a perfectly 
defined momentum and hence complete uncertainty in its position. 
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We are confronted with the same problem in free space, where such 
a defined momentum leads to a description of a plane wave which 
extends to infinity, i.e., there is no knowledge of its position. If we 
consider the localizaton of the electron, to say a position within space 
∆x, then we have a corresponding uncertainty in the momentum and 
hence wave-vector of −

∆ ∆k x( ) .1  The localizaton of the electron can 
be expressed using the construction of the wave packet as a superposi-
tion of time-dependent Bloch functions of the form: 

	 t a t kr r( , ) ( , )dn n nk k k
3

0 ∫ ψΦ = � (8.4)

where the time-dependent Bloch functions are written:

	 ψ = ⋅ − t e u er r( , ) ( )n
i

n
i E t

k
k r

k
( )nk � (8.5)

here, Enk is the energy eigenvalue of the Bloch state. Due to the 
uncertainty in the wave vector, where we have: k = k0 + Δk, we can 
write the energy and spatial component of the Bloch functions as 
Taylor expansions about k0:

	 = + ⋅ +∆ ∇E E Ekn n nk k k k0 0 0
� (8.6)

and

	 ∆ ∇u u ur r k r( ) ( ) ( )n n nk k k k0 0 0
= + ⋅ + � (8.7)

Substitution of these into Equation (8.4), where we limit the 
result to leading terms, yields:

∫Φ = ⋅ − − ⋅ −




∆∆
∆ ∇

t e u e a e kr r( , ) ( ) d ( )n
i

n
i E t
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i E t
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k r( ) [ ( ) ] 3n nk k k
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0 0 0 � (8.8)

This represents a Bloch function for an electron in state k0 
which is modulated with an envelope function given by the integral 
over Δk. The envelope function will have the same value for all r and 
t under the condition:

	 ∇ E
tr constantnk k0 0a b



− = � (8.9)
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We can therefore regard the description of the electron as a 
wave packet travelling with a group velocity:

	 ∇ ∇Ev
1

g n nk k k k0 0 0 0


ω= = � (8.10)

This shows that the motion of the electron is dependent on the 
gradient of the energy with respect to the wave vector and that this 
in intimately related to the band structure. This is given by E ,nk0

 
which is the energy environment in which the electron finds itself 
within the solid. For a free electron the energy relation is simply; 
E k m2 ,k

2 2
=  from which we obtain m mv k p .g = =  We note 

that the phase velocity of the perfectly free electron is given by 
mv k k 2p ω= =  and is thus half the group velocity. The situation 

in a crystal, as we shall see, depends on where the electron finds 
itself in the energy band. So while for a free electron the direction of 
the group and phase velocities is always the same, this is not neces-
sarily the case for a electron in an energy band of a solid, which can 
have constant energy surfaces which are non-spherical in k-space. 
This is illustrated in Figure 8.1.

We can see that the position, i.e., energy, of the electron in 
k-space will determine its group velocity. This will also be true for 
the case of holes in the valence band of the material. In Figure 8.2, 

FIGURE 8.1:  The difference between the group and phase velocities can be seen when 
a constant energy surface is warped by the band structure of the solid.
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we show a schematic view of the variation of the group velocity of 
an electron in an energy band. We note that the position in k-space 
corresponds to a particular energy state of the charge carrier. If an 
electron is scattered inelastically, it will reappear at a different loca-
tion in k-space. However, when the electron is subject to an electric 
field, it will progress through k-space, and real space, at a rate deter-
mined by the rate of change of energy. The effect of a magnetic 
field will be different due to the form of the force produced by a 
magnetic field, and the direction of motion (and its corresponding 
position in k-space) will change without any change in the energy. 
It thus turns out that the effect of a magnetic field will be to move 
the electron over a surface of constant energy in k-space. We will 
discuss this and other topics related to the effect of an applied mag-
netic field in Section 8.8.

FIGURE 8.2:  Schematic variation of (a) an energy band, (b) the group velocity, and  
(c) the effective mass of an electron in an energy band.
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8.3  THE EFFECTIVE MASS

If we consider the force on a charge carrier due to say an elec-
tric field, the charge carrier will change its momentum according to 
Equation (8.1). In fact, we can express this change by referring to 
the change of the wave vector for the charge carrier, where for an 
electron we can write:

	 e
t

F E
kd

d
= − = � (8.11)

It is then a simple matter to show that we can write:
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The acceleration of the electron due to the external electric field 
can be expressed as:
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Using Equation (8.11) we can now write this as:
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Using the classical force relation, F = ma, we can now express 
the above equation in the following form of the so called inverse 
effective mass tensor:

	


=
∗m

E
k k

1 1 d
d dij

n

i j

k
2

2

a b � (8.15)

The ij subscripts are important in the formation of the tensor 
and refer to the directions (x, y, z) in k-space. Since the effective 
mass tensor, ∗m ,ij  and its inverse, ∗ −m( ) ,ij

1  are symmetric, they can 
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be transformed into principal axes, giving only leading diagonal 
elements in the tensor. In the simplest case in which the three 
effective masses (i.e., in the three principal directions) are equiva-
lent, we have:

	 =
∗m

E
k

1 1 d
d

nk
2

2

2a b


� (8.16)

Such a case would be for parabolic bands which can be approxi-
mated in the relation:

	 = ± + +
∗

E E
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k k k
2

( )n n x y zk

2
2 2 2

� (8.17)

In the case of the semiconductors, such as Si, the minimum of 
energy occurs along the (100) axes, at six equivalent points in recip-
rocal space in the Brillouin zone. The surfaces of constant energy 
will be six prolate ellipsoids centered at these locations, see Fig-
ure 8.3. The electron energy is a minimum when, k = k0, and in the 
appropriate locations equivalent to k0. The three principal compo-
nents of ∗mij  are usually positive in the vicinity of k0 and its counter-
parts in equivalent regions of k-space. Since the effective mass can 

FIGURE 8.3:  Constant energy surfaces for the conduction band in silicon.
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be considered to be fairly energy independent in the region of k0, or 
E ,k0

 such that we can write:
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In regions of the Brillouin zone for which the electron energy is 
a maximum, all three components of the effective mass are generally 
negative and we can write:

	 = ±
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An electron in such an energy state with negative mass is com-
monly treated as a particle of positive charge, i.e., the hole states we 
discussed earlier. We note that the prolate ellipticity of the energy 
bands can be characterized by the ratio of the long and short axes 

and will be equal to ∗ ∗m m .l t

The use of the effective mass is a convenience tool, in which 
we can use the effective mass to treat more easily the movement 
of the electron (or hole) in the energy bands of the solid. We can 
use this concept with the description of the free electron gas in a 
metal. The form of Equation (8.15) shows that the effective mass 
depends not only on the energy of the charge carrier but also on 
the direction of its motion in the solid. Another way of looking 
at the effective mass of a charge carrier is to note that it depends 
on the curvature of the energy bands. The variation of the effec-
tive mass for the conduction band illustrated in Figure 8.2(c). We 
note that the variation is very distinctive, where at the center and 
edges of the band, the effective mass tends to a constant value, 

∗m ,0  while at the inflections points of the bands the effective mass 
tends to ±∞, the points at which the group velocity is a maximum 
or minimum and the acceleration goes to zero. The plus or minus 
sign depends on the direction from which we take the gradient of 
the energy and we see that this is related to whether the curvature 
of the bands is positive or negative.
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8.4  THE FERMI SURFACE

The filling of energy bands, at absolute zero of temperature, 
with available electrons continues up to the Fermi energy, EF, as 
discussed in Chapter 5. In terms of the corresponding wave vec-
tors, electrons with en energy Ek = EF will have a wave vector kF. 
In other words the Fermi level marks the boundary between filled 
and unfilled states at zero temperature. For free electrons the value 
of the wave vector will be equal in all directions in reciprocal space 
and the surface of constant energy defined by electrons with wave 
vector, kF, will form a sphere, see Figure 8.4(a). Such a surface is 
called the Fermi surface. Inside a three dimensional (real) solid 
the Fermi sphere can intersect with several bands. This will cause 
a deformation of the Fermi sphere and the resulting surface can 
take many forms depending of the number of electrons available 
and the shape of the band structure. This deformation is caused by 
the Bragg reflections that occur at the Brillouin zone boundaries. In 
Figure 8.4(b), we illustrate the deformation of the Fermi sphere to 
Fermi surface at the crossing of the Bragg plane at the edge of the 
Brillouin zone. The  fact that the Brillouin zones are delimited by 
Bragg planes therefore has important consequences for the behavior 
of the electrons (and holes) as they move through the solid under the 
influence of electric and magnetic fields.

In the cases where the Fermi sphere crosses the Brillouin zone 
boundary, there will be different shapes of Fermi surface in the 

FIGURE 8.4:  (a) Free electron Fermi sphere. (b) Modification of the Fermi sphere in Cu 
producing the Fermi surface in the first Brillouin zone.
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different Brillouin zones. The degree of deformation of the Fermi 
sphere will depend on the strength of the periodic potential. In the 
case of the free electron model, i.e., for zero potential, there will be 
no deformation of the sphere at the Bragg planes and the Fermi sur-
face will be the region of the Fermi sphere within the Brillouin zone 
of interest. A schematic illustration of the crossing of a Bragg plane 
by a Fermi sphere is illustrated in Figure 8.5. The region of defor-
mation at the Bragg plane can be characterized by the parameter 
Δk, which from the nearly free electron model can be estimated as:

	 ∗k m V
2

| |G�
�

∆ � (8.20)

where |VG| indicates the magnitude of the periodic potential in the 
nearly free electron model, see Section 7.8. Clearly for the case of 
vanishing potential, |VG| → 0, then Δk → 0 and there is no deforma-
tion in the Fermi surface. This doesn’t mean that the Fermi surface 
in the first Brillouin is a sphere, since it will still be cut at the zone 
boundary, see gray line in Figure 8.5.

FIGURE 8.5:  Fermi sphere deformation at a Bragg plane or zone boundary. For simplicity 
we only show one such boundary. The deformation of the Fermi surface can only occur  

for kF > G/2. The Fermi surface for the second Brillouin zone is also show and  
is formed by its repetition into the first Brillouin zone (i.e., that portion of the surface  

to the left of the Bragg plane). Note that the first and second Brillouin zones are  
separated by the Bragg plane. The magnitude of the deformation is indicated by Δk.
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We can show the form of the Fermi surface in the extended zone 
scheme, which is useful when considering the motion of the elec-
trons in the solid. Such a representation is shown in Figure 8.6 for 
the case of the metal Cu, here given in the first Brillouin zone only, 
see Figure 8.4(b) for comparison. We note that the Fermi surface 
is continuous through the Brillouin zone boundary forming charac-
teristic necks. We can also observe that there enclosed areas of the 
surface, which correspond to inverse or hole closed orbits. In the 
case of Cu, these orbits are referred to as dog bone structures, (bold 
line in Figure 8.6). Orbits can be the normal closed orbits and even 
open orbits, which do not return to the initial position. We will dis-
cuss the various types of orbital motion when we consider the effects 
of magnetic fields on the motion of electrons.

The form of the Fermi surface in higher order Brillouin zones 
can be generated in the same way as for the first zone, where only 
the portion of the Fermi sphere in that specific Brillouin zone is 
repeated (translated via reciprocal lattice vectors) to form the rel-
evant surface. This process is illustrated in Figure 8.7, where we see 
the form of the Fermi surfaces for the first four Brillouin zones for a 
2D square lattice. We note that in this case there is no Fermi surface 
in the first Brillouin zone since in this case we have kF > |G|/2. In 
effect, the periodic potential will alter the shape of the Fermi sur-
faces by rounding off the sharp edges of the extended zone repre-
sented free electron surfaces. We can further note that if kF < |G|/2, 

FIGURE 8.6:  First Brillouin zone Fermi surface of Cu in the extended zone scheme. 
The open orbit dog bone structure can be seen in the center of the figure.
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then the Fermi surface will be spherical and only exist in the first 
Brillouin zone.

It is worth noting here that for the case of intrinsic semicon-
ductors and insulators, the Fermi level at zero temperature sits in 
the middle of the band gap. As such there will be no Fermi surface 
for the solid since no electrons will be present at the Fermi energy 
and no electrons exist at k = kF. While in these cases a Fermi sur-
face does not exist, we can still represent constant energy surfaces in 
reciprocal space, as illustrated in Figure 8.3. In fact, these constant 
energy surfaces must be enclosed within the first Brillouin zone.

8.5  POSITIVE CHARGE CARRIERS: HOLES

We have previously noted that the absence of an electron in 
the valence band of a semiconductor can be thought of as a posi-
tive charge carrier. This is referred to as a hole. As we shall see later 

FIGURE 8.7:  Formation of the Fermi surface in various Brillouin zones shown as section in 
two dimensions. (a) The (free electron) Fermi sphere (blue) extends beyond the first Brillouin 
zone and cuts into the second, third and fourth zones, where it has a surface. (b) Extended 
zone scheme in which we repeat the Fermi sphere at each reciprocal lattice point. (c) The 

Fermi surface in the second Brillouin zone. (d) The Fermi surface in the third Brillouin zone 
and (e) The Fermi surface in the fourth Brillouin zone.
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in this chapter, the Hall effect permits us to determine the nature 
of charge carriers and can distinguish between electrons (negative 
charge carriers) and holes. In most metallic solids, we expect the 
charge carriers to be negative, since the current is produced by the 
motion of electrons only. However, the current in semiconductors 
can be carried by both electrons and holes, and the Hall coefficient 
can in fact be positive for doped semiconductors (see Chapter 9). 
To fully appreciate the change of sign for the charge carrier we 
need to consider the behavior of electrons in energy bands which 
are almost full. (We note that both empty and full bands cannot 
contribute to electrical conductivity.) In Figure 8.8, we illustrate 
the formation of a hole state in the valence band with the excitation 
of an electron from here to the conduction band. The application 
of an electric field will result in the motion of both the hole in the 
valence band and the electron in the conduction band. In order to 
consider the motion of the two charge carriers we need to deter-
mine the corresponding k-states. The valence band, which we will 
consider to be initially full and containing N electrons, with equal 

FIGURE 8.8:  Creation of a hole state in the valence (almost full) band. An electron  
of state +kj in the valence band is promoted (via the absorption of an appropriate  
quantity of energy) to the conduction band. Therefore the conduction band gains  

this value of k, while the valence band loses the same amount of k. The result  
is that the valence band hole-state has a k-value of −kj. We note that both  

energy and momentum (k) are conserved in this excitation.
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numbers of positive and negative k-states; ±k. Therefore, for our 
filled band we have:

	 ∑ =
=±
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k 0i
i

N

1

/2

� (8.21)

Therefore the filled band has a total k of zero. Clearly, the con-
duction band will also have zero k, since there are no charge carriers 
in its empty state. Once we excite an electron from the valence to 
the conduction band, the above situation will alter. Since we have 
removed an electron with say a positive value of k, let us say kj, there 
will be more electrons with negative k and hence the valence band 
will now have a total k of:
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Equilibrium is maintained since the k of the conduction band is 
now +kj, i.e momentum is conserved. The specifics of the transition 
depends on the shape of the bands in question and the available 
energy states.

We now consider the energy associated with the hole state, kh, 
which as we saw above is related to the electron state, kh = −ke. We 
note that as |kh| increases, the hole state moves to lower energies 
in the valence band, see Figure 8.8, and the energy Ee(ke) of that 
state decreases. However, the total energy of the electron system 
that occupies the valence band will increase by the same amount, 
since while the hole state falls from its initial state of higher to lower 
energy, an occupied state makes the reverse transition. This leads to 
a definition of the hole energy, Eh(kh), to be the negative of Ee(ke):

	 = −E Ek k( ) ( )h h e e � (8.23)

Now given that kh = −ke, we can write:

	 = − − = −E E Ek k k( ) ( ) ( )h h e h e h � (8.24)

since for any state −kh, there exists a state of the same energy with 
wave vector kh. From this equation we expect Ee to be a decreasing 
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function of its argument. For the simple case of spherical parabolic 
bands we can express the energy variations in the conduction and 
valence bands as:
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where EC
0  marks the bottom of the conduction band and EV

0  the top 
of the valence band. It is clear from the above that = −∗ ∗m m .h e  (N.B. 
in Figure 8.8, we have illustrated the situation with =E 0.V

0 )

We can now write the group velocity for the hole from our defi-
nition given in Section 8.2, which we express as:
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The corresponding expression for electrons is
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where we have used Eh(kh) = −Ee(kh).

The application of an electric field, ε, will cause a displacement 
of the charge carrier in the bands, providing there are available 
states for them to move into. We can evaluate the corresponding 
current associated with this movement of charge, where we have 

= n eJ ve h C V C V ge h( ) ( ) ( ) ( )  for electrons (e) and holes (h), respectively. 
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This can be expressed in terms of the effective mass of the charge 
carriers in the form:
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We can also indicate that the equation of motion due to the elec-
tric field, for electrons in the conduction band, can be expressed as:

	 ε ε
t

e e
kd
d

e
C = = − � (8.31)

while for holes in the valence band we have:

	 ε ε
t

e e
kd
d

h
V = = � (8.32)

This also shows that the charge for the hole is positive; eV = +e. 
It is worth noting that the Fermi surface of a metal contains both 
electrons and holes, which arises due to the fact that this is the inter-
face between the two, due to the definition of the Fermi level, i.e., 
both electron and hole states at EF.

8.6  DRIFT AND DIFFUSION OF CHARGE CARRIERS

The motion of electrons in a solid under the action of an electric 
field is referred to as drift. This subject was already introduced in 
Chapter 6, see Section 6.4. As we saw, this motion of charge results 
in an electrical current.

Another important source of charge motion is caused when 
there is a spatial gradient of charge carriers in the solid. Such con-
centration gradients will persist until the concentration is uniform in 
the solid, where the tendency is for the charge carriers to move from 
regions of high concentration to low concentration. This process is 
referred to as diffusion. It is a relatively simple matter to illustrate 
that the overall flux of charge carriers moves from regions of high to 
low concentrations. To do this we can consider the one dimensional 
case where the charge concentration, n(x) varies with position, as 
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shown in Figure 8.9. We consider the sample to be at uniform tem-
perature such that the thermal energy of the charge carriers does 
not alter with position and only n(x) will vary.1 We now consider the 
number of charge carriers (electrons say) that pass a plane at posi-
tion x = 0, per unit area per unit time. Due to finite temperature, 
the electron’s motion is random, with thermal velocity, vth, and the 
mean free path, λ = vthτ, so electrons on either side of the plane at 
x = 0 within this distance can pass across the plane with a probabil-
ity of 1/2, within the relaxation time τ. The average rate of flow of 
electrons per unit area, F+, crossing the plane at x = 0 from the left 
can be expressed as:

	
λ λ
τ

λ=
−

= −+F
n

n v
1
2

( ) 1
2

( ) th � (8.33)

In the same way we can express the average rate of flow of elec-
trons per unit area, F−, crossing the plane at x = 0 from the right as:

	 λ=−F n v
1
2

( ) th � (8.34)

Therefore the overall flux can be written as:

	 λ λ= − = − −+ −F F F n n v
1
2

[ ( ) ( )]x th � (8.35)

FIGURE 8.9:  Variation of concentration of charge carriers as  
a function of position in the solid.
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We now make Taylor expansions (up to the first two terms only) 
of the two concentrations around the zero plane, which allows us 
to write:

	

λ λ
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where we have used Dn ≡ vthλ, which we define as the diffusivity. 
We note that Equation (8.36) has the form of Fick’s first law in one 
dimension. The three dimensional expression has the form:

	 = −F D nn∇ � (8.37)

Given that electrons have a charge of −e, the flux of these charge 
carriers will give rise to a current, such that we can write the current 
density as:

	 = − =J eF eD
n
x

d
dnx x n � (8.38)

	 = − =eF eD nJn n∇ � (8.39)

This is called the diffusion current. Above we have shown both 
the one and three dimensional forms of the current density. Since 
the diffusion current depends on the random thermal motion of the 
charge carriers, we can use equations of the form (6.7) and (6.17) 
for the thermal velocity of the electrons and the corresponding 
mobility to obtain:

	 Jn =−eF= eDn∇n= e a kBT
e
µnb ∇n � (8.40)

This means that we can relate the diffusivity and mobility as:

	 Dn = a kBT
e
b µn � (8.41)
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This is know as Einstein’s relation and relates two important 
constants that characterize the transport of charge carriers by dif-
fusion and drift mechanisms. In the presence of an electric field 
and a concentration gradient, the current will be composed of two 
parts (diffusion and drift), giving a total current density which we 
can express as:

	 Jn
TOT = neµnE+ eDn∇n � (8.42)

here n denotes the electron concentration. Using the Einstein rela-
tion this equation takes the form:

	 Jn
TOT =µn(neE+ kBT∇n) � (8.43)

In the above discussion, we have only considered the motion of 
electrons. The displacement of holes will have an associated current 
density which can be written as:

	 Jp
TOT = peµpE− eDp∇p � (8.44)

Using the Einstein relation this equation takes the form:

	 Jp
TOT =µp(peE−kBT∇p) � (8.45)

here p refers to the (positive) hole charge concentration. Such con-
siderations are important in the motion of charge carriers in semi-
conducting materials in which both types of charge carrier can be 
present simultaneously. We will discuss these materials in more 
detail in the following chapter. In this case, the total current density 
must account for the movement of all charges which contribute to 
the current, such that we must use:

	 = +J J JTOT
n
TOT

p
TOT � (8.46)

This equation is very important when we consider the transport 
properties in semiconductor devices. We will develop this further in 
Chapter 9 when we consider other processes which contribute to the 
variation of the total charge concentration in semiconducting materials.
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8.7  ELECTRON SCATTERING IN BANDS

When an electron undergoes an inelastic scattering process, it 
will abruptly vanish from one point in reciprocal space and reappear 
at another position. The change in its wave vector will depend on 
that specific scattering process and the change of its momentum, 
which also includes its direction. It is in fact these collision processes 
in the solid which give rise to the electrical resistance of materials. 
The absence of these effects would be characterized by the flow of 
electrical charges without resistance and lead to the phenomenon of 
superconductivity. In such a situation, a current would continue to 
flow indefinitely, in accord with the equations of motion considered 
above. Superconductivity has been observed in a number of materi-
als at low temperatures. This occurs under specific conditions in cer-
tain materials and will be discussed in Chapter 11. In normal solids, 
however, electrical resistance is observed.

In Chapter 6, we introduced the Drude model for the conduc-
tion of electrons in metals. We noted that despite the relative success 
of the model there are a number of shortcomings, which essentially 
lead to the abandonment of this model for a more sophisticated 
approach. Of particular importance is the scattering of electrons in 
solids, which as we stated above produces the electrical resistance of 
materials. In the Drude model, it is assumed that the scattering is 
produced from the positive ion cores of the crystal lattice, implying 
a mean free path of a few Å, which falls well short of the value found 
in metals at room temperature. Actually, the periodic potential that 
is produced by the lattice does not scatter the electrons inelastically. 
This is apparent since the Bloch waves traversing the solid are sta-
tionary states of the Schrödinger equation and |ψ|2 is time indepen-
dent. In terms of the one-electron approximation that was used for 
the most part of Chapter 7, perturbations of the Bloch stationary 
states can occur via the electron scattering due to the deviation of 
the perfect periodic lattice. Such deviations are generally charac-
terized as being time-independent in the form of fixed defects (see 
Chapter 4) or time-dependent variations of the lattice structure in 
the form of lattice vibrations or phonons (see Chapter 5). The one-
electron approximation neglects the electron - electron interaction 
which is englobed within the non-interacting Fermi gas concept.  
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In fact, such effects can also cause a perturbation of the Bloch states, 
though in general these are less important than the effects of devia-
tions of the perfect periodic potential.

We note that elastic scattering, as produced for example via 
diffractive effects in solids only results in a change of wave vector 
direction and not magnitude. In quantum mechanics, the scattering 
process is characterized by the scattering probability, Wk, ′k ,  which 
defines the initial and final Bloch vectors, k and k′, respectively, 
along with the Hamiltonian for the perturbation, H′, and can be 
expressed in a general form as:

	 ∫ ψ ψ= ′′ ′
∗W r r r( ) ( )dk k k k,

2

P P � (8.47)

If the Hamiltonian is constant in time, then we expect an elas-
tic scattering process of the Bloch waves with the conservation of 
energy. If, however, the Hamiltonian is a time varying potential, such 
as for a lattice excitation (phonon), the scattering will be inelastic. In 
this case the energy conservation condition can be expressed as:

	 ω− =′E E q( )k k  � (8.48)

Such scattering from a phonon, with wave vector q, gives rise to 
a scattering matrix element of the form:

	 u u er r r( ) ( ) di
k k

k k q( )∫ ′
∗ − ′+ � (8.49)

Since the functions u ′k
∗ (r)  and uk(r) have the periodicity of the 

lattice and can be expanded in a Fourier series in terms of the recip-
rocal lattice vectors, the matrix elements will only be non-zero for:

	 ′− = +k k q G � (8.50)

This has a form which resembles that of the von Laue relation 
for diffraction. Actually, it only differs in the fact that some momen-
tum is transferred from the electron to some form of excitation and 
by an amount corresponding to a reciprocal lattice vector, since it 
is only in these discrete quantities that conservation of momentum 
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(and energy) is preserved. It should be clear that while the von Laue 
relation corresponds to an elastic scattering process, Equation (8.50) 
refers to an inelastic event. The use of the conservation laws is a con-
venient way for expressing the scattering of Bloch-state electrons.

The conservation of energy and momentum can also serve as a 
guiding principle in the study of electron-electron scattering. We 
can write the collision between two electrons in the form: E1 + E2 = 
E3 + E4, where each term, Ei = E(ki) denotes a one-particle energy 
in the non-interacting Fermi gas. The corresponding conservation of 
momentum can be expressed as:

	 + = + +k k k k G1 2 3 4 � (8.51)

While one might expect a high scattering probability due to 
the electron density in a metal since the Coulomb repulsion can be 
expected to be reasonably strong, in fact this will be prohibited to a 
large extent due to the Pauli exclusion principle. This means that, to 
a good approximation, the Pauli exclusion principle allows us to treat 
the electrons in a solid as non-interacting. It is therefore that most 
treatments of electrical conduction in solids only considers scatter-
ing processes from defects and phonons.

8.8  MAGNETIC FIELD EFFECTS

We will now consider the effect of a magnetic field on charge 
carriers in a solid. We can express this by using the force equation, 

tF kd d ,=  and the Lorentz force, such that we can write:

	 = ×
t

e
k

v B
d
d

[ ]C V ge h( ) ( ) � (8.52)

Since the vector product has a direction perpendicular to the 
two vectors, we note that dk/dt will be perpendicular to the group 
velocity, vge(h), and hence to ∇kEnk. We can denote this condition of 
orthogonality in the form:

	 ⋅ =
t

E
kd

d
0nk k∇ � (8.53)
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This means that the charge carriers will move in orbits of con-
stant energy, which can be seen more explicitly if we expand the 
above condition:

	 ∇
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This has important implications for the motion of electrons and 
holes in the presence of a magnetic field. This fact is frequently 
exploited to study Fermi surfaces in metals and other transport 
properties of solids. Some of these topics will be discussed in the 
following sections.

8.8.1  The Hall Effect
The Hall effect was discovered in 1879 by Edwin Hall (1855 - 

1938), and can be described as the appearance of a transverse elec-
trical potential difference across a conductor (or semiconductor), 
when an applied magnetic field is present in a direction perpendicu-
lar to an electrical current flowing in the material. The Hall effect is 
a direct consequence of the Lorentz force on the charge carriers in 
the solid and can be exploited to characterize the electronic proper-
ties of materials. A schematic illustration of the measurement of the 
Hall effect is shown in Figure 8.10.

FIGURE 8.10:  Schematic illustration of the Hall effect measurement, where a sample  
has a current I (current density, J) flowing in a direction perpendicular to the 
orientation of an applied magnetic field. The Hall effect is the appearance of  

the potential difference at the lateral edges of the sample, demoted by VH.
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The equation of motion for a charge carrier, with drift velocity, v, 
in the presence of a magnetic field, B, can be expressed as:

	
τ

+ = + ×∗m
t

e
v v

E v B
d
d

( )ca b � (8.55)

From the figure above, we set the magnetic field along the 
z-direction with the electric field and hence drift velocity in the 
x-direction. Since the Lorentz force produces a lateral force on the 
charge carriers, these will be deflected from their original path in 
the x-direction and the charge accumulation, i.e., the Hall effect, 
will give rise to a component of the electric field in this direction. As 
such we can write: B = (0, 0, B) and E = (Ex, Ey, 0). Equation (8.55) 
will now take the form:
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which is expressed in component form. The deflection of charge car-
riers will continue until the accumulation at the sample edge is such 
that an equilibrium is established between the electric and magnetic 
forces on the charge carriers and the system will be in steady-state. 
This means that the derivatives: = =v t v td d d d 0.x y  It is a simple 
matter to establish:
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where the approximation regards the case for low magnetic fields. 
Such an equation is valid for each type of charge carrier (i.e., for 
electrons and holes). Given that the net transversal current must be 
zero, we can write:

	 ∑ =n v e 0i yi ci
i

� (8.59)
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where i refers to either electrons or holes. Using Equations (8.58) 
and (8.59) we can write the following relation:
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where the c subscript refers to electrons in the conduction band and 
h to holes in the valence band. Using the expression for charge car-
rier mobility; µi =| eciτc mc

∗ |,  the above equation takes the form:

	 Ey(ncµc+ pµh)= Ex(pµh
2−ncµc

2)B � (8.61)

Writing ec = −e and eh = e, we can write:

	 Ex =
jx

σ
=

jx

| e | (ncµc+ pµh)
� (8.62)

Finally we equate this with (8.61), which gives:

	 RH =
Ey

jxB
=

(pµh
2−ncµc

2)
| e | (ncµc+ pµh)2

� (8.63)

The quantity RH is called the Hall coefficient and is used to 
characterize the Hall effect in a sample. It will be readily seen that 
for metal, the Hall coefficient will be negative, with RH = −1/ne. 
One of the principle applications of the Hall effect is to measure the 
the type and concentration of charge carriers in semiconductors. 
The other very important application of this effect is in the mea-
surement of magnetic fields, since a known sample can be easily 
calibrated, providing a relatively accurate and simple experimental 
tool. In fact, the Hall probe is almost universally found in research 
laboratories where electromagnets are employed. The more recent 
discoveries of the quantum or quantized Hall effect (QHE) and the 
fractional quantum Hall effect (FQHE), will be discussed at the end 
of this section.

8.8.2  Cyclotron Resonance
As a first approach to the consideration of the effect of a mag-

netic field on an electron or charge carrier, we can look at the Lorentz 
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force due to the magnetic field applied to a free charge carrier:  
F = |ec|(v × B). From classical physics, we know that the magnetic 
field has the effect of deviating the charged particle from its recti-
linear trajectory, when no field is applied. For a uniform magnetic 
field this then results in a circular or orbital motion of the charge 
carrier, as in the case of the classical Thomson experiment (1897) to 
measure the charge-to-mass ratio (e/m). The force will be a maxi-
mum when the velocity has a direction perpendicular to the applied 
magnetic field; Fmax = |ec|vB. Equating with Newton’s second law 
for the centripetal force (F = mv2/r), we can obtain the radius or the 
circular orbit as:

	 r
mv
e B| |c

= � (8.64)

where m is the mass of the charged particle. The period for one orbit 
can be obtained from the velocity as: T = 2πr/v. from which we 
obtain the angular velocity of the motion:

	
T

v
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e B
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2 | |
c

cω
π

= = = � (8.65)

For charge carriers in solids this is called the cyclotron fre-
quency. Often the mass will be replaced by the effective mass, m*. 
In fact, the cyclotron resonance is used to measure the effective mass 
of electrons and holes in semiconductors. In terms of experimental 
techniques, the measurement of cyclotron resonance is performed 
in a microwave spectrometer in which the sample is subject to an 
applied static magnetic field as well as a the electromagnetic field 
from a microwave source. As the frequency of the radiation is fixed, 
the magnetic field is varied over a certain range. As the condition for 
resonance is approached (defined by both the frequency and field 
conditions of the experiment), the carriers will absorb energy from 
the microwaves. The experiment consists of the measurement of this 
absorption as a function of the applied magnetic field. We can com-
mence analysis by applying Equation (8.55) to our situation, where 
we have: B E eB E(0,0, ), ( ,0,0)x

i t0= = ω−  and = −v v ev ( , ,0) .x y
iwt0 0  The 

sample is situated such that it is in a region where the electric field 
component of the microwave radiation is a maximum while that 
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for the magnetic field component (of the microwave radiation) is a 
minimum, and negligible. We now write the equation of motion in 
component form as:

	 m i v e E v B
1

| | ( )x c x ya bω
τ

− + = +∗ � (8.66)
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− + = −∗ � (8.67)

Eliminating vy from the above and using: jx = nc|ec|vx, where nc 
is the carrier concentration, we obtain:
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This is the complex conductivity of the material, where σ0 is the 
static value. In the cyclotron resonance experiment, the absorbed 
power is proportional to the real part of the complex conductivity;
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Experimentally, the absorption is measured as a function of the 
applied magnetic field strength, where peaks in the absorption indi-
cate the presence of the charge carriers with specific resonance con-
ditions depending on their effective mass, as given by the cyclotron 
frequency: e B m| | .c cω = ∗  Therefore electrons in different energy 
bands as well as heavy and light holes will appear as distinct absorp-
tion peaks in the absorption spectrum. The width of the resonance 
lines being determined by the relaxation time, τ, which is related to 
the collision rate of the charge carriers with defects in the solid. To 
be able to observe the cyclotron resonance of a charge carrier, it is 
necessary that the mean free path be sufficiently long to be able to 
move in its orbit between collisions. This condition can be expressed 
as: ωcτ > 1. This condition is most easily satisfied by performing 
measurements at low temperature, though high frequencies and 
high fields will also assist in reaching this condition. Early measure-
ments of cyclotron resonance in semiconductors were performed by 



Electron Dynamics and Transport Phenomena  •  259

Dresselhaus and co-workers2. In Figure 8.11, we show the absorp-
tion spectrum for Ge, where the various resonance peaks are indi-
cated as electrons or holes.

By taking measurements of the cyclotron resonance as a func-
tion of the orientation of the magnetic field with respect to the crys-
talline axes, it is possible to observe the effect of the electronic band 
structure of solid, since the effective mass of the charge carriers is 
intimately related to inverse second derivative of the energy (see 
Section 8.3). Allowing the magnetic field to vary, say in the x − z 
plane: B = B(sin θ, 0, cos θ), we can now write:

	 ω ω θ− =i v v cos 0x t y � (8.70)

	 ω θ ω ω θ+ − =v i v vcos sin 0t x y t z � (8.71)

	 ω θ ω+ =v i vsin 0l y z � (8.72)

where ω = ∗e mBt t  and ω = ∗eB m ,l l  are the transversal and longi-
tudinal cyclotron frequencies, due to the transversal and longitudinal 

FIGURE 8.11:  Cyclotron resonance spectrum for germanium, for a frequency of 24 GHz  
at 4K. Spectrum was taken with the magnetic field applied in the (110) plane at  

60 from the [100] axis. (Reprinted figure with permission from: Dresselhaus et al.  
Phys. Rev.98, 368 (1955). Copyright 1955 by the American Physical Society.)
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effective masses (see Equation 8.18). Solving this set of simultane-
ous equations, we obtain:

	 ω ω ω θ ω ω θ= = +cos sinc t t l
2 2 2 2 2 � (8.73)

Here ωc is the cyclotron frequency; ω = ∗eB m ,c c  where the 
cyclotron effective mass, ∗m ,c  takes the form:

	
θ θ

= +
∗ ∗ ∗ ∗m m m m

1 cos sin

c t t l

2 2

2

2

a b � (8.74)

The comparison of theory and measurement, see Figure 8.12, 
allows the determination of the effective masses for the charge car-
riers in the sample. The values for Ge and Si are given in Table 8.1.

8.8.3  Magnetoresistance
The phenomenon of the change of electrical resistance in the pres-

ence of a magnetic field is termed magnetoresistance, and is a general 

FIGURE 8.12:  Effective mass of electrons in Ge at 4K for the magnetic field in the (110) plane. 
Theoretical curves were obtained using Equation (8.74). Note that the different symbols are 

for different experimental runs. (Reprinted figure with permission from: Dresselhaus et al.  
Phys. Rev.98, 368 (1955). Copyright 1955 by the American Physical Society.)
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observation in a majority of metals. We again start with Equation (8.55) 
and taking the magnetic field to be along the z-direction we can write, 
for the steady-state condition in the sample; i.e., where =v td d 0 :x y,
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which we can express, using the cyclotron frequency, e B m( | | ,c cω = ∗  
and the mobility, µ= |ec | τ m∗ ,  as:

	 vx =µEx+ωcτvy � (8.78)

	 vy =µEy−ωcτvx � (8.79)

	 vz =µEz � (8.80)

We can express these results in condensed form using the con-
ductivity tensor, σ,  where e nJ v E| | ,c c σ= =  and we obtain:
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σ σ

σ σ
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= −
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0

0 0

xx xy

xy xx

0

q r � (8.81)

TABLE 8.1:  Effective masses for electrons and holes in Ge and Si as 
measured by cyclotron resonance. All units are given in units of the free 

electron mass. Here subscripts refer to the following: l– longitudinal,  
t– transversal, lh– light hole and hh– heavy hole. (Data taken from  

Dresselhaus et al. Phys. Rev. 98, 368 (1955).)

∗ml
∗mt

∗mlh
∗mhh

Ge 1.58 0.082 0.043 0.34

Si 0.97 0.19 0.16 0.52
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where
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here σ τ= ∗n e mc c0
2  and e B m| | ,c cω = ∗  are the zero-field static 

conductivity and the cyclotron frequency, respectively. The magne-
toresistance phenomenon is common in metals and generally arises 
from a combination of electrons in anisotropic bands with differ-
ent values of effective mass and different relaxation times. As such, 
these electrons will move in different orbits under the action of a 
magnetic field. This means that the total current from the different 
electron contributions will reduce with an increase of magnetic field 
and introduce the increase of electrical resistance that is observed 
experimentally. Data are usually presented in terms of resistivity 
rather than conductivity, and we can use the inverse tensor of the 
conductivity to obtain the resistivity tensor, which will have compo-
nents of the form:
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The magnetoresistance is expressed as:
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ρ

ρ ρ
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One particularly important consideration in the magnetore-
sistance is the type of orbit the charge carriers will follow under 
the effect of an applied magnetic field. Since the charge carriers 
in question will be at the Fermi surface, the type of orbit can be 
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open or closed, depending on the direction in which the magnetic 
field is applied with respect to the crystalline lattice. From the 
form of the conductivity tensor elements, as the magnetic field 

ω τ→ ∞ → ∞B , ,c  and since τ is constant, this means that the elec-
tron will make many orbits on the Fermi surface before scattering. 
Thus the average velocity of the electron, in the plane perpendicular 
to the B field, will tend to zero, and therefore the leading conductiv-
ity elements will vary as B−2 at high magnetic fields. This results in a 
B2 - dependence of the transverse magnetoresistance and saturates 
at very high fields. The open type orbit, which the electron does not 
return to the same position on the Fermi surface, the electron veloc-
ity will not average to zero, and the magnetoresistance continues to 
vary as B2, even as B → ∞. Magnetoresistive effects will be stron-
ger in ferromagnetic metals due to the imbalance in spin-up and 
spin-down electron concentrations. Furthermore, in magnetically 
structured materials a giant magnetoresistive effect can be observed. 
Such topics will be discussed in Chapter 10.

8.8.4 � Magnetic Sub-Bands and Oscillatory  
Phenomena in Solids

In the free electron model, we obtain the energy relation: 
=E k mk( ) 2 .2 2
  This can be easily derived from the Schrödinger 

equation, (see Section 6.6). However, if a magnetic field is applied 
in the z-direction, the electron motion in the x − y plane will be 
affected, but not that in the z-direction. The resultant motion will 
be a combination of the linear motion in the z-direction plus the 
cyclotron motion in the x − y plane; i.e., the electron will describe 
a helical path.

The Schrödinger equation will be modified to take the form:
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The magnetic field is incorporated in the cyclotron frequency, 
e B m| | .c cω = /  The solution of this equation, which was first per-

formed by Lev Landau (1908 - 1968), takes the form:
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264  •  Solid State Physics

where ν is an integer. Comparing the free electron solution with the 
Landau energies we can write:

	
ω

ν ν+ = + = +k k
m eB

(2 1) (2 1)x y
c2 2

 

� (8.90)

This equation has the form of the equation of a circle, where the 
radius is eB(2 1) ν+ /  in k-space. Since there is no restriction in 
the z-direction, these will describe cylinders or tubes in k-space, as 
illustrated in Figure 8.13. The various tubes arise from the discrete 
values of ν in Equation (8.90), these are known as magnetic sub-
bands or Landau levels.

The electron energies are quantized in to Landau levels in the 
plane perpendicular to the direction of the magnetic field, while along 
B, the energies are unrestricted. The energy and density of states for 
electrons will now take on a discrete form, as shown in Figure 8.14(a) 
and (b). The oscillatory dependence of the magnetic susceptibility and 
the conductivity (magnetoresistance) arises when the electronic den-
sity of states moves through the chemical potential. These effects are 
respectively known as the de Haas - van Alphen or dHvA effect and 
the Shubnikov - de Haas effect. Since the energy between levels can 
be quite small, typically it is necessary to perform such measurements 
at low sample temperatures. At finite temperatures, the Fermi - Dirac 
distribution function becomes smeared in the region of the chemical 

FIGURE 8.13:  Landau tubes superposed on to the Fermi sphere for free electrons.
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potential, so low temperatures are required to observe the oscillatory 
phenomena; i.e., ω > k T.c B� ∼  The conductivity becomes vanishingly 
small whenever the highest Landau level is full. This can be expressed 
for a two-dimensional system as:

	 ν=N
eB
h

2
s � (8.91)

where ν is an integer and Ns expresses the electron density per unit 
area in a two-dimensional electron gas (2DEG). A conductivity max-
imum will occur for:

	 ν= +N
eB
h

1
2

2
s a b � (8.92)

From which we can evaluate the the periodicity of the conduc-
tivity oscillations as a function of the magnetic field:

	 ∆ B
e
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2

s

/ = � (8.93)

Oscillatory phenomena in magnetic fields such as these are fre-
quently used to measure the Fermi surface of materials since the 
motion of the charge carriers in a magnetic field occurs on the Fermi 
surface itself, as discussed above.

FIGURE 8.14:  Energy sub-bands and density of states for Landau levels.
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8.8.5  The Quantum and Fractional Quantum Hall Effects
The experimental set-up for the measurement of the quantum 

Hall effect (QHE) is usually the same as that for the conventional 
Hall effect and as such the resistivity tensor components will be 
as given in Equations (8.84) and (8.85), with I Vxx yy xσ σ= /  and 

I V ,yx xy Hσ σ= − − /  where I is the current through the sample. 
This is all much as we had for the conventional Hall effect. However, 
under conditions of high magnetic fields, ω τ 1,c   from Equations 
(8.82) and (8.83), we find σ σ| | | | ,xy xx  which means that we can 
write:
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In the situation for high magnetic fields when the highest Lan-
dau level is filled, there will be no conductivity, since filled band 
do not contribute. Therefore, the conductivity component σxx goes 
to zero, and from Equation (8.94) above, so does the correspond-
ing resistivity component ρxx. This is an unusual situation, where 
both conductivity and resistivity both effectively vanish. If we now 
consider the Hall voltage, at values of the applied magnetic field 
where ρxx goes to zero, the Hall voltage becomes independent of the 
field, i.e., the Hall resistivity reaches a plateau. As the field further 
increases, the resistivity can increase as carriers become available 
and the Hall voltage jumps up to the next value. We can no consider 
the QHE by considering the variation of the conductivity as a func-
tion of the applied magnetic field. We saw earlier that the conductiv-
ity ρxx goes to zero when the Landau levels are full, at which point 
the electron density of a 2DEG is given by Equation (8.91). The 
corresponding Hall resistivity can be expressed as:

	 ρ
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For our considered case of a 2DEG, ρxx will be measured in 
Ω. In Figure 8.15, we illustrate the variation of the Hall resistivity 
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and the magnetoresistance oscillations or the Shubnikow - de Haas 
effect in a GaAs/AlGaAs heterostructure.

The quantum Hall effect was discovered in 1980 by von Klitzing, 
who was awarded the 1985 Nobel Prize for this discovery. Indeed, 
the importance of this discovery resides in the fact that the Hall 
resistivity is really essentially determined by the fundamental con-
stants e and h, Equation (8.96). The QHE can be used to determine 
the fine structure constant;

	 α=
e2µ0c
2h

� (8.97)

FIGURE 8.15:  The quantum Hall effect measured at 50 mK in a two-dimensional  
electron gas formed by a GaAs/AlGaAs heterostructure. (a) Hall resistivity, ρxy,  

as a function of the applied magnetic field. (b) Variation of the sample resistivity,  
ρxx, as a function of the applied field. This corresponds to the case of oscillations  

in the magnetoresistance or the Shubnikow - de Haas effect. (Reprinted figure  
with permission from: M. A. Paalanen, D. C. Tsui, and A. C. Gossard. Phys. Rev.  

B 25, 5566 (1982). Copyright 1982 by the American Physical Society.)
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One of the complexities inherent in the QHE is the existence 
of the resistance plateaus, which can extend over significant regions 
of the magnetic field. This is usually explained in terms of localized 
states between the Landau levels. These states, which are derived 
from lattice imperfections, accept electrons and trap them such that 
they cannot contribute to the current. This results in a plateau in the 
Hall resistance, as observed experimentally. In Figure 8.15, we note 
that there is spin-splitting in the Landau levels. This can be taken 
into account using the following Landau level energies:

	 E=
! 2kz

2

2m
+!ωc(ν+1/2)±

1
2

g∗µBB � (8.98)

here the ± will take the spin of the electrons into account and g* 
is the effective g-factor. For low fields, the spin splitting becomes 
negligible, which explains why the spin degeneracy lifting is not 
observed for the higher states, see Figure 8.15.

The fractional quantum Hall effect (FQHE) was discovered 
very soon after the QHE, also referred to as the integral quantum 
Hall effect (IQHE). The Nobel Prize was also awarded for this dis-
covery, with H. L. Störmer, D. C. Tsui and R. B. Laughlin being the 
recipients of the 1998 prize. The FQHE is only observed in good 
quality epitaxial 2DEG systems, where additional plateaus can be 
observed for the condition:

	 ρ
ν

=
h
e

xy 2
� (8.99)

where ν = p/q, are non-integer rational fractions, such as 1/3, 2/3, 
3/5 etc. The FQHE is understood in terms of the highly correlated 
motion of many electrons in a 2DEG subject to a magnetic field 
and imply that the Landau levels have some internal structure. 
Ultimately, the magnetic flux imparts a 2π phase twist on the wave-
function describing the many-electron states. These are termed vor-
tices and represent a charge deficit. The vortices are delocalized in 
the sample (2D) plane and are related to flux quanta. Given that 
the vortices correspond to a charge deficit, they attract electrons, 
allowing considerable energy gain to be achieved by placing vortices 
onto electrons. For the ν = 1/3 state, there are three times as many 
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vortices as electrons and each vortex represents a local charge deficit 
of e/3. The plateaus in the Hall resistivity occur for the effective fill-
ing factor, N h eB ,sν = /∗ ∗  which corresponds to:

	
N h

e B jN h e( 2 )
s

s

ν =
− /

∗ � (8.100)

where ∗ = − ΦB B j N2 s0  is the effective field accounting for the flux 
quantum of number j.

8.9  SUMMARY

The motion of charge carriers in solids is derived principally 
from the application of electric and magnetic fields, though thermal 
motion is also a contributory factory as is a concentration gradient. In 
the former cases, the equations of motion can be established from the 
force produced by an electric or magnetic field. The band structure 
of a material can put severe limits on how the electrons and holes can 
move once a field has been applied, and in any case, the direction of 
the force (electric or magnetic) will determine the resulting motion 
of the charge carriers in the bands. To assist, or simplify, the treat-
ment, the effective mass concept can be used. This will allow the 
effect of the band structure to be condensed in to the effective mass 
and permits the equations of motion to be greatly simplified.

The highest electron energy states at zero temperature occur 
at the Fermi energy. For a free electron the electron energy will be 
independent of direction and we can hence define a constant energy 
surface in reciprocal space, which will be spherical. For electrons 
or energy equal to the Fermi energy, this constant energy surface 
is called the Fermi sphere. In a solid, where this sphere crosses the 
first Brillouin zone, there will be a deformation of the surface due to 
Bragg scattering. Thus a Fermi surface in a solid will not generally 
be spherical. It is worth noting that since there are no charge carri-
ers at the Fermi energy in a semiconductor or insulator, these mate-
rials will not strictly have a Fermi surface. The specific form of the 
Fermi surface in a metal will depend on its crystalline structure and 
the strength of the periodic potential.



270  •  Solid State Physics

At non-zero temperatures, electrons can be excited from valence 
to conduction bands. The missing electrons in the valence band act 
as positive charge carriers called holes. These have their own spe-
cific mobilities and effective masses, which differ from the electrons 
in the conduction band. As we stated above, the effective mass of a 
charge carrier will be intimately dependent on the band structure. 
This will have a profound effect on how the charge carriers can move 
through the solid, and in a crystal, will generally be anisotropic. 
Since the effect of a magnetic field produces transversal motion of 
charge carriers, their motion will occur on constant energy surfaces. 
This effect can be exploited to measure the motion of electrons and 
hence experimentally elucidate the form of the Fermi surface in 
metals. The oscillatory motion of electrons can be observed in mea-
surements of the cyclotron resonance, de Haas - van Alphen and 
Shubnikov - de Haas effects. These reveal important information 
about the nature of charge carrier motion in solids. Furthermore, we 
can understand the Hall effect and integer quantum Hall effect in 
terms of the electric and magnetic fields in the solid.
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EXERCISES

Q1.	 Using the momentum operator p = −i∇, find the 
expectation value of the velocity of a Bloch electron.

Q2.	 Consider a parabolic energy band of the form: 
α α α= + + +E E k k k .0 1 1

2
2 2

2
3 3

2  Show that the effective 
mass tensor can be expressed as:

	
α δ

=∗m
2

1
ij

i ij

2


� (8.101)

Q3.	 Construct the effective mass tensor for the energy bands 
given in Equation (8.18).

Q4.	 Consider a two-dimensional solid with the following 
dispersion relation:

	 = + +E k E A k a B k a( ) cos( ) cos( )0 1 1 2 2 � (8.102)

	 Determine the effective mass tensor.

Q5.	 Consider the energy relation given in exercise Q4, which 
has just one electron in the energy band. A a certain 
moment an electric field, ε, is applied along the direction 
of α1. How do the electron’s position (initially at x = 0), 
velocity and effective mass in this direction vary as a 
function of time?

Q6.	 Sketch the form of the Fermi surface for the solid 
in question Q4 for the case where there is an almost 
empty band. How would this change if the band was 
almost full?
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Q7.	 Consider the motion of an electron under the influ-
ence of a magnetic field. Show that the projection of the 
electron’s real-space orbit in the plane perpendicular to 
the magnetic field, is the reciprocal-space orbit rotated 
by π/2 radians about the direction of the field and is 
scaled by a factor of he/B.

Q8.	 Describe how you would expect the magnetoresistance 
of copper to vary in the (100) and (110) planes. Hint: 
Consider the form of the Fermi surface for copper, as 
illustrated in Figures 8.4 and 8.6.

Q9.	 Consider the cyclotron resonance experiment, where 
the electron in the solid is described by the effective 
mass, m*, and relaxation time, τ. Derive the equations of 
motion for the electron drift velocity in a static magnetic 
field, B = (0, 0, B) and a high-frequency electric-field, 

ξ ξ= ω ω π+e eE ( , ,0).i t i t
0 0

( /2)  

Q10.	 Derive the Hall coefficient, RH, for an intrinsic semi-
conductor, where both electrons and holes contribute 
equally to the current in the sample.

Q11.	 Evaluate the conductivity and resistivity tensors for 
an intrinsic semiconductor, taking into account the 
longitudinal and transversal effective masses. What is 
the effect of applying a high magnetic field, ω τ 1,c   to 
the sample?

NOTES

1 A temperature gradient can also be expected to produce a net flow of charge since 
electrons in regions of higher temperature will have a greater thermal velocity. 
Thermalization processes will transfer energy to the crystal lattice in the form of 
phonons and act to eliminate any temperature gradient. This is analogous to the 
diffusion process, which acts to remove concentration gradients.
2 G. Dresselhaus A. F. Kip and C. Kittel, Phys. Rev. 92, 827 (1953) and Phys. Rev.98, 
368 (1955)



CHAPTER 9
SEMICONDUCTORS

“I tore myself away from the safe comfort of certainties through my love for 
truth - and truth rewarded me.”

—Simone de Beauvoir

“Nothing in life is to be feared, it is only to be understood. Now is the time 
to understand more, so that we may fear less.”

—Marie Curie

9.1  INTRODUCTION

In previous chapters, we have referred to materials in which 
there exist two types of charge carrier: the electron and the hole. 
These refer to the charge carriers in the conduction and valence 
bands, respectively. In this chapter, we will consider materials in 
which there are significant contributions to the electrical properties 
from these charge carriers. These materials are called semiconduc-
tors, and are distinguished from metals and insulators in their spe-
cific electronic properties. The principal way in which we distinguish 
these types of solids is via their electrical resistivity. In Table 9.1, we 
show some electrical resistivities of solids in these categories of mate-
rials. Typically metals have resistivities of the order of 10−8(Ω-m),  
while insulators have ρ > 1010(Ω-m). Semiconductors can have 
a broad range of values for the electrical resistivity, depending on 
impurities, defects and ambient conditions.
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As can be seen, the semiconductor class of solids has a resistivity 
in between those of metals and insulators. Actually we shall see that 
there are some fundamental differences between metals and semi-
conductors, which is principally related to the electronic structure 
of the solids and the availability of the two types of charge carrier. In 
metals, electrons occupy energy levels within the conduction band, 
which is partially filled, while the valence band is completely full. 
This can be otherwise thought of as the Fermi level being located 
somewhere inside the highest occupied energy band. In semicon-
ductors, the Fermi level lies between the valence and conduction 
bands, thus at zero temperature, all states in the valence band are 
occupied while in the conduction band they are completely empty. 
An insulator has the same situation. The principal difference being 
the size of the energy gap between the bands. In the case of semi-
conductors the energy difference between the top of the valence 
band and the bottom of the conduction bands is roughly about 1 eV, 
while for insulators it is typically above 4 eV. This difference, though 
academic, is sufficient to reduce the effective number of charge car-
riers at normal operating conditions of temperature, such that the 
electrical properties can be distinguished loosely in this way. We will 
discuss these considerations further in this chapter. The metal on 
the other hand can be thought of as having zero band gap. Actually 
there is usually an overlap in terms of energy between the conduc-
tion and valence bands in metals. In Figure 9.1, we show the band 
structure for Si. Illustrated are the conduction and valence bands as 

TABLE 9.1:  Electrical resistivities of selected materials at room temperature

Material Resistivity at room  
temperature ρ(Ω-m)

Category

Copper 1.68 ×10−8 Conductor (metal)
Silver 1.59 ×10−8

Gold 2.44 ×10−8

Germanium 4.6 ×10−1 Semiconductor
Silicon 6.4 ×102

Glass 1010 − 1013 Insulator
Air 1016

Teflon 1022 − 1024
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well as the band gap, Δ. The Fermi level for pure semiconductors 
and insulators lies exactly half way between the valence and conduc-
tion bands at absolute zero of temperature.

Semiconducting materials hold a very special place in the elec-
tronics industry. This is because the principal electronic components 
used in devices for computing purposes are based on semiconduc-
tors. Such devices as the diode and the transistor are of particular 
importance. We shall see how these devices are constructed and 
how they function.

So why are materials, which do not electrically conduct as well as 
metals, so important in electronic devices? We can answer this ques-
tion by stating that it is the capacity for manipulating their electronic 
properties in a very precise manner, which allows them to be made to 
perform very specific tasks under well defined conditions. We shall 
see how their thermal behavior and in the presence of photons dif-
fers from other materials. We will also discuss the possibility to intro-
duce impurities in a controlled manner in semiconductors to control 
their conductivities. Furthermore, the manipulation of the composi-
tion of semiconductors in the fabrication process allows the delicate 
control of the materials electronic structure and permits the design 
of materials with specific electronic and optoelectronic properties. 
The combination of different types of semiconductor further allows 

FIGURE 9.1:  Band structure for Si. Electron states do not exist in the band gap region  
for a semiconductor and insulator. The Fermi energy will lie in this region.
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the development of a multitude of devices for optical and electronic 
applications.

9.2  SEMICONDUCTING MATERIALS

While there are naturally occurring semiconductors, such as sili-
con and germanium, compound materials can be formed with semi-
conducting properties, such as GaAs and CdSe. In Chapter 1, we 
introduced the periodic table of elements, where we see the specific 
grouping of elements according to their electronic shell configura-
tions. The semiconducting elements Si and Ge both occur in the 
group IV period, each having four electrons in their outer (p) shell, 
which contribute to the valence band at low temperatures. These 
elements crystallize in the diamond structure. In fact, diamond is 
formed by carbon and also has 4 p-electrons. The only reason that 
diamond is not a semiconductor is that it has a larger energy band 
gap between the valence and conduction bands. On either side of 
this column in the periodic table, are the group III and group V 
elements, which in compound form make up the III - V semicon-
ductors, see Figure 1.5. The most common being the binary com-
pound GaAs, though other III - V compounds can be formed also 
in ternaries and quarternies, with elements such as In, P and Sb. 
These materials have a particularly important role in optoelectronic 
devices based on quantum well structures, as will be discussed later. 
The III - V semiconductors typically form in a zinc-blende type 
structure, which is closely related to that of diamond, see Chap-
ter 2. The nature of the bonding between atoms was discussed in  
Chapter 1, see Section 1.4 for more details.

Beyond the III - V materials lie the II - VI type compounds, 
such as CdS, CdTe and ZnSe. As with the III - V compounds, the 
exchange of electrons between the components gives rise to partial 
covalent and ionic bonds, with four valence electrons. The semicon-
ductors of the II - VI type can crystallize in the wurtzite like struc-
ture, such as CdS, or in the zinc-blend structure, as is the case of 
CdTe. Both structures are based on the tetragonal type units that 
also occur in both the diamond crystal type lattice.
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As we have stated above, one of the principal properties of the 
semiconductors is the energy gap (band gap) between the top of the 
valence band and the bottom of the conduction band. In Table 9.2, 
we list some of the band gap energies of the principal semiconduc-
tors at low temperature. We note that the properties at room tem-
perature will be different from those listed in the table. For example, 
the band gap in Si reduces to 1.12 eV at room temperature, while 
that for Ge is 0.67 eV at 300 °C.

The properties of pure (or intrinsic) semiconductors can be sig-
nificantly modified by the introduction of controlled quantities of 
impurities. Such an introduction of foreign atoms into the semicon-
ductor is called doping and the resulting material is said to be an 
extrinsic semiconductor. These will be discussed in more detail later 
in this chapter.

In addition to the distinctions between types of semiconductor 
given above, there is another important classification, which relates 
to the fundamental band structure. For band structures in which 
the minimum of the conduction band and the maximum in the 
valence band occur at the same value of wave vector, we designate 
as a direct band-gap semiconductor. When this is not the case we 
refer to the semiconductor as an indirect band-gap material. GaAs 

TABLE 9.2:  Properties of some common semiconductors at low temperature.

Semiconductor Group Band gap,  
Δ (eV)

Lattice  
type

Lattice constant 
(Å)

Si IV 1.17 Diamond 5.431

Ge IV 0.74 Diamond 5.658

GaAs III - V 1.52 Zinc-Blende 5.653

GaP III - V 2.35 Zinc-Blende 5.45

InP III - V 1.42 Zinc-Blende 5.869

ZnSe II - VI 2.82 Zinc-Blende 5.661

CdTe II - VI 1.61 Zinc-Blende 6.423

CdS II - VI 2.58 Wurtzite       a = 4.139 
c/a = 1.62

CdSe II - VI 1.84 Wurtzite       a = 4.309 
c/a = 1.63
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is a well-known example of a direct band-gap semiconductor, while 
Si, Ge and GaP are examples of indirect band-gap semiconductors. 
This property is of great importance in the transitions of electrons 
between the valence and conduction bands, since a change in the 
value of the wave-vector implies a change of momentum and direc-
tion of the electron. Direct transitions are therefore more efficient, 
making direct band-gap semiconductors more attractive for optical 
device applications. In Figure 9.2, we show the band structures for 
(a) GaAs and (b) GaP, which are respectively, direct and indirect 
semiconductors. In the latter case, we note that the minimum energy  
transition between the valence and conduction bands, correspond-
ing to ΔX = 2.432 eV, requires a change in the wave-vector, Δk. The 
direct transition is given as ΔΓ = 2.75 eV, see Figure 9.2(b).

FIGURE 9.2:  Band structure for (a) GaAs and (b) GaP. In the case of GaAs we see that  
the minimum in the conduction band is directly above the maximum in the valence  

band, making it a direct type semiconductor. In the case of GaP, the minimum  
in the conduction band is shifted from the maximum of the valence band  

and the semiconductor is of the indirect type.
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9.3 � EQUILIBRIUM STATISTICS:  
ELECTRONS AND HOLES

In order to evaluate the electrical conductivity of semiconduc-
tors, it is necessary to determine the concentration of the various 
charge carriers in the valence and conduction bands. In addition 
to the doping of semiconductors, the number of charge carriers in 
the solid depends on the excitation of electrons from the valence 
to the conduction band, via thermal excitation or the absorption 
of photons. In describing these processes, we need to consider the 
thermodynamic equilibrium in terms of the materials’ temperature. 
Additionally, excess charge carriers can by electrically injected into 
a semiconductor by an external source. In the following we will con-
sider the evaluation of the concentration and distribution of charge 
carriers in the valence and conduction bands of semiconductors, 
where it is helpful to distinguish between intrinsic and extrinsic type 
semiconductors.

9.3.1  Intrinsic Semiconductors
We will consider a pure or intrinsic semiconductor as one in 

which there are no impurity atoms with a band gap of Δ between the 
valence and conduction bands. The distribution of charge carriers 
among the available energy states will be determined by the sam-
ple temperature and can be evaluated with the use of the Fermi -  
Dirac distribution function. It will be noted that since the Fermi 
energy will be at the center of the band gap for intrinsic semicon-
ductors, the number of electrons and holes in the semiconductor 
will be equal. This is logical since free electrons will only be pro-
duced by the excitation of electrons from the valence to the con-
duction band. It is worthwhile noting here the true meaning of the 
concept of the band gap. Since there is a region of energy states that 
cannot be occupied, this means that to excite an electron from the 
valence band to the conduction band requires a minimum energy 
of Δ, which is the binding energy of the valence electron to an atom 
in the lattice from its normal bonding state. This energy can be fur-
nished in the form of thermal energy (via the sample temperature), 
to produce an agitation (phonon) of the atom, or via the absorption 
of a photon of sufficient energy. In whatever case, the energy can 
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only be transferred to the electron to free it from the influence of 
the atom if this energy is larger than the binding energy. Once freed 
from the atom it can, at least for a certain amount of time, travel 
through the crystal lattice. Should it be attracted back to an atom, it 
is said to relax and transit from the conduction to the valence band, 
and in the process will transfer energy either back to the lattice (in 
the form of a phonon) or with the emission of electromagnetic radia-
tion (a photon). These transitions between bands are obviously not 
just restricted to intrinsic semiconductors and are a general physical 
process, one which plays a very important role in the applications 
of semiconducting materials and devices. We note that the motion 
of these free (conduction band) electrons are subject to all the scat-
tering laws discussed in previous chapters, such as the Bragg law. 
Before evaluating the concentrations of the charge carriers in the 
semiconductor, we note that the conductivity of the material will be 
determined by both types of charge carrier, which we can express as:

	 σ(T)= |ec|[n(T)µn+ p(T)µp] � (9.1)

where μn and μp are the mobilities of the electrons and holes, which 
have concentrations n and p, respectively. (Compare this equation 
with Equation (6.16).) We note that in the previous chapter we used 
the subscripts e and h to denote electrons and holes. In this chapter, 
we use n and p, since they relate to the type of semiconductor, as will 
be discussed shortly. Since electrons and holes have opposite signs of 
charge and the drift velocities of the two types of charge carrier will 
also be opposite, they both contribute with the same sign to the con-
ductivity, σ. Here we have neglected any energy or k-dependence 
of the charge carriers on the mobilities, which is generally a good 
approximation for not too high temperatures. Explicitly indicated in 
Equation (9.1) is the fact that the conductivity for a semiconductor 
is highly temperature dependent. This principally arises from the 
carrier concentration being sensitive to thermal excitations of charge 
carriers, as mentioned above. This dependence is due to the Fermi-
Dirac distribution function, fFD(E, T), which we introduced in Chap-
ter 6, Section 6.5.

We express the carrier concentration for electrons in the con-
duction band as:
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	 n T g E f E T E( ) ( ) ( , )dc FD
Ec

∫=
∞

� (9.2)

here gc(E) represents the density of electrons states in the conduc-
tion band. The corresponding expression for holes in the valence 
band takes the form:

	 p T g E f E T E( ) ( )[1 ( , )]d
E

F D∫= −υ
−∞

υ

� (9.3)

we note that the factor [1 − fFD(E, T)] corresponds to the hole (miss-
ing electron) distribution. The ranges of the integrals have been 
extended to infinity to aid evaluation, and this can be done since the 
Fermi - Dirac function decreases sufficiently rapidly. The densities 
of states, see Section 6.7, in the conduction and valence bands can 
be expressed (in the parabolic band approximation) as:

	 

g E
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π
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∗

a b � (9.4)

and
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π
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υ
υ υ

∗

a b � (9.5)

This is so far quite similar to what we found in Section 6.7. The 
form of the carrier concentrations can be simplified for low tem-
peratures, subject to the condition: 

 −k T E E( ) ,B c F
1  where we 

have: →f E T f E T( , ) ( , ).FD MB  The condition is thus stated as the 
difference between the Fermi level and the conduction band edge 
being much larger than the thermal energy. We note that the ther-
mal energy at room temperature is about 1/40 eV, so for a band 
gap of around 1 eV, the energy difference −E E( )c F  will be about  
0.5 eV, therefore the thermal energy at room temperature repre-
sents about 5 % of this difference. When the above approximation 
is valid, the semiconductor is referred to as a non-degenerate semi-
conductor. When this approximation is not valid, we are dealing with 
a degenerate semiconductor and we must use the full expressions 
given by Equations (9.2) and (9.3). Now for the parabolic bands:

	


E E
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2 2
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∗

� (9.6)
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we obtain the following approximations for the carrier concentrations:

	 n T e g E e E( ) ( ) dE E k T
c

E k T( )/ /

0

F c B B∫−
∞

� (9.8)

	  ∫ υ
−

−∞

υp T e g E e E( ) ( ) dE E k T E k T( )/ /
0

F B B � (9.9)

Using standard integrals2 we can evaluate these expressions to 
yield:

	

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where Nc(T) and Pv(T) are called the effective density of states for 
the conduction and valence bands, respectively. It is convenient to 
write these as:

	 N T
m
m

T( ) 4.83 10c
c21 3/2= ×
∗

q r � (9.12) 

	 P T
m
m

T( ) 4.83 1021 3/2= ×υ
υ
∗

q r � (9.13)

which are given in units of m−3. Given that the effective mass of 
charge carriers divided by the free electron mass is typically of the 
order of unity, we can estimate that the density of carriers in an 
intrinsic semiconductor will be of the order of around 1025 m−3 or 
1019 cm−3. It is worth noting that the density of states effective mass 
for ellipsoidal bands, as is the case for Si and Ge, can be obtained 
using the longitudinal and transversal values of the effective mass 
(see Equations 8.18 and 8.19 of the previous chapter, for example), 
and we can write: m m m( ) .DOS l t

2 1/3=∗ ∗ ∗  Similarly, for multiple valence 
bands, which we denote with effective masses for heavy holes, mhh

∗  
and light holes, ∗m ,lh

3  which depends on the curvature of the energy 
bands, we can write: m m m( ) .hh lh

3/2 3/2 2/3= +υ
∗ ∗ ∗
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9.3.2  The Law of Mass Action
We will now multiply the expressions for the concentrations of 

electrons and holes, which we can express in the following manner:
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where Δ = Ec − Ev is the band gap and ni is the intrinsic charge car-
rier concentration. Equation (9.14) is commonly known as the law 
of mass action. This relation shows that the carrier concentration is 
entirely dependent on the material properties; m m, ,c υ

∗ ∗∆   and the 
sample temperature. In Table 9.3, we show some examples for the 
common semiconductors.

The law of mass action thus states that the product of carrier 
concentrations in a non-degenerate semiconductor is constant at a 
specific temperature. The form given here requires that the Fermi 
energy is far from the band edges, which is the required condition 
for a non-degenerate semiconductor. The thermal excitation of elec-
trons in the intrinsic semiconductor means that we have: n = p. We 
thus can write:

	


n p n N P e
k T

m m e2
2

( )i c
k T B

c
k T/ 2

2
3/4 /2B B

π
= = = =υ υ

− ∗ ∗ −∆ ∆q r � (9.15)

On this assumption that n = p we also obtain the following 
relation:

	 N T e P T e( ) ( )c
E E k T E E k T( )/ ( )/F i c B F i B=−

υ
−υ � (9.16)

TABLE 9.3:  Band gaps and intrinsic carrier concentrations 
for selected materials at room temperature (300 K).

Semiconductor Δ (eV) ni (m−3)
Si 1.12 1.5 × 1016

Ge 0.67 2.4 × 1019

GaAs 1.43 5 × 1013
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where we have indicated the intrinsic Fermi level as E ,Fi
 which from 

Equation (9.16) and the above, we can express as:

	 E E k T
m
m2

3
4

lnF B
c

i
= + +υ

υ
∗

∗

∆ q r � (9.17)

This shows that for the intrinsic case, the Fermi level at 0K is 
exactly in the center of the band gap. As the temperature increases 
the Fermi level is displaced, moving up in energy towards the con-
duction band if m m ,c < υ

∗ ∗  or down towards the valence band for 
m m .c > υ

∗ ∗  Only if m mc = υ
∗ ∗  will the Fermi energy remain constant 

as a function of temperature. We can illustrate some of the main 
physical quantities and dependencies, as shown in Figure 9.3. We 
note that for an imbalance in the effective masses between the con-
duction and valence bands, the position of the Fermi level can move 
up or down. In either case, the number of holes must still be equal 
to the number of electrons. 

9.3.3  Extrinsic Semiconductors: Doping
If the impurities in a semiconductor contribute significantly 

to the number of charge carriers, the semiconductor is said to be 
extrinsic. The doping of a semiconductor consists in the controlled 

FIGURE 9.3:  Intrinsic semiconductor: (a) Density of states for the conduction and  
valence bands, with heavy and light hole bands indicated. (b) Fermi - Dirac function  

at finite temperature. (c) Charge concentrations for electrons and holes in the  
conduction and valence bands, respectively.
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introduction of a specific concentration of impurity atoms, which 
can either act as donors or as acceptors. In the case of donors, the 
impurity atoms give up electrons when they form bonds with the 
surrounding semiconductor atoms. Actually these atoms become 
ionized and in the process an excess electron (not occupied in bond-
ing is freed and thus “enters” the conduction band). Such atoms will 
have more electrons in the outer p-states, coming from the group 
to the right in the periodic table, for example, As atoms in Ge act 
as donors. An extrinsic semiconductor of this nature is said to be an 
n-type semiconductor. Acceptor atoms are similar, but do the oppo-
site. They have less electrons in the outer p-states than the host semi-
conductor atoms and readily ionize by removing an electron from a 
host atom, which effectively introduces a hole state in the valence 
band. An example of this would be in the case of a B atom impurity 
in a Si lattice. Such semiconductors are labelled p-type. These are 
so labelled to reflect the majority charge carriers in the semiconduc-
tor; n for negative (electrons) and p for positive (holes). In terms of 
energies, the donor and acceptor levels are close to the conduction 
and valence band edges, respectively, thus facilitating the ionization 
of impurities at relatively low temperatures. We will now describe 
the detailed neutrality conditions which allow us to determine the 
carrier concentrations in the doped semiconductor. In Figure 9.4, 
we show a schematic illustration of the impurity and Fermi levels. 

FIGURE 9.4:  Extrinsic semiconductor: Energy state definitions and concentrations  
of donors and acceptors.
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Indicated are the notations used to discuss the concentrations of the 
donors, ND, and acceptors NA , also shown are the proportions which 
are ionized; N N, ,D A

+ −  and neutral (or un-ionized); N N, .D A
0 0  In addi-

tion to the charge carriers introduced via the doping process, ther-
mal excitation between the conduction and valence bands will also 
occur as in the case of the intrinsic semiconductor. We note that the 
law of mass action is still valid even though we have: − = ≠∆n p n 0.

In the following, we discuss the explicit case of the n-type semi-
conductor. The corresponding relations for p-type materials can be 
obtained in a similar manner by substituting the acceptor concen-
tration, NA, instead of that of the donors, ND. In the case of n-type 
semiconductors (which we denote using the n subscript), we can 
write the number of ionized donors as:

	 N
N

e1 2
D

D
E E k T( )/F n B

=
+

+
− δ

� (9.18)

where Eδ = Ec − ED, see Figure 9.4, is the energy required to ionize 
a donor atom. For the case where E E k T( ) ,F Bn

− δ  virtually all the 
donors will be ionized and we can write:  n N N .n D D

+  Actually we 
can be more precise and take into account the interband excitation, 
such that:

	 n p N p Nn n D n D= + ++ � (9.19)

where the majority carriers are electrons, denoted as nn, and the 
minority carriers are holes designated as pn. Given that the law of 
mass action can be applied, we can write:

	 n
n
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Nn
i

n
D

2

= + � (9.20)

from which we obtain, using the physically meaningful solution:

	 n N N n
1
2

[ ( 4 ) ]n D D i
2 2 1/2= + + � (9.21)

From this equation we can determine the various concentration 
regimes: i) ND= ni⇒nn! ni ;  ii) ND≫ ni⇒nn!ND ;  iii) ND≪ni⇒
n n .n i
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A more general analysis can be reached expressing Equation 
(9.18) in the form:

	 N n
N

e1 2
D n

D
E E E k T( ) /F n c D B

=
+

+
− +

� (9.22)

Using Equation (9.10) we can eliminate the factor E E( ),F cn
−  

which yields:
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This quadratic equation can be solved to give:
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From this expression we can identify the following limiting cases:

i)	 Freeze-out range:

This corresponds to the low temperature regime, where we 
have the condition: N N e4( ) 1.D c

E k T/D B
/  In this situation, Equa-

tion (9.24) gives:

	 n N N en D c
E k T/ 2D B− � (9.25)

In this region there can still be significant numbers of donor 
atoms which are not ionized, and with decreasing temperature the 
charge carriers (electrons) from the conduction band are frozen-out. 
It should be noted that the form of Equation (9.25) bears a strong 
resemblance to Equation (9.15). This is no coincidence, and the 
same thermal excitation process is taking place, but in different tem-
perature ranges. The important point here is that the donor bind-
ing energies are significantly smaller than the band gap energy, and 
so the exponential dependence occurs over a different temperature 
range for the two Boltzmann factors.

ii)	 Saturation range:

For the condition: N N e4( ) 1,D c
E k T/D B

/  Equation (9.24) 
approximates to:
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	 n N const.n D = � (9.26)

This result shows that in this regime, all donor impurity atoms 
are ionized and are thus saturated. In a first approximation we 
neglect the contribution from electrons excited from the valence 
band. For reasonable donor/acceptor concentration levels, this is a 
valid assumption, since the proportion of interband excited carriers 
will be negligible.

iii)	 Intrinsic range:

For higher temperatures the number of electrons excited from 
the valence band will start to become significant and we enter the 
third regime, which is the intrinsic range, since this is the same 
process that occurs for intrinsic semiconductors, depending on the 
intrinsic properties of the semiconductor in question.

We can visualize the different concentration regimes in Figure 9.5. 
In the figure are shown various curves for different concentrations 
of impurities of both donors and acceptors. The three concentration 
regimes discussed above are also indicated.

FIGURE 9.5:  Carrier concentration temperature dependence illustrating the various  
concentration regimes. Shown are the variations for different doping concentrations  

for both donors and acceptors. For ND  NA the behavior is that of an n-type  
semiconductor. As the NA concentration increases, the saturation level reduces  

proportionally until ND = NA, where the semiconductor has an intrinsic like  
behavior. Actually this is called the compensated state, where the donor  

excess electrons are matched by the acceptor excess holes. (Figure adapted from  
source: www.nextnano.de/nextnano3/tutorial/1Dtutorial doped semiconductors.htm.)
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It is instructive to equate expression (9.24) and (9.10), where we 
can solve for the Fermi energy, to obtain:

	 E E k T
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N

N
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1 1 4F c B
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D
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c
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n

D B= − + +u s tv � (9.27)

In the low temperature range, where we have: N N e4( )D c
E k T/D B/  

1,  this simplifies to:
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c
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The variation of the Fermi level with temperature can thus be 
understood as a function of temperature and impurity concentra-
tion, see Figure 9.6.

At zero temperature (0K), the Fermi level starts at a position 
between the conduction band edge and the impurity (donor) level. 
With an increase of temperature there will be a small increase in 
EF, but with a further increase of temperature the impurity levels 
become denuded and excitation of electrons between the valence 
and conduction bands occurs and the Fermi level approaches the 
intrinsic value, E .Fi

FIGURE 9.6:  Temperature dependence of the Fermi level. Shown are the variations  
for different doping concentrations for both donors and acceptors. For ND  NA the  
behavior is that of an n-type semiconductor. As the NA concentration increases, the  

Fermi level falls from near to the conduction band edge to the intrinsic fermi level, E .Fi   
At ND = NA, which the semiconductor has an intrinsic like behavior, where E E .F Fi=  Also 
shown is the variation of the band gap as a function of temperature. The values used are 

based on germanium. (Figure adapted from source: www.nextnano.de/ 
nextnano3/tutorial/1Dtutorial doped semiconductors.htm.)
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In the case of impurity atoms which are acceptors, the situa-
tion is similar, though we need to convert what we have stated for 
electrons above for the case of holes in a p-type material. The con-
centration of holes, which will now be the majority charge carrier, 
denoted as pp, will have an analogous dependence on the concentra-
tion of impurities, NA, as electrons in the n-type semiconductor on 
ND. The minority charge carrier in the p-type semiconductor is the 
electron, which has a concentration, np. In more general terms, we 
can express the free carrier concentration in the form:

	 n p
N N

ge
,

,

1
D A
E E k T( )/Fn p B, ,

=
+

± − δ α
� (9.29)

where g is the degeneracy of the impurity level. Equation (9.29) 
can now be employed to evaluate the concentration of both types of 
charge carrier. In the case of electrons, we must use N E E, ,D Fn δ  and 
the positive sign in the exponential, while for the hole concentration 
p we use N E,A Fp

 and Eα, with a negative sign in the exponential.

9.3.4  Compensated Semiconductors
In many cases the semiconductor will have both types of impu-

rity and the type of semiconductor will depend on the dominant 
number of impurities. So if NA > ND, the semiconductor will be 
p-type, while for NA < ND, it will be n-type. Semiconductors with 
both donors and acceptors are called compensated semiconductors. 
This is because electrons from the donors will be transferred to the 
acceptors even at T = 0 K. Full compensation will only occur for  
NA = ND. The charge neutrality condition for compensated semi-
conductors can be expressed as:

	 n N p NA D+ = +− + � (9.30)

For semiconductors with both types of impurity, we can express 
a more general form of Equation (9.23):
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The solution takes the form:
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where N e .c
e f f N E k T

2
/c D B= −  In the low temperature limit this expres-

sion simplifies to:
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This shows that the electron concentration will decrease with an 
increase of NA. For the other extreme of temperature, where both 
NA and ND are less than Nc

e f f  we have:

	 n N Nn D A= − � (9.34)

which corresponds to the case where all impurities are ionized. 
Alternatively, we can use the law of mass action along with the neu-
trality condition to establish the following relation:
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The solution to this quadratic equation then takes the form:
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and
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The corresponding relations for the p-type partially compen-
sated semiconductor, where the majority carriers are holes and the 
minority carriers are electrons, are written:

	 p N N N N n
1
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( ) ( ) 4p A D A D i
2 2 1/2= − + − +U C D V � (9.38)
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and

	 n
n
p

p
i

p

2

= � (9.39)

In general, the magnitude of the concentration of impurities is 
greater than the intrinsic concentration; |ND − NA| < ni, such that 
we have:

	 n N N N N; forn D A D A− > � (9.40)

and

	 p N N N N; forp A D A D− > � (9.41)

9.4  NON-EQUILIBRIUM DISTRIBUTIONS

Frequently, when semiconductors are employed in device appli-
cations, they function in regimes which are not in thermal equi-
librium. As such, the charge carrier distributions will be modified 
beyond the conditions we discussed in the previous section. We will 
discuss some simple cases of non-equilibrium conditions in the fol-
lowing sections.

9.4.1  Carrier Injection: Injection Levels
At thermal equilibrium the condition np ni

2=  is valid. However, 
conditions of non-equilibrium can exist when an imbalance is cre-
ated by the introduction of excess charge carriers, such that np ni

2> .  
Such a condition can be produced by the process of carrier injec-
tion. There are several ways in which to inject charge carriers into a 
semiconductor, such as the incidence of electromagnetic radiation 
of sufficient energy; hω > Δ, or via the application of using a forward 
bias across the junction between p- and n-type materials. In the for-
mer case, the absorption of photons via the transfer of energy to an 
electron in the valence band. This liberates the electron to allow it 
to move in the conduction band, thus forming an electron - hole 
pair and abruptly increasing the number of charge carriers above the 
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equilibrium values, which are then free to contribute to electrical 
conduction processes. Such charge carriers are referred to as excess 
carriers.

The amount of excess charge carriers relative to the concentra-
tion of majority carriers is determined by the level of injection. This 
is best illustrated by way of example. Let us consider a sample of 
Si which is doped with ND = 1021 m−3 donors and at thermal equi-
librium. At room temperature we can expect a majority of these 
donors to be ionized, such that at thermal equilibrium we have  
nn0  ND = 1021 m−3, where the “0” in the subscript is used to indi-
cate thermal equilibrium. This situation is illustrated in Figure 9.7 
(a), where we show the positions of the intrinsic concentration, ni 
and the minority carrier density, pn0. This latter is calculated using 
the law of mass action; p n n .n i n0

2
0=

If we introduce excess charge carriers via the excitation of elec-
trons from the valence to the conduction band, we will have equal 
number of each type of excess charge carrier. For this we can write 
in our n-Si example, Δnn = Δpp. In the case of low-level injection we 

FIGURE 9.7:  Carrier concentrations for (a) Thermal equilibrium in an n-Si sample  
with ND = 1021 m−3. (b) Low-level carrier injection: Dnn = Dpn = 1018 m−3  ND.  

(c) High-level carrier injection: Dnn = Dpn = 1024 m−3  ND.



294  •  Solid State Physics

have the condition; Dnn = Dpp  ND. In Figure 9.7 (b), we illustrate 
the case for Δnn = 1018 m−3. Since we have Dnn  pn0, the minor-
ity carrier level is dominated by excess charge carriers, such that:  
pn = Δpn. However, low-level injection is characterized by Dnn  ND 
and therefore nn  nn0. Thus we see for low-level injection, only the 
minority carrier concentration is significantly affected.

High-level carrier injection corresponds to the case where  
Dn  ND. This means that the carrier levels, both majority and 
minority, are dominated by injection and we have: Dnn = Dpp  nn 
 pn. For high-level injection, therefore, both majority and minority 
carrier concentrations are affected, see Figure 9.7 (c).

9.4.2  Generation and Recombination Processes
When we perturb a system out of its thermal equilibrium state 

np n( ),i
2≠  relaxation processes will come into play to re-establish 

thermal equilibrium; i.e., np n .i
2→  Typically this process of relax-

ation is via the recombination of electrons and holes (from conduc-
tion to valence band), and thus reduces the number of excess charge 
carrier until equilibrium is established. Depending on the nature of 
the transition, energy will be transferred in the process, giving rise 
to the emission of photons (of energy: E = hω = Δ), if the process is 
radiative or via the production of phonons. In the former, the pro-
cess is said to be radiative recombination, while in the latter it is 
termed non-radiative recombination.

Recombination processes can be classified as direct or indirect. 
In a direct process, the electron simply loses energy to other forms, 
while in an indirect process, energy is transferred in combination 
with a change of momentum; i.e., Δk ≠ 0. The nature of transitions 
is very much related to whether the semiconductor is a direct or 
indirect band-gap material. Indirect processes generally occur via 
recombination or trapping centers, which have energies situated 
somewhere in the forbidden band gap region.

We will consider the direct process in more detail, as it is 
instructive for understanding some of the basic relaxation mecha-
nisms in semiconductors. Let us consider a semiconductor in ther-
mal equilibrium, where the thermal vibrations (phonons) of lattice 
atoms allow some of the electrons normally occupied in bonding to 
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be freed, thus generating an electron - hole pairs. Such a process 
of an electron passing from the valence to the conduction band is 
referred to as carrier generation, which we will denote as Gth. The 
reverse process corresponds to the transition of the electron from 
the conduction to the valence band, in the process annihilating an 
electron and a hole. This is called recombination, Rth. Therefore, 
at thermal equilibrium the rates of generation and recombination 
are matched and we will have: Gth = Rth, such that the condition: 
np ni

2=  is maintained. This situation is schematically represented 
in Figure 9.8 (a).

When excess charge carriers are introduced into a direct semi-
conductor, there is a high probability for direct recombination, since 
it is a more efficient process. In this case the recombination rate will 
be proportional to the number of electrons available in the conduc-
tion band and the number of available holes in the valence band. As 
such we can write:

	 R np ni
2β β= = � (9.42)

where β is a constant of proportionality. In the case of thermal equi-
librium, the rates of recombination and generation will be equal, 
and we obtain:

FIGURE 9.8:  Direct generation and recombination of electron - hole pairs: (a) Thermal 
equilibrium and (b) Under illumination with light; hω ≥ Δ.
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	 G R n p nth th n n i0 0
2β β= = = � (9.43)

If we now illuminate the semiconductor with radiation sufficient to 
produce electron - hole pairs, with a generation rate of GL, the carrier 
concentrations will rise above the equilibrium values, see Figure 9.8 (b). 
This gives the rates of recombination and generation as:

	 R n p n n p p( )( )n n n n0 0β β= = + +∆ ∆ � (9.44)

and

	 G G GL th= + � (9.45)

We expect Δn = Δp, to maintain charge neutrality. We can 
express the rate of change of the minority charge carriers as:

	
p
t

G R G G R
d
d

n
L th= − = + − � (9.46)

Under constant illumination the system will eventually arrive at 
a steady-state condition, at which we will have: dpn/dt = 0, such that 
the above equation gives:

	 G R G UL th= − ≡ � (9.47)

where U is the global recombination rate. Using the above relations 
for Gth and R, we obtain:

	
U np pn n p

p n p p

[ ]
[ ]

n n

n n

0 0

0 0

β
β

= + +
+ +

∆ ∆ ∆ ∆
∆ ∆ � (9.48)

where we have assumed that Δn = Δp. For the case of low-level 
injection; pn0  nn0 and Equation (9.48) gives:

	

 β
β= −

∆U n p

n p p( )
n

n n n

0

0 0 � (9.49)

Given that U has the units of m−3s−1, the above expression can be 
interpreted if we express it in the following form:
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	 U
p p( )n n

p

0

τ
=

−
� (9.50)

where τp = 1/βnn0. Now we see that this quantity is related to the 
relaxation of the excited excess charge carriers and is called the life-
time of the minority excess charge carriers. We can demonstrate this 
with a simple example. Let us consider an n-type semiconductor 
under illumination with light, such that there is an excess of major-
ity carriers (electrons), Δp, and minority (holes) carriers, Δn. Once a 
certain level of excess carriers has been generated, a stationary state 
will be established, such that:

	 G U
p p( )

L
n n

p

0

τ
= =

−
� (9.51)

which we can express as:

	 p p Gn n p L0 τ= + � (9.52)

We now consider at time, t = 0, the light is switched off, which 
we can express as an initial or boundary condition: pn(t = 0) = pn(0) 
= pn0 + τpGL. A second boundary condition can be established for 
long times: pn(t → ∞) = pn0. This means that for after a certain 
time we expect the thermal equilibrium to be re-establised and the 
charge carriers will return to the normal concentration. We can now 
write Equation (9.46) as:

	
p
t

G R U
p pd

d
( )n n n

p

0

τ
= − = − = −

−
� (9.53)

The solution of this differential equation, considering the bound-
ary conditions, takes the form:

	 p t p G e( )n n p L
t

0
/ pτ= + τ− � (9.54)

This situation is illustrated in Figure 9.9, where the minority 
charge carriers (holes) decay in time due to the recombination with 
the majority carriers (electrons).

Thus far we have only discussed the direct type of transition, i.e., 
where the electrons are excited and relax back between the valence 
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and conduction bands. However, we only expect such direct pro-
cesses to occur in direct semiconductors. The more common types 
of semiconductor, such as Si and Ge, are indirect types, and the 
excitation and relaxation process will take place via so-called trap-
ping centers. These are localized states which are somewhere in the 
band-gap of the semiconductor. The fact that transition probabili-
ties depend on the energy difference between initial and final states 
means that these trapping centers enhance the recombination and 
excitation processes. The trapping centers are typically defects and 
impurities in the crystal lattice and can be controlled in the fabrica-
tion process of the semiconductor. The treatment of indirect pro-
cesses can be made by considering the trapping centers for electrons 
and holes using the usual occupation probability statistics, and then 
evaluate the centers as capture or emission sites of charge carriers, 
depending on whether the are occupied or not.

9.4.3  The Continuity Equations
As we have seen in previous section, there are several physi-

cal processes that can occur in a semiconductor, which will affect 
the transport of charge carriers and hence the electrical properties 

FIGURE 9.9:  Decay of minority excess charge carriers (holes) with decay constant, τp.
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of semiconductors. In this section we will join these together in to 
a single guiding equation, which, depending on the specific condi-
tions, can be applied in a number of useful situations to determine 
the motion of charge carriers in the system. This central relation is 
called the continuity equation.

To derive the form of the continuity equation we will take the 
one-dimensional case and then extend to three dimensions. We start 
by considering an element of the semiconductor, say an n-type, with 
volume: Adx, where A is the cross-sectional area and dx is the width 
of the element at position x. The number of electrons in this volume 
due to the movement into and out of the volume, as well as the gen-
eration and recombination inside the volume must be considered 
simultaneously. The rate of change of concentration of electrons will 
therefore be the difference of those entering and leaving the ele-
ment at x and x + dx as well as the difference in the rates of genera-
tion and recombination. In the case of the electrons entering and 
leaving the element, these are proportional to the current on either 
side of the element, while the generation and recombination are Gn 
and Rn, respectively. The net rate of change of electron concentra-
tion in our elemental volume can be expressed as:

	
n
t

A x
J x A

e
J x x A

e
G R A xd

( ) ( d )
( ) dn n

n n
∂
∂

=
−

−
+
−

+ −s t � (9.55)

We now make a Taylor expansion of Jn(x + dx) at x + dx:

	
J x x J x

J x
x

x( d ) ( )
( )

dn n
n+ = +

∂
∂

+ � (9.56)

We can thus write the basic form of the continuity equation as:

	
n
t e

J
x

G R
1

( )n
n n

∂
∂

=
∂
∂

+ − � (9.57)

Clearly a consideration of the variation of holes in the same ele-
ment will follow the same rationale, and we can write the corre-
sponding hole continuity equation as:

	
p
t e

J

x
G R

1
( )p

p p
∂
∂

= −
∂

∂
+ − � (9.58)
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A more detailed version of the continuity equation can be 
obtained if we introduce the current density, Jn(x), as expressed in 
Equation (8.42). Considering the variation of minority charge car-
riers can now be expressed, for low-level injection, by taking the 
derivative of the current density with position from the first term in 
the above. For the case of electrons in a p-type semiconductor we 
obtain:

	
∂np

∂t
= npµn

∂ε
∂x
+µnε

∂np

∂x
+Dn

∂2 np

∂x2
+Gn−

(np−np0)
τn

� (9.59)

The corresponding expression for minority carriers (holes) in an 
n-type material has the form:

	
∂pn

∂t
=−pnµp

∂ε
∂x
−µpε

∂pn

∂x
+Dp

∂2 pn

∂x2
+Gp−

(pn− pn0)
τp

� (9.60)

where ε is the electric field. A three-dimensional form of these equa-
tions can be written in the form:

	
∂np

∂t
= npµn∇ ⋅ε+µnε ⋅∇np+Dn∇

2np+Gn−
(np−np0)
τn

� (9.61)

	
∂pn

∂t
=−pnµp∇ ⋅ε−µpε ⋅∇pn+Dp∇

2 pn+Gp−
(pn− pn0)
τp

� (9.62)

In addition to the continuity equations, the Poisson equation 
should also be satisfied, where we have:

	
x

d
d

, for 1D and , for 3Ds

s

s

s 

ρ ρ
= ⋅ =εεε ∇ � (9.63)

where s is the dielectric constant of the semiconductor and ρs the 
charge density. In principle Equations (9.61) - (9.63) can be used 
in conjunction with the relevant boundary conditions to solve most 
practical situations. However, the complexity of these equations at 
times requires some form of simplification. Some examples will be 
considered in the exercise section.
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9.5  THE P - N JUNCTION

When we join a p-type semiconductor with an n-type semicon-
ductor, the result is a rather complex non-linear asymmetric device, 
known as the p-n junction. Its principal property is that of rectifica-
tion, in which, under ideal circumstances, electrical current can only 
pass in one direction. Such a device is called a diode. In practice, 
there is usually some leakage current in reverse bias. However, it is 
very small and usually negligible when compared to the forward bias 
current. At relatively high reverse bias voltage, the p-n junction will 
suffer breakdown, at a specific value called the breakdown voltage, 
VB. At this point the diode can become permanently damaged due 
to avalanche effects, where electrons are accelerated by the reverse 
bias potential and collide with atoms and free further electrons. At 
this point the current rapidly increases and rectification is lost.

The p-n junction plays a very important role in semiconduc-
tor applications and is at the heart of many electronic devices, such 
as transistors, LEDs, lasers and photovoltaic devices or solar cells. 
Given the importance of the p-n junction in semiconductor elec-
tronics, we will consider the physics of the junction in some detail.

9.5.1  Thermal Equilibrium
In the previous section, we saw that the Fermi level of a doped 

semiconductor shifts with respect to the center of the gap, for and 
undoped semiconductor. In semiconductors which are not heavily 
doped, in general, the n-type semiconductor has its Fermi energy 
close to the conduction band edge, while the p-type has its Fermi 
energy just above the valence band edge. Once we join the two 
materials, in the formation of the p-n junction, there will be a strong 
concentration gradient of charge carriers and diffusion will occur 
as a result. Holes from the p-side will diffuse across the interface 
towards the n-side, while electrons will make the opposite jour-
ney. The diffusion of charge carriers in the region of the interface 
between the two types of semiconductor will mean that the n-side 
adjacent to the interface will have a net positive charge, since the 
donors will be left ionized positively; N .D

+  On the p-side the opposite 
will be true, where a net negative charge will remain due to ionized 
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acceptors; NA
−. The means that in the region of the interface, there 

will be a region of space-charge distribution, which causes an electric 
field to permanently exist in the region. This electric field will cause 
the movement of charge carriers as a drift current. In total, we will 
have diffusion currents from the concentration gradient and drift 
currents from the electric field which continue until an equilibrium 
of charge “re-distribution” is established. The thermal equilibrium 
of the system will be a stationary state at a specific temperature, T, 
and zero net current will flow. Therefore we can establish the partial 
currents for the charge carriers as a sum of the diffusion and drift 
components, such that:

	 Jn = eµnnε+ eDn∇n= 0 � (9.64)

and

	 Jp = eµppε−eDp∇p= 0 � (9.65)

In one dimension we can write these equations as:

	 Jn = eµnnq 1
e

dEFi

dx
r+ kBTµn

dn
dx
= 0 � (9.66)

and

	 Jp = eµppq 1
e

dEFi

dx
r−kBTµp

d p
dx
= 0 � (9.67)

where we have used: εe E xd d ,Fi
= /  in which ε is the electric field. We 

have also introduced the Einstein relation, Equation (8.41). We can 
express the concentration of electrons using the following relation:

	 n n ei
E E k T( )/F Fi B= − � (9.68)

Using this expression, we can write the gradient, in one dimen-
sion, of the electron concentration as:

	 n
x

n
k T

E
x

E
x

d
d

d
d

d
dB

F Fi= −q r � (9.69)
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Substituting this result in Equation (9.66) we obtain:

	 Jn =µnn
dEF

dx
= 0 ⇒

dEF

dx
= 0 � (9.70)

The same analysis can be performed using the hole concentra-
tion. Equation (9.70) shows that at thermal equilibrium the Fermi 
level is constant and independent of position. In Figure 9.10, we 
illustrate the principle features of the p-n junction at thermal equi-
librium. The result given in Equation (9.70) has the consequence of 
causing the bands to bend as a function of position through the junc-
tion region, since the Fermi level must remain constant at all posi-
tions across the p-n junction. The magnitude of the bending can be 
expressed as the quantity, eVbi, where Vbi is referred to as the built-in 
potential. We can also note from the figure that the shift of the Fermi 
level from its intrinsic value can be associated with the electrostatic 
potential: E E en-side - F F ni

ψ− =  and E E ep-side - .F F pi
ψ− =  The 

exchange of charge carriers at the interface between the n and p 

FIGURE 9.10:  The p-n junction, using the abrupt junction approximation. (a) Band  
structure diagram at thermal equilibrium. The Fermi level is constant across the junction. 
(b) Space-charge distribution, showing the distribution of uncompensated impurities on 

the p and n sides. The extension of this region is called the depletion zone, where there are no 
un-ionized impurities. (c) The electric field distribution at the junction, which results from 
the space charge in the depletion zone. The area of this shaded region corresponds to the 

built-in potential, Vbi.
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semiconductors produces a complete ionization of the impurities in 
the region of the junction, and is hence called the depletion zone. 
The fixed space charge will introduce a net electric field in this 
region, in the direction from the n- to the p-side. The area under the 
curve of the electric field will correspond to the built-in potential.

9.5.2  The Depletion Zone
The space charge distribution and electrostatic potential are 

related via the Poisson relatoion:

	
ε

x x
e

N N p n
d
d

d
d

( )s

s s
D A

2

2  

ψ ρ
= − = − = − − + − � (9.71)

In the regions away from the junction, the charge neutrality 
of the semiconductor is maintained and the space-charge is zero. 
Therefore in these neutral zones we have:

	
x

N N p n
d
d

0 and 0D A

2

2

ψ
= − + − = � (9.72)

In the neutral n-region, NA = 0 and n  p. The electrostatic 
potential can be obtained from the above in conjunction with Equa-
tion (9.68) and putting: n = ND:

	 N n eD i
e k T/n B= ψ− � (9.73)

which gives:

	
e

E E
k T

e
N
n

1
( ) lnn F F x x

B D

i
i n

ψ = − − =≥ q r � (9.74)

We can obtain the corresponding relation in the p-region as:

	
e

E E
k T

e
N
n

1
( ) lnp F F x x

B A

i
i p

ψ = − − = −≤− q r � (9.75)

From this we can obtain the built-in potential:

	 V
k T

e
N N

n
lnbi n p

B D A

i
2

ψ ψ= − = q r � (9.76)
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The extension of the depletion region can be evaluated using the 
Poisson relation in the space-charge region, where we have:

	
x

eN
x x

d
d

; 0A

s
p

2

2 

ψ
= − ≤ ≤ � (9.77)

	
x

eN
x n

d
d

; 0D

s
n

2

2 

ψ
= − ≤ ≤ � (9.78)

To maintain charge neutrality we require: NAxp = NDxn. We also 
note that the width of the depletion zone is: W = xp + xn. The elec-
tric field distribution in the depletion region is evaluated from the 
first integration of Equations (9.77) and (9.78):

	


ψ
= − = − + − ≤ ≤x

x
eN

x x x x( )
d
d

( ); 0A

s
p pε � (9.79) 
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D

s
n nε ε � (9.80)

where εm is the maximum of the electric field at x = 0, which we can 
write as:

	
 

= =
eN

x
eN

xm
D

s
n

A

s
pε � (9.81)

It is now a simple matter to evaluate the built-in potential as:

	


= +V
e

N x N x
2

( )bi
s

A p D n
2 2 � (9.82)

Recognizing this as being the area under the curve in Figure 9.10 
(c); Vbi = εmW/2, it is possible to obtain:

	


=
+

W
e

N N
N N

V
2 ( )s A D

A D
bi

1/2

s t � (9.83)

It is further possible to show that the application of an external 
electric potential to the junction, will alter the width of the depletion 
region such that:

	 
=

+
−W

e
N N

N N
V V

2 ( )
( )s A D

A D
bi

1/2

s t � (9.84)
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Where for a forward bias (+V), the width of the depletion zone 
diminishes, while for reverse bias (−V) it will increase.

9.5.3  Junction Capacitance
Since the depletion region has no available charge carriers it can act 
as a capacitance, with electrical capacity:

	 =C
Q
V

d
dpn � (9.85)

where dQ represents an increment in the charge of the depletion 
zone per unit area with increase dV in the applied voltage. This in 
turn will produce an increase of the electric field associated with the 
junction region, due to the increased numbers of charge carriers 
in both the n and p regions in equal amounts. We can express the 
increase of electric field with charge as: dε = dQ/s. The increase of 
the potential can be thus given as: dV = Wdε = WdQ/s. It is now 
possible to express the junction capacitance as:

	 C
Q

W Q W
d
dpn

s

s




=

/
= � (9.86)

In units of Fcm−2. This equation has the form of the parallel 
plate capacitor, where the plate separation is given as the depletion 
region thickness. The above derivation considers that the polariza-
tion of the potential is in the reverse bias direction only. For forward 
biases there will be a large current through the junction.

9.5.4  Current - Voltage Characteristics
Once a potential is applied to the p-n junction, the conditions 

of thermal equilibrium will be disturbed. We need to consider the 
effect of both forward and reverse bias potentials. For forward bias 
conditions, the applied potential will reduce the electrostatic poten-
tial across the depletion zone, which will in turn diminish the width 
of the depletion zone. As a consequence, the drift current will be 
reduced and the diffusion current will be enhanced, injecting minor-
ity carriers from either side of the junction towards the opposite side. 
In the case of reverse bias, the opposite will be true and the width 
and electrostatic potential will increase. The effect will be to remove 
minority carriers from the regions adjacent to the depletion zone on 
both n and p sides. These changes are illustrated in Figure 9.11.
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We will here consider the ideal current - voltage (I − V) charac-
teristics, which are based on the following assumptions: i) An abrupt 
depletion zone, ii) the densities of charge carriers at the boundaries 
are related to the electrostatic potential difference at the junction, iii) 
low-level injection, iv) there are no significant current due to the gen-
eration and recombination of charge carriers in the depletion zone.

At thermal equilibrium, the majority carrier concentration is 
essentially given by the doping level, and for zero applied voltage we 
have a built-in potential of:

	 = =V
k T

e

p n

n
k T

e
n
n

ln lnbi
B p n

i

B n

p

0 0

2
0

0

q r q r � (9.87)

where we have used the law of mass action in the form: =n p n .i p p
2

0 0  
We can re-write this as:

	 =n n en p
eV k T

0 0
/bi B � (9.88)

Similarly, we can establish the relation:

	 =p p ep n
eV k T

0 0
/bi B � (9.89)

FIGURE 9.11:  Depletion regions for (a) forward and (b) reverse bias conditions.  
Also shown in both cases are the band diagrams and charge carrier distributions  

across the p-n junction.
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Indeed, these expressions form part of the boundary conditions 
for the depletion zone, relating the carrier densities with the built-in 
potential at thermal equilibrium. It is a simple matter to extend this 
principle to form the boundary conditions for the ideal I − V char-
acteristics when an applied voltage exists between the p and n sides 
of the junction:

	 = −n n en p
e V V k T( )/bi B � (9.90)

being the relevant boundary condition for non-equilibrium when a 
potential is applied. For conditions of low-level injection, the density 
of minority carriers injected is much less than the density of major-
ity carriers, therefore we have: nn  nn0. Applying this, along with 
Equation (9.90), we obtain the boundary condition for the electron 
density at the p-side of the depletion region (x = −xp):

	 = − = −n n e n n n eor ( 1)p p
eV k T

p p p
eV k T

0
/

0 0
/B B � (9.91)

In an analogous manner we obtain the following for the bound-
ary condition for hole injection on the n-side (at x = xn):

	 = − = −p p e p p p eor ( 1)n n
eV k T

n n n
eV k T

0
/

0 0
/B B � (9.92)

To obtain the central governing equation for the p-n junction we 
need to consider the currents that flow in the system, remembering 
that the only currents to exist are those coming from the neutral 
regions on the p- and n-sides. This means we can assess the current 
flow in the neutral zone, where there is no electric field. For the 
n-side, considering the stationary state of the system, the continuity 
equation can be expressed as:
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0 � (9.93)

The solution to this equation is arrived at by using the correct 
boundary conditions, as expressed by Equation (9.92) and pn(x = ∞) 
= pn0, to give:

	 − = − − −p p p e e( 1)n n n
eV k T x x L

0 0
/ ( )/B n p � (9.94)
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where τ=L Dp p p  is the diffusion length of holes in the n-region. 
The hole current is then obtained from:
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In similar fashion we can write the electron concentration and 
current in the p-region as:

	 − = − +n n n e e( 1)p p p
eV k T x x L

0 0
/ ( )/B p n � (9.96)

and
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where τ=L Dn n n  is the diffusion length for electrons in the 
n-region. We can now join the expressions for the current density to 
obtain the total current density due to the contributions to both type 
of charge carrier:

	 = + − = −J J x J x J e( ) ( ) ( 1)p n n p s
eV k T/ B � (9.98)

where the saturation current, Js is expressed as:

	 = +J
eD p

L

eD n

L
s

p n

p

n p

n

0 0 � (9.99)

Equation (9.98) is called the ideal diode equation. The form of 
this equation is an exponential increase in the forward bias direction 
and a low current in the reverse bias polarization, defined by the 
saturation or leakage current, Js. These characteristics are shown for 
Ge and Si p-n junction diodes in Figure 9.12. We note the different 
scales on the different portions of the graph. The leakage currents 
are of the order of µ A, while breakdown occurs at elevated voltages 
in the reverse bias configuration.

The p-n junction serves as the base for many semiconductor 
devices. In addition to the rectifying properties of the p-n junction 
diode, applications of the p-n interface are numerous. These include 
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the LED (light emitting diode), the photovoltaic or solar cell and the 
semiconductor laser. Furthermore, the p-n junction forms the basic 
element in more complex structures, such as the bipolar transis-
tor, the thyristor, and in field effect transistors (FET). The detailed 
description of these devices goes beyond the scope of the book. The 
interested reader is encouraged to consult specialized books, for 
example Sze (1985) is a good starting point.

9.6 � HETEROSTRUCTURES  
AND QUANTUM WELLS

With the development of advanced preparation techniques for 
the deposition of thin films of semiconductors, enormous prog-
ress was made in the research and development in semiconduc-
tor devices. Of the available techniques, molecular beam epitaxy 
(MBE) and metal-organic chemical vapor deposition (MOCVD) are 
the principal methods that are employed for the preparation of thin 
and ultrathin films. MBE is essentially a research tool that allows 

FIGURE 9.12:  Current - voltage characteristics of p-n junction diodes made from Si and Ge. 
Note the difference in the forward and reverse bias voltage and current scales.
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for the preparation of high quality single crystal (epitaxial) films and 
multlilayered structures with excellent control over film thicknesses 
and preparation conditions. It generally employs a number of in-situ 
analytical techniques to monitor the structure and chemical purity 
of the depositing layers. Such tools are usually the reflection high-
energy electron diffraction (RHEED) and Auger electron spectros-
copy (AES) techniques. The former uses a high energy electron beam 
at low angles of incidence on the film surface to produce diffraction 
patterns, which permit a detailed study of the sample crystallinity 
and structural properties, see Chapter 2. The latter technique also 
employs an electron beam, though in this case we are interested in 
inelastic processes and the excitation of the atoms of the surface, 
which via the Auger process emits electrons of energies specific to 
the atomic species at the sample surface, see Chapter 13. In this way 
it is possible to chemically characterize the sample.

In the Introduction, we discussed the various types of semicon-
ductor materials and their band structures. It is possible to modify 
the band structure and importantly the band gap itself by varying the 
composition of the semiconductor. For example, we can introduce Al 
into the GaAs semiconductor in controlled quantities and alter the 
properties of the semiconductor. The study of these properties led to 
the so-called band structure engineering of semiconductors, where 
we can manipulate the composition to obtain the desired band gap 
and hence properties to perform specific device functions. As an 
example, we may require a semiconductor device (LED) to emit 
light of a certain wavelength, we would then wish to adjust the band 
gap of the semiconductor to a certain energy which corresponds to 
the desired wavelength; λ = hc/Δ. In Figure 9.13, we illustrate the 
relationship between the band gap energy of various semiconduc-
tors with their lattice parameter. It should be noted that the lines 
between the binary alloys corresponds to the ternary compounds 
with varying composition. It is clear that the lattice parameter is a 
function of the composition of the compound and thus affects the 
band structure and band gap correspondingly. The line between the 
binary points for GaAs and AlAs correspond to the various composi-
tions of the AlxGa1−xAs compound. We note here that for x ≥ 0.35 
the semiconductor goes from a direct to an indirect band gap mate-
rial. Importantly, there is virtually no change in the lattice parameter 
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between the extremal points (corresponding to GaAs and AlAs), 
meaning that it is very suitable for fabricating heterostructures with 
little or no lattice strain.

It is clear that from Figure 9.13 that we can simply choose the 
band gap we require and deposit the material with the correct com-
position. Interesting things begin to happen when we deposit vari-
ous different layers with different compositions. Such a multilayer 
structure is referred to as a heterostructure. The MBE technique 
is especially adapted to the preparation of such types of structures, 
since we can control the deposition to a high degree of precision. In 
a simple case we can join three layers to make a quantum well (QW). 
The quantum well has a number of specific properties which depend 
on both intrinsic and extrinsic characteristics of the heterostructure.

The QW structure can be characterized in terms of the various 
energies of the band gaps and the thickness of the well layer itself, 
see Figure 9.14. The difference in band edge energies are impor-
tant in defining the depth of the quantum well and depending on 

FIGURE 9.13:  Variation of semiconductor band gap energy with lattice parameter for some 
III-V and II-VI compounds. Solid lines correspond to semiconductors with direct band gaps, 
while the dashed lines indicate indirect band gap materials. Wavelengths for the band gap 

transition are indicated on the right hand side of the graph.
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the doping (and hence Fermi energies) the well depths for holes in 
the valence band, ΔEV, and electrons in the conduction band, ΔEC 
can be different. It is possible using simple quantum mechanics to 
define the eigenstates of these quantum wells. If we approximate 
them as infinite wells we can obtain the analytical expressions. These 
can be expressed as:
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for electrons, and
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for holes, where ne and nh are integers, with values 1, 2, 3, etc, for 
the electrons and holes in the QW conduction and valence bands, 
respectively. One of the effects of quantum confinement is that 
the energy states become discrete in the direction of the spatial 

FIGURE 9.14:  Band diagram of a quantum well (QW) structure, where we show the band 
edges as a function of the deposition thickness in the x - direction . We Indicate AlGaAs and 
GaAs as the layers, where ΔAlGaAs > ΔGaAs gives a region in which the electrons and holes can 

be spatially confined within the thickness of the well (GaAs) layer, tGaAs.
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confinement, which in our example is in the x-direction. We note 
that the energies of these confined states which occur in the well 
are referred to as bound states. There will now be no energy state 
available at the GaAs valence and conduction band edges since the 
numbers ne and nh cannot be zero. This means that the effective 
band gap in the well (GaAs) layer, ,GaAs

e f f∆  is generally larger than its 
bulk value, ΔGaAs, and can be expressed in the relation:
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In terms of the expressions given for the electrons and holes, 
Equations (9.100) and (9.101), each value of ne and nh produce their 
own sub-band in the conduction and valence bands, respectively. 
These are indicated in Figure 9.14 as ne1, ne2 and nh1, nh2 etc, for the 
conduction and valence bands. We note that the effective masses of 
the charge carriers will affect the size of the effective band gap, but 
it is via the thickness of the well layer that we can really manipulate 
the properties of the QW structure, since we can finely control this 
parameter during the growth process. It is important to stress here 
that while there is electron confinement in the x - direction, which 
is the cause of the quantization effects, no such restrictions exist in 
the y and z - directions, and electrons are free to move in the plane 
of the layer. In fact, in these directions, they are still subject to the 
usual dispersion relations, which are indicated as parabolic in Equa-
tions (9.100) and (9.101).

Clearly there is enormous scope for tailoring bands for specific 
energy transitions, and this is frequently used in device architecture, 
particularly for optoelectronic applications, such as lasers and optical 
detectors. In fact, often many more layers are used in the QW struc-
tures and form what are termed superlattices, due to the formation of 
periodic structures with periodicities greater than the crystal lattice 
parameter. There are several types of superlattice, which are related 
to their band structures. Due to the relative energies involved, these 
quantum effect become more noticeable for thicknesses below a few 
tens of nm. This really takes us into the realm of nanotechnologies 
and we will have more to say on this subject in the final chapter.
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9.7  SUMMARY

Semiconductors form an important class of materials, having 
very adaptable electronic properties which make them extremely 
manipulable for electronic and optical device applications. At very 
low temperatures, intrinsic semiconductors have no free charge car-
riers for electrical conduction, and thermal excitation is require to 
liberate them from bound states on the semiconductor atoms. The 
concentrations of electrons and holes in an intrinsic semiconduc-
tor can be evaluated using the Fermi distribution function and the 
density of states. The introduction of controlled concentrations of 
impurity atoms offers another method of controlling the electronic 
properties of semiconductors. The impurities can either furnish 
additional electrons or remove electrons from bound states to create 
hole states. In either case the impurities are used to create specific 
concentrations of charge carriers, which are then essentially free 
to contribute to electrical conduction. Materials which have donor 
impurities are called n-type because they have electrons (with neg-
ative charge) as the majority charge carriers. On the other hand, 
semiconductors with acceptor impurities are p-type, as the majority 
carriers are holes (having positive charge). The equilibrium statistics 
allows the determination of carrier concentrations as a function of 
temperature as well as to determine the variation of the Fermi level 
in the solid.

Specific applications of potentials and/or the incidence of elec-
tromagnetic radiation on the semiconductor can introduce excess 
charge carriers in a process called injection. The level of injection 
will depend on the doping concentrations in the semiconductor, 
where the situation is one of non-equilibrium. The excitation pro-
cess, called generation, can be achieved by the application of light of 
an energy equal to or greater than the band gap energy. This energy 
represents a binding energy of electrons, in the valence band, to be 
liberated from localized states on atoms. Such a process will produce 
excesses of both electrons and holes. The relaxation process, called 
recombination, occurs when an electron “descends” from the higher 
energy of the conduction band back to a bound state in the valence 
band, thus annihilating an electron and hole pair. Such a process will 



316  •  Solid State Physics

have a specific lifetime and is generally material dependent. The 
process can occur directly in a direct band gap material or via trap-
ping (impurity) states in the band gap in indirect semiconductors.

We can take into account the various process of generation, 
recombination, diffusion, and drift processes in the continuity equa-
tions. These are versatile equations that allow us to assess specific 
conditions in the semiconductor and determine how the charge car-
riers will behave. These can be applied in many useful applications 
that are frequently found in devices.

One of the most important structures in semiconductor device 
physics is the p-n junction, which forms the basis of many applica-
tions, such as diodes, LEDs, lasers, as well as being the essential 
component in transistors. The interface between the n and p-type 
semiconductors is an important region and controls the motion of 
charge carriers in the device as a whole. The p-n junction is a recti-
fier, allowing current to flow more freely in one direction, while hin-
dering motion in the other. The interface region, called the depletion 
zone, usually extends in the region of a few microns, and in thermal 
equilibrium presents a variation of space-charge. This fixed space 
charge occurs due to the exchange of electrons and holes from the n 
and p-sides on the junction and produces an electric field or built-in 
potential at the interface. It is this which prevents the flow of charge 
in the so-called reverse direction. We used the continuity equations 
as well as the Poisson equation to analyze the p-n junction. This 
allowed us to determine the size of the built-in potential and extent 
of the depletion zone in terms of the doping concentrations in the 
n and p semiconductors. We also derived the diode equation, which 
shows the current - voltage characteristics of the device.

It is possible, using modern deposition techniques to create 
layered structures of different compositions of semiconductor, to 
produce artificial properties and manipulate the band structures in 
semiconductor devices. The modification of lattice parameter can 
be used to adjust the band gap of a semiconductor and can be tai-
lored to a specific energy and thus working wavelength for opto-
electronic devices. Additionally, the growth of thin and ultrathin 
layers of different semiconductor materials with different band 
gap energies can be used to confine the motion of charge carriers. 
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Such heterostructures are called quantum wells. The are the basis 
of many modern devices, such as lasers, LEDs as well as transistors 
and optical detectors.
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EXERCISES

Q1.	 Evaluate the probability that a state with energy 0.01 eV 
below the Fermi energy is unoccupied at temperatures 
of 300, 500, and 700 K.
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Q2.	 Consider the case of an ideal insulator in which the con-
centrations of electrons in the conduction band and holes 
in the valence band take the form:

	 =
+−

n
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c E E k T( )/c F B

� (9.103)
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	 in which g represents the number of states in each band 
per unit volume. Show: (a) that the Fermi level sits ex-
actly in the middle of the band gap. (b) that the density of 
electrons in the conduction band can be approximated as:

	 

−n gec
k T/ 2 B∆ � (9.105)

Q3.	 Derive expressions for the Fermi level in an intrinsic semi-
conductor in terms of the effective masses, ∗mc  and υ

∗m , of 
the charge carriers in the conduction and valence bands.

Q4.	 Use the law of mass action to show that the intrinsic  
carrier concentration takes the general form:

	 = υ
−n T N T N T e( ) ( ) ( )i c

k T/ 2 B∆ � (9.106)

Q5.	 Find expressions for the Fermi energy for extrinsic  
semiconductors in terms of the doping concentrations, 
ND and NA, for n and p-type materials.

Q6.	 Calculate the position of the intrinsic fermi level for 
silicon at the following temperatures: i) Liquid nitrogen 
ii) Room temperature and iii) 100°C. Use the follow-
ing values of the effective masses: =∗m m0.3c e  and 

=υ
∗m m0.5 .e  Comment on whether it is reasonable to 

assume that the intrinsic Fermi level lies in the middle of 
the band gap. N.B. ΔSi = 1.12 eV.

Q7.	 Calculate the concentration of charge carriers and the 
Fermi level in a sample of silicon at room temperature 
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for the case of doping with 1016 atoms of As (cm−3) and  
3 × 1016 atoms of B (cm−3). State whether the sample is n 
or p-type.

Q8.	 Using Equation (9.1) show that the intrinsic conductivity 
for a semiconductor can be expressed as:

	 σi(T)= ni(T)eµp(b+1) � (9.107)

	 where b = µn/µp. Further show that in the extrinsic case 
we can write the conductivity as:

	 σ
σ

=
+
+n

nb p
b 1

i

i

a b � (9.108)

Q9.	 Prove Equation (9.54).

Q10.	 A sample of pure silicon, with dimensions: 10 × 5 × 1 mm,  
is heated at one of its extremities (short end) to a tem-
perature of 600 K, while the other end (10 mm away) 
is maintained at room temperature. Assuming that the 
temperature varies linearly with distance in the sample, 
evaluate the variation of the following (graphically or at 
specific points along the sample):

a)	Concentration of charge carriers, ni.

b)	The charge carrier concentration gradient, dni/dx.

c)	The diffusion current.

	 Use the following constants for Si: DSi = 1.12 eV;  
mn* = 0.3me; mp* = 0.5me; (μn)Si = 0.145m2V−1s−1; 
(μp)Si = 0.045m2V−1s−1.

Q11.	 A Si pn junction is formed using the following doping 
concentrations; NA = 1019cm−3 and ND = 1016cm−3.  
Calculate the changes in the depletion zone thickness 
with an applied voltage of 0.6V (forward bias) and -0.9V 
(reverse bias). Also evaluate the effect of these potentials 
on the maximum electric field in the pn junction. For 
all calculations use room temperature conditions and 
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assume an intrinsic carrier concentration of ni = 1.45 × 
1010cm−3 and a dielectric constant of r = 11.7 for silicon.

Q12.	 Derive the diode equation.

Q13.	 Derive Equation (9.102).

NOTES

1 We should strictly use the chemical potential here, as we stated in Section 6.7. 
However, for the low temperature approximation we take μ  EF.
2 The integral has the form: x e xd /2x1/ 2 1/ 2

0
π=∫ −∞

3 The existence of heavy and light holes derives from the gradients of the valence 
energy bands, where a steep curve will give rise to light effective masses, while a 
shallow curve produces a heavy-mass band. See Section 8.3 for further explanation.



CHAPTER 10
MAGNETIC MATERIALS 
AND PHENOMENA

“The fundamental laws necessary for the mathematical treatment of a large 
part of physics and the whole of chemistry are thus completely known, and 
the difficulty lies only in the fact that application of these laws leads to 
equations that are too complex to be solved.”

—Paul A. M. Dirac

“Politics is the art of looking for trouble, finding it everywhere, diagnosing 
it incorrectly and applying the wrong remedies.”

—Groucho Marx

10.1  INTRODUCTION

When a magnetic field is applied to a solid, it will react in a 
way that reflects the manner in which the electrons in that solid 
are ordered in the atoms and how they interact among themselves. 
The magnetic field interacts with the electrons in the atoms of the 
solid, and since all solids have atoms with electrons, all solids must 
respond in some form to the application of a magnetic field. It is 
the form of this interaction and reaction that distinguishes materi-
als into the various categories. Strong responses arise from those 
materials whose atoms have a magnetic moment and these magnetic 
moments interact amongst themselves. In fact, materials are said to 
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be magnetic only when there exists some form of magnetic order 
between the magnetic moments on the constituent atoms, where 
there is a strong response to a magnetic field. However, the situation 
isn’t as simple as that. In many cases substances can have magneti-
cally ordered phases, but there is still a weak response to a mag-
netic field. Indeed, it is one of the principal objectives of the present 
chapter to discuss magnetic ordering in solids and how this affects 
the bulk properties of the system.

In terms of the elements of the periodic table, there are very few 
natural ferromagnetic solids. The transition elements iron, cobalt 
and nickel are the only transition metals which display ferromagne-
tism at room temperature. Chromium has antiferromagnetic order 
at room temperature and gadolinium is just ferromagnetic at room 
temperature. At low temperature further rare-earth elements dis-
play magnetic ordering. The details of exactly what ferromagnetism 
and antiferromagnetism is will be discussed in later sections of this 
chapter. In addition to the elemental species, alloys and compounds 
can be found and fabricated which also exhibit different magnetic 
ordering. There are many examples and some fairly complex systems 
can be found. We will mention some examples of these as we discuss 
the various types of magnetic order.

Apart from their scientific interest, magnetic materials have a 
number of very important applications, some of which we find on a 
daily basis. Probably the most widely found applications of magnetic 
materials are in transformers, in motors and the hard disk drives 
found in most computers. While we will not go in to the details of 
these applications it is important that we are aware of the impor-
tance of this class of material.

In this chapter, we will firstly look at how atoms acquire their 
magnetic moment, which will be outlined in the following section. 
A vast majority of materials have very weak responses to an applied 
magnetic field. These can be separated into paramagnetic and dia-
magnetic materials, and these will form the topics of the subsequent 
sections. Ordering of the magnetic moments can only arise if there is 
an interaction between them, which is characterized as the exchange 
interaction, of which there are a number of mechanisms, which can 
be either direct or indirect. We will discuss this in Section 10.5 in 
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more detail. The nature of the exchange interaction allows us to dis-
tinguish the magnetic ordering into the main categories of ferromag-
netism, antiferromagnetism, and ferrimagnetism. These form the 
topics of the sections following on from the discussion on exchange 
interactions.

Related to the theme of interactions are the topics which follow. 
The fact that there exist interactions between the atomic magnetic 
moments in a cooperative manner implies some form of directional-
ity of the moments with respect to the crystal lattice. This is called 
spontaneous magnetization. This has some fundamentally impor-
tant implications for how we treat magnetic phenomena in solids. 
For example, if we apply a magnetic field in some orientation with 
respect to the natural direction of the magnetic moment (or magne-
tization vector), then the response will essentially be different. This 
dependence on orientation is termed, in general, magnetic anisot-
ropy and can have a number of forms. We will outline the principal 
forms of magnetic anisotropy; Section 10.9.

As we discussed in the early chapters of the book, the crystalline 
structures of solids give rise to specific symmetry properties due to 
the periodic arrangement of the atoms. Therefore, the orientation 
of the spontaneous magnetization can have a number of equivalent 
directions. This, along with magnetic energy considerations leads us 
to the notion of magnetic domains. These are regions of spontaneous 
magnetization in the solid, which can now be separated into various 
zones with regions of transition between them called domain walls. 
The specific domain structure depends on a number of factors, such 
as the magnetic anisotropies and the strength of the exchange inter-
action aligning the magnetic moments of the atoms.

The magnetic order of a solid can be perturbed by excitations, 
such as thermal agitation, electromagnetic wave absorption or the 
application of time varying magnetic fields. Such excitations can be 
understood in terms of quantum excitations or quasi-particles, much 
in the same way as we described the existence of lattice oscillations 
or phonons. In the case of magnetic perturbations, we call these 
excitations spin waves or magnons. These are dynamic properties 
of the magnetic material and will form the subject of Section 10.11. 
Actually the dynamic response of a magnetic lattice can be observed 
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in a number of phenomena, such as magnetic resonances and mag-
netization reversal processes.

The discovery of the giant magnetoresistance (GMR) in the 
late 1980s paved the way for the development of novel magnetic 
devices, which have important applications, especially in the mag-
netic recording industry. The importance of this discovery is attested 
to by the attribution of the 2007 Nobel Prize in Physics to Albert 
Fert and Peter Grünberg, who were jointly awarded the prize for 
the discovery of this effect. In fact, this discovery led to a new field of 
electronics based on the spin of the electron and not just its charge. 
The topic is now known as spintronics, and is a fast growing area of 
research and development. We will outline some of the basic physics 
of spintronics in Section 10.12.

10.2  THE ATOMIC MAGNETIC MOMENT

10.2.1  Orbital and Spin Angular Momenta
At the most fundamental level, all magnetic phenomena in sol-

ids depends on the magnetic moment of the atoms in the solid itself. 
The simplest way to consider the origin of a magnetic moment of 
an atom is to think of the electron motion in a classical orbit around 
the nucleus. If the orbit has a radius of r and orbital velocity, v, the 
orbital period is: T = 2πr/v, see Figure 10.1.

Now the motion of a charged particle, such as an electron, con-
stitutes a current, defined as the quantity of charge passing a certain 
point per unit time. The current due to the motion of the single elec-
tron in its circular orbit will therefore be: I = −e/T = −ev/2πr. The 
negative sign comes from the convention for the electronic charge, 
and therefore the current direction is opposite to that of the electron 
motion. From Ampere’s Law, such a current loop will create a mag-
netic dipole moment of strength:

	 µl = IdA � (10.1)

where AA nd ˆ d ,=  with dA being the area of the loop and n̂  the 
unit vector normal to the loop area. It is now possible to write the 
magnetic moment as:
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	 µl =−
ev

2πr
dA � (10.2)

We can now substitute in for the area, πr2, and the orbital angu-
lar momentum,  m vrl n| | ˆ ,e=  to obtain:

	 µl =−
e!

2me

l � (10.3)

where we note that  is the natural unit of the orbital angular momen-
tum for electrons in atoms. The pre-factor in the above equation is 
referred to as the Bohr magneton:

	 µB =
e!

2me

� (10.4)

and has a numerical value of 9.271 × 10−24JT−1. The above is valid 
for the quantum mechanical treatment provided that hl is consid-
ered to be the operator for the angular momentum of the elec-
tron. In addition to the charge of the electron creating a magnetic 
moment due to the current flow described by the orbital motion 
above, the electron also has the property of spin. This is the rota-
tional motion of the electron as a spinning object and produces a 
further contribution to the magnetic moment of the electron. This 
can be expressed as

	 µs =−µBgss � (10.5)

FIGURE 10.1:  An electron in a circular orbit about the nucleus of an atom  
can be considered as an electrical current in a loop. Such a current loop  

will produce a magnetic moment, µ.
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in which the quantity hs represents the intrinsic spin angular momen-
tum of the electron. The constant gs has a value of very close to 2. A 
comparison of Equations (10.3) and (10.5), therefore shows that the 
spins angular momentum has a value twice that of the orbital angu-
lar momentum. As we saw in Chapter 1, the eigenvalues of the spin 
(in the z- orientation) are hsz = ±h/2. This means that the value of 
the z-component  of the moment will be ±µB.

Since atoms can have more than one electron, we evaluate the 
total magnetic moment of the atom as:

	 µTOT =−µB(L+2S) � (10.6)

where we have introduced; hL = h ∑ l and hS = h ∑ s. The sum-
mations being over all electrons in the atom, with hL and hS being 
the total orbital and spin angular momenta of the atom, respectively. 
In Chapter 1, we saw the general rules relating to the filling of elec-
trons in shells. However, this does not help us in evaluation how the 
different quantum states are occupied in the shells. As electrons fill 
a particular shell, they must do so such as to minimize the energy of 
the atom. In addition to this we must also consider the total angular 
momentum, J, of the atom. The manner in which this occurs is via 
a vector sum of the orbital and spin angular momenta, though the 
specifics depend on the particular circumstances of the atom.

10.2.2  Hund’s Rules and the Ground State
The most common scheme in isolated atoms with incomplete 

electron shells is via the Russell - Saunders or L-S coupling mech-
anism. In this case, the orbital angular moments, li, are coupled 
together, such that:

	 L l i
i

∑= � (10.7)

Similarly the spin angular momenta couple together into a resul-
tant spin:

	 S si
i

∑= � (10.8)

The momenta then interact (spin-orbit interaction), to give a 
total angular momentum:
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	 J = L + S� (10.9)

According the this scheme, the stationary states of the shell have 
eigenstates L2, S2 and J2, with respective eigenvalues: L L( 1),+  

S S( 1),+  J J( 1).+  The values for L, S and J, which correspond to 
the lowest energy state can be derived from the Hund’s rules, which 
must be obeyed in the following order of priority:

1.	S must take the maximum value possible allowed by the Pauli 
exclusion principle. This means that as many as possible of 
the electron spins must align parallel. This in effect minimiz-
es the Coulomb interaction between electrons since they are 
kept as far apart as possible from one another.

2.	L must take the maximum value, consistent with the first 
Hund’s rule, thus aligning as much as possible the orbital 
angular momenta of the electrons in the atom. This can be 
envisaged as the electrons orbiting as much as possible in 
the same direction, hence they will interact less, and again 
reduce the Coulomb repulsion.

3.	The final rule concerns the total angular momentum, J. This 
is given as: i) J = |L − S|, for a shell which is less than half full, 
and ii) J = |L + S|, for a shell which is more than half full.

This last rule is sometimes disobeyed, such as in the transition 
metal ions. In this case the spin-orbit interaction energies are weak 
compared to other energies, such as the crystal field energy. The 
third rule does work well for the rare earth ions. The Hund’s rules 
leads to a specific ground state of the atom, but predicts nothing 
about the excited states. It therefore allows a useful estimate of the 
magnetic moment, assuming all atoms exits in their ground state.

For this situation we can express the magnetic moment in the 
form:

	 µTOT =−µBg J( J+1) � (10.10)

where g is called the Landé factor or simply the g-factor, which can 
be expressed in terms of the angular momenta as:



328  •  Solid State Physics

	 g
S S L L

J J
3
2

( 1) ( 1)
2 ( 1)

= +
+ − +

+
� (10.11)

It is instructive to show some examples of how the Hund’s rules 
work. Let us consider the case of Fe2+. This ion has 6 electrons in 
the 3D shell, where we have n = 3 and l = 2, see Table 10.1. (Note, 
we do not need to consider the other electron shells as they are full, 
and as such have no net angular momentum and hence no magnetic 
moment.) The situation can be expressed as:

TABLE 10.1:  Electronic configuration of Fe2+.

l 2 1 0 −1 −2

s 1/2 1/2 1/2 1/2 1/2

↑ ↑ ↑ ↑ ↑

↓

We can now see that for this ion, we have: L l 2ii∑= =  and 
S s 2.ii∑= =  Since the 3D shell is more than half full, we obtain: 
J = |L + S| = 4. Given that L = S, we have g = 3/2 and the mag-
netic moment of the ion is obtained from Equation (10.10) to be  
µ = 6.71µB. In Figure 10.2, we show the 3D transition metal series, 
giving the results obtained from the Hund’s rules.

FIGURE 10.2:  Values of L, S and J for the 3D metal series according to the Hund’s rules.



Magnetic Materials and Phenomena  •  329

In general, the electric forces that couple the individual angu-
lar momenta, li and si, into the single vectors L and S, respectively, 
are stronger than the magnetic spin - orbit forces, which couple L 
and S to form J in light atoms. Such forces tend to dominate even 
when a moderate magnetic field is applied1. For heavy atoms, the  
nuclear charge becomes sufficient to produce a spin-orbit interac-
tion, which is comparable to the electric one and the L-S coupling 
scheme starts to break down. A similar break down occurs when a 
strong magnetic field is applied, producing the Paschen-Back effect 
in atomic spectra. Once this occurs the total angular momentum of 
the individual electron, Ji, add directly together to form the total 
angular momentum of the atom. Such a situation is called jj cou-
pling. In this case we can write:

	 J J i
i

∑= � (10.12)

where, Ji = Li + Si is the total angular momentum of each electron.

As we have stated above, the Hund’s rules do not agree very well 
with the 3D transition metal ions. In Table 10.2, we show a compari-
son of the magnetic moments of various ions in this series, where 
we compare experimental and calculated values. Of particular note 
is the agreement between the experimental value and that obtained 

TABLE 10.2:  Ground states for the 3D ion series using the Hund’s rules.  
The magnetic moments are calculated using J and S and are compared with 

experimental values. All moments are expressed in unites of µB. Notable is the 
agreement between the experimental values and those from g S S( 1).+

Ion 3d shell S L J µexp(µB) +g J J( 1) +g S S( 1)

Ti3+, V4+ 3d1 1/2 2 3/2 1.70 1.55 1.73

V3+ 3d2 1 3 2 2.61 1.63 2.83

Cr3+, V2+ 3d3 3/2 3 3/2 3.85 0.77 3.84

Mn3+, Cr2+ 3d4 2 2 0 4.82 0 4.90

Fe3+, Mn2+ 3d5 5/2 0 5/2 5.82 5.92 5.92

Fe2+ 3d6 2 2 4 5.36 6.70 4.90

Co2+ 3d7 3/2 3 9/2 4.90 6.63 3.87

Ni2+ 3d8 1 3 4 3.12 5.59 2.83

Cu2+ 3d9 1/2 2 5/2 1.83 3.55 1.73

Zn2+ 3d10 0 0 0 0 0 0
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when we use µ= gµB S(S+1).  This agreement can be achieved by 
putting L = 0, an effect referred to as orbital quenching. This arises 
due to the crystal field interaction being much stronger than the 
spin - orbit interaction. The third Hund’s rule is no longer obeyed in 
this situation.

10.2.3  Moments and Energies
When a magnetic moment is subject to a uniform magnetic 

field, there will be an energy of interaction between the two, this is 
commonly termed the Zeeman energy. Let us consider the magnetic 
moment, µ, in an applied magnetic field, B. The energy of interac-
tion is expressed as:

	 E=−µ ⋅B � (10.13)

The energy will be a minimum when the magnetic moment 
aligns along the direction of the applied magnetic field. The pres-
ence of a magnetic field will produce a torque, T, on the magnetic 
moment, given by:

	 T=µ×B � (10.14)

This torque leads to a re-directioning of the magnetic moment, 
and since the torque is equal to the rate of change of the angular 
momentum, we can write:

	
dµ
dt
= γ(µ×B) � (10.15)

where γ= e/2me =µB/!  is the magnetogyric (often referred to as 
gyromagnetic) ratio. The motion of the magnetic moment is a pre-
cession about the direction of the magnetic field, whose frequency 
is given by the Larmor precessional frequency; B.Lω γ=  From the 
above, we see that there is a complex relation between the mag-
netic field and the magnetic moment, and the magnetic field does 
not simply align the magnetic moment, but can induce a number 
of subtle dynamic effects in spin systems. Dynamic phenomena in 
magnetic systems will be further discussed in Section 10.13.

Let us consider the Hamiltonian for an atom with Z electrons. In 
the simplest form this can be expressed as:
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where p m2j e
2/  represents the kinetic energy and Vj the potential 

energy of the jth electron. In the presence of a magnetic field the the 
momentum can be expressed as: ep p A r( ),j j j→ +  where the vec-
tor potential and the magnetic field are related via: B A.= ×∇  This 
means that the Hamiltonian will take the form:

	 Ĥ= u [pj+ eA(r j)]
2

2me

+Vjv+
j=1

Z

∑ gµBB⋅S � (10.17)

Using the fact that L = r × p and that the magnetic vector 
potential has the form: A(r) = (B × r)/2, we obtain:

	 Ĥ= Ĥ0+µB(L+ gS)+
e2

8me

(B×r j)
2

j=1

Z

∑ � (10.18)

As we shall see shortly, the second and third terms are pertur-
bations to the original Hamiltonian of the system, where the first is 
related to paramagnetic effects while the latter to diamagnetic prop-
erties of the atom.

10.3  DIAMAGNETISM

It is useful to outline some of the principal physical quantities 
that will be used in the following. Firstly, the magnetic field strength, 
H, is related to the magnetic induction, B, via the relation:

	 B=µ0H � (10.19)

where µ0 = 4π×10−7 Hm−1(TmA−1)  is the permeability of vacuum, 
or free space. In the case of a magnetic material, this expression is 
modified to:

	 B=µ0(H+M) � (10.20)

where M is the magnetization, or density of magnetic dipole moments:



332  •  Solid State Physics

	 M=µ N
V

� (10.21)

Finally we can express the magnetic susceptibility as the ratio of 
the magnetization to the applied magnetic field:

	 M
H

χ= � (10.22)

In Figure 10.3, we show the susceptibilities of the elements. We 
note that some are negative while others are positive. This provides 
a first classification to the response of materials to a magnetic field, 
and in the majority of cases they are either paramagnetic (weak posi-
tive response) or diamagnetic (weak negative response). In this and 
the following section, we will discuss these effects. The ferromag-
netic elements have a spontaneous magnetization in zero field and 
are not included in this figure.

Virtually all materials have some form of diamagnetic response, 
which is a weak and negative magnetic susceptibility. The negative 
susceptibility is due to the induced magnetic moment aligning in 

FIGURE 10.3:  Atomic susceptibilities of the elements. Fe, Co, and Ni have a spontaneous 
magnetization in the absence of a applied field since they are ferromagnetic and are off 

the chart. The majority of the elements generally have a weakly positive or weakly negative 
susceptibility. The former are paramagnetic, while the latter diamagnetic.
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the direction opposed to that of the applied magnetic field. For 
electronic shells that are full or empty, the orbital and spin angular 
momenta, and hence the total angular momentum, of the shell will 
be zero. This means that such a situation leads to zero contribution 
to the magnetic moment. Therefore any atom from Li and above 
in the periodic table will have atoms in which this situation occurs. 
Referring to the energy of the atom in a magnetic field, Equation 
(10.18), the only changes to the ground state term will occur via 
second order perturbations; i.e., the third term, in which the energy 
shift can be assessed via:

	 E
e B

m
x y
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m

r
8
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12

| |
e

j j
j

Z
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j

j

Z
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2

0
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∑ ∑δ ψ ψ ψ ψ= + =
= =

H I H I � (10.23)

where we have assumed that the magnetic field is aligned in the 
z-direction, such that B x yB r( ) ( ),j j j

2 2 2 2× = +  and from the spheri-

cal symmetry of the system we have; x y r 3.j j j
2 2 2H I H I H I= = /  The 

magnetic susceptibility is now evaluated from:

	 χ=−
N
V
∂2[δE0]
∂B2

=−
Ne2µ0

6Vme

H| rj
2|I

j=1

Z

∑ � (10.24)

This expression is known as the Larmor diamagnetic suscepti-
bility. As we noted above, the susceptibility has the negative sign 
for diamagnetism. The diamagnetic response shows no temperature 
dependence, but there is a dependence on the atomic mass num-
ber, since the number of electrons is an important component in 
the susceptibility. This is borne out by experiment. We mentioned 
above that most materials have some form of diamagnetic response. 
In fact, this was amply demonstrated in a series of experiments in 
which magnetic levitation was used to demonstrate the diamagne-
tism of many common objects. The levitation of a live frog was prob-
ably the object that attracted the most attention. The levitation itself 
requires only that the object be placed in sufficient magnetic field 
so that the repulsive force, caused by the opposition to the applied 
field, overcomes the gravitational force on the object.

In addition to the diamagnetic contribution due to full electron 
shells, the motion of free electrons also has both paramagnetic and dia-
magnetic responses. These were discussed in Chapter 6, Section 6.9,  
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these are referred to as Pauli paramagnetism and Landau diamagne-
tism, respectively.

10.4  PARAMAGNETISM

If there is no interaction between the atomic magnetic moments 
in a solid, i.e., they behave independently, then in the absence of a 
magnetic field the magnetic moments will be randomly oriented. A 
magnetic field acts to align these moments in the same direction as 
the field itself, and hence has a positive magnetic susceptibility. This 
is termed paramagnetism. Actually, we have already introduced para-
magnetic effects when we discussed the properties of free electrons 
in metals. The response of free electrons in metals is referred to as 
Pauli paramagnetism, see Section 6.9. In this section, we will discuss 
the paramagnetic response of the atomic magnetic moments in solids.

10.4.1  Classical Treatment
The classical theory of paramagnetism is due to Langevin (1905) 

and assumes that the magnetic moment can align in any direction 
and has a probability of having an energy, E at a temperature, T, 
given by the Boltzmann factor:

	 P(E)= e−E/kBT = eµ⋅B/kBT = eµBcosθ /kBT � (10.25)

We can evaluate the number of magnetic moments in the orien-
tation between θ and θ + dθ, see Figure 10.4, which can be expressed 
in terms of the area of the annulus on the surface of the sphere:  
2π sin θdθ, considering the sphere to have unit radius.

The average moment along the field, B, takes the form:

	 HµI= µ cosθsinθeµBcosθ /kBT dθ
0

π

∫
sinθeµBcosθ /kBT dθ

0

π

∫
� (10.26)

Solving can be achieved by substituting: x = cos θ, dx = sin θdθ 
and α = μB/kBT. The magnetization can be expressed as:
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	 M= Nµ
xeαx dx

−1

1

∫
eαx dx

−1

1

∫
� (10.27)

where N is the total number density of moments. It can easily be 
shown that:

	 M= Nµ s coth a µB
kBT
b − kBT

µB
t= nµL akBT

µB
b � (10.28)

The function L(x) is called the Langevin function, and is illus-
trated in Figure 10.5.

For low values of the argument; μB/kBT  1, we find:

	 M= Nµ a µB
3kBT

b = nµ2B
3kBT

=
nµ0µ

2H
3kBT

� (10.29)

From this we find the corresponding paramagnetic susceptibility:

	 χ=
M
H
=

nµ0µ
2

3kBT
� (10.30)

which is valid for small applied fields. This demonstrates that the 
susceptibility is inversely proportional to the inverse of the tempera-
ture, a variation known as the Curie law, after Pierre Curie (1895).

FIGURE 10.4:  Geometry for the calculation of the number of magnetic moments between 
direction  θ and θ + dθ.
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10.4.2  Quantum Mechanical Treatment
In the quantum description of paramagnetism, we limit the ori-

entation of the magnetic moment to those permitted by the quanti-
zation of the angular momentum, J. The energy of the system is of 
the form: E = −gµBMJB, where MJ can take values: −J, −(J − 1),  
..., (J − 1), J. The partition function2 can be written:

	 Z= egµBMJB/kBT

MJ=−J

J

∑ � (10.31)

Writing x = gµBB/kBT, we can express the average value of MJ as:

	 HMJI= MJe
xMJ

MJ=− J

J∑
exMJ

MJ=− J

J∑
=

MJe
gµBMJB/kBT

MJ=− J

J∑
egµBMJB/kBT

MJ=− J

J∑
=

1
Z
∂Z
∂x

� (10.32)

The magnetization can now be written in the form:

	 M= NgµBHMJI= NgµB
d
dx
s lnq exMJ

MJ=− J

J

∑ rt � (10.33)

The summation can be simplified by writing:

FIGURE 10.5:  The classical paramagnetic magnetization follows the Langevin function,  
L(x) = coth x − 1/x. For small values of x this is essentially linear: L(x)  x/3,  

as shown by the dashed line.
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Since P is the number of terms in the series, for a given value  
of J, it will have a value of 2J + 1. We thus obtain:
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This must be substituted into Equation (10.33). Developing the 
differential can be shown to give:

M= NgµB Ju s(2 J+1)
2 J

t coth s(2 J+1)
2 J

yt− 1
2 J

coth q y
2 J
r v =M0BJ(y)

� (10.36)

where we have: y = xJ, M0 = ngµBJ and BJ(y) is known as the Bril-
louin function. The form of this function is illustrated in Figure 10.6. 
The subscript of the Brillouin function refers to the value of the 
angular momentum. In the classical limit we have J = ∞ and we 
therefore obtain B y B y L y( ) ( ) ( ),J = →∞  i.e., we recover the classical 
result, showing that the Brillouin function is a more general form of 
the Langevin case.

FIGURE 10.6:  The Brillouin function, BJ(y). Shown are various curves for different  
values of J. In the classical limit J = ∞ and B y B y L y( ) ( ) ( ).J = →∞
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In the limit of low magnetic fields, we have: B y J y J( ) ( 1) / 3 ,J  +  
the magnetic susceptibility in this limit can be given by:

	 χ=
M
H
= NgµB

J( J+1)
3 J

gµB J
kBT
µ0 =

Ng2µB
2 J( J+1)

3kBT
� (10.37)

This has the form of the classical Curie law. In Figure 10.7, we 
show some experimental results for some paramagnetic salts along 
with the fits to various Brillouin functions, for the spin value given.

10.4.3  Van Vleck Paramagnetism
As we will see in the next section, the ground state for atoms 

or ions with full electrons shells has J = 0. In this case there will 
be no resulting magnetic moment and thus no paramagnetic effect. 
However, this is only true to first-order perturbations and second-
order effects give rise to the modification of the ground state. Any 

FIGURE 10.7:  Magnetization curves for some paramagnetic salts. The atomic ions are  
indicated and the fit to the relevant form of the Brillouin function is shown. N.B. The fits  

are made according to the quenching of orbital angular momentum: L = 0 → J = S.
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alteration of the ground state must involve a promotion of an elec-
tron from one of the closed shell occupied states to an unoccupied 
state in another shell and thus produces a change in the angular 
momentum state, and therefore J ≠ 0. Based on Equation (10.18), 
we can write the corresponding change in energy as:

	 E
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The second term comprises diamagnetic effects, see Section 
10.3. The summation in the first term is over excited states of the 
atom or ion. Since the solid will contain N/V atoms/ions per unit 
volume, we can obtain the corresponding paramagnetic suscepti-
bility as:

χ=−
N
V
∂2[δE0]
∂B2

=
N
V
s2µB

2 | Hψ0| (Lz+ gSz)⋅B|ψnI |2
E0−Enn

∑ −
e2µ0

6me

H|rj
2|I

j=1

Z

∑ t
� (10.39)

We note that the two terms have opposite signs. The second 
term is the Larmor diamagnetism that we discussed previously, 
while the first term is referred to as the Van Vleck paramagnetism.

10.5 � INTERACTIONS, EXCHANGE,  
AND MAGNETIC ORDER

We now turn our attention to the collective effects that occur 
when the magnetic moments of the individual atoms are coupled 
together. There are a number of physical mechanisms by which this 
can occur and it depends very much on the nature of the materials 
involved which type of interaction predominates.

10.5.1  Dipolar Interaction
Before we consider the physics of the interaction between 

atomic magnetic moments, we will outline the purely dipolar energy 
between two magnetic dipoles, µ1 and µ2, which are separated by 
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a position vector, r. The mathematical expression for the dipolar 
energy can be given in the form:

	 Edip =
µ0

4πr 3
sµ1 ⋅µ2−

3
r 2

(µ1 ⋅r)(µ2 ⋅r)t � (10.40)

This energy depends not only on the physical separation of the 
magnetic moments, but also importantly, on their relative orienta-
tions. For example, the energy of interaction will be zero when the 
spins are oriented at right angles. For other orientations, the vec-
tor between the magnetic moments is also important in evaluating 
the energy of interaction. The dipolar energy can be simplified in a 
number of ways. For example, if the magnetic moments have the  
same magnitude (i.e., |µ1| = |µ2| = µ). This can be expressed in 
terms of the various angles, as defined in Figure 10.8, in the form:

	

Edip =
µ0µ

2

4πr 3
{[sinθ1 sinθ2 cos(φ1−φ2)+ cosθ1 cosθ2]

−3[sinΘsinθ1 cos(Φ−φ1)+ cosΘcosθ1]
[sinΘsinθ2 cos(Φ−φ2)+ cosΘcosθ2]} � (10.41)

FIGURE 10.8:  Definition of angles for the spherical coordinate system used to define the 
dipolar energy between two magnetic moments in Equation (10.41).



Magnetic Materials and Phenomena  •  341

Furthermore, if we take the moments to be along the same 
direction (µ1//µ2) we obtain:

	 Edip =
µ0µ

2

4πr 3
{1−3 [sinΘsinθcos(Φ−φ)+ cosΘcosθ]2} � (10.42)

Further simplification is possible by setting the vector between 
the moment along the y-axis; Θ = 90°; Φ = 90°, from which we find:

	 Edip =
µ0µ

2

4πr 3
(1−3sin2 θsin2φ) � (10.43)

The lowest energy state occurs when the moments are aligned 
along the y-axis θ φ= = °( 90 ),  where we obtain: Edip =−µ0µ

2/2πr 3.  
The maximum energy is for the spins to be aligned along the z-axis 
( 0 ),θ φ= = °  where Edip =−µ0µ

2 / 4πr 3.  At intermediate orienta-
tions there is a (1 – 3 sin2 θ)dependence. The other important limit-
ing case to note is when φ= °0 ,  which case there is no dependence 
on the θ angle and the two moments can rotate in the x – z-plane with 
no alteration in their energy state. The existence of dipolar fields 
has important consequences for magnetic anisotropies in magnetic 
objects, in fact it is the origin of magnetostatic or shape anisotropy 
in solids.

10.5.2  Exchange Interactions
The exchange interaction is used in a generic way to characterize 

the interactions between the fixed atomic magnetic moments in sol-
ids and is used to describe the long-range magnetic order in magnetic 
materials. The theory of exchange stems from quantum mechani-
cal behavior of electrons and is related to the indistinguishability 
of these particles. This may seem a little abstract, but it is another 
example of the surprises that quantum mechanics has brought to our 
understanding of magnetism and physics in general. At its origin, 
the exchange interaction is of an electrostatic nature, not dissimilar 
to the Coulomb interaction. The exchange interaction, usually writ-
ten as a constant, also referred to as the exchange integral, Jij, can 
be expressed in terms of the wave-functions of electrons (i and j) in 
a system, and is determined by the energy it takes to exchange the 
electrons among themselves in the system3.
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The Hamiltonian of the exchange interaction between two elec-
tron spins can be expressed as:

	 J S Sˆ 2ij ij i j = − ⋅ � (10.44)

For systems with more than two electrons and in solids, the situ-
ation is more complex. Limiting the interactions to nearest neigh-
bors, we can express the Hamiltonian in the form:

	 J S Sˆ
ij i j

ij

 ∑= − ⋅ � (10.45)

This is called the Heisenberg Hamiltonian. In this apparently 
simple form, the exchange between neighboring spins is charac-
terized via an analysis of the sign of the constant Jij. For positive 
values, the lowest energy state will be that in which the spins are 
parallel, this is the case of ferromagnetic order. For negative signs 
of Jij, the lowest energy will be for antiparallel alignment between 
neighboring spins; this corresponds to antiferromagnetic order. 
This, however, tells us nothing about the nature of the interaction 
itself. In fact, the complexity of exchange is reflected in the vari-
ous mechanisms which can occur. We will here outline some of the 
more important of these.

As a first step, we can distinguish between direct and indirect 
exchange interactions. The former refers to the case where magnetic 
atoms interact between nearest neighbors, while the latter concerns 
interactions between magnetic atoms or ions via an intervening 
atom. While this may seem a simple picture, the physical reality is 
far from simple. The direct exchange may seem an obvious route 
for interactions via an overlap of wave-functions between neighbor-
ing spins, however, this is rarely the case. For example, in the 4f 
(rare earth) series, the electronic wave-functions are too localized 
for any significant overlap and it is unlikely that a direct interaction is 
responsible for the ferromagnetic effects, and indirect mechanisms 
probably via conduction electrons are required. Even for the case 
of the transition metal ferromagnets (Fe, Co, Ni), where the 3D 
electron orbitals extend further from the nucleus, there are impor-
tant contributions via conduction electrons. The interaction via the 



Magnetic Materials and Phenomena  •  343

conduction electrons is referred to as itinerant exchange and can 
lead to some rather complex behavior in metallic systems. One such 
mechanism was devised in the 1950s by Ruderman, Kittel, Kasuya 
and Yosida (commonly known as the RKKY interaction), whereby 
the interaction between magnetic ions in a metal produce a polar-
ization of the conduction electrons which gives rise to spin density 
oscillations. This results in an indirect exchange mechanism which 
oscillates between a positive and negative coupling between ions 
(i.e., between ferromagnetic and antiferromagnetic), and depends 
on the separation of the ions and is related in a complex manner with 
the Fermi surface of the host metal, having an oscillatory wavelength 
of k J k r r; cos( ) .F RK K Y F

3π/ ∝ /  This mechanism is one of the princi-
pal candidates for explaining the giant magnetoresistance effect in 
magnetic multilayers, see Section 10.12.

Another important indirect exchange mechanism is super-
exchange and is responsible for the antiferromagnetic coupling 
between magnetic moments in many oxides and flourides, e.g., 
MnO, CoO, MnF2 etc. The interaction between the the magnetic 
moments, which reside on the transition metal (e.g.Mn2+) ions, 
occurs via the intervening non-magnetic ion and is a consequence of 
the Pauli exclusion principle and the exchange of electrons between 
the constituent atoms to form the ionic solid.

In many magnetic oxides, there are complex and indirect 
exchange forces which give rise to a number of non-trivial mag-
netic structures. Such interactions, in addition to the superexchange 
mechanism, include double exchange and Dzyaloshinski - Moriya 
(DM) interactions. The double exchange mechanism occurs in 
oxide systems, such as Fe3O4, where mixed valency ions exist. In this 
example, Fe2+ and Fe3+ ions couple via the hopping of an electron 
between them, thus swapping the ionic states between 2+ and 3+. 
Such a mechanism is known to occur in many manganite systems 
which exhibit colossal magnetoresistance (CMR). The DM interac-
tion is unusual in that it is anisotropic, being expressed via a Hamil-
tonian of the form:

	 D S Sˆ
DM ij i j

ij

 ∑= − × � (10.46)
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here the vector, Dij = –Dji, vanishes when the crystal field has an 
inversion symmetry between the two magnetic ions. This type of 
interaction favors non-collinear spin structures, since parallel struc-
tures will result in ˆ 0.DM =  Frequently the DM interaction causes 
a canting between the magnetic moments and produces weak ferro-
magnetism, such as in the following compounds: α − Fe2O3, MnCO3 
and CoCO3.

10.6  FERROMAGNETIC ORDER

When the word “magnet” is used, the image conjured up is that 
of iron filings, bar magnets and “fridge magnets”. This is the pub-
lic perception of what magnetism is. Of course this simplistic view 
is, for the most part, limited to the case of strong magnetic effects, 
especially in the mysterious forces which produce magnetic repul-
sion between bar magnets. Actually, as we have seen, magnetic phe-
nomena are much more complex and varied than this. This popular 
view of magnetism is part of what captures the imagination of the 
public in general. The strong magnetic response of certain materi-
als is mainly due to the spontaneous magnetization which occurs 
in ordered magnetic structures like ferromagnets. As was men-
tioned above, ferromagnetism is a specific type of order in which 
the atomic or ionic magnetic moments align in the same direction 
as their neighbors, which results from a positive exchange integral. 
In the case of ferromagnets in the presence of a magnetic field, the 
Hamiltonian takes the form:

	 Ĥ=− JijSi ⋅S j+ gµB S j ⋅B
j
∑

ij( i≠ j)
∑ � (10.47)

The first term is the Heisenberg exchange and the second cor-
responds to the Zeeman energy.

10.6.1  Mean Field Theory
We will now introduce the mean field or molecular field approxi-

mation, which is due to P. Weiss (1906), and is also known as the 
Weiss molecular field theory. In this approximation we consider the 
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effect on the ith spin of all the other spins in the solid, taken as the 
mean effective field of the ferromagnetic system. Using the above 
Hamiltonian, we can express the energy of for the ith spin as:

	 Ei =−2 JijSi ⋅ 8S j 9
j
∑ − gµBSi ⋅B=−Si ⋅Bi

e f f � (10.48)

where S j8 9  is the average value of the other spins in the system, and 
the effective field on spin i can be expressed as:

	 Bi
e f f =B−

2 Jij 8S j 9j∑
gµB

=B+Bmf � (10.49)

due to the applied field and the interaction field from the other 
spins. We note that the factor of 2 arises from the summation of 
the interactions between pairs of spins. As we have written it here, 
the interactions thus appear as an effective magnetic field on spin i, 
where Bmf is the so-called mean or molecular field. Clearly the effec-
tive field is non-zero even when there is no applied field. It is worth 
noting that we can readily interchange between fields and energies 
via the relation:

	
E

B
Se f f
e f f= −

∂

∂
� (10.50)

We can now write an effective form for the Hamiltonian as:

	 Ĥe f f = gµB Si ⋅(B+Bm f )
i
∑ � (10.51)

This has the same form as the Hamiltonian for a paramagnetic 
solid in a field B + Bmf. Actually, we can now state that all mag-
netic moments in the solid are subject to the same internal field, Bmf, 
which arises from the ordering of all the other magnetic moments in 
the solid. Since the ordered state will have a spontaneous magnetiza-
tion, M, we can equate the internal field and the magnetization as:

	 λ=B Mm f m f � (10.52)

where λmf is a constant of proportionality, which is obviously posi-
tive for ferromagnetic materials. Ferromagnetic materials reduce 
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their magnetization with increase of temperature. This occurs due 
to thermal fluctuations in the spin system, which interrupt the 
exchange interactions. Clearly at a critical temperature, designated 
as the Curie temperature, Tc, all magnetization is lost and the ferro-
magnetic undergoes a phase transition to the paramagnetic state. To 
account for this, we can solve the following equations:

	 = B yM M ( )s J � (10.53)

	 y=
gµB J
kBT

(B+λm f M) � (10.54)

For the case of λmfM = 0, we have the same variation as for 
normal paramagnetism. At zero applied field we obtain: M = ykBT/
gµBJλmf. Therefore, the simultaneous solution of equations is the 
intersections between the Brillouin function and a straight line, as 
illustrated in Figure 10.9.

We note that when T < Tc, there are three points of intersec-
tion between the curves, one at M = 0 and two for M = ±M(T), 
only these latter two are stable solutions, which indicate that for any 
temperature below the Curie temperature, there is a stable value 
of the magnetization. At T ≥ Tc, there is only one point of cross 

FIGURE 10.9:  Simultaneous solutions of Equations (10.53) and (10.54) are given by the 
points of intersection between the straight line and the Brillouin function. Three cases are 

shown: (i) T > Tc, (ii) T = Tc and (iii) T < Tc.
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over between the curves, which corresponds to that at the origin 
where y = 0 and M = 0. It is easy to see from the model that as the 
temperature decreases (the gradient of the line also decreases), the 
spontaneous values of the magnetization will increase, even without 
an applied magnetic field.

We can evaluate the Curie temperature from the gradient of the 
straight line: M = ykBT/gµBJλmf  and M = MsBJ(y) near the origin, 
where  +B y J y J( ) ( 1) / 3 ,J  from which we find at T = Tc:

	
kBTc

gµB Jλm f

=Ms
( J+1)

3 J
� (10.55)

Thus we can write the Curie temperature as:

	 Tc =Ms

gµB( J+1)λm f

3kB

� (10.56)

Substituting in the molecular field; Bmf = λmf Ms, we obtain:

	 Bm f =
3kBTc

gµB( J+1)
� (10.57)

We can now estimate the size of the Weiss molecular field, 
where using J = 1/2 and Tc ∼ 1000 K we obtain Bmf = kBT/µB = 
1488 Tesla! This huge effective magnetic field is a reflection of the 
strength of the exchange interaction in ferromagnets.

The temperature dependence of the magnetization can also be 
evaluated by the simultaneous solution of the Brillouin function, from 
which we can derive the M(T) curves, as shown in Figure 10.10. By 
applying a magnetic field to the system, the simultaneous solution 
of Equations (10.53) and (10.54) will be modified; the straight lines  
of Equation (10.54) will be shifted along the x–axis, as shown in  
Figure 10.11. The effect of a magnetic field is to prolong the magne-
tized state even when the temperature is above the Curie temperature.

For the case where T  Tc the value of y  1 and the approxi-
mation to the Brillouin function allows us to write:

	 M
Ms

!
gµB( J+1)

3kB

qB+λm f M
T

r = Tc

T
qB+λm f M
λm f Ms

r � (10.58)
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FIGURE 10.10:  Temperature dependence of the magnetization in the mean-field  
model. The different curves correspond to different values of J in the Brillouin  

function of Equation (10.53).

FIGURE 10.11:  Simultaneous solution of Equations (10.53) and (10.54) allows  
us to assess the magnetization in the presence of a magnetic field, B.

Re-arranging we find that the magnetic susceptibility for low 
fields can be expressed as:

	
C

T Tc

χ=
−

� (10.59)
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This result is known as the Curie - Weiss law. We note that in the 
case where Tc vanishes, i.e., in a paramagnetic state, we recover the 
Curie law; χ ∝ C/T. Assuming that the exchange interaction only 
extends as far as nearest neighbor spins, it is possible show that the 
Curie temperature is related to the exchange integral via:

	 T
zJ

k
J

2
3

( 1)c
i j

B

= + � (10.60)

Here z refers to the atomic coordination number. This means that 
a measurement of the Curie temperature allows us to assess the 
strength of the exchange interaction. This is analogous to the rela-
tionship between the melting temperature of a solid and the bond 
strength between atoms. In Table 10.3, we show some typical values 
of the principal magnetic constants for some ferromagnets.

TABLE 10.3:  Magnetic properties of some common ferromagnets.

Material Tc (K) M(×106Am–1) µ (µB/atom)

Fe 1043 1.71 2.22

Co 1394 1.42 1.715

Ni 631 0.48 0.605

Gd 289 7.5

10.6.2  Itinerant Ferromagnetism
It seems clear from the previous table (Table 10.3), where the 

3D ferromagnets have non-integer moments per atom, that there 
is a problem with the theory of localized moments. This points to 
deficiencies in the model and is used as evidence for the theory of 
band ferromagnetism or itinerant ferromagnetism. In this model, 
the magnetization is considered as arising from a disequilibrium in 
the spin-split bands. So what do we mean by this? In Section 6.9, we 
introduced the idea of spin-split bands, where the electron densities 
of the spin-up and spin-down electrons separately. The magnetiza-
tion of the solid is then taken as being proportional to the difference 
in the electron spin densities times the Bohr magneton, see Equation 
(6.55). As we have seen in the chapter on band structures, Chapter 7,  
the specific form depends strongly on the crystalline structure, 
but also on the type of atoms present. In the case of ferromagnetic 
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metals, the existence of localized atomic moments causes a polariza-
tion in the free electron gas, and thus there will be a contribution 
to the magnetization from the free electrons in the solid due to the 
Weiss molecular field. The internal effective magnetic field will then 
naturally cause a spin density imbalance between spin-up and spin-
down electrons, as envisaged in Figure 6.4.

Let us consider the spin-splitting in terms of the densities of states 
and the energies involved. In terms of the imbalance in the total num-
ber of electrons in the spin-up and spin-down bands, we need to con-
sider the density of states, and given that, the number in each spin 
sub-band. As for the case where we considered the Pauli paramagnet-
ism, we can write the magnetization in terms of this imbalance:

	 M=µB[n↑(E)−n↓(E)] � (10.61)

The difference here is clearly that we are now dealing with elec-
trons that are subject to an effective exchange energy, J ,i j

e f f  or an 
internal effective (Weiss) field, λmfM. Whichever way we choose 
to look at this, the result is that there will be an energy difference 
involved for the ferromagnetic and a non-ferromagnetic states. A 
consideration of this energy involves the evaluation of the difference 
in electron populations in the spin sub-bands, n E n E( ) ( ),−↑ ↓  where

	 n↑(↓)(E)=
1
2

fFD(E)g↑(↓)(E±µBB±δE)dE
0

∞

∫ � (10.62)

The total energy change between the two states, in the absence 
of an applied magnetic field, can be expressed as:

	 ∆E g E E Ug E
1
2

( )( ) [1 ( )]F F
2δ= − � (10.63)

the energy U is given by: U=µ0µB
2λm f .  The above equation is inter-

preted by stating that the existence of ferromagnetism will occur 
when ∆E 0,<  which implies that we have:

	 Ug E( ) 1F ≥ � (10.64)

Equation (10.64) is known as the Stoner criterion for ferromag-
netism. The existence of ferromagnetism requires a large density 
of states at the Fermi energy, without this g(EF) will tend to zero. 
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We also require that λmf  be appreciable. To evaluate the magnetic 
susceptibility we add the magnetic energy to the energy difference 
equation, since this will also alter the spin populations, and we obtain:

ΔE=
1
2

g(EF)(δE)2[1−Ug(EF)]−µ0MH=
M2

2µB
2 g(EF)

[1−Ug(EF)]−µ0MH

� (10.65)

Minimizing this energy, we can obtain the magnetic susceptibil-
ity as:

	 χ=
M
H
=
µ0µB

2 g(EF)
[1−Ug(EF)]

� (10.66)

Comparing this result with the Pauli paramagnetic susceptibility 
we find:

	
Ug E[1 ( )]

p

F

χ
χ

=
−

� (10.67)

Therefore, in the case where the Stoner criterion is satisfied, 
and we have ferromagnetism, the susceptibility will be larger than χp 
by the factor [1 − Ug(EF)]−1. This is referred to as Stoner enhance-
ment. While the ferromagnetic transition metals meet the criterion 
for ferromagnetism, other metals come close, but do not reach the 
threshold. One such example is the case of Pd, which has a Stoner 
parameter of Ug(EF)  0.84. Pd is considered to be on the verge of 
ferromagnetism, but with insufficient energy to create spontaneous 
ordering of its moments. In Table 10.4, below we give some calcu-
lated values for the Stoner parameter for selected metals.

TABLE 10.4:  Stoner parameters for some common metals.  
[Data adapted from M. M. Sigalas and D. A. Papaconstantopoulos,  

Phys. Rev. B. 50, 7255, (1994).]

Material Ug(EF) 
bcc

Ug(EF)  
fcc

Fe 1.302 0.541

Co 1.353 0.913

Ni 0.875 2.145

Pd 0.40 0.849
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10.7  ANTIFERROMAGNETIC ORDER

In the case of a negative exchange integral, the lowest energy 
between neighboring spins will occur when they are aligned in an 
anti-parallel order. This is called antiferromagnetism. Since the 
alternating spins have opposite sign, in zero field the magnetization 
will be zero. Antiferromagnetic order requires that the magnetic 
moments have the same magnitude. The ordering temperature in 
the case of antiferromagnetism is called the Néel temperature, TN. 
Above this, the system becomes disordered, or paramagnetic. It is 
common to consider the antiferromagnetic state as two sublattices 
(we will call the A and B) with opposite magnetizations, such that: 
MA = −MB, |MA| = |MB| = M and M = MA+ MB = 0. Building on 
the Weiss theory, Néel considered the molecular fields of one sub-
lattice to be proportional to the magnetization of the other sublat-
tice, such that:

	

λ

λ

= −

= −

B M

B M

| |

| |
A m f B

B m f A � (10.68)

Each sublattice follows the Brillouin form of the variation of 
magnetization:

	 MA(B) =MsBJ q− gµB J|λm f | MB(A)

kBT
r � (10.69)

Following the same arguments used in the case of ferromagne-
tism we can evaluate the Néel temperature as:

	 TN =
gµB|λm f | Ms

3kB

( J+1) � (10.70)

The above analysis is based on considering only nearest neigh-
bor interactions. Considering next nearest neighbor interactions 
leads to:

	
B

B

M M

M M

| | | |

| | | |

A AB B AA A

B AB A BB B

= − +
= − +

λ λ

λ λ � (10.71)
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This can also be expressed in abbreviated form as: BA(B) = 
(|λAA(BB)| − |λAB|)M. The Néel temperature is thus given by 

	 TN =
gµB|(λAA−λAB)| Ms

3kB

( J+1) � (10.72)

where we have assumed | | | | .AA BBλ λ=

When a field is applied to the antiferromagnet, usually the 
strong exchange interactions only produce small changes in the 
magnetization: M = |MA − MB|. The direction of the field also has 
an important effect on how the magnetization of the sample varies, 
see Figure 10.12. For the perpendicular configuration, the magnetic 
field is taken along the direction that is orthogonal to both magnetic 
sublattices. The resultant magnetization under the magnetic field 
causes a gradual rotation of the two magnetic sublattices, giving rise 
to an increase in M. When the field is applied along the direction of 
one of the sublattices, then only very small changes in magnetization 
are observed for low fields. However, once a critical field is reached,  
B ≥ Bcr, the spin system will relax to a new state, called a spin-
flop state, as illustrated in Figure 10.12 (b). This is usually favored 
because the magnetic sublattices have a negative exchange integral 

FIGURE 10.12:  Schematic representation of the magnetization in an antiferromagnet 
when a magnetic field is applied in (a) a direction perpendicular to the magnetic sublattice 

orientations and (b) when the field is applied parallel to one of the magnetic sublattices. For 
low fields, the magnetization gradually grows along the direction of the field, however, at a 

critical field, Bcr, the spin system undergoes a spin-flop transition.
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and do not want to align. Further increase of the field brings about 
a gradual alignment of the sublattice magnetic moments. In rare 
cases, a single transition can occur from the antiparallel to the par-
allel alignment. This is distinguished from the previous case and is 
termed a spin-flip transition. This will occur when the antiferromag-
netic exchange strength is very strong.

For zero temperature, we have MA(0) = −MB(0) and for a field 
applied in the parallel configuration, there will be no change in 
magnetization, and hence we expect χ



 = 0 at T = 0 K. For the 
perpendicular case, the magnetic sublattices can be expected to 
suffer some rotation and therefore χ⊥ ≠ 0 at T = 0 K. The basic 
form of the variation of the magnetic susceptibility for the two con-
figurations as a function of sample temperature are illustrated in 
Figure 10.13.

Above the Néel temperature, the material becomes paramag-
netic. For a magnetic field applied at some intermediate orientation, 
φ, we can write:

	 cos sin||
2 2χ χ φ χ φ= +φ ⊥ � (10.73)

FIGURE 10.13:  Temperature dependence of the different magnetic susceptibility  
contributions, χ

 

 - parallel and χ⊥ - perpendicular. In the case of a polycrystalline  
materials with a random orientation of grains, the antiferromagnetic susceptibility will  

have a temperature dependence that is a mixture of both χ


 and χ⊥, and expressed  
as χ, the average susceptibility, see text.
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For a polycrystalline sample, there will be grains of random ori-
entation and the average susceptibility takes the form:

	
sin d cos sin d sin d

1
3

2
3

0

2 2

0

2 3

0

2




∫ ∫ ∫χ χ φ φ χ φ φ φ χ φ φ

χ χ

= = +

= +

φ

π π π

⊥

⊥� (10.74)

The parallel susceptibility can be evaluated at low fields from

	
M
H

M
H

A B


χ =
∂
∂

+
∂
∂

� (10.75)

Using MA(B) = MsBJ(yA(B)) it is possible to show:

	 χ!=
2µ0Ms ′BJ(y)(gµB J / kBT)

{1+Ms ′BJ(y)(gµB J / kBT)[λAB−λAA]}
∝

1
T+TN

� (10.76)

This takes the form of the Curie - Weiss law:

	
T

1
χ∝

+Θ
� (10.77)

Here Θ is called the Weiss temperature. We can now distinguish 
experimentally between the principle types of magnetic response, 
where Θ > 0 for ferromagnetism (Θ = Tc); Θ < 0 for antiferromag-
netism (Θ = −TN) and Θ = 0 for paramagnetism, see Figure 10.14.

TABLE 10.5:  Properties of some common antiferromagnetic materials.

Material TN (K) Θ (K) J

FeO 198 −570 2

CoO 292 −330 3
2

NiO 524 −1310 1

MnO 116 −610 5
2

α − Fe2O3 950 −2000 5
2
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10.8  FERRIMAGNETIC ORDER

Ferrimagnetism is a special case of antiferromagnetism and 
can be thought of in a very similar way, with the principal differ-
ence being that the magnitude of the sublattice magnetizations 
being different. The main consequence here is that the magne-
tizations will not cancel and we are left with a global or net mag-
netization. Experimentally, ferrimagnetism looks very much like 
ferromagnetism, though with some important differences. One 
major difference arises because the molecular fields of the sublat-
tices are different and have different temperature dependences. 
This can lead to some unexpected variations of the magnetization 
with temperature.

We can treat the ferrimagnet as an inequivalent two sublattice 
system, much in the same way as we did for the case of antifer-
romagnentism. The magnetizations of the sublattices can thus be 
expressed in the same form using the Brillouin function:

	 MA(B) =Ms
A(B)BJ qgµB J

kBT
[λ2(3)MB(A)−λ1MA(B)+B]r � (10.78)

This can be approximated as:

FIGURE 10.14:  Generalized Curie - Weiss laws for antiferromagnetism (Θ = −TN),  
paramagnetism (Θ = 0) and ferromagnetism (Θ = Tc).
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MA(B) !Ms
A(B) J+1

3 J
qgµB J

kBT
r [λ2(3)MB(A)−λ1MA(B)+B]

=
CA(B)

T
[λ2(3)MB(A)−λ1MA(B)+B] � (10.79)

We note that the full sublattice system has more constants than 
in the case for antiferromagnetism. Since M MA B≠  there will always 
be a residual net magnetization, which vanishes at the order temper-
ature, Tc. The overall magnetization dependence will take the form:

	 T T TM M M( ) ( ) ( )A B= − � (10.80)

The expressions for MA and MB can be re-written in the form:

	 M
B C T C C C

T C T C C C

[ ( ) ]
( )( )

A B
A B B A A B

A B A B
( )

( ) ( ) 3(2) 1

2 3 1
2

λ λ
λ λ λ

=
− −

− − −
� (10.81)

We can now express the inverse susceptibility as:

1
χ
=

B
µ0(MA+MB)

=
[T 2−T(CAλ2+CBλ3)+CACB(λ2λ3−λ1

2)]
T(CA+CB)−CACB(2λ1+λ2+λ3)

� (10.82)

The basic form of this equation can be written:

	
T
C T

1 1

0χ
σ

χ
= −

−Θ
+ � (10.83)

where the following substitutions have been used:

C=
CA+CB

T

Θ=
CACB

Cµ0

(2λ1+λ2+λ3)

σ=
CACB

Cµ0

(λ1
2−λ2λ3)−

Θ
µ0χ0

1
χ0

=
Θ
µ0C
−

1
µ0C

(CAλ2+CBλ3)
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For high temperatures Equation (10.83) takes the form:

	 T
C

1 1

0



χ χ
+ � (10.84)

These relations for the inverse magnetic susceptibility are illus-
trated in Figure 10.15. We can see how the curves for the inverse 
magnetic susceptibility differ for ferrimagnetic and ferromagnetic 
materials (compare Figure 10.14). We note that the curves for Equa-
tions (10.83) and (10.84) diverge from T ∼ Θ .

From the fact that at T = Tc, 1/χ = 0, we can evaluate the Curie 
temperature as:

	 T
C C

C C C C
( )

2
1
2

[( ) 4 ]c
A B

A B A B
2 3

2 3
2

1
2 1/2λ λ

λ λ λ=
+

+ − + � (10.85)

We recover the antiferromagnetic order temperature for |MA| = 
|MB| = M, CA = CB = C and λ2 = λ3:

	 Tc =
gµB( J+1)M

3kB

(λ2±λ1) � (10.86) 

compare with Equation (10.72), where (λ2 ± λ1) = (λAA − λAB). 
The temperature dependence of the net magnetization, |MA(T) + 
MB(T)|, is illustrated in Figure 10.16 for the general cases typically 

FIGURE 10.15:  Inverse magnetic susceptibility for a generalized ferrimagnet.  
We note that χΘ = −α C / .0
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found in many ferrites. In the case of Figure 10.16(a), the tempera-
ture dependent net moment always points in the same direction, 
where |MA| > |MA|. When there is a larger variation in the relative 
magnitudes of the sublattice magnetizations, the net magnetization 
can flip orientation from say the A - sublattice to the direction of the 
B - sublattice. Therefore, at a temperature designated as the com-
pensation temperature, Tcomp, there will be a net magnetization of 
zero, as illustrated in Figure 10.16(b).

There are many classes of ferrimagnet, the most important of 
which are: spinel ferrites, inverse spinels, hexaferrites, rare earth 
iron garnets, and in particular yttrium iron garnet (or YIG). The spi-
nels have a general molecular formula: Fe2MO4, where M is a transi-
tion metal, such as Cu, Pb, Co, or Ni. For the case where M is Fe we 
have the compound magnetite; Fe3O4. In this type of compound, the 
oxygen atoms are doubly ionized as O2−, by removing electrons from 
the metals. As such the metal ions have a positive ionized state; in 
general: Fe3+ and M2+. For the normal spinel structure, the M2+ ions 
are located in tetrahedral (A) sites (with four O neighbors), while 
the Fe3+ ions are positioned at octahedral (B) sites (with six oxygen 
neighbors). There are twice as many B sites as A sites in the spinel 
structure. These sites are crystallographically different, and contain 
ions with different magnetic moments. In the case of the inverse 
spinel structure the M2+ ions are located on half of the B sites, while 
rest and the A sites are occupied by occupied by the Fe3+ ions. This 
case is particularly important, since given the two sites form the 

FIGURE 10.16:  Schematic representation of the temperature dependence of the magnetic 
sublattices, MA(T) and MB(T) as well as the overall net magnetization, |MA(T) + MB(T)| for 

(a) λMA < λMB and (b) λMA > λMB.
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magnetic sublattices of the ferrimagnet, the resultant magnetization 
is given only by the M2+ ions, since the Fe3+ ions are located in equal 
numbers on the A and B sites.

The iron garnets have the molecular formula: R3Fe5O12, where 
R is a rare earth or yttrium. The crystal structure is rather complex, 
with 8 chemical formula units per unit cell, which thus has a total of 
160 atoms. There are again octahedral and tetrahedral sites within 
the unit cell, both being occupied by Fe3+ ions, with the ratio 3:2. 
The R3+ ions are located on dodecahedral sites. In the case of YIG, 
the Y3+ ions have no magnetic moment (being 4d0), so the ferrimag-
netic state is derived from the number imbalance of the Fe3+ ions on 
octahedral and tetrahedral sites. Since Fe3+ has a magnetic moment 
of 5µB, this will be the net moment per formula unit.

The hexaferrites, with chemical formula MFe12O19, have a hex-
agonal crystalline structure, with M typically being occupied by one 
of the following ions: Ba2+, Pb2+ or Sr2+. The ferrimagnetic struc-
ture has eight Fe3+ ions with moments opposed to the other four, as 
the net moment per formula unit will be 20µB. The hexagonal crys-
tall typically exhibits a rather strong uniaxial magnetic anisotropy. 
In Table 10.6, we give some of the properties of some of the more 
important ferrites.

TABLE 10.6:  Properties of some common ferrimagnetic materials.

Material Type Tc 
(K)

Tcomp 
(K)

Magnetic moment 
(µB/formula unit)

Fe3O4 inverse spinel 860 - 4.1

CoFe2O4 inverse spinel 790 - 3.7

NiFe2O4 inverse spinel 865 - 2.3

CuFe2O4 inverse spinel 728 - 1.3

Y3Fe5O12 garnet 560 - 5.0

Gd3Fe5O12 garnet 564 290 16.0

Dy3Fe5O12 garnet 563 220 18.2

Ho3Fe5O12 garnet 567 137 15.2

BaFe12O19 hexaferrite 740 - 19.9

SrFe12O19 hexaferrite 746 - 20.2

PbFe12O19 hexaferrite 725 - 19.6
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10.9  MAGNETIC ANISOTROPIES

From the consideration of ordered magnetic structures, it should 
be fairly clear that if we have an ordering of the magnetic moments 
in a solid, this implies a certain directionality of the moments and 
thus magnetization, with respect to the principal axes of the crys-
talline structure. Such directionality is referred to in magnetism as 
anisotropy. The principal origins of magnetic anisotropy are in the 
spin - orbit coupling and crystal field interaction, which gives rise to 
the so-called magnetocrystalline anisotropy. Magnetostatic effects 
due to the dipolar interaction gives rise to the shape anisotropy in 
non-spherical magnetic samples, as outlined in Section 10.5.1. While 
there can be other forms of magnetic anisotropy, such as surface and 
field induced anisotropies, we will limit our discussion to the two 
principal sources of magnetic anisotropy.

10.9.1  Shape Anisotropy
Let us consider a magnetic body, with a saturation magnetiza-

tion of Ms. In the presence of a magnetic field, the magnetostatic 
energy is described by:

	 E=−µ0 M ⋅H dV∫ � (10.87)

where the integral is over the volume of the magnetic body. Since 
a uniformly magnetized body4 produces a magnetostatic or demag-
netizing field; H M,D = −  which depends of the specific shape of 
the body, we can express this as a demagnetizing energy of the form:

	 Ems =−µ0 M∫ ⋅HD dV =µ0N M2 dV∫ =
µ0

2
NM2 � (10.88)

In the presence of an applied magnetic field, H, the effective 
magnetic field can be expressed as:

	 H H H H Me f f D = − = − � (10.89)

see Figure 10.17. The factor N is called the demagnetization ten-
sor, which for ellipsoids of rotations requires just the three leading 
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terms. In such cases we can express the magnetostatic energy in 
component form as:

	 Ems =
µ0

2
(Nx Mx

2+Ny My
2+Nz Mz

2) � (10.90)

We can express this using a spherical coordinate system as:

	 Ems =
µ0

2
M2[(Nx cos2φ+Ny sin2φ)sin2 θ+Nz cos2 θ] � (10.91)

where we have used: φ θ φ θ= = =M M M M Mcos sin ; sin sin ;x y z   
θM cos .  We note that the demagnetization factors are restricted by the 

relation: + + =   1.x y z  The form of Equation (10.91) provides a 
more useful expression for specific calculations. The principal demag-
netizing factors can be evaluated analytically in terms of the dimen-
sions of the axes for ellipsoids of rotation5. It is thus possible to obtain 
the specific form of the magnetostatic energy: For a sphere we have 
N x =N y =N z =1/3;⇒ Ems =µ0M

2/6.  For a long cylindrical ferro-
magnet we obtain: N x =N y =1/2;N z = 0;⇒ Ems =µ0M

2 sin2 θ/4. 
In the case of a film or disc shaped sample we can write: 
N x =N y = 0;N z =1;⇒ Ems =µ0M

2 cos2 θ/2. The spherical sample 
clearly has no anisotropy, while the disc and cylinder are character-
ized by a uniaxial type anisotropy.

FIGURE 10.17:  A spontaneously magnetized single domain ferromagnetic body  
produces a demagnetizing field, HD, which is dependent on the shape of the body.
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10.9.2  Magnetocrystalline Anisotropy
As the name suggests, magnetocrystalline anisotropy is strongly 

related to the type of crystalline structure of the material in question. 
As an example, we can show the variation of the sample magnetiza-
tion with the application of a magnetic field in different directions 
with respect to the crystalline structure. In Figure 10.18, we show 
the initial magnetization curves for Fe and Ni, where we note that 
in the case of Fe the sample magnetizes more readily in the [100], 
being the so-called easy-axis, while in the [110] orientation the satu-
rated state requires much higher magnetic fields to reach saturation. 
This is called the hard-axis of magnetization. In Ni the easy-axis cor-
responds to the [111] direction, while the hard-axis is along the [100] 
orientation. The other transition metal ferromagnet, Co, has an easy 
axis aligned along the [0001] axis of the hcp structure, where the 
basal plane is a hard direction for magnetization.

Despite the origins of magnetocrystalline anisotropy being 
related to the crystal field and spin - orbit interactions at the atomic 
level, the description is generally based on a phenomenological anal-
ysis of these symmetry effects. The simplest form we can give to the 
magnetocrystalline anisotropy is that for a uniaxial anisotropy, which 
means that the equivalent easy axes of magnetization are aligned 
at 180 from each other, i.e., in opposite directions along a single 

FIGURE 10.18:  Magnetization curves for single crystals of Fe and Ni. Magnetic fields  
were applied along the principal crystalline axes; [100], [110] and [111].
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axis, e.g. as in the case for Co. There are several ways to express 
this mathematically, one of the most general ways of doing this is to 
include several orders of a series, such as:

E K K K K Ksin sin sin sinKu un
n

u u
n

u u
2

0 1
2

2
4

3
6

∑ θ θ θ θ= = + + + +

� (10.92)

where the constants, Kun, characterize the form of the energy land-
scape. For example, if Ku1 > 0, and dominates the other constants, 
the the energy surface will be an oblate spheroid, with easy direc-
tions along the ± z directions. However, when Ku1 < 0, the energy 
surface is a prolate spheroid and the easy axes are anywhere in the 
xy-plane. Cobalt has room temperature anisotropy constants of  
Ku1 = 4.1 × 105 Jm−1 and Ku2 = 1.5 × 105 Jm−1.

For cubic structures, such as Fe and Ni, the situation is more 
complex from a mathematical descriptive point of view. As a first 
step, we can express a cubic form of anisotropy energy with the use 
of the directional cosines in the form:

	 α α α α α α α α α= + + + +E K K K( 2 ) ( )K u 0 1 1
2

2
2

1
2

3
2

1
2

3
2

2 1
2

2
2

3
2 � (10.93)

where we have:

α θ φ θ
α θ φ θ
α θ θ

= =
= =
= =

cos cos sin
cos sin sin
cos cos

1 1

2 2

3 3

here θn is the angle between the principal axes (x = 1, y = 2 and z = 3),  
with the magnetization vector in some arbitrary orientation. Sub-
stituting in for the directional cosines, Equation (10.93) can be 
expressed as:

θ φ φ θ θ θ

φ θ θ θ θ

= + − − + + −

+ − − − +

E K
K

K

( , )
64

[(1 cos 4 )(3 4 cos 2 cos 4 ) 8(1 cos 4 )]

128
(1 cos 4 )(1 cos 2 cos 4 cos 4 cos 2 )

K 0
1

2

� (10.94)
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Based on room temperature experimental measurements, the 
principal anisotropy constants for Fe and Ni are given by: K1 =  
4.8 × 104 Jm−1 and K2 = 0.5 × 104 Jm−1 for Fe and K1 = –4.5 ×  
103 Jm−1 and K2 = 2.3 × 103 Jm−1 for Ni.

Due to the nature of the physical origin of magnetocrystalline 
anisotropy, the anisotropy constants are very sensitive functions of 
temperature. For example, in transition metals, the principal anisot-
ropy constant follows the relation:

	 = −K T K
T
T

( ) (0) 1
c

1 1 c d � (10.95)

See for example O’Handley (2000), Herpin (1968) for more details.

10.10 � MAGNETIC DOMAINS, DOMAIN  
WALLS, AND HYSTERESIS

The magnetostatic energy of a spontaneously magnetized sam-
ple can be significantly reduced or eliminated by the division of the 
magnetized state between various domains, in which the direction 
of the spontaneous magnetization aligns along equivalent crystallo-
graphic orientations for the easy direction of magnetization. In such 
a situation, the sample can reach a state with a net zero magnetiza-
tion and thus removes the magnetostatic energy. This does, how-
ever, come at a cost. In the formation of these domains, there must 
be regions of transition of the magnetization direction from one 
magnetic domain to the next. These regions of transition are called 
domain walls. In considering the existence of magnetic domains, we 
must take into account the equivalent directions of the magnetiza-
tion, as defined by the type of magnetocrystalline anisotropy. For 
example in the case of single crystal cobalt, we can only expect to 
find two types of magnetic domain, with orientations [0001] and 
[0001]. For Fe the situation is more complex since there are six 
equivalent easy axes in its (bcc) cubic structure: [100], [010], [001], 
[100], [010], and [001]. There are two types of domain wall, which 
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are referred to as Néel walls and Bloch walls. In the former, the rota-
tion of the magnetic moment occurs in the plane of the direction of 
the magnetic domains, while in the latter the rotation is out of the 
plane. The type of domain wall will depend on the specific energy 
configuration, being influenced by such factors as the relative mag-
netic anisotropies and the exchange energy, etc.

Since the transition regions require that the direction of the 
moment is shifted from the easy direction as well as the fact that the 
exchange energy is minimized when the spins are maintained paral-
lel means that the existence of domain walls comes at an energy cost. 
The fine balance of how domains are formed is then dependent on 
how much magnetostatic energy is saved at the cost of domain wall 
energy. In the evaluation of the domain wall energy, the principal 
considerations, as we stated above, will come from the mangeto-
crystalline anisotropy and exchange. We can demonstrate the way to 
calculate this if we consider the transition of the magnetic moments 
for a chain of spins, which cut across from one domain to the next 
through the domain wall. The exchange contribution takes the form:

	 Eexch =−µ0zJi jµi ⋅µ j =−µ0zJi jµ
2 cosη � (10.96)

where z refers to the coordination number, |µi| = |µj| = µ and η is 
the angle between adjacent spin orientations. Since we can expect 
this angle to be small, we can make the following approximation: 
cos 1 2.2

η η− /  Thus we obtain:

	 Eexch =−µ0zJi jµ
2(1−η2/2)=µ0 Ji jµ

2(η2−2) � (10.97)

We can now expect that the additional energy due to a domain 
wall is the sum of the individual interactions in the wall, such that:

	 Eexch =µ0 Ji jµ
2η2n � (10.98)

where n is the number of spins in the domain wall. In the case of a 
180° wall, we can divide the spin angles such that we have: η = π/n. 
If the separation between spins is equal to the lattice constant a, we 
can write the exchange energy per unit area of the wall as:
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	 εexch =
µ0 Ji jµ

2π2

na2
� (10.99)

From this expression we can see that the interaction energy will 
be minimized when the angle between spins is very small, which 
would be satisfied for very broad domain walls. We now consider 
the anisotropy contribution, which we will consider as a first order 
anisotropy energy of the form: EK(θ) = K1 sin2 θ. Since there are n 
spins in the direction perpendicular to the domain wall, the energy 
will be a sum of all the moments in the wall, such that the anisotropy 
energy per unit area of the wall is:

	 ε nK a
2K

1= � (10.100)

From this form of the energy, we would expect that domain walls 
should be as narrow as possible to reduce this energy contribution. 
We now have a total energy of the form:

	

εBW = εexch+εK =
µ0 Ji jµ

2π2

na2
+

nK1a
2

=
µ0 Ji jµ

2π2

δBW a
+
δBWK1

2
� (10.101)

where we have written the domain wall thickness, for the Bloch type 
wall as: δBW = na. We now minimize the wall energy with respect to 
the thickness: ε 0,BW BWδ∂ /∂ =  from which we obtain the 180° Bloch 
domain wall thickness as:

	 δBW = πµ
2µ0 Ji j

aK1

= π
A
K1

� (10.102)

where we have introduced the exchange stiffness constant, A. Subsi-
tuting back into the wall energy we now obtain:

	 ε AKBW 1π= � (10.103)

From Equation (10.102), we note that the competition between the 
exchange and anisotropy contributions becomes clear: Large exchange 
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will produce broad domain walls, while large anisotropies will act to 
diminish the wall thickness. From the magnetic properties for Fe, Co, 
and Ni, we obtain the domain wall parameters given in Table 10.7.

In the absence of a magnetic field a magnetic sample will persist 
in a state defined by the minimization of the various energy contri-
butions, exchange, magnetostatic, and magnetocrystalline energies. 
As noted above, the magnetic domains will form to reduce the over-
all energy of the magnetic system. When the domain pattern has no 
free poles at the surface, it is said to have closure domains, as illus-
trated in Figure 10.19.

TABLE 10.7:  Magnetic domain wall parameters for selected ferromagnets.

Material Domain Wall 
Thickness (nm)

Domain Wall  
Thickness (number of  

lattice parameters)

Domain Wall 
Energy (Jm−2)

Fe 40 138 3.0 × 10−3

Co 15 36 8.0 × 10−3

Ni 100 285 1.0 × 10−3

Let us now consider what happens when a magnetic field is 
applied. As always we can calculate the energy of the system by 
adding the Zeeman energy term to the total energy and minimize 

FIGURE 10.19:  Schematic illustration of magnetic domain closure.
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in the usual way. Of course the specific domain structure is more 
difficult to assess from a simple calculation of the type and we 
would have to define the size and shape of the sample. In recent 
years, such calculations have been performed using micromagnetic 
simulations, in which the system is divided up into cells of a certain 
size and energy minimization can be performed for specific cases. 
One such package is called the Object Oriented MicroMagnetic 
Framework (OOMMF)6 and many examples can be found in the 
research literature. Of particular importance in the consideration 
of the changes incurred upon application of a magnetic field is 
the direction in which it is applied. The initial state of the sample, 
when the global magnetization is zero due to closure domains or 
an averaging to zero of the magnetic domains, is called the virgin 
state. If we imagine that the direction of an applied field is arbi-
trary with respect to the easy axes of the system, then typically 
what will happen is that magnetic domains which have an orien-
tation close to the direction of the applied field will grow at the 
expense of those more opposed to the direction of the field. This 
process of domain growth will continue until the sample reaches a 
state of being a single domain. Once this occurs, further increase 
of the external magnetic field will now bring about a rotation of the 
magnetization until it is aligned with the direction of the applied 
field. Once this state is reached the magnetization in the direc-
tion of the applied field cannot grow any further and the sample is 
said to be at magnetic saturation, designated as Ms. The removal 
of the magnetic field to zero will allow the magnetization to relax 
back to a direction of local energy minimum, i.e., along the direc-
tion of an easy axis. This state will have a remanent magnetization, 
Mr. Reversing the direction of the magnetic field will allow the 
sample to over come the energy minimum of the local anisotropy 
and some domain walls can begin to form. This will reduce the 
magnetization. The point at which the magnetization crosses the  
field axis is called the coercive field, Hc. Further increase of  
the magnetization in the reverse direction will eventually lead  
to the sample saturation. This process can be completed by reduc-
ing the field to zero and then increasing it in the original direction. 
Usually the resulting magnetization - field curve is different for 
the ascending and descending portions, and the loop illustrates the 
hysteresis inherent in the magnetic system. The hysteresis loop is 
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illustrated in Figure 10.20. The area of a hysteresis loop is a mea-
sure the magnetic energy dissipated in the system and can vary quite 
strongly, especially in magnetic materials with large anisotropies. 
The size of the coercive field distinguished hard magnetic mate-
rials from soft ones. In the former, the large coercive field means 
that they are difficult to reverse magnetically. These materials have 
very different and specific applications, such as magnetic recording 
media and motors. The use of soft magnetic materials is favorable 
for transformers since they will produce smaller loops and dissipate 
less energy. The heating that we note in transformers is directly 
related to the energy dissipated in going around the hysteresis loop. 
The origin of this dissipation in energy is related to the domain wall 
movements in the sample and produces the irreversibility due to the 
pinning of the domain wall at defects in the sample. This process is 
also related to the discontinuous motion of the domain walls as the 
applied field forces the domain wall to progress, causing jumps in 
the magnetization. This process is known as the Barkhausen effect.

There are a number of experimental methods that can be 
used to observe and measure magnetic domains. The magneto-
optic Kerr effect (MOKE) is based on the rotation of the axis of 
polarization of incident light upon reflection at a magnetic surface. 
This provides a simple techniques for the observation of the mag-
netic state of a sample and allows domains to be visualized, using 

FIGURE 10.20:  Schematic illustration of a magnetic hysteresis loop, showing the saturation 
magnetization, Ms, the remanent magnetization, Mr and the coercive field, Hc.
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incident polarized light. For smaller magnetic structures, the use 
of electron beams in a transmission electron microscope (TEM), 
also permits the observation of magnetic domains. This relies on 
the Lorentz force which acts on the electrons as they pass through 
the magnetic material, thus deflecting them from their normal 
path. Since different domains will deflect the electrons in different 
directions, this provides a good method of the visualization of mag-
netic domains in small structures. This techniques is called Lorentz 
microscopy. Another technique frequently used in the observation 
of magnetic domains is magnetic force microscopy (MFM), and is 
an adaptation of the atomic force microscopy (AFM) technique, 
where a magnetic coating is applied to a normal AFM tip. Here 
the very fine tip is brought into close proximity with the surface of 
a sample, and deflections of the tip are produced by its interaction 
with the sample, which in the case of MFM is due to attractive and 
repulsive forces between the sample and tip magnetization. The 
domain images are produced by mapping the tip deflection as it is 
scanned over the surface of the sample.

10.11  SPIN WAVES

A ferromagnetic material is only in its ground state, i.e., with all 
magnetic spin pointing rigidly in the same direction, at zero temper-
ature, (obviously ignoring and zero-point fluctuations). At non-zero 
temperatures thermal excitations will interrupt this perfect align-
ment. The process is not dissimilar to the excitation of the crystal 
lattice in the production of phonons. In the case of magnetic struc-
tures, these excitations are called spin waves or for the quantum 
description magnons.

The excitations of a magnetic spin system can be described by 
the consideration of the Heisenberg Hamiltonian, Equation (10.45). 
For a simple chain of spins, we can express the Hamiltonian as:

	 H J J∑ ∑= − ⋅ =− + ++ +
+

+
− −

+
+S S S S S SS Sˆ 2 ˆ ˆ 2 ˆ ˆ 1
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1 1 1 1c d

� (10.104)
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where = ±±S S Sˆ ˆ ˆ
x y  are called the raising and lowering operators. As 

we stated above, the absolute ground state can be considered as the 
set of all parallel spins, along the z-direction, which we can express 
as: Φ = ↑↑↑ ↑| | .0 9 9  The eigenvalue of this state can be obtained from:

	 H JΦ = − ΦNSˆ | |0
2

09 9 � (10.105)

where N is the number of spins in the chain. The first excited state 
can be expressed by the flipping of a single spin, say at position k in 

the chain. We can write this as: Φ = Φ−S| ˆ | .k k 09 9  Here the operator: 
−Ŝk  acts only on the spin at site k in the chain and flips it from, say, 

the up to the down state. This will produce and energy change of: 
− − =( ) 1.1

2
1
2

 The integer value of the spin change indicates that this 
excitation corresponds to a boson. Applying the Hamiltonian to the 
state yields:

	H J J J JΦ = − + Φ − Φ − Φ+ −NS S S Sˆ | 2 ( 2 )| | |k k k k
2

1 19 C 9 9 9D � (10.106)

This is not an eigenstate of the spin chain since it is not a con-
stant multiplied by Φ| .k 9  Clearly a localized spin flip of this type 
would involve a large exchange energy between spin k with it neigh-
bors, at k + 1 and k −1. However, if we spread out the energy in 
a gradual way by delocalizing the excitation, we can represent the 
state as plane wave of the form:

	 ∑Φ = Φ⋅

N
e|

1
|i

k
n

q
q Rk9 9 � (10.107)

where q is the magnon wave-vector. We can visualize the spin wave 
as shown in Figure 10.21. We can evaluate the eigenvalue of this 
magnonic state from:

FIGURE 10.21:  Illustration of a spin wave as a variation of the spin orientation with position.
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	  Φ = ΦE qˆ | ( ) |q q9 9 � (10.108)

where

	  = − + −E NS S qaq( ) 4 [1 cos( )]2 � (10.109)

The excitation energy takes the form: ω = −S qa4 [1 cos( )].q  
In a 3D solid, this result takes the form:

	  ∑ω = − ⋅S z q acos( )q m
m

s t � (10.110)

the summation is over the nearest neighbor vectors of am and z is the 
coordination number. For the case of small q, we can approximate 
this result as:


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where θm is the angle between q and am. Since this angle is small, we 
again approximate to obtain:

	


� �ω =
Sa

q Dq
2q

2
2 2 � (10.112)

In the presence of a magnetic field this dispersion relation takes 
the form:

	 !ωq = gµBµ0H+Dq2 � (10.113)

These dispersion relations are shown in Figure 10.22.

We can use spin wave theory to predict the variation of the mag-
netization with temperature. In an intuitive way we can see that the 
zero temperature magnetization, Ms(0) will represent a maximum 
value. The effect of temperature in the excitation of the spin sys-
tem will thus be to reduce the magnetization from this maximum 
value. To evaluate the trend we can start by considering the density 
of magnon states. Since magnons are bosons, they follow a similar 
trend to phonons and hence we can write:
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g(q)dq ∝ q2dq

⇒ g(ω)dω ∝ ω1/2dω � (10.114)

Spin waves are quantized in the same way as phonons. The number 
of magnons excited at a specific temperature, T, can be calculated by 
integrating the magnon density of states over all frequencies, which 
we can now express as:

	

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Writing x = hωq/kBT, we obtain:
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where ζ(3/2) is the Reimann zeta function, which being indepen-
dent of temperature can be considered as a constant for our pur-
poses. Since the magnon number is proportional to T3/2, we obtain 
the result that the magnetization reduces from its zero temperature 
value according to:

FIGURE 10.22:  Spin wave dispersion relation for small wave vectors,  
q, with and without a magnetic field.
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3/2 � (10.117)

This variation of the magnetization is referred to as the Bloch 
T3/2 law and shows a good agreement with experiment in the low 
temperature range and up to around T  Tc/2. In the high tempera-
ture regime, the magnetization, M(T) follows a variation of the form 
(Tc − T)β, where β is called the critical exponent, which is usually 
obtained by fitting to experimental data.

In addition to the excitation by spin waves, another form of excita-
tion can also reduce the magnetization of a ferromagnet. This is called 
a Stoner excitation and occurs in metals when electrons flip from one 
spin state to the other. In itinerant ferromagnets, see Section 10.6.2, 
the conduction electrons are split in to spin-up and spin down bands. 
At a certain energy it is possible to flip the electron from a filled state 
k in one spin sub-band to an empty state k − q in the other spin sub-
band. The excitation energy conforms to the relation:

	 ∆ω = − +−E Eq exk k q � (10.118)

where = / ∗E k m2 ,ek
2 2  and Δex is the exchange splitting between the 

spin-up and spin down states, and corresponds to the energy neces-
sary to flip a spin. In Figure 10.23, we show the energy spectrum for 

FIGURE 10.23:  Excitations in the electron gas of metals. The spin wave branch is illustrated 
along with the continuum of Stoner excitations. Inset show the spin split bands separated by 

the exchange splitting energy, Δex.
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Stoner and spin wave excitations. The hatched region is referred to 
as the Stoner continuum, since there is a broad range of excitation 
energies in the spectrum of Stoner excited states.

10.12 � GIANT MAGNETORESISTANCE  
AND SPINTRONICS

We have already seen (see Section 8.8.3) that magnetoresistance is 
a transport phenomenon that is fairly common in metals. In ferromag-
netic transition metals the effects can be enhanced due the narrow d 
bands, which are spin split and provide a large g(EF) and hence satisfy 
the Stoner criterion. The variation of the magnetoresistance is due to 
s - d transitions, which are promoted by the applied magnetic field, and 
since the effective masses of the electrons in the different bands are dif-
ferent, this provides a mechanism for negative magnetoresistive effects, 
as are observed in Ni, for example. A model of magnetoresistance can 
be provided by Mott’s two-current model (1936), in which the scattering 
of spin-up and spin-down electrons are considered as independent, pro-
viding two separate conduction channels. The spin-split bands in a fer-
romagnet means that the electrons undergoing spin-flip scattering will 
do so with different probabilities for the two spin states. The orientation 
of the magnetization with respect to the applied field can be important 
and produces anisotropic magnetoresistance.

By far the largest magnetoresistive effect in metals is that found 
in magnetic multilayers. In particular, due to the coupling between 
adjacent ferromagnetic layers having an oscillatory character as a 
function of a non-magnetic metallic interlayer thickness, it is pos-
sible to fabricate multilayer systems in which the magnetization in 
alternate layers are aligned in anti-parallel, this is called antifer-
romagnetic coupling. The RKKY interaction is one of the credible 
coupling mechanisms, which can bring about this variation. The 
application of a magnetic field can be used to invert one of the mag-
netic layers such that they become parallel. The difference in the 
resistance of the parallel and antiparallel alignments gives rise to the 
large change of electrical resistance, referred to as giant magnetore-
sistance (GMR). This effect was first observed in 1986 and led to the 
2007 Nobel Prize in Physics for Fert and Grünberg. The two current 
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model can then be used to consider the current paths for spin-up and 
spin-down electrons. This simple model can be explained as follows:

Let us consider the parallel and antiparallel states, as illustrated 
in Figure 10.24. In the case where the layers are initially antiparallel, 
the two-current resistance can be expressed as:

	 =
+

R
R r

2AP � (10.119)

where R and r represent the resistance for electrons of a specific 
spin state passing through a magnetic layer whose magnetization 
(majority spin band) is opposed to its spin direction and parallel to it, 
respectively. The high resistance state occurs because the electrons 
can be expected to scatter more in a layer with spin opposing the 
magnetization. In this case the two electrons spin states experience 
a similar resistance, having to pass through layers with parallel and 
antiparallel spin bands. However, when we consider the case where 
the magnetization of the two ferromagnetic layers are parallel, then 
the situation is different. Referring to Figure 10.24, the up-state 
electrons cross two magnetic layers with parallel majority spin bands 
and feel a low resistance channel (2r), while down-spin electrons 

FIGURE 10.24:  Two ferromagnetic layers; FM1 and FM2, are separated by a non-magnetic 
layer (NM). We consider the two current model for magnetic bilayer system: when the mag-
netization vectors are aligned antiparallel, both spin-up and spin-down electrons experience 
the same effective resistance (R+ r) (left). For the case where the magnetization vectors of 
the two ferromagnetic layers are parallel the resistance can be thought of as two channels 
with resistances 2r and 2R for the spin-up and spin-down electrons, respectively (right).
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encounter two opposite majority spin band layers, and hence pass 
through a high resistance channel (2R). The effective resistance for 
this parallel state can be expressed as:

	 =
+

R
Rr

R r
2

P � (10.120)

It is now a simple matter to evaluate the maximum magnetore-
sistance produced when a magnetic field is applied to invert one of 
the magnetization states from the antiparallel to the parallel configu-
ration. This can be expressed as:

	 =
−

=
+

GMR
R R

R
R r

Rr
( )

2
AP P

P

2

� (10.121)

It should now be clear that the applied field acts to bring the 
ferromagnetic layers parallel and thus reduce the overall resistance. 
Using multiple repeats of the layers enhances further the magneto-
resistance, as shown in Figure 10.25.

The discovery of spin dependent effects in transport proper-
ties has led to a large number of device applications, including the 

FIGURE 10.25:  Giant magneto resistance in Fe/Cr/Fe multilayers. The ultimate  
magnetoresistance is seen to increase with the number of bilayers in the stack.  

(Reprinted figure with permission from: Baibich et al., Phys. Rev. Lett. 61,  
2472-2475 (1988). Copyright 2007 by the American Physical Society.)
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spin-valve, which is based directly on the GMR between layers cou-
pled to an antiferromagnetic layer which acts to pin one of the fer-
romagnetic layers via what is know as the exchange bias effect. This 
device is used in read-write heads of hard disks. In fact, so important 
was the discovery of GMR, that it has given rise to a new field of 
study based on the spin of the electron and derives from the fact that 
the spin state can be manipulated by passing an electrical current 
through a magnetic layer which can produce a spin filtering effect. 
This is popularly termed spin electronics or spintronics and is a major 
area of research and development. Progress in spintronic devices and 
effects has advanced well and many of the traditional semiconduc-
tor devices have their spintronic counterparts. For example designs 
for the spin FET have been advanced. There have been spin LEDs 
produced, which because of the excitations involved between spin 
polarized states, the resulting light is also left or right circular polar-
ized and is due to the transfer of angular momentum from electron 
to photon being conserved.

10.13  SPIN DYNAMICS

The study of spin dynamics generally refers to any process in 
which the spin configuration and magnetization varies in time. 
The most common forms of spin dynamics will be via precessional 
motion of the magnetization as in a magnetic resonance experi-
ment. In the case of a ferromagnetic material, this is referred to as 
ferromagnetic resonance or FMR. Other processes include stand-
ing spin wave resonance and magnetization reversal processes. 
Magnetic systems can undergo various types of excitation, which 
produce changes to the magnetization. Ultrafast demagnetization 
can occur to a spin system when it is excited by a high power laser, 
for example. The demagnetization in this case is produced by a 
transfer of energy from the photons to the spin system and through 
the heating of the electron gas to temperatures above the Curie 
temperature. In certain case the demagnetization can occur in the 
order of 10s of femtoseconds (1 fs = 10−15 s). Precessional dynam-
ics typically occur at a much slower pace, with oscillation periods in 
the picosecond range (10−12 s). In this section, we will give a brief 
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overview of some of the main principles of magnetization dynamics 
and magnetic resonance phenomena.

The description of the time variation of the magnetization vector 
can be expressed in a phenomenological formulation. The preces-
sional motion derives from the interaction of the magnetization with 
the applied field. This produces a magnetic torque, which can be 
described by the vector product of these quantities. The response of 
the magnetization to an excitation depends very much on how the 
excitation is produced in terms of its strength, direction and speed, 
or if it is a continuous excitation, the frequency. Once a magnetic 
system is pushed out of its equilibrium state, the system will try to 
return to an energy minimum, which can be different from the one in 
which it started from equilibrium. This process is generally referred 
to as relaxation. There have been several different approaches to the 
description of such processes. The main forms of the phenomeno-
logical description are given below:

1)	Landau - Lifshitz (LL) equation:

	 γ
λ∂

∂
= − × − × ×

t M
M

M H M M H( ) [ ( )]e f f
s

e f f2
� (10.122)

2)	Landau - Lifshitz - Gilbert (LLG) equation:
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3)	Bloch - Bloembergen (BB) equations:
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and

	 γ
∂
∂

= − × −
−M

t
M t M

T
M H( )

( )z
e f f z

z 0

2

� (10.126)

The first point to note about these equations is that the left 
hand side are just the time evolutions of the magnetization, while 
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the first terms on the right hand side are all equal and correspond 
to the description of the precessional motion of the magnetization 
about the effective magnetic field, Heff, and is the vector product of 
this with the magnetization. The vector construction for Equations 
(10.122) and (10.123) is shown in Figure 10.26.

The last terms can now be seen to describe the relaxation pro-
cesses, being vectors which point the magnetization back to the 
equilibrium configuration of the system. These are also illustrated 
for Equations (10.122) and (10.123) in Figure 10.26. The constant γ 
is the magnetogyric ratio. For the LL and LLG equations the pre-
factors will determine how quickly this occurs, being defined by the 
constants, λ and α, the Gilbert damping parameter, respectively. In 
these two equations, the combination of precession and damping lead 
to a spiral motion of the magnetization vector, where the magnetiza-
tion is described by a classical vector which maintains its magnitude. 
For the case of the BB equation the damping is described by two 
parameters, T1 and T2, which are the longitudinal (spin - lattice) and 
transversal (spin - spin) relaxation times, respectively. In this case the 
relaxation process can be described by the following relations:

FIGURE 10.26:  Vector construction of the Landau - Lifshitz and  
Landau - Lifshitz - Gilbert equations.
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	 = −M t M e( ) (0)x y x y
t T

, ,
/ 2 � (10.127)

and

	 M t M M M e( ) [ (0)]z z eq z eq z
t T

, ,
/ 1= − − − � (10.128)

The time varying z-component of the magnetization can thus 
change length in this formulation. The BB formulation is usu-
ally reserved for the description of nuclear magnetic resonance 
(NMR), with most descriptions (of FMR) being performed with 
the LL or LLG approaches. The magnetization and magnetic field 
vectors, as shown in Figure 10.26, has static and dynamic compo-
nents in general, which can be expressed as: = +t tM M m( ) ( )0  
and = +t tH H h( ) ( ),e f f e f f

0  where the static components are gen-
erally considered to be much larger than the dynamic ones, which 
are usually taken to be small perturbations, � �M m| | | | .0  In a fer-
romagnetic system, the effective field is made up of various com-
ponents which comprise the external fields: static magnetic field, 
H0, dynamic (or rf) field, h,  and internal fields which arise from 
the effective fields of the shape (or demagnetizing) field, Hdem and 
magnetocrystalline anisotropies, HK as well as the exchange field, 

= / ∇A MH M(2 ) .exch s
2 2

It is possible to manipulate the LL and LLG equations of motion 
by recognizing that a magnetic torque, τ = ×M H,  can be replaced 
by the classical vector τ = − ×∇Er ,  where E is the magnetic free 
energy of the system. From this we can obtain the resonance condi-
tion in terms of the second derivatives of the free energy:
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where ω is the angular frequency of the precession. This equation 
is known as the Smit - Beljers or Smit - Suhl equation. This equa-
tion must be used in conjunction with the equilibrium conditions as 
expressed by:
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These equilibrium conditions are extremely important, since the 
magnetic system will be disturbed from this static state and, once the 
perturbation has ceased, will relax back to this condition, providing 
the perturbation isn’t too strong. In the case where there are mag-
netic boundaries in the direction of the applied static magnetic field, 
a consideration of the exchange field and boundary conditions allows 
a more general condition to be obtained:
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It should be noted that this equation is a quadratic equation in 
terms of k2, where k is a wave vector for standing spin waves. Stand-
ing spin wave can be supported in confined magnetic structures such 
as thin films, with an applied magnetic field applied in the perpen-
dicular direction to the film plane. The boundary conditions, which 
depend on the surface anisotropies of the film, mean that a number 
of excitation modes can be observed. Such spectra are referred to 
as the spin wave resonance (SWR) spectra. We can now note that 
when there are no interfaces, the wavelength of the spin waves will 
be infinite (i.e., k = 0) and we will recover to Equation (10.129) for 
the case of ferromagnetic resonance.

To use the resonance equations we require expressions for the 
free energy of the system under study. This will have various compo-
nents and is related to the effective field via the relation:

	
∇

= −
E

M
He f f

s

û � (10.132)

where Mu Mˆ s= /  is the versor of the magnetization. In Figure 10.27, 
we show the spin wave resonance spectra for a thin film of GaMn at 
low temperature. We note that the spectra exhibit multiple peaks, 
which correspond to different spin wave modes. Spectra are also 
shown as a function of the angle of the magnetic field away from 
the perpendicular direction, where shifts occur due to the variation 
of the internal field arising from shape and other anisotropies, as 
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well as the pinning (boundary) conditions. The distribution of peaks 
can provide valuable information on the exchange constants. For the 
case of a thin magnetic film with uniaxial magnetocrystalline anisot-
ropy and an applied magnetic field along the film normal, the reso-
nance equation can be expressed as:

	
ω
γ
=Hn−HK−µ0Ms+Dkn

2 � (10.133)

where n denotes the order of the spin standing wave mode, and thus 
Hn is the field of that particular resonance mode, D = 2A/Ms is the 
spin wave constant and kn is the wave vector of the nth mode. For the 
case where there is perfect pinning, which corresponds to the spins 
being completely pinned at the film surfaces, it is a simple matter to 
obtain the relation, kn = nπ/t, where t is the film thickness. Equa-
tion (10.132) is known as the Kittel equation and the above describes 
the basics of the Kittel model. We can compare Equations (10.113) 
and (10.132), where closer inspection should show that they both 
represent the spin wave spectra of a magnetic sample.

FIGURE 10.27:  Spin wave resonance spectra for a 120 nm GaMn thin film at low  
temperature (4K). Various spin wave spectra are shown for different orientations  

of the applied magnetic field with respect to the film normal. (Reprinted figure with  
permission from: X. Liu, Y. Y. Zhou, and J. K. Furdyna, Phys. Rev. B, 75, 195220 (2007). 

Copyright 2007 by the American Physical Society.)
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The general resonance equation for a sample will depend on 
the specific magnetic anisotropies of the sample in question. For 
example, a thin film with uniaxial anisotropy can be shown to have a 
resonance equation of the form:

	

qω
γ
r

2

= sH cos(θH−θ)+ q 2Ku

µ0Ms

−µ0Msr cos2θt

sH cos(θH−θ)+ q 2Ku

µ0Ms

−µ0Msr cos2 θt � (10.134)

where θH and θ are the in-plane orientations of the applied mag-
netic field and magnetization, respectively. This equation will give 
the resonance condition in the plane of the film.

Ferromagnetic resonance and spin wave resonance are impor-
tant experimental techniques which can provide a lot of information 
on the magnetic properties of materials, including bulk samples, thin 
films, magnetic multilayers, and nanostructures (see also Chapter 13). 
There are several experimental techniques for the observation of spin 
dynamics. Traditionally, the microwave spectrometer (EPR electron 
paramagnetic resonance) has been used to measure FMR and SWR. 
However, modern techniques include vector network analyzers and 
ultrafast optical methods for observing magnetization dynamics in 
real time via pump and probe type measurements. One of the main 
advantages of these latter techniques is that they provide a sensitive 
measure of the dispersion relations for magnetic excitations. This cor-
responds to the variation of the resonance field with frequency, or 
alternatively the resonance frequency with field. Such a plot is illus-
trated in Figure 10.28, which shows some of the principal features 
that can be observed. There are two lines for each sample, where the 
shape of the line indicates the type of effective magnetic anisotropy, 
uniaxial in this case. The minimum along the field axis gives the value 
of the uniaxial anisotropy field, HK = 2K/µ0Ms , while the intersec-
tion along the frequency axis gives the resonance frequency in the 
anisotropy field of the sample itself, ω γ= H .K K  For a paramagnetic 
sample, the ω−H  curve is a straight line given by the Larmor fre-
quency; ω γ= H.
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10.14  SUMMARY

Magnetic effects in solids can be observed by applying a mag-
netic field to them. The response to this field depends greatly on the 
internal atomic and crystalline structure of the sample. In the case 
where there are only atoms with closed electron shells, this response 
will be weak and will produce as small magnetization which opposes 
the direction of the applied field. This is called diamagnetism and 
will occur in a majority of solids by virtue of the fact that most 
atoms contain at least some closed electron shells. When there are 
unpaired electrons in a solid whose magnetic moments are weakly 
or uncoupled, the reaction to a magnetic field will be to align their 
moments in the direction of the applied field. Such materials are 
said to be paramagnetic.

Once some form of interaction, called exchange, is present, then 
the response to an applied magnetic field will lead to a much stronger 
response to a magnetic applied field. In fact, a broad range of phe-
nomena come into play that make magnetic materials rather exotic 

FIGURE 10.28:  Frequency - field characteristics for magnetic samples. The solid and dot-
ted lines show the variation for uniaxial anisotropies of 1.7 × 105 Jm−3 and 1.8 × 105 Jm−3, 
respectively. The cusp along the field axis, for the field along the hard axis, has a minimum 
at he anisotropy field of Hk = 2K/µ0Ms. The intersections at the origin show the positions 
of self-resonance in the anisotropy field, ωK = γHK. The dashed line shows the case for a 

paramagnetic sample. Intersections of the lines at 4 and 9 GHz show where the resonance 
fields occur for fixed frequency spectrometer measurements. (M. Farle, Rep. Prog. Phys., 61, 

755-826 (1998). ©IOP Publishing. Reproduced with permission. All rights reserved.)
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and of great technological interest. These magnetic phenomena are 
related to the specific magnetic internal structures of the materials, 
which in the simplest case is when all spins align in the same direc-
tion to form the ferromagnetic ordering. For antiferromagnetic order, 
neighboring spins align in antiparallel orientations. The magnetiza-
tion of such materials will be zero and rather large magnetic fields are 
required to bring about any re-orientation in the spin structure. The 
antiferromagnetic state is generally modelled in terms of two antipar-
allel sublattice magnetizations. When the sublattice magnetizations 
are unequal, a ferrimagnetic state results, with experimental prop-
erties that are similar to ferromagnetic materials, though with some 
important differences. More complex magnetic structures can exist in 
some exotic alloys, such as helimagnetism, in which the ground state 
is characterized by a positional variation of the magnetic moments and 
can arise due to competing exchange interactions.

The existence of a long range magnetic order implies some 
form of orientational preference for the spin system. This direc-
tionality is referred to as magnetic anisotropy. The shape of a 
ferromagnetic or ferrimagnetic sample can have a very strong 
influence on the direction of its magnetizations due to magne-
tostatic energy considerations. For example, a long cylindrical 
sample will, in the absence of strong competing magnetic anisot-
ropies, align its magnetization along its long axis since this reduces 
the free poles at the sample surface and minimizes the stray field 
produced by the magnetization. In terms of the shape, demagne-
tizing factors can be evaluated to account for the sample shape 
and provides a useful tool for evaluation the effective anisotropy. 
Crystal field and spin orbit interactions inside the crystal act to 
align the magnetic moments in a ferromagnet and give rise to 
the magnetocrysalline anisotropy. The crystal structure therefore 
can play a decisive role in the orientation of the magnetization 
in the absence of applied magnetic fields. Such situations can be 
modelled phenomenologically and can account for the orienta-
tional dependence of the magnetization in an arbitrarily aligned 
magnetic field. This process is usually done by minimizing the 
total energy of the system, while taking into account the various 
magnetic energy contributions in the solid.



388  •  Solid State Physics

The magnetocrystalline energy means that specific orienta-
tions of the magnetic moments with respect to the crystalline axes 
will be preferred. However, a fully saturated magnetization comes 
at the cost of magnetostatic energy. It is possible to reduce this 
energy by dividing the magnetization up into small regions of spon-
taneous magnetization called domains. The formation of domains, 
however, also has energy costs. Only when this energy is less than 
the magnetostatic energy will domains form. Otherwise the sample 
will exist in a single domain state. The existence of domains will 
form regions of transition between the different domains, which 
are called domain walls. The energy of a domain wall and it thick-
ness depend directly on magnetic anisotropies and the exchange 
energy between neighboring spins.

The ground state of a ferromagnet can be described as the per-
fect alignment of all spins along a direction on easy magnetization. 
This can strictly only occur when no fluctuations of the spin system 
occur. Thermal energy produces an excitation of the spin system in 
a similar way to the production of lattice vibrations (phonons) in sol-
ids. The excitation of the magnetic spin systems produces a variation 
of the spin orientations called spin waves. These can be quantized 
(in quantum theory) as magnons. The existence of such magnons act 
to reduce the overall magnetization of the solid and for low tempera-
tures spin wave theory provides a good model for the variation of the 
magnetization with temperature. Spin waves can be characterized as 
standing or travelling waves.

The motion of the magnetization under stimulation by a fast 
moving magnetic field provides a sensitive measure of magnetic 
properties and behavior. Precessional processes, such as ferromag-
netic resonance and spin wave resonance have been used for many 
decades as a tool for the measurement of magnetic properties of 
materials. Indeed, they can furnish information on the principal 
magnetic properties, such as magnetization, g-factors, magnetic 
anisotropies, and exchange constants. Furthermore, in coupled mag-
netic systems, such as magnetic multilayers, it is possible to measure 
the interaction strength between the layers. Modern ultrafast optics 
techniques can be used to study real-time dynamics, such as sample 
demagnetization and reversal processes in addition to the slower 
precessional dynamics.
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The interactions of fixed magnetic moments in a solid and the 
free electrons can produce variations in the electrical resistivity with 
an applied magnetic field. This is called magnetoresistance. In arti-
ficially produced layered structures a giant magnetoresistance can 
occur due to the spin scattering of electrons. Such processes are at 
the root of spin- tronics, which is a major new area of study and has 
produced significant progress in recent years with the existence of 
a number of spintronic devices. Much research is dedicated to the 
study of low dimensional effects in magnetism, such as in magnetic 
nanoparticles and nanostructures. We will describe some of these 
topics in the final chapter of the book.
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EXERCISES

Q1.	 Derive the Langevin function, given in Equation (10.28).

Q2.	 Referring to Equation (10.15), show that the frequency 
of precession is given by the Larmor frequency; ωL = γB.

Q3.	 Calculate the spin, orbital and total angular momenta 
for the following ions: Sm3+, Fe2+ and V4+. What are the 
magnetic moments for these ions?

Q4.	 Show that the Hunds rules can be expressed as:

	 C D= + − + −S l l n
1
2

(2 1) | 2 1 |e � (10.135)

	 = + −L S l n| 2 1 |e � (10.136)

	 = −J S l n| 2 |e � (10.137)

Q5.	 If a particle of charge 3e moves in a circular orbit of  
2 Å with a frequency of 5 × 1016 Hz, what is the resulting 
magnetic moment? Give your answer in units of Bohr 
magnetons.

Q6.	 Show that the Heisenberg Hamiltonian can be expressed as:
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	 where = ±±S S iS .x y

Q7.	 Determine the symmetry of the following spin wave-
functions:

	

χ σ χ σ
χ σ χ σ

χ σ χ σ χ σ χ σ−

α α

α β

α β β α

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1 2

1 2

1 2 1 2

 

Q8.	 Prove that the domain wall width for a Bloch type wall is 
given by Equation (10.102). 

Q9.	 Given the magnetic energy:

	 E=−µ0H ⋅M+Ku sin2 θ � (10.139)

	 show that the magnetization direction will be defined by 
the condition:

	
sin(ΘH−θ)
sinθcosθ

=
2Ku

µ0HM
� (10.140)

	 where ΘH defines the polar angle of the applied magnetic 
field and θ that of the magnetization.

Q10.	 Consider the case for GMR where the high-resistance 
spin channel is twice that of the low-resistance spin chan-
nel. What will the GMR % be in this case?

Q11.	 A magnetic field is applied in the basal plane of a Co 
crystal, whose easy axis is aligned along the c-direction  
if its hcp structure. Given the uniaxial anisotropy  
constant Ku = 4.1 × 105Jm−3 and magnetization  
M = 1.42 × 106Am−1 for Co, find the field necessary  
to align the magnetization in (a) the basal plane; and  
(b) at an angle of 45° to the easy axis.

Q12.	 A ferromagnetic sample has cubic anisotropy with an 
easy axis aligned in the (100) directions. Show that, when 
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a magnetic field is applied along [110], the free energy of 
the system can be expressed as:

	 E=−µ0HM cos(π/4−φ)+
K1

4
sin2 2φ � (10.141)

	 Find the equilibrium condition for this magnetic system.

Q13.	 Show that the Landau - Lifshitz equation, in the absence 
of damping, can be expressed as:

	
1
µ0γ
∂M(t)
∂t

= êθ
1

sinθ
∂E
∂φ
− êφ

∂E
∂θ

� (10.142)

Q14.	 Prove Equation (10.133).

NOTES

1 In this case, the precession of J around the magnetic field B is slower than the 
precession of L and S about J
2 The partition function is a “sum over states”, which reflects how the energy states 
are divided up in a system
3The exchange integral is usually expressed in the form: ψ ψ= ∫ ∗ ∗

−
J r r( ) ( )ij i a j b

e
r r

2
| |a b

 

ψ ψr r r( ) ( )d .i b j a
3  Comparing this with the Coulomb energy: ψ ψ= ∫ ∗ ∗K r r( ) ( )i a j b  

ψ ψ
−

r r r( ) ( )d ,e
i a j br r

2
| |

3

a b
we see where the name for exchange arises.

4We note that this will only strictly occur if the magnetic body has the form of an 
ellipsoid of rotation.
5See for example J. A. Osborn Phys. Rev. 67, 351 (1945)
6This software is available free from: http://math.nist.gov/oommf/



CHAPTER 11
SUPERCONDUCTIVITY

“The greatness of a nation can be judged by the way its animals are treated.”

—Mahatma Gandhi

“I think, at a child’s birth, if a mother could ask a fairy godmother to endow 
it with the most useful gift, that gift should be curiosity.”

—Eleanor Roosevelt

“True friends stab you in the front.”

—Oscar Wilde

11.1  INTRODUCTION

The phenomenon of superconductivity was discovered in 1911 
by H. Kamerlingh-Onnes while studying the low temperature 
resistivity properties of Hg. This first glimpse of the extraordinary 
behavior termed superconductivity was initially seen as the com-
plete disappearance of electrical resistivity. Actually, the removal 
of electrical resistance from a body has a number of other physi-
cal implications, which are of fundamental importance in the study 
of solids. Onnes continued to study the low temperature transport 
properties of metals for a number of years. To his surprise even the 
addition of impurities in the solids did not bring about an increase in 
the residual resistivity, as was expected, and he concluded that mer-
cury undergoes a transition into a new phase, which he termed the 
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superconductive state. The temperature at which a transition to the 
superconductive state occurs is called the critical temperature, Tc. 
Above this temperature the material exhibits normal resistive behav-
ior and is said to be in the normal state. The transition from normal 
to superconducting state is very abrupt, as illustrated in Figure 11.1. 
In Table 11.1, we give some of the superconducting transition tem-
peratures for selected metals.

The discovery of the phenomenon of superconductivity lead to 
the survey of many elements and compounds to see if this state exists 
at more readily available temperatures.

It was found that mosts elements which do exhibit superconduc-
tivity, only do so at very low temperature. Niobium being the element 
with the highest Tc, of 9.2 K. Certain compounds and alloys were 
later found to have higher transition temperatures, see Table 11.1. 
A  major advance was made in 1986 with the discovery of high-
temperature superconductors, which were based on oxide ceramic 
cuprates: In fact, so important was this development considered, that 
the discoverers, J. G. Bednorz and K. A. Müller were awarded the 
1987 Nobel Prize in Physics. Much frenetic activity in this research 

FIGURE 11.1:  The transition from the normal state to the superconducting state.
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field followed this discovery with the promise of room temperature 
superconductors. Despite this, at the time of writing (2013), the high-
est temperature at which superconductivity has been found is 133 K 
for the compound HgBa2Ca2Cu3O8. This transition temperature can 
be raised to about 164 K under a pressure of around 30 GPa

Superconductivity is related to the phenomenon of super-
fluidity, both of which are manifestations of the Bose - Einstein 
condensation(BEC). This form of transition gives rise to rather 
strange physical properties, which are direct consequences of quan-
tum mechanics, and occur at low temperatures, where thermal 
energy effects are kept under control. The fact that most quantum 
effects are observed in very small objects, like atoms, and as we shall 
see in the final chapter, in nanosized objects, makes superconduc-
tivity rather unusual in that it can be observed in bulk materials. 
The Bose - Einstein condensation essentially relates to the cou-
pling of fermions to produce bosonic quasi-particles. The very long 
time between the discovery of superconductivity and the formula-
tion of a satisfactory theory is evidence of the conceptual problems 
encountered in adequately describing this physical phenomenon. 
The Bardeen Cooper Schrieffer (BCS) theory was published in 
1957 and was a significant step forward in the understanding of low 
temperature superconductivity. Bardeen, Cooper, and Schrieffer 
were awarded the 1972 Nobel Prize for their work. Despite this suc-
cess, the normal BCS theory cannot be applied to high-temperature 
superconductors and this remains one of the important problems 
yet to be solved in solid state physics.

TABLE 11.1:  Superconducting transition temperatures  
for selected metals and compounds.

Element
Critical  

Temperature Tc (K) Compound
Critical  

Temperature Tc (K)
Niobium, Nb 9.2 Nb3Sn 18.0

Lead, Pb 7.2 Nb3Ge 23.2

Tantalum, Ta 4.48 La1.8Sr0.2CuO4 35

Mercury, Hg 4.15 YBa2CuO7 95

Aluminium, Al 1.2 Tl2Ba2Ca2Cu2O10 125

Iridium, Ir 0.14 HgBa2Ca2Cu3O8 133
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In this chapter, we aim to outline some of the main properties 
exhibited by superconducting materials. We will also give a brief 
introduction to some of the principal theoretical concepts necessary 
to understand this physical phenomenon. Finally, we shall describe 
some of the more important applications of superconductivity and 
give a brief overview of some of the recent developments.

11.2 � PHENOMENA RELATED  
TO SUPERCONDUCTIVITY

As stated in the Introduction, the disappearance of electrical 
resistivity also comes with a number of physical consequences. We 
will give a brief introduction into the principal phenomena which 
are characteristic of superconductors.

11.2.1 � Zero-Resistivity/Infinite Conductivity  
and Persistent Currents

We have already discussed the fact that the electrical resistance 
or resistivity disappears when a materials enters the superconducting 
state, as illustrated in Figure 11.1. This means that the conductivity 
should become infinite below the critical temperature. However, to 
be consistent with the current density: j = ρe, we must always have 
a zero electric field, e = 0, throughout the superconductor. In this 
way we are not troubled by an infinite current density and we have 
no current flow without an electric field.

To guarantee that the resistance is truly zero, the preferred 
measurement techniques uses a four-point measurement, see 
Figure 11.2. In the two-terminal measurement, contact resistance 
will be included in the measurement. The four-point method is 
the preferred method for the measurement of low resistances, in 
which the four contacts connect directly to the sample, where only 
the current in the sample is of importance when the voltage drop is 
measured between two positions in the sample (when the sample is 
resistive). The resistivity is then assessed from Ohm’s law (V = IR) 
and taking the sample geometry into account, since R = ρL/A.



Superconductivity  •  397

The currents in a superconductor flow with no discernible 
dissipation of energy. However, the supercurrent can be readily 
destroyed if a sufficiently large magnetic field is applied to the sam-
ple (see below). Furthermore, should the current density exceed a 
certain value, called the critical current, the superconducting state 
will also be destroyed. This is called the Silsbee effect. The size of 
this critical current will depend on the nature and geometry of the 
of the sample. The existence of persistent currents is probably one 
of the more convincing methods to demonstrate superconductivity. 
We can show this by applying the magnetic flux, Φ, along with the 
Maxwell equation:

	 × = −
∂
∂

εε∇
t
B

� (11.1)

and Stoke’s theorem:

	 S r( )d dεε εε∇
∫ ∫× = − ⋅ � (11.2)

FIGURE 11.2:  The evaluation of resistivity requires an experimental measurement  
of current and voltage. This can be performed using a two-terminal  

(a) or a four-terminal (b) technique.
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to obtain:

	
∫

Φ
= − ⋅εε

t
r

d
d

d � (11.3)

Since we can take the line integral around a closed path within 
the superconductor, where we have εε = 0, we thus have

	
Φ

=
t

d
d

0 � (11.4)

which means that the magnetic flux passing through the loop 
remains constant over time. The persistent current is now set up by 
applying a magnetic field, B, to the materials in the normal state. 
Since it is in the normal state the magnetic field can penetrate the 
material. The sample is then cooled to below the transition tem-
perature to the superconducting state. The initial flux in the sample, 
which we take to be a ring, is B Sd .Φ = ∫ ⋅  The external magnetic 
field is then removed and since Equation (11.4) must still hold, the 
superconductor must generate an internal flux to maintain the flux 
constant. This is done by the circulation of a current, I, inside the 
superconductor. Now since Φ must be constant in time, so must the 
current that generates it. Therefore, a circulating persistent current 
will be set up inside the ring of the superconductor. Since there is 
no dissipation of the current through electrical resistance, the cur-
rents should remain. Such persistent currents have been observed to 
remain constant over a period of years.

11.2.2  Meissner-Ochsenfeld Effect
While the zero-resistivity is an important property of the super-

conducting state, it is not generally held to be a proof of supercon-
ductivity. The demonstration of the Meissner - Ochsenfeld effect 
(which dates from 1933) is also a requirement. This effect arises 
from the fact that a superconductor expels a weak magnetic field. 
This is illustrated in Figure 11.3.

If we start with a sample above the critical temperature, and cool 
below the critical temperature, the sample will enter the supercon-
ducting state. If we apply an external magnetic field, the field must 
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remain zero inside the superconductor, since εε = 0 and from Equa-
tion (11.1), we have:

	
∂
∂

=
t
B

0 � (11.5)

We can approach the situation from another point of view. Again, 
we start from the normal state with T > Tc, then apply a magnetic 
field, the flux lines can penetrate the interior of the sample. If we 
now cool the sample to T < Tc. The Meissner - Ochsenfeld effect is 
the expulsion of the magnetic flux from the sample and differs from 
the case of a material which happens to be a perfect conductor. The 
important point is that the expulsion of the magnetic flux is indepen-
dent of the samples’ history, i.e., the sequence of events leading up 
to the expulsion of the magnetic flux.

The Meissner - Ochsenfeld effect is a preferred method of dem-
onstrating the existence of superconductivity since it is a property of 
thermal equilibrium, while transport is a non-equilibrium situation.

11.2.3  Perfect Diamagnetism
It turns out that the expulsion of magnetic flux from a supercon-

ductor is only possible if there are screening currents set up around 

FIGURE 11.3:  Illustration of the Meissner - Ochsenfeld effect and the difference between an 
imaginary perfect conductor and a superconductor. Above the critical temperature, magnetic 

flux can penetrate both materials. Reducing the temperature below Tc, the superconductor 
expels the magnetic flux from its interior. This is the Meissner - Ochsenfeld effect.
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the edges of the sample. These will produce a magnetic field which 
is equal and opposite to that of the external field and thus cancelling 
out the external field in the interior of the superconductor. Using the 
Maxwell equation:

	 ∇×B=µ0 j+µ0ε0
∂ε
∂t

� (11.6)

we can show that the currents produced by the external field and 
internal magnetization, due to the applied current in the coils 
of a solenoid, and the screening currents in the sample, can be 
expressed as:

	 × =∇ H jext � (11.7)

and

	 × =∇ M jint � (11.8)

respectively. Now since these currents must cancel out; jint = −jext, 
we must have:

	 M = −H� (11.9)

(Of course this condition can be seen from the expression: 
B = μ0(H + M) and applying the Meissner - Ochsenfeld condition, 
B = 0.) It is now a simple matter to express the magnetic suscep-
tibility as:

	 χ= = −
M
H

1 � (11.10)

As we saw in the last chapter, a negative magnetic susceptibil-
ity occurs for diamagnetic materials. Diamagnets screen out part of 
the magnetic field applied to them, and thus become magnetized in 
the direction opposing the field. In the superconductor, the screen-
ing is complete and hence we refer to the superconductor as a per-
fect diamagnet. Therefore, a good way of detecting if a material is a 
superconductor is to measure its susceptibility. If the susceptibility 
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drops abruptly to −1 at some temperature, this is a good confirma-
tion of its status as a superconductor. This is generally regarded as a 
more reliable form of evidence for superconductivity than a simple 
measurement of zero resistance.

11.2.4  Critical Fields and Critical Current
Our description for the perfect diamagnetism in superconduc-

tors was made with the restriction of the applied magnetic field 
to low values. For higher values there are two possible outcomes, 
which depend on the materials itself.

In the first, simpler case, as the magnetic field increases, the 
B-field inside the sample remains zero, with a proportional increase 
in the sample magnetization. Then at a critical field, Hc, the super-
conductivity is completely destroyed. Such a material is called a 
type I superconductor. This situation is illustrated in Figure 11.4 (a), 
where the magnetization follows the trend M = −H up to the point 
where H = Hc, at which point the superconductivity is lost and 
therefore the susceptibility abruptly changes (vanishes).

A more complex situation is observed in many superconductors, 
which are referred to as type II superconductors. In this case the ini-
tial behavior is the same as in a type I material, then at a critical field, 
Hc1, the magnetic susceptibility begins to fall off gradually from −1 
and eventually disappears at a second critical field, denoted as Hc2. 
This situation is illustrated in Figure 11.4 (b).

FIGURE 11.4:  Magnetization - field curves for (a) type I and (b) type II superconductors. 
The perfectly diamagnetic state persists up to a critical field of Hc and then vanishes, in  
a type I material. In the type II superconductor, there is a gradual monotonic decrease  

of the susceptibility above the first critical field, Hc1, where it stops being a perfect  
diamagnet, and vanishes at a second critical field, Hc2.
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Evidently, if the magnetic susceptibility falls below a value of −1, 
then some magnetic flux will penetrate the superconductor (type II) 
and will continue increasingly to do so until the sample is completely 
returned to the normal state. In the region Hc1 < H < Hc2, the mag-
netic field penetrates the type II superconductor in the form of so-
called vortices. Each vortex is a region of circulating supercurrent 
around the region of the superconductor which, being penetrated 
by the magnetic flux, has reverted to the normal state. Therefore, 
in this field range of fields, the material is in a mixed state, with 
regions which are superconducting and regions that are normal. The 
supercurrents circulate at the interface between the two and serve 
to screen the magnetic field from the superconducting regions. This 
mixed or vortex state is illustrated in Figure 11.5. The existence of 
the normal state core regions thus provide zone in which the mag-
netic flux can penetrate the sample and reduces the overall energy 
of the system. The postulation of the vortex state was originally 
proposed by A. A. Abrikosov (1952). Abrikosov was one of a trio 
awarded the Nobel Prize in Physics (2003), along with V. Ginzburg 
and A. J. Leggett, for their “pioneering contributions to the theory 
of superconductors and superfluids”.

The critical fields also vary as a function of temperature; reduc-
ing gradually up to the critical temperature. This is schematically 

FIGURE 11.5:  In type II superconductors at fields Hc1 < H < Hc2, partial penetration of mag-
netic flux is concentrated in channels, called vortices. Inside the vortex core the material is  

in the normal state and is separated from the superconducting state by a supercurrent  
vortex. In this field regime the sample is said to be in the mixed or vortex state.
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illustrated in Figure 11.6 for type I and type II superconductors. 
The temperature dependence of the critical fields can be expressed 
in the form:

	 H H
T
T

1c c
c

0

2

= −c a b d � (11.11)

where Hc0 is the value of the critical field at absolute zero of tem-
perature. This is sometimes referred to as Tuyn’s law, and can be 
also expressed using the magnetic induction; Bc = μ0Hc.

In addition to the critical fields, there is also a critical current 
density, Jc, that will induce the critical field at the surface of the 
superconductor and drive it into the normal state. This relation 
between the critical field and the critical current takes the form:

	 λ=H T T J T( ) ( ) ( )c c � (11.12)

where we indicate that all three parameters are temperature depen-
dent. The factor λ, is the thickness of the layer at the surface, also 
called the penetration depth of the superconductor where the cur-
rent will flow. In fact, the current density varies as a function of 
position from the surface into the superconductor, decaying with 

FIGURE 11.6:  Magnetic field - temperature phase diagrams for type I (a) and type II  
(b) superconductors. Below the Hc − Tc line in type I and the Hc1 − Tc line in type II  

superconductors the material is in the full Meissner state, being a perfect diamagnet.  
For the type II super conductor, in the region between the Hc1 − Hc2 lines the  
material is in the mixed vortex state, also referred to as the Abrikosov - state.
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distance from the surface. We will discuss this effect in Section 11.4. 
The temperature dependences of the penetration depth and the 
critical current can be expressed as:

	 λ λ= −

−

s a b tT
T

1
c

0

4 1/2

� (11.13)

and

	 = − −s a b t s a b tJ J
T
T

T
T

1 1c c
c c

0

2 4 1/2

� (11.14)

The critical behavior of superconductors can be described in 
terms of a three-dimensional surface, bounded by the critical param-
eters; Tc, Bc and Jc, as illustrated in Figure 11.7.

FIGURE 11.7:  The critical surface of a superconductor. This is derived from the temperature 
dependence of the critical field and the fact that a current will produce a magnetic field,  

and this will also be temperature dependent.
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11.3 � THERMODYNAMICS OF THE 
SUPERCONDUCTING TRANSITION

11.3.1  Phase Stability of the Superconducting State
We can define the work done on a magnetic material by a mag-

netic field from the consideration of the change of flux density inside 
the material. In increasing the magnetic induction from B to B + dB 
in the presence of a field H, the work done on the sample can be 
expressed as: H · dB = μ0H · dM, per unit volume. The first law of 
thermodynamics for the magnetic material can thus be expressed as:

	 dU= TdS−PdV+µ0H ⋅dM � (11.15)

The first term represents the heat energy (where T is the tem-
perature and S is the entropy), the second term is the work done on 
a volume of gas (here we will take dV = 0) and the final term is the 
work done on a magnetic material.

The Gibbs free energy of a system is defined as: G = U − TS − 
PV − B · M. For our purposes, we can consider the Gibbs free energy 
to be a function of temperature and field, where differentiation gives:

	 G U T S S T B M M Bd d d d d d= − − − ⋅ − ⋅ � (11.16)

Using Equation (11.15) we can write:

	 dG=−SdT−M ⋅dB=−SdT−µ0M ⋅dH � (11.17)

where we have considered P and V to be constants.

In the normal state, i.e., for a normal metal, where the mag-
netic susceptibility is essentially zero χ( 0),  there is virtually no 
interaction with an applied magnetic field. Therefore, we can affirm 
that there is no contribution to the free energy due to an external 
magnetic field. We can take this to be our state of zero energy. The 
phase stability is governed by the Gibbs free energy, G(H, T). For 
the normal (N) state we can write: GN(H, T) = GN(0, T), since the 
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field does not affect the sample. We can now consider the case for a 
superconductor, where the diamagnetic properties give:

	 GS(H,T)−GS(0,T)= dG∫ =−µ0 M ⋅dH∫ � (11.18)

In the case of a type I superconductor at T < Tc, we have M = −H, 
and thus we have:

	 GS(H,T)−GS(0,T)=
µ0H

2

2
� (11.19)

At the critical field H = Hc we can write:

	 GS(Hc ,T)=GS(0,T)+
µ0Hc

2

2
=GN(Hc ,T)=GN(0,T) � (11.20)

Re-arranging gives:

	 GS(0,T)−GN(0,T)=−
µ0Hc

2

2
� (11.21)

Therefore, at T = 0,

	 GS(0,0)−GN(0,0)=−
µ0Hc

2

2
� (11.22)

and since GS(0, 0) < GN(0, 0), the superconducting state is the more 
stable phase for H < Hc. Thus we see that the critical field provides 
us with a measure of the stability of the superconducting state. From 
the above, it follows that:

	 GS(H,T)=GN(0,T)−
µ0(Hc

2−H2)
2

� (11.23)

which is valid for H < Hc, and shows the stability of the supercon-
ducting state at all fields below the critical field. We see clearly 
from this expression that the stability gradually reduces as the field 
increases, and finally vanishes at H = Hc.
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11.3.2  Heat Capacity of a Superconductor
Equation (11.23) allows us to express the entropy, = − ∂ /∂S G T( ( )), 

difference between the normal and superconducting states, which we 
can express as:

	 ΔS= SS(H,T)−SN(0,T)=µ0
d

dT
aHc

2−H2

2
b =µ0Hc

dHc

dT
� (11.24)

The heat capacity of the solid is given by:

	 =C T
S
T

d
d

� (11.25)

It is now a simple matter to write:

	

CS−CN = T
d

dT
µ0 aHc

dHc

dT
b

=µ0T sa dHc

dT
b

2

+Hc
d2Hc

dT 2
t � (11.26)

It should be clear that the entropy difference will disap-
pear at the critical temperature, since at this point Hc = 0. 
However, the difference in the heat capacity will be finite and 
(ΔC)TC

=µ0Tc(dHc/dT)T=Tc

2 >0. A discontinuity of the specific heat 
is observed at T = Tc, see Figure 11.8. The low temperature specific 
heat in a metal was discussed in Chapter 6, where a plot of C/T vs. 
T2 is a straight line. In the inset of Figure 11.8, we see the experi-
mental data for the metal vanadium. In the normal state, which 
is induced at T < Tc by placing it in a field greater than its criti-
cal value, shows this linear behavior. In the superconducting state, 
measured with H = 0, we observe the expected discontinuity. It is 
worth noting that for 0 < T < TC, the derivative, dHc/dT, is nega-
tive, such that ∆S < 0. This implies that the superconducting state 
is more ordered than the normal state in this temperature range. 
Since we are only concerned with the electronic contributions to 
the specific heat, at T = Tc, we can write

	
(CeS−CeN)
γTc

=
µ0

γ
adHc

dT
b

T=Tc

2

� (11.27)
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where γ π= /k N2 (0) 3.B
2 2  The jump in the specific heat at Tc is only 

related to the electronic contribution to the specific heat. Below the 
critical temperature CeS decreases exponentially, roughly as − /e .k TB0∆  
We will return later to discuss the significance of this term, see 
Section 11.6.

11.4  THE LONDON EQUATIONS

The equation of motion for electrons in a normal metal was 
given in Chapter 6, Equation (6.63). However, due to the nature of 
superconductivity, early researchers considered a modified form of 
the electron dynamics, which was different from that of normal met-
als. In 1935, the brothers Fritz and Heinz London considered that 
due to the vanishing resistivity, the classical form of the equation of 

FIGURE 11.8:  Specific heat capacity for a normal metal and a superconductor.  
The discontinuity of the specific heat in the superconductor marks the transition  

to the normal state. The inset shows the low temperature specific heat for Vanadium  
in the superconducting state and in the normal state. This latter is imposed  

by maintaining the metal in a magnetic field above the critical value.
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motion should be modified and by neglecting the “friction” term 
τ/m v( ),e D  we can write:

	 = − εεm
t

e
vd

de � (11.28)

It is further considered that the electrons in the system consists 
of normal electrons and superconducting electrons, in the postulated 
two-fluid model. The total number of electrons is thus: n = nN + nS. 
We can now write the current density of the superconductive elec-
trons as: jS = −nSev, from Equation (11.28) we obtain:

	
t

en
t

n e
m

j vd
d

d
d

S
S

S

e

2

εε= − = � (11.29)

This is known as the first London equation. We now take the curl 
of this equation:

	
t

n e
m

jd
d

S S

e

2

εε∇ ∇× = ×a b � (11.30)

We now apply the Maxwell equation × = −∂ /∂tB( )εε∇  to obtain:

	 × = −
∂∇ a b

t
n e
m t

j Bd
d d

S S

e

2

� (11.31)

Integrating with respect to time (and choosing a constant of 
integration of zero, in accord with the Meissner effect), we find:

	 × = −∇ a b
n e
m

j BS
S

e

2

� (11.32)

This is called the second London equation. We now apply the 
Maxwell equation ∇×B=µ0 jS  and taking the curl of this we have:

	 ∇×(∇×B)=∇(∇ ⋅B)−∇2B=µ0∇× jS � (11.33)

Since ∇ · B = 0, we can write:

	 ∇2B= aµ0nSe2

me

bB=
1
λ2

B � (11.34)
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where λ= me /µ0nSe2  is the London penetration depth. The solu-
tion of this equation takes the form:

	 = λ− /x eB B( ) (0) x � (11.35)

This illustrated in Figure 11.9. The field does not penetrate very 
deeply into the superconductor and is just a surface effect, within 
depth λ. We can estimate the value of the penetration depth by con-
sidering that at T = 0 all electrons will be in the superconducting state. 
A reasonable estimation would be of the order of n = nS = 1029m−3, 
this gives a London penetration depth of (0) 170 Å.λ  This is the 
same penetration depth we mentioned in Section 11.2.4, Equa-
tions (11.12) and (11.13). In fact, using this latter equation, we can 
evaluate the variation of the density of super electrons, nS, as:

	 n n
T
T

1S S
c

0

4

= −s a b t � (11.36)

From Equations (11.29) and (11.32), we can establish the rela-
tions that determine the microscopic electric and magnetic fields:

	
t

j( )Sεε =
∂
∂

Λ � (11.37)

FIGURE 11.9:  Decay of the magnetic field penetrating a superconductor in the space for x ≥ 0.
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and

	 B j( )S∇= − × Λ � (11.38)

where we have Λ = /m n e .e S
2  Experimental measurements have 

been found to give a discrepancy to the value of this parameter, 
which is due to the local nature of the London equations. Pippard 
(1953) introduced the idea of a coherence length, ξ0, for the wave-
function of superconducting carriers. The coherence length is a 
measure of the region of influence in which the carriers forming  
the current depend on the values of the vector potential A (a region 
of distance ξ0).

An estimation of the coherence length can be obtained by 
the consideration that only electrons with an energy range of 
the order of kBTc can be responsible for phenomena occurring at 
T < Tc. Given that only electrons with the Fermi velocity, υF, can 
be involved, the range of values of the momentum must be of the 
order of kBTc/υF. Using the uncertainty principle allows us then to 
estimate the coherence length:

	
�
�
�

δ
δ

≥
p

v
k T

x
F

B c

� (11.39)

For metals this corresponds to around 0.1 − 1μm. The coher-
ence length is usually quoted as:

	


ξ = a ba
v

k T
F

B c
0 � (11.40)

where a is a constant to be determined by experiment, where for 
metals it has a value of about 0.15. Experiments on alloys show that 
the coherence length also depends on scattering, such that:

	
ξ ξ λ

= +
1 1 1

mfp0

� (11.41)

thus depending on the mean free path of the material in the nor-
mal phase. Pippard suggested the modification of the London equa-
tions to incorporate this effect, which can be achieved by writing 
λ λ ξ ξ′ = .0  Later, when the BCS theory was established, it was 
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found that the coherence length also plays an important role and is 
related to the ∆0 parameter or band gap as:

	


ξ
π

= ∆
vF

0
0

� (11.42)

this being interpreted as the physical size of the Cooper pair bound 
state and ∆0 being the binding energy. This will be discussed in more 
detail in Section 11.6.

We can define a dimensionless ratio; κ λ ξ= / 0  and this deter-
mines whether a superconductor is a type I or a type II material. 
Also, the mean free path is important, when λ ξ ,0  the supercon-
ductor is said to be in the clean limit. While for λ ξ< ,0  it is said to 
be in the dirty limit. Surprisingly, most superconductors remain as 
such even when there are large concentrations of impurities, which 
makes λ very short. We note that for κ 1 (i.e., λ ξ), we have 
a type I superconductor, while superconductors with κ 1 (i.e., 
λ ξ ) are of the type II variety.

11.5  GINZBURG - LANDAU MODEL

There are two principal theoretical approaches to supercon-
ductivity; i) a phenomenological theory which uses the London 
equations and ii) the microscopic theory known as the BCS theory. 
We will discuss this latter theory in the following section. A some-
what different perspective is given by the Ginzburg - Landau (GL) 
theory. The GL model is based on a very general approach to phase 
transitions and can be applied to phenomena related to other areas 
of physics, such as magnetism and liquid crystals. It is a mean-field 
theory applied to the thermodynamical state of a system. The model 
was originally proposed in the 1930s and relates to the change in 
symmetry of the system as it undergoes a phase change. For exam-
ple, in the phase change that occurs when a ferromagnetic material 
passes the Curie temperature, the local moments align in a specific 
orientation. Such a phase transition is then characterized by an order 
parameter, which would be zero in the disordered state. So in the 
magnetic case, the magnetization could be used as the order param-
eter, which becomes zero at the Curie point of the ferromagnet.
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In the case of a superconducting material the GL model pre-
sumes an order parameter, the complex pseudo-wave-function, 
which conforms to the following:

	 ψ
ψ

=
>

≠ <
e

T T
T T T

0
( ) 0

c

c

� (11.43)

In the GL theory, the order parameter is related to the density 
of superconducting electrons, such that; |ψ|2 = nS. (Later, Gorkov 
(1959) showed that a correlation with the BCS theory is possible 
near the critical temperature, Tc, where ψ is directly proportional to 
the gap parameter, ∆0.)

The order parameter should be a smooth function of tempera-
ture and related to the free energy of the superconductor. Making 
a Taylor expansion of the free energy in powers of the order param-
eter, we can write:

	 α ψ β ψ= + + +F T V n F T V T T( , , ) ( , ,0) ( ) | |
1
2

( ) | |S S S
2 4 � (11.44)

which can be equivalently written as:

	 α β= + + +F T V n F T V T n T n( , , ) ( , ,0) ( )
1
2

( )S S N s S
2 � (11.45)

From the equilibrium condition; F n 0,S S∂ /∂ =  we obtain:

	
α
β

= −n
T
T

( )
( )S � (11.46)

Since the free energy must be a minimum, we have ∂ /∂ >F n 0.S S
2 2  

So from Equation (11.45), β is positive, so from (11.42), α should be 
negative. For the phase transition of second order, we expect:

	 T T( ) 0; ( ) 0,cα β= > � (11.47)

and

	 α
α

= −
∂
∂ =
a bT T T

T
( ) ( )c

T Tc

� (11.48)
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This provides us with the necessary conditions above; for T <Tc, 
α(T) < 0 and β(T) > 0. We can plot the form of the free energy, see 
Figure 11.10 (a), which should have a single solution for T > Tc, 
where ψ = 0, while just below Tc, the minimum energy will have 
non-zero |ψ|. We can now express the order parameter in terms of 
the phenomenological parameters α(T) and β(T) as:

	 ψ

β
α=

>

− ∂
∂

<
/

/
=

/u a b

T T

T T
T T

T T
| |

0

( )
( )

c

c

T T

c

1 2

1 2

1 2

c

� (11.49)

A curve of |ψ| as a function of temperature is illustrated in 
Figure 11.10 (b).

From Equations (11.44) and (11.45), we obtain:

	
α
β

= −F F
2S N

2

� (11.50)

However, using Equation (11.22); FS−FN =−µ0Hc
2 /2,  we have:

	
α2

β
=µ0Hc

2 � (11.51)

FIGURE 11.10:  (a) Difference in free energy for the normal and superconducting states  
as a function of the order parameter. The free energy is reduced in the superconducting  

state for T < Tc, where ψ will have non-zero values. (b) Magnitude of the order  
parameter as a function of temperature in the GL model.
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We can now express the critical field, near Tc, as:

	 Hc =
(Tc−T)

µ0β
a∂α∂TbT=Tc

� (11.52)

In the presence of a magnetic field, the effective wave-function 
must change. The GL theory really demonstrates its full potential 
once we include the magnetic field as it shows agreement with the 
Meissner - Ochsenfeld effect and the London equations. To include 
magnetic field effects it is important to make the following operator 
transformation:

	
 

→ −∇ ∇
i i

qA � (11.53)

The relevant charge for superconductors is −2e, which wasn’t 
clear until the BCS theory was developed. The link to GL the-
ory was made by Gorkov, who saw the connection to the Cooper 
pairs. It turns out that a positive charge (+2e) can also be used, 
as we can visualize the Cooper pairs as holes. This has no effect 
on the GL theory. Using the above, we can now express the free 
energy as:

	
 ∫ ψ α ψ β ψ= + + + +∇s ` a b ` tF F
m i

e VA
2

2 | |
1
2

| | dS N
e

2 2 2

2 4

� (11.54)

This must now be minimized by taking the derivatives with 
respect to ψ and ψ*. The resulting equation is rather complex and 
nonlinear, but the term of interest with respect to magnetic effects is 
that which involves the vector potential, A:

	




ψ α β ψ ψ− + + + =∇a b
m

ei
A r r

2
2

( ) ( | | ) ( ) 0
e

2 2
2 � (11.55)

The current density in the superconducting state is given by the 
derivative of the free energy with respect to the vector potential:

	 = −
∂
∂

F
j

AS
S � (11.56)
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which allows us to obtain the supercurrent as:

	


ψ ψ ψ ψ ψ= − − ∗ −
∗

∗
∗

∇ ∇ie
m

e
m

j A
2

( )
(2 )

| |S
e e

2
2 � (11.57)

Equations (11.51) and (11.52) are the the fundamental equa-
tions of the GL theory and with them, Ginzburg and Landau were 
able to demonstrate nonlinear effects of fields, which are strong 
enough to affect ns and its spatial variation. As such the GL model 
embodies the macroscopic quantum mechanical nature of the 
superconducting state.

11.6 � ELEMENTS OF THE BCS THEORY  
OF SUPERCONDUCTIVITY

Any theory of superconductivity must account for a number of 
phenomena related to superconductivity, as for example outlined in 
Section 11.2. The Bardeen Cooper and Schrieffer (BCS) theory was 
published in 1957 and soon became recognized to be correct in its 
essential features and was able to explain a number of experimen-
tally observed phenomena. It was the first truly microscopic the-
ory and as such is preferred to the GL theory. The BCS theory can 
reproduce the results of the GL model.

Even before the full BCS model was published, there were a 
number of indicators of which way things were developing. In par-
ticular, the electron-phonon coupling was seen to have some impor-
tant role to play. For example, the substitution of mercury with 
different isotopes indicated that the shift in the critical tempera-
ture was related to the frequency of lattice vibrations. While many 
properties of solids are independent of the elemental isotope, such 
as Fermi energy and the electronic heat capacity, some properties 
will vary. Lattice vibrations, as we saw in Chapter 5, depend very 
strongly on the atomic masses, varying as −M .

1
2  This is known as the 

isotope effect, and hence the variation of Tc with isotope suggests a 
connection with lattice dynamics. Also, Fröhlich (1950) suggested 
that lattice vibrations would lead to an attractive interaction between 
electrons. The principal idea being that as an electron moves through 
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a lattice of positive ions, it will displace them slightly in the direction 
of electron, see Figure 11.11. The ions being relatively heavy and 
slow moving with respect to the electron, relax back to their equilib-
rium positions only after the electron has passed. In this way we can 
imagine a wake left behind the electron, which acts like a “tube” of 
enhanced positive charge. This enhanced charge can attract a sec-
ond electron and “drag” it along. Actually the second electron will 
also create its own wake and the two electrons can thus couple and 
move together through the lattice. The electrons need not be too 
close, thus avoiding Coulomb repulsion.

The suggestion of pairs of electrons being coupled in a bound 
state due to the mediation with phonons was made in 1956 by Leon 
Cooper. Cooper showed that the electrons can form a stable pair 
with their spins aligned in opposite directions even in the presence 
of other electrons, since the long range Coulomb repulsion between 
the electron pair is largely screened. Such a pair of electrons is 
named a Cooper pair. Cooper considered that the coherence length 
corresponds to the size of the pair and the energy gap, ∆0, represents 

FIGURE 11.11:  Schematic representation of the lattice deformation created by the Coulomb 
attraction between an electron and the positive ions of the crystal. As the electron moves 

through the lattice it leaves a wake of displaced ions behind it. This can create  
an attractive potential for other electrons and plays an important role  
in the electron - phonon coupling in the formation of the Cooper pair.
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the pair binding energy. The energy gap refers to the separation of 
states: between the normal and superconducting electrons. On cool-
ing through the critical temperature, there is a condensation of the 
numbers of electrons from the normal to the superconducting state. 
The existence of the energy gap has been measured experimentally 
using photon absorption for example, where the onset is found for:

	 ν = ∆h 2 0 � (11.58)

The factor two arising from the fact that absorption requires 
the excitation of two electrons from the Cooper pair. Physically this 
corresponds to breaking the pair bond in the absorption of the pho-
ton and hence two free normal electrons are produced. The value 
of the gap varies with temperature, having a maximum value of ∆0 
at T = 0 and disappearing at Tc. The value of ∆0 turns out to be 
proportional to kBTc.

In 1957 Bardeen, Cooper and Schrieffer published their now 
famous paper on the theory of superconductivity. At the heart of 
this theory is the electron-lattice interaction leading to the forma-
tion of the Cooper pairs in the superconducting state, which is 
mediated via the exchange of virtual phonons between the two 
electrons. The pairing requires that the spins of the electrons 
are coupled such that the electron with spin-up and momen-
tum, k  is paired with an electron with spin-down and momen-
tum −k. The angular momentum of the pair is thus zero. The 
BCS theory demonstrated that superconductivity is a cooperative 
phenomenon, since there are interactions which couple electrons. 
Ferromagnetism is therefore also a cooperative phenomenon, 
since the exchange interaction couples the magnetic moments in 
the system.

In the following, we will only give a general qualitative over-
view of the theory; a quantitative description requires a level of 
mathematics beyond the scope of the book, where concepts such 
as Green’s functions and many-body physics are necessary. More 
detailed accounts of the BCS theory can be found in a number of 
texts as well as the original paper itself.1
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11.6.1  Electron - Phonon Coupling and Cooper Pairs
In this section, we will outline the main components to the 

BCS theory to indicate the principal reasoning behind the electron 
pair coupling. We start by considering a pair of electrons with an 
energy close to the Fermi energy, EF, and lying close to the Fermi 
sphere. The electron will have a velocity therefore, close to the 
Fermi velocity, υF. As we mentioned above, the electron will cause 
a deformation in the lattice, thus creating a (virtual) phonon. The 
free electrons can be considered as having a phonon cloud around 
them, and electrons can interact via this phonon cloud. The cou-
pling can be envisaged therefore as an exchange of virtual phonons, 
as illustrated in Figure 11.12. The phonon interaction potential has 
the following form:

	 V
g

q( , )
| |

ph
q

q

2

2 2
ω

ω ω
=

−
λ

λ

� (11.59)

where gqλ represents the matrix element for the electron with momen-
tum, k being scattered to a momentum k + q. Since g m Meq  /λ  
the coupling is relatively weak, where me and M are the masses of the 
electron and the ions of the crystal lattice.

FIGURE 11.12:  Two electrons with momenta, k1 and k2 interact via phonon coupling in the 
formation of the Cooper pair.
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In the BCS model, the effective interaction was simplified to give:

	 ω
ω ω

=
−

V
g

q( , )
| |

ph
eff eff

D

2

2 2
� (11.60)

where ωD is the Debye frequency. This will give an attractive poten-
tial for electrons for ω < ωD, while it is repulsive for ω > .ωD. Rec-
ognition that the repulsive part plays no role was understood by 
BCS. Only electrons with energies within ±kBT of the Fermi energy 
are of interest, which means that we consider the superconductive 
regime only for � �ω k T.D B  This gives a simplified form of the BCS 
phonon potential:

	 ω ω ω= − <V gq( , ) | | ; | |ph
eff

eff D
2 � (11.61)

The energy restriction means that the electron energies of inter-
est are within a range ω± D of the Fermi surface; i.e., E E| | .F Dk ω− <  
Therefore we expect  ω/g M| | 1 .eff D

2 2  But since ω /K M ,D  
where K is an effective spring constant of the lattice, we thus expect 
| gef f |2 to be independent of M. The explanation of the isotope effect 
in the BCS theory arises since we consider only energies within ω± D 
of the Fermi surface, which varies as −M .

1
2

Consider a pair of electrons with states, E1, k1 and E2, k2, just 
above the Fermi energy. At low temperatures, E EF F

0  so that all 
states below EF are occupied. If there is a weak phonon coupling, 
with other electrons considered non-interacting, and since the states 
below kF are occupied, no states are available for < kk| | .F  The pho-
non exchange between our two electrons means there is a continual 
change in wave-vector and using the conservation of momentum, 
can be expressed as:

	 + = ′ + ′ =k k k k q1 2 1 2 � (11.62)

where q is the phonon wave vector. Since we are limited to the range 
of energy (within hωD above EF

0 ), the only possible interactions will 
be as illustrated in Figure 11.13. The maximum energy reducing 
interaction will occur for the largest overlap between the two shaded 
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regions. This will obviously occur when q = 0. This condition gives: 
k1 = − k2 = k, i.e., when the momenta are equal and opposite.

The two-electron wave-function, ψ(r1, r2), must satisfy the 
Schrödinger equation:

	
m

V E

E

r r r r r r r r

r r
2

( ) ( , ) ( , ) ( , ) ( , )
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e

ph
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2
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2
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

ψ ψ ψ
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− + + =
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� (11.63)

where ε is the energy of the Cooper pair with respect to the free 
state, with Vph(r1, r2) = 0, where they would each have an energy 

= /E k m2 .F F e
0 2 2  For the two-electron function written in the form 

of plane waves, the most general function can be written as:

	 ψ(r1,r2)= ψ(r1−r2)=
1
Ω

g(k)
k
∑ eik⋅(r1−r2 ) � (11.64)

The quantity g(k) represents the probability of find-
ing the electron pair in the state (k, −k), which must be zero for 

 ω> > + /k k m E2 ( ) .F e F D
0 2  We now substitute the wave-function 

into the Schrödinger equation and multiply by − ′⋅e ,ik r  where r  = 
r1 − r2, which yields:

	
! 2

2me

g(k)+
1
Ω

g( ′k )
′k
∑ Vk , ′k = (ε+2EF

0 )g(k) � (11.65)

FIGURE 11.13:  Two electrons with momenta, k1 and k2 can interact within the overlapping 
regions via the coupling with a phonon, q.
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where ′Vk k,  is the scattering matrix of the electron pair from state 
(k, −k) to ′ − ′k k( , )  and vice versa. The energy restriction to within 
ωD still holds and for ′Vk k,  to be attractive, it must be less than zero. 
Solution of Equation (11.65) leads to:

	 
ω

=
− − /e

2

1
D

V g E2 ( )F0
0 � (11.66)

which, for weak coupling, V g E( 1,F0
0  the electron pair coupling 

energy is:

	 � �ω− − /e2 D
V g E2 ( )F0

0

� (11.67)

where V0 in the interaction strength and g E( )F
0  is the density of 

states at the Fermi level. This represents the two electron bound 
state energy

One important aspect is that the Pauli exclusion principle 
applies to both electrons. The two-electron wave-function was 
symmetric in coordinates (r1, r2), under the exchange of elec-
trons. However, a requirement of the Pauli exclusion principle 
is that the full wave-function be anti-symmetric under exchange. 
This can be achieved by including the spin components, where 
the spin wave-function must now be anti-symmetric. This req-
uisite leads to the electrons in the Cooper pair having opposite 
spins: ↑ ↓k k( , ).

11.6.2  The BCS Ground State
The BCS ground state refers to the configuration at T = 0 K, 

where all electrons must be occupied in pairs, such that n = nS. The 
energy reduction from the normal to the ground state is represented 
above with energy,  ε. To maintain the lowest energy state we require 
that in a scattering process, two electrons occupying states ↑ ↓k k( , ).
scatter as a pair to ′ ′↑ ↓k k( , )., see Figure 11.14.

The total energy reduction is not a simple summation of of pair 
energies, since each pair energy depends on those already formed. 
The total energy minimum for the whole system must take into 
account all pair configurations including the one-electron kinetic 
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energy and the pair energy reduction due to collisions (i.e., phonon 
exchange). The kinetic energy takes the form:

	 ∑ ξ=E w2K k k
k

� (11.68)

where

	


ξ = −
k

m
E

2 e
Fk

2 2
0 � (11.69)

in which ωk is the probability that pair state ↑ ↓k k( , ) is occupied. 
To evaluate the total energy reduction due to the pair collisions  
k k k k( , ) ( , ), ′ ′↑ ↓ ↑ ↓  we must use the Hamiltonian which takes into 

account that the annihilation of pair ↑ ↓k k( , ) and the simultaneous 
creation of pair ′ ′↑ ↓k k( , ),  leads to an energy reduction of ′V .k k,  Given 
that any pair state can be occupied or unoccupied, the wave-function 
of the pair can be expressed as a combination of orthogonal states: 
| 1〉k and | 0〉k ,  where the former represents the occupied state and 
the latter the unoccupied one. It is then possible to assemble the 
pair function as:

	 |ψ〉k = uk | 1〉k + vk |0〉k � (11.70)

FIGURE 11.14:  Two electrons with momenta, ↑k  and − ↓k  scatter as a pair to states ′↑k  and − ′↓k .
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In this alternative wave function to that represented in Equa-
tion (11.64), we have =v wk k

2  and = −u w1 ,k k
2  being the probabil-

ities of the state being occupied or unoccupied, respectively. The 
representation of the ground state of the system can be approxi-
mated as the product of such pair functions, such that the BCS wave 
function can be expressed as:

	 |ΨBCS〉k = (uk |1〉k + vk | 0〉k)
k
∏ � (11.71)

The Hamiltonian for the scattering process takes the form:

	 Ĥ=−
V0

Ω
σk
+σ ′k
−

k ′k
∑ � (11.72)

where σ+k  and σ ′
−
k  are the Pauli spin operators2. It can thus be shown 

from the evaluation of 〈ΨBCS | Ĥ |ΨBCS〉,  that the total energy of the 
Cooper pairs of the system is given by:

	 WBCS = 2 vk
2ξk−

V0

Ωk
∑ vkukv ′k u ′k

k ′k
∑ � (11.73)

It is useful to remember that θ= =v w cosk k k  and 
θ= − =u w1 sin .k k k  The ground state is arrived at by minimiz-

ing this energy with respect to θ θ∂ /∂ =W; 0.BCSk k  This allows 
the BCS superconducting ground state to be obtained as:

	 WBCS
(0) = ξk

k
∑ a1− ξk

Ek
b −Ω Δ0

V0

� (11.74)

The energy difference between the ground state and the first 
excited state can be expressed as:

	 ξ= − = = +′ ′∆ ∆E W W E2 2BCS BCS BCS k k
(1) (1) (0)

0
2 � (11.75)

The quantity k m E( 2 )e Fk
2 2 0
ξ = ′ / −′  will be very small since it 

represents the kinetic energy of the Cooper pair being scattered out 
of their coupled state. Therefore the minimum excitation to break 
up the cooper pair can be expressed as 2∆0. This is the famous pair 
binding energy or energy gap that arises in the BCS theory. The 
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density of states can evaluated from the a consideration of the excita-
tion spectra, Ek k 0

2∆ξ= +′ ′  and the fact that the number of charge 
carriers must be conserved: g E E g( )d ( )d .S Nk k k kξ ξ=  Since we are 
principally interested in energies in the region of ∆0 around the 
Fermi level, we can write:

	
ξ ξ
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This produces a gap in the density of states in the superconduct-
ing state. The situation is illustrated in Figure 11.15 for absolute 
zero, 0 < T <Tc and for T > Tc.

 11.6.3  Outcomes of the BCS Theory
The existence of an energy gap is a very important result and 

allows an experimental comparison to be made with theory. The gap 
energy reduces with temperature, from the maximum value at zero 
temperature and vanishes at Tc. This can be expressed in the form:

	 T
T
T

( ) 1.74 1
c

0

1 2

∆ ∆= −
/

a b � (11.77)

The zero temperature gap parameter, ∆0 and the critical tem-
perature Tc depend in the same way on the strength of the electron - 
phonon coupling and the density of states. For zero magnetic field it 
is possible to show that they are related by:

	 = =
∆ ∆

k T
k T1.764 or 2 3.528

B c
B c

0
0 � (11.78)

Now since it turns out that the gap parameter and the GL order 
parameter are related, the temperature dependence of ∆0 is tha same 
as that illustrated in Figure 11.10 (b). A comparison with experiment 
was hailed as a major success of the BCS theory, see Figure 11.16.

In the case where a supercurrent, jS, flows, only a shift in the 
k value K/2 is permitted, where we account for the fact that each 
electron in the Cooper pair must experience the same shift. The 
energy gap in the superconductor is unchanged by the existence of 
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FIGURE 11.15:  Density of states, g(E), and occupied states, g(E) f (E) for (a) T = 0 K,  
(b) 0 < T < Tc and (c) T > Tc. The energy gap is largest at 0 K and reduces with  

an increase of temperature. It vanishes at the critical temperature, Tc and  
the density of states is that for a normal metal.
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FIGURE 11.16:  Temperature dependence of the energy gap, ∆(T).  
A comparison with experiment is shown for selected metals.

a current and is independent of k. An alteration of the k-state by an 
inelastic collision can only occur by excitation across the energy gap, 
2∆ and would thus break the Cooper pair bond and reduce the num-
ber of pairs thus reducing the supercurrent. This must therefore be 
ruled out as a relaxation mechanism. This essentially means that the 
Cooper pair does not alter its energy, as long as its kinetic energy is 
below the 2∆ threshold. Since the supercurrent can be expressed 
as: = − = − /n e n e mj v k ,S S S e  we can evaluate the critical current 
at which a large enough change of wave-vector can bring about the 
breaking of the Cooper pair bond. The energy can be estimated 
from taking k → k + K/2, from which we can write:

	
 
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= + + ⋅a bE
m m
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2 2 4e e
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� (11.79)

Considering that  kK| | F  and that we are dealing with elec-
trons near the Fermi energy, k k ,F  we obtain the energy for pair 
dissociation as:

	 δ =


E
k K
m

2 F

e

2

� (11.80)
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It is now a simple matter to obtain the critical current, for which 
δ ≥ ∆E .0  Thus we obtain:

	 =


∆
j

n e
k

( )S c
S

F

0
� (11.81)

For example, in the case of Sn, the experimental value is (jS)c = 
2 × 107Acm−2.

By considering the magnetic field produced at the surface of a 
superconductor, it is possible to relate the critical current with a crit-
ical field. We can do this by considering a wire of radius, r carrying 
a supercurrent, jS. We start from the Maxwell equation; × =∇ H j,  
which we can express as:

	 H S H l j S( ) d d d∇
∫ ∫ ∫× ⋅ = ⋅ = ⋅ � (11.82)

This should be valid for a supercurrent with a magnetic field at 
the surface. Taking a closed path around the circumference of the 
wire and considering the current decay from the surface of the super-
conductor to be: = λ− /j j e ,S S

z0 L  from Equation (11.82) we obtain:

	 π π λ=rH r j2 2 L S
0 � (11.83)

From the critical current density, Equation (11.81), we obtain 
the critical field:

	 λ= =


∆
H j

n e
k

( )c S c L
S

F

0 � (11.84)

where λL is the London penetration depth. Now, since the energy 
gap decays with temperature, Equation (11.77), then so should the 
critical field. This is yet another success of the BCS theory.

	 λ= =


∆
H j

n e
k

( )c S c L
S

F

0 � (11.85)

In quantum mechanics, we can write the generalized form of the 
flux (current) density as:

	 ψ ψ ψ ψ= −∗ ∗ ∇ ∇
m

j
2

( )
e

� (11.86)
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Taking into account the effect of a magnetic field, through Equa-
tion (11.53), and multiplying by the electric charge e, since we are 
dealing with an electric current, we obtain:

	 ψ ψ ψ ψ ψ= − − ∗ −
∗

∗
∗

 ∇ ∇ie
m

q

m
j A

2
( ) | |

e e

2
2 � (11.87)

c.f. Equation (11.57). Using the wave function of the form described 
above, Equation (11.64), we have: ψ = Θn er( ) ,S

i r( )  where Θ r( )  is a 
phase function. From this we obtain the supercurrent as:

	 = Θ −
∗
∇en

m
ej r A

2
[ ( ) 2 ]S

S

e

� (11.88)

we can now take the curl of this equation to obtain:

	 × = −
∗

∇ n
m

ej BS
s

e

2 � (11.89)

This is the second London equation and is consistent with the 
Meissner - Ochsenfeld effect.

We now consider Equation (11.88) for a closed path around a 
superconductor ring, which is threaded by a magnetic field, B. Tak-
ing the path integral for Equation (11.8), we find:

	 ∫ ∫ ∫⋅ = − ⋅ + Θ ⋅
∗ ∗� � �� ∇e n

m
en

m
j l A l r ld d

2
( ) dS

s

e

s

e

2

� (11.90)

Since the current around the loop inside the superconductor 
must be zero and using the identity: ⋅ = ⋅∫∫ A l B Sd d ,  we obtain:

	 ∫ ∫ π⋅ = Θ ⋅ =� �∇h
e e

NB S r ld
2

( ) d
2

2 � (11.91)

We have identified here that the phase change around a loop 
must be zero or an integer multiple of 2π. The left-hand side of 
Equation (11.91) is just the magnetic flux, and this means that the 
flux trapped within the superconductor is quantized:

	 Φ =
h
e

N
2

� (11.92)
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This is referred to as flux quantization, where the basic unit of 
the quantization is h/2e = 2.07 × 10−15 Wb.

11.7  JOSEPHSON EFFECTS

The Josephson effects refer to the quantum tunneling of Cooper 
pairs from one superconducting region to another through a thin 
insulating barrier. Such a barrier usually takes the form of an oxide 
material, such as Al2O3, with a thickness of a few tens of Å. This 
type of structure is usually referred to as a tunnel junction and can 
be found in other tunnel applications, such as the magnetic tunnel 
junction, in which spin dependent tunneling between ferromagnetic 
layers can be used to make spintronic devices. See Section 13.12 
(Chapter 13). The basic structure of the Josephson junction is illus-
trated in Figure 11.17.

The calculation of the current - voltage characteristics (I − V) 
can be made via a consideration of the Schrödinger equation on 

FIGURE 11.17:  Electric circuit for measuring the tunnel current, I, through a Josephson 
junction with a variable external voltage source, Vext.
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either side of the insulating barrier, where the Hamiltonians 1 and 
2 are valid. The Schrödinger equations take the form:

	
∂Ψ
∂

= Ψ + ΨH Ti
t

1
1 1 2 � (11.93)

and

	
∂Ψ
∂

= Ψ + ΨH Ti
t

2
2 2 1 � (11.94)

where Ψ1,2 are the many-body wave-functions for the Cooper pair 
states in superconductors 1 and 2, respectively and  is a coupling 
constant for the tunnel junction and is related to the tunnel proba-
bility of the Cooper pairs between the two superconductors. This is 
a reflection of the fact that the wave-functions of the Cooper pairs 
in one superconductor do not entirely vanish in the other super-
conductor. Clearly for the case where  = 0 there will be no tunnel 
current and the superconductors will be uncoupled. The coupling 
strength with depend on the wave-functions of the Cooper pairs on 
either side of the barrier and importantly on the barrier itself, and 
in particular its thickness. Typically, an experiment will be made 
to measure the tunnel current of the Cooper pairs as a function 
of the applied voltage, Vext. This will create a shift on the energy 
levels with respect to the Fermi level by an amount, qVext, where 
q = −2e is the charge of the Cooper pair. Taking the energy scale 
with respect to the center of the barrier, we can express the above 
equations in the form:

	
∂Ψ
∂

= Ψ + Ψi
t

qV
2

ext1
1 2 � (11.95)

and

	
∂Ψ
∂

= − Ψ + Ψi
t

qV
2

ext2
2 1 � (11.96)

Taking into account that the wave functions must be normalized 
such that: n n| | 2,c S

2Ψ = = /  where nc is the density of Cooper pairs, 
which is evidently double that of the number of electrons in the 
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superconductor, nS. We now write the wave-function for the super-
conductor as:

	 Ψ = = Θ + ΘΘn e n i[cos sin ]c
i

c1,2 1,2 1,2 1,2 1,2
1,2 � (11.97)

We can now take the time derivative and substitute into the 
Schrödinger equation. Rearranging and separating the real and 
imaginary components, for Equation (11.95), we obtain:

	

∂
∂

Θ −
∂Θ
∂

+ Θ = Θ




n
t t
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2
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2
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� (11.98)

for the real part and:
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� (11.99)

for the imaginary component. Similar expressions can be written for 
superconductor 2. We proceed by multiplying Equation (11.98) by 
cos Θ1 and Equation (11.99) by sin Θ1 and summing. We also multiply 
Equation (11.98) by sin Θ1 and Equation (11.99) by cos Θ1 and take the 
difference of the two. After such manipulations for both sets of equa-
tions for superconductors 1 and 2, we establish the following relations:

	 δΘ −Θ = +


V t2e ext
2 1 0 � (11.100)

and

	
∂
∂

= −
∂
∂

= Θ −Θ




n
t

n
t

n
2

sin( )c c
c

1 2
2 1 � (11.101)

where we have simplified the expression by allowing the density of 
carriers to be equal in both superconductors on either side of the 
barrier (nc1 = nc2 = nc), which does not affect the physics of the 
Josephson effect. We note that the factor δ0 is a constant of inte-
gration, which was performed to obtain Equation (11.100) from the 
time derivatives of the phase factors Θ1,2, and has the effect of a 
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change of phase of the signal. In the absence of an applied voltage, 
there should still be a tunnel current, the direction of which depends 
only on the sign of sin(Θ2 − Θ1), i.e., on the phase difference. The 
current density can be expressed from:

	 δ=
∂
∂

=




J q
n
t

q
n

2
sinCP

c
c 0 � (11.102)

or

	 δ=I I sinCP 0 0 � (11.103)

where we have taken into account that this is the current which flows for 
Vext = 0. This is referred to as the dc Josephson effect and only requires 
that the circuit be closed such that the charges can be removed from 
the superconductors. Given that there is no resistance in the super-
conductors, no voltage will be registered on the voltmeter; V = 0. If 
we apply an external potential, the current will increase rapidly to a 
maximum and becomes unstable and a voltage will appear across the 
junction, which depends on the externally applied tension and the 
resistance, R in the external circuit. The current will no longer be due 
to the Cooper pair tunnel effect, but from single electron tunneling 
due to the break up of the paired electrons. The voltage required to 
break up the Cooper pair is given by: 2∆(T)/e. The current - voltage 
characteristics are shown schematically in Figure 11.18.

Referring to Equation (11.101), we can express the tunnel cur-
rent of Cooper pairs, which is proportional to the time variation of 
the pair density, as:

	 ω δ∝
∂
∂

= +




I q
n
t

q
n t

2
sin( )CP

c
c CP 0 � (11.104)

where we have ω = /eV2 ,CP ext  which gives the ac angular fre-
quency of the tunnel current of the Josephson junction. This is 
known as the ac Josephson effect. A 1mV applied potential will pro-
duce a signal with a frequency of 3 × 1012 Hz. We can write the ac 
Josephson current as:

	 I I sin( )CP CP0 0ω δ= + � (11.105)



434  •  Solid State Physics

We can understand the generation of the ac signal from a dc input 
as the energy of the electron pair being converted to photon energy.

If one of the superconductors is replaced by a normal metal, the 
quasi-particle tunneling can still occur, depending on the position of 
the chemical potential on either side of the insulating barrier. This 
effect was actually observed before the Josephson effect was postu-
lated, and was experimentally observed in 1960 by I. Giaever, and is 
known as Giaever tunneling.

It is possible to demonstrate the coherence of the superconduct-
ing state by constructing twin junction device, see Figure 11.19. This 
is analogous to an interferometer in optics, in which the incident 
beam (current in the case of our superconductor) is split into two 
equal paths and then made to overlap in space, at some later posi-
tion. The interference pattern itself can only be produced if the sig-
nals in the two branches are coherent and the electron pairs have 
a wave nature. This is another example of a macroscopic quantum 
effect. The device shown in Figure 11.19 is called a superconducting 
quantum interference device or SQUID, for short.

FIGURE 11.18:  Idealized current - voltage characteristics for a Josephson junction,  
where a Cooper pair tunnel current, ICP exists in the absence of an applied voltage.  
This rapidly reaches a maximum value, I ,CP

Max  which is reached with a small applied  
potential equal to 2∆(T)/e and is therefore temperature dependent.
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Given that each Josephson junction has a response given by 
Equation (11.103), the interference effect will be seen through the 
addition of the two signals:

	 δ δ
δ δ δ δ

= + =
− +

I I I(sin sin ) 2 cos
2

sin
2a b

a b a b
0 0 a b a b � (11.106)

When the loop containing the two Josephson junctions has no 
magnetic field the phase shifts at the junctions, of δa and δb, will be 
fixed. Once a magnetic field, B (vector potential, A) penetrates this 
region, then a further phase change will be produced. The additional 
phase change between two points, say x and y, in the superconduc-
tor due to the vector potential can be expressed as:

	


∫ ∫δ = Θ⋅ = ⋅−
e

l A ld
2

dx y
x

y

x

y

∇ � (11.107)

We can now write the phase shifts for the two paths via the tun-
nel junctions, from point m to point n, as:

	
e

A l
2

dm n a
a

∫δ δ= + ⋅− � (11.108)

FIGURE 11.19:  Illustration of a double Josephson junction device. This is known as  
a superconducting quantum interference device (SQUID). The supercurrent in the  
superconductor to the left is split into currents Ia and Ib, which pass through tunnel  

junctions T Ja and T Jb, respectively. Each will therefore have a current with  
a phase difference of  δa and δb. The total current I = Ia + Ib.
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e

A l
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dm n b
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∫δ δ= + ⋅− � (11.109)

Since these equations must be equivalent we obtain:

	 ∫ ∫δ δ− = ⋅ = ⋅�� �
e e

A l B S
2

d
2

db a � (11.110)

The closed loop integral arises from the fact that the line inte-
grals in Equations (11.108) and (11.109) are in opposite directions. 
This shows that the total phase is controlled, and can be adjusted, by 
the magnetic flux passing through the loop between the junctions. 
Introducing the arbitrary initial phase difference, we now have:

	 ∫δ δ= −


e
B S.da 0 � (11.111)

and

	 ∫δ δ= + ⋅


e
B Sdb 0 � (11.112)

Substituting in Equation (11.106) yields:

	 ∫δ= ⋅


I I
e

B S2 sin cos d0 0 a b � (11.113)

Finally, we can insert the magnetic flux obtained from Equa-
tions (11.91) and (11.92), which gives:

	 δ π=I I N2 sin cos( )0 0 � (11.114)

This means that the current output is oscillatory with the mag-
netic field (flux), with maxima occurring when integral numbers of 
flux units pass through the loop.

The SQUID as a device has a number of clear applications, the 
most obvious being its use in magnetometry. The SQUID magne-
tometer is actually one of the principal applications of supercon-
ducting materials. It is the most sensitive of magnetometers and is 
used as a research tool to study low dimensional magnetic systems. 
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One of the most sensitive magnetic measurements available is the 
micro-SQUID, which has been used to study the magnetic switch-
ing fields and anisotropies in a single magnetic nanoparticle.3 The 
SQUID is so sensitive that is can also be used to detect the minute 
magnetic fields generated in the human brain and has other medical 
and nondestructive detection applications.4

11.8  HIGH-TEMPERATURE SUPERCONDUCTORS

We briefly introduced the topic of high-temperature supercon-
ductivity (HTS) in the introduction. Here we noted that the topic 
really took off in the mid to late 1980s, with the research work of 
Bednorz and Müller and the discovery of the high transition tempera
ture of the oxide YBa2Cu3O7−δ (sometimes referred to as YBCO) and 
related compounds. This material is referred to as a 123 compound, 
which refers to the relative content of the various metals in the 
chemical formula and has a critical temperature of Tc = 92 K. This 
is significant since it has a temperature above the boiling point of 
liquid nitrogen (77K), which means that it is much simpler to study 
and use than low temperature materials since the cryogenic handling 
is much simplified and there is no requirement for the use of liquid 
helium, which is significantly more expensive. Before 1986 all super-
conductivity experiments required low temperature cryogenics, with 
the highest transition temperatures being in the range of 15–23 K.

The existence of HTS was and is still a significant problem in 
solid state physics from a theoretical point of view. It would appear 
that the BCS theory is not applicable in the high temperature regime 
of these materials at least not in the form that it was originally envis-
aged by BCS. Despite this, some form of charge carrier pairing must 
be a component and any electron phonon coupling must be particu-
larly strong.

The YBCO compound has a rather complex crystalline structure, 
as illustrated in Figure 11.20 (a). The structure consists of planes of 
CuO2 alternating within the structures for oxygen atoms in pyramid 
and rectangular planar coordination, as shown in the figure. These 
latter form oxygen chains along the b-axis of the lattice. Oxygen 
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FIGURE 11.20:  Crystal structures for HTS compounds: (a) YBa2Cu3O7−δ type 123  
(b) Bi2SrCa2Cu2O10, type 2122 and Bi2Sr2Ca2Cu2O10, type 2223.

vacancies (indicated as δ for off-stoichiometric compounds) play 
an important role in the superconductivity of the oxide. The CuO2 
planes are a common feature of all superconductors with Tc > 50 K 
discovered up to around 1990 and also play a crucial role in the elec-
trical properties of the superconducting phase. Such materials, with 
CuO2 planes in their crystalline structure are commonly referred to 
as cuprates The YBCO type compounds exhibit a significant anisot-
ropy in its electronic properties between the c-axis and the ab-plane.

The HTS materials generally exhibit rather high upper critical 
fields, typically reaching hundreds of Tesla. YBCO, for example has 
a value of Hc2 of about 340 T. The value also depends on the orienta-
tions of the field with respect to the crystalline axes, being between 
5 to 7 times lower for fields applied along the c-axis. A measure-
ment of the critical field also allows an estimation of the coherence 
length, which is about 3–5 Å in the c-direction and 20–30 Å in the 
ab-plane.

Related to the YBCO like compounds are the Bi and Tl con-
taining materials, with typical stoichiometries Bi2Sr2Ca2Cu3O10 or 
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Tl2Ba2Ca2Cu3O10. Such materials are again referred to in terms of 
the relative content of the various metals in the chemical formula, 
such as 2223 or 2212. These have structures of the form illustrated 
in Figure 11.20(b). As with the YBCO compounds, the crystalline 
structure consists of alternating layers with CuO2 planes, but have a 
much larger unit cell. We note that the unit cell has specific regions 
in which the CuO2 planes are found.

While there is still no overall accepted theory of the super-
conductivity in HTS materials, there are a great many published 
works. As we mentioned above, the Cooper pair mechanism is still 
expected to play a central role in the superconductivity of these sys-
tems, though not necessarily as electrons but in the form of paired 
holes. The hole concept is exactly the same as that outlined for semi-
conductors, where a missing electron can be treated like a positive 
charge carrier, and hence we can speak of p-type conductivity or 
p-type superconductivity, and is determined from the sign of the 
Hall constant, as in the case of semiconductors. Since the critical 
temperatures are that much higher in HTS, we can expect corre-
spondingly high values for the band gap energies, which in this case 
would fall in the region of 20–30 meV. This means that the charac-
teristic values of ∆0/kBTc are in the region of 3–4 as compared to a 
value of 1.764 in the traditional BCS theory. The pairing mechanism 
between the holes has not yet been identified and the energies indi-
cated here are too high for the normal phonon pairing model. It 
may be possible that some form of phonon enhancement is respon-
sible due to structural properties, though this mechanism has yet to 
be identified. It is also possible that coupling between the difference 
CuO2 planes plays some role in the coupling.

One rather crucial aspect of the high-temperature supercon-
ducting materials is the dependence of the critical temperature on 
the oxygen deficiency in the stoichiometry of the compound. As with 
most oxide systems, the oxygen atom readily removes two electrons 
from the metal atoms. Therefore, any oxygen deficiency will affect 
the charge neutrality of the unit cell. It is noted in the YBCO mate-
rials, YBa2Cu3O7−δ, where δ indicates the O deficiency, that above 
δ = 0.7, the ceramics lose their superconducting properties and 
become antiferromagnetically ordered insulators. Even before this 
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transition, the increase of δ is accompanied by a general decrease of 
the transition temperature, Tc. At some level, it would appear that 
the electron affinity of the oxygen atoms is related to the production 
of the hole states in these ceramics and thus the off stoichiometric 
oxygen deficiencies will remove the necessary holes from the solid. 
It is thought that the CuO2 planes in both the YBCO, 2122 and 2223 
superconductors, are in some way responsible for the superconduc-
tivity in the HTS class of materials. The planar structures give rise 
to some form of quasi-two-dimensional transport of charge carriers 
in their paired hole states, as seen with the anisotropic conductive 
properties of these materials. It is further postulated that the alkali 
or rare-earth metals and oxygen atoms between these layers act as 
charge carrier reservoirs which can remove electrons from the CuO2 
planes, thus creating the Cooper pairs in the conduction planes of 
the structure.

The YBCO compound has a large Tc and low Fermi velocity, 
meaning that the coherence length, Equation (11.42), will be rela-
tively small and smaller than the unit cell size. The coherence length 
is related to the extension of the Cooper pair wave function, mean-
ing that the pair size should be much smaller than those in the low 
temperature metal superconducting state. On the other hand, the 
low carrier density will mean a large penetration depth. This means 
that the HTS compounds should be type II superconductors with 
elevated values of the upper critical field, Hc2.

Despite the many difficulties and complexities of the HTS sys-
tems, there is much interest and technological advances that would 
stem from such an understanding also provide much motivation for 
the continued hunt to understand this class of superconductor.

As a final remark, we may point to the superconductivity 
observed in the fullerene (C60) crystals doped with potassium and 
rubidium. These can form a regular fcc type lattice with semicon-
ducting properties and are found to have semiconducting band gaps 
of 1.5–1.9 eV. Transition temperatures in such systems have been 
found in the region of 20–40 K, with their superconductivity being 
explained within the BCS model. With recent developments in the 
related graphene type materials, maybe progress will soon be made 
in this direction too.
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11.9  SUMMARY

Superconductivity is a remarkable natural phenomenon which 
has captured the imagination of many scientists. The phenomenon 
itself was first observed as a total disappearance of the electri-
cal resistivity of the material. It was soon found that the absence 
of resistance has a number of related consequences seen as the 
Meissner - Ochsenfeld effect, i.e., the elimination of magnetic flux 
from the interior of the superconductor and perfect diamagnetism. 
In fact, the magnetic properties of superconductors is an integral 
component of the superconductive phenomenon. These arise from 
the surface currents generated by the magnetic field which form 
within a thin layer at the surface of the material and create fields 
which oppose those that are externally applied.

It was soon found that there are two classes of superconductor. 
A type I material, which eliminates all magnetic fields from its inte-
rior up to a critical field, Hc, at which point the materials undergoes 
a phase transition to the normal resistive state. The type II material 
has two critical magnetic fields. Below the first it acts like a type I 
superconductor, while between the first and second critical fields 
magnetic flux can penetrate the material in filaments, which under 
certain circumstances self organize into regular arrays. These vortex 
states are so named due to the vortex currents that circulate the fila-
ments, and are also referred to as Abrikosov or Shubnikov phases. 
Within the filaments the electrons move in the normal state while in 
the regions between the filaments the material is in the supercon-
ducting state. This is also referred to as the mixed state.

While much experimentation progressed in the subsequent 
years after its discovery, a theoretical description of the super-
conductive state was much more elusive. It was only in the 1930s 
that any real progress was made, with the London theory and the 
Ginzburg - Landau model. The former is essentially based on the 
application of the Maxwell equations and the latter on thermody-
namics and the theory of phase transitions, where an order parame-
ter is used to describe the state of the system. While providing much 
insight into the phenomenological description of the superconduct-
ing state, it was not sufficient to describe the microscopic state of the 
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system. Significant progress really had to wait until well after the end 
of the second world war, and by the mid-1950s an understanding of 
a microscopic description was beginning to form. Fröhlich in 1950 
had suggested some form of phonon interaction should be impor-
tant, based on the isotope effect. However, it was not until 1956 
that Cooper postulated that a pairing of electrons was a necessary 
condition to describe the superconducting state. The following year 
saw the major breakthrough in superconductivity, and after its dis-
covery, possibly singly the most important. This was the publication 
of the so-called BCS theory, after its authors, Bardeen, Cooper and 
Schrieffer, who provided a robust quantum mechanical microscopic 
theory of the Cooper pair and its role in superconductivity.

The pairing of electrons with opposite spins was found to be 
the ground state of the electron gas, where coupling was provided 
by an electron - phonon mechanism. This gives rise to a band gap 
separating the Cooper pair (superconducting) states from the single 
unpaired electron states in the solid. The band gap is a form of Coo-
per pair binding energy and is related to the critical temperature 
of the superconducting state. This was a major triumph of the BCS 
model. The BCS model was also able to cope with the Meissner - 
Ochsenfeld effect and the Ginzburg - Landau model. It furthermore 
was able to predict the flux quantization inside the superconductor.

Based on the quantum mechanical description of the super-
conducting state, progress was made in the early 1960s in the the-
ory and experimental fields relating to tunneling effects between 
superconductors and metals through an insulating barrier (Giaever 
tunneling) and between two superconductors (Josephson effects). 
In the latter an ac and a dc effect were identified. These develop-
ments permitted some of the first real applications of superconduc-
tors in the SQUID device. This is constructed from two branched 
of a superconductor, each containing a Josephson junction. It is 
found that the interference that is observed allows a measure of 
the coherence of the Cooper pair state and is extremely sensitive 
to magnetic fields penetrating the loop between the Josephson 
junctions. This has been used to make the worlds most sensitive 
detector of magnetic fields and is regularly used in the SQUID 
magnetometer.
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The study of materials exhibiting superconductivity has devel-
oped ever since the discovery of superconductivity in 1911 by 
Kamerlingh - Onnes. Most materials that showed superconductivity 
had very low transition temperatures, and usually only up to around 
the 20 K region. Compounds and alloys exhibit somewhat higher 
transition temperatures. It was however not until 1986 that signifi-
cant progress was made in the development of cuprate ceramics. In 
particular, the YBa2Cu3O7−δ compound showed a transition temper
ature of around 95 K, and is significant in being above the tempera-
ture of liquid nitrogen (77 K), which provides for a much cheaper 
and more easily manageable cryogen. Cuprates have CuO2 planes 
in their crystalline structure which are thought to form the conduct-
ing channels. While some form of pairing mechanism is thought to 
hold, it is not between electrons but holes. Hole states are produced 
via oxygen uptake of electrons, though the mechanism for coupling 
does not work in the same way envisaged in the BCS theory. The 
explicit details of this mechanism are the goals of much research in 
high-temperature superconductivity.
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EXERCISES

Q1.	 Use the Gibbs free energy, as expressed in Equation (11.17), 
to obtain the condition:

	 =
−
−

H T
T

S S
M M

d ( )
d

c N S

S N
� (11.115)

where the function G is continuous across the phase 
boundary between the normal (N) - superconducting (S) 
phase boundary.

Q2.	 Demonstrate that the decay of the magnetic field at the 
surface of a superconductor conforms to the relation:

	 = λ− /x eB B( ) (0) x � (11.116)

Q3.	 Consider a superconducting slab of thickness, A, which is 
subject to an applied magnetic field of B. Find the func-
tional form of the magnetic field profile inside the slab.

Q4.	 Derive Equation (11.52) from the Ginzburg - Landau theory.

Q5.	 Consider the Gibbs Free energy at the boundary of the 
normal and superconducting states, where GS(T,H) = 
GN(T,H). With the use of Equation (11.17) demonstrate 
the relation:

	 −SSδT−µ0VMSδH=−SNδT−µ0VMNδH � (11.117)

Q6.	 From the above result, further show that the latent heat per 
unit volume for the phase transition can be expressed as:

	 L=−µ0THc
dHc(T)

dT
� (11.118)
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Q7.	 Use the BCS wave-function, Equation (11.71), to evalu-
ate the total energy of the Cooper pair system using the 
Hamiltonian expressed in Equation (11.72).

Q8.	 Use the form of the wave-function given in Equation 
(11.64) to obtain the current density (Equation (11.86)).

Q9.	 Demonstrate the flux quantization condition as expressed 
in Equation (11.92).

Q10.	 Derive Equations (11.100) and (11.101) for the Josephson 
junction.

NOTES

1 See for example: M. Tinkham, Introduction to Superconductivity, 2e, McGraw-
Hill, New York (1996); BCS, Phys. Rev. 108, 1175 (1957).

2 Given by: σ σ σ= ++ i
1
2

( )k k k
(1) (2)  and σ σ σ= +− i

1
2

( ),k k k
(1) (2)  where σ σ= = −i

i
0 1
1 0

0
0

.k
k

k
k

(1) (2)a b a b 

σ σ= = −i
i

0 1
1 0

0
0

.k
k

k
k

(1) (2)a b a b  Now since |1〉k = a 1
0
b

k

 and | 0〉k = a 0
1
b

k

, we obtain: 

σk
+ |1〉k = 0; σk

+ | 0〉k =|1〉k  and σk
− |1〉k = 0; σk

− | 0〉k = 0.
3 See for example, M. Jamet et al., Phys. Rev. B, 69, 024401 (2004).
4 See J. Ouellette, The Industrial Physicist, 4(2), 20, (1998), for an overview of some 
applications of the SQUID.





CHAPTER 12
DIELECTRIC MATERIALS

“Every man, in his own opinion, forms an exception to the ordinary rules 
of morality.”

—William Hazlitt

“If you cannot get rid of the family skeleton, you may as well make it dance.”

—George Bernard Shaw

“I became insane, with long intervals of horrible sanity.”

—Edgar Allan Poe

12.1  INTRODUCTION

The interaction of electromagnetic radiation with matter pro-
vides an important way of classifying solids and has a number of 
consequences on how we look at materials. We can consider this 
interaction from a classical macroscopic point of view, where we 
apply the Maxwell equations, and describe the process via material 
constants and thus distinguish their responses and hence catego-
rise the solid. Alternatively, we can think of the interaction from a 
microscopic description, where we might think of the absorption 
of a photon as creating a quantum excitation in the solid, such as a 
phonon or an exciton. Of course the nature of the interaction will 
depend on the wavelength (energy) of the incident photon and the 
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specifics of the material in terms of its lattice properties and free 
electrons etc. More complex forms of interaction can also occur, 
which depend on the polarization state of the light and if it is a 
pulsed form, on the duration of that pulse. Such considerations will 
not be elaborated here in this introductory text and we will not 
consider some of the more complex nonlinear responses that some 
materials have.

In general, dielectric materials are insulating substances in 
which there are few or no free charge carriers and typically some 
form of ceramic or polymer. This means that an applied electric 
field can penetrate a significant distance into the their crystals. 
While we have discussed the importance of the electronic proper-
ties of materials in previous chapters, we also need insulating mate-
rials to prevent the passage of electrical current in regions where 
we do not want it to flow. The insulating coatings on wires and 
cables are an important application of dielectric, for instance. The 
use of dielectrics is also a crucial component in the construction 
of capacitors, where the static dielectric properties of the material 
between the electric plates are an essential part of the capacitors 
ability to store charge.

The fact that dielectric materials have no free carriers can also 
be viewed as it having a large enough band gap to prevent the exci-
tation, via thermal ionization, of electron - hole pairs. The optical 
properties of solids is intimately related to the existence or not of 
free charge carriers in the material. In the case of a material with 
many free charge carriers such as electrons, the interaction of the 
electric field with the electrons causes the mirror like appearance 
that most metallic substance have. This is due to the excitation and 
re-emission of radiation below the skin depth of the material. Actu-
ally the response in strongly frequency dependent. In the case of an 
insulating material, the penetration of light can go much further into 
the solid and many dielectric materials are indeed transparent. The 
behavior can be evaluated from the frequency-dependent dielectric 
constant, ω( ),  or in an equivalent manner, the refractive index of the 
material;  ω=n ( ).  The presence of an electric field can distort the 
lattice, shifting the center of charge from the centers of negative and 
positive charge of the atom, thus creating an electric dipole moment. 
The electrical and optical properties can then be determined by the 
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ability of the dielectric materials to form dipoles in the presence of 
the electric field.

In ionic crystals, where there are long range electrostatic forces 
between the ions, the crystal lattice can be deformed by the applica-
tion of electric fields. As with the case of magnetic materials, it is 
sometimes easier to treat such situations as if there was a specific 
field within the material which produces this intrinsic effect. It is 
often much simpler to then deal with these effective fields as a sum 
of vectors along with any applied electric field component.

12.2 � SOME BASIC PROPERTIES  
OF DIELECTRIC MATERIALS

12.2.1  Electrical Conductivity
Despite these materials having very small values of conduc-

tivity, its value is by no means zero. Both free electrons and the 
migration of ions can contribute to the electrical conductivity in 
ceramics. As was shown in the Chapter 9, we can estimate the 
number of free charge carriers in an intrinsic semiconductor from 
the law of mass action:

	 = −np N T P T e( ) ( )C V
k T/ B∆ � (12.1)

So for a band gap, ∆, of a few eV, the number of charge carriers 
present at room temperature should be less than one electron or 
hole per cubic meter. However, electrically active impurities that act 
as donors or acceptors can dominate and significantly contribute to 
the charge carrier concentrations. For example, even for a materi-
als with only one impurity per million atoms (1 ppm), which acts as 
a donor will, when fully ionized produce a carrier concentration of 
around 1022m−3. The conductivity of such a sample can be calculated 
as outlined in Chapter 9.

12.2.2  Ionic Conduction
Ions can migrate through an ionic compound through the mech-

anism of vacancy diffusion, which can be driven by an electric field 
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rather than by a concentration gradient. This should be evident from 
the continuity equations that were established in Chapter 9. The 
current density for such a process can be expressed as:

	 ji = niZieµiε � (12.2)

where Zi is the charge on the ion and µi the ionic mobility. We can 
use the Einstein relation to relate the diffusion constant with the 
mobility; Di = kBTµi/e, from which we can write:

	 σ= =
n Z e D

k T
ji

i i i

B
i

2

εε εε � (12.3)

Therefore for an ionic concentration of ni = 1028m−3 and  
Di = 10−12m2s−1, the ionic conductivity will be given by σi = niZie2Di / 
kBT  10−5Sm−1.

The ionic conductivity is an important parameter in a common 
battery and provides the conduction pathways to combine with 
electrons flowing through an external load on the battery. In many 
cases, the battery has a liquid electrolyte, such as KOH, which pro-
vides the ionic conductivity. However, there is much interest in the 
use of β-alumina solid electrolyte (BASE) which can be used in 
high power Na-S batteries. The Na+ ions can be complexed with 
Al2O3 to form β-alumina, which acts as a substrate with channels 
through which the Na+ ions can flow and can furnich conductivities 
of about 1 Sm−1.

12.2.3  Dielectric Breakdown
One of the primary uses for dielectric materials is insulating 

applications. Therefore it is important to understand under what 
conditions they maintain their integrity for such a role. As such, we 
need to determine the dielectric strength or breakdown potential of 
the material. Since the conductivity is not zero, for strong applied 
electric fields some current will flow. If there are weak points in 
the dielectric, more leakage current will flow at these points and 
cause local (Joule) heating, which in turn can increase the number 
of free carriers excited into the conduction band. This will increase 
the current and at some point, for a sufficient electric field will lead 
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to an avalanche increase in the carrier density and thermal runaway, 
which can cause a catastrophic breakdown.

Defects, such as inclusions and cavities in the dielectric can lead 
to an increase in the local field causing an arcing across a cavity, thus 
ions and electrons can be accelerated by these fields further erod-
ing the walls of the cavity, thus increasing the size of the cavity and 
again leading to the eventual breakdown of the dielectric medium. 
While small, the ionic conductivity can transport impurities from the 
surface of the solid into its bulk. Such a process can be assisted by 
humidity and an acid environment. Impurities can accumulate and 
form conductive pathways in the material, which will lead to thermal 
runaway effects and electrolytic breakdown.

Even in the absence of defect assisted mechanisms, the principal 
requirement for the dielectric breakdown is a sufficiently large elec-
tric field to reach a critical level, such that electrons can be extracted 
from the valance band (or impurity states) and then to be acceler-
ated by the electric field. Once they have sufficient energy they can 
then excite further electrons from the valence or impurity states and 
bring about the avalanche breakdown of the dielectric. The specific 
value of the breakdown potential is material dependent, with poly-
styrene showing one of the highest values for dielectric strength, 
being about 140 MVm−1, while ceramics typically have values in the 
region of 10–20 MVm−1.

Certain electrical components and devices are susceptible to 
electrostatic damage and are shipped in conductive packaging and 
must be installed carefully using an antistatic wristband. This is due 
to the thin dielectric layers in FET channels, which due to their 
dimensions are particularly at risk.

12.3 � ELECTROSTATICS AND THE MAXWELL 
EQUATIONS

The optical and electrical properties of dielectrics are largely 
derived from their ability to form electric dipole moments in the 
presence of an electric field. We can consider that such a dipole as 
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consisting of a positive and negative charge, q, separated by a dis-
tance, x, giving the electric dipole moment:

	 p = qx� (12.4)

We define the polarization of the material in the same way as 
the magnetization is defined in a magnetic material, which is just the 
density of moments:

	
V

P
pn n=

∑ � (12.5)

or simply the dipole moment per unit volume. Macroscopically we 
can introduce the electric displacement as:

	 εε εεD P0 = = + � (12.6)

the constant 0 is called the permittivity of vacuum (or free space) 
having a value of 8.854 × 10−12Fm−1. In the case of a crystalline 
material, the dielectric properties are generally anisotropic and  is 
a rank two tensor. This means that the P and e can be in differ-
ent directions. In the description we give below, we only consider 
the case of an isotropic medium for which  is scalar. Frequently it 
is convenient to define a relative dielectric constant, which we can 
express as:   = / .r 0  In this case we can write:

	 


= +
P

r
0

εε εε � (12.7)

or

	    χ= − =P ( 1)r e0 0εε εε � (12.8)

where we have introduced the static electric susceptibility 
χ = −( 1).e r  The electric susceptibility relates the degree of polar-

ization with the applied electric field. We can combine the above 
with Equation (12.6) to obtain:

	

  

 

χ χ= + = +
=

D (1 )e e

r

0 0 0

0

εε εε εε
εε � (12.9)
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where the constant of proportionality,  ,r  is also referred to as the 
relative permittivity or relative dielectric constant.

We can write the analogous relationships with relation to the 
magnetic properties, where we have a relation between the mag-
netic induction, B, the applied magnetic field, H, and the magneti-
zation, M, which is expressed as:

	
χ= + = +

= =
B H H

H H
( M) (1 )m

m

0 0

0

µ µ
µ µ µ � (12.10)

See Chapter 10 for more details. Equations (12.9) and (12.10) 
are consistent with the four Maxwell equations:

	


ρ
ρ

⋅ = ⋅ =D or
0

εε∇ ∇ � (12.11)

	 × = −
∂
∂t
Bεε∇ � (12.12)

	 ⋅ =B 0∇ � (12.13)

	 × = +
∂
∂

× = +
∂
∂t t

H J
D

B Jor 0 0 0
εεµ µ∇ ∇ � (12.14)

where ρ is the charge density and J is the current density.

It is instructive to illustrate how the static electric properties 
of dielectric materials are used and an excellent example is in the 
capacitor, which is used as a charge storage device. The capacitor 
consists, in its basic form, of a metallic sandwich with an insulating 
filling. When the metallic plates are connected to an external source, 
electrons will accumulate on one of these and induce an equal but 
opposite charge (Q) on the other plate, as illustrated in Figure 12.1 
(a). Once the potential between the plates has become equal to that 
of the source, charges will cease to flow, with the capacitor being 
fully charged for that particular potential, V.

The capacitance is defined as the charge stored on the capacitor, 
divided by the applied voltage, which is written as:

	 =C
Q
V

� (12.15)
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where the unit is given in Farads (F), which by the above defini-
tion is equivalent to Coulombs per volt (CV−1). The charge stored 
is equal to the product of the area of the plates, A, the electric field, 
e, across the plates and the dielectric constant,  of the material 
between the plates:

	 =Q Αε � (12.16)

From a dimensional point of view, we note that the permittivity 
has units of CV−1m−1, and since the electric displacement =D ,ε  
it has units of charge displacement per unit area. Since the electric 
field corresponds to the potential applied divided by the separation 
of the plates = V d( / ),ε  we can express the capacitance as:

	
    χ

= = =
−

C
A
d

A
d

A
d

(1 )r e0 0 � (12.17)

In the case where there is no material between the parallel 
plates, the permittivity will be that of free space, 0. However, when 
a dielectric material is located between the plates of the capacitor, 
the electric field (which from plus to minus in our sign convention) 
will align the electric dipoles formed in the dielectric producing 

FIGURE 12.1:  Parallel plate capacitor connected to an external potential, V,  
which charges the plates with a charge of ±Q for (a) an air filled gap and  

(b) a dielectric filled gap between the metallic plates.
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a negatively charged surface in the dielectric adjacent to the posi-
tive plate of the capacitor. In a similar way there will be a positive 
surface charge in the dielectric adjacent to the negative plate, see 
Figure 12.1 (b). The surface charges cause an increase in the charges 
on the plates, thus increasing the total charge stored by ∆Q. We can 
now write the total charge as:

	 = + = = +Q Q Q DA P0 0ε∆ � (12.18)

where P is the polarization of the dielectric. Thus we note that the 
additional charge on the capacitor was created by the polarization of 
the dielectric and the capacitance takes the form:

	
 

=C
A

d
r0 � (12.19)

and is directly related to the relative dielectric constant of the 
medium between the parallel plates.

12.4  THE LOCAL FIELD APPROXIMATION

We can use the macroscopic relations of electrostatics to relate 
the polarization with the electric field. We can do this by approxi-
mating the local displacement of the ions due to the applied electric 
field by an effective local field, r( ).locεε  This local field is based on 
similar concepts used in magnetics, where we consider the effect of 
the local environment on the magnetization state of an ion. In the 
present case we substitute the polarization for the magnetization. To 
do this we can consider the regions near and far from a particular ion, 
as suggested by Lorentz. The ion in question is generally considered 
to be enclosed within an imaginary sphere, where the contributions 
of the dipoles within the sphere surface are counted individually, 
while everything outside is treated in a continuum approximation of 
the effective field. For an atom in the dielectric under the influence 
of an external charge, we can express the local field as:

	 = + + +r r r r r( ) ( ) ( ) ( ) ( )loc dep sur f dip0εε εε εε εε εε � (12.20)
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where the first term corresponds to the field due to external charges, 
the second term accounts for depolarizing effect (in the same we 
have demagnetizing fields in ferromagnetic samples) due to induced 
surface charges on the outer surface of the sample. The contribution 

sur fεε  is the field produced at the center of an imaginary cavity in the 
sample interior by the polarization induced surface charges on the 
surface of this cavity and dipεε  is the field at the center of this cavity 
due to discrete dipoles distributed on atomic sites inside this cavity, 
excluding that at the center position itself.

We envisage the sample geometry as illustrated in Figure 12.2, 
where we can sum the first two terms in Equation (12.20) with ,extεε  
where we consider the effect of depolarization due to the outer sur-
faces. The cavity shown is considered to be a sphere with surface 
charges induced by the outer surface. For materials with cubic sym-
metry the dipolar contributions inside the sphere will vanish due to 
symmetry considerations. We can now evaluate the charge density 
on the surface of the spherical cavity as:

	
 ∫π φ φ
φ

π
φ= =

π
r

P
r

P
r( ) 2 sin cos

cos
4

d
3sur f

2

0
0

2
0

εε � (12.21)

FIGURE 12.2:  Application of an electric field, e, can lead to the displacement of the centers 
of positive and negative charge, leading to the polarization, P, of the dielectric medium.
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The local field can now be expressed in the form:

	


= +
P

r r( ) ( )
3loc ext

0

εε εε � (12.22)

The local field can be used to express the polarizability, αi, of the 
ith atom, such that:

	 εεp r( )i i locα= � (12.23)

The total polarization will then be expressed as:

	 ∑α α= = NP r r( ) ( )loc i
i

locεε εε � (12.24)

where we assume all atoms to have the same polarizability, α and N 
is the number density of atoms. We now substitute this into Equa-
tion (12.22) and rearrange to obtain the local field as:

	 εε εε
N

r
r

( )
( )

1 3loc
ext

0α
=

− /
� (12.25)

This is now back substituted into Equation (12.24), to give the 
polarization:

	
εεN

N
P

r( )
1 3

ext

0

α
α

=
− /

� (12.26)

This gives the electric susceptibility as:

	
εε

N
N

P
r( ) (1 3 )e

ext0 0 0  
χ

α
α

= =
− /

� (12.27)

We can write the relative dielectric constant as  χ= +1 ,r e  from 
which we can write:

	
N
N

N
N

1 1
(1 3 )

1 2 3
1 3r e

0 0

0

0


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


χ

α
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− /

=
+ /
− /

� (12.28)

This expression can be rewritten in the following way:

	






α
=

−
+

N
3

1
2

r

r0
� (12.29)
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The above equation is commonly known as a the Clausius - 
Mossotti relation, which relates the atomic polarization with the 
macroscopic dielectric constant. This is an important expression 
since we can use it to predict the optical properties of insulators 
based on the Maxwell equations.

12.5  THE DIELECTRIC FUNCTION

Thus far we have only considered that the relative permittiv-
ity is a material (dielectric) constant. However, this should be more 
correctly considered as a frequency dependent material parameter, 
referred to as the dielectric function,  ω( ).  As with the application 
of a magnetic field, all materials exhibit some form of response 
to the existence of an electric field. In general, this interaction is 
understood in terms of the distortion of the charge distribution in 
the atoms and leads to a displacement of the centers of positive and 
negative charges, see Figure 12.3.

The relative dielectric constant from electronic polarization is 
quite small, but plays an important role in the optical properties of 
solids. In general, the electric and magnetic fields are time depen-
dent functions, as described in Equations (12.12) and (12.14). 
However, it is often more convenient to present these in the form 

FIGURE 12.3:  Application of an electric field, e, can lead to the displacement of the centers 
of positive and negative charge, leading to the polarization, P, of the dielectric medium.
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of frequency dependent variables using a Fourier transform, as 
given by:

	 ∫ ω ω= ω−

−∞

∞
t e( ) ( ) di tεε εε � (12.30)

and

	 ∫ ω ω= ω−

−∞

∞
t eD D( ) ( ) di t � (12.31)

Since t( )εε  and D(t) are real functions, we have: ω ω= −∗( ) ( )εε εε  
and ω ω= −∗D D( ) ( ).  We can relate these Fourier coefficients with 
the dielectric function as follows:

	  ω ω ω=D( ) ( ) ( )0 εε � (12.32)

Using Equation (12.14), for the dielectric medium in an oscillat-
ing electric field, we can write:

	    σ ω ω ω ω σ ω ω ω× = − = −i iH ( ) ( ) ( ) [ ( )] ( )0 0εε εε εε∇ � (12.33)

We can now express a frequency-dependent conductivity as:

	  σ ω σ ω ω= − i( ) ( )0 � (12.34)

Equation (12.33) can be expressed alternatively in the form:

	  ω ω ω× = − =
∂
∂

i
t

H
D

( ) ( )0 εε∇ � (12.35)

where we have used a generalized dielectric function:

	  


 ω ω
σ
ω

= +
i

( ) ( )
0

� (12.36)

Conductive phenomena are taken into account from the σ term. 
The use of oscillatory fields can blur the differences between the 
roles of free and bound electrons and we can describe the response 
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in terms of the frequency dependent conductivity, Equation (12.34) 
or in terms of the frequency dependent dielectric function, Equa-
tion (12.36). In static fields this differences is very marked and the 
distinction between the conductivity and the dielectric response is 
more evident.

The dielectric susceptibility and dielectric functions are com-
plex and related; χ ω ω= −( ) ( ) 1.  It is possible to show that the real 
and imaginary parts of the dielectric function are related, where 
  ω ω ω= + i( ) ( ) ( )1 2  and we have:

	 ( ) 1
( )

d1
2ε

P ε
∫ω
π

ω
ω ω

ω= +
′

′−
′ � (12.37)

and

	 ( )
( ) 1

d2
1ε

P ε
∫ω
π

ω
ω ω

ω= −
′ −

′−
′ � (12.38)

Equations (12.37) and (12.38) are known as the Kramers - 
Kronig relations. The parameter  denotes the principal value of 
the integral. The Kramers - Kronig relations are important since, 
for example, they can be used to calculate one part of the dielectric 
function from a measurement of the other without the need for a 
separate measurement.

12.5.1  Electronic Polarization
All materials undergo a certain degree of polarization due to 

the distortion created in their electronic orbits when subject to an 
electric field. When this applied electric field is oscillatory we can 
treat the problem as a form of damped harmonic oscillation, where 
a restoring force is present, which acts to return the system to its 
equilibrium state. We can characterize this restoring force with the 
constant ω0, which is the characteristic resonance frequency of the 
system. The equation of motion can be expressed as:

	  γ ω ω+ + = −x x x
e

m
( )

e
0
2 εε � (12.39)

where γ is the damping constant, which characterizes the lifetime of 
a normal mode of vibration. The system is driven by the time varying 
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electric field ω( ).εε  The solution to this form of equation for a field 
which varies as: ω ω= ωe( ) ( ) ,i t

0εε εε  can be expressed as:

	  ω= ωx t x e( ) ( ) i t � (12.40)

where the complex amplitude is given by:

	  ω
ω

ω ω γω
= −

− −
x

e
m i

( )
( )

( )e 0
2 2

εε
� (12.41)

This can easily be verified by substituting Equation (12.40) in 
(12.39). The dipole moment induced by the oscillating electric field 
takes the form:  ω= −p ex( )  and the electronic polarizability, defined 
as χ ,e 0  can be written in the form:

	
ε ε

p ex e
m i

( )
( )

( )
( ) ( )e

2

0
2 2



α ω
ω

ω
ω ω ω γω

≡ = − =
− −

� (12.42)

The resonant frequency of the material, ω0 typically lies in the 
range 1015 − 1016rads−1, which lies in the ultraviolet region of the 
electromagnetic spectrum. When the damping is weak and small 
with respect to ω0, the expression for low frequencies, ω ω< ,0  can 
be approximated as:

	 α ω
ω ω

=
−

e
m

( )
( )e

2

0
2 2

� (12.43)

This expression is for a single electron, therefore extending to 
a multi-electron atom we need to account for the ionic species and 
sum them to obtain the dielectric function:

	 
 

∑ω
ω
ω

α ω= + = +
P

n( ) 1
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1
1

( )r i i
i0 0ε
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Using the expression for the polarizability including damping 
term, we obtain, for a single atomic species:

	 


ω
ω ω γω
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− −
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It is customary to separate the dielectric function in terms of the 
real and imaginary components, where we use;   ω ω ω= + i( ) ( ) ( )1 2  
and we can thus obtain the real and imaginary parts of the dielectric 
function as:

	 
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These are illustrated in Figure 12.4, where ( )2 ω  has the form of 
a damped resonance curve, the linewidth (full width half maximum - 
FWHM) being given by γ.

12.5.2  Ionic Polarization
Ionic materials consists of oppositely charged ion cores which 

are displaced by the application of an external electric field. This 
produces an ionic polarization in the solid and can have important 
effects in the infrared absorption. Even in covalent materials, such 
as Ge and Si, large susceptibilities are found experimentally due to 
the directional nature of the covalent (sp3) bond, which means that 
the center of the electronic charge is somewhere between the ion 
cores that make up the crystal lattice.

FIGURE 12.4:  General functional forms of  ω( )1  and  ω( )2  in the region  
of a resonance at ω ω= .0
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When evaluating the dielectric response of an ionic crystal we 
should bear in mind that there are three possible modes of vibration 
that can be stimulated by the passing of an electromagnetic wave: we 
can can produce two transversal modes and one longitudinal mode. 
The specific excitation depends on the relative orientation (axis of 
polarization) of the incident electromagnetic radiation with respect 
to the axes of the crystal lattice. The equations of motion for the case 
of a linear chain of ions, with masses m and M (for the two types of 
ion) can be written as:

	  − + − = − ω
+ −

−mu K u u u e e( 2 )n n n n
i t

2 2 1 2 1 2 0ε � (12.48)

	 εMu K u u u e e i t( 2 )n n n n2 2 1 2 1 2 0 ω− + − = −+ − � (12.49)

where we have introduced a driving force of the form: − ω−e e .i tε  
Actually we have already calculated a very similar problem to this 
in Chapter 5 for the normal modes of vibration in a diatomic 
crystal. The difference here is that there is an additional driving 
term in the equation of motion, cf. Section 5.3. The solution for 
the displacement, u, of the ions takes a similar form to that given 
in Equations (5.24) and (5.25), and we can express the solutions 
as follows:

	 ω − − = −mA K A B ka e e2 [ cos( )] ika2
0ε � (12.50)

	 ω + − = − −MB K A ka B e e2 [ cos( ) ] ika2
0ε � (12.51)

Where A and B are the complex amplitudes of the ionic vibra-
tions. We can simplify the above expressions for solutions near k = 0, 
from which we obtain:

	 ω + − =mA K B A e2 ( )2
0ε � (12.52)

	 ω − − = −MB K B A e2 ( )2
0ε � (12.53)

The quantity (B − A) is of interest since it represents the oscil-
lating change of position of the two charges and hence that of the 
dipole moment, which has a moment expressed as e(B − A). It 
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is often useful to evaluate the reduced mass which we obtain as: 
µ = mM/(M + m). Subtracting Equation (12.52) from (12.53) yields:

	 a2K
µ −ω

2b (B−A)=
eε0

µ � (12.54)

For the free oscillation solution, which we can obtain by setting 
= 0,0ε  and corresponds to the optical transverse mode, which at 

k = 0 gives:

	 ωT
2 =

2K
µ

� (12.55)

Substituting back into Equation (12.54) we obtain:

	 (ωT
2−ω2)(B−A)=

eε0

µ
� (12.56)

The ionic polarization can now be expressed using the above 
relation, where we omit damping, as:

	 Pion = Nion(B−A)e=
Nione2ε

0

µ(ωT
2−ω2)

� (12.57)

In a similar way we can express the ionic polarizability as:

	 αion =
pion

ε0

=
e2

µ(ωT
2−ω2)

� (12.58)

The dielectric function can now be expressed as:

	 εr (ω)=1+χe =1+
pion

ε0ε0

= ε(∞)+
e2

ε0µ(ωT
2−ω2)

� (12.59)

It is possible to extract the low frequency ω ω( )T  solution, 
where the static response takes the form:

	 ε(0)= ε(∞)+
Nione2

ε0µωT
2

� (12.60)

which is real and positive. We now re-write Equation (12.59) as:
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The functional form of this equation is illustrated schemati-
cally in Figure 12.5, where the function diverges as the frequency 
approaches ωT from above and below. The longitudinal optical fre-
quency, ωL, is observed as the crossing point of the frequency axis, 
where we can write  ω =( ) 0,L  and we obtain:

	 
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− ∞
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such that
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Equation (12.63) is known as the Lyddane-Sachs-Teller rela-
tion, or LST, which relates the transverse and longitudinal optical 
frequencies to the static dielectric constant and refractive index.1 
This is consistent with Equation (12.6), where for the polariza-
tion being parallel to the incident wave vector we have εε P 0= − /  
and = 0  for longitudinal modes. On the other hand, for trans-
versal optical modes we have the polarization perpendicular to the 

FIGURE 12.5:  Dielectric function in the vicinity of the transverse optical  
mode for an ionic crystal.
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incident wave vector and = 0,εε  for which = ∞, corresponding to 
the divergence at ω ω= .T

From the Maxwell equations it is possible to establish the gen-
eral form of the electromagnetic wave equation, which we can 
express as:

	 
ω

ω− =
c

( )2
2

2
εε εε∇ � (12.64)

Now given the general form of the oscillatory electric field, we 
obtain:

	  ω
ω

=
k c

( )
2 2

2
� (12.65)

where k is the wave vector of the electromagnetic wave. We can now 
depict the dispersion relation for the ionic crystal with the aid of the 
LST relation. The solutions represent coupled electromagnetic and 
mechanical wave, which are called polaritons. The dispersion rela-
tion is shown in Figure 12.6.

FIGURE 12.6:  Dispersion relations for a phonon - polariton in an ionic crystal.
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We see from this that the dispersion relation has two branches, 
one which lies below ωT and the other above ω .L  In the case of 
the lower branch, we have ω ω= ,T  which describes the electric 
field accompanying the transverse optical mode. For low wave 
vectors, however, the frequencies fall off and vanish as kc ,0/  
and corresponds to the case of the propagation of an electromag-
netic wave in a medium of dielectric constant 0. In the upper  
branch, for the higher frequencies we have a similar situation, in 
which we have the propagation of an electromagnetic wave in a 
medium of dielectric constant ∞.  However, for the lower k val-
ues, the frequencies level off to a constant value of ω .L  Between 
the frequencies ωT and ω .L  there are no solutions to the disper-
sion relation.

The polariton dispersion relation can be verified experimentally 
using the Raman spectroscopy techniques, in which the energy and 
momentum change of a photon is observed from inelastic scatter-
ing processes. Reflectivity measurements also offer another exper-
imental method of observing phenomena related to the dispersion 
curve. The reflectivity can be expressed in terms of the dielectric 
constant as:

	



=

−

+
r

1

1

2

a b � (12.66)

This shows that as  ω → ∞( ) ,  the reflectivity will tend to unity. 
This means that in the region between ωT and ω .L, the dielectric 
should act as a perfect mirror. This frequency region, where the 
reflectivity is 100%, is referred to as the reststrahlen band, deriving 
from the German for “residual rays”.

12.5.3  The Total Dielectric Function
The total dielectric function covers the full electromagnetic 

spectrum and the different contributions show specific features over 
this range. We include the electronic (UV), ionic (IR), and dipolar 
(microwave) contributions to the frequency dependent dielectric 
constant which has a variation as illustrated in Figure 12.7.
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12.6  FERROELECTRICS

Ferroelectric materials bear much in common with ferromag-
netic solids. The ferroelectric is a material which exhibits a sponta-
neous dipole moment without the application of an applied electric 
field. This is analogous to the spontaneous magnetization observed 
in ferromagnetic materials in the absence of an external magnetic 
field. Ferroelectrics exhibit hysteretic behavior of the polarization as 
a function of the electric field applied to the sample and also form 
domain structures. Also in common with ferromagnetic materials, 
ferroelectrics also have a temperature dependence of the polariza-
tion, where the spontaneous polarization disappears at a critical 
(or Curie) temperature, Tc. At temperatures above Tc, the material 
becomes paraelectric with the general behavior of the dielectric sus-
ceptibility following a Curie - Weiss law:

	 χ =
−
C

T T
e

c

� (12.67)

where C is a constant.

The origin of a permanent electric dipole moment can be 
seen from crystal symmetry considerations of an ionic crystal. The 

FIGURE 12.7:  Schematic diagram of the total dielectric function showing the dipolar  
orientation, ionic and electric contributions. These features are occur at microwave,  

infrared (IR), and ultraviolet (UV) frequencies, respectively. The imaginary component  
of the dielectric function  ω( ( ))2  is also referred to as the dielectric loss factor.
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conditions for ferroelectricity can be given as follows: (i) There 
must be a single rotation axis along the dipole moment; (ii) there 
can be no mirror planes perpendicular to the rotation axis and 
(iii)  there must be no center of inversion in the crystal. Of the 
32  point groups in crystallography, only 10 satisfy these condi-
tions. Materials in which the above is satisfied and a permanent 
dipole exists are called pyroelectrics. This is because their dipole 
moment changes with temperature, and is related to thermal 
expansion of the crystal lattice. Pyroelectrics are not necessar-
ily ferroelectrics and may have coercive fields greater than their 
breakdown field, or their Curie temperatures may be above their 
melting temperature. All ferroelectrics must however be, by defi-
nition, pyroelectrics. Some properties of ferroelectric compounds 
are listed in Table 12.1.

Of the ferroelectric materials discovered, the main classes are 
the phosphate and titanate groups. The latter group is probably the 
simplest to understand in terms of the origin of its ferroelectricity. 
This class of materials generally crystallize in the cubic perovskite 
structure, see Figure 12.8. The deformation of the BaTiO3 structure 
occurs at a temperature below 393 K, where the centers of the oxy-
gen (O2−) ions and the titanium (Ta4+) ions become displaced creat-
ing a permanent dipole moment.

Typically the cubic pervskite ferroelectrics form with the 
dipole moment locked into one six possible orientations. If these 
are randomly oriented, there will be no net polarization. The 
material can be poled by heating near to the Curie tempera-
ture and applying a strong electric field to align the dipoles in 

TABLE 12.1:  Properties of selected ferroelectric compounds.

Material Chemical Formula Tc (K) P (µCcm−2) at T (K)
KDP KH2PO4 123 4.75 96

Deuterated KDP KD2PO4 213 4.85 180

Barium Titanate BaTiO3 393 26.0 300

Lead Titanate PbTiO3 763 > 50 300

Strontium Titanate SrTiO3 32 3.0 4.2

Potassium Niobate KNbO3 710 30.0 523
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a particular orientation and cooling under an applied electric 
field. After such treatment, reversal of the polarization requires 
a substantial electric field. At the Curie temperature, the lattice 
expands so that the cubic configuration becomes the stable phase 
and the material loses its spontaneous polarization and becomes 
paraelectric.

The second-order ferroelectric transition can be modelled using 
the Curie - Weiss theory. Assuming a local field that is proportional 
to the polarization of the form: ε ε P ,Loc 0γ= + /  where γ is a con-
stant of proportionality, for T > Tc, we find P = Np2eLoc/kBT and the 
susceptibility can be expressed as:
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where T Np k .c B
2

0γ= /  The above equation has the form of the 
Curie - Weiss law, Equation (12.67), from which we can determine 
the Curie constant as C Np k .B

2
0= /  We follow a similar approach 

to that used in the analysis of the magnetic moment to express the 
polarization as:
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 

γ
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FIGURE 12.8:  Cubic perovskite structure of BaTiO3.
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This condition can be used to solve for P. Given that the tanh func-
tion cannot exceed unity, as T → Tc we have Pp k T P Np.B c0γ / = /  
From this we can establish that:
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k T
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B c0

2 � (12.70)

such that:
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This allows the temperature dependence of the polarization to 
be expressed as:

	
P

P
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T

P
P

arctan h
sat c sat

q r= � (12.72)

This variation is illustrated in Figure 12.9.

As a further analogy with magnetic materials, there also exist 
antiferroelectrics in which there can exist two directions for a dipole 
state, which are antiparallel and thus cancel their net dipole moment. 

FIGURE 12.9:  Temperature dependence of the polarization according  
to the Curie - Weiss law for spontaneous polarization.
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Examples of materials which exhibit an antiferroelectric dipole struc-
ture are the oxides: NH4PO4, PdZrPO8 and NaNbO3.

12.7  PIEZOELECTRICS

When certain crystalline solids are mechanically deformed or 
elastically strained, they can become electrically polarized due to 
the displacement of the centers of positive and negative charge. 
Conversely, when an electric field is applied to these materials in 
specific orientations, the crystal becomes strained in a process called 
electrostriction. Such materials are called piezoelectrics. These prop-
erties can only occur in crystals which lack a center of inversion. Given 
these attributes, these materials are capable of converting mechani-
cal energy into electrical energy and vice versa. Piezoelectric materi-
als are to be found in many applications in which micropositioning 
is of importance and has numerous technological applications, such 
as pressure and strain gauges, as well as thermostats and the spark 
generators found in cookers and lighters. In addition to this they are 
to be found in applications for precision actuators, such as in scan-
ning tunneling microscopes and translation stages.

Of the materials that exhibit piezoelectric behavior, we find bar-
ium titanate, Rochelle salt and lead zirconium titanate (PZT), which 
have large piezoelectric coefficients. The response of a piezoelectric 
material is, to a first approximation, linear between the electric and 
mechanical displacements and arises from the linear electrostriction 
related to Hooke’s law.

12.8  MULTIFERROIC MATERIALS

An altogether more exotic and indeed rarer class of material 
is the so-called multiferroic and possess both two or more of the 
ferroic order parameters. That is, has ferroelectric, ferromagnetic 
and/or ferroelastic ordering. Magnetoelectric coupling refers to the 
induced magnetization from an applied electric field or the elec-
tric polarization arising from an external magnetic field. While the 
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existence of electrically and magnetically polarizable materials is 
relatively rare, the occurrence of both types of polarizability in the 
same material is exceedingly rare. The complexity of the different 
types of order is illustrated in Figure 12.10.

Multiferroics are grouped into two types. In the type-I multi-
ferroic, the ferroelectricity and magnetism have different sources 
and appear to be independent of one another, though some weak 
coupling does exist. In general the ferroelectricity persists to higher 
temperatures than the ferromagnetism. The most studied, and hence 
most popular, of the multiferroic materials is the perovskite crystal 
BiFeO3. The multiferroic properties are quite weak, though can be 
enhanced by making them in thin film form. This is a good example 
of a type-I multiferroic. On the other hand, the type-II multifer-
roic has a much stronger coupling in which the magnetism causes 
the ferroelectricity. In such a case, the ferroelectricity disappears 
only in the magnetically ordered state of the crystal. The polarization 
strength in the type-II multiferroic are found to be relatively weak. 
One example of this class of multiferroic is the oxide, TbMnO3.

12.9  OPTICAL PROPERTIES OF SOLIDS

Having introduced the dielectric function, we are now in a posi-
tion to consider the optical properties of insulating materials. In this 
section, we will give a brief overview in this section of some of the 

FIGURE 12.10:  Relationships between multiferroic and magnetoelastic materials.
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more important considerations based on the previous sections and 
also indicate how the optical properties of metallic systems differ 
from those of non-conductive media.

12.9.1  The Wave Equation
It is a simple matter to derive the wave equation for electromag-

netic waves from the Maxwell equations. We can start by taking the 
curl of Equation (12.12):

	 × × ×
∂
∂t
Bεε∇ (∇ ) = −∇ � (12.73)

from which we obtain:
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We now take the time derivative of Equation (12.14) to obtain:
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Given ⋅ =εε∇ ∇( ) 0, from Equations (12.74) and (12.75) we find:

	 ∇2ε =µ0ε0
∂2ε
∂t2

� (12.76)

This is the three-dimensional wave equation and has a counter-
part which can be expressed in terms of the magnetic field H in a 
similar manner. We recognize that the propagation of the electro-
magnetic wave in vacuum occurs at a velocity given by:

	 c=
1

µ0ε0
� (12.77)

where we note that c is the velocity of light in free space. However, 
for the propagation of the electromagnetic wave in a non-conductive 
medium, the velocity will be modified to:

	 v=
1

µε
=

1

µ0ε0εr
� (12.78)
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where for a non-magnetic material we write: µ = µ0. We can now 
express the refractive index of the medium, which is defined as the 
ratio of the velocity of the electromagnetic wave in free space and 
the medium, as:

	 n=
c
v
=
µ0ε0εr
µ0ε0

= εr � (12.79)

12.9.2  Transmission and Reflection Coefficients
An important aspect of the electromagnetic wave is the orthogo-

nality of the electric and magnetic components, which can be quite 
easily shown and is incorporated in the formulation of the Maxwell 
equations. We can simplify the problem by choosing the direction 
of propagation of the electromagnetic wave, which we will do so 
by using the x-direction. This then allows us to express the various 
components with respect to this direction and then evaluate the spe-
cific components of interest. From Maxwell Equations (12.12) and 
(12.14) we can express the variation of the y-component of the elec-
tric field and the corresponding z-component of the magnetic field 
varying in the x-direction, which gives:
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and
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Taking the derivatives of the solutions to the wave equation, 
ε ε ey

i kx t
0

( )= ω+  and = ω+H H ez
i kx t

0
( )  we obtain:

	 ikεy =−iωµHz or ikε0 =−iωµH0 � (12.82)

	 εε εεikH i ikH iorz y 0 0 ω ω− = − = � (12.83)

Multiplying Equation (12.82) by ε0  and Equation (12.83) by 
µH0 and adding the results gives:

	 εε0
2 =µH0

2 � (12.84)
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or alternatively we can write:

	
|ε |
|H |
=
µ
ε

� (12.85)

The energy flow for the electromagnetic wave is represented by 
the Poynting vector, defined as: = ×εεS H. Using the above expres-
sion we can thus write:

	 |S |= ε 2 ε

µ
=H2 µ

ε
� (12.86)

Considering an electromagnetic wave incident (normally) from 
vacuum to a flat surface of a non-conducting medium, with material 
constants,  and µ. Given the conservation laws applying to e and H, 
the incident (i), reflected (r) and transmitted (t) components must 
adhere to the relations:

	 ε ε ε H H Handi r t i r t= + = + � (12.87)

It is now a simple matter to write the following expression using 
the above equations:
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Taking the case of a non-magnetic medium (µ = µ0) we obtain:

	
εr

ε i

=
ε/µ− ε/µ0

ε/µ+ ε/µ0

=
ε− ε

ε+ ε
=

n−1
n+1

� (12.89)

The intensity for any component can be expressed as |e|2, which 
means that the reflection coefficient can be expressed as:
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The generalized expression for the reflection coefficient between 
two media, with refractive indices n1 and n2, takes the form:
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Since the intensity of the reflected and transmitted beams must 
equal to that of the incident beam, we can express the relation for 
the transmission coefficient as:
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Introducing the complex refractive index, defined as: n N iK,= +  
where N is the real part and K the imaginary part. These are gener-
ally referred to as the optical constants, though they do depend on 
frequency. Using this, we can write the complex form of the reflec-
tion coefficient as:
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the symbols marked with an asterisk (*) denote the complex conjugate. 
For the case where one of the media is air, this expression becomes:
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12.9.3  Absorption of Electromagnetic Waves
The refractive index and the wave vector for the propagating 

electromagnetic wave are related by:
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The corresponding complex relations take the form:
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Using our previous functional form of the solution to the wave 
equation we write:
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We now see that the final exponential term acts as a damping 
component and we see that this arises from the imaginary part of the 
complex refractive index. Therefore the propagating wave will lose 
energy as a function of distance into the medium and for this reason 
the constant K is referred to as the extinction coefficient. Since the 
intensity is proportional to ee*, we note that the intensity of the elec-
tromagnetic wave will decay according to Beer’s law:

	 = =ω α− −I x I e I e( ) Kx c x
0

2 /
0 � (12.98)

where the absorption coefficient takes the form:

	 α
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12.9.4  Optical Properties of Dielectrics
The insulating properties of dielectrics have an important influ-

ence on their optical behavior. They tend to be transparent in the 
visible region of the electromagnetic spectrum in their single crys-
talline and amorphous state. The latter being a glassy solid. In the 
polycrystalline phase, the solids tend to be opaque due to multiple 
scattering processes at grain boundaries. However, if the wavelength 
of the radiation is much greater than the average grain size, the 
material becomes transparent.

We saw earlier that the refractive index of a material is related to 
the dielectric constant via the expression:

	 n N iK( ) ( ) ( ) ( )r ω ω ω ω= + = � (12.100)

This expression can be used to determine the optical proper-
ties of dielectrics. We can apply the dielectric function of Equation 
(12.28) and the polarizability, Equation (12.43). This is valid for the 
visible and near ultra-violet region of the electromagnetic spectrum. 
As we move into the infra-red region, the absorption can be evalu-
ated through the dielectric function given in Equation (12.61).

We previously considered the optical modes near k = 0. We can 
extend this to the region of small k to explore the dispersion relation 
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where photons and phonons can couple. Equation (12.61) can be 
rewritten as:

	 ω
ω ω
ω ω
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Substituting from the LST relation, Equation (12.63), we obtain:
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We now obtain the dispersion relation for the photon - phonon 
coupling, where using Equation (12.65), we find the quadratic rela-
tion in ω2:
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The form of the dispersion relation is illustrated in Figure 12.6. 
The two solutions for ω2 give the transverse and longitudinal pho-
non bands.

In addition to this, there are a number of other optical absorp-
tion phenomena which also affect the optical properties of dielectric 
media. We have already mentioned the effects of grains and grain 
boundaries on the transmission of light in these materials. Scattering 
losses to the transmission of radiation can also occur via inclusions 
or other defects in the solid. For example, small metallic particles 
can give color to glasses and Rayleigh scattering can also be a factor. 
In Chapter 4, we saw that point defects in ionic crystals give rise  
to color centers (see Section 4.2.4). Other impurities, such as Cr  
in what would otherwise be a colorless transparent crystal of Al2O3 
give the red color to rubies, while Ni produces a blue hue to the  
sapphire crystal.

If the photon energy is equal to or greater than the band gap 
of the insulator (or semiconductor), the photon can be absorbed, 
transferring its energy to produce an electron - hole pair. While it 
is customary to consider that the material is transparent to radiation 
of frequencies below the band gap energy, it is possible for photons 
with energy below the band gap energy to raise electrons from the 
valence band and instead of “entering” the conduction band, the 
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electron is attracted to the hole state forming a bound pair called an 
exciton. These can be described by hydrogen like states with ener-
gies just below the cut-off point for absorption, usually appearing as 
a peak. The exciton is a quasi-particle which has no charge and can 
move through the crystal, eventually decaying to the ground state 
with the emission of a photon.

Cubic crystals have three equivalent principal axes which inter-
act with light in the same way. By this we mean that light passing 
through the crystal will be refracted in an identical manner without 
the alteration of its polarization state irrespective of its orientation. 
Such a crystal is said to be optically isotropic. In crystal systems with 
lower symmetry, this will not be the case and the medium is optically 
anisotropic. Certain axes, such as the c-axis in hexagonal crystals, 
have a unique symmetry and are referred to as the optical axis. Light 
which propagates along such axes will act in the same way as it does 
in an isotropic material and is called the ordinary ray. However, light 
which enters the crystal at some angle with respect to the optical axis 
will be split into two rays; the ordinary ray, with refractive index nO, 
and the extraordinary ray, which has refractive index nE. The differ-
ence between these two refractive indices defines the birefringence 
of the crystal. The ordinary and extraordinary rays propagate with 
the electric fields vibrating in different planes and travel at different 
speeds through the crystal. The light emerging from such a crystal 
can have different polarization states. These properties are exploited, 
for example, in the Nicol prism to select specific polarizations.

In Equation (12.8) we gave the polarization as a linear function 
of the electric field. However, this is a simplified approximation and 
can be more generally expressed as a nonlinear function of the form:

	 χ χ χ= + + + εε εε εεP [ ]e e e0
(1) (2) 2 (3) 3 � (12.104)

where χ >n( 1)e
n( )  are the nonlinear susceptibilities. These higher 

order terms can give rise to some interesting phenomena, such as fre-
quency doubling χ( )e

(2)  or second harmonic generation. Other higher 
order effects include three- and four-wave mixing, which rely on the 
χe

(2)  and χe
(3)  terms, respectively. Such effects allow the up and down 

conversion of photons and are frequently used in laser devices.
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While the majority of scattering events between light and sol-
ids is elastic (or Rayleigh scattering), inelastic processes can occur, 
whereby there is a transfer of energy from the photon to the crystal 
or vice versa. This type of scattering is usually called Raman scat-
tering, where the transfer of energy from the photon to the crystal 
can give rise to the excitation of vibrational modes or phonons. This 
means that the energy (frequency) of the photon will be reduced in 
a process called Stokes scattering. The inverse process can occur in 
a crystal in which there is a reasonable population of phonons (at 
higher temperatures).

The transfer of energy from phonons to the photon increases 
the photon energy (frequency) in the anti-Stokes scattering pro-
cess. In 1928, C. V. Raman discovered this effect, for which he 
was awarded the 1930 Nobel Prize. Raman spectroscopy, which 
evolved from this discovery, is an important diagnostic tool and can 
be used to evaluate the phonon spectrum and remotely calculate 
the temperature of a solid from this.

The existence of free electrons in a material can radically 
change the optical properties of a solid. The electrons in a metal 
will respond to a time varying electric field, but can only follow the 
oscillations up to a certain cut-off point defined by the relaxation 
time. This allows us to define the plasma frequency of the metal. 
We have discussed the optical properties of metals in Chapter 6, 
Section 6.10.

12.10  SUMMARY

Since dielectric materials are electrically insulating, their 
response to an applied electric field will not result in the conduction 
of charge carriers. This does not mean they not interesting. As we 
have seen in this chapter, there are many important consequences 
of their physical properties that provide material solutions to specific 
technological problems. Of particular importance are the applica-
tions for charge storage in capacitors and their optical properties, 
which derive from the consideration of the frequency response to 
a time varying electric field.
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The production of electric dipole moments under the applica-
tion of an electric field gives rise to polarization phenomena and 
can be categorized as electron, ionic and dipolar. These contribu-
tions have very different frequency responses and in turn will affect 
the dielectric function (constant) in different regions of the electro-
magnetic spectrum for example. At the high end of the spectrum 
the electronic polarization arises from the electron orbitals being 
displaced from the nuclear charge by an oscillating electric field of 
frequencies in the ultraviolet range, where the dielectric constant is 
designated as ∞( ). The ionic polarization, which occurs in ionic and 
covalently bonded solids, depends on the charge separation between 
different atoms in the crystal. The characteristic response is usually 
observed in the infrared region of the electromagnetic spectrum, 
where the dielectric constant is denoted by (0).

In systems where the dipoles are free to move under the influ-
ence of an applied electric field, a paraelectric response can be 
encountered. The alignment will occur against thermal fluctuations, 
which tend to randomize the dipoles. When the dipoles are fixed 
in the solid, a spontaneous polarization can occur. Such a solid is 
called a ferroelectric and is analogous in physical description to a 
ferromagnetic material. The analogy is fairly robust between the 
electric polarization in the formed and the magnetization in the lat-
ter. Indeed both can be described with a Curie - Weiss law for their 
electric and magnetic susceptibilities, respectively and have order-
ing temperatures called the Curie temperature. In pyroelectrics, the 
dipole moment is temperature dependent. In systems without a cen-
ter of symmetry, a distortion of the lattice can produce a potential 
difference due to a non-compensated charge separation, while an 
applied electric field can conversely cause a deformation of the crys-
tal lattice. These are piezoelectrics and have a number of important 
applications in sensor and actuator devices.

Materials which exhibit both ferroelectric and ferromagnetic 
properties (and/or ferroelasticity) are called multiferroics and exist 
in two forms, referred to as type I and type II. In the former, the 
origin of dipole and magnetic moments are largely independent and 
the ordering temperatures are different. In the latter, type II materi-
als, the magnetism of the solid produces a ferroelectric ordering and 
both have the same ordering temperature.



Dielectric Materials  •  483

The optical properties of dielectric materials are largely deter-
mined by their dielectric constants which vary as a function of the 
frequency of electromagnetic radiation. However, a number of more 
exotic behaviors can be observed in these materials and depend on 
the crystalline order of the solid. Effects such as nonlinear suscepti-
bility and birefringence can produce some interesting responses for 
the interaction of light with matter. The transmission and reflection 
coefficients of the solids can be described with the aid of Maxwell’s 
equations and the refractive index.
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EXERCISES

Q1.	 Compare the electrical capacitance of a parallel plate 
capacitor, with plate area 5mm2 and separation 60µm, 
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in vacuum and with a dielectric between the plates with 
a relative dielectric constant of 24. Explain this result.

Q2.	 Demonstrate the form of Equation (12.21).

Q3.	 Derive fully Equation (12.36).

Q4.	 Show the steps involved in the formulation of the 
Kramers - Kronig relations.

Q5.	 Explain the origin of the terms in the equation of 
motion as expressed in (12.39). Further show that Equa-
tion (12.41) is a valid solution of the equation of motion.

Q6.	 In Section 12.5.2, we discussed the modes of vibration for 
a diatomic crystal, whose ions have masses M and m. Show 
that the reduced mass for this system can be expressed as:

	 µ=
Mm

M+m
� (12.105)

Q7.	 Derive the Lyddane - Sachs - Teller (LST) relation.

Q8.	 Use the Maxwell equations to derive the wave equation 
in terms of the magnetic field component of an electro-
magnetic wave. (c.f. Equation (12.76).)

Q9.	 Evaluate the reflectivity of an electromagnetic wave 
perpendicularly incident from the air side of an interface 
with silicon. (Note: you will need to look up the dielectric 
constant of Si.)

Q10.	 Use the complex form of the refractive index to obtain 
Equation (12.94). What is the physical significance of the 
imaginary component of the refractive index?

Q11.	 Evaluate the limits of the reststrahlen band for GaAs, 
where  =(0) 12.4,   ∞ =( ) 10.9  and ν = 8.5 THz.L

NOTE

1 Note that the refractive index is related to the dielectric constant via the relation: 

 ω=n ( ).  We will discuss the optical properties of solids in Section 12.9, where we 
will derive some of the more important relations used here.



CHAPTER 13
NANOTECHNOLOGIES 
AND NANOPHYSICS

“You have enemies? Good. That means you’ve stood up for something, 
sometime in your life.”

—Winston Churchill

“The function of education is to teach one to think intensively and to think 
critically. Intelligence plus character - that is the goal of true education.”

—Martin Luther King, Jr.

“I’m getting worried about the cats, they’ve been looking at me funny. I 
think they have been reading Skinner again...”

—Hank Kahney

13.1  INTRODUCTION

Nanotechnologies refer to a broad range of scientific disciplines 
which study the behavior of objects of nanometric dimensions. The 
exact size of the object, which is the subject of nanotechnologies, is 
rather subjective and depends on the physical property that we are 
considering and how the size and shape of the object behaves on 
characteristic length scales. As such it is better to use a flexible defini-
tion, at least to start with. In broad terms, we can generally consider 
objects with spatial dimensions from 1 to a few 100s of nm to form 
the domain of nanotechnologies.
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In terms of the physical properties of materials, the reduction 
of the size of an object leads to the deviation of the bulk proper-
ties and depends principally on surface and confinement effects. 
In this book, we have been considering the relationship between 
the physical properties of a material with respect to its crystalline 
order and chemical composition. In this regard, the science of nano-
technologies can be seen as an extension of solid state physics and 
rightly belongs in a book of this nature. In the early chapters, we 
have seen that the physical properties of solids depends intimately 
in the crystalline structure and atomic nature of the material. That  
is, the organization or arrangement of the atoms. Also the elements 
within the structure are of vital importance since they can provide 
electrons to the system, and thus controls interatomic forces, and all 
the known physical attributes of the solids, including mechanical, 
electrical, optical, and magnetic properties.

So we should now ask, how does the size of a solid object affect 
its physical properties? This is one of the central questions in the 
subject of nanotechnologies and one which will be addressed in this 
chapter. As a first basic level reply, we can consider two fundamental 
aspects of a nano-object: surface effects and confinement effects. 
In the former we need to consider how the surface can modify the 
physical properties of a material, while in the latter it is the restric-
tion of the space available to electrons which give rise to quantum 
phenomena that can alter the way a material can behave. This all 
sounds rather complex and abstract, but we will clarify these issues 
to give a more satisfactory explanation in the following sections.

Nanotechnologies have attracted much media attention in 
recent years, capturing the imagination of the wider public domain. 
It is rare that topics related to solid state physics reach such a broad 
spectrum of the public in such a prolonged and profound manner. 
Part of the reason is the extraordinary new opportunities that are 
now available to society and extends well beyond the realms of solids 
state physics and physics itself. The unprecedented position of sci-
ence today is now following very different paths to those traditionally 
available. We are seeing new horizons opening up with interdisci-
plinary research from the cross fertilization between many branches 
of scientific study. Today we can see biologists working with com-
puter scientists, physicists researching with medics, and so on. The 
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manipulation and control of tiny objects is indeed allowing us to find 
new ways to study nature and gives many options for future develop-
ment. Novel nano-solutions can be seen popping up in all areas of 
science. New topics are emerging as major areas of research. New 
courses are developing into new career opportunities for future sci-
entists. As an example we can consider the subject of Nanomedicine, 
a branch of science in which the physics of nanomaterials is just as 
important as the consideration of the biochemistry of these objects. 
Nanomedicine and nanobiology are subjects in their own right. This 
is no mere fancy speculation, billions of pounds, dollars, euros, and 
yen are being invested in this technology. Governments do not like 
spending public funds without some definite hope of long term 
gains. Many large companies and corporations are also pumping in 
large sums of cash into research in nanotechnologies.

So where did all this begin? It didn’t just happen overnight. 
Read any book or article on nanotechnology and chances are the 
name of Richard Feynman will come up. Feynman was a visionary 
physicist who in 1959 delivered a talk to the American Physical Soci-
ety entitled “There is Plenty of Room at the Bottom”, in which he 
envisioned what are the consequences of measuring and manipulat-
ing objects on the nanoscale. What we call nanoscience has been 
around for a number of decades. Much of the technologies emerged 
from the electronics industry and the preparation of thin films for 
electronic and optoelectronic devices, such as transistors and photo-
voltaic cells. Indeed an important advance was the development of 
the integrated circuit (IC) and its subsequent miniaturization; this 
was one of the driving forces behind nanotechnologies. The IC was 
the brainchild of Jack Kilby, an employee of Texas Instruments, who 
came up with the idea of integrating the components of a circuit on 
to a monolithic block of a semiconductor. The patent was filed in 
February of 1959, though work was begun in the previous year. Kilby 
was finally awarded a Nobel Prize for his invention in 2000. The idea 
of incorporating several components onto the same block of semi-
conductor was also developed by Robert Noyce some six months 
after Kilby. Noyce went on to co-found the Intel Corporation in 1968 
and was popularly known as the “Mayor of Silicon Valley”.

The semiconductor industry was at the center of the microelec-
tronics revolution in the 1960s and 1970s, and the development of 
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miniaturization technologies. Once the IC had been established, it 
soon became the dominant technology, with the size reduction fol-
lowing the so-called Moore’s law, in which size reduction was found 
to follow a logarithmic law, which holds to this day. Another way of 
measuring this development is by stating that the number of transis-
tors on integrated circuits doubles approximately every two years. 
The Moore’s law as a concept, was named after another co-founder 
of Intel, Gordon E. Moore, who wanted to know how the semicon-
ductor industry would develop over the coming years. The general 
idea of Moore’s law is also found in other technologies, such as com-
puter processing speed, memory capacity, sensors, and even the 
number and size of pixels in digital cameras. All of this is related to 
the development of the technologies for the production of devices. 
Again the semiconductor industry lead the way.

The technologies developed in the 1960s with vacuum technol-
ogy and thin film development were of vital importance as was the 
evolution of photolithographic techniques. This latter is of enormous 
importance in the production of integrated circuits as it defines a reli-
able technique for the repeated production of device components. 
These methods have been subsequently applied to the development 
and fabrication of other types of devices. Thin film technologies are 
of critical importance to research in solid state physics, where they 
are routinely used for the development of most forms of materials, 
including semiconductors, magnetic materials, and ferroelectrics. 
The branch of physics called surface science would probably not exist 
without it, going hand-in-hand with thin film preparation techniques. 
Devices such as the electron microscope, the scanning tunneling 
microscope (STM) and electron spectroscopies all rely on vacuum 
technologies. At the time of writing (2013), the STM was used for 
making the world’s smallest movie, where atoms were manipulated 
to make a sequence of images.

Quantum mechanics is the domain of physics at the atomic level. 
As we consider objects of increasing size quantum behavior will 
give way to classical physics. Quantum mechanics rapidly becomes 
extremely difficult once we start dealing with objects with many 
atoms and we need to consider how we can describe a system as a 
function of its size. This is no simple task. We usually decide how 
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to treat the physics of an object based on which is easier to model. 
The limits of scales are generally considered as the microscopic and 
macroscopic, where quantum and classical physics dominate. In the 
intermediate region we have the mesoscopic scale of objects and 
while having many atoms, are still subject to the laws of quantum 
mechanics and really marks the separation from the macroscopic 
phenomena that belong to the classical domain.

Clearly the subject of this chapter is very extensive and we will 
just provide a flavour of some of the principal physics involved and 
some of the main workings for device applications. In the following 
sections we will outline the principles of surface physics and why it 
is of importance in nanophysics and nanotechnologies. Subsequent 
sections will consider the quantum confinement effects mentioned 
earlier. This will be discussed with respect to how electrons confined 
in low dimensional systems, or nano-objects and how this can radi-
cally alter the electronic transport properties of materials. We will see 
how this is closely related to the optical properties of solids, where 
well-defined nanomaterials can be used to tune optical transitions 
for specific applications. We shall also consider how the magnetic 
properties of materials are subject to modification and manipulation 
by making low dimensional structures and coupling them together to 
produce new properties and devices. Unfortunately, the enormous 
number of developments in nanotechnologies is far too great for us 
to give anything but a brief overview of the subject and since we are 
considering the physical properties of solids we cannot go beyond this 
area in to other emerging technologies. We will limit our discussion 
to the physical principles which are at the root of nanotechnologies.

13.2  THE PHYSICS OF SURFACES

Let us commence by considering what a we mean by a physical 
surface. A surface can be envisaged as a terminating plane of a crys-
tal. Being a surface, this atomic plane will lack the symmetry of the 
bulk as a whole plane of atoms (above the surface) is, in effect, miss-
ing. This will therefore mean that the normally occupied bonds to 
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this plane are absent and will severely affect the atomic environment. 
Such missing bonds are referred to as dangling bonds. To accom-
modate this situation, the surface atoms will frequently re-arrange 
their relative positions, often giving rise to changes in symmetry and 
interatomic separation. The reorganization of the atomic symmetry 
is referred to as surface reconstruction and is often defined in sym-
metry terms with respect to the bulk symmetry of the same bulk 
atomic plane as that “exposed” on the surface. The region that we 
define as the surface is that region, which can extend several atomic 
planes from the exposed plane, where there is a modification of the 
normal bulk crystalline structure. This zone of the crystal is called 
the selvedge. The alteration of surface atomic planes is schematically 
illustrated in Figure 13.1.

With respect to the measured physical properties, the surface 
layer can be expected to behave rather differently to the normal bulk 
atoms, where for ultrathin films of a few monolayers. Indeed, in this 
case the number of surface atoms can be a very significant propor-
tion of the atoms in the layer. In terms of measuring these properties, 
we require techniques which are surface sensitive, otherwise these 

FIGURE 13.1:  Modification of atomic planes at the surface of a crystal. The upper figure 
shows a bulk terminated crystal which is just terminated in a particular lattice plane with no 
modification of structure. The middle figure considers the relaxation of atomic planes in the 
direction perpendicular to the surface. The lower figure shows the periodic displacement of 

atoms at the surface plane, as occurring in surface reconstructions.
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properties will be effectively invisible to us. There are some specific 
surface analytical tools which were developed and are used for this 
purpose, and we will mention some of these a little later. Alterna-
tively, by making ultrathin structures, we essentially only have surface 
atoms and if we can ensure that our measurement is either element 
specific or limited to the range of the surface, we can gain surface 
sensitivity in this way. For example a thin magnetic film deposited on 
a nonmagnetic substrate can be measured using the ferromagnetic 
resonance technique, which while being a bulk technique, will only 
deliver a magnetic response from the thin film region of the sample. 
An ideal surface can be considered to be an atomically flat crystalline 
plane with no defects. However, as with bulk crystals, such perfect 
situations are rare and there are many of the types of defects that 
we discussed in Chapter 4. In addition to these we can have stepped 
and rough surfaces as well as foreign adsorbates. The strength of 
the interaction between the surface and an adsorbate will depend 
on whether there is an exchange of electrons. When this is the case, 
the strong bond formed is termed chemisorption, for weaker bonds, 
such as with van der Waals forces, the bonding is termed physisorp-
tion. Here no electrons are exchanged between neighboring atoms, 
but their states are modified and give rise to interatomic interactions.

The study of surfaces requires ultra-high vacuum (UHV) con-
ditions. Without this the sample surface would rapidly become 
coated in atoms from the atmosphere and mask any surface effects 
that might be of interest. UHV provides the necessary conditions 
to maintain a clean surface for the periods of time required to per-
form measurements and for the deposition of thin films. Thin film 
technologies are of enormous interest for electronics, optical, and 
magnetic devices and therefore the considerations of surface prop-
erties are an important aspect of these developments. To illustrate 
the point, we can consider the atoms or molecules of a gas whose 
behavior depend principally on pressure and temperature. The den-
sity of particles in a certain volume can be expressed as:

	 n=
p

kBT
� (13.1)

At room temperature we can write: n = 2.5 × 1020p in units of 
m−3 with pressure in Pa, or n = 2.5 × 1022p in units of m−3, with 
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pressure in mbar 1. The mean free path for collisions between mol-
ecules takes the form:

	 λ
π π

= =
n r r

k T
p

1

2
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2
B

2 2
� (13.2)

In the case of N2 molecules at room temperature, we find λ = 
6.6 × 10−3/p in units of m with pressure in Pa, or λ = 6.6 × 10−3/p 
in units of cm with pressure in mbar. We can also evaluate the rate 
of impact of the atoms/molecules of the gas with the surface using 
the following expression:

	
π π

= =J
p

mk T

pN

Mk T2 2B

A

B

� (13.3)

This can be evaluated for the case of N2 molecules at room tem-
perature, from which we can write: J = 2.9 × 1022p in units of m−2s−1 
with pressure in Pa, or J = 2.9 × 1020p in units of cm−2s−1 with pres-
sure in mbar. We can illustrate these principal parameters as a func-
tion of pressure, as shown in Table 13.1.

The time taken to completely cover the surface with a monolayer 
of residual gas, assuming a sticking coefficient of 1 (i.e., all atoms that 
impinge on the surface remain there) is given by: τ × − p4 10 ,6  in 
units of s. We see from Table 13.1 that it is only under UHV condi-
tions that we have the required conditions for performing any rea-
sonable analysis of a physical surface.

Vacuum systems have finite dimensions and the flow rates are 
limited by these physical dimensions. We can consider such situa-
tions through the Knudsen number, which we define as:

TABLE 13.1:  Vacuum parameters as a function of pressure.(Data partially 
adapted from Chambers, Fitch and Halliday.)

p (mbar) n (m−3) λ J (cm−2s−1) τ (s)

103 = 1 atm

1

10−3

10−6 (HV)

10−10 (UHV)

2.5 × 1025

2.5 × 1022

2.5 × 1019

2.5 × 1016

2.5 × 1012

6.6 × 10−6 cm

6.6 × 10−3 cm

6.6 cm

66 m

660 km

2.9 × 1023

2.9 × 1020

2.9 × 1017

2.9 × 1014

2.9 × 1010

4 × 10−9

4 × 10−6

4 × 10−3

4

4 × 104 (~ 11 hours)
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λ

=K
D

n � (13.4)

where D is the diameter of the tubing in the vacuum system. This 
allows us to separate the pumping regimes in a vacuum system. When 
the Knudsen number λ< <K D1( ),n  there will be many collisions 
between the atoms and molecules of the gas and it behaves as a fluid. 
This means that the gas can be sucked away, due to the intermolecu-
lar collisions, using a pumping systems, such as a rotary pump. This 
regime is called viscous flow. Once the pressure decreases below a 
certain limit this will no longer occur and we have λ> >K D1( ).n  
When this occurs the interactions between the gas atoms and mol-
ecules starts to become negligible and the interactions with the walls 
of the chamber become dominant. For  λK D1( ),n  there is 
no way the gas molecules can be pumped away using a traditional 
pump. This regime is called molecular flow. The only way to reduce 
the pressure in this situation is by removing the atoms and mole-
cules using capture methods, such as with a turbo molecular pump 
or cryopump. There are in fact many types of vacuum pump whose 
use depends on the conditions required.

13.2.1  Surface Structure
Since the surface of a crystal is a two-dimensional periodic array, 

we only require two lattice vectors to define its structure. In doing this 
we will define the Bravais lattice for two dimensions. The definitions 
we described in Chapter 2 for crystallography are equally valid for sur-
faces, though are simplified since only two dimensions are required. 
The 14 Bravais lattices that occur in three dimensions are reduced to 
five in two dimensions. These are illustrated in Figure 13.2.

When a surface reconstructs, the surface symmetry is altered 
with respect to the bulk terminated plane. There are different nota-
tions to define the surface reconstruction, which are based on a com-
parison of the unreconstructed and reconstructed surface. The most 
commonly used is the Wood’s notation, which we will outline here. 
We start by noting that the terminated plane has a specific crystallo-
graphic plane (hkl) and a chemical description of the element, S. We 
must now consider the new, reconstructed symmetry with respect to 
this surface. We can define translation vectors:
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	 = =m na a a a| | | | and | | | |s s1 1 1 2 � (13.5)

where asn is the surface translation vector. We can also take into 
account any rotation that may be produced by indicating an angle φ. 
We can now refer to the superstructure surface (reconstruction) as:

	 hkl m n RS( )K( ) φ× − � (13.6)

where K can be either “p” (primitive) or “c” (centered), according 
to the Bravais lattice type. If there is no symbol given, then it is 
implicitly a primitive type reconstruction. Some simple examples are 
illustrated in Figure 13.3.

There are several techniques available to observe the surface 
structure of crystals. The most commonly used are electron diffrac-
tion techniques such as LEED (low-energy electron diffraction) and 
RHEED (reflection high-energy electron diffraction), which were 
briefly outlined in Chapter 3, see Section 3.6.2. The scanning tun-
neling microscope (STM) can also be used to visualize the structure 
of surfaces. The STM is a rather unusual microscope in that we do 
not observe the surface directly via the incidence radiation. Rather, 
the image is constructed as a map of the electrical current between 

FIGURE 13.2:  Bravais lattices for two dimensional crystals/surfaces.
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a very fine tip and the surface of the sample as a function of the 
position in the two directions of the surface. The technique is lim-
ited in that only conducting surfaces can be measured. As the name 
suggests, the current is a tunnel current and is therefore a quantum 
effect. The metallic tip is placed in close proximity to the surface, 
this allows the wave functions for electrons in the tip to overlap with 
those at the surface. The electrons are transferred by the quantum 
tunneling effect. The distance between the tip and the surface is typ-
ically in the region of d = 5−10 Å. Applying a bias voltage between 
tip and surface a tunnel current can flow across a gap, which takes a 
general form of the Fowler - Nordheim equation:

	 = φ−j D V
V
d

e( ) A dB
1/2

� (13.7)

here D(V) represents the joint (tip - surface) density of states 
between tip and surface, A is a constant and φB is the effective bar-
rier height. This equation shows that the tunnel current is a very sen-
sitive function of the barrier width, d, and gives the STM techniques 
its exceptional depth resolution. A change of the barrier by 1 Å can 
change the current by an order of magnitude. The lateral spatial 
resolution also derives from the fact that around 90% of the current 
originates from the “last” atom on the tip and the surface atom clos-
est to it. Resolutions of around 1 Å are attainable.

FIGURE 13.3:  Surface reconstructions for an fcc (100) plane.
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The STM acquisition can be performed either by maintaining 
the current constant and altering the height of the tip above the sur-
face, with feedback to adjust the height controlled via a piezoelectric 
driver. This essentially means we adjust the tip height to maintain a 
constant gap between tip and surface. The measurement will then 
be that of height position, obtained from the feedback voltage from 
the piezoelectric driver, as a function of the xy position. Alterna-
tively, the STM can be run in constant height mode and we map the 
tunnel current as a function of the xy position. In Figure 13.4, we 
show some STM images, illustrating the exceptional spatial (atomic) 
resolution. In the first image we can see the Si (111)-(7 × 7) surface 
reconstruction. The second image shows a ring of Fe adatoms on a 
Cu (111) surface. This illustrates that atoms can be manipulated with 
the tip, first they can be attracted to it, moved to a specific position 
and then released2. An important artifact is seen in the center of the 
ring, where we clearly see what looks to be a ripple pattern, much 
like that on water when a drop has fallen in. This demonstrates that 
the STM as a technique is sensitive to the local density of states at 
the surface, and should be a warning as to how we should interpret 
the STM images. Indeed, what we observe is not really an image of 
the surface atoms, but the electron density at the surface. The image 
in Figure 13.4 (b) should be thus interpreted as the standing elec-
tron wave due to the confinement of electrons in the ring structure.

In fact, this property is exploited in the scanning tunneling spec-
troscopy technique in which a measurement of the tunnel current 
is made as a function of the applied bias potential between tip and 

 

FIGURE 13.4:  Scanning tunneling microscopy images of (a) the Si (111) - (7 × 7) recon-
struction and (b) a ring of Fe atoms on a Cu (111) surface.[Image (a) reprinted with the 

kind permission of Professor Michael Trenary, University of Illinois at Chicago.]
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surface. This contains information about the surface density of states 
as well as that of the tip itself. Forward and reverse bias potentials 
usually give rise to very different spectra due to the distinct nature 
of the initial and final states for the tunneling process between the 
tip and a surface.

The STM technique lead to the development of other so-called 
scanning probe microscopies, which are based broadly in the inter-
action of a tip with a sample surface. The most common examples 
are atomic force microscopy (AFM) and magnetic force microscopy 
(MFM). In the former, the electrostatic forces between a tip and 
the surface produce a deflection of a cantilever upon which the tip 
is mounted. A position sensor is used to detect this movement as a 
function of the tip position on the surface. The AFM technique is 
routinely used to provide surface roughness profiles in thin films. 
The latter technique, MFM, is essentially the same, where the tip is 
now a magnetic material and is used to probe the magnetic state of a 
magnetic film or surface and can be readily used to obtain magnetic 
domain images. The STM was designed and built in the early 1980s 
by Gerd Binnig and Heinrich Rohrer, who were awarded the Nobel 
Prize in Physics in 1986.3

13.2.2  Surface Composition and Excitation States
Once we have established the surface structure, we would like 

to know what is at the surface. The chemical composition of the sur-
face can tell us a lot about the sample. Firstly, whether there is any 
contamination and the chemical composition of the surface itself. To 
measure this we require methods which are either element specific 
or allow us to distinguish between the various atomic species. Fur-
thermore, we must be careful to only probe the surface and not the 
interior of the sample. To do this we can use one of several forms of 
electron spectroscopy.

The basic principles of electron spectroscopies rely on the exci-
tation of electrons from the sample surface via the incidence of 
typically electron or x-ray beams. The excitation can produce the 
emission of characteristic energy electrons and x-rays from which it is 
possible to identify the atomic species from where it originated. This 
is possible since the electron states for each atom are slightly differ-
ent and hence have very specific energies for the emitted radiations.
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The bombardment of a surface with electrons or photons pro-
duces secondary electrons with energies from a few eV up to around 
2 keV. The surface sensitivity of electron spectroscopy techniques 
arises from the fact that electrons of energies in this range are 
strongly scattered. This can be seen from the inelastic mean free 
path of electrons as a function of kinetic energy, which forms a uni-
versal graph and is largely independent of elemental species, see 
Figure 13.5. From this figure we see that the greatest surface sen-
sitivity arises for energies in the range of 20 to 200 eV, where the 
inelastic mean free path is less than 10 Å or 1 nm. In this range of 
energies there is a strong interaction between electrons and atoms, 
and they therefore cannot penetrate deeply into the crystal beyond 
the surface region. At lower energies, they have insufficient energy 
to interact with the atoms in the solid, while at larger energies they 
have a lower scattering cross-section due to higher velocities and can 
penetrate further into the crystal.

There are many variations of electron spectroscopies, which par-
tially depend on the incident (exciting) radiation and partially on 
the detection system used. The main techniques used for studying 
surfaces are Auger electron spectroscopy (AES), electron energy 
loss spectroscopy (EELS) and photoelectron spectroscopy. All of 
these methods analyze the electrons emitted from the sample after 

FIGURE 13.5:  Universal curve: inelastic mean free path of electrons as a  
function of their energy taken from a variety of materials.
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excitation. The general form of the secondary electron spectrum is 
illustrated in Figure 13.6. The principal features are: (i) Sharp elastic 
peak at the primary electron beam energy, E0, and corresponds to 
electrons from the primary beam being elastically backscattered to 
the detector; (ii) Plasmon peaks, which have a specific energy loss 
from the primary energy due to the excitation of plasmons and more 
precisely surface plasmons; (iii) Fixed energy peaks, which arise 
from the excitation and emission of Auger electrons; (iv) secondary 
electron peak, which is a broad peak due to electrons which under 
go multiple scattering processes within the solid and emerge with 
energies of less than 50 eV and originate from within 10 Å of the 
sample surface.

Probably the most common and useful of the electron spectros-
copies is that of AES and is principally used as a chemical identifica-
tion technique. The technique relies on the fact that characteristic 
electrons are emitted with energies specific to the elements, which 
is due to the fact that all atoms have slightly different energy levels 
for their electrons. This is due to the different nuclear charges and 
the screening effects for the various electron shells in the atom. The 
Auger process is illustrated in Figure 13.7, where an incident beam 
(electron or x-ray) excites and removes a core electron (for example, 
from the K shell). The hole is rapidly filled with an electron from a 
less tightly bound level, for example the L2 level. Further de-excita-
tion occurs via the emission of an electron from another, less tightly 

FIGURE 13.6:  Illustration of the secondary electron spectrum, showing the  
various types of backscattered electron peaks from a solid.



500  •  Solid State Physics

bound state, e.g., the L3 level. The emitted electron is referred to as 
an Auger electron and has a very specific energy depending on the 
three levels involved in the process. In the example shown, these are 
the KL2L3 and the energy is denoted as EKL L2 3

 or simply, EKLL. The 
evaluation of this energy is not as simple as it might appear. A first 
approximation can be expressed as:

	 = − − −ΦE E E EKKL L L L2 3 2 3
� (13.8)

where Φ = −E Evac F  is the work function of the material. The prob-
lem is that when the electron is emitted the atom is in an ionized 
state and the energy levels suffer a shift due to the alteration of 
screening effects.

Auger electron spectroscopy is an extremely powerful technique 
and can give information well beyond just chemical identification. 
Since the Auger emission process depends on the energy levels of 
the atoms in the solid, any alteration in these will be measured as a 
shift in the energy of the Auger peak. This can be used to identify 
ionization states and surface oxidation. Furthermore, surface com-
position maps can be studied to obtain a chemical profile of a sample 
using the scanning Auger microscope.

FIGURE 13.7:  Illustration of the emission of an Auger electron from an atom.  
The process illustrated is that of the KL2L3 Auger emission.
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Electron energy loss spectroscopy (EELS) comes in a variety of 
forms and can be used to study core level excitations (100 - 104 eV),  
plasmons and electronic interband transitions (1 - 100 eV) and 
excitation of vibrational surface states (10−3 - 1 eV). All of these  
processes involve a specific energy loss from the electrons of the 
primary beam. This discrete energy quantum is transferred to the 
sample surface, with the energy peak occurring at a set energy below 
that of the primary peak. It is possible to distinguish between an 
Auger peak and an EELS peaks by adjusting the primary energy 
of the incident electron beam. Any peak that remains constant is 
an Auger feature while the shift of the peak by the same amount as 
the primary energy will be an EELS process. The energy of the loss 
process is simply:

	 ∆ = −E E Es0 � (13.9)

where Es represents the remaining kinetic energy of the backscat-
tered electron. In the case where a core electron is excited to an 
empty state in the conduction band, see Figure 13.8, we can express 
the scattered electron energy as:

FIGURE 13.8:  Electron energy scheme for the excitation of a core (K) level electron in a 
semiconductor by a primary electron. The excitation will reduce the energy of the primary 
electron by an amount equal to the energy between initial and final states, ΔE = EK + Ec.  
The process can be measured using the EELS techniques and can effectively measure the 

density of empty states in the conduction band of the semiconductor.
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	 ∆= − = − −E E E E E Es K c0 0 � (13.10)

The EELS technique can also be used to measure the plasma 
excitations of free electron gases in metallic systems, where the plas-

mon energy is given by ne m ,p e
2

0 ω = / ∗  see Section 6.10. The 
technique can also be used to measure surface plasmon resonances, 

with frequency, 2.sp pω ω= /  The measurement of low energy exci-
tations, such as surface or adatom vibrations, requires high resolu-
tion electron analyzers and is termed high resolution electron energy 
loss spectroscopy (HREELS).

Photoelectron spectroscopies use photons to excite electrons in 
solids and can be used to study the densities of occupied states near 
the crystal surface. The technique is broadly based on the photoelec-
tric effect, where an electron, initially in a bound state, Ei, absorbs a 
photon of energy, ω ν= h( ),  and is ejected from the surface of the 
solid with an energy:

	 ω= − −ΦE Ekin i � (13.11)

In order to detect the ejected electron the following condi-
tions must be satisfied: (i) The photon energy must be sufficient to 
allow the electron to escape the solid; ω≥ + ΦE ,i  (ii) The electron 
velocity must be directed towards the outer surface and (iii) The 
electron must not lose energy in collisions with other electrons on its 
way to the surface.

Depending of the photon energy used in the excitation process, 
photoelectron spectroscopy can be considered as: x-ray photoelec-
tron spectroscopy (XPS, also known as ESCA - electron spectros-
copy for chemical analysis) or ultraviolet photoelectron spectroscopy 
(UPS). In XPS, the incident photon energy typically falls in the range 
100 eV - 10 keV. A consequence of these high energies is that deep 
core levels can be excited and processes similar to those in AES can 
occur and hence this spectroscopy is frequently used as a chemical 
identification tool. The UPS technique uses much lower electron 
energies; around 10 - 50 eV and is typically used for the study of the 
density of occupied states in the valence band. An important variant 
of UPS is the use of angular resolved measurements, termed ARUPS 
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(angular resolved ultraviolet photoelectron spectroscopy). This is a very  
powerful tool since it measures the electron yield as a function of ori-
entation and provides a direct measurement of the surface dispersion 
relation and hence the band structure of the solid.

13.3  LOW DIMENSIONAL SYSTEMS

The term low dimensional structure or LDS, refers to any sys-
tem in which one or more of its spatial dimensions are reduced and 
in principle can lead to quantization effects. We will discuss this in 
further detail in the next section of this chapter. Low dimensional 
systems include thin films, multilayers, nanowires as well as quan-
tum dots and nanoparticles.

As we noted above, the symmetry of a crystal has an important 
role in defining the physical properties of a solid. Therefore, since 
a surface has an atomic symmetry which is different from its bulk, 
we can expect the physical properties of the surface to differ from 
those of the bulk. Now we can begin to see how the size of an object 
can influence its physical properties. This can be seen by consider-
ing the proportion of atoms at a surface to the number of atoms 
in the object itself. It so happens that these numbers only become 
important for objects of a nanometric size. In a normal object, vis-
ible to the naked eye, the number of atoms at the surface is only a 
very small percentage of those in the whole object. It is therefore 
possible to neglect surface effects for large, or what we term bulk, 
objects. However, if we consider a thin film, many atoms are on the 
surface and surface properties can dominate the object. This will 
also be true for nanosized entities. We can demonstrate this with a 
simple example. We will consider a hypothetical solid which has a 
simple cubic structure. We will scale the linear dimension of a cube 
shaped object and calculate the numbers of atoms on the surface 
and those in the bulk. We consider, for this exercise, that bulk atoms 
have the full coordination of six nearest neighbors, while surface 
atoms have lower coordinations. Of course we could also consider 
edge and corner atoms, each having a specific coordination number. 
For the purposes of evaluation we consider a lattice parameter of  
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2.5 Å, which is reasonable for metals. For our linear dimensions we 
have an object with length, width and height x, being a cube, which 
has a discrete number of atoms; i.e., x = na, where a is the lattice 
parameter and there will be n+1 atoms in the linear dimension. The 
total number of atoms in the cube of material is

	 = = +n
V
a

n( 1)V 3
3 � (13.12)

where V is the volume of the object and a3 is the volume of a unit 
cell. Since we are considering a simple cubic structure there is only 
one atom per unit cell. The number of atoms in the bulk, with full 
coordination must be:

	 n n( 1)B
3= − � (13.13)

The total number of atoms at the surface of the object will sim-
ply be the difference between the above two equations:

	 = − = + − − = +n n n n n n( 1) ( 1) 6 2S V B
3 3 2 � (13.14)

We can now construct a table of sizes for our cubic object and 
evaluate the number of atoms on its surface and in its bulk. From this 
we can see what are the proportions of each type of atom and hence 
conclude at what point the material can be expected to have its physi-
cal properties dominated by the surface. The variation of the propor-
tion of surface and bulk (core) atoms is illustrated in Table 13.2 and 
Figure 13.9. From the figure we see that the proportion of surface 
atoms reaches around the 50% mark at a linear dimension of a few 
nm. However, even for particles as large as 10 nm, there is still a sig-
nificant proportion of surface atoms, which can already influence the 
physical properties of the nanoparticle. Other crystalline structures 
will differ in absolute numbers, but should follow a similar trend with 
respect to the surface and bulk proportions of atoms and hence their 
subsequent physical properties.

With respect to the fabrication of nanostructures, there are an 
enormous range of techniques available, from the very sophisti-
cated to the very elementary. In broad terms these follow one of two 
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TABLE 13.2:  Cubic shaped nanoparticle with simple cubic structure.  
Length, x; Volume, x3; length, n in number of lattice spacings;  

number of atoms in object, nV ; number of bulk or core atoms,  
nB; number of surface atoms, nS; proportion of bulk atoms,  

nB/nV and proportion of surface atoms, nS/nV.

x = na 
(nm)

V = x3 
(nm3)

n nV 

(n + 1)3

nB

(n − 1)3

nS

nV − nB

nB/nV nS/nV

0.5 0.125 2 27 1 26 0.037 0.963

0.75 0.422 3 64 8 56 0.125 0.875

1 1 4 125 27 98 0.216 0.784

1.25 1.953 5 216 64 152 0.296 0.704

2.25 11.391 9 1000 512 488 0.512 0.488

3.75 52.73 15 4096 2744 1352 0.670 0.330

5 125 20 9261 6859 2402 0.740 0.260

7.5 421.87 30 29791 24389 5402 0.819 0.181

10 1000 40 68921 59319 9602 0.860 0.140

12.5 1953 50 132651 117649 15002 0.890 0.110

18.75 6592 75 438976 405224 33752 0.920 0.080

25 15625 100 1030301 970299 60002 0.940 0.060

FIGURE 13.9:  Variation of the proportions of surface and bulk  
atoms as a function of the linear dimensions of a nanoparticle. This is the  

example given in Table 13.2 for a cubic particle with a simple cubic  
structure and a lattice parameter of 2.5 Å.
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approaches. The so called top-down approach can be considered as 
starting with a large block of the material of study and removing the 
excess to leave behind the final structure of interest. This can be 
achieved by a number of techniques, such as photolithography, elec-
tron beam lithography and focused ion beam milling. These are all 
fairly complex processing techniques. Due to the complexities of such 
methods, we cannot go into the details here. The other approach is 
called bottom-up and contemplates the fabrication of nanostructures 
via the joining together of constituent components. The use of the 
STM to manipulate atoms to form well defined structures is a good 
example of a bottom-up approach. Indeed, there is much research 
on going into the use of biological structures, such as DNA, for their 
use as building blocks for more complex structures. Again the con-
sideration of the details of these technologies goes beyond the scope 
of a single chapter on nanotechnologies. There are many books dedi-
cated to these technologies, see for example the book by M. Madou4.

In the discussion of the physical properties of low dimensional 
structures, we will frequently refer to characteristic length scales. 
Such a concept arises from the fact that specific properties depend 
on physical parameters which require a certain length over which 
they act. This is best demonstrated with an example. Size quantiza-
tion effects in electronic properties occurs at length scales related to 
the Fermi wavelength:

	 λ
π

=
∗k

h

m E

2

2
F

F e F

� (13.15)

where EF is the Fermi energy for a metal. The Fermi wavelength 
decreases with the density of electrons in the metal, nd, where the 
d refers to the dimensionality of the system. The explicit forms are 
given in Table 13.3.

TABLE 13.3:  Fermi wavelength for different dimensionalities.

d λF

3 22/3(π/3m3)1/3

2 π n2 / 3

1 4/n1
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When an object has dimensions comparable to the characteristic 
length, we can expect a divergence of its behavior from that in bulk 
materials. We will discuss further examples of characteristic lengths 
in the following sections, with regards to the electronic, optical, and 
magnetic properties of nanostructures.

It is worth pointing out that the size dependence of various physi-
cal quantities can be studied via scaling laws. These define how the 
parameter of interest varies with length scales. For example, we can 
consider the scaling law for electrical resistance, which follows the 
equation: R = ρl/A, where l is the length of a sample and A is its cross-
sectional area. Thus we see, from a dimensional analysis, that R scales 
as L−1. We can similarly evaluate the scaling law of any physical param-
eter or property to assess how it will behave under size reduction.

13.4 � ELECTRONIC AND OPTICAL PROPERTIES  
OF NANOSTRUCTURES

The electronic properties of solids can alter radically upon min-
iaturization down to the nanoscale. A good indication of this change 
can be considered from the length scale associated with normal 
resistive scattering, i.e., the scattering mean free path, λ τ= v .m F m  

Here vF represents the Fermi velocity, given by: v E m2 ,F F e= / ∗  and 
τm is the relaxation time of the charge carriers. Given this defini-
tion, we say that the charge carriers travel, on average, a distance 
λ between collisions, or in other words the electrons will travel a 
distance of up to λm without being elastically scattered. Considering 
some typical values for metals, we have for Cu:  × −v 1.6 10 msF

6 1   
and τm = 2.7 × 10−14 s, which gives a mean free path for scattering of 
around 40 nm. Therefore in structure of these dimensions made of 
Cu, an electron can traverse the object without any scattering. Such 
a process is referred to as ballistic transport. So the normal resistive 
type behavior has no meaning in this sense for nanostructures with 
dimensions below the mean free path for scattering. We mentioned 
the Fermi wavelength above as a characteristic length scale, and 
when the dimensions of a nanostructure reaches these dimensions 
we can observe quantization effects.
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This is possible since standing waves can be produced due to the 
boundary conditions at the surfaces of the object. At low tempera-
tures, the phase shifts between electrons can occur from scattering 
events and a dephasing will occur. Such considerations only make 
sense in situations where there is a coherence between electrons. 
It is possible to calculate the dephasing time due to scattering and 
hence a phase coherence length, λφ. At low temperature this can 
reach length scales that are much larger than the mean free path of 
electrons and can be of the order of μm. Another important consid-
eration is the charge that can be stored on a nano-object and charg-
ing effects can become important when the electrostatic energy, 
U e C k T,B

2= / <  where C is the capacitance of the object. We will 
discuss many of these concepts in the coming sections.

We have indicated here a number of parameters that are impor-
tant for defining the transport properties in nanostructured devices 
and can dominate the behavior of these systems. In Table 13.4, we 
summarize these parameters.

The size reduction of an object can be defined in 1, 2, or 3 
dimensions. For 1D size reduction only one direction of the object is 
reduced, and the form will be that of a thin film. In terms of confine-
ment effects this would mean that our electrons or charge carriers 
are free to move in two directions and limited in the third direction 

TABLE 13.4:  Important length scales for transport properties in  
low dimensional structures.

Macroscopic object Mesoscopic object

λL

Diffusive transport

λ≤L

Ballistic transport

λφL

Incoherent

λ≤ φL

Phase coherence

λL F

No size quantization

λ≤L F

Size quantization

/ <e C k TB
2

No single electron  
charging effects

/ <e C k TB
2

Single electron  
charging effects
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due to size reduction and quantization effects. Such a situation in 
semiconductors is referred to as a quantum well and the electrons 
are referred to as a two-dimensional electron gas or 2DEG for short. 
Size reduction in two dimensions leads to a wire shape also called 
a quantum wire. In this case the charge carriers have only freedom 
to move along the wire length, i.e., we have a 1D object, and quati-
zation effects occur in the two lateral directions. For three dimen-
sional size reduction, the object will have limited dimensions in all 
three directions. Such an object is called a quantum dot, or a 0D 
device, where quantization effects dominate in all directions. We 
have already introduced the concept of the quantum well, see Sec-
tion 9.6, with respect to device applications.

13.4.1  Size Reduction and Energy Quantization

We have indicated above that the reduction of the size of an 
object will severely alter the way in which electrons can exist in the 
space available, i.e., within the boundaries of the object. This effect 
becomes critical when the de Broglie wavelength associated with the 
electron is of the same order of magnitude as the space in which it can 
move. In such a situation, the edges of the object will act as boundar-
ies and the boundary conditions will define the allowed wavelengths 
(or the wave-functions) and hence energies that the electrons can 
have. Actually we have already met a situation which has a similar 
effect. Electrons in atoms are confined by the electric potential of 
the nucleus. The discrete electron energy levels in atoms are defined 
by the effective potential that the electrons in the atoms are subject 
to due to the nuclear charge and from the screening effects of the 
other electrons that constitute the atom. This will produce a local-
izaton of the electrons and hence their energy states become discre-
tised. The simplest case of confinement that we can consider is that 
of an infinite potential outside the nanostructure (quantum well), 
such that the wavefunction must vanish at the boundary. This means 
that the stationary states (standing waves) in 1D will correspond to 
those with wavelengths given by: λn = 2L/n, where L is the spatial 
thickness of the sample available for the motion of the electron and 
n an integer, which defines the mode (and energy) of the electron 
state. The energy corresponding to the various discrete states can be 
evaluated from the general form of the energy:
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where the wave vector kn is given by k 2 ,n nπ λ= /  such that we obtain:
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This expression only corresponds to the energy contribution in 
the direction of size reduction where quantization effects occur. The 
full energy term is given by an equation of the form of (9.100) for a 
quantum well:
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where we have considered that the reduced dimension is in the 
x-direction. Extending to the quantum wire, with two reduced 
dimensions, the energy takes the form:
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Finally, the corresponding energy for 3D size reduction, i.e., for 
a quantum dot, takes the form:
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In Figure 13.10, we show the basic forms of these energy dis-
persion curves for the quantum well, Equation (13.18), see Figure 
13.10(a), and for the quantum wire, Equation (13.19), see Figure 
13.10(b). The energies for the quantum dot are fully quantized and 
can be defined by the set of three quantum numbers (nx, ny, nz). (Note 
that this excludes the electron spin. However, this is not a problem 
since the electrons are spin degenerate in terms of their energy.)

The size reduction in one or more directions will drastically alter 
the density of states in the solid. For the case of a three-dimensional 
solid we found (see Chapter 6, Section 6.7):
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In the case of a two-dimensional material (2DEG) a similar 
approach can be used to that for three dimensions. This yields a 2D 
density of states of the form:
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e

2 2
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The 2D density of states does not depend on the energy. Taking 
into account that there will be quantization effects in one dimension, 
i.e., in the quantum well, the density of states will take a step-like 
function, where the steps occur at the energies corresponding to the 
discrete energy steps in the direction of reduced dimensions. The 
exact step positions will therefore depend on the thickness of the 
quantum well, as given in Equation (13.18). The density of states 
takes on a staircase like function given by:
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where Θ −E E( ),i  is the Heaviside function. Extending now to the 
case of the one dimensional system (i.e., reduced size in two dimen-
sions), the density of states takes the form:

FIGURE 13.10:  Energy dispersion curves for (a) a quantum well structure, and (b) a quan-
tum wire. We note that each discrete state will give rise to a sub-band labelled with quantum 

numbers referring to the discrete energy state in the directions of size reduction.
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This variation has an energy dependence that goes as the inverse 
root of the energy. To consider more than one energy level, due to 
the discrete nature of the energy from quantization effects we can 
re-write the density of states in the form:
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For the case of a quantum dot (0D), only discrete energy levels 
will exist, as given in Equation (13.20), such that the density of states 
will consist of Dirac delta functions at the energies defined by the 
quantization in 3D. In Figure 13.11, we show a schematic illustra-
tion of the form of the densities of states for the various types of 
nanostructure.

The effect of quantum confinement can also be arrived at from 
the Heisenberg uncertainty principle. If we, for simplicity sake, con-
sider confinement in 1D in the x-direction, we can say that the par-
ticle (electron) is confined within the space of length, Lx = Δx. In 

FIGURE 13.11:  Schematic illustration of the density of states curves for bulk (3D),  
quantum wells (2D), quantum wires (1D), and quantum dots (0D).
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terms of the uncertainty principle, the corresponding uncertainty in 
the linear momentum of the particle will be:

	 ∆
∆


=p
x

x � (13.26)

The additional energy produced by the confinement in the 
x-direction can be expressed by:
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This will correspond to a zero point energy and will be signifi-
cant if it has a value greater than or equal to the kinetic energy of the 
electron due to thermal motion in the direction of quantization. This 
means that to observe some form of quantum effect the following 
condition must be satisfied:

	 ∆ 

≤
∗

x
m k Te B

� (13.28)

From this we can see that for an effective mass of say 0.1 me at 
room temperature, significant quantum effects can be expected for 
confinement distances of around 5 nm. Clearly, for lower tempera-
ture, quantum effects will be more pronounced and Δx will increase.

13.4.2  Quantum Point Contacts

Quantum wires (QWR) represent a quasi-one-dimensional sys-
tem for transport properties. To define the quantum wire we need to 
define its dimensions more carefully. The QWR must have a width 
which is of the order of the Fermi wavelength; λW .F  The wire will 
have diffusive transport if its length is greater than the mean free path; 
λL ,m  where the electrons will undergo many scattering events 

before it can emerge at the other end of the wire under the action of 
an electric field, see Figure 13.12 (a). When the QWR length is below 
the mean free path, λ<L ,m  the electron will suffer one or no colli-
sions, except with the walls of the wire itself. This is the case of the 
ballistic regime, see Figure 13.12 (b). For QWRs which are very short, 
such that � �λW L ,m  the QWR becomes a quantum point contact 
(QPC), see Figure 13.12 (c). In this case there is very little chance 
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that the electron will be scattered in its passage thought the device. 
(This situation is analogous to the case of viscous and molecular flow 
regimes in vacuum technology, see Section 13. 2.)

We can consider the passage of current through a QWR or QPC 
by conceptualising the device as a left and right reservoir for charge 
carriers being connected by a waveguide. In this approach, the left 
and right reservoirs are nothing more than the electrical contacts 
to the device (which are supplied with electrons from an external 
power source) and the waveguide is the QPC itself, see Figure 13.13.

The problem seen in this way resembles a tunnel barrier prob-
lem, where a particle is incident from left or right on a barrier, in this 
case modelled as a QPC. The transmission and reflection coefficients 
can be represented in terms of the wave functions of the particles to 
the left and right of the QPC, or in a more general way the device 
under test (DUT). This approach can be used in a very general man-
ner to obtain the scattering or S - parameters from the DUT, as is 
used in waveguide technology. Since we are essentially dealing with a 
1D problem, we can express the wave functions as a product:

	


ψ ψ ψ= ⊥x y z y z x( , , ) ( , ) ( ) � (13.29)

FIGURE 13.12:  Schematic illustration of quantum wires in (a) the diffusive regime;  
(b) the ballistic regime and (c) a quantum point contact.
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where ψ⊥ y z( , )  is the transverse component and 


ψ x( )  the trans-
lational component in the direction of electron motion of the wave 
function. Left moving and right moving electrons can be expressed as:

	 ∼�ψ = +− − −x e r e x x( ) ;L
ik x x

L
ik x x

L,
( ) ( )L L L L � (13.30)
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and
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( )L L � (13.32)
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ik x x
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( ) ( )R L R R � (13.33)

where xL,R denote the positions of the interfaces to the left and right 
of the QPC with the respective reservoirs. This shows that the wave 
functions have incident, reflected (rL,R) and transmitted (tL,R) com-
ponents (amplitudes) in both directions, see Figure 13.13. Continu-
ity of the wave function and its first derivative allow the following 
relations to be established:

	 − =k r k t(1 | | ) | |L L R R
2 2 � (13.34)

FIGURE 13.13:  QPC (or DUT - device under test) as waveguide system connected to left 
and right reservoirs. Also indicated are the electrons incident from left and right (iL,R),  

transmitted from left and right (tL,R) and reflected from left and right (rL,R).



516  •  Solid State Physics

	 − =k r k t(1 | | ) | |R R L L
2 2 � (13.35)

Also from =r r| | | |L R
2 2  and =∗ ∗t t t tR L R L  we obtain:

	 =k t k t| | | |R R L L
2 2 2 2 � (13.36)

The expression for the current density:
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allows the evaluation of incoming and outgoing currents, which are 
expressed in terms of the transmission and reflection amplitudes 
and the electron velocity. For example if we have a bias applied to 
the QPC device, Va, we can evaluate the input current as: jin = vL, 
and the outgoing current as: j v t| | ,out R R

2=  where v k m .L R L R e, ,= / ∗  
The ratio of these currents will define the left-to-right transmission 
coefficient:
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Similarly we can write:
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where we have 


T E T E T E( ) ( ) ( )L R R L= =− −  and E k m2 .x e
2 2�� = / ∗  

Therefore the transmission coefficients are the same for both direc-
tions for incoming electrons. In terms of the reflection coefficient 
we have:

	 R E
j
j

r r( ) | | | |R

in
L R

2 2= = = � (13.40)

and we must satisfy the relationship:

	 T E R E( ) ( ) 1+ = � (13.41)

It is interesting to note the similarity of various phenomena 
in physics. The above situation is analogous to the reflectivity and 
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transmission of electromagnetic waves at the boundary between two 
media, which we met in the previous chapter, see Section 12.9.2. In 
fact, such a situation can be established in many other situations and 
is a characteristic of wave phenomena.

The energy spectrum due to quantum confinement in the lateral 
directions of the QPC will take the form of Equation (13.19) and for 
the situation we have described above can be expressed as:

	


E m n E
k

m
( , )

2
k m n

x

e
,

2 2

x
= +

∗
� (13.42)

In effect kx, m, n are the quantum numbers that describe the 
system. The number of electrons in any particular state will be given 
by f E m n eV E2 [ ( , ) 2 ],FD k a Fx

+ / −  where the factor of 2 arises from 
spin degeneracy and f E( )FD  is the Fermi - Dirac distribution func-
tion. We can express the left and right going currents as:
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The total net current will be the difference between these two 
contributions:
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This is a rather complex function to evaluate due to the equilib-
rium conditions and can be greatly simplified for the low tempera-
ture approximation:

	 f E E E Elim ( ) ( )
T

FD F F
0

− = Θ −
→

� (13.46)

The difference in the two Fermi - Dirac distribution functions 
in Equation (13.45) can be expressed as eV E E( ).a Fδ −  Since there is 
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no physical sense in using the resistance as a characteristic property, 
it is customary to use the conductance, which is expressed as:

	 G
I
V

= � (13.47)

It is now possible to express the low temperature conductance 
of the QPC in the form:

	 G
e
h

T E m n
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( , , )F
m n

2

,
∑= � (13.48)

where the sum over kx is replaced by an integral and integrated over 
the energy. The summation above is over electron states (m, n), with 
energy E < EF. The prefactor e2/h is called the quantum of conduc-
tance and has a value of G0 = e2/h = 39.6μS,5 with an inverse conduc-
tance equivalent to 1/G0 = 25.2 kΩ. Equation (13.48) is known as the 
Landauer formula. The lateral quantization effects that we discussed 
earlier, and given in Equation (13.42), mean that we can interpret the 
Landauer formula as having a discrete number of channels. We can 
write this as:

	 G G T2 m n
m n

0 ,
,

∑= � (13.49)

where each channel (m, n) will contribute G0Tm,n to the conductance. 
In the ballistic regime the transmission coefficient Tm,n = 1. When 
further channels open, integral numbers of G0 will pass, giving the 
conductance a step-like appearance. To experimentally observe this, 
it is necessary to control the width of the QPC. This can be done by 
defining a conduction channel in a 2DEG in a semiconductor with 
metallic contacts, which will form a depletion zone in the 2DEG and 
thus gating the output. The constricted region will have an energy 
spectrum determined by:
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where the cross-section of the QPC is determined by the thickness 
of the 2DEG, Lz and the lateral dimension, L x V( , )y G

2  will vary in the 
x-direction and is controlled by the gate voltage, VG. This means that 
the conductance will depend on VG:
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	 G G V G N V( ) ( )G open G0= = � (13.51)

where Nopen(VG) is the number of open channels which can be evalu-
ated as follows: Assuming Nopen = (m, 1), i.e., only one mode number 
in the z-direction, a new channel will open when the energy position at 
the top of the barrier passes the Fermi level as we alter the minimum 
width of the QPC:
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This gives the number of open channels as:
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where the subscript indicates that this must be an integer value, 
where the discrete jumps occur at the critical moments when the 
gate voltage is such that a new channel can be accommodated in the 
QPC structure. A more general approach to the scattering formal-
ism was considered by Büttiker for any number of contact leads to a 
device, which is considered as the scattering center. In Figure 13.14, 
we show the conductance of the QPC as a function of the gate volt-
age. Also shown in the figure is an AFM image of the QPC where 
because of the electrostatic interaction with the AFM tip, the con-
duction channels can be visualized.

13.4.3  The Insulating Barrier and Tunnel Junctions
The above section showed that under reduced dimensions, con-

ductors behave in a very different way to the bulk material. This is 
also true of insulating materials. In its normal bulk form, the insula-
tor will not allow the passage of electrons through its bulk. However, 
under reduced dimensions, the conditions for transfer are funda-
mentally altered. The potential barrier is a well known problem in 
quantum mechanics and is one of the highlights that illustrate the 
fundamental new physics that emerged with the discovery of this 
area of physics. Indeed quantum tunneling effects are now very 
well studied, both theoretically and experimentally, having a num-
ber of very important applications, such as the scanning tunneling 
microscope (STM) and the Josephson junction (see Section 11.7). 
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The basic form of the potential barrier problem can be considered 
from the incidence of an electron at a potential barrier of height, V0, 
where the tunnel effect will occur when the electron energy, E < V0. 
The situation is illustrated in Figure 13.15. Three zones can be iden-
tified: (I) x < 0, where the wave function has two components con-
sisting of the incident component, ψi(x), and the portion reflected 
from the barrier, ψr(x); (II) 0 < x < d, the barrier region itself, where 
the wave function will exponentially decay (i.e., where E < V0), and 
(III) x > d, where the emerging transmitted electrons will move to 
the right have a wave function, ψt(x). The functional form the wave 
functions in the three regions can be expressed as:

FIGURE 13.14:  Conductance in a QPC as a function of the gating voltage. (a) The step-like 
variation is clear where the step height corresponds to G0. The effect of sample temperature 
can be seen to smooth the step profile. (b) AFM image of a QPC where the bright regions 
correspond to the electron channels. Increasing the gate voltage reveals a discrete increase 
in the number of open channels (not shown). (A to C) Angular pattern of electron flow of 

individual modes of the QPC, comparing experiment with theory [(A) first mode, (B) second 
mode, (C) third mode]. (D to F) Calculated wave-function —ψ|2 for electrons passing from 
(D) the first mode, (E) the second mode, and (F) the third mode of the QPC (the areas in 
each simulation corresponding to areas not scanned in the experiment are dimmed). (G to 
I) Measured angular distribution of electron flow from (G) the first mode, (H) the second 

mode, and (I) the third mode. (J to L) Angular distribution of the wave-function —ψ|2 from  
(J) the first mode, (K) the second mode, and (L) the third mode. [Reprinted figure  

with permission from: B. J. van Wees et al., Phys. Rev. B., 43, 12431 (1991). Copyright 1991 
by the American Physical Society. Reprinted figure with permission from: M. A. Topinka,  

et al., Science, 289, 2323 (2000). Copyright 2000 Science AAAS.]
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There are many books on quantum mechanics that deal explic-
itly with this problem and we will just give the results of the cal-
culations here. The root to solving the problem is a consideration 
of the boundary conditions between the three regions, where the 
wave functions and their first spatial derivatives are continuous. The 
transparency of a barrier to the electrons depends critically on the 
height, V0 and width, d, of the barrier as well as the energy, E, of 
the incident electrons. The transmission probability (in the language 
of quantum mechanics), for the case considered here with E < V0, 
takes the form:
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The reflection coefficient takes the form:

FIGURE 13.15:  Potential barrier problem of an electron of energy,  
E < V0, incident on a barrier.
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It can be readily seen that these equation adhere to the general 
condition: T R 1.+ =  It is possible to consider the extremes, or 
limits of the problem, where E → 0 and E → ∞. In the former case, 
the tunnel probability will monotonically decrease with the energy. 
In the latter case, as the electron energy reaches the height of the 
barrier we can write:
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where we have used the fact that k d k dsinh ( ) ( )2
2 2

2→  in this limit. 
The quantity m V d 2e 0

2 2
/  is sometimes referred to as the opacity 

of the barrier. In the classical limit, the opacity becomes very large 
such that the transmission probability becomes vanishingly small. 
When k d 12  we can approximate k d esinh( ) 2k d
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 /  and the tun-
nel probability can be expressed as:
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This result turns out to be very important for the workings of the 
STM, where the tunnel current is proportional to T.

The problem as presented here should bear a resemblance to 
the scattering problem discussed above in Section 13.4.2. In fact, the 
reason that quantum tunneling can occur is due to the wave descrip-
tion of the electron. This type of problem can be seen in optics and 
acoustics as the general phenomenon of a wave passing from one 
medium to another, for example light passing through a window or 
sound passing through a wall.

In terms of the barrier phenomenon in electronic devices, the tun-
nel junction is a general type of device and the tunnel probabilities can 
be controlled by setting the thickness and height of the barrier. This 
component forms a part of many nanodevices, such as the Josephson 
junction, the resonant tunnel diode (RTD) and the magnetic tunnel 
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junction (MTJ). In the latter, the spin of the electron adds a further 
degree of freedom to the problem and the tunnel probabilities will 
also depend on the spin states on either side of the barrier.

13.4.4 � Single Electron Transport: Quantum  
Dots and Coulomb Blockade

In general, the interaction between electrons is neglected when 
considering the transport properties of solids. While the Coulomb 
interaction between electrons is important, it can for the most part 
be neglected since it constitutes only a small perturbation to the 
ground state of the system. However, in small nanometric structures 
this assumption is no longer valid as even a small perturbation will 
have an influence on the motion of small numbers of electrons or 
charge carriers. Charging in mesoscopic and nanoscopic devices can 
lead to the prevention of the passage of further charges. This effect 
is called Coulomb blockade. The control of voltages in a circuit can 
allow the motion of charges in specific amounts even down to the 
motion of a single electron. Such processes depend on charge quan-
tization as we will discuss in the simple case of an isolated quan-
tum dot, sometimes referred to as an island. Connection from the 
outside to the quantum dot can be made using a tunnel junction to 
which we add a voltage source to allow us to alter the energy levels 
of the system.

An important consideration in such a system is the capacitive 
coupling through the tunnel junction. We also need to distinguish 
whether the island is a metal or semiconductor, since this will influ-
ence the number of charge carriers stored on the island as well as 
the quantum confinement effects and allowed energy states. We 
briefly touched on some of the effects of spatial confinement in 
semiconductors in Section 9.6 and above in Section 13.4.1. Metallic 
systems differ mainly in that they have much larger electron densi-
ties, though both depend on the discrete nature of the tunneling 
process to couple to an external circuit.

In the system we will describe, the island will be coupled via 
two tunnel junctions, as illustrated in Figure 13.16. The circuit has 
a voltage source and ammeter to measure the current. The tunnel 
junctions (TJ1 and TJ2) are modelled with a resistance and a capac-
itance for the equivalent circuit. The charge on the quantum dot 
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can be expressed as an integer number of the elementary electron 
charge: Qi = −Nie = Q2 − Q1. Here Q1,2 = V1,2C1,2 is the charge on 
TJ1,2 and we have that the applied potential, V = V1 + V2. The elec-
trostatic potential energy can be expressed as:
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= = � (13.61)

So for the quantum dot, we have:
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where EC = e2/2Ceq, is the energy due to one electron and Ceq =  
C1 + C2. Since the potential across the two TJs must be equal to the 
applied voltage we find:
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FIGURE 13.16:  (a) Quantum dot coupled via two tunnel junctions (TJ) to an external circuit. 
(b) Equivalent circuit, where the TJs are characterized by a capacitance C and resistance, R.
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and

	 V
VC N e

C
i

eq
2

1=
−

� (13.64)

again Ceq = C1 + C2 and corresponds to the total island capacitance. 
The electrostatic energy stored in the two capacitors will be:
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The work done by the voltage source in transferring electrons 
on to or off of the island will be: Ws = VΔQ, where ΔQ is the total 
charge transferred. For the transfer of a single electron we have:  
V → V − e/Ceq, therefore ΔQ = −eC1,2/Ceq, where the C1,2 indicates 
the dependence upon which TJ was crossed in the electron transfer. 
The work done can then be evaluated as:
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The total energy of the circuit, including the voltage source will 
therefore be:
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From this energy we can evaluate the condition for Coulomb 
blockade. This is done by considering the tunneling of a single elec-
tron via one of the tunnel junctions. The energy change due to an 
electron tunneling through junction 1 can be expressed as:

c dE E N N E N N
e

C
e

N e VC( , ) ( 1, )
2

( )
eq

i1 1 2 1 2 2∆ = − ± = − +± � (13.68)

The ± sign refers to the direction of charge transfer. The cor-
responding expression for junction 2 will be:

c dE E N N E N N
e

C
e

N e VC( , ) ( , 1)
2

(
eq

i2 1 2 1 2 1∆ = − ± = − ± −± � (13.69)
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For an initially neutral island (Ni = 0), we have

	 E
e
C

eVC
C2 eq eq

1,2

2
2,1∆ = −± � (13.70)

This energy must be greater than zero, meaning that for all pos-
sible transitions to and from the island, the Coulomb energy causes 
the energy change to be negative until the applied potential exceeds 
the threshold, which depends on the lesser of the two capacitances. 
When these are equal, i.e., C1 = C2 = C, we obtain the condition:

	 V
e

C
| |

eq

> � (13.71)

Therefore, for tunneling to occur we must apply a certain volt-
age, below which no charge can flow. This is the Coulomb blockade 
region resulting from the Coulomb energy, e2/2Ceq, due to an extra 
electron tunneling on to the island. This situation is schematically 
illustrated in an energy diagram in Figure 13.17. On the island the 
lowest energy states (at T = 0 K) will be occupied and all excited 
states empty. The energy difference (gap) between the levels is 
equal to the Coulomb energy above and below the Fermi level on 
the electrodes. At equilibrium, there are no states available for an 
electron to tunnel on to the island from either side. In the situation 
of an applied potential of V > e/2C, an electron can now pass from 
the right electrode to the island. Further passage is again blocked at 
this point until a potential of V > 3e/2C(= e/2C + e/C) is applied. 
The next energy level above that shown will at e2/C above this and 
at equal intervals beyond that. Between levels then we say the island 
is Coulomb blockaded. The current - voltage (I − V) characteristic 
for this device will also have a staircase structure, due to the discrete 
nature of the energy levels on the island.

For the effects of charge quantization to be observable, the 
energy between levels must be greater than the thermal energy:  
e2/Ceq > kBT. Considering the Heisenberg uncertainty relation: 
ΔEΔt ≥ h, we can equate the energy with the Coulomb energy and 
the time with the characteristic time associated with an RC circuit, 
where here the resistance will be that associated with the junction, 
such that:
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e

C
R C h

eq
j eq

2

> � (13.72)

This gives the condition for the junction resistance for which 
Coulomb charging effects can be observed as:

	 R
h
e

j 2
> � (13.73)

which has a numerical value of 25.8 kΩ.

13.4.5  Resonant Tunneling
The concept of resonant tunneling effect is based on the a 

double junction structure, typically fabricated from semiconductor 
heterostructures. One important application of this effect is in the 
so-called resonant tunneling diode or RTD. The basic structure of 
the RTD is illustrated in Figure 13.18 (a), where two AlGaAs layers 
sandwich a GaAs central quantum well (QW). The outer layers are 
heavily doped n+ - GaAs layers, such that the Fermi levels are in the 
conduction band. These will form the contacts with an external cir-
cuit and power supply. The schematic conduction band structure for 
the device is illustrated in Figure 13.18(c). The QW has one quasi-
bound state illustrated with an energy E1. Further bound states can 

FIGURE 13.17:  Quantum dot energy diagram. (a) Equilibrium condition (V = 0). The 
energy gap in the island region corresponds to the Coulomb energy for a single electron.  

(b) Under an applied voltage greater than the critical value for Coulomb blockade,  
such that an electron can now pass on to the island.
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occur, depending on the thickness of the QW and the band struc-
tures of the AlGaAs and GaAs layers. The current - voltage charac-
teristics are shown in Figure 13.18 (b). For zero applied potential, 
the diode is in thermal equilibrium (1). Once a small voltage is 
applied the current will gradually increase (2) since the energy levels 
are shifted by eV , as shown. This will allow a small tunnel current 
to be established through the whole barrier structure. At the point 
where the applied potential is such that the quasi-bound state level 
lies between the Fermi level and conduction band edge, Ec, there 
will be a favorable transfer of charge since the effective barrier width 
becomes equal to the thickness of the AlGaAs layer and is much less 
than the whole barrier structure thickness, d. This corresponds to  
the resonant tunneling process, see Figure 13.18(b) point (3). Once 
the voltage passes the limit where the conduction band edge is above 
the quasi-bound state energy, the effect of negative resistance will 
be observed as the barrier width returns to being the entire barrier 
structure, d, point (4) in Figure 13.18 (b). The current will drop off 
and between points (3) and (4) we observe a negative slope in the 

FIGURE 13.18:  Resonant tunnel diode (RTD). (a) Basic design using semiconductors GaAs 
and AlGaAs. (b) Current - voltage characteristics and (c) Band diagrams (conduction band) 

for different applied voltages, with points indicated (1 - 4) in (b), see text.
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I − V curve. In the case where the current - voltage characteristic is 
non-linear, it is customary to define the differential resistance:

	 a bR
I
V

d
dd

1

=
−

� (13.74)

A negative differential resistance is used to denote Rd < 0, which 
corresponds to the unusual situation where an increase in applied 
voltage results in a decrease in the current. This situation is similar 
to that found in the Esaki diode. It is possible to evaluate the tun-
nel probabilities using a similar approach to that outlined in Sec-
tion 13.4.3. We will not perform these calculations here, as they are 
somewhat academic.

13.4.6  Single Electron Transistor (SET)

The formation of the single electron transistor (SET) is based on 
the quantum dot (QD) structure we discussed in Section 13.4.4. The 
principal difference is that we add a third connection to the QD, which 
has a second voltage supply. This is called gating, where the gate poten-
tial, VG, is used to control the transfer of charge between the other two 
connectors, which we now call the source (S) and the drain (D), in 
analogy to the field effect transistor (FET). The device is illustrated in 
Figure 13.19 (a) along with the equivalent circuit (b). The gate is also 
capacitively coupled to the island with a gate capacitance of CG. The 
additional charge balance on the island will be such that:

	 Q C V V( )G G G 2= − � (13.75)

and the island charge will now be calculated from:

	 Q Q Q Q N ei G i2 1= − − = − � (13.76)

Much of the analysis is similar to that which was evaluated in 
Section 13.4.4. The gate potential will modify the junction potentials 
with respect to Equations (13.63) and (13.64) to give:

	 V
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eq
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and
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where now Ceq = C1+C2+CG and the electrostatic energy will now 
include the contribution from the gate capacitance, e2/2CG, sich that:
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The corresponding expressions for the work done in electron 
tunneling are now given by:
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eVC
C

C
C

e V V( ) ( )s
eq

G

eq
G1 1

2= − + − � (13.80)

and
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eq
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FIGURE 13.19:  Single electron transistor (a) schematic outline.  
(b) Equivalent circuit for the SET.
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The energy change due to an electron tunneling through junc-
tion 1 will now take the form:

	 e fE
e

C
e

N e V C C V C
2

[ ( ) ]
eq

i G G G1 2∆ = − + + −± � (13.82)

The corresponding expression for junction 2 will be:
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The role of the gate can now be seen to be that of controlling the 
effective charge on the island as it can be used to shift the Coulomb 
blockage condition with VG. The application of the gate voltage effec-
tively shifts the energy levels on the QD up or down, depending on 
the polarization of the applied bias. It is therefore possible to estab-
lish stable Coulomb blockade regimes with Ni > 0. As with the case 
for the simple quantum dot, the low temperature tunneling condition 
for the SET is given for: ΔE1,2 > 0, such that the total energy will be 
reduced by the tunneling event. The case for forward and reverse 
tunneling can now be expressed as:

	 

e
N e V C C V C

2
[ ( ) ] 0i G G G2− + + − > � (13.84)

	
e

N e VC V C
2

[ ] 0i G G1− ± − − > � (13.85)

These conditions refer to the four possible tunnel events between 
the contacts and the island. The Coulomb blockade will correspond 
to the case where the four conditions in Equations (13.84) and 
(13.85) are not satisfied. This means that they are blocked to electron 
transfer. Adjusting the source - drain or gate voltages can modify this 
situation and open one or more of the channels for tunneling. This 
will allow the transfer of electrons to and from the island, which will 
occur in a very controlled manner. In Figure 13.20, we show various 
situations, including (a) V = 0; VG = 0: where no channels are open, 
i.e., Coulomb blockaded, (b) V ≥ e2/Ceq; VG = 0: Left electrode to 
island channel allows tunneling to island, and from the island to the 
right electrode and electron can also tunnel, (c) V = 0; VG < 0: the 
negative gate voltage will shift the energy states on the island down 
with respect to the electrodes opening up one way channels from the 



532  •  Solid State Physics

electrodes to the island. However, once the states are occupied the 
island becomes Coulomb blockaded again, thus closing all tunneling 
channels. In Figure 13.20 (d), we show the schematic form of the 
current - voltage characteristic. It is seen that for voltages between 
±e/Ceq, there will be no current since this corresponds to the Cou-
lomb blockade regime. Once this potential is reached, the current 
will start to flow as charge can transfer via quantum tunneling. Fur-
ther jumps will also occur at periodic voltages, giving a step-like form 
the the I − V curve.

Using the above conditions, given by Equations (13.84) and 
(13.85), we can construct a stability diagram for electron transfer, 
which can be expressed in terms of the two potentials, V and VG. To 
simplify the situation we will take the special case for CG = C2 = C;  
C1 = 2C. The stability diagram for this situation is illustrated in Fig-
ure 13.21. The structure of the Coulomb blockade regions is also 
referred to as the Coulomb diamond formation. We note that the 
four solid lines correspond to the four critical conditions, where in 

FIGURE 13.20:  Variation of the band diagram for the single electron transistor for different 
applied potentials between source and drain, V and gate, VG. (a) V ≤ e2/Ceq; VG = 0; Coulomb 

blockade. (b) V ≥ e2/Ceq; VG = 0: channels from left to right open for current flow.  
(c) V = 0; VG < 0; Discrete number of electrons can transfer to the island, after which 

 it will become Coulomb blockaded. (d) Current - voltage variation for the SET.
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Equations (13.84) and (13.85), the > symbol is substituted with an = 
symbol, with Ni = 0 and are labelled with numbers (1) - (4). Further 
delimiting occurs for discrete numbers of charges on the QD; Ni ≠ 0.

The periodic structure of the Coulomb diamond formation gives 
the SET the capacity to exhibit Coulomb oscillations, which occur 
as the gate voltage is swept with a small static potential between the 
source and drain, i.e., following a horizontal line along the stability 
diagram, as shown by the dashed lines in Figure 13.21. The periodic-
ity of the peaks will be give by: ΔVG = e/CG and peak values occur 
when the energy levels on the island pass the Fermi energy of one 
of the contacts (depending on the voltage bias of V, which is a reso-
nance condition of the structure).

Further complexity can be added by coupling quantum dots, all 
of which can be individually gated to control the passaged of elec-
trons from the external circuit and between the quantum dots them-
selves. Since each of the gates can be controlled separately, a high 
degree of control can be achieved, where applications such as the 
electron turnstile and the single electron pump can be produced. By 

FIGURE 13.21:  Stability diagram for a single electron transistor, which is expressed as the 
plot of V − VG. Along the VG axis we see a periodic array of Coulomb blockade  

conditions. These are separated by the conditions for single electron transfer (SET),  
which requires a small potential between source and drain, V. Further from the  

origin we see the additional conditions that can be found for the transfer of  
discrete packets of electrons, 2ET, 3ET etc., which occur for Ni > 0.
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applying a periodic or alternating signal to the gate(s), the current 
can be controlled directly from the frequency of the gate signal:

	 I e fSET G= � (13.86)

where the current is simply the product of the electron charge and 
the frequency of the ac gate voltage, fG.

13.4.7  Optical Properties of Nanostructures

Optical absorption in quantum well type structures occurs via 
the transfer of photon energy in the excitation of electrons between 
(filled states in the valence band and empty states in the conduc-
tion band) allowed transitions, which are governed by the selection 
rules of the system. In general, optical transitions of this type can 
be determined using Fermi’s golden rule, where the conservation 
of energy is satisfied: E E .f i ω= +  The general form of Fermi’s 
golden rule can be expressed as:

	 


M g
2

| | ( )i f
2π
ω=→ � (13.87)

which expresses the rate of transition in terms of the joint density of 
states at the photon energy, g(hω), and the matrix elements:

	 | M |= 〈ψ f | ′H |ψi〉 � (13.88)

where the interaction Hamiltonian,  ,′  refers to the effect of the 
electric field of the photon, e ,ik r

0εε ± ⋅  with the dipole moment, p = 
−er. Using the Bloch functions for the electron states, the matrix 
elements take the form:

	

|M|=
e
Ω

uf
∗ (r)∫ e−ik f ⋅r (ε0 ⋅re± ik⋅r )ui(r)eik i⋅rd3r

=
e
Ω

uf
∗ (r)∫ ui(r)(ε0 ⋅r)ei(k i−k f±k)⋅rd3r � (13.89)

where Ω is the volume of the crystal, over which the integration is 
taken. The exponential shows the conservation of momentum condi-
tion of the phase factor, which must be zero if
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there is to be any absorption, otherwise the integral will be zero: kf 
− ki = ±k, where k is the photon momentum. The requirement is 
also inherent in the periodicity of the Bloch function. At optical fre-
quencies, the wave vector for the photon will be much smaller than 
that for the electrons and we have: k kf i .

The factor g(hω) is the joint density of states to be evaluated at 
the photon energy. For the electrons in the bands we can write: 

	 g E E g k k g E
g k

E k
( )d 2 ( )d or ( )

2 ( )
d d

= =
/

� (13.90)

where the factor 2 arises from spin degeneracy. The factor dE/dk is 
the gradient of the dispersion relation (E − k) in the band structure. 
From previous chapters, we see that we can write:
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and
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The evaluation of the joint density of states for g(E) at Ei and 
Ef, which are related to hω via the band structure, is performed as 
follows: Conservation of energy for photon absorption via the excita-
tion of an electron from the valence to the conduction band gives:

	 
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where ∆ is the band gap energy. Therefore, for absorption at E = hω 
we must have:

	  g( ) 0; ∆ω ω= < � (13.94)

	 g(!ω)=
1

2π2 a 2µ
! 2 b

3/2
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μ is the reduced mass (µ= (1/me
∗ +1/mh

∗ )−1,  where m mh hh=∗ ∗ or 
mlh
∗ . We therefore see that there will be no absorption for  ∆,ω<  

and the absorption coefficient,  ( ) ( ) .1/2∆α ω ω∝ −
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In the specific case of a QW structure, where the plane of the 
layer is perpendicular to the z-direction and with photon propaga-
tion also along z, such the polarization vector lies in the x − y plane 
we have: 〈ψ f | x |ψi〉= 〈ψ f | y |ψi〉≠〈ψ f | z |ψi〉.  For the general case 
of a transition between the nth state in the valence band and the mth 
state in the conduction band of the QW, we can express the corre-
sponding wave functions as:

	 ψi =
1

Ω
uV (r)φhn(z)eik x ,y⋅rx ,y � (13.96)

	 ψ f =
1

Ω
uC(r)φem(z)ei ′k x ,y⋅rx ,y � (13.97)

in which z( )hnφ  and z( )emφ  denote the bound states in the QW in 
the z-direction. As stated previously, since the photon momentum 
is negligible, we can write: k k .x y x y, ,= ′  The matrix elements for the 
QW can be written as the product:

	 M M MCV mn= � (13.98)

with

	 MCV = 〈uC(r) | x | uV (r)〉 � (13.99)

	 Mmn = 〈φem(z) |φhn(z)〉 � (13.100)

This latter shows that the optical transitions in the QW are pro-
portional to the overlap in the electron and hole states functions. 
Using this we can evaluate the selection rules ∆n = m−n. For sim-
plicity we consider the case of an infinite QW potential, which gives:

	 a b a bM
d

sin k z
n

sin k z
m

z
2

2 2
dmn

d

d

n m
/ 2

/2

∫ π π
= + +

−
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where d is the thickness of the QW. This will give unity for n = m 
and is otherwise zero. Therefore we obtain the selection rule: ∆n = 
m − n = 0. The allowed transitions are illustrated in Figure 13.22.

In Figure 13.23, we show the absorption spectrum for a multiple 
quantum well structure, which is compared with the corresponding 
case for a bulk material. We note that the step-like structure of the 
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FIGURE 13.22:  Allowed transitions for a QW structure for ∆n = 0, with n = 1 and n = 2.

FIGURE 13.23:  Absorption spectrum for a multilayered quantum well structure.  
(a) Energy diagrams for the excitation of an electron from the valence to the conduction 
band. (b) Absorption spectra for the bulk and QW systems. Note that the peaks at the 
absorption edges arise from the formation of excitons, see text. [Reprinted figure with  

permission from: H. Hosono, Thin Solid Films, 515, 6000 (2007)]

absorption is reminiscent of the shape of the density of states for the 
1D confined structures. Heavy hole (hh) and light hole (lh) excitonic 
states are evident for the n = 1, 2 and 3 edges. The reason that 
these are observed as enhanced peaks at the edges of the transition 
energies is that the Coulomb interaction increases the absorption 
rate and hence produces the resonant peaks. The electron - hole 
pair formation and the Coulomb interaction between the two states 
produces a bound pair in the form of a quasi-particle (exciton). The 
excitonic states, since they have one electron bound to a positive 
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(hole) charge, have energies which resemble the hydrogenic states 
of the Bohr model. The energy of the nth level relative to the ioniza-
tion energy can be expressed in the form:

	 En
ex =−

µRH

meεr
2n2
=−

RX

n2
� (13.102)

In analogy with the Bohr model we can define the excitonic 
radius for the electron - hole orbit, which for the nth state will be:

	 rn
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� (13.103)

where a0 is the Bohr radius and aX the excitonic Bohr radius. For 
the n = 1 state in GaAs we have RX = 4.2 meV and aX = 13 nm. In 
QW and confined systems, the excitonic states are further enhanced 
since the electron - hole pair are forced to be even more closely 
bound, thus increasing the attractive potential.

Further to the absorption behavior, QW structures have impor-
tant applications in electroluminescence. In fact, this is one of the 
major applications of QW systems. The use of QW structures pro-
vides a significant improvement on device performance and efficien-
cies and have the advantage of allowing the active wavelengths to be 
tuned via the thickness of the active region. The generation of light is 
provided by the recombination of electrons with holes, giving a lumi-
nescent spectrum which peaks at the energy of the gap. The width 
of the peak is related to the carrier density and temperature. As we 
noted in Chapter 9, the energy of the QW peak is up-shifted with 
respect to the bulk semiconductor due to the confinement effects 
discussed and we can tune the energy to the desired wavelength in 
the fabrication of the device. Such flexibility means that we can fabri-
cate devices with better output characteristics. This is exploited in the 
manufacture of LEDs and semiconductor lasers, for example.

The confinement of electronic states in QW like structures can 
lead to multiple states where transitions can occur between the dif-
ferent bound states in the same band. Such processes are referred to 
as intersubband transitions, e.g. between states ne1 and ne2, see Fig-
ure 13.22. In the valence band this will occur for hole states, while 
in the conduction band for electrons. Since the energies involved 
are much lower the corresponding wavelengths will be longer. Such 
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transitions typically occur in the infrared region of the electromag-
netic spectrum, (infrared) heat sensors exploit such processes.

Quantum dots and nanoparticles have confinement effects in all 
three spatial dimensions, but the basic principles are essentially no 
different from the QW structures we have considered above.

In addition to the confined electronic states, structured materi-
als can be used to produce some rather interesting optical proper-
ties. Of particular importance are periodically structured materials 
with differing refractive indices. These provide quasi-crystal struc-
tures which function in a similar way to the periodic nature of real 
crystals. However, in this case it is not the wave-like nature of elec-
trons that are of importance, but that of photons. In analogy, such 
periodic materials are referred to as photonic crystals. In fact, pho-
tonics has become a major area of research and has some important 
applications. The color of some insects and the wings of butterflies 
are actually due to the periodic structures that naturally occur and 
not from pigments. This rather graphically illustrates the relevance 
of photonic systems and the active wavelengths are only related 
to the periodicity and relative dielectric constants of the materials 
used. The model used to calculate the optical properties is in fact 
very similar to the Kronig - Penney model used in idealized periodic 
potentials for electronic systems. The calculations for photonic crys-
tals are based on the Maxwell equations rather than the Schrödinger 
equation. Furthermore, well defined defects, and arrays of defects, 
in the periodic structures can be used in ways similar to the quan-
tum confined structures of semiconductors. These use confinement 
effects of the photons for very specific applications, such as high - Q 
cavities, waveguides, and cladding for optical fibers.

13.5  ASPECTS OF NANOMAGNETISM

As with the case of electronic properties, the size reduction of 
magnetic entities also has a number of important effects on their 
magnetic properties. One of the principal properties that govern the 
behavior of a magnetic body are the magnetic anisotropies at play. 
We have outlined the principal sources of anisotropy that occur in 
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magnetic systems, these are: magnetocrystalline anisotropy, shape 
anisotropy, magnetoelastic anisotropy, and surface anisotropy. The 
other main consideration for an ordered magnetic material is the 
exchange energy of the system.

In terms of the reduced dimensions in nanosystems, there are 
a number of effects that are important. Firstly, the large amount of 
surface will mean that surface anisotropy effects will become crucial. 
This can dominate for very small nanoparticles, where a significant 
proportion of the atoms in the object are located on the surface. Of 
course, as with other properties, the length scales for physical prop-
erties are important and we will outline these in the next section.

13.5.1  Magnetic Length Scales
The principal magnetic length scales arise from the energy con-

siderations we met in Chapter 10. There are two main characteristic 
length scales that are of importance, these are:

1)	The exchange length, which is defined as:

	 Λexch =
2A
µ0Ms

2
� (13.104)

2)	The domain (Bloch) wall width:

	
A
K

2DWδ = � (13.105)

In both of these expressions we see that the exchange stiffness 
constant, A, appears. These expressions give an indication of the 
length over which the exchange energy dominates the magnetostatic 
energy, Equation (13.104), and over the magnetic anisotropy energy, 
Equation (13.105).

The energy considerations are central to much of our think-
ing with regards to the size effects in magnetic objects of reduced 
dimensions. For example, the largest size that a magnetic particle 
may support a single magnetic domain will depend on the magnetic 
energies involved. This essentially means that we need to consider 
how much energy is saved by having a single domain rather than 
two domains, which will have domain wall energy, but reduces the 
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magnetostatic energy. Such considerations lead to the critical diam-
eter, for a spherical particle, of:

	 Dcr =
9π AK
µ0Ms

2
� (13.106)

This clearly reflects the magnetic energies at play. In Table 13.5, 
we show some typical values of these critical length scales selected 
ferromagnetic materials. The calculated values are based on the bulk 
parameters for these materials

We note that a ferromagnetic (or ferrimagnetic) particle below 
the critical dimensions, given in Equation (13.106), will have a single 
magnetic domain and is thus referred to as a single domain particle 
or sdp. We further note that Equation (13.106) is based on a spheri-
cal particle which has no shape anisotropy. Clearly elongated par-
ticles will have an additional anisotropy contribution and, depending 
on the relative orientations of the magnetocrystalline and shape 
anisotropies, can have very different critical dimensions. The shape 
anisotropy can be used as a “tuning” parameter for magnetic behav-
ior in nanostructures since it is an extrinsic parameter.

13.5.2  The Stoner - Wohlfarth Model
The Stoner - Wohlfarth model, which dates back to 1948, is 

a simple attempt to evaluate the hysteretic behavior of ferromag-
netic systems. It has subsequently become a very important first 
approximation method for the study of ferromagnetic nanoparticle 
systems. In the model we assume the particle to be a single mag-
netic domain with uniaxial anisotropy. This assumption is based on 

TABLE 13.5:  Magnetic length scales for selected ferromagnetic materials.

Material
Anisotropy 
×104 (J m−1) Λexch (nm) δDW (nm) Dcr (nm)

bcc Fe 4.81 3.3 20.3 6.9

fcc Co −12 4.8 15.8 10.1

hcp Co 41.2 4.7 8.3 13.7

fcc Ni −0.56 7.6 39.2 16.2

fcc Ni80Fe20 0.027 5.1 199 10.8
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the original premise of the model that the magnetization remains 
constant throughout the sample. This has the consequence of main-
taining the total exchange energy constant during the magnetization 
reversal process. Such behavior is termed uniform or coherent rota-
tion and is also appropriate for weakly or non-interacting magnetic 
nanoparticle assemblies.

The magnetic anisotropy of the particle, which we will consider 
as uniaxial, can be of magnetocrystalline or magnetostatic origin, 
since it has no imprtant bearing on the outcome of the model. We 
will use just an effective anisotropy for this reason. As such, we can 
express the free energy of the system as:

	 ESW =Keff sin2 θ−µ0MsH cos(θ−φ) � (13.107)

where angles are defined in Figure 13.24. For our definition we 
have Keff > 0, so that an energy minimum occurs for θ = 0, i.e., with 
the magnetization along the easy axis. For further discussion of such 
considerations, see Skomski (2008).

The equilibrium orientation of the system is defined by the con-
figuration which gives a minimum energy, indicated as θ = θ*. The 
condition for minimizing the free energy is given by:

	 a b a b
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FIGURE 13.24:  Schematic diagram of a magnetic nanoparticle with uniaxial  
anisotropy. Definitions of orientations of the applied magnetic field and  

magnetization with respect to the easy axis are shown.
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From this we obtain:

	 h[sin cos sin( )] 0θ θ θ φ− − =θ θ= ∗ � (13.109)

and

	 h[cos 2 cos( )] 0θ θ φ+ − ≥θ θ= ∗ � (13.110)

where we have used the following normalizations: h = H/HK; m = 
M/Ms and Hk = 2Keff/μ0Ms is called the anisotropy field. The calcu-
lations of the magnetization state are made by varying the strength  
and direction of the applied magnetic field, where the magnetization 
will respond by aligning in that field due to the relative strength and 
direction of the magnetic anisotropy as well as that of any applied 
magnetic field. It is customary to decompose the magnetization 
into parallel and perpendicular components, which we can express 
as: 



m cos( )θ φ= −  and m sin( ).θ φ= −⊥  The variation of these 
transverse and longitudinal components of the magnetization are 
illustrated in Figure 13.25 for different orientations of the applied 
magnetic field.

In the Stoner - Wohlfarth model we see that the hysteretic mag-
netic behavior arises from the magnetic anisotropy, where the coer-
cive field, Hc, is related to the anisotropy field. The model is also 
used to show the magnetization reversal or switching behavior in 
single domain particle systems. This is achieved by evaluating the 
boundaries of the hysteresis behavior via the first and second deriva-
tives of the free energy. In fact, the entire model is based on the vari-
ation of the energy landscape, in which the minima determine the 
orientation of the magnetization which is affected by the strength 
and orientation of an applied magnetic field with respect to those of 
the magnetic anisotropies. The switching field dependence can be 
expressed in terms of the anisotropy and orientation of the applied 
magnetic field in the form:

	 H
H

(sin cos )
SW

K
2/3 2/3 3/2φ φ

=
+

� (13.111)

This is displayed for the applied fields in the parallel and perpen-
dicular directions. The form of the switching field curve is commonly 
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FIGURE 13.25:  (a) Transverse, m⊥, and (b) longitudinal, m!, components of the magneti-
zation. The angles refer to the direction of the applied magnetic field for φ = 0°, 30°, 60° 

 and 90°. [©IOP Publishing. Reproduced with permission. All rights reserved.  
C. Tannous and J. Gieraltowski, Eur. J. Phys. 29, 475487 (2008)].

known as the Stoner - Wohlfarth astroid. This is illustrated in Figure 
13.26, where we show the theoretical curve and a comparison with 
experiment as measured using a micro-SQUID device.
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While the Stoner - Wohlfarth model is a good first approxima-
tion, it does assume that the magnetization is always homogeneous. 
This situation is generally favored only in small magnets which has the 
form of an ellipsoid of rotation. This means that the particle acts as a 
single macrospin and the exchange energy is a dominant energy in the 
system. Deviations from this model can occur for a number of reasons, 
such as edge and surface anisotropies, which can cause some form of 
non-collinear alignment of the magnetization at the surface, meaning 
∇M ≠ 0. Defects and other magnetic inhomogeneities will also bring 
about deviations from the model and add further contributions to the 
coercive field, Hc, which in the Stoner - Wohlfarth model arise only 
from the anisotropy. Non-coherent reversal of the magnetization can 
also occur in elongated single domain particles and therefore isn’t well 
described by the SW model. Such processes are usually described by 
a curling of the magnetic moments in the particle.

13.5.3 � Superparamagnetism and Ferromagnetic 
Nanoparticles

One of the fundamental problems of the reduced dimensions of 
ordered magnetic structures is the thermal instability that results from 
a reduction in the magnetic anisotropy energy with respect to the 
thermal energy. This leads to thermal fluctuations in the orientation 

FIGURE 13.26:  Switching fields for a single domain particle with uniaxial anisotropy. Due 
to the shape of the curve, this is popularly known as the Stoner - Wohlfarth astroid. Inside 

the astroid, the particle is capable of switching, while outside it is not. The right hand image 
shows an experimental micro-SQUID measurement of a single ferromagnetic nanoparticle, 
showing good agreement with the theory. [©IOP Publishing. Reproduced with permission. 

All rights reserved. C. Tannous and J. Gieraltowski, Eur. J. Phys. 29, 475487 (2008).  
Reprinted figure with permission from: W. Wernsdorfer et al., J. Appl. Phys., 81, 5543 

(1997). Copyright 1997 by the American Institute of Physics.]
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of the magnentization state and ultimately to the loss of a well defined 
global magnetization state of the system. This gives rise to the so-
called superparamagnetic limit, which fundamentally depends on the 
magnetic anisotropy energy and size of the magnetic entity. Also of 
great importance is the method of observation of the magnetic state, 
which has a characteristic measurement time. We will outline these 
concepts below.

The question of thermal agitation of the magnetic state of a sam-
ple was addressed by Nobel laureate Louis Néel as early as 1949 and 
was further considered by W. F. Brown in the early 1960s. The sub-
sequent Néel - Brown model considers the probability per unit time 
of the magnetization of a single domain (nano)particle not being 
reversed by thermal agitation after a certain time, t, which is given 
by the exponential relation:

	 P e V k T
0

/ Bεε∆ν= − � (13.112)

This result is frequently quoted in a slightly different form, which 
considers the reversal or relaxation time, which is expressed as:

	 e V k T
0

/ Bεε∆τ τ= � (13.113)

where the attempt frequency is given by; ,0 0
1ν τ= −  and has a value 

of the order of GHz and is in the range of ferromagnetic resonance 
measurements. The factor Vεε∆  is the energy barrier between the 
different energy minima which describe the most stable state (ori-
entation) of the magnetization. Here εε∆  can be considered as the 
anisotropy free energy density, given by Ku for uniaxial magnetocrys-
talline anisotropy or ΔNµ0Ms

2  for strong shape anisotropy, with the 
factor ∆  being the difference of the demagnetizing factors along 
the principal axes of the particle and depend on its shape. The quan-
tity V is the particle volume. In Figure 13.27, we illustrate the energy 
landscape for the case of uniaxial anisotropy in the particle, with easy 
directions being along 0° and 180°. The barrier height corresponds 
to the uniaxial anisotropy constant multiplied by the particle volume, 

V K Vuεε∆ =  It is thus immediately evident that as the particle reduces 
in size, the energy barrier will follow suit. Once this energy barrier 
height becomes comparable to the thermal energy, kBT, the system 
becomes very unstable, with the thermal fluctuation being sufficient 
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to flip the magnetization direction along the easy axes of the magnetic 
system. (This is a similar situation to the original Brownian motion 
experiment, in which small particle are buffeted around by random 
thermal collisions with other particles.) In this situation, in which the 
particle can still be considered to be in a coherent magnetic state, 
where switching involves all spin inverting at the same time, the global 
state is not stable and looks to be paramagnetic if the time of measure-
ment is greater than the inverse attempt frequency. Hence the name 
superparamagnetic is used to describe such a situation. Note that we 
have introduced the concept of measuring time. This can be thought 
of with analogy to taking a photograph of a moving object with dif-
ferent shutter speeds: when the shutter speed is slow with respect 
to the motion of the object, it will appear blurred in the image. If we 
increase the shutter speed so that it is faster than the movement of the 
object, then it will appear fixed. In the case of our magnetic particle, 
we have a similar situation. For slow measurement times, i.e., slower 
than the switching speed, the sample has no well defined magnetic 
orientation and the sample appears to the paramagnetic (Ms = 0). 
However, if we use a fast measurement time, i.e., quicker than the 
reversal time, then the sample appears to be in a fixed ferromagnetic 
state. Hence the importance of the method of observation.

A crucial consideration in the magnetism of nanostructures is 
the temperature at which the ferromagnetic state stabilizes with 
respect to the thermal energy. We define the blocking temperature, 

FIGURE 13.27:  Energy due to the uniaxial anisotropy in a nanoparticle, showing the easy 
directions for 0° and 180°. The energy will be a minimum when the magnetization  

points along these directions. The application of a magnetic field will alter the  
energy landscape and can shift the position of the energy minimum,  

depending on its strength and orientation with respect to the easy axes.
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TB, as that temperature at which the system appears to be ferro-
magnetic, i.e., where the measurement of the magnetization gives 
a ferromagnetic like response. This will of course depend on the 
measurement technique employed. It is thus possible to use Equa-
tion (13.113) to express the blocking temperature in an Arrhenius 
type law of the form:

	 T
V

k
1

ln( )B
B m 0

εε∆
τ τ

=
/

� (13.114)

where τm is the measurement time. For room temperature using 
ferromagnetic resonance techniques we find: T V k0.43( ).B Bεε∆ /  
From this relation we see that for short measurement times the 
blocking temperature will be higher than for longer measurements, 
such as magnetometry methods, which can have measurement times 
on the scale of minutes.

The superparamagnetic limit is a very important consideration 
in the workings of nanomagnetic devices and applications, such 
as magnetic bit used in magnetic data storage technologies. The 
recording media industry is a huge global market and therefore 
these questions are worth a lot of money. So while nanotechnologies 
have been based on reducing the size of components, there are some 
physical limits that must be overcome. The superparamagnetic limit 
is a very important one. Clearly, the blocking temperature relies on 
the energy barrier, Vεε∆ . So if we reduce the volume of our object 
we need to compensate with an increased anisotropy. The principal 
solutions have been to use ferromagnetic materials with very high 
anisotropies, such as CoPt or FePt alloys, or we can use pillar like 
objects which have large shape anisotropies.

The exponential law governing the superparamagnetic regime 
means that there is a very fine separation between the sizes of objects 
which can be considered as stable. This is best demonstrated with 
an example. Consider a spherical nanoparticle of radius, rNP, and 
uniaxial anisotropy, Ku. We now define the radius of a particle which 
is stable over 1 second and 1 year. These can be expressed using:
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For an Fe nanoparticle (Ku = 5×104 Jm−1) at room temperature, 
we find the stable radius for 1 second to be about 7.5 nm, while for a 
year long stability the radius only increases to 9.4 nm. We can think 
of this as another magnetic length scale.

Magnetic interactions between particles can help to stabilize 
the magnetization and lead to the modification of the Arrhenius law, 
giving:

	 e V k T T
0

/ ( )B B 0εε∆τ τ= − � (13.116)

This is referred to as the Volger - Fulcher law, where T0 is an 
effective temperature which is proportional to H ,i

2  the interaction 
field strength. Furthermore, an applied magnetic field will also sta-
bilize the magnetic particle by the modification of the magnetic free 
energy, as given for example in the Stoner - Wohlfarth model. In this 
case the Arrhenius law has the modified form:

	 e V H H k T
0

(1 / )/K Bεε∆τ τ= − � (13.117)

where HK is the anisotropy field and H the applied field strength.

It is worth mentioning that length scales in particle dimensions 
are important not only from the point of view of the properties, but 
also because their behavior can change in very specific ways and this 
means that we need to consider the best way to model their behav-
ior. For large particles, i.e., above the critical radius, the particles can 
have a multidomain state. Once we are below this threshold most 
researchers model their behavior as a macrospin, which means that 
the magnetization is always considered to have a single value through-
out the sample. Even in the reversal process, the magnetization has a 
fixed value in the homogeneous sample. This is one of the premises 
of the Stoner - Wohlfarth model. However, there is a further change 
that should be considered for nanostructures in which there is a sig-
nificant proportion of the atoms in surface positions. In this case the 
local magnetic anisotropy can have a very different value and easy axes 
from that of the bulk or core atoms. In such cases the only correct way 
to model the behavior is as a collection of coupled spins. Modelling in 
this way is far from simple and some effective models are used which 
distinguish between bulk spins and an effective surface layer.
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13.5.4  Magnetic Thin Films and Multilayers
Thin magnetic films represent an important category of system 

and have a long history of important applications and discoveries. 
As we have discussed earlier, such one dimensional size reduction 
illustrates the importance of surface effects and also has implications 
in the anisotropy of the sample. The difference in magnetic freedom 
at a surface can produce confinement effects in the generation of 
standing spin wave modes across the sample thickness. Additionally, 
the surface roughness of a film is an important parameter, since it can 
influence the surface magnetic properties, especially for ultrathin 
samples. The reduced coordination will obviously affect the local 
magnetic anisotropy and can give out-of-plane components to the 
magnetization and this is observed for example in Fe thin films for 
thicknesses between 2 and 5 monolayers (ML). Below 2 MLs there 
is no observed magnetization, which is attributed to a reduced Curie 
temperature, which again arises due to the reduced coordination, 
where for 2MLs there should be no atoms with full coordination. 
This reduces the exchange energy and hence the Curie temperature. 
Between 5 and 7 ML, there is a spin reorientation transition (SRT), 
which shifts the easy axis from the perpendicular to the in-plane 
direction. Changes in structural properties can also significantly alter 
the magnetic state, since changes in strain and hence interatomic 
separation will have a strong influence on the exchange interaction 
between neighboring spins. The deposition of any thin film will 
depend critically on the ambient conditions of substrate temperature 
and rate of deposition, which will affect the roughness of the surface 
and interface, while we should not forget the importance of the type 
of substrate itself, both in terms of its intrinsic nature, crystalline 
properties as well as imperfections and surface roughness.

The anisotropy of a thin film is often expressed as an effective 
anisotropy, taking into account various contributions. The effective 
anisotropy due to magnetocrystalline effects will have a thickness 
dependence since the surface contribution should be dominant for 
very thin films. For a thin film with asymmetric interfaces (s1 and s2) 
we can express the effective anisotropy as:

	 a bK t K
K K
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where we have considered the case of a uniaxial bulk anisotropy that 
is collinear with the two surface contributions.

The effects of sample temperature can reveal much about the 
magnetic properties of thin films. With increasing temperature, for 
example, we can expect the spectrum of thermally excited spin waves 
(or magnons) to increase in terms of the frequencies of the excited 
modes, much as we saw for the case of phonons. Furthermore, Stoner 
excitations (thermal reversal of electron spins) will also contribute 
to the general destruction of the magnetic order. The thickness at 
which the Curie temperature departs from the bulk value gives a 
measure of the length scale for the spin-spin coherence length. Such 
effects have been observed in thin films of a few tens of nm.

Magnetic multilayer systems, consisting of alternating ferro-
magnetic and non-magnetic layers, are a natural extension to the 
study of thin film systems. In addition to the magnetic surfaces and 
interfaces of 2D structures, the magnetic multilayers also depend 
on the interlayer magnetic interactions between adjacent magnetic 
films. The form of the interaction between the magnetic layers 
depends on a number of parameters, including thickness of inter-
vening non-magnetic layer, its conductivity and crystallographic ori-
entation. Also of importance is the interfacial roughness between 
the magnetic and non-magnetic layers. The magnetic proper-
ties of the individual layers also plays a central role. It should be 
clear that the coupling between magnetic layers can indeed be a 
complex problem. Much progress was made from the mid to late 
1980s, when a refinement of deposition techniques and analytical 
tools allowed for high quality multilayers to be produced and char-
acterized. One of the most important results to be found was the 
discovery of the oscillatory nature of magnetic coupling in metallic 
systems as a function of the thickness of the non-magnetic layer, in 
which the coupling is found to alternate between ferromagnetic and 
antiferromagnetic alignment and gradually decaying with the inter-
layer thickness. There are several mechanisms that can be produce 
such behavior, with the RKKY mechanism being one of the most 
popularly studied. This effect was first observed from the measure-
ment of the giant magnetoresistance (GMR) effect. Ultimately this 
work led to the development of the study of the spin dependent 
electronic transport properties in devices such as magnetic tunnel 



552  •  Solid State Physics

junctions and spin valves. We have briefly introduced the topic of 
spintronics in Chapter 10.

Magnetic multilayers can be used in a number of applications, 
with the basic GMR effect along with the TMR (tunnel magnetore-
sistance) being the principle physical quantities exploited for mag-
netic sensor applications. These magneto-transport properties lend 
themselves to device applications, where for example the read heads 
in hard disk drives are based on the measurement of the magneto-
resistance in a spin valve structure. This consists of a multilayer sys-
tem where one of the ferromagnetic layers is fixed via the exchange 
bias effect through the coupling with an antiferromagnetic layer. The 
exchange bias causes the reference point of the hysteresis loop of the 
ferromagnetic layer to be shifted, along the magnetic field axis, by an 
amount, called the exchange bias field, which can be expressed as:
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where n is the density of spins at the interface between the ferro-
magnetic and antiferromagnetic layers, which have spins, SFM and 
SAFM, respectively. MFM is the magnetization of the ferromagnetic 
layer, which has a thickness of tFM . The only parameter that can be 
adjusted is the thickness of the ferromagnetic layer, which can be set 
such that the resistance state changes near H = 0. This will give the 
device a very sensitive response for low fields. This is sufficient to 
measure the magnetic fields of the magnetic bits on a hard disk and 
hence read its state. Indeed the active device used as the read head 
in magnetic disk drives typically has magnetic and non-magnetic lay-
ers of thicknesses as little as 1 to a few nm.

As we saw in Section 10.13, the spin wave spectrum depends 
on the intrinsic properties of the material in question, these are: the 
g-factor, the magnetization, magnetic anisotropies and exchange 
constants. Besides the thermal excitation of spin waves, we can use 
specific excitations of given energies if they are in the appropriate 
region of the frequency spectrum. Typically experiments are per-
formed using photons in the visible region or alternating fields in the 
microwave to radio frequency range. In the Brillouin light scattering 
(BLS) type measurement, the shift in frequency from the incident 
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beam via Stokes and anti- Stokes inelastic scattering processes, allow 
us to assess the energies associated with the generated spin waves. 
With the use of waveguide systems we can measure the absorption 
of radiation due to the excitation of magnetic resonances, which 
essentially gives us the same information. In addition to the uni-
form precession of the ferromagnetic resonance observed in bulk 
materials, low dimensional systems permit the excitation of higher 
order resonance modes due to the existence of magnetic boundaries, 
which can act as pinning centers. The resulting standing spin wave 
modes can be understood from the dimensions and pinning condi-
tions of the magnetic boundaries.

In the simples case of a thin magnetic film with perfect pinning 
at the surfaces, i.e., the surface spins are rigidly fixed due to the sur-
face anisotropy. The situation is rather like the vibrations on a string 
which is driven at its various resonance frequencies. The additional 
term in the resonance equation takes the form of Dk ,n

2  where D = 
2A/Ms is the spin wave constant and for this case of perfect pinning 
the spin wave wave vectors take the form:

	 k
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where n is an integer and indicates the excitation mode and t the 
thickness of the magnetic layer. The observation of multi-peaked 
absorption spectra is usually a sign of the existence of standing spin 
wave modes in thin films, and the pattern of resonance field and 
spin wave modal number provides us with an experimental route to 
the measurement of the spin wave constant and hence the exchange 
interaction in the ferromagnet. Furthermore, the measurement of 
the spin wave spectrum in magnetic multilayers allows us to com-
pare the spectra with isolated thin films from which we can measure 
the frequency shifts which will allow us to evaluate the strength and 
sign of the magnetic exchange coupling between adjacent magnetic 
layers. For further discussion of ferromagnetic and spin wave reso-
nance, see Section 10.13.

13.5.5  Magnetic Nanostructures
Size reduction in two and three dimensions will add more com-

plexity to the general magnetic behavior of the object. This is because 
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we are adding the surface component of the ferromagnetic body and 
may produce additional confinement effects. In this section, we will 
outline some of the basic effects due to size considerations and review 
some of the principal types of objects, including ferromagnetic wires, 
rings, magnetic dots, and antidot systems. The constraints imposed 
on the magnetic moments in a system of reduced dimensions can pro-
duce some very specific types of behavior, especially with respect to 
domain walls and their motion. Some of the principal forms of nano-
structure are illustrated in Figure 13.28.

Magnetic nanowires can produce spin configurations that are 
very different from the usual magnetic behavior, resulting from the 
effect of the surface and the interaction of domain walls with the 
surface of the wire. Such nanowire systems have been proposed as 
an alternative method for magnetic data storage systems or racetrack 
memory. In such an application, magnetic domains, with orienta-
tions along the axis of the wire, are produced and moved along the 
wire via the application of a magnetic field or through the passage 
of a spin-polarized electrical current in the wire. An electrical cur-
rent can become polarized in a ferromagnetic material and as the 

FIGURE 13.28:  Examples of the types of nanostructures commonly studied. (a) Antidots, 
(b) nanodots, (c) assemblies of randomly spaced and oriented nanoparticles, (d) chains of 

nanoparticles joined due to dipolar interactions, (e) nanorings, (f) flat nanowires,  
(g) nanowires with circular cross-section, (h) nanotubes.
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electrons pass from one domain to the next they impart their angular 
momentum to the domain wall and shift its position. By modifying 
the surface structure, such as with a notch, it is possible to produce 
pinning sites for domain walls.

In the case of nanoparticles, we have outlined some of the more 
important physics at play in the previous two sections. However, in 
addition to this we need also to underline the importance of inter-
particle interactions, typically due to dipolar forces between the 
magnetic particles. This can bring about the alignment and forma-
tion of linear chains, if the particles are free to move, say in a liquid 
suspension. There are many methods for the production of nanopar-
ticles and any description goes beyond the scope of this book. How-
ever, in most cases the production method produces an assembly of 
nanoparticles with a distribution of sizes. This most often takes the 
form of a log - normal distribution, given by:
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where V is the particle volume, which has an averages size of V0 and 
σ is the standard deviation of ln V. This appears as a skewed distri-
bution, with a longer tail at the high side of the peak value. Ferro-
magnetic nanoparticle assemblies have been extensively studied and 
find a number of applications, and notably in biological and medical 
areas. The surfaces of certain nanoparticles can be coated or func-
tionalized, which allows them to become biocompatible. Inside the 
body they can be used for labelling, selective MRI enhancement, 
hyperthermia treatments, magnetic filtering among other biomedi-
cal applications6.

The magnetic dots structure, which can be square, circular, 
elliptical or rectangular, is usually made by some form of electron or 
photolithography process. In square and rectangular structures, it is 
common that the magnetic configuration has some form of domain 
closure, meaning that in the absence of an applied magnetic field, 
the object has no net magnetization. In the case of circular dots, the 
ground state is called the vortex state and again has no net magne-
tization in the sample plane, see Figure 13.29. In fact, the region at 
the center of a square dot can also be see to be a vortex structure. 
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The center of the vortex avoids being a true singularity by having 
the magnetic moment pointing out of the plane of the disk. The vor-
tex state is characterized by its chirality and direction of the out of 
plane moment. It is possible to transit between these states at the 
cost of some magnetic energy. In Figure 13.29, we show the hyster-
etic behavior for a magnetic disk with a vortex as the ground state. As 
we stated previously, the ground state of the disk is a vortex with zero 
net magnetization in the plane. An applied field in the plane of the 
sample will cause the vortex core to shift to one side, favoring the net 
magnetization in the direction of the applied field. Beyond a critical 
field the core will be expelled from the magnetic disk. We can see 
from the hysteresis loop, that if we maintain the magnetic field to a 
low enough value, so as to not remove the vortex core, there is effec-
tively no hysteresis, with the magnetization being reversible. Once 
the core is eliminated, hysteretic behavior will resume. The loops 
in the M-H cycle arise from this ferromagnetic character where the 
motion of the magnetization is irreversible. Applying ac magnetic 
fields can cause the vortex core to precess in gyrotropic motion. The 
motion has a natural resonance frequency, which typically lies in the 
range of a few hundred MHz. It is possible in some nanostructures to 
have more than one vortex core, for example in an elliptical magnetic 
particle. Since the vortex cores can have different states, they can be 

FIGURE 13.29:  Magnetic vortex state with corresponding hysteresis loop for  
a magnetic disk or dot. (This simulation was carried out using the OOMMF  

software, see http://math.nist.gov/oommf/.)
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made to interact, with attractive and repulsive forces being possible, 
depending on the chirality and orientation of the central vortex core.

It is possible to imagine removing the central core from a mag-
netic vortex in a magnetic dot. The result is a nanoring structure, see 
Figure 13.28 (e). The ring structure can support a vortex state and 
will have chirality. However, the application of a magnetic field can 
only lead to the introduction of domain structures and hence hyster-
esis. From the zero field, or ground state, with zero magnetization in 
the vortex state (closure state), a magnetic field will lead to satura-
tion when the magnetization is aligned with the field in the so-called 
onion state, see Figure 13.30. Increasing the thickness of a nanoring 

FIGURE 13.30:  Magnetic states for a nanoring: (a) closure or vortex state and (b) onion 
state. (c) Magnetic hysteresis loop for the nanoring, showing the different magnetic configu-
rations as a function of the applied magnetic field. [Reprinted figure with permission from: 

C. C. Chen et al., IEEE Trans. Magn., 45, 3546 (2009).]
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leads to the formation of a magnetic nanotube, where the mag-
netization can have similar magnetic configurations to the nanor-
ing. However, the extra length can allow more complex magnetic 

FIGURE 13.31:  Artificial spin ices. (a) Image of a square array of nanodots. The major symme-
try axes are indicated in the lower left corner. (b) Schematic illustration of the remanent magnetic 

configuration of the spin ice array after applying a saturation field parallel to the [10] direction 
and (c) parallel to the [11] direction. (d) The 16 possible remanent magnetic configurations for 

the artificial square spin ice vertices. After applying a saturation field along the [10] direction 
there is a fourfold degeneracy of the possible remanent vertex configurations. In comparison, 

after removing the [11] field, there is only one possible remanent vertex configuration. (e) Arti-
ficial kagome lattice with one, two and three rings. The different configurations are illustrated. 

[(a) - (d)©IOP Publishing. V. Kapaklis et al., New J. Phys., 14, 035009 (2012). Reproduced with 
permission. All rights reserved. (e) Reprinted figure with permission from: E. Mengotti et al., 

Phys. Rev B, 78, 144402 (2008). Copyright 2008 by the American Institute of Physics.]
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configurations to exist. The hysteresis loop for the ring structure has 
a plateau regions on either side near the coercive field and arises 
from the switch between the onion and vortex metastable states, see 
Figure 13.30 (c).

A magnetic films with regular shapes removed, for example by 
lithographic and etching methods, can lead to another type of struc-
ture called antidots. These can be of any shape, but most studies 
have used circular or square antidot structures in regular arrays. The 
periodic structures give rise to a periodic demagnetizing distribution, 
which is related to the dipolar interactions in the body. Depending 
on the spatial distribution and size of the antidots, specific domain 
structures, such as stripes can be formed. These will be modified by 
a magnetic field, depending on its strength and direction.

One final structure we can mention is that of arrays of elongated 
magnetic dots which can be arranged in specific configurations where 
competing interactions and anisotropies act to produce a frustrated 
magnetic state. This basically means that there is no one unique 
ground state. Such systems are generally referred to as spin ices. In 
Figure 13.31, we show the example of a square and a hexagonal artifi-
cial spin ice, also known as an artificial kagome lattice. It is notoriously 
difficult to coax the system into a low energy state and the ground 
state is practically impossible to achieve. This is due to the frustration 
introduced by the interdot interactions.

There are many variants of the structures we have outlined above 
and at the time of writing, there is intense research activity to study 
these types of materials. Here we have only given a brief overview of 
some of the more important results.

13.6  SUMMARY

Nanoscience is a broad area of study that comprises many areas 
of modern science. These include all the major natural sciences of 
Physics, Chemistry, and Biology. The principal theme is that these 
subjects are brought together by the common aspect that we are deal-
ing with the properties and effects brought about by using objects 
of reduced physical dimensions, which as the name suggests is of 
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the order of nanometers. The specific region of interest depending 
on the physical effect that is being measured. In this chapter, we 
have considered only those subjects with a direct connection to the 
physical properties of materials with size reduction in one or more 
dimensions.

One of the main reasons why objects show very large departures 
of their normal bulk properties at the nanoscale is that they have a 
significant proportion of their constituent atoms in surface positions. 
This means they are subject to less than full atomic coordination or 
some modification of their normal bulk crystalline symmetry. Such 
modifications of the local structure will be accompanied by altera-
tions in most if not all of their normal bulk physical properties. Fur-
thermore, the confinement effects produced by limiting the spatial 
extent of electronic wave functions can radically alter the electronic 
and optical properties of solids.

Surface modifications of crystalline order arise from the fact that 
the reduced symmetry of atomic coordination means that the nor-
mal bonding which occurs in the bulk of a crystal is incomplete. This 
will leave free or dangling bonds, which can be accommodated by 
a re-arragement of the surface atomic order and a relaxation of the 
normal interatomic separation between atoms. Such a modification 
of surface order is called surface reconstruction. There are a number 
of specialized characterization techniques that are only concerned 
with surfaces. Electron beams are of particular importance since their 
energies can be well controlled and from the fact that electrons in a 
certain energy range (20 - 1000 eV) have a very limited mean free 
path in solids, of the order of 1nm or less, meaning that they only 
probe the surface atomic layers of the solid. Such electrons can be 
used for diffraction purposes to evaluate surface crystallography and 
reconstructions as well as the electronic environment of the surface 
via electron spectroscopies. Actually higher energy electrons can be 
used to probe surfaces if their angle of incidence is reduced to a graz-
ing incidence of a few degrees, such as in the RHEED technique. 
Furthermore, surface microscopy techniques such as scanning elec-
tron and tunneling microscopies and other surface probe methods 
have been developed over the last two to three decades. These are 
used in a number of ways to probe surface atomic order and mor-
phologies as well as surface chemical mapping.
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There are a large number of techniques that can be used to pro-
duce nanostructures. These go from very sophisticated methods for 
controlling electron and ion beams to the very basic in the form of 
chemical and electrochemical methods for making agglomerates of 
atoms and nano-sized templates as well as self-assembly techniques. 
These technologies are broadly based on the top-down or bottom-up 
approaches to the fabrication of nanosystems. At the more advanced 
end of the spectrum, electron beams can be controlled to form very 
specific patterns in a photoresist which will then be used to manu-
facture precisely architectured objects. Focused ion beams, or FIB, 
can also be used in a similar fashion to etch and deposit materials 
in almost exact constructions at the nanoscale. Such advanced tools 
are mainly used as a research technique and industrial production 
usually requires more large scale methods for producing batches of 
devices. Replication technologies are showing themselves to be of 
great interest as are important developments in chemical methods of 
production of nanoparticles. Other forms of low dimensional struc-
ture, such as carbon nanotubes and graphene are also of enormous 
interest since they involve a single or multiple of single atomic lay-
ers. These materials have a range of exceptional physical properties 
and are strong candidates for many electronic and nano-mechanical 
devices and applications.

There has been a large amount of interest in microelectrome-
chanical systems or MEMS over recent decades. These are basically 
small mechanical devices that can be controlled or adapted to mea-
sure physical properties on the micron scale. These are very popular 
devices since they can be built on microchip systems and incorpo-
rated in the the usual CMOS microchip technologies. Such devices 
are common in the market place, with applications such as acceler-
ometers and gyroscopes as well as an enormous range of sensors and 
actuators. Such technologies are commonly found in smart phones 
and gaming devices which require position and motion sensors. The 
extension of technologies to the nanoscale has lead to interest in nano-
electromechanical systems or NEMS. While the range of applications 
is still limited at the current time, advances in production and charac-
terization are progressing. It should be remembered that the reduc-
tion of size generally leads to faster operation or higher frequency 
processing. Typical resonance frequencies of mechanical objects in 
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this range of sizes can be well in to the GHz region, which is the 
operational frequency used in communications systems for example.

In the area of electronics, we have seen that there is enormous 
scope for development. Clearly the electronics industry is one of 
the most important global industries and developments in nanosys-
tems are leading to smaller and faster products. At the time of writ-
ing, the active components in transistors are reaching the scale of a 
few 10s of nm in size. With developments in nanotube technologies 
and molecular electronics, this trend can be expected to continue 
for the next few decades at least. At the root of these advances in 
electronics are the radical changes to the electronic properties that 
occur on the nanoscale. For example, with nanometric dimensions, 
insulators can become transparent to electrons and conductors can 
become non-conducting if there are charging effects that lead to 
Coulomb blockade. However, understanding the basic principles of 
these limitations allows us to manipulate the devices to our advan-
tage. We can use our knowledge of this behavior to produce a new 
range and class of device that is based on the control of the passage 
of single electrons. Since such devices require such small currents, 
there will be much less dissipation of energy, which is also an impor-
tant consideration.

The energy quantization that we observe for objects of reduced 
dimensions has been a property that has been well studied since 
the inception of quantum well technologies from the 1980s. We 
can manipulate the dimensions of an object to produce specific well 
defined energy levels for the electronic states of a system. This allows 
us to control and design devices for specific applications and will 
have electronic and optical properties to suit specific functions. This 
means we can control the color of light emitted from semiconductor 
lasers and LEDs for example. Further to these, the optical properties 
of solids can be adjusted by making periodic structures which will 
limit the propagation of light at specific wavelengths. Such consider-
ations have lead to the development of photonic crystals, which have 
a large range of applications even beyond the visible spectrum and 
can be used for camouflage at say radar frequencies.

As with electronic properties, the magnetic behavior of nano-
structures can alter significantly from bulk materials. The magnetic 
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characteristic length scales also fall within the nanometer region. 
For magnetic structures of this dimension, there is generally not 
enough room to form magnetic domains and a first approximation 
of the nanosystem can be envisaged as a coherent macrospin. The 
behavior of the magnetization then depends on the effective anisot-
ropy of the structure and the applied magnetic field strength and 
direction. The Stoner - Wohlfarth model appears to be a good start-
ing point for modelling this type of structure. However, the thermal 
agitation can lead to a fast switching of the magnetic state between 
the various energy minima of the anisotropy and give rise to the so 
called superparamagnetic behavior. Here there is no well defined 
orientation of the magnetization in the system. However, the speed 
at which we measure is an important factor in how the magnetic 
response appears. Cooling to low temperatures leads to a freezing 
of the magnetic state, with the transition occurring at the so-called 
blocking temperature. These properties depends critically on the 
strength of the magnetic anisotropy and the size of the nano-object. 
Developments in thin film technologies and structuring have fol-
lowed to a certain extent that of the electronic properties. Multi-
layer systems also allow the magnetic properties to be tailored to a 
degree via the control of interactions between ferromagnetic layers 
and structures. In elongated and unidimensional structures, mag-
netic domain effects can be observed and exploited to make spe-
cific device applications. Of great interest are magnetic data storage 
technologies, much of which are based on magnetics and magnetic 
materials both for storage purposes and reading applications.

While we have only considered the physical response and behav-
ior of nano-objects, there are a large number of applications that 
go well beyond the physical nature of materials and utilize these 
properties for other purposes. Of particular importance are the 
many applications that are emerging in the areas of medicine and 
biology. Much of this is related to the use of nanoparticles which 
can be exploited to label and identify regions in biological systems. 
For example, magnetic nanoparticles can by functionalized to attach 
themselves to cancer cells. Hyperthermia treatments can be then 
applied locally to heat and kill the cancer cells using radio-frequency 
signals. Also there is much interest in using magnetic particle as a 
delivery system for drug therapies. Since the magnetic particles can 
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be directed to the region where treatment is required, dosage lev-
els can be significantly reduced, thus limiting any undesirable side 
effects, such as those experienced in chemotherapies.

We have only been able to really see the tip of the iceberg and 
nanotechnologies has enormous prospects for future science and 
technology in the foreseeable future. We can expect devices to 
become smaller and faster and even cheaper. However, there are 
physical size limits and we appear to be coming close to those in a 
number of areas, such as in electronic and magnetic systems. This 
will require new thinking and future scientists will be faced with 
these challenges. However, this is the role of science in general.
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EXERCISES

Q1.	 Illustrate the form of the following surface reconstruc-
tions:

a)	bcc (110)c(4×2)

b)	fcc (110) (3×2)

c)	 zinc-blende (111) c(4×2)

Q2.	 Compare and contrast the techniques of LEED and 
RHEED, giving advantages and disadvantages of each.

Q3.	 Check the validity of the plasma frequency for Si, which 
has four valence electrons per atom and has a plasmon 
loss peak at 16.9 eV. The lattice constant for Si is 5.43 Å. 
What is the corresponding surface plasmon loss energy?

Q4.	 The surface concentration of a particular GaAs dopant 
is temperature independent, has an activation energy of 
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3.5 eV and a value of diffusion coefficient at 700° C of 
10−16cm2s−1. The diffusion length of all processing should 
be 10−6 cm. Calculate:

a)	the process time at 700°C,

b)	the area density of impurities in the diffused layer at 
the same temperature,

c)	the change in process time if an elevated temperature 
of 800°C is used,

d)	the flux of atoms after 30 minutes at 800°C.

Q5.	 Show that gravitational forces scale as S4.

Q6.	 The semiconductor CdSe has a melting temperature 
of 1678 K, however, in this material is formed into 
nanoparticles of 3 nm diameter this melting temperature 
significantly reduces to 700 K. Explain this empirical 
observation. Estimate the melting temperature for 2 nm 
diameter particles.

Q7.	 a)	�How does the frequency of an electronic device scale 
with its size?

b)	How large would a device need to be for it to func-
tion at microwave frequencies at room temperature? 
Consider only the thermal velocity of the electron.

Q8.	 Consider a sample of crystalline GaAs with an electronic 
effective mass of m* = 0.067me and a mobility of μ = 105 
cm2V−1s−1 at liquid nitrogen temperatures. Calculate the 
following parameters:

a)	de Broglie wavelength, λ;

b)	Scattering time, τe;

c)	Thermal electron velocity, vT;

d)	Mean free path, λe;

e)	Diffusion coefficient, D(α = 3).

	 Determine the transport regime for devices with feature 
sizes of Lx = 0.05, 0.5 and 5 mm.
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Q9.	 Estimate the emission wavelength of a 15 nm GaAs 
quantum well laser at room temperature. (Use the fol-
lowing data for GaAs: m m0.067 ;e=∗  m m0.5 ;hh e1 =∗ ∆ = 
1.424 eV at 300 K.)

Q10.	 Explain what is meant by Coulomb blockade and explain 
the origin of the formation of the Coulomb Diamond 
structure experimentally observed in single electron 
transfer devices. Further show that a potential of e/C 
is required to transfer a single electron across a tunnel 
junction.

Q11.	 Determine the energy of the Coulomb barrier for islands 
of 2, 5, and 10 nm diameter. Assume that the capacitance 
of the island contact junctions to be 1fF.

Q12.	 Consider a semiconductor of width W and length L con-
nected to two regions (contacts) of 2DEGs of the same 
material, with an effective mass of 0.07 me. In the nar-
row region of the device it is necessary to take account of 
the discreteness of transversal modes. Plot the electron 
density as a function of the Fermi energy for W = 100 
nm assuming a hard wall potential.

Q13.	 A typical tunnel junction is formed using an oxide layer of 
thickness 5 nm and dielectric constant, r = 5. Estimate 
the maximum area of the capacitor plates for Coulomb 
blockade to be observed at temperatures of:

a)	4.2 K

b)	300K

Q14.	 Consider the energy associated with electrons in a quan-
tum dot. Show that the degenerate level (at k = 0) in a 
semiconductor between the heavy and light hole bands is 
lifted when a quantum dot is formed. (For the purposes 
of argument use a cubic form of quantum dot, of side a.) 
Show that the energy difference in the ground state is 
given by:

	


a b
a

m m
m m

3
2

VB
hh lh

hh lh

0
2 2

2
∆ π

=
−∗ ∗

∗ ∗ � (13.122)
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Q15.	 Show that quantum effects become observable in the 
condition:

	 x
h

mk TB

∆ = � (13.123)

Q16.	 Evaluate the ground state of an Fe2+ ion. In crystalline 
Fe, the orbital angular momentum is quenched. Taking 
this into account, evaluate the magnetic moment of Fe, 
assuming it forms Fe2+ ions in solid. What is the cor-
responding magnetization of Fe? Note that Fe has a bcc 
structure and lattice parameter of 2.87 Å.

Q17.	 Consider the energies involved in a Bloch domain wall for 
a ferromagnetic particle with uniaxial magnetic anisotro-
py. Find an expression for the critical diameter of a spher-
ically shaped particle in terms of the anisotropy strength 
and the exchange stiffness constant. Determine a value 
for the size of an iron single domain particle. (Look up 
any constants that you may require for this estimate.)

Q18.	 A magnetic measurement is made using a SQUID mag-
netometer on a monodisperse assembly of Fe nanopar-
ticles with diameter 8 nm. The results indicate a blocking 
temperature of TB = 33 K, where it was assumed that 
the characteristic measuring time is 100 s. Evaluate the 
corrresponding blocking temperature for these nanopar-
ticles using ferromagnetic resonance, where the mea-
suring time can be approximated as around 10−10 s. The 
anisotropy constant for Fe is about 0.48 × 106 erg cm−3. 
State any assumptions made in the calculation.

Q19.	 Consider the spin wave spectrum for a 50 Å Fe thin film. 
Evaluate the expected frequency for the first spin wave 
mode. Use D = 280 meVÅ2.

Q20.	 Spin injection is a crucial process in the electronics of 
spin. Describe how this can be achieved optically in a 
semiconducting device.

Q21.	 Explain why the existence of a spin current does not nec-
essary have to be accompanied by an electrical current.
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NOTES

1The basic units of pressure have the following conversion factors: 1 atm = 760 torr 
= 1013 mbar = 1.013 × 105 Pa (Nm−2)
2This was first demonstrated in 1989 by Don Eigler, who worked at IBM. He wrote 
the letters IBM with 35 Xe atoms. A great publicity coup for IBM!
3The Nobel Prize for 1986 was also shared with Ernst Ruska, who was the inventor 
of the electron microscope, which was first developed in 1931.
4M. J. Madou, “Fundamentals of Microfabrication and Nanotechnology”, CRC 
Press, Taylor and Francis (2011).
5The unit of conductance is siemens: 1 S = 1AV−1 = 1Ω−1.
6see for example Q A Pankhurst et al., J. Phys. D: Appl. Phys. 36, R167 (2003) and 
J. Phys. D: Appl. Phys. 42, 224001 (2009).
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APPENDIX B

THE FOURIER TRANSFORM

The Fourier transform, named after Jean Baptiste Joseph 
Fourier (1768–1830), is a mathematical tool for the study of periodic 
properties and has an enormous range of applications in Physics and 
Engineering. The transform is used to analyze the periodicity of a 
function and in performing a transform provides a suitable change 
of units. For example, the Fourier transform of a temporal function 
(with units in seconds), i.e., time domain, will return a function with 
the temporal variation or frequency (with units Hz or s−1), i.e., fre-
quency domain. Such a transform provides a frequency spectrum of 
the original function.

The mathematical expression of the Fourier transform can be 
given as follows. Consider a function f(x), the Fourier transform of 
this function is generally expressed as:

	  u f x e u( ) ( ) diux2∫= π−

−∞

∞
� (B.1)

which is valid for any real number u. The inverse transform is expressed as:

	 f x u e x( ) ( ) diux2∫= π−

−∞

∞
� (B.2)

and is valid for any real number x.

Apart from the spectral analysis of time dependent properties, 
the Fourier transform is also frequently used in the analysis of spa-
tially dependent functions and properties. The periodicity of crystals 
and the transformation from real to reciprocal space can also be ana-
lyzed with the aid of Fourier analysis.
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APPENDIX C

FUNDAMENTAL CONSTANTS

TABLE C.1:  Fundamental Constants in Physics

Quantity Symbol Value
Electron charge e 1.60219 × 10−19 C

Electron rest mass me 9.1095 × 10−31 kg

Proton rest mass mp 1.6726 × 10−27 kg

Neutron rest mass mn 1.6749 × 10−27 kg

Planck’s constant h 6.6262 × 10−34 Js

Planck’s constant
h = h/2π 1.05459 × 10−34 Js

Speed of light c 2.997925 × 108 ms−1

Permittivity of free  
space

0 8.8542 × 10−12 Fm−1

Permeability of free  
space

μ0 4π × 10−7 Hm−1

or 1.2566 × 10−6 Hm−1

Boltzmann’s constant kB 1.3807 × 1023 mol−1

Avogadro’s number NA 6.022 × 10−23 JK−1

Gas constant R = kBNA 8.314 JK−1 mol−1

Bohr magneton μB 9.2741 × 10−24 JT−1

Nuclear magneton μN 5.0508 × 10−27 JT−1

Reciprocal fine  
structure constant

1/α 1/137.036

Electron radius re 2.81794 × 10−15 m

Bohr radius a0 = 4π0h
2/mee2 0.529177 × 10−10 m

Rydberg constant Ry = h2/2mea2
0 2.17991 × 10−18 J

(Continued)
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Quantity Symbol Value
Free electron g-factor g 2.002319304386

Magnetogyric  
(gyromagnetic) ratio

γ = gμB/h 1.7608592 × 1011 s−1T−1

Electron volt eV 1.60219 × 10−19 J

TABLE C.1:  Continued
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negative sign, 8
wave interference, 9
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395
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C
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electron diffraction, 85–88
neutron diffraction, 88–90
X-ray diffraction, 80–85
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Bravais lattice, 64
Fourier components, 63
interplanar spacing, 65, 66f
Kronecker delta, 64
Miller indices, 65
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structure factor
BCC structure, 78
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phase problem, 80

waves, diffraction of
Bragg’s law, 68–70
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electromagnetic spectrum, 67
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74–76
inelastic scattering, 68
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Laue approaches, 72–74
Von Laue approach, 70–72

Crystalline structure
atomic packing

atomic planes, 56
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hard-sphere model, 55, 56f
packing fraction, 55

BCC structures, 52, 52f, 53
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crystal planes and axes,  
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anisotropic, 45
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cosine rule, 50
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for, 46, 47f
physical properties, 45
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CsCl structure, 53, 53f
diamond crystal structure, 53, 54
FCC structures, 51, 52
HCP structures, 51, 51f, 52
symmetry, aspects of

basis, 36, 38–41
building block, 36
elements of, 41–43
translational symmetry, 37–38
unit cell, 38–41

D

Debye model, 152–155
Degenerate electron gas, 184
Density functional theory, 224
Density of states (DOS), 155
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Depletion zone, 304–306
Device under test (DUT), 514
Dielectric materials

basic properties of
dielectric breakdown, 450–451
electrical conductivity, 449
ionic conduction, 449–450

electrostatics and Maxwell 
equations

capacitance, 454, 455
electric dipole moment, 452
electric susceptibility, 452
metallic plates, 453

ferroelectrics
BaTiO3, cubic perovskite 

structure, 469, 470
Curie–Weiss law, 470, 471t
properties of, 469, 469t
pyroelectrics, 469

function
electric field, application  

of, 458, 458f
electronic polarization, 460–462
ionic polarization, 462–467
Kramers-Kronig relations, 460
total dielectric function, 467–468

local field, 455–458
multiferroic materials, 472–473
piezoelectrics, 472
solids, optical properties of

anti-Stokes scattering, 481
cubic crystals, 480
electromagnetic waves, 

absorption of, 477–478
exciton, 480
photon energy, 479
Raman scattering, 481
Stokes scattering, 481
transmission and reflection 

coefficients, 475–477
wave equation, 474–475

Diffusion current, 249
3 Dimensions, crystallographic 

space group in, 572t–574t
Dislocations

Burgers vector, 105–108
edge dislocations, 104–105
energy, 115–117
interactions

Burgers vectors, 119
dislocation reaction, 118
Frank-Read source, 118, 119f
jogs, 117, 117f, 118
partial dislocations, 119–120
sessile, 118
slip system, 118
stacking fault, 120, 121

screw dislocations, 105
solids, and mechanical  

properties of
climb, 114
cross-slip, 115
plastic deformation, 109
shear force, 113
slip planes, 110, 111, 111f, 

112, 114–115
stress-strain curve, 108, 109
work hardening, 109

Doping, 284
Ductile, 110
Dulong and Petit’s law, 150
Dzyaloshinski-Moriya (DM) 

interactions, 343

E

Edge dislocations, 104–105
Eigenvalue equation, 12
Einstein relation, 250
Einstein’s model, 150–152
Electrical conductivity, 449
Electron diffraction

LEED experiment, 88
RHEED experiment, 86, 87
TEM, 86

Electron dynamics and transport 
phenomena
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Bloch function, 233, 234
charge carriers, drift and 

diffusion of
diffusivity and mobility, 249
Einstein relation, 250

effective mass
constant energy surfaces, 238, 

238f
energy bands, 239
inverse effective mass tensor, 

237
electron scattering, 251–253
Fermi surface

Bragg plane, 241, 241f
Brillouin zones, 240, 242, 242f

group and phase velocities, 235, 
235f

k-space, 236
magnetic field effects

cyclotron resonance, 256–260
Hall effect, 254–256
magnetic sub-bands and 

oscillatory phenomena, 
263–265

magnetoresistance, 260–263
quantum and fractional quantum 

Hall effects, 266–269
positive charge carriers

conduction band, 246, 247
hole states, 245
valence band, 244,

wave vector, 233
Electron dynamics

Bloch function, 233, 234
effective mass
group and phase velocities, 235, 

235f
k-space, 236
wave vector, 233

Electron energy loss spectroscopy 
(EELS), 501

Electronic polarization, 460–462
Extrinsic semiconductors

Fermi level, 289
freeze-out range, 287
intrinsic range, 288
ionized donors, 286
n-type, 286, 290
p-type, 285, 290
quadratic equation 287
saturation range, 287–288

F

Facecentered cubic (FCC), 51, 52
Ferrimagnetic order

Brillouin function, 356
classes of, 359
inverse magnetic susceptibility, 

358, 358f
octahedral and tetrahedral sites, 

360
properties of, 360t

Ferroelectrics
BaTiO3, cubic perovskite 

structure, 469, 470
Curie–Weiss law, 470, 471t
properties of, 469, 469t
pyroelectrics, 469

Ferromagnetic order
itinerant ferromagnetism, 349–351
mean field theory

Brillouin function, 347
Curie temperature, 346, 347
Hamiltonian, 345
properties of, 349t

Ferromagnetic resonance (FMR), 
379

Field effect transistor (FET), 529
Fourier transform, 575
Fractional quantum Hall effect 

(FQHE), 256, 268
Free electrons in metals
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Drude theory, 172–174
electron gas

Fermi-Dirac statistics of, 
174–177

specific heat of, 182–184
high frequency response and 

optical properties
electromagnetic radiation, 189
Fermi sphere, 188, 188f
plasma frequency, 190
refractive index, 190–191

Maxwell-Boltzmann velocity 
distribution, 171–172

metallic behavior, 169–171
Pauli paramagnetism

Bohr magneton, 185
Curie-Weiss law, 187
spin-up and spin-down 

electrons, 185, 186
photoelectric effect, 168
Sommerfeld model, 177–178
states, density of

Fermi wave-vector, 180
k-space, 179
Sommerfeld expansion, 181, 182

Free electrons
metals. see Free electrons  

in metals
periodic potential

Brillouin zone, 214, 215
electronic states, 212
reciprocal lattice vector, 213, 214

Frenkel defect, 98
Fundamental constants, 577–578

G

Giant magnetoresistance (GMR) 
effect, 376, 551

Gibbs free energy, 405
Ginzburg-Landau (GL) model

Cooper pairs, 415

order parameter, 413
Grain boundary, 121
Grüneisen constant, 157–158

H

Hall effect
Hall coefficient, 256
history, 254
Lorentz force, 255

Hard-sphere depiction, 51
Heisenberg uncertainty  

principle, 11
Hexagonal close-packed structures, 

51, 51f, 52
High resolution electron energy loss 

spectroscopy (HREELS), 502
High-temperature 

superconductivity (HTS)
CuO2 planes, 438, 439, 440
YBCO compound, 437, 438, 440

Hooke’s law, 133
Hydrogen bonding, 28–29

I

Internal friction, 121
Interstitial sites, 97
Intrinsic semiconductors

conduction band, 280–281
effective density of states, 282
electrons and holes, 280
parabolic bands, 281
valence band, 281

Inverse effective mass tensor, 237
Ionic bonding

cohesive energy, 22
Madelung constant, 22
NaCl, 21

Ionic conduction, 449–450
Ionic polarization, 462–467
Isotopes, 1
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J

Josephson effects
basic structure of, 430
Cooper pairs, 431, 433
Giaever tunneling, 434
phase shifts, 435
SQUID, 434, 435f, 436–437

K

Kramers-Kronig relations, 460

L

Lattice, 121
vector, 37

Lattice vibrations
anharmonic effects

thermal conduction, 158–159
thermal expansion, 157–158
Umklapp processes, 160–162

diatomic 1D lattice
Brillouin zone, 145, 146, 148
longitudinal and trans verse, 

148–149
negative solution, 144
phase and group velocities, 147

monatomic lattice
modes, number of, 139–143
one-dimensional chain, 

132–137
three-dimensions, extension 

to, 138–139
solids, thermal properties of

Debye model, 152–155
Dulong and Petit’s law, 150
Einstein’s model, 150–152

Laue zone, 86
Law of mass action, 283–284
Linear combination of atomic 

orbitals (LCAO), 219
Lyddane-Sachs-Teller relation 

(LST), 465

M

Magnetic anisotropies
magnetocrystalline anisotropy, 

363–365
shape anisotropy, 361-362

Magnetic force microscopy 
(MFM), 371

Magnetic materials
AFM and MFM, 371
anisotropy energy, 367
antiferromagnetic order

Curie-Weiss law, 355
Néel temperature, 352, 353
properties of, 355t
spin-flip transition, 354
sublattice, 352

atomic magnetic moment
Hund’s rules and the ground 

state, 326–330
moments and energies, 

330–331
orbital and spin angular 

momenta, 324–326
Barkhausen effect, 370
coercive field, 369
diamagnetism, 331–334
dipolar interaction, 339–341
domain walls, 365
exchange interactions, 341–344

direct and indirect, 342
DM interaction, 343–344
Hamiltonian, 342

ferrimagnetic order
Brillouin function, 356
classes of, 359
inverse magnetic 

susceptibility, 358, 358f
octahedral and tetrahedral 

sites, 360
properties of, 360t

ferromagnetic order
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itinerant ferromagnetism, 
349–351

mean field theory, 344–349
giant magnetoresistance and 

spintronics
GMR, 379
parallel and antiparallel states, 

377
RKKY interaction, 376
spin-up and spin-down 

electrons, 376, 377
hysteresis loop, 369–370, 370f
Lorentz force, 371
magnetic anisotropies

magnetocrystalline anisotropy, 
363–365

shape anisotropy, 361–362
magnetic domain closure, 368, 

368f
magnetic domain wall 

parameters, 368, 368t
MOKE, 370
paramagnetism

classical treatment, 334–336
quantum mechanical 

treatment, 336–338
Van Vleck paramagnetism, 

338–339
spin dynamics

experimental techniques, 385
Kittel equation, 384
LL and LLG equations, 382
phenomenological description, 

380
relaxation process, 281
SWR, 383

spin waves
excitation energy, 375, 375f
Hamiltonian, 371, 372
phonons, 373, 374
Reimann zeta function, 374

Stoner excitation, 375
spontaneous magnetization, 323
transition regions, 366
virgin state, 369

Magnetic nanostructures
antidots, 559
ground state, 556
magnetic dots structure, 555
magnetic nanowires, 554
vortex core, 556, 557

Magnetic quantum number, 14
Magnetic sub-bands/Landau levels, 

264
Magnetic tunnel junction (MTJ), 

522–523
Magnetocrystalline anisotropy, 361
Magneto-optic Kerr effect 

(MOKE), 370
Metallic bonding, 26–28
Molecular beam epitaxy (MBE), 310
Moseley’s law, 81

N

Nanostructures
Bohr model, 538
conduction band, 535
Coulomb interaction, 537
Fermi’s golden rule, 534
matrix elements, 534
photonics crystals, 539
QW structure, 536, 537f, 538

Nanotechnologies and nanophysics
electronic and optical properties

insulating barrier and tunnel 
junctions, 519–523

nanostructures, 534–539
phase coherence length, 508
quantum dots and coulomb 

blockade, 523–527
quantum point contacts, 

513–519
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resonant tunneling, 527–529
SET, 529–533
size reduction and energy 

quantization, 509–513
IC, 487
LDS, 503–507
microscopic and macroscopic, 489
Moore’s law, 488
nanomagnetism, aspects of

magnetic length scales,  
540–541

magnetic nanostructures, 
553–559

magnetic thin films and 
multilayers, 550–553

Stoner-Wohlfarth Model, 
541–545

superparamagnetism 
and ferromagnetic 
nanoparticles, 545–549

nanomedicine, 487
quantum mechanics, 488
STM, 488
surfaces, physics of

Auger electron, 499, 500, 500f
bulk crystals, 491
EELS, 501, 502
photoelectron spectroscopies, 

502
principal features, 499
selvedge, 490
UHV, 491
UPS technique, 502

Neutron diffraction, 88–90
Non-crystalline materials, 124–125
Non-equilibrium distributions

carrier injection/injection levels
excess charge carriers, 293
high-level carrier injection, 

294
low-level injection, 293–294

continuity equations, 298–300
generation and recombination 

processes, 294–298
boundary condition, 297
direct and indirect process, 294
excess charge carriers, 295
rates of, 296
relaxation processes, 294
trapping centers, 298

Nuclear magnetic resonance 
(NMR), 382

O

Object Oriented MicroMagnetic 
Framework (OOMMF), 369

One-dimensional chain, 132–137
Brillouin zones, 137
dispersion relation, 134, 136
group velocity, 135
Hooke’s law, 133
Newton’s second law, 133
non-dispersive regime, 135
phase velocity, 135
transversal modes, 137

P

Packing fraction, 55
Paramagnetism

classical treatment, 334–336
quantum mechanical treatment, 

336–338
Van Vleck paramagnetism, 

338–339
Pauli exclusion principle, 14
Pauli paramagnetism, 185

Bohr magneton, 185
Curie-Weiss law, 187
spin-up and spin-down electrons, 

185, 186
Phonon emission, 104
Physical bonds, 21
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Piezoelectrics, 472
Planar defects

grain boundaries, 121–122
tilt boundaries, 122–123
twin boundaries, 123–124

Plasmon, 190
P-N junction

breakdown voltage, 301
current-voltage characteristics

built-in potential, 307, 308
ideal diode equation, 309
leakage currents, 309
n-region, 309
p-region, 309

depletion zone, 304-306
junction capacitance, 306
thermal equilibrium

charge carriers, diffusion of, 
301

electron concentration, 302
electrostatic potential, 303
space-charge distribution, 302

Point defects
color centers, 103–104
crystals, diffusion in

Fick’s first law, 101
Fick’s second law, 102
impurity diffusion, 101
self-diffusion, 101

defect density, thermodynamics 
of, 99–100

types of
antisite defects, 98
Frenkel and Schottky defects, 

98, 98f
Polaritons, 466
Polycrystalline systems, 58
Precipitation hardening, 121
Primitive unit cell, 38

volume, 39
Principal quantum number, 13

Pseudopotential method, 224
Pyroelectrics, 469

Q

Quantum point contacts (QPC)
DUT, 514
Fermi-Dirac distribution 

function, 517
Landauer formula, 518
left-to-right transmission 

coefficient, 516
QWR, 513

Quantum well (QW), 312
Quantum wires (QWR), 513
Quantum/quantized Hall effect 

(QHE), 256, 266, 268

R

Reciprocal lattice
Bravais lattice, 64
Fourier components, 63
interplanar spacing, 65, 66f
Kronecker delta, 64
Miller indices, 65
primitive lattice, 63

Resonant tunneling diode (RTD), 
522, 527

S

Schottky defect, 98
Screw dislocations, 105
Semiconductors

equilibrium statistics, electrons 
and holes

compensated semiconductors, 
290–292

extrinsic, doping, 284–290
intrinsic, 279–282
law of mass action, 283–284

heterostructures and quantum 
wells
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band gap energy, 311
band structure engineering, 

311
conduction and valence 

bands., 313, 314
GaAs and AlAs, 311
MBE, 310–311
QW structure, 312

materials
band gap, 277
direct band-gap, 277, 278
direct transitions, 278
III-V materials, 276
indirect band-gap, 277, 278

non-equilibrium distributions
carrier injection/injection 

levels, 292–294
continuity equations, 298–300
generation and recombination 

processes, 294–298
p-n junction

breakdown voltage, 301
current-voltage characteristics, 

306–310
depletion zone, 304–306
junction capacitance, 306
thermal equilibrium, 301–304

Si, band structure for, 275
Silsbee effect, 397
Single electron transistor (SET)

Coulomb blockade, 531, 532
electron tunneling, 530, 531
QD, 529

Solid state physics
aspects, 2
atom, electronic structure of

angular momentum quantum 
number, 13–14

atomic orbital, 12–13
Bohr model, 6–11
eigenvalue equation, 12

electron filling, 15, 15f
electron orbits, 5–6
elemental particles, 4
Heisenberg uncertainty 

principle, 11
magnetic quantum number, 14
Pauli exclusion principle, 14
principal quantum number, 13
Spin quantum number, 14

electronic properties, 3
interatomic bonding

covalent bonding, 23–26
equilibrium separation, 19–20
hydrogen bonding, 28–29
ionic bonding, 21–23
metallic bonding, 26–28
Mie potential, 19
mixed covalent and lonic 

bonding, 26
physical bonds, 21
Van der Waals bonding, 29

magnetism, 2
mechanical properties, 2
periodic table

electronic configuration, 16, 
17f, 18, 18f

properties, 17
physical properties, 3

Space lattice/Bravais lattice, 38
Spin dynamics

experimental techniques, 385
Kittel equation, 384
LL and LLG equations, 382
phenomenological description, 380
relaxation process, 281
SWR, 383

Spin quantum number, 14
Spin wave resonance (SWR) 

spectra, 383
Spin waves

excitation energy, 375, 375f
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Hamiltonian, 371, 372
phonons, 373, 374
Reimann zeta function, 374
Stoner excitation, 375

Stacking fault, 120
Stoner-Wohlfarth Model, 541–545
Strain, 109
Structure factor, 62

BCC structure, 78
FCC structure, 79
phase problem, 80

Superconducting quantum 
interference device (SQUID), 
434, 435f

Superconductivity
BCS theory

Cooper pair, 417, 418, 421
electrons, 429
Fermi surface, 420
ground state, 422–425
isotope effect, 416
outcomes of, 425–430
phonon coupling, 419, 419f
two-electron wave-function, 422

BEC, 395
critical fields and critical current, 

401–404
GL model

Cooper pairs, 415
order parameter, 413

HTS
CuO2 planes, 438, 439, 440
YBCO compound, 437, 438, 440

Josephson effects
basic structure of, 430
Cooper pairs, 431, 433
Giaever tunneling, 434
phase shifts, 435
SQUID, 434, 435f, 436–437

London equations
coherence length, 411

first London equation, 409
penetration depth, 410
second London equation, 409

Meissner-Ochsenfeld effect, 
398–399

perfect diamagnetism, 399–401
thermodynamics

heat capacity, 407–408
phase stability of, 405–406

zero-resistivity/infinite 
conductivity and persistent 
currents, 396–398

Superparamagnetic limit, 546, 548
Surface reconstruction, 87

T

Tight-binding model
electronic wave functions, 218
energy bands, 222, 222f
FCC structure, 221, 221f
Hamiltonian, 219
Wannier function, 219, 220

Tilt boundary, 122
Transmission electron microscope 

(TEM), 86
Twin boundary, 123
Two-dimensional electron gas 

(2DEG), 265

U

Ultraviolet photoelectron 
spectroscopy (UPS), 502

Umklapp processes
free path, 161, 162
N and U–processes, 160, 161f, 161

V

Van der Waals bonding, 29
van Hove singularities, 143
Von Laue approach, 70–72
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W

Wannier function, 219
Weiss molecular field theory, 344
Wigner-Seitz cell, 40
Work hardening, 109

X

X-ray diffraction
Debye-Scherrer method, 83–85
Laue method, 81–83
rotating crystal method, 83
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