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Visualization has become a valuable means for data exploration and analysis. Interactive visualiza-
tion combines expressive graphical representations and effective user interaction. Although interac-
tion is an important component of visualization approaches, much of the visualization literature 
tends to pay more attention to the graphical representation than to interaction.

The goal of this work is to strengthen the interaction side of visualization. Based on a brief review 
of general aspects of interaction, we develop an interaction-oriented view on visualization. This view 
comprises five key aspects: the data, the tasks, the technology, the human, as well as the implementa-
tion. Picking up these aspects individually, we elaborate several interaction methods for visualization. 
We introduce a multi-threading architecture for efficient interactive exploration. We present interac-
tion techniques for different types of data (e.g., multivariate data, spatio-temporal data, graphs) and 
different visualization tasks (e.g., exploratory navigation, visual comparison, visual editing). With 
respect to technology, we illustrate approaches that utilize modern interaction modalities (e.g., touch, 
tangibles, proxemics) as well as classic ones. While the human is important throughout this work, we 
also consider automatic methods to assist the interactive part.

In addition to solutions for individual problems, a major contribution of this work is the overarch-
ing view of interaction in visualization as a whole. This includes a critical discussion of interaction, 
the identification of links between the key aspects of interaction, and the formulation of research 
topics for future work with a focus on interaction.
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ABSTRACT
Visualization has become a valuable means for data exploration and analysis. Interactive visua-
lization combines expressive graphical representations and effective user interaction. Although
interaction is an important component of visualization approaches, much of the visualization lit-
erature tends to pay more attention to the graphical representation than to interaction.

e goal of this work is to strengthen the interaction side of visualization. Based on a brief
review of general aspects of interaction, we develop an interaction-oriented view on visualiza-
tion. is view comprises five key aspects: the data, the tasks, the technology, the human, as well
as the implementation. Picking up these aspects individually, we elaborate several interaction
methods for visualization. We introduce a multi-threading architecture for efficient interactive
exploration. We present interaction techniques for different types of data (e.g., multivariate data,
spatio-temporal data, graphs) and different visualization tasks (e.g., exploratory navigation, vi-
sual comparison, visual editing). With respect to technology, we illustrate approaches that utilize
modern interaction modalities (e.g., touch, tangibles, proxemics) as well as classic ones. While
the human is important throughout this work, we also consider automatic methods to assist the
interactive part.

In addition to solutions for individual problems, a major contribution of this work is the
overarching view of interaction in visualization as a whole. is includes a critical discussion of
interaction, the identification of links between the key aspects of interaction, and the formulation
of research topics for future work with a focus on interaction.

KEYWORDS
Visualization, interaction, zoomable user interfaces, interactive lenses, touch inter-
action, tangible interaction, proxemic interaction, selection, navigation, exploration,
visual comparison, visual editing, large displays, automatic methods, navigation rec-
ommendations
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C H A P T E R 1

Introduction
Nowadays, we live in a world full of data. Technological advances have led to a situation where
we collect excessively far more data than we can make sense of—a problem known as information
overload (Strother et al., 2012). Visualization has become an accepted means to address the infor-
mation overload. e key idea behind visualization is to transform data into pictures that humans
can interpret more easily than large quantities of numbers (Ware, 2012). Interaction between the
human and the computer plays an integral role in the process of forming mental models of the
data (Spence, 2007). is work emphasizes the role of interaction in visualization.

1.1 WHY FOCUS ON INTERACTION?
Bertin (1981) points out the importance of interaction for visual data exploration and analysis:

“A graphic is not ‘drawn’ once and for all; it is ‘constructed’ and reconstructed until it
reveals all the relationships constituted by the interplay of the data. e best graphic
operations are those carried out by the decision-maker himself.”

— Bertin (1981)

Bertin conveys two key messages. First, interaction is indispensable for constructive pro-
cesses such as developing insight into complex data, and second, interaction enables the human
to steer the data exploration and to make the final assessment of the data. Interestingly, Bertin
expressed his thoughts on interaction years before visualization existed as a field. Still, the essence
of his statement remains valid until today.

Computer-supported visualization has always included the notion of interactivity. Similar
to what Bertin said, Pike et al. (2009) state the following:

“It is through the interactive manipulation of a visual interface–the analytic discourse–
that knowledge is constructed, tested, refined and shared.”

— Pike et al. (2009)

Despite the importance of interaction in visualization, much of the literature on visualiza-
tion focuses, in fact, on the visual part, not so much on the interaction part. Many visualization
publications describe in detail aspects of the visual representation, but less is reported about the
design and the implementation of interaction in visualization. Several other researchers have taken
note of this deficiency:
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“Even though interaction is an important part of information visualization (Infovis),
it has garnered a relatively low level of attention from the Infovis community.”

— Yi et al. (2007)

“Until recently, the focus of InfoVis has been more on the graphical representation
and less on the interaction.”

— Fekete (2010)

“Also, although interaction isn’t yet a primary theme, the visualization research liter-
ature reflects an increasing focus on it.”

— Keefe (2010)

“Unfortunately, interaction is not discussed at all in graphic design, and even visuali-
zation textbooks tend to downplay this angle.”

— Elmqvist et al. (2011)

ere are several explanations for why interactive aspects are not on equal terms with visual
aspects. First, visualization has its roots in computer graphics. Second, reporting a result related
to interaction (a process) is typically more difficult than reporting on a visual result (an image).
ird, there is no standard notation one could rely on when describing interaction.

is work is an attempt to balance the visualization plus interaction equation. To this end,
we deliberately look at visualization from an interaction perspective.

1.2 AN INTERACTION-ORIENTED VIEW
We develop and discuss an interaction-oriented view of visualization, bringing together the rele-
vant concerns under a common hood. Data and tasks are key factors of visualization and likewise
they are primary concerns to be considered for interaction. Further, we consider the technology
providing the means for display, interaction, and computation, as well as the human user as the
recipient of visual information and active participant in the interactive data exploration and anal-
ysis process.

at said, the primary topic of interest of this work is to investigate interaction in visualiza-
tion along the key factors: data, tasks, technology, and human. Studying these factors individually
with a focus on interactive approaches, we provide a broader picture on interaction in visualization
as a whole. Addressing the data, we discuss solutions taking into account both the structure of data
as well as the spatial and temporal frame of reference in which data are usually given. With regard
to tasks, we present interaction techniques for visual comparison and data editing, both of which
being highly relevant in data-intensive work places. We introduce techniques that utilize differ-
ent interaction technologies, including classic mouse and keyboard interaction, but also modern
touch interfaces and physical interaction in front of large high-resolution displays. Focusing on
the human user, we look at techniques for reducing interaction costs by drawing inspiration from
natural interaction, by following real-world workflows, and by integrating automatic methods.
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e interaction side of visualization is also studied from an implementation perspective. We
present an efficient multi-threading architecture that can serve as a general basis for developing
interactive visualization systems. We further illustrate several solutions that incorporate modern
display technology and interaction modalities to implement novel ways of interacting with visual
representations of data.

With our interaction-oriented view organized according to data, tasks, technology, human,
and implementation, we hope to contribute to lifting interaction in visualization to a level that
corresponds to its widely acknowledged importance.

1.3 OUTLINE
Chapter 2 starts with an introduction to the fundamental concepts of visualization and interaction.
e introduction collects various definitions, explains basic interaction techniques, studies the
visualization-interaction gap, and discusses the advantages and disadvantages of interaction in
visualization. Basics of implementing interactive visualization solutions complement this chapter.

Chapter 3 takes a closer look at the aspects of interaction in visualization and develops a
structured interaction-oriented view on the topic. As indicated, we will cover five key aspects: the
data, the tasks, the technology, the human, and the implementation.

In Chapter 4, we present methods and techniques that illustrate key questions and cor-
responding solutions with respect to our interaction-oriented view. In Section 4.1, we address
interaction implementation on a fundamental level by discussing a multi-threading architecture
for interactive visualization applications. Section 4.2 sets the focus on the data aspect by intro-
ducing effective ways of interacting with graph structures and movement trajectories in space
and time. e task aspect is taken up in Section 4.3, where we illustrate interaction techniques
for visual data comparison and data editing tasks. In Section 4.4, we present tangible views and
explain physical navigation in front of large displays as novel ways of interaction that take ad-
vantage of technological progress. Addressing the human user, we discuss the use of automatic
event-based methods and navigation recommendations as means to reduce interaction costs in
Section 4.5. All approaches are described in a compact way, presenting the key messages with a
focus on interaction in visualization.

Chapter 5 provides an overall summary and conclusion. Key concerns are to derive and
discuss insights about the greater picture of interaction in visualization as drawn in this work and
to identify research topics for future work.
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C H A P T E R 2

Fundamentals
is chapter takes a look at some fundamental aspects of visualization and interaction. We will
first consider visualization and human-computer interaction in general, before we shift our focus
to visualization-specific questions of interaction.

2.1 VISUALIZATION
As early as in the 1980s, visualization pioneers recognized the enormous potential that modern
computers would offer in terms of analytic power, graphics output, and interactive manipulation.
McCormick et al. (1987) formulate the key idea of visualization as:

“Visualization is a method of computing. It transforms the symbolic into the geomet-
ric, enabling researchers to observe their simulations and computations. Visualization
offers a method for seeing the unseen. It enriches the process of scientific discovery
and fosters profound and unexpected insights.”

— McCormick et al. (1987)

With their seminal work, McCormick and colleagues paved the way for visualization as a
distinct field of computer science. About a decade later, Card et al. (1999) define visualization—
the visualization of information in particular—as follows:

“Information visualization: e use of computer-supported, interactive, visual repre-
sentations of data to amplify cognition.”

— Card et al. (1999)

At its core, the definition brings together the capabilities of human perception and cog-
nition and the computational abilities of computers as the key components glued together by
interaction. Ware (2008) further emphasizes the interplay of the human and the computer:

“It is useful to think of the human and the computer together as a single cognitive
entity, with the computer functioning as a kind of cognitive coprocessor to the human
brain. [...] Each part of the system is doing what it does best. e computer can pre-
process vast amounts of information. e human can do rapid pattern analysis and
flexible decision making.”

— Ware (2008)
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Figure 2.1: e visualization pipeline (adapted from Card et al., 1999).

For the interplay of human and computer to be successful, the visualization literature de-
scribes a number of criteria that must be observed when data are transformed into visual repre-
sentations. e economic model of visualization by van Wijk (2006) demands that the benefits
of using visualization as a means to gain insight outweigh the costs involved in carrying out the
process (i.e., computation and interpretation). A necessary condition to achieve beneficial visual
representations is to consider the two key visualization criteria, expressiveness and effectiveness, as
identified by Mackinlay (1986). Visual representations are expressive if they actually do express
the desired information. Effectiveness relates to making the most of the capabilities of the human
visual system and the output medium.

Striving to meet the expressiveness and effectiveness criteria, visualization approaches typ-
ically follow the visualization pipeline model. e pipeline model is useful not only for describing
and implementing the process of generating visual representations of data (Haber and McNabb,
1990; Chi, 2000; dos Santos and Brodlie, 2004) but also for explaining the user’s involvement in
this process (Card et al., 1999; Jansen and Dragicevic, 2013).

e visualization pipeline by Card et al. (1999) is a widely accepted blueprint for visualiza-
tion. As depicted in Figure 2.1, the pipeline prescribes, at a most abstract level, how data is to be
transformed through several stages from a data source into data tables, into visual abstractions,
and finally into visualization views. Data transformations, including filtering, clustering, error
correction, can be found in the early stage of the pipeline.

At the heart of the pipeline are the visual mappings, that is, the transformation of data
tables to visual abstractions (i.e., graphical primitives). Bertin (1983), Mackinlay (1986), and
MacEachren (1994) describe different visual variables that can bear information in a visual rep-
resentation. Examples are given in Figure 2.2, including position, size, shape, orientation, hue,
saturation, brightness, texture, focus, transparency, containment, and connection. Different vi-
sual variables have different expressive power and work differently well for different types of data.
e choice of visual variables largely determines how effective a visual representation is. Mackin-
lay (1986) and, more recently, Heer and Bostock (2010) suggest suitable mappings of data to
visual variables. For example, size is good for numeric data, whereas shape is more suitable for
categorical data.
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Figure 2.2: Visual variables for encoding data graphically.

Finally, the generated graphics are rendered to visualization views, that is, to visual rep-
resentations. At the view transformation stage, typical computer graphics operations are carried
out, including projection, clipping, and rasterization.

Let us now consider how users are involved in the visualization process. e particular
visualization pipeline in Figure 2.1 incorporates the user in two different roles. On the one hand,
the user is the recipient of the information communicated via visualization views. In this role, the
user aims to make sense of visual representations and to link features in the graphics to actual
characteristics of the underlying data. On the other hand, the pipeline suggests that the user can
be an active participant controlling the different stages of the transformation from data to views.
Unfortunately, the pipeline model does not provide the same level of detail for generating visual
representations and for interactively working with them—reason enough for us to look more
closely at interaction.

2.2 HUMAN–COMPUTER INTERACTION
Aprimary source of scholarly literature on interaction is the realm of human–computer interaction
(HCI). According to Dix et al. (2004), “HCI involves the design, implementation and evaluation
of interactive systems in the context of the user’s task and work.”

A general model for interaction is described by Norman (1988, 2013). According to this
model, interaction can be conceptualized as a cycle of two phases: the execution phase and the
evaluation phase. As both phases occasion costs, Norman denotes them as gulfs: the gulf of exe-
cution and the gulf of evaluation.

In the context of interaction between humans and computers, Norman’s model can be illus-
trated as in Figure 2.3. Starting with a goal (e.g., read web page), the execution phase is concerned
with the intent to interact (e.g., scroll down), the mental planning of the interaction (e.g., plan
to use mouse wheel), and the actual execution of the plan (e.g., rotate mouse wheel). Performing
this first phase of the action cycle results in a response from the system (e.g., redisplay web page).
e evaluation of the response is captured in the second phase of the action cycle. is includes
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Figure 2.3: Interaction as a cycle of execution and evaluation phases.

the perception of the response (e.g., see new content), the mental interpretation of it (e.g., page
scrolled up), and its actual evaluation with regard to the intent that induced the interaction (e.g.,
scrolled wrong direction). If outcome and intent of the interaction do not match, the cycle is
re-run—certainly with the same intent, but with a different plan (e.g., use touch to scroll) that
hopefully leads to a positive evaluation.

Similar to expressiveness and effectiveness in visualization, there are certain criteria that
interaction has to obey. Usability (Nielsen, 1993) and user experience (Hassenzahl and Tractinsky,
2006) are key aspects in this regard. ey subsume criteria such as predictability, consistency,
customizability, satisfaction, engagement, responsiveness, and task conformance, to name only a
few. e rationales behind these criteria are standardized in ISO standards 9241-11 on usability
and 9241-210 on human-centered design.

For the practitioner, the literature also provides rules and guidelines. Shneiderman and
Plaisant (2009) list the following eight golden rules:

1. Strive for consistency 5. Prevent errors
2. Cater to universal usability 6. Permit easy reversal of actions
3. Offer informative feedback 7. Support internal locus of control
4. Design dialogs to yield closure 8. Reduce short-term memory load

Norman (2013) describes seven fundamental principles of design. According to these prin-
ciples, it must be possible to determine the state of a system and possible actions at all times
(discoverability). Appropriate feedback reflects the response to an action and the new system state
(feedback). e relevant information is presented in a way that leads to understanding and a feeling
of control (conceptual model). Suitable options are available to carry out the intended actions (af-
fordances). Well perceivable indicators support discoverability and feedback (signifiers). Controls
naturally map to the actions they trigger (mappings). Constraining the available actions can offer
guidance and ease interpretation (constraints).
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e criteria we included here are not exhaustive. e reader is referred to the HCI literature
for a more comprehensive discussion. Dix et al. (2004) and Shneiderman and Plaisant (2009)
dedicate entire chapters to principles, rules, guidelines, and best practices.

Striving for effective and efficient action-response cycles, HCI researchers have proposed
several themes of interaction. Early research focused on command-line interfaces and interaction
using windows, icons, menus, and pointers, commonly known as the WIMP paradigm (Dix et al.,
2004). A classic and most prevalent theme, also in visualization, is direct manipulation as proposed
by Shneiderman (1983). Direct manipulation can be characterized as interaction with constantly
visible objects that are manipulated by physical and reversible actions with immediate feedback.
Building upon direct manipulation, Beaudouin-Lafon (2000) coins the term instrumental inter-
action. It captures the idea of using interaction instruments as mediators to manipulate domain
objects.

With the advent of modern interaction devices, new ways of interacting became possible.
It began the so-called post-WIMP era (van Dam, 1997). Tangible interaction (Ishii and Ullmer,
1997) is based on interaction with tangible objects in the real world. Reality-based interaction
(Jacob et al., 2008) and natural interaction (Valli, 2008) are the next steps in a line of recent
developments that include aspects of greater awareness of the user and the environment in which
the interaction takes place.

ese models and studies from the HCI literature contribute largely to a better understand-
ing of the role and needs of human beings interacting with computers in general. e specific
aspects of interaction in the context of visualization deserve further elaboration.

2.3 INTERACTION IN VISUALIZATION
Spence (2007) describes visualization as a tool to support humans in forming mental models of
otherwise difficult-to-grasp complex phenomena. e fact that people form mental models sug-
gests that interaction be a principal ingredient of visualization. In fact, the visualization pipeline
by Card et al. (1999) (see Figure 2.1 on page 6) includes interaction by means of a human, a
user who actively controls the individual transformation stages and receives corresponding visual
feedback.

ere are visualization scenarios that get along well with only minimal interaction or no
interaction at all. An example is information graphics for which the data are usually understood
quite well and the goal is to communicate results or facts about the data.

Yet, when the visualization goal is of open-ended exploratory nature, interaction becomes
indispensable. Especially when dealing with unknown data, their visual representations might
not be as expected due to the manifold factors that influence the visualization process (e.g., data
characteristics, analytic tasks, choice and parametrization of analytical and visual methods). Un-
fortunately, we usually do not know exactly what the expected visual outcome is or whether it is
effective with respect to the data and the tasks at hand. Because there are things we do not know,
we have to seek assistance from the user.
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It becomes clear that visualization is not a one-way street of transforming data into im-
ages, but in fact can be considered a human-in-the-loop process of controlled transformations
(Conversy, 2013). Interaction helps people in understanding the visual encoding, in realizing the
effect of visualization parameters, in identifying key data characteristics and carving out hidden
patterns, and eventually, in becoming confident about the data.

Interaction also provokes curiosity. Analysts want to get their hands on their data, and
interaction enables them to experiment with different what-if scenarios. e importance of in-
teraction in visualization is nicely reflected in a statement by omas and Cook (2005):

“Visual representations alone cannot satisfy analytical needs. Interaction tech-
niques are required to support the dialogue between the analyst and the data.”

— omas and Cook (2005)

Two key challenges for interactive visualization are data size and data complexity. e prob-
lem of data size relates to the typically large number of data items to be visualized. In techni-
cal terms, we have the possibility to address limited memory, computing power, and display re-
sources with cloud storage, parallel-processing clusters, and large high-resolution displays. How-
ever, there is still human perception and cognition, which is not easily changed, if at all. While
human visual processing is largely parallel, conscious dialog is possible only with a fraction of the
available information. Moreover, complex data contain many different facets and as complexity
increases there are more and more questions that one might ask about the data. Any attempt to
create a single visual representation that contains all data items, covers all data facets, and provides
answers to all questions is condemned to fail. Such a visual representation would be hopelessly
overloaded, confusing, and could hardly be interpreted.

Instead, the big problem has to be split into smaller pieces. In a kind of divide-and-conquer
way, the pieces become more effective because they are tailored to emphasize a particular aspect
of the data, allowing users to concentrate on task-relevant questions. Interaction is the glue that
holds the pieces together. Interaction allows users to navigate between different pieces and men-
tally combine them to form a greater picture. An iterative process takes place during which dif-
ferent parts of the data are brought to the display with emphasis on different facets of the data to
provide answers to different analytic questions.

e exploration process generally follows the visual information seeking mantra by Shnei-
derman (1996): “Overview first, zoom and filter, then details on demand.” According to this
mantra, a visualization should start from an overview of the data.¹ From there, the user zooms
into interesting parts and filters out irrelevant items. When necessary, it is possible to descend
into the details on demand. e exploration can now be continued in different ways. Moving on
to data that are related or similar can be a sensible option. Alternatively, one could also return to
the overview and investigate the data from a different point of view or with regard to a different
question. Taken together, the user forms a mental model of the data by interactively moving from

¹Starting with details and aggregating them to overviews is possible as well (van den Elzen and van Wijk, 2014).
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one focus to the next, where the term focus includes data subsets, data facets, analysis questions,
and so forth. Eventually, the mental model will be the basis for a comprehensive understanding
of the underlying data.

LEVELS AND MODELS OF INTERACTION
Shneiderman’s mantra describes the general procedure for visual and interactive information seek-
ing. is procedure involves interaction at different levels. Ware (2012) explains interaction in
visualization based on interaction loops at three levels. At the lowest level is the data manipu-
lation loop. At this level, interaction is concerned with basic operations of recognizing, pointing
at, or manipulating objects (e.g., moving the mouse and performing a click to pinpoint a data
item of interest). At an intermediate level there is the exploration and navigation loop in which
the user combines basic low-level operations to activities of exploration and navigation of large
visual data spaces (e.g., adjusting the visual encoding or visiting different parts of the data). At
the highest level, the problem-solving loop captures processes of forming, refining, and falsifying
hypotheses about the data, which involves combining several activities to accomplish cognitively
more demanding tasks (e.g., laying out pieces of information for finding relations).

Low-level Interaction From a conceptual point of view, different modes of interaction can be
identified depending on how low-level operations are performed. Spence (2007) distin-
guishes stepped interaction and continuous interaction (and passive interaction). Stepped in-
teraction is related to discrete, infrequent actions. Examples are clicking a button or pressing
a key to trigger the execution of a clustering algorithm.
Continuous interaction, on the other hand, denotes interaction for which the interaction-
feedback loop is iterated at high frequency, continuously so to say. Continuous interaction
is vitally important in visualization scenarios as it facilitates examining the visualized data
with respect to multiple what-if scenarios in a short period of time. Apparently, continu-
ous interaction requires easy-to-execute interactions and sufficient visual feedback, which
must be provided quickly. A classic example of continuous interaction is to drag sliders to
adjust dynamic queries, while the visualization is continuously updated (Ahlberg et al., 1992;
Shneiderman, 1994).
Elmqvist et al. (2011) expand on continuous interaction and propose the concept of fluid
interaction, which integrates aspects of promoting flow, supporting direct manipulation, and
minimizing the gulfs of execution and evaluation. Heer and Shneiderman (2012) underline
the significance of the continuous and direct character of interaction in visualization: “To be
most effective, visual analytics tools must support the fluent and flexible use of visualizations
at rates resonant with the pace of human thought.”

Intermediate-level Interaction In addition to thinking of interaction as stepped or continuous
low-level operations, it makes sense to consider the intermediate-level exploration and nav-
igation activities typically required to accomplish visualization tasks.
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From an analysis of existing interaction techniques, Yi et al. (2007) condense seven cate-
gories of user intents for interaction: select – mark something as interesting, explore – show
me something else, reconfigure – show me a different arrangement, encode – show me a
different representation, abstract/elaborate – show me more or less detail, filter – show me
something conditionally, and finally connect – show me related items. For each intent, sev-
eral interaction techniques are listed that support the intent in one way or the other.
Ward et al. (2010) discuss interaction in the context of a framework of interaction spaces
(Ward and Yang, 2004). ey formulate interaction operators (e.g., navigation operators,
selection operators, or filtering operators) in analogy to the objectives of an interaction.
Further, interaction operands are defined as the spaces in which the interaction takes place
(e.g., screen space, data value space, or attribute space). Interaction techniques can then be
explained by combining operators and operands.
Sedig and Parsons (2013) approach exploration and navigation activities from a pattern-
oriented perspective. ey suggest looking at action patterns, of which they describe 28
exemplars, including unipolar actions such as selecting, navigating, searching, or compar-
ing, as well as bipolar actions such as collapsing/expanding, composing/decomposing, in-
serting/removing, or animating/freezing. Examples are given to illustrate how different in-
teraction techniques instantiate the various patterns.
Spence (2007), Ward et al. (2010), and Ware (2012) elaborate on actual techniques, classic
and contemporary ones, for interacting with visual representations and the data behind
them.e examples given in these books document the versatility of the existing approaches.
e concrete set of techniques to be made available to the users of a visualization solution
mainly depends on what the users are expected to accomplish via interaction.

High-level Interaction Similar to how low-level operations are combined to carry out
intermediate-level activities, so are the intermediate-level activities a precursor to high-
level problem solving. At this level, interaction is considered more broadly as a catalyst for
analytic thinking and discovery, which typically focus on the formation, refinement, and
falsification of hypotheses by setting data into relation, comparing pieces of information, or
extracting high-level features.
e model by Pirolli and Card (2005) describes the sensemaking process as two loops: the
foraging loop and the sensemaking loop. e foraging loop is concerned with interactively
gathering and extracting information. e subsequent sensemaking loop describes the de-
velopment of mental models through schematization as well as hypothesis generation and
validation. Liu et al. (2008) take a closer look at the distributed cognitive processes being
active when humans engage in a sensemaking dialog with visually represented information.
ey suggest that “[...] cognition is more an emergent property of interactions between
an individual and the environment through perception and action rather than a property
bounded inside an individual.” In a related context, Liu and Stasko (2010) describe inter-
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action as a tool for giving meaning to what is perceived, for collecting relevant information,
and extracting and storing interesting findings.

So, at the highest level, interaction is more concerned with the dialog of the analyst and
the knowledge artifacts extracted via interactive visual methods. is also involves inter-
actively coordinating and organizing pieces of information in an analytic visual-interactive
workspace.

Structuring interaction according to different levels certainly helps in thinking about inter-
action. Yet, we should also note that the borders between the levels are not always crisp and clear.
Where intermediate-level exploration and navigation ends and where high-level problem-solving
loop begins typically depends on the concrete visualization setting. erefore, it is better to think
of smooth transitions between the different levels.

BASIC INTERACTION TECHNIQUES
Interaction techniques are the basic building blocks to complement the visualization pipeline with
respect to interaction. An interaction technique typically supports a well-defined intermediate-
level activity (e.g., scrolling). To provide its service, an interaction technique relies on several
low-level operations (e.g., mouse pointing or multi-touch gestures). Allowing multiple interac-
tion techniques to be used in concert facilitates higher-level interaction (e.g., comparing and
annotating findings).

Visualization can draw on a variety of interaction techniques. It is beyond the scope of
this section to review them all. Instead, for the purpose of illustration, we describe three classic
techniques that are particularly useful to cope with data size and data complexity: Zoomable user
interfaces, selection (aka. brushing), as well as dynamic queries.

Zoomable user interfaces e visual information–seeking mantra suggests that it is necessary
to look at data at different levels of detail. In what has become known as zoomable user interfaces
(Bederson and Hollan, 1994), the user can freely explore the information space at multiple scales.
e conceptual idea is that the display serves as a window into the information space (Furnas and
Bederson, 1995). Different parts of the information space can be accessed by moving the window,
whereas resizing the window adjusts the scale of what can be seen. Bederson (2011) reports that
there are various ways of carrying out these operations. Using mouse wheel or mouse drag are
common on desktop computers. Pinch and drag gestures are the quasi-standard on touch-enabled
devices.

Typically, one differentiates geometric zooming and semantic zooming. For geometric zoom-
ing, scale adjustments will only affect the size of objects on the display. Semantic zooming goes
beyond resizing and allows for any kind of adjustments of the visual representation of objects.
is makes it possible to show the same data entirely differently at different scales. Yet, care has
to be taken to maintain the expressiveness and effectiveness of the visual representation.
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Figure 2.4: Zooming in onto a cluster in a node-link representation of a graph.

A simple example is shown in Figure 2.4. e figure contains a sequence of zooming oper-
ations toward a cluster (shown in red) in the upper left part of a graph. e zooming appears to be
geometric. On second sight, it is not! In fact, the zooming takes effect on the positions of nodes,
but deliberately not on their size. is is important for visualization applications that use size as
a visual variable to encode data values (here size corresponds to node degree). Implementing the
zoom as illustrated enables the user to see details in dense regions while the integrity of the visual
encoding is maintained during zoom operations.

In order to keep users oriented while zooming, visual navigation cues can be provided.
Figure 2.4 illustrates the use of a grid for indicating the current scale. Overview windows are par-
ticularly helpful for orientation (Hornbæk et al., 2002) and animation can make zoom operations
comprehensible (van Wijk and Nuij, 2004). Scroll bars for indicating the current position in the
information space and off-screen techniques for hinting at objects currently not being visible are
useful as well, not only as visual cues, but also as additional controls of the user interface.

Selection (aka. Brushing) With zoomable user interfaces it is possible to explore an information
space. Selection enables users to further focus their exploration and analysis by pinpointing items
of interest in the information space.

As a starting point, we consider the node-link representation in Figure 2.5(a). Our goal
is to focus on the connectivity of the high-degree nodes shown in orange and red. Single-item
selection is usually carried out by positioning a pointer on top of an item and pressing a trigger.
When multiple items are to be selected, drag operations can be employed to define a rubber band
selecting all items within an elastic rectangle (see Figure 2.5(b)). Greater control is offered by
free-form lasso selection. Yet, the greater control comes at higher interaction cost for defining
the free-from selection. While in all these cases the absolute position of items determines their
inclusion in the selection, there are also approaches that consider the relative position of items.
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(a) Before the selection. (b) Rubber band selection. (c) Highlighting and dimming.

Figure 2.5: Selecting high-degree nodes in a node-link representation of a graph.

An example is angular brushing by Hauser et al. (2002) for which selections are determined based
on angles between data items.

Once a selection has been performed, the items of interest have to be marked. In Fig-
ure 2.5(c), visual highlighting is achieved by placing circles around the selected nodes. Addi-
tionally, the selected data is emphasized by dimming the links between unselected nodes. In our
example, the visual feedback is shown in the same view where the selection took place. Brushing
& linking (Becker and Cleveland, 1987; Buja et al., 1991) is a concept to provide feedback in
multiple views. To this end, the selection is made a part of the data model and all views being
attached to the data model update themselves automatically once the selection has changed. As
the data of interest stand out in all views, the linking step provides valuable support for mentally
combining different views of the data.

With the selection made in Figure 2.5, we could not fully achieve our goal of focusing on
high-degree nodes. Our selection missed some high-degree nodes (in orange), but included some
low-degree nodes (in green). So we need mechanisms for altering a selection. Wills (1996) iden-
tifies 524,288 theoretically possible ways of combining selections. For the sake of consistency, he
recommends that visualization systems should support one of the following five sets of operations:
toggle only, replace/toggle, add/subtract, add/intersect, or replace/toggle/add/subtract/intersect.
In contrast to that, Chen (2004) proposes complex compound brushing, including logical com-
binations and analytical filters.

A difficulty with the selections described so far is that they are based on the position of
data items on the display. However, the position does not necessarily correspond very well to the
aspect according to which we wish to perform the selection (node degree in our case). A promising
alternative is to do data-centric dynamic queries.

Dynamic Queries Dynamic Queries are similar to selection in that the goal is to focus on items
of interest (Ahlberg et al., 1992; Shneiderman, 1994). Yet, while selections are defined on the
visual arrangement of the data, dynamic queries are specified directly on the data. In the previous
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(a) A filter slider.

(b) Hiding filtered data. (c) Dimming filtered data.

Figure 2.6: Filter slider and visual feedback for dynamic queries.

paragraphs, we used selection to highlight relevant items. Now we use dynamic queries to reduce
the number or the visibility of irrelevant items.

Dynamic queries are commonly specified via dedicated filter slides. A filter slider is associ-
ated with a data attribute on which the query is to be performed. Handles at the sliders indicate
filter thresholds and afford their dynamic adjustment. Figure 2.6(a) shows such a filter slider with
two handles for interval queries on the attribute . e filter thresholds are set so that low-
degree nodes are filtered out. Multiple filter sliders can be combined to create logical  and 
combinations of filters on multiple data attributes.

A key aspect of dynamic querying is that the visualization is constantly refreshed to provide
visual feedback while filter thresholds are being adjusted. ere are two options for communi-
cating the filtering result. One option is to hide the data that have been filtered out. is way,
irrelevant data is made invisible and the visualization is focused entirely on relevant data as shown
in Figure 2.6(b). In some scenarios, it can also be useful to maintain awareness of the fact that
there is more in the data than what is shown. In such cases, filtered data can be dimmed to leave
residue in the visualization. Figure 2.6(c) shows that dimming helps maintain the overall context.

Discussion Zoomable user interfaces, selection, and dynamic queries are classic interaction
techniques in visualization contexts. Conceptually, they cover basic navigation and selection.
Zoomable user interfaces allow the user to navigate between different parts of the data and be-
tween overview and details. Selection naturally enables the user to select data according to their
position on the screen. Dynamic queries can be used to select data based on data characteristics. In
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a way, navigation and selection are fundamental, because they are required for many visualization
problems. In fact, focusing on relevant parts of the data and interesting data items via zooming,
selection, and filtering is often required before more elaborate, intermediate-level or high-level
interactive operations can be applied on the focused part of the data.

In scenarios where we deal with well-formed discrete data objects visualized via 2D graph-
ics (e.g., data tables of multivariate data, nodes and edges of a graph layout, regions of maps,
words in documents), navigation and selection are relatively easy to implement. Yet, there are also
scenarios where no such discrete objects exist, or they are only vaguely defined. is is typically
the case for dense visual representations such as plots of scalar functions on maps and image-based
depictions of flow data. Going from 2D to 3D graphics (e.g., visualization of volume data) fur-
ther increases the efforts required for selecting data and defining viewpoints onto the data. Visual
representations with vast numbers of small elements, such as point clouds, are also problematic.
More sophisticated methods are required to allow selection under such circumstances. Examples
include contextual picking (Kohlmann et al., 2009) and what-you-see-is-what-you-get selection
for volume visualization (Wiebel et al., 2012), as well as structure-aware selection in 3D point
clouds (Yu et al., 2012). A survey on 3D interaction in general is provided by Jankowski and
Hachet (2013).

While there is general agreement about the importance of fundamental interactions, there
is also recognition that we could benefit more from interaction. Recent research activities strive
to take full advantage of interaction as a means to integrate the user more tightly into the visual
analysis process. Next we briefly discuss related research questions.

..

Interaction in visualization is a special form of human–computer interac-
tion. Interactions are primarily mediated through visual representations
of data, which also serve to provide visual feedback.

2.4 THE VISUALIZATION–INTERACTION GAP
Arguably there is still a discrepancy between interaction research and visualization research (Ebert
et al., 2014). Zudilova-Seinstra et al. (2009) even see “a major communication gap between HCI
experts and those developing visualization algorithms and systems.” As a consequence, research
results from one field do not always transfer smoothly to the respective other field. Why is this
so?

Traditionally, interaction research is focused on the human being. Human-centered design
methodologies, models of perception and cognition, accessible devices, as well as social aspects
are among the primary contributions of interaction research. On the other hand, visualization
research has the focusmore on the computer. Automatic extraction of data features, algorithms for
the visual mapping, implementations of visualization systems, and high-performance graphics via
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GPU acceleration are among the primary topics that can be found in the visualization literature.
is is not to say that either side neglects the human or the computer. In fact, visualization is
about computer-generated visual representations for the human, and in turn, computers are often
the enabling technology for interaction. But undeniably, the foci are different.

Looking more closely, there is another difference. It regards the use of the visual channel.
e visual channel generally has to serve both the graphical interface and the visual representation
of the data. Yet, interaction and visualization researchers usually deal differently with the resulting
conflict over visual resources. In interaction research, the interface between human and computer
is of primary interest. Visual aspects play an important role in terms of the design of the graphical
interface. In visualization research, the visual representation of the data is the primary concern,
and fewer visual resources are devoted to the graphical interface. Again this is not to say that
either side neglects data representation or interface design. In fact, an ideal application would use
direct manipulation interfaces that are embedded in the visual representation itself. But again, the
foci are different.

Keefe (2010) further contrasts research on interaction in visualization and more general
interaction research by considering the specifics of the data, the tasks, and the users. He identifies
two key factors that make interaction in visualization different: “(1) complex analysis tasks defined
by a specific, highly motivated user population and (2) complex data.” Keefe makes his point
in a context where experts work intensively with the data. e contrast is less clear in contexts
where casual users apply visualization methods (Pousman et al., 2007). But still, differences can
be recognized.

Efforts have been made to bring interaction and visualization research closer to each other
(Fikkert et al., 2007; Ebert et al., 2014). Keefe (2010) states that the “momentum recently seems to
be increasing toward integrating visualization research [...] with interaction research [...].” From a
visualization perspective, an ideal world would see visualization tools with expressive and effective
visual representations and with interfaces that are usable and enjoyable. Yet, reaching this ideal
state requires further intensive research.

RESEARCH AGENDAS
e increasing importance of interaction for visually driven analytical methods has led researchers
to start thinking more deeply about the role of interaction. is topic arose in the context of visual
analytics—the science of analytical reasoning supported by interactive visual interfaces (omas
and Cook, 2005). In their book, omas and Cook describe interaction as “the fuel for analytic
discourse” and convincingly explain why developing a new “science of interaction” in the con-
text of visual analytics has top priority. Several research agendas have been proposed by various
researchers in the broader scope of interaction in visualization and visual analytics.

Pike et al. (2009) identify research challenges for interaction, covering ubiquitous, embodied in-
teraction, capturing user intentionality, knowledge-based interfaces, collaboration, princi-
ples of design and perception, interoperability, as well as interaction evaluation.
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Elmqvist et al. (2011) build upon direct manipulation and fluid interaction and envision future
interaction research toward the creation of an interaction exemplar repository, the identifi-
cation of visualization design patterns, and the introduction of visualization criticism.

Lee et al. (2012) point our attention to the mismatch of available interaction technology and the
level to which visualization has taken advantage of it so far. ey define research challenges
related to utilizing modern interaction modalities, providing freedom of expression, taking
into account social aspects, breaking down barriers between humans and technology, and
gaining a better understanding of human behavior.

Isenberg et al. (2013b) consider data visualization on interactive surfaces specifically. ey fo-
cus their discussion around technical challenges (surface types and multi-display environ-
ments), design challenges (data representation on and interaction with surfaces), and social
challenges (collaboration and evaluation).

ese studies provide excellent analyses of the status quo of interaction in visualization and
enthusiastic calls to action for more research on interaction in visualization. As such, they help
strengthen the interaction side of visualization. e level to which interaction can be raised will
depend on the concrete responses to the identified research challenges in the form of new inter-
action concepts, models, and techniques for visualization. A necessary requirement is to narrow
the visualization-interaction gap.

2.5 INTERACTION—USEFUL OR HARMFUL?
Much has been done in recent years helping us to better understand how interaction in visuali-
zation actually works and how it affects the ability of human beings to extract knowledge from
data. e many references cited in the previous sections are generally in favor of interaction and
recognize it as a strong positive factor of visualization. But there are also critical voices. We shall
discuss this matter very briefly in order to make the reader aware of the potential disadvantages of
interaction. is is not to cast a poor light on interaction, but rather to underline the importance
of thinking carefully about interaction in visualization.

USEFUL INTERACTION
Let us start positively. e human-in-the-loop argument is often brought forward, putting the
human in the position to make the final decisions, rather than leaving it to the computer (omas
and Cook, 2005). Examples of useful interaction can be found en masse in the literature. Empiri-
cal evaluation in the form of quantitative or qualitative studies testify to the benefit of interaction.
For example, in a longitudinal study by Saraiya et al. (2006), “methods to efficiently interact [...]
were considered equally or even more important than the visual representations.” For another
example, Amini et al. (2015) found evidence of the positive effect of interaction in 2D and 3D
visualization scenarios.
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In fact, interaction enables the human to generate or influence results in a way that goes
beyond what is computable. Wegner (1997) offers an explanation for why interaction is more
powerful than algorithms:

“Algorithms are metaphorically dumb and blind because they cannot adapt interac-
tively while they compute. ey are autistic in performing tasks according to rules
rather than through interaction. In contrast, interactive systems are grounded in an
external reality bothmore demanding and richer in behavior than the rule-basedworld
of noninteractive algorithms.”

— Wegner (1997)

Wegner’s discussion is based on a theoretical model of Interaction machines, which he
demonstrates to be more powerful than Turing machines. Such theoretical considerations further
strengthen the already positive picture that is generally drawn of interaction.

HARMFUL INTERACTION
On the other hand, a recent definition of interactivity as the quality of interaction (Sedig et al.,
2012) suggests that there is a spectrum of interaction with positive and not-so-positive instances.
Looking at Norman’s (2013) gulfs of execution and evaluation in Figure 2.3 back on page 8 offers
an explanation. If the gulfs are not bridged or at least sufficiently narrowed, interaction can be a
hindrance.²

Cooper et al. (2007) identify the mismatch between the implementation model and the user
model as a primary source of interaction problems. To minimize problems, the represented model,
which serves the interface, should be as close as possible to the user’s mental model while abstract-
ing as much as possible from the implementation model. e illustration in Figure 2.7 makes this
point clear.

In the context of visualization, the involved models are often complex and matching them
is not always easy. Failing in this regard most likely leads to suboptimal or even bad interaction, of
which several examples exist in working visualization software prototypes, but which are hardly
reported in scientific publications.

In addition to concrete examples of bad interaction, there can be general reservations about
interaction. Tominski et al. (2011a) report on the results of a questionnaire that was carried out to
assess the distribution and use of interactive visualization tools in climate research. An observation
particularly related to interaction was that there can be a kind of mistrust in interaction in general.
e participants feared the arbitrariness of visual representations that have been generated by
interactive adjustments of thresholds or visualization parameters. e reason was that it is no
longer clear if an artifact identified in the picture is an actual feature in the data or just a pattern-
by-chance. Such statements urge us to provide interaction in a balanced way, offering flexibility,
but within reasonable boundaries to avoid arbitrariness.
²Interestingly, even hard-to-use interaction can be beneficial under some circumstances (Riche et al., 2010b).
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Figure 2.7: e represented model should be close to the user’s mental model and abstract from the
technological implementation details (adapted from Cooper et al., 2007).

ere are even voices that openly challenge interaction in an attempt to break the myth
of interaction as a universal cure. Victor (2006) discusses interaction in the context of software
to learn, to create, and to communicate, which are activities that are certainly addressed by vi-
sualization software as well. While interaction is indispensable for creating (e.g., constructing a
CAD model), interaction for learning (e.g., accessing information from a visual representation)
“is considered harmful.” Victor argues that only as a last resort should input be solicited from
the user. Considering the costs involved when interacting in visualization settings (Lam, 2008),
this is a sensible argument. Victor’s critique mainly relates to the tendency of being quick with
answering a particular user need with providing a way to satisfy it interactively. But it is the task
of the system (and the designer of the system beforehand) to provide the information needed in
a particular situation. is suggests to us think of interaction in a less-is-more way, and to infer,
where possible, how interaction costs can be reduced.

Still, an overall positive image of interaction in visualization shall be maintained. To this
end, we have to strive for useful interaction and avoid harmful interaction. We have to design and
implement visualization approaches according to accepted criteria and models of interaction and
under consideration of the requirements of visualization. In the context of large data and complex
analytic tasks, this is not an easy endeavor. While visual representations of data are usually devel-
oped based on explicitly addressing visualization design rules, the rationale behind the interaction
techniques to work with the data at times remains vague. To overcome this deficiency it makes
sense to frame in more detail the aspects that influence interaction in visualization. In Chapter 3,
we identify and discuss these aspects and compile them into an encompassing interaction-oriented
view on visualization.

2.6 IMPLEMENTING INTERACTIVE VISUALIZATION
So far, we have considered interaction as a means for the user to steer the visualization and to
engage in an analytic dialog with the represented data. We also reflected on useful and harm-
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ful interaction, briefly touching the domain of interaction design. Yet, interaction must also be
implemented as a workable solution in order to be actually usable and useful. e following para-
graphs will therefore review some aspects and issues of implementing interaction in the context
of visualization.

e fundamental model behind visualization approaches is the visualization pipeline. It
describes how data (input) are transformed through several stages (processing) to generate vi-
sual representations (output). Technically, the visualization pipeline is well understood, and ac-
cepted software design patterns exist for implementing the pipeline in working software (Heer
and Agrawala, 2006; Moreland, 2013). When developing visualization software, one can resort to
powerful libraries and toolkits, such as VTK (Kitware, Inc., 2010), Obvious (Fekete et al., 2011),
or D3 (Bostock et al., 2011).

Capturing the technical essence of interaction in visualization, Jankun-Kelly et al. (2007)
propose the p-set model of visualization exploration. is model abstractly explains user interac-
tion as operations that change visualization parameters. In other words, any concrete interaction
condenses down to the adjustment of parameter values. Visualization parameters can be mani-
fold, e.g., the viewing angle into a 3D scene, the focus point of an interactive lens, thresholds of a
dynamic query operation, or parameters that control a clustering algorithm. Modeling interactive
exploration abstractly as parameter changes is not only a useful basis for implementing interac-
tion, but also for maintaining undo and redo histories (Kreuseler et al., 2004) and for realizing
advanced mechanisms for coordinated interaction (Weaver, 2004).

While visualization can be modeled as a parametrized pipeline, the implementation model
for user interaction is a loop. is makes developing interaction for visualization (i.e., action-
feedback loop) fundamentally different from developing visualization algorithms (i.e., linear
input-to-output processing). e model-view-controller (MVC) pattern (Krasner and Pope,
1988) is widely applied to structure the essential high-level software components. e model
encapsulates the data and parameters. e views visualize the data under consideration of the
parameters. e controller handles interaction.

e difficulty lies in coordinating the components. Edwards (2009) coins the term Callback
Hell in the broader context of reactive systems. For interactive visualization systems, the controller
logic is typically complex due to the comprehensiveness of the interaction. Multiple callbacks or
event handlers have to work together to realize the rich interactive behavior in a coordinated
effort. Already for classic mouse and keyboard interaction, implementing and maintaining the
event-reaction logic can be difficult. For touch interaction with multiple pointers or multi-modal
interaction it gets even worse.

A basic interaction loop is illustrated below. For the sake of simplicity, the usually complex
event handling is hidden in line 5 in the function update.e/, which updates the underlying model
according the event e. Events can be input events (e.g., mouse move, touch down, or key press),
but also timer events for animation or other system events.
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Algorithm 1 Basic interaction loop.
1: ini t./

2: repeat
3: if hasEvent./ then
4: e D getEvent./

5: update.e/

6: end if
7: render./

8: until e D END

ere are approaches that can facilitate the implementation of interaction. For example,
state machines can be used to overcome event handler spaghetti code (Appert and Beaudouin-
Lafon, 2008). e model-display-picking-controller (MDPC) pattern—an extension of the
MVC pattern—separates display and interaction geometry to ease the specification and the im-
plementation of interaction (Conversy, 2011). For the definition and detection of multi-touch
gestures one can use tablatures and regular expressions (Kin et al., 2012). While the mentioned
approaches are not specifically for visualization, they are still definitely worthwhile to consider
when developing interactive visualization software.

2.7 SUMMARIZING THOUGHTS

e previous sections looked at interaction from different points of view. We covered general
aspects of visualization and human–computer interaction, different levels of interaction in vi-
sualization, basic interaction techniques for visualization, the visualization-interaction gap, the
question of good and not-so-good interaction, as well as the issue of implementing interactive
visualization software. For a summarizing discussion of the key points, we refer to Figure 2.8.

Figure 2.8: Different levels of interaction flanked by interaction design and implementation.



24 2. FUNDAMENTALS

Interaction in visualization has to be approached from a human-centered angle. In Fig-
ure 2.8, this is illustrated by a human and a box labeled design. e design of useful interaction
must consider the human sensory and motor skills as well as the data exploration activities and
sensemaking tasks that humans are engaged with.

Interaction in visualization has to be considered from a technology-oriented perspective
as well. is perspective is reflected by a system and a box labeled implementation in Figure 2.8.
Implementing interaction means transferring designs into workable tools that utilize computer
technology to manage, analyze, transform, and represent data by interactive visual means.

ere is a mutual dependency between designing and implementing interaction. Well-
designed interaction is rendered useless with insufficient implementation and the best architec-
tures lie fallow without appropriate interaction designs.

In visualization scenarios, we have to consider multiple levels of interaction as illustrated
in the center of Figure 2.8. Addressing low-level operations is fundamental because they have
definite impact on the higher levels of interaction. But focusing on lower-level aspects alone is
not sufficient. Intermediate-level activities must be taken into account and these must be put in
the context of higher-level analytic thinking.

Designing and implementing interaction in visualization at multiple levels is the topic we
aim to shed some light on in this work. To give a brief outlook, we will be concerned with the
implementation aspect when we introduce a multi-threading visualization architecture address-
ing the computational requirements for fluid interactive visual exploration. In terms of interaction
design, we will consider low-level and intermediate-level interaction, and also touch aspects of
high-level interaction. We will look at novel ways of how to fundamentally interact with visu-
alizations by means of tangible views and physical navigation. Methods for intermediate-level
exploration and navigation will be introduced in the context of graph visualization and visuali-
zation of spatio-temporal movement data. Further, we will discuss interaction support for more
high-level visual comparison tasks and semi-automatic editing of graphs with customized layouts.

Across all levels, the goal is to provide “good” interaction that is useful, usable, and also
enjoyable. Being aware of the fundamental models of interaction as well as the potential down
sides of interaction is a necessary requirement. We will illustrate how “good” interaction can be
fostered by designing according to humans’ natural behavior and by integrating assistive meth-
ods. “e interaction is intuitive and works very much as expected” and “e software is nicely
implemented, everything is very harmonic” are among the statements users made about the inter-
action techniques we will present. Such enthusiastic feedback suggests that our line of thinking
can indeed lead to useful, usable, and enjoyable interaction for visualization.

To establish a clearer structure of the complex topic of designing and implementing inter-
action at different levels, we next develop a structured interaction-oriented view on visualization.
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C H A P T E R 3

Aspects of Interaction in
Visualization

e goal of this chapter is to define a view on visualization that is focused on interaction. is
interaction-oriented view shall be organized around the following key aspects:

• Data

• Tasks

• Technology

• Human

• Implementation

e data are a primary concern of visualization and so they are a key factor of interaction
as well. e second aspect are the tasks that have to be supported by visualization tools. Data
and tasks together can be considered the core of our view as illustrated in Figure 3.1. is core
is flanked by the human and the technology. e human and the technology carry out the given
tasks on the data in a cooperative effort. e human is recipient of visual representations gen-
erated by the technology. e technology provides interaction modalities allowing the human

Figure 3.1: e data and the tasks are core concerns flanked by the human and the technology. To-
gether they are grounded in the implementation.
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to act upon what is perceived from the visual representations. Sensemaking is usually left to the
human, whereas complex computations are taken care of by the technology. Finally, an efficient
implementation is needed for a smooth interplay of human and computer. e implementation
transfers the visual and interaction design into an operational software that can actually be used
to carry out visualization tasks.

Taken together, data, tasks, technology, and human can be understood as cornerstones of
interaction grounded in an efficient implementation. In the following sections, we discuss the
individual aspects in more detail.

3.1 THE DATA
Data characteristics have long since been identified as a factor that influences the visualization
design. From a practical perspective, one can differentiate several data types: temporal data, geo-
spatial data, volume data, flow data, multidimensional multivariate data, graph data, and text and
document data. e differentiation of data types naturally led to different classes of visualiza-
tion techniques and sub-communities in the visualization realm (e.g., flow visualization, volume
visualization, graph visualization, geographic visualization, or time-series visualization).

From a more mathematical point of view, data can be differentiated based on data scale
into qualitative and quantitative data. Qualitative data can further be divided into nominal and
ordinal data. For nominal data, it is only possible to determine equality of data values. For ordinal
data, an order is defined allowing us to determine if a value is greater or less than another value.
In contrast to qualitative data, for quantitative data, we can additionally quantify the difference
between values, that is, we can determine the distance between values. Quantitative data can be
discrete (i.e., integer-valued) or continuous (i.e., real-valued).

When transforming data into visual representations, it is general practice to use visual vari-
ables (Bertin, 1983) that suit the data scale. Mackinlay (1986) recommends good matches of
data scales and visual variables based on empirical studies by Cleveland and McGill (1986). For
example, position and size are well-suited for quantitative data, whereas shape and hue play in-
creasingly important roles for qualitative data. e validity of these recommendations has been
confirmed more recently by Heer and Bostock (2010).

When we look at the interaction side of visualization, unfortunately no such accepted data-
centric view can be found. For low-level interaction, such a data-centric view might not be nec-
essary, because this level is usually independent from data type and data scale. But already for
the fundamental dynamic queries, it makes a difference whether a query slider operates on a data
attribute with nominal, ordinal, discrete, or continuous scale. Riche et al. (2010a) investigate this
issue in the context of interactive legends with query functionality. ey consider data scale a
relevant design factor.

In terms of data types, there are obvious differences as well. For example, interactively nav-
igating temporal data along the dimension of time is different from navigating along movement
trajectories in geographical space. For another example, selecting a subset of flow vectors (e.g.,
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vectors with specific direction and magnitude) is different from selecting a subset of graph nodes
(e.g., the k-neighborhood of a node of interest).

We do not yet have a full understanding of the implications of data characteristics on inter-
action in visualization. In the visualization literature, not much is reported on how interaction can
be attuned to the data. But there are examples that illustrate how data-aware interaction design
can support users. Techniques for interacting with visual representations of time-oriented data
demonstrate this quite well (Hochheiser and Shneiderman, 2004; Holz and Feiner, 2009; Zhao
et al., 2011). Yet, more research is needed, not only for other types of data, but also for dealing
with the complexity and multifaceted character of today’s datasets.

..

e interaction design for visualization should consider the character of
the data, very much as the design of the visual encoding already does.

3.2 THE TASKS
In addition to considering data characteristics, it is also important to address the tasks to be
accomplished with interactive visualization. A classic high-level differentiation is to distinguish
exploration for forming hypotheses, confirmation for falsifying hypotheses, and presentation for
communicating findings (Ward et al., 2010). More concrete lists of tasks are compiled by Shnei-
derman (1996), Zhou and Feiner (1998), and Amar et al. (2005). eir lists include tasks such
as retrieve value, filter, relate, compare, rank, find extremum, cluster, and correlate, to name only
a few. Tasks can also be specific to a particular type of data. Andrienko and Andrienko (2006)
present a fine-grained and formal analysis of tasks related to spatio-temporal data. Lee et al.
(2006) look at the specifics of tasks being relevant when visually analyzing graphs. A comprehen-
sive design space of visualization tasks is described by Schulz et al. (2013a).

Tasks are generally accepted as an influencing factor for the visualization design. ere are
a number of visualization examples that have been specifically designed according to given tasks.
Treinish (1999) discusses the task-specific design of visual representations for weather forecast.
Tominski et al. (2008) use different color scales for identification, localization, and comparison
tasks. e benefit of such task-oriented approaches is that the visual representation suits the task
at hand.

On the interaction side of visualization, there are a few studies that investigate the task
aspect. Early work by Chuah and Roth (1996) considers the semantics of basic and composite
tasks in interactive visualizations. We already mentioned the work on user intents for interaction
by Yi et al. (2007) and the rich set of patterns of interaction for complex cognitive activities
with visual representations by Sedig and Parsons (2013). Again, tasks can be data-specific as with
the taxonomy of cartographic interaction primitives by Roth (2013) or the interaction task for
multivariate graphs described by Wybrow et al. (2014).
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ese studies show us the principal objectives of interaction. Moreover, mappings can be
established between the objectives and interaction techniques that support them. For example,
Yi et al. (2007) naturally associate their filter intent with dynamic queries. As an example for
their navigating pattern, Sedig and Parsons (2013) refer to the interaction techniques for navi-
gating graphs as described later in Section 4.2.1. Such suggestions of concrete techniques allow
practitioners to find solutions to given problems easily.

Where we still lack understanding is how to transform our knowledge about interaction
tasks into task-driven interaction designs for visualization. ere are many examples of interactive
solutions that superbly support users in carrying out visualization tasks. However, the design
process behind them, including tasks, design alternatives, and design decisions, often remains
undisclosed in visualization papers.

Fostering a task-centric view will help us to better attune interaction in visualization to
what the users actually aim to accomplish. Yet more research is needed to cover the task aspect
comprehensively. A particularly interesting topic is to combine interaction for data exploration
tasks and interaction for data editing tasks (Baudel, 2006; Kandel et al., 2011).

..

Analytic exploration and editing tasks are a determining factor for the
design of interaction as well as for the design of the visualization.

3.3 THE TECHNOLOGY
When we look at the settings in which visualization tasks are primarily carried out these days,
we will most certainly see the classic setup where a user is sitting at an off-the-shelf desktop
computer. A regular display shows visual representations, while mouse and keyboard are used for
interacting with the system. is setup has been predominant for years. Yet, new technologies
have emerged in terms of both display devices and interaction modalities.

Modern display devices, such as large high-resolution displays or small hand-held devices,
have been addressed by adapting existing visualization approaches or devising new ones. Examples
are the works on visualization on small, mobile devices by Hakala et al. (2005), Chittaro (2006),
and Ying et al. (2012). Visualization in environments with large and multiple displays is studied
by Yost and North (2006), Forlines and Lilien (2008), and Radloff et al. (2015). eir primary
goal is to develop visual representations that fit the properties of the displays.

New display environments usually also require alternative ways of interaction. For example,
using amouse tomove a cursor across a giga-pixel display is certainly not feasible.Modern interac-
tion technologies, such as body tracking, gaze detection, or sensors for multi-touch and tangibles,
offer ample opportunities for rethinking existing visualization solutions with regard to interaction.
For example, touch tables and tablets blend display and interaction into a single interactive-visual
medium that enables us to make Shneiderman’s (1983) direct manipulation truly direct. Form-
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ing mental models based on interactively exploring and manipulating data directly under one’s
fingertips on touch-enabled displays appears to be quite a promising prospect.

ere is already research exploring the requirements and advantages of touch interaction
for visualization (Voida et al., 2009; Kosara, 2011; Klein et al., 2012; Yu et al., 2012; Coffey et al.,
2012; Sadana and Stasko, 2014). Other forms of interaction (e.g., sketching) have also been found
to be beneficial (Keefe et al., 2008; Keefe and Isenberg, 2013).

Yet, novel interaction modalities only slowly find their way into the visualization main-
stream, although they considerably broaden the spectrum of what is possible. ere is still a gap
in terms of promising new technologies on the one hand, but only little integration of these tech-
nologies into visualization research and applications on the other hand (Tominski et al., 2011b;
Lee et al., 2012; Isenberg et al., 2013b).

A reason might be that new ways of interacting are not straight-forward to integrate into
working models, frameworks, and solutions. Only little do we know about the actual benefits
and potential shortcomings of new technologies when coupling them with visualization. Find-
ing appropriate combinations of display technology and interaction modalities and seamlessly
integrating the technology into visualization workflows are key concerns. Moreover, there are
technical challenges to be addressed. Developing interaction for classic devices is already a com-
plex matter. Taking new and possibly multiple technologies into account further increases the
demands in terms of both designing interactions and actually implementing them.

..

Interaction in visualization can take advantage of technology by integrat-
ing modern display devices and new interaction modalities.

3.4 THE HUMAN

From its early beginnings, visualization research has considered effectiveness vitally important.
e effectiveness criterion demands that visual representations be designed to conform with the
characteristics of the human visual system (Mackinlay, 1986). A deeper discussion of human
factors in visualization is provided by Tory and Möller (2004). Contemporary research continues
to investigate human aspects as documented by Kerren et al. (2007) and Huang (2013) in the
context of human-centered or human-centric visualization.

For human–computer interaction in general, usability (Nielsen, 1993) and user experience
(Hassenzahl and Tractinsky, 2006) as described in Section 2.2 are key factors to be considered. In
this regard, it is useful to think of Norman’s (2013) seven stages of action—forming the gulfs of
execution and evaluation—and the costs associated with them. Lam (2008) provides a compre-
hensive view on interaction costs in the context of visualization. Her framework identifies costs
to form goals, to form system operations, to form physical sequences, to execute sequences, to
perceive state, to interpret perception, and to evaluate perception. When developing interactive
visualization solutions, we have to be aware of these costs and try to minimize them.
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Elmqvist et al. (2011) specify several requirements for interaction in visualization. ese
requirements demand that interaction be fluid in terms of the performance of actions, the pre-
sentation of smoothly animated visual feedback, and in terms of switching seamlessly between
different tasks as they occur in visualization scenarios. Keefe and Isenberg (2013) go one step
further and argue for natural user interfaces in visualization. In doing so, they pick up a hot trend
from HCI research in natural interaction (Valli, 2008; Jacob et al., 2008; Wigdor and Wixon,
2011). Although the term natural is still debated among researchers, the objective is generally
agreed upon: Make interaction with the computer more akin to how humans interact naturally
in the real world.

Reducing costs, promoting fluidity, and striving for naturalness are all related to the overall
goal of making the cycle of performing interaction and interpreting the system’s response smooth
and efficient for the human. e interaction must be easy to perform and the visual feedback must
be easy to interpret, even in light of complex analytical tasks with feature-rich data visualizations
in the background.

..

Paying attention to interaction costs, fluidity, and naturalness is impor-
tant when addressing human aspects of interaction in visualization.

3.5 THE IMPLEMENTATION

Algorithmic efficiency has always been an important topic in visualization. Once a new visualiza-
tion method has been invented, visualization researchers typically seek faster implementations to
be able to show larger data at higher frame rates. Offloading extensive computation to the graph-
ics hardware certainly is a common method of improving visualization performance. Examples
of successful searches for better algorithms are the FastLIC algorithm for flow visualization by
Stalling and Hege (1995) and the improved algorithm for generating Voronoi treemaps by Nocaj
and Brandes (2012).

Implementation efficiency is also a critical concern for interaction. When a user interacts
with a visualization, rich and informative visual feedback must be presented quickly. is is par-
ticularly important for the many atomic changes that happen during continuous interaction. e
literature suggests a response time below 50–100 ms (Card et al., 1991; Shneiderman, 1994;
Spence, 2007). However, depending on data size and data complexity as well as on the influence
of visualization parameters, computing rich feedback in a fraction of a second can be challenging.
It might be necessary to re-compute the entire visualization pipeline, including analytical pro-
cessing, visual abstraction, and rendering of potentially many data items and graphical primitives.
e risk for interaction is that visual feedback lags behind, disrupting the interaction flow (Liu
and Heer, 2014).
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Another aspect adds to the time costs for presenting visual feedback. As interaction involves
change, we have to take care that users understandwhat is happening. Abrupt changes in the visual
display can be useful to draw the user’s attention, but they also may hurt the mental model that
users are developing during data exploration. ere is evidence that interpolating the parameter
change and applying animation to present the visual feedback is a sensible solution (Heer and
Robertson, 2007; Pulo, 2007). However, animations take time as well, and the potentially costly
interpolation of animation parameters cannot be neglected.

As can be seen from the previous discussion, interaction developers face a two-sided con-
flict. On the one hand, interaction needs synchrony, which comes down to all-time responsiveness
of the visualization system and immediacy of the visual feedback. A system that is unresponsive
and blocked while computing is a worst-case scenario for the user. On the other hand, interaction
needs asynchrony for the computation of the visual feedback and for its animation. e difficulty
is to integrate synchrony and asynchrony.

ese implementation concerns are only a few among many that need to be addressed
when developing interactive software in general (Olsen, 2009) and visualization systems in par-
ticular (Tang et al., 2004). erefore, it is relevant to support the human not only in its role as
a visualization user, but also in its role as a visualization developer. As a basis for such support,
Keim et al. (2010) and Fekete (2013) argue for investigating suitable infrastructures that help in
crafting efficient visualization tools. Letondal et al. (2010) and Conversy (2013) provide a more
detailed discussion and compile a list of requirements for interaction-oriented development tools.
Although their analysis is not specific to visualization, it can be taken for granted that the points
raised hold true for the development of interaction in visualization as well.

..

Efficiency is crucial for interaction in visualization. Sophisticated imple-
mentations are needed for effective interaction with the data.

We have now discussed all key aspects that make up our interaction-oriented view of vi-
sualization: the data, the tasks, the technology, the human, and the implementation. In the next
chapter, we will pick up these aspects and present several approaches that particularly address
these aspects.
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C H A P T E R 4

Methods and Techniques for
Interactive Visualization

Structured according to the key aspects discussed in the previous chapter, we will now introduce
methods and techniques for interacting with visual representations of data. For each section of this
chapter, the focus will be set on a specific aspect. In addition to focusing on individual aspects, we
will also establish connections across them, illustrating the overarching character of the addressed
problems and solutions.

e beneficiaries of these solutions are mostly the human users. ey are the ones who have
to work on their tasks related to their data using the technology available to them, and hopefully
their work will be effective and effortless thanks to good interaction designs and appropriate
implementations.

In another role, humans also act as visualization developers. Addressing their needs and
providing supportive approaches and infrastructures is a challenge in its own right. In light of
this challenge, we aim to ease the developer’s life by presenting a multi-threading visualization

Figure 4.1: Overview of interaction methods and techniques presented in this chapter.
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architecture. is architecture can serve as a foundation for interactive visualization solutions,
from which, in turn, end-users can profit as well.

Figure 4.1 provides an overview of the aspects of interaction in visualization and the as-
sociated withpics we will discuss. e following sections are organized so as to (1) introduce the
problem, (2) present the approach, (3) discuss the result, and (4) suggest further readings. To be
able to cover all aspects, we have to keep our explanations compact. For further details, we refer
the reader to the corresponding original literature. In the next section, we start with addressing
the implementation aspect as the basis for efficient interaction in visualization.

4.1 AN ARCHITECTURE FOR EFFICIENT INTERACTIVE
VISUALIZATION

ebasis for any useful interactive visualization is an architecture that implements the interaction-
feedback loop efficiently. Heer and Shneiderman (2012) express the following concerns regarding
the engineering of efficient visualization infrastructures:

“Especially for large datasets, supporting real-time interactivity requires careful at-
tention to system design and poses important research challenges ranging from low-
latency architectures to intelligent sampling and aggregation methods.”

— Heer and Shneiderman (2012)

Bringing in line synchrony (related to responsiveness and immediacy of the visual feedback)
with asynchrony (related to the time cost involved to generate and present the visual feedback)
has already been identified as a major challenge. A straightforward implementation of the classic
visualization pipeline will not be helpful in this regard. Any computation along the pipeline that
fails to deliver results within interactive response time (ca. 50–100 ms for continuous interaction)
will disrupt the interaction-feedback loop, and thus hinder fluid interactive analytic work. What
is needed is an architecture that can cope with complex, time-consuming computation and is able
to react to interactive user requests at any time, while providing visual feedback as rich as pos-
sible. Utilizing the advantages of modern multi-core processors would be one option. However,
developing interactive multi-threading solutions is notoriously difficult and prone to manifold
implementation errors (Lee, 2006).

Approach To avoid these difficulties and to make implementing multi-threading less error-
prone, Piringer et al. (2009) designed a general multi-threading architecture around the concepts
of early thread termination and layered visualization. Using multiple computing threads accom-
modates the need for asynchrony, and early thread termination accommodates the need for syn-
chrony. Using multiple visualization layers makes it possible to scale the richness of the visual
feedback according to the available computing resources.

e conceptual model of the general multi-threading architecture is illustrated in Fig-
ure 4.2. e architecture consists of four principal components: two storage components (the
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Figure 4.2: Architecture of multi-threaded visualization.

input storage and the output storage) plus two processing components (the event handler thread
and the visualization threads).

e input storage consists of the data to be visualized and the visualization parameters,
which is analog to the p-set model (Jankun-Kelly et al., 2007). e output storage holds the visual
representations. ese include the visual feedback and the data visualization. e visual represen-
tations are not necessary complete, but can be partial if a computation had to be terminated early
due to user interaction.

In terms of the processing components, the architecture is based on separation of concerns
to be able to cope with synchrony and asynchrony.e key to responsiveness is the dedicated event
handler thread. e only responsibilities of this thread are to receive interaction input events from
the user and to perform signaling operations with respect to the other components of the archi-
tecture. e visualization threads are responsible for transforming input data and parameters into
visual output. e visual output is subdivided into multiple layers according to different strategies
(e.g., semantic layers, incremental layers, or level-of-detail layers). Using multiple layers enables
the architecture to provide rich and scalable visual feedback, and to avoid redundant computations
by reusing cached results that remain valid after a user interaction.

Results and Discussion Empirical studies confirm that the architecture offers significant perfor-
mance improvements, and hence provides a good basis for implementing interactive visualization
solutions. e clear structure of the architecture further helps in avoiding typical programming
errors that occur when multiple threads are involved. Successful installments of the architecture
(Tominski et al., 2004; Doleisch, 2007; Piringer et al., 2008; Tominski et al., 2009) testify to its
usefulness and general applicability across programming language boundaries.

e presented architecture facilitates the engineering side of interaction in visualization and
its efficiency affects interaction positively on all levels. More details on the architecture in general
and the early thread termination and layered visualization in particular along with a discussion
of design choices and empirical studies are provided by Piringer et al. (2009). Actual interaction
techniques built on top of a system that instantiates the architecture are described in Section 4.2.1.
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e visualization tools we mention in Section 4.5.1 have also been built on the multi-threaded
approach.

e currency of the topic of efficient architectures for interactive visualization remains un-
broken. e visualization research community continues to address this and related challenges
via new concepts, data structures, and implementations. e interested reader is referred to Zins-
maier et al. (2012); Liu et al. (2013); Im et al. (2013); Lins et al. (2013); Cottam et al. (2014);
Mühlbacher et al. (2014); Stolper et al. (2014).

is section laid out a foundation for the implementation of interactive visualization. We
can now consider methods and techniques with respect to the remaining key aspects of our
interaction-oriented view: the data, the tasks, the technology, and the human.

Related Readings
Law et al. (1999) • Weaver and Livny (2000) • Fekete and Plaisant (2002) • Chan et al.
(2008) • Moreland (2013)

4.2 DATA CHARACTERISTICS AND INTERACTION
In this section, we focus on the data aspect, that is, on the interplay of data characteristics and
interaction in visualization. ere are a number of standard interaction techniques that work
well without particularly considering the data characteristics. An example is graphical selection
(aka. brushing) as mentioned in Section 2.3. Selection is a relatively low-level interaction. At
intermediate and higher levels of interaction, it becomesmore important to take the characteristics
of the data into account.

Here we assume a data model similar to the ones proposed by Kreuseler and Schumann
(2002) and Ware (2012). Data are defined as data entities that are associated with quantitative or
qualitative data values, and the data are characterized by:

1. the data’s structure and

2. the data’s frame of reference.

e structural aspect captures relations among data entities. Structures can be described as
graphs in a most general sense. e data’s frame of reference captures the spatial and temporal
context in which the data have been collected or generated.

We present interaction techniques that particularly consider the structure of the data and
the spatial and temporal dependencies of data. Our focus will be on navigation techniques and
interactive lenses for exploring graphs and spatio-temporal movement trajectories. e navigation
and lens techniques are designed according to the data characteristics and engineered so as to
exploit the data characteristics. As such, the presented approaches illustrate quite well the benefit
of considering the data aspect a key influencing factor for interaction in visualization.
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4.2.1 INTERACTING WITH GRAPHS
Graphs have gained increased importance in many fields of study. A graph is a universal model
that helps in structuring and relating entities of interest (Rodriguez and Neubauer, 2010), be it
enzymes in biomedical networks, people and their social behavior, or simply pieces of information.
e increased importance of graphs led to an increased demand for interactive visualization tools
for graph data.

Classic graph drawing is concerned with generating layouts of graphs according to different
aesthetic criteria (Battista et al., 1999; Tamassia, 2013). Aspects of interaction with graphs and
their visual representations are becoming increasingly relevant.McGuffin and Jurisica (2009) state
that

“[...], there remains a significant need for users to be able to interactively manipulate
such graphs, [...]”

— McGuffin and Jurisica (2009)

As documented in surveys by von Landesberger et al. (2011) and Wybrow et al. (2014),
graph visualization methods have begun incorporating more advanced interaction techniques.
Here we focus on supporting the navigation and exploration of visual representations of complex
graphs.

Approach Addressing node-link layouts in particular, Tominski et al. (2009) develop several
interaction techniques for graphs. What they call radar view and edge-based traveling are inter-
active visual tools for easy navigation with a preview of what can be expected to be found in the
direction of traveling. Novel interactive lenses are presented as tools for graph exploration. e
local-edge lens and the layout lens can be used to tidy up edge clutter and to create local overviews
of the neighborhood of nodes of interest on demand.

Techniques for Navigating Graphs To facilitate the exploration of large graph layouts at dif-
ferent levels of detail, it makes sense to embed the visualization in a zoomable space (see
zoomable user interfaces in Section 2.3). In order to fully take advantage of zoomable spaces,
users must be supported in finding answers to a number of questions, including, “Where can
I usefully go?” and “What lies beyond?” (Spence, 2007). e radar view provides answers
to these questions.
As illustrated in Figure 4.3, the radar view is a technique that provides a look-ahead in the
direction of navigation. All off-screen nodes that fall into the radar are projected onto the
view border to make them visible to the user. e radar automatically follows any change
of direction initiated by the user with the navigation wheel (bottom-right in Figures 4.3
(a) and (b)). is way, the user can quickly acquire an overview and navigate to potentially
interesting candidates to be visited next.
Yet, navigating in larger layouts can be cumbersome and time consuming. is is where
edge-based traveling comes into play. e key idea is to utilize the structure of the graph as
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(a) Navigating without radar view. (b) Navigating with radar view.

Figure 4.3: e radar view projects off-screen nodes to the view border to make them visible.

a kind of railway system across which the user can travel easily from one station to another.
Simply clicking on edges triggers navigation to incident nodes. is way, the user can cover
great distances without manual zoom and pan operations. Smooth animation makes the
navigation comprehensible (van Wijk and Nuij, 2004).

Lens Techniques for Graph Exploration Even sophisticated algorithms cannot guarantee that
layouts of larger graphs are clutter-free and that adjacent nodes lie close together. So, users
exploring a graph may encounter edge clutter and investigating a node’s connectivity may
be complicated due to widely distributed neighbors. e interactive graph lenses presented
in Figures 4.4 and 4.5 enable users to overcome these difficulties.

(a) Edge clutter. (b) Local-edge lens clears edge clutter.

Figure 4.4: e local-edge lens clears the view of edge clutter.
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(a) No lens: Connectivity remains un-
clear.

(b) Local-edge lens: Edges are visible,
but neighbors are not.

(c) Layout lens: Neighborhood visible at
a glance.

Figure 4.5: e layout lens brings otherwise invisible neighbors to the lens.

e local-edge lens is designed so as to tidy up the lens area. As illustrated in Figure 4.4,
the lens clips off all edges that pass the lens without actually connecting to a node within
the lens. Such a local operation effectively clears the view, enabling the user to uncover and
investigate edges within a local focus area. By dimming the visible context outside of the
lens, the viewer’s attention is subtly directed toward the lens focus.
e layout lens further supports the exploration of node neighborhoods, which are quite
often not visible at a glance. To this end, the lens generates local neighborhood overviews
by temporarily adjusting the graph layout based on the weighted distance between nodes
and the center of the lens. Approaching a node with the lens and eventually centering the
lens on top of it results in the complete neighborhood of that node being visible within
the lens. When the lens is deactivated, all nodes return to their original position. Figure 4.5
illustrates the effect of the layout lens in contrast to the local-edge lens.While the local-edge
lens allows the user to see edges better, the layout lens offers a better view on nodes.

Results and Discussion In summary, the presented intermediate-level interaction techniques
solve common problems occurring when navigating and exploring graphs and they do so by uti-
lizing properties unique to graphs.

Edge-based traveling makes use of the graph structure to ease navigation between con-
nected nodes that are far apart in the layout. e radar view augments navigation by providing a
useful outlook on what lies beyond the currently visible part of a graph’s layout. Both techniques
are viewer-centric in the sense that the users change their point of view onto the graph. e in-
teractive lens techniques are object-centric as they shift the graph elements (i.e., nodes and edges)
into the focus of the interaction. By taking advantage of the connectivity information of graphs,
the lenses generate locally adapted views that grant access to information that is otherwise not
visible at a glance.

With these interaction techniques specifically designed for graph data, we already see a
connection to another key aspect of interaction, the tasks. For example, the edge-based travel-
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ing and the layout lens address tasks regarding path tracing and connectivity, which are relevant
particularly in the context of graphs (Lee et al., 2006).

Tominski et al. (2009) show how the interaction techniques can be put to use in a larger
graph visualization system to facilitate higher-level exploratory and analytic tasks. Informal feed-
back of users of this system indicates that the interactions are indeed helpful. ere is also an
online demo that gives the interested reader the opportunity to play with the graph lenses and
the radar view (Tominski et al., 2015).

Interaction with graphs remains a topic of continued interest (von Landesberger et al.,
2011; Wybrow et al., 2014). is is confirmed by recent advances, such as context-aware graph
navigation (Ghani et al., 2011a), interactive graph matching (Hascoët and Dragicevic, 2012),
novel off-screen techniques (Frisch and Dachselt, 2013), or navigation techniques for dynamic
graphs (Bach et al., 2014).

For the next section, we maintain a data-oriented view on interaction, but we make a switch
from considering the data’s structure to investigating the data’s frame of reference, which will be
spatio-temporal in our case.

Related Readings
Wong et al. (2003) • van Ham and van Wijk (2004) • Moscovich et al. (2009) • Ghani et al.
(2011b) • Wybrow et al. (2014)

4.2.2 INTERACTING WITH SPATIO-TEMPORAL MOVEMENT
TRAJECTORIES

A general goal of visualization is to show data in their frame of reference. Accepted methods exist
for showing data in a spatial frame of reference (MacEachren, 1994; Kraak and Ormeling, 2010)
and for visualizing data according to time (Aigner et al., 2011; Wills, 2012). Spatio-temporal
movement trajectories are data for which both space and time are relevant. Existing approaches
already address the difficulty of visualizing space, time, and movements simultaneously (Willems
et al., 2009; Hurter et al., 2009; Krüger et al., 2013). Interaction plays an important role, because
it allows users to explore different parts or different facets of the data.

In addition to space, time, and the movements themselves, there are also data attributes de-
scribing properties of movements (e.g., speed, acceleration, or sinuosity). An interesting question
is how these data attributes can be visualized in the context of where and when the movements
took place? A possible answer is to utilize the third dimension for the visual mapping (Ware
et al., 2006; Grundy et al., 2009; Tominski et al., 2012b). e study by Amini et al. (2015) sug-
gests that in such scenarios interactivity is even more important for comprehending 3D (and 2D)
visualizations of movement data.

Let us take a closer look at Tominski et al.’s (2012b) hybrid 2D/3D visualization as de-
picted in Figure 4.6. e visualization design is based on stacking 3D bands along the third
display dimension on top of a 2D map. is makes individual trajectories and their direction dis-
tinguishable, and data attributes can be color-coded along the bands. To facilitate maintaining
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Figure 4.6: Movement trajectories visualized as 3D bands stacked on top of a 2D map.

the spatial context, the movements are additionally represented directly on a 2D map as color-
coded 2D trace lines. 3D bands and 2D trace lines are linked through interactive highlighting.
e visualization design further requires interaction support for two fundamental operations:

• Spatial navigation: Users must be enabled to explore different areas of the map and to
look at the stack of trajectories (and the attribute values visualized there) from different
perspectives.

• Time integration: As the visualization primarily shows the data in their spatial frame of
reference, the link to the temporal dimension has to be established through interaction.

Approach As we will see, dedicated context-dependent spatial navigation and lens-based dy-
namic queries are approaches that provide the required interaction support. Taken together, they
account for the spatial and the temporal character of the data.

Context-dependent Spatial Navigation Jankowski and Hachet (2013) survey a number of 3D
navigation techniques. While generic approaches, such as virtual trackballs (Henriksen
et al., 2004), are generally useful, they do not consider the particular context of the scene
being navigated. Context-dependent navigation is a combination of several basic naviga-
tion techniques. e question of which of them to apply and how to parametrize them is
decided based on the current interaction context.
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For spatial navigation, Tominski et al. (2012b) combine five different types of 3D navi-
gation, including viewer-centric orbiting, fly-through, and look-around, as well as object-
centric translating of the x-y map plane. e fifth technique is the elevator, which is a
viewer-centric navigation constrained to the z-axis of the 3D scene. e elevator is similar
to a scroll operation in that it takes the viewer to any level of the stack of trajectory bands.

A key to easing spatial navigation is to consider the context in which it takes place: Is a
particular location on the 2D map of interest, is a specific point in a 3D trajectory band of
concern, or can we assume a less focused interaction intent? A simple way to determine the
context is to consult the position of the cursor in the visualization scene. Depending on the
identified context, automatic adjustments can be made, including setting the center around
which to orbit and correcting the speed with which to fly through the scene.

Even the already easy to use elevator can be further improved by considering the current
context. When a user is investigating a 2D trace line on the 2D map, triggering the elevator
is interpreted as the user’s intent to visit the corresponding 3D trajectory band for closer
inspection. Upon detection of this context, a shortcut takes the user directly to that trajectory
band in the stack, no matter how high it may be and without any further manual operations.

With context-dependent navigation, users can easily explore the data’s spatial frame of ref-
erence. How the temporal frame of reference can be integrated via an interactive lens will
be explained next.

Integrating Time through an Interactive Lens Trajectory bands and trace lines visualize where
movements took place, but not when. Integrating time in full detail is hardly possible, be-
cause it conflicts with the existing visual design and would most certainly overload the dis-
play. A solution to this problem is to pick up the idea of interactive lenses, whose usefulness
we already demonstrated in the previous section in the context of graph data. Now we use
an interactive lens to provide on-demand access to temporal information.

e lens is basically an interactively adjustable spatial query region. Figure 4.7 illustrates its
two modes of operation. e lens can be used to select movements that pass the 2D region
defined by a lens circle (see Figure 4.7(a)). An additional dimension of control is provided
by a lens cylinder (see Figure 4.7(b)), which enables the user to focus the selection on a
certain range in the trajectory stack.

With a subset of movements selected with the lens, we can now visualize when the selected
movements took place. To this end, an on-demand circular display is embedded into the
visualization as illustrated in the right part of Figure 4.8. e outer ring shows temporally
aggregated information in color-coded histogram bins. In the center is a scaled duplicate
of the spatial query region, where individual trajectory points are displayed as dots. Links
between the dots and the temporal scale at the inner ring establish a more direct connection
between the space and time.
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(a) 2D lens circle. (b) 3D lens cylinder.

Figure 4.7: An interactive lens operating as 2D and 3D spatial query.

eparticular visualization in Figure 4.8 reveals that movements in the selected region occur
only on weekdays, but not on weekends as can be seen from the empty bins for Saturday
and Sunday. e highlighted trajectory represents a movement that took place later on a
Friday as indicated by the links (in darker gray) accumulating at the evening hours of the
Friday bin.

By adjusting the query region and by switching between different temporal aggregations,
the user can interactively control for which part of the data additional temporal information
is displayed and how detailed the information will be.

Figure 4.8: e lens (left) is linked to the display showing temporal information (right).
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Results and Discussion In summary, designing interaction techniques according to the frame
of reference helps users in gaining a balanced understanding of the complex interplay of space,
time, and data. Context-dependent spatial navigation facilitates exploring hybrid 2D/3D visu-
alizations. Interactive lenses enable users to derive statements regarding the data’s dependency
on time in cases where the visualization is otherwise focused on the spatial dependency. Positive
user feedback indicates that the interaction techniques are useful and usable: “e interaction is
intuitive and works very much as expected.” For an online demonstration, the interested reader is
referred to Tominski et al. (2012c).

Yet for larger datasets, analytic methods are required to support the visual-interactive part.
In their book, Andrienko et al. (2013) state that new methods of visualization need to be com-
bined with new methods of algorithmic data analysis. e book picks up the solutions presented
here and puts them to use in a larger visual analytics framework. Tominski et al. (2012b), An-
drienko et al. (2013), and Andrienko et al. (2014) provide more details demonstrating the benefits
of combining analytic, visual, and interactive means for exploring and analyzing movement data.

Related Readings
Krüger et al. (2013) • Roth (2013) • Jankowski and Hachet (2013) • Andrienko et al.
(2013) • Amini et al. (2015)

SECTION SUMMARY
In this section, we elaborated on approaches taking into account the data as a key aspect of in-
teraction in visualization. Looking at the data’s structure and the data’s frame of reference, we have
seen how addressing the requirements imposed by the data (e.g., integrating space, time, and data
attributes), on the one hand, and utilizing the characteristics of the data (e.g., navigating based
on the structure of graphs), on the other hand, can help in designing and implementing useful
interaction techniques.

While focusing on the data aspect, we have also touched other interaction-related aspects.
In terms of tasks, we addressed path-tracing and connectivity-related tasks, which are unique to
graphs. Behavior-related tasks are relevant when analyzing movement data. In terms of technol-
ogy, the presented techniques address regular workspaces, where the multi-threading architecture
from Section 4.1 and GPU acceleration are brought to bear to provide visual feedback quickly.
In terms of the human, the edge-based traveling on a graph’s structure and the context-dependent
spatial navigation demonstrate the benefit of reducing interaction costs.

An interesting observation that can be made is the recurring pattern of lenses as interactive
tools to support the user in carrying out specific tasks in complex visualization settings (Tominski
et al., 2014). In later sections of this work, we will see that lenses are indeed a kind of universal
method applicable in different scenarios, for example, to assist in the task of editing graphs as
described in Section 4.3.2.
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4.3 TASK-SPECIFIC INTERACTION TECHNIQUES
Interaction in visualization should not only address the data being visualized, but also the ob-
jectives that motivate the user to take actions. is brings us to the question how interaction in
visualization can be related to the user’s tasks.

Previous work on tasks in visualization is mainly concerned with designing the visual rep-
resentations in a task-dependent way. However, not only the visualization design is dependent
on tasks, but also the interaction design. In this context, Ware (2012) declares:

“e optimal navigation method depends on the exact nature of the task.”
— Ware (2012)

While Ware’s statement makes a point that interaction has to be task-specific at the inter-
mediate level of navigation, it is clear that designing for the task at hand is beneficial at higher
levels of interaction as well. In the following, we look at such higher-level interactions. Concep-
tually, they can be differentiated into interactions for:

• consuming data and

• producing data.

Consuming data means that data are the input to the human mind. Visual information
seeking in general can be considered a high-level task during which data are consumed. For the
first part of this section, we will focus on the specific task of visual comparison which also involves
consuming data in various ways. We present a dedicated interaction method for visual comparison
inspired by natural comparison behavior.

In contrast, producing data means that data are the output of the human mind. is is
typically related to creating data models or editing data values. In the second part of this section,
we study interaction for the task of editing graph structures. We describe a semi-automatic editing
approach that combines interaction with automatic computation to facilitate inserting nodes into
already complex graph layouts.

4.3.1 INTERACTION FOR COMPARISON TASKS
Visual comparison is a most relevant visualization task. It encompasses comparing multiple data
values, groups of values, and also spatial regions or temporal intervals with specific data character-
istics (Andrienko and Andrienko, 2006). Based on comparisons, users may formulate hypotheses
about the data and draw corresponding conclusions, which indicates the high-level nature of the
task.

Gleicher et al. (2011) underline the importance of comparison in visualization scenarios.
Most of the solutions collected in their survey focus on supporting comparison by visual means,
such as specific visual encodings or particular visual layouts. e survey also mentions interaction
as an integral part, but often only rather basic interaction complements the customized visual
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(a) Side-by-side comparison. (b) Shine-through comparison. (c) Folding comparison.

Figure 4.9: Natural behaviors of humans when comparing information on paper.

solution. Next we introduce a specifically designed and generally applicable interaction method
for supporting visual comparison (Tominski et al., 2012a).

Approach Visual comparison generally involves three phases. First, the pieces of information to
be compared are identified and selected. Second, the selected pieces are arranged so that they are
easy to compare. ird and finally, the actual comparison is carried out. ese three phases must
be supported by an appropriate interaction design. Particularly for the last phase it is interesting
to study how humans naturally carry out comparison tasks. Figure 4.9 shows three fundamental
behavior patterns that can be observed when humans compare information printed on paper:

• Side-by-side comparison: Sheets of paper are moved on a table until they are arranged side
by side to facilitate comparison.

• Shine-through comparison: Sheets of paper are stacked and held against the light to let
information shine through and blend.

• Folding comparison: Sheets of paper are stacked and individual sheets are folded back and
forth to look at one or the other sheet in quick succession.

To support such comparison behaviors on the computer, the involved natural components
and procedures have to be mimicked by virtual counterparts. In the first place, the workspace for
the comparison has to be set up. We already mentioned the usefulness of the concept of zoomable
user interfaces (see Section 2.3). Here it is utilized to create the virtual world in which comparison
takes place. Natural sheets of paper are replicated as virtual visualization views that reside in the
zoom space.

Now we can look at the virtual comparison procedures. e first phase is the selection of
pieces to be compared. is is supported by enabling the user to mark interesting parts of a visu-
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(a) Creating a new view. (b) Arranging for comparison. (c) Comparing by folding.

Figure 4.10: Phases of comparison exemplified with a matrix visualization.

alization view and to create new views of the marked parts. e second phase is the arrangement
of the pieces to be compared. By moving views in the visualization space, the user can create any
arrangement suitable for the later comparison. Snapping methods (Bier, 1988; Gleicher, 1995)
can be employed to assist the user in arranging the views. e actual comparison is phase three.
rough interactive arrangement, side-by-side comparison is already supported. Shine-through
comparison can be realized via alpha-blending of stacked views. A specifically designed interac-
tion also enables the user to perform the natural folding comparison in the virtual visualization
space.

Figure 4.10 illustrates the three comparison phases for the example of amatrix visualization.
For the actual comparison, the example uses the folding interaction. e figure also shows an
additional visual cue that indicates where the smaller sub-matrix has been detached from its parent
view.

Results and Discussion e presented approach provides dedicated interaction support for the
task of visual comparison. Each comparison phase is addressed by interaction techniques that
draw inspiration from human behavior. Given their natural origin, it is almost certain that the
interactions are intuitive and easy to use. is has been confirmed in a qualitative user study
during which users expressed that the interaction “feels realistic” and is even “better than natural
comparison.”

An important characteristic of the approach is that it is generally applicable. All necessary
operations can be implemented on the pixel stage of the visualization pipeline. is makes it
possible to compare any kind of data representation, including visualizations of movements, dense
pixel-based visualizations, or simply photos and screen captures.

At the same time, the approach is customizable to the particularities of the data. To this
end, selected operations can be shifted to the data-oriented stages of the visualization pipeline.
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is was illustrated here for matrix data, but is analogously possible for relational tabular data. It
would be interesting to see data-specific customizations also for graphs or real 3D comparison of
movement trajectories beyond the pixel level.

Tominski et al. (2012a) provides more details about the implementation of the interaction,
about additional visual cues and interaction shortcuts, and about the user study. An online demo
of the interaction techniques is available as well (Tominski, 2012).

With the interaction method for visual comparison, we have addressed a task for which the
user consumes data. e next section will address a task during which the user acts as a producer of
data.

Related Readings
Beaudouin-Lafon (2001) • Dragicevic (2004) • Isenberg and Carpendale (2007) • Valli
(2008) • Gleicher et al. (2011)

4.3.2 INTERACTION SUPPORT FOR EDITING TASKS
Visualization users U typically engage in tasks where they consume data D through exploring
visual representations V with the goal to gain insight (van Wijk, 2005), or short U  V  D.
Yet, there are situations in which users have to produce or manipulate data, for example, to insert
missing items, update erroneous data values, or delete obvious outliers. Such data editing tasks
can be supported through means of visualization as well (Baudel, 2006). e goal is to use visual
representations as a bi-directional mediator between data and users, or short U $ V $ D.

From an interaction point of view, there is a gap between visual data exploration and edit-
ing. Visual exploration focuses on interactive control of the visualization process U ! V , as doc-
umented several times in the previous sections. Data editing U ! D is usually a manual, cum-
bersome, and time-consuming process (Kandel et al., 2011). In general, U ! V and U ! D are
separate tasks that are carried out with separate tools. is not only disrupts the user’s workflow,
but also requires costly mental context switches, which make the whole procedure prone to human
error.

Narrowing the gap between exploration and editing, we next present an approach that
integrates both aspects with an emphasis on the editing part (Gladisch et al., 2014). As an example
for the data to be edited we focus on graphs with customized layouts, more specifically on the
graph structure. Because editing such graph layouts can be quite complex, the otherwise purely
interactive editing is supported by automatic methods.

Approach e visual basis of the approach is an orthogonal node-link representation. It shows
the structure of the graph, textual labels for graph nodes, and optionally data attributes via color-
coding. e node-link representation is again embedded in a zoomable space that provides the
necessary interaction for exploring the graph.

To enable the user to edit the graph’s structure and its layout, an interactive lens, called
EditLens, is provided. In the previous sections, we considered interactive lenses mainly as tools to
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(a) Insert. (b) Update. (c) Delete.

Figure 4.11: Illustration of the EditLens being applied to insert, update, and delete a node.

provide alternative visual representations of the data (see the lenses for graphs and movement data
from Section 4.2). In contrast, the EditLens is a tool to edit the data, that is, to insert, update,
or delete data items. For graphs, the data items to be edited are nodes and edges. Figure 4.11
illustrates editing operations for a node.

Inserting a new node or edge into an already existing complex graph layout is usually a
demanding task. In our particular scenario, the graph layout is custom-made and obeys certain
application dependent constraints (e.g., specific types of nodes must be located in dedicated re-
gions of the layout). Editing such graphs requires finding adequate positions for nodes to be
inserted and may also involve routing edges through the already established complex layout.

e key idea of the EditLens is to ease editing tasks by relieving the user of defining precise
points for nodes or edge routes. Instead, the user specifies just the local region where an edit
operation is to take effect. In other words, point-wise manual editing is relaxed to region-wise
semi-automatic editing via the EditLens. While the interactively adjustable lens region acts as a
coarse solution specified by the user, precise positions and edge routes are computed by automatic
methods as described next.

e first step is to determine a suitable unoccupied area within the EditLens where an
edited item can be placed. e precise spot within that area is computed based on different heuris-
tics (Gladisch et al., 2014). ese heuristics prioritize different graph aesthetics criteria, for in-
stance, maximum distance to other nodes, short overall edge length, or low number of edge bends.
During the editing, the user can freely choose which heuristic to apply depending on the situa-
tion at hand. e EditLens will suggest suitable positions of nodes and edge routes accordingly.
When the user agrees with a suggested solution, the result of the edit operation is committed to
the data. In cases where the EditLens can find only insufficient or no solutions due to conflicting
constraints, manual refinement is still possible with classic point-wise editing.
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Figure 4.12: Using the EditLens for inserting node Acl6a into a complex biological network.

e semi-automatic editing has to be supported by appropriate visual feedback. e fact
that the EditLens is in operation is indicated by a black rectangle. Only the nodes and edges
being affected by the ongoing edit operation are shown fully saturated, whereas all other nodes
and edges are dimmed. If the EditLens cannot provide valid suggestions for the edit operation,
the lens frame turns red to notify the user.

Results and Discussion e EditLens has been applied to a real-world problem where bio-
informatics scientists maintain a network of genes and biological relations among them. As new
genes or relations are discovered and reported in the literature, the network is edited to include
the newly available information. Figure 4.12 shows a small part of the network. One can easily
imagine how cumbersome and time-consuming manual editing of the network can be.

In a small qualitative study with two experts and two non-expert users, the manual editing
has been compared with the semi-automatic editing using the EditLens (Gladisch et al., 2014).
e collected user feedback suggests that “the EditLens is very useful and can clearly reduce the
editing effort” and that “the automatic suggestion of node positions and edge routes is obviously
beneficial.” We can conclude that the EditLens significantly narrows the gap between data editing
and data exploration in the sense of D $ V $ U .

Editing node-link diagrams is a research challenge in its own right (Frisch, 2012). e
concrete implementation of the EditLens focuses on the structure of graphs with orthogonal
layouts. is leaves two key questions. First, how can editing be supported not only in terms of the
graph structure, but also with respect to data values associated with nodes and edges? Second, are
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there other visual representations than node-link diagrams that are suitable alternatives to improve
specific editing task? For example, are matrix representations better suited for editing the edges
of a graph? Finding answers to these questions will help to further narrow the exploration-editing
gap.

Related Readings
Baudel (2006) • Dwyer et al. (2008) • Frisch et al. (2009) • McGuffin and Jurisica (2009) • Kandel
et al. (2011)

SECTION SUMMARY
In this section, we have shown how visualization tools can be designed with respect to the task
aspect of interaction. We considered high-level interaction to support two fundamentally differ-
ent types of tasks: tasks that involve the consumption of data and tasks that are related to the
production of data. As concrete task instances we studied visual comparison and data editing. We
have seen that a key to success is to pay attention to the procedures and workflows behind tasks.

We can again see connections to the other key aspects of interaction. e EditLens has
been designed specifically for graphs, which confirms the importance of the data aspect. While
the approach for visual comparison is generally applicable in terms of the data, we also mentioned
that specific customization to particular data characteristics can be useful. An obvious link to hu-
man aspects is the interaction design based on natural comparison behavior. By following natural
comparison strategies, a solution could be obtained that is intuitive and effective. Also the Ed-
itLens adheres to a user-centered design insofar as it supports the editing workflow of real users
working on real problems.

Speaking in terms of technology, we began to make a shift from classic mouse and keyboard
interaction for the comparison approach to multi-touch interaction for the EditLens. Touch in-
teraction has the advantage that users can directly manipulate the data under their fingertips.
Typical precision problems with touch interaction do not surface for the EditLens, because it is a
region-oriented approach and precision is taken care of by automatic methods. is already hints
at the importance of considering technological aspects when designing interaction solutions. In
the next section, we further explore the utilization ofmodern interaction technology in the context
of visualization.

4.4 UTILIZING MODERN TECHNOLOGY FOR
INTERACTION

With data-specific and task-centric interaction as dealt with in the two previous sections, we
have covered the core of interaction in visualization. As illustrated in Figure 3.1 back on page 25,
this core is flanked by the technology on the one side and the human on the other side. Both of
these flanks will be addressed in the following. We consider the technology in this section and
the human in the next Section 4.5.
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Undeniably, the technology plays a key role in interactive visualization, because it provides
the facilities to display visual representations and the means to interact with them. Typically, the
technical setup for visualization applications is a regular desktop computer to which a regular
display as well as a mouse and a keyboard are connected. In this section, we go beyond mouse and
keyboard interaction and regular displays.

Addressing the technology aspect typically involves studying interaction at the lower level
of basic ways of transmitting interaction intents from the human user to the computer. ere are
different interaction modalities that all come with their own individual strengths and weaknesses.
It is beyond the scope of this section to comprehensively discuss all possible options. Our con-
siderations are focused on two principal ways of establishing an interaction channel between the
human user and the computer:

• tracked objects – users manipulate objects that are tracked and

• tracked humans – users themselves are tracked.

While mouse and keyboard are the classic input devices, our goal is to illustrate alternative
means of using tracked objects for interaction. To this end, we discuss tangible views as a novel
way of interacting with visual representations of data. At the same time, tangible views are a
novel form of lightweight displays that offer new possibilities for visualization applications. As an
example where users are tracked, rather than objects, we look at proxemic interaction in front of
large displays. In particular, we investigate how tracking the user’s position and viewing direction
can support graph exploration on a large tiled display wall.

4.4.1 TANGIBLE VIEWS FOR INTERACTION AND VISUALIZATION
Direct manipulation as advocated by Shneiderman (1983) is a most prevalent theme of interaction
in visualization. Many visualization techniques are designed so as to allow the user to directly
manipulate the visual representation or the underlying data.

Yet, often the term direct just means that manipulations affect the visual object directly
under the pointer, which is a rather limited interpretation of directness. In fact, standard inter-
action is quite indirect: the pointer is typically controlled with a mouse, whereas visual feedback
is shown on the display. Researchers have started to explore how truly direct touch interaction
can effectively support visualization (Voida et al., 2009; Kosara, 2011; Kim and Elmqvist, 2012).
Next, we expand basic touch interaction on a display by tangible interaction with the display as
suggested by Spindler et al. (2010).

Approach e starting point of the approach is a horizontal touch-enabled tabletop device.
e tabletop serves to visualize the data and to receive touch input from the user. In this setup,
visualization and interaction remain in the horizontal two-dimensional tabletop plane. e idea
now is to utilize the three-dimensional space above the tabletop to provide enhanced visualization
and interaction functionality.
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To this end, the concept of the PaperLens (Spindler et al., 2009) is extended to what is
called tangible views. Tangible views are lightweight “devices” that act as additional displays in
the space above the tabletop (see Figure 4.13). In a most simple instantiation, a tangible view can
be a piece of cardboard onto which a projector transmits visualization content, in which case the
display is passive. A tangible view can also be active, that is, it is capable of displaying graphical
content on its own without the help of an external projector, for example, a tablet device.

Irrespective of being passive or active, the key characteristic of tangible views is that they
are spatially aware. rough constant tracking of the tangible views, the system always knows
their position and orientation in three-dimensional space. is opens up new possibilities for
interaction. e extended interaction vocabulary of tangible views includes basic translation and
rotation in three dimensions as well as gestures of flipping, tilting, and shaking. By providing
tangible views that are distinguishable by shape or appearance it is possible to create an interaction
toolbox, where users can infer interaction functionality from the look of a tangible view. Multiple
tangible views can be applied simultaneously for advanced interaction and for adding display space
for visualization purposes.

Providing an extended interaction vocabulary is only one part of the approach. e second
part is to appropriately map the vocabulary to typical interactions in visualization scenarios. Here,
we take a brief look at an application of tangible views for visual comparison of graph data. We

Figure 4.13: Tangible views in use for comparing data matrices.
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Figure 4.14: Tangible views applied to different types of visualizations.

chose this example as it is interesting to see the novel way of tangible interaction for visual com-
parison in contrast to the visual comparison approach based on classic mouse interaction from
Section 4.3.1.

How visual comparison can be carried out using two tangible views is depicted in Fig-
ure 4.13. e tabletop shows a color-coded graph matrix as the background visualization. In order
to select two sub-matrices to be compared, the user moves two tangible views horizontally above
the tabletop. A freeze gesture is carried out to fix the selection. is allows the user to arrange
both tangible views side by side for closer inspection and comparison. Once the views are suffi-
ciently close to each other, the system recognizes the user’s comparison intent and indicates by a
colored frame (green in our case) the overall aggregated similarity of the sub-matrices. Shaking
the tangible views releases the freeze and the user can start over with selecting other parts of the
matrix.

As illustrated by the visual comparison application, tangible views offer a novel and intu-
itive way of interacting with visual representations of data. is is true not only for comparison
tasks and graph data, but for a broad range of visualization problems. Spindler et al. (2010) apply
tangible views in a number of case studies, including sampling in parallel coordinates, fisheyemag-
nification in scatter plots, multi-level exploration of hierarchical graphs, and spatio-temporal data
analysis with space-time cube (see Figure 4.14). ese case studies further explore and demon-
strate the usefulness of the introduced extended interaction vocabulary.

Results and Discussion From a conceptual point of view, tangible views led to three key results
related to interaction and visualization. First, tangible views integrate display and interaction de-
vice. e user interacts directly with the tangible view to satisfy an interaction intent. Interaction
on tangible views or the tabletop display can provide additional functionality. Second, tangible
views enhance common 2D interaction with tangible 3D interaction above a tabletop display, thus
extending the typical interaction vocabulary for visualization. ird, the enhanced interaction vo-
cabulary and extended physical display space allow us to create a tangible experience of otherwise
purely virtual visualization techniques and concepts, including overview+detail, focus+context,
and coordinated multiple views.
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With great power comes great responsibility. While the mentioned case studies illustrate
how the extended expressive power of tangible views can be utilized, it remains to be studied
what will be good interaction designs in other situations. e case studies also indicate that good
designs require taking into account the concrete data and the specific task of the user.

e approach of tracking tangible views in 3D also raises questions regarding precision
of the interaction and regarding fatigue of users operating multiple tangible views. Investigating
these issues requires extensive user studies. First results in this direction have been published by
Spindler et al. (2012, 2014). ey indicate that tangible spatial interaction is indeed a promising
alternative when working in and with layered zoomable information spaces, which are common
in visualization scenarios.

By the example of tangible views, we illustrated the usefulness of novel interaction tech-
nology where users manipulate tracked objects. Next we describe how tracking the user, rather
than objects, can support visualization on large high-resolution displays.

Related Readings
Ishii and Ullmer (1997) • Ullmer et al. (2003) • Holman et al. (2005) • Kim and Elmqvist
(2012) • Jackson et al. (2013)

4.4.2 PROXEMIC INTERACTION FOR WALL-SIZED VISUALIZATION
e approach from the previous section visualized data on tangible views and on a tabletop de-
vice. ese and other output devices with conventional pixel resolution are typically limited in
the amount of information that can be displayed. anks to technological advances, large high-
resolution displays are now becoming available to a broader range of users. e larger physical size
and the increased pixel resolution offered by such displays have obvious advantages for visualiza-
tion applications. Particularly in light of big data, being able to visualize much more information
is an exciting prospect.

Yet with larger size and more pixels there also come new challenges. New solutions are
needed to support the visualization and interaction on wall-sized displays. Andrews et al. (2011)
point out that

“Replacing the conventional monitor with a large, high-resolution display creates a
fundamentally different environment that is no longer defined purely in terms of the
technical limitations of the display, creating a new collection of design opportunities,
issues, and challenges.”

— Andrews et al. (2011)

Here, we look at a scenario where data are visualized on a tiled display wall and focus
on the question of how to interact in such a setting. Proxemic interaction has been identified as a
promising answer to this question (Ballendat et al., 2010). We describe such an interaction design
where physical navigation in front of a display wall steers the exploration of hierarchical graphs
at different levels of detail (Lehmann et al., 2011).
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Figure 4.15: Exploring a graph on a large high-resolution display wall.

Approach As shown in Figure 4.15, the tiled display wall consists of 24 individual displays
covering an area of 3.7 m � 2.0 m with a total resolution of 11,520 � 4,800 which amounts
to 55 million pixels. e graph being explored is a hierarchical graph with different levels of
abstraction. Such graphs can be visualized using standard node-link representations. Nodes can
be expanded to get a finer view on the data or collapsed to get a coarser representation. In standard
desktop applications, individual levels of abstraction are typically accessed viamouse and keyboard
interaction (e.g., clicking on nodes to expand them and holding down a key while clicking to
collapse them). In our scenario, this is obviously impractical due to the large distances that would
need to be covered with the mouse cursor across multiple displays.

An alternative is to control the exploration of the graph by the user’s physical movement in
front of the large display wall. For our particular example, head tracking is used to acquire infor-
mation about the user’s position and orientation (6 degrees of freedom). e tracking information
is utilized to implement two interaction techniques: the zone technique, which can be combined
with the lens technique.
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(a) Zones. (b) Zones + lens.

Figure 4.16: Schematic illustration of the zone technique and the lens technique.

For the zone technique, the space in front of the display wall is subdivided into multiple
zones with increasing distance to the display (see Figure 4.16(a)). Each zone corresponds to a level
of abstraction of the graph. When the user moves toward the display, the graph is visualized at
greater detail. is approach corresponds to natural human behavior. When interested in details,
humans typically step up to the object of interest to study it in detail. In order to obtain an
overview, the user can step back. Stepping backward into zones farther away from the display
automatically adjusts the visualization to show higher levels of abstraction.

While the zone technique can be used to globally control the level of abstraction, the lens
technique has been designed to enable the user to access details for local parts of the graph. To
this end, the tracking information about the orientation of the user’s head is utilized to estimate
where the user is looking. Based on this estimation, an interactive lens is positioned on top of the
regular graph visualization (see Figure 4.16(b)). Nodes that are inside the lens are automatically
expanded to reveal more detailed information. e lens technique enables the user to scan the
graph in a focus+context fashion by simply moving the head around. Filtering the tracking input
and smoothly animating node expand and collapse operations help to avoid flickering caused by
natural head tremor and to maintain a reasonably stable visualization.

e user’s distance to the display can be used not only to control the level of abstraction,
but also to derive a suitable labeling of the graph. A user standing close to the display is presented
with more and smaller labels for individual nodes. When looking from a greater distance, the user
will see fewer, but larger labels for clusters of nodes.

Results and Discussion e interaction techniques have been tested in a pilot study (Lehmann
et al., 2011). e zone technique was reported as the approach that is easier to use, but on the
other hand, the lens technique offered more control over where increased detail is to be shown.
Overall, the proxemic interaction through physical movement in front of a display wall proved
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to be a valuable alternative in cases where classic means of interaction fail. Physical movement
not only better matches the scale of the display, it also corresponds with natural interaction with
real-world objects.

Here, we considered the relatively simple task of adjusting the level of abstraction of a graph
visualization. Jakobsen et al. (2013) study proxemic interaction in the context of visualization in
more detail. eir results suggest that zooming tasks can indeed be supported well by physi-
cal navigation. Other research results indicate that physical navigation can also be beneficial for
higher-level analytic sensemaking (Andrews and North, 2013). In the context of multi-display
environments, physical navigation can facilitate group discussions of visualization results (Radloff
et al., 2015).

In terms of the visualization itself, we relied on rather basic standard node-link diagrams.
ere are other visualization designs that offer a better adaptation to the properties of large
displays. A particularly interesting example is the hybrid-image visualization by Isenberg et al.
(2013a). A hybrid image supports multi-scale viewing for multiple users collaborating in front of
a large display.

Related Readings
Yost and North (2006) • Ball et al. (2007) • Keefe et al. (2012) • Greenberg et al. (2014) • Jakobsen
and Hornbæk (2015)

SECTION SUMMARY
In this section, we presented two technology-oriented approaches to interaction in visualization.
e first was based on tracking tangible views above a tabletop display, the second on tracking the
user in front of a large display wall. Tangible views significantly extend the interaction vocabulary
for visualization applications. We are no longer limited to interaction on the display, but can now
interact with the display. Tangible views also offer more space for displaying information. Even
more space is available on mega-pixel display walls. In such scenarios, we have to match the
scale of the interaction with the scale of the display. Physical navigation as a form of proxemic
interaction turned out to be well-suited for exploring graphs at different levels of abstraction.
Tangible views and proxemic interaction illustrate the potential of going beyond regular displays
and standard interaction. is topic is discussed further in studies by Keefe and Isenberg (2013),
Jakobsen et al. (2013), Isenberg et al. (2013b), and Jansen and Dragicevic (2013).

While focusing our attention on the aspect of technology, we could once more see links the
to other key aspects of interaction in visualization. at the human is central in both approaches
is self-evident. e data and the tasks were considered in particular for the different case studies
of tangible views. Each study focused on specific data and tasks. One exemplary use case for
tangible views wasmulti-level exploration of hierarchical graphs.e very same data and task were
addressed when we were studying physical navigation in front of a display wall. e techniques
described earlier in Section 4.2.1 support multi-level exploration of hierarchical graphs as well,
but they rely on classic mouse interaction.
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A question that remains largely unexplored so far is which technology, tangible views, phys-
ical navigation, or classic mouse interaction, fares best for different types of data and different
tasks. A good starting point for investigations in this direction would be a comparative study with
the example of multi-level graph exploration. But already setting up the environment for such a
controlled study would pose considerable challenges, technology-wise and evaluation-wise. Yet
the results of such a study would help us develop an understanding of which technologies are best
suited to support the human user. In the next section, we will address the human user specifically
by integrating automatic and interactive methods.

4.5 SUPPORTING HUMAN INTERACTION WITH
AUTOMATIC METHODS

Wenow come to the final aspect of our interaction-oriented view on visualization, the human.e
human user is the source of interaction intents transmitted to the system via different interaction
modalities. At the same time, the human user is the sink for visual information conveyed through
display technology.

Developing interaction with a focus on the human user involves addressing aspects of flu-
idity, naturalness, and cost efficiency of the interaction. Actually, all these aspects have already
been covered in the previous Sections 4.2–4.4. e easy navigation based on graph structures,
the context-dependent 3D navigation of trajectory data, the interaction for visual comparison in-
spired by natural behavior, the data editing approach that follows real-world users’ workflows, the
approach that makes interaction for visualization tangible, and the natural physical navigation in
front of a large display have all been designed with the human user in mind.

In this section, we continue to address the human user, this time by reducing the costs
involved when users interact. Lam (2008) attributes interaction costs in visualization to the two
gulfs in Norman’s (2013) action cycle:

• gulf of execution—carrying out the interaction and

• gulf of evaluation—understanding the visual feedback.

e following paragraphs present two approaches that aim to narrow these gulfs. Yet in
contrast to the previous sections where we focused on interactive solutions, we will now con-
sider automatic methods to assist in interactive visualization. In terms of the gulf of execution, we
look at event-based concepts to automate certain actions that otherwise would need to be per-
formed manually. In terms of the gulf of evaluation, we address typical questions arising when
users navigate larger information spaces. We describe a degree-of-interest (DOI) approach that
automatically generates navigation recommendations to help users making informed decisions on
where to navigate next.
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4.5.1 REDUCING INTERACTION WITH EVENT-BASED CONCEPTS
Interaction in visualization has been advocated throughout this work as a means to empower
the human user to control the visualization as needed for the data and the tasks at hand. Yet in
Section 2.5, we also indicated that interaction is not a universal cure and that interaction can
be a burden to the human user. So it makes sense to critically question all interactive input that
visualization tools solicit from the user. After all, it is the task of the visualization to present
relevant information effectively and expressively, and not primarily the task of the human user to
parameterize the visualization appropriately to achieve this.

inking about reducing user interaction to a reasonable and useful minimum implies that
we also have to look for alternative sources of input to be able to derive visual representations
that still reflect the user’s needs. One such source of information is the data itself and patterns
of interest residing in the data. Knowing that certain parts of the data are of special interest, one
can automatically trigger adjustments of the visual representation to emphasize these interesting
parts without the need of user interaction.

Approach In order to automate the adjustment of visual representations according to user in-
terests, visualization can be complemented with event-based methods (Tominski, 2011). As il-
lustrated in Figure 4.17, such an event-enhanced visualization comprises three stages: event spec-
ification, event detection, and event representation.

e event specification is concerned with defining event types that formalize the notion of
“interesting parts of the data.” Predicate logic formulas are utilized to express three different kinds
of event types addressing the relational data model. e user can specify tuple event types (e.g.,
tuple values exceed a certain threshold) and attribute event types (e.g., data attribute with the
highest value). In order to deal with changes over time, there is also support for sequence event
types (e.g., sequence of days with rising temperature). Composite event types can be compiled
using set operators.

Figure 4.17: Model of event-based visualization.
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(a) Default parameterization. (b) Improved parameterization.

Figure 4.18: Automatic event-based adjustment of the TimeWheel.

e second stage is the event detection. At this stage, the data are searched for matches of
the interests expressed via event types. Different algorithms are involved at this stage, including
query mechanisms for relational databases as well as search algorithms for sequence patterns.
Efficiency of these algorithms is of importance, because the search has to be carried out upon every
change of the data. is is particularly critical for dynamic data streams that undergo frequent
changes. Once the event detection reports matches in the data, actual event instances are created.
Event instances bear three important pieces of information: (1) the fact that something interesting
has been found in the data, (2) where in the data interesting parts are located, and (3) what
made these parts interesting (i.e., the event type). is information is the input to the event
representation.

e goal for the event representation is to automatically adjust the visual representation so
as to (1) communicate the fact that something interesting is in the data, (2) emphasize interesting
parts among the rest of the data, and (3) indicate the event type, where possible. ese goals are
to be achieved by re-parameterizing the visualization. erefore, it is a necessary requirement
that the visualization provides an appropriate set of visualization parameters. If this requirement
is satisfied, the event-based approach automatically triggers the execution of instantaneous or
gradual parameter changes upon the detection of events. ese automatic parameter adjustments
reduce the need for manual interaction.

Results and Discussion Tominski (2011) describes exemplary event-based enhancements for
several visualization techniques, including the Table Lens (Rao and Card, 1994), the space-time
cube (Kraak, 2003), and the TimeWheel (Tominski et al., 2004). Figure 4.18 illustrates the Time-
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Wheel technique applied to human health data. e user is interested in high numbers of cases
of influenza. A default parameterization of the TimeWheel is typically unaware of this specific
interest. Figure 4.18(a) shows influenza (light green lines) as just one attribute among others.
With the event-based approach, the user can make the interest in influenza known to the sys-
tem, which in turn triggers automatic parameter adjustments once the number of influenza cases
exceeds a certain threshold. In our concrete example in Figure 4.18(b), a red frame signals the
fact that events have been detected. e data records that correspond with the user’s interest are
highlighted and the TimeWheel is rotated so that the axis representing influenza is on the top.
Enlargement of the influenza axis further helps the user to focus on the interesting cases.

e improved parameterization is the result of an automatic reaction to an event and as
such does not require any user interaction. As a consequence, the gulf of execution is narrowed. It
is important to understand that the gulf is narrowed and not removed. Still user input is needed:
the description of interests in the form of event types. But this can be done in a one-time pre-
process. In addition to describing event types, appropriate automatic parameter adjustments must
be defined, which is typically a task for the visualization designer. An interesting question would
be to derive rules or guidelines on what visualization parameters are needed and how they can be
adjusted in order to obtain appropriate visual effects for the event representation.

We have seen that event-based concepts can be a useful complement to interaction in visu-
alization. Automatic reaction to user-defined events of interest can reduce the gulf of execution.
An approach to narrow the gulf of evaluation will be presented in the next section.

Related Readings
Horvitz (1999) • Allen et al. (1999) • Healey et al. (2008) • Keim et al. (2008) • Bouali et al.
(2015)

4.5.2 NAVIGATION RECOMMENDATIONS FOR INFORMED
INTERACTION

e gulf of evaluation relates to the costs arising when interpreting the visual feedback result-
ing from interacting with the visualization. Particularly during data exploration, evaluation costs
might accumulate, because exploring the data generally means carrying out a number of interac-
tive navigation steps, which all ensue evaluation costs (Furnas, 1997). Consider, for example, the
interaction techniques for navigating along the structure of graphs as presented in Section 4.2.1.
After taking a navigation step, the user has to evaluate the updated visual representation of the
graph structure. Typical questions that users might ask themselves include: “Where am I in the
structure?”, “What structural patterns can I see here?”, and “How is what I see related to what I
have seen before?”

Spence (2007) further lists the questions: “Where can I go?”, “What lies beyond?”, and
“Where can I usefully go?” e goal now is to support the user in answering these questions by
automatically computing and presenting recommendations to the user. Recommendations have
already proved useful for supporting users in selecting visualization approaches (Gotz and Wen,
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Figure 4.19: Neighborhoods for collecting recommendation candidates.

2009). Here we consider recommendations to reduce evaluation costs during interactive naviga-
tion in hierarchical graphs (Gladisch et al., 2013).

ere are two types of navigation for hierarchical graphs. Horizontal navigation relates to
navigation in the graph layout. Typical operations to adjust the view on the graph layout are
scrolling and panning also in combination with zooming. Vertical navigation denotes navigation
in the data, more precisely, navigation between different levels of abstraction of the data. e
level of abstraction can be set globally, but also local adjustments are possible by expanding or
collapsing individual clusters of nodes (Elmqvist and Fekete, 2010). e question is what are
useful horizontal or vertical navigation steps to be recommended to the user?

Approach e general procedure is as follows. First, a set of graph nodes is determined to define
recommendation candidates. Second, the candidates are ranked and the top-ranked nodes are
selected as actual recommendations. Finally, the selected recommendations are communicated
visually to the user.

For building the set of recommendation candidates, Gladisch et al. (2013) consider the
neighborhood of the current exploration situation, that is, the context of the visualization content
currently visible on the display. As illustrated in Figure 4.19, the neighborhood can be defined in
three different ways: structural neighborhood, spatial neighborhood, and data neighborhood. e
structural neighborhood is based on the k-neighborhood of the graph. e spatial neighborhood
is defined in terms of node positions in the graph layout. A data neighborhood can be determined
based on similarity among the attribute values associated with the graph nodes. Restricting the
recommendation candidates to a local neighborhood around the user’s focus has two advantages.
First, the candidates are guaranteed to be related to the part of the graph currently being visible.
Second, the neighborhood is much smaller than the dataset as a whole, which eases the ranking
of the candidates.

To determine where the user can usefully go, a definition is needed of what useful means. An
effective concept in this regard is the degree of interest (DOI). e degree of interest is typically
defined through a DOI function. e literature describes different components of DOI functions,
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Figure 4.20: Navigation recommendations indicated by rings and enriched wedges.

including API (a priori interest), UI (user interest), DIST (distance to focus), and KNOW (inter-
est degradation for already visited data). All components can be weighted to fine-tune the DOI
computation depending on the application context. With an appropriate DOI specification, one
can automatically compute and assign DOI values to all recommendation candidates and rank
them accordingly. e top-ranked candidates are selected as actual navigation recommendations
to be presented to the user.

Navigation recommendations are additional pieces of information that need to be conveyed
to the user in addition to communicating the actual data. Corresponding visual cues have to be
designed so that they subtly indicate the recommended target nodes. For horizontal navigation,
target nodes can be on-screen or off-screen. As shown in Figure 4.20, on-screen targets can be
marked with rings, whereas off-screen destinations are hinted at by visual cues called enriched
wedges. On demand, the visual cues can visualize the DOI values assigned to the recommended
nodes. For vertical navigation, targets are by definition located at levels of abstraction different
from the current level, and hence they are definitely not visible. erefore, recommendations for
vertical navigation are attached to anchor nodes whose expansion (or collapse) would bring the
recommended target to the display. Subtly pulsing rings around anchors suggest that an expand
(outward pulsing) or a collapse (inward pulsing) operation will uncover a target of interest.

Results and Discussion Automatically computed navigation recommendations assist the user in
making informed navigation decisions. anks to the DOI concept, we are able to recommend
targets that reflect the user’s interest, provided that theDOI components are appropriately defined
and weighted. e design of the visual cues that hint at the recommended targets has to follow a
defensive strategy in order to only minimally interfere with regular data exploration. Only when
users have difficulties in determining a good next navigation target on their own should their
attention shift to the recommendations.
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A proof-of-concept implementation has been tested with different hierarchical graphs of
moderate size (hundreds of nodes and thousands of edges). e tests indicate that the approach
in general is technically feasible (Gladisch et al., 2013). Navigation recommendations could be
extracted from the graphs on-the-fly, while the computations were not hindering any regular
exploration activities of the user.

Still a difficulty is to appropriately outfit the DOI function. e components API, UI,
and DIST can be defined following van Ham and Perer (2009). However, the definition of the
KNOW component to capture what parts of a graph have already been explored is rather rudi-
mentary. A promising alternative could be to use gaze-controlled approaches, for example, based
on the work by Okoe et al. (2014).

Related Readings
Furnas (1986) • Gustafson et al. (2008) • Crnovrsanin et al. (2011) • May et al. (2012) • Abello
et al. (2014)

SECTION SUMMARY
In this section, we investigated how the human user can be supported when interacting with visual
representations of data. With the event-based visualization and the navigation recommendations,
we presented two approaches to reduce the gulfs of execution and evaluation. Interestingly, both
approaches are, in a sense, in contrast to our previous focus on interactive solutions, because at
their core they are automatic methods: finding interesting events in the data and determining
interesting navigation targets. What this contrast illustrates quite well is that it definitely makes
sense to critically question interaction and investigate alternative methods to improve visualiza-
tion.

Of course complementing human interaction with automatic computation raises the ques-
tion of proper balancing of automatic and interactive methods. is question has to be answered
individually depending on the application scenario and user expertise. Cooper et al. (2007) state
that casual users need basic functionality, that experienced users tend to explore enhanced func-
tionality, and that expert users seek ways to automate tasks. Although these statements provide
some general indication, it is left for future work and longitudinal studies to more thoroughly
investigate guidelines on balancing interaction and automated methods in visualization settings.

A second concern, not only relevant here, is the need to appropriately estimate user interest.
Both presented approaches depend on the existence of suitable definitions of user interest: event
types and DOI specification. Yet in real-world applications, these definitions might turn out to
be difficult to set up. erefore, it makes sense to continue researching alternative means for
estimating user interest, where gaze-based approaches appear particularly promising.

Overall, we can conclude that addressing the human is vitally important for interaction in
visualization. For the future, we see an increased relevance of complementing interactive visuali-
zation with assistive methods. Under the umbrella of guidance in visualization, ongoing research
investigates how the human can be supported at different levels, including guidance to visual-
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ize data effectively, guidance to assign tasks to the right user, and guidance to employ suitable
technologies (Schulz et al., 2013b).

4.6 SUMMARIZING REMARKS
In this chapter, we presented 1+8 approaches related to the key aspects of interaction in visualiza-
tion as identified in Chapter 3. All methods and techniques were described in a compact fashion
focusing on important questions and corresponding answers. As summarized in Table 4.1, we
started out with a multi-threading architecture laying out a technical foundation for implement-

Table 4.1: Summary of approaches in relation to data, tasks, technology, and human

Data Tasks Technology Human
Section 4.1
Architecture

Generic Generic Multi-core
processors

Efficient interaction
loop, circumvent
multi-threading
pitfalls

Section 4.2.1
Data
Data
structure

Graph data Navigate, explore Desktop Enhanced
navigation and
exploration

Section 4.2.2
Data
Data frame
of reference

Movement data Navigate, explore Desktop Enhanced
navigation and
exploration

Section 4.3.1
Tasks
Consume
data

Generic Compare Desktop Interaction inspired
by natural human
behavior

Section 4.3.2
Tasks
Produce
data

Graph data Edit Desktop,
touch interaction

Interaction based
on real-world work-
flow and supported by
automatic means

Section 4.4.1
Technology
Tracked
objects

Generic Generic Tangible
interaction,
touch interaction

Truly direct
interaction with
and on display

Section 4.4.2
Technology
Tracked
human

Graph data Explore Proxemic
interaction,
wall-sized displays

Physical navigation,
natural
interaction

Section 4.5.1
Human
Gulf of
execution

Generic Encode,
reconfigure

Generic Automatic
visualization
parametrization

Section 4.5.2
Human
Gulf of
evaluation

Graph data Navigate Generic Recommendation
of navigation
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ing interactive visualization. en, the data aspect, the task aspect, the technology aspect, and the
human aspect were individually addressed and illustrated by two approaches each. We presented
techniques for intermediate-level interaction with graph data and movement data. Higher-level
interaction support was discussed in relation to visual comparison and data editing tasks. Address-
ing modern technology, we investigated low-level tracking of tangible views above a tabletop and
tracking of users in front of large displays. Finally, we described two approaches to reduce the
gulfs of execution and evaluation through automatic methods for the benefit of the human user.

While we considered all aspects individually, we also identified and discussed connections
among them. Table 4.1 sets the individual methods and techniques from this chapter in relation
to our interaction-oriented view on visualization. e table particularly focuses on the interesting
interplay of data, tasks, technology, and human. e implementation aspect is not included in
the table. From the descriptions and figures given in this chapter it is evident that appropriate
implementation is crucial across all aspects.

An overall conclusion and discussion of the topics covered in this work along with an out-
look on future work in the context of interaction in visualization will be given in the next chapter.
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C H A P T E R 5

Conclusion and Future Work
is final chapter will provide a summarizing discussion of interaction in visualization. In the
first section, we will give some concluding remarks and derive take-home messages. In the second
section, we will indicate directions for future research with a particular focus on the interaction
side of visualization.

5.1 CONCLUDING REMARKS
is work started out with the goal to strengthen the interaction side of visualization. We looked
at fundamentals of visualization and interaction and we discussed the challenges involved when
designing and implementing interaction techniques in the context of visualization. We presented
a unified view of interaction around the key aspects: data, tasks, technology, human, and im-
plementation. Aligned with this view, a number of low-level, intermediate-level, and high-level
methods and techniques for interactive visualization were described. In the following paragraphs,
we will crystallize the greater picture of this work as a whole.

Unified View and Key Aspects At the core of this work is the discussion of approaches to inter-
action in visualization around a unified view. While we identified and discussed key aspects of our
interaction-oriented view individually, we also highlighted interrelations among them. To pick
only one example from Table 4.1 from the previous chapter, let us once more take a look at the
EditLens approach from Section 4.3.2. e EditLens is certainly focused on the specific task of
editing data,¹ but it also considers the characteristics of the data (graphs with customized layouts),
the specifics of the interaction technology (touch interaction), and the needs of the human user
(semi-automatic support). In a similar sense, all other approaches discussed in this work indicate
how important each of the key aspects is, both individually and as a cornerstone of our unified
view.

In fact, a key message is that one has to consider all aspects of interaction in order to be
successful when designing and implementing interaction for visualization. Leaving only one of
the aspects out of consideration puts us at risk to arrive at inappropriate or unusable solutions.

Interaction and Automatic Means Another major point discussed in this work is that interac-
tion, although powerful and effective, is not a universal answer to all problems. is points us to

¹Although editing is not a typical visualization task, interactive correction and manipulation of the data to be analyzed are
becoming more and more relevant (Kandel et al., 2011).
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think more carefully about where interaction is indeed helpful and in what situations the user is
better off with less interaction.

is thinking is reflected several times by approaches that combine interaction with auto-
matic means. Examples were given in Section 4.3.2, where fully manual data editing is facilitated
by automatic computations. In Section 4.5.1, automatic event-triggered adjustments of visual
representation were applied to reduce interaction costs. Automatic DOI-based concepts are the
backbone of the navigation recommendations presented in Section 4.5.2. A less obvious example
is the elevator interaction shortcut from Section 4.2.2, which takes the user automatically to a
desired position in the visualization space.

e integration of interactive and automatic means has been successful in the mentioned
examples. Yet, balancing interaction and automatism is not trivial. Microsoft’s famous office as-
sistance Clippit (aka. Clippy) is an example where the balance was off. We would want to avoid
intrusive automatic methods at all costs.

Broad Utilization of Technology e interaction techniques we discussed utilize different tech-
nologies. Looking at the display and interaction equipment that we employed to drive the visual
interface between the human and the computer, we see a gradual shift from classic desktop set-
tings with mouse and keyboard to modern display technologies and interaction modalities.

Predominant in Sections 4.2.1–4.3.1 was the classic mouse and keyboard setup. But still
the interactive approaches presented there are useful and efficient, a fact that indicates that even
in standard settings there is still potential to be exploited. In Section 4.3.2, we started to go be-
yond mouse and keyboard by designing interaction for touch-enabled devices. Advancing further,
Section 4.4.1 discussed tangible interaction in the space above a tabletop display. Finally, we also
explored proxemic interaction through physical navigation and head tracking in front of a large
display wall in Section 4.4.2.

As a conclusion, the approaches presented here suggest that a broad utilization of display
and interaction technologies bears much potential for visualization applications. is echoes the
statements made by other researchers who argue for taking advantage of modern technology (Lee
et al., 2012; Isenberg et al., 2013b; Jakobsen et al., 2013; Keefe and Isenberg, 2013).

Lenses as Universal Tools A recurring pattern throughout this work is the use of interactive
lenses to facilitate visualization tasks. anks to the lightweight and focused nature of lenses,
they are particularly suited for exploratory visualization.

In Sections 4.2.1 and 4.2.2, we used lenses to support the exploration of graphs and to inte-
grate temporal information into a visual representation that is otherwise focused on spatial aspects.
In Section 4.4.2, the user’s viewing direction was tracked in order to project a focus+context lens
onto a large display wall. While these examples can be considered virtual lenses, which represent
a digitized copy of the lens metaphor on the display, the tangible views from Section 4.4.1 are
examples of physical, graspable lenses. Such tangible lenses open up whole new possibilities for
visualization purposes as has been demonstrated in several case studies.



5.2. TOPICS FOR FUTURE WORK 71

A look at the literature confirms that many more interactive lenses exist for various types
of data and tasks (Tominski et al., 2014). From the wide application of lenses in this work and
in the work of others, we can conjecture that lenses are universally useful tools in interactive
visualization.

e Challenge of Developing Interaction is work also raised questions with respect to the
implementation of interactive visualization. In Section 4.1, we presented an architecture that
can help visualization developers circumvent typical multi-threading pitfalls. But still, develop-
ing interactive visualization solutions remains difficult due to the multitude and heterogeneity of
influencing factors. Spence (2007) explains this quite illustratively:

Many ingredients to support representation, presentation and interaction are de-
scribed [...]: like a good chef or skilled painter, interaction designers must select ap-
propriate ingredients from those available and use established concepts to blend them
into a pleasing and effective product. And, as with cooking and painting, good inter-
action design can be achieved only with practice and the experience of both good and
not so good results.

— Spence (2007)

Spence’s words already indicate that developing interaction, not only in visualization, is
hard. During the development of the approaches presented here, many hours if not weeks have
been spent on trying out (which essentially means designing and implementing) and throwing
away various interaction solutions until eventually the final result surfaced. Although the costs
involved were significant, it is worth investing in interaction, because the benefit for the user is a
more productive solution and smooth working experience.

5.2 TOPICS FOR FUTURE WORK
Although we presented a number of interaction techniques they are but pieces in the larger puzzle
of the science of interaction in visualization research (Pike et al., 2009). is puzzle holds many
more unsolved questions that need to be addressed. Where appropriate, we already indicated
open issues pertaining to the individual approaches discussed in this work. While it is important
to address these issues in the short run, the goal of this section is to provide an agenda of topics
for more long-term future research with a focus on interaction in visualization.

Support the Engineering of Interaction Interaction engineering in the context of visualization
remains a complex endeavor. A key difficulty is the dependency of the interaction design on the
visualization design and the data. Because the visual representation of the data serves to a large
degree as the user interface, interaction can only be implemented efficiently with respect to a
good visualization design that has been tested with a reasonable number of datasets. In fact, the
problem with this dependency is that a little change in the data and their representation can break
the interaction design.
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erefore, new conceptualmodels and strategies have to be developed to support the human
engineer in experimenting effortlessly with different visualization and interaction designs. To this
end, the aforementioned dependency has to be relaxed. e benefit of such a relaxation will be a
greater flexibility and reduced costs during development.

In addition to such conceptual considerations, there is room for improvements on the prac-
tical side of interaction engineering. New toolkits focusing on interaction for visualization are
helpful in this regard. A recent example indicating the potential benefits is VisDock, a JavaScript
mixin library for cross-cutting interaction (Choi et al., 2015). Moreover, methods should be in-
vestigated to supersede the cumbersome and error-prone way of implementing interaction via
event handlers in some programming language. Modeling interaction via state machines (Appert
and Beaudouin-Lafon, 2008) or declarative interaction design (Satyanarayan et al., 2014) should
be incorporated more widely in the context of visualization. Ideally, in the future, interaction
for visualization will be modeled using a graphical editor, rather than coded in a programming
language.

Go Beyond Mouse and Keyboard Although mouse and keyboard are still the predominant in-
teraction devices and the regular desktop display is still the most frequently used output device,
the future will see a shift toward alternative settings. Direct touch on high-resolution surfaces will
most likely replace the standard workplace in the near future. Specialized applications will run in
large display environments that track their users and integrate the devices the users bring with
them.

While the visualization community has begun to recognize this shift (Lee et al., 2012), still
more research is necessary to comprehensively integrate modern display and interaction technolo-
gies with visualization approaches. Such research has to tackle several challenges. First, technical
issues have to be addressed to create a basis upon which interactive visualization solutions can be
built. Second, investigations are needed to determine how and where new technologies can be
employed most usefully. ird, studies have to be conducted to evaluate the benefits of the new
technologies in comparison to established setups.

A concrete example could be a comparative study on graph exploration. Such a study could
compare the classic desktop-based techniques from Section 4.2.1, the tangible views from Sec-
tion 4.4.1, and the proxemic interaction as described in Section 4.4.2. One can easily imagine
how complex such a study would be. On the other hand, such a study would significantly advance
our understanding of interaction in visualization.

Provide Guidelines and Guidance Approaches to interaction in visualization are as multi-
faceted as the problems they address. With our interaction-oriented view, we can somewhat
structure the space of interaction solutions. Yet, with interaction for different data and differ-
ent tasks, and maybe even for different technologies, it can become difficult to develop or choose
an appropriate interaction technique for a given visualization problem.
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erefore, we have to provide guidelines for visualization engineers and guidance for visu-
alization users. By guidelines we mean a set of established best practices that a visualization en-
gineer can refer to when developing interactive visualization approaches. Such guidelines could,
for example, suggest how to map interaction intents to appropriate interaction techniques using
the most efficient technology.

While guidelines apply in the development phase of visualization, guidance is to support
the user while working with interactive visualization tools. e navigation recommendations from
Section 4.5.2 are an example for guidance during interactive navigation. But guidance in general
is much broader and can be provided with respect to various domains at different degrees. Here
we see much potential for future research on guiding the user in making the most of interactive
visualization (Schulz et al., 2013b).

Overcome the Interaction-Visualization Gap e gap between visualization and interaction has
to be narrowed further. A still problematic concern is the lack of a consistent model that covers
visual aspects as well as aspects of interaction on equal terms. As a model for interaction, Norman’s
action cycle describes how humans interact. e visualization pipeline is a model for generating
visual representations. In the former case, the human acts upon the data (in visual form), whereas
in the latter case, the computer acts upon the data (in symbolic form). ese two views have to
be brought closer together.

A new integrated model of a visualization-interaction “pipe-loop” would help bridge the
gap between interaction and visualization research. One option to build such a model is to com-
pile a conglomerate of the visualization pipeline (Haber and McNabb, 1990; Card et al., 1999;
dos Santos and Brodlie, 2004), Norman’s (2013) interaction model, and the model of visual ex-
ploration by Jankun-Kelly et al. (2007). Constructing such an integrated model requires a detailed
analysis of where visualization and interaction models differ and what the key influencing factors
behind the models are.

Establish an Interaction Vocabulary With Bertin’s visual variables there is an established vo-
cabulary of basic building blocks for the graphics design of visualization approaches. However,
there are no such building blocks for interaction in visualization.

erefore, an open research question is to define an interaction vocabulary. ere have
already been first efforts to identify patterns or primitives of interaction in visualization (Sedig
and Parsons, 2013; Roth, 2013). ese studies describe how interaction is employed for different
tasks. What we are still missing are constructive building blocks that allow us to flexibly outfit
a visualization design with a suitable interaction design depending on the characteristics of the
underlying problem.

Identifying, collecting, and structuring such building blocks in an interaction vocabulary,
will enable us to investigate whole new topics. As one such topic we envision adaptive interaction,
where interaction techniques automatically adapt to the data and the task at hand as well as to
the available technology and the human user operating it. Maybe it is even possible to extend the
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interaction vocabulary to a grammar of interaction analogous to Wilkinson’s (2005) grammar of
graphics.

As mentioned earlier, our ideas for future work represent larger research topics to be studied
in the long run. e versatility of the topics suggests that there is still much to do in the context of
a science of interaction in visualization. We believe that there is much potential in further strength-
ening the interaction side of visualization. e positive results obtained with the approaches pre-
sented in this work let us conclude that it is worth facing and tackling the challenges ahead of
us.
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